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Preface

Faith is belief without evidence in what is told by one who speaks without
knowledge of things without parallel.
Ambrose Bierce

One must learn by doing the thing; for though you think you know it, you
have no certainty until you try.
Sophocles

I am grateful to the many readers of the first edition of this book; the
number of copies sold greatly exceeded my expectations. I am especially
pleased by the number of readers who provided helpful comments, cor-
rection of typographical and other errors, and suggestions for the second
edition.

The genesis of the first edition of this book is my experience in teach-
ing the use of statistics and queueing theory for the design and analysis of
computer communication systems at the Los Angeles IBM Information Sys-
tems Management Institute. After publication, the book was used for both
technical and management courses in computer capacity planning at the
Institute. Before attending the one-week technical course, students were
asked to complete the IBM Independent Study Course Capacity Planning:
Basic Models [1], which used my book as a textbook. Still later the book
was used as one of the textbooks for the Self-Study Course Introduction to
Computer Modeling [2]. The second edition evolved as a result of my ex-
perience in teaching courses at the IBM Information Systems Management
Institute, the UCLA Extension Division, internal courses at the Hewlett-
Packard company, as well as in writing the Independent Study Program [1]

xi



xii PREFACE

course for IBM and the Self-Study course [2] for Applied Computer Re-
search.

The book is designed as a junior-senior level textbook on applied prob-
ability and statistics with computer science applications. While there are
a number of examples of computer science applications, the book has been
used successfully at a number of universities to teach probability and statis-
tics classes with no emphasis on computer science. In addition, because of
the prevalence of personal computers, most students of any discipline have
no difficulty understanding examples with a computer science orientation.
The book may also be used as a self-study book for the practicing computer
science (data processing) professional. The assumed mathematical level of
the reader who wants to read through all the proofs and do all the exer-
cises is the traditional analytical geometry and calculus sequence. However,
readers with only a college algebra background are able to follow much of
the development and most of the examples; such readers should skip over
most of the proofs.

I have attempted to state each theorem carefully so the reader will know
when the theorem applies. I have omitted many of the proofs but have, in
each such case, given a reference where the omitted proof can be found.!
With a few exceptions I have provided the proof of a theorem only when
the following conditions apply: (a) the proof is straightforward; (b) reading
the proof will improve the reader’s understanding; and (c) the proof is not
long.

The emphasis in this book is on how the theorems and theory can be
used to solve practical computer science problems. However, the book
and a course based on the book should be useful for students who are not
interested in computer science itself, but in using probability, statistics,
and queueing theory to solve problems in other fields such as engineering,
physics, operations research, and management science.

A great deal of computation is needed for many of the examples and
exercises in this book because of the nature of the subject matter. The use
of a computer is almost mandatory for the study of some of the queueing
theory models. There are several queueing theory packages available for
solving these models, such as the Best/1 series from BGS Systems, Inc.,
the MAP system from Performance Associates, and CMF MODEL from
Boole & Babbage, but these packages are very expensive and may not be
available to many readers. Another simpler (and an order of magnitude
less expensive) queueing theory package is Myriad for the IBM PC or com-
patible from Pallas International of San Jose, California. To help readers

1Unless the proof is given as an exercise at the end of the chapter (with hints, of
course).
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who have no queueing theory package available I have included a number of
APL programs in Appendix B as an aid in making queueing theory calcula-
tions. I wrote these programs in Kenneth Iverson’s APL language because
this language was the best available for such calculations when I started
writing the second edition of this book. I have written the programs as
directly as possible from the equations given in the text so that they can
easily be converted to another language such as BASIC or PASCAL. Ev-
ery APL program referred to in the text can be found in Appendix B. I
received a copy of Mathematica in mid-1989 and wrote all new code after
that time in Mathematica. For more traditional probability and statistical
applications, a number of relatively low-cost packages are available for use
on personal computers to ease the computational load for readers. We have
demonstrated the use of some of these packages in this edition of the book
and have some further comments about them below.

The excellent series of books by Donald Knuth [4-6] has influenced
the writing of this book. I have adopted Knuth’s technique of presenting
complex procedures in an algorithmic way, that is, as a step by step process.
His practice of rewarding the first finder of any error with $2 has also been
adopted. I have followed his system of rating the exercises to encourage
students to do at least the simpler ones. I believe the exercises are a valuable
learning aid and have included more than twice as many in this edition as
in the first edition. I believe Sophocles is right: you must do at least a few
exercises to be sure that the material is understood.

Following Knuth, each exercise is given a rating number from 00 to
40. The rating numbers can be interpreted as follows: 00—a very easy
problem that can be answered at a glance if the text has been read and
understood; 10—a simple exercise, which can be done in a minute or so;
20—an exercise of moderate difficulty requiring 18 to 20 minutes of work
to complete; 30—a problem of some difficulty requiring two or more hours
of work; 40—a lengthy, difficult problem suitable for a term project. (All
entries with ratings higher than 30 are “virtual.”)

We precede the rating number by HM for “higher mathematics” if the
problem is of some mathematical sophistication requiring an understand-
ing of calculus, such as the evaluation of proper or improper integrals or
summing an infinite series. The prefix C is used if the problem requires
extensive computation, that would be laborious without computer aid such
as a statistical package on a personal computer. T is used to indicate an
exercise whose solution is basically tedious, even though the result may be
important or exciting; that is, the required procedure is too complex to
program for computer solution without more frustration than carrying it
out manually with a pocket calculator.

The reader is assumed to have a basic knowledge of computer hardware
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and software. Computer illiteracy is now very rare. I recently was pleased
to learn that a woman, who appeared to be in her eighties, kept the records
of her women’s club on her personal computer. She used an advanced data
base management system to do it. She told me she bought an IBM PC when
they first became available and had recently upgraded to a more powerful
machine.

Statistical Computer Systems We Use in This
Book

There are a number of valuable statistical computer systems available for
assistance in making statistical calculations and for displaying data in vari-
ous formats. These systems are especially useful for performing exploratory
data analysis. I chose three of them to use in this book, not because ev-
eryone agrees they are the best, but because they were available to me and
probably are available to most readers. My comments on the three systems
are entirely subjective; your feelings about the systems may be different.
My comments also apply only to the versions of the systems available at the
time the book was written. Robin Raskin [9] tested the available statistical
software for personal computers for PC Magazine in March 1989. Two of
the three I chose were reviewed.

MINITAB 8], [10], [12]

The reference manual [8] for MINITAB is very readable and provides a
good description of the MINITAB features. The book by Ryan, Joiner,
and Ryan [10] was used by many as a reference manual before Release 7
and is still a valuable resource. MINITAB seems to be the statistical sys-
tem most in use by textbook writers (at least according to the MINITAB
advertisements). I use MINITAB for several examples because MINITAB
is widely available, easy to learn, and easy to use. Instructors may ask their
students to obtain the Student Edition described by Schaefer and Ander-
son [12]. There are some statistical procedures, such as the Kolmogorov—
Smirnov goodness-of-fit test,? that are not directly available in MINITAB.
However, by using macros, you can extend the capabilities of MINITAB to
include this test as well as most others you may read about. Macros for the
Kolmogorov-Smirnov test applied to the normal, Poisson, and continuous

2SAS/STAT doesn't provide a general procedure for this test either. Strangely
enough, the newly announced Hewlett-Packard calculator, the HP-21S Stat/Math Cal-
culator, does.
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uniform distributions have been written by Joseph B. Van Matre of the
University of Alabama in Birmingham. It is listed and described in the
Minitab Users’ Group Newsletter (MUG), Number 10 of September 1989.
All macros published in MUG Newsletters are maintained on a macro li-
brary diskette, which is available, free, to members of the Minitab Users’
Group. All the MINITAB examples in this book were run using MINITAB
Release 7.2.

In Raskin [9] MINITAB was one of the two Editor’s Choices in the Basic
category. The Editor’s Choice Citation for MINITAB is:

We chose MINITAB Statistical Software as Editor’s Choice be-
cause it makes some wise choices in terms of what to include.
MINITAB offers consistency and simplicity, but its excellent
command language and macro facilities make it possible to push
the envelope. Because it runs on so many different machines it’s
an excellent choice for the “work wherever I can find a CPU”
student.

Release 6 was the version of MINITAB reviewed by Raskin. Version 7.2
has some very nice additional features including high resolution graphics.

The EXPLORE Programs of Doane [3]

Doane’s software is designed primarily for instruction. EXPLORE has a
main menu that can take you to a help menu, a menu to choose one of
the 24 EXPLORE programs, or to a file edit Menu. The file system makes
it easy to enter and modify data. For a given statistical procedure, such
as simple linear regression, it yields more information automatically than
many expensive statistical systems and in a more pleasing format. It is
indeed unfortunate that EXPLORE doesn’t have more statistical routines.
Professor Doane has assured me that new editions of his book with exten-
sions to EXPLORE are in preparation. The EXPLORE examples in this
book were done using the routines in the second edition. Since EXPLORE
does not have much capability in calculating statistical distributions the
Hewlett-Packard HP-21S provides a useful supplement to this package.

SAS/STAT for IBM PCs and Compatibles [11]

The SAS/STAT package is very powerful—it is true industrial strength.
Unfortunately, it also is rather user-unfriendly and difficult to learn.® The

31t ran rather slowly on the 8 MHz IBM PC AT that I had in early 1989, too, and is
noticeably slow on the 33 MHz IBM PC compatible with an Intel 80386 microprocessor
that I had when I finished the book.
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tutorial that is part of Release 6.03 is very good and the manuals have im-
proved dramatically over Release 6.0. One can learn how to use the system
for at least simple applications by going through the tutorial. In addition,
the SAS Institute has published an introductory textbook by Schlotzhauer
and Littell [13], which explains how to use SAS Procedures such as UNI-
VARIATE, MEANS, CHART, and TTEST to perform elementary statisti-
cal processes.* The Institute has also published a master index to the SAS
documentation [7], which has gone a long way to alleviate the frustration
I had with SAS/STAT 6.0—1I never could guess which manual to consult.
SAS/STAT, which, with Release 6.03, is identical to the mainframe version,
contains a number of powerful statistical routines, each of which has sev-
eral sophisticated options. It also offers flexible output and has a built-in
programming language that makes it possible to construct any statistical
procedure you can imagine.

SAS/STAT was reviewed by Frederick Barber in Raskin [9] as one of
the advanced statistical systems available for the IBM PC. It was not the
Editor’s Choice although, Barber said, in part

SAS computes a very wide range of descriptive and comparative
statistics and performs ANOVA, MANOVA, factor and cluster
analysis, plus least squares, GLM, and nonlinear regression, as
well as many other procedures. An exhaustive set of options
allows the user to customize the output and analyze statistical
patterns in great depth. For the statistician who needs great
depth and a wide range of statistical computing power, SAS is
hard to beat.

SAS/STAT is more powerful than MINITAB. The mainframe version
of SAS has been popular for years with performance analysts who work on
large mainframe computers. If you are doing statistics on a daily basis,
you may want to learn how to use SAS. If you do, be prepared for a steep
learning curve. As this book goes to press (June 1990) the SAS Institute
has announced version 6.04 of SAS/STAT for IBM PCs as well as a new
mainframe version. The SAS Institute claims the new version is easier to
use. I have not had an opportunity to try SAS/STAT 6.04.

All of my comments about statistical systems for the personal computer
reflect my view of the situation in early 1990.

4Unfortunately, it fails to tell you what commands you need to give to make the
procedures work. This is the truly difficult part about using SAS.
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Mathematica, a System for Doing Mathematics
by Computer [14]

Mathematica [14] is, strictly speaking, not a statistical system but rather a
system for doing mathematics on the computer. It can be used as a super-
calculator that is able to find the value of most well-known mathematical
functions, real or complex. It also performs symbolic calculations such as
finding integrals, derivatives, or infinite series. Mathematica makes it very
easy to plot graphs of mathematical functions in two or three dimensions.
It functions as a programming language and allows you to define new math-
ematical functions in terms of those provided by Mathematica or those you
have already defined. Mathematica became available to me in late July
1989 when the book was almost completed. It is a remarkable system and
had a big influence on how I finished the book. I wrote no more APL code
but wrote the Mathematica packages that appear in Appendix D.
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Chapter 1

Introduction

“Is there any point to which you would wish to draw my attention?”
“To the curious incident of the dog in the night-time.”

“The dog did nothing in the night-time.’

“That was the curious incident,” remarked Sherlock Holmes.

4

Come Watson, come! The game is afoot.
Sherlock Holmes

This chapter is a preview of the book. As the title of the book suggests, it is
concerned with the application of probability, statistics, and queueing the-
ory to computer science problems. The first edition was written primarily
for the computer science (data processing) specialist or for one preparing
for a career in this field. It was widely read by this audience but was also
used for courses in applied probability as well as for introductory mathe-
matical statistics courses. It was used, too, for queueing theory courses for
operations research students. With the advent of the personal computer,
the audience broadened to include many personal computer users with an
interest in applied probability or statistics. This edition has the same em-
phasis as the first edition but makes more extensive use of available personal
computer software such as MINITAB, SAS/STAT, EXPLORE, APL, and
Mathematica. We have tried to make the book practical, interesting, and
theoretically sound.

The book, like Julius Caesar’s Gaul, is divided into three parts: Prob-
ability, Queueing Theory, and Statistical Inference.

There are three chapters in:Part One. In Chapter 2 we discuss basic
probability theory. Probability theory is important in computer science be-
cause most areas of computer science are concerned more with probabilistic
rather than deterministic phenomena. The time it takes to write and check
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out a computer program (especially those I write), the time it takes to run
a program on any computer but the simplest personal computer, and the
time it takes to retrieve information from a storage device are all examples
of probabilistic or random variables. By this we mean that we cannot pre-
dict in advance exactly what these values will be. Such variables are called
random variables. However, using basic probability theory, we can make
probability estimates (that is, estimate the fraction of the time) that the
values of a random variable will fall into certain ranges, exceed certain lim-
its, etc. Thus, we may compute the 90th percentile value of response time,
which is the value that is exceeded only one tenth of the time. In Chapter
2 we also discuss parameters of random variables, such as the mean or av-
erage value and the standard deviation. The standard deviation provides
a measure of the spread of the values of the random variable about the
mean. In the final part of Chapter 2 we discuss some powerful probabil-
ity tools, including conditional expectation, the Law of Total Probability,
transform methods, and inequalities. Transform methods are important for
studying random variables. The transforms we define and illustrate include
the moment generating function, the z-transform, and the Laplace-Stieltjes
transform.

In Chapter 3 we study the probability distributions most commonly
used in applied probability, particularly for computer science applications.
We give examples of the use of all of the random variables except those used
primarily in statistical inference, the subject of Part Three. A summary
of the properties of the random variables studied in Chapter 3 is given in
Tables 1 and 2 of Appendix A. In the last section of the chapter we provide
further examples of the use of the transform methods that were introduced
in Chapter 2.

In Chapter 4 the important concept of a stochastic process is defined,
discussed, and illustrated with a number of examples. This chapter was
written primarily as a support chapter for Part Two, Queueing Theory. We
examine the Poisson process and the birth-and-death process because they
are extremely important for queueing theory. We finish the chapter with a
discussion of Markov processes and chains—subjects that are important not
only for queueing theory but for much of computer science and operations
research.

Part Two of this book is the subject area that is most likely to be
unfamiliar to the reader. I didn’t know queueing theory existed until I was
tapped to teach it at the IBM System Science Institute. Queueing theory
is a very useful branch of applied probability. However, some expressions,
symbols, and words are used differently in queueing theory than they are
in other areas of probability and statistics.
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Figure 1.1 shows the elements of a simple queueing system. There is a cus-
tomer population where a customer may be an inquiry to be processed by
an interactive computer system, a job to be processed by a batch computer
system, a message or a packet to be transmitted over a communication link,
a request for service by an input/output (I/0) channel, etc. Customers ar-
rive in accordance with an arrival process of some type (a Poisson arrival
process is one of the most common). Customers are provided service by
a service facility, that has one or more servers, each capable of providing
service to a customer. Thus, a server could be a program that processes an
inquiry, a batch computer system, a communication link, an I/O channel,
a central processing unit (CPU), etc. If all the servers in the service facility
are busy when a customer arrives at the queueing system, that customer
must queue for service. That is, the customer must join a queue (waiting
line) until a server is available. In Chapter 5 we study the standard (one
might say canonical) queueing systems and see how they can be applied to
the study of computer systems. We have gathered most of the queueing
theory formulas from Chapters 5 and 6 in Appendix C. You will find this
appendix to be a useful reference section after you have mastered the ma-
terial in the two queueing theory chapters. The APL programs for solving
most of the models in Appendix C are displayed in Appendix B.

In Chapter 6, we discuss more sophisticated queueing theory models
that have been developed to study computer and computer communication
systems. A number of examples of how the models can be used are pre-
sented, too. Some Mathematica programs are displayed in Appendix D.
Most of them are for the queueing network models of Chapter 6.
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The subject matter of Part Three, statistical inference, is rather stan-
dard statistical fare but we have attempted to give it a computer science
orientation. We also demonstrate how MINITAB, SAS, and EXPLORE
can be used to remove much of the labor. Statistical inference could per-
haps be defined as “the science of drawing conclusions about a population
on the basis of a random sample from that population.” For example, we
may want to estimate the mean arrival rate of inquiries to an interactive
inquiry system. We may want to deduce what type of arrival process is
involved, as well. We can approach these tasks on the basis of a sample of
the arrival times of inquiries during n randomly selected time periods. The
first task is one of estimation. We want to estimate the mean arrival rate
on the basis of the observed arrival rate during n time intervals. This is the
subject of Chapter 7. In Chapter 7 we learn not only how to make estimates
of parameters but also how to make probability judgments concerning the
accuracy of these estimates. In Chapter 7 we also study exploratory data
analysis and some of the tools that are used to study benchmarks.

Chapter 8 is about hypotheses testing. One of the important topics
of this chapter is goodness-of-fit tests. We might want to test the hy-
pothesis that the arrival pattern is a Poisson arrival pattern because Pois-
son arrival patterns have desirable mathematical properties. We discuss
and illustrate the chi-square and Kolmogorov-Smirnov tests because they
are popular and widely used. We will also discuss a class of EDF statis-
tics called quadratic statistics because experts on goodness-of-fit tests tell
us tests based on these statistics are more powerful than chi-square and
Kolmogorov-Smirnov tests. In Chapter 8 we also study a number of clas-
sical statistical tests concerning means and variances. These tests can be
used to study new paradigms or methodologies, such as those of software
engineering or software design, to determine whether they are effective.
We also provide an introduction to Analysis of Variance (ANOVA). Chap-
ter 8 is a chapter in which the statistical functions of MINITAB, SAS, and
EXPLORE are particularly useful.

Chapter 9 on regression is new to this edition of the book. Regression
has many applications to computer science. It also provides many oppor-
tunities for making egregious errors. We attempt to show you how to make
good use of regression without making errors.

This completes the summary of the book. We hope you will find the
study of this book entertaining as well as educational. We have avoided
being too solemn. We have chosen whimsical names for mythical companies
and people in our examples. We made the examples as practical as possible
within the constraints of a reasonably short description. We welcome your
comments, suggestions, and observations. My address is: Dr. Arnold O.
Allen, Hewlett-Packard, 8050 Foothills Blvd., Roseville, California 95678.



Part One:

Probability:

There once was a breathy baboon
Who always breathed down a bassoon,
For he said, “It appears
That in billions of years
I shall certainly hit on a tune.”

Sir Arthur Eddington

!Figure provided by Mike Kury.



Preface to Part One:
Probability

Probability is a mathematical discipline with aims akin to those, for
ezample, of geometry or analytical mechanics. In each field we must
carefully distinguish three aspects of the theory: (a) the formal logical
content, (b) the intuitive background, (c) the applications. The character,
and the charm, of the whole structure cannot be appreciated without
considering all three aspects in their proper relation.

William Feller

The above quote is from William Feller’s classic book.? Many mathemati-
cians feel that Feller’s is the finest mathematics book ever written; this
author agrees. However, the revised printing of the third edition of this
wonderful book was published in 1970 and there have been many advances
in applied probability since then. Nevertheless, Feller’s book is enjoyable
and enlightening to peruse. It has also had a profound effect upon the at-
titude toward applied probability in the fields of mathematics, the physical
sciences, and engineering. As Feller says in the preface to the third edition:

When this book was first conceived (more than 25 years ago)
few mathematicians outside the Soviet Union recognized proba-
bility as a legitimate branch of mathematics. Applications were
limited in scope, and the treatment of individual problems often
led to incredible complications. Under these circumstances the
book could not be written for an existing audience, or to satisfy
conscious needs. The hope was rather to attract attention to

2Reprinted by permission of the publisher from An Introduction to Probability Theory
and Its Applications, Vol. I, 3rd ed., revised printing, John Wiley, New York, 1968 by
William Feller.



little-known aspects of probability, to forge links between var-
ious parts, to develop unified methods, and to point to poten-
tial applications. Because of a growing interest in probability,
the book found unexpectedly many users outside mathematical
disciplines. Its widespread use was understandable as long as
its point of view was new and its material was not otherwise
available. But the popularity seems to persist even now, when
the contents of most chapters are available in specialized works
streamlined for particular needs. For this reason the charac-
ter of the book remains unchanged in the new edition. I hope
that it will continue to serve a variety of needs and, in particu-
lar, that it will continue to find readers who read it merely for
enjoyment and enlightenment.

In Part One of this book we set up the concepts in probability and
stochastic processes that we will need for the rest of the book. In Chap-
ter 2 we consider the basics of probability and random variables and in
Chapter 3 we consider a number of important probability distributions for
applications. We also investigate the important concepts of inequalities,
the Central Limit Theorem, and the application of transform techniques.
In Chapter 4 we take up the important study of stochastic processes, which
is very important for Part Two.



Chapter 2

Probability and Random
Variables

Science is founded on uncertainty.
Lewis Thomas

Probability is the very guide of life.
Cicero

2.0 Introduction

One of the most noticeable aspects of many computer science related phe-
nomena is the lack of certainty. When a job is submitted to a batch-oriented
computer system, the exact time the job will be completed is uncertain. The
number of jobs that will be submitted tomorrow is probably not known,
either. Similarly, the exact response time for an interactive inquiry system
cannot be predicted. If the terminals attached to a communication line
are polled until one is found that is ready to transmit, the required num-
ber of polls is not known in advance. Even the time it takes to retrieve
a record from a disk storage device cannot be predicted exactly. Each of
these phenomena has an underlying probabilistic mechanism. In order to
work constructively with such observed, uncertain processes, we need to put
them into a mathematical framework. That is the purpose of this chapter.

Exzperience enables you to recognize a mistake when you make it again.
Franklin P. Jones
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2.1 Sample Spaces and Events

To apply probability theory to the process under study, we view it as a
random experiment, that is, as an experiment whose outcome is not known
in advance but for which the set of all possible individual outcomes is
known. For example, if the 10 workstations on a communication line are
polled in a specified order until either (a) all are polled or (b) one is found
with a message ready for transmission, then the number of polls taken
describes the outcome of the polling experiment and can only be an integer
between 1 and 10. The sample space of a random experiment is the set of
all possible simple outcomes of the experiment. These individual outcomes
are also called sample points or elementary events. A sample space is a
set and thus is defined by specifying what objects are in it. One way
to do this, if the set is small, is to list them all, such as @ = {1,2,3}.
When the set is large or infinite its elements are often specified by writing
Q = {z : P(z)}, where P(z) is a condition that  must satisfy to be an
element of . Thus, @ = {z : P(z)} means, “Q is the set of all x such
that P(z) is true.” The set of all nonnegative integers could be specified by
writing {n : n is an integer and n > 0}. Some examples of sample spaces
follow.

Example 2.1.1 If the random experiment consists of tossing a die, then
Q= {1,2,3,4,5,6} where the sample point n indicates that the die came
to rest with n spots showing on the uppermost side. O

Example 2.1.2 If the random experiment consists of tossing two fair dice,’
then one possible sample space @ = {(1,1),(1,2),---,(6,6)}, where the
outcome (4,j) means that the first die showed ¢ spots uppermost and the
second showed j. O

Example 2.1.8 If the random experiment consists of polling the termi-
nals on a communication line in sequence until either (a) one of the seven
terminals on the line is found to be ready to transmit or (b) all the ter-
minals have been polled, the sample space could be represented by €} =
{1,2,3,4,5,6,7,8}, where an 8 signifies that no terminal had a message
ready, while an integer n between 1 and 7 means that the nth terminal
polled was the first in sequence found in the ready state. O

Example 2.1.4 If the random experiment consists of tossing a fair coin
again and again until the first head appears, the sample space can be repre-
sented by @ = { H, TH, TTH, TTTH, ...,}, where the first sample point

1By a fair coin or a fair die we mean, of course, one for which each outcome is equally
likely (whatever that means).
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corresponds to a head on the first toss, the second sample point to a head
on the second toss, etc. O

Example 2.1.5 The random experiment consists of measuring the elapsed
time from the instant the last character of an inquiry is typed on an inter-
active terminal until the last character of the response from the computer
system has been received and displayed at the terminal. This time is often
called the “response time,” although there are other useful definitions of re-
sponse time. If it takes a minimum of one second for an inquiry to be trans-
mitted to the central computer system, processed, a reply prepared, and the
reply returned and displayed at the terminal, then Q = {real¢t:¢ > 1}. O

Thus, sample spaces can be finite, as in Examples 2.1.1-2.1.3, or infi-
nite, as in Examples 2.1.4 and 2.1.5. Sample spaces are also classified as
discrete if the number of sample points is finite or countably infinite (can
be put into one-to-one correspondence with positive integers). The sample
space of Example 2.1.4 is countably infinite since each sample point can be
associated uniquely with the positive integer giving the number of tosses
represented by the sample point. For example, the sample point TTTH
represents four tosses. A sample space is continuous if its sample points
consist of all the numbers on some finite or infinite interval of the real line.
Thus, the sample space of Example 2.1.5 is continuous.

For discussing subsets of the real line, we use the notation (e, b) for the
open interval {z : a < z < b}; [a, b] for the closed interval {z : a < z < b};
(a,b] for the half-open interval {z : a < z < b}; and [a,b) for the half-
open interval {z : a < z < b}, where all intervals are subsets of the real
line. Note that a round bracket means the corresponding end point is not
included and a square bracket means it is included.

An event is a subset of a sample space satisfying certain axioms (Axiom
Set 2.2.1 described in Section 2.2). An event A is said to occur if the random
experiment is performed and the observed outcome is in A.

Example 2.1.6 In Example 2.1.1, if A = {2, 3,5}, then A4 is the event of
rolling a prime number while the event B = {1, 3,5} is the event of rolling
an odd number. 0O

Example 2.1.7 In Example 2.1.2, if 4 = {(1,6),(2,5),(3,4), (4, 3),(5,2),
(6,1)}, then A is the event of rolling a seven. The event B = {(5, 6), (6,5)}
corresponds to rolling an 11. O

Example 2.1.8 In Example 2.1.3, if A = {1,2,3,4,5}, then A is the event
of requiring five polls or less, while B = {6, 7,8} is the event of requiring
more than five polls. O
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Example 2.1.9 In Example 2.1.4, A = {TTH, TTTH} is the event that
three or four tosses are required; B = {H, TH, TTH} is the event that not
more than three tosses are needed. O

Example 2.1.10 In Example 2.1.5, A = {t : 20 < ¢t < 30} is the event
that the response time is between 20 and 30 seconds. O

Since a sample space {2 is a set and an event A is a subset of 2, we
can form new events by using the usual operations of set theory. For some
of these operations a somewhat different terminology is used in probability
theory than in set theory—a terminology more indicative of the intuitive
meaning of the operations in probability theory. Some of the set operations
and corresponding probability statements are shown in Table 2.1.1. We
will use probability statements and set theory statements interchangeably
in this book.

Table 2.1.1. Set Operations and Probability Statements

Set Operation Probability Statement

AUB At least one of A or B occurs
ANB Both A and B occur

A A does not occur

0 The impossible event
ANB=9§ A and B are mutually exclusive
ANB A occurs and B does not occur
ACB If A occurs so does B

We indicate that the outcome w is a sample point of event A by writing
w € A. We write A = @ to indicate that the event A contains no sample
points. Here § is the empty set, called the impossible event in probability
theory. The impossible event, , is considered to be an event just as §2 itself
is. The reader should note that @ is not the Greek letter phi but rather
a Danish letter pronounced “ugh,” the sound one makes upon receiving
an unexpected blow to the solar plexus. It has been rumored that the
prevalence of § in Danish words has been a leading cause of emphysema
in Denmark. Professor Richard Arens of UCLA has recommended a new
symbol for the empty set constructed by adding a second slash mark to @
and pronounced “uh uh,” of course.?

21 do not know how to construct this symbol with IXTgX. The typesetter of the first
edition of this book knew how to construct it.
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To every event A there corresponds the event A, called the complement
of A, consisting of all sample points of ) that are not in A. Thus, A is
defined by the condition “A does not occur.” As particular cases of the
complement, = 0 and § = Q. The concept of complement is illustrated
by the Venn diagram of Figure 2.1.1. In each Venn diagram that follows,
the large rectangle will represent the sample space €2, and simple geometric
figures will be used to represent other events. A point thus represents
an elementary event or outcome and the inside of a figure represents a
collection of them (an event).

o

Figure 2.1.1. A and A.

Figure 2.1.2. The event AU B.

Figure 2.1.3. The event AN B.

Figure 2.1.4. Mutually exclusive events.
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With each two events A and B are associated two new events, that
correspond to the intuitive ideas “either A or B occurs” and “both A and
B occur.” The first of these events, AU B (read: “A or B”) is the ordinary
set union consisting of all sample points that are either in 4 or in B or
(possibly) in both A and B. The second event AN B (read: “A and B”) is
the ordinary set intersection, that is, all sample points which belong both
to A and to B. If A and B have no sample points in common, that is, if
ANB =, we say that A and B are mutually exclusive events. Clearly, if A
and B are mutually exclusive, then the occurrence of one of them precludes
the occurrence of the other. These concepts are illustrated in the Venn
diagrams of Figures 2.1.1-2.1.4. In Figure 2.1.2, AU B is represented by
the shaded area. AN B is shaded in Figure 2.1.3. The events A and B of
Figure 2.1.4 are mutually exclusive.

The concepts of union and intersection can be extended in a similar way
to any finite collection of events suchas AUBUC or ANBNCND. For
a countable collection of events Ay, Az, A, ..., the union {JO; A, of the
events is defined to be the event consisting of all sample points that belong
to at least one of the sets A,,n =1,2,...; the intersection ﬂ;‘;l A, of the
events is the event consisting of all sample points that belong to each of
the events A,,n=1,2,....

If every sample point of event A is also a sample point of event B, so
that A is a subset of B, we write A C B and say that “if event A occurs,
so does event B.” In this case, B — A is defined to be the set of all sample
points in B that are not in A. Thus, A = Q — A for every event A.

Example 2.1.11 Consider the sample space of Example 2.1.3. Let A be
the event that at least five polls are required and B the event that not
more than four polis are required (4 = {5,6,7,8},B = {1,2,3,4}). Then
AUB=Qand ANB =0, so A and B are mutually exclusive. They are
also complements (A = B and B = A), although mutually exclusive events
are not necessarily complementary. O

The heights by great men reached and kept
Were not attained by sudden flight,

But they, while their companions slept,
Were toiling upward in the night.

Henry Wadsworth Longfellow
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2.2 Probability Measures

1st Die Sum of Spots

6 7 8 9 10 11 12
5 6 7 8 9 10 11
4 5 6 7 8 9 10
3 4 5 6 7 8 9
2 3 4 5 6 T 8
1 2 3 4 5 6 7

1 2 3 4 5 6

2nd Die

Figure 2.2.1. Two-dice experiment.

In the early or classical days of probability, there was much concern with
games of chance. Early workers in the field, such as Cardano and Pascal,
were occupied with questions about the likelihood of winning in various
games and in how to divide the purse if the game were discontinued be-
fore completion (called the “division problem” or the “problem of points”).
See Ore [17] for a discussion of Pascal’s role in the invention of probability
theory and Ore [16] for a description of Cardano’s work. Ore’s book also
contains a translation of Cardano’s book The Book of Games of Chance.
See Snell [23, pages 2-6] for a further discussion of the history of probability
theory. The sample spaces for gambling problems were constructed in such
a way that each elementary event or outcome was equally likely. In Exam-
ple 2.1.2, if the two dice are perfectly formed, each of the 36 elementary
outcomes is equally likely to occur on any given trial of the experiment, so a
probability of 1/36 is assigned to each sample point. Thus, for finite sample
spaces with n equiprobable sample points, each event A was assigned the
probability P[A] = n4/n, where n4 is the number of sample points in A.

Example 2.2.1 Consider the two-dice experiment of Example 2.1.2. We
can construct the table of Figure 2.2.1 to help in calculating probabilities.
Thus, if A is the event of rolling 11, we can see from Figure 2.2.1 that A
consists of the sample points (5, 6) and (6, 5), so P[A] = na/36 = 2/36 =
1/18. Likewise, if B is the event of rolling 7 or 11, P[B] = np/36 =
(6+2)/36 = 2/9. Other probabilities for this experiment can be calculated
in a similar manner. O

The classical definition of probability worked well for the kind of prob-
lem for which it was designed. However, the classical theory would not
suffice to assign probabilities to the events of Example 2.1.3 because the
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elementary events are not equiprobable. Likewise, it would not help in Ex-
amples 2.1.4 or 2.1.5, because these sample spaces are infinite. The classical
definition has been generalized into a set of axioms that every probability
measure should satisfy in assigning probabilities to events. Some additional
conditions, however, must be imposed on the collection of events of a sample
space before we can assign probabilities to them.

The family F of events of a sample space ) is assumed to satisfy the
following azioms (and thus form a o-algebra):

Axiom Set 2.2.1 (Azioms of a o-Algebra)®

A1l @ and Q are elements of F.
A2 If A€ F,then A € F.
A3 If A1, Ay, As, ... are elements of F, so is oo ; An.

It can be shown that these axioms also imply that, if each of the events
Ay, As, ... belongs to F, then ﬂ;;”:z A, is an element of F, and similarly
for finite intersections (see Exercise 7). Also, 4;,U---U A, is in F if each
A; is. Likewise, if A, B are in F, then B— A = BN A4 and thus is in F.

A probability measure P[], regarded as a function on the family F of
events of a sample space €2, is assumed to satisfy the following axioms:

Axiom Set 2.2.2 (Azioms of a Probability Measure)

P1 0 < P[A] for every event A.
P2 P[Q]=1. -
P3 P[AUB] = P[A] + P|B] if the events A and B are mutually exclusive.

P4 If the events A, Az, A3, . .. are mutually exclusive (that is, A;NA; =0
if i # j), then

P G Al = i P[A,).
n=1 n=1

It is immediate from P3 by mathematical induction that for any finite
collection A;, Ag, ..., A, of mutually exclusive events

P[A,UAU---UA,} = P[4;]+ -+ P[4,]. O

3Here we use the symbol € in the usual set theoretic sense; that is, it means “is an
element of” or “belongs to.”
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Although there is not general agreement among statisticians and philoso-
phers as to exactly what probability is, there is general agreement that a
probability measure P[] should satisfy the above axioms: The axioms are
satisfied for the classical theory defined above. These axioms lead imme-
diately to some consequences that are useful in computing probabilities.
Some of them are listed in the following theorem.

Theorem 2.2.1 Let P[] be a probability measure defined on the family F
of events of a sample space 2. Then

(a) P[0)=0;

(b) P[A] =1 - P[A] for every event A;

(¢) P]AU B] = P[A] + P|B] — P[AN B] for any events A, B;
(d) A C B implies P[A] < P|B] for any events A, B.

Proof (a) AU@ = A. A and @ are mutually exclusive (A N @ = §) so, by
Axiom P3, P[A] = P[AU 0] = P[A] + P[0]. Hence, P[#] = 0.

(b) A and A are mutually exclusive by the definition of A. Hence, by
Axioms P2 and P3,

1= P[Q] = P[AU 4] = P[A] + P[4].

Hence,
PlA]=1- P[X].

(c) AU B is the union of the mutually exclusive events AN B, AN B,
and AN B; that is,

AUB=(ANB)U(ANB)U(ANB).
Therefore,
P[AUB])=P[ANB]+ P[ANnB]+ P[ANB|. (2.1)
In addition, AN B and AN B are disjoint events whose union is A. Hence,
P[A] = P[ANn B) + P[ANB). (2.2)

Similarly,
P[B) = P[AN B) + P[AN B]. (2.3)

Adding (2.2} to (2.3) yields
P|A] + P|B] = 2P[AN B]+ P[AN B] + P[AN B]. (2.4)



18 CHAPTER 2. PROBABILITY AND RANDOM VARIABLES

Substituting (2.1) into (2.4) yields
P[A] + P[B] = P[AUB] + P[AN B (2.5)

P[AU B] = P[A] + P[B] - P[AN B]. (2.6)

(d) Since A C B, B is the union of the disjoint events A and B — A.
Thus,

P[B] = P[A] + P|B - A). (2.7)
Since P[B — A] > 0, this means that P[4] < P[B]. B

Example 2.2.2 A collection of 100 computer programs was examined for
various types of errors (bugs). It was found that 20 of them had syntax
errors, 10 had input/output (I/0) errors that were not syntactical, five had
other types of errors, six programs had both syntax errors and I/0 errors,
three had both syntax errors and other errors, two had both I/0 and other
errors, while one had all three types of error. A program is selected at
random from this collection, that is, it is selected in such a way that each
program is equally likely to be chosen. Let S be the event that the selected
program has errors in syntax, I be the event it has I/0 errors, and O the
event that it has other errors. Table 2.2.1 gives the probabilities associated
with some of the events.

The probability that the program will have a syntax error or an I/0O
error or both is

P[SUI] P[S]+ P[I] - P[SN1I]
20 10 6 24 6

_— —_—_— = —— = — 2. .
100t 100 " T00 — 100 — 257 DY Theorem 2.2.1(c)

The probability that it will have some type of error is given by

P[SUIUO] = P[S]|+P[I]+ P[O]-P[SNI]

—-P[SNO]-PINO]J+P[SNINO]

. 20 w 5 6 3 2 1
T 100 ' 100 100 100 100 100 100

25

25 1
100 4’
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In making the last calculation we used the formula

P[AUBUC] = P[A]+ P[B]+ P[C]- P[ANB]

~P[ANC]-P[BNC]+ P[ANBNC].

This formula follows from Theorem 2.2.1{c) and the distributive law (AU
BYNC =(ANC)U(BNC) (see Exercises 3 and 4). O

Table 2.2.1. Probabilities for Example 2.2.2

Event S I 0 SnI SnoO InO SNINO
Prob. 20/100 10/100 5/100 6/100 3/100 2/100  1/100

Sometimes probabilities are stated in terms of odds, especially by profes-
sional gamblers or bookmakers. If an event has probability P[A] of occur-
ring, the odds for A are defined by the following ratio:

PlA]
A= ——— .
odds for T=PlA] (2.8)
and the odds against A by
) _ 1-P[4]
odds against A = PlA] (2.9)

The odds are expressed, whenever possible, by the ratio of whole num-
bers. For example, if P[A] = %, then

1/3 1
dds for A= — = -,
odds for 33" 2
and we use the notation 1:2 for these odds (read as “one to two”). In this
case the odds against A4 are 2:1. It is easy to show that, if the odds for the

event A are a: b, then
a

a+b
Thus, for example, if event A has odds 7:3 against, it has odds 3:7 for and
P[A]=3/(3+7)=0.3.

Bookmakers make this sound even more complicated by telling the bet-
tor the odds against an event rather than the odds for it. The numerator
in the odds statement then reflects the profit on a successful bet in the

P[A] (2.10)
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amount of the denominator. Thus, a $2 wager at 7:2 odds (against) will, if
successful, result in the return of the $2 stake plus a $7 profit. The Odds
On Virtually Everything, (Verstappen [24]), does do much of what the title
suggests. For example, it claims that the odds are 423:1 against becoming
a millionaire in the United States. (However, there are 5,262 citizens for
every millionaire in Wyoming compared to approximately one millionaire
for every 37 citizens in Idaho.) (See also Siskin and Staller [22] for other
estimates of odds on everyday happenings.)

For probability calculations involving finite sample spaces, we need some
results from combinatorial analysis.

How do I love thee?
Let me count the ways.
Elizabeth Barrett Browning

The best way to be brief is to leave things out.
A. 8. C. Ehrenberg

2.3 Combinatorial Analysis

Combinatorial analysis is the science of counting—the number of elements
in prescribed sets, the number of ways a particular selection can be made,
etc.

One activity that is frequently employed in probability and statistics is
drawing a few elements or items (a sample) from a collection or source (a
population). Such a selection can be made with or without replacement.
For example, if two cards are to be drawn from a 52-card bridge deck*
without replacement, one card is removed and then another without putting
the first card back. Drawing with replacement requires that a card be
drawn, recorded, and returned to the deck before the second card is drawn,
so that the two cards drawn may be identical. We assume in all drawing,
with or without replacement, that the collection §2 from which a drawing
is made consists of n distinct objects Oy,03,...,0,. A permutation of
order k is an ordered selection of k elements from 2, where 0 < k < n.
A combination of order k is an unordered selection of k elements from {2,
that is, a subset of k elements. The selections for both permutations and
combinations can be made with or without replacement but are assumed
to be made without replacement, unless otherwise stated.

4For the definition of a “bridge deck” see the discussion just after Exercise 13 at the
end of this chapter.
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Example 2.3.1 Suppose 2 = {z,y, z} and we draw two letters from Q (k =
2). There are nine permutations of order 2 with replacement:

Iz, TY, T2, YT, Yy, Yz, 2, zY, 22 (2.11)

There are six permutations made without replacement: zy, zz, yz, yz, 2z,
zy. There are six combinations made with replacement: zz, zy, zz, yy,
yz, zz (the permutations zy and yz, for example, are not distinguished, be-
cause combinations are unordered). There are three combinations without
replacement: zy, zz, yz. O

One of the fundamental tools in combinatorics is the multiplication prin-
ciple, which we state formally as a theorem.

Theorem 2.3.1 (Multiplication Principle) If a task A can be done in m
different ways and, after it is completed in any of these ways, task B can
be completed in n different ways, then A and B, together, can be performed
inm X n ways.

Corollary Suppose k tasks Ay, A,, ..., Ay are to be done and that A, can
be completed in ny ways, Az in ny ways after Ay is completed, Az in ng ways
after Ay and A are completed, ..., Ay in ng ways after A1, As, ..., Ax—1
are completed. Then the total task, A;, Az,..., Ar in succession, can be
performed in ny X ng X - -+ X Ny ways.

Proof The corollary follows immediately from the theorem by mathemat-
ical induction. The theorem itself follows from simple enumeration; that is,
it is completely obvious. I

Hereafter we will refer to the multiplication principle, even when, strictly
speaking, we use the corollary to it.

We define n! (pronounced “n factorial”) for each nonnegative integer n
by 0! =1,n'=n(n—-1)!forn > 0. Thus 1! = 1,2! = 2,3! = 6,4! = 24,
etc., and we can write

nl=nx(n-1)xn-2)x---x2x1.

Theorem 2.3.2 The number of permutations of n elements, taken k at a
time, without replacement, is

P(n, k) = n—1)(n-2)---(n-k+1).

n!
momy

With replacement allowed, the number of permutations is n*.
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Proof The first element in the permutation can be selected in n different
ways from the n elements in Q. After the first selection is made, there
are n — 1 elements left in  from which to make the second selection if
replacement is not allowed. After the second selection, there are n — 2
elements left in  from which to make the third selection, etc. Hence, by
the multiplication principle,

P(n,k)=n(n-1)n- ™--(n—-k+1)= (ni!k)!-

If replacement is allowed there are n choices for each selection, so
P(n,k) = n*. ]

Both the symbols C(n, k) and (}) are used to designate the number of
combinations of k& objects selected from a set of n elements.

Theorem 2.3.3 There are

= ;) = =

combinations of n objects, taken k at a time without replacement.

n

Corollary (}) is the coefficient of zFy™~* in the ezpansion of (z + y)",

that 1s,
n
@+y)" =) (Z)mkyn_k.

k=0

(This is why (Z) is often called a binomial coefficient.)

Proof of Theorem If replacement is not allowed, each combination of k
elements forms k! permutations of order k. Hence,

(k!)(Z) =P k) or (:) = P(:fk) = k!(nn—!- ol .

Proof of Corollary (z + y)" can be written as

(z+y)z+y)---(z+y) (nfactors),

and the coefficient of z*y™ ¥ in the expansion is the number of ways we
can choose z from k of these factors and y from the remaining n—k factors.
This is precisely (7). B
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Example 2.3.2 Suppose 5 terminals are connected to an on-line computer
system by attachment to one communication line. When the line is polled
to find a terminal ready to transmit, there may be 0, 1, 2, 3, 4, or 5 terminals
in the ready state. One possible sample space to describe the system state
is @ = {(x1,%2, 3, T4, Ts5): each z; is either 0 or 1}, where z; = 1 means
“terminal i is ready” and z; = 0 means “terminal i is not ready.” The sam-
ple point (0,1,1,0,0) corresponds to terminals 2 and 3 ready to transmit
but terminals 1, 4, and 5 not ready. By the multiplication principle, the
number of sample points is 2% = 32, since each z; of (z;,z2,Z3,Z4,Ts) can
be selected in 2 ways. However, if we assume that exactly 3 terminals are
in the ready state, then

Q = {(z1, 22,3, %4,T5) : exactly 3 of the z;’s are 1 and 2 are 0}.

In this case the number of sample points of §2 is the number of ways that
the three terminals that are ready can be chosen from the five available,

that is,
5\ 5! _ 5 _5x4_ o
3/ 3(-3)r 312t 2 T

If the terminals are polled sequentially until a ready terminal is found, the
number of polls required can be 1, 2, or 3. Let A;, A;, A3 be the events
that the required number of polls is 1, 2, 3, respectively. A; can occur only
if z; = 1 and the other two 1’s occur in the remaining 4 positions. Hence,
the number of sample points favorable to A;,n;, is calculated as

4 4! 4x3 Ny 6

Az can occur only if r; = 0,72 = 1, and the remaining two 1’s are dis-
tributed in positions 3 through 5. Hence,

P[As] = @

=3
10 ~ 10
Similarly,
2
()
Pldl =" =10

We have assumed, of course, that each terminal is equally likely to be in
the ready condition. O
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Since many have trouble remembering the difference between a permu-
tation and a combination, as well as the symbols used, we provide Table
2.3.1 as a quick reference guide.

Table 2.3.1. Permutations and Combinations
Permutations | Combinations
Number of ways of selecting k items out of n items
Repetitions are not allowed

Order is important Order is not important
Arrangements of n items | Subsets of n items
taken k at a time taken k at a time
1 n n!
P(n k) = —% C(n,k) = S L —
(. 6) (n—k)! (. ) (k) k\(n — k)!

Is life so dear or peace so sweet, as to be purchased at the price of chains
and slavery? Forbid it, Almighty God! I know not what course others may
take, but as for me, give me liberty or give me death!

Patrick Henry

2.4 Conditional Probability

It is often useful to calculate the probability that an event A occurs when
it is known that an event B has occurred, where B has positive probabil-
ity. The symbol for this probability is P[A|B] and reads “the conditional
probability of A, given B.”

Example 2.4.1 If, in Example 2.2.2, it is known that the program that
was drawn has an error in syntax, what is the probability that it has an
I/0 error, also?

Solution Twenty programs have errors in syntax, and six of these also have
I/0 errors. Hence, the required probability is 6/20 = 3/10. The knowledge
that the selected program has a syntactical error effectively reduced the
size of the sample space from 100 to 20. O

In general, to calculate the probability that A occurs, given that B
has occurred, means reevaluating the probability of A in the light of the
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information that B has occurred. Thus, B becomes our new sample space
and we are interested only in that part of A that occurs with B, that is,
AN B. Thus, we must have the formula

P[AN B)

(2.12)
if P[B] > 0. The conditional probability of A given B is not defined if
P[B] = 0. In (2.12), P[A N B] was divided by P[B] so that P[B|B] =1,
making P|[-|B] a probability measure. The event B in (2.12) is often called
the conditioning event.

Equation 2.12 can be used to make the probability calculation in Ex-
ample 2.4.1, with B the event that the program has at least one error in
syntax and A the event that the program has at least one I/0 error. Then,
P[ANnB] _ 6/100 6 3

P[B] ~ 20/100 20 10’

P[A|B] =

as before.
Equation 2.12 can be rewritten in a form called the multiplication rule.

Theorem 2.4.1 (Multiplication Rule) For events A and B

P[A N B] = P[A]P[B|A4], (2.13)
if P[A] #0, and

P[AnN B} = P|B)P|A|B), (2.14)
if P[B] # 0. (If either P[A] =0 or P|B] = 0 then P[ANB] = 0 by Theorem
2.2.1(d).)
Corollary (General Multiplication Rule) For events Ay, Ag,..., Ay,

P[Al NAN---N An] = P[A1]P[A2‘A1]P[A3|A1 N Az] v
XP[AnIAl NN An—l] (215)

provided all the probabilities on the right are defined. A sufficient condition
fO’I‘ this is that P[A1 NAxN---N An—l] > 0, since P[Al] > P[Al n Az] >
<> PlA;NA; NN Ap_y).

Proof Equations 2.13 and 2.14 are true by the definition of conditional
probability, (2.12). The corollary follows by mathematical induction on n:
For n = 2 the result is the theorem and Thus, is true. Now suppose the
corollary is true for n = k > 2 and A;, As,..., Ak, Ag41 are events. Let
A=AlﬂAzﬂ...ﬂAk andB=Ak+1.
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Then, by (2.13),

P[AiNAsN---NALNAr+1] = P[ANB] = P[A]P[B|A]
= P[A,|P[A3]A1]P[A3]A1 N Ag] - -

XP[AkIAl n.--N Ak_1]

xPlAg+1|A1N---N Ak],

where the last equality follows from the inductive assumption that

P[A1 NAzN---N Ak] = P[AI]P[AglAl]P[A3|A1 N A2] e
XP[AkIAl n A2 n--N Ak—l]-
This completes the proof. B

Example 2.4.2 Suppose a survey of 100 computer installations in a cer-
tain city shows that 75 of them have at least one brand X computer. If
three of these installations are chosen at random without replacement, what
is the probability that each of them has at least one brand X machine?

Solution Let A;, Az, A3 be the event that the first, second, third, selec-
tion, respectively, has a brand X computer. The required probability is

P[A1 NA;N A3] = P[A1]P[A2|A1]P[A3lA1 ] Az]

by the general multiplication rule.

This value is % T4 T3
m)(@)( ‘é§=0.418,

which is somewhat lower than intuition might lead one to believe. O

One of the main uses of conditional probability is to assist in the calcu-
lation of unconditional probability by the use of the following theorem.

Theorem 2.4.2 (Law of Total Probability) Let A,,Aa,...,A, be events
such that

(a) AinNA; =0 ifi# j (mutually exclusive events),
() PlA]>0,i=12,...,n,
(¢) AJUAU---UA,=0.

(A family of events satisfying (a)—(c) is called a partition of .)
Then, for any event A,

P[A] = P|A1|P[A|A)] + P[A2]P[A|A2] + - - + P[Ag]P[A|As].  (2.16)
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Proof Let B; = ANA;,1=1,2,3,...,n. Then B;NB; = 0 if i # j because

the events Ay, As,..., A, are mutually exclusive, and
A=BUByU: - UB,, (2.17)
because each element of A is in exactly one B;.
Hence,
P[A] = P[By] + P[Ba] + - -- + P[B,]. (2.18)
But
P[B;] = P[AN A;] = P[A;)P[AlAs), i=1,2,...,n. (2.19)

Substituting (2.19) into (2.18) yields (2.16) and completes the proof. B

Example 2.4.3 Inquiries to an on-line computer system arrive on five
communication lines. The percentage of messages received from lines 1,
2, 3, 4, 5, are 20, 30, 10, 15, and 25, respectively. The corresponding prob-
abilities that the length of an inquiry will exceed 100 characters are 0.4,
0.6, 0.2, 0.8, and 0.9. What is the probability that a randomly selected
inquiry will be longer than 100 characters?

Solution Let A be the event that the selected message has more than 100
characters and A; the event that it was received on line ¢ (i = 1,2, 3,4, 5).
Then, by the law of total probability,

P{A] = P[A]P[AJAi]+ -+ P[A5]P[A|4s]
= 02x04+03x06+0.1x0.2
+0.15 x 0.8 +0.25 x 0.9 = 0.625. O (2.20)

Two events A and B are said to be independent if P[ANB] = P[A]P[B].
This implies the usual meaning of independence; namely, that neither event
influences the occurrence of the other. For, if A and B are independent (and
both have nonzero probability), then

P[ANB] _ PlAIPIB] _

PUIB) = =55 = 5 = Pl (2.21)

and
P[ANB] _ P[A]P[B]

P[A] P[4
The concept of two events A and B being independent should not be

confused with the concept of their being mutually exclusive. In fact, if A
and B are mutually exclusive,

0= Pl§] = P[AN B],

P|B|A] = = P[B]. (2.22)
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and thus, P|A N B] can be equal to P[A]P[B] only if at least one of them
has probability zero. Hence, mutually exclusive events are not independent
except in the trivial case that at least one of them has zero probability.’
The next example ties together some of the concepts discussed so far.

Example 2.4.4 Suppose that a certain department has 3 unbuffered ter-
minals, that can be connected to a computer via 2 communication lines.
Terminal 1 has its own leased line while terminals 2 and 3 share a leased line
so that at most one of the two can be in use at any particular time. During
the working day terminal 1 is in use 30 minutes of each hour, terminal 2
is used 10 minutes of each hour, and terminal 3 is used 5 minutes of each
hour—ali times being average times. Assuming the communication lines
operate independently, what is the probability that at least one terminal is
in operation at a random time during the working day? If the operation
of the two lines is not independent with the conditional probability that
terminal 2 is in use given that terminal 1 is in operation equal to 1/3, and
the corresponding conditional probability that terminal 3 is in use equal to
1/12, what is the probability that at least one line is in use?

Solution Case 1: The lines operate independently. Let A, B, C be the
events that terminals 1, 2, 3, respectively, are in use. The event that the
first line is in use is A and the event that the second line is in use is BUC,
and these events are independent. The event U, that at least one terminal
is in use, is AU (BUC).

By Theorem 2.2.1(c),
P[U])=P[AU(BUC)] = P[A]+ P[BUC]|-P[AN(BUC)]. (2.23)
By the independence of A and BUC,

P[ANn(BUC)] = P[AJP[BUC]. (2.24)
Substituting (2.24) into (2.23) yields
P[U] = P[A] + P[BUC] - P[A|P[BUC]. (2.25)

Since B and C are mutually exclusive, Axiom P3 yields
10 5 1

= -2 =, 2.26
P[BUC] = P[B] + P|C] wteo =1 (2.26)

Since P[A] = 0.5, substitution into (2.25) gives
P[U] = 0.5+ 0.25 — 0.5 x 0.25 = 0.625. (2.27)

5Since the occurrence of either of these events precludes the occurrence of the other,
we would not expect them to be independent on purely intuitive grounds.
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Case 2: The communication lines are not independent. In this case
(2.23) still applies but P[A N (B U C)] has the formula,

P[AN(BUC)] = P[(ANB)U(ANC)), (2.28)

by the distributive law for events (see Exercise 3).
The events AN B and ANC are mutually exclusive, since B and C are.
Hence,

P[AN(BUC)] = P[ANB)U(ANC) = PlAN B+ P[ANC]
= P[A)P|B|A] + P[A)P[C]A] = % x % + % x %
5
S (2.29)

by the multiplication rule. Substituting (2.29) into (2.23) gives

1 1 5 13
=t - —_=—=0. .0 .
PUI= 5+~ 57 =37 =054 (2.30)

Theorem 2.4.3 (Bayes’ Theorem) Suppose the events Ay, As, ..., A, form
a partition of Q (for the definition of a partition, see Theorem 2.4.2). Then,
for any event A with P[A] > 0,

P[A;)P{A]Aj]
PIAIAl = B iPTATAT + PlAsIPlAlAs + -+ PIALIPIAIAL
i=1,2,...,n (2.31)

Proof For each 1,

PlAin A] _ Pl4,)P[A]A)]

PAA= P =~ Py

(2.32)

Equation 2.31 now follows from (2.32) by applying the law of total proba-
bility, Theorem 2.4.2, to calculate P[4]. @

The P[A;},i = 1,2,...,n, are called prior (or a priori) probabilities
and the P{A;|A),i = 1,2,...,n, are called posterior (or a posteriori) prob-
abilities. To calculate the posterior probabilities using Bayes’ theorem, we
must know both the prior probabilities P[A,], P[A;],...,P[As] and the
conditional probabilities

P[AA1), ..., P[A)An).



30 CHAPTER 2. PROBABILITY AND RANDOM VARIABLES

Bayes’ theorem® is often called Bayes’ rule or Bayes’ formula. We give some
examples of its use below.

One important application of Bayes’ theorem is in screening tests. We
use the terminology of the excellent paper by Gastwirth [9]. A screening test
is used to determine whether a person belongs to the class D of those who
have a specific disease such as cancer or AIDS. The test result that indicates
that the person is a member of class D is denoted by S; a result indicating
nonmembership is denoted by §. The accuracy of a test is specified by two
probabilities. The first is called the sensitivity of the test, defined to be the
probability that a person with the disease is correctly diagnosed, or

n = P[S|D].

The second is called the specificity, defined to be the probability that a
person who does not have the disease is correctly diagnosed, or

9 = P[S|D.

For good tests both 1 and 6 should be very close to one. Another item
of interest is m# = P[D], that is, the probability that a randomly selected
person in the population has the disease. The most critical problem in
screening tests, as we shall see in the example below, is that when 7 is
small there can be a large number of false positives, that is healthy people
whose test results indicate they have the disease (are members of D). The
probability of this happening to a healthy individual is

P[S|D]j=1-P[5|D}=1-6.

The probability of most interest to a person who takes the test and gets a
positive reading (the result S) is the probability that such a person actually
has the disease. By Bayes’ theorem this is

P[D]P[S|D]
P[D|P[S|D] + P[D)P[S|D]

PID|S} =

_ ™
= T (2.33)

P|[D|S] is called the “predictive value of a positive test” and abbreviated
PVP. Gastwirth [9] cites a study of the ELISA test for AIDS used to screen
donated blood for the AIDS antibody in which the estimated value for 7
was 0.977 and for  was 0.926.

6Named for the Reverend Thomas Bayes; it was published (posthumously) in 1763.
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Example 2.4.5 Suppose the ELISA test mentioned above is used to screen
donated blood from a population in which the probability of an individual
having the AIDS antibody is 0.0001. Suppose n = 0.977 and 6 = 0.926.
Then, by (2.33)

0.0001 x 0.977
PID|S] = =0. 19.
[DIS) 0.0001 x 0.977 + 0.9999 x 0.074 0.001319

If this test were performed on 100,000 blood samples, there would be about
100,000 x 0.0001 = 10 with the AIDS antibody of which 9.77 would be
diagnosed correctly, on the average. However, of the 99,990 samples with
no antibody, 99,990 x 0.074 = 7,399.26 would be incorrectly diagnosed as
having the antibody. Note that

9.77

9.77 + 7,390.26 0.001319.

Fortunately, there is another (more expensive) test that can be used to
confirm or reject positive ELISA tests. O

Example 2.4.6 Suppose a pair of fair dice are tossed. Let A be the event
that “the first die turns up odd,” B be the event that “the second die turns
up odd,” while C is the event “the total number of spots showing uppermost
is odd.” Then clearly A and B are independent with P[4] = P[B] = 1.
From Figure 2.2.1 it is clear that P[C] = ;. Given that A has occurred, C
can occur only if the second die turns up even. Hence,

1
P[C|A] = 3
and, similarly,
1
P[C|B] = 5
Hence,
P[C}A] = P[C],
and
P[C|B] = P[C],

so the events A and C are independent, as are B and C. {We showed
earlier that A and B are independent.) Thus, the three events A, B,C are
pairwise independent. Since C cannot occur if 4 and B both do,

P[ANBNC]=0.
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However,

P[AP[B]P[C] = = x

B |
DO
X
DO
Il
®) =

so that
P[AN BNC] # P[A]P[B|P[C]. O

Definition 2.4.1 The events A, As, ..., A, are mutually independent if

P[A, 1] A]] = P[Az]P[A]]v
P[A, n Aj n Ak] = P[AzP[AJ]P[Ak],

P[AiNAzN---NA,] = P[A1])P[A;] - - - P[A,]
for all combinations of indices such that
l=i<j< - <k<n
This definition can be extended to an infinite sequence of events as follow:

Definition 2.4.2 Given an infinite sequence of events A;, As,..., such
that the events A;, As,..., A, are mutually independent for every n, then
Ai, Ag,. .. is said to be a sequence of independent events.

We note that the events of Example 2.4.6 are pairwise independent but
not mutually independent.

Example 2.4.7 (The Birthday Problem) This problem is one of the most
famous in probability theory and illustrates the fact that our intuition can
sometimes lead us astray. Suppose there are n people in a room, that no
one was born on February 29th, and that this is not a leap year. Everyone
can see that, if n > 365, then at least two people have the same birthday;
that is, have their birthdays on the same month and same day of the month.
(The year is not considered.) Now suppose n is at least 2 but less than 365
(2 < n < 365). Then:

(a) What is the probability that at least two people have the same birth-
day?

(b) What is the smallest n such that this probability exceeds 0.57

Solution We assume there are 365 equally likely days for each person’s
birthday.” Thus, by the multiplication principle (the coroliary to Theorem

"Berresford [3] has shown that adjusting birth date frequencies to match actual ob-
served frequencies does not significantly change the results of this exercise. In particular,
it does not change the value of n in (b).
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2.3.1), there are 365™ possible choices for the birthdays of n people. Let
the sample space §) consist of the 365" n-tuples (k1, k2, . .., k,) where each
k; is an integer between 1 and 365. (We assume the days of the year are
numbered from 1 to 365 with 1 representing January 1 and 365 representing
December 31.) Then k; represents the birthday of the first person, k2
represents the birthday of the second person, ..., k,, represents the birthday
of the nth person. We assume each of the sample points has probability
1/365". Let E be the event that no two of the n people have the same
birthday, that is, if (k1,k2,...,ks) is 2 sample point of E, then

ki #k; for i # j.

Hence, if k£ = (k1,k2,...,kn) € E, ky can assume 365 possible values, ks
can assume 364 values because it must be different from k;, k3 can assume
363 possible values because it must be different from both k; and ka, ...,
k, can assume 365 — (n — 1) = 365 — n + 1 possible values. Therefore, by
the multiplication principle, the number of sample points in F is

365 x 364 x 363 x -+ x (365 —n + 1).

If we let ¢, be the probability that no two of the n people have the same
birthday, then

365 x 364 x 363 x---x (365 —n+1)
365"

1><(1—%)x(1—§z—5)x---x<1-("36—51)).

The above formula for ¢, could also be derived using the general multipli-
cation rule. Let p, be the probability that at least two people have the
same birthday. Then

‘1n=P[E] =

Pn=1—¢n.

This is the solution to (a). Some values of p, are shown in Table 2.4.1,
below. It is rather surprising to most people to find that the answer to (b),
above, is only 23. We have verified this fact, experimentally, in a number of
classes taught at the Los Angeles IBM Information Systems Management
Institute. We found that in classes of 30 or more students multiple birthdays
were very common. With 40 or more students we almost always found
two or more students with the same birthday. Moser {15] discusses more
surprises concerning the birthday problem. O
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Table 2.4.1. Birthday p,
n pn n pn

2 0002714 23 0.50730
3 0.00820 25 0.56870
5 0.02714 30 0.70632
10 0.11695 40 0.89123
15 0.25290 50 0.97037
20 0.41144 75 0.99972
22 0.47570 100 1.00000

If a man does not keep pace with his companions, perhaps it is because he
hears a different drummer. Let him step to the music that he hears,
however measured or far away.

Henry David Thoreau

2.5 Random Variables

In many random experiments we are interested in some number associated
with the experiment rather than the actual outcome. Thus, in Example
2.1.2, we may be interested in the sum of the numbers shown on the dice.
In Example 2.3.2 we may be interested in the number of polls taken to
find the first ready terminal. We are thus interested in a function that
associates a number with the outcome of an experiment—such a function
is called a random variable. Formally, a random variable X is a real-valued
function defined on a sample space 2. Some examples of random variables
of interest to computer science follow.

Example 2.5.1 Let X be the number of jobs processed by a computer
center in one day. The sample space 2 might consist of collections of job
numbers—an outcome is the set of job numbers of jobs run during the day.
(We assume each job number is unique.) Thus, if w = { z1,22,...,2,} i8
a sample point consisting of the set of job numbers of jobs run during the
day, then X{w) =n. O

Example 2.5.2 Let X be the number of communication lines in operation
in an on-line computer system of n lines. The sample space €2 could be
the collection of n-tuples (z1,z2,...,z,) where each z; is 1 if line ¢ is in
operation and otherwise z; is 0. O
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To avoid cumbersome notation, we will use abbreviations to denote some
special events. If X is a random variable and z is a real number, we write

X==x
for the event
{w:we R and X{w) =z}

Similarly, we write
X<=z

for the event
{w:w e and X(w) <z},
and
y< X<z
for the event

{wiweNand y < X(w) £ z}.

Another property required of a random variable is that the set X < z be
an event for each real z, that is, X < z be an element of F for each real x.%
This is necessary so that probability calculations can be made. A function
having this property is said to be a measurable function or measurable in
the Borel sense (see Cramér [5, page 37]).

For each random variable X we define its distribution function F for
each real z by

F(z) = P[X < z].

Some intuitively clear properties of a distribution function are stated in the
following proposition.

Proposition 2.5.1 (Properties of a Distribution Function)

D1 F is a nondecreasing function; that is, x < y implies F(z) < F(y).
D2 lim,— 4o Fz) = 1.

D3 lim,,_o F(z) =0.

Proof For the proof of Proposition 2.5.1, see Apostol [1]. B

8Recall, by Axiom Set 2.2.1, that F is the family of events in 2.
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The distribution function can be used to make certain probability cal-
culations. For example, if £ < y, then

Plz < X <y] = F(y) — F().

This is true because the events £ < X < y and X < z are disjoint; their
union is X < y; and thus,

Fiy) =Plt < X <y|+P[X<z]=Plz < X <y]+F(z). (2.34)

With each random variable X, we associate another function p(-), called
the probability mass function of X (abbreviated as pmf), defined for all real
z by

P(z) = P[X = z].

Thus, if z is a value that X cannot assume, then p(z) = 0. The set T of
all z with p(z) > 0 is either finite or countably infinite. For a proof see
Cramér [5, page 52]. (A set is countably infinite or denumerable if it can
be put into one-to-one correspondence with the positive integers and thus

enumerated z;,Z2,Z3,....) The random variable X is said to be discrete if
Y ) =1,
zeT

where T = {z : p(z) > 0}. Thus, X is discrete if T' consists of either (a) a
finite set, say, £1,Z2,-..,Zn, or (b) an infinite set, say, z;, T2, z3,. .., and,

in addition,
Y p(z) =1
Zi

Thus, a real-valued function p(-) defined on the whole real line is the proba-
bility mass function of a discrete random variable if and only if the following
three conditions hold:

(i) p(z) > 0 for all real z.

(ii) T = {z|p(z) > 0} is finite or countably infinite; that is, T = {z;,z2,...}.
(i) 3 ple) = 1.
z; €T

If X is a discrete random variable, the elements of T are called the mass
points of X, and we say, “X assumes the values z;,13,23,....”
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1.0 q
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0 1 2 3

Figure 2.5.1. Probability mass function for Example 2.5.3.

1.0 - —
0.5
0.0 T T |

0 1 2 3

Figure 2.5.2. Distribution function for Example 2.5.3.

Example 2.5.3 In Example 2.3.2 we implicitly define a random variable
X, which counts the number of polls until a ready terminal is found. X
is a discrete random variable that assumes only the values 1, 2, 3. The
probability mass function is defined by p(1) = 0.6, p(2) = 0.3, and p(3) =
0.1. The pmf p(-) of X is shown graphically in Figure 2.5.1; the distribution
function F is shown in Figure 2.5.2. Thus, the probability that two or fewer
polls are required is F(2) = P(1) + p(2) = 0.9, which can be read from
Figure 2.5.2 or calculated from the probability mass function. O
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A random variable X is continuous if p(z) = 0 for all real z. The
reason for the terminology is that the distribution function for a continuous
random variable is a continuous function in the usual sense. By contrast,
the distribution function for a discrete random variable has a discontinuity
at each point of positive probability (mass point). We will be concerned
only with those continuous random variables X that have a density function
f with the following properties:

(a) f(z) > 0 for all real z.

(b) f is integrable and Pla < X < b] = f: f(z)dz if a < b.°

(c) /.oo flz)dz = 1.

(d) F(z) = [ f(t)dt for each real z.

By the fundamental theorem of calculus, at each point z where f is

continuous,
dF
dzr ~

f(=@).

2.0 5
1.5 1

1.0

0.5 Shaded area is probability X is between 1 and 2

0.0 . a .
0 z 1 2 3

Figure 2.5.3. Exponential density function (parameter 2).

Example 2.5.4 Let @ > 0. The random variable X is said to be an
exponential random variable with parameter a or to have an exponential

9This means that the required probability is the area under the curve y = f(z)
between a and b.
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distribution with parameter « if it has the distribution function

l1—e ™ forz>0
F(sz) = { 0 for z < 0. (2.35)
The density function f = dF /dz is given by
ae ™ forz >0
f(=) = { 0 forz <0. (2:36)

Suppose, for example, that a = 2 and we wish to calculate the probability
that X assumes a value between 1 and 2. This probability is the area under
the curve y = 2¢~2® (shown in Figure 2.5.3) between z = 1 and z = 2. The
probability may also be computed using the distribution function F(z) =

1 — 2% shown in Figure 2.5.4. We calculate
P[1< X <2 F2 -Fl)=(1-eHH-(1-eH=e2-¢"

0.135335283 — 0.018315639 = 0.117019644. O

In making this calculation we have used the fact that, for a continuous
random variable X with a < b,

Pla<X<b=Pla<X<b=Pa<X<b=Pla<X<b], (237)

since
P X =a]=P[X =0b]=0.

{This is true because, by definition, a continuous random variable X has
the property that P[X = z] = 0 for all real z.)

Most random variables are either discrete or continuous but, occasion-
ally, we shall encounter a random variable of mixed type: a random variable
that is continuous for some range of values and discrete for others. Usually
a discrete random variable comes about when something is counted, such as
number of jobs, inquiries, messages, etc.!® A continuous random variable
often occurs when something is measured, such as the time between the ar-
rival of two consecutive inquiries, the response time at a terminal, the time
it takes to process a job, etc. Unless otherwise noted, we will assume that
all random variables under consideration are either discrete or continuous
and not of mixed type.

The distribution function F of a random variable X describes how the
probability mass of X is distributed along the real line. From this point

107t should be noted that, between any two distinct real numbers that a discrete
random variable assumes, there exist other values it doesn’t assume.
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of view a random variable X determines how the probability mass of one
unit is apportioned or spread out over the real numbers. A discrete random
variable allocates the mass in nuggets or mass points, while a continuous
random variable diffuses the probability mass out in a continuous manner.

1.00
0.75
1 - 6—2.‘5
0.50
0.25
0.00 T T ]
0 T 1 2 3

Figure 2.5.4. Exponential Distribution Function (Parameter 2)

“I know what you’re thinking about,” said Tweedledum;

“but it isn’t so, nohow.” “Contrariwise,” continued Tweedledee,
“f it was so, it might be; and if it were so, it would be;

but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll

Through the Looking Glass

2.6 Parameters of Random Variables

All possible probability calculations involving a random variable X can be
made from its pmf p(-), if it is discrete; from its density function f, if it
is continuous; or from its distribution function F in either case. However,
there are some parameters of a random variable that are important in
summarizing its properties in a way that is easy to comprehend and to use
for making probability estimates.

Let X be a discrete random variable with pmf p(-). We define the mean
or ezpected value of X, p = E[X] by the formula

p=E[X] =) zip(z:) = 21p(z1) + T2p(z2) + - -+, (2.38)

Zi
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provided
3 lelp(a:) < .
Zi

(We require absolute convergence of that the sum in (2.38) to guarantee
the sum does not change if the z;’s are reordered.) If X is a continuous
random variable with density function f(-), we define u = E[X] by

pw=E[X]= /00 zf(z)ds, (2.39)
provided
/ le|f (€)dz < oo.

—oC

If h is a real-valued function of a real variable, and X is a random variable,
then h({(X) is a new random variable defined for all w € © by A(X){w) =
h(X(w)). Thus, if h(z) = €%, then h(X)(w) = eX®). The following lemma
shows how to calculate the expected value of h(X).

Lemma 2.6.1 (Law of the Unconscious Statistician).'' Suppose h is a
real-valued function of a real variable.

(a) If X is discrete,
E[MX)] = ) h(z:)p(:), (2.40)

provided

(b) If X is continuous,

B0l = [ " h(@)f(@)ds, (2.41)

provided
/ |h(z)|f(z)dz < .

-0

Proof See Ross [21] or Grimmett and Stirzaker [13]. B

1 This law received its name because of “unconscious” statisticians who have used it
as if it were the definition.
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The two most important parameters used to describe or summarize the
properties of a random variable X are the mean p = E[X] defined by (2.38)
or (2.39) and standard deviation o, where o2 is the variance of X ( we also
use Var[X] for ¢2) defined by

0? = Var[X] = E[(X — p)?]. (2.42)

Thus, for a discrete random variable X, Var[X] is given by

o? = Var[X] = Z(xi - u)’p(zs),

i
while, if X is continuous,

o0

o = Var[X] = / (x — p)?f(z)dz. (2.43)

—00

The reason that the mean or expected value is important is intuitively
clear to almost everyone. For example, if X is a discrete random variable
that describes how much one is to win for each outcome in a sample space
1, then

p=E[X]= Z z:p(zs)

is the weighted average of what one is to win. Thus, calling 4 the mean or
expected value seems proper. The mean is a summary of what we expect
of the random variable. If we have only one number to use to describe a
random variable, the mean would seem to be the proper one. However, the
standard deviation, o, does not have such an intuitive meaning to many
of us, at first. However, as we will see in Chebyshev’s inequality (Theo-
rem 2.10.2) and the one-sided inequality (Theorem 2.10.3), the standard
deviation is the natural unit to measure the deviation of a random variable
from its mean. Thus, if you were told that “Rockefeller and I, together,
had an average income last year of $1,010,000 with a standard deviation of
$990,000,” then it would be clear that our individual incomes were signifi-
cantly different.!?

It is best not to worry as to exactly what o is. We will show that it is
a most useful quantity for many applied probability applications. We must
ask the reader to “have faith that truth will be revealed.”

12Gee Exercise 60.
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Example 2.6.1 Referring to Example 2.5.2, we see that

p=EX]=) zp(z:) =1x06+2x03+3x01=15 (244)
i=1

3
0% = Var[X] = ¥ (: — 1.5)%p(z;)

=1
=(1-152x06+(2-152x03+(3-15)%x0.1=0.45 (2.45)
and thus,
o = (Var[X])}/2 = (0.45)}/2 = 0.6708. O (2.46)

This example can be generalized. Consider a communication line with
m terminals attached, of which n are ready to transmit.!® Let X be the
number of polls required to find the first terminal that is ready. Then X
can assume only the values i = 1,2,...,m —n + 1 with

oy

. . n—1

p(i) =P X =i]= =~ (2.47)
n

See Exercise 35 for the proof of (2.47). E[X] and Var[X] can then be

calculated by the formulas

m—n+1

p=EX]= Y ip(i) (2.48)
i=1
and
m—n+1
o2 = Var[X Z (i - p)%p(3). (2.49)

In Exercise 37 you are asked to derive a simple, closed-form formula for
E[X] and for E[X?).

The APL function POLL (shown in Appendix B) with parameters m
and n can be used in the general case to compute the probabilities that
X assumes the values 1,2,3,...,m —n+ 1. It also computes the expected
value and standard deviation of X.

The APL function PARAM can be used to calculate the mean and
standard deviation of a discrete random variable from the set of its possible
values and the corresponding set of probabilities.

13We assume that n is at least one.
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Example 2.6.2 Suppose X has an exponential distribution with parame-
ter & > 0. (See Example 2.5.3.) Then

o0
p=E[X]= / rae” **dzx. (2.50)
0

Using integration by parts (the formula [ udv = uwv — [ vdu) with u =
z and dv = ae™**dz, together with one application of the formula

lim ze™** =0, (2.51)
T—00
brings (2.50) to the form
00 _p—ax |X® -z 1 1
p=E[X]= / e %dx = = — lim +—=—. (2.52)
0 a | T—00 @ a a
Similarly,
2 oo 1 2 —azx 1
o° = z—-—) ae”dr = —, (2.53)
0 Q a

so that 0 = 1/a = p. Thus, for example, the exponential random variable
witha =2 has p=0.5and 0 =0.5. O

The sequence of moments of X defined by E[Xk],k = 1,2,3,..., is
sometimes of interest. The first moment coincides with the mean or ex-
pected value. From the definition, we see that if X is discrete, then for
each k =1,2,3,...,

E[X* =" a¥p(x:) = 2kp(z1) + 2hp(z2) + -, (2.54)
i
while, if X is continuous,
E[X*] = / Ff(z)dz, k=1,2,3,.... (2.55)
—0oC

It can be shown that under very general conditions (see Feller [8, pages
227-228]), if all the moments for X exist, they uniquely determine the
distribution of X; that is, if X and Y have the same sequence of moments,
then Fx = Fy. The following examples show that a random variable may
not have any moments—not even a mean value.

Example 2.6.3 Let X assume the values 2,22,23,... 2% ... with the prob-
ability mass function p(-), defined by

plzx) = p(2*) = 2ik k=1,23,.... (2.56)
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Then p(-) is a true probability mass function, since

o0 oo
1 1 11 1 1
Yopa) =) F=:) 5=sx—g=5x2=1 (2.57)
k=1 k=12 2k=02 2 1-3 2
However,
o0
Y mple)=1+1+1+-- (2.58)

i=1

diverges so that even the first moment fails to exist. O

Example 2.6.4 Let X be the continuous random variable with density
function f defined by

0 forr <1
f(x) = ;}2_ fOl' T Z 1. (2.59)
Then
b ®© dz 1= 1
= _= ——- = - 1i —_ 1= .
/_ fla)ds /1 G= | = dm 1=, (2.60)

so f is a density function. However,

/::xf(z)dxz /loo d?x =Inz

so that the first moment of X fails to exist. Clearly no higher order moments
exist, either. O

oo

= 400, (2.61)
1

Although Examples 2.6.3 and 2.6.4 show that not all random variables
have moments, most useful theoretical and empirically derived random vari-
ables do have moments. The squared coefficient of variation is a parameter
widely (some even claim wildly) used by computer system modelers and
queueing theory aficionados. It is defined by

2 _ Var[X]
X T EX)P?

(2.62)

It is used for measuring the degree of irregularity of a positive random
variable X (positive means P[X < 0] = 0) compared to the exponential
random variable for which C% = 1. The hypoexponential Erlang-k dis-
tribution described in Section 3.2.6 has a squared coeflicient of variation
C% = 1/k, while the hyperexponential distribution Hj of Section 3.2.10 has
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Cg( > 1. A gamma distribution, described in Section 3.2.5, can have Cf(
values of any positive value; that is, we can have 0 < C% < 1lor 1< C%.
This makes the gamma distribution very useful for modeling studies.

One must use care in reading papers in which the C? concept is used
because some authors use the coefficient of variation rather than the squared
coefficient of variation, although they do not make this clear. We prefer
the squared form because C% = 1/k for the Erlang-k distribution.

“Data! data! data!” he cried impatiently.
“I can’t make bricks without clay.”
Sherlock Holmes

2.7 Jointly Distributed Random Variables

Sometimes it is of interest to investigate two or more random variables
simultaneously. Thus, if X and Y are two random variables defined on the
same sample space §2, we define the joint distribution function F of X and
Y for all real z and y by

F(z,y) = P[X <2,Y <y =P[(X <z)N(Y <y)) (2.63)

Sometimes we write Fxy for the joint distribution function of X and
Y to emphasize that it is a joint distribution. Given Fx y, the individual
distribution functions Fx and Fy can be computed as follows:

Fx(z) = lim Fxy(z,y) for each real z, (2.64)
y—oo
and
Fy(y) = lim Fxy(z,y) for each real y. (2.65)
T— o0

Fx and Fy are called the marginal distribution functions of X and Y,
respectively, corresponding to the joint distribution Fx y. Then the joint
probability mass function p(-,-) of X and Y is defined by

p(z,y) =P X =z,Y =y (2.66)

Let T = {(z,y) : p(z,y) > 0}. Then, if E(x7y)€Tp(:1:,y) = 1, we say that
X and Y are jointly discrete. (It can be shown that T is either finite or
countable.) If X and Y are jointly discrete, the probability mass functions
px and py of X and Y can be calculated as

px(@)= Y. pzy), (2.67)
y such that
P(z,y) >0
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pr()= Y, plzy) (2.68)

z such that
P(z,y) >0

In this case px and py are called marginal probability mass functions.

Example 2.7.1 Suppose a communication line is to be polled when it is
known that two of the four terminals on the line are ready to transmit; using
the notation of Example 2.3.2, Q consists of six sample points (1,1,0,0),
(1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1). Let X be the number of
polls until the first ready terminal is found and Y the number until the
second ready terminal is found. The joint probability mass function and
the marginal probability mass functions are shown in Table 2.7.1. It shows
that p(1,2) = P[X =1,Y =2] = 1/6,p(2,2) = p(3,2) = p(3,3) = 0, etc.
Alsopx (1) = p(1,2)+p(1,3)+p(1,4) = 1/2,px(2) = p(2,3)+p(2,4) = 1/3,
etc. (Obviously Y assumes only the values 2, 3, 4.)

Table 2.7.1. Joint Probability
Mass Function
Y
X 2 3 4 | px
1 [(1/6 1/6 1/6 | 1/2
2 0 1/6 1/6|1/3
3 0 0 1/6 |1/6
py [ 1/6 1/3 1/2

1t is also true, for two jointly discrete random variables, that

Fz,y)= Y Y plzi,y;)- (2.69)

zi<zy; <y

Thus, from Table 2.7.1, we see that

F(2,3) = p(1,2) + p(1,3) + p(2,2) + p(2,3) =05,  (2.70)
and
F(2,4) = F(2,3) + p(1,4) + p(2,4) = g O (2.71)

X and Y are jointly continuous if their joint distribution function F is
continuous on the whole plane. We are interested only in jointly continuous
random variables with a joint density function f such that, if A is a set of
real numbers as is B, then

P[X € A)Y e B] = / / f(z,y)dz dy. (2.72)
BJA
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In this case, for any real u and v,

F(u,v) = /_1;0 /_uoo flz,y)dz dy. (2.73)

If the random variables X and Y are jointly continuous, then each is a
continuous random variable and for each real x and y,

@)= [ ” fo,y)dy. (2.74)

Fr)= [ " fey)de. (2.75)

The equations (2.74) and (2.75) follow from (2.64), (2.65), and (2.73).
For example,

Fx{(u) = lim F(u,v)= lim /v ‘ f(:z:,y)d:t;dy

v—00 v—00

vll’r{.lo/ dx/ fa:y)dy—/ d:z;/ flz,y)d

Hence, fx(z) = > f(z,y)dy, since

fx(z)= —d——(w)

Example 2.7.2 Suppose the random variables X and Y have the joint
density function

102 2
(:z:,y):{ zyexp[—5(x* +y?)] forz>0andy>0 (2.76)

0 otherwise.

Find Fx(z), fy (y), and F(1,1) = P[X < 1,Y < 1]. This example is due to
Parzen [page 291, 19].

Solution By (2.74),
* °° 1 2, 2
f@) = [ sendy= [ evexpl-g(et + vy
0
1o [T 12
= zexp[—=z yexp{—=y“ldy
271, 2

1 1 1
= zexp[— Exz] (— exp[— §y2]|8°) = zexp[— 5:32]
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Similarly,
® 1 2 2 1 2
fr(y)= | ayexp[-5(z” +y)lde = yexp[-5y7].
0

By (2.73),

1 1 1 1 1 1
F(1,1) = //f(:v,y)dzdy=/ fcexp[——ledw/ y exp[—=y*]dy
o Jo 0 2 0 2

(~ expl—5271I8)(— exp[- 37113

(1 — exp[—0.5])(1 — exp[—0.5])

= (1-0.606531)(1 — 0.606531) = 0.154818. O

Suppose g is a function of two variables. Then, if X and Y are jointly
distributed random variables, the mathematical expectation of g(X,Y),
E[g(X,Y)], is defined as

EgXx,V)i= Y. g(@ype,y) (2.77)

all (z,y)
such that
p(z,y) >0

if X and Y are jointly discrete and p(-,-) is the joint probability mass
function, or as

Blgx, )= [ ” / ” 4(@.9)f (0, y)de dy, (2.78)

if X and Y are jointly continuous with joint density function f.
Two random variables X and Y are said to be tndependent if any of the
following relations hold:

{(a) Their joint distribution function can be expressed as a product:

F(z,y) = Fx{(z)Fy(y) for all real = and y. (2.79)

(b) They are jointly discrete and their joint probability mass function can
be written,

p(z,y) = px(z)py(y) for all real z and y. (2.80)
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(c) They are jointly continuous and their joint density function can be

written,
f(z,y) = fx(z)fy(y) for all real z and y. (2.81)

Two random variables X and Y that are not independent by one of the
above criteria are said to be dependent.

The next theorem gives some of the properties of the expected value
operator E[].

Theorem 2.7.1 Suppose X and Y are random variables; ¢ is a constant;
g and h are arbitrary measurable functions.'* Then

a) Elc} = c. (The expected value of a constant random variable is the
constant.)

b) E{cX] = cE[X].
(¢) E[X + Y] = E[X]+ E[Y]. (X and Y need not be independent.)

(d) E[g(X)h(Y)] = E[g(X))E[h(Y)] if X and Y are independent and the
expectations on the right exist.

Proof (a) Suppose X is the constant random variable ¢; that is, P[X =
c] = 1. X is discrete so, by definition, E[X] = E[c] = cP[X =] =c.

(b) If X is discrete with pmf p(-),
E[eX] = ZCX,'p(zi) = cZzip(zi) = cE[X].
T Ti

If X is continuous,

EleX] = /oo cxf(z)dz = c/oo zf(z)dz = cE[X].

—o0

(c) We give the proof for the case that X and Y are jointly continuous.
If they are jointly discrete the proof is similar.

[ [ @+niuiza
/:cdw/ f(xydy+/ ydy/ f(z,y)d

/_ 2 fx(z)dz + /_ ufv(v)dy = E[X] + E[Y].

E[X +Y]

14Gee the definition of measurable function two paragraphs before Proposition 2.5.1.
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The next to last equality follows from (2.74) and (2.75).
(d) We prove the theorem for the case that X and Y are jointly contin-
uous. The jointly discrete case is similar.

Efg(X)R(Y))]

/_ - [ ) g(z)h(y) f(z, y)dz dy
- /_°° /—°° 9(@h(y)fx (z) fr (y)dy dz

/ " o) fx(@)de / " h)fr (v)dy

— oo —o0

= E[g(X)ER(Y). B
The covariance of X and Y, written Cov[X, Y], is defined by
Cov[X,Y] = E[(X - E[X|)(Y - E[Y])]
E[XY - XE[Y]| - YE[X] + E[X]E[Y]]
E[XY) - E[X]E[Y] - E[Y]E[X] + E[X]E[Y]
E[XY] - E[X] - E[X]E[Y]. (2.82)

The correlation (coefficient) of X and Y, written p(X,Y) is defined by

_ Cov(X,Y)
AEY) = NaxVary ) 72

(2.83)

provided both variances are nonzero. Rice [20, pages 125-127] shows that
lo(X,Y)| < 1 with equality if and only if P[Y = aX + b] = 1 for some a
and b.1%

If Cov[X,Y] = 0, then X and Y are said to be uncorrelated. Theo-
rem 2.7.1(d) implies that any two independent random variables X and
Y are uncorrelated. However, not all uncorrelated random variables are
independent.!6

The next theorem gives some useful properties of the variance operator
Var['].

Theorem 2.7.2 Suppose X and Y are random variables; c is a constant;
and all the variances in the formulas below exist. Then

(a) Var[c] =0.
(b) Var[cX] = c*Var[X].

158ee, for example, Grimmett and Stirzaker [13, page 42].
16Gee Exercise 43.
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(¢) Var[X +Y]= Var[X]+ Var[Y] + 2Cov[X, Y].
(d) Ver[X]= E[X?] - (E[X])%.
Proof

(a) If cis a constant random variable, then by Theorem 2.7.1 (a) E[c] =
c. Hence, Var[c] = E[(c - ¢)?] = 0.

(b) VarlcX] = E[eX])?] = E{(c(X — E[X]))?] = @E[(X - E[X])’]
= c*Var[X].

(¢) Var[X +Y] = E[{(X+Y)-(E[X]+E[Y])}}

E[{(X - E[X]) + (Y — E[Y])}?]

= E[(X - E[X])?+ (Y - E[Y])? + 2(X - E[X])
x(Y — E[Y])

= E[(X - E[X]))’]| + E[(Y - E[Y])* + 2(X ~ E[X])
x(Y — E[Y))

= Var[X] + Var[Y] + 2Cov[X,Y].

(@) VarX] = E[(z - E[X))*] = E[X* - 22E[X] + (E[X])’]
= EB[X?]-2E[X]E[X] + (E[X])* = E[X?] - (E[X))*.

We have used Theorem 2.7.1 freely in the above equalities. W

It should be noted that if X and Y are independent and thus uncorre-
lated, then
Var[X + Y] = Var[X] + Var[Y]. (2.84)

An application of mathematical induction shows that
Var[X; + X2 + - -+ + Xp] = Var[Xy] + Var[X,] + - - - + Var{X,], (2.85)

for any finite collection of mutually independent random variables.

Although we defined the joint distribution function F for only two ran-
dom variables in (2.63), the concept can be extended, in a natural way,
to any finite number of random variables. Thus, if X;, X3, X3,..., X, are
random variables, their joint distribution function F (or Fx, x,,. x, if it
is desired to make names of the random variables explicit) is defined by

F(xla-zZs-"vxn) = P[XlSzl’X2,Sx2a"',anxn],
for all real z,,x3,...,Zn. (2.86)
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All the other concepts we have discussed are then defined just as they were
for two random variables. Thus, for example, one condition that means the

random variables Xy, Xs,...,X,, are independent is that
F(:L‘l,xg, e ,:L‘n) = Fx1 (.’L‘l)sz(Iz) e FX,. (l‘n)
for all real z1,22,...,%n. (2.87)

Some particular functions of several random variables are important for
applications. The properties of one such function are given in the next
theorem.

Theorem 2.7.3 Let X1,X,,..., X, be n independent random variables
with distribution functions Fx,,Fx,,---,Fx,. Let Y = g(Xy,---,Xy) be
the random variable defined by

Y(w) = max{X,(w), X2(w), -+, Xn(w)} for eachw € Q. (2.88)
Then the distribution function Fy is given by
Fy(y) = Fx,(y)Fx,(y)--- Fx,(y) for each real y. (2.89)

Proof From the definition of Y, we know that Y < y if and only if X; < y,
X2<y,..., Xn <y. Hence,

Fy(y) = PY<y|=PX:1<y,...,Xn <]
= P[X, <y|P[X2<y]---P[X, <y
= FX1 (y)FX2 (y) e F.Xn (y) (290)

In the next-to-last equality in (2.90) we used the independence of the
random variables. W

Example 2.7.3 An on-line airline reservation system uses two identical
duplexed computer systems, each of which has an exponential time to fail-
ure with a mean of 2000 hours. Each computer system has built-in redun-
dancy so failures are rare. The system fails only if both computers fail.
What is the probability that the system will not fail during one week (168
hours) of continuous operation? 30 days?

Solution Theorem 2.7.3 applies. The distribution function of the time to
failure X in one system is

F(t)=P[X <t]=1-€"*2% ¢ in hours. (2.91)
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F(t) in (2.91) is the probability that a failure will occur before time ¢ in one
of the systems. Hence, the probability of a system failure (both computer
systems down) within a week is, by Theorem 2.7.3,

(1 — ¢ 168/2000)2 — (0,080569)% = 0.006491.
Thus, the probability of no system failure for at least a week is
1 — 0.006491 = 0.993509.
The corresponding probability for 30 days is
1— (1= e 720/200002 — 1 _ (0.302324)% = 1 — 0.0914 = 0.9086.

If the system was not duplexed, that is, consisted of only one computer
system, the probability of no failure within 30 days is 0.69768. Thus, if it
is desired that the probability of failure-free operation for at least a week
is to exceed 0.95, a duplex system is required. O

Let us consider the general case of two identical computer systems each
of which has an exponential time to failure with a mean of 1/ time units.
By Theorem 2.7.3, the distribution function for Y, the joint time to failure,
is given by

F(t)=(1-e?t2

Hence, the density function of Y is
2A(1 — e A)emt,

Therefore, the mean time to failure, often abbreviated MTTF, is

x o0
Bl= [T esmd=on [ (-e e e
0 0
If we make the substitution u = A¢, or t = u/A, in this integral so that
dt = du/ ), we obtain

ElY] = %/(;oo(l—e"“)e_"udu

o0 [ o]
(%) (/0 ue"“du—/(; ue™ % du) = %,

by Formula 3.351.3 of Gradshteyn and Ryzhik [10], which claims that

o ]
/ e M dr = n! p" L
0
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In this example
;\1- = 2000 hours,

s0
E[Y] = 3000 hours.

Example 2.7.3 is not realistic in the sense that we did not account for
the fact that a failed computer normally would be repaired. This enhanced
realism is considered in Example 4.3.3.

The next theorem is similar to Theorem 2.7.3 but describes the distri-
bution of the minimum of several random variables.

Theorem 2.7.4 Let X,, X5,..., X, be independent random variables. Let
Y = g(X1,...X,) be the random variable defined by

Y(w) = min{X;(w), X2(w),..., Xn(w)} for eachw € Q. (2.92)
Then the distribution function Fy is given by

Fy(y) = 1-(1-Fx, ()1 - Fz,(y)---(1 - Fx,(y))
for each real y. (2.93)

Proof Foreachrealy, Y >yifandonly if X; >y, Xo> vy, ..., Xn > v.
Hence,

PlY>y] = PXi>y,X2>y,...,Xn >
= P[X) >y|P[X2>y]-- P[Xa > ]
(1= Fx,(y))(1 = Fx,(y)) - (1 = Fx,(y))-
Therefore,

Fy(y)=1-PY >yl =1-(1-Fx,(y))(1 = Fx,(y))--- (1 - Fx,(y))-

Example 2.7.4 A computer system consists of n subsystems, each of which
has the same exponential distribution of time to failure. Each subsystem is
independent but the whole computer system fails if any of the subsystems
do. Find the distribution function F for system time to failure. If the
mean time to failure of each subsystem is 2000 hours, and there are four
subsystems, find the mean time to system failure and the probability that
the time to failure exceeds 100 hours.
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Solution By Theorem 2.7.4, if there were n subsystems, then
Fty=1—(e#)"=1-e™, (2.94)

where 1/u is the average time to failure, since the distribution function for
time to failure is
Fx(t)=1-¢e# (2.95)

for each subsystem. Thus, the system time to failure has an exponential
distribution with mean value 1/(np) = (1/p)/n. If 1/p = 2000 and n = 4,
then the system mean time to failure is 2000/4 = 500 hours. Hence, the
distribution function for system time to failure is

F(t)=1—e /50 (2.96)

and thus the probability that it exceeds 100 hours is e~100/500 = ¢=0.2 —

0.8187. O

The individual subsystems need not have the same mean time to failure
in order for the overall system time to failure to have an exponential distri-
bution. If each subsystem has an exponentially distributed time to failure
with mean values 1/p;,i = 1,2,...,n, then the distribution function F' for
the system time to failure is given by

F(t) =1—exp{—t(m + p2 + -+ pa)}; (2.97)
that is, the time to failure has an exponential distribution with mean value
1

p+pz+ e+

In the above example with n = 4, if the mean time to failure has been 1000
hours, 2000 hours, 3000 hours, 4000 hours, respectively, then the average
time to failure would be

1 1
1 1 1 1 =  Ti246+4+3)
1006 + 2000 T 3000 T 2000 : 4{383{'3
12000
——— = 480 hours.
25

By (2.97) the probability that the system time to failure exceeds 100 hours

18
¢~100/480 _ ( 81194,

In the next theorem the convolution method is given for calculating the
pmf p(-) or the density function f(-) for the sum of two independent random
variables. Later we will see that transform methods make it easier to find
p(-) or f(-) than the method of Theorem 2.7.5.
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Theorem 2.7.5 (Convolution Theorem) Let X and Y be jointly distributed
random variables with Z = X + Y. Then the following hold.

(@) If X and Y are independent discrete random variables, each taking
on the values 0,1,2,3,4,..., then Z takes on the values k = ¢ + j
(1, =0,1,2,3,...) and

k
Piz=H= Y px(pr() = px(ipr(k—i).  (2.98)
i+j=k i=0

(b) If X and Y are independent continuous random variables,
oo z
Pzsdl= [ ix@RG-ad= [ f@is  (@9)
—0o0 —00
where the density function of Z is given by

f20) = [ ix@iv(e - o)io = [ ixte- ey (2100

Proof (a) The event Z = k can be represented as
[Z2=F = [(X=0n({ =kKU[X=1)N(Y =k-1)]
UX=2)NnY =k-2)JUu---U[(X =k)N(Y =0)).

Hence,

k
P[Z = k] =p(0,k) +p(1,k — 1) +--- +p(k,0) = > p(i,k —i), (2.101)
=0

where p(-,-) is the joint density function of X and Y. But X and Y are
independent so (2.101) yields (2.98), because p(i, j) = px (i)py () for each
¢ and j.

(b) The equation

PlZ<s = / /  Ixvdzay
z+y<z

/:, & /.; fxix (@ y)dy (2.102)

is valid for all jointly continuous random variables, independent or not. If
we assume X and Y are independent, so that fx y(z,y) = fx(z)fy(y),
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then (2.102) yields

Pz<d = [ g [ @i

/ Z ez [ m fr(v)dy

/oo fx(z)Fy(z — z)dz. (2.103)

Differentiation of (2.103) gives (2.100). B

The sum Ef:o px (i)py (k — i) is called the convolution of px and py
and designated px *py (k). Thus, Theorem 2.7.5 asserts that the pmf of the
sum of two independent discrete random variables, each of which assumes
only nonnegative integer values, is the convolution of the individual pmf’s.
Similarly, the integral ffooo fx{(z)fy(z—z)dz is called the convolution of fx
and fy. By symmetry it can also be calculated as ffo o fx(z = y) fy (y)dy.
Theorem 2.7.5 shows that the density of the sum of two independent con-
tinuous random variables is the convolution of the individual densities.

Example 2.7.5 Let X and Y be independent random variables, each hav-
ing an exponential distribution with parameter a. Find the density function
of Z=X+Y.

Solution The density function is the same for each random variable:

Fx(z) = fy(z) = { oe” T forx > 0.

0 forz <0.

Thus, fx4+y(z) =0 for z < 0 and by (2.100), for z > 0,
z
frxev(@) = [ Ix(@)fr (= o)da.
0

(We have used the fact that fy(z) =0 for z < 0.) Hence,

z z

fx+v(2) = / ae *Cae" (> dy = aze_‘”/ dr = a’ze™ %,
0 0

Thus, Z = X + Y has what is called an Erlang-2 distribution with
parameter a/2. We will study the Erlang family of random variables in
Chapter 3. O
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Example 2.7.6 If a > 0, the discrete random variable that assumes the
values 0,1,2,3,... and that has the pmf p(-) defined by

k

p(k) =%

o k=012, (2.104)

is called a Poisson random variable with parameter a or is said to have
a Potsson distribution. We will investigate Poisson random variables in
more detail in Chapter 3. Assuming that (2.104) does define a pmf, let us
calculate the pmf p(-) for the sum of two independent Poisson distributed
random variables, one with parameter a and one with parameter 8. If X is
the first random variable and Y the second, then by (2.98) of and (2.104),

k
pk) = > px()py(k—1i)
t=0
k i k—i
—a® _g B
- ;e T 8]

—(a+B) _k 1
_ [ k. i nk—i
= X k=P

i=0

—(atB) K
e k o
= —kl_ E ( )azﬂk ¢

]
=0

e—(atB)
k!

(a+ B)%.

The last equality is true by the corollary to Theorem 2.3.3. Thus, the sum
of two independent Poisson random variables is another Poisson random
variable whose parameter is the sum of the original parameters; that is,
X + Y is Poisson with parameter o + 5. For this reason Poisson random
variables are said to have the reproductive property. Exponential random
variables do not have this property, as we saw in Example 2.7.5. Consider
Theorem 2.7.3. Gravey [12] considered the special case of Theorem 2.7.3
in which all the random variables have the same distribution. In several
special cases he found exact values for E[Y]. We state his results for these
special cases in the following proposition. O

Proposition 2.7.1 Suppose X1, X1, -+, X, are independent identically dis-
tributed random variables. We consider two special cases.

(a) Suppose each X; has a geometric distribution with probability p of
success on each trial (and thus probability ¢ = 1 —p of failure). Then,
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if Y is defined by
Y = max{X;(w), X2(w), -+, Xn(w)} for each w € R, (2.105)

we have

n k
EY]=Y (Z)(—n"“—g?. (2.106)

k=1 1

(b) Suppose each X; has an ezponential distribution with mean E[X] =
1/a. Then, if Y is defined by (2.105), we have

PlY > z]= z": (n) (-1)F* exp(—akz), (2.107)

k=1 k
for each z > 0 and

1 1
BlY]= —(1+5++

Sl

). (2.108)
Proof See Gravey [12]. B

“What’s one and one and one and one and one and one and one and one
and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.

Lewis Carroll

Through the Looking Glass

2.8 Conditional Expectation

In Example 2.6.1 we assumed that a communication line had five terminals
attached, three of which were ready to transmit, and we calculated the
mean and standard deviation of X, the number of polls required to find
the first ready terminal.l” X depends upon the number of terminals in the
ready state. Thus, if we let Y be the random variable giving the number
of ready terminals, we are interested in the average value of X, given that
Y assumes one of the values 0, 1, 2, 3, 4, or 5. This is the conditional
ezpectation of X given Y, which we now define formally.

Suppose X and Y are discrete random variables assuming the values
z1,Z2,...,and y1,¥2..., respectively. Then for each y; such that py (y;) >

17See also Example 2.3.2.



2.8. CONDITIONAL EXPECTATION 61

0, we define the conditional probability mass function of X given that Y =
y; by

p(zi,¥5)
oy (y;) ’
where p(:,-) is the joint probability mass function of X and Y. We then
define the conditional ezpectation of X given that Y = y;, for all y; such
that py(y;) > 0, by

px|y(.’l,‘¢|yj) = 3= 1,2,3,..., (2109)

EX|Y =y] =) _ zipxy (@ily;)- (2.110)

Similarly, we define the conditional kth moment of X given that Y = y; by

E[X*)Y =y;] = alpxiy(@ily;), k=12,.... (2.111)

Ti
The motivation for (2.109) is that

w1 PX=gz:,Y =y] _ plzi,ys)
PIX = zilY =yl PlY = y;] py(y;)
In reality the pmf p(-) we defined in Example 2.6.1 is pxy(:3), and we
calculated the expected value of X given that Y = 3. We provide the other
conditional expectation values for Example 2.6.1 in Table 2.8.1. We use
(2.47) which is a general formula for the case of m terminals on a line with
n ready to transmit where 1 < n < m. Equation (2.47) is not valid when
n = 0, that is, when no terminals are ready to transmit; we assume that it
takes m polls to discover this fact, so that

E[X|Y = 0] =m.

The values shown in Table 2.8.1 for ¥ > 1 can easily be calculated using the
APL function POLL in Appendix B. A formula of Exercise 36, discovered
by Russell Ham, can also be used to make the calculations.

Table 2.8.1. Conditional expectation of
number of polis for Example 2.6.1.

v 0 1 2 3 4 5
EX|Y =y 50 30 20 15 12 1.0

Suppose X and Y are jointly continuous with the joint density function
f. Then the conditional probability density function of X given that Y =y,
is defined for all values of y such that fy(y) > 0, by

f(z,y)
fr(y)

Ixiy(zly) = . (2.112)
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The conditional expectation of X, given that Y = y, is defined for all values
of y such that fy(y) > 0, by

o

E[X|Y =y] =/ zfx |y (zly)dz. (2.113)

-00
The conditional kth moment of X, given that Y =y, is defined for all
values of y such that fy(y) > 0, by

o0
E[XHY =] = / iy (ely)de, k=1,2,3,....  (2.114)

— 00
Thus, the first conditional moment is the conditional expectation.

Example 2.8.1 The jointly continuous random variables X and Y of Ex-
ample 2.7.2 have the joint density function

1,2 2
_ ) zyexp[—5(z®+y*)] forz>0andy >0 911
f(@y) { 0 otherwise, (2.115)
and
1 2
_ yexp[—gy ] fory>0 9211
frw) { 0 otherwise. (2.116)
Hence, if y > 0,
x, 1
fxy(zly) = fT(Y(—:))- = zexp[—ixz] = fx(z) forally>0. (2.117)

Thus, fx)y(z,y) is independent of the particular value of y. This is to be
expected since X and Y are independent. (They are independent, since
f(z,y) = fx(x)fy(y).) Hence, for each y >0,

EX|Y =y]=FE[X] = /000 z? exp[—%xz]d:v.

This integral is difficult to evaluate but its value is v27/2. O

Given jointly distributed random variables X and Y, E[X|Y =y]is a
function of the random variable Y, let us say A(Y'). Thus, A(Y') is a random
variable having an expected value E[h(Y)]. If Y is discrete and assumes
the values yq,y2,..., then

E[MY)] = E[EX|Y =y]| = Y E[X|Y =y;]P[Y =y;],  (2118)

Yi
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while if Y is continuous with density function fy, then
E(W(Y) = BEXIY =oll = [ BXIY =slfvdy.  (2119)

Equations (2.118) and (2.119) can be formally represented by the equa-
tion

BIR(Y)) = BIBIXIY =3l = [ BIXIY =Ry, (2120)

where the integral in question is a Stieltjes integral, which of course is
calculated by (2.118), when Y is discrete, and by (2.119) when Y is contin-
uous. The Stieltjes integral can also be used to evaluate E[h(Y)] when Y
is neither discrete nor continuous, but this is beyond the scope of the book.
The interested reader can consult Parzen [19, pages 233-235] or Apostol [2,
chapter 7].
The next theorem shows how to evaluate E[X], E[X*] in terms of E[X|
Y = y] and E[X*|Y =y].
Theorem 2.8.1 Let X andY be jointly distributed random variables. Then
[o o]
EIEIXIY =y = [ BIXIY = JaFe(s) = BLX) (2.121)

and
E[E[X*ly=y]] = /oo E[X*|Y = yldFy(y) = E[X*], k=1,2,3,....
- (2.122)

(Equation (2.121) is known as the law of total ezpectation and (2.122) as
the law of total moments.)

Proof We prove (2.122) for the cases
(a) X and Y are discrete, and
(b) X and Y are continuous.
Equation (2.121) is a special case of (2.122). We omit the proof for the

cases when one of X or Y is continuous and the other is discrete.

Case (a) Suppose that X and Y are discrete. Then
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E[E[X*|Y =y]]

EE[Xk|Y = y;1py (v5)

sz"P[X = z;]Y = y;lpy (y;)

— EZ kp x'uyj (y])
szzp xi,yj
7IES

Z Zp muyj
z;

Zzipx ;)

T

= EiX’“].

This proves that E[X*] = E[E[X*|Y = y]] when X and Y are both discrete.

Case (b) Suppose that X and Y are continuous. Then

BEXHY =all = [ BXY =iy )iy

[\ xvteturas] sy
- [+ asay

= /m /_oozkf(z,y)dxdy

/_ Z z* /_ O:o f(z,y)dydz

_ / " o (n)dz
= E[x*]. ®

Example 2.8.2 Consider Example 2.6.1, in which five terminals were con-
nected to one communication line. Let the value of X be the number of
polis until the first ready terminal is found (when there is a ready termi-
nal) and 5, otherwise; let Y be the number of terminals ready. We can
find E[X] by Theorem 2.8.1 if we know the pmf for Y. Let us assume
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that py(-) is as shown in Table 2.8.2. This pmf was calculated assuming
that each terminal was independent of the others and had probability 0.5
of being ready to transmit. Thus, Y has a binomial distribution, which is
discussed in Example 2.9.5 and in Chapter 3. Using the data in the table,
we see that

(5x1+3x54+2x10+1.5x10+1.2x5+1)
32

E[X] = =1.9375

and

254+11x5+5%x10+27x10+1.6x5+1)
32

The APL function MPOLL calculates the expected number of polls and
second moment of number of polls, as well as E[X|Y = n] and E[X?|Y = n]
for n = 0,1,...,m given the pmf of Y, using the APL functions POLLM
and POLL2M. (The pmf of X is given by (2.47) which the reader is asked to
prove in Exercise 36.) The formulas of Exercise 36 can be used to calculate
the last two columns of Table 2.8.2. O

= 5.1875.

Table 2.8.2. Data for Example 2.8.2

n py(n) E[X|Y =n] E[X?Y =n)]

0 1/32 5.0 25
1 5/32 3.0 11
2 10/32 2.0 5.0
3 10/32 1.5 2.7
4 5/32 1.2 1.6
5 1/32 1.0 1.0

Example 2.8.3 An on-line computer system receives inquiry messages of nn
different types. The message length distribution for each type 7 is a random
variable X;, 1 = 1,2,...,n. The message type of the current message
is given by the discrete random variable Y, which assumes the values 1
through n. The message length X of the current message is determined by
X; if and only if Y = i. Thus, E[X|Y = i] = E[X;], and E[X?|Y =i] =
E[X?]. Therefore, by Theorem 2.8.1,

E[X] =) E[X|Y =ilpy (i) = ) _ E[Xi]py (i), (2.123)
=1

i=1
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and
E(x?*) =Y EXY)Y =ilpy(i) = 3 E(X?lpy (). (2.124)
=1 i=1

From (2.123) and (2.124) we can calculate
Var[X] = E[X?] - (E[X])%

As an example, suppose 10 different types of message arrive at the central
computer system. The fraction of each type, as well as the mean and
standard deviation of the message length (in characters) of each type, are
shown in Table 2.8.3. Find the mean and the standard deviation of the
message length for all messages that arrive at the central computer system.

Table 2.8.3. Message length data for Example

28.3.
py (1) E[X) ox,
Message (Fraction of (Mean (Standard
type type) length) deviation)
1 0.100 100 10
2 0.050 120 12
3 0.200 200 20
4 0.050 75 5
5 0.025 300 25
6 0.075 160 40
7 0.150 360 36
8 0.050 50 4
9 0.150 60 3
10 0.150 130 10

Solution Theorem 2.8.1 applies as outlined above. The expected value
E[X] is calculated by (2.123) to yield 164.25 characters. To apply (2.124),
we calculate E[X?] by the formula E[X2] = E[X;]? + Var[X;] for i =
1,2,...,10 to obtain the respective values 10,100; 14,544; 40,400; 5,650;
90,625; 27,200; 130,896; 2,516; 3,609; and 17,000.

Then by (2.124), we calculate

10
E[X?) =" E[X}lpy (i) = 37,256.875.

i=1
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Thus,
Var[X] = E[X?] — E[X]? = 37,256.875 — 26,978.0625 = 10,278.8125,

so that ox = 101.38 characters. The reader might be tempted to conclude
that

Var[X] = Var[Xi]py (1) + Var[X2]py (2) + - - - + Var[X10]py (10),

but this formula is incorrect. In the present case it could yield Var[X] =
445.625 or ox = 21.11, although the correct value of ox is 101.38. The
APL function CONDEXPECT can be used to make calculations such as
those in this example. O

Ive been rich and ve been poor; rich is betier.
Sophie Tucker

summation convention n. A mathematicians’ shindig held each year in
the Kronecker Delta.

Stan Kelly-Bootle

The Devil’s DP Dictionary

2.9 Transform Methods

Calculating the mean, the variance, and the moments of a random variable
can be a tedious process. In the case of a discrete random variable, it
is often true that complicated sums must be evaluated; for a continuous
random variable, the integrals involved may be difficult to evaluate. These
difficulties can often be overcome by transform methods.

One of the first transform methods used successfully was the logarithm.
Using the identity log(A x B) = log(A) + log(B) converted the problem
of multiplying two large numbers A and B into the simpler problem of
adding the two numbers a = log(A4) and b = log(B). To complete the
operation, of course, it was necessary to find the inverse transform or anti-
logarithm to obtain the value of A x B. In a similar way, by using some
transformations to be described below, we can transform a random variable
into a transformed function with a different domain in which it is easier to
perform such operations as taking the convolution of two or more random
variables (see Theorem 2.7.5) or finding moments. Of course, after the
operation is complete, we must be able to make the inverse transform. In
many cases this can be done by inspection. In other cases it may be more
complex. We will discuss this further in Section 3.4 of Chapter 3.
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The moment generating function ¥[-] (or ¥x|[-]) of a random variable X
is defined by ¥[0] = E[e?X] for all real 8 such that E[e?X] is finite. Thus,

E e¥%ip(x;) if X is discrete
T

Yl6] = (2.125)

x
e®X f(z)dz if X is continuous.
— 00
We note that the moment generating function is always defined for 8 = 0
and that ¥[0] = 1.

We say that X has a moment generating function if there existsa § > 0
such that ¢[6] is finite for all |§] < 6. There are random variables without
moment generating functions, such as the random variable of Example 2.6.3
and that of Example 2.6.4. However, most random variables of concern to
us have moment generating functions. A random variable X has a moment
generating function if and only if all the moments of X exist (are finite).
In defining the moment generating function ¢ x[-], we have transformed the
random variable X, which is defined on a sample space, into the function
¥ x|-] defined for some set of real numbers. The next theorem gives some
important properties of the moment generating function.

Theorem 2.9.1 (Properties of the Moment Generating Function) Let X
andY be random variables for which the moment generating functions Yy x|]
and Yy -] exist. Then the following hold:

(a) Fx = Fy if and only if Yx[] = ¢y || (uniqueness).

(b) E[X™)] ezists for n = 1,2,3,.... The coefficient of ™ in the power
series for Yx[6),

0o n o
¥x[6] = ngw& 01—, (2.126)
is E[X"]/n!, so that
n dﬂ‘/)X [0]
E X% = ————— . 2.127
(X" & |, (2.127)
Hence, ' .
E[X] =9x[0], E[X?]=yx[0], (2:128)
and

ok = vxlo] - (vx(o]) - (2.129)

() vx+v[0) = ¥x[0)¢y(8] for all 6, if X and Y are independent.
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Proof

(a) The proof is beyond the scope of this book but may be found in
Feller [8]. The proof is carried out by showing that an inverse trans-
form exists, which maps ¥ x[-] to Fx[-].

(b) There exists a § > 0 such that the power series

6 "
eez=1+x9+x2~2—'+---+x"m+~- (2.130)

converges uniformly in z for |§] < §; < 8. Hence, we calculate the
expectation term by term to get

¥x[0) = E[e®®) =1+ E[X]0 +--- + E[X"]% e (2.131)

Since the infinite series representation of a function is unique, a com-
parison of the coefficients of 8™ in (2.131) with those of (2.126) shows
that (2.127) is true.

(c) If X and Y are independent,
Yx+v[0] = E[*X+V)] = E[e?X ) = E[e**|E[e®] = ¥x[0)uv [6]-
(2.132)
The third equality is true by Theorem 2.7.1. B

It is immediate by mathematical induction that if X, X,,...,X,, are
independent random variables, then

VX1 +Xo++Xa (0] = ¥x, 0], (6] - - - ¥, [6),
for all 8 such that
¥x,[0)] is defined for 1 =1,2,...,n.
We now give some examples of how Theorem 2.9.1 can be applied.

Example 2.9.1 Let X be an exponential random variable with parameter
o (see Examples 2.5.3 and 2.6.2). Then

o0 o0
y¥l0] = / aefTe % dy = a/ e =(@=0) gz,
0 0

If 6 < a, then

oo
4

—Q
@ —

7/)[0] = e—x(a—o)

e (2.133)
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Hence,
w__a
dd  (a-6)¥
so that by Theorem 2.9.1(b),
1
E faud
X1 = d0 T a
Also,
Py _ 2
do?* ~ (a-8)°
so that again by Theorem 2.9.1(b),
2
Bxr= 22 =%
dé 9=0 41
Thus,

Var[X] = E[X?] - (E[X])? = 52, - 51, = 31,

We can use (2.133) to generate a simple formula for all the moments of
X. If 0 < a, then

w[01=af0 = 1_1(0) =1+§+(g—>2+--~+<g)n+---. (2.134)

Here, we have used the fact that if [z| < 1,

1
== 1+z+2%+---+2" +---(the geometric series).
-z

Equating the coefficients of §” in (2.131) and (2.134) yields
E[X"] 1

an

n!
' or E[X"]———n'E[X]" n=1,2,3,....
n!

Thus, we have found all the moments of the exponential distribution with
very little effort. O

Example 2.9.2 Let X be a Poisson random variable with parameter o
(see Example 2.7.6). Then

oo
¥ 9] - Zeekp(k) ZekO —a®_ — —QE ( e aeo - ea(e’—l)'
k=0
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Thus,
E[X]= il aeoe"‘(eo_l)l = aq,
df {o_, 6=0
and
2
EX? = %e—f = aefe® V(1 + ae9)| =a(l+a)=a+a’
6=0 =
Hence,

Var[X] = E[X] - (EX])’=c®’+a -’ =a.

Thus, both the mean and variance of a Poisson random variable with pa-
rameter o are equal to a. O

Example 2.9.3 Let X and Y be independent Poisson random variables
with parameters a and §, respectively. Using moment generating functions
show that the random variable X + Y is also a Poisson random variable
with parameter a + (.

Solution (We have already proven the result in Example 2.7.6 using the
method of convolutions.) By Theorem 2.9.1 and Example 2.9.2,

Yx+v[0] = ¥x[0lyy (0] = (e’ =D gB(e ~1) _ gla+B)e’~1) (2.135)

Since (2.135) is the moment generating function of a Poisson random vari-
able with parameter a + 3, we conclude, by the uniqueness of the moment
generating function, that X + Y has a Poisson distribution with parameter
a + 8. That is,

k
a
PX +Y =] =e-<a+ﬂ)(—:'ﬂl, k=0,1,2,.... (2.136)
The uniqueness of the moment generating function guarantees that no ran-
dom variable which does not have a Poisson distribution can have the same
moment generating function as a Poisson random variable. O

Let X be a discrete random variable assuming only nonnegative integer
values and let p(j) = P[X = j] = p;, j = 0,1,2,.... Then the function
g[z] = gx[2] defined by

gl2l = Elz"] =) pjzd =po+prz+pa2® +--- (2.137)
7=0
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is called the generating function of X or the z-transform of X.'® Since
g[1] = po + p1 + p2 +--- = 1, g|z] converges for |z| < 1. The next theorem
states some of the useful properties of the generating function.

Theorem 2.9.2 (Properties of the Generating Function or z-transform)
Let X and Y be discrete random variables assuming only nonnegative inte-
ger values. Then the following hold.

(a) X and Y have the same distribution if and only if gx[] = gy[]
(uniqueness).

dn
) po=L ToxBll g0
n!  d2" |-

(¢) E[X]=gx[1] and Var[X] = g% [1] + g (1] — (g% [1])*.
(d) gx+v[2] = gxlz]lgy[z], if X and Y are independent.
Proof

(a) Since
g9x(2] = po +pi +p22® +---

is a convergent power series for |z| < 1, gx[2] is unique by the unique-
ness of power series.

(b) Also true by uniqueness of power series.

oo
() gxle] = 3 jpj2? ™ = p1 + 2Psz + 3ps2® + - .

=1
Hence,
oo
gx[11=>_ jn; = E[X].
i=1
gxlz) = 2P +3x2P3z+4x3pgz®+5 X dpsz> + -
[o o]
"y i—2
= > (G- p %
i=2
18Gome authors use z-transform for g[—2z] = po + 1z~ + paz™2 + .. 1 =
(mo, ™1, 72, --) is a probability distribution (that is, Z:"___o wn = 1) it is also common

. . oo
to write its z-transform as w[z] = zn=0 LT
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Thus,
gx[ =Y i@ - Vp; = E[X(X - 1)] = E[X?] - E[X].
i=1
Therefore,

Var[X] = B[X?] - (E[X])? = g [1] + gx[1] - (¢ [1])*.

(d) Let ap = P[X = k|, by = P]Y =k}, cx = PIX+Y =k|, k =
0,1,2,.... Then we know by Theorem 2.7.5 that the sequence {cx} is
the convolution of the sequences {ax} and {b;}; that is,

k
k= abk-i, k=0,1,2,.... (2.138)
=0

Moreover, if we formally multiply together the power series for gx[z]

and gy[z], we get
£ 5
k=0 k=0
oo k
= Z (Z aibk—i) F =gxiy[z]. B

k=0 \i=0

9x(zlgv(z]

The reader should note that a discrete random variable that takes on
only nonnegative integer values has the moment generating function

Y[6] = e pe =Y (e")pk = gle’]. (2.139)
k=0 k=0

That is, the moment generating function is obtained from the generating
function (ztransform) by a simple change of variable. Similarly, g[z] =
Y[In[2]], if 2 > 0.

Example 2.9.4 A random variable X is called a Bernoulli random variable
(has a Bernoulli distribution) if it can assume only two values, usually taken
to be 1 and 0, the first with probability p and the second with probability
¢ =1 —p. Find the mean and variance of a Bernoulli random variable X,
using its generating function.
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Solution The generating function of X is
glz] = g +p2. (2.140)
Hence, ¢'[2] = p and g¢"[2] = 0. Therefore, by Theorem 2.9.2,
ElX]=4=p
and
Var[X] = ¢"[1] + ¢'[1] - (¢'A])* =0+ p—p* = p(1 —p) = pg. O

Example 2.9.5 The Bernoulli random variable X, discussed in Example
2.9.4, is often used to describe a random experiment with but two outcomes,
success or failure. We define X to be 1 for a success and to be O for a failure.
Such an experiment is called a Bernoulli trial. A sequence of n such trials
is called a Bernoulli sequence of trials if the probability of success does not
change from trial to trial. An example is tossing a coin repeatedly, with a
head considered a success. Let Y be the random variable that counts the
number of successes in a Bernoulli sequence of n trials, where n > 1. Then
we can write

Y=X)+ X2+ -+ X,, (2.141)

where X, Xs,..., X, is a collection of identical Bernoulli random variables.
Hence, by Theorem 2.9.2(d),

gvle] = (@ +p2)" =) _ P[Y = k]2-. (2.142)
k=0

But, by the binomial theorem (the corollary to Theorem 2.3.3),

n

(pz+¢)" = Z (Z) (pz)*q™ k. (2.143)

k=0

Equating coefficients of 2* in (2.143) and (2.142) gives

p(k) =P[Y = k| = (:)pkq"_k, k=0,1,2,...,n. (2.144)

Y is called a binomial random variable or said to have a binomial distri-
bution. (The binomial distribution will be discussed more completely in
Chapter 3.)
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Since gy (2] = (¢+pz)", then g} [2] = n(g+pz)" 'pand E[Y] = gy [1] =
np. Also, gi[2] = n(n — 1)(g + pz)"~2p?. Hence, by Theorem 2.9.2(c),

VarlY] = gy[l] +gy[1] - (6¥[1)? = n(n - 1)p* + np — n?p?
= np(l-p)=npg. O
The transform most widely used by engineers and applied mathemati-
cians is the Laplace-Stieltjes transformation defined below.

Let X be a random variable such that P[X < 0] = 0. then the Laplace-
Stieltjes transform of X is defined for 8 > 0 by

o0
e % f(z)dz if X is continuous

0
X*[0) = E[e™%] = (2.145)
Ze"e”p(:ci) if X is discrete.
Ti

Sometimes X*[6] is called the Laplace-Stieltjes transform of F. The inte-
gral f0°° e~9% f(z)dz is called the Laplace transform of f. Many authors
write

X*[6) = /0 ~ e 92dF(z), (2.146)

where the integral is called a Stieltjes integral. However,the integral is
always evaluated as we have shown in (2.145), that is, as f0°° e % f(z)dzr if
X is continuous and as )__ e 9% p(z;) if X is discrete.

Theorem 2.9.3 (Properties of the Laplace-Stieltjes Transform) Let X and
Y be random variables with Laplace-Stieltjes transforms X*[-] and Y*[].
Then the following hold.

(a) Fx = Fy if and only if X*[] = Y*[] (uniqueness).
(b) For 8 >0, X*[0] has derivatives of all orders given by

(—1)"/ e 92" f(z)dx if X is continuous
axr 0
g™ B —6z; n . . s
(=" Ee ‘zip(zi) o X is discrete.
T
(2.147)
(¢) If E[X™] exists, then
E[X") = (-1)" d j;n[{)] (2.148)

6=0
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In particular, if E[X] and E[X?] exzist, then

dx* ?x*
E[X] = ——-10], E[X?] = T

(0]. (2.149)

(d) (X+Y)*[0] = X*[0]Y*[0], if X and Y are independent.

The proof of Theorem 2.9.3 is beyond the scope of this book but may be
found in Feller [8]. For more information on transform methods see Section
3.4 of Chapter 3.

Example 2.9.6 Let X be an exponential random variable with parameter

o, that is,
ae”*® if0<uz.
fz)= { 0 otherwise. (2.150)
Then, if § < «,
o0 oo .
X*[e] = / ae—ewe—-ail:dx = a/ e-(a-{-a)xdx — o (2151)
° 0 a+6

A mathematician in Reno,

QOvercome by the heat and the vino,
Became quite unroulls
Ezpounding Bernoulli,

And was killed by the crowd playing Keno.

Stan Kelly-Bootle
The Devil’s DP Dictionary

2.10 Inequalities

In this section we consider some inequalities and their uses. One important
application is the derivation of the law of large numbers.

Theorem 2.10.1 (Markov’s Inequality) Let X be a random variable with
ezpected value E[X] and such that P[X < 0] = 0. Then, for each t > 0,
E[X
PX >t < —% (2.152)
Proof We give the proof for discrete X. The proof when X is continuous
is similar.
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E[X]

z zip(zi)
= Z z;p(z;) + Z zip(z;)

<t t<z;

2 Zfb‘il)(xi)
t<z;

> Y tp(z:) = tP[X >4
t<z;

Hence,
X

pix >4 < 2L

and the proof is complete. B

Example 2.10.1 Suppose an interactive computer system i. proposed for
which it is estimated that the mean response time E[T] is 0.5 seconds. Use
Markov’s inequality to estimate the probability that the response time T
will be 2 seconds or more.

Solution By Markov’s inequality,

E[T) 05 1
> L = = -,
P[T >2]< 5 2 1

It should be noted that Markov’s inequality implies that
1
P[X > kE[X]] < % k>0.

This inequality usually gives rather crude estimates because only the
value of E[X] is assumed to be known. Chebyshev’s inequality, in which
the standard deviation is also assumed to be known, gives better probability
estimates. O

Theorem 2.10.2 (Chebyshev’s Inequality)!® Let X be a random variable
with finite mean E[X] and standard deviation o > 0. Then for everyt > 0,

PIX - BIX| 24 < %, (2.153)

19p. L. Chebyshev (1821-1894), whose name is also spelled Tchebychev, Tchebycheff,
and several other ways, was one of Russia’s finest mathematicians. For a fascinating
account of why he thinks Chebyshev should be spelled Tschebyscheff, see Davis [6].
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or

| —~

P[|X — E[X]| > to] < (2.154)

[

t
Proof Applying Markov’s inequality to (X — E[X])? with 2 in place of ¢
yields

P[(X - E[X])*2¢] <

%;tgl_Xl)_"’l _ (2.155)

t?
However, (X — E[X])? > t? if and only if |X — E[X]| > t. Substitut-

ing this relation into (2.155) yields (2.153). Equation (2.154) follows from
(2.153) by using to in place of ¢ in (2.153). B

Example 2.10.2 Suppose that, for the proposed interactive computer sys-
tem of Example 2.10.1, it is estimated that the standard deviation of re-
sponse time is 0.1 seconds. Use Chebyshev’s inequality to estimate the
probability that the response time will be between 0.25 and 0.75 seconds.

Solution

2 2
P{(T < 0.25)U(T > 0.75)] = P[|IT—0.5] > 0.25] < 00'2152 - (14—0) = 0.16.

Hence,
P[0.25<T <0.75] =1~ P[|IT - 0.5| > 0.25] =>1-0.16 =0.84. O

Chebyshev’s inequality often gives poor probability estimates. For ex-
ample, if X has an exponential distribution with mean E[X] = 2, then

P|X - E[X]|>4 = P[|X-2/>4=1-P[X <6
1-(1-e"%2) =73 = 0.0498,

although the Chebyshev inequality shows only that this probability does
not exceed 0.25. However, the next example shows that the Chebyshev
inequality cannot be improved without strengthening the hypotheses.

Example 2.10.3 Suppose a discrete random variable X can assume only
the values —2,0,2 with p(—2) = p(2) = % and p(0) = 2. Then

1
E[X]=—2x§+0xg-+2x%=0,

E[X2]=4x%+0+4x%=1,
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Var[X] = E[X?] - (E[X])*=1-0=1,
and 0 = 1. Then, by Chebyshev’s inequality, P[|X — E[X]] > 2] < 41.
However,
1 1 1
PIX-EIX]| 22 = P(X =2 U(X == =g +3 =7
Hence, the value estimated by Chebyshev’s inequality is the exact value. O

In many computer science applications we are more interested in calculating
one tail of a probability distribution than in calculating both tails; that is,
we want an estimate of the size of P{X — E{X] > t] or P[X — E[X] < {]
rather than the estimate of P[|X — E[X]| > t] provided by Chebyshev’s
inequality. The one-sided inequality gives us this estimate.

Theorem 2.10.3 (One-Sided Inequality) Let X be a random variable with
finite mean E[X) and variance 0. Then,

0,2

2+ (t - E[X))?

PIX <] <~ if t< E|X], (2.156)

and )
o

o? + (t — E[X))?

Proof Cramér [5], using advanced methods, shows that if X is a random
variable with mean 0 and standard deviation o, then

PX >t <

if t> E[X]. (2.157)

2

o
PX <t < p for ¢t < 0, (2.158)
and
o?
PIX >t < g fort > 0. (2.159)

Now, if X is an arbitrary random variable with a finite mean and variance,
then E[X — E[X]] = E[X] - E[X] =0, and

Var{X — E[X]]) = E[(X - E[X])?] = Var[X].
Hence, if t < E[X], then ¢t — E[X] < 0 and by (2.158),

0,2

+ (t - E[X])?*

P[X <t]=P[X - E[X]<t-E[X]] < e

If t > E[X], then t — E[X] > 0 and (2.159) gives

02

2+ (t- EXDY .

P[X >t]=P[X - E[X]>t—- E[X]] < >
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Example 2.10.4 A mathematical model of a proposed interactive com-
puter system gives a mean time to retrieve a record from a direct access
storage device as 400 milliseconds with a standard deviation of 116 millisec-
onds. One design criterion requires that 90% of all retrieval times must not
exceed 750 milliseconds. Use the one-sided inequality to test the design
criterion.

Solution Let T be the retrieval time. The design criterion is that P{T <
750 milliseconds] > 0.90.

By the one-sided inequality,

1162 1
P[T > 750) < — 6 5 = 5 = 0.09897.
1162 + (750 — 400) 1+ (350/116)

Hence,
P[T < 750] > 1 — 0.09897 = 0.90103,

and the design criterion is met. The best estimate we could make with
Chebyshev’s inequality is
P[T > 750] = P[T — 400 > 350]) < P[|T — 400| > 350] < (116/350)2
0.1098.

This does not indicate that the design criterion has been met. O

Example 2.10.5 Professor Frank N. Stein has a favorite random variable.
He uses an “unfair” coin, which comes up heads with probability 0.9 and
tails with probability 0.1 (it balances on edge with probability zero). Each
time you toss the coin he pays $9.00 for a tail but charges you $1.00 for a
head. If X is the amount you receive per toss, then

E[X]=(-1)x0.9+9x0.1=0,
and

E[X?] Var[X] (since E[X]=0)

(-1)2x0.9+92x01=9,

SO
o=3.

Thus, 10 percent of the probability mass is at least three standard devia-
tions from the mean. By contrast, for the normal distribution (which we
consider in Chapter 3), only 0.27 percent of the probability mass is three
standard deviations or more from the mean.
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The one-sided inequality gives

32
P[X < -1] < ———— = 0.9,

X <-l< 32 4+ (-1)2
which is exact.
It also gives

P[X > 8.99999] < ————— — = 0.1000002,
[ < 9 + (8.99999)2
but
P[X >9]<0.1,

although the true probability that X exceeds 9 is zero. O

We have discussed some useful inequalities for estimating the probability
that a single event occurs, such as T > 20 seconds. Sometimes we are
interested in the simultaneous occurrence of several events. For example,
suppose Z = X +Y; and we know that (a) P[X < 2] = 0.9 and (b)
P[Y < 4] = 0.9. We would like to be able to say something about P[Z < 6].
(No, P[Z < 6] # 0.9.) Some inequalities, called Bonferroni’s inequalities,
enable us to do that. Before we state them, we need a result that generalizes
the formula of Theorem 2.2.1(c) and the result of Exercise 4.

Theorem 2.10.4 (Poincare’s Formula) Suppose Ay, As, ..., A, are events
in a sample space 2. Then

P[OAJ] = P[A;U---UA4,]
= Y Pl4;] - > Pl4;N A
J Ik

+ Y PA4; N AN A] = S Pl4; N AN AN Ay
7.kl jklm
+ -

+ (=1)"1P[A; N A2 N--- N Ay, (2-160)
where the indices in each sum are distinct and range from 1 to n.
Proof See Chung [4, pages 162-163] or Feller [7, pages 99-100]. W

In some textbooks (2.160) is written as

P [U A,] YIS, = S-Syt 4 (1S, (2.16)
ji=1

r=1
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where
Se= Y PlA,n--NAl (2.162)
1<i1 < <tr <0
Thus,
Sy = P[A1] + P[A2] + - - - + P[A,), (2.163)
n-1 n
S2=)_ > PlAin4y), (2.164)
i=1 j=i+1
and
S, =P[A1NAN---NA,) (2.165)

It is easy to see that the sum A; has n terms, the sum S, has (’2') terms,
and the general sum S, has (7} terms, for the rth sum is the sum of the
numbers P[4;, N A;, N---N A; ] over all the indices 73, i3, ..., ¢, such that
11 < ig < -+ < i,. Since the indices are chosen from the numbers from 1
to n, there are exactly (7) choices.

Theorem 2.10.4 yields the following set of inequalities.

Theorem 2.10.5 (Bonferroni’s Inequalities) Suppose A, Ay, As,..., An
are events in a sample space 2 and that A = U;.'=1 Aj. Then, in the notation
of (2.161)—(2.165),

P[A] < §i. (2.166)
S1— 83 < P[A]. (2.167)
P[A] < S; — Sy + Ss. (2.168)
PlA]< S-S+ -+ S, (2.169)
when n is odd, and
Sy — S+ - — Sy < P[A], (2.170)

when n is even.

Proof See Feller 7). B

Corollary to Theorem 2.10.5 (Bonferroni’s Inequality) Suppose the
events Ay, Az, -, An and A are as in Theorem 2.10.5. Let p; = P[A;]
andg; =1—p; fori=1,2,---,n. Then

Plall n events occur] > 1 — (g1 + g2+ +¢n). (2.171)

Proof If we call the occurrence of one of the A;’s a success, then the event
A is “at least one success.” Hence, (2.166) yields
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P[at least one success] < py +p2 + - + Pn, (2.172)

and, taking complements,
P[no success] > 1 — (py +p2 + -+ pn). (2.173)

If we now take the complements of the A;’s, and replace each p; by g;, then
(2.173) becomes

P[no A; occurs] = Plall n events occur] > 1— (g1 +g2+---+¢n). (2.174)

a
Note that the A;, A4g,..., A, need not be independent. We consider an
example.

Example 2.10.6 Suppose Z = X +Y, P[X <2]=0.9, and P[Y < 4] =
0.9. Let A; = {X <2} and A; = {Y < 4}. Then, by (2.171),

P[Z<6]>1—(0.1+0.1)=0.8. o

Suppose, in Example 2.10.6, we seek a value of z such that P[Z <
z] > 0.9. We could do this by finding a value z and a value y such that
P[X < 2] =0.95 and P[Y < y] = 0.95, for then

P[Z < z+y] >1-(0.05+0.05) = 0.9.

In the more general case of (2.174), if we want P[all events occur] > 1 —q,
and we can control the probabilities p; that individual events occur, we take
pi =1 - a/n so that ¢; = a/n.

Example 2.10.7 (a) What choice of p will guarantee a probability of at
least 0.9 that each of four equiprobable events occur simultaneously? (b)
With this value of p, what is the probability that all four events occur
simultaneously, if the events are independent?

Solution
(a)p=1- % = 0.975.
(b) p* = 0.903688. O

We will see other applications of Bonferroni’s inequality.

Most of us have an intuitive feel for what the probability of an event
A, such as rolling a 7 with a pair of dice, “really” is, which is close to
the “relative frequency” school of thought about probability. We have the
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feeling that, if we perform the random experiment n times and let S,, be
the number of times that event A occurs, then S, /n is approximately P[A4],
at least in the sense that lim,_,o Sp/n = P[A]. The law of large numbers
makes this intuitive notion more precise (and shows that it is true).

Let A be an event, that has probability P[A], and suppose we perform
a Bernoulli sequence of n trials as described in Example 2.9.5, where a
success corresponds to the occurrence of event A. Let S,, be the number of
successes in the n trials. As we saw in Example 2.9.5, S,, has a binomial
distribution with E[S,] = nP[A] and Var[S,] = nP[A4](1 — P[A]). We are
interested in the ratio S,/n. We calculate

E [%] = LE[S,] = Pl

and
PlA)(1 - Pl4])

n

Sn 1
Var [7] = ?Var[sn] =

Let € > 0 be arbitrary. Then by Chebyshev’s inequality,

7|

The expression on the right of (2.175) can be made as small as desired,
for fixed values of € and A, by choosing n sufficiently large. This proves the
following theorem.

< w. (2.175)

5 -2

ne

Theorem 2.10.6 (Weak Law of Large Numbers) Let A be an event and
S, the number of times that A occurs in a Bernoulli sequence of n trials.
Then for each € > 0,

lim P H%’i - P[A]l > e] —0. (2.176)

n-—+00

]

There is a stronger form of Theorem 2.10.6 called the strong law of large
numbers, which uses a more restrictive definition of the intuitive idea that
limy, o Sp/n = P[A] (see Feller [7, pages 202-204]). However, a more
useful form of the law is immediate from the central limit theorem, which
is discussed in Chapter 3.

The weak law of large numbers shows that p = P[A] can be estimated
by S,/n and that this estimate converges to p. However, it does not give
any information as to how large n should be to guarantee that the error
is less than a given value for a certain probability level. The Chebyshev
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inequality does provide crude estimates, for if § > 0 then, by Chebyshev’s
inequality,
P [ 5n
n

"—p‘26]s

S,
Var —3]
[ n]_pl-p)
62 né?
It is easy to show that p(1 — p) has its maximum value at p = 1/2 (see
Exercise 2). Hence, no matter what value p actually has, we have

(2.177)

n

P[—S;l——p >5]<L (2.178)

=] T 4né*

Suppose now that & and € > 0 are given and we want to find how many
trials of the experiment we need to be sure that

n

P[%—p 26] <e (2.179)

If we know approximately what the value of p is, we see that (2.179) will
be satisfied if p(1 —p)/né® < € or n > p(1 —p)/e6%. If we have no idea what
the value of p is, we can use (2.178) to conclude that n > 1/(4€§?) trials
will suffice. Since Chebyshev’s inequality usually yields poor estimates, we
would expect either of these estimates to yield conservative estimates for
n. In Chapter 3 we show that the central limit theorem can be applied to
give a better estimate.

Example 2.10.8 Assuming that each terminal in an interactive system
has the same probability p of being in use during the peak period of the
day (the load is evenly distributed over the terminals), we want to know
how many observations n need be made so that

Sn —pl > 0.1] < 0.05.

g
n
If the first 100 observations indicate that p is approximately 0.2, how
many more trials are needed?

Solution The estimate, based on (2.178), isn = 1/(4 x 0.05 x 0.01) = 500.
If p is approximately 0.2, then we can use (2.177) to conclude that we need
a total of n = 0.2 x 0.8/(0.05 x 0.01) = 320 observations or an additional
220. In Example 3.3.3 we show that this estimate can be improved by using
the central limit theorem. O
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Student Sayings
Qur observation of Nancy’s distribution has given us many fine moments.

An exterminator made this contribution
On rats arriving in random profusion
“I know nothing of math,
Probability or stats,
But I handle ’em with Poisson distribution.”

A. Student

2.11 Exercises

1. [C20] The interactive order entry system of the WEWE Diaper Com-
pany can receive order messages from Los Angeles, San Diego, Bakers-
field, and San Francisco. Ordering activity in each city is independent
of that from the other cities. The probability that the system receives
one or more orders during any one minute time interval (during the
peak period of the day) from Los Angeles, San Diego, Bakersfield, or
San Francisco, respectively, is 0.8, 0.3, 0.05, 0.5.

(a) What is the probability that ordering activity occurs from exactly
one of the cities during any one minute period?

(b) Exactly two cities?
(c) Not more than two cities?
(d) No city?

2. [HMO05] In discussing the weak law of large numbers we claimed that
the function pq = p(1 —p) has a unique maximum value of % atp= %
Prove this claim.

3. [20] Suppose A, B, and C are events in some sample space §}, and thus
are subsets of §2. Prove the distributive law

(AUB)NC=(ANC)U(BNCQC).
4. [18] Prove that, if A, B, and C are events, then

P[AUBUC] = P[A]+ P[B]+ P[C]-P[ANB]-P[ANC]
— P[BNC]+ P[ANBNC].

[Hint: Use Theorem 2.2.1(c) and the result of Exercise 3.]
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5. [15] Assume that a single depth charge has a probability of 3 L of sinking
a submarine, 1 3 of damage, and i  of missing. Assume also that two
damaging explosions sink the sub. If four depth charges are dropped
on a submarine, what is the probability that the sub sinks?

6. [18] Assume A;, Ag, As, ... are subsets of some set 2. Prove De Mor-
gan’s formulas:

(a) A;UA;U---Udy = A, NA4;N---NAp.
) A NA;N-- NAy =A; UAU---U4dp.
(¢) Unz An—ﬂ°° 4.

(d nn— A Un_l A‘n

7. [15] Let A, Aq,... be events in some sample space 2. Use Axiom Set
2.2.1 and the results of Exercise 6 to prove that

(a) AyNA2N---N Ay is an event for each positive integer N.
(b) Moz, An is an event.

[10] An on-line computer system has four incoming communication
lines with the properties described in the table below. What is the
probability that a randomly chosen message has been received without

error?
Fraction of
Fraction of messages without
Line traffic error
1 0.4 0.9998
2 0.3 0.9999
3 0.1 0.9997
4 0.2 0.9996

9. [15] Twas Brillig has a drawer containing a mixture of 15 black and 20
blue socks. Twas is sick in bed when his friend Slithy Toves comes to
visit.

(a) Twas asks Slithy to get him a pair of matched socks from the
drawer (either a black pair or a blue pair). It is too dark for
Slithy to distinguish the colors. How many socks must Slithy
remove from the drawer to be sure of getting a matched pair?
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(b) Suppose now there are an equal number of black and blue socks in
the drawer. Suppose the minimum number of socks Slithy must
draw to be sure of getting a pair is the same as the minimum
number he must draw to be sure of getting at least one black
sock and one blue sock. How many socks are in the drawer?

10. [15] Big Bored Securities has two brands of personal computers in
the Information Center to use for demonstrations, brand y and brand
z. If two personal computers are selected at random, the probability
that both are brand y is 1/2. What is the smallest number of personal
computers that could be in the Information Center?

11. [20] Suppose the random variable X has finite mean, p, and finite
standard deviation, ¢. Suppose also that

P|X —p| > K]=0.
Prove that o0 < K.

12. [18] Calculate

(a) the probability of getting at least one ace by rolling four dice and

(b) the probability of rolling at least one double ace (popularly
known as “snake eyes”) in 24 throws of two dice. The fact that

the first number is larger than the second is known as de Méré’s
paradox. See Feller {7, page 56] and Chung [4, pages 138-139].

13. [5] A box contains 50 washers of which 3 are defective. If 2 are
randomly chosen what is the probability they will both be good?

It is traditional in any discussion of probability to include some examples
from card games. For the benefit of sheltered readers we include a definition
of bridge and poker.

Definition of Bridge and Poker

A pack or deck of bridge cards contains 52 cards arranged in four suits
of thirteen each. The four suits are known as spades, clubs, hearts and
diamonds. The first two are black, the last two are red. There are thirteen
face values (2, 3, ..., 10, jack, queen, king, ace) in each suit. Cards having
the same face value are said to be of the same kind. Playing bridge, by
definition, means dealing (distributing) the cards to four players known as
North, South, East, and West (or N, S, E, W, for short) so that each player
receives thirteen cards. The deck is assumed to be well shuffled before the
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cards are dealt. Playing poker, by convention, means choosing five cards
randomly from a bridge deck.
We show a picture of an unshuffled deck of cards.

ADECKOF $3CaRDS

w‘ozl‘w 5‘5‘4‘[:‘2‘
q &
MM ¢
MEIRAE B A/ R |
o:’:.*’*.‘s*“: 2*
el L L
Yy |1 v
O'U'Y'O'S'A'S‘2 '
dave {
OAbabdA ( &
l‘l’700050103<2’
MECK {
o000 { o

An unshuffled deck of bridge cards.

We illustrate card calculations with two examples.

Example 2.11.1 What is the probability that in a bridge game North and
South, between them, have an equal number of black and red cards?

Solution We need to calculate the probability that 13 of the 26 cards will
be red and 13 black. The number of ways the two hands of 26 cards can
be drawn from the deck is (52). A collection of 13 red cards can be drawn
from the 26 red cards in the deck in (fg) ways. Since for each drawing of 13
given red cards, 13 black ones can be drawn in (33) different ways, the total
number of ways to draw 13 black and 13 red cards is (25) x (25). Therefore,

13
the desired probability is

Gg)(;)@g) _ (52!523’213!)4 = 0.2181255. O
2

Example 2.11.2 Find the probability of drawing a royal flush in poker.
(A royal flush consists of 10, jack, queen, king, and ace, all in a single suit.)

Solution There are (552) possible poker hands. There are only 4 possible
ways of drawing a royal flush, since there is just one in each suit. Hence
the required probability is
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4  4x5!x47!

G

14. [28] Find the probability of getting each of the following poker hands:

= 0.000001539077. O

(a) A straight flush (five cards in sequence in a single suit, but not
a royal flush. Since an ace can also be thought of as a one, the
sequence ace, 2, 3, 4, 5 in one suit is a straight flush).

(b) Four of a kind (four cards with the same face value).

(c) Full house (one pair and one triple of the same face value, such
as ace, ace, king, king, king).

(d) Flush (five cards in one suit but not a straight or royal flush).

(e) Straight (five cards in sequence, not all of the same suit).

15. [22] Find the probability of not drawing a pair in poker. (Of course
you still could have a straight or a flush, ete., but not three or four
of a kind.)

16. [18] Find the probability of getting a real “bust” hand in poker. A
“bust” hand has no pair and is neither a straight, a flush, a straight
flush nor a royal flush. [The ranking of poker hands from high to low
is royal flush, straight flush, four of a kind, full house, flush, straight,
three of a kind, two pairs, one pair, and, in the case of a bust hand,
the highest ranked single card. Since single cards are ranked ace,
king, queen, jack, 10, 9, ..., 2 without regard to suit, the best bust
hand is an “ace high.”]

17. [25] For poker calculate the probability of drawing

(a) exactly one pair.
(b) two pairs.
(c) three of a kind.

18. [15] Calculate the probability that a bridge hand

(a) will be all spades.
(b) will contain no spades.

(c) will consist entirely of one suit.

[See Exercises 20, 22, 51-54 for more card game problems.]
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19. [13) Suppose A and B are independent events. Prove that

(a) A and B are independent and
(b) A and B are independent.

20. [28] Suppose a pack of eight cards is formed from the kings and queens
of a bridge deck. Two cards are drawn from it. Show that no two of
the following events are independent. A: At least one of the cards is
black. B: One of the cards is the queen of spades. C: Both cards are
kings. D: Both cards are queens.

21. [10] Prove that P[A|B] = 1 if and only if P{B] # 0 and P[AN B] = 0.

22. [15] Suppose two cards are drawn from the deck considered in Exercise
20. Calculate

(a) the probability that both cards are queens, given that one of the
cards is a queen.

(b} the probability that both cards are queens, given that one of
them is a red queen.

(c) the probability that both are queens, given that one of them is
the queen of hearts.

23. [12] Fred Poisson, the chief statistician at Disneyland, has found that
72% of the visitors go on the Jungle Cruise, 56% ride the Monorail,
60% take the Matterhorn ride, 50% go on the Jungle Cruise and ride
the Monorail, 45% go on the Jungle Cruise and on the Matterhorn
ride, 40% ride the Monorail and take the Matterhorn ride, and 30%
take all three rides. Assuming Poisson’s figures are correct, calculate
the probability that a visitor to Disneyland will

(a) go on at least one of the three rides.
(b) ride the Monorail given that the Jungle Cruise was taken.

(c) take the Matterhorn ride given that both the Jungle Cruise and
Monorail rides were taken.

24. [12] All the families in Dogpatch have exactly two children. For these
families we can represent the children by bb, bg, gb, gg. In each pair
b stands for boy and g for girl; the first letter in each pair represents
the older child. We assume boys and girls are equally likely so that
probability of each sample point is 1/4.
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(a) Given that a family has a boy (event B), what is the probability
that both children are boys (event A)?

(b) Given that the older child is a boy (event C), what is the prob-
ability that both children are boys (event A)?

(c) Let A be the event that “the family has children of both sexes,”
and B the event “there is at most one girl.” Are A and B inde-
pendent?

25. [15] The families of workers at Tiny Timber have at most 3 children
each. The probability distribution for the number of children per
family is given by

Number of children: 0 1 2 3
Probability: 0.20 0.50 0.25 0.05

The probability that a child is a boy is the same as the probability a
child is a girl.

(a) Calculate the probability that a family has exactly one boy.
(There may be girls too.)

(b) Calculate the probability there are two children in a family given
that the family has exactly one boy.

26. [10] The employees parking lot at the Buss Stout Fence Company has
50 percent U.S. cars, of which 15 percent are compact; 30 percent
of the cars are European, of which 40 percent are compact; and 20
percent of the cars are Japanese, of which 60 percent are compact. If
a car is randomly selected from the lot, calculate

(a) The probability it is a compact.

{(b) Given that the car is a compact, the probability that it is Euro-
pean.

27. [8] Belchfire Motors automobiles are equally likely to be manufactured
on Monday, Tuesday, Wednesday, Thursday, or Friday; no cars are
constructed on weekends. Ralph Wader, the company statistician,
has determined that 4 percent of the cars produced on Monday are
“lemons”; 1 percent of the cars made on Tuesday, Wednesday, or
Thursday are lemons; and 2 percent of cars manufactured on Friday
are lemons. You find that your Belchfire car is truly a lemon. What
is the probability it was manufactured on Monday?
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In the next five exercises we will consider the matching problem, some-
times called Montmort’s problem. In one version of the problem a jar con-
tains n balls numbered from 1 to n. The balls are mixed thoroughly and
drawn out one at a time. What is the probability that no ball is drawn
in the order of its label? That is, on no draw, say the i¢th draw, is it true
that ball number ¢ is drawn. In another version n letters are typed and n
envelopes addressed to n different people. The letters are randomly stuffed
in envelopes. The question then becomes the probability that none of the
addressees receive the correct letter. In the “mixed-up hats” version, n men
check their hats. When they reclaim them each man is given a hat ran-
domly selected from those remaining. All versions of the matching problem
can be modeled as n urns and n numbered balls with one ball inserted into
each urn. A match occurs if ball &k is put into urn k. We let Ax be the
event that there is a match in the kth urn. Then P[Ag] is the probability
that the match occurs; for the hat problem it is the probability that the
kth man gets his own hat.

28. [8] For the sample space of inserting n balls into n urns let each
sample point be an n-tuple (z,,Z2,...,%x), where z; represents the
number of the ball put into the jth urn (sometimes, unromantically,
called a pot). Thus, each component is a number from 1 to n and
no two components are equal. Then the event Ay = {(z1,23,...,%a)
€ Q: 2, = k}. Prove that P[Ax] = 1/n. Thus, the probability of a
man getting his own hat does not depend on whether he gets to make
the first, second, or even last choice.

29. [10] Noah Peale and Mail Chauvinist are part of a group of 6 people
who have put their hats on a table. Everyone then selects a hat
randomly from those on the table. Calculate the probability that

(a) Noah gets his own hat.
(b) both Noah and Mail get their own hats.
(c) at least one, either Noah or Mail, will get his own hat.

30. [25] Consider the matching problem of n urns and n numbered balls.
Prove that the probability that there is at least one match is given by

1 1 —1)r-1
1___+_._...+(__)'__

~l—e1=0. 2 .
TR - e 0.632120559

31. [12] Consider Exercise 30.

(a) Calculate the probability of at least one match for n = 2,3, 4,

and compare it to 1 — e~ L.
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(b) Show that

_ 11 (~1)n-1 1
l—eto(1-242_... < .
' € ( ST T —— ) Smr

Conclude that, for n > 4, the probability of at least one match differs
from 1 — e~! = 0.63 by less than 0.01; that is, the probability of no
match is about 0.63 for all n > 4.

32. [10] Bigg Fakir claims that by clairvoyance he can tell the numbers
of four cards numbered one to four, that are laid face down on a
table. If he has no special powers and guesses at random, calculate
the following:

(a) the probability that Bigg gets at least one right.
(b) the probability he gets two right.
(c) the probability Bigg gets them all right.
33. [3]
(a) Suppose (;3) = (7). What is n?
(b) Suppose (%) = ('%,). what is r?

34. [22] Following Knuth [14, page 51], we define (}) for all real r and all
integers k by

(Z) S en el | (—+71:‘]> ’

1<5<k

when k is a nonnegative integer and

r
(1) =0
when k is negative.?® Thus,

(—;.2) _ (—7.2)2(—8.2) 2952,

and (J) = 1 for all r, by the convention that an empty product in the
definition of (}) is one. Prove

20For even more about binomial coefficients see Graham et al. [11, chapter 5].
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(2) (;) = £(;71) if k is a nonzero integer.
() (3) = %% ("%¥), when k is an integer and k # r.
(©) () = ("31) + (;71), when k is any integer.

(d) () = (=1)¥("*%~1), when k is any integer.

35. [C25] Seven terminals of an interactive system at Crocker Ship are
attached by a communication line to the central computer. Exactly
four of the seven terminals are ready to transmit a message. Assume
that each terminal is equally likely to be in the ready state. Let X
be the random variable whose value is the number of terminals polled
until the first ready terminal is located.

(a) What values may X assume?

(b) What is the probability that X will assume each of these values?
Assume that terminals are polled in a fixed sequence without
repetition.

(c) Suppose the communication line has m terminals attached, of
which n are ready to transmit where n > 1. Show that X can
assume only the values i = 1,2,...,m—n+1 with p(i) = P[X =
i) = (0)/(3)-

36. [35] Assume, as in Exercise 35(c), that m terminals at Transend Realty
are attached to a communication line linked to a computer. Suppose
also that Y terminals are ready to transmit, where Y > 1. Let X be
the number of polls required to find the first terminal in the ready
state. Prove the following results (due to Russell Ham):

(a) E[X|Y =n] = ('ﬁ%) .

(b) EX?)Y =n) = [1+2(252)] (28).

37. [C20] (This rating is [T30] if nothing more powerful than a nonpro-
grammable calculator is available and [15] if APL is available so that
you can copy and use the APL functions BINOMIAL and MPOLL.)
Suppose seven terminals are connected to a communication line of an
interactive computer system. Each terminal operates independently
and has probability 0.2 of being ready to transmit. Thus, if Y is
the random variable that counts the number of terminals ready to
transmit, Y has a binomial distribution with parameters n = 7 and
p = 0.2. Find the mean and standard deviation of the number of polls
necessary to find the first ready terminal. Assume that 7 polls are
required to discover that no terminal is ready.
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38. [20]) Swann Dive, a systems programmer at Poly Unsaturated, offered

39.

his friend Charlie Tuna, an application programmer, the following
proposition. On each roll of three dice Swann would pay Charlie one
dollar for each ace that showed; if no aces were turned Charlie would
pay Swann one dollar. Charlie reasons that the probability of rolling

an ace on the first die is é; similarly for the second and third die.

Hence the probability 3 x % = % of getting at least one ace and he

might get two or even three of them.

(a) Is Charlie right—that is, is it a good proposition for him?

(b) What is the probability that Charlie will roll one, two, or three
aces, respectively?

(c) What is the average amount of money Charlie can expect to win
each time the dice are rolled? (Swann didn’t tell him, but this
game is known as chuck-a-luck at carnivals.)

[35] A single disk storage device has N concentric tracks and one
access arm. It has been loaded with data in such a way that successive
movements of the access arm (called track seeks) are independent of
one another. The probability that a randomly chosen seek will take
the arm to track ¢ is p;. Let X represent the number of tracks passed
between consecutive seeks, assuming that no physical repositioning of
the access arm takes place between successive seek operations. Show
the following:

(a) X assumes the values 0,1,..., N —1 and has the pmf p(-) defined

by
N
. . i=1
p(j)=P[X =j]=
N—j
2Zpipi+jy ji=1,2,...,N-1.
i=1

(b) For the case that p; = 1/N for all ¢, it is true that

b

N’-1) N
3

EX¥=""""lx

(-1 N
6 6’
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and
2

Var{X] ~ %

(c) Suppose T, the seek time, is a linear function of X; that is,

T=AX + B,

where A and B are constants. (A is then given by

A maximum seek time — minimum seek time

N-1
and B is minimum seek time.)
Then it is true that
A(N?-1) AN
E[T]— ——3N‘—'+B~ —3—+B,

and

Var[T] = A*Var[X] ~ Asz_z

40. [5] Refer to Example 2.4.6. Calculate

P[A2|A], P[A3|A], and P[A4|A].

97

41. [20] Dusty Page, a librarian at Hard Core Computer (makers of solid
state memory), tripped over the discrete random variables X and Y
when he stepped from his office. These random variables have the
joint probability mass function shown in the table below. Thus, X

assumes the values 0 and 1, and Y assumes the values 0, 1, and 2.

Y[ 0 1 2
X
0 1/8 1/4 1/8
1 0 1/8 3/8

Help Dusty out by doing or answering the following:

(a) Find the marginal probability mass functions px and py.

(b) Find the conditional probability mass function of X, given that

Y =2
(c) Are X and Y independent random variables? Why?
(d) Calculate E[X], E[Y], Var[X], and Var[Y].
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43.

44.

45.
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(e) Find the probability mass function for Z = X + Y.

[HM30] Suppose X and Y are independent random variables, each
with the density function f given by

1) ={

Show that the density function of Z = X + Y is given by
{ z for0<z<1

1 forO0<z<l
0 otherwise.

fz(z) =4 2—2 forl1<2<2

0 otherwise.

Thus, Z has a triangular distribution. (As we shall see in Chapter 3,
X and Y are said to be uniformly distributed.) Hint: This Exercise
can be solved by using convolution (Theorem 2.7.5) or by using the
Laplace-Stieltjes transform (Theorem 2.9.3(a) and (d)).

[20] Suppose X and Y have the joint discrete distribution shown in
the table. Show that X and Y are uncorrelated but not independent.

YT-1 0 1
X

-1 0 3 0
0 i 0 g
1 0 % 0

[12] Suppose X is an arbitrary random variable such that the mean
E[X] and standard deviation o are defined (finite). For any p such
that 0 < p < 0.5, find z, > E[X] so that P[X > z,] < p.
[10] Suppose X is a random variable with finite mean and variance.
For 50 < r < 1, we define the rth percentile value 7 x(r) by
T
< = —.
PIX < 7x(n] = 155

Thus, the 90th percentile value 7x(90) is defined by
P[X < 7x(90)] = 0.90.

Show that
7x(90) < E[X] + 30,

and
7x(95) < E[X] + 0V19.
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46. [5] A discrete random variable X is called a truncated Poisson random

47.

48.

variable if its mass points are 0,1,2,..., N and its probability mass
function p(-) is given by p(k) = Ce~*a*/k!, k = 0,1,2,...,N. What
is the value of the constant C?

[5] The average length of messages received at a message switching
center is 50 characters with a standard deviation of 10 characters.
How many bytes (characters) of storage should be provided for each
message buffer to ensure that 95% of all messages fit into one buffer?

[15] A certain access method, called method A, has been found to
give a mean record retrieval time of 36 milliseconds with a standard
deviation of 7 milliseconds, while method B has a mean retrieval time
of 42 milliseconds with a standard deviation of 4 milliseconds.

(a) If a major design objective is to have 90% of all individual
retrievals completed in 55 milliseconds or less, which method
should be selected?

(b) Does the chosen method meet the objective?

49. [15] Inquiries to an interactive computer system at Rhode Block Se-

50.

curity are of four types and make reference to different data bases as
follows:

Inquiry | Percent of | Mean reference time | Standard deviation
type type (msec) of reference
time(msec)
A 40 100 80
B 30 120 30
C 20 80 40
D 10 40 20

For the entire collection of inquiries, what is

(a) the mean reference time?
(b) the variance of reference time?
[HM15] Use the Laplace-Stieltjes transform to derive the results of

Example 2.9.1, that is, to prove that, for an exponential random
variable X, we have

(a) Var[X] = E[X]?.
(b) E[X"] = nlE[X]*,n=1,2,....
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51. [30] Suppose a sequence of bridge hands is dealt. Let A be the event
that each player is dealt one ace on a particular deal.

(a) Show that A has a probability of about one-tenth. (Actually
0.1054981993.)

(b) What is the probability that one particular player gets no ace
for three consecutive deals?

(c) Show that the probability that event A occurs at least once in
seven deals is about one-half. (Actually, 0.54178581 or 0.5217031
if 0.1 is used as the probability of A.) Hini: By the general
multiplication rule (Corollary to Theorem 2.4.1), the number of
ways of dealing one bridge hand is

52) 39) 26\ 52!

(13 (13 (13) syt

52. [30] Recall that P(n, k) is the symbol for the number of permutations
of n objects taken k at a time and C(n,k) = (}) is the symbol for
the number of combinations of n objects taken & at a time. Using
this notation we see that the number of different bridge hands is
C(52,13) = 52!1/(13!)(39!) = 6.350135 x 10'!. We can compute the
probability of a given distribution of cards by suit (such as 12 in
one suit and one in another) in a randomly chosen hand by dividing
the number of possible hands with such a distribution by C(52,13).
Consider a 5-4-3-1 distribution. If the suits are given (say the five-
card suit is hearts, the four-card suit diamonds, the three-card suit
clubs, and the remaining card is a spade), there are

C(13,5)C(13,4)C(13,3)C(13,1) = 1,287 x 715 x 286 x 13
= 3,421,322,190

such hands. But there are P(4,4) = 24 ways of permuting the 4
different sized suits in a 5-4-3-1 distribution so we have

P(4,4)C(13,5)C(13,4)C(13,3)C(13,1)
C(52,13)

P[5-4-3-1 distribution]
= 0.129307054.
(a) Show that the probability of a 4-4-3-2 distribution is

P(4,2)C(13,4)2C(13,3)C(13,2)
C(52,13)
0.215511757.

P[4-4-3-2 distribution)
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(b) Show that the probability of a 4-3-3-3 distribution is

P(4,1)C(13,4)C(13,3)3
P(52,13)
0.105361303.

P([4-3-3-3 distribution] =

(c) Show that for any specific x-y—z-w distribution (where ¢ + y +
z + w = 13), we have

nC(13,2)C(13,y)C(13, 2)C(13,w)
C(52,13)

P[x~y-z-w distribution] =

P(4,2) = 12 if exactly 2 suits are of the same size

P(4,4) = 24 if all suits are of different size
n=
P(4,1) = 4 if 3 suits are of the same size.

Of course, n is the number of different suit arrangements for a
given x-y-z-w distribution.

53. [25] You are West in a bridge game and have no ace.

(a) What is the probability that your partner, East, has no ace?
(b) What is the probability that East has two or more aces?

54. [25] In a bridge game North and South have 10 spades between them.

(a) What is the probability that the three remaining spades are all
in one hand (that is, that either East or West has no spades)?

(b) If the king of spades is one of the three spades, what is the
probability that one player has the king and the other has the
remaining two spades?

55. [25] What is the probability that in a hand of bridge each player has
all cards in one suit; that is, one player has all spades, one all hearts,
one all clubs, and one all diamonds?

56. [25] During the winter season at the Fearsome Peaks Ski Resort, each
of the two roads from Area A to Area B has probability p of being
blocked by snow. The same can be said of the two roads that lead from
Area B to Area C; that is, all roads, independently, have probability
p of being blocked by snow.
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(a) What is the probability that there is an open path from Area A
to Area C?

(b) Having calculated the probability in part (a) when p = 1/2, the
owners of FPSR decide to build a direct road from Area A to
Area C, which, independently of the other roads, is blocked with

probability p. What is the new probability there is an open road
from Area A to Area C?

(c) If p = 0.25, calculate the probabilities of part (a) and part (b).
57. [20] Consider the following.

(a) Suppose a coin that has probability p of turning up heads is
tossed once. If X is the number of heads, and Y the number of
tails show that X and Y are not independent.

(b) Let the coin of part {a) be tossed a random number of times N,
where N is a Poisson random variable with parameter a, (see
Exampile 2.7.6 for the definition). Let X and Y be the resulting
numbers of heads and tails, respectively. Show that X and Y
are independent.

58. [10] Kollossal Airways and Teeny Weeny Airlines compete for passen-
gers from Pointaye to Pointbee. It is known that each passenger who
makes reservations fails to show up with probability 1/10 indepen-
dently of other passengers so Kollossal always books 20 passengers
for their 18 seat airplane and Teeny books 10 for their nine-seat air-
liner. What is the probability that each is overbooked on a randomly

chosen flight?
) ( )2 (2 )
zl, 7 \i n

[Hint: Use the identity (1 + 2)"(1 + 2~ 1)" = z27"(1 + z)?" ]

59. [M22] Prove that

60. [02] Show that, if you had an income of $20,000 last year and Rock-
efeller had an income of $2,000,000, then your joint average income
would be $1,010,000 with a standard deviation of $990,000.

61. [HM12] Suppose the joint density function of the continuous random
variables X and Y is given by

_J2-z-y, fO0<z<landO<y<l],
f(z,y) —{ 0 otherwise.
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(a) Find the marginal density functions fx(-) and fy(-) of X and
Y, respectively. Are X and Y independent?

(b) Find the conditional density functions fxy(zly) and fy x(ylz).
(c) Calculate E[X|Y = y] and E[Y|X = z].

62. [HM12] Suppose the joint density function of the continuous random
variables X and Y is given by

_J ey, ifz>0andy >0,
flz,y) = { 0, otherwise.

Answer (a), (b), and (c} of Exercise 61 for the above X and Y.

63. [5) Swann Dive (see Exercise 38) offers his friend, Charlie Tuna, a new
proposition. Charlie will deal himself 2 cards from a well-shuffled
deck of bridge cards. If Charlie has one or more hearts, Swann will
give him a dollar; otherwise Charlie must pay Swann a dollar. What
is the probability that Charlie will win on one play?

64. [6] Swann (see Exercise 63) shuffles 5 black cards and 5 red cards and
lets Charlie randomly choose 2 of the cards. If they are both red or
both black, Swann gives Charlie a dollar; otherwise he takes a dollar
from him. What is the probability that Charlie will win a dollar on
one play?

65. [6] Swan asks Charlie to toss an honest coin three times. Charlie must
call heads or tails before each toss. If he is right at least two out of
three times he wins a dollar; otherwise he loses a dollar. What is the
probability that Charlie wins?

66. [20] Swann Dive has three cards, which he shuffles in a hat. One of
his cards is red on both sides, one red on one side and black on the
other; the third is black on both sides. Swann randomly selects a
card and places it face down on the table. The side that shows is
black. Swann offers to pay his friend, Charlie, a dollar if the other
side is black; otherwise he takes a dollar from Charlie. What is the
probability that Charlie wins?2?

21Weaver (25, page 126] makes the following statement about this problem: “Forty
years ago, when graduate students had to work for their living, the author used to teach
this particular problem, at reasonable rates and using the experimental method, to his
college friends.”
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67. [10] Charlie Tuna puts two decks of well shuffied playing cards side by

68.

69.

side in front of you. He begins by simultaneously turning over a card
in each deck. He does this, over and over, until all cards have been
turned over in pairs. If, on any turn, Charlie hits the same card in
both decks you win a dollar. If he has no matches you lose a dollar.
(You win only one dollar if he has multiple matches.) What is the
probability you will win? [Hint: See Exercise 30.]

[25] John and Mark found 16 dollars in a paper bag. Rather than
splitting the cash they decided to flip a coin for it. They decided
that the one who first wins 10 tosses gets all the money. After 15
tosses of the coin John has won eight times and Mark seven times.
On the 16th flip the coin rolled away and was lost, so they decided
to divide the 16 dollars based on their respective chances of winning
if they started up again. Clearly, John should get more than Mark,
but exactly how much should each receive? Note: This is a special
case of a general problem called the “problem of points” first solved
successfully by Pascal. [Hint: What is the maximum number of tosses
that remain to be made to settle the winner?)

[10] You decide to offer a gambling game with cards to your friend,
Amos. You mark each card with a number from 1 to 52; that is,
you write 1 on the first card in the deck, 2 on the second card, etc.,
to 52 on the last card. You shuffle the cards. If the top four cards
are in ascending order you pay Amos $20; otherwise he pays you a
dollar. (By ascending order we mean, for example, the top card is 7,
the second card 12, the third card is 40, and the fourth card is 47.)
What is the probability that Amos will win? What is your average
winning per play? [Hint: In how many orders can the top 4 cards be
arranged?]

70. [15] You allow your friend, Sally, to shuffle a three-card deck consisting

of an ace, a king, and a queen. Sally chooses two of the cards at
random and discards the third. She shows you a queen when you ask
for a picture card. What is the probability that she also has the king?

71. [5) The weather forecaster on TV reported that the probability of rain

tomorrow is 1/4. Find

(a) the odds in favor of rain tomorrow, and

(b) the odds against rain tomorrow.

72. [5] Suppose the odds in favor of Barry Blunt marrying Sally Sharp are

3:5 (3 to 5). Find the probability that they will get married.
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73. [5] Consider Example 2.10.2.

(a) Use Chebyshev’s inequality (Theorem 2.10.2) to show that the
probability the response time is one second or more is 0.04.

(b) Use the one-sided inequality (Theorem 2.10.3) to show that
the probability that the response time will exceed one second
is 4/104.

74. [10] Moon Systems, a manufacturer of scientific workstations, produces
its Model 13 System at sites A, B, and C; 20% at A, 35% at B, and
the remaining 45% at C. The probability that a Model 13 System will
be found defective upon receipt by a customer is 0.01 if shipped from
site A, 0.06 if from site B, and 0.03 from site C.

(a) What is the probability that a Model 13 System selected at
random at a customer location will be found defective?

(b) Suppose a Moon Model 13 System selected at random is found
to be defective upon arrival at a customer location. What is the
probability that it was manufactured at site B?

75. [8] Suppose a bookmaker tells you the odds against the Washington
Redskins beating the Dallas Cowboys next week is 3:2. Assuming the
odds are correct, (a) what is the probability that the Redsking will
win and (b) if the Redskins win and you have bet $10 that they will
win, how much will you win?
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With the jargon of Math, do you find
That some lessons can lessen your mind?
Turn over a leaf:
Study Laughing and Grief...
See your Reeling and Writhing unwind!
(with apologies to Lewis Carroll)

Ben W. Lutek

In the long run, we are all dead.
John Maynard Keynes

There were so many kinsmen Bernoulli
That keeping them straight would unduly
Have tired and worn to a frazzle

The record-keepers of Basel.

Karl David
Wells College
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Chapter 3

Probability Distributions

All business proceeds on beliefs,
or judgments of probabilities,
and not on certainties.

Charles Eliot

3.0 Introduction

In Chapter 2 we defined a random variable X to be a real-valued function
defined on a sample space. Thus, to each outcome w of a random experi-
ment, the random variable X assigns the value X(w). The “randomness”
in the name random variable comes about because of the uncertainty of the
outcome of the experiment before the experiment is performed; once the
outcome of the experiment has been determined, so has the value of the
random variable. Thus, if the random variable X counts the number of
spots turned up when two dice are tossed, as soon as the dice are tossed,
the value of X is known. The usefulness of the random variable concept
depends upon the ability to determine the probability that the values of
the random variable occur in a given set of real numbers. That is, the
probability distribution of a random variable is its most important property.
For this reason the two statements

1. “X is a Poisson random variable,” and
2. “X has a Poisson distribution,”

are used interchangeably. The same is true for any other type of random
variable, of course. If the probability distribution of a random variable
is known, the actual underlying sample space is not important. Thus,

109
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if we know the distribution function F(-) of X, defined for all real z by
F(z) = P[X < z], we can calculate the probability P[X € A] where A is
a set of real numbers satisfying very weak restrictions. In most practical
cases we are interested in probabilities such as Pla < X < b] = F(b)— F(a);
the distribution function F(-) enables us to make this type of calculation
easily. If X is a discrete random variable, its distribution function can
be calculated from its probability mass function p(-) defined for all real
z by p(z) = P[X = z]. If X is continuous, its distribution function can
be calculated from its density function f(-), which is characterized by the
properties:

(i) f(z) > 0 for all real z,
(ii) [ f(z)dz =1, and

(i) Pla < X <b] = f: f(z) dz for all real a,b with a < b.
Then -
F(z) = /_ f(t)dt. (3.1)

In this chapter we will study some common random variables, which are
especially useful for computer science applications.

Make things as simple as possible but no simpler.
Albert Einstein

3.1 Discrete Random Variables

A random variable X is discrete if

Y op(z) =) PX =2]=1, (3.2)

z€T z€T

where T = {real z : p(z) > 0}. The set T is either finite or countably
infinite. (For a proof see Apostol [3, page 511].) Each point of T is called
a mass point of X. We sometimes indicate the mass points of X by writing
“X assumes the values x,,z3,z3,---.” Just as the distribution function of
X can be calculated from the pmf p(-) by the formula

F(z)= Y p(z:), (3.3)
T <z
the pmf p(-) can be calculated from F(-) at all mass points by
p(z:) = lim {F(z;) — F(z)}. (3.4)

I—'Zi
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That is, the graph of F(-) is a step function with a jump at each mass point
z;, the jump having magnitude p(z;).

We summarize the properties of some useful discrete random variables
in Table 1 of Appendix A.

3.1.1 Bernoulli Random Variables

Several important discrete random variables are derived from the concept
of a Bernoulli sequence of trials.

A Bernoulli trial is a random experiment in which there are only two
possible outcomes, usually called success or failure, with respective proba-
bilities p and ¢, where p + ¢ = 1. We assume 0 < p < 1, for otherwise the
results are trivial. A sequence of such trials is a Bernoulli sequence if the
trials are independent and the probability of success (or failure) is constant
from trial to trial. A Bernoulli random variable describes a Bernoulli trial
and thus assumes only two values: 1 (for success) with probability p and 0
(for failure) with probability ¢ = 1 — p.

An example of a Bernoulli trial can be constructed from any sample
space € that has an event A such that 0 < P[A] < 1, by identifying
the occurrence of A with success and A with failure. The corresponding
Bernoulli random variable X is defined to be 1 for every point of A and 0
for every point of A.

A Bernoulli random variable is completely determined by the value of
p and therefore is said to have one parameter, namely, p. As we saw in
Example 2.9.4, such a random variable has the ztransform or generating
function

9(z) = ¢ +pz. (3.5)

We also showed that E[X] = p and 02 = pg. The Bernoulli random variable
is the basis for other important random variables, including the binomial
and geometric random variables.

3.1.2 Binomial Random Variables

Consider a Bernoulli sequence of n trials where the probability of success on
each trial is p. The random variable X, that counts the number of successes
in the n trials is called a binomial random variable with parameters n and
p. Thus, X can assume only the values 0,1,2,...,n. A Bernoulli sequence
of n trials can be represented as a string a;,as,---,a, where each a; is
either s for a success or f for a failure. Thus, a sequence of 5 trials in
which 2 successes are followed by a failure, a success, and a failure, would be
represented as ssfsf. If now the binomial random variable X has parameters



112 CHAPTER 3. PROBABILITY DISTRIBUTIONS

n and p, and k is an integer between 0 and n (inclusive), then any string
ai,az,...,0, representing k successes and n — k failures has probability
pFg™~F, since each trial is independent. (The probability can be calculated
by replacing each s in a;,a2,...,a, by p, each f by ¢ and multiplying
the resulting numbers.) The number of strings a,,a,,...,a, representing
k successes and n — k failures is just the number of ways the k indices
representing success can be chosen from the n indices, that is, (Z) Hence,
the pmf b(-; n, p) of a binomial random variable with parameters n and p is
defined by

b(k’ nap) = (:) pk qn—k’ k= 07 1a ree, N, (36)

where g =1 —p.
X can be represented as

X=X1+Xo+ -+ X,, (3.7

where X, Xs,..., X, are independent identically distributed Bernoulli ran-
dom variables. By Theorem 2.7.1 we have

E[X]= E[X,]+ E[X2] + -+ + E[X4] = np, (3.8)

since E[X;] = p for each i.
By Theorem 2.7.2,

Var[X] = Var[X,] + Var[X;] + - - + Var[X,,] = npg, (3.9)

since Var[X;] = pq for each i. (In Example 2.9.5 we calculated the mean
and variance of X using generating functions.)

The APL function BINOMIAL can be used to calculate binomial prob-
abilities and BINSUM can be used to sum binomial probabilities.

Example 3.1.1 A master file of 120,000 records is stored as a sequential
file on a direct-access storage device in blocks of six records. Each day the
transaction file is run against the master file and approximately 5 percent
of the records are updated. The records to be updated are assumed to
be distributed uniformly over the master file. An entire block of records
must be updated if one or more records in the block need updating. What
is the mean and standard deviation of the number of blocks that must be
updated? Use Chebyshev’s inequality to estimate the probability that 5,200
to 5,400 blocks must be updated.

Solution Let X be the random variable that counts the number of records
in a block that must be updated. It is reasonable to assume that X is
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a binomial random variable with parameters n = 6 and p = 0.05. (A
Bernoulli trial consists of checking a record to see if it must be updated,
that is, whether or not it is listed in the transaction file.) A given block must
be updated if X > 1, that is, with probability P[X > 1] =1 - P[X = 0].
Hence, the probability that any given block must be updated is

1 —b(0;6,0.05) = 1 — (0.95)% = 1 — 0.735092 = 0.264908. (3.10)

Let Y be the number of blocks that need to be updated. Y is a binomial
random variable with parameters n = 20,000 and p = 0.264908. Therefore,
the average number of blocks to be updated is E[Y] = 20,000 x 0.264908 =
5,208.16 =~ 5, 300 with standard deviation

o = (20,000 x 0.264908 x 0.735092)'/2 ~ 62.41 blocks. (3.11)

By Chebyshev’s inequality the probability that Y is between 5,200 and
5,400 blocks is
62.41\°

P|lY - 5,300 <100} > 1 — (W) = 0.6105. (3.12)
Using the APL function BINSUM, the author has calculated the correct
probability that Y lies between 5,200 and 5,400 to be 0.890677863. This
value was confirmed by the SAS/STAT [28] function PROBBNML. Thus,
the above estimate of the probability is not very good.! In Exercise 44 we
ask you to use the normal approximation. O

Example 3.1.2 The interactive computer system at Gnu Glue has 20 com-
munication lines to the central computer system. The lines operate inde-
pendently and the probability that any particular line is in use is 0.6. What
is the probability that 10 or more lines are in use?

Solution The number of lines in operation X has a binomial distribution
with parameters n = 20 and p = 0.6. The required probability is thus
2 (20
PX>10]= Y (k)(o.s)"(o.4)2°-'° = 0.872479. (3.13)
k=10

Equation (3.13) is a tedious calculation to carry out with a pocket calculator
(unless, of course, it is programmed to calculate binomial probabilities) but
it can be done easily using SAS/STAT (28], MINITAB [20], an HP-21S
calculator with its binomial library program, or the EXPLORE program
BINOM of Doane [9). The probability can also be approximated by the
normal distribution, as we will show later in the chapter. The APL function
BINSUM provides another way to make the above calculation. O

1Even the HP-218 calculator could not handle this calculation.
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3.1.3 Geometric Random Variables

Suppose a sequence of Bernoulli trials is continued until the first success
occurs. Let X be the random variable that counts the number of trials
before the trial at which the first success occurs. Then X can assume the
values 0,1,2,3,.... X assumes the value zero if and only if the first trial
yields a success; hence, with probability p. X assumes the value 1 if and
only if the first trial yields a failure and the second a success; hence the
probability gp, where ¢ = 1 — p. Continuing in this way we see that the
pmf of X is given by

p(k)=¢Fp, k=0,1,2,.... (3.14)
The probability-generating function of X is thus
o0 x> p
— k__k _ k _
9(z) =Y ¢*pF =p ) (g2)F = T (3.15)
k=0 k=0
In order for (3.15) to hold, we must have gz < 1 or 2 < 1/g. Then
' pq " 2pg®
= —r d = —_—
g'(2) Q- 249 (2) BYRE

Hence, by Theorem 2.9.2,

—d() =P __1
E[X]—g(l)—(l_q)2 > (3.16)
and
Var(X] = ¢"(1)+4'(1) - (¢'(1))?
Y GO s
p2 p p2
2
_ 2172__‘_%:9(‘11;1’)
= 1%, (3.17)

The geometric random variable is important in queueing theory and
other areas of applied probability.

Example 3.1.3 Consider Example 3.1.1. Let X be the number of blocks
of the master file that are read before the first block that must be updated
is found. Then X is a geometric random variable with parameter p = 0.265.
The expected value of X is ¢/p = 0.735/0.265 = 2.774 blocks with standard
deviation /g/p = 3.235. O
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Suppose now that during each time interval of a fixed length, say h, that
an event of some kind, called an arrival, may or may not occur. Suppose
further that the occurrence or nonoccurrence of the arrival in each interval
is determined by a Bernoulli random variable with a fixed probability p
of success from one interval to the next, that is, by a Bernoulli sequence
of trials. Then the interarrival time T is defined to be the number of
trials (time intervals of length h) before the first success (arrival). Thus, T
has a geometric distribution with parameter p. Now suppose we are given
that there were no arrivals during the first m intervals of length h and we
wish to calculate the probability that there will be k more time intervals
with no arrivals before the next arrival, that is, P[T = k + m|T > m)] for
k=0,1,2,.... By the definition of conditional probability (see Section 2.4),
we have

P(T =k+m)N(T > m)]

= > = .
P[T =k +m|T > m] BT > m] (3.18)
But
T=k+m)N(T>m)= (T =k+m), (3.19)
and
pq" m
P[TZm]:pq"‘(1+q+q2+---)=(l_q)=q . (3.20)
Hence,
pqm+k
PIT =k+m|T >m] = ——— =p¢* = P[T = k]. (3.21)

Equation (3.21) shows the Markov or memoryless property of the geometric
distribution, that is, the presence or absence of an arrival at any point in
time has no effect on the interarrival time to the next arrival. The system
simply does not “remember” when the last arrival (success) occurred. Thus,
in Example 3.1.3, the average interarrival time between any two successive
blocks that must be updated is 2.774; also at any arbitrary point in time,
it is the average number of blocks to be read before the next block is found
that must be updated.

3.1.4 Poisson Random Variables

We say that a random variable X is a Poisson random variable with pa-
rameter a > 0 if X has the mass points 0,1,2,3,..., and if its probability
mass function p(-; @) is given by

p(k;a) = P[X = k] = e_aa_k

T k=012, (3.22)
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This probability distribution was discovered by the French mathematician
Siméon D. Poisson (1781-1840).

Equation (3.22) does define a pmf because p(k; ) is clearly nonnegative
for all nonnegative integers k, and

00 00 ak
Ep(k;a) =e @ o e % ¥ =e"=1.
k=0 k=0
In Example 2.9.2 we showed that a Poisson random variable with pa-
rameter o has the moment generating function

() = expla(e® - 1)], (3.23)
and furthermore, that
E[X]=a and Var[X]=o.

In Example 2.9.3 we showed that, if Z = X + Y, where X is Poisson
distributed with parameter o and Y is Poisson distributed with parameter
B where X and Y are independent, then Z is Poisson distributed with
parameter o + 8. Thus, independent Poisson random variables have the
reproductive property.

The Poisson random variable is one of the four or five most important
random variables for applied probability and statistics. One reason for this
importance is that a great many natural and man-made phenomena are
described by Poisson random variables.

The following phenomena have Poisson distributions.

(a) The number of alpha particles emitted from a radioactive substance
per unit time (see Bateman [5], Rutherford and Geiger [26], and Lipp-
man [18, pages 76-77]). (Geiger is the inventor of the celebrated
Geiger counter, that counts not geigers but rather radiation levels.)

(b) The number of flying-bomb hits in the south of London during World
War I (see Clarke [7], and Feller [10, pages 160-161]).

(¢) The number of vacancies per year in the United States Supreme Court
(see Wallis [37] and Parzen [22, pages 256-257]).

Other examples include misprints per page of a book, raisins per cu-
bic inch of raisin bread, deaths caused by horse kicks per corps-year in
the Prussian cavalry (see Bortkiewicz [6]), and the number of chromosome
interchanges in organic cells caused by X-ray radiation.
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A number of random variables of interest to computer science have been
found to have Poisson distributions. We shall discuss some of these in this
book.

Another reason for the importance of the Poisson distribution is that its
pmf, given by (3.22), is easy to calculate. Furthermore, a binomial random
variable can often be approximated by a Poisson random variable—in fact,
this is the way Poisson originally conceived the probability distribution that
bears his name.

Theorem 3.1.1 Suppose X has a binomial distribution with parameters
n and p. Then, if n is large and p is small with a = np, b(k;n,p) is
approzimately p(k; a) in the sense that

lim b(k;n,%) =plk;a), k=0,1,2,....

n—0o0

Proof Fix k with 0 < k < n. Then
WIGEEH.

a\"
k 1_._)
nla ( n

_ % &
Ic!k(n Kln (1 _ %)

- 2_' (1- %)" [#’_k)'] (1 - %)"k (3.24)

Consider the term in square brackets in (3.24). It can be written as

b(k;n,p)

I

n! _ nn=1)(n—-2)---(n—k+1)
nf(n—k) nk
1 2 k-1
_ (1_ h’) (1_ ;) (1_ T) (3.25)
Hence,
lim —— 1. (3.26)

n—co ¥ (n — k)! -

Also, since k is fixed,

. a\—k ) 1 1
lim (1—;) = lim = =-=1 (327

ir in % %
oo "“(1-5) lim (1—3)
n n—oo n
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By a well-known property of the exponential function

. a\™
nll'n;o (1 - ;) =e (3.28)
Combining (3.24)-(3.28), we see that
k
- n, X =0l k= (]
nlggob(k,n, n) =e 2 k=01,2,... (3.29)

The import of Theorem 3.1.1 is that, if n is large and p is small so that
np is not close to either p or n, then the binomial random variable with
parameters n and p can be approximated by a Poisson random variable
with the parameter & = np. (Zehna [39] claims that electronics has ended
the usefulness of the Poisson approximation to the binomial. Nevertheless,
it is sometimes useful, and the Poisson distribution is very important in its
own right.)

The APL functions POISSON and POISSONADIST can be used to
make Poisson probability calculations. O

Table 3.1.1. Example 3.1.4

Poisson
approximation

k P[X = k] e 22k /k!
0 0.13262 0.13534
1 0.27065 0.27067
2 0.27341 0.27067
3 0.18228 0.18045
Total probability  0.85896 0.85713

Example 3.1.4 Suppose the Wildgoose Errcraft computer installation has
a library of 100 subroutines and that each week, on the average, bugs
are found (and corrected) in two of the subroutines. Assuming that the
number of subroutines per week with newly discovered and corrected bugs
has a binomial distribution, use the Poisson approximation to calculate the
probability that errors will be found in not more than three subroutines
next week.

Solution Using the APL functions POISSON and BINOMIAL, and round-
ing to five decimal places, we compute the values in Table 3.1.1. The true
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value of the required probability is 0.85896; the value given by the Poisson
approximation is 0.85713. These values are close, although some individual
probabilities are a little off; for example, for £ = 0 and 2, the error of the
approximation about 0.0027. O

Sheu [32] has proven the following theorem, which gives us a bound on
the possible error made by the Poisson approximation to the binomial.

Theorem 3.1.2 Let b(k;n,p) = (})p*(1 —f)"‘k, 1<n 0<p<I

blk;n,p) = 0, for k > n. Let p(k,a) = e_a%!-, for k=0,1,.... Then we

have
[ o]

> lb(k;n, p) — p(k, np)| < min{2np?, 3p}.
k=0

Proof See Sheu [32]. B

For Example 3.1.4, Theorem 3.1.2 guarantees that the sum of absolute
values of all the errors in the Poisson approximation will not exceed 0.06;
individual errors must, of course, also be less than 0.06. The sum of the
absolute values of the observed errors is 0.00731.

The value of the Poisson distribution as a means of approximating the
binomial distribution is minor compared to its value in describing random
variables that occur in computer science and other sciences.

Example 3.1.5 Suppose it has been determined that the number of in-
quiries that arrive per second at the central computer installation of the
Varoom Broom on-line computer system can be described by a Poisson
random variable with an average rate of 10 messages per second. What is
the probability that no inquiries arrive in a one second period? What is
the probability that 15 or fewer inquiries arrive in a one-second period?

Selution By hypothesis

1010

P[X=k]=e F,

k=0,1,2,....
Hence, the probability that no inquiry arrives in a one-second period is

e 10 = 4.54 x 1075, The answer to the second question is

K

15 10’°
€710 —— =0.95126.
k=0

This is a laborious calculation to make without a computer but can be
made easily with the APL function POISSONADIST. O
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In Chapter 4 we give the conditions that characterize a random phe-
nomenon that is described by a Poisson random variable. It will be evident
that these conditions are characteristic of many real-life situations.

It is interesting to note that the value of this distribution was not rec-
ognized for many years after it was discovered—even by Poisson himself.
Stigler [33], in discussing the major book by Poisson on probability, (Pois-
son [23]), mentions the distribution and goes on to say

...in a section of the book concerned with the form of the bi-
nomial distribution for large numbers of trials, Poisson does in
fact derive this distribution in its cumulative form, as a limit to
the binomial distribution when the chance of a success is very
small (Stigler, 1982a). The distribution appears on only one
page in all of Poisson’s work (Poisson, 1837, p. 206).

Ladislaus von Bortkiewicz in his famous monograph Bortkiewicz [6] showed
that the Poisson distribution is valuable for modeling many real-world phe-
nomena. Bortkiewicz is considered by most statisticians to be the first to
demonstrate the value of the Poisson distribution. Now this distribution is
one of the most widely used in applied probability and statistics. The ex-
ample in Bortkiewicz’s book that is most cited (probably because it brings
such vivid pictures to mind) is the model of deaths by horse kick in the
Prussian cavalry. We consider the Prussian cavalry data in Example 8.4.2.

3.1.5 Discrete Uniform Random Variables

A random variable X that assumes a finite number of values z1,z3,...,Zn
each with the same probability, 1/n, is called a discrete uniform random
variable. Often the values are taken to be multiples of some value L, such
as L,2L,3L,...,nL. The expected value is given by

n
E[X]= 1 P (3.30)
n i=1
The second moment E[X?] is given by
. 1<
E[X?) = -3 al, (3.31)
i=1

and the variance can be calculated by the formula

Var[X] = E[X?] - (E[X])2. (3.32)
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God may be subtle, but he is not malicious.

Albert Einstein

IATEX, on the other hand is both subtle and malicious.
Russell Ham

3.2 Continuous Random Variables

A continuous random variable X is characterized by the property that
P[X = z] = 0 for all real z; that is, its probability mass function assumes
only the value zero. In this book each continuous random variable we
consider is described by a density function f(-), with properties defined in
Section 2.5. It is not true, in general, that f(z) = P[{X = z]; it is true
that, for each real z and for small Az, the probability that the value of X
lies between z and = + Az is about f(z)Az. Some of the properties of the
continuous random variables we discuss is this section are summarized in
Table 2 of Appendix A. (It is the author’s belief that continuous random
variables should be known as indiscreet random variables, since they clearly
are not discrete; this would also add a little spice to a subject with a
reputation for dullness.)

3.2.1 Continuous Uniform Random Variables

A continuous random variable X is said to be a uniform random variable
on the interval a to b or to be uniformly distributed on the interval a to b,
if its density function is given by

0 otherwise.

1
f(x)={ F=a fora<z<b (3.33)

The corresponding distribution function is easily calculated by integration
to give

0 forr<a
F(z) = H- fora<z<b (3.34)
1 for z > b.
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1
@) =52
f(z) S
/f(z)=0 /f(x)=0
a T b
Figure 3.2.1. Density of uniform distribution on a to b.
F(z)=1
1.00 H
0.75 -
0.50
0.25
0.00

a b
Figure 3.2.2. Distribution function of uniform distribution.

Figure 3.2.1 is a graph of the density function of a random variable
that is uniformly distributed on the interval a to b, and Figure 3.2.2 is the
corresponding distribution function. Thus, the probability that the values
of X will lie in any subinterval of the interval from a to b is merely the ratio
of the length of the subinterval to the length of the whole interval, that is,
the probability that X will lie in any subinterval of length § is 6 /(b — a).

It is an easy exercise to show (see Exercise 41) that

_a+b 2_(b—a)2
E[X]= 5 0=y

Example 3.2.1 Suppose the disks in a disk memory device rotate once
every 25 milliseconds. When a read/write head is positioned over a track
to read a particular record from the track, the record can be anywhere on
the track. Hence, the rotational delay, T', before the required record is in
position to be read is uniformly distributed on the interval from 0 to 25

(3.35)
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milliseconds. Thus, E[T] = 12.5 milliseconds,

52
1

[\~

0% = = 52.0833,

(V]

and
or = v52.0833 = 7.2169 milliseconds.

The probability that the rotational delay is between 5 and 15 milliseconds
is 10.25 = 0.4, the same as the probability that it is between 15 and 25
milliseconds. O

3.2.2 Exponential Random Variables

A continuous random variable X has an exponential distribution with pa-
rameter a > 0 if its density function f is defined by

f(z) = { g’e_m’ . 2 8' (3.36)

The distribution function F is then given by

Flz) = { (1),_ e =1 — exp(—iII/E[X]), ;‘ 2 g (3.37)

(Students who have learned the importance of the exponential distribu-
tion have been known to shout “Eureka!” upon seeing

Equation (3.37) appear. Therefore, I call this formula the “Eureka for-
mula.” It should not be confused with the motto of the state of California.)

Figure 2.5.3 shows the density function for an exponential random vari-
able with o = 2 and Fig. 2.5.4 is the graph of the corresponding distribution
function. As shown in Example 2.6.2, an exponential random variable with
parameter a has mean E[X] = 1/a and Var[X] = 1/a? = E[X]?.

In Example 2.9.1 we proved that the moments are given by

i
E[X¥ = % =k E[X]F, k=1,2,3,.... (3.38)

One reason for the importance of the exponential distribution to queueing
theory and elsewhere is the Markov property, sometimes called the memo-
ryless property, given by

PIX>t+hlX>t]=P[X>h], t>0,h>0. (3.39)

One interpretation of (3.39) is that, if X is the waiting time until a
particular event occurs and ¢ units of time have produced no event, then
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the distribution of further waiting time is the same as it would be if no
waiting time had passed—that is, the system does not remember that £
time units have produced no “arrival.” To prove (3.39) we note that, by
(3.37), P[X > z] = e~°® for all real positive z. Hence,

P(X >t+h)N(X >1t)]
P[X > ]

P[X > t+ h]

P[X >t

e-a(t+h)

P[X >t+h|X > t]

e—at

e—at e—ah

e—at

= e % = P[X >h].

Figure 2.5.3 shows that the density function for the exponential distri-
bution is not symmetrical about the mean but is highly skewed. In fact,
for an exponential random variable X it is true that

P[X < E[X]| =1-e BIXVEIX] =1 _ =1 = 0.63212. (3.40)

For any random variable, such as a uniform random variable, which is
symmetrical about the mean, P[X < E[X]] = 0.5. Thus, for an exponen-
tial random variable, values of X between 0 and E[X] are more likely to
occur than values between E[X] and 2E[X], although each interval is one
standard deviation long (Var[X] = E[X)?, so that o, = E[X]).

For any random variable X, its rth percentile value, x{r], is defined by
P[X < 7[r]] = r/100. Thus, the 90th percentile value of an exponential
distributed random variable is defined by

P[X <7[90]] =0.9 or 1—e "% =09

Hence,
eom%0 = g1, (3.41)

By taking the natural logarithm of both sides of (3.41) and solving for
7[90], we get

7[90] = —1“(2'1) = E[X] In(10) = 2.30259 E[X] ~ 2.3 E[X].  (3.42)

(Here In(z) means the logarithm of z to the base e.)
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Similarly,
x[95] = E[X] In(20) = 2.99573 E[X] ~ 3 E[X], (3.43)
and for r > 0,
xfr] = E[X] In (1 01)02 T) . (3.44)

In this book we will use the approximations
7[90] = E[X] + 1.30, = 2.3E[X], (3.45)

“and
7[95] ~ E[X] + 20, = 3E[X] (3.46)

for the exponential distribution.

Example 3.2.2 Personnel of the Farout Engineering company use an on-
line terminal to make routine engineering calculations. If the time each
engineer spends in a session at a terminal has an exponential distribution
with an average value of 36 minutes, find

(a) The probability that an engineer will spend 30 minutes or less at the
terminal, .

(b) The probability that an engineer will use it for more than an hour.

(c) If an engineer has already been at the terminal for 30 minutes, what
is the probability that he or she will spend more than another hour
at the terminal?

{(d) Ninety percent of the sessions end in less than R minutes. What is R?

Solution Let T be the time an engineer spends using the terminal. By
(8.37) the probability that T' does not exceed ¢ minutes is

1—e7t/36,
Hence, the probability that T is not more than 30 minutes is
1—e730/36 = 1 — ¢75/6 = 1 — 0.43460 = 0.5654.
By taking complements, (3.37) yields

P[T > t] = e~%%, t in minutes.



126 CHAPTER 3. PROBABILITY DISTRIBUTIONS

Hence, the probability that over an hour is spent at the terminal in one
session is
e~60/36 = ¢=5/3 = (.1889,

or slightly less than 20% of the time. By the Markov property, the fact that
an engineer has already been using the terminal for 30 minutes has no effect
on the probability that he or she will use it for at least another hour. Hence,
this probability is 0.1889. R is 7[90] or about 2.3E[X] = 2.3 x 36 = 82.8
minutes. O

We summarize the properties of the exponential distribution in the fol-
lowing theorem.

Theorem 3.2.1 (Properties of the Ezponential Distribution) Let X be an
ezponential random variable with parameter a > 0. Then the following hold.

(a) If 6 < a, then the moment generating function v(.) is given by

a
8= —r 4
and the Laplace-Stieltjes transform, X*[6], by
a
X0 = . .
1= —%% (3.48)

b) E[X*] = L = M E[X]F, £ =1,2,3,....
of

(c) EX] = L, Var[X]= ;1, = E[X]2.

{d) X has the Markov property
PX>t+hlX>t]=P[X>h], t>0,h>0.

(e) The rth percentile value w[r] defined by P[X < w[r]] = r/100 is given
by

xlr] = E[X]In (1 Ot"f r) .

(f) Suppose the number of arrivals, Y, of some entity per unit of time is
described by a Poisson random variable with parameter . Then the
time T between any two successive arrivals (the interarrival time) is
independent of the interarrival time of any other successive arrivals
and has an exponential distribution with parameter A. Thus, E[T] =
1/, and p[T <t]=1~e* fort>0.
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(g) Suppose interarrival times of customers to a queueing system are in-
dependent, identically distributed, exponential random variables, each
with mean 1/\. Then the number of arrivals, Y;, in any interval of
length t > 0, has a Poisson distribution with parameter At; that is,

e (AD)F
PlY,=k]=e MT’
fork=10,1,2,---.
(h) Suppose X1, X2,...,X, are independent exponential random variables
with parameters oy, az, az,- -, Gy, respectively, and Y = min{ Xy, X,

-, Xp}. Then'Y has an exponential distribution with parameter
o = ay,+az,+---+ a,. In particular, if each a; = a, then Y is
exponential with parameter na.

Proof Items (a)—(e) have been proven, above, except for (3.48), which
was calculated in Example 2.9.6. The proof of (f) is given in Chapter 4
(Theorem 4.2.2). Item (g) follows from Theorems 4.2.3 and 4.2.1. Item (h)
follows from Theorem 2.7.4. W

3.2.3 Shifted Exponential Random Variables

We occasionally find use for a random variable that is almost exponen-
tial. Perhaps a service facility provides service that must be at least D but
has an exponential distribution for service time s > D. Another case is
response time at a terminal of an on-line system, which may be approxi-
mately exponential but has a minimum positive value D. The minimum, D,
represents the minimum transmission time to send a request to the central
processor, plus the minimum service time at the processor, added to the
minimum time to return the response to a terminal. These random vari-
ables could be described by a shifted ezponential distribution with density
function given by

f(s) = ae=®(5= D) for s> D. (3.49)

The properties of a shifted exponential random variable are given in the
following theorem.

Theorem 3.2.2 Let Y be a shifted exponential random variable with the
density function given in (3.49) with D > 0. Then

o

Y*e — -6D
6] = ey

(3.50)
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E[Y]=D+ i- (3.51)
Var[Y] = % (3.52)
Fz)=PlY <z]=1-¢°"D) forz>D (3.53)
and
0<Ci <. (3.54)

Furthermore, if X is a positive random variable with C% < 1, then a shifted
exponential random variable Y can be constructed with the same two first

moments as X by setting
1

0= 3.55
and 1
D =E[X]- > (3.56)
Proof It is easy to show (see Exercise 70) that
Y*8] = e P x ——. :
fl=e X = (3.57)

Equations (3.51) and (3.52) follow from Theorem 2.9.3 and some easy dif-
ferentiation. Equation (3.53) follows from

T
PlY <z]= / e D) gg =1 — ¢~2(==D),
D

The formula (3.54) for CZ follows from the formula

1

2
Cy = 5 :
D2+2_?_+L2
«a a

since D > 0 and a > 0. The claim that the shifted exponential random
variable constructed using the parameters defined by (3.55) and (3.56) has
the same first two moments as X can be verified by simple substitution into
(3.51) and (3.52) and the formula

E[Y?] = Var[Y] + E[Y].. B

Example 3.2.83 The performance analysts at Alcapones Loansharking Ser-
vices estimate the mean response time at their computer center for cus-
tomers with the highest priority is 0.75 seconds and the minimum response
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time is 0.25 seconds. They decide to model this random variable as a shifted
exponential. Thus, D = 0.25 seconds and 1/a = 1/2, or & = 2. The ana-
lysts want to estimate the probability that a response time will not exceed
one second and to calculate the 90th percentile value of the response time.
We know the distribution function is given by

F(z) = P[Y < z] =1 - exp(—2(z — 0.25)), for z > 0.25 seconds. (3.58)
Hence, the probability that Y does not exceed one second is
FQQ)=P[Y <1]=1-¢"1%=0.77687.
Let z be the 90th percentile response time. Then, by (3.58),
0.9 =1 — exp(—2(z — 0.25)). (3.59)
Solving (3.59) for z yields

= In(10) +0.25 = 1.40 seconds. O

Example 3.2.4 Suppose the analysts in the above example had chosen
a shifted exponential with mean 0.75 seconds and C% = 0.25. Then, by
Theorem 3.2.2,
_ 1 _ 8
T 05x075 3
and
D=

3
=

> | W
00| W

Hence,
3

PlY <1]=1-exp (—g (1 - §>) =0.811.

We also calculate the 90th percentile response time to be
3 3
=g In(10) + 3= 1.24 seconds. O
3.2.4 Normal Random Variables

A continuous random variable X is said to be a normal random variable
with parameters p and ¢ > 0 if it has the density function

2
flz)= 0\}2_7( exp[—% (2;—#> ], = real (3.60)
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We indicate this fact by writing “X is N(u,02).” A standard normal ran-
dom variable is one with parameters 4 = 0 and ¢ = 1. Thus, the standard
normal density ¢(-) is defined by

exp[—lz ], z real (3.61)

p(z) = W

The corresponding standard normal distribution function ®(-) is therefore

defined by . . exp[_lt2]
<I>(x)=/; e(t)dt = : \/__ (3.62)

The standard normal distribution is important because every normal distri-

bution can be calculated in terms of it. Thus, if X is normally distributed
with parameters u and o (X is N(y,0?)), then

Fe@) = —= [ " expl-2((t~ w)/o)?]dt

1 fe-wie 1,
= — -~ y%d
r—%/_w exp| 2y]y
= @(x_“). (3.63)

g

The second integral in (3.63) is the result of the change of variable y =
(t—p)/o. Unfortunately, ®(-) cannot be calculated in closed form but must
be approximated using numerical methods. The APL function NDIST cal-
culates values of the standard normal distribution using formula (26.2.17)
of Abramowitz and Stegun [1]. It was used to create Table 3 of Appendix
A, a table of values of the standard normal distribution function ®(-). Of
course ®(z) can also be calculated using MINITAB, SAS/STAT, Mathe-
matica, and the HP-21S. In order to prove a number of useful properties of
the normal distribution, we first need to prove that

/_ " o(z)de = /_ ” e—x?{/—_z_;z—ﬂldz =1 (3.64)

This, in particular, will show that (3.60) defines a density function, since
f(z) > 0 for all real z, because the exponential function assumes only
positive values, and

* expl—3((z —p)/a)?] , _ [® exp[—22/?]
/;oo o dr = /;oo ——-———ﬁ; dz,

under the change of variable z = (z — u)/o.

(3.65)
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To prove (3.64), we write

()

(\/%_W /_ Z exp[—x2/2]dx)

(712_; /_ o:o eXP[—y2/2]dy)
i,, /_ Z /_ :: exp[—(z? + y*)/2)dz dy. (3.66)

X

Now we can transform to polar coordinates. Thus, 72 = z2 + y? and
dzdy = rdrdf. (See Apostol [3] for a discussion of how to convert from
Cartesian to polar coordinates.) Making the polar coordinates substitution
in (3.66) gives

)

1 2r poo
— / exp|—r2/2]r dr do
T Jo Jo

1 27
= 5% [— exp[-r?/2]]] ., d6
1 27
= &) ¥=t (3.67)

This proves (3.64).
If X is N(u,0?), then the moment generating function of X (see Section
2.9) is given by

= Elexp(6X)] = (T;ﬁ : exp(6z) exp[——;-((x — w)/o))dz. (3.68)
Let z = (z — ¢)/o. Then (3.68) yields

¥(8) ﬁb\/%g—) = exp (aez - i;) dz
m —00

o0
1
= %(2_%0—) /;oo exp[—i(z2 ~ 200z + 026% — 6%6%)]dz

= el\l}(z—ﬁol exp[(a8)?/2] /oo exp[—l(z - 06)?]dz

= exp(uf) expl(06)?/2] f e""[ w / oplw /2 4,

= exp[ub + (¢%6%)/2]. (3.69)
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In the next-to-last integral we substituted w = 2z — o, and used (3.64).
Thus, the moment generating function of a normal random variable X
with parameters p and o is exp[ud + (0262)/2)]. Hence,

% = (u + 020) exp[ub + (026%)/2),
and
Y — o2 cxplb + (26%)/2] + (u + 720)" explud + (067)/2
Therefore, by Theorem 2.9.1,
E[X] = % T E[X?] = %z—zf ey o* +
and

VarlX] = E[X?] - (BIX])? = 02 + p? - 4? = o2,
Thus, the parameters p and ¢ are, respectively, the mean and standard

deviation of X.
We summarize what we have just shown in the following theorem.

Theorem 3.2.3 (Properties of a Normal Random Variable) Suppose X is
a normal random variable with parameters y and o (X is N(u,0?)). Then

E[X]=p, Var[X]=o? (3.70)

and
Y(0) = exp[u 8 + (0%6%)/2]. B (3.71)
If Xq,Xs,...,X, are n independent random variables having normal

N(p1,0%), N(uz,02),..., N{un,02) distributions, respectively, the moment
generating function of

Y=X;+X2+4+--- X,,
is, by Theorem 2.9.1,
Yr(0) = ¥x,(0)¥x,(0)- - ¥x.(6)

n 02 &
= exp [Oz,ui + ) Za?] , (3.72)
i=1 i=1

which is the moment generating function of an

n n
N (E Hi, Z 03)
i=1 i=1

random variable. We have proven the following theorem.
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Theorem 3.2.4 Suppose X1, X,,..., X, are n independent random vari-
ables such that X1 is N(u1,02, X5 is N(p2,02),...,Xn is N(n,02). Then
Y = X3+ X+ + X, is normally distributed with mean p1 +po+-+ -+ pin
and variance 02 + 0%, +---+02. B

The symmetry of the normal densities about the mean follows from
(3.60); that is, f(p+2z) = f(p—z) for all real z. As we saw from Equation
(3.63), probability calculations for any normal distribution can be made
from the standard normal distribution. If X is N(u,0?), the change of

variable
(X — )
o

Z= (3.73)

yields a normalized random variable that is N(0,1). The numerator in
(3.73) is a shift of origin transformation which transforms the mean value to
0. Division by o converts the value of X — i into units of standard deviation,
o. The fact that Z is normally distributed follows from the uniqueness of
the moment generating function as follows:

P(8) = E[eHX-110)] = ¢=ub/o glebX/e], (3.74)

by Theorem 2.7.1(b). Now X/o is a normal random variable with mean
u/o and variance 1 by the properties of mean and variance (Theorems 2.7.1
and 2.7.2) and by the fact that dividing a random variable by a constant
does not change the nature of the random variable, but only the scale.
Hence, the moment generating function of X/o is

Elexp(6z/0)] = exp|(u8/0) + 6°/2), (3.75)
by (3.71). Substituting (3.75) into (3.74) yields
$(8) = exp(—p6/) exp|(u/0) + 62 /2] = exp(6°/2). (3.76)

Since (3.76) is the moment generating function of a standard normal ran-
dom variable, Z is N(0,1).

As illustrated in Figure 3.2.3, the probability that a randomly selected
value z of a normal random variable X will fall within one standard devi-
ation of the mean u is 0.68268 or 68.268 percent. This can be calculated,
using Table 3 or Appendix A, by noting that the probability that z is
greater than 1 is 1 — 0.84134 = 0.15866, so that, by the symmetry of the
standard normal density,

Plp—0<X<p+o]=P[-1<Z<1]=1-2(0.15866) = 0.68268.
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[ area under curve is 0.9545 )

0.68268 —*\

] S~

] T

pu—30c pu—20 pu—o 7 p+o p+20 p+3c

Figure 3.2.3. Area under normal density curve.
Similarly,
Plp—-1.960 < X < p+1.960] = 0.95.

Shah [31] has developed an easy way to compute an approximation for the
area under the standard normal density curve from 0 to z. He claims the
maximum absolute error is only 0.0052. This is certainly accurate enough
for many purposes. Shah’s approximation is

z(4.4 - 2)/10, for 0<2<22,
P0<Z<z)={ 049, for 2.2 < z < 2.6,
0.50, for 2.6 < z.

We ask you to test the accuracy of the above approximation in Exercise 58.

Example 3.2.5 Suppose the number of message buffers in use in the Levy
Stress interactive inquiry system, X, has a normal distribution with a mean
of 100 and a standard deviation of 10. Calculate the probability that the
number of buffers in use does not exceed 120; lies between 80 and 120;
exceeds 130; respectively.

Solution Because 120 is 2 standard deviations above the mean, the first
probability requested is the probability that z does not exceed 2, which, by
Table 3 of Appendix A, is 0.97725. If z is between 80 and 120, it is not more
than 2 standard deviations from the mean; hence, the second probability
is 0.9545 = P[-2 < Z < 2]. Since 130 is 3 standard deviations above the
mean,

P|X >130] = P[Z > 3] = 1 — 0.99865 = 0.00135. O

The normal distribution is the most important distribution in applied
probability and statistics because many useful random variables have nor-
mal or nearly normal distributions and (more important) because of the
central limit theorem, which is discussed in Section 5 of this chapter.
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As W. J. Youden? said

THE
NORMAL
LAW OF ERROR
STANDS OUT IN THE
EXPERIENCE OF MANKIND
AS ONE OF THE BROADEST
GENERALIZATIONS OF NATURAL
PHILOSOPHY © IT SERVES AS THE
GUIDING INSTRUMENT IN RESEARCHES
IN THE PHYSICAL AND SOCIAL SCIENCES AND
IN MEDICINE AGRICULTURE AND ENGINEERING ©
IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE

INTERPRETATION OF DATA OBTAINED BY OBSERVATION AND EXPERIMENT

3.2.4.1 Bivariate Normal Random Variables

The jointly distributed random variable (X,Y) has a bivariate normal dis-
tribution if it has the joint density function

1

xod 1 (m - ﬂx)
2mox 0)’\/-1——_92 ? 21-p%) 7x
_ 2p(z — px)(y — py) + <y—uy)2} } (3.77)

flzy) =

Ox0y Oy

where ux, y, ox, oy, and p are constants with 0 < p < 1. The parameter
p is called the correlation coeffictent of X and Y.

The bivariate normal distribution is an important distribution for re-
gression analysis, the subject of Chapter 9 of this book. We list the prop-
erties of the bivariate normal distribution in the following theorem.

Theorem 3.2.5 (Properties of the bivariate normal distribution) Suppose
(X,Y) is a jointly distributed random variable with joint density function
given by (3.77). Then the following are true.

(a) The marginal distribution of X is normal with mean ux and standard
deviation o x; that is, X is N(ux,0%).

(b) The marginal distribution of Y is normal with mean py and standard
deviation oy; that is, Y is N(uy,0%).

2william John Youden (1900-1971) was a statistician and chemist.
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(c) The conditional density function of Y, given that X = z, is given by

oy 2
y—py —p—(z — px)
(25.4

oyV1-p?

fY|X(yl‘T) = \/ﬁd’yﬂ

(Thus, for a fized ,Y =Y, is a normal random variable with mean
py + ploy Jox)(z — px) and standard deviation oy /1 — p2.)

(d) The conditional density function of X, given that Y =y, is given by

exp —%

(3.78)

gx
T - px "P;;(?J_ﬂ)’)
oxV1-p?

fX|Y(m|y) = maxm

(Thus, for a fized y, X = X, is a normal random variable with mean
ux + ploz/oy)(y — py) and standard deviation ox+/1 — p?.)

Proof See Exercises 54, 55. W

(ML

exp | —

(3.79)

If X and Y are jointly distributed random variables, we define the curve
of regression of Y on X by

o0
BYiX =2)= [ ufxuis)dy. (3.80)
bde ol
The result of Theorem 3.2.5(c) is that, if X and Y have a bivariate normal
distribution, the curve of regression of Y on X is the straight line
] _ poy

and, for each z,Y =Y, is a normal random variable with mean

e} r —
Mm=w+&ﬂ;lﬂ, (3.82)

and standard deviation
oy, =oyy1—p% (3.83)

Similar remarks apply to the curve of regression X on Y.
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3.2.5 Gamma Random Variables

A continuous random variable X is said to have a gamma distribution with
parameters 3 > 0 and « > 0 if its density function f is given by

alazg)P~le—o=
fl@) = { J‘Li‘rw » 2>0 (3.84)

0, z<0.

Here 3 is the shape parameter and «a is the scale parameter. Varying
changes the shape of the density function, while changing « corresponds to
changing the units of measurement (say, from minutes to hours) and does
not affect the shape of the density. I'(-) is the celebrated gamma function
defined by

I(t) = /0 ” zt"le7%dz, t>0. (3.85)
It can be shown (see Exercise 50) that

'n+1)=n!, n=0,1,2,..., (3.86)
and that

T(t+1) =tI(t) for all ¢ > 0. (3.87)

For an excellent discussion of the gamma function, see Parzen [22].
If X has a gamma distribution with parameters 3 and a, then its mo-
ment generating function (-) is given by

oo 0z .8,8-1,—az
0 = 6X] _ e’?af P~ le
¥ = Ele™X) / e
of

oo
= — B~ 1le~(a—b)zgy 3.88
0 Jo (3.88)

This integral converges if § < a. Making the substitution y = (a — 8)z in
(3.88), yields

B8 o
"b(o) = f‘ﬁz——e—)ﬂ/‘o yﬁ—le—ydy
af of
B mr(ﬂ)=m, f<a. (3.89)

Similarly, the Laplace-Stieltjes transform, X*[6], is given by

X*[6) = (aio)ﬂ’ 8 <a. (3.90)
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We summarize some of the important properties of gamma random vari-
ables in the next theorem.

Theorem 3.2.6 (Properties of Gamma Random Variables) Suppose X is
a gamma random variable with parameters 3 and o; that is, its density
function f is given by (3.84). Then the following are true.

(a) The moment generating function () is defined for all 6 < a by

B
¥(6) = TRl = 5’ (3.91)
with Laplace-Stieltjes transform
B
Xl = (Tj—&) - (3.92)
0) Ex) =2, vax)= £, pxe = AAHDEHD
Q a o

(¢) IfY is independent of X and has a gamma distribution with parameters
v and o, then Z = X +Y has a gamma distribution with parameters
B+~ and a. {Gamma random variables are reproductive with respect

to 3.)

(d) If X;,X,,...,Xn are mutually independent random variables, each
with an ezponential distribution with parameter o, then their sum Y
has a gamma distribution with parameters n and a. Furthermore, the
distribution function of Y is given by

Fy(x) = Gn($)=1—e°"”{1+ax+(a;)2+~'~
+(("Tx_)%:} £>0. (3.93)

Proof Item (a) was proven by (3.89) and (3.90). The proofs of (b) and (c)
are simple exercises in the use of Theorem 2.9.1 (see Exercise 36). For the
proof of (d), see Feller [11, page 11]. B

Example 3.2.6 Suppose the time, X, between inquiries in the Cutrate
Construction interactive system has an exponential distribution with an
average value of one second. Let ¢ be an arbitrary point in time and T the
elapsed time until the fifth inquiry arrives (after time t). Find the expected
value and variance of T. What is the probability that T does not exceed 6
seconds? That it exceeds 9 seconds?
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Solution By Theorem 3.2.6(d), since T = X; + X2 + X3 + X4 + X5,
where X, X3, X3, X4, X5 are independent identically distributed exponen-
tial random variables, each with an average value of one second, T is a
gamma random variable with parameters 3 = 5 and a = 1. Hence,

E[T] = B 5seconds and Var[T]= b 5 seconds?.
a

(12
By (3.93),
62 63 64
PIT<6]=Gs(6)=1—¢® (1+6+-2—!+§+Z) = 0.7149.
By the same formula,
92 93 ot
P[T>9=1-PT <9 =¢? <l+9+i+§+ﬁ> = 0.055. O

If X is a gamma random variable with parameter § = n, where n
is a small positive integer, then the values of the distribution function of
X, G, can be calculated fairly easily using (3.93). However, if the pa-
rameters 8 and «a are arbitrary positive numbers, probability calculations
are more difficult. The APL function GADIST calculates the distribu-
tion function of a gamma random variable using some approximate for-
mulas from Abramowitz and Stegun [1] as implemented by Anscombe [2].
Both SAS/STAT and MINITAB provide the distribution function for the
gamma, distribution. However, they both use different parameters to de-
scribe the gamma distribution than we do in this book. To calculate the
value P[X < t] using SAS/STAT, we execute the SAS/STAT statement

P = PROBGAM(at, §); (3.94)

and then print out the value of P. (The semicolon in 3.94) is part of
the command.) To calculate this value with our Mathematica function
gammadist, type gammadist|a, 3,t] or, using the Mathematica commands
directly type GammaRegularized[8, 0, at]. For example, the Mathematica
to calculate the value of G5(6) is

Inf10]:

N[GammaRegularized([5, 0, 6]]

Out[10]= 0.714943

This agrees with the value of G5(6) calculated in Example 3.2.6. The
MINITAB procedure for calculating P[X < t] where X is gamma with
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parameters 3 and «, is to issue the MINITAB command “CD ¢;” followed
by the subcommand “GAMMA g >.” where 3 and 1 are the decimal
number values of 8 and %, respectively. We demonstrate the MINITAB
procedure, below. MINITAB? responds by typing the two numbers ¢ and
P[X <1].

Example 3.2.7 The response time at the terminal of the Hopdup Autos
interactive system has a gamma distribution with an average value of 0.5
seconds and a variance of 0.1 seconds?. What is the probability that the
response time of a randomly selected inquiry will not exceed 0.72 seconds?
1.0 second?

Solution Let X be the response time. Since X has a gamma distribution,
we must have 8/a = 0.5 and 3/a? = 0.1. Solving for 8 and a yields 8 = 2.5
and a = 5.0. We calculate P[X < 0.72], using MINITAB, as follows

MTB > CDF 0.72;
SUBC> GAMMA 2.5 0.2.
0.7200 0.7938

Similarly, MINITAB found that P[X < 1.0] = 0.9248. The value of P[X <
0.72] can be calculated by the SAS/STAT statement

P =PROBGAM(3.6,2.5);

yielding 0.7938140803. Similarly, SAS/STAT found that P{X < 1.0] =
0.924764754.* O

The gamma random variable is useful for approximating other positive
random variables. For example, it is easy to construct a gamma random
variable X with a given positive mean K > 0 and squared coefficient of
variation C? > 0. The following algorithm shows how.

Algorithm 3.2.1 (Algorithm G) Given C? > 0 and K > 0, this algo-
rithm will produce a gamma random variable X with squared coefficient of
variation C% = C? and mean E[X] = K.

Step 1 [Calculate the parameter 3] Set

1
b=

3The Student Edition of MINITAB does not support the GAMMA subcommand.
4The APL function GADIST and Mathematica provide the same values for P{X <
0.72] and P[X < 1.0} as SAS/STAT, of course.
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Step 2 [Calculate a] Set
1

*TEKxcCr

Step 3 [Produce F| The distribution function F with the density function
given by (3.81) with parameters calculated in Step 1 and Step 2, is the
distribution function of a gamma random variable having the required
properties.

Proof The proof follows immediately from the formulas

E[X]| = g,
and 1
=—. 0

3.2.6 Erlang-tk Random Variables

1st stage 2nd stage kth stage
_.{ l | ky kp ——- _@ —
Service Facility

Figure 3.2.4. Erlang’s model of his distribution.

The Danish mathematician A. K. Erlang used a special class of gamma
random variables, now often called Erlang-k random variables, in his study
of delays in telephone traffic. A random variable, T, is said to be an Erlang-
k random variable with parameter p or to have an Erlang distribution with
parameters k and p if T is a gamma random variable with the density
function f given by

k-1

pk(ukt _
f(t) = =€ Bkt fort >0 (3.95)
0 fort <0.

The physical model that Erlang had in mind was a service facility consisting
of k identical independent stages, each with an exponential distribution of
service time as shown in Figure 3.2.4. He wanted this special facility to
have the same average service time as a single facility whose service time
was exponential with parameter p. Thus, the service time, T, for the
facility with & stages could be written as the sum of k exponential random
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variables, each with parameter puk. Hence, by Theorem 3.2.6(d), T has a
gamma distribution with parameters k and pk. Thus,

2
E[T)= =, Var(r)=-L; = EIL
7 ku k

and

F(t>=P[Tst1=1—e"“[1+%+%+“'+%]’

where y = uk.
It can also be shown (see Exercise 39) that

k(k+1)---(k+n—1)

arl = G
= (1 " -]1;) (1 + %) (1 + ”T"l) BT, (3.96)
and thus
E[T? = (1+ %) (E[T])* and E[T%] = (1 + %) (1 + %) (E[T))3.

(3.97)
It should be noted that, for a fixed average value E[T], the variance of T
decreases as k increases and, in the limit, goes to 0. Thus, an Erlang-k
distribution can be used to approximate any nonnegative random variable
whose variance does not exceed the square of its mean. The random variable
T in Example 3.2.6 has an Erlang-5 distribution with parameter p = 1/5 =
0.2 (mean value 5).

Example 3.2.8 There are five independent stages in the repair of a cer-
tain piece of computer equipment. The repair time for each stage is ex-
ponentially distributed with an average value of 10 minutes. What is the
probability that a customer engineer can repair the equipment in an hour
or less? Not more than 90 minutes?

Solution The repair time, T, has an Erlang-5 distribution with aver-
age value 50 minutes (parameter u = 0.02) and a variance of E[T}|?/k =
2500/5 = 500 minutes2. (T has the same distribution as the random vari-
able T in Example 3.2.6, if the unit of time there is taken as seconds and
here as tens of minutes. The change of scale leads to the appearance of the
term & in (3.98).) Thus, the distribution function F is given by
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2 3 4
t 1(t 1/t 1 (¢
PR VICH PENELANNE I S NN S R L _
Fie)=1-e [1 10 2(10) 6(10) 24(10)]’(398)

where t is in minutes. Hence, the probability that the repair time will not
exceed 60 minutes is F(60) = 0.7149. (The details of this calculation are
shown in Example 3.2.6.) The probability that the repair time will not
exceed 90 minutes is
_ -9 9?2 9% 94]
F90)=1-¢ [l+9+ 5 +E+ﬁ] =0.945. O

Random variables which are useful in computer science can often be ap-
proximated by Erlang-k random variables, thereby simplifying calculations.
In addition, some useful mathematical models, particularly in queueing the-
ory, assume Erlang-k probability distributions. Thus, if an empirically de-
termined random variable can be approximated by an Erlang-k distributed
random variable, well-known mathematical models can be applied to make
useful predictions.

The usual procedure for selecting an Erlang-k random variable Y to
approximate a given random variable X is as follows:

(1) Let u = 1/E[X].

(2) Let k be the largest integer less than or equal to E[X)?/Var[X] (the
“foor” of this quantity). Then Y is the Erlang-k random variable
with parameters k£ and u.

Table 3.2.1. Message Length Distribution

Message length in characters: 25 50 70 100 140

Fraction with this length: 04 03 01 0.15 0.05

Example 3.2.9 Message lengths for the Euphoria State on-line system
have the distribution shown in Table 3.2.1. Approximate this message
length distribution by an Erlang-k random variable Y.

Solution Let X be the message length. Then

E[X] = 25x0.4+50x0.3+70x0.1+100x0.15
+140 x 0.05 = 54 characters,
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and

Var[X] = (25—54)% x 0.4 + (50 — 54)% x 0.3 + (70 — 54)% x 0.1
+(100 — 54)% x 0.15 + (140 — 54)2 x 0.05 = 1054.

Since E[X]?/Var[X] = 2.77, we let Y be the Erlang-2 random variable with
average value 54 (u = 1/54). Thus, Y has the same mean as X but its
variance is slightly different; it is 1458 rather than the correct 1054. O

The reader should verify that the gamma random variable, Y, with
B = 542/1024 and o = 54/1024 has exactly the same mean and variance
as the message length distribution of Example 3.2.9. This is the random
variable generated by Algorithm 3.2.1. The APL function GADIST can be
used to calculate values of the distribution function of Y. So can MINITAB,
SAS/STAT, Mathematica, and the HP-21S.

3.2.7 Chi-Square Random Variables

A random variable Y is said to have a chi-square distribution with n degrees
of freedom if it can be represented as

Y=X2+XZ2+ -+ X2, (3.99)

where X, Xs,..., X, are independent standard normal random variables.
Thus, it is evident that Y can assume only nonnegative values. To dis-
cuss the properties of a chi-square random variable, we need the following
theorem.

Theorem 3.2.7 Let X be a continuous random variable with densily func-
tion f and distribution function F. Then the density function g of the
random variable Y = X? is defined by

1
+ f (- , fo >0
o) = { 2y U (V) 1 (=vA)), for (3.100)
0 for y<0,
and the distribution function G is given by
[P -F(-F) for y>0
G(y) —{ 0 for y <0. (3.101)

Proof Since Y cannot assume negative values, G(y) = 0 for y £ 0. For
y>0,Y = X2 <y is equivalent to —/§ < X < /7. Hence,

G(y) = PY<y]l=Pl-/y<X <yl
= F(Jy)-F(-Vv).
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This proves (3.101). By differentiation we calculate

9(y) =G'(y) = f (F' (V§) + F' (V) f (f (Vo) + 7 (=V¥)),

which completes the proof. B

Suppose now that Y has a chi-square distribution with one degree of
freedom, that is, that Y = X? where X is a standard normal random
variable. Then, by Theorem 3.2.5, the density function g for Y is given by

1 e~¥/2  my/2 e—¥/2
9(y) = + =

i\ Ve T Var ) T Vavegu
(5)(w/2) /D emv/2
2 XD for y > 0, (3.102)

since I'(1/2) = /m. (For a proof that I'(1/2) = /=, see Exercise 50.) A
comparison of (3.102) with (3.81) shows that Y is a gamma random variable
with parameters 8 = 1/2 and o = 1/2. Hence, the moment generating
function of Y is given by

¥(0) = (1 —20)"1/2 (3.103)

If now Y is a chi-square random variable with n degrees of freedom,
we can apply Theorem 2.9.1(c) to conclude that the moment generating
function of Y is

$(6) = (1 —20)"/%)™ = (1 - 20)™"/. (3.104)

The moment generating function given by (3.104) is that of a gamma ran-
dom variable with parameters 8 = n/2 and o = 1/2. We summarize the
properties of chi-square random variables in the following theorem.

Theorem 3.2.8 (Properties of Chi-Square Random Variables) Let X be a
chi-square random variable with n degrees of freedom (and thus, a gamma
random variable with parameters 3 = n/2 and o = 1/2). Then the following
statements are true.

(a): ¥(8) = (1—26)""/2, E[X] = n, Var[X] = 2n and the density function
of X is given by

gD 1e~a/2 for >0
f(z) = 2"’I'(n/2) (3.105)
0 for z<0.
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(b): If Y is an independent chi-square random variable with m degrees of
freedom, then X+Y is a chi-square random variable with n+m degrees
of freedom (the chi-square distribution has the reproductive property).

(c): Asn increases, X approaches a normal distribution; that is, for large
n, X is approzimately N(n,2n).

Proof Item (a) follows immediately from the fact that X has a gamma
distribution with parameters 8 = n/2 and a = 1/2, as we showed above.
Now

Yx+y(6) = (1 - 20)"2(1 - 20)™/% = (1 - 20)"+™)/2

and therefore, (b) holds by the uniqueness of the moment generating func-
tion (Theorem 2.9.1); and (c) is a consequence of the central limit theorem,
which is discussed in Section 3.3. H

The chi-square distribution is best known for its use in “chi-square
tests,” which are used to test various statistical hypotheses about observed
random variables. Some of these tests are discussed in Chapter 8.

Table 4 of Appendix A gives critical values, x2, of the chi-square dis-
tributed random variable x2, defined by P[x*> > x2] = a. For exam-
ple, the table shows that, if X has a chi-square distribution with 25 de-
grees of freedom, then the probability that X assumes a value greater than
37.653 is 0.05. Critical values, xi, can also be calculated using MINITAB,
SAS/STAT, Mathematica, and the HP-21S. The same can be said for the
critical values, t,, and f,(n,m), to be discussed later in this chapter.

3.2.8 Student’s t Distribution

A continuous random variable X is said to have a Student’s t distribution
with n degrees of freedom if its density function is given by

1 T((n+1)/2) [, a2\ "2
falz) = T T(n/2) (1 + ;) for all real z. (3.106)

This distribution was discovered in 1908 by William S. Gosset, who used
the pen name “A. Student” [35]. (Gosset worked for the Guiness brewery
in Dublin, which at that time did not allow its employees to publish re-
search papers under their own names.) It is evident from (3.106) that f, is
symmetric about £ = 0, and it is easy to show that it assumes a maximum
value there (see Exercise 49).

Theorem 3.2.9 (Properties of a Student’s t Random Variable) Let X be
a Student’s t random variable with n degrees of freedom as defined above.
Then the following statements are true.



3.2. CONTINUOUS RANDOM VARIABLES 147

(a): Forn =1, X has no expected value; for n > 1, E[X] = 0.

(b): For n = 1,2, the second moment does not exist; forn > 2,
n
n—2

Var[X] =

(c): For large values of n, X can be approrimated by a standard normal
random variable, that is,

lim X =Y,

n—oc
where Y is N(0,1).
Proof The proof can be found in Stuart and Ord [34]. B

The Student’s ¢ distribution is used primarily in dealing with small
samples from a normal population. This is discussed in Chapters 7 and 8.

Table 5 of Appendix A gives critical values, t,, of a Student’s ¢ dis-
tributed random variable X, defined by P[X > {,] = a.

3.2.9 F-Distributed Random Variables

A continuous random variable X has an F distribution with (n, m) degrees
of freedom if it has the density function f,,, given by

(n/m)**T'((n + m)/2)z/D—!
fam(z) = { I'(n/2)L(m/2)(1 + (n/m)z)"+m)/2
0

for >0 (3.107)

for z<0.
Sometimes the F-distribution is called Snedecor-F.

Theorem 3.2.10 (Properties of the F Distribution) Suppose U has a chi-
square distribution with n degrees of freedom and V a chi-square distri-
bution with m degrees of freedom, with U and V independent. ThenY =
(U/n)/(V/m) has an F distribution with (n,m) degrees of freedom and thus
has the density (3.107). If we define fo(n,m) to be the unique number such
that P[Y > fo(n,m)] = a, then

1
fa(m,n)’
If m > 2, then E[Y] =m/(m — 2). If m > 4, then

fl—a(n, m) =

m?(2n 4 2m — 4)
n(m — 2)%(m —4)’

Var[Y] =

Proof The proof of this theorem can be found in Stuart and Ord [34]. @
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Selected values of f,(n,m) are given in Table 6 of Appendix A.
Service Facility

o S5

@

Figure 3.2.5. Hyperexponential model.

3.2.10 Hyperexponential Random Variables

If the service time of a queueing system has a large standard deviation rela-
tive to the mean value, it can often be approximated by a hyperexponential
distribution. Hyperexponential, in this case, means super ezponential. It
would seem entirely proper to call a distribution for which the standard
deviation is less than the mean hypoezponential Thus, the constant dis-
tribution is the most hypoexponential of all! A hyperexponential random
variable may, of course, represent many other interesting phenomena be-
sides the service time of a queueing system; however, this provides an intu-
itively appealing way of describing a hyperexponential distribution, so we
use it. The model representing the simplest hyperexponential distribution
is shown in Figure 3.2.5. This model has two parallel stages in the facility;
the top one providing exponential service with parameter y; and the bot-
tom stage providing exponential service with parameter ys. A customer
entering the service facility chooses the top stage with probability ¢; or the
bottom stage with probability g2, where g; +¢2 = 1. After receiving service
at the chosen stage, the service time being exponentially distributed with
average service rate y; (average service time 1/p;), the customer leaves the
service facility. A new customer is not allowed to enter the facility until the
original customer has completed service. Thus, the density function for the
service time is given by

fo(t) = quuie™ + qapae™*, ¢ 20. (3.108)
Therefore, by integration,

We=1 4,22 (3.109)
K M2
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B[t =24 + 22, (3.110)
1 K
and
Bl = 6L + 622, (3.111)
iy a2
Hence, we calculate
2 2 2
Var[s] = E[s%] — E[s]* = 121 + 122 - (2—1- + q_2> . (3.112)
1 Ha Hi H2

The distribution function of a two-stage hyperexponential service time can
be calculated by integrating (3.108), yielding

Ws[t] = 1 — gre "1t — gae™ 21, (3.113)
Similarly, the moment generating function of the service time, ¥g(-), is
bs(0) = BEL | BH2 - e gy and 0 < pa. (3.114)
pr—0  py—#6
Likewise, the Laplace-Stieltjes transform, W3[6], is
* Qi Qap2 .
= —"— + == |if d @ . A1
w6 N1+9+#2+9 if #<p; an < p2 (3.115)

The following algorithm creates an H; random variable X with a given
mean E[X] = 1/p and C% = C? > 1. 1t is said to have balanced means,

since
a_e

B p2
Algorithm 3.2.2 (Algorithm H ) Given C? > 1 and p > 0, this algorithm
will produce a two-stage hyperexponential random variable X with squared
coefficient of variation C% = C? and mean E[X] = %, such that

L _ % (3.116)
1 H2
The distribution function of X is given by
F(z) =1—qe”MT — ge™H2%, (3.117)
Step 1 [Calculate g, and gq] Set
1 (c? - 1)] d
=—-11-|—- 3.118
o 2( [(02+1) (G-119)

and
@2=1-q. (3.119)
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Step 2 [Calculate py and py] Set

P =2qp (3.120)

and
B2 = 2qap. (3.121)

Step 3 [Produce F] The distribution function F defined by (3.117), with
parameters calculated in Step 1 and Step 2, is the distribution function
of a two-stage hyperezponential random variable having the reguired
properties.

Proof The proof is a simpie exercise using (3.109) and (3.110) and some
algebra (See Exercise 56(a)). B

The APL function BH2 implements Algorithm H; that is, it produces
the parameters for an Hs distribution with balanced means. The APL
function H2ADIST is the distribution function for an H, random variable.

The following algorithm produces the Ha distribution with the gamma
normalization, since it produces an Hy random variable with a given mean

E[X)= % and squared coefficient of variation C% = C? that also has the
same third moment as the gamma distribution with this C% and E[X].
Algorithm 3.2.3 (Algorithm HG) Given C? > 1 and u > 0, this algorithm
will produce a two-stage hyperexponential random variable X with squared
coefficient of variation C% = C? and mean E[X] = 1. Purthermore, X
has the same third moment as the gamma random variable Y, such that

BlY]= -,

and C% = C?. The distribution function of X is given by
F(z) =1~ qe "% — goe™#27, (3.122)

Step 1 [Calculate p1, and p;) Set

1
_2 | —(Cz 3 (3.123)
= X + ) .
M= EX] (CT+1)
d
an 4

H2 = E_[f] - K. (3.124)
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Step 2 [Calculate q; and g} Set

_ ma(pe x E[X] 1)
H2 — Ui ’

0 (3.125)
and
@ =1—q. (3.126)

Step 3 [Produce F)] The distribution function F defined by (3.122), with
parameters calculated in Step 1 and Step 2, is the distribution function
of a two-stage hyperezponential random variable having the required
properties.

Proof We ask the reader to show that the above algorithm does what we
claim it does in Exercise 56(b). B

The APL function GH2 implements Algorithm HG; that is, it calculates
the parameters of an H; random variable with the gamma normalization.

You may be thinking, “The H; probability distribution has 3 indepen-
dent parameters (g; or g2, g1, and pg). Couldn’t we use the three param-
eters to construct an Hy distribution X such that E[X] = k1, E[X?] = k2,
and E[X3] = k3 for any three positive numbers k;, kz, k3?” A little
thought should convince you that some restrictions must apply, other than
that the numbers are positive. (After all, we must have C% > 1.) Whitt [38]
has worked out what the restrictions are and what the algorithm is to con-
struct the two-stage hyperexponential distribution.

Algorithm 3.2.4 (Algorithm HW, Whitt’s Algorithm) Given ki > 0,
k2 > 0, and k3 > 0, satisfying the conditions

Cc?= m-l21 (3.127)
1
and
ksky > 1.5k3, (3.128)

this algorithm will produce a two-stage hyperezponential random variable
X (an Hz random variable) with squared coefficient of variation C% = C?
and the following moments:

E[X] = ki, (3.129)
E[X?) = ko, (3.130)
E[X®) = k3. (3.131)

The distribution function of X is given by
F(z) =1— qe "% — gpe™#2%, (3.132)
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Step 1 [Calculate py and ps) Calculate

T = k1k3 — 1.5k2, (3.133)
y = ky — 2k3 (3.134)
and )
v=(z+15y% — 3k3y)” + 18k3y°. (3.135)
Then set . 2 | 352
1.5
1 _z+15° +3ky+vy (3.136)
M1 6k1y
and 1.5y% + 3k?
1 . -
1 _sHLlSy+3ky - vy (3.137)
B2 6k1y
Step 2 [Calculate ¢, and g] Set
oL
o=t (3.138)
Hr M2
and
g2 = 1- q. (3139)

Step 3 [Produce F) The distribution function F defined by (3.132), with
parameters calculated in Step 1 and Step 2, is the distribution function
of a two-stage hyperezponential random variable having the required
properties.

Proof We ask the reader to show that the above algorithm does what we
claim it does in Exercise 56(c). B

The APL function WH can be used to make the calculations of this
algorithm. The APL function MOMENTS can be used to check the an-
swer. That is, MOMENTS will calculate the first three moments of an Hs
distribution.

Example 3.2.10 Helga Tooterfluz, the lead computer performance ana-
lyst at Sanitary Sewer Sweepers, decides to do the following:

(a) Construct a gamma distributed random variable X with E[X] = 5
and 0,2( = 2. She also wants to calculate

PIX<7.
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(b) Construct a two-stage hyperexponential random variable Y with bal-
anced means, which has the same mean and squared coefficient of
variation as X of part (a). Helga also wants to calculate

PlY <7

(¢) Construct a two-stage hyperexponential random variable U with the
gamma, normalization that has the same mean and squared coefficient
of variation as X of part (a). Ms. Tooterfluz also wants to calculate

PIU < 7).

(d) Compute E[X3], E[Y3],’and E[U3].
Solution

(a) Helga applied the formulas of Algorithm G (Algorithm 3.2.1) to com-
pute the parameters of the gamma random variable X, obtaining

1
= — = 0.5,
B cZ
and 3
a = m =0.1.
Then, using MINITAB, SAS/STAT, Mathematica, or GADIST, she
computes

P[X < 7) = 0.7632764294.

(b) Using Algorithm H, Ms. Tooterfluz calculates ¢; = 0.2113248654, ¢; =
0.7886751346, u; = 0.08452994616, and pu, = 0.3154700538. Then
she uses (3.117)% to calculate

PlY <7] =0.796390747.

(c) Helga uses the formulas of Algorithm HG to calculate u; = 0.6828427125,
w2 = 0.1171572875, ¢; = 0.5, and g2 = 0.5. Formula (3.122) then
yields

P[U < 7] = 0.7756079927.

5 Actually, she uses the APL function BH2 to calculate the parameters and the APL
function H2ADIST to calculate the probability P[Y < 7]. For (c), she used GH2 and
H2ADIST.
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(d) Since X has a gamma distribution,

EX3 = ﬂ(ﬂ_+i)3(g_+_2) = 1, 875.

By (3.111),

E[Y¥ =6 [q—; + q—i] = 2,250.
B H2

Again, by (3.111),

E[U% =6 [q—; + q—z] =1,875. O
1 H2

Note that
E[X3] = E[U3].

3.2.11 Coxian Random Variables

ao ay az as Qk—1

75 H2 b3 M
\. bo b, b2 bs \. br-—1 by =1

Figure 3.2.6. Cox's method of stages for a service facility.

The Coxian distribution is a generalization of both the Erlang-k and the
hyperexponential distributions. Cox [8] proposed that a service center be
represented as a network of stages or nodes, as shown in Figure 3.2.6.

Only one customer at a time is allowed in the facility. A customer
initially entering the service facility will receive service at stage 1 with
probability ap or leave the facility without service with probability by =
1 — ag. (For modeling queueing theory service centers, we are interested
only in cases where ap = 1 and by = 0.) After receiving service at stage i
(distributed exponentially with mean 1/4;), a customer leaves the facility
with probability b; or proceeds to stage ¢ + 1 with probability a;, ¢ =
1,2,---,k — 1. Naturally, a; + b; = 1 for all .. A customer completing
service at stage k leaves the service facility. The probability that a customer
reaches stage i is A; = apa; ...a;—1 (1 = 1,2,---, k) and the probability that
a customer visits stages 1,2, ..., and leaves the facility is A4;b;. Hence, the
time s a customer spends in the service facility is, with probability A;b;, the
sum of 7 independent, exponentially distributed random variables. Hence,
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by Theorem 2.8.1 and Example 2.9.1, the expected value of s is given by

k t k i
1
E[s) =Y AbE X;|= Ab Y o (3.140)
i=1 i=1 i=1 j=1

Similarly, E[s?] is given by

k
> AbE[Y]], (3.141)
i=1
where
Y,=X:+ X+ -+ X,. (3.142)
But
ElY?] = EXI+X3+---+X7+2) XiXp]
I#m
T pa
2
+ + oo —
iz B3 Hipq
2 2
+ +-o 4 . (3.143)
U243 Hi—1H44

It is not difficult to show that the Laplace-Stieltjes transform of a Coxian
distribution is given by

k i

o] — b Laf'

X*[6) —bo+Zao...a,_1b,l:I T (3.144)
i=1 7j=1

Cox [8] shows that his method of stages representation is the most gen-
eral way of constructing a random variable from independent exponential
stages. Thus, an Erlang-k, a hyperexponential, or any nonnegative random
variable having a rational Laplace-Stieltjes transform is a Coxian distribu-
tion. The latter claim is proven in his paper. The method of stages repre-
sentation of a service facility makes it easy to handle, mathematically, in a
queueing network model. Thus, it is the method used by Baskett, Chandy,
Muntz, and Palacios [4] in their classic paper. Likewise, Khomonenko and
Bubnov [15] were able to use Cox’s distribution to solve a queueing theory
model. Sometimes it is somewhat difficult to get a given probability distri-
bution into the Cox method of stages format, that is, to match the given
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distribution by a Coxian distribution. It is not difficult for the Erlang-£ dis-
tribution. For this distribution bg =0,a9 =a; =---ax_1 =1, b, =1, and
pi = kp for i = 1,2,--- k. The Erlang-k distribution is a special case of
the Coxian distribution. The two-stage hyperexponential is not a two-stage
Coxian distribution® but can be represented by one. We will demonstrate
one way to do this in the following example. It is not a trivial exercise.

Example 3.2.11 Consider the H, distribution Y generated by Algorithm
3.2.2 with CZ = 5 and E[Y] = 1. Using the APL function BH2, we obtain
g1 = 0.09175170954, g2 = 0.9082482905, u; = 0.1835034191, and pp =
1.816496581. Using the APL function MOMENTS, we calculate E[Y?] = 6
and E[Y3] = 90. Let us approximate Y with a Coxian distribution with
two stages. Let us choose the Coxian distribution X with the same first
three moments as Y. We will let ap = 1 and b = 1. By the use of (3.123),
Theorem 2.9.3, and some tedious algebra, we obtained the following set of
equations:

a1 +b=1.
1
ElX]=—+2=1
Hr k2
2 2a 2
ExY)=5+—+5L =
By Hp2 K2
6 6 6
Bl = 5+ ooy Su Sa g,
HY  HBik2 HaM5 %3

The solution to this set of equations is :
a; = 0.0824829046378,

1 = 1.81649658092,

and
p2 = 0.183503419072.

The Coxian distribution uses the same two exponential distributions as
were used by the H; distribution! However, for the Coxian distribution,
the customer always receives service from the faster server followed, occa-
sionally, (with probability 0.0824829) by service from the slower server. By

6 All textbooks, including this one, say that the hyperexponential is Coxian but this
should not be interpreted in the literal sense. A Coxian distribution can represent a
hyperexponential distribution but the flow of customers through such a service facility is
not exactly as it would be for a hyperexponential facility. However, the Laplace—Stieltjes
transforms, and therefore the probability distributions, are identical.
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(3.124), the Coxian distribution has the Laplace-Stieltjes transform

. .0274
X*[60) = 1.66666667 0.0274943

~ 0 +1.816496581 t (6 + 1.816496581)(8 + 0.183503419072)’
(3.145)
while the Laplace-Stieltjes Transform of the original H; distribution is

1.6498299 0.0168367524
6 + 1.816496581 (6 + 0.183503419072)’

Y*[6) =

(3.146)

by (8.115). The two distributions certainly look different! However, if they
are both rearranged into the rational format, we find that:

1.6666676 + 0.33333333
8 + 1.816496581)(6 + 0.183503419072) "

Y*[6] = X*[8] = ( (3.147)

The probability distributions are the same, although the two method of
stages models that produced them are different! O

Marie [19] provides an easier way to construct a two stage Coxian dis-
tribution with a given mean 1/u and squared coefficient of variation C2.
Of course, it will not have the same third moment as the random variable
we constructed in the above example.

Algorithm 3.2.5 (Algorithm M, Marie’s Algorithm) Given u > 0 and
C? > 0.5, this algorithm will generate the parameters a,, p1, and py for a
two-stage Cozian random variable X, such that E[X] = 1/u and C% = C2.

Step 1 Let u; = 2u.

Step 2 Let puy = pu/C?.

Step 3 Let a; = 1/(2C?).

Proof See Marie [19]. B

Example 3.2.12 Consider Example 3.2.11. Let us use Marie’s algorithm
to construct a two-stage Coxian random variable X with E[X] = 1 and

C% = 5. We choose u; = 2, gz = 0.2, and a; = 0.1. Then, by the
equations we developed in the above example,

E[X] = 05+05=1,
E[X?* = 05+05+5=8,

so that
Var[X] = E[X?| - E[X]?=6-1=5,
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and
c2 = Var[X]
X7 E[X2
We also have
6 0.6 0.6 0.6
31=_2 —_— — —
EX=5+08 T 2007 "o =

The random variable is not very different from the one we constructed in
Example 3.2.11. O

The two-stage hyperexponential distribution can be generalized to &
stages for any positive integer > 2. The extension to k stages is straight-
forward but rarely of practical importance, so we will not discuss it here.

When you can measure what you are speaking about and express it in
numbers you know something about it; but when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind.

Lord Kelvin

3.3 Central Limit Theorem

In Chapter 2 we discussed the weak law of large numbers, which indicates,
roughly speaking, that the probability P[A] of an event A can be estimated
by Sp/n, where S, is the number of times the event A occurs in n in-
dependent trials of the basic experiment. Unfortunately, the law of large
numbers does not provide a method for estimating how close we are to the
true probability, although we saw in Section 2.10 that by using Chebyshev’s
inequality, we could make a crude estimate of how large n need be so that

—n—P‘Zé] Sfa

P [ S
n
for given positive 6 and e.
The central limit theorem allows us to improve this estimate. It also
allows us to make probability judgments about other types of estimates.
This theorem is one of the most important in applied probability theory.

Theorem 3.3.1 (Central Limit Theorem) Let X1, X3,... be independent,
identically distributed random variables, each having mean p and standard
deviation 0 > 0. Let S, = X1+ -+ X,,. Then for each z < y,

lim P [x < S’;—_\/gﬁ <yl =d@y) - &), (3.148)

n—oo -

where ® is the standard normal distribution function.
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Proof The proof of this theorem may be found in Parzen [22]. B

This theorem is truly remarkable in that no special assumptions need be
made about the character of X;. It can be discrete, continuous, or of mixed
type. No matter what the form of X;, the sum S, approaches a normal
distribution with mean no? (S, is approximately N(nu,no?)). Of course,
the rate of convergence of X,, to a normal distribution depends on X;. For
example, if X is normally distributed, then by Theorem 3.2.3, S,, is nor-
mally distributed for all n—no approximation is involved. However, if X,
is a discrete uniform distribution, then n must be somewhat large before S,
can be reasonably approximated by a normal random variable. The result
of the central limit theorem is true, under rather general conditions, even if
each X has a different distribution with mean p; and standard deviation
Ok, if Ypq ik is substituted for ny and (3, 02)/? is substituted for
o+/n in (3.149); that is, (3.149) becomes

lim P [z < Sn = ElS] = d(y) - ®(z). (3.149)

nmoot |07 (Var[Sa) /2 =Y

This version of the central limit theorem is the basis for an explanation of
the observed fact that many random variables such as the height and weight
of humans, the yields of crops, the temperature at a certain geographical
location for a given day of the year, etc., tend to be normally distributed.
Each of these random variables can be represented as the sum of a large
number of independent random variables.

The central limit theorem has a special case now called the DeMoivre-
Laplace limit theorem. It was originally proved by Abraham DeMoivre
(1667-1754) in his Doctrine of Chances, which was published in 1714. Pierre
Simon Laplace (1749-1827) extended DeMoivre’s result in his famous trea-
tise Théorie Analytique des Probabilités, published in 1812.

Let X;,Xs,...,X, be independent Bernoulli random variables, each
with probability p of success. Then S, = X;,X,,...,X, is a binomial
random variable and the following theorem follows from Theorem 3.3.1.

Theorem 3.3.2 (DeMoivre-Laplace Limit Theorem) Let S, be a binomial
random variable with parameters n and p. Then for any nonnegative inte-
gers a and b, with a < b, as n — oo,

Pla< S, <b]— & (b—\/_—%’) - (%) . (3.150)



160 CHAPTER 3. PROBABILITY DISTRIBUTIONS
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Figure 3.3.1. Normal approximation of binomial.

The following corollary tells us how to approximate the binomial distri-
bution with the normal distribution.

Corollary (The normal approximation of the binomial distribution) Sup-
pose a and b are nonnegative integers with a < b. Then it is approximately
true that

b b—np+ - a—np— -
n\ &k n—k _ 2 | _ 2| m
> <k>p q ® — ® T |- (3.151)

k=a

Note that the right hand sides of (3.151) and (3.152) differ by the 1
terms, which are called the continuity corrections. The reason for the con-
tinuity corrections is that, if we use the normal distribution to approximate
the discrete binomial distribution, we are, in effect, fitting a continuous
distribution to a discrete distribution, as suggested by Figure 3.3.1. In
this figure, the step function gives the probabilities of k successes in eight
Bernoulli trials with p = 0.25. That is, for each k, the area under the bino-
mial graph between k — 3 and k + 3 is the probability of k successes. The
density function for the approximating normal random variable has mean
np = 2 and standard deviation \/npg = V1.5 = 1.225. The true probability
that Sy, is between 1 and 3 inclusive is 3, (3)(0.25)%(0.75)% % = 0.7861.
If we use (3.152) with the continuity correction, we approximate this prob-
ability by the area under the normal density curve from 0.5 to 3.5, which
is

3.5~ 2 0.5 -2
- = e - &(-1. = 29(1.224) —
‘1’( T35 ) <I>( % ) $(1.224) — ®(~1.224) = 29(1.224) — 1
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=2 x 0.88952 — 1 = 0.77904.

This is a fairly good approximation because, as Figure 3.3.1 shows, this
binomial distribution is not very symmetrical. For example,

P[X =1] = 0.2671 # 0.2076 = P[X = 3].

The accuracy of the approximation formula (3.152) improves with the size
of n, and in the limit the error goes to zero. The accuracy also improves
with the degree of symmetry of S,. A number of rules have been devised to
ensure that the approximation is reasonably good. Freund and Walpole [12]
require both np and ng to exceed 5. Lippman [18] asks that npg > 10.
Hoel [14] says the normal approximation is fairly good as long as np > 5
when p < 1 and ng > 5 when p > 1. Stuart and Ord [34] claim that if
np3/2 > 1.07, then the error in the normal approximation for any b(k;n,p)
is less than 0.05. Ostle and Mensing [21] assert that, if npg > 25, the
error in the normal approximation is less than 0.15/,/npg. They point out,
however, that for values of p very close to 0 or 1, the approximation will
be less reliable in the tail than the center of the distribution, and in these
cases one should either use the Poisson approximation or calculate exact
probabilities.

Feller [10, chapter VII] has some excellent examples of the use of the
normal approximation. In Table 2 he compares some exact probabilities
together with the normal approximations for the binomial distribution with
parameters n = 100 and p = 0.3 (and thus with mean 30 and variance
21). This distribution satisfies the rules of thumb of Freund and Walpole,
Lippman, and Hoel. However, although the approximation error is zero
for P[21 < S, < 21] = P[32 < S, < 39), there is a 400 percent error
in the approximation for P[9 < S, < 11] and a 100 percent error in the
approximation for P[12 < S, < 14]. Ostle and Mensing’s warning about
the tails is certainly correct! It should be pointed out that the Poisson
approximation is not so good for P[9 < S, < 11], either. It yields a value
of 0.000061831 versus the correct value of 0.000005575 for a relative error
of 1,009 percent. The calculation of P[9 < S, < 11] is not as formidable as
it may first seem. P[9 < S, < 11] = P[S, = 9] + P[S, = 10] + P[S, = 11],
where, for example, we can calculate

100

H&=%=(9

) x 0.3% x 0.7, (3.152)

where (*3°) can be calculated by the expression

100 99 98 97 96 95 94 93 92
9X‘§“X7X—6—X?XIX?X?X—1—. (3.153)
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The calculation of (3.154) is routine on most pocket calculators (especially
those with RPN logic) and most calculators have a y* key, that enables one
to calculate the last two factors of (3.153) with ease. In fact, some pocket
calculators, such as the Hewlett-Packard HP-32S, allow one to calculate

(') directly.

Example 3.3.1 In Example 3.1.2, we considered a binomial random vari-
able with parameters 20 and 0.6, that described the number of communi-
cation lines in use. The probability that 10 or more lines are in operation
was found to be 0.872479. The normal approximation for this probability
is

20 — 12+ 0.5 10— 12 — .05
? ( 2.19 ) - ® (T) = §(3.881) + &(1.142) — 1

= 0.99995 + 0.87327 — 1 = 0.87322,

a fairly good approximation. This random variable satisfies most of the
rules of thumb we gave above. Of the ones involving np, ng, or npg, it fails
only Lippman’s requirement and that of Ostle and Mensing. However, the
error is only -0.00074, which in absolute value is less than the Ostle and
Mensing error bound of 0.15/,/npg = 0.0685. O

The normal distribution can also be used to approximate a Poisson
distribution. This follows from the fact that both the Poisson and normal
distributions may be used to approximate the binomial distribution.

Example 3.3.2 In Example 3.1.5, X is a Poisson random variable with
a = 10. We calculated P[X < 15] to be 0.95126 by using the APL function
POISSONADIST. Approximate the answer using the normal distribution.

Solution We use the normal distribution with ¢ = 10 and ¢ = +/10. Then

15.5 - 10

V10

Suppose we want to estimate p = P[A] for some event A, where we
know that 0 < P[A] < 1. We can let X be the Bernoulli random variable,
that is 1 when the event A occurs on a particular trial of the experiment
and 0 otherwise. Successive independent trials of the experiment yield
the sequence of independent Bernoulli random variables X;, X2, X3,....
If welet S, = X1 + X2+ ---X, , then S, counts the number of times
that the event A occurred in n trials of the experiment. The weak law of
large numbers, Theorem 2.10.4, indicated that the ratio S, /n converges to

P[X <15|= P [z < ] = P[z < 1.739] = 0.95898. O
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p = P[A]. In Example 2.10.6 we saw that Chebyshev’s inequality enabled
us to make a crude estimate of the required value of n, such that

P [ S

n
where § and ¢ are given positive numbers. We will now show how the
central limit theorem allows us to improve that estimate. Let p = P[A]

and ¢ =1 —p. S, is a binomial random variable with parameters n and p,
so E[S,] = npq. Suppose § and e are given positive numbers. Then

= p‘ > 5] <e (3.154)

P [ 5n
n
Some algebraic manipulation of (3.156) yields

P[ﬁ_p‘zé]=P[Sn—nps_6\/ﬁ]+P[ >__~C]

n Vnpq VPq Vnp vPg
(3.156)

The right side of (3.157) is now in a form for which we can apply the

central limit theorem (the mean of X, is p and the standard deviation is

v/Pq). Hence, we conclude that

Ao o () -0 (CB) (- ().

To find n such that (3.155) is valid, we set the right side of (3.158) to € and
T = 8y/n/\/pq to arrive at the equation

-p 26]=P[%—p5—6]+P[%—p25]. (3.155)

2(1 - ®(r)) =¢, (3.158)
or
o(r) = (2 -¢€)/2. (3.159)
The value of r that makes (3.160) true can be found from Table 3 of Ap-
pendix A. The definition of r then yields the following estimate for n:
n = r’pg/6% < r?/462, (3.160)

since pg = p(1 —p) has a maximum value of 1/4, achieved whenp = ¢ = 1/2
(see Exercise 2 of Chapter 2).

Example 3.3.3 In Example 2.10.8 we wanted to estimate the probability,
p, that a randomly selected terminal chosen during the peak period was
busy. The estimation method was to choose a terminal randomly n times
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during this period, count the number of times S,, that a selected terminal
was in use, and use the ratio S,/n as the estimate of p. Chebyshev’s
inequality was used to find the smallest n such that (3.155) would be true
with 6 = 0.1 and ¢ = 0.05. The value of n was 500 if no knowledge of p
was assumed, and 320 if it were known that p was approximately 0.2. If we
apply (3.160) and (3.161) for the first case, we get » = 1.96 and n = 96. If
we assumed that p was about 0.2, then (3.161) yields n = 62. Thus, for the
given requirements, 100 samples should suffice. However, an error of 0.1
in a quantity with a magnitude of only 0.2 is a large relative error! Let us
turn the question about and ask, “If we make 500 observations to estimate
p and let € = 0.05 in (3.155), what is the value of §7 That is, what is the
maximum error in the estimate at the 5 percent level of uncertainty?” As
before, (3.160) yields r = 1.96 and

r/Dq 1.96
5 = —— = —— ,
vn \/500‘/1’—‘1

which has the value 0.0438 or 0.0351, depending on our assumption about
the value of p. For 100 observations, these values of § are 0.098 and 0.0784,
respectively. O

Nothing so needs reforming as other people’s habits.
Mark Twain

3.4 Applied Transforms

In Section 2.9 we defined some useful transforms, including the moment
generating function, the generating function (ztransform), the Laplace—
Stieltjes transform, and the Laplace transform. We also explained the pri-
mary properties of these transforms and demonstrated their usefulness. In
this section we will show further applications of transform methods in ap-
plied probability.
For any nonnegative random variable, X, we defined the Laplace-Stieltjes

transform of X, X*, by

(3.161)

xrig = { Jo e f@ds it X is continuous
2 e—Bzgp(xi) if X is discrete,

sometimes written in the more symbolic form

X*[6) = /0 > e 9% dF (z). (3.162)
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In doing so we transformed the random variable X into the real (or
complex) variable X*. The reason for doing this is that operations on the
variable X* that correspond to operations on X are often much simpler
to perform. For example, we saw in Theorem 2.9.3 that we can caiculate
moments of X by the formula

" X*[6]

E[Xn] = (_l)n dom 0_01

n=12-.-. (3.163)
This is usually much easier than it is to calculate E[X™] directly from the
definition. Theorem 2.7.5 showed that to get the probability mass function
or the density function of the sum of the two independent random variables
X and Y, we calculate the convolution of X and Y. Convolution is a rather

difficult operation to perform. However, the Laplace—Stieltjes transform of
the sum is merely the product of the transforms. That is,

(X +Y)*[6] = X*[0]Y *[4], (3.164)

if X and Y are independent, by Theorem 2.9.3(d). We can now get the
density function (or the probability mass function) of X + Y by inverting
the transform X*{9]Y*[4].

If f is any real-valued function, the Laplace transform of fis defined by
oo
£416) = / =% f(z) da, (3.165)
0

provided the integral in (3.166) exists. Thus, if f(z) = dF £-(z) is the density
function of a continuous random variable X, then the Laplace—Stieltjes
transform of X is the Laplace transform of f; that is,

X*[6] = /0 we—“ dF(z) = /0 ” e f(x)dx = f*[0). (3.166)

The Laplace transform of the density function, f, of a nonnegative random
variable, X, always exists for any 8 > 0 because

17£0)] < /0 Tl ) dt < / T fyde=1.

Since f* exists, by (3.167), the Laplace—Stieltjes transform of X must exist,
also. We use the convention that the lower limit of each of the integrals
in (3.167) is to be evaluated so as to include the jump at the origin if
F(0) > 0; that is, we define f(;’o e %% dF(z) to mean f;f e %2 dF(z) and
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15 e f(z) dz to mean [;° % f(z)dz, where by convention for any in-
tegral,
b b
/ = lim for values of € > 0.
€

- e—0 f_

X*[0] is also defined for complex § when the real part of 6 is positive.
(Recall that any complex number z can be written as 2 = a + bi, where
i = v/—1; a is a real number called the real part of z, and b is a real number
called the imaginary part of z.)

In Table 10 of Appendix A, we have indicated some useful properties and
identities for the Laplace transform. The proofs can be found in Giffin [13].
Table 11 of Appendix A gives some transform pairs.

It is often useful to invert Laplace-Stieltjes transforms, that is, to find
the probability distribution that has a given transform. From a table of
probability distributions and their transforms, we can often find the in-
verse transformation by inspection since, by Theorem 2.9.3(a), a proba-
bility distribution is determined by its Laplace-Stieltjes transform. The
Laplace-Stieltjes transforms for most of the continuous random variables
of interest in this book are shown in Table 2 of Appendix A. It is impor-
tant to note, that, by (3.167), inverting the Laplace—Stieltjes transform of
a continuous random variable X means inverting the Laplace transform of
its density function, and thus yields the density function.

One of the most useful properties of the mapping f — f*, which carries
a real-valued function into its Laplace transform is linearity; that is, if a
and b are constants and f and g are real-valued functions having Laplace
transforms, then af + bg — af* + bg*. This property makes it much easier
to find the inverse of a transform, as the following example shows.

Example 3.4.1 Suppose X and Y are independent, exponential random
variables with parameters a and 3, respectively, where oo # 3. Then, by
Theorem 2.9.3(d) and Example 2.9.6, we can write

* * * a B
_ Y . 3.167
vt =xtorin = (72) (755) (3.167)
It is not clear from (3.168) what the inverse transform is. We can write
(3.168) in a simpler form by the use of partial fractions, which will make
the inverse transform clear. We can write

o) (o)
8+ a 6+8) 6+a 6+p
(Cl+02)9+61ﬂ+62a

= TR (3.168)

(X +Y)*(0]
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This yields the equations
cp+c2=0,

and
188 + e = af.

The solution of these equations is

ci =

Cy = (1.

In Table 2 of Appendix A, we see that the Laplace-Stieltjes transform of the
exponential random variable with parameter a is o/(# + ). This means
that the inverse transform of a/(f + a) is ae~**. We conclude that the
inverse transform of (X + Y)* is the density function fx+y given by

fxav(t) = aa_ﬂﬂ(e_m —e*). 0

Another useful property of the Laplace transform is the formula for the
transform of the derivative given by

I 01 = 017101 - 500). (3.169)

(See Kleinrock [16] or Giffin [13] for a proof of (3.170).) We will illustrate
how (3.170) can be used in the following example.

Example 3.4.2 Consider Example 4.3.3 where we have the following set
of differential equations:

4Py

7 (t) = =2APy(t) + uPy(t),

dP;

= () = 23Py(t) = (A + ) Pa(), (3.170)

dP,

5 t) = AP(t).

The initial conditions are

P2(O) - 17
P(0) = 0 (3.171)
Py(0) 0.
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If we take the Laplace transform of each of the differential equations of
(3.171), applying (3.170) to each left side, we obtain

oP;[6) -1 = —2AP;[0] + pPr[d),
OPI[0] = 2XP;[6] - (A + p)Pr[6],
oP:[6] = API[O). (3.172)

Solving (3.173) for Py [6], we obtain

222
0162 + (3A + )0 + 2X2]

Py[6] = (3.173)

Let Y be the random variable that gives the time of failure of the system.
Clearly, the density function of Y, fy, is given by

fr() = 2200,

so that by (3.170),

222
6% + (3X + p)f + 222"

fy(6] = 0P5 (8] — Po(0) = (3.174)

We can factor the denominator of (3.175) so that it can be written as

wg _ 2A? 11
frlbl= i ra; 73al) (3.175)

a1 — 2
where
3
o - Rfites
A+ pu—-a;
a = -

az = A2+ 6Ap+ pt

Table 11 of Appendix A shows that the inverse transform of 1/(6 — a) is
e®. Using this fact and the linearity of the transform, we conclude that

222
o] — g

fr(t) =

(e7t —e™ ™). O (3.176)

There is a special function called the Dirac delta function or the unit
impulse function, which is of great utility in working with Laplace—Stieltjes
or Laplace transforms. This function is not a function in the usual sense,
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because it has “magical properties” not possessed by any ordinary func-
tion. It has been made mathematically legitimate by Schwartz’s theory of
distributions (Schwartz [30]) and can be thought ‘of as being defined by the
properties

6(t) =0 fort#0, (3.177)
and

ate
/ 8(t —a)f(t)dt = f(a), (3.178)
a—¢€

for any constant a, any function f continuous at a, and any € > 0.

What makes the Dirac delta function especially useful is that its Laplace
transform is the constant 1. Because of this, the inverse Laplace transform
of any constant c is cé(t). Similarly, the inverse Laplace transform of e~%¢
is 6(t — a).

We will illustrate the use of the Dirac delta function in the following
example from Chapter 5.

Example 3.4.3 In Section 5.3 we show that the Laplace-Stieltjes trans-
form of the queueing time (time spent waiting for service to begin) for the
M/G/1 queueing system is given by

(1-p)8

Wil =57 AWEO - 1)

(3.179)

where p is the server utilization (fraction of time the server is busy), A is the
average arrival rate of customers to the system, and W,*[6] is the Laplace—
Stieltjes transform of the service time. If the service time is exponential (so
that M/G/1 becomes M/M/1), then

wile) = 57— i " (3.180)
and by (3.180),
* (1-p)8
W,0l =
e’ 6+ A (9-_1:7 ~1)
_ (=p)8+p)
= SR (3.181)

This expression for W;‘ [4] is not in the proper form for using Table 11 of
Appendix A, since the numerator and denominator are of the same degree.
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We perform division to obtain

_ Al —-»p)
Wq*[ﬁ] = (1 p)+0+ﬂ_)\
Al -p)
= (1-p)+ ————. 3.182
We have used the formula \
p=—
7

in simplifying (3.183). We can now invert (3.183) by inverting the two
terms individually and adding the results together, by the linearity of the
Laplace transform. The constant term, (1 — p), has the inverse transform
(1 — p)8(¢) by the above discussion of the Dirac delta function (see, also,
Entry 8 in Table 11 of Appendix A). The second term in (3.183) has the
inverse transform

AL = p)e (=P,

by Entry 5 of Table 11 (remember that cf — cf*). The inverse transform
can also be obtained for the second term in (3.183) by the Mathematica
function InverseLaplace in the package Calculus/InverseL.m as follows

In[3]:= lambda (1-rho)/(theta + mu (1 - rho))
lambda (1 - rho)
Out[3)= -------emmeemmeoeoee
mu (1 - rho) + theta
In[4) := Inverselaplace[, theta, t]
lambda (i1 - rho)
Out[4]= ----------c-m-
mu (1 - rho) t
E

Hence, the density function of g, fq(t), is given by
fa(t) = (1= p)8(t) + A1 — p)e™#1=P)t ¢ > 0. (3.183)

We integrate (3.184) to obtain

Wqlt] = Plg<i]
= j fq(z)dz
0
—e-n(-p)a 1t
= (1=p)+A1-p) [—;-(-1"7:)—] . (3.184)
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(1—p) + p(1 — #0709
= 1-per1-0t  ¢>0.

This agrees with the result obtained by other means in Section 5.2.1. O

We have considered sums of random variables where the number of
variables in the sum is fixed. There are cases in which it is advantageous
to consider random sums in which the number of random variables in the
sum is itself random. That is, suppose we have a sequence X;i, Xa,...
of independent and identically distributed random variables. Let N be a
discrete random variable, independent of X7, X5, ... having the probability
mass function py(n) = P[N =n] for n = 0,1,.... We define the random
sum Sy by

Sn=X;i+ X2+ +Xn, (3.185)

where Sy is assumed to be zero when N = 0. Some examples of the use of
(3.186) follow.

Examples of Random Sums
Queueing Theory

Suppose N is the number of customers arriving at a service facility in some
specified period of time, and X; is the service time required by the sth
customer. Then Sy = X; + Xa+-- -+ X is the total service time demand,
often called wirtual service.

Accidents

Suppose X; denotes the number of persons injured in the ith traffic accident
on a day in Los Angeles and N is the random variable describing the number
of accidents per day. Then Sy = X; + X3 + -+ + Xn is the total number
of persons injured in traffic accidents on a day in Los Angeles.

Insurance Risk

Let N be the number of claims that arrive at an insurance company per
working day. Suppose X; is the amount of the ith claim. Then Sy =
X3+ X9 +---+ X is the total liability of the insurance company.

Banking

Let N be the number of requests for cash made at the ATMs of a certain
bank for the city of San Francisco in a day. Let X; be the amount of cash
requested by the ith customer. Then Sy = X); + X3+« -+ X is the total
amount of cash requested.

In the next theorem we will look at the case of a random sum in which
the random variables in the sum are discrete.
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Theorem 3.4.1 If X1, X,,... is a sequence of independent identically dis-
tributed discrete random variables with common generating function gx,
and N is a discrete random variable with generating function gy, then

SNn=X1+ X2+ -+ Xpn

has a generating function given by

955 (2) = gn{gx(2)). (3.186)
Furthermore,
E[SN] = E[X)E[N), (3.187)
and
Var[Sn] = E[N|Var[X] + E[X]*Var[N]. (3.188)

Proof We use conditional expectation and the law of total expectation
(see Theorem 2.8.1) to obtain

g5y(@) = Elz5¥] = E[E[S*|N]
= ZE[ZSNlN = n] P[N = n]

EE [ZX1+X2+~-+X,.] P[N = n]

n
E E[z*1]...E[z*"] PI[N =n] by independence
n

> (9x(2))* PIN = n]

n

gn(9x(2)).

This proves (3.187). The proof of (3.188) and (3.189) is given by Taylor
and Karlin [36]. B

Example 3.4.4 Suppose Y has a binomial distribution with parameters p
and N, where N has a binomial distribution with parameters ¢ = 1 —p and
M. What is the marginal distribution of Y'?

Solution Y can be written as the random sum
Y=X1+X2+- -+ Xn,

where the X; are independent Bernoulli random variables, each with pa-
rameter p. We can write N as the (nonrandom) sum

N=2Z1+Zy+ -+ Zy,
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of identical independent Bernoulli random variables, each with parameter
g =1 — p. Hence, by Table 2 of Appendix A, we can write the generating
functions

9x(2) = g + pz, (3.189)
and
gn(2) = (p+q2)™. (3.190)
Therefore, by Theorem 3.4.1,

gv(z) = gn(9x(2))

[p + g(q + p2)]™

(p+¢* + pgz)™ (3.191)
[(1 — pg) + pgz]™,

since
p+a®=p+q(l-p)=p+q-pg=1-pq.

Note that (3.192) is the generating function of a binomial random variable
with parameters pg and M. Hence, by the uniqueness of the generating
function, Y has a marginal distribution that is binomial with these param-
eters. O

In the next theorem we look at random sums in which X;, X,,... are
continuous nonnegative random variables. We show how to calculate the
Laplace-Stieltjes transform of the random sum. We also show that the
formulas for calculating the mean and the variance of the random sum are
the same as for the discrete case. In fact, these formulas are true even if the
underlying continuous random variables are not necessarily nonnegative.

Theorem 3.4.2 Suppose X1, X3,... i3 a sequence of independent identi-
cally distributed continuous random variables with common Laplace—Stieltjes
transform X*[6], and N is a discrete random variable with generating func-
tion gn. Then, if

Sn=Xi+Xo+---+ Xn, (3.192)
we have
E[Sn] = E[X)E[N], (3.193)
and
Var[Sy] = E[N] Var[X] + E[X]? Var[N]. (3.194)

Furthermore, the Laplace—Stieltjes transform of Sy 1s given by

Sn[6] = gn (X*[6)). (3.195)
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Proof For a fixed value of N = n we calculate the conditional expectation

E[SnIN =n]=)_ E[X;] = nE[X]. (3.196)
1
Then, by the law of total expectation, (see Theorem 2.8.1)
N
E[Sy] = Y nE[X]pn(n)
1
N
= E[X]) npn(n) (3.197)
1
= EBIX]EIN),

which proves (3.194). By Theorem 2.7.2(d),
E[S%|N = n] = Var[Sy|N = n] + E[Sy|N = n)?, (3.198)

and, because of the independence of the X;,
n
Var[Sn|N =n] =) Var[X;] = n x Var[X]. (3.199)
1

Substituting (3.197) and (3.200) into (3.199) yields
E[S%|N = n] = nVar[N] + n? E[X]%
Hence, by Theorem 2.8.1,

i[n Var[X] + n? E[X)?] pn(n)
Var[X] E[N] + E[N?] E[X]?
Var[X] E[N] + (Var[N] + E[N}?) E[X]%.

E[S}]

Finally, we calculate

Var[Sy] = E[S%] - E[Sn]?
= E[N]Var[X] + E[X]? Var[N],

which proves (3.195). Let us write SI"\‘,I n10In] for the conditional Laplace-
Stieltjes transform of Sy given that N = n. Then, by Theorem 2.8.1,

Snle) = ) SwwlbIn]pn(n)
1
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o0

3 (X*[6)" pa(n)

1
= gn(X*[0)).

This completes the proof. B

Example 3.4.5 Suppose Y can be written as the random sum
Y=X+Xo+- -+ Xn,

where each X; has an exponential distribution with parameter a and N
has the geometric distribution described in Exercise 4. That is,

P[N=kl=pg*!, k=12,....
This means that
gn(z) = pz+pe® +pg*t+ -
o0
pz Z(qz)"
0

Pz
1-gz’

Therefore, by Theorem 3.4.2,

»(z%9)
Y*[6] = 1"‘1?:%) = p:ie'

Therefore, by the uniqueness of the Laplace-Stieltjes transform, Y is expo-
nential with parameter pa. O

Example 3.4.5 can be interpreted as follows. Suppose a stream of cus-
tomers arrives at a fork or switching point. A customer is sent along the
left path (path 1) with probability p or along the right path (path 2) with
probability ¢ = 1 — p. We assume the arrival process is an ezponential
renewal process; that is, the interarrival times for successive customers at
the fork are described by independent identically distributed exponential
random variables, each with parameter . Let the random variable Y de-
scribe the time between the arrival of a customer who is sent along path
1 and the arrival of the next customer who is sent along this same path.
Then Y can be represented by the random sum

Y=X1+Xo+--+ Xn,



176 CHAPTER 3. PROBABILITY DISTRIBUTIONS

where N has the geometric distribution described in Example 3.4.5. Fur-
thermore, Example 3.4.5 shows that the interarrival time along the first
path has an exponential distribution with parameter pa. The same ar-
gument, of course, shows that the interarrival time along path 2 has an
exponential distribution with parameter ga. In Exercise 53 we ask you to
generalize this result to an r-way junction.

In Example 2.7.5, we saw that if Y was the fized sum of two exponential
random variables, which corresponds to sending every other customer along
path 1, then Y would have the Erlang-2 distribution, which is more regular
(more nearly constant) than the exponential distribution. In Exercise 52
we ask you to generalize this result to show that if a stream of arriving
customers having an exponential interarrival time distribution is split de-
terministically into k streams, then the interarrival times along each new
stream have an Erlang-k distribution.

In Chapter 5 we study the M/G/1 queueing system and show that the
formula for the generating function or ztransform of the steady state num-
ber of customers in the system, gy (), is given by the Pollaczek-Khintchine
transform equation,

(1 = p)(1 — 2)W3A(1 - 2)]

W;[)\(l _ Z)] — 2 ’ (3200)

gn(z) =

where W[6] is the Laplace-Stieltjes transform of the service time. As a
special case, let us consider the M/D/1 queueing system. Then WJ[4] =

e=Ws, Substituting this formula into (3.201) yields
(1= p)(1 = 2)e=0=)
e—P(l—z) A

———(i - ‘z’ ZS;‘;’ ). (3.201)

gn(2)

If we assume
|zeP1~%)| < 1,
we can expand (3.202) in the geometric series
J

an(2) = (1= P - 2) 3 [re21) (3.202)
§=0

Kobayashi [17, pages 196-198] proved that, by comparing the coefficients
of 2" in (3.203) and in the definition

gn(2) = D paz” (3.203)
=0
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it can be shown that

po=1-p, (3.204)
p1=(1-p)(e” - 1), (3.205)
and
j=1
(3.206)

Example 3.4.6 Suppose the Wringing Wet Wardrobe Company (a man-
ufacturer of swimming suits—-the type worn by swimmers rather than the
type that swims) discovers that one of their computer I/O subsystems can
be modeled as an M/D/1 queueing system with p = 0.9. Then, by (3.205),
po=1—p=0.1. By (3.206), p, = (1 — p)(e? — 1) = 0.14596. By (3.207)

2 —i —G—1y s N
p2=(1-p)) (17 ](Jp)z(;_lx!p *22 9 _ 013764,

j=1

We show more values of p,, in the table below. These values were calculated
with the aid of the APL function PN. In Exercise 52 of Chapter 5, we show
how to use

Dn, n=071’21"'1

to calculate the distribution function of the time in the system. O

Table 3.4.1.

Pn n Pn
0.10000 8 0.04096
0.14596 9 0.03330
0.13764 10 0.02707
0.11505 11 0.02200
0.09380 12 0.01789
0.07625 13 0.01454
0.06198 14 0.01182
0.05038 15 0.00961

NSO W= OIS

3.5 Summary

The name of this chapter is Probability Distributions which is meant to
suggest that the most important property of a random variable X is how
it distributes probability. By this we mean how the probability associated
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with the values of X is distributed over these values. For a discrete random
variable, the most convenient way to describe this distribution, usually, is
by an analytical formula for the probability mass function. That is, given a
mass point z, of X, the pmf p(-) describes how to calculate the associated
probability. For example, if X has a Poisson distribution with parameter
a, and k is a nonnegative integer, then p(k) = P{X = k] = e ®a*/k!. For a
continuous random variable, the most convenient method of describing the
probability distribution is by means of the distribution function F, defined
for all real z by F(z) = P[X < z]. Thus, if X is an exponential random
variable with parameter o, then F(z) = 1—e™** =1 — exp(—z/E[X]) for
z2>0.

In the first two sections of this chapter we considered some discrete and
continuous random variables that have been found to be especially useful in
applied probability theory, and of special importance to computer science
applications. Each of these random variables is determined by either one
or two parameters; that is, given the parameter or parameters, the entire
probability distribution is known. This makes it relatively easy to fit one of
these distributions to an empirical distribution. In Chapter 7 we discuss the
problem of how to estimate the parameters necessary to fit a well-known
distribution to an empirically derived one, and in Chapter 8 we address the
problem of judging how good the fit is.

A summary of the properties of the random variables discussed in this
chapter is given in Tables 1 and 2 of Appendix A. Examples are given in
the text of the use of most of these random variables.

In the third section of this chapter we discussed the central limit theorem
and some of its applications. The basic idea of the theorem is that the sum
of independent random variables tends toward a normal random variable
under very weak restrictions. This explains the special importance of the
normal distribution. Several examples were given of the use of the central
limit theorem.

In the last section we gave a number of examples of how some of the
transforms we defined in Chapter 2 can be applied to solve fairly difficult
problems with ease.

Student Sayings

Socrates took Poisson.

Monique is exponentially distributed!

No us is good us.

Keep your hyperexponential away from me!
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3.6 Exercises

1. [10] One-fourth of the source programs submitted by Jumpin Jack

[ S}

w

'=N

(<]

[«2]

compiled successfully. What is the probability that exactly one of
Jumpin’s next five programs will compile? That three out of five
will?

. [10] Six programmers from Alfa Romalfa decide to toss coins on an “odd

person out” basis to determine who will buy the coffee. Thus, there
will be a loser if exactly one of the coins falls heads or exactly one
falls tails.” What is the probability that the outcome will be decided
on the first toss? What is the probability that exactly four trials will
be required? Not more than four?

. [15] Sayure Praers, a small-plane, short-haul airline, has found that ap-

proximately 5% of all persons holding reservations on a certain flight
do not show up. If the plane holds 50 passengers and Sayure takes
reservations for 53 (this is called overbooking), what is the probability
that every passenger who arrives on time for the flight will have a
seat? (Assume there are no walk-ins.)

. [HM22] Some authors modify our definition of a geometric random

variable X so that it counts the number of trials including the trial
at which the first success occurs. Thus, X can assume the values
1,2,3,.... For this modified geometric random variable, find the pmf
p(-), the expected value, and the variance in terms of the probability
of success on each trial p and of g =1 — p.

. [15] Jumpin Jill finds that, when she is developing a program module,

syntax errors are discovered by the compiler on 60% of the runs she
makes. Furthermore, this percentage is independent of the number
of runs made on the same module. How many runs does she need
to make of one module, on the average, to get a run with no syntax
errors? What is the probability that more than 4 runs will be required.
[Hint: Use the result of Exercise 4.]

. [C18] Ms. Nancy Nevermiss can put 10 shots in succession through the

center of a target (the bull’s-eye) one-fifth of the time. This is called a
possible. Suppose Nancy independently fires 10 sequences of 10 shots
each, each sequence at a fresh target.

(a) What is the probability that she will get at least two possibles?

7We assume that no coin will stand on an edge.
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(b) What is the conditional probability that Nancy will get at least
two possibles, given that she gets at least one?

7. [18] About one percent of all teller transactions at Chaste National
Bank have a certain type of error. How large a random sample (with
replacement) must be taken if the probability of its containing at least
one transaction with an error is to be not less than 0.95? [Hint: Use
the Poisson distribution.]

Multinomial Distribution There is an important generalization of the
binomial distribution called the multinomial distribution. Suppose each of
n independent repeated trials can have one of several outcomes, which we
label E,, Es, - -, E,. Let the probability that F; will occur on any trial be
pifori=1,2,---,r. For r = 2 we have the binomial case. We assume that

pr+p2-+pr =1,

where p; > 0 for all ¢. The result of n trials is a sequence of n events such
as E,F1E; --- E;. The probability that in n trials E; occurs k; times, E,
occurs kg times, etc. is

n! k1 ko
klkg! - k101 P2

where the k; are nonnegative numbers satisfying

pFr, (3.207)

ki+ke+ - +k =n

We will ask you to prove (3.208) in Exercise 8. We now give an example of
the use of the multinomial distribution.

Example 3.6.1 A card is drawn with replacement five times from a well-
shuffled bridge deck. What is the probability of obtaining 2 clubs and 1
diamond?

Solution We let E; be the event of drawing a club, E; the event of drawing
a diamond, and Ej the event of drawing a spade or a heart. Since p; = 1/4,
p2 = 1/4, and ps = 1/2, the required probability is

() (2) ()

8. [12] Prove (3.208) for the multinomial distribution using the following
theorem from Feller [10, page 37]. Let ki, ko, - - -, k. be integers such
that

i

30 x 0.25% x 0.52
0.1171875.

ki+ks+---+kr=n, k;>0.
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The number of ways a population of n elements can be divided into
r subpopulations of which the first contains k; elements, the second
ko elements, etc., is

n!

kylka!l- - kot

9. [10] The interactive system at Banker’s Tryst can process 5 kinds of
inquiries; the respective probabilities are 0.1, 0.15, 0.4, 0.25, and 0.1.
What is the probability the next 10 inquiries will include 1 of the first
type, 2 of the second, 3 of the third, 3 of the fourth, and one of the
fifth?

10. [5] In Kleen City on Thursday night, half of the TV audience watches
Channel 6, 40 percent watches Channel 12, and the remaining 10 per-
cent watch Channel 13 (a channel for the lucky!). Find the probability
that of 10 Thursday night TV viewers, 5 will be watching Channel 6,
4 will be looking at Channel 12, and one will be viewing Channel 13.

The Hypergeometric Distribution Suppose a collection of N elements
contains r elements that are red and N —r elements that are black. Suppose
we choose n elements from this set, without replacement. If k is an integer
such that k < n and k < r, then there are () ways of choosing k red
elements and (Y7 ways of choosing n—k of the black elements or (}) (¥ /)
ways of choosing k red elements and n — k black elements. If we let X be
the number of red elements in the sample of size n and assume the sample

is chosen at random (without replacement), then p = P[X = k] is given

by
()G )
kJ\n—k
7NN (3.208)
n
provided k < r and n — k < N —r. The random variable X is said to be a

hypergeometric random variable with parameters n, N, and r. You can test
your skills with this distribution by doing Exercises 11 through 16.

N =

11. [25] Prove that for a hypergeometric random variable X with param-
eters n, N, and r,

nr

E[X]= —

x]= "

and
nr(N —r)}{(N - n)

Var[X] = NEN = 1)
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12.

13.

14.

15.

16.

17.
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[10] An inspector at Keypon Trucking checks the exhaust fumes of
5 of the company’s 30 trucks. If 3 of the 30 trucks have truly dirty
exhausts, what is the probability that none of them will be tested,
that is, that none of them will appear in the inspector’s sample?

[8] To avoid being caught by customs inspectors, Able Smuggler puts
6 narcotic tablets in a a bottle containing 9 vitamin pills of similar
appearance. If a customs inspector chooses three of the tablets at
random for analysis, what is the probability that Mr. Smuggler will
be arrested?

[C5] Big Byte ships identical computer components in boxes of 50.
Before shipment a random sample of 5 components is tested; the box
is shipped if no more than 1 component is found to be defective.
If a box contains 20% defectives, what is the probability it will be
shipped?

[6] Digitizing Dingleberry Doodlers randomly chooses a committee of
3 people from 4 analysts and 2 systems programmers.

(a) Write the pmf of the random variable X, that counts the number
of analysts on the committee.

(b) Find P[2 < X < 3).

[5] In the description of a hypergeometric distribution X, given just
before Exercise 11, we see that the sample of size n is taken without
replacement. If the sample were taken with replacement, X would be
binomial with parameters n and p = r/N. If n is small relative to N,
there is not much difference between the two methods of sampling, so
a hypergeometric random variable can be approximated by a binomial
random variable with parameters n and p = r/N. (The usual rule
of thumb is that n should not exceed 5 percent of N.) Let X be a
hypergeometric random variable with parameters n = 5, N = 500,
and r = 20. Calculate the probability that X = 2 and the binomial
approximation to this probability.

[C10] In the experiment of Example 7.1.8, suppose 200 animals are
tagged, 20 are captured or recaptured, and 4 of the 20 are discov-
ered to be tagged so that the maximum likelihood estimate of the
population size is

~ 2 20
N=[ 00 x

1 ] = 1,000 animals.
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(a) If the actual value of N is 503, calculate the probability that 4
or fewer tagged animals are found in a sample of 20 captured
or recaptured animals. Calculate the binomial approximation as
well.

(b) If N = 2,790, what is the probability that 4 or more tagged
animals are found in a sample of 20 recaptured animals? What
is the binomial approximation of this value?

The Multivariate Hypergeometric Distribution Suppose a set of N
elements contains 7, elements of the first kind, 72 elements of the second
kind, ..., and r; elements of the lth kind, so that E:=1 r; = N. We are
interested in the probability of getting k; elements of the first kind, k;
elements of the second kind,..., and k; elements of the /th kind from a
random sample of size n chosen without replacement, from the original N
elements. If X;, X3, -+, X; are random variables that count the number of
elements in the sample of type 1,2, -+, 1, respectively, then it is easy to see
that

(£)6)-)

PX; =k, Xo=kg,- -, X1 =1 = k1 k2N k; ,
(=)

where each k; satisfies 0 < k; < n, and k; < r; for each i, and where

i
zki =n, and Zri = N.
i=1

The random variables X, X3, -, X; are said to have a multivariate hyper-
geometric distribution if and only if their joint probability distribution is
given by (3.210).

(3.209)

18. [C5] Find the probability that a bridge hand of 13 cards consists of
four spades, five hearts, one diamond, and three clubs.

19. [11] Ecstasy Products sells a certain product to pharmacies in boxes
of 100 with a guarantee that at most 10 items in a box are defective.
Debilitating Drugs has a buyer who accepts a box of the product only
if a random sample of 10 items chosen without replacement from the
box contains no defective items. What is the probability that a box
will be rejected although it contains exactly 10 defective items and
thus meets the conditions of the guarantee?
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The Pascal (Negative Binomial) Distribution Consider a sequence
of Bernoulli trials with probability of success p on each trial (and thus,
probability ¢ = 1 — p of failure). Let r be a fixed positive integer. Let
p(k;r,p) denote the probability that the rth success occurs at trial number
r + k (where kK = 0,1,...). This is the probability that k failures occur
before the rth success; thus, there must be k failures among the r + k — 1
trials before the (r + k)th trial results in the rth success. The probability

of the former is ("*¥~1)p"~1¢* and of the latter is p, so we must have
k-1
p(k;r,p) = (T " P )p’q"’, k=0,1,---. (3.210)

A discrete random variable X with the pmf given by (3.211) is called a
Pascal or negative binomial random variable with parameters r and p. The
geometric random variable of Section 3.1.3 is a special case with r = 1.

20. [HM15] Find E[X] and Var[X] for a Pascal random variable X with
parameters 7 and p. Hint: Use Theorem 2.9.2(c) and the fact that,
by the result of Exercise 35(d) of Chapter 2, Formula (3.211) can be
written as

p(k;T,p) = (kr)p'(—q)’ k=0,1,....

21. [12] Big Blast, Inc. is responsible for launching some special top-secret
satellites. Five of the satellites have been constructed. It is desired
that three of them be placed in orbit. If the probability of successfully
launching an individual satellite is 0.95, what is the probability that
Big Blast can carry out its mission without more satellites?

22. [8] If X has a Poisson distribution and P[X = 0] = P[X = 1], find
E[X].

23. [10] The average number of traffic accidents per week at Coroner’s
Corner is 14. What is the probability that there will be 3 or more
accidents at this curve on any given day?

24. [10] Suppose X is a Poisson random variable with E[X] = a.

(a) Prove that, if P[X = k]=P[X =k +1],thena =k + 1.
(b) Prove that, if « = k + 1, then P[X = k] = P[X =k + 1].

25. [12] Suppose X is a Poisson random variable with E[X] = a.
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(a) Show that P[X = k| > P[X = k+ 1] implies that k+1 > o and
conversely.

(b) Show that P[X = k — 1] < P[X = k] implies that ¥ < « and
conversely.

(c) Use (a) and (b) to show that the pmf of X, P[X = k] first
increases monotonically, then decreases monotonically, reaching
its greatest value when o — 1 < k£ < a. For example, if o = 4,
then the maximum values of the pmf occur at £k = 3,4. The

values are s .
—44 44

26. [18] Consider Example 3.1.5.

(a) For what values of k does the probability mass function of X
assume its maximum value? Calculate the value.

(b) Using the APL function POISSONADIST, it was shown that
P{X < 15] = 0.95126. Estimate this value using the one-sided
inequality (Theorem 2.10.3).

(c) The APL function POISSONADIST shows that P[4 < X <
16] = 0.96262. Estimate this value using

(i) the Chebyshev inequality, and
(ii) the normal approximation.

27. [15] As discussed by Clarke (7], the number of Vz flying bomb hits
in London during World War II had a Poisson distribution. Assume
that in the area affected the average time between bomb hits was 2.5
hours.

{a) Using the Poisson distribution, calculate the probability of no
hits during a six hour period.

(b) Make the calculation of part (a) using the exponential distribu-
tion.

28. [15] Let X be a Poisson random variable with parameter . Prove
that

(a) P[X < a/2) <4/(a+4)<4/a and
(b) P[X >2a] <1/(1+a) < 1/a.

[Hint: Use the one-sided inequality, Theorem 2.10.3.]
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29. [12] There are 125 misprints in a 250 page user manual for the EZASPI

System. What is the probability that there are at least two misprints
on a given page?

30. [15] The arrival pattern of order messages of the interactive order entry

31.

system of the Dizzy Disc record company has a Poisson distribution
with an average of 25 arrivals per minute during the peak period.
What is the probability that more than 30 orders will arrive in one
minute of the peak period? Use the normal approximation if you
don’t have facilities such as APL, MINITAB, or EXPLORE to make
the exact calculation.

[15] Recall that b(k;n,p) is the notation for the probability that a
binomial random variable with parameters n and p assumes the value
k; that is,

n

b(k;n,p) = (k)p"(l -p)"*.
Consider the sequence b(0;n, p}, b(1;n,p),...,b(n;n,p).

(a) Show that the term b(k;n,p) is greater than b(k — 1;n,p) for
1<k < (n+1)pand is smaller for k > (n + 1)p.

(b) Show also that, if (n + 1)p = m is an integer, then b(m;n,p) =
b(m — 1;n,p).

Note: Since there is exactly one integer m such that (n+1)p -1 <
m < (n+ 1)p, we see by (a) that the maximum value in the sequence
is b(m;n,p). It is called the central term or the “the most probable
number of successes”. For example, if n = 19and p = 0.4, thenm = 8
and the maximum value of b(k;19,0.4) is

19
0.4%0.611
(5)

0.179705788

19
470,612
(7)0 0.6

b(7;19,0.4).

b(8;19,0.4)

I

32. [15] About 1% of the population of a certain country is left handed.

What is the probability that at least four out of 200 people at Kysquare
Testing (located in this country) are left handed?
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33. [18] An interactive system at Flybynight Airlines has 200 workstations

34.

35.

36.
37.

38.

each connected by a local area network (LAN) to the local computer
center. Each workstation independently has probability 0.05 of being
signed on to the computer center. What is the probability that 20 or
more of the workstations are signed on? Use the normal approxima-
tion if you can’t make the exact calculation.

[C20, if you have only a pocket calculator; 10 if you have APL or
MINITAB available.]

(a) Write a formula for pg, the probability that in a group of 500
people, exactly k will have birthdays on Valentine’s Day. Assume
the 500 people are chosen at random with each of them having
probability p = 1/365 of being born on Valentine’s Day.

(b) Calculate pi for k =0,1,2,3,4,5.

(c) Make the calculation of part (b) using the Poisson approximation.

[15] Inquiries of the Poisson Portal interactive query system arrive at
the central computer in a Poisson pattern at an average rate of 12
inquiries per minute.

(a) What is the probability that the time interval between the next
two inquiries will be less than 7.5 seconds?

(b) More than 10 seconds?
(c) What is the 90th percentile value for interarrival time?

[HM18] Prove Theorem 3.2.6(b) and 3.2.6(c) using Theorem 2.9.1.

[20] Suppose entries to an order-entry system of the Shootemup Arms
Company arrive at the central processor with a Poisson pattern at an
average rate of 30 per minute.

(a) Given that an order entry transaction has just arrived, what is
the average time until the fourth succeeding transaction arrives?

(b) What is the probability that it will take longer than 10 seconds
for this entry to arrive? Less than 5 seconds?

(c) Will the answers to the above questions change if the point in
time at which measurement begins is 1 second after a transaction
arrives?

[18] Cookie Crumbles wants to put enough raisins in its raisin cookie
dough so that not more than one cookie in a hundred will have no
raisins. How many raisins should an average cookie contain, assuming
a random distribution of raisins in the dough?
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39. [HM25) Suppose X has a gamma distribution. Prove that its moments
are given by

n—1
E[X") = [H(l +kCH)| EX]® n=2,3, -
k=1
Since the squared coefficient of variation is given by
1
c =

this means that we can write the above formula as

BB+1)(B+2)---(B+n—1)

an

EX"| = n=123,--

This result also implies that for the Erlang-k random variable, we
have

E[X"] = (1+%> <1+%)( n;1>E[X]", n=1,23,

[Hint: Use Theorem 2.9.1(b).]

40. [5] Let X be a discrete uniform random variable assuming only the
value ¢ (X is thus a constant random variable). Show that for each
positive integer n,

E[X™] = E[X]" =™

41. [HM15] Suppose X is uniformly distributed on the interval a to b.

Show that ; ® )2
a+ 2 _ —a
E[X]= — and o0°= 7

42. [15] Suppose a discrete uniform random variable X assumes only the
values C+ L,C + 2L,---,C + nL, where C, n, and L are constants.

Show that
gx) =0+ "V pxt = 24 (o B D 12
and ) .
arX] = ——L%.
[Hint:

g n+l)andzz n+123(2n+1)]
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[12] The simulation model of a proposed computer system for Stu-
dents Gosset uses a discrete approximation of a continuous uniform
distribution on the interval 10 to 30. Find the mean and variance
of the continuous uniform distribution and compare these values to
those for the discrete approximation if

(a) the eleven values 10,12, ..., 30 are used for the discrete distribu-
tion,

(b) the 101 values 10,10.2,...,30 are used. [Hint: See the previous
exercise.]

[10] Consider Example 3.1.1. Use the normal approximation to es-
timate the probability that between 5,200 and 5,400 blocks must be
updated. For the estimate assume that the mean number of blocks
to be updated is 5,300.

[15] The message length distribution for the incoming messages of an
interactive system for the Sockituem Finance Company has a mean
of 90 characters and a variance of 1500. Fit an Erlang distribution to
this message length distribution.

[HM15] Show that the density function for a chi-square random vari-
able has a unique maximum at z =n, if n > 2.

[18] Every fifth customer arriving at Pourboy Finance is given a prize.

(a) If the number of customers who arrive in a one minute period
has a Poisson distribution with mean A, describe the interarrival
time distribution for the customers who receive gifts.

(b) If A =5 customers per minute, what is the probability that the
time between two successive winners exceeds 1 minute?

[15]) A simulation model of a proposed new computer system for the
Hunkydory Boat Company has been constructed. The model provides
an estimate of the utilization, p, of the central processing unit (CPU)
by testing one hundred times every millisecond to determine whether
or not it is busy and using the formula

p = P[CPU is busy| = -‘11

where n is the number of samples and S, the number of times the
CPU is busy. How many samples should be made if § = 0.005 and
¢ = 0.001 in the formula

Sa

p||2

26]56?
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Assume p is near 0.5.

49. [HM18] Show that the density function f,, for a Student’s ¢ distribution
with n degrees of freedom assumes a unique maximum when z = 0.

50. [HM30] Consider the gamma function defined by
o0
() = / «t 1e_"""dzz;, t>0.
0

Prove the following:

(a) T(t + 1) = tI(¢) for all t > 0. (Since I'(1) = 1, this implies that
'n+1)=nl,n=1,2---)

(b) Show that I'(¢) can be written as
o 2
() = 2~ / P Pt LPPY
0

for all t > 0.

(¢) Using (b), we can write

1 o 2
F(—) =\/§/ e~ 3% dz,
2 0
and thus,

P - o)

0
o0 o0
= 2/ / e 1@+ dz dy.
o Jo

Now use polar coordinates to evaluate the double integral and
thereby show that T (%) = /7.

51. [15] Get High Airlines wants to estimate the fraction of smokers p
among their passenger population. The airline plans to use sampling
with replacement to determine their estimate p of p. They set up the

requirement that
PJ[p — p| = 0.005] < 0.05.

(a) How large a sample should Get High take if nothing is assumed
about the size of p?
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(b) How large a sample is required if Get High knows that p is very
close to 0.47

52. (18] The result of Example 2.7.5 can be interpreted as follows. A
stream of entities arrive at a junction in such a way that the time
between successive arrivals (interarrival time) has an exponential dis-
tribution with mean 1/). If the entities (customers) are alternately
routed along two separate paths such that the first customer takes
the first path, the second the second path, the third the first path,
the fourth the second path etc., so that the odd-numbered arrivals
take the first path and the even-numbered ones take the second path,
then the interarrival time on each path has an Erlang-2 distribution
with average value 2/). Generalize the above result to show that if
a stream of customers having an exponential interarrival time is split
deterministically into k streams, then the interarrival times along each
new stream have an Erlang-% distribution with mean k/\.

53. [M30] Suppose, as in Exercise 52, that a stream of customers arrives at
an r-way junction, so that the time between successive arrivals has an
exponential distribution with mean 1/A. Then, by Theorem 3.2.1(g),
the number of arrivals per unit of time has a Poisson distribution with
mean A. Suppose the branch selected by each arrival is chosen inde-
pendently with the probability that an arrival takes path ¢ equal to p;
fori=1,2,---,r. We can imagine a random number generator that
chooses 1 with probability p;, 2 with probability ps, ..., r with prob-
ability p,, where Y_._, pr = 1. Each customer then takes the path
chosen by the random number generator and the generator makes a
new choice for each arriving customer. Prove that the ith output
stream has a Poisson pattern with mean rate p;A. [Hint: Let N(t) be
the number of customer arrivals to the junction in ¢ time units. (We
assume the observations begin when ¢t = 0.) Let N;(¢) be the number
of these arrivals that take the ith path. Then the conditional joint
distribution of N;(¢) (¢ =1,2,---,r) given that N(t) = n,

P[Nl(t) = kl’N2(t) = k21 . aNT(t) = kT|N(t) = n]9

has a multinomial distribution (see Exercise 8 where event E; is the
event that a customer takes path 7). Multiplying this probability by
the probability that N(¢) = n, which has a Poisson distribution with
mean At by Theorem 3.2.1(g), we obtain the joint probability distri-
bution P(ky, k2,...,k;). P(ki,ko,...,k,) expresses the probability
that k, customers take the first path, ks take the second path, etc.
Show that the joint probability factors into the product of » Poisson
probabilities.]
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54. [HM20] Prove (a) (and thus, by symmetry, (b), also) of Theorem 3.2.5.
Hint: Recall that

fx@) = [ S (3.211)

where f(z,y) is given by

1

B B 1 T—Uux
flz,y) = ZMX(,YMP’XP{ 2(1-p?) [( ox )
2p(z — px)(y — py) + (zwuy)z}}’ (3.212)

Ox0y Oy

To simplify the integration of (3.212) let u = (z — px)/ox and v =
{y — py)/oy. Then, since dy = oy dv, (3.212) reduces to

/oo exp [— (u? — 2puv +v?) /201 - p?)] dv
fx(z) = == . (3.213)

2raxy/1—p?

Adding and subtracting p?u? gives

u? —2puv + 0?2 = 0% — 2puv + p?u’ — p2u2 + u?
= (v—-pu)?+4(1-p?)

and thus, (3.214) becomes

_ e~ oo —(v —ou)?
fX(JL‘) = m [m exp {W} dv. (3214)

Now let z = (v — pu)/+/1 — p?, and using the fact that

e8] —22
/ exp (—2—) dz = V2m,

~c0
show that
exp [_ 1 (x_;XH_X)z]
fx(z) = Toron ' (3.215)
55. [HM20] Prove that (c) (and thus, by symmetry, (d)) holds in Theorem
3.2.5.

56. [18] Prove the following:
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(a) A random variable created by Algorithm 3.2.2 is a two-stage hy-
perexponential random variable having the properties claimed.

(b) A random variable created by Algorithm 3.2.3 is a two-stage hy-
perexponential random variable having the properties claimed.

(c) A random variable created by Algorithm 3.2.4 is a two-stage hy-
perexponential random variable having the properties claimed.

57. [C10] Professor Stanley Pennypacker, who collected the azalea data of
Exercise 12-19 of Ryan et al. [27], discovered the distance he walks
between discoveries of ozone damaged azaleas is Erlang-4 with a mean
of 20 feet. Find the following probabilities:

{(a) the probability that Professor Pennypacker walks not farther
than 30 feet to the next damaged azalea. (P[X < 30].)

(b) the probability he must walk more than 10 feet to find the next
damaged azalea. (P[X > 10].)

58. [7] Consider the approximation due to Arvind K. Shah that appears
in Section 3.2.4. Calculate the following probabilities, below

(a) Using Table 3 of Appendix A (or the APL function NDIST), and
{b) using Shah’s approximation.

(i) P[-2 < X < 1.5].

(i) P[-1 < X < 1.28].

(iii) P[Z < 1.28].

(iv) P[Z < 1.64].

59. [C15)

(a) Use Algorithm 3.2.1 (Algorithm G) to construct a gamma ran-
dom variable X with mean 10 and C% = 4. Calculate E[X3]
and P[X < 15].

(b) Use Algorithm 3.2.2 (Algorithm H) to construct a random vari-
able X with mean 10 and C% = 4. Calculate E[X3] and P[X <
15].

(c) Use Algorithm 3.2.3 (Algorithm HG) to construct a random
variable X with mean 10 and C% = 4. Calculate E[X3] and
P[X <15].

60. [C15 If you use the APL function WH, it is 5.] Consider Algorithm
3.2.4. Use this algorithm to find the H, distribution X for which
E[X] =1, E[X?] = 5, and E[X?] = 40.
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61. [TM25] Consider Example 3.2.11. Find a Coxian distribution to match

62.

63.

64.

65.

66.

the given H, distribution by first finding the Laplace—-Stieltjes trans-
form of the given distribution. Then find the two-stage Coxian dis-
tribution with the same Laplace-Stieltjes transform.

[HM18] Use convolution to show that if X and Y are independent
exponential random variables with parameters a and (3, respectively,
where o # (3, then the density function f of their sum X +Y is given
by

fxay(t) = aci_ ﬂ(e’ﬁ‘ —e™), t>0.

[We showed this, using the Laplace-Stieltjes transform, in Example
3.4.1]

[10} Let X be an Erlang-k random variable with parameter p. Show

that
* kup k
X*[6] = .
1) (ku+9)

Hint: Use the fact that the Laplace—Stieltjes transform of an expo-
nential random variable with parameter « is

a
8+a’

as well as the fact that X can be represented as shown in Figure 3.2.5.

[HM15] Suppose X is a gamma random variable with parameters G
and a. Show directly from the definition that

X*[O]:( a )‘6

0 +a

[M15] Assume that Y has a binomial distribution with parameters p
and N, where N has a Poisson distribution with parameter A. Find
the marginal distribution for Y.

[10] Assume that a hen lays N eggs, where N has a Poisson distribu-
tion with parameter A. Suppose each egg hatches with probability p
independently of the other eggs. Let Y be the number of chicks that
hatch. We can write Y as the random sum

Y=X; 4+ Xn,

where X, X,,... are independent Bernoulli random variables with
parameter p.
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67.

68.

69.

70.
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(a) What is the distribution of Y'?

(b) If A =4 and p = 0.25, what is the average and variance of the
number of chicks hatched? That is, what is E[Y] and Var[Y]?

[HM20] The number of automobile accidents in Los Angeles per week,
N, has a Poisson distribution with mean 100. The number of per-
sons injured in each such accident has a binomial distribution with
parameters p = 0.2 and N.

(a) What is the distribution of Y, the total number of persons injured
in automobile accidents per week?

(b) What is the mean and variance of Y?

[HM15] Suppose a nonnegative random variable X has the Laplace-
Stieltjes transform K /(0 + 2). Find K, the density function f of X,
and E[X3].

[HM8] Suppose X has the generating function (1 + 2%)/2. Find E[X],
P[X = E[X]], and Var[X].

[HM10] Let Y be a shifted exponential random variable with density
function given by

f(8)=ae 2C=D) for s > D.

Prove the following:

* — 9D a
Y™ = e et
ElY] = D+1
a
1
VarlY] = —,
a

and
F(z)=PlY <z]=1-¢"%@"D) forz > D.

One machine can do the work of 50 ordinary men. No machine can do the

work of one extraordinary man.
Elbert Hubbard, 1913

Imagination is more important than knowledge.
Albert Einstein
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Art is a lie that makes us realize truth.
Picasso

Take a chance! All life is a chance. The man who goes furthest is
generally the one who is willing to do and dare. The “sure thing” boat
never gets far from the shore.

Dale Carnegie
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Chapter 4

Stochastic Processes

Fate laughs at probabilities.
E. G. Bulwer-Lytton

Statistics are no substitute for judgment.
Henry Clay

4.0 Introduction

In Chapter 3 we considered some common random variables that are use-
ful in investigating probabilistic computer science phenomena, such as the
number of jobs waiting to be processed, the response time for an interac-
tive inquiry system, the time between messages in an order entry system,
etc. When we considered a random variable, such as the number of jobs,
N, waiting to be processed, we did not allow for the fact that the prob-
ability distribution of N may change with time. That is, if we let N; be
the number of jobs in the job queue at 8 A.M. and N, the corresponding
number at 11 A.M., then N; and N, probably have different probability
distributions. (To investigate the nature of the distribution of N;, we could
note the number of jobs at 8 A.M. each day for a number of days; for N;
we could do the same thing at 11 A.M.) Thus, we have a family of random
variables {N(t),t € T}, where T is the set of all times during the day that
the computer center is in operation. Such a family of random variables is
called a stochastic process.

199
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We are the music-makers,

And we are the dreamers of dreams,
Wandering by lone sea-breakers,

And sitting by desolate streams;
World-losers and world-forsakers,

On whom the pale moon gleams:
Yet we are the movers and shakers

Of the world for ever, it seems.

Arthur O’Shaughnessy

4.1 Definitions

A family of random variables {X(t),t € T} is called a stochastic process.
Thus, for each t € T, where T is the index set of the process, X(t) is a
random variable. An element of T is usually referred to as a time parameter
and we often refer to t as time, although this is not part of the definition.
The state space of the process is the set of all possible values that the
random variables X (¢) can assume. Each of these values is called a state of
the process.

Stochastic processes are classified in a number of ways, such as by the
index set and by the state space. If T = {0,1,2,---} or T = {0, £1, %2, .- -},
the stochastic process is said to be a discrete parameter process and we will
usually indicate the process by {X,}. If T = {t : —00 < t < o} or
T = {t : t > 0}, the stochastic process is said to be a continuous parameter
process and will be indicated by {X(t),~00 < t < oo} or {X(¢),t > 0}.
The state space is classified as discrete if it is finite or countable; it is
continuous if it consists of an interval (finite or infinite) of the real line.
For a stochastic process {X(¢)}, for each ¢, X(¢) is a random variable and
thus a function from th,e underlying sample space, {2, into the state space.
For any w € Q, there is a corresponding collection {X (t){w),t € T} called
a realization or sample path of X at w (usually the w is elided.)

Example 4.1.1 The waiting time of an arriving inquiry message until pro-
cessing is begun, is {W(t),t > 0}. The arrival time, ¢, of the message is the
continuous parameter. The state space is also continuous. O

Example 4.1.2 The number of messages that arrive in the time period
from 0 to t, is {N(t),t > 0}. This is a continuous parameter, discrete state
space process. O

Example 4.1.3 Let {X,,},n =1,2,3,4,5,6, 7} denote the average time to
run a batch job at the computer center on the nth day of the week. Thus,
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X, is the average job execution time on Sunday, X, on Monday, etc. Then
{Xn} is a discrete parameter, continuous state space process. O

Example 4.1.4 Let {X,,n = 1,2,...,365(366)} denote the number of
batch jobs run at a computer center on the nth day of the year. This is a
discrete parameter, discrete state space process. O

Consider random (unpredictable) events such as

(a) the arrival of an inquiry at the central processing system of an inter-
active computer system,

(b) a telephone call to an airline reservation center,
(c) and end-of-file interrupt, or

(d) the occurrence of a hardware or software failure in a computer system.

8 4
7 - ~—
6
5+ -—_—
4 - ~—

3 —_—

9 —

14 —

0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Figure 4.1.1. Realization of counting process N(t).

Such events can be described by a counting process {N(t),t > 0}, where
N(t) is the number of events that have occurred after time 0 but not later
than time ¢. (The realization of a typical counting process is shown in
Figure 4.1.1.)

The idea of a counting process is formalized in the following definition.

Definition 4.1.1 {N(¢),t > 0} constitutes a counting process provided
that
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1. N(0) =0,
2. N(t) assumes only nonnegative integer values,
3. s < t implies that N(s) < N(t), and

4. N(t) — N(s) is the number of events that have occurred after s but
not later than £, that is, in the interval (s, t].

The next definition formalizes the idea that “one quantity is small relative
to another quantity” and makes it possible to indicate this fact without
specifying the exact relationship between the two quantities.

Definition 4.1.2 The function f is o(h) (read “f is little-oh of A” and
written “f = o(h)”} if
f(h)

fim = =0,

that is, if given € > 0, there exists § > 0 such that 0 < |h| < § implies

l———f(hh)l <e.
Example 4.1.5 (a) The function f(z) = z is not o(h), since
o f(h) _ . h
fim 5 = g7 = 120

(b) The function f(z) = z? is o(h), since

lim f(h)

Jim = =limh=0.

2
= lim —
h—0 h h—0

(c) The function f(z) = ™ where r > 1 is o(h), since

lim w = lim A" = 0.
h—0 h h—0

This generalizes (b).
(d) If f is o(h) and g is o(h), then f + g is o(h), since

fim TR A0 _ B e 9B ooz
h—0 h h—0 h h—0 h
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(e) If f is o(h) and c is a constant, then cf is o(h), since

lim cf(h) =c lim %

h—0 h—0

=cx(0=0.

(f) It follows from (d) and (e), by mathematical induction, that any fi-
nite linear combination of functions, each of which is o(h), is also
o(h). That is, if ¢1, ¢, ..., c, are n constants and f1, f2,...,fn aren
functions, each of which is o(h), then

n
> i
i=1

is o(h).

(g) Suppose X is an exponential distribution with parameter « and h > 0.
Then
P[X <t+h|X >t] = P[X < h],

by the Markov property of the exponential distribution (Theorem
3.3.1(d)). But

PX<hl = 1-¢@k
1- 1—ah+ib1n?l
— (ah)? x Z( ah)”

n=2

ah + o(h),

so that
PIX <t+hlX >t]=ah+o(h). O

A continuous parameter stochastic process {X(t),t > 0} has indepen-
dent increments if events occurring in nonoverlapping time intervals are
independent; that is, if (a1,b1),...,{an,bsn) are n nonoverlapping intervals,
then the n random variables

X(b1) — X(a1), X (b2) — X(az),...,X(bn) — X(an)

are independent. The process has stationary increments if X (t+h)— X (s+
h) has the same distribution as X (t) — X(s) for each choice of indices s and
t (with s < t) and for every h > 0; that is, the distribution X(t) — X(s)
depends only on the length of the interval from s to ¢ and not on the
particular value of s.
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Example 4.1.6 Suppose X1, X5, ... are independent identically distributed
Bernoulli random variables, each with probability p of success (that is, of
assuming the value 1). Let S, = X; + -+ X,,, that is, the number of suc-
cesses in n Bernoulli trials. Then {S,,n =1,2,3,...} is called a Bernoulli
process. It has the state space {0,1,2,3,...} so it is a discrete parameter
discrete state space process. For each n, S, has a binomial distribution
with pmf p(-) defined by p(k) = P[S, = k] = (})p*¢" %,k = 0,1,...,n,
where ¢ = 1 — p. As we saw in Section 3.1.3, starting at any particular
Bernoulli trial, the number of succeeding trials, Y, before the next success
has geometric distribution; that is,

PlY =kl=¢*p, k=0,1,2,.... 0

I returned, and saw under the sun, that the race is not to the swift, nor
the battle to the strong, neither yet bread to the wise, nor yet riches to
men of understanding, nor yet favour to men of skill; but time and chance
happeneth to them all.

Ecclesiastes 9:11

4.2 The Poisson Process

Definition 4.2.1 A counting process {N(t),t > 0} (see Definition 4.1.1)
is a Poisson process with rate A > 0, if (a)—(d), below are true.

(a) The process has independent increments. (Events occurring in nonover-
lapping intervals of time are independent of each other.)

(b) The increments of the process are stationary. (The distribution of the
number of events in any interval of time depends only on the length
of the interval and not on when the interval begins.)

{c) The probability that exactly one event occurs in any time interval of
length & is Ah + o(h), that is,

P[N(h) = 1] = Ak + o(h).

(d) The probability that more than one event occurs in any time interval
of length h is o(h), that is,

PIN(h) > 2] = o(h).

Note that (c) and (d) together imply that
P[N(h) =0] =1~ M+ o(h),
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since

PI|N(R) = 0]

1 - P[N(h) = 1] - P[N(h) > 2]
1- M —o(h)—o(h) =1— Ak +o(h). (4.1)

The last equality follows from Example 4.1.5(d) and (e).
The following theorem shows that Definition 4.2.1 of a Poisson process
is descriptive.

Theorem 4.2.1 Let {N(t),t > 0} be a Poisson process with rate A > 0.
Then the random variable Y describing the number of events in any time
interval of length t > 0 has a Poisson distribution with parameter At. That
is,

At)*
P[Y=k]=e"\t£k—’), k=0,1,2,.... (4.2)
Thus, the average number of events occurring in any time interval of length
t is At.

Proof Let ¢t > 0. By the definition of a Poisson process the number of
events occurring in any time interval is independent of those in any nonover-
lapping interval and depends only upon the length of the given interval.
Therefore, we can assume without loss of generality, that the interval of
interest extends from 0 to . We define

P,(t) = P[N(t) =n] for each nonnegative integer n. (4.3)

It is true that no events occur by time ¢t + h only if no events occur by time
t and no events occur in the interva