
This is a volume in 
COMPUTER SCIENCE AND SCIENTIFIC COMPUTING 

Werner Rheinboldt and Daniel Siewiorek, editors 



Probability, Statistics, 
and Queueing Theory 
With Computer Science Applications 

Second Edition 

Arnold O. Allen 
Performance Technology Center 
Hewlett-Packard 
Roseville, California 

ACADEMIC PRESS, INC. 
Harcourt Brace Jovanovich, Publishers 
Boston San Diego New York 
London Sydney Tokyo Toronto 



This book is printed on acid-free paper. ® 

Copyright © 1990, 1977 by Academic Press, Inc. 

All rights reserved. 
No part of this publication may be reproduced or 
transmitted in any form or by any means, electronic 
or mechanical, including photocopy, recording, or 
any information storage and retrieval system, without 

permission in writing from the publisher. 

MINITAB is a registered trademark of Minitab, Inc. 

SAS and SAS/STAT are registered trademarks of SAS Institute, Inc. 

Mathematica is a registered trademark of Wolfram Research 

The poem by Samuel Hoffenstein on page 484 is from Crown Treasury of 
Relevant Quotations, by Edward F. Murphy. Copyright © 1978 by Edward F. 
Murphy. Reprinted by permission of Crown Publishers Inc. 

ACADEMIC PRESS, INC. 
1250 Sixth Avenue, San Diego, CA 92101 

United Kingdom Edition published by 
ACADEMIC PRESS L I M I T E D 
24-28 Oval Road, London NW1 7DX 

Library of Congress Cataloging- in-Publ icat ion D a t a 

Allen, Arnold O. 
Probability, statistics, and queueing theory: with computer 

science applications / Arnold O. Allen. — 2nd ed. 
p. cm. — (Computer science and scientific computing) 

Includes bibliographical references and index. 
ISBN 0-12-051051-0 (acid-free paper) 
1. Probabilities 2. Queueing theory. 3. Mathematical statistics. 

I. Title. II. Series. 
QA273.P7955 1990 
519.2—dc20 90-732 

CIP 

Printed in the United States of America 

90 91 92 93 9 8 7 6 5 4 3 2 1 



For my son, John, 
and my colleagues 
at the Hewlett-Packard 
Performance Technology Center 



Greek Alphabet 

A a 
B/3 

r7 A6 
E e 
ZC 
H77 

ee 
i t 
K K 

AA 
M/x 

alpha 
beta 
gamma 
delta 
epsilon 
zeta 
eta 
theta 
iota 
kappa 
lambda 
mu 

N i / 
S £ 
O o 
IITT 
P p 
ECT 
T r 
T u 
$</> 

Xx 
* V 
n {j 

nu 
xi 
omicron 
Pi 
rho 
sigma 
tau 
upsilon 
phi 
chi 
psi 
omega 

VI 



Preface 

Faith is belief without evidence in what is told by one who speaks without 
knowledge of things without parallel. 

Ambrose Bierce 

One must learn by doing the thing; for though you think you know it, you 
have no certainty until you try. 

Sophocles 

I am grateful to the many readers of the first edition of this book; the 
number of copies sold greatly exceeded my expectations. I am especially 
pleased by the number of readers who provided helpful comments, cor­
rection of typographical and other errors, and suggestions for the second 
edition. 

The genesis of the first edition of this book is my experience in teach­
ing the use of statistics and queueing theory for the design and analysis of 
computer communication systems at the Los Angeles IBM Information Sys­
tems Management Institute. After publication, the book was used for both 
technical and management courses in computer capacity planning at the 
Institute. Before attending the one-week technical course, students were 
asked to complete the IBM Independent Study Course Capacity Planning: 
Basic Models [1], which used my book as a textbook. Still later the book 
was used as one of the textbooks for the Self-Study Course Introduction to 
Computer Modeling [2]. The second edition evolved as a result of my ex­
perience in teaching courses at the IBM Information Systems Management 
Institute, the UCLA Extension Division, internal courses at the Hewlett-
Packard company, as well as in writing the Independent Study Program [1] 
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course for IBM and the Self-Study course [2] for Applied Computer Re­
search. 

The book is designed as a junior-senior level textbook on applied prob­
ability and statistics with computer science applications. While there are 
a number of examples of computer science applications, the book has been 
used successfully at a number of universities to teach probability and statis­
tics classes with no emphasis on computer science. In addition, because of 
the prevalence of personal computers, most students of any discipline have 
no difficulty understanding examples with a computer science orientation. 
The book may also be used as a self-study book for the practicing computer 
science (data processing) professional. The assumed mathematical level of 
the reader who wants to read through all the proofs and do all the exer­
cises is the traditional analytical geometry and calculus sequence. However, 
readers with only a college algebra background are able to follow much of 
the development and most of the examples; such readers should skip over 
most of the proofs. 

I have attempted to state each theorem carefully so the reader will know 
when the theorem applies. I have omitted many of the proofs but have, in 
each such case, given a reference where the omitted proof can be found.1 

With a few exceptions I have provided the proof of a theorem only when 
the following conditions apply: (a) the proof is straightforward; (b) reading 
the proof will improve the reader's understanding; and (c) the proof is not 
long. 

The emphasis in this book is on how the theorems and theory can be 
used to solve practical computer science problems. However, the book 
and a course based on the book should be useful for students who are not 
interested in computer science itself, but in using probability, statistics, 
and queueing theory to solve problems in other fields such as engineering, 
physics, operations research, and management science. 

A great deal of computation is needed for many of the examples and 
exercises in this book because of the nature of the subject matter. The use 
of a computer is almost mandatory for the study of some of the queueing 
theory models. There are several queueing theory packages available for 
solving these models, such as the Best/1 series from BGS Systems, Inc., 
the MAP system from Performance Associates, and CMF MODEL from 
Boole & Babbage, but these packages are very expensive and may not be 
available to many readers. Another simpler (and an order of magnitude 
less expensive) queueing theory package is Myriad for the IBM PC or com­
patible from Pallas International of San Jose, California. To help readers 

1 Unless the proof is given as an exercise at the end of the chapter (with hints, of 
course). 
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who have no queueing theory package available I have included a number of 
APL programs in Appendix B as an aid in making queueing theory calcula­
tions. I wrote these programs in Kenneth Iverson's APL language because 
this language was the best available for such calculations when I started 
writing the second edition of this book. I have written the programs as 
directly as possible from the equations given in the text so that they can 
easily be converted to another language such as BASIC or PASCAL. Ev­
ery APL program referred to in the text can be found in Appendix B. I 
received a copy of Mathematica in mid-1989 and wrote all new code after 
that time in Mathematica. For more traditional probability and statistical 
applications, a number of relatively low-cost packages are available for use 
on personal computers to ease the computational load for readers. We have 
demonstrated the use of some of these packages in this edition of the book 
and have some further comments about them below. 

The excellent series of books by Donald Knuth [4-6] has influenced 
the writing of this book. I have adopted Knuth's technique of presenting 
complex procedures in an algorithmic way, that is, as a step by step process. 
His practice of rewarding the first finder of any error with $2 has also been 
adopted. I have followed his system of rating the exercises to encourage 
students to do at least the simpler ones. I believe the exercises are a valuable 
learning aid and have included more than twice as many in this edition as 
in the first edition. I believe Sophocles is right: you must do at least a few 
exercises to be sure that the material is understood. 

Following Knuth, each exercise is given a rating number from 00 to 
40. The rating numbers can be interpreted as follows: 00—a very easy 
problem that can be answered at a glance if the text has been read and 
understood; 10—a simple exercise, which can be done in a minute or so; 
20—an exercise of moderate difficulty requiring 18 to 20 minutes of work 
to complete; 30—a problem of some difficulty requiring two or more hours 
of work; 40—a lengthy, difficult problem suitable for a term project. (All 
entries with ratings higher than 30 are "virtual.") 

We precede the rating number by HM for "higher mathematics" if the 
problem is of some mathematical sophistication requiring an understand­
ing of calculus, such as the evaluation of proper or improper integrals or 
summing an infinite series. The prefix C is used if the problem requires 
extensive computation, that would be laborious without computer aid such 
as a statistical package on a personal computer. T is used to indicate an 
exercise whose solution is basically tedious, even though the result may be 
important or exciting; that is, the required procedure is too complex to 
program for computer solution without more frustration than carrying it 
out manually with a pocket calculator. 

The reader is assumed to have a basic knowledge of computer hardware 
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and software. Computer illiteracy is now very rare. I recently was pleased 
to learn that a woman, who appeared to be in her eighties, kept the records 
of her women's club on her personal computer. She used an advanced data 
base management system to do it. She told me she bought an IBM PC when 
they first became available and had recently upgraded to a more powerful 
machine. 

Statistical Computer Systems We Use in This 
Book 
There are a number of valuable statistical computer systems available for 
assistance in making statistical calculations and for displaying data in vari­
ous formats. These systems are especially useful for performing exploratory 
data analysis. I chose three of them to use in this book, not because ev­
eryone agrees they are the best, but because they were available to me and 
probably are available to most readers. My comments on the three systems 
are entirely subjective; your feelings about the systems may be different. 
My comments also apply only to the versions of the systems available at the 
time the book was written. Robin Raskin [9] tested the available statistical 
software for personal computers for PC Magazine in March 1989. Two of 
the three I chose were reviewed. 

MINITAB [8], [10], [12] 
The reference manual [8] for MINITAB is very readable and provides a 
good description of the MINITAB features. The book by Ryan, Joiner, 
and Ryan [10] was used by many as a reference manual before Release 7 
and is still a valuable resource. MINITAB seems to be the statistical sys­
tem most in use by textbook writers (at least according to the MINITAB 
advertisements). I use MINITAB for several examples because MINITAB 
is widely available, easy to learn, and easy to use. Instructors may ask their 
students to obtain the Student Edition described by Schaefer and Ander­
son [12]. There are some statistical procedures, such as the Kolmogorov-
Smirnov goodness-of-fit test,2 that are not directly available in MINITAB. 
However, by using macros, you can extend the capabilities of MINITAB to 
include this test as well as most others you may read about. Macros for the 
Kolmogorov-Smirnov test applied to the normal, Poisson, and continuous 

2SAS/STAT doesn't provide a general procedure for this test either. Strangely 
enough, the newly announced Hewlett-Packard calculator, the HP-21S Sta t /Math Cal­
culator, does. 
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uniform distributions have been written by Joseph B. Van Matre of the 
University of Alabama in Birmingham. It is listed and described in the 
Minitab Users' Group Newsletter (MUG), Number 10 of September 1989. 
All macros published in MUG Newsletters are maintained on a macro li­
brary diskette, which is available, free, to members of the Minitab Users' 
Group. All the MINITAB examples in this book were run using MINITAB 
Release 7.2. 

In Raskin [9] MINITAB was one of the two Editor's Choices in the Basic 
category. The Editor's Choice Citation for MINITAB is: 

We chose MINITAB Statistical Software as Editor's Choice be­
cause it makes some wise choices in terms of what to include. 
MINITAB offers consistency and simplicity, but its excellent 
command language and macro facilities make it possible to push 
the envelope. Because it runs on so many different machines it's 
an excellent choice for the "work wherever I can find a CPU" 
student. 

Release 6 was the version of MINITAB reviewed by Raskin. Version 7.2 
has some very nice additional features including high resolution graphics. 

The EXPLORE Programs of Doane [3] 
Doane's software is designed primarily for instruction. EXPLORE has a 
main menu that can take you to a help menu, a menu to choose one of 
the 24 EXPLORE programs, or to a file edit Menu. The file system makes 
it easy to enter and modify data. For a given statistical procedure, such 
as simple linear regression, it yields more information automatically than 
many expensive statistical systems and in a more pleasing format. It is 
indeed unfortunate that EXPLORE doesn't have more statistical routines. 
Professor Doane has assured me that new editions of his book with exten­
sions to EXPLORE are in preparation. The EXPLORE examples in this 
book were done using the routines in the second edition. Since EXPLORE 
does not have much capability in calculating statistical distributions the 
Hewlett-Packard HP-21S provides a useful supplement to this package. 

SAS/STAT for IBM PCs and Compatibles [11] 
The SAS/STAT package is very powerful—it is true industrial strength. 
Unfortunately, it also is rather user-unfriendly and difficult to learn.3 The 

3 I t ran rather slowly on the 8 MHz IBM PC AT that I had in early 1989, too, and is 
noticeably slow on the 33 MHz IBM PC compatible with an Intel 80386 microprocessor 
that I had when I finished the book. 
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tutorial that is part of Release 6.03 is very good and the manuals have im­
proved dramatically over Release 6.0. One can learn how to use the system 
for at least simple applications by going through the tutorial. In addition, 
the SAS Institute has published an introductory textbook by Schlotzhauer 
and Littell [13], which explains how to use SAS Procedures such as UNI-
VARIATE, MEANS, CHART, and TTEST to perform elementary statisti­
cal processes.4 The Institute has also published a master index to the SAS 
documentation [7], which has gone a long way to alleviate the frustration 
I had with SAS/STAT 6.0—I never could guess which manual to consult. 
SAS/STAT, which, with Release 6.03, is identical to the mainframe version, 
contains a number of powerful statistical routines, each of which has sev­
eral sophisticated options. It also offers flexible output and has a built-in 
programming language that makes it possible to construct any statistical 
procedure you can imagine. 

SAS/STAT was reviewed by Frederick Barber in Raskin [9] as one of 
the advanced statistical systems available for the IBM PC. It was not the 
Editor's Choice although, Barber said, in part 

SAS computes a very wide range of descriptive and comparative 
statistics and performs ANOVA, MANOVA, factor and cluster 
analysis, plus least squares, GLM, and nonlinear regression, as 
well as many other procedures. An exhaustive set of options 
allows the user to customize the output and analyze statistical 
patterns in great depth. For the statistician who needs great 
depth and a wide range of statistical computing power, SAS is 
hard to beat. 

SAS/STAT is more powerful than MINITAB. The mainframe version 
of SAS has been popular for years with performance analysts who work on 
large mainframe computers. If you are doing statistics on a daily basis, 
you may want to learn how to use SAS. If you do, be prepared for a steep 
learning curve. As this book goes to press (June 1990) the SAS Institute 
has announced version 6.04 of SAS/STAT for IBM PCs as well as a new 
mainframe version. The SAS Institute claims the new version is easier to 
use. I have not had an opportunity to try SAS/STAT 6.04. 

All of my comments about statistical systems for the personal computer 
reflect my view of the situation in early 1990. 

4Unfortunately, it fails to tell you what commands you need to give to make the 
procedures work. This is the truly difficult part about using SAS. 
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Mathematica, a System for Doing Mathemat ics 
by Computer [14] 
Mathematica [14] is, strictly speaking, not a statistical system but rather a 
system for doing mathematics on the computer. It can be used as a super-
calculator that is able to find the value of most well-known mathematical 
functions, real or complex. It also performs symbolic calculations such as 
finding integrals, derivatives, or infinite series. Mathematica makes it very 
easy to plot graphs of mathematical functions in two or three dimensions. 
It functions as a programming language and allows you to define new math­
ematical functions in terms of those provided by Mathematica or those you 
have already defined. Mathematica became available to me in late July 
1989 when the book was almost completed. It is a remarkable system and 
had a big influence on how I finished the book. I wrote no more APL code 
but wrote the Mathematica packages that appear in Appendix D. 
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Chapter 1 

Introduction 

"Is there any point to which you would wish to draw my attention?" 
"To the curious incident of the dog in the night-time." 

"The dog did nothing in the night-time." 
"That was the curious incident," remarked Sherlock Holmes. 

Come Watson, come! The game is afoot. 
Sherlock Holmes 

This chapter is a preview of the book. As the title of the book suggests, it is 
concerned with the application of probability, statistics, and queueing the­
ory to computer science problems. The first edition was written primarily 
for the computer science (data processing) specialist or for one preparing 
for a career in this field. It was widely read by this audience but was also 
used for courses in applied probability as well as for introductory mathe­
matical statistics courses. It was used, too, for queueing theory courses for 
operations research students. With the advent of the personal computer, 
the audience broadened to include many personal computer users with an 
interest in applied probability or statistics. This edition has the same em­
phasis as the first edition but makes more extensive use of available personal 
computer software such as MINITAB, SAS/STAT, EXPLORE, APL, and 
Mathematica. We have tried to make the book practical, interesting, and 
theoretically sound. 

The book, like Julius Caesar's Gaul, is divided into three parts: Prob­
ability, Queueing Theory, and Statistical Inference. 

There are three chapters in Part One. In Chapter 2 we discuss basic 
probability theory. Probability theory is important in computer science be­
cause most areas of computer science are concerned more with probabilistic 
rather than deterministic phenomena. The time it takes to write and check 

1 
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out a computer program (especially those I write), the time it takes to run 
a program on any computer but the simplest personal computer, and the 
time it takes to retrieve information from a storage device are all examples 
of probabilistic or random variables. By this we mean that we cannot pre­
dict in advance exactly what these values will be. Such variables are called 
random variables. However, using basic probability theory, we can make 
probability estimates (that is, estimate the fraction of the time) that the 
values of a random variable will fall into certain ranges, exceed certain lim­
its, etc. Thus, we may compute the 90th percentile value of response time, 
which is the value that is exceeded only one tenth of the time. In Chapter 
2 we also discuss parameters of random variables, such as the mean or av­
erage value and the standard deviation. The standard deviation provides 
a measure of the spread of the values of the random variable about the 
mean. In the final part of Chapter 2 we discuss some powerful probabil­
ity tools, including conditional expectation, the Law of Total Probability, 
transform methods, and inequalities. Transform methods are important for 
studying random variables. The transforms we define and illustrate include 
the moment generating function, the z-transform, and the Laplace-Stieltjes 
transform. 

In Chapter 3 we study the probability distributions most commonly 
used in applied probability, particularly for computer science applications. 
We give examples of the use of all of the random variables except those used 
primarily in statistical inference, the subject of Part Three. A summary 
of the properties of the random variables studied in Chapter 3 is given in 
Tables 1 and 2 of Appendix A. In the last section of the chapter we provide 
further examples of the use of the transform methods that were introduced 
in Chapter 2. 

In Chapter 4 the important concept of a stochastic process is defined, 
discussed, and illustrated with a number of examples. This chapter was 
written primarily as a support chapter for Part Two, Queueing Theory. We 
examine the Poisson process and the birth-and-death process because they 
are extremely important for queueing theory. We finish the chapter with a 
discussion of Markov processes and chains—subjects that are important not 
only for queueing theory but for much of computer science and operations 
research. 

Part Two of this book is the subject area that is most likely to be 
unfamiliar to the reader. I didn't know queueing theory existed until I was 
tapped to teach it at the IBM System Science Institute. Queueing theory 
is a very useful branch of applied probability. However, some expressions, 
symbols, and words are used differently in queueing theory than they are 
in other areas of probability and statistics. 
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Service Facility 

Server 1 

Server 2 

* 

Server c 

Figure 1.1. Elements of a queueing system. 

Figure 1.1 shows the elements of a simple queueing system. There is a cus­
tomer population where a customer may be an inquiry to be processed by 
an interactive computer system, a job to be processed by a batch computer 
system, a message or a packet to be transmitted over a communication link, 
a request for service by an input/output (I/O) channel, etc. Customers ar­
rive in accordance with an arrival process of some type (a Poisson arrival 
process is one of the most common). Customers are provided service by 
a service facility, that has one or more servers, each capable of providing 
service to a customer. Thus, a server could be a program that processes an 
inquiry, a batch computer system, a communication link, an I/O channel, 
a central processing unit (CPU), etc. If all the servers in the service facility 
are busy when a customer arrives at the queueing system, that customer 
must queue for service. That is, the customer must join a queue (waiting 
line) until a server is available. In Chapter 5 we study the standard (one 
might say canonical) queueing systems and see how they can be applied to 
the study of computer systems. We have gathered most of the queueing 
theory formulas from Chapters 5 and 6 in Appendix C. You will find this 
appendix to be a useful reference section after you have mastered the ma­
terial in the two queueing theory chapters. The APL programs for solving 
most of the models in Appendix C are displayed in Appendix B. 

In Chapter 6, we discuss more sophisticated queueing theory models 
that have been developed to study computer and computer communication 
systems. A number of examples of how the models can be used are pre­
sented, too. Some Mathematica programs are displayed in Appendix D. 
Most of them are for the queueing network models of Chapter 6. 
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The subject matter of Part Three, statistical inference, is rather stan­
dard statistical fare but we have attempted to give it a computer science 
orientation. We also demonstrate how MINITAB, SAS, and EXPLORE 
can be used to remove much of the labor. Statistical inference could per­
haps be defined as "the science of drawing conclusions about a population 
on the basis of a random sample from that population." For example, we 
may want to estimate the mean arrival rate of inquiries to an interactive 
inquiry system. We may want to deduce what type of arrival process is 
involved, as well. We can approach these tasks on the basis of a sample of 
the arrival times of inquiries during n randomly selected time periods. The 
first task is one of estimation. We want to estimate the mean arrival rate 
on the basis of the observed arrival rate during n time intervals. This is the 
subject of Chapter 7. In Chapter 7 we learn not only how to make estimates 
of parameters but also how to make probability judgments concerning the 
accuracy of these estimates. In Chapter 7 we also study exploratory data 
analysis and some of the tools that are used to study benchmarks. 

Chapter 8 is about hypotheses testing. One of the important topics 
of this chapter is goodness-of-fit tests. We might want to test the hy­
pothesis that the arrival pattern is a Poisson arrival pattern because Pois-
son arrival patterns have desirable mathematical properties. We discuss 
and illustrate the chi-square and Kolmogorov-Smirnov tests because they 
are popular and widely used. We will also discuss a class of EDF statis­
tics called quadratic statistics because experts on goodness-of-fit tests tell 
us tests based on these statistics are more powerful than chi-square and 
Kolmogorov-Smirnov tests. In Chapter 8 we also study a number of clas­
sical statistical tests concerning means and variances. These tests can be 
used to study new paradigms or methodologies, such as those of software 
engineering or software design, to determine whether they are effective. 
We also provide an introduction to Analysis of Variance (ANOVA). Chap­
ter 8 is a chapter in which the statistical functions of MINITAB, SAS, and 
EXPLORE are particularly useful. 

Chapter 9 on regression is new to this edition of the book. Regression 
has many applications to computer science. It also provides many oppor­
tunities for making egregious errors. We attempt to show you how to make 
good use of regression without making errors. 

This completes the summary of the book. We hope you will find the 
study of this book entertaining as well as educational. We have avoided 
being too solemn. We have chosen whimsical names for mythical companies 
and people in our examples. We made the examples as practical as possible 
within the constraints of a reasonably short description. We welcome your 
comments, suggestions, and observations. My address is: Dr. Arnold O. 
Allen, Hewlett-Packard, 8050 Foothills Blvd., Roseville, California 95678. 



Part One: 

Probability* 

There once was a breathy baboon 
Who always breathed down a bassoon, 

For he said, "It appears 
That in billions of years 

I shall certainly hit on a tune." 

Sir Arthur Eddington 

'Figure provided by Mike Kury. 



Preface to Part One: 
Probability 

Probability is a mathematical discipline with aims akin to those, for 
example, of geometry or analytical mechanics. In each field we must 

carefully distinguish three aspects of the theory: (a) the formal logical 
content, (b) the intuitive background, (c) the applications. The character, 

and the charm, of the whole structure cannot be appreciated without 
considering all three aspects in their proper relation. 

William Feller 

The above quote is from William Feller's classic book.2 Many mathemati­
cians feel that Feller's is the finest mathematics book ever written; this 
author agrees. However, the revised printing of the third edition of this 
wonderful book was published in 1970 and there have been many advances 
in applied probability since then. Nevertheless, Feller's book is enjoyable 
and enlightening to peruse. It has also had a profound effect upon the at­
titude toward applied probability in the fields of mathematics, the physical 
sciences, and engineering. As Feller says in the preface to the third edition: 

When this book was first conceived (more than 25 years ago) 
few mathematicians outside the Soviet Union recognized proba­
bility as a legitimate branch of mathematics. Applications were 
limited in scope, and the treatment of individual problems often 
led to incredible complications. Under these circumstances the 
book could not be written for an existing audience, or to satisfy 
conscious needs. The hope was rather to attract attention to 

2Reprinted by permission of the publisher from An Introduction to Probability Theory 
and Its Applications, Vol. I, 3rd ed., revised printing, John Wiley, New York, 1968 by 
William Feller. 
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little-known aspects of probability, to forge links between var­
ious parts, to develop unified methods, and to point to poten­
tial applications. Because of a growing interest in probability, 
the book found unexpectedly many users outside mathematical 
disciplines. Its widespread use was understandable as long as 
its point of view was new and its material was not otherwise 
available. But the popularity seems to persist even now, when 
the contents of most chapters are available in specialized works 
streamlined for particular needs. For this reason the charac­
ter of the book remains unchanged in the new edition. I hope 
that it will continue to serve a variety of needs and, in particu­
lar, that it will continue to find readers who read it merely for 
enjoyment and enlightenment. 

In Part One of this book we set up the concepts in probability and 
stochastic processes that we will need for the rest of the book. In Chap­
ter 2 we consider the basics of probability and random variables and in 
Chapter 3 we consider a number of important probability distributions for 
applications. We also investigate the important concepts of inequalities, 
the Central Limit Theorem, and the application of transform techniques. 
In Chapter 4 we take up the important study of stochastic processes, which 
is very important for Part Two. 



Chapter 2 

Probability and Random 
Variables 

Science is founded on uncertainty. 
Lewis Thomas 

Probability is the very guide of life. 
Cicero 

2.0 Introduction 
One of the most noticeable aspects of many computer science related phe­
nomena is the lack of certainty. When a job is submitted to a batch-oriented 
computer system, the exact time the job will be completed is uncertain. The 
number of jobs that will be submitted tomorrow is probably not known, 
either. Similarly, the exact response time for an interactive inquiry system 
cannot be predicted. If the terminals attached to a communication line 
are polled until one is found that is ready to transmit, the required num­
ber of polls is not known in advance. Even the time it takes to retrieve 
a record from a disk storage device cannot be predicted exactly. Each of 
these phenomena has an underlying probabilistic mechanism. In order to 
work constructively with such observed, uncertain processes, we need to put 
them into a mathematical framework. That is the purpose of this chapter. 

Experience enables you to recognize a mistake when you make it again. 
Franklin P. Jones 

9 
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2.1 Sample Spaces and Events 
To apply probability theory to the process under study, we view it as a 
random experiment, that is, as an experiment whose outcome is not known 
in advance but for which the set of all possible individual outcomes is 
known. For example, if the 10 workstations on a communication line are 
polled in a specified order until either (a) all are polled or (b) one is found 
with a message ready for transmission, then the number of polls taken 
describes the outcome of the polling experiment and can only be an integer 
between 1 and 10. The sample space of a random experiment is the set of 
all possible simple outcomes of the experiment. These individual outcomes 
are also called sample points or elementary events. A sample space is a 
set and thus is defined by specifying what objects are in it. One way 
to do this, if the set is small, is to list them all, such as il = {1,2,3}. 
When the set is large or infinite its elements are often specified by writing 
fi = {x : P{x)}, where P(x) is a condition that x must satisfy to be an 
element of il. Thus, il = {x : P(x)} means, "il is the set of all x such 
that P(x) is true." The set of all nonnegative integers could be specified by 
writing {n : n is an integer and n > 0}. Some examples of sample spaces 
follow. 

Example 2.1.1 If the random experiment consists of tossing a die, then 
il = {1,2,3,4,5,6} where the sample point n indicates that the die came 
to rest with n spots showing on the uppermost side. D 

Example 2.1.2 If the random experiment consists of tossing two fair dice,1 

then one possible sample space il = {(1,1),(1,2),-•-,(6,6)}, where the 
outcome (i, j) means that the first die showed i spots uppermost and the 
second showed j . □ 

Example 2.1.3 If the random experiment consists of polling the termi­
nals on a communication line in sequence until either (a) one of the seven 
terminals on the line is found to be ready to transmit or (b) all the ter­
minals have been polled, the sample space could be represented by il = 
{1,2,3,4,5,6,7,8}, where an 8 signifies that no terminal had a message 
ready, while an integer n between 1 and 7 means that the nth terminal 
polled was the first in sequence found in the ready state. □ 

Example 2.1.4 If the random experiment consists of tossing a fair coin 
again and again until the first head appears, the sample space can be repre­
sented by il = { H, TH, TTH, TTTH, . . . , } , where the first sample point 

*By a fair coin or a fair die we mean, of course, one for which each outcome is equally 
likely (whatever that means). 
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corresponds to a head on the first toss, the second sample point to a head 
on the second toss, etc. □ 

Example 2.1.5 The random experiment consists of measuring the elapsed 
time from the instant the last character of an inquiry is typed on an inter­
active terminal until the last character of the response from the computer 
system has been received and displayed at the terminal. This time is often 
called the "response time," although there are other useful definitions of re­
sponse time. If it takes a minimum of one second for an inquiry to be trans­
mitted to the central computer system, processed, a reply prepared, and the 
reply returned and displayed at the terminal, then Q = {real t : t > 1}. □ 

Thus, sample spaces can be finite, as in Examples 2.1.1-2.1.3, or infi­
nite, as in Examples 2.1.4 and 2.1.5. Sample spaces are also classified as 
discrete if the number of sample points is finite or countably infinite (can 
be put into one-to-one correspondence with positive integers). The sample 
space of Example 2.1.4 is countably infinite since each sample point can be 
associated uniquely with the positive integer giving the number of tosses 
represented by the sample point. For example, the sample point TTTH 
represents four tosses. A sample space is continuous if its sample points 
consist of all the numbers on some finite or infinite interval of the real line. 
Thus, the sample space of Example 2.1.5 is continuous. 

For discussing subsets of the real line, we use the notation (a, b) for the 
open interval {x : a < x < &}; [a, b] for the closed interval {x : a < x < b}; 
(a,b] for the half-open interval {x : a < x < b}; and [a, b) for the half-
open interval {x : a < x < b}, where all intervals are subsets of the real 
line. Note that a round bracket means the corresponding end point is not 
included and a square bracket means it is included. 

An event is a subset of a sample space satisfying certain axioms (Axiom 
Set 2.2.1 described in Section 2.2). An event A is said to occur if the random 
experiment is performed and the observed outcome is in A. 

Example 2.1.6 In Example 2.1.1, if A = {2,3,5}, then A is the event of 
rolling a prime number while the event B = {1,3,5} is the event of rolling 
an odd number. D 

Example 2.1.7 In Example 2.1.2, if A = {(1,6), (2,5), (3,4), (4,3), (5,2), 
(6,1)}, then A is the event of rolling a seven. The event B = {(5,6), (6,5)} 
corresponds to rolling an 11. □ 

Example 2.1.8 In Example 2.1.3, if A = {1,2,3,4,5}, then A is the event 
of requiring five polls or less, while B = {6, 7,8} is the event of requiring 
more than five polls. □ 
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Example 2.1.9 In Example 2.1.4, A = {TTH, TTTH} is the event that 
three or four tosses are required; B = {H, TH, TTH} is the event that not 
more than three tosses are needed. □ 

Example 2.1.10 In Example 2.1.5, A = {t : 20 < t < 30} is the event 
that the response time is between 20 and 30 seconds. □ 

Since a sample space Q, is a set and an event A is a subset of fi, we 
can form new events by using the usual operations of set theory. For some 
of these operations a somewhat different terminology is used in probability 
theory than in set theory—a terminology more indicative of the intuitive 
meaning of the operations in probability theory. Some of the set operations 
and corresponding probability statements are shown in Table 2.1.1. We 
will use probability statements and set theory statements interchangeably 
in this book. 

Table 2.1.1. Set Operations and Probability Statements 

Set Operation Probability Statement 

All B At least one of A or B occurs 
A fl B Both A and B occur 
A A does not occur 
0 The impossible event 
A n B = 0 A and B are mutually exclusive 
AH B A occurs and B does not occur 
A C B HA occurs so does B 

We indicate that the outcome a; is a sample point of event A by writing 
w & A. We write A = 0 to indicate that the event A contains no sample 
points. Here 0 is the empty set, called the impossible event in probability 
theory. The impossible event, 0, is considered to be an event just as fi itself 
is. The reader should note that 0 is not the Greek letter phi but rather 
a Danish letter pronounced "ugh," the sound one makes upon receiving 
an unexpected blow to the solar plexus. It has been rumored that the 
prevalence of 0 in Danish words has been a leading cause of emphysema 
in Denmark. Professor Richard Arens of UCLA has recommended a new 
symbol for the empty set constructed by adding a second slash mark to 0 
and pronounced "uh uh," of course.2 

21 do not know how to construct this symbol with lATgX. The typesetter of the first 
edition of this book knew how to construct it. 
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To every event A there corresponds the event A, called the complement 
of A, consisting of all sample points of fl that are not in A. Thus, A is 
defined by the condition_UA does not occur." As particular cases of the 
complement, fl = 0 and 0 = fl. The concept of complement is illustrated 
by the Venn diagram of Figure 2.1.1. In each Venn diagram that follows, 
the large rectangle will represent the sample space fl, and simple geometric 
figures will be used to represent other events. A point thus represents 
an elementary event or outcome and the inside of a figure represents a 
collection of them (an event). 

0 * 
Figure 2.1.1. A and A. 

'© 
Figure 2.1.2. The event A U B. 

'(© 
Figure 2.1.3. The event A D B. 

00 
Figure 2.1.4. Mutually exclusive events. 
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With each two events A and B are associated two new events, that 
correspond to the intuitive ideas "either A or B occurs" and "both A and 
B occur." The first of these events, AUB (read: "A or S") is the ordinary 
set union consisting of all sample points that are either in A or in B or 
(possibly) in both A and B. The second event A D B (read: "A and B") is 
the ordinary set intersection, that is, all sample points which belong both 
to A and to B. If A and B have no sample points in common, that is, if 
ADB — 0, we say that A and B are mutually exclusive events. Clearly, if A 
and B are mutually exclusive, then the occurrence of one of them precludes 
the occurrence of the other. These concepts are illustrated in the Venn 
diagrams of Figures 2.1.1-2.1.4. In Figure 2.1.2, A U B is represented by 
the shaded area. A C\ B is shaded in Figure 2.1.3. The events A and B of 
Figure 2.1.4 are mutually exclusive. 

The concepts of union and intersection can be extended in a similar way 
to any finite collection of events such a s i U B U C o r i f l B n C n J ) . For 
a countable collection of events A\, A2, A3, . . . , the union IJ^Li ^ « °f t n e 

events is defined to be the event consisting of all sample points that belong 
to at least one of the sets An, n = 1,2,...; the intersection D^Li An of the 
events is the event consisting of all sample points that belong to each of 
the events An, n — 1,2, 

If every sample point of event A is also a sample point of event B, so 
that A is a subset of B, we write A C B and say that "if event A occurs, 
so does event B." In this case, B — A is defined to be the set of all sample 
points in B that are not in A. Thus, A = il — A for every event A. 

Example 2.1.11 Consider the sample space of Example 2.1.3. Let A be 
the event that at least five polls are required and B the event that not 
more than four polls are required (A = {5,6,7,8}, B = {1,2,3,4}). Then 
A U B = il and A f) B = 0, so A and B are mutually exclusive. They are 
also complements (A = B and B = A), although mutually exclusive events 
are not necessarily complementary. □ 

The heights by great men reached and kept 
Were not attained by sudden flight, 
But they, while their companions slept, 
Were toiling upward in the night. 

Henry Wadsworth Longfellow 



2.2. PROBABILITY MEASURES 15 

2.2 Probabili ty Measures 
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Figure 2.2.1. Two-dice experiment. 

In the early or classical days of probability, there was much concern with 
games of chance. Early workers in the field, such as Cardano and Pascal, 
were occupied with questions about the likelihood of winning in various 
games and in how to divide the purse if the game were discontinued be­
fore completion (called the "division problem" or the "problem of points"). 
See Ore [17] for a discussion of Pascal's role in the invention of probability 
theory and Ore [16] for a description of Cardano's work. Ore's book also 
contains a translation of Cardano's book The Book of Games of Chance. 
See Snell [23, pages 2-6] for a further discussion of the history of probability 
theory. The sample spaces for gambling problems were constructed in such 
a way that each elementary event or outcome was equally likely. In Exam­
ple 2.1.2, if the two dice are perfectly formed, each of the 36 elementary 
outcomes is equally likely to occur on any given trial of the experiment, so a 
probability of 1/36 is assigned to each sample point. Thus, for finite sample 
spaces with n equiprobable sample points, each event A was assigned the 
probability P[A\ = TIA/TI, where TIA is the number of sample points in A. 

Example 2.2.1 Consider the two-dice experiment of Example 2.1.2. We 
can construct the table of Figure 2.2.1 to help in calculating probabilities. 
Thus, if A is the event of rolling 11, we can see from Figure 2.2.1 that A 
consists of the sample points (5, 6) and (6, 5), so P[A] = n^ /36 = 2/36 = 
1/18. Likewise, if B is the event of rolling 7 or 11, P[B] = n s / 3 6 = 
(6 + 2)/36 = 2/9. Other probabilities for this experiment can be calculated 
in a similar manner. □ 

The classical definition of probability worked well for the kind of prob­
lem for which it was designed. However, the classical theory would not 
suffice to assign probabilities to the events of Example 2.1.3 because the 
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elementary events are not equiprobable. Likewise, it would not help in Ex­
amples 2.1.4 or 2.1.5, because these sample spaces are infinite. The classical 
definition has been generalized into a set of axioms that every probability 
measure should satisfy in assigning probabilities to events. Some additional 
conditions, however, must be imposed on the collection of events of a sample 
space before we can assign probabilities to them. 

The family T of events of a sample space SI is assumed to satisfy the 
following axioms (and thus form a cr-algebra): 

Axiom Set 2.2.1 (Axioms of a a-Algebra)3 

A l 0 and Q, are elements of T. 

A2 If A G T, then A e f . 

A 3 If Ai, A2, A3,... are elements of T, so is U^Li ^Ji­

lt can be shown that these axioms also imply that, if each of the events 
A\,Ai,... belongs to T, then D^Li An

 1S a n element of J7, and similarly 
for finite intersections (see Exercise 7). Also, A\, U • • • U An is in T if each 
Ai is. Likewise, if A, B are in T, then B — A = B C\ A and thus is in T. 

A probability measure P\\, regarded as a function on the family T of 
events of a sample space il, is assumed to satisfy the following axioms: 

Axiom Set 2.2.2 (Axioms of a Probability Measure) 

P I 0 < P[A] for every event A. 

P 2 P[fi] = 1. 

P 3 P[A U B) = P[A] + P[B] if the events A and B are mutually exclusive. 

P 4 If the events A\, A2, A3,... are mutually exclusive (that is, Ai D Aj = 0 
if i ^ j), then 

IK 
L n = l 

= y£P[An]. 
n = l 

It is immediate from P 3 by mathematical induction that for any finite 
collection Ai, A2, ■ ■ ■, A„ of mutually exclusive events 

P[AX U i 2 U - - U 4 ] = P[Ai] + ■■■ + P[An]. □ 
3Here we use the symbol 6 in the usual set theoretic sense; that is, it means "is an 

element o f or "belongs to." 
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Although there is not general agreement among statisticians and philoso­
phers as to exactly what probability is, there is general agreement that a 
probability measure P[-] should satisfy the above axiomsT The axioms are 
satisfied for the classical theory defined above. These axioms lead imme­
diately to some consequences that are useful in computing probabilities. 
Some of them are listed in the following theorem. 

Theorem 2.2.1 Let P[-] be a probability measure defined on the family T 
of events of a sample space il. Then 

(a) P[0] = O; 

(b) P[A] = 1 - P[A] for every event A; 

(c) P{A U B] = P[A] + P[B] - P[A n B] for any events A, B; 

(d) A C B implies P[A] < P[B] for any events A, B. 

Proof (a) A U 0 = A. A and 0 are mutually exclusive (A D 0 = 0) so, by 
Axiom P 3 , P[A] = P[A U 0] = P[A] + P[0]. Hence, P[0] = 0. 

(b) A and A are mutually exclusive by the definition of A. Hence, by 
Axioms P 2 and P 3 , 

1 = P[fi] = P[A UA] = P[A\ + P[A]. 

Hence, 
P[A] = 1 - P[A]. 

(c) A U B is the union of the mutually exclusive events A D B, A D B, 
and A D B; that is, 

A U B = (A n B) U (A n B) U (A D B). 

Therefore, 

P[A UB} = P[A flB] + P[A HB] + P[A D B]. (2.1) 

In addition, A l~l B and A n B are disjoint events whose union is A. Hence, 

P[A) = P[A n B] + P[A n B]. (2.2) 

Similarly, 
P[B] = P[A DB] + P[A n B]. (2.3) 

Adding (2.2) to (2.3) yields 

P[A] + P[B] = 2Ppl n B] + P[A HB] + P[A n B]. (2.4) 
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Substituting (2.1) into (2.4) yields 

P[A] + P[B) = P[A UB] + P[A n B) (2.5) 

or 
P[A \JB) = P[A] + P[B] - P[A n B). (2.6) 

(d) Since A C B, B is the union of the disjoint events A and B — A. 
Thus, 

P[B] = P[A) + P[B - A}. (2.7) 

Since P[B - A) > 0, this means that P[A) < P[B}. ■ 

Example 2.2.2 A collection of 100 computer programs was examined for 
various types of errors (bugs). It was found that 20 of them had syntax 
errors, 10 had input/output (I/O) errors that were not syntactical, five had 
other types of errors, six programs had both syntax errors and I/O errors, 
three had both syntax errors and other errors, two had both I/O and other 
errors, while one had all three types of error. A program is selected at 
random from this collection, that is, it is selected in such a way that each 
program is equally likely to be chosen. Let S be the event that the selected 
program has errors in syntax, / be the event it has I/O errors, and O the 
event that it has other errors. Table 2.2.1 gives the probabilities associated 
with some of the events. 

The probability that the program will have a syntax error or an I/O 
error or both is 

p[sui] = P[s\ + P[i]-P[sni] 
= ^ + i°__A = î = A , by Theorem 2.2.1(c). 

100 100 100 100 25' J w 

The probability that it will have some type of error is given by 

P[SUlUO] = P[S] + P[I] + P[0] - P[SnI] 

-P[S no]- P[i n o] + P[S n / n o] 

100 + 100 + 100 100 100 100 + 100 
25 _ 1 
Too ~ i' 
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In making the last calculation we used the formula 

P[AUBUC] = P[A) + P[B] + P[C] - P[A n B] 

-p[A n c] - P[B nc] + P[AnBn C}. 

This formula follows from Theorem 2.2.1(c) and the distributive law (A U 
B)DC = (AnC)U(Bf)C) (see Exercises 3 and 4). □ 

Table 2.2.1. Probabilities for Example 2.2.2 

Event 5 I 0 S DI S DO I DO S DI flO 
Prob. 20/100 10/100 5/100 6/100 3/100 2/100 1/100 

Sometimes probabilities are stated in terms of odds, especially by profes­
sional gamblers or bookmakers. If an event has probability P[A] of occur­
ring, the odds for A are denned by the following ratio: 

odds for A = 1^ip]
[Ay (2-8) 

and the odds against A by 

1 — P\A] 
odds against A = L J . (2.9) 

P[A\ 

The odds are expressed, whenever possible, by the ratio of whole num­
bers. For example, if P[A] = | , then 

odds for A = —— = -, 
2/3 2 ' 

and we use the notation 1:2 for these odds (read as "one to two"). In this 
case the odds against A are 2:1. It is easy to show that, if the odds for the 
event A are a : b, then 

P[A] = ^ - b . (2.10) 

Thus, for example, if event A has odds 7:3 against, it has odds 3:7 for and 
P[A] - 3/(3 + 7) = 0.3. 

Bookmakers make this sound even more complicated by telling the bet­
tor the odds against an event rather than the odds for it. The numerator 
in the odds statement then reflects the profit on a successful bet in the 
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amount of the denominator. Thus, a $2 wager at 7:2 odds (against) will, if 
successful, result in the return of the $2 stake plus a $7 profit. The Odds 
On Virtually Everything, (Verstappen [24]), does do much of what the title 
suggests. For example, it claims that the odds are 423:1 against becoming 
a millionaire in the United States. (However, there are 5,262 citizens for 
every millionaire in Wyoming compared to approximately one millionaire 
for every 37 citizens in Idaho.) (See also Siskin and Staller [22] for other 
estimates of odds on everyday happenings.) 

For probability calculations involving finite sample spaces, we need some 
results from combinatorial analysis. 

How do I love thee? 
Let me count the ways. 

Elizabeth Barrett Browning 

The best way to be brief is to leave things out. 
A. S. C. Ehrenberg 

2.3 Combinatorial Analysis 
Combinatorial analysis is the science of counting—the number of elements 
in prescribed sets, the number of ways a particular selection can be made, 
etc. 

One activity that is frequently employed in probability and statistics is 
drawing a few elements or items (a sample) from a collection or source (a 
population). Such a selection can be made with or without replacement. 
For example, if two cards are to be drawn from a 52-card bridge deck4 

without replacement, one card is removed and then another without putting 
the first card back. Drawing with replacement requires that a card be 
drawn, recorded, and returned to the deck before the second card is drawn, 
so that the two cards drawn may be identical. We assume in all drawing, 
with or without replacement, that the collection fi from which a drawing 
is made consists of n distinct objects Oi,02,- ■ ■ ,On- A permutation of 
order k is an ordered selection of k elements from fl, where 0 < k < n. 
A combination of order A: is an unordered selection of k elements from SI, 
that is, a subset of k elements. The selections for both permutations and 
combinations can be made with or without replacement but are assumed 
to be made without replacement, unless otherwise stated. 

4For the definition of a "bridge deck" see the discussion just after Exercise 13 at the 
end of this chapter. 
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Example 2.3.1 Suppose fi = {x, y, z} and we draw two letters from SI (k = 
2). There are nine permutations of order 2 with replacement: 

xx, xy, xz, yx, yy, yz, zx, zy, zz. (2.11) 

There are six permutations made without replacement: xy, xz, yx, yz, zx, 
zy. There are six combinations made with replacement: xx, xy, xz, yy, 
yz, zz (the permutations xy and yx, for example, are not distinguished, be­
cause combinations are unordered). There are three combinations without 
replacement: xy, xz, yz. D 

One of the fundamental tools in combinatorics is the multiplication prin­
ciple, which we state formally as a theorem. 

Theorem 2.3.1 (Multiplication Principle) If a task A can be done in m 
different ways and, after it is completed in any of these ways, task B can 
be completed in n different ways, then A and B, together, can be performed 
in m x n ways. 

Corollary Suppose k tasks A\,A-i,... ,Ak are to be done and that A\ can 
be completed in n\ ways, A2 in n2 ways after Ai is completed, A3 in n^ ways 
after Ai and A?, are completed, .. .,Ak in nk ways after Ai, A2, ■ ■ •, Ak-i 
are completed. Then the total task, Ai,A2,. ■., Ak in succession, can be 
performed in n\ x n2 x • • • x ra^ ways. 

Proof The corollary follows immediately from the theorem by mathemat­
ical induction. The theorem itself follows from simple enumeration; that is, 
it is completely obvious. ■ 

Hereafter we will refer to the multiplication principle, even when, strictly 
speaking, we use the corollary to it. 

We define n! (pronounced "n factorial") for each nonnegative integer n 
by 0! = l ,n! = n(n - 1)! for n > 0. Thus l! = 1,2! = 2,3! = 6,4! = 24, 
etc., and we can write 

n! = n x (n — 1) x (n — 2) x • • • x 2 x 1. 

Theorem 2.3.2 The number of permutations ofn elements, taken k at a 
time, without replacement, is 

P(n, k) = " ' = n(n - l ) (n - 2) • • • (n - k + 1). (n — K)\ 

With replacement allowed, the number of permutations is nk. 
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Proof The first element in the permutation can be selected in n different 
ways from the n elements in fi. After the first selection is made, there 
are n — 1 elements left in fi from which to make the second selection if 
replacement is not allowed. After the second selection, there are n — 2 
elements left in fl from which to make the third selection, etc. Hence, by 
the multiplication principle, 

P(n, k) = n{n - l )(n - •" • • • (n - fc + 1) = " ' 
(n-k)V 

If replacement is allowed there are n choices for each selection, so 

P(n,h) = nk. ■ 

Both the symbols C(n, k) and (£) are used to designate the number of 
combinations of k objects selected from a set of n elements. 

Theorem 2.3.3 There are 

<*-*>-(;)-«<£ k)\ 

combinations of n objects, taken k at a time without replacement. 

Corollary (£) is the coefficient of xkyn~k in the expansion of (x + y)n, 
that is, 

(* + y)n = £(fc)*V- fc. 

(This is why (£) is often called a binomial coefficient.) 

Proof of Theorem If replacement is not allowed, each combination of k 
elements forms &! permutations of order k. Hence, 

(kl)^j=P(n,k) or y = n ^ = _ _ . ■ 

Proof of Corollary (x + y)n can be written as 

(x + y)(x + y)---(x + y) (n factors), 

and the coefficient of xkyn~k in the expansion is the number of ways we 
can choose x from k of these factors and y from the remaining n — k factors. 
This is precisely (£). ■ 
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Example 2.3.2 Suppose 5 terminals are connected to an on-line computer 
system by attachment to one communication line. When the line is polled 
to find a terminal ready to transmit, there may be 0 ,1 , 2, 3, 4, or 5 terminals 
in the ready state. One possible sample space to describe the system state 
is fi = {(xi,X2,X3,X4,x5): each #j is either 0 or 1}, where Xi = 1 means 
"terminal i is ready" and X{ = 0 means "terminal i is not ready." The sam­
ple point (0,1,1,0,0) corresponds to terminals 2 and 3 ready to transmit 
but terminals 1, 4, and 5 not ready. By the multiplication principle, the 
number of sample points is 25 = 32, since each x» of (x\,X2,X3,X4,xs) can 
be selected in 2 ways. However, if we assume that exactly 3 terminals are 
in the ready state, then 

fi = {(ii,X2,X3,a;4,X5) : exactly 3 of the #j's are 1 and 2 are 0}. 

In this case the number of sample points of ft is the number of ways that 
the three terminals that are ready can be chosen from the five available, 
that is, 

© - 5! _ _5!_ _ 5 x 4 
~ 3!(5 - 3)! ~ 3!2! 2 ' 

If the terminals are polled sequentially until a ready terminal is found, the 
number of polls required can be 1, 2, or 3. Let A\,A2,A% be the events 
that the required number of polls is 1, 2, 3, respectively. Ai can occur only 
if X\ = 1 and the other two l 's occur in the remaining 4 positions. Hence, 
the number of sample points favorable to -Ai,?ii, is calculated as 

/ 4 \ 4! 4 x 3 , , „ . „ . m 6 
TXX = ( „ ) = -—T = — — = 6 and PlAt] = — = —. 

\2J 2!2! 2 l 1J n 10 

A2 can occur only if x\ = 0, X2 = 1, and the remaining two l 's are dis­
tributed in positions 3 through 5. Hence, 

Similarly, 

P[M] = 

We have assumed, of course, that 
the ready condition. D 

10 10' 

each terminal is equally likely to be in 
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Since many have trouble remembering the difference between a permu­
tation and a combination, as well as the symbols used, we provide Table 
2.3.1 as a quick reference guide. 

Table 2.3.1. Permutations and Combinations 
Permutations Combinations 

Number of ways of selecting k items out of n items 
Repetitions are not allowed 

Order is important 
Arrangements of n items 
taken A; at a time 

P(n L.\ _ n. 
r\n,K) — 

(n — k)\ 

Order is not important 
Subsets of n items 
taken A; at a time 

c ( n j.) _ (n\ _ ™! 

~V" '"V \kj k\(n-k)\ 

Is life so dear or peace so sweet, as to be purchased at the price of chains 
and slavery? Forbid it, Almighty God! I know not what course others may 

take, but as for me, give me liberty or give me death! 
Patrick Henry 

2.4 Conditional Probability 
It is often useful to calculate the probability that an event A occurs when 
it is known that an event B has occurred, where B has positive probabil­
ity. The symbol for this probability is P[A|B] and reads "the conditional 
probability of A, given 5 . " 

Example 2.4.1 If, in Example 2.2.2, it is known that the program that 
was drawn has an error in syntax, what is the probability that it has an 
I/O error, also? 

Solution Twenty programs have errors in syntax, and six of these also have 
I/O errors. Hence, the required probability is 6/20 = 3/10. The knowledge 
that the selected program has a syntactical error effectively reduced the 
size of the sample space from 100 to 20. □ 

In general, to calculate the probability that A occurs, given that B 
has occurred, means reevaluating the probability of A in the light of the 
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information that B has occurred. Thus, B becomes our new sample space 
and we are interested only in that part of A that occurs with B, that is, 
AD B. Thus, we must have the formula 

if P[B] > 0. The conditional probability of A given B is not defined if 
P{B] = 0. In (2.12), P[A n B] was divided by P[B] so that P[B\B] = 1, 
making P [ | 5 ] a probability measure. The event B in (2.12) is often called 
the conditioning event. 

Equation 2.12 can be used to make the probability calculation in Ex­
ample 2.4.1, with B the event that the program has at least one error in 
syntax and A the event that the program has at least one I/O error. Then, 

P[B) 20/100 20 10' 

as before. 
Equation 2.12 can be rewritten in a form called the multiplication rule. 

Theorem 2.4.1 {Multiplication Rule) For events A and B 

P[A DB} = P[A]P[B\A], (2.13) 

ifP[A) # 0 , and 
P[A r\B] = P[B]P[A\B], (2.14) 

ifP[B] / 0. (If either P[A] = 0 or P[B] = 0 then P[ADB] = 0by Theorem 
2.2.1(d).) 

Corollary (General Multiplication Rule) For events Ai,A2,... ,An, 

P[A1nA2n---nAn] = P[A1]P{A2\A1)P[A3\AlnA2)---
xPlAnlAiD-'-DAn^} (2.15) 

provided all the probabilities on the right are defined. A sufficient condition 
for this is that P[At n A2 (~l • • • D An-i] > 0, since P[Ai] > P[Ax D A2] > 
■ ■■>p[A1nA2n---nAn-1]. 

Proof Equations 2.13 and 2.14 are true by the definition of conditional 
probability, (2.12). The corollary follows by mathematical induction on n: 
For n = 2 the result is the theorem and Thus, is true. Now suppose the 
corollary is true for n — k > 2 and Ai, A2,.. ■ ,Ak,Ak+i are events. Let 
A = Ax D A2 n . . . D Ak and B = Ak+i-
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Then, by (2.13), 
p[Ai n A2 n • • • n Ak n Ak+i] = P[A n B] = P[A]P[B\A] 

= P[A1]P[A2\A1]P[A3\A1nA2}---
xp[Ak\Ain---nAk-!] 
xPlAk+i^n-'-DAk], 

where the last equality follows from the inductive assumption that 

P ^ n ^ n . - n 4 ] = P^PIA^A^PIA^A! n A2] ■ ■ ■ 
xP[Ak\AinA2n---nAk-i]. 

This completes the proof. ■ 

Example 2.4.2 Suppose a survey of 100 computer installations in a cer­
tain city shows that 75 of them have at least one brand X computer. If 
three of these installations are chosen at random without replacement, what 
is the probability that each of them has at least one brand X machine? 

Solution Let Ai,A2,A$ be the event that the first, second, third, selec­
tion, respectively, has a brand X computer. The required probability is 

P[AX n i 2 n A3] = PlAjPlAalAilPlAilA! n A3] 

by the general multiplication rule. 

This value is 
75 74 73 „ ,„„ 

x — x — = 0.418, 
100 99 98 

which is somewhat lower than intuition might lead one to believe. D 

One of the main uses of conditional probability is to assist in the calcu­
lation of unconditional probability by the use of the following theorem. 

Theorem 2.4.2 (Law of Total Probability) Let Ai,A2,...,An be events 
such that 

(a) AinAj=$ifi^j (mutually exclusive events), 

(b) P[Ai]>0,» = l , 2 , . . . , n , 

(c) A1l)A2U---UAn = fi. 

(A family of events satisfying (a)-(c) is called a partition of ft.) 
Then, for any event A, 

P[A] = PlA^PWAx] + P[A2]P[A\A2] + ■■■ + P[An)P[A\An\. (2.16) 
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Proof Let B* = AnAt,i = 1 ,2 ,3 , . . . ,n. Then BiflBj = 0 if i ^ j because 
the events A\, A2,..., An are mutually exclusive, and 

A = BiUB2U---UBn, (2.17) 

because each element of A is in exactly one Bj. 

Hence, 
P[A] = P[Bl) + P[B2) + ■■■ + P[Bn]. (2.18) 

But 

P[Bi) = P[A D At] = P[Ai]P[A\Ai}, i = 1,2, . . . , n. (2.19) 

Substituting (2.19) into (2.18) yields (2.16) and completes the proof. ■ 

Example 2.4.3 Inquiries to an on-line computer system arrive on five 
communication lines. The percentage of messages received from lines 1, 
2, 3, 4, 5, are 20, 30, 10, 15, and 25, respectively. The corresponding prob­
abilities that the length of an inquiry will exceed 100 characters are 0.4, 
0.6, 0.2, 0.8, and 0.9. What is the probability that a randomly selected 
inquiry will be longer than 100 characters? 

Solution Let A be the event that the selected message has more than 100 
characters and Ai the event that it was received on line i (i = 1,2,3,4,5). 
Then, by the law of total probability, 

P[A] = P[Ai)P[A\Ai) + --- + P[As]P{A\A5) 
= 0 .2x0.4 + 0 .3x0 .6 + 0 .1x0 .2 

+ 0.15 x 0.8 + 0.25 x 0.9 = 0.625. □ (2.20) 

Two events A and B are said to be independent if P[A(1B] = P[A]P[B]. 
This implies the usual meaning of independence; namely, that neither event 
influences the occurrence of the other. For, if A and B are independent (and 
both have nonzero probability), then 

PWA]=^=mm,P[B]. (2,2) 
The concept of two events A and B being independent should not be 

confused with the concept of their being mutually exclusive. In fact, if A 
and B are mutually exclusive, 

0 = P[0] = P[A n B], 
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and thus, P[A f") B] can be equal to P [ J 4 ] P [ B ] only if at least one of them 
has probability zero. Hence, mutually exclusive events are not independent 
except in the trivial case that at least one of them has zero probability.5 

The next example ties together some of the concepts discussed so far. 

Example 2.4.4 Suppose that a certain department has 3 unbuffered ter­
minals, that can be connected to a computer via 2 communication lines. 
Terminal 1 has its own leased line while terminals 2 and 3 share a leased line 
so that at most one of the two can be in use at any particular time. During 
the working day terminal 1 is in use 30 minutes of each hour, terminal 2 
is used 10 minutes of each hour, and terminal 3 is used 5 minutes of each 
hour—all times being average times. Assuming the communication lines 
operate independently, what is the probability that at least one terminal is 
in operation at a random time during the working day? If the operation 
of the two lines is not independent with the conditional probability that 
terminal 2 is in use given that terminal 1 is in operation equal to 1/3, and 
the corresponding conditional probability that terminal 3 is in use equal to 
1/12, what is the probability that at least one line is in use? 

Solution Case 1: The lines operate independently. Let A, B, C be the 
events that terminals 1, 2, 3, respectively, are in use. The event that the 
first line is in use is A and the event that the second line is in use is BUC, 
and these events are independent. The event U, that at least one terminal 
is in use, is A U (B U C). 

By Theorem 2.2.1(c), 

P[U] = P[A U(BU C)} = P[A] + P[B U C] - P[A D(BU C)}. (2.23) 

By the independence of A and BUC, 

P[A n ( B U C)] = P[A]P[B U C]. (2.24) 

Substituting (2.24) into (2.23) yields 

P[U] = P[A] + P[B U C] - P[A)P[B U C\. (2.25) 

Since B and C are mutually exclusive, Axiom P 3 yields 

P[B UC} = P[B) + P[C] = M + A = I . (2.26) 

Since P[A] = 0.5, substitution into (2.25) gives 

P[U] = 0.5 + 0.25 - 0.5 x 0.25 = 0.625. (2.27) 
5Since the occurrence of either of these events precludes the occurrence of the other, 

we would not expect them to be independent on purely intuitive grounds. 
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Case 2: The communication lines are not independent. In this case 
(2.23) still applies but P[A fl(BU C)] has the formula, 

P[A n (B U C)\ = P[(A n B) U (A D C)], (2.28) 

by the distributive law for events (see Exercise 3). 
The events A D B and .A D C are mutually exclusive, since B and C are. 

Hence, 

P[A n (B u c)] = P[(>1 n 5) u (A n C)] = P[i4 nB] + p[4 n c] 
= P[A]P[B\A] + P[A]P[C\A] = ±x± + ±x± 

= ^ . (2-29) 

by the multiplication rule. Substituting (2.29) into (2.23) gives 

pfc/] = ^ + i-2i = i = 0 - 5 4 2 D (2-30) 

Theorem 2.4.3 (Bayes' Theorem) Suppose the events A\,A2,..., An form 
a partition of SI (for the definition of a partition, see Theorem 2.4.2). Then, 
for any event A with P[A] > 0, 

PlA,A] = P[Aj]P[AM 
nAtiAi P[A1}P{A\A1] + P[A2]P[A\A2] + ■■■ + P[An]P[A\An]' 

i = l ,2 , . . . ,n . (2.31) 

Proof For each i, 

P M l M I = ™ = 3d™. (232) 

Equation 2.31 now follows from (2.32) by applying the law of total proba­
bility, Theorem 2.4.2, to calculate P[A]. ■ 

The P[J4J],» = 1,2,...,n, are called prior (or a priori) probabilities 
and the P[.4j|.A], i = 1,2,..., n, are called posterior (or a posteriori) prob­
abilities. To calculate the posterior probabilities using Bayes' theorem, we 
must know both the prior probabilities P[Ai], P[A2], ■ ■ ■, P[An] and the 
conditional probabilities 

P[A\A1],...,P[A\An}. 
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Bayes' theorem6 is often called Bayes' rule or Bayes' formula. We give some 
examples of its use below. 

One important application of Bayes' theorem is in screening tests. We 
use the terminology of the excellent paper by Gastwirth [9]. A screening test 
is used to determine whether a person belongs to the class D of those who 
have a specific disease such as cancer or AIDS. The test result that indicates 
that the person is a member of class D is denoted by S; a result indicating 
nonmembership is denoted by S. The accuracy of a test is specified by two 
probabilities. The first is called the sensitivity of the test, denned to be the 
probability that a person with the disease is correctly diagnosed, or 

V = P[S\D}. 

The second is called the specificity, denned to be the probability that a 
person who does not have the disease is correctly diagnosed, or 

6 = P\S\~D]. 

For good tests both T) and 6 should be very close to one. Another item 
of interest is -K = P[D], that is, the probability that a randomly selected 
person in the population has the disease. The most critical problem in 
screening tests, as we shall see in the example below, is that when it is 
small there can be a large number of false positives, that is healthy people 
whose test results indicate they have the disease (are members of D). The 
probability of this happening to a healthy individual is 

P[S\D] = 1 - P[S\D] = l -6» . 

The probability of most interest to a person who takes the test and gets a 
positive reading (the result 5) is the probability that such a person actually 
has the disease. By Bayes' theorem this is 

P[D\S\ = rWP[s\D] 
P[D}P[S\D] + P[D]P[S\D) 

7T7J 

7rij + ( l - 7 r ) ( l - 0 ) ' 
(2.33) 

P[£>|5] is called the "predictive value of a positive test" and abbreviated 
PVP. Gastwirth [9] cites a study of the ELISA test for AIDS used to screen 
donated blood for the AIDS antibody in which the estimated value for r\ 
was 0.977 and for 9 was 0.926. 

Named for the Reverend Thomas Bayes; it was published (posthumously) in 1763. 
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Example 2.4.5 Suppose the ELISA test mentioned above is used to screen 
donated blood from a population in which the probability of an individual 
having the AIDS antibody is 0.0001. Suppose T? = 0.977 and 6 = 0.926. 
Then, by (2.33) 

P[D\S\ = ° 0 0 0 1 X ° 9 7 7 = 0.001319. 
1 ' J 0.0001 x 0.977 + 0.9999 x 0.074 

If this test were performed on 100,000 blood samples, there would be about 
100,000 x 0.0001 = 10 with the AIDS antibody of which 9.77 would be 
diagnosed correctly, on the average. However, of the 99,990 samples with 
no antibody, 99,990 x 0.074 = 7,399.26 would be incorrectly diagnosed as 
having the antibody. Note that 

9 77 
= 0.001319. 9.77 + 7,399.26 

Fortunately, there is another (more expensive) test that can be used to 
confirm or reject positive ELISA tests. □ 

Example 2.4.6 Suppose a pair of fair dice are tossed. Let A be the event 
that "the first die turns up odd," B be the event that "the second die turns 
up odd," while C is the event "the total number of spots showing uppermost 
is odd." Then clearly A and B are independent with P[A] = P[B\ = \. 
From Figure 2.2.1 it is clear that P[C] = \. Given that A has occurred, C 
can occur only if the second die turns up even. Hence, 

P[C\A] = \ 

and, similarly, 

Hence, 

and 

P[C\B] = \ . 

P[C\A] = P[C), 

P[C\B) = P[C], 

so the events A and C are independent, as are B and C. (We showed 
earlier that A and B are independent.) Thus, the three events A, B, C are 
pairwise independent. Since C cannot occur if A and B both do, 

P[AnBDC} = 0. 
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However, 

P[A)P[B)P[C) = ^ * i = i , 

so that 
P[ADBnC}^ P[A]P[B]P[C}. □ 

Definition 2.4.1 The events Ai,A2,... ,An are mutually independent if 

p [ ^ n ^ ] = P [ ^ ] P [ ^ ] , 
p[Ai n A, n >lfe] = P ^ P ^ - J F ^ * ] , 

P[^! n A 2 n . . . n 4 ] = P[^i]P[42] • • • P[An\ 
for all combinations of indices such that 

l = i < j < • • • < & < n. 

This definition can be extended to an infinite sequence of events as follow: 

Definition 2.4.2 Given an infinite sequence of events A\,A2,---, such 
that the events A\, A2,..., An are mutually independent for every n, then 
Ai, A2,... is said to be a sequence of independent events. 

We note that the events of Example 2.4.6 are pairwise independent but 
not mutually independent. 

Example 2.4.7 (The Birthday Problem) This problem is one of the most 
famous in probability theory and illustrates the fact that our intuition can 
sometimes lead us astray. Suppose there are n people in a room, that no 
one was born on February 29th, and that this is not a leap year. Everyone 
can see that, if n > 365, then at least two people have the same birthday; 
that is, have their birthdays on the same month and same day of the month. 
(The year is not considered.) Now suppose n is at least 2 but less than 365 
(2 < n < 365). Then: 

(a) What is the probability that at least two people have the same birth­
day? 

(b) What is the smallest n such that this probability exceeds 0.5? 

Solution We assume there are 365 equally likely days for each person's 
birthday.7 Thus, by the multiplication principle (the corollary to Theorem 

7Berresford [3] has shown that adjusting birth date frequencies to match actual ob­
served frequencies does not significantly change the results of this exercise. In particular, 
it does not change the value of n in (b). 
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2.3.1), there are 365" possible choices for the birthdays of n people. Let 
the sample space 0, consist of the 365" n-tuples (hi, fo,..., kn) where each 
ki is an integer between 1 and 365. (We assume the days of the year are 
numbered from 1 to 365 with 1 representing January 1 and 365 representing 
December 31.) Then hi represents the birthday of the first person, &2 
represents the birthday of the second person, . . . , kn represents the birthday 
of the nth person. We assume each of the sample points has probability 
1/365™. Let E be the event that no two of the n people have the same 
birthday, that is, if (&i, &2, • - ■, £n) is a sample point of E, then 

ki ^ kj for i ^ j . 

Hence, if A; = (&i,fc2,..., kn) € E, k\ can assume 365 possible values, fo 
can assume 364 values because it must be different from kx, 63 can assume 
363 possible values because it must be different from both ki and &2, ■ • • , 
kn can assume 365 — (n — 1) = 365 — n + 1 possible values. Therefore, by 
the multiplication principle, the number of sample points in E is 

365 x 364 x 363 x •• • x (365 - n + 1). 

If we let qn be the probability that no two of the n people have the same 
birthday, then 

365 x 364 x 363 x ■ • • x (365 - n + 1) 
Qn = P[E} = ^ 

The above formula for qn could also be derived using the general multipli­
cation rule. Let pn be the probability that at least two people have the 
same birthday. Then 

Pn = 1 ~qn-

This is the solution to (a). Some values of pn are shown in Table 2.4.1, 
below. It is rather surprising to most people to find that the answer to (b), 
above, is only 23. We have verified this fact, experimentally, in a number of 
classes taught at the Los Angeles IBM Information Systems Management 
Institute. We found that in classes of 30 or more students multiple birthdays 
were very common. With 40 or more students we almost always found 
two or more students with the same birthday. Moser [15] discusses more 
surprises concerning the birthday problem. □ 
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Table 2.4.1. Birthday pn 

n 

2 
3 
5 
10 
15 
20 
22 

Pn 

0.00274 
0.00820 
0.02714 
0.11695 
0.25290 
0.41144 
0.47570 

n 
23 
25 
30 
40 
50 
75 
100 

Pn 

0.50730 
0.56870 
0.70632 
0.89123 
0.97037 
0.99972 
1.00000 

If a man does not keep pace with his companions, perhaps it is because he 
hears a different drummer. Let him step to the music that he hears, 

however measured or far away. 

Henry David Thoreau 

2.5 Random Variables 
In many random experiments we are interested in some number associated 
with the experiment rather than the actual outcome. Thus, in Example 
2.1.2, we may be interested in the sum of the numbers shown on the dice. 
In Example 2.3.2 we may be interested in the number of polls taken to 
find the first ready terminal. We are thus interested in a function that 
associates a number with the outcome of an experiment—such a function 
is called a random variable. Formally, a random variable X is a real-valued 
function defined on a sample space fl. Some examples of random variables 
of interest to computer science follow. 

Example 2.5.1 Let X be the number of jobs processed by a computer 
center in one day. The sample space fl might consist of collections of job 
numbers—an outcome is the set of job numbers of jobs run during the day. 
(We assume each job number is unique.) Thus, if u) = { x\,#2> • • • , x n } is 
a sample point consisting of the set of job numbers of jobs run during the 
day, then X(u)) = n. O 

Example 2.5.2 Let X be the number of communication lines in operation 
in an on-line computer system of n lines. The sample space fi could be 
the collection of n-tuples (x\,X2, ■.. ,xn) where each Xi is 1 if line i is in 
operation and otherwise x* is 0. □ 
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To avoid cumbersome notation, we will use abbreviations to denote some 
special events. If X is a random variable and a; is a real number, we write 

X = x 

for the event 
{ i ; : u £ ( l and X(u) = x}. 

Similarly, we write 
X <x 

for the event 
{w : o> € fl and X(u) < x}, 

and 
y < X <x 

for the event 
{u : w € fi and y < X(UJ) < x}. 

Another property required of a random variable is that the set X < x be 
an event for each real x, that is, X < x be an element of T for each real x.8 

This is necessary so that probability calculations can be made. A function 
having this property is said to be a measurable function or measurable in 
the Borel sense (see Cramer [5, page 37]). 

For each random variable X we define its distribution function F for 
each real x by 

F(x) = P[X < x]. 

Some intuitively clear properties of a distribution function are stated in the 
following proposition. 

Proposition 2.5.1 (Properties of a Distribution Function) 

D l F is a nondecreasing function; that is, x < y implies F(x) < F(y). 

D2 limx^+00 F(x) = 1. 

D 3 l i m ^ - o o F(x) = 0. 

Proof For the proof of Proposition 2.5.1, see Apostol [1]. ■ 

8Recall, by Axiom Set 2.2.1, that F is the family of events in fi. 



36 CHAPTER 2. PROBABILITY AND RANDOM VARIABLES 

The distribution function can be used to make certain probability cal­
culations. For example, if x < y, then 

P[x < X < y] = F(y) - F(x). 

This is true because the events x < X < y and X < x are disjoint; their 
union is X < y; and thus, 

F(y) = P[x < X < y] + P[X < x] = P[x < X < y] + F(x). (2.34) 

With each random variable X, we associate another function p(-), called 
the probability mass function of X (abbreviated as pmf), defined for all real 
x by 

P(x) = P[X = x]. 

Thus, if x is a value that X cannot assume, then p(x) = 0. The set T of 
all x with p(x) > 0 is either finite or countably infinite. For a proof see 
Cramer [5, page 52]. (A set is countably infinite or denumerable if it can 
be put into one-to-one correspondence with the positive integers and thus 
enumerated i i , x-i,x$, — ) The random variable X is said to be discrete if 

5>(*) = i, 

where T = {x : p(x) > 0}. Thus, X is discrete if T consists of either (a) a 
finite set, say, x\,X2,...,xn, or (b) an infinite set, say, xi, X2,X3,..., and, 
in addition, 

Xi 

Thus, a real-valued function p(-) defined on the whole real line is the proba­
bility mass function of a discrete random variable if and only if the following 
three conditions hold: 

(i) p(x) > 0 for all real x. 

(ii) T = {x|p(x) > 0} is finite or countably infinite; that is, T = {x±, x%,...}. 

If X is a discrete random variable, the elements of T are called the mass 
points of X, and we say, "X assumes the values xi,X2,X3, — " 
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0 1 2 3 

Figure 2.5.1. Probability mass function for Example 2.5.3. 

l .O-i 

0.5-

0.0 

Figure 2.5.2. Distribution function for Example 2.5.3. 

Example 2.5.3 In Example 2.3.2 we implicitly define a random variable 
X, which counts the number of polls until a ready terminal is found. X 
is a discrete random variable that assumes only the values 1, 2, 3. The 
probability mass function is denned by p(l) = 0.6, p(2) = 0.3, and p(3) = 
0.1. The pmfp(-) of A" is shown graphically in Figure 2.5.1; the distribution 
function F is shown in Figure 2.5.2. Thus, the probabiUty that two or fewer 
polls are required is F(2) = P(\) + p(2) = 0.9, which can be read from 
Figure 2.5.2 or calculated from the probability mass function. □ 
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A random variable X is continuous if p(x) = 0 for all real x. The 
reason for the terminology is that the distribution function for a continuous 
random variable is a continuous function in the usual sense. By contrast, 
the distribution function for a discrete random variable has a discontinuity 
at each point of positive probability (mass point). We will be concerned 
only with those continuous random variables X that have a density function 
f with the following properties: 

(a) / (x ) > 0 for all real x. 

(b) / is integrable and P[a < X < b] = f* f(x)dx if a < b.9 

/
oo 

f(x)dx = 1. 
'OO 

(d) F(x) = J" f(t)dt for each real x. 

By the fundamental theorem of calculus, at each point x where / is 
continuous, 

dF t, ^ 
Ix- = /(X)-

Shaded area is probability X is between 1 and 2 

O x l 2 

Figure 2.5.3. Exponential density function (parameter 2). 

Example 2.5.4 Let a > 0. The random variable X is said to be an 
exponential random variable with parameter a or to have an exponential 

9This means that the required probability is the area under the curve y = f(x) 
between o and 6. 
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distribution with parameter a if it has the distribution function 

„ , . / l-e~ax f o r x > 0 . . 
F^ = {0 for x < o. (2-35) 

The density function / = dF/dx is given by 

, , . f ae~ax for x > 0 , „ . 
'<x ) = { 0 for * < 0. (2-36) 

Suppose, for example, that a = 2 and we wish to calculate the probability 
that X assumes a value between 1 and 2. This probability is the area under 
the curve y = 2e~2x (shown in Figure 2.5.3) between x = 1 and x = 2. The 
probability may also be computed using the distribution function F(x) = 
1 — e~2x shown in Figure 2.5.4. We calculate 

P[l<X<2\ = F{2) - F(l) = (1 - e~4) - (1 - e~2) = e~2 - e~A 

= 0.135335283-0.018315639 = 0.117019644. □ 

In making this calculation we have used the fact that, for a continuous 
random variable X with a < b, 

P[a < X < b] = P[a < X < b] = P[a < X < b] = P[a < X < b], (2.37) 

since 
P[X = a) = P[X = b] = 0. 

(This is true because, by definition, a continuous random variable X has 
the property that P[X = x] = 0 for all real x.) 

Most random variables are either discrete or continuous but, occasion­
ally, we shall encounter a random variable of mixed type: a random variable 
that is continuous for some range of values and discrete for others. Usually 
a discrete random variable comes about when something is counted, such as 
number of jobs, inquiries, messages, etc.10 A continuous random variable 
often occurs when something is measured, such as the time between the ar­
rival of two consecutive inquiries, the response time at a terminal, the time 
it takes to process a job, etc. Unless otherwise noted, we will assume that 
all random variables under consideration are either discrete or continuous 
and not of mixed type. 

The distribution function F of a random variable X describes how the 
probability mass of X is distributed along the real line. From this point 

10It should be noted that, between any two distinct real numbers that a discrete 
random variable assumes, there exist other values it doesn't assume. 
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of view a random variable X determines how the probability mass of one 
unit is apportioned or spread out over the real numbers. A discrete random 
variable allocates the mass in nuggets or mass points, while a continuous 
random variable diffuses the probability mass out in a continuous manner. 

1.00 

0.75-

0.50-

0.25 

0.00 

Figure 2.5.4. Exponential Distribution Function (Parameter 2) 

"/ know what you 're thinking about," said Tweedledum; 
"but it isn't so, nohow." "Contrariwise," continued Tweedledee, 

"if it was so, it might be; and if it were so, it would be; 
but as it isn't, it ain't. That's logic." 

Lewis Carroll 
Through the Looking Glass 

2.6 Parameters of Random Variables 
All possible probability calculations involving a random variable X can be 
made from its pmf p(-), if it is discrete; from its density function / , if it 
is continuous; or from its distribution function F in either case. However, 
there are some parameters of a random variable that are important in 
summarizing its properties in a way that is easy to comprehend and to use 
for making probability estimates. 

Let X be a discrete random variable with pmf p(-). We define the mean 
or expected value of X, (i = E[X] by the formula 

H = E[X] = ^2 Xip{xi) ^ Xip(xi) + x2p(x2) + (2.38) 
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provided 

^2 \Xi\P(Xi) < °°-
Xi 

(We require absolute convergence of that the sum in (2.38) to guarantee 
the sum does not change if the Xj's are reordered.) If X is a continuous 
random variable with density function /(•) , we define /x = E[X] by 

/

oo 
xf(x)da, (2.39) 

-oo 

provided 

/ 
j — < 

\x\f(x)dx < oo. 

If ft is a real-valued function of a real variable, and X is a random variable, 
then h(X) is a new random variable defined for all w € fi by h(X)(cj) = 
h(X(u))). Thus, if h(x) = ex, then h(X)(u) = ex^\ The following lemma 
shows how to calculate the expected value of h(X). 

Lemma 2.6.1 (Law of the Unconscious Statistician).11 Suppose ft is a 
real-valued function of a real variable. 

(a) If X is discrete, 
E[h(X)] = Y/Hxi)p(xi), (2.40) 

Xi 

provided 
^2\h(xi)\p(xi) <oo . 

Xi 

(b) If X is continuous, 

/

oo 
h(x)f(x)dx, (2.41) 

-oo 
provided 

f 
J —< 

\h(x)\f(x)dx < oo. 

Proof See Ross [21] or Grimmett and Stirzaker [13]. 

This law received its name because of "unconscious" statisticians who have used it 
as if it were the definition. 
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The two most important parameters used to describe or summarize the 
properties of a random variable X are the mean ft — E[X] denned by (2.38) 
or (2.39) and standard deviation a, where a2 is the variance of X (we also 
use Var[X] for a2) defined by 

a2 = Var[X] = E[(X - ft)2]. (2.42) 

Thus, for a discrete random variable X, Va,r[X] is given by 

o2 = Var[X] = £ ( x i - /x)2p(*i), 
i 

while, if X is continuous, 

/

oo 
(x - n)2f(x)dx. (2.43) 

■oo 

The reason that the mean or expected value is important is intuitively 
clear to almost everyone. For example, if X is a discrete random variable 
that describes how much one is to win for each outcome in a sample space 
fi,then 

H = E[X] =Y^xiP(xi) 
i 

is the weighted average of what one is to win. Thus, calling /x the mean or 
expected value seems proper. The mean is a summary of what we expect 
of the random variable. If we have only one number to use to describe a 
random variable, the mean would seem to be the proper one. However, the 
standard deviation, a, does not have such an intuitive meaning to many 
of us, at first. However, as we will see in Chebyshev's inequality (Theo­
rem 2.10.2) and the one-sided inequality (Theorem 2.10.3), the standard 
deviation is the natural unit to measure the deviation of a random variable 
from its mean. Thus, if you were told that "Rockefeller and I, together, 
had an average income last year of $1,010,000 with a standard deviation of 
$990,000," then it would be clear that our individual incomes were signifi­
cantly different.12 

It is best not to worry as to exactly what a is. We will show that it is 
a most useful quantity for many applied probability applications. We must 
ask the reader to "have faith that truth will be revealed." 

12See Exercise 60. 
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Example 2.6.1 Referring to Example 2.5.2, we see that 

3 

fi = E[X] = ^ xiP{xi) = 1 x 0 . 6 + 2 x 0 . 3 + 3 x 0 . 1 = 1.5, (2.44) 
i = i 

a2 = Var[X] = j ^ ( x < - 1.5)2p(xi) 
«=i 

= (1 - 1.5)2 x 0.6 + (2 - 1.5)2 x 0.3 + (3 - 1.5)2 x 0.1 = 0.45, (2.45) 

and thus, 
a = (VarfX])1/2 = (0.45)1/2 = 0.6708. D (2.46) 

This example can be generalized. Consider a communication line with 
m terminals attached, of which n are ready to transmit.13 Let X be the 
number of polls required to find the first terminal that is ready. Then X 
can assume only the values i = 1,2,... ,m — n + 1 with 

(m — i\ 

p(i) = P[X = i}= ^ ~ 1 A (2.47) 

C) 
See Exercise 35 for the proof of (2.47). E[X] and Var[A'] can then be 
calculated by the formulas 

m—n+1 

H = E[X\= Y. »P(») (2-48) 
j = i 

and 
m—n+1 

a2 = V&r[X}= Yl 0 - M ) 2 P « - (2-49) 
i = l 

In Exercise 37 you are asked to derive a simple, closed-form formula for 
E[X] and for E[X2). 

The APL function POLL (shown in Appendix B) with parameters m 
and n can be used in the general case to compute the probabilities that 
X assumes the values 1 ,2 ,3 , . . . , m — n + 1. It also computes the expected 
value and standard deviation of X. 

The APL function PARAM can be used to calculate the mean and 
standard deviation of a discrete random variable from the set of its possible 
values and the corresponding set of probabilities. 

We assume that n is at least one. 
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Example 2.6.2 Suppose X has an exponential distribution with parame­
ter a > 0. (See Example 2.5.3.) Then 

p = E[X] = f 
Jo 

(2.50) 

Using integration by parts (the formula J udv = uv — J v du) with u = 
x and dv = ae~axdx, together with one application of the formula 

lim xe~ax = 0, (2.51) 

brings (2.50) to the form 

/i = E[X] = [ 
Jo 

I-+QO 

roo -
e~axdx = — 

a 

Similarly, 

e~ax 1 1 
= - lim + - = - . (2.52) x-too a a a 

a2 = [°° (x - -} ae~axdx = -. 
Jo \ OL) a' 

(2.53) 

so that a — 1/a = fi. Thus, for example, the exponential random variable 
with a — 2 has fx = 0.5 and a = 0.5. □ 

The sequence of moments of X defined by E[Xk],k = 1 ,2 ,3 , . . . , is 
sometimes of interest. The first moment coincides with the mean or ex­
pected value. From the definition, we see that if X is discrete, then for 
each k = 1 ,2 ,3 , . . . , 

E[Xk] = £ x f r fo ) = x{p(x0 + xk
2p(x2) + ■■-, (2.54) 

i 

while, if X is continuous, 

/

oo 
xkf(x)dx, k = 1 ,2 ,3 , . . . . (2.55) 

-oo 
It can be shown that under very general conditions (see Feller [8, pages 
227-228]), if all the moments for X exist, they uniquely determine the 
distribution of X; that is, if X and Y have the same sequence of moments, 
then Fx — Fy. The following examples show that a random variable may 
not have any moments—not even a mean value. 

Example 2.6.3 Let X assume the values 2 , 2 2 , 2 3 , . . . , 2 f c , . . . with the prob­
ability mass function p(-), defined by 

p(xk)=p(2k) = ±;, k = 1 ,2 ,3 , . . . . (2.56) 
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Then p() is a true probability mass function, since 

tp^ = £^ = lti = \*T^=12x2 = 1- (2'57) 
fc=l fc=l Z ' fc=0 Z X 2 

However, 
oo 

53 *#(*<) = 1 + 1 + 1 + ••• (2-58) 
i = l 

diverges so that even the first moment fails to exist. D 

Example 2.6.4 Let X be the continuous random variable with density 
function / defined by 

- { x 

Then 

r t, w f°° dx 1 

/ f(x)dx= / — = - -
y-oo Ji a; x 

so / is a density function. However, 

0 for x < 1 
/<*>=< ^ f o r x > l . ( ^ 

= - lim - + 1 = 1, (2.60) 
x—»oo X 

/ xf(x)ax = / — = lnx 
J-oo Jl x 

oo 
= +oo, (2.61) 

I 

so that the first moment of X fails to exist. Clearly no higher order moments 
exist, either. D 

Although Examples 2.6.3 and 2.6.4 show that not all random variables 
have moments, most useful theoretical and empirically derived random vari­
ables do have moments. The squared coefficient of variation is a parameter 
widely (some even claim wildly) used by computer system modelers and 
queueing theory aficionados. It is defined by 

,2 _ Var[X] 
E[X]2 C2x = - £ £ * ■ (2-62) 

It is used for measuring the degree of irregularity of a positive random 
variable X (positive means P[X < 0] = 0) compared to the exponential 
random variable for which C\ = 1. The hypoexponential Erlang-fc dis­
tribution described in Section 3.2.6 has a squared coefficient of variation 
C\ = 1/fc, while the hyperexponential distribution Hi of Section 3.2.10 has 
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Cx > 1. A gamma distribution, described in Section 3.2.5, can have Cx 
values of any positive value; that is, we can have 0 < Cx < 1 or 1 < Cx. 
This makes the gamma distribution very useful for modeling studies. 

One must use care in reading papers in which the C2 concept is used 
because some authors use the coefficient of variation rather than the squared 
coefficient of variation, although they do not make this clear. We prefer 
the squared form because Cx = 1/k for the Erlang-fc distribution. 

"Data! data! data!" he cried impatiently. 
"I can't make bricks without clay." 

Sherlock Holmes 

2.7 Jointly Distributed Random Variables 
Sometimes it is of interest to investigate two or more random variables 
simultaneously. Thus, if X and Y are two random variables defined on the 
same sample space fi, we define the joint distribution function F of X and 
Y for all real x and y by 

F(x,y) =P[X<x,Y<y} = P[(X <x)n(Y< y)}. (2.63) 

Sometimes we write FX,Y for the joint distribution function of X and 
Y to emphasize that it is a joint distribution. Given FX,Y , the individual 
distribution functions Fx and Fy can be computed as follows: 

Fx(x) = lim Fxv(x,y) for each real a;, (2.64) 
y-*°o 

and 
Fy(y) — lim Fx Y(X,V) for each real y. (2.65) 

Fx and Fy are called the marginal distribution functions of X and Y, 
respectively, corresponding to the joint distribution FX,Y- Then the joint 
probability mass function p(-,-) of X and Y is defined by 

p(x,y) = P[X = x,Y = y). (2.66) 

Let T = {(x,y) : p(x,y) > 0}. Then, if I2(x,y)eTP(x>v) = x> w e s a y t h a t 

X and Y are jointly discrete. (It can be shown that T is either finite or 
countable.) If X and Y are jointly discrete, the probability mass functions 
px and PY of X and Y can be calculated as 

Px(x)= ] T p{x,y), (2.67) 
y such that 
P(x,y) >0 
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PY(V)= £ P(*,»)- (2-68) 
x such that 
P(x l S /) > 0 

In this case px and py are called marginal probability mass functions. 

Example 2.7.1 Suppose a communication line is to be polled when it is 
known that two of the four terminals on the line are ready to transmit; using 
the notation of Example 2.3.2, fi consists of six sample points (1,1,0,0), 
(1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1). Let X be the number of 
polls until the first ready terminal is found and Y the number until the 
second ready terminal is found. The joint probability mass function and 
the marginal probability mass functions are shown in Table 2.7.1. It shows 
that p(l,2) = P[X = l , y = 2] = l/6,p(2,2) = p(3,2) = p(3,3) = 0, etc. 
Alsopjr(l) = p( l ,2)+p(l ,3)+p(l ,4) = l /2 ,p x (2 ) =p(2,3)+p(2,4) = 1/3, 
etc. (Obviously Y assumes only the values 2, 3, 4.) 

Table 2.7.1. Joint Probability 
Mass Function 

X 
1 
2 
3 

pY 

2 
1/6 
0 
0 
1/6 

Y 
3 
1/6 
1/6 
0 
1/3 

4 
1/6 
1/6 
1/6 
1/2 

Px 
1/2 
1/3 
1/6 

It is also true, for two jointly discrete random variables, that 

Xi <x yj <y 

(2.69) 

Thus, from Table 2.7.1, we see that 

F(2,3) = p( l , 2) + p( l , 3) + p(2,2) + p(2,3) = 0.5, (2.70) 

and 
F(2,4) = F(2,3) + p(l ,4) + p(2,4) = | . D (2.71) 

o 
X and Y are jointly continuous if their joint distribution function F is 

continuous on the whole plane. We are interested only in jointly continuous 
random variables with a joint density function f such that, if A is a set of 
real numbers as is B, then 

P[X € A, Y € B] = f f f(x, y)dxdy. (2.72) 
JBJA 
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In this case, for any real u and v, 

/

V pU 

I f(x,y)dxdy. (2.73) 
-oo J—oo 

If the random variables X and Y are jointly continuous, then each is a 
continuous random variable and for each real x and y, 

/
oo 

f(x,y)dy. (2.74) 
-OO 

/

OO 

f(x,y)dx. (2.75) 
-OO 

The equations (2.74) and (2.75) follow from (2.64), (2.65), and (2.73). 
For example, 

/

v ?u 
\ fix, 

-oo J — oo 
y)dxdy 

/

U pV AU / »00 

dx I fix, y)dy = dx fix, y)dy. 
-oo J-oo J-oo J-oo 

Hence, fx(x) = / ^ fix,y)dy, since 

fx{x) = ~^-(x)-

Example 2.7.2 Suppose the random variables X and Y have the joint 
density function 

p(r ,A _ / xyexp[-^ix2 + y2)] for x > 0 and y > 0 , , 
*l-x>V>-\ 0 otherwise. ^ i b ) 

Find F x (x ) , / y (y), and F ( l , 1) = F[A" < 1, V < 1]. This example is due to 
Parzen [page 291, 19]. 

Solution By (2.74), 
i»00 /»00 -i 

/x(aO = / f(x,y)dy= xyexp [ - - (x 2 + y2)]dy 

1 f°° 1 
= x e x p [ - - x 2 ] / yexp[--y2]dy 

= xexp[--x2) ( -exp[--2/ 2 ] |g°J = x e x p [ - - x 2 ] . 
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Similarly, 

f°° 1 1 

fY{y) = / xyexp[--(x2 + y2))dx = yexp[--y2]. 

By (2.73), 

F ( l , l ) = f{x,y)dxdy = xexp[--x2]dx yexp[--y2]dy 
= ( - e x p [ - ^ 2 ] | J ) ( - e x p [ - i y 2 ] | J ) 

= (1 - exp[-0.5])(l - exp[-0.5]) 

= (1 - 0.606531)(1 - 0.606531) = 0.154818. □ 

Suppose g is a function of two variables. Then, if X and Y are jointly 
distributed random variables, the mathematical expectation of g(X, Y), 
E[g(X, Y)}, is defined as 

E\g(X,Y)]= Yl 9(x,y)p(x,y), (2.77) 
all (x,y) 
such that 

p(x,y) > 0 

if X and Y are jointly discrete and p(-, •) is the joint probability mass 
function, or as 

/

OO /•OO 

/ g(x,y)f(x,y)dxdy, (2.78) 
-oo J—oo 

if X and Y" are jointly continuous with joint density function / . 
Two random variables X and Y are said to be independent if any of the 

following relations hold: 

(a) Their joint distribution function can be expressed as a product: 

F(x,y) = Fx(x)FY(y) for all real x and y. (2.79) 

(b) They are jointly discrete and their joint probability mass function can 
be written, 

p(x,y) — Px(x)py(y) for all real x and y. (2.80) 
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(c) They are jointly continuous and their joint density function can be 
written, 

f(x, y) = fx(x)fy(y) for all real x and y. (2.81) 

Two random variables X and Y that are not independent by one of the 
above criteria are said to be dependent. 

The next theorem gives some of the properties of the expected value 
operator E[-]. 

Theorem 2.7.1 Suppose X and Y are random variables; c is a constant; 
g and h are arbitrary measurable functions.14 Then 

(a) E[c] = c. (The expected value of a constant random variable is the 

constant.) 

(b) E[cX] = cE[X]. 

(c) E[X + Y] = E[X] + E[Y}. {X and Y need not be independent.) 

(d) E[g(X)h(Y)] = E[g(X)]E[h(Y)] if X and Y are independent and the 
expectations on the right exist. 

Proof (a) Suppose X is the constant random variable c; that is, P[X = 
c] = 1. X is discrete so, by definition, E[X] = E[c] = cP[X = c] = c. 

(b) If X is discrete with pmf p(-), 

E[cX] = Y^cXiP(xi) = c^Xipixi) = cE[X). 
Xi Xi 

If X is continuous, 

cxf(x)dx = c xf(x)dx = cE\X). 
-oo J—oo 

(c) We give the proof for the case that X and Y are jointly continuous. 
If they are jointly discrete the proof is similar. 

/

OO /•OO 

/ (x + y)f(x,y)dxdy 
-oo J — oo 

/

oo foo yoo />oo 

xdx f(x,y)dy+ ydy f(x,y)dx 
-oo J—oo J—oo J—oo 

/

OO y»00 

xfx(x)dx + / yfY(y)dy = E[X] + E[Y]. 
-oo J—oo 

14See the definition of measurable function two paragraphs before Proposition 2.5.1. 
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The next to last equality follows from (2.74) and (2.75). 
(d) We prove the theorem for the case that X and Y are jointly contin­

uous. The jointly discrete case is similar. 

/

oo />oo 
/ g(x)h(y)f(x,y)dxdy 

-oo «/—oo 

/

OO /"OO 

/ g{x)h{y)fx{x)fY{y)dydx 
-oo J — oo 

/

OO /•OO 

g(x)fx(x)dx / h(y)fY(y)dy 
-oo J—oo 

= E[g(X)]E[h(Y)}. ■ 

The couan'ance of X and F , written Cov[X, K], is defined by 

Cov[X,r] = E[(X - E[X])(Y - E[Y])} 
= E[XY - XE[Y] - YE[X] + E[X]E{Y]) 
= E[XY] - E[X]E[Y] - E[Y]E[X] + E[X]E[Y] 
= E[XY) - E[X] - E[X]E[Y}. (2.82) 

The correlation (coefficient) of X and Y, written p(X, Y) is defined by 
P(X,Y)= C ° v ( X ' F )

1 / 2 , (2.83) 

provided both variances are nonzero. Rice [20, pages 125-127] shows that 
\p(X, Y)\ < 1 with equality if and only if P[Y = aX + b] = 1 for some a 
and 6.15 

If Cov[X, Y] — 0, then X and Y are said to be uncorrelated. Theo­
rem 2.7.1(d) implies that any two independent random variables X and 
Y are uncorrelated. However, not all uncorrelated random variables are 
independent.16 

The next theorem gives some useful properties of the variance operator 
Var[-]. 

T h e o r e m 2.7.2 Suppose X and Y are random variables; c is a constant; 
and all the variances in the formulas below exist. Then 

(a) Var[c] = 0. 

(b) Var[cA"] = c2Var[X]. 
15See, for example, Grimmett and Stirzaker [13, page 42]. 
16See Exercise 43. 
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(c) Vax[X + Y] = Var[X] + Var[K] + 2Cov[A-, F] . 

M VarfX] = £[X2] - (£[X])2 . 

Proof 

(a) If c is a constant random variable, then by Theorem 2.7.1 (a) E[c] = 
c. Hence, Var[c] = E[{c - c)2] = 0. 

(b) Var[cZ] = E[cX))2} = E[(c(X - E[X]))2] = c2E[(X - E[X})2] 

= c2Var[X]. 

(c) Varpf + F] = E{{(X + Y)-(E[X] + E{Y})}2} 
= E[{(X-E[X]) + (Y-E[Y})}2} 
= E[(X - E[X])2 + (Y- E[Y])2 + 2(X - E[X]) 

x(Y-E[Y}) 
= E[(X - E[X])2] + E[(Y - E[Y])2 + 2{X - E[X)) 

x(Y-E[Y]) 
= \&T[X] + Var[F] + 2Cov[X, Y). 

(d) Var[X] = E[(x-E[X])2]=E[X2-2xE[X] + (E[X})2} 
= E[X2} - 2E[X]E[X] + (E[X})2 = E[X2] - (E[X})2. 

We have used Theorem 2.7.1 freely in the above equalities. ■ 

It should be noted that if X and Y are independent and thus uncorre-
lated, then 

War[X + Y] = Var[X] + Var[Y]. (2.84) 

An application of mathematical induction shows that 

Var[Xi + X2 + ■ ■ ■ + Xn] = Var[Xi] + Var[X2] + • • • + Var[Xn], (2.85) 

for any finite collection of mutually independent random variables. 
Although we defined the joint distribution function F for only two ran­

dom variables in (2.63), the concept can be extended, in a natural way, 
to any finite number of random variables. Thus, if Xi, X2, X3,..., Xn are 
random variables, their joint distribution function F (or Fx1,x2,...,x„ if it 
is desired to make names of the random variables explicit) is defined by 

i r (x i ,X 2 , . . . ,X n ) = P[Xi < Xi,X2,< X2,---,Xn < Xn], 
for all real x 1 ,X2, . . . ,x„ . (2.86) 
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All the other concepts we have discussed are then defined just as they were 
for two random variables. Thus, for example, one condition that means the 
random variables X\, X2, ■..,Xn are independent is that 

F(xux2,...,xn) = FXl{xi)Fx2(x2) ■ ■ ■ FXn(x„) 
for all real xi ,X2,. . . , x„ . (2.87) 

Some particular functions of several random variables are important for 
applications. The properties of one such function are given in the next 
theorem. 

Theorem 2.7.3 Let X\, X2, • •., Xn be n independent random variables 
with distribution functions Fxr, Fx3, • • •, Fxn ■ Let Y = g(X\, • • •, Xn) be 
the random variable defined by 

Y(u) = msx{Xi(u),X2(u),---,Xn(w)} for each w € ft. (2.88) 

Then the distribution function Fy is given by 

FY(y) = FXl (y)Fx2(»)■•• FXn(y) for each real y. (2.89) 

Proof Prom the definition of Y, we know that Y < y if and only if X\ < y, 
X2 < y, ■■ ■, Xn < y. Hence, 

FY(y) = P[Y<y] = P[X1<y,...,Xn<y) 
= P[Xi<y}P[X2<y]---P[Xn<y] 

= FXl(y)Fx2(y)---Fxn(y)- (2.90) 

In the next-to-last equality in (2.90) we used the independence of the 
random variables. ■ 

Example 2.7.3 An on-line airline reservation system uses two identical 
duplexed computer systems, each of which has an exponential time to fail­
ure with a mean of 2000 hours. Each computer system has built-in redun­
dancy so failures are rare. The system fails only if both computers fail. 
What is the probability that the system will not fail during one week (168 
hours) of continuous operation? 30 days? 

Solution Theorem 2.7.3 applies. The distribution function of the time to 
failure X in one system is 

F(t) = P[X < t] = 1 - e" ' /2 0 0 0 , t in hours. (2.91) 
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F(t) in (2.91) is the probability that a failure will occur before time t in one 
of the systems. Hence, the probability of a system failure (both computer 
systems down) within a week is, by Theorem 2.7.3, 

(1 _ e-i68/2000)2 = (o.o8o56a)2 = 0.006491. 

Thus, the probability of no system failure for at least a week is 

1 - 0.006491 = 0.993509. 

The corresponding probability for 30 days is 

1 - (1 - e - 7 2 ° / 2 0 0 0 ) 2 = 1 - (0.302324)2 = 1 - 0.0914 = 0.9086. 

If the system was not duplexed, that is, consisted of only one computer 
system, the probability of no failure within 30 days is 0.69768. Thus, if it 
is desired that the probability of failure-free operation for at least a week 
is to exceed 0.95, a duplex system is required. □ 

Let us consider the general case of two identical computer systems each 
of which has an exponential time to failure with a mean of 1/A time units. 
By Theorem 2.7.3, the distribution function for Y, the joint time to failure, 
is given by 

F(t) = ( l - e - A ' ) 2 . 

Hence, the density function of Y is 

2 A ( l - e - A t ) e - A t . 

Therefore, the mean time to failure, often abbreviated MTTF, is 
/•OO /-OO 

E[Y}= tf(t)dt = 2\ (l-.e-xt)e-xttdt. 
Jo Jo 

If we make the substitution u — A t, or t — u/A, in this integral so that 
dt = du/X, we obtain 

E[Y] = - / {l-e-u)e~uudu 
A Jo 

- (s)(f-"**'-f-'S-S' 
by Formula 3.351.3 of Gradshteyn and Ryzhik [10], which claims that 

OO 

xne~tiXdx = n\ n~n~l. L 
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In this example 

- = 2000 hours, 
A 

so 
E[Y] = 3000 hours. 

Example 2.7.3 is not realistic in the sense that we did not account for 
the fact that a failed computer normally would be repaired. This enhanced 
realism is considered in Example 4.3.3. 

The next theorem is similar to Theorem 2.7.3 but describes the distri­
bution of the minimum of several random variables. 

Theorem 2.7.4 Let Xi, X2,. ■ ■, Xn be independent random variables. Let 
Y = g(X\,... Xn) be the random variable defined by 

Y(w) = imn{Xi{w), X2(w),..., Xn(u>)} for each u € fi. (2.92) 

Then the distribution function Fy is given by 

FY(y) = i-(i-FXt(y))(l-FXa(y))--(l-FXn(v)) 
for each real y. (2.93) 

Proof For each real y, Y > y if and only if Xx > y, X2 > y, ■ ■ •, Xn > y. 
Hence, 

P[Y>y] = P[X1>y,X2>y,...,Xn>y] 
= P[X1>y}P[X2>y}---P[Xn>y) 
= (l-FXl(y))(l-FX2(y))-.-(l-FXn(y)). 

Therefore, 

FY(y) = l-P[Y>y] = l-(l-FXl (w))(l - FXi (y)) • • • (1 - FXn (y)). 

Example 2.7.4 A computer system consists of n subsystems, each of which 
has the same exponential distribution of time to failure. Each subsystem is 
independent but the whole computer system fails if any of the subsystems 
do. Find the distribution function F for system time to failure. If the 
mean time to failure of each subsystem is 2000 hours, and there are four 
subsystems, find the mean time to system failure and the probability that 
the time to failure exceeds 100 hours. 
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Solution By Theorem 2.7.4, if there were n subsystems, then 

F{t) = 1 - ( e - " ' ) n = 1 - e-n"\ (2.94) 

where l//x is the average time to failure, since the distribution function for 
time to failure is 

Fx(t) = l-e->lt (2.95) 

for each subsystem. Thus, the system time to failure has an exponential 
distribution with mean value l/(nfi) = (l/fj,)/n. If 1/fj, = 2000 and n = 4, 
then the system mean time to failure is 2000/4 = 500 hours. Hence, the 
distribution function for system time to failure is 

F(t) = 1 - e-* /500, (2.96) 

and thus the probability that it exceeds 100 hours is e
- 1 0 0 / 5 0 0 = e~0,2 = 

0.8187. D 

The individual subsystems need not have the same mean time to failure 
in order for the overall system time to failure to have an exponential distri­
bution. If each subsystem has an exponentially distributed time to failure 
with mean values l/fa,i = l,2,...,n, then the distribution function F for 
the system time to failure is given by 

F{t) = 1 - expi-tim + n2 + ■ ■ ■ + fin)); (2.97) 

that is, the time to failure has an exponential distribution with mean value 

1 
Ml + M2 H 1" Mn ' 

In the above example with n = 4, if the mean time to failure has been 1000 
hours, 2000 hours, 3000 hours, 4000 hours, respectively, then the average 
time to failure would be 

1 _ 1 
_ 1 I 1 I 1 I L _ — (12+6+4+3) 
1000 T 2000 ~ 3000 ~ 4000 12000 

12000 „„„, 
= = 480 hours. 

25 
By (2.97) the probability that the system time to failure exceeds 100 hours 
is 

e-ioo/48o = 0 8 1 1 9 4 . 

In the next theorem the convolution method is given for calculating the 
pmf p(-) or the density function /(•) for the sum of two independent random 
variables. Later we will see that transform methods make it easier to find 
p(-) or /(•) than the method of Theorem 2.7.5. 
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Theo rem 2.7.5 (Convolution Theorem) Let X and Y be jointly distributed 
random variables with Z = X + Y. Then the following hold. 

(a) If X and Y are independent discrete random variables, each taking 
on the values 0 ,1 ,2 ,3 ,4 , . . . , then Z takes on the values k — i + j 
(i,j = 0,1,2,3, . . . ) and 

k 

P[Z = k) = £ px(i)PY(j) = 5 > x ( 0 M * - «)• (2-98) 
i+j=k «=0 

(b) If X and Y are independent continuous random variables, 

/

OO fZ 

fx(x)FY(z - x)dx = / fz(x)dx (2.99) 
-oo J—oo 

where the density function of Z is given by 

/

oo /»oo 

fx(x)fY(z-x)dx= fx(z-y)fY(y)dy. (2.100) 
■oo J—oo 

Proof (a) The event Z — k can be represented as 

\z = k] = [(x = o) n (Y = k)] u [(x = i) n (Y = k -1 ) ] 
U[(X = 2) n (Y = k - 2)] U • • • U [(X = k) D (Y = 0)]. 

Hence, 
k 

P[Z = k}= p(0, k)+p(l, k-l) + -- ■ +p(k,0) = 5^p( t , k - i), (2.101) 
i=0 

where p(-, •) is the joint density function of X and V. But X and Y are 
independent so (2.101) yields (2.98), because p(i,j) = Px(i)py(j) for each 
i and j . 

(b) The equation 

P[Z<z] = ff fx>Y{x,y)dxdy 
JJx+y<x 

/

OO fZ — X 

dx I fx,Y(x,y)dy (2.102) 
-oo J~oo 

is valid for all jointly continuous random variables, independent or not. If 
we assume X and Y are independent, so that fxy{x,y) = fx(x)fY(y), 
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then (2.102) yields 

/

OO fZ — X 

dx / fx(x)fy(y)dy 
-oo J —oo 

/

OO rZ — X 

fx(x)dx / fy(y)dy 
-oo «/ —oo 

/
oo 

/ jr(a:)Fy(z-*)da:. (2.103) 
■oo 

Differentiation of (2.103) gives (2.100). ■ 
The sum 5Z i =oPx(0Pv(^ — *) is called the convolution of px and py 

and designated px *py(k). Thus, Theorem 2.7.5 asserts that the pmf of the 
sum of two independent discrete random variables, each of which assumes 
only nonnegative integer values, is the convolution of the individual pmf's. 
Similarly, the integral J_ fx(x)fY(z—x)dx is called the convolution of fx 
and fy. By symmetry it can also be calculated as J_ fx(z — y)fy(y)dy. 
Theorem 2.7.5 shows that the density of the sum of two independent con­
tinuous random variables is the convolution of the individual densities. 
Example 2.7.5 Let X and Y be independent random variables, each hav­
ing an exponential distribution with parameter a. Find the density function 
of Z = X + Y. 

Solution The density function is the same for each random variable: 

c / \ t i \ / ae~QX for x > 0. Fx(x) = fy(x) = { Q forx£0 

Thus, fx+y(z) = 0 for z < 0 and by (2.100), for z > 0, 

fx+y(z)= fx(x)fy(z-x)dx. 
Jo 

(We have used the fact that fy(z) — 0ioTZ< 0.) Hence, 

fx+Y{')= I ae-axae-a{z-x)dx = a2e-az f dx = a2ze-az. 
Jo Jo 

Thus, Z — X + Y has what is called an Erlang-2 distribution with 
parameter a /2 . We will study the Erlang family of random variables in 
Chapter 3. D 
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Example 2.7.6 If a > 0, the discrete random variable that assumes the 
values 0 ,1 ,2 ,3 , . . . and that has the pmf p(-) defined by 

ak 

p(k) = e-a — , * = 0 , 1 ,2 , . . . , (2.104) 

is called a Poisson random variable with parameter a or is said to have 
a Poisson distribution. We will investigate Poisson random variables in 
more detail in Chapter 3. Assuming that (2.104) does define a pmf, let us 
calculate the pmf p(-) for the sum of two independent Poisson distributed 
random variables, one with parameter a and one with parameter fS. If X is 
the first random variable and Y the second, then by (2.98) of and (2.104), 

P(k) = ^Px(i)PY(k-i) 
i = 0 

- £ 
k

 e-°ie-eJ^ 
i=Q i\ {k-i)\ 

e-(°+/» * fc! 
fc! ^il(k-i)\aP 

»=o 
-(a+0) k 

SC)^-' Jfc! 
i=0 

( a + /?)*. 
fc! 

The last equality is true by the corollary to Theorem 2.3.3. Thus, the sum 
of two independent Poisson random variables is another Poisson random 
variable whose parameter is the sum of the original parameters; that is, 
X + Y is Poisson with parameter a + 0. For this reason Poisson random 
variables are said to have the reproductive property. Exponential random 
variables do not have this property, as we saw in Example 2.7.5. Consider 
Theorem 2.7.3. Gravey [12] considered the special case of Theorem 2.7.3 
in which all the random variables have the same distribution. In several 
special cases he found exact values for E[Y]. We state his results for these 
special cases in the following proposition. D 

Proposition 2.7.1 Suppose X\, X%, ■ • •, Xn are independent identically dis­
tributed random variables. We consider two special cases. 

(a) Suppose each Xj has a geometric distribution with probability p of 
success on each trial (and thus probability q — 1 — p of failure). Then, 
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if Y is defined by 

Y = max{Xi(w),X2(v),---,Xn(u})} for each wen, (2.105) 

we have 

(6) Suppose each Xi has an exponential distribution with mean E[X] = 
1/a. Then, ifY is defined by (2.105), we have 

P[Y > x] = V (Y) ( - l ) f c + 1 exp(-akx), (2.107) 
fc=i >■*' 

for each x > 0 and 

J5[Y] = i ( l + I + . . . + I ) . (2.108) 
a I n 

Proof See Gravey [12]. ■ 

"What's one and one and one and one and one and one and one and one 
and one and one?" 

"I don't know," said Alice. "I lost count." 
"She can't do Addition," the Red Queen interrupted. 

Lewis Carroll 
Through the Looking Glass 

2.8 Conditional Expectation 
In Example 2.6.1 we assumed that a communication line had five terminals 
attached, three of which were ready to transmit, and we calculated the 
mean and standard deviation of X, the number of polls required to find 
the first ready terminal.17 X depends upon the number of terminals in the 
ready state. Thus, if we let Y be the random variable giving the number 
of ready terminals, we are interested in the average value of X, given that 
Y assumes one of the values 0, 1, 2, 3, 4, or 5. This is the conditional 
expectation of X given Y, which we now define formally. 

Suppose X and Y are discrete random variables assuming the values 
xi, X2,.. ■, and 2/1, j/2 ■ • •, respectively. Then for each yj such that PY{VJ) > 

See also Example 2.3.2. 
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0, we define the conditional probability mass function of X given that Y = 
Vi by 

Px\Y{xi\yi) = *&*&, i = 1,2,3,..., (2.109) 
PYKVj) 

where p(-, •) is the joint probability mass function of X and Y. We then 
define the conditional expectation of X given that Y = yj, for all yj such 
that PY(VJ) > 0, by 

E[X\Y = yj] = £ xiPxlY(xi\yj). (2.110) 

Similarly, we define the conditional kth moment of X given that Y = yj by 

E[Xk\Y = yj]=Ylx*px{Y(xi\yj), k = 1 , 2 , . . . . (2.111) 
x ( 

The motivation for (2.109) is that 

P[X-xt\Y-y})- p [ y = ^ ~ pY{y.y 

In reality the pmf p(-) we defined in Example 2.6.1 is Px|y(-|3), and we 
calculated the expected value of X given that Y = 3. We provide the other 
conditional expectation values for Example 2.6.1 in Table 2.8.1. We use 
(2.47) which is a general formula for the case of m terminals on a line with 
n ready to transmit where 1 < n < m. Equation (2.47) is not valid when 
n = 0, that is, when no terminals are ready to transmit; we assume that it 
takes m polls to discover this fact, so that 

E[X\Y = 0] = m. 

The values shown in Table 2.8.1 for y > 1 can easily be calculated using the 
APL function POLL in Appendix B. A formula of Exercise 36, discovered 
by Russell Ham, can also be used to make the calculations. 

Table 2.8.1. Conditional expectation of 
number of polls for Example 2.6.1. 

y: 0 1 2 3 4 5 
E[X\Y = y]: 5.0 3.0 2.0 1.5 1.2 1.0 

Suppose X and Y are jointly continuous with the joint density function 
/ . Then the conditional probability density function of X given that Y = y, 
is defined for all values of y such that fy(y) > 0, by 

/*,r(*|y) = f ^ f (2.H2) 
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The conditional expectation of X, given that Y = y, is defined for all values 
of y such that fy (y) > 0, by 

/

oo 
xfxlY(x\y)dx. (2.113) 

-oo 
The conditional kth moment of X, given that Y — y, is defined for all 

values of y such that fy (y) > 0, by 

/

oo 
xkfx\Y(x\y)dx, k = 1 ,2 ,3 , . . . . (2.114) 

■oo 

Thus, the first conditional moment is the conditional expectation. 

Example 2.8.1 The jointly continuous random variables X and Y of Ex­
ample 2.7.2 have the joint density function 

/ ( X i 2 / ) _ | xyexp[-\(x2 + y2)] for x > 0 and y > 0 (2.115) 
1 0 otherwise, 

and 

Hence, if y > 0, 

/ K ( V ) = ( y e x p [ - ^ 2 ] f o r * / > 0 (2.116) 
I 0 otherwise. 

f(x,V) r 1 21 fx\Y(x\y) = J-rTT=xexp[--x2} = fx(x) for all y > 0. (2.117) 
fy(y) 2 

Thus, / ^ ^ ( ^ j y ) is independent of the particular value of y. This is to be 
expected since X and Y are independent. (They are independent, since 
f(x,y) = fx{x)fY{y).) Hence, for each y > 0, 

/•OO 1 

£ [ X | y = y] = E[X] = x2 exp[--x2]dx. 
Jo 2 

This integral is difficult to evaluate but its value is \/27r/2. □ 

Given jointly distributed random variables X and Y, E[X\Y — y] is a 
function of the random variable Y, let us say h(Y). Thus, h(Y) is a random 
variable having an expected value E[h(Y)]. If Y is discrete and assumes 
the values yi, y2,..., then 

E[h(Y)} = E[E[X\Y = »]] = £ E[X\Y = Vj)P{Y = Vj], (2.118) 
Vi 
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while if Y is continuous with density function fY, then 

/

oo 
E[X\Y = y]fY(y)dy. (2.119) 

-oo 

Equations (2.118) and (2.119) can be formally represented by the equa­
tion 

/

oo 
E[X\Y = y]dFY(y), (2.120) 

-oo 

where the integral in question is a Stieltjes integral, which of course is 
calculated by (2.118), when Y is discrete, and by (2.119) when Y is contin­
uous. The Stieltjes integral can also be used to evaluate ^[^(F)] when Y 
is neither discrete nor continuous, but this is beyond the scope of the book. 
The interested reader can consult Parzen [19, pages 233-235] or Apostol [2, 
chapter 7]. 

The next theorem shows how to evaluate E[X], E[Xk] in terms of E[X\ 
Y = y) and E[Xk\Y = y}. 

Theorem 2.8.1 LetX andY be jointly distributed random variables. Then 

/

oo 
E[X\Y = y)dFY{y) = E[X) (2.121) 

-oo 
and 

/

oo 
E[Xk\Y = y]dFY(y) = E[Xk), k = 1 ,2 ,3 , . . . . 

-oo 
(2.122) 

(Equation (2.121) is known as the law of total expectation and (2.122) as 
the law of total moments.) 

Proof We prove (2.122) for the cases 

(a) X and Y are discrete, and 

(b) X and Y are continuous. 

Equation (2.121) is a special case of (2.122). We omit the proof for the 
cases when one of X or Y is continuous and the other is discrete. 

Case (a) Suppose that X and Y are discrete. Then 
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E{E[Xk\Y = y}} = 5 > l * * l y = fclMl/i) 
Vi 

= Yl^2x*p(Xi>yA 
Vj *i 

= J2xiY^p(Xi>y^ 
Xi Vj 

= E[Xk). 

This proves that E[Xk] = E[E[Xk\Y = y}} when X and Y are both discrete. 

Case (b) Suppose that X and Y are continuous. Then 

/

oo 
E[Xk\Y = y]fi 

-oo 
iy)dy 

oo 

= I \ I x*fX\Y(x\v)dx 
J—oo \.J—oo 

= r r xkf-rrTMy)dxdy 
J-ooJ-oo lYKV) 

/
oo /•oo 

/ z*7(z> 3/)«te dy 
-oo J—oo 

/

OO i » 0 0 

sfc / f(x,y)dydx 
-oo J — oo 

/ o o 
x f e /x(x)dx 

■oo 

= £[Xfc]. ■ 

fy(y)dy 

Example 2.8.2 Consider Example 2.6.1, in which five terminals were con­
nected to one communication line. Let the value of X be the number of 
polls until the first ready terminal is found (when there is a ready termi­
nal) and 5, otherwise; let Y be the number of terminals ready. We can 
find E[X] by Theorem 2.8.1 if we know the pmf for Y. Let us assume 
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that PY(-) is as shown in Table 2.8.2. This pmf was calculated assuming 
that each terminal was independent of the others and had probability 0.5 
of being ready to transmit. Thus, Y has a binomial distribution, which is 
discussed in Example 2.9.5 and in Chapter 3. Using the data in the table, 
we see that 

= (5 x 1 + 3 x 5 + 2 x 10 + 1.5 x 10 + 1.2 x 5 + 1) = 1 ^ 

and 

2 (25 + 11 x 5 + 5 x 10 + 2.7 x 10 + 1.6 x 5 + 1) 
E[X ] = — = 5.1875. 

The APL function MPOLL calculates the expected number of polls and 
second moment of number of polls, as well as i?[Jf |Y = n] and E[X2\Y — n] 
for n = 0 , 1 , . . . , m given the pmf of Y, using the APL functions POLLM 
and POLL2M. (The pmf of X is given by (2.47) which the reader is asked to 
prove in Exercise 36.) The formulas of Exercise 36 can be used to calculate 
the last two columns of Table 2.8.2. D 

Table 2.8.2. Data for Example 2.8.2 

n py(n) E[X\Y = n] E[X2\Y = n] 

0 
1 
2 
3 
4 
5 

1/32 
5/32 
10/32 
10/32 
5/32 
1/32 

5.0 
3.0 
2.0 
1.5 
1.2 
1.0 

25 
11 
5.0 
2.7 
1.6 
1.0 

Example 2.8.3 Anon-linecomputer system receives inquiry messages of n 
different types. The message length distribution for each type i is a random 
variable Xi, i = 1,2, . . . ,n . The message type of the current message 
is given by the discrete random variable Y, which assumes the values 1 
through n. The message length X of the current message is determined by 
Xi if and only if Y = i. Thus, E[X\Y = i] = E[Xt], and E[X2\Y = i) = 
E[Xf]. Therefore, by Theorem 2.8.1, 

n n 
E[X] = £ E[X\Y = i]pY(i) = £ E[Xi\py(i), (2.123) 

i = l i = l 
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and 
n n 

E[X2} = Y,E[X2\Y = i]PY(i) = Y,E[X?\PY(i)- (2-124) 
i = l t = l 

From (2.123) and (2.124) we can calculate 

Var[*] = E[X2] - (E[X])2. 

As an example, suppose 10 different types of message arrive at the central 
computer system. The fraction of each type, as well as the mean and 
standard deviation of the message length (in characters) of each type, are 
shown in Table 2.8.3. Find the mean and the standard deviation of the 
message length for all messages that arrive at the central computer system. 

Table 2.8.3. Message length data for Example 
2.8.3. 

Message 
type 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

pY(i) 
(Fraction of 

type) 

0.100 
0.050 
0.200 
0.050 
0.025 
0.075 
0.150 
0.050 
0.150 
0.150 

E[Xt] 
(Mean 

length) 

100 
120 
200 

75 
300 
160 
360 

50 
60 

130 

(JXi 
(Standard 
deviation) 

10 
12 
20 

5 
25 
40 
36 

4 
3 

10 

Solution Theorem 2.8.1 applies as outlined above. The expected value 
E[X] is calculated by (2.123) to yield 164.25 characters. To apply (2.124), 
we calculate E[Xf] by the formula E[Xf] = E[Xi]2 + Var[Xi] for i = 
1,2,..., 10 to obtain the respective values 10,100; 14,544; 40,400; 5,650; 
90,625; 27,200; 130,896; 2,516; 3,609; and 17,000. 

Then by (2.124), we calculate 

10 

E[X2} = Y^ E[Xf]pY(i) = 37,256.875. 
t= i 
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Thus, 

Var[X] = E[X2} - E[X]2 = 37,256.875 - 26,978.0625 = 10,278.8125, 

so that ax = 101.38 characters. The reader might be tempted to conclude 
that 

Var[X] = Var[Xi]py(l) + Var[A-2]py(2) + ■ • • + Var[X10]py(10), 

but this formula is incorrect. In the present case it could yield Var[X] = 
445.625 or ax = 21.11, although the correct value of ax is 101.38. The 
APL function CONDEXPECT can be used to make calculations such as 
those in this example. □ 

I've been rich and I've been poor; rich is better. 
Sophie Tucker 

summation convention n. A mathematicians' shindig held each year in 
the Kronecker Delta. 

Stan Kelly-Bootle 
The Devil's DP Dictionary 

2.9 Transform Methods 
Calculating the mean, the variance, and the moments of a random variable 
can be a tedious process. In the case of a discrete random variable, it 
is often true that complicated sums must be evaluated; for a continuous 
random variable, the integrals involved may be difficult to evaluate. These 
difficulties can often be overcome by transform methods. 

One of the first transform methods used successfully was the logarithm. 
Using the identity log(^4 x B) = log(A) + log(5) converted the problem 
of multiplying two large numbers A and B into the simpler problem of 
adding the two numbers a = log(A) and b = log(B). To complete the 
operation, of course, it was necessary to find the inverse transform or anti-
logarithm to obtain the value of A x B. In a similar way, by using some 
transformations to be described below, we can transform a random variable 
into a transformed function with a different domain in which it is easier to 
perform such operations as taking the convolution of two or more random 
variables (see Theorem 2.7.5) or finding moments. Of course, after the 
operation is complete, we must be able to make the inverse transform. In 
many cases this can be done by inspection. In other cases it may be more 
complex. We will discuss this further in Section 3.4 of Chapter 3. 
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The moment generating function ip[-] (or t/>x[-]) of a random variable X 
is defined by ip[0] = E[e8X] for all real 6 such that E[eex] is finite. Thus, 

y%e**p(xj) if A" is discrete 

m = { * (2-125) 
COO 

eex f(x)dx if A" is continuous. /

oo 

-oo 

We note that the moment generating function is always defined for 9 = 0 
and that ip[0] = 1. 

We say that X has a moment generating function if there exists a 6 > 0 
such that tp[6] is finite for all \6\ < 6. There are random variables without 
moment generating functions, such as the random variable of Example 2.6.3 
and that of Example 2.6.4. However, most random variables of concern to 
us have moment generating functions. A random variable X has a moment 
generating function if and only if all the moments of X exist (are finite). 
In defining the moment generating function xl>x\\, we have transformed the 
random variable X, which is defined on a sample space, into the function 
tpxl] defined for some set of real numbers. The next theorem gives some 
important properties of the moment generating function. 

Theorem 2.9.1 (Properties of the Moment Generating Function) Let X 
and Y be random variables for which the moment generating functions tpx [] 
and II>Y['] exist. Then the following hold: 
(a) Fx = Fy if and only ifipxl] = V'vH (uniqueness). 

(b) E[Xn] exists for n = 1,2,3, The coefficient of 0n in the power 
series for ipx[6]> 

^x[0} = J2^x)m-T, (2.126) 
n=0 

is E[Xn]/n\, so that 

Hence, 

and 

eix*]-*+x[0[ 
E[X J " den 

0=0 

E[X] = i,'xlO], E[X2] = *l>"x{% 

■ o 

°x=1>xM-(l>'x [0]) • 

(2.127) 

(2.428) 

(2.129) 

(c) %I>X+Y[9] = ^x[#]^y[0] for all 8, if X and Y are independent. 
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Proof 

(a) The proof is beyond the scope of this book but may be found in 
Feller [8]. The proof is carried out by showing that an inverse trans­
form exists, which maps ipx[-] to Fx[-]-

(b) There exists a S > 0 such that the power series 
a2 an 

e8x = l + x0 + x2 — + --- + xn— + ••• (2.130) 
2! n! 

converges uniformly in x for \0\ < 6i < 6. Hence, we calculate the 
expectation term by term to get 

xl>x[6) = E[e9x] = 1 + E\X}0 + ■■■ + E[Xnf^ + ■■-. (2.131) 
TV. 

Since the infinite series representation of a function is unique, a com­
parison of the coefficients of 9n in (2.131) with those of (2.126) shows 
that (2.127) is true. 

(c) If X and Y are independent, 

1>X+Y[0] = £[e e (*+ y )] = E[eexe8Y] = E[ee*]E[eeY] = V>x[0]<M0]. 
(2.132) 

The third equality is true by Theorem 2.7.1. ■ 

It is immediate by mathematical induction that if Xi, X2,. ■., Xn are 
independent random variables, then 

tpXl +x2+-+xn m = Vx. [0)*l>x2 [0]--- ipXn [0], 

for all 6 such that 

i>Xi [9] is defined for i = 1,2,..., n. 

We now give some examples of how Theorem 2.9.1 can be applied. 

Example 2.9.1 Let X be an exponential random variable with parameter 
a (see Examples 2.5.3 and 2.6.2). Then 

/•oo />oo 

iP[8] = / ae6xe-axdx = a e'^-^dx 
Jo Jo 

If 6 < a, then 
lOO 

- « 0-x(a-e)\ " m = —ee-x^n = — . (2.133) 
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Hence, 
dtp a 
de (a - ef' 

so that by Theorem 2.9.1(b), 

*w-3 1 
8=0 a' 

Also, 
dV 2a 
dO2 ~ {a-Of 

so that again by Theorem 2.9.1(b), 

E[X2} = ^ 1 J d62 
2 

e=o " 2 ' 
Thus, 

Var[X] = E[X2} - (E[X »'^-£ _ 1 
'a1 

We can use (2.133) to generate a simple formula for all the moments of 
X. If 6 < a, then 

. (2.134) 

Here, we have used the fact that if |x| < 1, 

1 
l - x 

= 1 + x + x• -\ + x n H (the geometric series). 

Equating the coefficients of 6n in (2.131) and (2.134) yields 

E[Xn] 1 nl 
n! 

= — or E[Xn} = ^=n\E[X]n, n = 1 ,2 ,3 , . . . . 
a 

Thus, we have found all the moments of the exponential distribution with 
very little effort. □ 

Example 2.9.2 Let X be a Poisson random variable with parameter a 
(see Example 2.7.6). Then 

OO OO k OO 

fc=0 fc=0 fc=0 
k\ 

= e-aeaee = e Q ( e _ 1 ) . 
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Thus, 
dM) a ~tJ-i\ 

= a, «w-3 = a e V < e ~» 
e=o e=o 

and 

E[X2] = ** 1 J dO2 = a e V ( e 9 _ 1 ) ( l + aee) = a ( l + a) = a + a2 . 
e=o e = 0 

Hence, 
Vtu[X] = E[X2) - (E[X})2 = a2 + a-a2 = a. 

Thus, both the mean and variance of a Poisson random variable with pa­
rameter a are equal to a. O 

Example 2.9.3 Let X and Y be independent Poisson random variables 
with parameters a and /?, respectively. Using moment generating functions 
show that the random variable X + Y is also a Poisson random variable 
with parameter a + /?. 

Solution (We have already proven the result in Example 2.7.6 using the 
method of convolutions.) By Theorem 2.9.1 and Example 2.9.2, 

4>X+Y[0] = 4>x[6\M0] = e**'-1^-1) = e(«+/?)(«9-i). (2.135) 

Since (2.135) is the moment generating function of a Poisson random vari­
able with parameter a + /?, we conclude, by the uniqueness of the moment 
generating function, that X + Y has a Poisson distribution with parameter 
a+ 13. That is, 

P[X + Y = k] = e~(a+n ( Q + ® , Jb = 0 ,1 ,2 , . . . . (2.136) 

The uniqueness of the moment generating function guarantees that no ran­
dom variable which does not have a Poisson distribution can have the same 
moment generating function as a Poisson random variable. □ 

Let X be a discrete random variable assuming only nonnegative integer 
values and let p(j) — P[X — j] = pj, j = 0 ,1 ,2 , . . . . Then the function 
9\A = 9x[z] defined by 

OO 

g[z] = E[zx] = ^2PJZJ = po+piz+p2z2 + ■■• (2.137) 
j=o 
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is called the generating function of X or the z-transform of X.1S Since 
0[1] — Po + Pi + P2 + ■ • • = li 9[z] converges for \z\ < 1. The next theorem 
states some of the useful properties of the generating function. 

Theorem 2.9.2 (Properties of the Generating Function or z-transform) 
Let X and Y be discrete random variables assuming only nonnegative inte­
ger values. Then the following hold. 

(a) X and Y have the same distribution if and only if gx['] = 9Y['] 
(uniqueness). 

, M 1 dngx[z] 
(b) Pn = —. , n , n = 0 ,1 ,2 , . . . . 

n! dzn
 z=0 

(c) E[X] = g'x[l) and Var[X] = gx[l] + g'x[l) - (g'x[l\)2. 

(d) gx+y[z] = 9X[Z]9Y[Z], if X andY are independent. 

Proof 

(a) Since 
9x[z] =Po+Pl +P2*2 + ■■• 

is a convergent power series for \z\ < 1, gx[z] is unique by the unique­
ness of power series. 

(b) Also true by uniqueness of power series. 

oo 

(c) g'x[z] = J2Wizi~l =Pl + 2P*Z + 3p3z2 + • •' • 
i = i 

Hence, 
oo 

gx[z] = 2P2 + 3 x 2P3z + 4 x 3p4z2 + 5 x 4p5z3 + • • • 
oo 

= £ ; / ( ; / - l )p^ - 2 -

18Some authors use z-transform for g[-z] = p0 + p i z - 1 + P2Z~2 + ■■■■ If ir = 
(fOi T I , 1T2, ■ ■•) is a probability distribution (that is, J ^ _ . irn = 1) it is also common 
to write its z-transform as ir[z] = 5 3 n _ 0

 vnZn-
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Thus, 

ffx [i] = £ M - ^ = Ewx - ^ = ̂  - *w 

Therefore, 

Var[X] = E[X*] - {E[X]f = g'x[l] + g'x[l] - (<^[1])2. 

(d) Let ak = P[X = k], bk = P[Y = *] , ck = P[X + Y = k], k = 
0,1,2, Then we know by Theorem 2.7.5 that the sequence {ck} is 
the convolution of the sequences {ak} and {bk}; that is, 

k 
ck = ^2aibk-i, k = 0 ,1 ,2 , . . . . (2.138) 

»=o 

Moreover, if we formally multiply together the power series for gx [z] 
and gy[z], we get 

9x [z}gY [z] = I E akzk ) ( J T bkzk I 
\k=0 / U=0 / 
oo / k \ 

= E E °<6*-< zk = 9X+Y[Z\-
k=o \i=o 

The reader should note that a discrete random variable that takes on 
only nonnegative integer values has the moment generating function 

oo oo 

m = E ek9P« = E^)*** = 9[A- (2-139) 
fc=0 fc=0 

That is, the moment generating function is obtained from the generating 
function (^-transform) by a simple change of variable. Similarly, g[z] = 
tp[ln[z]], if z > 0. 

Example 2.9.4 A random variable X is called a Bernoulli random variable 
(has a Bernoulli distribution) if it can assume only two values, usually taken 
to be 1 and 0, the first with probability p and the second with probability 
q = 1 — p. Find the mean and variance of a Bernoulli random variable X, 
using its generating function. 
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Solution The generating function of X is 

g[z] = q+pz. (2.140) 

Hence, g'[z] = p and g"[z] = 0. Therefore, by Theorem 2.9.2, 

E[X)=g'[l)=p 

and 

Var[X] = g"[l] + g'[l] - (g'[l))2 = 0+ p-p2 = p(l -p) = pq. a 

Example 2.9.5 The Bernoulli random variable X, discussed in Example 
2.9.4, is often used to describe a random experiment with but two outcomes, 
success or failure. We define X to be 1 for a success and to be 0 for a failure. 
Such an experiment is called a Bernoulli trial. A sequence of n such trials 
is called a Bernoulli sequence of trials if the probability of success does not 
change from trial to trial. An example is tossing a coin repeatedly, with a 
head considered a success. Let Y be the random variable that counts the 
number of successes in a Bernoulli sequence of n trials, where n > 1. Then 
we can write 

Y = X! + X2 + --- + Xn, (2.141) 

where X\, X%,..., Xn is a collection of identical Bernoulli random variables. 
Hence, by Theorem 2.9.2(d), 

oo 

gY[z] = (q+pz)n=Y,P[y = *]**■ (2-142) 
fc=0 

But, by the binomial theorem (the corollary to Theorem 2.3.3), 

(pz + q)n = J2 (?) (P*) V - *- (2-143) 

Equating coefficients of zh in (2.143) and (2.142) gives 

p(k) = P[Y = k] = (fjpkQn~k, k = 0 ,1 ,2 , . . . , n. (2.144) 

Y is called a binomial random variable or said to have a binomial distri­
bution. (The binomial distribution will be discussed more completely in 
Chapter 3.) 
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Since gY[z] = (q+pz)n, then g'Y[z] = n{q+pz)n~lp and E[Y] = g'Y[l] = 
np. Also, gY[z] = n(n - l)(q + pz)n~2p2. Hence, by Theorem 2.9.2(c), 

Var[F] = gY\l] + g'Y[\]-(gY[l])2 = n(n-l)p2 + np-n2p2 

= np{\ — p) = npq. D 

The transform most widely used by engineers and applied mathemati­
cians is the Laplace-Stieltjes transformation denned below. 

Let X be a random variable such that P[X < 0] = 0. then the Laplace-
Stieltjes transform of X is denned for 6 > 0 by 

X*[9] = E[e -**] = < 

/•OO 

JO 
e xf(x)dx if X is continuous 

(2.145) 
-Ox P(Xi) if X is discrete. 

Sometimes X*[9] is called the Laplace-Stieltjes transform of F. The inte­
gral /0°° e~exf(x)dx is called the Laplace transform of f. Many authors 
write 

X VI = / 
Jo 

,-8x dF(x), (2.146) 

where the integral is called a Stieltjes integral. However,the integral is 
always evaluated as we have shown in (2.145), that is, as JQ e~6xf(x)dx if 
X is continuous and as £ x e~9xip(xi) if X is discrete. 

Theorem 2.9.3 (Properties of the Laplace-Stieltjes Transform) LetX and 
Y be random variables with Laplace-Stieltjes transforms X*[-] and Y*[-]. 
Then the following hold. 

(a) Fx — Fy if and only if X*[-] — Y*[-] (uniqueness). 

(b) For 0 > 0, X*[8] has derivatives of all orders given by 

(FX* 
d0n 

( - i ) n / 

= < 

e xxnf(x)dx if X is continuous 

(-l)n Y^ e~exix?p(xi) if X is discrete. 
X, 

(c) IfE[Xn] exists, then 

W*] = (-D" ^ ™ d9n 
6=0 

(2.147) 

(2.148) 
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In particular, if E[X] and E[X2] exist, then 

2 v* Ew = -ilfW> E[x2] = ik[0]- (2-149) 

(d) (X + Y)*[e) = X*[6]Y*[d], ifX and Y are independent. 

The proof of Theorem 2.9.3 is beyond the scope of this book but may be 
found in Feller [8]. For more information on transform methods see Section 
3.4 of Chapter 3. 

Example 2.9.6 Let X be an exponential random variable with parameter 
a, that is, 

/w={r"otLit, <"«> 
Then, if 0 < a, 

X*[9] = / ae-exe~axdx = a / e-{0+a)xdx = - ^ - . D (2.151) 

A mathematician in Reno, 
Overcome by the heat and the vino, 

Became quite unroulli 
Expounding Bernoulli, 

And was killed by the crowd playing Keno. 

Stan Kelly-Bootle 
The Devil's DP Dictionary 

2.10 Inequalities 
In this section we consider some inequalities and their uses. One important 
application is the derivation of the law of large numbers. 

Theorem 2.10.1 (Markov's Inequality) Let X be a random variable with 
expected value E[X] and such that P[X < 0] = 0. Then, for each t > 0, 

P[X >t]< W-. (2.152) 

Proof We give the proof for discrete X. The proof when X is continuous 
is similar. 
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E[X] = ^Txipixi) 
Xi 

= ^2 x>P(xi) + X I X'P(:C«) 
Xi<t t<Xi 

> X Xip(Xi) 
t<Xi 

> £ > ( x O = tP[X>t]. 

E[X] 

t<Xi 

Hence, 

P[X >t]< 

and the proof is complete. ■ 

Example 2.10.1 Suppose an interactive computer system i proposed for 
which it is estimated that the mean response time E[T] is 0.5 seconds. Use 
Markov's inequality to estimate the probability that the response time T 
will be 2 seconds or more. 

Solution By Markov's inequality, 

P [ T > 2 ] < m = 9± = iD 
1 - J - 2 2 4 

It should be noted that Markov's inequality implies that 

P[X > kE[X]] <j, k > 0. 

This inequality usually gives rather crude estimates because only the 
value of E[X] is assumed to be known. Chebyshev's inequality, in which 
the standard deviation is also assumed to be known, gives better probability 
estimates. □ 

Theorem 2.10.2 (Chebyshev's Inequality)19 Let X be a random variable 
with finite mean E[X] and standard deviation a > 0. Then for every t > 0, 

P[\X - E[X]\ >t}<^, (2.153) 

1 9 P. L. Chebyshev (1821-1894), whose name is also spelled Tchebychev, Tchebycheff, 
and several other ways, was one of Russia's finest mathematicians. For a fascinating 
account of why he thinks Chebyshev should be spelled Tschebyscheff, see Davis [6]. 
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or 
P[\X-E[X]\>tv]<±. (2.154) 

Proof Applying Markov's inequality to (X — E[X])2 with t2 in place of t 
yields 

P[(X - E[X})2 > t2) < EKX-E[X\)3] = ^ ( 2 1 5 5 ) 

However, (X - E[X})2 > t2 if and only if \X - E[X}\ > t. Substitut­
ing this relation into (2.155) yields (2.153). Equation (2.154) follows from 
(2.153) by using ta in place of t in (2.153). ■ 

Example 2.10.2 Suppose that, for the proposed interactive computer sys­
tem of Example 2.10.1, it is estimated that the standard deviation of re­
sponse time is 0.1 seconds. Use Chebyshev's inequality to estimate the 
probability that the response time will be between 0.25 and 0.75 seconds. 

Solution 

P[{T < 0.25) U(T > 0.75)] = P [ | T - 0 . 5 | > 0.25] < ^ = (J^ = 0.16. 

Hence, 

P[0.25 < T < 0.75] = 1 - P[\T - 0.5| > 0.25] => 1 - 0.16 = 0.84. □ 

Chebyshev's inequality often gives poor probability estimates. For ex­
ample, if X has an exponential distribution with mean E[X] = 2, then 

P[\X - E[X]\ > 4] = P[\X - 2| > 4] = 1 - P[X < 6] 
= 1 - (1 - e~6/2) = e - 3 = 0.0498, 

although the Chebyshev inequality shows only that this probability does 
not exceed 0.25. However, the next example shows that the Chebyshev 
inequality cannot be improved without strengthening the hypotheses. 

Example 2.10.3 Suppose a discrete random variable X can assume only 
the values - 2 , 0 , 2 with p ( -2 ) = p(2) = | and p(0) = | . Then 

E[X} = -2x±+0x^ + 2x±=0, 

£ [ * 2 ] = 4 x £ + 0 + 4 x i = l, 
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Var[X] = E[X2] - (E[X])2 = 1 - 0 = 1, 
and a = 1. Then, by Chebyshev's inequality, P[\X - E[X]\ > 2] < \. 
However, 

P[\X-E[X)\>2] = P{(X = 2)\J{X = -2)] = \ + \=1-. 

Hence, the value estimated by Chebyshev's inequality is the exact value. □ 
In many computer science applications we are more interested in calculating 
one tail of a probability distribution than in calculating both tails; that is, 
we want an estimate of the size of P[X - E[X] > t] or P[X - E[X] < t] 
rather than the estimate of P[\X — E[X]\ > t] provided by Chebyshev's 
inequality. The one-sided inequality gives us this estimate. 
Theorem 2.10.3 (One-Sided Inequality) Let X be a random variable with 
finite mean E[X] and variance a1. Then, 

and 
p t * > ' ) ^ + ( i - E W ) > * ' > £ w <2-157> 

Proof Cramer [5], using advanced methods, shows that if X is a random 
variable with mean 0 and standard deviation a, then 

2 

P[X <t]< -2 j f o r l < °> (2.158) 
a +1 

and 
2 

P[X >t}< -2 j- f o r ' > °- (2.159) 
a +1 

Now, if X is an arbitrary random variable with a finite mean and variance, 
then E[X - E[X]] = E[X] - E[X] = 0, and 

Var[X - E[X]] = E[(X - E[X])2] = Var[J5f]. 
Hence, if t < E[X], then t - E[X] < 0 and by (2.158), 

P{X < t] - P\X - E[X\ < , - ElX]] < a , + (f_E[x]r 

If t > E[X], then t - E[X] > 0 and (2.159) gives 
„2 

P[X >t] = P[X - E[X] > t - E[X}] < 
<r2 + (t- E[X}) 2-
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Example 2.10.4 A mathematical model of a proposed interactive com­
puter system gives a mean time to retrieve a record from a direct access 
storage device as 400 milliseconds with a standard deviation of 116 millisec­
onds. One design criterion requires that 90% of all retrieval times must not 
exceed 750 milliseconds. Use the one-sided inequality to test the design 
criterion. 

Solution Let T be the retrieval time. The design criterion is that P[T < 
750 milliseconds] > 0.90. 

By the one-sided inequality, 

1162 1 
P[T > 750] < 5 — -» = -5 = 0.09897. 1 J ~ 1162 + (750 - 400)2 1 + (350/116)2 

Hence, 
P[T < 750] > 1 - 0.09897 = 0.90103, 

and the design criterion is met. The best estimate we could make with 
Chebyshev's inequality is 

P[T > 750] = P[T - 400 > 350] < P[\T - 400| > 350] < (116/350)2 

= 0.1098. 

This does not indicate that the design criterion has been met. □ 

Example 2.10.5 Professor Frank N. Stein has a favorite random variable. 
He uses an "unfair" coin, which comes up heads with probability 0.9 and 
tails with probability 0.1 (it balances on edge with probability zero). Each 
time you toss the coin he pays $9.00 for a tail but charges you $1.00 for a 
head. If X is the amount you receive per toss, then 

E[X] = ( -1) x 0.9 + 9 x 0.1 = 0, 

and 

E[X2] = Var[X] (since E[X] = 0) 
= ( - l ) 2 x 0 . 9 + 92 x0 .1 = 9, 

so 
cr = 3. 

Thus, 10 percent of the probability mass is at least three standard devia­
tions from the mean. By contrast, for the normal distribution (which we 
consider in Chapter 3), only 0.27 percent of the probability mass is three 
standard deviations or more from the mean. 
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The one-sided inequality gives 

P[X < -1] < 32 + ( - l ) ' 
= 0.9, 

which is exact. 
It also gives 

P[X > 8.99999] < 
9 + (8.99999)^ 

= 0.1000002, 

but 
P[X > 9] < 0.1, 

although the true probability that X exceeds 9 is zero. □ 

We have discussed some useful inequalities for estimating the probability 
that a single event occurs, such as T > 20 seconds. Sometimes we are 
interested in the simultaneous occurrence of several events. For example, 
suppose Z = X + Y; and we know that (a) P[X < 2] = 0.9 and (b) 
P[Y < 4] = 0.9. We would like to be able to say something about P[Z < 6]. 
(No, P[Z < 6] ^ 0.9.) Some inequalities, called Bonferroni's inequalities, 
enable us to do that. Before we state them, we need a result that generalizes 
the formula of Theorem 2.2.1(c) and the result of Exercise 4. 

Theorem 2.10.4 (Poincare's Formula) Suppose Ai, A2, ■ ■ ■, An are events 
in a sample space Q. Then 

= P[Ai U ■ • • U An] 

= £ P [ ^ ] - Y^PlAjnAk) 

+ Y, P\A3 n Ak n A,] - J2 p\Ain Ak n Al n A™} 
+ ■■■ 

+ (-l)n-1P[A1f)A2n---nAn}, (2.160) 

where the indices in each sum are distinct and range from 1 to n. 

Proof See Chung [4, pages 162-163] or Feller [7, pages 99-100]. ■ 

In some textbooks (2.160) is written as 

IK = £(-l) r _ 1Sr = Si - Sa + • • • + ( - l ) " " ^ , (2.161) 
r = l 
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where 

Thus, 

Sr= Yl PiA^D-'-nAi,.}. (2.162) 
K i i < ■<ir<n 

St = P[Ai] + P[A2) + ■■■ + P[An], (2.163) 
n— 1 n 

52 = E E pi^n4 (2-164) 
i = l j = i + l 

and 
5 n = P\AX n A2 n ■ • • n An). (2.165) 

It is easy to see that the sum A\ has n terms, the sum 52 has (j) terms, 
and the general sum ST has (™) terms, for the r th sum is the sum of the 
numbers P[Aix D Ai2 D • • • D AiT] over all the indices ii,i2,...,ir such that 
i\ < «2 < • • ■ < ir- Since the indices are chosen from the numbers from 1 
to n, there are exactly (™) choices. 

Theorem 2.10.4 yields the following set of inequalities. 

Theorem 2.10.5 {Bonferroni's Inequalities) Suppose A\, A2, A3,... ,An 

are events in a sample space fi and that A = (J?=i A7 • Then, in the notation 
o/(2.161)-(2.165), 

P[A] < Si. (2.166) 

Si - S2 < P[A\. (2.167) 

P[A] <Si-S2 + S3. (2.168) 

when n is odd, and 

when n is even. 

Proof See Feller [7]. 

P[A] < Si - S2 + ■ ■ ■ + Sn, (2.169) 

Si-S2 + 5 n < P[A], (2.170) 

Corollary to Theorem 2.10.5 (Bonferroni's Inequality) Suppose the 
events Ai,A2,- ■ • ,A„ and A are as in Theorem 2.10.5. Let pi = P[Ai] 
and qi = 1— pi for i = 1,2, • • •, n. Then 

P[&\\ n events occur] > 1 - (qi + q2 H (- gn). (2.171) 

Proof If we call the occurrence of one of the .Aj's a success, then the event 
A is "at least one success." Hence, (2.166) yields 
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P[at least one success] < pi + p2 H + pn, (2.172) 

and, taking complements, 

P[no success] > 1 - (pi + p2 + ■ ■ ■ + p„). (2.173) 

If we now take the complements of the A^s, and replace each pi by qt, then 
(2.173) becomes 

P[no Ai occurs] = P[all n events occur] > 1 — (qi + q2 H h qn)- (2.174) 

■ 
Note that the A\, A2,.. ■, An need not be independent. We consider an 

example. 

Example 2.10.6 Suppose Z = X + Y, P[X < 2] = 0.9, and P[Y < 4] = 
0.9. Let Ai = {X < 2} and A2 = {Y < 4}. Then, by (2.171), 

P[Z < 6] > 1 - (0.1 + 0.1) = 0.8. □ 

Suppose, in Example 2.10.6, we seek a value of z such that P[Z < 
z) > 0.9. We could do this by finding a value x and a value y such that 
P[X < x] = 0.95 and P[Y <y} = 0.95, for then 

P[Z < x + y] > 1 - (0.05 + 0.05) = 0.9. 

In the more general case of (2.174), if we want P[all events occur] > 1 — a, 
and we can control the probabilities pi that individual events occur, we take 
Pi = 1 — a/n so that q, — a/n. 

Example 2.10.7 (a) What choice of p will guarantee a probability of at 
least 0.9 that each of four equiprobable events occur simultaneously? (b) 
With this value of p, what is the probability that all four events occur 
simultaneously, if the events are independent? 

Solution 

(a) p = 1 - 2|1 = 0.975. 

(b) p4 = 0.903688. D 

We will see other applications of Bonferroni's inequality. 
Most of us have an intuitive feel for what the probability of an event 

A, such as rolling a 7 with a pair of dice, "really" is, which is close to 
the "relative frequency" school of thought about probability. We have the 
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feeling that, if we perform the random experiment n times and let Sn be 
the number of times that event A occurs, then Sn/n is approximately P[A], 
at least in the sense that limn_oo Sn/n = P[A]. The law of large numbers 
makes this intuitive notion more precise (and shows that it is true). 

Let A be an event, that has probability P[A], and suppose we perform 
a Bernoulli sequence of n trials as described in Example 2.9.5, where a 
success corresponds to the occurrence of event A. Let S„ be the number of 
successes in the n trials. As we saw in Example 2.9.5, Sn has a binomial 
distribution with E[Sn] = nP[A] and Var[5n] = nP[A](l - P[A]). We are 
interested in the ratio S„/n. We calculate 

E Sn 
n 

= -E[Sn] = P[A] 
n 

and 
Var On 

n n n 
Let e > 0 be arbitrary. Then by Chebyshev's inequality, 

P[A](1-P[A]) ^ - P[A] 
n > e 

ne 
(2.175) 

The expression on the right of (2.175) can be made as small as desired, 
for fixed values of e and A, by choosing n sufficiently large. This proves the 
following theorem. 

Theorem 2.10.6 (Weak Law of Large Numbers) Let A be an event and 
Sn the number of times that A occurs in a Bernoulli sequence of n trials. 
Then for each e > 0, 

lim P 
n—too 

Sn 
n 

P[A] > e = 0. (2.176) 

There is a stronger form of Theorem 2.10.6 called the strong law of large 
numbers, which uses a more restrictive definition of the intuitive idea that 
lim„_00 Sn/n = P[A] (see Feller [7, pages 202-204]). However, a more 
useful form of the law is immediate from the central limit theorem, which 
is discussed in Chapter 3. 

The weak law of large numbers shows that p = P[A] can be estimated 
by Sn/n and that this estimate converges to p. However, it does not give 
any information as to how large n should be to guarantee that the error 
is less than a given value for a certain probability level. The Chebyshev 
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inequality does provide crude estimates, for if 6 > 0 then, by Chebyshev's 
inequality, 

p n -p >s 
Var 

6 
n 

2 
p ( l - p ) 

nS2 " 
(2.177) 

It is easy to show that p(l — p) has its maximum value at p = 1/2 (see 
Exercise 2). Hence, no matter what value p actually has, we have 

P 
n 

>6 < 
1 

4n6 2- (2.178) 

Suppose now that 6 and e > 0 are given and we want to find how many 
trials of the experiment we need to be sure that 

S„ 
P >s <e. (2.179) 

If we know approximately what the value of p is, we see that (2.179) will 
be satisfied if p(l —p)/n62 < e or n > p(\ —p)/eS2. If we have no idea what 
the value of p is, we can use (2.178) to conclude that n > l/(4e<52) trials 
will suffice. Since Chebyshev's inequality usually yields poor estimates, we 
would expect either of these estimates to yield conservative estimates for 
n. In Chapter 3 we show that the central limit theorem can be applied to 
give a better estimate. 

Example 2.10.8 Assuming that each terminal in an interactive system 
has the same probability p of being in use during the peak period of the 
day (the load is evenly distributed over the terminals), we want to know 
how many observations n need be made so that 

P 
n 

> 0 . 1 < 0.05. 

If the first 100 observations indicate that p is approximately 0.2, how 
many more trials are needed? 

Solution The estimate, based on (2.178), is n = 1/(4 x 0.05 x 0.01) = 500. 
If p is approximately 0.2, then we can use (2.177) to conclude that we need 
a total of n = 0.2 x 0.8/(0.05 x 0.01) = 320 observations or an additional 
220. In Example 3.3.3 we show that this estimate can be improved by using 
the central limit theorem. □ 
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Student Sayings 

Our observation of Nancy's distribution has given us many fine moments. 

An exterminator made this contribution 
On rats arriving in random profusion 

"I know nothing of math, 
Probability or stats, 

But I handle 'em with Poisson distribution." 

A. Student 

2.11 Exercises 
1. [C20] The interactive order entry system of the WEWE Diaper Com­

pany can receive order messages from Los Angeles, San Diego, Bakers-
field, and San Francisco. Ordering activity in each city is independent 
of that from the other cities. The probability that the system receives 
one or more orders during any one minute time interval (during the 
peak period of the day) from Los Angeles, San Diego, Bakersfield, or 
San Francisco, respectively, is 0.8, 0.3, 0.05, 0.5. 

(a) What is the probability that ordering activity occurs from exactly 
one of the cities during any one minute period? 

(b) Exactly two cities? 
(c) Not more than two cities? 
(d) No city? 

2. [HM05] In discussing the weak law of large numbers we claimed that 
the function pq = p(l —p) has a unique maximum value of | at p = \. 
Prove this claim. 

3. [20] Suppose A, B, and C are events in some sample space fi, and thus 
are subsets of fi. Prove the distributive law 

(AuB)nc = (AnC)u(Bn C). 

4. [18] Prove that, if A, B, and C are events, then 

P[A U B U C] = P[A] + P[B] + P[C] - P[A (IB]- P[A n C] 
- P[B n c] + P[A n B n C}. 

[Hint: Use Theorem 2.2.1(c) and the result of Exercise 3.] 
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5. [15] Assume that a single depth charge has a probability of | of sinking 
a submarine, | of damage, and | of missing. Assume also that two 
damaging explosions sink the sub. If four depth charges are dropped 
on a submarine, what is the probability that the sub sinks? 

6. [18] Assume Ai, A2, A3,... are subsets of some set fi. Prove De Mor­
gan's formulas: 

(a) Ai U A2 U • • • U AN = ~A[n~A~2 D • • • D~~A^. 

(b) Ax n A2 n • • • n AN = 1 7 u ~A2 u • • • u A~^. 

(d)n^x=ur=1̂ -
7. [15] Let Ai, A2,... be events in some sample space fi. Use Axiom Set 

2.2.1 and the results of Exercise 6 to prove that 

(a) A\ n A2 f~l • ■ • ft AN is an event for each positive integer N. 

(b) fl^Li ^n is an event. 

8. [10] An on-line computer system has four incoming communication 
lines with the properties described in the table below. What is the 
probability that a randomly chosen message has been received without 
error? 

Line 

1 
2 
3 
4 

Fraction of 
traffic 

0.4 
0.3 
0.1 
0.2 

Fraction of 
messages without 

error 

0.9998 
0.9999 
0.9997 
0.9996 

9. [15] Twas Brillig has a drawer containing a mixture of 15 black and 20 
blue socks. Twas is sick in bed when his friend Slithy Toves comes to 
visit. 

(a) Twas asks Slithy to get him a pair of matched socks from the 
drawer (either a black pair or a blue pair). It is too dark for 
Slithy to distinguish the colors. How many socks must Slithy 
remove from the drawer to be sure of getting a matched pair? 
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(b) Suppose now there are an equal number of black and blue socks in 
the drawer. Suppose the minimum number of socks Slithy must 
draw to be sure of getting a pair is the same as the minimum 
number he must draw to be sure of getting at least one black 
sock and one blue sock. How many socks are in the drawer? 

10. [15] Big Bored Securities has two brands of personal computers in 
the Information Center to use for demonstrations, brand y and brand 
z. If two personal computers are selected at random, the probability 
that both are brand y is 1/2. What is the smallest number of personal 
computers that could be in the Information Center? 

11. [20] Suppose the random variable X has finite mean, (i, and finite 
standard deviation, a. Suppose also that 

P[\X - \i\ > K) = 0. 

Prove that a < K. 

12. [18] Calculate 

(a) the probability of getting at least one ace by rolling four dice and 
(b) the probability of rolling at least one double ace (popularly 

known as "snake eyes") in 24 throws of two dice. The fact that 
the first number is larger than the second is known as de Mere's 
paradox. See Feller [7, page 56] and Chung [4, pages 138-139]. 

13. [5] A box contains 50 washers of which 3 are defective. If 2 are 
randomly chosen what is the probability they will both be good? 

It is traditional in any discussion of probability to include some examples 
from card games. For the benefit of sheltered readers we include a definition 
of bridge and poker. 

Definition of Bridge and Poker 

A pack or deck of bridge cards contains 52 cards arranged in four suits 
of thirteen each. The four suits are known as spades, clubs, hearts and 
diamonds. The first two are black, the last two are red. There are thirteen 
face values (2, 3, . . . , 10, jack, queen, king, ace) in each suit. Cards having 
the same face value are said to be of the same kind. Playing bridge, by 
definition, means dealing (distributing) the cards to four players known as 
North, South, East, and West (or N, S, E, W, for short) so that each player 
receives thirteen cards. The deck is assumed to be well shuffled before the 
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cards are dealt. Playing poker, by convention, means choosing five cards 
randomly from a bridge deck. 

We show a picture of an unshuffled deck of cards. 
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An unshuffled deck of bridge cards. 

We illustrate card calculations with two examples. 

Example 2.11.1 What is the probability that in a bridge game North and 
South, between them, have an equal number of black and red cards? 

Solution We need to calculate the probability that 13 of the 26 cards will 
be red and 13 black. The number of ways the two hands of 26 cards can 
be drawn from the deck is (jg). A collection of 13 red cards can be drawn 
from the 26 red cards in the deck in (Jg) ways. Since for each drawing of 13 
given red cards, 13 blaok ones can be drawn in (™) different ways, the total 
number of ways to draw 13 black and 13 red cards is (^3) x (^3). Therefore, 
the desired probability is 

(SHS (26!) !V» 
(52!) x (13!)4 = 0.2181255. D 

Example 2.11.2 Find the probability of drawing a royal flush in poker. 
(A royal flush consists of 10, jack, queen, king, and ace, all in a single suit.) 

Solution There are (5
5
2) possible poker hands. There are only 4 possible 

ways of drawing a royal flush, since there is just one in each suit. Hence 
the required probability is 
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4 x 5' x 47' 
- = 0.000001539077. D 

(?) 
14. [28] Find the probability of getting each of the following poker hands: 

(a) A straight flush (five cards in sequence in a single suit, but not 
a royal flush. Since an ace can also be thought of as a one, the 
sequence ace, 2, 3, 4, 5 in one suit is a straight flush). 

(b) Four of a kind (four cards with the same face value). 
(c) Full house (one pair and one triple of the same face value, such 

as ace, ace, king, king, king). 
(d) Flush (five cards in one suit but not a straight or royal flush). 
(e) Straight (five cards in sequence, not all of the same suit). 

15. [22] Find the probability of not drawing a pair in poker. (Of course 
you still could have a straight or a flush, etc., but not three or four 
of a kind.) 

16. [18] Find the probability of getting a real "bust" hand in poker. A 
"bust" hand has no pair and is neither a straight, a flush, a straight 
flush nor a royal flush. [The ranking of poker hands from high to low 
is royal flush, straight flush, four of a kind, full house, flush, straight, 
three of a kind, two pairs, one pair, and, in the case of a bust hand, 
the highest ranked single card. Since single cards are ranked ace, 
king, queen, jack, 10, 9, . . . , 2 without regard to suit, the best bust 
hand is an "ace high."] 

17. [25] For poker calculate the probability of drawing 

(a) exactly one pair. 
(b) two pairs. 
(c) three of a kind. 

18. [15] Calculate the probability that a bridge hand 

(a) will be all spades. 
(b) will contain no spades. 
(c) will consist entirely of one suit. 

[See Exercises 20, 22, 51-54 for more card game problems.] 
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19. [13] Suppose A and B are independent events. Prove that 

(a) A and B are independent and 

(b) A and B are independent. 

20. [28] Suppose a pack of eight cards is formed from the kings and queens 
of a bridge deck. Two cards are drawn from it. Show that no two of 
the following events are independent. A: At least one of the cards is 
black. B: One of the cards is the queen of spades. C: Both cards are 
kings. D: Both cards are queens. 

21. [10] Prove that P[A\B] = 1 if and only if P[B] ^ 0 and P{AC\B] = 0. 

22. [15] Suppose two cards are drawn from the deck considered in Exercise 
20. Calculate 

(a) the probability that both cards are queens, given that one of the 
cards is a queen. 

(b) the probability that both cards are queens, given that one of 
them is a red queen. 

(c) the probability that both are queens, given that one of them is 
the queen of hearts. 

23. [12] Fred Poisson, the chief statistician at Disneyland, has found that 
72% of the visitors go on the Jungle Cruise, 56% ride the Monorail, 
60% take the Matterhorn ride, 50% go on the Jungle Cruise and ride 
the Monorail, 45% go on the Jungle Cruise and on the Matterhorn 
ride, 40% ride the Monorail and take the Matterhorn ride, and 30% 
take all three rides. Assuming Poisson's figures are correct, calculate 
the probability that a visitor to Disneyland will 

(a) go on at least one of the three rides. 

(b) ride the Monorail given that the Jungle Cruise was taken. 

(c) take the Matterhorn ride given that both the Jungle Cruise and 
Monorail rides were taken. 

24. [12] All the families in Dogpatch have exactly two children. For these 
families we can represent the children by bb, bg, gb, gg. In each pair 
b stands for boy and g for girl; the first letter in each pair represents 
the older child. We assume boys and girls are equally likely so that 
probability of each sample point is 1/4. 
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(a) Given that a family has a boy (event B), what is the probability 
that both children are boys (event A)? 

(b) Given that the older child is a boy (event C), what is the prob­
ability that both children are boys (event A)? 

(c) Let A be the event that "the family has children of both sexes," 
and B the event "there is at most one girl." Are A and B inde­
pendent? 

[15] The families of workers at Tiny Timber have at most 3 children 
each. The probability distribution for the number of children per 
family is given by 

Number of children: 0 1 2 3 
Probability: 0.20 0.50 0.25 0.05 

The probability that a child is a boy is the same as the probability a 
child is a girl. 

(a) Calculate the probability that a family has exactly one boy. 
(There may be girls too.) 

(b) Calculate the probability there are two children in a family given 
that the family has exactly one boy. 

[10] The employees parking lot at the Buss Stout Fence Company has 
50 percent U.S. cars, of which 15 percent are compact; 30 percent 
of the cars are European, of which 40 percent are compact; and 20 
percent of the cars are Japanese, of which 60 percent are compact. If 
a car is randomly selected from the lot, calculate 

(a) The probability it is a compact. 

(b) Given that the car is a compact, the probability that it is Euro­
pean. 

[8] Belchfire Motors automobiles are equally likely to be manufactured 
on Monday, Tuesday, Wednesday, Thursday, or Friday; no cars are 
constructed on weekends. Ralph Wader, the company statistician, 
has determined that 4 percent of the cars produced on Monday are 
"lemons"; 1 percent of the cars made on Tuesday, Wednesday, or 
Thursday are lemons; and 2 percent of cars manufactured on Friday 
are lemons. You find that your Belchfire car is truly a lemon. What 
is the probability it was manufactured on Monday? 



2.11. EXERCISES 93 

In the next five exercises we will consider the matching problem, some­
times called Montmort 's problem. In one version of the problem a jar con­
tains n balls numbered from 1 to n. The balls are mixed thoroughly and 
drawn out one at a time. What is the probability that no ball is drawn 
in the order of its label? That is, on no draw, say the ith draw, is it true 
that ball number i is drawn. In another version n letters are typed and n 
envelopes addressed to n different people. The letters are randomly stuffed 
in envelopes. The question then becomes the probability that none of the 
addressees receive the correct letter. In the "mixed-up hats" version, n men 
check their hats. When they reclaim them each man is given a hat ran­
domly selected from those remaining. All versions of the matching problem 
can be modeled as n urns and n numbered balls with one ball inserted into 
each urn. A match occurs if ball k is put into urn k. We let Ak be the 
event that there is a match in the A;th urn. Then P\Ak] is the probability 
that the match occurs; for the hat problem it is the probability that the 
fcth man gets his own hat. 

28. [8] For the sample space of inserting n balls into n urns let each 
sample point be an n-tuple ( x i , x 2 , . . . ,xn), where Xj represents the 
number of the ball put into the j t h urn (sometimes, unromantically, 
called a pot). Thus, each component is a number from 1 t o n and 
no two components are equal. Then the event Ak = {{x\,X2,. ■ ■ ,xn) 
€ 0 : Xk = k}. Prove that P[Ak] = 1/n. Thus, the probability of a 
man getting his own hat does not depend on whether he gets to make 
the first, second, or even last choice. 

29. [10] Noah Peale and Mail Chauvinist are part of a group of 6 people 
who have put their hats on a table. Everyone then selects a hat 
randomly from those on the table. Calculate the probability that 

(a) Noah gets his own hat. 
(b) both Noah and Mail get their own hats. 
(c) at least one, either Noah or Mail, will get his own hat. 

30. [25] Consider the matching problem of n urns and n numbered balls. 
Prove that the probability that there is at least one match is given by 

1 1 (—l}n_1 

1 - ^ + T7T + -— - . « 1 - e _ 1 = 0.632120559. 
2! 3! n\ 

31. [12] Consider Exercise 30. 

(a) Calculate the probability of at least one match for n = 2,3,4, 
and compare it to 1 — e~l. 
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(b) Show that 

^ 2! + 3 ! + n! ) (n + 1)! 

Conclude that, for n > 4, the probability of at least one match differs 
from 1 — e _ 1 « 0.63 by less than 0.01; that is, the probability of no 
match is about 0.63 for all n > 4. 

32. [10] Bigg Fakir claims that by clairvoyance he can tell the numbers 
of four cards numbered one to four, that are laid face down on a 
table. If he has no special powers and guesses at random, calculate 
the following: 

(a) the probability that Bigg gets at least one right. 
(b) the probability he gets two right. 
(c) the probability Bigg gets them all right. 

33. [3] 

(a) Suppose (£ ) = (*). What is n? 

(b) Suppose (x
r
8) = (r!f2). what is r? 

34. [22] Following Knuth [14, page 51], we define (£) for all real r and all 
integers k by 

fr\ r ( r - l ) - - - ( r - f c + l) -pr / r + l - A 
\k) *(*-l)-(l) ^K j )' 

when & is a nonnegative integer and 

0 -
when k is negative.20 Thus, 

(-7.2X-8.2) (r)-{- = 29.52, 

and (Q) = 1 for all r, by the convention that an empty product in the 
definition of (£) is one. Prove 

2 0For even more about binomial coefficients see Graham et al. [11, chapter 5]. 
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(a) (D = l(fc-i) if ^ is a nonzero integer. 

(b) (£) = ■~k(T"lc
k), when A; is an integer and k ^ r. 

(c) (fe) = Cfc1) + (fc-i)' w h e n k i s a n y i n t e g e r -
(d) (~r) = (- l) f e( r + j | ; - 1) , when k is any integer. 

35. [C25] Seven terminals of an interactive system at Crocker Ship are 
attached by a communication line to the central computer. Exactly 
four of the seven terminals are ready to transmit a message. Assume 
that each terminal is equally likely to be in the ready state. Let X 
be the random variable whose value is the number of terminals polled 
until the first ready terminal is located. 

(a) What values may X assume? 
(b) What is the probability that X will assume each of these values? 

Assume that terminals are polled in a fixed sequence without 
repetition. 

(c) Suppose the communication line has m terminals attached, of 
which n are ready to transmit where n > 1. Show that X can 
assume only the values i = 1,2,. . . , m — n + 1 with p(i) = P[X = 
«1 = (n-7)/C)-

36. [35] Assume, as in Exercise 35(c), that m terminals at Transend Realty 
are attached to a communication line linked to a computer. Suppose 
also that Y terminals are ready to transmit, where Y > 1. Let X be 
the number of polls required to find the first terminal in the ready 
state. Prove the following results (due to Russell Ham): 

(a) E[X\Y = n] = (*£). 

(b) E[X*\Y = n] = [l + 2 ( * # ) ] (m±l) . 

37. [C20] (This rating is [T30] if nothing more powerful than a nonpro­
grammable calculator is available and [15] if APL is available so that 
you can copy and use the APL functions BINOMIAL and MPOLL.) 
Suppose seven terminals are connected to a communication line of an 
interactive computer system. Each terminal operates independently 
and has probability 0.2 of being ready to transmit. Thus, if Y is 
the random variable that counts the number of terminals ready to 
transmit, Y has a binomial distribution with parameters n = 7 and 
p = 0.2. Find the mean and standard deviation of the number of polls 
necessary to find the first ready terminal. Assume that 7 polls are 
required to discover that no terminal is ready. 
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[20] Swann Dive, a systems programmer at Poly Unsaturated, offered 
his friend Charlie Tuna, an application programmer, the following 
proposition. On each roll of three dice Swann would pay Charlie one 
dollar for each ace that showed; if no aces were turned Charlie would 
pay Swann one dollar. Charlie reasons that the probability of rolling 
an ace on the first die is | ; similarly for the second and third die. 
Hence the probability 3 x ^ = A of getting at least one ace and he 
might get two or even three of them. 

(a) Is Charlie right—that is, is it a good proposition for him? 

(b) What is the probability that Charlie will roll one, two, or three 
aces, respectively? 

(c) What is the average amount of money Charlie can expect to win 
each time the dice are rolled? (Swann didn't tell him, but this 
game is known as chuck-a-luck at carnivals.) 

[35] A single disk storage device has N concentric tracks and one 
access arm. It has been loaded with data in such a way that successive 
movements of the access arm (called track seeks) are independent of 
one another. The probability that a randomly chosen seek will take 
the arm to track i is p». Let X represent the number of tracks passed 
between consecutive seeks, assuming that no physical repositioning of 
the access arm takes place between successive seek operations. Show 
the following: 

(a) X assumes the values 0 , 1 , . . . , N — 1 and has the pmf p(-) defined 
by 

( N 

p(j) = P[X = j}={ 
Erf. ; = 0 
i = l 

N-j 

Z^PiPi+j, j = l,2,...,N-l. 
i = l 

(b) For the case that pi = 1/iV for all i, it is true that 

E[x] ~ ~3N— ~ y 

E[X ] - — — , 
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and 
N2 

Var[X] « — . 

(c) Suppose T, the seek time, is a linear function of X; that is, 

T = AX + B, 

where A and B are constants. (A is then given by 

maximum seek time - minimum seek time 
7 V - 1 

A = 

and B is minimum seek time.) 
Then it is true that 

r,™ A(N2 - 1 ) „ AN n 

and 
Var[T] = A2V&i[X] « ^ - . 

40. [5] Refer to Example 2.4.6. Calculate 

P[A2\A], P[A3\A], and P[A4\A}-

41. [20] Dusty Page, a librarian at Hard Core Computer (makers of solid 
state memory), tripped over the discrete random variables X and Y 
when he stepped from his office. These random variables have the 
joint probability mass function shown in the table below. Thus, X 
assumes the values 0 and 1, and Y assumes the values 0, 1, and 2. 

Y 
X 
0 
1 

0 

1/8 
0 

1 2 

1/4 1/8 
1/8 3/8 

Help Dusty out by doing or answering the following: 

(a) Find the marginal probability mass functions px and py-
(b) Find the conditional probability mass function of X, given that 

Y = 2. 
(c) Are X and Y independent random variables? Why? 
(d) Calculate E[X],E[Y], Var[*], and Var[y]. 
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(e) Find the probability mass function for Z = X + Y. 

42. [HM30] Suppose X and Y are independent random variables, each 
with the density function / given by 

/ ( *>-{! 
for 0 < x < 1 
otherwise. 

Show that the density function of Z = X + Y is given by 

fz(z) = { 
z for 0 < z < 1 
2-z for 1 < z < 2 
0 otherwise. 

Thus, Z has a triangular distribution. (As we shall see in Chapter 3, 
X and Y are said to be uniformly distributed.) Hint: This Exercise 
can be solved by using convolution (Theorem 2.7.5) or by using the 
Laplace-Stieltjes transform (Theorem 2.9.3(a) and (d)). 

43. [20] Suppose X and Y have the joint discrete distribution shown in 
the table. Show that X and Y are uncorrelated but not independent. 

X 

-1 

0 

1 

Y -1 

0 
1 
4 

0 

0 

1 
4 

0 
1 
4 

1 

0 
1 
4 

0 

44. [12] Suppose X is an arbitrary random variable such that the mean 
E[X] and standard deviation a are defined (finite). For any p such 
that 0 < p < 0.5, find xp > E[X] so that P[X > xp] < p. 

45. [10] Suppose X is a random variable with finite mean and variance. 
For 50 < r < 1, we define the r th percentile value ■KX(T) by 

P[X<TTX(r)] = 100 
Thus, the 90th percentile value irx(90) is defined by 

P[*<7rx(90) ] = 0.90. 

Show that 
irx(90)<E[X] + 3a, 

and 
irx(95)<E{X] + aVl9. 
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46. [5] A discrete random variable X is called a truncated Poisson random 
variable if its mass points are 0 ,1 ,2 , . . . , N and its probability mass 
function p(-) is given by p(k) = Ce-aak/k\, k = 0,1,2,..., N. What 
is the value of the constant C? 

47. [5] The average length of messages received at a message switching 
center is 50 characters with a standard deviation of 10 characters. 
How many bytes (characters) of storage should be provided for each 
message buffer to ensure that 95% of all messages fit into one buffer? 

48. [15] A certain access method, called method A, has been found to 
give a mean record retrieval time of 36 milliseconds with a standard 
deviation of 7 milliseconds, while method B has a mean retrieval time 
of 42 milliseconds with a standard deviation of 4 milliseconds. 

(a) If a major design objective is to have 90% of all individual 
retrievals completed in 55 milliseconds or less, which method 
should be selected? 

(b) Does the chosen method meet the objective? 

49. [15] Inquiries to an interactive computer system at Rhode Block Se­
curity are of four types and make reference to different data bases as 
follows: 

Inquiry 
type 

A 
B 
C 
D 

Percent of 
type 

40 
30 
20 
10 

Mean reference time 
(msec) 

100 
120 
80 
40 

Standard deviation 
of reference 
time(msec) 

80 
30 
40 
20 

For the entire collection of inquiries, what is 

(a) the mean reference time? 
(b) the variance of reference time? 

50. [HM15] Use the Laplace-Stieltjes transform to derive the results of 
Example 2.9.1, that is, to prove that, for an exponential random 
variable X, we have 

(a) Var[X] = E[X)2. 
(b) E[Xn] = n\E[X]n, n = 1,2,. . . . 
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51. [30] Suppose a sequence of bridge hands is dealt. Let A be the event 
that each player is dealt one ace on a particular deal. 

(a) Show that A has a probability of about one-tenth. (Actually 
0.1054981993.) 

(b) What is the probability that one particular player gets no ace 
for three consecutive deals? 

(c) Show that the probability that event A occurs at least once in 
seven deals is about one-half. (Actually, 0.54178581 or 0.5217031 
if 0.1 is used as the probability of A.) Hint: By the general 
multiplication rule (Corollary to Theorem 2.4.1), the number of 
ways of dealing one bridge hand is 

52! 6)00= (13!) ! V 

52. [30] Recall that P(n, k) is the symbol for the number of permutations 
of n objects taken A; at a time and C(n, k) = (£) is the symbol for 
the number of combinations of n objects taken A; at a time. Using 
this notation we see that the number of different bridge hands is 
(7(52,13) = 52!/(13!)(39!) = 6.350135 x 1011. We can compute the 
probability of a given distribution of cards by suit (such as 12 in 
one suit and one in another) in a randomly chosen hand by dividing 
the number of possible hands with such a distribution by C(52,13). 
Consider a 5-4-3-1 distribution. If the suits are given (say the five-
card suit is hearts, the four-card suit diamonds, the three-card suit 
clubs, and the remaining card is a spade), there are 

C(13,5)C(13,4)C(13,3)C(13,1) = 1,287 x 715 x 286 x 13 
= 3,421,322,190 

such hands. But there are P(4,4) = 24 ways of permuting the 4 
different sized suits in a 5-4-3-1 distribution so we have 

P[5-4-3-l distribution] = m4)C(13,5)C(13,4)C(13,3)C(13, l ) 
C(52,13) 

= 0.129307054. 

(a) Show that the probability of a 4-4-3-2 distribution is 

P(4,2)C(13,4)2C(13,3)C*(13,2) P[4-4-3-2 distribution] 
C(52,13) 

= 0.215511757. 
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(b) Show that the probability of a 4-3-3-3 distribution is 

^ s - s d i — . . ] - P ( 4 a ) C
f
(
( ' 5

3
2 ^" 3 ' 3 ) 3 

= 0.105361303. 

(c) Show that for any specific x-y-z-w distribution (where x + y + 
z + w = 13), we have 

P[x-y-z-w distribution] = C(52 13) 

{ P(4,4) = 24 if all suits are of different size 
P(4,2) = 12 if exactly 2 suits are of the same size 
P(4,1) = 4 if 3 suits are of the same size. 

Of course, n is the number of different suit arrangements for a 
given x-y-z-w distribution. 

53. [25] You are West in a bridge game and have no ace. 

(a) What is the probability that your partner, East, has no ace? 

(b) What is the probability that East has two or more aces? 

54. [25] In a bridge game North and South have 10 spades between them. 

(a) What is the probability that the three remaining spades are all 
in one hand (that is, that either East or West has no spades)? 

(b) If the king of spades is one of the three spades, what is the 
probability that one player has the king and the other has the 
remaining two spades? 

55. [25] What is the probability that in a hand of bridge each player has 
all cards in one suit; that is, one player has all spades, one all hearts, 
one all clubs, and one all diamonds? 

56. [25] During the winter season at the Fearsome Peaks Ski Resort, each 
of the two roads from Area A to Area B has probability p of being 
blocked by snow. The same can be said of the two roads that lead from 
Area B to Area C; that is, all roads, independently, have probability 
p of being blocked by snow. 
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(a) What is the probability that there is an open path from Area A 
to Area C? 

(b) Having calculated the probability in part (a) when p = 1/2, the 
owners of FPSR decide to build a direct road from Area A to 
Area C, which, independently of the other roads, is blocked with 
probability p. What is the new probability there is an open road 
from Area A to Area C? 

(c) If p = 0.25, calculate the probabilities of part (a) and part (b). 

57. [20] Consider the following. 

(a) Suppose a coin that has probability p of turning up heads is 
tossed once. If X is the number of heads, and Y the number of 
tails show that X and Y are not independent. 

(b) Let the coin of part (a) be tossed a random number of times N, 
where N is a Poisson random variable with parameter a, (see 
Example 2.7.6 for the definition). Let X and Y be the resulting 
numbers of heads and tails, respectively. Show that X and Y 
are independent. 

58. [10] Kollossal Airways and Teeny Weeny Airlines compete for passen­
gers from Pointaye to Pointbee. It is known that each passenger who 
makes reservations fails to show up with probability 1/10 indepen­
dently of other passengers so Kollossal always books 20 passengers 
for their 18 seat airplane and Teeny books 10 for their nine-seat air­
liner. What is the probability that each is overbooked on a randomly 
chosen flight? 

59. [M22] Prove that 

50*-CD-
[Hint: Use the identity (1 + z) n ( l + z'1)" = z~n{\ + z)2n.) 

60. [02] Show that, if you had an income of $20,000 last year and Rock­
efeller had an income of $2,000,000, then your joint average income 
would be $1,010,000 with a standard deviation of $990,000. 

61. [HM12] Suppose the joint density function of the continuous random 
variables X and Y is given by 

, . _ f 2 - x - y, if 0 < x < 1 and 0 < y < 1, 
f\xi y) — \ Q otherwise. 
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(a) Find the marginal density functions fx(') and fy(-) of X and 
Y, respectively. Are X and Y independent? 

(b) Find the conditional density functions fx\y{x\y) and fy\x{y\x)-

(c) Calculate E[X\Y = y] and E[Y\X = x]. 

62. [HM12] Suppose the joint density function of the continuous random 
variables X and Y is given by 

. . _ f e~x-y, if x > 0 and y > 0, 
/l*> y)-\ 0 ) otherwise. 

Answer (a), (b), and (c) of Exercise 61 for the above X and Y. 

63. [5] Swann Dive (see Exercise 38) offers his friend, Charlie Tuna, a new 
proposition. Charlie will deal himself 2 cards from a well-shuffled 
deck of bridge cards. If Charlie has one or more hearts, Swann will 
give him a dollar; otherwise Charlie must pay Swann a dollar. What 
is the probability that Charlie will win on one play? 

64. [6] Swann (see Exercise 63) shuffles 5 black cards and 5 red cards and 
lets Charlie randomly choose 2 of the cards. If they are both red or 
both black, Swann gives Charlie a dollar; otherwise he takes a dollar 
from him. What is the probability that Charlie will win a dollar on 
one play? 

65. [6] Swan asks Charlie to toss an honest coin three times. Charlie must 
call heads or tails before each toss. If he is right at least two out of 
three times he wins a dollar; otherwise he loses a dollar. What is the 
probability that Charlie wins? 

66. [20] Swann Dive has three cards, which he shuffles in a hat. One of 
his cards is red on both sides, one red on one side and black on the 
other; the third is black on both sides. Swann randomly selects a 
card and places it face down on the table. The side that shows is 
black. Swann offers to pay his friend, Charlie, a dollar if the other 
side is black; otherwise he takes a dollar from Charlie. What is the 
probability that Charlie wins?21 

21Weaver [25, page 126] makes the following statement about this problem: "Forty 
years ago, when graduate students had to work for their living, the author used to teach 
this particular problem, at reasonable rates and using the experimental method, to his 
college friends." 
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67. [10] Charlie Tuna puts two decks of well shuffled playing cards side by 
side in front of you. He begins by simultaneously turning over a card 
in each deck. He does this, over and over, until all cards have been 
turned over in pairs. If, on any turn, Charlie hits the same card in 
both decks you win a dollar. If he has no matches you lose a dollar. 
(You win only one dollar if he has multiple matches.) What is the 
probability you will win? [Hint: See Exercise 30.] 

68. [25] John and Mark found 16 dollars in a paper bag. Rather than 
splitting the cash they decided to flip a coin for it. They decided 
that the one who first wins 10 tosses gets all the money. After 15 
tosses of the coin John has won eight times and Mark seven times. 
On the 16th flip the coin rolled away and was lost, so they decided 
to divide the 16 dollars based on their respective chances of winning 
if they started up again. Clearly, John should get more than Mark, 
but exactly how much should each receive? Note: This is a special 
case of a general problem called the "problem of points" first solved 
successfully by Pascal. [Hint: What is the maximum number of tosses 
that remain to be made to settle the winner?] 

69. [10] You decide to offer a gambling game with cards to your friend, 
Amos. You mark each card with a number from 1 to 52; that is, 
you write 1 on the first card in the deck, 2 on the second card, etc., 
to 52 on the last card. You shuffle the cards. If the top four cards 
are in ascending order you pay Amos $20; otherwise he pays you a 
dollar. (By ascending order we mean, for example, the top card is 7, 
the second card 12, the third card is 40, and the fourth card is 47.) 
What is the probability that Amos will win? What is your average 
winning per play? [Hint: In how many orders can the top 4 cards be 
arranged?] 

70. [15] You allow your friend, Sally, to shuffle a three-card deck consisting 
of an ace, a king, and a queen. Sally chooses two of the cards at 
random and discards the third. She shows you a queen when you ask 
for a picture card. What is the probability that she also has the king? 

71. [5] The weather forecaster on TV reported that the probability of rain 
tomorrow is 1/4. Find 

(a) the odds in favor of rain tomorrow, and 
(b) the odds against rain tomorrow. 

72. [5] Suppose the odds in favor of Barry Blunt marrying Sally Sharp are 
3:5 (3 to 5). Find the probability that they will get married. 
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73. [5] Consider Example 2.10.2. 

(a) Use Chebyshev's inequality (Theorem 2.10.2) to show that the 
probability the response time is one second or more is 0.04. 

(b) Use the one-sided inequality (Theorem 2.10.3) to show that 
the probability that the response time will exceed one second 
is 4/104. 

74. [10] Moon Systems, a manufacturer of scientific workstations, produces 
its Model 13 System at sites A, B, and C; 20% at A, 35% at B, and 
the remaining 45% at C. The probability that a Model 13 System will 
be found defective upon receipt by a customer is 0.01 if shipped from 
site A, 0.06 if from site B, and 0.03 from site C. 

(a) What is the probability that a Model 13 System selected at 
random at a customer location will be found defective? 

(b) Suppose a Moon Model 13 System selected at random is found 
to be defective upon arrival at a customer location. What is the 
probability that it was manufactured at site B? 

75. [8] Suppose a bookmaker tells you the odds against the Washington 
Redskins beating the Dallas Cowboys next week is 3:2. Assuming the 
odds are correct, (a) what is the probability that the Redskins will 
win and (b) if the Redskins win and you have bet $10 that they will 
win, how much will you win? 
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With the jargon of Math, do you find 
That some lessons can lessen your mind? 

Turn over a leaf: 
Study Laughing and Grief... 

See your Reeling and Writhing unwind! 
(with apologies to Lewis Carroll) 

Ben W. Lutek 

In the long run, we are all dead. 
John Maynard Keynes 

There were so many kinsmen Bernoulli 
That keeping them straight would unduly 
Have tired and worn to a frazzle 
The record-keepers of Basel. 

Karl David 
Wells College 
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Chapter 3 

Probability Distributions 

All business proceeds on beliefs, 
or judgments of probabilities, 

and not on certainties. 
Charles Eliot 

3.0 Introduction 
In Chapter 2 we defined a random variable X to be a real-valued function 
defined on a sample space. Thus, to each outcome a; of a random experi­
ment, the random variable X assigns the value X(u). The "randomness" 
in the name random variable comes about because of the uncertainty of the 
outcome of the experiment before the experiment is performed; once the 
outcome of the experiment has been determined, so has the value of the 
random variable. Thus, if the random variable X counts the number of 
spots turned up when two dice are tossed, as soon as the dice are tossed, 
the value of X is known. The usefulness of the random variable concept 
depends upon the ability to determine the probability that the values of 
the random variable occur in a given set of real numbers. That is, the 
probability distribution of a random variable is its most important property. 
For this reason the two statements 

1. "X is a Poisson random variable," and 

2. "X has a Poisson distribution," 

are used interchangeably. The same is true for any other type of random 
variable, of course. If the probability distribution of a random variable 
is known, the actual underlying sample space is not important. Thus, 
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if we know the distribution function F(-) of X, defined for all real x by 
F(x) = P[X < x], we can calculate the probability P[X 6 A] where A is 
a set of real numbers satisfying very weak restrictions. In most practical 
cases we are interested in probabilities such as P[a < X < b] = F(b)—F{a)\ 
the distribution function F(-) enables us to make this type of calculation 
easily. If X is a discrete random variable, its distribution function can 
be calculated from its probability mass function p ( ) defined for all real 
x by p(x) = P[X = x]. If A" is continuous, its distribution function can 
be calculated from its density function /(■), which is characterized by the 
properties: 

(i) / (# ) > 0 for all real x, 

(») JZo /(*)dx = *' and 

(iii) P[a < X <b] = Ja f(x) dx for all real a, b with a < b. 

Then 
F(x)= f f(t)dt. (3.1) 

J—oo 

In this chapter we will study some common random variables, which are 
especially useful for computer science applications. 

Make things as simple as possible but no simpler. 
Albert Einstein 

3.1 Discrete Random Variables 
A random variable X is discrete if 

5>(*) = £ > [ * =*] = !, (3.2) 
x€T x€T 

where T = {real x : p(x) > 0}. The set T is either finite or countably 
infinite. (For a proof see Apostol [3, page 511].) Each point of T is called 
a mass point of X. We sometimes indicate the mass points of X by writing 
11X assumes the values xi,X2,X3,- ■ •." Just as the distribution function of 
X can be calculated from the pmf p(-) by the formula 

F(x) = £ p f c ) , (3-3) 

Xi<X 

the pmf p(-) can be calculated from F(-) at all mass points by 

p(xi) = lim {F(Xi) - F(x)}. (3.4) 
X—»Xj 
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That is, the graph of F(-) is a step function with a jump at each mass point 
Xi, the jump having magnitude p(xi). 

We summarize the properties of some useful discrete random variables 
in Table 1 of Appendix A. 

3.1.1 Bernoulli Random Variables 
Several important discrete random variables are derived from the concept 
of a Bernoulli sequence of trials. 

A Bernoulli trial is a random experiment in which there are only two 
possible outcomes, usually called success or failure, with respective proba­
bilities p and q, where p + q = 1. We assume 0 < p < 1, for otherwise the 
results are trivial. A sequence of such trials is a Bernoulli sequence if the 
trials are independent and the probability of success (or failure) is constant 
from trial to trial. A Bernoulli random variable describes a Bernoulli trial 
and thus assumes only two values: 1 (for success) with probability p and 0 
(for failure) with probability q — 1 — p. 

An example of a Bernoulli trial can be constructed from any sample 
space Q, that has an event A such that 0 < P[A] < 1, by identifying 
the occurrence of A with success and A with failure. The corresponding 
Bernoulli random variable X is defined to be 1 for every point of A and 0 
for every point of A. 

A Bernoulli random variable is completely determined by the value of 
p and therefore is said to have one parameter, namely, p. As we saw in 
Example 2.9.4, such a random variable has the ^-transform or generating 
function 

g(z) = q+pz. (3.5) 

We also showed that E[X] = p and er2 = pq. The Bernoulli random variable 
is the basis for other important random variables, including the binomial 
and geometric random variables. 

3.1.2 Binomial Random Variables 
Consider a Bernoulli sequence of n trials where the probability of success on 
each trial is p. The random variable X, that counts the number of successes 
in the n trials is called a binomial random variable with parameters n and 
p. Thus, X can assume only the values 0 ,1 ,2 , . . . , n. A Bernoulli sequence 
of n trials can be represented as a string 01,02, •■• ,o n where each Oj is 
either s for a success or / for a failure. Thus, a sequence of 5 trials in 
which 2 successes are followed by a failure, a success, and a failure, would be 
represented as ssfsf. If now the binomial random variable X has parameters 
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n and p, and k is an integer between 0 and n (inclusive), then any string 
a i , a 2 , . . . , a „ representing k successes and n — k failures has probability 
pkqn~k, since each trial is independent. (The probability can be calculated 
by replacing each s in a i , 0 2 , . . . , a n by p, each f by q and multiplying 
the resulting numbers.) The number of strings 01,02, . . . , a n representing 
k successes and n — k failures is just the number of ways the k indices 
representing success can be chosen from the n indices, that is, Q) . Hence, 
the pmf &(•; n,p) of a binomial random variable with parameters n and p is 
defined by 

b(k;n,p)=(^\pkqn-k, k = 0,1, ••-,«, (3.6) 

where o = 1 — p. 
X can be represented as 

X = X1 + X2 + --- + Xn, (3.7) 

where Xi,X2,..., Xn are independent identically distributed Bernoulli ran­
dom variables. By Theorem 2.7.1 we have 

E[X] = ElXi] + E[X2] + ■■■ + E[Xn] = np, (3.8) 

since E[Xi] = p for each i. 
By Theorem 2.7.2, 

Var[X] = Var[Xi] + Var[X2] + • • • + Var[X„] = npq, (3.9) 

since VarpQ] = pq for each i. (In Example 2.9.5 we calculated the mean 
and variance of X using generating functions.) 

The APL function BINOMIAL can be used to calculate binomial prob­
abilities and BINSUM can be used to sum binomial probabilities. 

Example 3.1.1 A master file of 120,000 records is stored as a sequential 
file on a direct-access storage device in blocks of six records. Each day the 
transaction file is run against the master file and approximately 5 percent 
of the records are updated. The records to be updated are assumed to 
be distributed uniformly over the master file. An entire block of records 
must be updated if one or more records in the block need updating. What 
is the mean and standard deviation of the number of blocks that must be 
updated? Use Chebyshev's inequality to estimate the probability that 5,200 
to 5,400 blocks must be updated. 

Solution Let X be the random variable that counts the number of records 
in a block that must be updated. It is reasonable to assume that X is 
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a binomial random variable with parameters n = 6 and p = 0.05. (A 
Bernoulli trial consists of checking a record to see if it must be updated, 
that is, whether or not it is listed in the transaction file.) A given block must 
be updated if X > 1, that is, with probability P[X > 1] = 1 - P[X = 0]. 
Hence, the probability that any given block must be updated is 

1 - 6(0; 6,0.05) = 1 - (0.95)6 = 1 - 0.735092 = 0.264908. (3.10) 

Let Y be the number of blocks that need to be updated. Y is a binomial 
random variable with parameters n = 20,000 and p = 0.264908. Therefore, 
the average number of blocks to be updated is E[Y] = 20,000 x 0.264908 = 
5,298.16 « 5,300 with standard deviation 

a = (20,000 x 0.264908 x 0.735092)1/2 « 62.41 blocks. (3.11) 

By Chebyshev's inequality the probability that Y is between 5,200 and 
5,400 blocks is 

P [ | y - 5 , 3 0 0 | < 1 0 0 ] > 1 - f ^ - ^ J =0.6105. (3.12) 

Using the APL function BINSUM, the author has calculated the correct 
probability that Y lies between 5,200 and 5,400 to be 0.890677863. This 
value was confirmed by the SAS/STAT [28] function PROBBNML. Thus, 
the above estimate of the probability is not very good.1 In Exercise 44 we 
ask you to use the normal approximation. D 

Example 3.1.2 The interactive computer system at Gnu Glue has 20 com­
munication lines to the central computer system. The lines operate inde­
pendently and the probability that any particular line is in use is 0.6. What 
is the probability that 10 or more lines are in use? 

Solution The number of lines in operation X has a binomial distribution 
with parameters n = 20 and p = 0.6. The required probability is thus 

20 / 2 0 \ 
P[X > 10] = V ( ) (0.6)fc(0.4)20-fe = 0.872479. (3.13) 

Equation (3.13) is a tedious calculation to carry out with a pocket calculator 
(unless, of course, it is programmed to calculate binomial probabilities) but 
it can be done easily using SAS/STAT [28], MINITAB [20], an HP-21S 
calculator with its binomial library program, or the EXPLORE program 
BINOM of Doane [9]. The probability can also be approximated by the 
normal distribution, as we will show later in the chapter. The APL function 
BINSUM provides another way to make the above calculation. □ 

1Even the HP-21S calculator could not handle this calculation. 
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3.1.3 Geometric Random Variables 
Suppose a sequence of Bernoulli trials is continued until the first success 
occurs. Let X be the random variable that counts the number of trials 
before the trial at which the first success occurs. Then X can assume the 
values 0,1,2,3, X assumes the value zero if and only if the first trial 
yields a success; hence, with probability p. X assumes the value 1 if and 
only if the first trial yields a failure and the second a success; hence the 
probability qp, where q = 1 — p. Continuing in this way we see that the 
pmf of X is given by 

p(k) = qkp, k = 0 ,1 ,2 , . . . . (3.14) 

The probability-generating function of X is thus 
oo oo 

9(z) = E ^ V 5 = p X > ) * = j ^ — . (3.15) 
fc=o fc=o ^z 

In order for (3.15) to hold, we must have qz < 1 or z < 1/q. Then 

,, \ PI A "( \ 2PQ2 

g{z)=0^zf and ff(2) = (T^}3-
Hence, by Theorem 2.9.2, 

E[X] = 9'{1) = (T^j* = P' (3-16) 

and 

Var[X] = g"(l)+g'(l)-(g'(l))2 

= 24+^-4 P* p p* 

f_,S__ g(g + P) 
— 2 "■" 2 

P P P 
_ q_ (3.17) 

The geometric random variable is important in queueing theory and 
other areas of applied probability. 

Example 3.1.3 Consider Example 3.1.1. Let X be the number of blocks 
of the master file that are read before the first block that must be updated 
is found. Then X is a geometric random variable with parameter p = 0.265. 
The expected value of X is q/p = 0.735/0.265 = 2.774 blocks with standard 
deviation y/qjp = 3.235. □ 
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Suppose now that during each time interval of a fixed length, say h, that 
an event of some kind, called an arrival, may or may not occur. Suppose 
further that the occurrence or nonoccurrence of the arrival in each interval 
is determined by a Bernoulli random variable with a fixed probability p 
of success from one interval to the next, that is, by a Bernoulli sequence 
of trials. Then the interarrival time T is defined to be the number of 
trials (time intervals of length h) before the first success (arrival). Thus, T 
has a geometric distribution with parameter p. Now suppose we are given 
that there were no arrivals during the first m intervals of length h and we 
wish to calculate the probability that there will be k more time intervals 
with no arrivals before the next arrival, that is, P[T = k + m\T > m] for 
k = 0,1,2, By the definition of conditional probability (see Section 2.4), 
we have 

P[T = k + m\T > m] = > . (3.18) 

(3.19) 

(3.20) 

*] . (3.21) 

Equation (3.21) shows the Markov or memoryless property of the geometric 
distribution, that is, the presence or absence of an arrival at any point in 
time has no effect on the interarrival time to the next arrival. The system 
simply does not "remember" when the last arrival (success) occurred. Thus, 
in Example 3.1.3, the average interarrival time between any two successive 
blocks that must be updated is 2.774; also at any arbitrary point in time, 
it is the average number of blocks to be read before the next block is found 
that must be updated. 

3.1.4 Poisson Random Variables 
We say that a random variable X is a Poisson random variable with pa­
rameter a > 0 if X has the mass points 0 ,1 ,2 ,3 , . . . , and if its probability 
mass function p(-;a) is given by 

ak 

p(k;a) = P[X = k]=e-a — , k = 0 , 1 ,2 , . . . . (3.22) 

(T = k + m) n (T > m) = (T = k + m), 

and 
P[T>m}=pqm(l+q + q

2 + -..) = j ^ = 

Hence, 

P[T = k + m\T >m] = ̂ - = pqk = P\T = 
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This probability distribution was discovered by the French mathematician 
Simeon D. Poisson (1781-1840). 

Equation (3.22) does define a pmf because p(k; a) is clearly nonnegative 
for all nonnegative integers k, and 

OO OO fc 

fc=0 fc=0 

In Example 2.9.2 we showed that a Poisson random variable with pa­
rameter a has the moment generating function 

t/>(0) = exp[a(ee - 1)], (3.23) 

and furthermore, that 

E[X] = a and Var[X] = a. 

In Example 2.9.3 we showed that, if Z = X + Y, where X is Poisson 
distributed with parameter a and Y is Poisson distributed with parameter 
/3 where X and Y are independent, then Z is Poisson distributed with 
parameter a +13. Thus, independent Poisson random variables have the 
reproductive property. 

The Poisson random variable is one of the four or five most important 
random variables for applied probability and statistics. One reason for this 
importance is that a great many natural and man-made phenomena are 
described by Poisson random variables. 

The following phenomena have Poisson distributions. 

(a) The number of alpha particles emitted from a radioactive substance 
per unit time (see Bateman [5], Rutherford and Geiger [26], and Lipp-
man [18, pages 76-77]). (Geiger is the inventor of the celebrated 
Geiger counter, that counts not geigers but rather radiation levels.) 

(b) The number of flying-bomb hits in the south of London during World 
War II (see Clarke [7], and Feller [10, pages 160-161]). 

(c) The number of vacancies per year in the United States Supreme Court 
(see Wallis [37] and Parzen [22, pages 256-257]). 

Other examples include misprints per page of a book, raisins per cu­
bic inch of raisin bread, deaths caused by horse kicks per corps-year in 
the Prussian cavalry (see Bortkiewicz [6]), and the number of chromosome 
interchanges in organic cells caused by X-ray radiation. 
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A number of random variables of interest to computer science have been 
found to have Poisson distributions. We shall discuss some of these in this 
book. 

Another reason for the importance of the Poisson distribution is that its 
pmf, given by (3.22), is easy to calculate. Furthermore, a binomial random 
variable can often be approximated by a Poisson random variable—in fact, 
this is the way Poisson originally conceived the probability distribution that 
bears his name. 

Theorem 3.1.1 Suppose X has a binomial distribution with parameters 
n and p. Then, if n is large and p is small with a = np, b(k;n,p) is 
approximately p(k; a) in the sense that 

lim b (k;n, — j = p(k;a), fc = 0, l ,2 , 
n—»oo \ n / 

Proof Fix k with 0 < k < n. Then 

i-fc 

n\ak 

k\(n-k)\nk (i_SL)k 

= gLfi-srf k
 n ! l ( i - ^ " f c (3.24) 

*! V n) [nk{n-k)\\ \ n) v ' 

Consider the term in square brackets in (3.24). It can be written as 

n! n ( n - l ) ( n - 2 ) - - ( n - f c + l) 
nk (n - *)! nk 

- (-i)(-!)-0-^)- <-> 
Hence, 

n! 
n'-̂ oo n* (n- k)\ 

Also, since k is fixed, 

lim . ' i x i = 1. (3.26) 
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By a well-known property of the exponential function 

lira (l--Y = e~a (3.28) 

Combining (3.24)-(3.28), we see that 

lim b (k;n,-) = e _ Q ^ - , fc = 0 ,1 ,2 , . . . . ■ (3.29) 

The import of Theorem 3.1.1 is that, if n is large and p is small so that 
np is not close to either p or n, then the binomial random variable with 
parameters n and p can be approximated by a Poisson random variable 
with the parameter a = np. (Zehna [39] claims that electronics has ended 
the usefulness of the Poisson approximation to the binomial. Nevertheless, 
it is sometimes useful, and the Poisson distribution is very important in its 
own right.) 

The APL functions POISSON and POISSONADIST can be used to 
make Poisson probability calculations. □ 

Table 3.1.1. Example 3.1.4 

k 

0 
1 
2 
3 
Total probability 

P[X = k] 

0.13262 
0.27065 
0.27341 
0.18228 
0.85896 

Poisson 
approximation 

e~22k/k\ 

0.13534 
0.27067 
0.27067 
0.18045 
0.85713 

Example 3.1.4 Suppose the Wildgoose Errcraft computer installation has 
a library of 100 subroutines and that each week, on the average, bugs 
are found (and corrected) in two of the subroutines. Assuming that the 
number of subroutines per week with newly discovered and corrected bugs 
has a binomial distribution, use the Poisson approximation to calculate the 
probability that errors will be found in not more than three subroutines 
next week. 

Solution Using the APL functions POISSON and BINOMIAL, and round­
ing to five decimal places, we compute the values in Table 3.1.1. The true 
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value of the required probability is 0.85896; the value given by the Poisson 
approximation is 0.85713. These values are close, although some individual 
probabilities are a little off; for example, for k = 0 and 2, the error of the 
approximation about 0.0027. □ 

Sheu [32] has proven the following theorem, which gives us a bound on 
the possible error made by the Poisson approximation to the binomial. 

Theorem 3.1.2 Let b(k;n,p) = (l)pk(l -p)n~k, 1 < n, 0 < p < 1; 
k 

b(k;n,p) — 0, for k > n. Let p(k,a) = e~ajj-, for k = 0,1,.... Then we 
have 

oo 

S~]\b(k;n,p) — p(k,np)\ < min{2np2,3p}. 
fc=o 

Proof See Sheu [32]. ■ 

For Example 3.1.4, Theorem 3.1.2 guarantees that the sum of absolute 
values of all the errors in the Poisson approximation will not exceed 0.06; 
individual errors must, of course, also be less than 0.06. The sum of the 
absolute values of the observed errors is 0.00731. 

The value of the Poisson distribution as a means of approximating the 
binomial distribution is minor compared to its value in describing random 
variables that occur in computer science and other sciences. 

Example 3.1.5 Suppose it has been determined that the number of in­
quiries that arrive per second at the central computer installation of the 
Varoom Broom on-line computer system can be described by a Poisson 
random variable with an average rate of 10 messages per second. What is 
the probability that no inquiries arrive in a one second period? What is 
the probability that 15 or fewer inquiries arrive in a one-second period? 

Solution By hypothesis 

in* 
P[X = k} = e-10 — , k = 0,l,2,.... 

Hence, the probability that no inquiry arrives in a one-second period is 
"10 = 4.54 x 10 - 5 . The answer to the second question is e 

15 mfc 

e - i o y i H _ = 0.95126. 
^ k\ 
k=0 

This is a laborious calculation to make without a computer but can be 
made easily with the APL function POISSONADIST. □ 
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In Chapter 4 we give the conditions that characterize a random phe­
nomenon that is described by a Poisson random variable. It will be evident 
that these conditions are characteristic of many real-life situations. 

It is interesting to note that the value of this distribution was not rec­
ognized for many years after it was discovered—even by Poisson himself. 
Stigler [33], in discussing the major book by Poisson on probability, (Pois­
son [23]), mentions the distribution and goes on to say 

. . . in a section of the book concerned with the form of the bi­
nomial distribution for large numbers of trials, Poisson does in 
fact derive this distribution in its cumulative form, as a limit to 
the binomial distribution when the chance of a success is very 
small (Stigler, 1982a). The distribution appears on only one 
page in all of Poisson's work (Poisson, 1837, p. 206). 

Ladislaus von Bortkiewicz in his famous monograph Bortkiewicz [6] showed 
that the Poisson distribution is valuable for modeling many real-world phe­
nomena. Bortkiewicz is considered by most statisticians to be the first to 
demonstrate the value of the Poisson distribution. Now this distribution is 
one of the most widely used in applied probability and statistics. The ex­
ample in Bortkiewicz's book that is most cited (probably because it brings 
such vivid pictures to mind) is the model of deaths by horse kick in the 
Prussian cavalry. We consider the Prussian cavalry data in Example 8.4.2. 

3.1.5 Discrete Uniform Random Variables 
A random variable X that assumes a finite number of values xi, X2, ■ ■ ■, xn 
each with the same probability, 1/n, is called a discrete uniform random 
variable. Often the values are taken to be multiples of some value L, such 
as L, 2L, 3 L , . . . , nL. The expected value is given by 

t= i 

The second moment B[X2] is given by 

^[*a]=^i>.?. (3-3i) 

and the variance can be calculated by the formula 

Var[X] = E[X2} - (E[X})2. (3.32) 
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God may be subtle, but he is not malicious. 
Albert Einstein 

IATjijK, on the other hand is both subtle and malicious. 
Russell Ham 

3.2 Continuous Random Variables 

A continuous random variable X is characterized by the property that 
P[X = x] = 0 for all real x; that is, its probability mass function assumes 
only the value zero. In this book each continuous random variable we 
consider is described by a density function /(•) , with properties defined in 
Section 2.5. It is not true, in general, that f(x) = P[X = x]; it is true 
that, for each real x and for small Ax, the probability that the value of X 
lies between x and x + Ax is about / (x ) Ax. Some of the properties of the 
continuous random variables we discuss is this section are summarized in 
Table 2 of Appendix A. (It is the author's belief that continuous random 
variables should be known as indiscreet random variables, since they clearly 
are not discrete; this would also add a little spice to a subject with a 
reputation for dullness.) 

3.2.1 Continuous Uniform Random Variables 

A continuous random variable X is said to be a uniform random variable 
on the interval a to b or to be uniformly distributed on the interval a to b, 
if its density function is given by 

/(*) = { r^-a for a < x < b (3.33) 
I 0 otherwise. 

The corresponding distribution function is easily calculated by integration 
to give 

{ 0 for x < a 

| £ ^ for a < x < b (3.34) 
1 for x > b. 
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/ ( * ) - ^L f(x) 

^L 
f(x) = 0 

^L fix) = 0 
a x b 

Figure 3.2.1. Density of uniform distribution on a to b. 

1.00-
F(x) = 1 

Figure 3.2.2. Distribution function of uniform distribution. 

Figure 3.2.1 is a graph of the density function of a random variable 
that is uniformly distributed on the interval a to b, and Figure 3.2.2 is the 
corresponding distribution function. Thus, the probability that the values 
of X will lie in any subinterval of the interval from a to 6 is merely the ratio 
of the length of the subinterval to the length of the whole interval, that is, 
the probability that X will lie in any subinterval of length S is 6/{b — a). 

It is an easy exercise to show (see Exercise 41) that 

E[X] = a-±±, o* = (b-a? 
12 

(3.35) 

Example 3.2.1 Suppose the disks in a disk memory device rotate once 
every 25 milliseconds. When a read/write head is positioned over a track 
to read a particular record from the track, the record can be anywhere on 
the track. Hence, the rotational delay, T, before the required record is in 
position to be read is uniformly distributed on the interval from 0 to 25 
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milliseconds. Thus, E[T] = 12.5 milliseconds, 

252 

a% = — = 52.0833, T 12 

and 
aT = V52.0833 = 7.2169 milliseconds. 

The probability that the rotational delay is between 5 and 15 milliseconds 
is 10.25 = 0.4, the same as the probability that it is between 15 and 25 
milliseconds. □ 

3.2.2 Exponential Random Variables 
A continuous random variable X has an exponential distribution with pa­
rameter a > 0 if its density function / is defined by 

f o e " " , x > 0 
/ { X ) = \ 0, x < 0. ( 3 ' 3 6 ) 

The distribution function F is then given by 

«={»; FMH — ° * = 1-<"*-*/*[*]>. * J» (3.37) 

(Students who have learned the importance of the exponential distribu­
tion have been known to shout "Eureka!" upon seeing 

Equation (3.37) appear. Therefore, I call this formula the "Eureka for­
mula." It should not be confused with the motto of the state of California.) 

Figure 2.5.3 shows the density function for an exponential random vari­
able with a = 2 and Fig. 2.5.4 is the graph of the corresponding distribution 
function. As shown in Example 2.6.2, an exponential random variable with 
parameter a has mean E[X] = 1/a and VarfA"] = 1/a2 = E[X]2. 

In Example 2.9.1 we proved that the moments are given by 

E[Xk] = ^- = k\E[X]k, k = 1 ,2 ,3 , . . . . (3.38) 
a 

One reason for the importance of the exponential distribution to queueing 
theory and elsewhere is the Markov property, sometimes called the memo-
ryless property, given by 

P[X >t + h\X>t] = P[X > h], t>0,h>0. (3.39) 

One interpretation of (3.39) is that, if X is the waiting time until a 
particular event occurs and t units of time have produced no event, then 
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the distribution of further waiting time is the same as it would be if no 
waiting time had passed—that is, the system does not remember that t 
time units have produced no "arrival." To prove (3.39) we note that, by 
(3.37), P[X > x] — e~ax for all real positive x. Hence, 

p[x>t + h\x>t] = nx>t + h)n(x>t)] 

Figure 2.5.3 shows that the density function for the exponential distri­
bution is not symmetrical about the mean but is highly skewed. In fact, 
for an exponential random variable X it is true that 

P[X < E[X]} = 1 - e - f i W / E W = 1 - e _ 1 = 0.63212. (3.40) 

For any random variable, such as a uniform random variable, which is 
symmetrical about the mean, P[X < E[X]] = 0.5. Thus, for an exponen­
tial random variable, values of X between 0 and E[X] are more likely to 
occur than values between E[X] and 2E[X], although each interval is one 
standard deviation long (Var[X] = J5[-X]2, so that ax = E[X]). 

For any random variable X, its r th percentile value, 7r[r], is denned by 
P[X < n[r}] = r/100. Thus, the 90th percentile value of an exponential 
distributed random variable is denned by 

P[X < TT[90]] = 0.9 or 1 - e ^ ^ 9 0 ! = 0.9. 

Hence, 
e-<™[90] = 0.1. (3.41) 

By taking the natural logarithm of both sides of (3.41) and solving for 
7r[90], we get 

TT[90] = _ i B i ° J l = E[X] ln(10) = 2.30259 E[X] « 2.3 E[X]. (3.42) 

(Here ln(x) means the logarithm of x to the base e.) 

P[X > t] 
P[X>t + h] 

P[X > t] 
e-a{t+h) 

e~at 

e-ate-ah 

e~at 

e-ah _ p , x > fti 
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Similarly, 

TT[95] = E[X] ln(20) = 2.99573 E[X] « 3 E[X], (3.43) 

and for r > 0, 

In this book we will use the approximations 

TT[90] « J5[X] + 1.3ax = 2.3£[X], (3.45) 

and 
TT[95] « £[X] + 2ax = 3E[X] (3.46) 

for the exponential distribution. 

Example 3.2.2 Personnel of the Farout Engineering company use an on­
line terminal to make routine engineering calculations. If the time each 
engineer spends in a session at a terminal has an exponential distribution 
with an average value of 36 minutes, find 

(a) The probability that an engineer will spend 30 minutes or less at the 
terminal, 

(b) The probability that an engineer will use it for more than an hour. 

(c) If an engineer has already been at the terminal for 30 minutes, what 
is the probability that he or she will spend more than another hour 
at the terminal? 

(d) Ninety percent of the sessions end in less than R minutes. What is R? 

Solution Let T be the time an engineer spends using the terminal. By 
(3.37) the probability that T does not exceed t minutes is 

1 - e - ' / 3 6 . 

Hence, the probability that T is not more than 30 minutes is 

1 - e _ 3 0 / 3 6 = 1 - e _ 5 / 6 = 1 - 0.43460 = 0.5654. 

By taking complements, (3.37) yields 

P[T > t] = e~ t / 3 6 , t in minutes. 
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Hence, the probability that over an hour is spent at the terminal in one 
session is 

e-60/36 _ e-5/3 _ 0.1889, 

or slightly less than 20% of the time. By the Markov property, the fact that 
an engineer has already been using the terminal for 30 minutes has no effect 
on the probability that he or she will use it for at least another hour. Hence, 
this probability is 0.1889. R is 7r[90] or about 2.3E[X] = 2.3 x 36 = 82.8 
minutes. D 

We summarize the properties of the exponential distribution in the fol­
lowing theorem. 

Theorem 3.2.1 (Properties of the Exponential Distribution) Let X be an 
exponential random variable with parameter a > 0. Then the following hold. 

(a) If 0 < a, then the moment generating function ip(-) is given by 

and the Laplace-Stieltjes transform, X*[8], by 

X*W = - ^ T J . (3-48) 

(b)E[Xk] = -^ = k\E[X]k, * = 1 ,2 ,3 , . . . . 

(c)E[X] = ±[l V&r{X) = ±I=E[X]\ 

(d) X has the Markov property 

P[X >t + h\X >t]=P[X >h], t>0,h>0. 

(e) The rth percentile value 7r[r] defined by P[X < 7r[r]] = r/100 is given 
by 

«" = w{mh) 
(f) Suppose the number of arrivals, Y, of some entity per unit of time is 

described by a Poisson random variable with parameter A. Then the 
time T between any two successive arrivals (the interarrival time) is 
independent of the interarrival time of any other successive arrivals 
and has an exponential distribution with parameter A. Thus, E[T] = 
1/A, and p[T <t] = l - e~xt for t > 0. 
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(g) Suppose interarrival times of customers to a queueing system are in­
dependent, identically distributed, exponential random variables, each 
with mean 1/A. Then the number of arrivals, Yt, in any interval of 
length t > 0, has a Poisson distribution with parameter Xt; that is, 

P[Yt = k] = e -A« (A<)* 
*! ' 

for k = 0,1,2,-■■. 

(h) Suppose Xi,X2,- ■.,Xn are independent exponential random variables 
with parameters ai, a2, ct3, • ■ • ,an, respectively, andY = min{.Xi, X2, 
•••, Xn}. Then Y has an exponential distribution with parameter 
a = ai,+a2,-\ + ctn. In particular, if each a; = a, then Y is 
exponential with parameter na. 

Proof Items (a)-(e) have been proven, above, except for (3.48), which 
was calculated in Example 2.9.6. The proof of (f) is given in Chapter 4 
(Theorem 4.2.2). Item (g) follows from Theorems 4.2.3 and 4.2.1. Item (h) 
follows from Theorem 2.7.4. I 

3.2.3 Shifted Exponential Random Variables 
We occasionally find use for a random variable that is almost exponen­
tial. Perhaps a service facility provides service that must be at least D but 
has an exponential distribution for service time s > D. Another case is 
response time at a terminal of an on-line system, which may be approxi­
mately exponential but has a minimum positive value D. The minimum, D, 
represents the minimum transmission time to send a request to the central 
processor, plus the minimum service time at the processor, added to the 
minimum time to return the response to a terminal. These random vari­
ables could be described by a shifted exponential distribution with density 
function given by 

/ ( f l ) = a e - a ( « - - D ) , f o r s>£> . (3.49) 

The properties of a shifted exponential random variable are given in the 
following theorem. 

Theorem 3.2.2 Let Y be a shifted exponential random variable with the 
density function given in (3.49) with D > 0. Then 

Y*[e} = e - e D x - ^ , (3.50) 
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E[Y] = D+-, (3.51) 
a 

Var[Y] = -L , (3.52) 
Q 

F(x) = P[Y < x] = 1 - e-a(x-D), forx>D (3.53) 

and 
0 < C\ < 1. (3.54) 

Furthermore, if X is a positive random variable with C\ < 1, then a shifted 
exponential random variable Y can be constructed with the same two first 
moments as X by setting 

a = c^wr (3-55) 
and 

D = E[X}--. (3.56) 
a 

Proof It is easy to show (see Exercise 70) that 

Y*[6) = e-eDx-?—. (3.57) 
1 J a + 9 

Equations (3.51) and (3.52) follow from Theorem 2.9.3 and some easy dif­
ferentiation. Equation (3.53) follows from 

P[Y < x] = / 
JD 

ae 
-"('-■D) d s = j _ e-a(x-D) _ 

The formula (3.54) for C\ follows from the formula 

J_ 
r2 - a 2 

a1 or 

since D > 0 and a > 0. The claim that the shifted exponential random 
variable constructed using the parameters defined by (3.55) and (3.56) has 
the same first two moments as X can be verified by simple substitution into 
(3.51) and (3.52) and the formula 

E[Y2}=V&T[Y] + E[Y}2. ■ 

Example 3.2.3 The performance analysts at Alcapones Loansharking Ser­
vices estimate the mean response time at their computer center for cus­
tomers with the highest priority is 0.75 seconds and the minimum response 
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time is 0.25 seconds. They decide to model this random variable as a shifted 
exponential. Thus, D = 0.25 seconds and 1/a = 1/2, or a = 2. The ana­
lysts want to estimate the probability that a response time will not exceed 
one second and to calculate the 90th percentile value of the response time. 
We know the distribution function is given by 

F(x) = P[Y < x] = 1 - exp(-2(x - 0.25)), for x > 0.25 seconds. (3.58) 

Hence, the probability that Y does not exceed one second is 

F ( l ) = P[Y < 1] = 1 - e'15 = 0.77687. 

Let x be the 90th percentile response time. Then, by (3.58), 

0.9 = 1 - exp(-2(x - 0.25)). (3.59) 

Solving (3.59) for x yields 

x = + 0.25 = 1.40 seconds. □ 

Example 3.2.4 Suppose the analysts in the above example had chosen 
a shifted exponential with mean 0.75 seconds and C\ = 0.25. Then, by 
Theorem 3.2.2, 

1 _ 8 
a~ 0 .5x0.75 ~ 3 ' 

and 
D=3--3- = 3-. 

4 8 8 
Hence, 

P[Y < 1] = 1 - exp ( - | ( l " f ) ) = 0-811. 

We also calculate the 90th percentile response time to be 

3 3 
x = - ln(10) + - = 1.24 seconds. □ 

8 8 

3.2.4 Normal Random Variables 
A continuous random variable X is said to be a normal random variable 
with parameters \i and a > 0 if it has the density function 

/ (* ) =^e x p [ _HvO ] 'x r e a i (3.60) 
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We indicate this fact by writing "X is N(fj,,a2)." A standard normal ran­
dom variable is one with parameters fx — 0 and a = 1. Thus, the standard 
normal density tp(-) is defined by 

tp{x) = —exp[—-x2] , a; real. (3.61) 

The corresponding standard normal distribution function $(•) is therefore 
defined by 

eXp[->t2]dt. (3.62) *(*) = / <p(t)dt = f 
J—OO J—c V2ir 

The standard normal distribution is important because every normal distri­
bution can be calculated in terms of it. Thus, if X is normally distributed 
with parameters n and a (X is N(fi,a2)), then 

Fx(x) = -L= f exp[-h{t-vL)/v)2] 
ay/2-K J-oo * 

dt 

r(x-/J.)/lT j = 7sL' ""H"'1' 
■ # ( ^ ) -

(3.63) 

The second integral in (3.63) is the result of the change of variable y = 
(t — fi)/a. Unfortunately, <&(•) cannot be calculated in closed form but must 
be approximated using numerical methods. The APL function NDIST cal­
culates values of the standard normal distribution using formula (26.2.17) 
of Abramowitz and Stegun [1]. It was used to create Table 3 of Appendix 
A, a table of values of the standard normal distribution function $(•)• Of 
course $(x) can also be calculated using MINITAB, SAS/STAT, Mathe­
matical and the HP-21S. In order to prove a number of useful properties of 
the normal distribution, we first need to prove that 

r ^x)dx = r exp[-i2/2id2=L (3 64) 
J-oo J-oo v27T 

This, in particular, will show that (3.60) defines a density function, since 
f(x) > 0 for all real x, because the exponential function assumes only 
positive values, and 

/ - e x p H ^ - , , ) / . ) ^ _ I- e x p j - f / 2 ] ^ ( 3 6 5 ) 

J - o o <TV27T J-oo v27T 

under the change of variable z — (x — fj.)/a. 
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To prove (3.64), we write 

I / (p(x)dx 1 = I —= / exp[-a:2/2]dx 1 

= — / exp[-(x2 + y2)/2]dxdy. (3.66) 
*R J-oo J-oo 

Now we can transform to polar coordinates. Thus, r2 = x2 + y2 and 
dxdy = rdrdd. (See Apostol [3] for a discussion of how to convert from 
Cartesian to polar coordinates.) Making the polar coordinates substitution 
in (3.66) gives 

aoo \ 2 « »2TT poo 

(p(x)dx) = — / / exp[-r2/2]r dr dd 
= ^/2 ,r[-expt-r2/2]]]r=o^ 

- hCd6=l- (3-67> 
This proves (3.64). 

If X is N(n,a2), then the moment generating function of X (see Section 
2.9) is given by 

1 Z"00 1 
ip(6) = £[exp(6U0] = —7= / exp(0x)exp[--((x - ^)/er)2]cfo. (3.68) 

CTV27T i - o o 2 

Let z = (x - n)/a. Then (3.68) yields 

= ^ 5 / ~ exp[-i(^2 - 2a0z + a292 - *202)}dz 

= ! ^ ) e xp[(^)2 /2] | ~ exp[- | (* - <70)2]d* 

= exp(^)exp[(^)2/2] f°° exp[~^/2]dw 
J-oo V27T 

= exp[fid + (a2e2)/2]. (3.69) 
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In the next-to-last integral we substituted w = z — aO, and used (3.64). 
Thus, the moment generating function of a normal random variable X 
with parameters fj, and a is exp\p,8 + (a282)/2)]. Hence, 

dtp 
de 

= (n + a29) exp[//6> + (a292 )/2], 

and 
d2ip 
dO2 = a2 exp[^6 + (a292)/2] + (n + a29)2 exp[//0 + (<r202)/2}. 

Therefore, by Theorem 2.9.1, 

dip 
E[X} = 

de A*, E[X2\ = 
6=0 

d2xj) 
de2 

2 , 2 

0=0 

and 
Var[X] = E[X2} - (E[X})2 = a2 + »2 - y? = a 

Thus, the parameters /z and a are, respectively, the mean and standard 
deviation of X. 

We summarize what we have just shown in the following theorem. 

Theorem 3.2.3 (Properties of a Normal Random Variable) Suppose X is 
a normal random variable with parameters \i and a (X is N(fj,,a2)). Then 

E[X] = ft, V&T{X] = a2, (3.70) 

and 
%P(9) = exp[// 6 + (o-202)/2\. ■ (3.71) 

If Xi,X2,---,Xn are n independent random variables having normal 
N(fj,i, a2), N((i2, o^)-, ■ ■ ■, N(fjtn, &„) distributions, respectively, the moment 
generating function of 

Y = X\ + X2 + • ■ • Xn, 

is, by Theorem 2.9.1, 

e2 

^ + 7E f f ' = exp 
L i = l ~ i = l 

which is the moment generating function of an 

( n n \ 

random variable. We have proven the following theorem. 

(3.72) 
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Theorem 3.2.4 Suppose X\, X%,..., Xn are n independent random vari­
ables such that Xi is N(n\,a\, X2 is N((j,2, cr2), • ■ ■,Xn is N(fj,n,a^). Then 
Y = Xi + X2 H h Xn is normally distributed with mean Hi +/J.2 H \-fJ-n 
and variance a\ + o\, H 1- a\. ■ 

The symmetry of the normal densities about the mean follows from 
(3.60); that is, f(n + x) = f(fj. — x) for all real x. As we saw from Equation 
(3.63), probability calculations for any normal distribution can be made 
from the standard normal distribution. If X is N(n,a2), the change of 
variable 

yields a normalized random variable that is N(0,1). The numerator in 
(3.73) is a shift of origin transformation which transforms the mean value to 
0. Division by a converts the value of X—\x into units of standard deviation, 
a. The fact that Z is normally distributed follows from the uniqueness of 
the moment generating function as follows: 

il>(0) = Ele'UX-M')] = e-rf^Ele9*!"}, (3.74) 

by Theorem 2.7.1(b). Now X/cr is a normal random variable with mean 
HJa and variance 1 by the properties of mean and variance (Theorems 2.7.1 
and 2.7.2) and by the fact that dividing a random variable by a constant 
does not change the nature of the random variable, but only the scale. 
Hence, the moment generating function of Xja is 

E[exp(6x/cr)] = exp[(/i0/a) + 62/2], (3.75) 

by (3.71). Substituting (3.75) into (3.74) yields 

ip(9) = exp(-/i0/a) exp[(/z0/<r) + 62/2] = exp(82/2). (3.76) 

Since (3.76) is the moment generating function of a standard normal ran­
dom variable, Z is N(0,1). 

As illustrated in Figure 3.2.3, the probability that a randomly selected 
value x of a normal random variable X will fall within one standard devi­
ation of the mean \i is 0.68268 or 68.268 percent. This can be calculated, 
using Table 3 or Appendix A, by noting that the probability that z is 
greater than 1 is 1 — 0.84134 = 0.15866, so that, by the symmetry of the 
standard normal density, 

P[fi - a < X < n + a] = P[-l < Z < 1] = 1 - 2(0.15866) = 0.68268. 
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< area under curve is 0.9545 ► 

H — 3(7 fj, — 2a \i — a /x fi + a n + 2a n + 3a 

Figure 3.2.3. Area under normal density curve. 
Similarly, 

P[H - 1.96a < X < \i + 1.96a] = 0.95. 

Shah [31] has developed an easy way to compute an approximation for the 
area under the standard normal density curve from 0 to z. He claims the 
maximum absolute error is only 0.0052. This is certainly accurate enough 
for many purposes. Shah's approximation is 

( z(4.4 - z)/10, for 0 < z < 2.2, 
0.49, for 2.2 < z < 2.6, 

0.50, for 2.6 < z. 
We ask you to test the accuracy of the above approximation in Exercise 58. 

Example 3.2.5 Suppose the number of message buffers in use in the Levy 
Stress interactive inquiry system, X, has a normal distribution with a mean 
of 100 and a standard deviation of 10. Calculate the probability that the 
number of buffers in use does not exceed 120; lies between 80 and 120; 
exceeds 130; respectively. 

Solution Because 120 is 2 standard deviations above the mean, the first 
probability requested is the probability that z does not exceed 2, which, by 
Table 3 of Appendix A, is 0.97725. If x is between 80 and 120, it is not more 
than 2 standard deviations from the mean; hence, the second probability 
is 0.9545 = P [ - 2 < Z < 2]. Since 130 is 3 standard deviations above the 
mean, 

P[X > 130] = P[Z > 3] = 1 - 0.99865 = 0.00135. □ 

The normal distribution is the most important distribution in applied 
probability and statistics because many useful random variables have nor­
mal or nearly normal distributions and (more important) because of the 
central limit theorem, which is discussed in Section 5 of this chapter. 
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As W. J. Youden2 said 

THE 

NORMAL 

LAW OF ERROR 

STANDS OUT IN THE 

EXPERIENCE OF MANKIND 

AS ONE OF THE BROADEST 

GENERALIZATIONS OF NATURAL 

PHILOSOPHY O IT SERVES AS THE 

GUIDING INSTRUMENT IN RESEARCHES 

IN THE PHYSICAL AND SOCIAL SCIENCES AND 

IN MEDICINE AGRICULTURE AND ENGINEERING 0 

IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE 

INTERPRETATION OF DATA OBTAINED BY OBSERVATION AND E X P E R I M E N T 

3.2.4.1 Bivariate Normal Random Variables 

The jointly distributed random variable (X, Y) has a bivariate normal dis­
tribution if it has the joint density function 

f(x, y) = - , exp • 
2Trax(TY\/1-P2 I 2 ( 1 _ ' ° 2 ) ( ^ 

2p(x - nx){y - PY) 

0~X0~Y (Hr)]}- ("7) 

where px, My, ax, o~Y, and p are constants with 0 < p < 1. The parameter 
p is called the correlation coefficient of X and Y. 

The bivariate normal distribution is an important distribution for re­
gression analysis, the subject of Chapter 9 of this book. We list the prop­
erties of the bivariate normal distribution in the following theorem. 

Theorem 3.2.5 (Properties of the bivariate normal distribution) Suppose 
(X, Y) is a jointly distributed random variable with joint density function 
given by (3.77). Then the following are true. 

(a) The marginal distribution of X is normal with mean px o,nd standard 
deviation ax; that is, X is N(px, a\) • 

(b) The marginal distribution of Y is normal with mean p,y and standard 
deviation &Y; that is, Y is N(PY,O~Y)-

2William John Youden (1900-1971) was a statistician and chemist. 
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(c) The conditional density function ofY, given that X = x, is given by 

2-1 

exp 

fy\x{y\x) = 

- ! < 
y- HY ~ P—(x- px) °~x I 

aY ^ 

\/2WO-Y \ A — P2 
(3.78) 

(Thus, for a fixed x, Y = Yx is a normal random variable with mean 
HY + P(O~Y/&X){X ~ Px) and standard deviation <ry\/l — p2.) 

(d) The conditional density function of X, given that Y = y, is given by 

exp 

fx\y{x\y) = 

-§< 
x-nx- P—{y - PY) 

o-x v ^ 

2n 

y/2wax \ A - p2 
(3.79) 

(Thus, for a fixed y, X = Xy is a normal random variable with mean 
Px + p{o~xl<*Y){y — PY) and standard deviation o~xy/l — p2-) 

Proof See Exercises 54, 55. ■ 

If X and Y are jointly distributed random variables, we define the curve 
of regression of Y on X by 

/

oo 
yfY\x(y\ 

-oo 
x)dy. (3.80) 

The result of Theorem 3.2.5(c) is that, if X and Y have a bivariate normal 
distribution, the curve of regression of Y on X is the straight line 

P°~Y, E[Y\X = x}= py\x =fiY + Z-Z-(x - px) 

and, for each x, Y = Yx is a normal random variable with mean 

poY{x- px) E[YX] = HY + 
ox 

and standard deviation 
-aY\f\ °YX = < 7 y V i ~ P ■ 

Similar remarks apply to the curve of regression X on Y. 

(3.81) 

(3.82) 

(3.83) 
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3.2.5 Gamma Random Variables 
A continuous random variable X is said to have a gamma distribution with 
parameters /? > 0 and a > 0 if its density function / is given by 

f(x)={ W) ' X > 0 (3.84) { i W 
1°. x < 0 . 

Here /3 is the shape parameter and a is the scale parameter. Varying /3 
changes the shape of the density function, while changing a corresponds to 
changing the units of measurement (say, from minutes to hours) and does 
not affect the shape of the density. T(-) is the celebrated gamma function 
defined by 

/•OO 

r ( t ) = / xt~1e-xdx, t > 0. (3.85) 
Jo 

It can be shown (see Exercise 50) that 

r ( n + l) = n!, n = 0 ,1 ,2 , . . . , (3.86) 

and that 
T(t + 1) = tT(t) for all t > 0. (3.87) 

For an excellent discussion of the gamma function, see Parzen [22]. 
If X has a gamma distribution with parameters /? and a, then its mo­

ment generating function ip(-) is given by 

- m f ^"^ (188) 
This integral converges if 6 < a. Making the substitution y = (a — 6)x in 
(3.88), yields 

«*> - m^wl •*"«"* 
o.p „ ,„ , a? 

~ m(a-0)erW = TZ=W> e<a- (3'89) 

Similarly, the Laplace-Stieltjes transform, X*[0], is given by 

x*W=(^Te) ' e<a- (3-9°) 
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We summarize some of the important properties of gamma random vari­
ables in the next theorem. 

Theorem 3.2.6 (Properties of Gamma Random Variables) Suppose X is 
a gamma random variable with parameters /3 and a; that is, its density 
function f is given by (3.84). Then the following are true. 

(a) The moment generating function ip(-) is defined for all 0 < a by 

a? 
(3.91) 

(3.92) 

(c) IfY is independent ofX and has a gamma distribution with parameters 
7 and a, then Z = X + Y has a gamma distribution with parameters 
/? + 7 and a. (Gamma random variables are reproductive with respect 
to (3.) 

(d) If Xi,X2,.- -,Xn are mutually independent random variables, each 
with an exponential distribution with parameter a, then their sum Y 
has a gamma distribution with parameters n and a. Furthermore, the 
distribution function of Y is given by 

with Laplace 

(b) E[X] --_0 > a 

'.-Stieltjes 

V&T[X) = 

v- (a 
transform 

X* 

0 
'a2' 

w - U 
E[X3} : 

-9)0' 

+ e) 

/?(/3 + 1X/3 + 
a3 

2) 

(ax)2 

FY(x) = Gn(x) = l-eaxil + ax + ^ - + 

+ ^ 9 } ' **0. (3.93) 
Proof Item (a) was proven by (3.89) and (3.90). The proofs of (b) and (c) 
are simple exercises in the use of Theorem 2.9.1 (see Exercise 36). For the 
proof of (d), see Feller [11, page 11]. ■ 

Example 3.2.6 Suppose the time, X, between inquiries in the Cutrate 
Construction interactive system has an exponential distribution with an 
average value of one second. Let t be an arbitrary point in time and T the 
elapsed time until the fifth inquiry arrives (after time t). Find the expected 
value and variance of T. What is the probability that T does not exceed 6 
seconds? That it exceeds 9 seconds? 
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Solution By Theorem 3.2.6(d), since T = Xj + X2 + X3 + X4 + X5, 
where X\,X2,X3,Xi, X5 are independent identically distributed exponen­
tial random variables, each with an average value of one second, T is a 
gamma random variable with parameters /? = 5 and a = 1. Hence, 

E[T] = - = 5 seconds and VarfT] = -% = 5 seconds2. 
a a 

By (3.93), 

P[T < 6] = G5(6) = 1 - e - 6 ( l + 6 + | + ^ + ^ = 0.7149. 

By the same formula, 

/ Q2 Q3 Q 4 \ 
P[T > 9] = 1 - P [ T < 9] = e ~ 9 ( 1 + 9 + — + — + — ) =0.055. D 

If X is a gamma random variable with parameter 0 = n, where n 
is a small positive integer, then the values of the distribution function of 
X, Gn, can be calculated fairly easily using (3.93). However, if the pa­
rameters (3 and a are arbitrary positive numbers, probability calculations 
are more difficult. The APL function GADIST calculates the distribu­
tion function of a gamma random variable using some approximate for­
mulas from Abramowitz and Stegun [1] as implemented by Anscombe [2]. 
Both SAS/STAT and MINITAB provide the distribution function for the 
gamma distribution. However, they both use different parameters to de­
scribe the gamma distribution than we do in this book. To calculate the 
value P[X < t] using SAS/STAT, we execute the SAS/STAT statement 

P = PROBG AM(crt, 0); (3.94) 

and then print out the value of P . (The semicolon in 3.94) is part of 
the command.) To calculate this value with our Mathematica function 
gammadist, type gammadist[a, /?, t] or, using the Mathematica commands 
directly type GammaRegularized[/3,0, at]. For example, the Mathematica 
to calculate the value of Gs(6) is 

In[10]:= N[GammaRegularized[5, 0, 6]] 

Out[10]= 0.714943 

This agrees with the value of (?5(6) calculated in Example 3.2.6. The 
MINITAB procedure for calculating P[X < t] where X is gamma with 
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parameters /? and a, is to issue the MINITAB command "CD tf followed 
by the subcommand "GAMMA /3 £." where /? and - are the decimal 
number values of /? and £, respectively. We demonstrate the MINITAB 
procedure, below. MINITAB3 responds by typing the two numbers t and 
P[X < t]. 

Example 3.2.7 The response time at the terminal of the Hopdup Autos 
interactive system has a gamma distribution with an average value of 0.5 
seconds and a variance of 0.1 seconds2. What is the probability that the 
response time of a randomly selected inquiry will not exceed 0.72 seconds? 
1.0 second? 

Solution Let X be the response time. Since X has a gamma distribution, 
we must have /3/a = 0.5 and (3/a2 = 0.1. Solving for (3 and a yields (3 = 2.5 
and a = 5.0. We calculate P[X < 0.72], using MINITAB, as follows 

MTB > CDF 0.72; 
SUBO GAMMA 2.5 0 .2 . 

0.7200 0.7938 

Similarly, MINITAB found that P[X < 1.0] = 0.9248. The value of P[X < 
0.72] can be calculated by the SAS/STAT statement 

P = PROBGAM(3.6,2.5); 

yielding 0.7938140803. Similarly, SAS/STAT found that P[X < 1.0] = 
0.924764754.4 D 

The gamma random variable is useful for approximating other positive 
random variables. For example, it is easy to construct a gamma random 
variable X with a given positive mean K > 0 and squared coefficient of 
variation C 2 > 0. The following algorithm shows how. 

Algorithm 3.2.1 (Algorithm G) Given C2 > 0 and K > 0, this algo­
rithm will produce a gamma random variable X with squared coefficient of 
variation C\ = C2 and mean E[X] = K. 

Step 1 [Calculate the parameter (3] Set 

*-h-
3 The Student Edition of MINITAB does not support the GAMMA subcommand. 
4 The APL function GADIST and Mathematical provide the same values for P[X < 

0.72] and P[X < 1.0] as SAS/STAT, of course. 
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Step 2 [Calculate a] Set 
1 

a = KxC2' 

Step 3 [Produce F] The distribution function F with the density function 
given by (3.81) with parameters calculated in Step 1 and Step 2, is the 
distribution function of a gamma random variable having the required 
properties. 

Proof The proof follows immediately from the formulas 

and 
C2 - -1. 

0' 

3.2.6 Erlang-fc Random Variables 

1st stage 2nd stage 

*fkfiJ y^M j . < «/*A«\ 

Service Facility 

fcth stage 

Figure 3.2.4. Erlang's model of his distribution. 

The Danish mathematician A. K. Erlang used a special class of gamma 
random variables, now often called Erlang-A; random variables, in his study 
of delays in telephone traffic. A random variable, T, is said to be an Erlang-
k random variable with parameter fi or to have an Erlang distribution with 
parameters k and fj, if T is a gamma random variable with the density 
function / given by 

/(<) - { f f e ^ ,—likt for * > 0 
for t < 0. 

(3.95) 

The physical model that Erlang had in mind was a service facility consisting 
of k identical independent stages, each with an exponential distribution of 
service time as shown in Figure 3.2.4. He wanted this special facility to 
have the same average service time as a single facility whose service time 
was exponential with parameter fi. Thus, the service time, T, for the 
facility with k stages could be written as the sum of k exponential random 
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variables, each with parameter fik. Hence, by Theorem 3.2.6(d), T has a 
gamma distribution with parameters k and /j,k. Thus, 

E[T] = \ Var[T] = - ^ = ^ f f 
M kfj, k 

and 

F(t) = P[T<t] = l - e -yt 
1! 2! + 

(yt) fc-n 
(* - l ) ! . 

where y = fik. 
It can also be shown (see Exercise 39) that 

E[Tn] = k(k + l)---(k + n-l) 
(M" 

■ H)H) - ( i + ^)^ <3 
96) 

and thus 

E[T2) =(l + 0 (E[T}f and £[r3] = (l + ±) (l + | ) (£[T])3. 
(3.97) 

It should be noted that, for a fixed average value E[T], the variance of T 
decreases as A; increases and, in the limit, goes to 0. Thus, an Erlang-A; 
distribution can be used to approximate any nonnegative random variable 
whose variance does not exceed the square of its mean. The random variable 
T in Example 3.2.6 has an Erlang-5 distribution with parameter // = 1/5 = 
0.2 (mean value 5). 

Example 3.2.8 There are five independent stages in the repair of a cer­
tain piece of computer equipment. The repair time for each stage is ex­
ponentially distributed with an average value of 10 minutes. What is the 
probability that a customer engineer can repair the equipment in an hour 
or less? Not more than 90 minutes? 

Solution The repair time, T, has an Erlang-5 distribution with aver­
age value 50 minutes (parameter /z = 0.02) and a variance of E[T]2/k = 
2500/5 = 500 minutes2. (T has the same distribution as the random vari­
able T in Example 3.2.6, if the unit of time there is taken as seconds and 
here as tens of minutes. The change of scale leads to the appearance of the 
term ^ in (3.98).) Thus, the distribution function F is given by 
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F(t) = 1 - e - ' / 1 0 1 + i o + 2 Vioy + 6 \ ioy + 24 v io / , (3.98) 

where t is in minutes. Hence, the probability that the repair time will not 
exceed 60 minutes is F(60) = 0.7149. (The details of this calculation are 
shown in Example 3.2.6.) The probability that the repair time will not 
exceed 90 minutes is 

F(90) = 1 - e 
92 93 9 4 1 

1 + 9 + T + ¥ + 24 = 0.945. □ 

Random variables which are useful in computer science can often be ap­
proximated by Erlang-fc random variables, thereby simplifying calculations. 
In addition, some useful mathematical models, particularly in queueing the­
ory, assume Erlang-fc probability distributions. Thus, if an empirically de­
termined random variable can be approximated by an Erlang-A; distributed 
random variable, well-known mathematical models can be applied to make 
useful predictions. 

The usual procedure for selecting an Erlang-fc random variable Y to 
approximate a given random variable X is as follows: 

(1) Let fj. = l/E[X}. 

(2) Let k be the largest integer less than or equal to £?[X]2/Var[X] (the 
"floor" of this quantity). Then Y is the Erlang-fc random variable 
with parameters k and fj,. 

Table 3.2.1. Message Length Distribution 

Message length in characters: 25 50 70 100 140 

Fraction with this length: 0.4 0.3 0.1 0.15 0.05 

Example 3.2.9 Message lengths for the Euphoria State on-line system 
have the distribution shown in Table 3.2.1. Approximate this message 
length distribution by an Erlang-A; random variable Y. 

Solution Let X be the message length. Then 

E[X] = 25x0 .4 + 5 0 x 0 . 3 + 7 0 x 0 . 1 + 100x0.15 
+140 x 0.05 = 54 characters, 
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and 

Var[X] = (25 - 54)2 x 0.4 + (50 - 54)2 x 0.3 + (70 - 54)2 x 0.1 
+(100 - 54)2 x 0.15 + (140 - 54)2 x 0.05 = 1054. 

Since E[X]2/V&r[X] = 2.77, we let Y be the Erlang-2 random variable with 
average value 54 (fi = 1/54). Thus, Y has the same mean as X but its 
variance is slightly different; it is 1458 rather than the correct 1054. □ 

The reader should verify that the gamma random variable, Y, with 
/3 = 542/1024 and a = 54/1024 has exactly the same mean and variance 
as the message length distribution of Example 3.2.9. This is the random 
variable generated by Algorithm 3.2.1. The APL function GADIST can be 
used to calculate values of the distribution function of Y. So can MINITAB, 
SAS/STAT, Mathematica, and the HP-21S. 

3.2.7 Chi-Square Random Variables 
A random variable Y is said to have a chi-square distribution with n degrees 
of freedom if it can be represented as 

Y = X\ + X\ + • • • + A-2, (3.99) 

where Xi,X2,...,Xn are independent standard normal random variables. 
Thus, it is evident that Y can assume only nonnegative values. To dis­
cuss the properties of a chi-square random variable, we need the following 
theorem. 

Theorem 3.2.7 Let X be a continuous random variable with density func­
tion f and distribution function F. Then the density function g of the 
random variable Y = X2 is defined by 

g(y) = { 2^y(/(v^) + / ( - ^ ) . f o r * > ° (3.100) 
for y < 0, IFV 

and the distribution function G is given by 

O W - { f M > - ' < - < * > £ HI (3.101) 
Proof Since Y cannot assume negative values, G(y) = 0 for y < 0. For 
y > 0, Y = X2 < y is equivalent to —y/y < X < y/y. Hence, 

G(y) = P[Y<y\=P[-^<X<^) 
= F(y/y)-F(-y/y). 
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This proves (3.101). By differentiation we calculate 

g(y) = G'(y) = ^= (F' (,/y) + F' (-v»)) = ^=(f(Vv) + f (-Vv)). 

which completes the proof. ■ 

Suppose now that Y has a chi-square distribution with one degree of 
freedom, that is, that Y = X2 where X is a standard normal random 
variable. Then, by Theorem 3.2.5, the density function g for Y is given by 

i fe~y/2 e-y'2\ e-y'2 

= r ( l / 2 ) «"„><>, (3.102) 

since T(l/2) = y/n. (For a proof that T(l/2) = y/n, see Exercise 50.) A 
comparison of (3.102) with (3.81) shows that Y is a gamma random variable 
with parameters /? = 1/2 and a = 1/2. Hence, the moment generating 
function of Y is given by 

i>{0) = (1 - 26)-1/2. (3.103) 

If now Y is a chi-square random variable with n degrees of freedom, 
we can apply Theorem 2.9.1(c) to conclude that the moment generating 
function of Y is 

rp(e) = ((1 - 29)~1/2)n = (1 - 29)-n/2. (3.104) 

The moment generating function given by (3.104) is that of a gamma ran­
dom variable with parameters 0 = n/2 and a = 1/2. We summarize the 
properties of chi-square random variables in the following theorem. 

Theorem 3.2.8 (Properties of Chi-Square Random Variables) Let X be a 
chi-square random variable with n degrees of freedom (and thus, a gamma 
random variable with parameters /3 = n/2 and a = 1/2). Then the following 
statements are true. 

(a): ip(0) = (1 - 20)~n/2 , E[X] = n, V&r[X] = 2n and the density function 
of X is given by 

{ x ( n / 2 ) - l e -

2"/ 2 r (n/ 
0 

) - l e - x / 2 

/ ( * ) = < 2"/ 2r(n/2) f ° r X > ° (3.105) 
for x < 0. 
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(b): If Y is an independent chi-square random variable with m degrees of 
freedom, then X+Yis a chi-square random variable with n+m degrees 
of freedom (the chi-square distribution has the reproductive property). 

(c): As n increases, X approaches a normal distribution; that is, for large 
n, X is approximately N(n,2n). 

Proof Item (a) follows immediately from the fact that X has a gamma 
distribution with parameters /? = n/2 and a = 1/2, as we showed above. 
Now 

tl>x+Y(0) = (1 - 20)n / 2( l - 20)m / 2 = (1 - 2 0 ) ( n + m ) / 2 

and therefore, (b) holds by the uniqueness of the moment generating func­
tion (Theorem 2.9.1); and (c) is a consequence of the central limit theorem, 
which is discussed in Section 3.3. B 

The chi-square distribution is best known for its use in "chi-square 
tests," which are used to test various statistical hypotheses about observed 
random variables. Some of these tests are discussed in Chapter 8. 

Table 4 of Appendix A gives critical values, XQ> of the chi-square dis­
tributed random variable x2> defined by P[\2 > Xa\ — a- For exam­
ple, the table shows that, if X has a chi-square distribution with 25 de­
grees of freedom, then the probability that X assumes a value greater than 
37.653 is 0.05. Critical values, Xa> c a n a^ s o be calculated using MINITAB, 
SAS/STAT, Mathematica, and the HP-21S. The same can be said for the 
critical values, ta, and fa(n,Tn), to be discussed later in this chapter. 

3.2.8 Student's t Distribution 
A continuous random variable X is said to have a Student's t distribution 
with n degrees of freedom if its density function is given by 

fn(x)=*r«" + W2Ul+*L) " + 1 2 for all real x. (3.106) 
s/nn T(n/2) \ n) 

This distribution was discovered in 1908 by William S. Gosset, who used 
the pen name "A. Student" [35]. (Gosset worked for the Guiness brewery 
in Dublin, which at that time did not allow its employees to publish re­
search papers under their own names.) It is evident from (3.106) that /„ is 
symmetric about x = 0, and it is easy to show that it assumes a maximum 
value there (see Exercise 49). 

Theorem 3.2.9 (Properties of a Student's t Random Variable) Let X be 
a Student's t random variable with n degrees of freedom as defined above. 
Then the following statements are true. 
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(a): For n = 1, X has no expected value; for n > 1, E[X] = 0. 

(6): For n = 1,2, the second moment does not exist; for n > 2, 

V a , W = ^ . 

(c): For large values of n, X can be approximated by a standard normal 
random variable, that is, 

lim X = Y, 
n—>oo 

where Y is N(0,1). 

Proof The proof can be found in Stuart and Ord [34]. ■ 
The Student's t distribution is used primarily in dealing with small 

samples from a normal population. This is discussed in Chapters 7 and 8. 
Table 5 of Appendix A gives critical values, ta, of a Student's t dis­

tributed random variable X, defined by P[X > tQ] = a. 

3.2.9 F-Distributed Random Variables 
A continuous random variable X has an F distribution with (n, m) degrees 
of freedom if it has the density function fnm given by 

f (n/m)*/»r((n + m)/2)*<»/a>-* for 

fnm(x)={ r (n /2 ) r (m/2 ) ( l + (n/m)x)<n+m>/2 (3.107) 
[ 0 for x < 0. 

Sometimes the F-distribution is called Snedecor-F. 

Theorem 3.2.10 (Properties of the F Distribution) Suppose U has a chi-
square distribution with n degrees of freedom and V a chi-square distri­
bution with m degrees of freedom, with U and V independent. Then Y = 
(U/n)/(V/m) has an F distribution with (n, m) degrees of freedom and thus 
has the density (3.107). If we define fa(n,m) to be the unique number such 
that P[Y > /Q(n, m)] = a, then 

fi-a(n,m) = — r. 
fa{m,n) 

Ifm>2, then E[Y] = m/(m - 2). Ifm>\, then 

= m>(2n + 2rn-4) 
1 ' n ( m - 2 ) 2 ( m - 4 ) 

Proof The proof of this theorem can be found in Stuart and Ord [34]. ■ 



148 CHAPTER 3. PROBABILITY DISTRIBUTIONS 

Selected values of fa(n,m) are given in Table 6 of Appendix A. 
Service Facility 

( M I ) 
91 >-~_X 

92 \T^ 

Figure 3.2.5. Hyperexponential model. 

3.2.10 Hyperexponential Random Variables 
If the service time of a queueing system has a large standard deviation rela­
tive to the mean value, it can often be approximated by a hyperexponential 
distribution. Hyperexponential, in this case, means super exponential. It 
would seem entirely proper to call a distribution for which the standard 
deviation is less than the mean hypoexponential. Thus, the constant dis­
tribution is the most hypoexponential of all! A hyperexponential random 
variable may, of course, represent many other interesting phenomena be­
sides the service time of a queueing system; however, this provides an intu­
itively appealing way of describing a hyperexponential distribution, so we 
use it. The model representing the simplest hyperexponential distribution 
is shown in Figure 3.2.5. This model has two parallel stages in the facility; 
the top one providing exponential service with parameter n\ and the bot­
tom stage providing exponential service with parameter fj,2. A customer 
entering the service facility chooses the top stage with probability qi or the 
bottom stage with probability q2, where qi+q2 = 1- After receiving service 
at the chosen stage, the service time being exponentially distributed with 
average service rate /Zj (average service time l/fa), the customer leaves the 
service facility. A new customer is not allowed to enter the facility until the 
original customer has completed service. Thus, the density function for the 
service time is given by 

/.(*) = <7iMie~Ml< + q2ix2e-^\ t > 0. (3.108) 

Therefore, by integration, 

Ws = 2L + * i , (3.109) 
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E[s2] = 2 ^ + 2 - ^ , (3.110) 
Mi M2 

and 
£[,*] = 6^+6^ (3.111) 

Mi M2 
Hence, we calculate 

Var[S] = E[s2} - E[sf = 2Jl+
 2J2 - (Si + Sl)\ (3.112) 

Mi A*2 \ M i M 2 / 

The distribution function of a two-stage hyperexponential service time can 
be calculated by integrating (3.108), yielding 

Wslt] = l-q1e->iit-q2e-^t. (3.113) 

Similarly, the moment generating function of the service time, tps('), 1S 

^s(0) = - ^ + - ^ , if 0 < M i and 9 < n2. (3.114) 
Hi-9 H2-0 

Likewise, the Laplace-Stieltjes transform, W|[0], is 

Wm = ~ h + J ^ if 0 < M i and 9 < M2. (3.115) 
fil + tf f/,2 ~r " 

The following algorithm creates an H2 random variable X with a given 
mean E[X] = l//x and C\ = C2 > 1. It is said to have balanced means, 
since 

Si = Ol 
Mi M2' 

Algorithm 3.2.2 (Algorithm H ) Given C2 > 1 and /x > 0, this algorithm 
will produce a two-stage hyperexponential random variable X with squared 
coefficient of variation C\ = C2 and mean E[X] = -jj, such that 

^ = ^-. (3.116) 
Mi M2 

The distribution function of X is given by 

F(x) = 1 - gie-^x - q2e~^x. (3.117) 

Step 1 [Calculate q\ and 52] Set 

- s - ( C 2 - ! ) ! ^ 
(C2 + 1)J 

(3.118) 

and 
92 = 1 - gi. (3.119) 
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Step 2 [Calculate fxi and H2] Set 

Mi = 2gi/i (3.120) 

and 
H2 = 2g2A«. (3.121) 

Step 3 [Produce F] The distribution function F defined by (3.117), with 
parameters calculated in Step 1 and Step 2, is the distribution function 
of a two-stage hyperexponential random variable having the required 
properties. 

Proof The proof is a simple exercise using (3.109) and (3.110) and some 
algebra (See Exercise 56(a)). ■ 

The APL function BH2 implements Algorithm H; that is, it produces 
the parameters for an H2 distribution with balanced means. The APL 
function H2ADIST is the distribution function for an H2 random variable. 

The following algorithm produces the H2 distribution with the gamma 
normalization, since it produces an H2 random variable with a given mean 
E[X] = jj and squared coefficient of variation C\ = C2 that also has the 
same third moment as the gamma distribution with this C\ and E[X]. 

Algorithm 3.2.3 (Algorithm HG) Given C2 > 1 and \i > 0, this algorithm 
will produce a two-stage hyperexponential random variable X with squared 
coefficient of variation C\ — C2 and mean E[X) = ^ . Furthermore, X 
has the same third moment as the gamma random variable Y, such that 

andC\, = C2. The distribution function of X is given by 

F(x) - 1 <Zie-"lZ - q2e-^x. (3.122) 

Step 1 [Calculate (j,\ and ^2] Set 

m = E[X] 1 + \ (C2 + 1) 
(3.123) 

and 
V2 E[X] Mi- (3.124) 
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Step 2 [Calculate qi and q2] Set 

A«2 - M l 

and 
g2 = 1 - «i. (3-126) 

Step 3 [Produce F] The distribution function F defined by (3.122), with 
parameters calculated in Step 1 and Step 2, is the distribution function 
of a two-stage hyperexponential random variable having the required 
properties. 

Proof We ask the reader to show that the above algorithm does what we 
claim it does in Exercise 56(b). H 

The APL function GH2 implements Algorithm HG; that is, it calculates 
the parameters of an H2 random variable with the gamma normalization. 

You may be thinking, "The Hi probability distribution has 3 indepen­
dent parameters (q\ or 32, Hi, and H2). Couldn't we use the three param­
eters to construct an H2 distribution X such that E[X] = fci, E[X2} = k?, 
and £[X3] = fc3 for any three positive numbers fci, &2» &3?" A little 
thought should convince you that some restrictions must apply, other than 
that the numbers are positive. (After all, we must have C\ > 1.) Whitt [38] 
has worked out what the restrictions are and what the algorithm is to con­
struct the two-stage hyperexponential distribution. 

Algorithm 3.2.4 (Algorithm HW, Whitt's Algorithm) Given k\ > 0, 
&2 > 0, and £3 > 0, satisfying the conditions 

C2 = fe - 1 > 1, (3.127) 

and 
k3ki > 1.5Jfe|, (3.128) 

this algorithm will produce a two-stage hyperexponential random variable 
X (an H2 random variable) with squared coefficient of variation C\ = C 2 

and the following moments: 

(3.129) 

(3.130) 
(3.131) 

(3.132) 

The distribution function c 

F(x) 

E[X} = 

E[X2] = 
E[X3] = 

>f X is given 

fci, 
: k2, 
■k3. 

by 
= l _ g i e - M . x _ q2e~ -H2X 
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Step 1 [Calculate /ii and ^2] Calculate 

and 

Then set 

and 

Step 2 [Calculate q\ 

x — k\kz — 1.5fc|, 

y = k2 - 2k2, 

v = (x + l.by2 - Zk\yf + 18fc?y3. 

1 _ x + 1.5y2 + 2>k\y + y/v 
Mi 6fciy 

1 x + l.5y2 + 3k2y - ^/v 
H2 6fciy 

and 52] Set 

" = X7T 
A*l M2 

(3.133) 

(3.134) 

(3.135) 

(3.136) 

(3.137) 

(3.138) 

and 
92 = l - g i . (3.139) 

Step 3 [Produce F] The distribution function F defined by (3.132), with 
parameters calculated in Step 1 and Step 2, is the distribution function 
of a two-stage hyperexponential random variable having the required 
properties. 

Proof We ask the reader to show that the above algorithm does what we 
claim it does in Exercise 56(c). ■ 

The APL function WH can be used to make the calculations of this 
algorithm. The APL function MOMENTS can be used to check the an­
swer. That is, MOMENTS will calculate the first three moments of an H2 
distribution. 

Example 3.2.10 Helga Tooterfluz, the lead computer performance ana­
lyst at Sanitary Sewer Sweepers, decides to do the following: 

(a) Construct a gamma distributed random variable X with E[X\ — 5 
and C\ — 2. She also wants to calculate 

P[X < 7]. 
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(b) Construct a two-stage hyperexponential random variable Y with bal­
anced means, which has the same mean and squared coefficient of 
variation as X of part (a). Helga also wants to calculate 

P[Y < 7]. 

(c) Construct a two-stage hyperexponential random variable U with the 
gamma normalization that has the same mean and squared coefficient 
of variation as X of part (a). Ms. Tooterfluz also wants to calculate 

P[U < 1). 

(d) Compute E[x\ £[F3] , 'and E[u\ 

Solution 

(a) Helga applied the formulas of Algorithm G (Algorithm 3.2.1) to com­

pute the parameters of the gamma random variable X, obtaining 

£ = 7 ^ = 0 . 5 , 

and 

Then, using MINITAB, SAS/STAT, Mathematica, or GADIST, she 
computes 

P[X < 7] = 0.7632764294. 

(b) Using Algorithm H, Ms. Tooterfluz calculates qx = 0.2113248654, q2 = 
0.7886751346, Hi = 0.08452994616, and \i2 = 0.3154700538. Then 
she uses (3.117)5 to calculate 

P[Y < 7] - 0.796390747. 

(c) Helga uses the formulas of Algorithm HG to calculate /ii = 0.6828427125, 
/i2 = 0.1171572875, qi = 0.5, and q2 = 0.5. Formula (3.122) then 
yields 

P[U < 7] = 0.7756079927. 
5Actually, she uses the APL function BH2 to calculate the parameters and the APL 

function H2ADIST to calculate the probability P[Y < 7]. For (c), she used GH2 and 
H2ADIST. 
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(d) Since X has a gamma distribution, 

By (3.111), 

E[X*] = ^ ± I ^ ± 2 ) = 1,875. 

E[Y3} = 6 

Again, by (3.111), 

2L + Si 
M l A*2. 

= 2,250. 

£[{/3] = 6 Ol + Sl 
A»i Mij 

= 1,875. □ 

Note that 
£[Xd] = E[U3}. 

3.2.11 Coxian Random Variables 

Figure 3.2.6. Cox's method of stages for a service facility. 

The Coxian distribution is a generalization of both the Erlang-fc and the 
hyperexponential distributions. Cox [8] proposed that a service center be 
represented as a network of stages or nodes, as shown in Figure 3.2.6. 

Only one customer at a time is allowed in the facility. A customer 
initially entering the service facility will receive service at stage 1 with 
probability oo or leave the facility without service with probability 6o = 
1 — ao- (For modeling queueing theory service centers, we are interested 
only in cases where ao = 1 and &o = 0.) After receiving service at stage i 
(distributed exponentially with mean l/fa), a customer leaves the facility 
with probability 6j or proceeds to stage i + 1 with probability a,, i = 
1,2, • • •, fe — 1. Naturally, a, + 6j = 1 for all i. A customer completing 
service at stage k leaves the service facility. The probability that a customer 
reaches stage i is Ai = a0ai... ai_i (i = 1,2, • • •, fc) and the probability that 
a customer visits stages 1,2,. . . , i and leaves the facility is Aibi. Hence, the 
time s a customer spends in the service facility is, with probability A^, the 
sum of i independent, exponentially distributed random variables. Hence, 
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by Theorem 2.8.1 and Example 2.9.1, the expected value of s is given by 
k i k i 1 

E[s] = £ AtbiEfc Xjl = £ A& £ - • (3J4°) 
t = l j=l «=1 j=l ^ 

Similarly, E[s2] is given by 

k 

Y^AibiEiY?], (3.141) 
i = l 

where 
Yi = X1 + X2 + --- + Xi. (3.142) 

But 

E[Y?\ = E[X* + Xl + --- + X? + 2Y,XiXm] 

2 2 2 
= — + — + •■• + — 

M l A*2 Mi 
2 2 2 + + + ••• + 

mn2 M1M3 A*IM» 

+ - ^ - + ••• + —2—. (3.143) 
M2M3 M»-lA*t 

It is not difficult to show that the Laplace-Stieltjes transform of a Coxian 
distribution is given by 

k i 

**[*] = 6o + 5>o...oi-i&in;r£L-- (3-144) 

z = l 3=1 " + ^ 

Cox [8] shows that his method of stages representation is the most gen­
eral way of constructing a random variable from independent exponential 
stages. Thus, an Erlang-&, a hyperexponential, or any nonnegative random 
variable having a rational Laplace-Stieltjes transform is a Coxian distribu­
tion. The latter claim is proven in his paper. The method of stages repre­
sentation of a service facility makes it easy to handle, mathematically, in a 
queueing network model. Thus, it is the method used by Baskett, Chandy, 
Muntz, and Palacios [4] in their classic paper. Likewise, Khomonenko and 
Bubnov [15] were able to use Cox's distribution to solve a queueing theory 
model. Sometimes it is somewhat difficult to get a given probability distri­
bution into the Cox method of stages format, that is, to match the given 
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distribution by a Coxian distribution. It is not difficult for the Erlang-A; dis­
tribution. For this distribution bo = 0, ao = a\ = • • • a,k-i = 1, 6fe = 1, and 
IH = k(i for i = 1,2,■ ••, fc. The Erlang-A; distribution is a special case of 
the Coxian distribution. The two-stage hyperexponential is not a two-stage 
Coxian distribution6 but can be represented by one. We will demonstrate 
one way to do this in the following example. It is not a trivial exercise. 

Example 3.2.11 Consider the H2 distribution Y generated by Algorithm 
3.2.2 with C\ = 5 and E[Y] = 1. Using the APL function BH2, we obtain 
gi = 0.09175170954, q2 = 0.9082482905, m = 0.1835034191, and fi2 = 
1.816496581. Using the APL function MOMENTS, we calculate E[Y2] = 6 
and ,E[y3] = 90. Let us approximate Y with a Coxian distribution with 
two stages. Let us choose the Coxian distribution X with the same first 
three moments as Y. We will let ao = 1 and 62 = 1. By the use of (3.123), 
Theorem 2.9.3, and some tedious algebra, we obtained the following set of 
equations: 

a\+b\ = 1. 

E[X] = - + ^ = 1. 
A*i A*2 

„ . „ , , 2 2ai 2ai 
E[X2] = -o + — - + -f = 6. 

Mi M1M2 M2 

„ . o, 6 6ai 6ai 6ai 
E[x3] = -ir + -5-i- + \ + - f = 90. 

Mi M1M2 M1M2 M2 

The solution to this set of equations is : 

01 = 0.0824829046378, 

IH = 1.81649658092, 
and 

H2 = 0.183503419072. 

The Coxian distribution uses the same two exponential distributions as 
were used by the H2 distribution! However, for the Coxian distribution, 
the customer always receives service from the faster server followed, occa­
sionally, (with probability 0.0824829) by service from the slower server. By 

6A11 textbooks, including this one, say that the hyperexponential is Coxian but this 
should not be interpreted in the literal sense. A Coxian distribution can represent a 
hyperexponential distribution but the flow of customers through such a service facility is 
not exactly as it would be for a hyperexponential facility. However, the Laplace-Stieltjes 
transforms, and therefore the probability distributions, are identical. 
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(3.124), the Coxian distribution has the Laplace-Stieltjes transform 

1.66666667 0.0274943 
X*[9] = 

9 + 1.816496581 (0 + 1.816496581)(0 + 0.183503419072)' 
(3.145) 

while the Laplace-Stieltjes Transform of the original Hi distribution is 

_ 1.6498299 0.0168367524 
1 J ~ 9 + 1.816496581 + (9 + 0.183503419072)' ^ ' ' 

by (3.115). The two distributions certainly look different! However, if they 
are both rearranged into the rational format, we find that: 

y.m = x*M = 1-6666670 + 0.33333333 
M u (9 + 1.816496581)(0 + 0.183503419072)' v " ' 

The probability distributions are the same, although the two method of 
stages models that produced them are different! □ 

Marie [19] provides an easier way to construct a two stage Coxian dis­
tribution with a given mean 1/fj, and squared coefficient of variation C2. 
Of course, it will not have the same third moment as the random variable 
we constructed in the above example. 

Algorithm 3.2.5 (Algorithm M, Marie's Algorithm) Given fi > 0 and 
C2 > 0.5, this algorithm will generate the parameters a i , fii, and fi2 for a 
two-stage Coxian random variable X, such that E[X] = 1/// andCJf = C2. 

Step 1 Let Hi = 2/x. 

Step 2 Let n2 = M / C 2 . 

Step 3 Let ax = 1/(2C2). 

Proof See Marie [19]. ■ 

Example 3.2.12 Consider Example 3.2.11. Let us use Marie's algorithm 
to construct a two-stage Coxian random variable X with E[X] = 1 and 
C\ - 5. We choose Hi = 2, fi2 = 0.2, and d = 0.1. Then, by the 
equations we developed in the above example, 

E[X] = 0.5 + 0.5 = 1, 
E[X2} = 0.5 + 0.5 + 5 = 6, 

so that 
Vax[X] = E[X2] - E[X}2 = 6 - 1 = 5, 
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and 

We also have 

C2 _ Var[X] 
E[Xf = 5. 

£ [ * 3 ] = o + 
0.6 0.6 

8 0.8 2(0.2): 
0-6 „„ 

+ o ^ = 84-
The random variable is not very different from the one we constructed in 
Example 3.2.11. □ 

The two-stage hyperexponential distribution can be generalized to k 
stages for any positive integer > 2. The extension to k stages is straight­
forward but rarely of practical importance, so we will not discuss it here. 

When you can measure what you are speaking about and express it in 
numbers you know something about it; but when you cannot express it in 

numbers, your knowledge is of a meager and unsatisfactory kind. 
Lord Kelvin 

3.3 Central Limit Theorem 
In Chapter 2 we discussed the weak law of large numbers, which indicates, 
roughly speaking, that the probability P[A] of an event A can be estimated 
by Sn/n, where Sn is the number of times the event A occurs in n in­
dependent trials of the basic experiment. Unfortunately, the law of large 
numbers does not provide a method for estimating how close we are to the 
true probability, although we saw in Section 2.10 that by using Chebyshev's 
inequality, we could make a crude estimate of how large n need be so that 

Sn 
P 

n 
>6 <«, 

for given positive S and e. 
The central limit theorem allows us to improve this estimate. It also 

allows us to make probability judgments about other types of estimates. 
This theorem is one of the most important in applied probability theory. 

Theorem 3.3.1 (Central Limit Theorem) Let Xi,X2,... be independent, 
identically distributed random variables, each having mean JJL and standard 
deviation a > 0. Let Sn = Xi H 1- Xn. Then for each x < y, 

lim P 
n—>oo 

x<Sn~^< 
a\fn 

= $(j/) - $ ( x ) , (3.148) 

where $ is the standard normal distribution function. 
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Proof The proof of this theorem may be found in Parzen [22]. ■ 

This theorem is truly remarkable in that no special assumptions need be 
made about the character of Xi. It can be discrete, continuous, or of mixed 
type. No matter what the form of X\, the sum Sn approaches a normal 
distribution with mean no1 (Sn is approximately N(nfi, na2)). Of course, 
the rate of convergence of Xn to a normal distribution depends on Xi. For 
example, if X\ is normally distributed, then by Theorem 3.2.3, on is nor­
mally distributed for all n—no approximation is involved. However, if Xi 
is a discrete uniform distribution, then n must be somewhat large before 5„ 
can be reasonably approximated by a normal random variable. The result 
of the central limit theorem is true, under rather general conditions, even if 
each Xk has a different distribution with mean fik and standard deviation 
°~k, if Yl^i^k is substituted for n\i and (£)fc=i<7fe)1^2 is substituted for 
a^/n in (3.149); that is, (3.149) becomes 

lim P 
n—»oo 

5 n — E[Sn] x < —— ^ v 
- (VarlS,,])1'2 - . 

= $(2/) - $(x). (3.149) 

This version of the central limit theorem is the basis for an explanation of 
the observed fact that many random variables such as the height and weight 
of humans, the yields of crops, the temperature at a certain geographical 
location for a given day of the year, etc., tend to be normally distributed. 
Each of these random variables can be represented as the sum of a large 
number of independent random variables. 

The central limit theorem has a special case now called the DeMoivre-
Laplace limit theorem. It was originally proved by Abraham DeMoivre 
(1667-1754) in his Doctrine of Chances, which was published in 1714. Pierre 
Simon Laplace (1749-1827) extended DeMoivre's result in his famous trea­
tise Theorie Analytique des Probability, published in 1812. 

Let Xi,X2,... ,Xn be independent Bernoulli random variables, each 
with probability p of success. Then Sn — Xi,X2,...,Xn is a binomial 
random variable and the following theorem follows from Theorem 3.3.1. 

Theorem 3.3.2 (DeMoivre-Laplace Limit Theorem) Let Sn be a binomial 
random variable with parameters n and p. Then for any nonnegative inte­
gers a and b, with a <b, as n —► oo, 
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Figure 3.3.1. Normal approximation of binomial. 

The following corollary tells us how to approximate the binomial distri­
bution with the normal distribution. 

Corollary (The normal approximation of the binomial distribution) Sup­
pose a and b are nonnegative integers with a < b. Then it is approximately 
true that 

k=a 

ft. 1 

1 b — np + — 
£i 

\ 

$ 
1 a — np — - \ 

y 2 

\ 

(3.151) 

/ 

Note that the right hand sides of (3.151) and (3.152) differ by the \ 
terms, which are called the continuity corrections. The reason for the con­
tinuity corrections is that, if we use the normal distribution to approximate 
the discrete binomial distribution, we are, in effect, fitting a continuous 
distribution to a discrete distribution, as suggested by Figure 3.3.1. In 
this figure, the step function gives the probabilities of k successes in eight 
Bernoulli trials with p — 0.25. That is, for each k, the area under the bino­
mial graph between k — | and k + \ is the probability of k successes. The 
density function for the approximating normal random variable has mean 
np = 2 and standard deviation ^/npq = VTH = 1.225. The true probability 
that Sn is between 1 and 3 inclusive is £ J t = 1 (fc)(0-25)fc(°-75)8_fc = 0.7861. 
If we use (3.152) with the continuity correction, we approximate this prob­
ability by the area under the normal density curve from 0.5 to 3.5, which 
is 

* (W) " * (W) = *(LM4) " *(-L224) = 2*(L224) -



3.3. CENTRAL LIMIT THEOREM 161 

= 2 x 0.88952 - 1 = 0.77904. 

This is a fairly good approximation because, as Figure 3.3.1 shows, this 
binomial distribution is not very symmetrical. For example, 

P\X = 1] = 0.2671 # 0.2076 = P[X = 3]. 

The accuracy of the approximation formula (3.152) improves with the size 
of n, and in the limit the error goes to zero. The accuracy also improves 
with the degree of symmetry of Sn. A number of rules have been devised to 
ensure that the approximation is reasonably good. Freund and Walpole [12] 
require both np and nq to exceed 5. Lippman [18] asks that npq > 10. 
Hoel [14] says the normal approximation is fairly good as long as np > 5 
when p < \ and nq > 5 when p > \. Stuart and Ord [34] claim that if 
np3 /2 > 1.07, then the error in the normal approximation for any b(k; n,p) 
is less than 0.05. Ostle and Mensing [21] assert that, if npq > 25, the 
error in the normal approximation is less than 0.15/^npq. They point out, 
however, that for values of p very close to 0 or 1, the approximation will 
be less reliable in the tail than the center of the distribution, and in these 
cases one should either use the Poisson approximation or calculate exact 
probabilities. 

Feller [10, chapter VII] has some excellent examples of the use of the 
normal approximation. In Table 2 he compares some exact probabilities 
together with the normal approximations for the binomial distribution with 
parameters n = 100 and p = 0.3 (and thus with mean 30 and variance 
21). This distribution satisfies the rules of thumb of Freund and Walpole, 
Lippman, and Hoel. However, although the approximation error is zero 
for P[21 < Sn < 21] = P[32 < Sn < 39], there is a 400 percent error 
in the approximation for P[9 < Sn < 11] and a 100 percent error in the 
approximation for P[12 < Sn < 14]. Ostle and Mensing's warning about 
the tails is certainly correct! It should be pointed out that the Poisson 
approximation is not so good for P[9 < S„ < 11], either. It yields a value 
of 0.000061831 versus the correct value of 0.000005575 for a relative error 
of 1,009 percent. The calculation of P[9 < S„ < 11] is not as formidable as 
it may first seem. P[9 < Sn < 11] = P[Sn = 9] + P[Sn = 10] + P[Sn = 11], 
where, for example, we can calculate 

P[Sn = 9] = (10
9°\ x 0.39 x 0.791, (3.152) 

where (1g°) can be calculated by the expression 

100 99 98 97 96 95 94 93 92 , 
- 9 - x - 8 - x y x - 6 - x y x T x y x T x T - (3-153) 
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The calculation of (3.154) is routine on most pocket calculators (especially 
those with RPN logic) and most calculators have a yx key, that enables one 
to calculate the last two factors of (3.153) with ease. In fact, some pocket 
calculators, such as the Hewlett-Packard HP-32S, allow one to calculate 
(10

9°) directly. 

Example 3.3.1 In Example 3.1.2, we considered a binomial random vari­
able with parameters 20 and 0.6, that described the number of communi­
cation lines in use. The probability that 10 or more lines are in operation 
was found to be 0.872479. The normal approximation for this probability 
is 

20 ^M)-.(i^^).^) + «..M.)-. 
= 0.99995 + 0.87327 - 1 = 0.87322, 

a fairly good approximation. This random variable satisfies most of the 
rules of thumb we gave above. Of the ones involving np, nq, or npq, it fails 
only Lippman's requirement and that of Ostle and Mensing. However, the 
error is only -0.00074, which in absolute value is less than the Ostle and 
Mensing error bound of 0.15/v/npg = 0.0685. D 

The normal distribution can also be used to approximate a Poisson 
distribution. This follows from the fact that both the Poisson and normal 
distributions may be used to approximate the binomial distribution. 

Example 3.3.2 In Example 3.1.5, X is a Poisson random variable with 
a = 10. We calculated P[X < 15] to be 0.95126 by using the APL function 
POISSONADIST. Approximate the answer using the normal distribution. 

Solution We use the normal distribution with \x = 10 and a — \/I(). Then 

15.5-10" 
P[X < 15] w P z < VT6 

= P[z < 1.739] = 0.95898. □ 

Suppose we want to estimate p = P[A] for some event A, where we 
know that 0 < P[A] < 1. We can let X be the Bernoulli random variable, 
that is 1 when the event A occurs on a particular trial of the experiment 
and 0 otherwise. Successive independent trials of the experiment yield 
the sequence of independent Bernoulli random variables X\,X2,Xz, 
If we let Sn = Xi + X2 + ■ ■ ■ Xn , then Sn counts the number of times 
that the event A occurred in n trials of the experiment. The weak law of 
large numbers, Theorem 2.10.4, indicated that the ratio Sn/n converges to 
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p = P[A\. In Example 2.10.6 we saw that Chebyshev's inequality enabled 
us to make a crude estimate of the required value of n, such that 

&n 

n 
>8 <e, (3.154) 

where 6 and e are given positive numbers. We will now show how the 
central limit theorem allows us to improve that estimate. Let p = P[A] 
and q = 1 — p. Sn is a binomial random variable with parameters n and p, 
so E[Sn] = npq. Suppose 6 and e are given positive numbers. Then 

Sn P 
n 

>6 = P Sn ~ £ p < — 0 
n 

+ P P > o 
n 

(3.155) 

Some algebraic manipulation of (3.156) yields 

Sn 
P 

n 
>6 = P 

Sn — np Sy/n 
/npq VP9. 

+ P 
Sn — np 6y/n 

/npq VPQ. 
(3.156) 

The right side of (3.157) is now in a form for which we can apply the 
central limit theorem (the mean of Xi is p and the standard deviation is 
^/pq). Hence, we conclude that 

Sn 
n 

>6 •(^)—(5g)-(*-(5S)) 
(3.157) 

To find n such that (3.155) is valid, we set the right side of (3.158) to e and 
r = bsfn)\/pq to arrive at the equation 

2 ( l - * ( r ) ) = e, (3.158) 

or 
*(r ) = ( 2 - e ) / 2 . (3.159) 

The value of r that makes (3.160) true can be found from Table 3 of Ap­
pendix A. The definition of r then yields the following estimate for n: 

n = r2pq/62 < r2/4S2, (3.160) 

since pq — p(\ —p) has a maximum value of 1/4, achieved when p = q = 1/2 
(see Exercise 2 of Chapter 2). 

Example 3.3.3 In Example 2.10.8 we wanted to estimate the probability, 
p, that a randomly selected terminal chosen during the peak period was 
busy. The estimation method was to choose a terminal randomly n times 
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during this period, count the number of times Sn that a selected terminal 
was in use, and use the ratio Snjn as the estimate of p. Chebyshev's 
inequality was used to find the smallest n such that (3.155) would be true 
with 6 = 0.1 and e = 0.05. The value of n was 500 if no knowledge of p 
was assumed, and 320 if it were known that p was approximately 0.2. If we 
apply (3.160) and (3.161) for the first case, we get r = 1.96 and n = 96. If 
we assumed that p was about 0.2, then (3.161) yields n = 62. Thus, for the 
given requirements, 100 samples should suffice. However, an error of 0.1 
in a quantity with a magnitude of only 0.2 is a large relative error! Let us 
turn the question about and ask, "If we make 500 observations to estimate 
p and let e = 0.05 in (3.155), what is the value of 61 That is, what is the 
maximum error in the estimate at the 5 percent level of uncertainty?" As 
before, (3.160) yields r = 1.96 and 

y/n v/500 

which has the value 0.0438 or 0.0351, depending on our assumption about 
the value of p. For 100 observations, these values of 6 are 0.098 and 0.0784, 
respectively. □ 

Nothing so needs reforming as other people's habits. 
Mark Twain 

3.4 Applied Transforms 
In Section 2.9 we defined some useful transforms, including the moment 
generating function, the generating function (^-transform), the Laplace-
Stieltjes transform, and the Laplace transform. We also explained the pri­
mary properties of these transforms and demonstrated their usefulness. In 
this section we will show further applications of transform methods in ap­
plied probability. 

For any nonnegative random variable, X, we defined the Laplace-Stieltjes 
transform of X, X*, by 

v*\m / Jo°e~exf(x)dx if ^ is continuous 
X[d] = \ EXte-eXiPixt) if X is discrete, ( 3 - 1 6 1 ) 

sometimes written in the more symbolic form 

e-exdF(x). (3.162) X*[6] = / 
Jo 
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In doing so we transformed the random variable X into the real (or 
complex) variable X*. The reason for doing this is that operations on the 
variable X* that correspond to operations on X are often much simpler 
to perform. For example, we saw in Theorem 2.9.3 that we can calculate 
moments of X by the formula 

E[X } - (-1) —^r- , n = l , 2 , - - - . (3.163) 
0 = 0 

This is usually much easier than it is to calculate i?[Xn] directly from the 
definition. Theorem 2.7.5 showed that to get the probability mass function 
or the density function of the sum of the two independent random variables 
X and Y, we calculate the convolution of X and Y. Convolution is a rather 
difficult operation to perform. However, the Laplace-Stieltjes transform of 
the sum is merely the product of the transforms. That is, 

(X + Y)*[0] = X*[9]Y*[9], (3.164) 

if X and Y are independent, by Theorem 2.9.3(d). We can now get the 
density function (or the probability mass function) of X + Y by inverting 
the transform X*[6\Y*[6). 

If / is any real-valued function, the Laplace transform of f is denned by 

fm = f 
Jo 

e-"xf{x) dx, (3.165) 

provided the integral in (3.166) exists. Thus, if f(x) = ^f (#) is the density 
function of a continuous random variable X, then the Laplace-Stieltjes 
transform of X is the Laplace transform of / ; that is, 

/»oo /»oo 

X*[6}= e-exdF{x)= e-$xf(x)dx = /*[$]. (3. 
Jo Jo 

166) 

The Laplace transform of the density function, / , of a nonnegative random 
variable, X, always exists for any 0 > 0 because 

/•OO /-OO 

\f*(0)\< \e-etf(t)\dt< f(t)dt=l. 
Jo Jo 

Since /* exists, by (3.167), the Laplace-Stieltjes transform of X must exist, 
also. We use the convention that the lower limit of each of the integrals 
in (3.167) is to be evaluated so as to include the jump at the origin if 
F(0) > 0; that is, we define /0°° e~9x dF(x) to mean / ° ! e~8x dF(x) and 
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J0 e exf(x)dx to mean JQ_ e 6xf(x)dx, where by convention for any in­
tegral, 

r=urn r 
Jo- *-+oJ_t 

for values of e > 0. 

X*[0] is also defined for complex 6 when the real part of 6 is positive. 
(Recall that any complex number z can be written as z = a + bi, where 
i = y/—l; a is a real number called the real part of z, and b is a real number 
called the imaginary part of z.) 

In Table 10 of Appendix A, we have indicated some useful properties and 
identities for the Laplace transform. The proofs can be found in Giffin [13]. 
Table 11 of Appendix A gives some transform pairs. 

It is often useful to invert Laplace-Stieltjes transforms, that is, to find 
the probability distribution that has a given transform. From a table of 
probability distributions and their transforms, we can often find the in­
verse transformation by inspection since, by Theorem 2.9.3(a), a proba­
bility distribution is determined by its Laplace-Stieltjes transform. The 
Laplace-Stieltjes transforms for most of the continuous random variables 
of interest in this book are shown in Table 2 of Appendix A. It is impor­
tant to note, that, by (3.167), inverting the Laplace-Stieltjes transform of 
a continuous random variable X means inverting the Laplace transform of 
its density function, and thus yields the density function. 

One of the most useful properties of the mapping / — ► / * , which carries 
a real-valued function into its Laplace transform is linearity; that is, if a 
and b are constants and / and g are real-valued functions having Laplace 
transforms, then af + bg —► af* 4- bg*. This property makes it much easier 
to find the inverse of a transform, as the following example shows. 

Example 3.4.1 Suppose X and Y are independent, exponential random 
variables with parameters a and /?, respectively, where a ^ /?. Then, by 
Theorem 2.9.3(d) and Example 2.9.6, we can write 

(X + Y)*[6] = X*[e}Y*[e] = ( ^ ) ( ^ ) . (3.167) 

It is not clear from (3.168) what the inverse transform is. We can write 
(3.168) in a simpler form by the use of partial fractions, which will make 
the inverse transform clear. We can write 

<*+™ - bh){ih)- Cl C2 

e+a e+p 
(ci + c2)fl + ci/? + c2a <iiae\ 

(0 + a)(0 + P) ■ ( 3 ' 1 6 8 ) 
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This yields the equations 

ci + c2 = 0, 

ci/3 + c2a = a/3. 

solution of these equations is 

a/3 
Cl = a 

p — a c2 = - c x . 

In Table 2 of Appendix A, we see that the Laplace-Stieltjes transform of the 
exponential random variable with parameter a is a/(0 + a). This means 
that the inverse transform of a/(9 + a) is ae~at. We conclude that the 
inverse transform of (X + Y)* is the density function fx+Y given by 

/ * + y ( t ) = - ^ ( e - * - e - « * ) . D 
a — p 

Another useful property of the Laplace transform is the formula for the 
transform of the derivative given by 

•* 

di 
df [9] = Of*[0\-f(O). (3.169) 

(See Kleinrock [16] or Giffin [13] for a proof of (3.170).) We will illustrate 
how (3.170) can be used in the following example. 

Example 3.4.2 Consider Example 4.3.3 where we have the following set 
of differential equations: 

^■(t) = -2XP2(t) + (iP1(t), 

-^(t) = 2XP2(t)-(X + fi)Pl{t), (3.170) 

^(t) = XPl{t). 

The initial conditions are 

P2(0) = 1, 
Pi(0) = 0, (3.171) 
Po(0) = 0. 
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If we take the Laplace transform of each of the differential equations of 
(3.171), applying (3.170) to each left side, we obtain 

ep;\e)-\ = -2\p;[e] + »p?[ei 
9P*[9] = 2XP;[9]-(X + fx)P*[9}, 
9P*[9] = XP*[9}. (3.172) 

Solving (3.173) for Po*[0], we obtain 

2A2 

P°m = 0[02 + (3A + M)0 + 2A2]- ( 3 , 1 7 3 ) 

Let Y be the random variable that gives the time of failure of the system. 
Clearly, the density function of Y, fy, is given by 

M O - $ < « > . 
so that by (3.170), 

J?M-«*H-ft«»-„ + (M + ) „ , + M,. P-174) 

We can factor the denominator of (3.175) so that it can be written as 

a i - a 2 \ t / + a 2 ff + aij 

where 

3A + n + a3 
ai = ~2 , 

3A + fi — 0:3 
a 2 = 2 ' 

a 3 = v/A2 + 6A/x + /x2. 

Table 11 of Appendix A shows that the inverse transform of 1/(9 — a) is 
ea*. Using this fact and the linearity of the transform, we conclude that 

1\2 

fY(t) = —— (e- Q 2 t - e~ait). a (3.176) 
C*i — OJ2 

There is a special function called the Dirac delta function or the um< 
impulse function, which is of great utility in working with Laplace-Stieltjes 
or Laplace transforms. This function is not a function in the usual sense, 
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because it has "magical properties" not possessed by any ordinary func­
tion. It has been made mathematically legitimate by Schwartz's theory of 
distributions (Schwartz [30]) and can be thought *of as being defined by the 
properties 

S(t) = 0 for t^ 0, (3.177) 

and 
/•o+e 
/ 6(t - a)f{t) dt = f(a), (3.178) 

Ja—€ 

for any constant a, any function / continuous at a, and any e > 0. 
What makes the Dirac delta function especially useful is that its Laplace 

transform is the constant 1. Because of this, the inverse Laplace transform 
of any constant c is c6(t). Similarly, the inverse Laplace transform of e~a6 

is 6(t — a). 
We will illustrate the use of the Dirac delta function in the following 

example from Chapter 5. 

Example 3.4.3 In Section 5.3 we show that the Laplace-Stieltjes trans­
form of the queueing time (time spent waiting for service to begin) for the 
M / G / l queueing system is given by 

"f w - srwphr (3179) 

where p is the server utilization (fraction of time the server is busy), A is the 
average arrival rate of customers to the system, and W* [0] is the Laplace-
Stieltjes transform of the service time. If the service time is exponential (so 
that M / G / l becomes M/M/ l ) , then 

W*3[0) = £ ■ £ - , (3.180) 

and by (3.180), 

W*[0\ = 
(1 - p)9 

( l - p ) ( 0 + /i) 
0 + (n-\) 

(3.181) 

This expression for W,*^] is not in the proper form for using Table 11 of 
Appendix A, since the numerator and denominator are of the same degree. 
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We perform division to obtain 

We have used the formula 
A 

P = ~ 
in simplifying (3.183). We can now invert (3.183) by inverting the two 
terms individually and adding the results together, by the linearity of the 
Laplace transform. The constant term, (1 — p), has the inverse transform 
(1 — p)S(t) by the above discussion of the Dirac delta function (see, also, 
Entry 8 in Table 11 of Appendix A). The second term in (3.183) has the 
inverse transform 

A(l - p)e~ii{1-^t, 

by Entry 5 of Table 11 (remember that cf —» cf*). The inverse transform 
can also be obtained for the second term in (3.183) by the Mathematica 
function InverseLaplace in the package Calculus/InverseL.m as follows 

In[3]:= lambda (l-rho)/(theta + mu (1 - rho)) 

lambda (1 - rho) 
Out [3]= 

mu (1 - rho) + theta 

In[4]:= InverseLaplace[%, theta, t] 

lambda (1 - rho) 
Out [4]= 

mu (1 - rho) t 
E 

Hence, the density function of q, fq(t), is given by 

fq(t) = (l-p)6(t) + \(l-p)e-^1-P», t>0. (3.183) 

We integrate (3.184) to obtain 

Wq[t] = P[q<t] 

= / fq{x)dx 
Jo 

= (l-p) + X(l-p) 
_ e -M( l -p )x" ' * 

M(I - P) 
(3.184) 
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= ( i -p j + rti-c-*1-')') 
= l-pe-*1-'*, t>0. 

This agrees with the result obtained by other means in Section 5.2.1. D 

We have considered sums of random variables where the number of 
variables in the sum is fixed. There are cases in which it is advantageous 
to consider random sums in which the number of random variables in the 
sum is itself random. That is, suppose we have a sequence X\,X2,... 
of independent and identically distributed random variables. Let N be a 
discrete random variable, independent of X\, X2,... having the probability 
mass function pjv(n) = P[N = n] for n = 0,1, — We define the random 
sum SN by 

SN = X1+X2 + --- + XN, (3.185) 
where SN is assumed to be zero when N = 0. Some examples of the use of 
(3.186) follow. 

Examples of Random Sums 

Queueing Theory 

Suppose N is the number of customers arriving at a service facility in some 
specified period of time, and Xi is the service time required by the ith 
customer. Then SN = XI + X 2 - \ \-XN is the total service time demand, 
often called virtual service. 

Accidents 

Suppose Xi denotes the number of persons injured in the ith traffic accident 
on a day in Los Angeles and N is the random variable describing the number 
of accidents per day. Then SN = Xi + X2 + • • ■ + XN is the total number 
of persons injured in traffic accidents on a day in Los Angeles. 

Insurance Risk 

Let N be the number of claims that arrive at an insurance company per 
working day. Suppose Xi is the amount of the ith claim. Then SN — 
Xi + X2 + • ■ ■ + XN is the total liability of the insurance company. 

Banking 

Let N be the number of requests for cash made at the ATMs of a certain 
bank for the city of San Francisco in a day. Let Xi be the amount of cash 
requested by the ith customer. Then SN = X\ + X2 H 1- XN is the total 
amount of cash requested. 

In the next theorem we will look at the case of a random sum in which 
the random variables in the sum are discrete. 
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Theorem 3.4.1 If X\, X2, ■ ■ ■ is a sequence of independent identically dis­
tributed discrete random variables with common generating function g\, 
and N is a discrete random variable with generating function gx, then 

SN = -^1 + X2 + ■ • • + XN 

has a generating function given by 

gSN(z) = gN(gx(z)). (3.186) 

Furthermore, 
E[SN] = E[X]E[N], (3.187) 

and 
Var[SW] = E[N]Vai[X] + E[X]2Var[N]. (3.188) 

Proof We use conditional expectation and the law of total expectation 
(see Theorem 2.8.1) to obtain 

9SN(Z) = E[zs"] = E[E[zs"\N]] 

= ^2 EIZSN \N = «] PW = n\ 
n 

= ^2E[zXl+Xa+-+x'] P[N = n] 
n 

= ^TE[zXl}■■■ E[zXn]P[N = n] by independence 
n 

= 5 > x ( z ) ) n P [ i V = n] 
n 

= 9N{9X(Z)). 

This proves (3.187). The proof of (3.188) and (3.189) is given by Taylor 
and Karlin [36]. ■ 

Example 3.4.4 Suppose Y has a binomial distribution with parameters p 
and N, where N has a binomial distribution with parameters q = 1 — p and 
M. What is the marginal distribution of Yl 

Solution Y can be written as the random sum 

Y = Xi + X2 + ■ ■ ■ + XN, 

where the Xi are independent Bernoulli random variables, each with pa­
rameter p. We can write JV as the (nonrandom) sum 
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of identical independent Bernoulli random variables, each with parameter 
q = 1 — p. Hence, by Table 2 of Appendix A, we can write the generating 
functions 

9x(z)=q+pz, (3.189) 

and 
gN(z) = (p + qz)M. (3.190) 

Therefore, by Theorem 3.4.1, 

9Y(Z) = 9N(9X(Z)) 

= \p + q(Q+pz))M 

= (p + q2+pqz)M (3.191) 
= [(l-pq)+pqz}M, 

since 
p + q2 = p + q(l - p) — p + q - pq = 1 - pq. 

Note that (3.192) is the generating function of a binomial random variable 
with parameters pq and M. Hence, by the uniqueness of the generating 
function, Y has a marginal distribution that is binomial with these param­
eters. □ 

In the next theorem we look at random sums in which Xi,X2,.. ■ are 
continuous nonnegative random variables. We show how to calculate the 
Laplace-Stieltjes transform of the random sum. We also show that the 
formulas for calculating the mean and the variance of the random sum are 
the same as for the discrete case. In fact, these formulas are true even if the 
underlying continuous random variables are not necessarily nonnegative. 

Theorem 3.4.2 Suppose X\,X2,... is a sequence of independent identi­
cally distributed continuous random variables with common Laplace-Stieltjes 
transform X*[9], and N is a discrete random variable with generating func­
tion gN. Then, if 

SN=X1-rX2 + --- + XN, (3.192) 

we have 
E[SN] = E[X]E[N], (3.193) 

and 
V&T[SN] = E[N] V&T[X] + E\X}2 Vex[N]. (3.194) 

Furthermore, the Laplace-Stieltjes transform of SN is given by 

S*N[e] = gN(X*[0]). (3.195) 
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Proof For a fixed value of N = n we calculate the conditional expectation 
n 

E[SN\N = n] = ̂ 2E[Xi] = nE[X]. (3.196) 
I 

Then, by the law of total expectation, (see Theorem 2.8.1) 

N 
E[SN] = 5>£[X]P j v(n) 

I 
N 

= E[X]^2npN(n) (3.197) 
l 

= E[X}E[N), 

which proves (3.194). By Theorem 2.7.2(d), 

E[S2
N\N = n] = V&r[SN\N = n} + E[SN\N = n)2, (3.198) 

and, because of the independence of the Xi, 
n 

V&T[SN\N = n] = ^2 Var[A"i] = n x Var[X]. (3.199) 
l 

Substituting (3.197) and (3.200) into (3.199) yields 

E[S%\N = n] = n Var[iV] + n2 E[X}2. 

Hence, by Theorem 2.8.1, 

E[S2
N] = 53[nVar[X] + n aE[X] a]P J V(n) 

I 
= Var[X] £[JV] + £[AT2] £[X] 2 

= Var[X] E[N] + (Var[AT] + £[JV]2) E[X}2. 

Finally, we calculate 

Var[5w] = E[S2
N] - E[SN}2 

= E[N] Var[X] + E[X]2 Var[N], 

which proves (3.195). Let us write S^ijv[0|n] for the conditional Laplace-
Stieltjes transform of SN given that N = n. Then, by Theorem 2.8.1, 

oo 

srN[o] = £s* | i v[0 |n]m(n) 
i 
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oo 

= £(X*[0])»Pjv(n) 
1 

= 9N(X*[0}). 

This completes the proof. ■ 

Example 3.4.5 Suppose Y can be written as the random sum 

Y = Xi + X2 + • • • + XN, 

where each Xi has an exponential distribution with parameter a and N 
has the geometric distribution described in Exercise 4. That is, 

P[N = k]=pqk-\ k = l,2,.... 

This means that 

gN(z) - pz+ pqz2 + pq2z3 + ■•• 
oo 

= pz^qz)" 
0 

_ pz 
1 — qz 

Therefore, by Theorem 3.4.2, 

Therefore, by the uniqueness of the Laplace-Stieltjes transform, Y is expo­
nential with parameter pa. □ 

Example 3.4.5 can be interpreted as follows. Suppose a stream of cus­
tomers arrives at a fork or switching point. A customer is sent along the 
left path (path 1) with probability p or along the right path (path 2) with 
probability q = 1 — p. We assume the arrival process is an exponential 
renewal process; that is, the interarrival times for successive customers at 
the fork are described by independent identically distributed exponential 
random variables, each with parameter a. Let the random variable Y de­
scribe the time between the arrival of a customer who is sent along path 
1 and the arrival of the next customer who is sent along this same path. 
Then Y can be represented by the random sum 

Y = Xi+X2 + --- + XN, 
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where N has the geometric distribution described in Example 3.4.5. Fur­
thermore, Example 3.4.5 shows that the interarrival time along the first 
path has an exponential distribution with parameter pa. The same ar­
gument, of course, shows that the interarrival time along path 2 has an 
exponential distribution with parameter qa. In Exercise 53 we ask you to 
generalize this result to an r-way junction. 

In Example 2.7.5, we saw that if Y was the fixed sum of two exponential 
random variables, which corresponds to sending every other customer along 
path 1, then Y would have the Erlang-2 distribution, which is more regular 
(more nearly constant) than the exponential distribution. In Exercise 52 
we ask you to generalize this result to show that if a stream of arriving 
customers having an exponential interarrival time distribution is split de-
terministically into k streams, then the interarrival times along each new 
stream have an Erlang-A; distribution. 

In Chapter 5 we study the M / G / l queueing system and show that the 
formula for the generating function or z-transform of the steady state num­
ber of customers in the system, 3AT(Z), is given by the PoUaczek-Khintchine 
transform equation, 

(l-p)(l-z)WS[X(l-z)] ( . 
9N{Z) ~ W ? [ A ( 1 - * ) ] - * ' ( 3 ' 2 0 0 ) 

where Wg [9] is the Laplace-Stieltjes transform of the service time. As a 
special case, let us consider the M/D/ l queueing system. Then Wg[9] = 
e-0Ws Substituting this formula into (3.201) yields 

9N(Z) = 
(l-pKl-z)e-^1-*) 

e-p(l-z) _ z 

( l - p ) ( l - * ) 
1 - zeP^-*) (3.201) 

If we assume 
| 2 e P ( i - * ) | < l t 

we can expand (3.202) in the geometric series 
00 

gN(z) = (1 - p)(l - z)J2[zep{1-z)] ■ (3-202) 
3=0 

Kobayashi [17, pages 196-198] proved that, by comparing the coefficients 
of zn in (3.203) and in the definition 

oo 

9N(z) = Y,P»*n, (3-203) 
n=0 
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it can be shown that 

Po = l - / V (3.204) 

Pi = (1 - p)(ep - 1), (3.205) 

and 

Pn = ( l - p ) V 7-—-TT. n = 2 ,3 , - • • . 
JT^ ( n - j ) ! 

(3.206) 

Example 3.4.6 Suppose the Wringing Wet Wardrobe Company (a man­
ufacturer of swimming suits-the type worn by swimmers rather than the 
type that swims) discovers that one of their computer I/O subsystems can 
be modeled as an M / D / l queueing system with p = 0.9. Then, by (3.205), 
p0 = l - p = 0.1. By (3.206), px = (1 - p)(e» - 1) = 0.14596. By (3.207) 

P2 = (1 - P) 2 ^ ^ — y , = 0.13764. 

We show more values of pn in the table below. These values were calculated 
with the aid of the APL function PN. In Exercise 52 of Chapter 5, we show 
how to use 

Pn, n = 0 , l , 2 , - - - , 

to calculate the distribution function of the time in the system. D 

Table 3.4.1. 
n 
0 
1 
2 
3 
4 
5 
6 
7 

Pn 
0.10000 
0.14596 
0.13764 
0.11505 
0.09380 
0.07625 
0.06198 
0.05039 

n 
8 
9 
10 
11 
12 
13 
14 
15 

Pn 
0.04096 
0.03330 
0.02707 
0.02200 
0.01789 
0.01454 
0.01182 
0.00961 

3.5 Summary 
The name of this chapter is Probability Distributions which is meant to 
suggest that the most important property of a random variable X is how 
it distributes probability. By this we mean how the probability associated 
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with the values of X is distributed over these values. For a discrete random 
variable, the most convenient way to describe this distribution, usually, is 
by an analytical formula for the probability mass function. That is, given a 
mass point xn of X, the pmf p(-) describes how to calculate the associated 
probability. For example, if X has a Poisson distribution with parameter 
a, and k is a nonnegative integer, then p(k) = P[X = k] = e~aak/k\. For a 
continuous random variable, the most convenient method of describing the 
probability distribution is by means of the distribution function F, defined 
for all real x by F(x) = P[X < x]. Thus, if X is an exponential random 
variable with parameter a, then F(x) = 1 — e~ax = 1 — exp(—x/E[X]) for 
x > 0 . 

In the first two sections of this chapter we considered some discrete and 
continuous random variables that have been found to be especially useful in 
applied probability theory, and of special importance to computer science 
applications. Each of these random variables is determined by either one 
or two parameters; that is, given the parameter or parameters, the entire 
probability distribution is known. This makes it relatively easy to fit one of 
these distributions to an empirical distribution. In Chapter 7 we discuss the 
problem of how to estimate the parameters necessary to fit a well-known 
distribution to an empirically derived one, and in Chapter 8 we address the 
problem of judging how good the fit is. 

A summary of the properties of the random variables discussed in this 
chapter is given in Tables 1 and 2 of Appendix A. Examples are given in 
the text of the use of most of these random variables. 

In the third section of this chapter we discussed the central limit theorem 
and some of its applications. The basic idea of the theorem is that the sum 
of independent random variables tends toward a normal random variable 
under very weak restrictions. This explains the special importance of the 
normal distribution. Several examples were given of the use of the central 
limit theorem. 

In the last section we gave a number of examples of how some of the 
transforms we defined in Chapter 2 can be applied to solve fairly difficult 
problems with ease. 

Student Sayings 

Socrates took Poisson. 
Monique is exponentially distributed! 
No /xs is good fis. 
Keep your hyperexponential away from me! 
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3.6 Exercises 
1. [10] One-fourth of the source programs submitted by Jumpin Jack 

compiled successfully. What is the probability that exactly one of 
Jumpin's next five programs will compile? That three out of five 
will? 

2. [10] Six programmers from Alfa Romalfa decide to toss coins on an "odd 
person out" basis to determine who will buy the coffee. Thus, there 
will be a loser if exactly one of the coins falls heads or exactly one 
falls tails.7 What is the probability that the outcome will be decided 
on the first toss? What is the probability that exactly four trials will 
be required? Not more than four? 

3. [15] Sayure Praers, a small-plane, short-haul airline, has found that ap­
proximately 5% of all persons holding reservations on a certain flight 
do not show up. If the plane holds 50 passengers and Sayure takes 
reservations for 53 (this is called overbooking), what is the probability 
that every passenger who arrives on time for the flight will have a 
seat? (Assume there are no walk-ins.) 

4. [HM22] Some authors modify our definition of a geometric random 
variable X so that it counts the number of trials including the trial 
at which the first success occurs. Thus, X can assume the values 
1,2,3, For this modified geometric random variable, find the pmf 
p ( ) , the expected value, and the variance in terms of the probability 
of success on each trial p and of q = 1 — p. 

5. [15] Jumpin Jill finds that, when she is developing a program module, 
syntax errors are discovered by the compiler on 60% of the runs she 
makes. Furthermore, this percentage is independent of the number 
of runs made on the same module. How many runs does she need 
to make of one module, on the average, to get a run with no syntax 
errors? What is the probability that more than 4 runs will be required. 
[Hint: Use the result of Exercise 4.] 

6. [C18] Ms. Nancy Nevermiss can put 10 shots in succession through the 
center of a target (the bull's-eye) one-fifth of the time. This is called a 
possible. Suppose Nancy independently fires 10 sequences of 10 shots 
each, each sequence at a fresh target. 

(a) What is the probability that she will get at least two possibles? 
7We assume that no coin will stand on an edge. 
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(b) What is the conditional probability that Nancy will get at least 
two possibles, given that she gets at least one? 

7. [18] About one percent of all teller transactions at Chaste National 
Bank have a certain type of error. How large a random sample (with 
replacement) must be taken if the probability of its containing at least 
one transaction with an error is to be not less than 0.95? [Hint: Use 
the Poisson distribution.] 

Multinomial Distribution There is an important generalization of the 
binomial distribution called the multinomial distribution. Suppose each of 
n independent repeated trials can have one of several outcomes, which we 
label Ei, E2, • ■•, Er. Let the probability that Ex will occur on any trial be 
Pi for i = 1,2, • • •, r. For r = 2we have the binomial case. We assume that 

Pi+P2---+Pr = 1, 

where p* > 0 for all i. The result of n trials is a sequence of n events such 
as E2E1E2 ■ • ■ Ei. The probability that in n trials Ei occurs ki times, E2 
occurs &2 times, etc. is 

_ - _ r f . ^ . . . ^ , (3.207) 

where the ki are nonnegative numbers satisfying 

ki + &2 + \-kr = n. 

We will ask you to prove (3.208) in Exercise 8. We now give an example of 
the use of the multinomial distribution. 

Example 3.6.1 A card is drawn with replacement five times from a well-
shuffled bridge deck. What is the probability of obtaining 2 clubs and 1 
diamond? 

Solution We let Ei be the event of drawing a club, E2 the event of drawing 
a diamond, and E3 the event of drawing a spade or a heart. Since pi = 1/4, 
P2 = 1/4, and pz = 1/2, the required probability is 

J»G)OT ■ ™3*-* 
= 0.1171875. 

8. [12] Prove (3.208) for the multinomial distribution using the following 
theorem from Feller [10, page 37]. Let ki, k2, ■ • •, kr be integers such 
that 

fci + &2 H \-kr = n, ki > 0. 
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The number of ways a population of n elements can be divided into 
r subpopulations of which the first contains fci elements, the second 
&2 elements, etc., is 

n\ 
ki\k2\ ■ ■ ■ krV 

9. [10] The interactive system at Banker's Tryst can process 5 kinds of 
inquiries; the respective probabilities are 0.1, 0.15, 0.4, 0.25, and 0.1. 
What is the probability the next 10 inquiries will include 1 of the first 
type, 2 of the second, 3 of the third, 3 of the fourth, and one of the 
fifth? 

10. [5] In Kleen City on Thursday night, half of the TV audience watches 
Channel 6, 40 percent watches Channel 12, and the remaining 10 per­
cent watch Channel 13 (a channel for the lucky!). Find the probability 
that of 10 Thursday night TV viewers, 5 will be watching Channel 6, 
4 will be looking at Channel 12, and one will be viewing Channel 13. 

The Hypergeometric Distribution Suppose a collection of N elements 
contains r elements that are red and N—r elements that are black. Suppose 
we choose n elements from this set, without replacement. If k is an integer 
such that k < n and k < r, then there are (£) ways of choosing k red 
elements and (%l£) ways of choosing n—k of the black elements or (£) („!£) 
ways of choosing k red elements and n — k black elements. If we let X be 
the number of red elements in the sample of size n and assume the sample 
is chosen at random (without replacement), then pk = P[X = k] is given 
by 

"* = W ) r f c ^ (3-208) 

provided k < r and n — k < N — r. The random variable X is said to be a 
hypergeometric random variable with parameters n, N, and r. You can test 
your skills with this distribution by doing Exercises 11 through 16. 

11. [25] Prove that for a hypergeometric random variable X with param­
eters n, N, and r, 

and 
Varrxi - nr(N-r)(N-n) Yai[Xl ~ ivV-i) • 
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12. [10] An inspector at Keypon Trucking checks the exhaust fumes of 
5 of the company's 30 trucks. If 3 of the 30 trucks have truly dirty 
exhausts, what is the probability that none of them will be tested, 
that is, that none of them will appear in the inspector's sample? 

13. [8] To avoid being caught by customs inspectors, Able Smuggler puts 
6 narcotic tablets in a a bottle containing 9 vitamin pills of similar 
appearance. If a customs inspector chooses three of the tablets at 
random for analysis, what is the probability that Mr. Smuggler will 
be arrested? 

14. [C5] Big Byte ships identical computer components in boxes of 50. 
Before shipment a random sample of 5 components is tested; the box 
is shipped if no more than 1 component is found to be defective. 
If a box contains 20% defectives, what is the probability it will be 
shipped? 

15. [6] Digitizing Dingleberry Doodlers randomly chooses a committee of 
3 people from 4 analysts and 2 systems programmers. 

(a) Write the pmf of the random variable X, that counts the number 
of analysts on the committee. 

(b) Find P[2 < X < 3]. 

16. [5] In the description of a hypergeometric distribution X, given just 
before Exercise 11, we see that the sample of size n is taken without 
replacement. If the sample were taken with replacement, X would be 
binomial with parameters n and p = r/N. If n is small relative to N, 
there is not much difference between the two methods of sampling, so 
a hypergeometric random variable can be approximated by a binomial 
random variable with parameters n and p = r/N. (The usual rule 
of thumb is that n should not exceed 5 percent of JV.) Let A" be a 
hypergeometric random variable with parameters n = 5, N = 500, 
and r — 20. Calculate the probability that X = 2 and the binomial 
approximation to this probability. 

17. [C10] In the experiment of Example 7.1.8, suppose 200 animals are 
tagged, 20 are captured or recaptured, and 4 of the 20 are discov­
ered to be tagged so that the maximum likelihood estimate of the 
population size is 

N 200 x 20 
4 

= 1,000 animals. 



3.6. EXERCISES 183 

(a) If the actual value of N is 503, calculate the probability that 4 
or fewer tagged animals are found in a sample of 20 captured 
or recaptured animals. Calculate the binomial approximation as 
well. 

(b) If N — 2,790, what is the probability that 4 or more tagged 
animals are found in a sample of 20 recaptured animals? What 
is the binomial approximation of this value? 

The Multivariate Hypergeometric Distribution Suppose a set of N 
elements contains r i elements of the first kind, r2 elements of the second 
kind, . . . , and r/ elements of the Zth kind, so that 5T i=1 r^ = N. We are 
interested in the probability of getting ki elements of the first kind, k2 
elements of the second kind,. . . , and ki elements of the Zth kind from a 
random sample of size n chosen without replacement, from the original iV 
elements. If Xi, X2, • • •, Xi are random variables that count the number of 
elements in the sample of type 1,2, • • •, I, respectively, then it is easy to see 
that 

( r i ) ( r 2 ) - ( n ) 
p\xx = k1,x2 = ki,-,xl = rl\= WVfc2y \hj ^ (3_209) 0 

where each ki satisfies 0 < fcj < n, and ki < ri for each i, and where 

i i 

2_] ki = n, and \_] ri — ^v*-
t = i t = i 

The random variables X\, X2, • • ■, Xi are said to have a multivariate hyper­
geometric distribution if and only if their joint probability distribution is 
given by (3.210). 

18. [C5] Find the probability that a bridge hand of 13 cards consists of 
four spades, five hearts, one diamond, and three clubs. 

19. [11] Ecstasy Products sells a certain product to pharmacies in boxes 
of 100 with a guarantee that at most 10 items in a box are defective. 
Debilitating Drugs has a buyer who accepts a box of the product only 
if a random sample of 10 items chosen without replacement from the 
box contains no defective items. What is the probability that a box 
will be rejected although it contains exactly 10 defective items and 
thus meets the conditions of the guarantee? 
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The Pascal (Negative Binomial) Distribution Consider a sequence 
of Bernoulli trials with probability of success p on each trial (and thus, 
probability q = 1 — p of failure). Let r be a fixed positive integer. Let 
p(k;r,p) denote the probability that the r th success occurs at trial number 
r + k (where k = 0 ,1 , . . . ) . This is the probability that k failures occur 
before the r th success; thus, there must be k failures among the r + k — 1 
trials before the (r + fc)th trial results in the r th success. The probability 
of the former is (r+fc-1)pr-1(7fc a n d of the latter is p, so we must have 

p(k;r,p)= ( ^ " ^ V , * = 0 , 1 , - - - . (3.210) 

A discrete random variable X with the pmf given by (3.211) is called a 
Pascal or negative binomial random variable with parameters r and p. The 
geometric random variable of Section 3.1.3 is a special case with r = 1. 

20. [HM15] Find E[X\ and Var[X] for a Pascal random variable X with 
parameters r and p. Hint: Use Theorem 2.9.2(c) and the fact that, 
by the result of Exercise 35(d) of Chapter 2, Formula (3.211) can be 
written as 

p(k;r,p)=(~*)pr(-qy * = 0 ,1 , . . . . 

21. [12] Big Blast, Inc. is responsible for launching some special top-secret 
satellites. Five of the satellites have been constructed. It is desired 
that three of them be placed in orbit. If the probability of successfully 
launching an individual satellite is 0.95, what is the probability that 
Big Blast can carry out its mission without more satellites? 

22. [8] If X has a Poisson distribution and P[X = 0] = P[X = 1], find 
E[X}. 

23. [10] The average number of traffic accidents per week at Coroner's 
Corner is 14. What is the probability that there will be 3 or more 
accidents at this curve on any given day? 

24. [10] Suppose X is a Poisson random variable with E[X] = a. 

(a) Prove that, if P[X = k] = P[X = k + 1], then a = k + 1. 
(b) Prove that, if a = k + 1, then P[X = k] = P[X = k + 1]. 

25. [12] Suppose X is a Poisson random variable with E[X] = a. 
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(a) Show that P[X = k}> P[X = k + 1] implies that jfc + 1 > a and 
conversely. 

(b) Show that P[X = k - 1] < P[X = jfc] implies that jfc < a and 
conversely. 

(c) Use (a) and (b) to show that the pmf of X, P[X = k] first 
increases monotonically, then decreases monotonically, reaching 
its greatest value when a — 1 < k < a. For example, if a = 4, 
then the maximum values of the pmf occur at k = 3,4. The 
values are 

e " 4 £ = e"4iT = 0-19537-
[18] Consider Example 3.1.5. 

(a) For what values of k does the probability mass function of X 
assume its maximum value? Calculate the value. 

(b) Using the APL function POISSONADIST, it was shown that 
P[X < 15] = 0.95126. Estimate this value using the one-sided 
inequality (Theorem 2.10.3). 

(c) The APL function POISSONADIST shows that P[4 < X < 
16] = 0.96262. Estimate this value using 

(i) the Chebyshev inequality, and 
(ii) the normal approximation. 

[15] As discussed by Clarke [7], the number of V2 flying bomb hits 
in London during World War II had a Poisson distribution. Assume 
that in the area affected the average time between bomb hits was 2.5 
hours. 

(a) Using the Poisson distribution, calculate the probability of no 
hits during a six hour period. 

(b) Make the calculation of part (a) using the exponential distribu­
tion. 

[15] Let X be a Poisson random variable with parameter a. Prove 
that 

(a) P[X < a/2] < 4/ (a + 4) < 4 / a and 
(b) P[X > 2a] < 1/(1 + a) < 1/a. 

[Hint: Use the one-sided inequality, Theorem 2.10.3.] 
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29. [12] There are 125 misprints in a 250 page user manual for the EZASPI 
System. What is the probability that there are at least two misprints 
on a given page? 

30. [15] The arrival pattern of order messages of the interactive order entry 
system of the Dizzy Disc record company has a Poisson distribution 
with an average of 25 arrivals per minute during the peak period. 
What is the probability that more than 30 orders will arrive in one 
minute of the peak period? Use the normal approximation if you 
don't have facilities such as APL, MINITAB, or EXPLORE to make 
the exact calculation. 

31. [15] Recall that b(k;n,p) is the notation for the probability that a 
binomial random variable with parameters n and p assumes the value 
k; that is, 

b(k;n,p)=(^jpk(l-p)n-k. 

Consider the sequence 6(0; n,p), 6(1; n,p),..., b(n; n,p). 

(a) Show that the term b(k;n,p) is greater than b(k — l ;n ,p) for 
1 < k < (n + \)p and is smaller for k > (n + \)p. 

(b) Show also that, if (n + l)p = m is an integer, then b(m;n,p) = 
b(m — l;n,p). 

Note: Since there is exactly one integer m such that (n + l )p — 1 < 
m < (n + l)p, we see by (a) that the maximum value in the sequence 
is b(m;n,p). It is called the central term or the "the most probable 
number of successes". For example, if n = 19 andp = 0.4, then m = 8 
and the maximum value of b(k; 19,0.4) is 

6(8; 19,0.4) = ( 1 9 V 4 8 0 . 6 n 

= 0.179705788 

( > ' ■ 

0.612 

= 6(7; 19,0.4). 

32. [15] About 1% of the population of a certain country is left handed. 
What is the probability that at least four out of 200 people at Kysquare 
Testing (located in this country) are left handed? 



3.6. EXERCISES 187 

33. [18] An interactive system at Flybynight Airlines has 200 workstations 
each connected by a local area network (LAN) to the local computer 
center. Each workstation independently has probability 0.05 of being 
signed on to the computer center. What is the probability that 20 or 
more of the workstations are signed on? Use the normal approxima­
tion if you can't make the exact calculation. 

34. [C20, if you have only a pocket calculator; 10 if you have APL or 
MINITAB available.] 

(a) Write a formula for pk, the probability that in a group of 500 
people, exactly k will have birthdays on Valentine's Day. Assume 
the 500 people are chosen at random with each of them having 
probability p = 1/365 of being born on Valentine's Day. 

(b) Calculate pk for k = 0,1,2,3,4,5. 
(c) Make the calculation of part (b) using the Poisson approximation. 

35. [15] Inquiries of the Poisson Portal interactive query system arrive at 
the central computer in a Poisson pattern at an average rate of 12 
inquiries per minute. 

(a) What is the probability that the time interval between the next 
two inquiries will be less than 7.5 seconds? 

(b) More than 10 seconds? 
(c) What is the 90th percentile value for interarrival time? 

36. [HM18] Prove Theorem 3.2.6(b) and 3.2.6(c) using Theorem 2.9.1. 

37. [20] Suppose entries to an order-entry system of the Shootemup Arms 
Company arrive at the central processor with a Poisson pattern at an 
average rate of 30 per minute. 

(a) Given that an order entry transaction has just arrived, what is 
the average time until the fourth succeeding transaction arrives? 

(b) What is the probability that it will take longer than 10 seconds 
for this entry to arrive? Less than 5 seconds? 

(c) Will the answers to the above questions change if the point in 
time at which measurement begins is 1 second after a transaction 
arrives? 

38. [18] Cookie Crumbles wants to put enough raisins in its raisin cookie 
dough so that not more than one cookie in a hundred will have no 
raisins. How many raisins should an average cookie contain, assuming 
a random distribution of raisins in the dough? 
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39. [HM25] Suppose X has a gamma distribution. Prove that its moments 
are given by 

E[Xn] 
n - l 

Y[(i+kc2
x) 

.*;=! 
E[X]n n = 2 , 3 , -

Since the squared coefficient of variation is given by 

C2 - -

this means that we can write the above formula as 

E[xn]=M+W + 2)n-W + n-l)^ n = 1)23)..._ 

This result also implies that for the Erlang-fc random variable, we 
have 

^ ] ^ ( l + l)(l + |)...(l + ^ ) ^ r , n = l , 2 , 3 , . . . 

[Hint: Use Theorem 2.9.1(b).] 

40. [5] Let X be a discrete uniform random variable assuming only the 
value c (X is thus a constant random variable). Show that for each 
positive integer n, 

E[Xn] = E[X]n = cn . 

41. [HM15] Suppose X is uniformly distributed on the interval a to b. 
Show that 

E[X) = 
a + b , 0 (b — a)2 

—— and a1 = ' . 
2 12 

42. [15] Suppose a discrete uniform random variable X assumes only the 
values C + L,C + 2L, •■■ ,C + nL, where C, n, and L are constants. 
Show that 

£ m = C + ( l i + I ) L , E[X2] = C2
 + (n+l)LC+

in + 1)i*n + 1)L2, 

and 

[Hint: 

V&T[X) 
^2 1 

n — 1 
12 

L2. 

^ . n(n + l) A . , n(n + l ) ( 2 n + l ) 

i = l t = l 
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43. [12] The simulation model of a proposed computer system for Stu­
dents Gosset uses a discrete approximation of a continuous uniform 
distribution on the interval 10 to 30. Find the mean and variance 
of the continuous uniform distribution and compare these values to 
those for the discrete approximation if 

(a) the eleven values 10,12, . . . , 30 are used for the discrete distribu­
tion, 

(b) the 101 values 10,10.2,. . . , 30 are used. [Hint: See the previous 
exercise.] 

44. [10] Consider Example 3.1.1. Use the normal approximation to es­
timate the probability that between 5,200 and 5,400 blocks must be 
updated. For the estimate assume that the mean number of blocks 
to be updated is 5,300. 

45. [15] The message length distribution for the incoming messages of an 
interactive system for the Sockituem Finance Company has a mean 
of 90 characters and a variance of 1500. Fit an Erlang distribution to 
this message length distribution. 

46. [HM15] Show that the density function for a chi-square random vari­
able has a unique maximum at x = n, if n > 2. 

47. [18] Every fifth customer arriving at Pourboy Finance is given a prize. 

(a) If the number of customers who arrive in a one minute period 
has a Poisson distribution with mean A, describe the interarrival 
time distribution for the customers who receive gifts. 

(b) If A = 5 customers per minute, what is the probability that the 
time between two successive winners exceeds 1 minute? 

48. [15] A simulation model of a proposed new computer system for the 
Hunkydory Boat Company has been constructed. The model provides 
an estimate of the utilization, p, of the central processing unit (CPU) 
by testing one hundred times every millisecond to determine whether 
or not it is busy and using the formula 

p = P[CPU is busy] = — , 
n 

where n is the number of samples and Sn the number of times the 
CPU is busy. How many samples should be made if 6 = 0.005 and 
e = 0.001 in the formula 

P Sn 
n 

>6 <e? 
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Assume p is near 0.5. 

49. [HM18] Show that the density function /„ for a Student's t distribution 
with n degrees of freedom assumes a unique maximum when x = 0. 

50. [HM30] Consider the gamma function denned by 

T(t) = x*~ 1e~xdx, t > 0. 
Jo 

Prove the following: 

(a) F(t + 1) = tT(t) for all t > 0. (Since r"(l) = 1, this implies that 
r ( n + l ) =n\, n = 1,2, • • •.) 

(b) Show that F(t) can be written as 

r 
T(t) = 21'1 / 

Jo 

oo 2 
z2i-le~k*z dz, 

for all t > 0. 
(c) Using (b), we can write 

r(t)-*£'-"*• 
and thus, 

/•OO />0O 

= 2 / / e-?(x2+y2)dxdy. 
Jo Jo 

Now use polar coordinates to evaluate the double integral and 
thereby show that r ( k 1 = y/n. 

51. [15] Get High Airlines wants to estimate the fraction of smokers p 
among their passenger population. The airline plans to use sampling 
with replacement to determine their estimate p of p. They set up the 
requirement that 

P[\p -p\> 0.005] < 0.05. 

(a) How large a sample should Get High take if nothing is assumed 
about the size of pi 
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(b) How large a sample is required if Get High knows that p is very 
close to 0.4? 

52. [18] The result of Example 2.7.5 can be interpreted as follows. A 
stream of entities arrive at a junction in such a way that the time 
between successive arrivals (interarrival time) has an exponential dis­
tribution with mean 1/A. If the entities (customers) are alternately 
routed along two separate paths such that the first customer takes 
the first path, the second the second path, the third the first path, 
the fourth the second path etc., so that the odd-numbered arrivals 
take the first path and the even-numbered ones take the second path, 
then the interarrival time on each path has an Erlang-2 distribution 
with average value 2/A. Generalize the above result to show that if 
a stream of customers having an exponential interarrival time is split 
deterministically into k streams, then the interarrival times along each 
new stream have an Erlang-fc distribution with mean k/X. 

53. [M30] Suppose, as in Exercise 52, that a stream of customers arrives at 
an r-way junction, so that the time between successive arrivals has an 
exponential distribution with mean 1/A. Then, by Theorem 3.2.1(g), 
the number of arrivals per unit of time has a Poisson distribution with 
mean A. Suppose the branch selected by each arrival is chosen inde­
pendently with the probability that an arrival takes path i equal to pi 
for i — 1,2, • •• ,r . We can imagine a random number generator that 
chooses 1 with probability pi, 2 with probability p2, ..., r with prob­
ability pr, where Y?i=iPr = 1- Each customer then takes the path 
chosen by the random number generator and the generator makes a 
new choice for each arriving customer. Prove that the ith. output 
stream has a Poisson pattern with mean rate piX. [Hint: Let N(t) be 
the number of customer arrivals to the junction in t time units. (We 
assume the observations begin when t = 0.) Let Ni(t) be the number 
of these arrivals that take the ith path. Then the conditional joint 
distribution of Ni(t) (i = 1,2, • • • , r ) given that N(t) = n, 

P[N!(t) = fcj, N2(t) =k2,..., Nr(t) = kr\N(t) = n], 

has a multinomial distribution (see Exercise 8 where event Ei is the 
event that a customer takes path i). Multiplying this probability by 
the probability that N(t) = n, which has a Poisson distribution with 
mean At by Theorem 3.2.1(g), we obtain the joint probability distri­
bution P(ki,k2,-..,kT). P(ki,k2,...,kr) expresses the probability 
that k\ customers take the first path, k2 take the second path, etc. 
Show that the joint probability factors into the product of r Poisson 
probabilities.] 
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54. [HM20] Prove (a) (and thus, by symmetry, (b), also) of Theorem 3.2.5. 
Hint: Recall that 

/•oo 
(3.211) /

oo 
f(x,y)dy, 

-oo 

where f(x, y) is given by 

1 f(x,y) 
2wax cry y/l ~ P2 

2p(x - nx)(y - HY) 

OXOY 

exp< -
f 1 (x- fix\ 
\ 2(1 -?) [\ ax ) 

(3.212) 

To simplify the integration of (3.212) let u — (x — px)l&x and v = 
(v ~ V-Y)I^Y- Then, since dy = aydv, (3.212) reduces to 

/

oo 
exp [- (u2 - 2puv + v2) /2(1 - p2)] dv 

jxKX) = - ^ / = = = • (3.213) 

Adding and subtracting p2u2 gives 

u2 — 2puv + v2 = v2 — 2puv + p2u2 — p2u2 + u2 

= (v-pu)2+u2(l-p2) 

and thus, (3.214) becomes 

/* (*) = o
 e~t—2 f0 exp { ^ P ^ f } *,. (3.214) 

2-Kaxy/l-p2 J-oc I 2 ( 1 - / ) J 

Now let z = (v — pu)/y/l — p2, and using the fact that 

£,°e p(zr)* = V5iF' 
show that 

exp 
fx(x) = 

_ i (x-nxY 
2 V Ox ) 

V2Trcrx 
(3.215) 

55. [HM20] Prove that (c) (and thus, by symmetry, (d)) holds in Theorem 
3.2.5. 

56. [18] Prove the following: 
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(a) A random variable created by Algorithm 3.2.2 is a two-stage hy-
perexponential random variable having the properties claimed. 

(b) A random variable created by Algorithm 3.2.3 is a two-stage hy-
perexponential random variable having the properties claimed. 

(c) A random variable created by Algorithm 3.2.4 is a two-stage hy-
perexponential random variable having the properties claimed. 

57. [ClO] Professor Stanley Pennypacker, who collected the azalea data of 
Exercise 12-19 of Ryan et al. [27], discovered the distance he walks 
between discoveries of ozone damaged azaleas is Erlang-4 with a mean 
of 20 feet. Find the following probabilities: 

(a) the probability that Professor Pennypacker walks not farther 
than 30 feet to the next damaged azalea. (P[X < 30].) 

(b) the probability he must walk more than 10 feet to find the next 
damaged azalea. (P[X > 10].) 

58. [7] Consider the approximation due to Arvind K. Shah that appears 
in Section 3.2.4. Calculate the following probabilities, below 

(a) Using Table 3 of Appendix A (or the APL function NDIST), and 
(b) using Shah's approximation. 

(i) P[-2 < X < 1.5]. 
(ii) P [ - l < X < 1.28]. 
(iii) P[Z < 1.28]. 
(iv) P[Z < 1.64]. 

59. [C15] 

(a) Use Algorithm 3.2.1 (Algorithm G) to construct a gamma ran­
dom variable X with mean 10 and C\ = 4. Calculate £^[X3] 
and P[X < 15]. 

(b) Use Algorithm 3.2.2 (Algorithm H) to construct a random vari­
able X with mean 10 and C\ = 4. Calculate E[X3] and P[X < 
15]. 

(c) Use Algorithm 3.2.3 (Algorithm HG) to construct a random 
variable X with mean 10 and C\ = 4. Calculate E[X3] and 
P[X < 15]. 

60. [C15 If you use the APL function WH, it is 5.] Consider Algorithm 
3.2.4. Use this algorithm to find the H2 distribution X for which 
E[X] = 1, E[X2] = 5, and E[X3] = 40. 
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61. [TM25] Consider Example 3.2.11. Find a Coxian distribution to match 
the given H2 distribution by first finding the Laplace-Stieltjes trans­
form of the given distribution. Then find the two-stage Coxian dis­
tribution with the same Laplace-Stieltjes transform. 

62. [HM18] Use convolution to show that if X and Y are independent 
exponential random variables with parameters a and /?, respectively, 
where a ^ /3, then the density function / of their sum X + Y is given 
by 

fx+Y(t) = -^(e-f3t-e-at), t>0. a — p 
[We showed this, using the Laplace-Stieltjes transform, in Example 
3.4.1.] 

63. [10] Let X be an Erlang-fc random variable with parameter fi. Show 
that 

™-(!&)*■ 
Hint: Use the fact that the Laplace-Stieltjes transform of an expo­
nential random variable with parameter a is 

a 
6 + a' 

as well as the fact that X can be represented as shown in Figure 3.2.5. 

64. [HM15] Suppose X is a gamma random variable with parameters /? 
and a. Show directly from the definition that 

65. [M15] Assume that Y has a binomial distribution with parameters p 
and N, where N has a Poisson distribution with parameter A. Find 
the marginal distribution for Y. 

66. [10] Assume that a hen lays N eggs, where N has a Poisson distribu­
tion with parameter A. Suppose each egg hatches with probability p 
independently of the other eggs. Let Y be the number of chicks that 
hatch. We can write Y as the random sum 

r = X ! + •■• + * * , 

where X\,X2,.-- are independent Bernoulli random variables with 
parameter p. 
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(a) What is the distribution of Y1 
(b) If A = 4 and p = 0.25, what is the average and variance of the 

number of chicks hatched? That is, what is E[F] and Var[F]? 

67. [HM20] The number of automobile accidents in Los Angeles per week, 
N, has a Poisson distribution with mean 100. The number of per­
sons injured in each such accident has a binomial distribution with 
parameters p = 0.2 and N. 

(a) What is the distribution of Y, the total number of persons injured 
in automobile accidents per week? 

(b) What is the mean and variance of V? 

68. [HM15] Suppose a nonnegative random variable X has the Laplace-
Stieltjes transform K/(6 + 2). Find K, the density function / of X, 
and E[X3}. 

69. [HM8] Suppose X has the generating function (1 + z2)/2. Find E[X], 
P[X = E[X}), and Var[X]. 

70. [HM10] Let Y be a shifted exponential random variable with density 
function given by 

f{s) = ae-a(a-D\ iovs>D. 

Prove the following: 

E[Y) = D + - , 
a 

Var[F] = \ , 

and 
F(x)=P[Y <x] = l-e-a(x-D), f o rx>£> . 

One machine can do the work of 50 ordinary men. No machine can do the 
work of one extraordinary man. 

Elbert Hubbard, 1913 

Imagination is more important than knowledge. 
Albert Einstein 



196 CHAPTER 3. PROBABILITY DISTRIBUTIONS 

Art is a lie that makes us realize truth. 
Picasso 

Take a chance! All life is a chance. The man who goes furthest is 
generally the one who is willing to do and dare. The "sure thing" boat 

never gets far from the shore. 
Dale Carnegie 
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Chapter 4 

Stochastic Processes 

Fate laughs at probabilities. 
E. G. Bulwer-Lytton 

Statistics are no substitute for judgment. 
Henry Clay 

4.0 Introduction 
In Chapter 3 we considered some common random variables that are use­
ful in investigating probabilistic computer science phenomena, such as the 
number of jobs waiting to be processed, the response time for an interac­
tive inquiry system, the time between messages in an order entry system, 
etc. When we considered a random variable, such as the number of jobs, 
N, waiting to be processed, we did not allow for the fact that the prob­
ability distribution of N may change with time. That is, if we let Ni be 
the number of jobs in the job queue at 8 A.M. and N2 the corresponding 
number at 11 A.M., then Ni and N2 probably have different probability 
distributions. (To investigate the nature of the distribution of JVi, we could 
note the number of jobs at 8 A.M. each day for a number of days; for N2 
we could do the same thing at 11 A.M.) Thus, we have a family of random 
variables {N(t),t e T}, where T is the set of all times during the day that 
the computer center is in operation. Such a family of random variables is 
called a stochastic process. 

199 
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We are the music-makers, 
And we are the dreamers of dreams, 

Wandering by lone sea-breakers, 
And sitting by desolate streams; 

World-losers and world-forsakers, 
On whom the pale moon gleams: 

Yet we are the movers and shakers 
Of the world for ever, it seems. 

Arthur O'Shaughnessy 

4.1 Definitions 
A family of random variables {X(t),t G T} is called a stochastic process. 
Thus, for each t £ T, where T is the index set of the process, X(t) is a 
random variable. An element of T is usually referred to as a time parameter 
and we often refer to t as time, although this is not part of the definition. 
The state space of the process is the set of all possible values that the 
random variables X(t) can assume. Each of these values is called a state of 
the process. 

Stochastic processes are classified in a number of ways, such as by the 
index set and by the state space. If T = {0,1,2, • • •} or T = {0, ± 1 , ±2, • • •}, 
the stochastic process is said to be a discrete parameter process and we will 
usually indicate the process by {Xn}. If T = {t : — oo < t < oo} or 
T — {t: t > 0}, the stochastic process is said to be a continuous parameter 
process and will be indicated by {X(t),—oo < t < oo} or {X(t),t > 0}. 
The state space is classified as discrete if it is finite or countable; it is 
continuous if it consists of an interval (finite or infinite) of the real line. 
For a stochastic process {X(t)}, for each t, X(t) is a random variable and 
thus a function from th,e underlying sample space, il, into the state space. 
For any u G fi, there is a corresponding collection {X(t)(w),t G T} called 
a realization or sample path of X at w (usually the w is elided.) 

Example 4.1.1 The waiting time of an arriving inquiry message until pro­
cessing is begun, is {W(t), t > 0}. The arrival time, t, of the message is the 
continuous parameter. The state space is also continuous. □ 

Example 4.1.2 The number of messages that arrive in the time period 
from 0 to t, is {N(t),t > 0}. This is a continuous parameter, discrete state 
space process. □ 

Example 4.1.3 Let {Xn}, n = 1,2,3,4,5,6,7} denote the average time to 
run a batch job at the computer center on the nth day of the week. Thus, 
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X\ is the average job execution time on Sunday, X2 on Monday, etc. Then 
{Xn} is a discrete parameter, continuous state space process. D 

Example 4.1.4 Let {Xn,n — 1,2,... ,365(366)} denote the number of 
batch jobs run at a computer center on the nth day of the year. This is a 
discrete parameter, discrete state space process. □ 

Consider random (unpredictable) events such as 

(a) the arrival of an inquiry at the central processing system of an inter­

active computer system, 

(b) a telephone call to an airline reservation center, 

(c) and end-of-file interrupt, or 

(d) the occurrence of a hardware or software failure in a computer system. 

8-1 

7 

6H 
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0 1 
10 0 1 2 3 4 5 6 7 8 

Figure 4.1.1. Realization of counting process N(t). 

Such events can be described by a counting process {N(t),t > 0}, where 
N(t) is the number of events that have occurred after time 0 but not later 
than time t. (The realization of a typical counting process is shown in 
Figure 4.1.1.) 

The idea of a counting process is formalized in the following definition. 

Definition 4.1.1 {N(t),t > 0} constitutes a counting process provided 
that 
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1. N(Q) = 0, 

2. N(t) assumes only nonnegative integer values, 

3. s < t implies that N(s) < N(t), and 

4. N(t) — N(s) is the number of events that have occurred after s but 
not later than t, that is, in the interval (s,i\. 

The next definition formalizes the idea that "one quantity is small relative 
to another quantity" and makes it possible to indicate this fact without 
specifying the exact relationship between the two quantities. 

Definition 4.1.2 The function / is o(ft) (read " / is little-oh of ft" and 
written " / = o(ft)") if 

h->0 ft 

that is, if given e > 0, there exists S > 0 such that 0 < |ft| < 6 implies 

f(h) 
< €. 

h 

Example 4.1.5 (a) The function f(x) — x is not o(ft), since 

l i m M = lim£ = 1#0. 
/i->0 ft h->0 ft 

(b) The function f(x) = x2 is o(ft), since 

,. f(h) ,. ft2 ,. , n lim :L\-L = lim — = lim ft = 0. 
h-»0 ft ft->0 ft ft->0 

(c) The function f(x) = xr where r > 1 is o(ft), since 

lim ffl = lim hr~i = o. 
h—0 ft h->0 

This generalizes (b). 

(d) If / is o(ft) and g is o(ft), then / + g is o(ft), since 

lim/W^W = i i mm + 1im£M = o + 0 = o, 
h-*0 ft h->0 ft /i->0 ft 
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(e) If / is o(h) and c is a constant, then cf is o(h), since 

lim£ffl = c i i m M = c x 0 = (, 
ft->o h fc-»o h 

(f) It follows from (d) and (e), by mathematical induction, that any fi­
nite linear combination of functions, each of which is o(h), is also 
o(h). That is, if ci, c2,..., c„ are n constants and / 1 , / 2 , . . . , fn are n 
functions, each of which is o(h), then 

n 

t = l 

is o(h). 

(g) Suppose X is an exponential distribution with parameter a and h > 0. 
Then 

P[X < * + h\X >t) = P[X < h], 

by the Markov property of the exponential distribution (Theorem 
3.3.1(d)). But 

P[X < h] 

so that 
P[X <t + h\X>t} = ah + o(h). □ 

A continuous parameter stochastic process {X(t),t > 0} has indepen­
dent increments if events occurring in nonoverlapping time intervals are 
independent; that is, if (ai, 61) , . . . , (a„, 6n) are n nonoverlapping intervals, 
then the n random variables 

X(bi) - X(ai),X(b2) - X(a2),...,X(bn) - X(an) 

are independent. The process has stationary increments if X(t + h) — X(s + 
h) has the same distribution as X(t) — X(s) for each choice of indices s and 
t (with s < t) and for every h > 0; that is, the distribution X(t) — X(s) 
depends only on the length of the interval from s to t and not on the 
particular value of s. 

= 1 - e 

= 1 

—ah 

1 - ah + > T1-
n=2 
0 0 

= ah - (ah)2 x V^ 
(-ah) n - 2 

n = 2 n! 
= ah + o(h), 
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Example 4.1.6 Suppose X\, X2,... are independent identically distributed 
Bernoulli random variables, each with probability p of success (that is, of 
assuming the value 1). Let Sn = Xi H h Xn, that is, the number of suc­
cesses in n Bernoulli trials. Then {Sn,n = 1,2,3,...} is called a Bernoulli 
process. It has the state space {0,1,2,3, . . .} so it is a discrete parameter 
discrete state space process. For each n, Sn has a binomial distribution 
with pmf p(-) defined by p{k) = P[Sn = k] = (l)pkqn-k,k = 0 ,1 , . . . , n , 
where q = 1 — p. As we saw in Section 3.1.3, starting at any particular 
Bernoulli trial, the number of succeeding trials, Y, before the next success 
has geometric distribution; that is, 

P[Y = k} = qkp, k = 0 ,1 ,2 , . . . . □ 

/ returned, and saw under the sun, that the race is not to the swift, nor 
the battle to the strong, neither yet bread to the wise, nor yet riches to 

men of understanding, nor yet favour to men of skill; but time and chance 
happeneth to them all. 

Ecclesiastes 9:11 

4.2 The Poisson Process 
Definition 4.2.1 A counting process {N(t),t > 0} (see Definition 4.1.1) 
is a Poisson process with rate A > 0, if (a)-(d), below are true. 

(a) The process has independent increments. (Events occurring in nonover-
lapping intervals of time are independent of each other.) 

(b) The increments of the process are stationary. (The distribution of the 
number of events in any interval of time depends only on the length 
of the interval and not on when the interval begins.) 

(c) The probability that exactly one event occurs in any time interval of 
length h is Xh + o(h), that is, 

P[N{h) = 1] = Xh + o(h). 

(d) The probability that more than one event occurs in any time interval 
of length h is o(h), that is, 

P[N(h) > 2] = o(h). 

Note that (c) and (d) together imply that 

P[N(h) = 0} = 1-Xh + o(h), 
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since 

P[N{h) = 0] = 1 - P[N{h) = 1] - P[N(h) > 2] 
= 1-Xh- o{h) - o{h) = l - \ h + o(h). (4.1) 

The last equality follows from Example 4.1.5(d) and (e). 
The following theorem shows that Definition 4.2.1 of a Poisson process 

is descriptive. 

Theorem 4.2.1 Let {N(t),t > 0} be a Poisson process with rate A > 0. 
Then the random variable Y describing the number of events in any time 
interval of length t > 0 has a Poisson distribution with parameter Xt. That 
is, 

P[Y = k) = e-xt{-^-, * = 0 ,1 ,2 , . . . . (4.2) 

Thus, the average number of events occurring in any time interval of length 
t is Xt. 

Proof Let t > 0. By the definition of a Poisson process the_ number of 
events occurring in any time interval is independent of those in any nonover-
lapping interval and depends only upon the length of the given interval. 
Therefore, we can assume without loss of generality, that the interval of 
interest extends from 0 to t. We define 

Pn(t) = P[N(t) = n] for each nonnegative integer n. (4.3) 

It is true that no events occur by time t + h only if no events occur by time 
t and no events occur in the interval from t to t + h. Hence, 

P0(t + h) = Po(t)P[N(t + h)-N(t) = 0] 
= P0{t)P[N(h) = 0] = P0(t)(l-Xh + o(h)). (4.4) 

The first equality in (4.4) follows from the fact that the process has in­
dependent increments; the second equality follows from the stationarity of 
the increments. The last equality follows from (4.1). 

Equation (4.4) and Example 4.1.5(e), together, yield 

W + h)-W)=_XPb{t) + M ( 4 5 ) 
h h 

Letting h —» 0 in (4.5), we arrive at the differential equation 

* *2- - *««) . («, 
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The solution of (4.6) with the initial condition Po(0) = P[N(Q) = 0] = 1 is 
given by 

Po(t) = e~xt, 

as can be verified by direct substitution in (4.6). 
Now suppose n > 0. Then n events can occur by time t+h(N(t+h) = n) 

in three mutually exclusive ways. 

(a) n events occur by time t and no event occurs in the interval from t to 
t + h. 

(b) n— 1 events occur by time t and exactly one event occurs in the interval 
between t and t + h. 

(c) n — k events occur by time t for some k from the set { 2 , 3 , . . . , n} and 
exactly k events occur in the interval from t to t + h. 

Hence, summing up the probabilities associated with (a), (b), and (c) 
yields 

P„(t + h) = P„(t)(l -Xh + o(h)) + XhPn-!(t) + o(h). (4.7) 

Therefore, 

£ B ± ^ f i . - « . . ( « ) + «,_,„)+ !ffi. (4.S) 
and taking the limit as h —► 0 gives 

^ l = -XPn(t) + XPn^(t). (4.9) 

The solution to (4.9) subject to the initial condition Pn(0) — 0 is given by 

Pn{t) = «-*'(*«)" ( 4 . 1 0 ) 

n! 
as can be checked by direct substitution. 

Since P[Y = k] = Pk(t) = e~xt(Xt)k/k\, k = 0 ,1 ,2 , . . . , this completes 
the proof. H 

It is important to note that according to Theorem 4.2.1, the number of 
events occurring in each time interval of length t has a Poisson distribution 
with an average value of Xt. Hence, the average number of events occur­
ring per unit time is Xt/t = A. The next theorem gives another important 
attribute of a Poisson process. It was stated before as Theorem 3.2.1(f). 



4.2. THE POISSON PROCESS 207 

Theorem 4.2.2 Let {N(t),t > 0} be a Poisson process with rate A. Let 
Q < t\ < t2 < h < ■■ ■ be the successive occurrence times of events, and 
let the interarrival times {rn} be defined by TI = t\,r-i = ti — t\,... , Tfc = 
tk — tk-i, Then the interarrival times {rn} are mutually independent, 
identically distributed, exponential random variables, each with mean 1/A. 

Proof Since a Poisson process has independent increments ((a) of Defi­
nition 4.2.1), events occurring after tn are independent of those occurring 
before tn,n = 1,2, This proves that r i , r 2 ) . . . are independent ran­
dom variables. For any s > 0 and any n > 1, the events {rn > s} and 
{N(tn-i + $) — N(tn-i) = 0} are equivalent (we define to to be zero so that 
t„-i is defined when n = 1). The events in brackets are equivalent, since 
{rn > s} is true, if and only if the nth event has not yet occurred s time 
units after the occurrence of the (n — l) th event; but this is the same as 
the requirement that {N(tn-i + s) — N(t„-i) = 0} is true. Thus, it is true 
that 

P{rn >s] = P[JV(*n_! +s) -N(tn-!) = 0] = P[N(s) = 0] = e~Xs, (4.11) 

by Theorem 4.2.1 and the fact that the process has stationary increments. 
Therefore, 

P[rn < s] = 1 - e _ A s , s > 0. ■ (4.12) 

The next theorem shows that the converse of Theorem 4.2.2 also is true. 

Theorem 4.2.3 Let {N(t),t > 0} be a counting process such that the in­
terarrival times of events, {rn}, are independent, identically distributed, ex­
ponential random variables, each with the average value 1/A. Then {N(t), t > 
0} is a Poisson process with rate A.. 

Proof We omit the proof of this theorem. The proof can be found in 
Chung [1, pages 200-202]. ■ 

When the occurrence of some event, such as the arrival of an inquiry 
to an inquiry system, the arrival of customers at a bank, the arrival of 
messages to a message switching center, etc., is described by a Poisson 
process, we often hear the events described as "random" with some sort of 
selection process in which either (a) each of a finite number of elements has 
the same probability of selection or (b) a time is chosen in some interval of 
time so that each subinterval of the same length has the same probability 
of containing the selected point. 

The next theorem shows us that the word random is appropriate for 
describing a Poisson process. 
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Theorem 4.2.4 Suppose {N(t),t > 0} is a Poisson process and one event 
has taken place in the interval from 0 to t. Then Y, the random variable 
describing the time of occurrence of this Poisson event, has a continuous 
uniform distribution on the interval from 0 to t; that is, if0<6<t, any 
subinterval of(0,t] of length S has probability of6/t of containing the time 
of occurrence of the event. 

Proof Let 0 < x < t. By the definition of Y, 

P[Y <x] = P[TI < x\N(t) = 1]. (4.13) 

But, by the definition of conditional probability, 

P[n<x\N{t) = i] = 
P[(N{x) = 1) and (N(t) - N(x) = 0)] 

P{N(t) = 1] 
P[N(x) = l]P[N{t - x) = 0] 

P[N(t) = 1] 
Aze- A x e- A ( ' - X ) x 

Xte~xt t: (4.14) 

where the next to last equality in (4.14) follows from Theorem 4.2.1. ■ 

The Poisson process is a special case of a general type of stochastic 
process that is important to queueing theory. In the next section we study 
this type of process called a birth-and-death process. 

My mother groan'd, my father wept; 
Into the dangerous world I leapt, 
Helpless, naked, piping loud, 
Like a fiend hid in a cloud. 

William Blake 

First our pleasures die—and then 
Our hope, and then our fears—and when 
These are dead, the debt is due, 
Dust claims dust—and we die too. 

Percy Bysshe Shelley 
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4.3 Birth-and-Death Process 
In the last section, we studied a Poisson process {N(t), t > 0} that counted 
the number of occurrences of some type of event, that could also be inter­
preted as an arrival of some entity at an average rate A. We think of such 
an arrival as a birth. For a Poisson process, the probability of one birth 
in a short time interval h is Xhe~^h = Xh + o(h), and this probability is 
independent of how many births have occurred. We can think of A as the 
birth rate. For some systems, such as a biological species or a queueing 
system, it might be reasonable to suppose that the birth rate depends on 
the number of the population present, that is, that the probability of a 
birth in a short time interval h must be Xnh + o(h), where n is the size 
of the population, and the birth rate An depends upon this number n. It 
is also reasonable to allow deaths or decreases in the population with the 
probability of a death in an interval of length h equal to finh + o(h). Thus, 
the intuitive idea behind a birth-and-death process is that of some type of 
a population, that is simultaneously gaining new members through births 
and losing old members through deaths—such as the human population of 
the earth. The population we have in mind for most applications of birth-
and-death processes to computer science is that of customers in a queueing 
system. Of course customer is a generic word here, and could correspond 
to a computer job to be processed, an I/O request, a message arrival to a 
communication system, etc. Customer arrivals correspond to births, and 
customer departures (after receiving service) correspond to deaths. 

Definition 4.3.1 Consider a continuous parameter stochastic process {X(t), 
t > 0} with the discrete state space 0,1,2, Suppose this process de­
scribes a system that is in state En, n = 0 ,1 ,2 , . . . at time t, if and only if 
X(t) = n (the system has a population of n elements or customers at time 
t). Then the system is said to be described by a birth-and-death process 
if there exist nonnegative birth rates {An, n — 0 ,1,2, . . .} and nonnegative 
death rates {//„, n = 1,2,...} such that the following postulates (sometimes 
called the nearest-neighbor assumptions) are satisfied. 

1. State changes are only allowed from state En to state En+i or from 
state En to En-\ if n > 1, but from state EQ to state Ei only. 

2. If at time t the system is in state En, the probability that between 
time t and time t+h the transition from state En to state En+i occurs 
(indicated by En —* En+\) equals Xnh+o(h), and the probability that 
the transition En —> En~i occurs (if n > 1) equals (inh + o(h). 

3. The probability that, in the time interval from t to t + h, more than 
one transition occurs is o(h). 
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Postulate (1) allows only one birth or death to occur at a time and 
states that no death can occur if the system is empty. Postulate (2) gives 
the transition probabilities, that is, the probability of a birth or death in 
a small time interval when the system population is n. The last postulate 
states that the probability of more than one birth or death in a short time 
interval is negligible. 

When we describe a queueing system as a birth-and-death process, we 
think of state En as corresponding to n customers in the system, either 
waiting for or receiving service. 

We will now derive the differential-difference equations for Pn(t) = 
P[X(t) — n], the probability that the system is in state En at time t. 
The procedure is very similar to the method we used in the proof of Theo­
rem 4.2.1. In fact, the differential-difference equations we derived there are 
a special case of the equations we derive here. 

If n > 1 the probability Pn(t + h) that at time t + h the system will be 
in state En has four components. 

1. The probability that it was in state n at time t and no transitions 
occurred, either births or deaths. This probability is the product of 
(a) Pn(t), (b) the probability that the transition En —♦ En+i did not 
occur, or 1 — Xnh + o(h), and (c) the probability that the transition 
En —* En-x did not occur, or 1 — finh + o(h). Hence, the required 
probability is 

Pn(t){l - Xnh + o(h))(l - fj.nh + o(h)) 
= Pn(t)[l - nnh + o(h) - Xnh + Xnfj,nh2 - Xnho{h) + o(ft)] 
= Pn(t)[l ~ »nh ~ Xnh + 0(h)] = Pn(t)(l - Xnh - Hnh) + 0(h), 

since, by Example 4.2.5, 

o(h)(l - Unh + o(h)) = o(h), 

XnfJ-nh2 — Xnho(h) + o(h) = o(h), and Pn(t)o(h) = o(h). 

2. The probability Pn-i(t) that the system was in state En-\ at time t, 
times the probability that the transition En-i —* En occurred in the 
interval from t to t + h. This latter probability equals An_i/i -I- o(h), 
so the total contribution is 

Pn-iiWXn-ih + O(h)) = Pn-^Xn-ih + o(h). (4.15) 

3. The probability Pn+i(t) that the system was in state En+\ at time t, 
multiplied by the probability that the transition En+i —> En occurred 
during the interval from t to t + h. The contribution is thus 

Pn+l(t)fin+lh + o(h). (4.16) 
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4. The probability that two or more transitions occur between times 
t and t + h, that leave the system in state En. (For example, the 
two transitions En+2 —* En+i and En+i —» En.) By hypothesis this 
probability is o(h). 

Since the events leading to the four components are mutually exclusive, 
the result is that 

Pn(t + h) = [1 - \nh - linh]Pn(t) + \n-ihPn-i(t) 

+ lin+1hPn+1(t) + o(h). (4.17) 

Transposing the term Pn(t) and dividing by h, we get 

Pn(t + h) - Pn(t) -(K + Mn)Pn(t) 

+ A„_iP„_i(t) + fin+1Pn+1(t) + 

h 

h ' 
Taking the limit as h —> 0 gives us the equation 

^ 1 = -(A„ + fXn)Pn(t) + An-iPn-xft) + IXn+lPn+1(t). (4.18) 
at 

This equation is valid for n > 1. For n = 0, by similar reasoning, we get 

^ j ^ = -X0Po(t) + vMt). (4.19) 

If the initial state is E{, then the initial conditions are given by 

Pi(0) = 1 and Pj(0) = 0 for j ^ i. (4.20) 

The birth-and-death process depends on the infinite set of differential-
difference equations (4.18) and (4.19) with initial conditions (4.20). It can 
be shown that this set of equations has a solution Pn{t) for all n and t 
under very general conditions. However, the solutions are very difficult to 
obtain analytically, except for some very special cases. 

One such special case is the pure-birth process with \ n = A > 0, nn — 0 
for all n, and the initial conditions Po(0) = l,Pj(0) = 0 for j ^ 0. (Any 
process for which all the fin are zero is called a pure-birth process; any for 
which all the An are zero is called a pure-death process.) This leads to the 
set of equations 

^ P = -Xpn(t) + Xpn-^t), U>\ 

^ - -XMt). (4-21) 
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As we saw in the proof of Theorem 4.2.1, the solution of (4.21) satisfying 
the given initial conditions is given by 

Pn(t) = i - J _ , n > 0, t > 0. (4.22) 
n! 

Thus, the process is a Poisson process and we have a new characterization 
of a Poisson process. It is a pure-birth process with a constant birth rate. 

In general, finding the time-dependent solutions of a birth-and-death 
process is very difficult. However, if Pn(t) approaches a constant value pn 
as t —» oo for each n, then we say that the system is in statistical equilibrium. 
Under very general conditions these limits exist and are independent of the 
initial conditions. When a system is in statistical equilibrium, we sometimes 
say the system is in the steady state or that the system is stationary, be­
cause the state of the system does not depend on time.1 If we could obtain 
the time-dependent solutions {Pn(t)}, we could solve for the steady state 
solutions {pn} by the equations lim<_>00 Pn(t) = pn,n = 0,1,2, Since 
we cannot, in general, find the time-dependent or transient solutions to the 
birth-and-death differential-difference equations (4.18) and (4.19), analyt­
ically, we will take limits as t —► oo on both sides of these equations and, 
using the fact that limt_00 dPn(t)/dt = 0 for all n and Umt->ooPn(t) = pn 
(we assume that the steady state solutions do exist), we obtain the set of 
difference equations 

0 = Xn-iPn-l + Vn+lPn+1 - (A„ + fJ,n)Pn, Tl > 1 (4.23) 

0 = MiPi - AoPo, n = 0. (4.24) 

The last equation yields 
Pi = (A0 /MI)PO- (4.25) 

Equation (4.23) can be written as 

Mn+lPn+l - KPn = MnPn ~ A„_iP„_ i , n > 1. (4.26) 

If we define gn = /xnPn — A„_ip„_i for n = 1,2,3, . . . we see that (4.26) can 
be written as 

9n+i =9n, n> 1. (4.27) 

Hence, gn = constant and, by (4.24), gi = constant = 0. Hence, gn = 0 for 
all n or (assuming fin > 0 for all n) 

Pn+i = —Pn, n>0. (4.28) 
Mn+l 

JWe discuss stationary processes in more detail in Section 4.4. 
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Thus , we compute successively 

Ao Ai A0A1 A2 A0A1A2 
Pi = — P o , Pi = — P i = Po, Ps = —P2 = Po-

Hi n2 M1M2 M3 M1M2M3 
Continuing for n = 4 , 5 , 6 , . . . , we see by induction that 

AoAi--An_i , ,„„v 
Pn = Po, n > 1. (4.29) 

MiM2---Mn 
This gives the solutions in terms of po, the probability that the system is 
in state EQ (the system is empty), that is determined by the condition 

00 

^2pn=PO+Pl+P2 + --- = l- (4.30) 
n = l 

If we substitute (4.29) into (4.30) we obtain 

Po 
A + Ao + AoA i + . . ^ A o A x - . A , - ^ \ 
\ Hi Hi(J,2 A*lM2---Mn / 

Hence, the steady state probabilities (4.29) exist if the series 

5 = 1 + A£+AoA i+ +A 0Af-A n_ 1 + < Q o 

Ml MlM2 MlM2"--Mn 

(We assume the A„ and /xn are nonnegative.) When this is true, po = 1/S > 
0, or the probability that the system is empty is positive. In the case of 
a queueing system, this means that the service facility sometimes "catches 
up" or gets all the customers processed. On the other hand, if the series 
for S diverges, this is an indication that the queueing system is unstable 
because arrivals are occurring faster, on the average, than departures. For 
actual real-life queueing systems described by birth-and-death processes, 
we may safely assume that the steady state probabilities {pn} exist if and 
only if the series for S converges and then they are given by (4.29) with 
Po = l/S. 

Before we study the steady state solutions to some important birth-
and-death processes, we consider a simple queueing system for which we 
can calculate the time dependent functions Pn(t) for all n. 

Example 4.3.1 Consider a queueing system with one server and no wait­
ing line. We assume a Poisson arrival process with parameter A and an ex­
ponential service time distribution with parameter /x. The former means, by 
definition, that the probability of an arrival in the interval (0, h] is Xh+o(h). 
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If the server is busy at time t, then the probability that service for the cus­
tomer will be completed by time t + h is 1 — e~'ih = fj,h + o(h). (Here 
we have used the lack of memory or Markov property of the exponential 
distribution.) Thus, our birth-and-death model has only states EQ and E\, 
with EQ corresponding to the server being idle and E\ to the server being 
busy. An arrival that occurs when the server is busy is turned away and 
thus has no effect on the system. Therefore, an arrival will cause a state 
transition (from E0 to Ex) only if the arrival occurs when the server is idle. 
Hence, Ao = A,A„ = 0 for n / 0, /xi = \L and /xn = 0 for n ^ 1. The 
birth-and-death differential-difference equations (4.18) and (4.19) become 

^ l = XP0(t)-^P1(t), ^Ml = -XPoW + „P1(t). (4.33) 

We can set the initial conditions to be Po(0) + Pi(0) = 1. Since 

d(P0(t) + Px(i)) 
dt 

by (4.33), we have 

= 0 

P0(t) + Piit) = 1, t>0. (4.34) 

If we substitute (4.34) into the second equation of (4.33), we obtain 

dP0(t) 
dt + (A + n)P0(t) = ii. (4.35) 

By elementary differential equation theory (see, for example, Coddington [2, 
page 41]), we have 

Po(t) = - £ - + fPo(O) - -%-) e-<*+">«. (4.36) 
A + /x \ A -I- nj 

By symmetry we also have 

Now, if we take the limit as t —> oo in (4.36) and (4.37), we obtain the 
steady state probabilities po and pi as 

p0 = lim P0(t) - - £ - , (4.38) 

and 
Pl = lim Px(0 = - A _ . (4.39) 

t-KX> A + /X 
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On the other hand, if we set the time derivatives to 0 in (4.33) and replace 
Po(t) by p0,Pi(t) by pi, we obtain 

0 = Xpo - fiPi, 0 = -Xp0 + ftpi- (4.40) 

Either equation of (4.40) gives 

Pi = (A//i)po (4.41) 

(the equations of (4.40) are equivalent). Substituting (4.41) into the equa­
tion po + Pi = 1 gives po(l + X/n) = 1, or 

Po = /i/(A + *0. (4-42) 

Substituting (4.42) into (4.41) gives 

Pi = A/(A + /i). □ (4.43) 

The latter method of obtaining the solution was obviously more straight­
forward than the former. 

A useful, intuitively appealing technique has been devised to derive the 
steady state difference equations (4.23) and (4.24). It involves the use of 
a state-transition rate diagram, that graphically illustrates the postulates 
for a birth-and-death system. Figure 4.3.1 is a general state-transition 
rate diagram for a birth and death system. In this diagram a state En is 
represented by a circle or oval labeled with the number n. The arrows in 
this diagram show the only state transitions allowed and are labeled with 
the mean transition rates (either birth or death). Since we assume the 
system is in the steady state we assume the following principle: Flow Rate 
In = Flow Rate Out Principle. If a birth-and-death system has reached the 
steady state (equilibrium) condition, then for every state of the system n 
(n — 0 ,1 ,2, . . . ) , the mean flow rate of the population into the state must 
equal the mean flow rate out. The equations expressing this condition are 
called the balance equations. Consider first a state En with n > 1. Then 
by Figure 4.3.1, we see that the mean flow rate of the population into state 
n is A„_ip„_i -I- fj,n+ipn+i, while the mean flow rate of the population out 
of the state is /i„p„ + Xnpn = (nn + X„)pn. Therefore, by the Flow Rate In 
= Flow Rate Out Principle, we have the balance equation 

A n - l P n - l + Mn+lPn+1 = (A„ + /J,n)Pn, U > 1. (4 .44) 

Equation (4.44) is equivalent to (4.23). For state EQ the above Principle 
immediately gives 

M1P1 = AoPo, (4.45) 
that is the same as (4.24). 
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Ao Ai A n - 1 A„ 

State: C°J CO 0 0 0 0 CO CO 
Ml M2 Mn Mn+1 

Figure 4.3.1. State-transition rate diagram for birth-and-death process. 

(•HD 
Figure 4.3.2. State-transition rate diagram for Example 4.3.2. 

Example 4.3.2 The queueing system of Example 4.3.1 has the state tran­
sition rate diagram of Figure 4.3.2. We can write the following balance 
equation by inspection: 

HPi = XpQ. (4.46) 

Hence, 

But, 

so 

and 

Pi = (A//i)po. (4.47) 

l=p0+Pi=Po(l + - ) , (4.48) 

Po = n/(X + fi), (4.49) 

Pi = (A//i)po = A/(A + /x), (4.50) 

as we got in Example 4.3.1. □ 

G) CTF) 
A 2A 

Figure 4.3.3. State-transition rate diagram for Example 4.3.3. 

Example 4.3.3 In Example 2.7.3 we did not include a computer repair 
facility. One would expect that a computer that failed would be repaired 
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as soon as possible, usually before the other computer went out of commis­
sion. Suppose each failed computer of Example 2.7.3 has an exponentially 
distributed repair time, R, with a mean of 10 hours. This is the mean time 
to repair, written MTTR. Thus, E[R] = MTTR = 10 hours. 

We can model the duplexed computer system with a repair facility as 
a birth-and-death process model with states Eo, E\, and E2, where being 
in state Ej means that j of the computers are in operation. State Eo 
corresponds to a system failure; such a failure requires that an emergency 
back-up procedure be put into operation. The state-transition rate diagram 
is shown in Figure 4.3.3. We assume the failure rate per machine (computer) 
is A and the repair rate per machine is fi. Since the whole system has failed 
if both computers are simultaneously out of service, we assume that Ao = 0. 
State 0 is an absorbing state, since once the system enters the state, it never 
leaves it. In our notation 

Ao = 0, Ai = n, Xn = 0, n ^ 1. 
Hi = A, fj,2 = 2A, n„ = 0, n ^ l , 2 . 

Equations (4.18) and (4.19) then become 

ftP 
-^(t) = -2AP2(i)+A*Pi(t), 
HP 
—±(t) = 2\P2(t)-(\ + riP1(t), (4.51) 

^(t) = A P l W . 

The initial conditions are 

W ) = 1, 
Pi(0) = 0, (4.52) 
Po(0) = 0. 

If we let Y be the random variable that describes the time to system failure, 
then 

M0 = f«>. 
As we show in Example 3.4.2, Y has the density function 

2A2 

fr(t) (e-Q 2 t - e - a i t ) , (4.53) 
OJI — a>2 

/ 
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where 

« i = 

a2 = 

3A + /i + a 3 

2 
3X + fi — a3 

a3 = \/\2 + 6A/u + /A 

Thus, the distribution function for Y is given by 

= / fy{x)dx 
Jo 

F(t) 

~ " 2 Jo 
e-a'x-e-aiX)dx 

2A2 
_L (e-«»« - 1) + — (c-«i« - 1) (4.54) 

2A2 

a i - a 2 

The MTTF = E[Y] is given by 

1 1_ 
a2 a i 

+e~ait - e - Q 2 ' £ > 0 

£ P 1 = / yfy(y)dy= / ye'^dy- ye 
Jo al ~ a2 UO Jo 

By Formula 3.351.3 of Gradshteyn [5]2 

-<*iV dy 

(4.55) 

Hence, (4.55) becomes 

E[Y} = 2A2 

< * 1 -OL2 

1 1 

oco a, 

2X2(ai+a2) 3 u 
~ 2A + 2A2 2^2 a,a; 

(4.56) 
1"2 

Recall from Example 2.7.3 that 3/2A was the mean time to failure (MTTF) 
if no repair facility is provided, so the term (J./2X2 represents the improve­
ment in MTTF due to the repair capability. In our example, 

- = 2,000 hours, 

2 The actual formula is 
/•oo 

/ xne 
Jo 

-»x dx = n\u.-n-1. 
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while 

— = 10 hours, 

so that 
3 

— = 3,000 hours, 

and 

- ^ = 200,000 hours, 
2A2 

for a total of 203,000 hours. The repair capability has dramatically im­
proved the MTTF. 

The probability of no system failure by time t is 1 — F(t), where F(t) 
is given by (4.54). For this example, the probability of no failure within 
a week is 0.99922 and within 30 days is 0.99651. This is a tremendous 
improvement over the figures for Example 2.7.3! □ 

I've known what it is to be hungry, but I always went right to a restaurant. 
Ring Lardner 

4.4 Markov Chains 

A stochastic process {X(t),t 6 T} is a Markov process if for any set of 
n + 1 values t\ < t2 < ••■ < tn < tn+\ in the index set and any set 
{x\,x2, ■ ■.,xn+i} of n + 1 states, we have 

P[X(tn+i) = x n + i |X(*i) = xi,X(t2) = x2,..., X(tn) = xn) 
= P[X(tn+1) = xn+i\X(tn) = xn]. (4.57) 

Intuitively, (4.57) indicates that the future of the process depends only 
on the present state and not upon the history of the process. That is, the 
entire history of the process is summarized in the present state. 

A Markov process is called a Markov chain if its state space is discrete. 
Markov processes can thus be classified as in Table 4.4.1, where we assume 
the index set is time. 
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Table 4.4.1. Classification of Markov Processes 

Type of 
parameter 

Discrete 
time 

Continuous 
time 

State 

Discrete 

Discrete time 
Markov chain 

Continuous time 
Markov chain 

space 

Continuous 

Discrete time 
Markov process 

Continuous time 
Markov process 

Since a Markov chain by definition has a discrete state space, we could 
label the states {EQ,EI,E2,- ■■}■ However, for notational convenience, we 
will usually assume the states are the nonnegative integers {0 ,1 ,2 , . . .} . For 
the general case it is easy to associate each integer i with the corresponding 
state Ei. 

For a discrete time Markov chain, it is fruitful to think of the process as 
making state transitions at times tn,n = 1 ,2,3, . . . (possibly into the same 
state). Thus, the discrete time Markov chain {Xn} (we write Xn for X(tn)) 
starts in an initial state, say i, when t = to (XQ = i), and makes a state 
transition at the next step (time in the sequence); that is, when t = t%, so 
that Xi = j , etc. The one-step transition probabilities defined by 

P[Xn+1 = j\Xn = i], n, i , j = 0 , 1 , 2 , 

generally depend upon the index n. However, we are interested primarily 
in Markov chains for which the one-step transition probabilities are inde­
pendent of n and thus can be denoted by Py. Such a Markov chain is said 
to have stationary transition probabilities or to be homogeneous in time. 
All discrete Markov chains in the sequel are assumed to be time homoge­
neous, unless the contrary is stated. The transition probabilities P^ can 
be exhibited as a square matrix 

Poo Poi P02 P03 •' ■ 
Pio ^ n P\2 P13 • • • 
P20 P21 P22 P23 • • • 

P= : : : : 

PtO Ptl Pt2 Pi3 - * -

called the transition probability matrix of the chain. If the number of states 
is finite, say n, then there will be n rows and n columns in the matrix P ; 
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otherwise the matrix will be infinite. We must have 

Pij>0, i,j = 0 , 1 , 2 , . . . , (4.58) 

and 
oo 

£ ^ • = 1. t = 0 ,1 ,2 , . . . . (4.59) 
3=0 

Equation (4.58) is true because each P^ is a transition probability. The 
(i + l)st row of P represents the probabilities that the process will make the 
transition from state i to state j , 0 , 1 ,2 , . . . , at the next step. That is, this 
row gives the probability distribution of Xn+\ given that Xn = i. Thus, 
(4.59) must hold, since some transition occurs (possibly back to state i). 
Example 4.4.1 Consider a sequence of Bernoulli trials in which the prob­
ability of success on each trial is p and of failure is q, where p + q = 1 
and 0 < p < 1. Let the state of the process at trial n be the number of 
uninterrupted successes that have been completed at this point (a sequence 
of such successes is called a success run). Thus, if the first 5 outcomes 
were SFSSF (a success followed by a failure, two successes, and another 
failure), we would have X0 = 1, X\ = 0, Xi = 1, X$ = 2, and X4 = 0. The 
transition probability matrix is given by 

q p 0 0 0 • •• ' 
q 0 p 0 0 •■■ 
q 0 0 p 0 ■•• 
q 0 0 0 p ••• 

The state 0 can be reached in one transition from any state while the 
state i+1 can only be reached (in one transition) from state i, i = 0,1,2, 
This Markov chain is clearly homogeneous in time. □ 

We now define the n-step transition probabilities P i • by 

p£)=P[Xn=j\XQ = i]. (4.60) 

Since the Markov chain {Xn} has stationary transition probabilities, we 
have 

/»<?> = P[Xm+n = j\Xm = t] for all m > 0 and n > 0. (4.61) 

It is true, of course, that P / ' = Pij. 

P = [Pa] = 
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For convenience, we define 

B(O) _ * _ J 1 if * 
» ~ °lJ ~ \ 0 if i / J -

(^ij is called the Kronecker delta function.) The n-step transition proba­
bilities can be computed using the Chapman-Kolmogorov equations, that 
are 

oo 

p£+m>=Y,P*)pki>) f o r a l l n , m , M > 0 . (4.62) 
fc=o 

In particular, when m = 0, 
oo 

Hf=Y,P*~1)Pki> » = 2 , 3 , . . . a n d a l H , j > 0 . (4.63) 
Jfc=0 

To see that the Chapman-Kolmogorov equations (4.62) are true we 
reason as follows: P^ PJ m is the probability that, starting in state i, the 
process will go to state j in n + m transitions through a path that takes it 
into state k at the nth transition. Hence, summing over all the intermediate 
states k provides the probability that the process will be in state j after 
n + m transitions. That is, we have 

p(n+m) = p[Xn+m=JlXo = i] 

OO 

= Yl PlXn+m = j , Xn = k\X0 = i] 
k=0 
oo 

= £ P[Xn+m - j\Xn = k,XQ = i]P[Xn = k\X0 = i) 
fc=0 
oo 

*;=0 

If we denote the matrix of n-step transition probabilities, Pi" , by P^n', 
then (4.63) shows that P ( n ) = p(n~^P = p(»), that is, the matrix product 
of p ( n _ 1 ) by P. Hence, P^ can be calculated as the nth power of the 
matrix P. 

Example 4.4.2 Consider a communication system that transmits the dig­
its 0 and 1 through several stages. At each stage the probability that the 
same digit will be received by the next stage, as transmitted, is 0.75. What 
is the probability that a 0 that is entered at the first stage is received as a 
0 by the fifth stage? 
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(5) 
Solution We want to find P00 . The transition probability matrix P is 
given by 

" 0.75 0.25 
0.25 0.75 

Hence, 

p(2) = 

Thus, 

0.625 0.375 
0.375 0.625 

and PW = p(2)P(2) 0.53125 0.46875 
0.46875 0.53125 

p(5) _ p(l)p(4) _ 0.515625 0.484375 
0.484375 0.515625 

Therefore, the probability that a zero will be transmitted through five stages 
as a zero is 

P$ = 0.515625. D 

We have been dealing only with conditional probabilities up to now. 
For example, P^ is the probability that the state at time n is j , given that 
the state at time 0 is i. To calculate the unconditional distribution of the 
state at time n, we must specify the initial probability distribution of the 
states 0,1,2, That is, we must provide 

P[X0 = i] = m, for i > 0, 

where, of course, 

5> = i. 
t=0 

Then we can calculate, for any j , 
oo 

P[Xn=j] = Yf
PlX-=J^=i]PlX0 = i] 

t=0 
oo 

i = 0 

The last sum can be obtained by multiplying the row vector n = (no, 7Ti,...) 
by the jth column of P using matrix multiplication. Therefore, the proba­
bility distribution of Xn is given by 

where 

/3 = (po,0l,...) = wP, 

Pi = P[Xn = t] for t > 0. 
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For example, if the initial distribution of O's and l's in Example 4.4.2 
is given by TT0 = P[X0 = 0] = 0.75 and m = P[X0 = 1] = 0.25, then 
A, = P[X5 = 0] = 0.5078125 and j3x = P[X5 = 1] = 0.4921875. 

State j of a Markov chain {Xn} is said to be reachable from state i 
if it is possible for the chain to proceed from state i to state j in a finite 
number of transitions, that is, if P>, > 0 for some n > 0. If every state 
is reachable from every other state, the chain is said to be irreducible. We 
shall be concerned primarily with irreducible Markov chains. 

Example 4.4.3 The Markov chain of Example 4.4.1 is irreducible because 
there is a one-step transition from any state i to state 0, while if j" > 0 
there is clearly a j'-step transition from state 0 to state j . □ 

Example 4.4.4 Suppose a Markov chain with three states has the proba­
bility transition matrix 

P = 
0 
0.5 
1 

1 0 
0 0.5 
0 0 

Determine whether or not this Markov chain is irreducible.3 

Solution The answer is not obvious from looking at P, so let us take some 
powers of P. We see that 

p(3) _ p(2) = 

while 

p(4) = 

" 0.25 
0.5 
0.5 

0.5 0 0.5 
0.5 0.5 0 
0 1 0 

0.5 0.25 " 
0.25 0.25 
0.5 0 

0.5 
0.25 
0.5 

0.5 0 
0.5 0.25 
0 0.5 

and P ( 5 ) = 
0.5 0.25 0.25 
0.375 0.5 0.125 
0.25 0.5 0.25 

P^5) is a positive matrix; that is, each of its elements is positive. Therefore, 
a transition can be made between any two states in five steps, so the Markov 
chain is irreducible. □ 

The period of state i is the greatest common divisor of the set of all 
positive integers n such that P^ > 0. [If P^ = 0 for all n > 1 we define 
d(i) = 0.] If d(i) > 1 state i is said to be periodic, while if d — 1, then i 
is an aperiodic state. A state i for which Pa > 0 has period 1, since the 
system can remain in state i indefinitely. Hence, it is an aperiodic state. A 
Markov chain is aperiodic if every state has period 1 (is aperiodic). 

3This example was provided by Peter F . Brown. 
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Example 4.4.5 Consider the Markov chain whose transition probability 
matrix is 

[ 1 0 

Then 
P(2) _ r i o 

[ 0 1 ' 
In fact, every even power of P is the identity matrix and every odd power 
is P itself. Thus, every state is periodic with period 2. □ 

Two states i and j are said to communicate if i is reachable from j 
and j is reachable from i; that is, there exist integers m and n such that 
Pji > 0 and P>j > 0. We indicate that states i and j communicate by 
writing i <-» j . An important theorem about the states of a Markov chain 
follows. 

Theorem 4.4.1 Let {Xn} be a Markov chain and i *-> j mean that states 
i and j communicate. Then the relation i «-> j is an equivalence relation. 
That is, (a) i <-* i for each state i, (b) if i «-» j , then j <-> i, and (c) if 
i <-+ j and j <-» k, then i *-* k. Thus, the states of a Markov chain can be 
partitioned into equivalence classes of states such that two states i and j 
are in the same class if and only if i «-► j . A Markov chain is irreducible 
if and only if there is exactly one equivalence class. Furthermore, if i «-> j , 
then i and j have the same period. 

Proof See Parzen [7, pages 208, 209, 262]. ■ 

Taylor and Karlin [9, page 147] make the following claims for the prop­
erties of the period of a state (in addition to the last claim of Theorem 
4.4.1): 

1. If state i has period d(i), then there exists an integer N depending 
on i such that for all integers n> N, 

p(nd(i)) Q 

That is, a return to state i can occur at all sufficiently large multiples 
of the period. 

2. If 
p(m) > o 

then 
p(m+nd(i)) „ 

ji ■* u 

for all sufficiently large n (a positive integer) . 
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For each state i of a Markov chain we define f> to be the probability 
that the first return to state i occurs n steps or transitions after leaving i. 
That is, fln) = P[Xn = i,Xk ^ i for k = 1 , 2 , . . . , n - 1\X0 = i]. (We define 
/(°) = 1 for all i.) The probability of ever returning to state i is given by 
fi = Y^=i fi ■ If /* < 1> then i is said to be a transient state. If ft = 1, 
then state i is said to be recurrent. If state i is recurrent, we define the 
mean recurrence time of i, that is, the average time to return to state i by 

oo 

™i = J > / / n ) . (4.65) 
n = l 

If mi = oo, then state i is said to be recurrent null, while, if nn < oo, then 
state i is said to be positive recurrent or recurrent nonnull. Thus, each 
recurrent state i is either positive recurrent or recurrent null. 

The next theorem provides a criterion for the recurrence of a state i. 

Theorem 4.4.2 A state i is recurrent if and only if 

oo 

n = l 

Equivalently, state i is transient if and only if 

oo 

n = l 

Corollary If i «-► j and i is recurrent, then so is j . 

Proof See the proofs of Theorem 4.2 and Corollary 4.1 in Taylor and 
Karlin [9]. ■ 

Ross [8, page 141] shows that, with probability 1, a transient state can 
be visited only a finite number of times, as the name suggests. He shows 
that a consequence of this fact is that a finite state Markov chain cannot 
have all transient states—at least one must be recurrent. 

Example 4.4.6 (A One-Dimensional Random Walk) Consider a Markov 
chain with state space the set of all integers, positive, negative, and zero. 
Suppose on each transition the state moves one state to the right with 
probability p or one state to the left with probability q = 1 — p, where 
0 < p < 1. One interpretation is that the Markov chain represents the walk 
of a drunken man as he staggers backward and forward along a straight 
line. Another is that it represents the winnings of a gambler who on each 
play of a game wins or loses a dollar. 
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It is clear that all states communicate, so, by Theorem 4.4.2, either all 
states are recurrent or all are transient. Let us consider state 0 and test to 
see whether YlT=i ^oo *s n r u t e o r infinite. 

By the gambling interpretation it is impossible to be even after an odd 
number of plays, so 

P 0
(
0

2 n + 1 ) =0, for n = 0 , 1 ,2 , . . . . 

We would be even after 2n trials if and only if we won n and lost n. Hence, 
we can use the binomial probability to calculate 

p(2n) _ 
MM — 

We now appeal to Stirling's 

where 

means that 

Applying Stirling's 

n 

\ n ) n\n\ 

formula 

! ~ nB+1/2e_n>/2Jr, 

an ~ bn 

lim -r̂ - = 1. 
n—>oo on 

formula yields 

p(2n) ^ (4pq)n 

/nn 
It is easy to show (see Exercise 2 of Chapter 2) that p( l — p) = pq < | with 
equality holding if and only if p — q = \. Hence, YlT=o ^oo = oo if and 
only if p = | . Therefore, by Theorem 4.4.2, the one-dimensional random 
walk is recurrent if and only if p = q = | . Intuitively, we can see that if 
p j£ q, there is a positive probability that if the initial state is the origin, 
the state of the system will drift to +oo or —oo without returning to the 
origin. □ 

Theorem 4.4.3 Let {Xn} be an irreducible Markov chain. Then exactly 
one of the following holds: 

1. all states are positive recurrent, 

2. all states are recurrent null, 

3. all states are transient. 

Proof See Feller [4, page 391]. ■ 
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Let us define the probability that the discrete Markov chain {Xn} is in 
the state j at the nth step by iTj . That is, 

Thus, our initial distribution of the states 0 ,1 ,2 , . . . is given by 

Trf =P[X0=j], .7 = 0 , 1 , . . . . 

A discrete Markov chain is said to have a stationary probability distri­
bution n = (7r0,7ri,...) if the matrix equation ir = nP is satisfied, where 
each 7Tj > 0 and £^7^ = !• The matrix equation ir = irP can be written 
as the set of equations 

«j = J2*ip*i' 3 =0 ,1 ,2 , . . . . (4.66) 
i 

The reason such a probability distribution ■K is called a stationary distribu­
tion is that if 7tj = 7Tj, j = 0 , 1 , . . . , for such a distribution, then 7rj = Wj 
for all n and j ; the probabilities 7n do not change with time, but are sta­
tionary. 

A Markov chain is said to have a long-run or limiting probability dis­
tribution ■K = (7To,7ri, . . .) if 

lim 7r^n) = lim P[Xn = j] =TTJ, j = 0,1,.... 
n—too J n—*oo 

A discrete Markov chain that is irreducible, aperiodic, and for which 
all states are positive recurrent is said to be ergodic. The next theorem is 
important for the application of Markov chains to queueing theory and is 
stated without proof. (The proof can be found in Feller [4, Section XV.7].) 

Theorem 4.4.4 / / {Xn} is an irreducible, aperiodic, time homogeneous 
Markov chain, then the limiting probabilities 

■Kj = lim 7r;n), j = 0 , 1 , . . . 
n—>oo J 

always exist and are independent of the initial state probability distribution 
7r(°) = (TTQ , n\ , . . . ) . If all the states are not positive recurrent (and thus 
either all states are recurrent null or all are transient), then nj = 0 for all j 
and no stationary probability distribution exists. However, if all the states 
of {Xn} are positive recurrent so that the chain is ergodic, then TTJ > 0 for 
all j and w = (flo, 7Ti,...) forms a stationary probability distribution where 

»,• = — , j = 0 , l , . . . . (4.67) 
m,j 
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In this latter case, the limiting distribution is the unique solution of the set 
of equations 

^ 7 T i = l (4.68) 
i 

*i = 5Z * p « . J = 0,1,2,.... ■ (4.69) 

Note that part of the conclusion is that for an ergodic Markov chain the 
stationary probability distribution and the long-run (limiting) probability 
distribution are the same. Such probability distributions are also called 
equilibrium or steady state distributions. In Markov chain applications to 
queueing theory, these are the distributions of most interest. Thus, it is 
important to know under what conditions a Markov chain is ergodic and 
thus has a steady state distribution. The next two theorems provide some 
answers. 

Theorem 4.4.5 The irreducible, aperiodic Markov chain {Xn} is positive 
recurrent (and thus ergodic) if there exists a nonnegative solution of the 
system 

^2 PijXj <Xi-l (i? 0), (4.70) 
i 

such that 
^PojXj < oo. (4.71) 

3 

Theorem 4.4.6 The irreducible, aperiodic Markov chain {Xn} is positive 
recurrent (and thus ergodic) if and only if there exists a nonnull solution of 
the equations 

J2 XjPji =xu i = 0 , 1 ,2 , . . . , (4.72) 
j 

such that 
£ M < o o . (4.73) 

3 

Proof The proofs of the last two theorems are given in Parzen [7, Chapter 
6]. ■ 

It is important to note that a limiting (steady state) distribution is 
also a stationary distribution but the converse is not true. There may 
be a stationary distribution but not a limiting distribution. For example, 
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consider the Markov chain of Example 4.5.5 with transition probability 
matrix 

P=\° r . [ 1 0 

Then n = ( \ , \) is a stationary distribution, since nP = n, but there is no 
limiting distribution. 

Parzen [7, Chapter 6] shows that if 7r = (wo, ni,...) is the limiting and 
thus stationary distribution of an irreducible, positive recurrent Markov 
chain then for each j , the limiting probability that the process will be in 
state j at time n also equals the long-run proportion of time that the process 
will be in state j . 

The next theorem shows that the behavior of finite-state Markov chains 
is somewhat simpler than that of those with infinitely many states. 

Theorem 4.4.7 A finite-state Markov chain {Xn} that is irreducible and 
aperiodic is ergodic. 

Proof The theorem follows immediately from Theorem 4 of Feller [4, page 
392]. ■ 

It follows from Theorem 4.4.4 that such a Markov chain has a steady 
state (limiting) probability distribution. 

Example 4.4.7 Consider again the Markov chain of Example 4.4.2 with 
state-transition matrix 

_ [ 0.75 0.25 ' 
~ [ 0.25 0.75 ' 

It is clear that this Markov chain is irreducible and aperiodic. Hence, 
by Theorem 4.4.7 it is also ergodic and thus has a limiting probability 
distribution, that is also a stationary distribution. We can apply Theorem 
4.4.4 to calculate the equilibrium probability distribution 7r = (7ro,7Ti). 

We have the equations 

7ro + 7ri = l , 7To = 0.757To-)-0.257ri, 71"! = 0 . 2 5 7 r o + 0.757ri. 

The unique solution of these equations is 7To = 0.5, 7Ti = 0.5. This means 
that if data are passed through a large number of stages, the output is 
independent of the original input and each digit received is equally likely 
to be a 0 or a 1. This also means that 

.. _„ 0.5 0.5 hm Pn = 
n—>oo U.5 U.O 
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(We saw, in Example 4.4.2, that 

P4--

so that 

0.53125 0.46875 
0.46875 0.53125 

P 8 = 0.501953125 0.498046875 
0.498046875 0.501953125 

and the convergence is rapid.) 
Note also that 

TTP = (0.5,0.5) =TT, 

so ■n is a stationary distribution as claimed. □ 

For completeness we list another theorem on recurrence, although it is 
not as useful as the preceding three theorems. 

Theorem 4.4.8 The irreducible Markov chain {Xn} is recurrent if there 
exists a sequence {j/j} such that 

J2PijVi^yi f°ri^0, (4.74) 
3 

with 
lim yi = oo. 

i—>oo 

Proof See Parzen [7, Chapter 6]. ■ 

Note that the recurrent chain could be recurrent null. 
Sometimes we are interested in showing that a particular Markov chain 

is not recurrent but transient. The next theorem gives a necessary and 
sufficient condition for this. 
Theorem 4.4.9 An irreducible Markov chain is transient if and only if 
there exists a bounded nonconstant solution of the equations 

$^»j26=2/«> « ^ 0 . (4.75) 
j 

Proof See Parzen [7, Chapter 6]. ■ 

We now consider several examples of Markov chains that are part of the 
folklore. (Example 4.4.6 was one of these, too.) 
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Example 4.4.8 (Gambler's Ruin) Suppose a gambler has probability p of 
winning one unit on each play of a game and probability q = 1 — p of losing 
one unit. We assume that successive plays of the game are independent. 
The problem is to determine the probability that if the gambler starts with 
i units, her fortune will reach N before it reaches 0. 

If we let Xn denote the player's fortune at time n, the process {Xn, n = 
0,1,2, . . .} is a Markov chain with transition probabilities 

^bo = PNN = 1, 

and 
Pi,i+1 — P — 1 — Pi,i- t = 1,2, ,N-1. 

Therefore, the transition probability matrix is 

P = 

1 
q 
0 

0 
0 

0 
0 
q 

0 
0 

0 
p 
0 

0 
0 

o • 
o • 
p ■ 

o • 
o • 

• 0 
• 0 
• 0 

• 0 
• 0 

0 
0 
0 

p 
l 

We have the three classes {0}, {1 ,2 , . . . , N — 1}, and {n}. It is possible to 
reach the first or third class from the second class, but it is not possible 
to return. Reaching the first class corresponds to losing and reaching the 
third class means winning. The first and third classes are recurrent and the 
second class is transient. Each transient state 1,2,. . . , N — 1 has period 2. 
As we noted after Theorem 4.4.2, a transient state of a Markov process is 
visited only finitely many times (with probability 1). Hence, after a finite 
amount of time, the gambler witl either reach her goal of N units or lose 
all her money; it is impossible for the game to continue indefinitely.4 

Let Pi,i = 0,1,... ,N denote the probability that, starting with i units, 
the gambler's fortune will grow to N before she loses all her resources. 
Ross [8, Example 5a, page 155] shows that 

Pi = < 

f l-(q/pY 

i 
I AT' 

r 2 

., 1 
if p = -

y 2 
Actually, this is technically possible but the probability of it happening is 0. 
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If we let JV —► oo in the above formulas, we obtain 

Pi^< f'-er-- P>1-
2 

0, i f p < i . 
2 

This result agrees with intuition. It says that if p > \ , then it is possible 
that the gambler's fortune can grow without limit. However, if p < | , 
then the gambler is sure to lose; that is, she will lose all her money with 
probability 1 against an infinitely wealthy opponent. 

Note that this game can be viewed as a game between two players, say 
player A and Player B. Then we assume that the total wealth of the two 
players is N units. Initially player A has i units and player B N — i units. 
The game is over when one of the players has all the money. Player A has 
it all if state N is reached while player B wins it all if state 0 is reached. □ 

Example 4.4.9 (The Ehrenfest Urn Model) There are several equivalent 
(or nearly so) definitions of this model. It originated with a mathemati­
cal model developed by the physicists P. and T. Ehrenfest [3] to describe 
diffusion through a membrane. We imagine two urns containing a total of 
2AT balls (molecules). Suppose the first container, which we label A, holds 
i balls and the second container (urn B) holds the remaining 2N — i balls. 
A ball is selected at random (each ball has the probability l/2iV of being 
selected), removed from its urn, and moved to the other one. (This corre­
sponds to a molecule diffusing at random through the membrane.) Each 
selection generates a transition of the process. Let {Xn,n = 0 , 1 , . . . , 2JV} 
be the Markov chain describing the number of balls in urn A at the nth 
stage. The transition probabilities are given by 

^oo = PNN = 0, 

PQI = 1 = PN,N-I, 

2N - i 
Pi,i+i = - g j y - = 1 " ^ M - i . * = 1.2,. . . , 2N - 1, 

Pij = 0 otherwise. 

Ross [8, pages 167-168] shows there is a steady state distribution 7r of the 
balls with 

^ C f X C T ' ^0,1,2,...,2AT. 
By symmetry the number of balls in urn B has the same distribution. □ 
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4.5 Renewal Theory 
A Poisson process can be characterized as a counting process for which the 
times between successive events are independent, identically distributed, 
exponential random variables. A renewal process is a generalization of the 
Poisson process. 

Definition 4.5.1 Let {N(t),t > 0} be a counting process and Xi the 
time of occurrence of the first event. Let Xn be the random variable that 
measures the time between the (n — l)th and the nth event of this process 
for n > 2. If the sequence of nonnegative random variables {Xn,n > 1} 
is independent and identically distributed, then {N(t),t > 0} is a renewal 
process. 

The common distribution function is 

F{x) = P[Xn < x], n = 1 ,2 ,3 , . . . . 

We will use n for the common mean and a2 for the common variance of the 
sequence {Xn,n > 1}. 

Since we have specified that {Xn,n > 1} is a collection of positive 
random variables, F(0) = 0. 

When an event counted by N(t) occurs, we say that a renewal has taken 
place. The sum 

W0 = 0, Wn = X1 + X2 + --- + Xn, n>l 

is called the waiting time until the nth renewal. 
The counting process {N(t),t > 0} and the process {Wn,n > 0} are 

both called the renewal process. 
The following example is almost universally used as a prototype to de­

scribe a renewal process. 

Example 4.5.1 (The Light Bulb Example) A light bulb is installed at time 
Wo = 0. When it burns out, at time W\ = X\, it is replaced by a new bulb, 
that burns out at time W2 = X\ + X2. This process continues indefinitely; 
as each bulb burns out it is replaced with a fresh bulb. It is assumed that 
successive bulb lifetimes {Xn,n > 1} are independent and have the same 
distribution. That is, 

P[Xn<x]=F(x), n = 1 ,2 ,3 , . . . . 

N(t) is the number of light bulb replacements that occur no later than time 
t and {N(t),t > 0} is a renewal process. □ 
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Definition 4.5.2 Let {N(t),t > 0} be a renewal process. Then the func­
tion M(t), denned for a lH > 0 by 

M(t) = E[N(t)], 

is the renewal function of the renewal process. 

Proposition 4.5.1 Let {N(t),t > 0} be a renewal process. Then 

N(t) >k if and only if Wk < t. (4.76) 

Proof Suppose N(t) > k. Then there have been at least k renewals by 
time t so that Wk < t. Conversely, suppose Wk < t. This means that at 
least k renewals have occurred by time t, or N(t) > k. ■ 

Since Wn = Xi + X2 + • ■ ■ + Xn, it follows from Theorem 2.7.5 that 

P[Wn < x] = Fn(x), n = l , 2 , . . . , 

where Fn is the n-fold convolution of F with itself. Therefore, it follows 
from (4.76) that 

P[N(t) > n] = P[Wn < t] 
(4.77) 

= Fn(t) t>0, n = l , 2 , . . . . 

Prom (4.77) we see that 

P[N(t) = n] = P[N(t) > n] - P[N(t) > n + 1] 
(4.78) 

= Fn(t) - Fn+1(t), t>0, n = l , 2 , . . . . (4.79) 

Proposition 4.5.2 Let X be a nonnegative integer valued random variable. 
Then 

E[X] = J2 P[X > k] = J2 P[X > n}. (4.80) 
n=0 n = l 

Proof Let us write pn in place of P[X = n]. Then we can write 

E[X] = 0Po + LPi + 2p2 + 3p3 + ---

= P 1 + P 2 + P 3 + P 4 H 
+P2 + P3 + Pi H 

+ P3+P4 + - " 
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+P4 + 

= P[X > 1] + P[X > 2] + P[X > 3] + • 
oo 

n=\ 

We can now use Proposition 4.5.2 to calculate 

oo 

M(t) = E[N(t)] = ^PWV^n} 
n = l 

(4.81) 

= *£P[Wn<t] = '£Fn(t). 
n = l n = l 

Theorem 4.5.1 Let {N(t),t > 0} be a renewal process with renewal func­
tion M(t). Then M(t) and the F(-) can be determined, uniquely, one from 
the other. 

Proof Let Fn be the n-fold convolution of F with itself. Taking the 
Laplace-Stieltjes transform of each side of (4.81) yields 

M*M = E ™ = E ( F W 
n = l n = l 

= F'[0]£(F*[0])" = ^ j ? j - . (4.82) 
n=0 ' ' 

Solving (4.82) for F*[6] produces 

Since the Laplace-Stieltjes transform of a distribution is unique, this com­
pletes the proof. ■ 

Example 4.5.2 (The Poisson Renewal Process) Suppose the renewal pro­
cess {N(t),t > 0} is Poisson with parameter A.5 Then, the process is a 

5See Definition 4.2.1. 
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renewal process by Theorem 4.2.2. By Theorem 4.2.1, 

P[N(t) = k] = e~x^-, k = 0 ,1 ,2 , . . . , (4.84) 

so that 
M(t) = Xt. (4.85) 

This result can also be obtained by inverting the transform (4.82). D 

By the uniqueness of the renewal function, the Poisson process is the 
only renewal process with a linear renewal function. 

Definition 4.5.3 Suppose {N(t),t > 0} is a renewal process. We define 
the random variables 7/ (excess life or excess random variable), St (current 
life or age random variable), and fit (total life), respectively, by the formulas 

It = Ww(t)+i — t (excess life) 
St = t — WN(t) (current life) 
Pt = lt + &t (total life). 

Figure 4.5.1 indicates the relationships between the random variables of 
Definition 4.5.3. If we think of these definitions in terms of Example 4.5.1 
and think of t as the current time, then excess life, nt, is the length of time 
from time t (now) until the current bulb must be replaced. The current 
life, St, is the length of time the current bulb has been in use. The total 
life, (5t, is the total length of time the current bulb will have been in service 
when it finally burns out. 

Proposition 4.5.3 Let {N(t),t > 0} be a Poisson process with parameter 
X. Then 

P[lt <x] = l - e~Xx, for x > 0„ (4.86) 

r>u ^ 1 / ! - e~Xx for 0 < a; < t ., 0_, 
PlSt<x] = { 1 forf<X) (4.87) 

and 

E[f3t] = \ + \(l-e-**). (4.88) 

Proof See Taylor and Karlin [9, pages 283-284]. ■ 
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Pt 

«— St —f— it ■ 

WW) t W)v(t)+i 

Figure 4.5.1. Definition 4.5.3. 

Note that the expected value of the total life, E[6t], is larger than the 
mean life i?[A"„] = 1/A of any renewal interval. In fact, when t becomes 
large, the mean total life is almost twice as long. 

Proposition 4.5.4 Let {N(t), t > 0} be a renewal process with E[Xn] = fj, 
for all n. Then with probability 1, 

N(t) 
— as t 
A* 

CO. (4.89) 

Proof See Ross [8, pages 273-274]. 

As Ross notes, the above proposition is true when /j, = oo. In this case 
the N(t)/t approaches the limit 0. The number l//x is called the rate of the 
process. The next theorem describes the renewal function for large values 
oft. 

Theorem 4.5.2 (Elementary Renewal Theorem) Let {N(t),t > 0} be a 
renewal process with E[Xn] = (i for all n. Then 

M(t) 
— as t CO. (4.90) 

Proof See Grimmett and Stirzaker [6, pages 284-287]. 

4.6 Exercises 
1. [00] Is a constant function, say f(x) = c ^ 0, o(h)1 
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2. [C12] Suppose that in New Zealand, home of the Gala apple, years for 
these wonderful apples can be described as great, average, or poor. 
Suppose that following a great year the probabilities of great, aver­
age, or poor years are 0.5, 0.3, and 0.2, respectively. Suppose, also, 
that following an average year the probabilities of great, average, or 
poor years are 0.2, 0.5, and 0.3, respectively. Finally, suppose that 
following a poor year the probabilities for great, good, or poor years 
are 0.2, 0.2, and 0.6, respectively. Assume we can describe the situa­
tion from year to year by a Markov chain with the states 0, 1, and 2 
corresponding to great, average, and poor years, respectively. Please 
do the following: 

(a) Set up the transition probability matrix P of this Markov chain. 
(b) Suppose the initial probability for a great year is 0.2, for an 

average year is 0.5, and for a poor year is 0.3. Calculate the 
probability distribution after one year and after 5 years. 

3. [15] Consider the Markov chain with states 0, 1, 2, 3 with transition 
probability matrix 

0 0 I I 
1 0 0 0 
0 1 0 0 
0 1 0 0 

Determine which states are transient and which are recurrent. 

4. [15] Consider the Markov chain with states 0, 1, 2, 3, 4 with transition 
probability matrix 

P = 

l 
L 4 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 
1 
2 

Determine the classes of this chain and whether each is transient or 
recurrent. 

5. 15] Lucky Lily and Winning William decide to play the following game 
based on an urn containing nine white balls and eleven black ones. 
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The play proceeds as follows. A ball is drawn and replaced. If it is 
white, Lili wins a dollar from Winning. If the ball is black, Winning 
wins a dollar from Lili. Lili starts with 20 dollars and Winning with 
10 dollars. The game continues until one player wins all of the other 
player's money. What is the probability that Winning wins? 

6. [15] Two groups, Group Able and Group Baker, are competing for the 
same responsibility at Consolidated Craven. Group Able has a head 
count of 50, that is, is authorized to have 50 people. Group Baker 
has a head count of 20. Each year one person is taken from one group 
and given to the other. If the probability that the shift is from Able 
to Baker is 0.52, show that one group will disappear. Calculate the 
probability that Group Able will survive. 

7. [HM25] Consider Example 4.4.2. Suppose now that the probability 
that a 0 is received as a 1 is a and the probability a 1 is received as 
a 0 is /?, so that the transition probability matrix P is given by 

[ 1 - a a 

(a) Show that (TTQ, i"i) = (/3/(a + /?, a/(a + 0) is a stationary distri­
bution. 

(b) Show that ft* = (1 - a) and / £ ° = a/3{l - (3)n~2 for n = 
2 , 3 , . . . . 

(c) Calculate the mean recurrence time mo = ^Z^Li n / o a n d verify 
that 7ro = 1/mo. 

8. [15] Suppose {N(t),t > 0} is a renewal process with renewal function 
M(t) = 5t. What is the probability distribution of the number of 
renewals by time 15? 
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Carl Priedrich Gauss 
Brought down Euclid's house, 
Which would have pleased nary 
Lambert nor Saccheri. 

Karl David 
Wells College 

Computers are useless. They can only give you answers. 
Pablo Picasso 

A private railroad car is not an acquired taste. One takes to it 
immediately. 

Eleanor R. Belmont 
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Part Two: 

Queueing Models6 

"They also serve who only 
stand and wait." 

-Milton 

We would like to relieve our customers from having 
to "serve" and therefore want to shorten our teller 
lines. If you, or if you know someone who, might 
like to start a career in banking as a teller, see our 
receptionist. 
Our present President once served his time as a 
Cambridge Trust Company teller. 

Cambribge ®rusft Company 

6The advertisement by the Cambridge (Massachusetts) Trust Company for new tellers 
is used by permission. 



Preface to Part Two: 
Queueing Models 

The title of Barrer's article "Queuing with Impatient Customers and Indif­
ferent Clerks,"7 captures the essence of the feelings of most people toward 
systems in which queueing for service is necessary. (Who could guess from 
the title that Barrer's article is concerned with applying antiaircraft fire 
and guided missiles to defend against attacking aircraft?) 

Some students are intimidated by queueing theory because it is often 
presented as a purely abstract mathematical discipline rather than as a 
useful tool for computer science, applied mathematics, and engineering. To 
help students understand the material, we have provided many examples 
of how the material can be applied to real problems of our everyday world. 
We have also supplied a great many exercises. We discuss the simple mod­
els consisting (mostly) of a single service center with one or more servers 
(providers of service) in Chapter 5. Many of the models in this chapter 
can be solved easily with a pocket calculator. Some of the models may 
require a programmable calculator. For some, a personal computer is very 
desirable. The formulas for each of the models of Chapter 5 have been col­
lected in Appendix C. APL programs for most of the models are given in 
Appendix B. Mathematica programs are provided in Appendix D for some 
of the models. Readers with an IBM PC or compatible or an IBM PS/2 
may be interested in the Myriad modeling software package available from 
PALLAS International Corporation, San Jose, California. 

In Chapter 6 we shall consider networks of queues, that is, queueing 
systems like those of Chapter 5 that have been connected together to model 
model computer systems. 

7 "Queuing with impatient customers and indifferent clerks," by D. Y. Barrer, Opns. 
Res., 5, (1957), 644-649. 
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Chapter 5 

Queueing Theory 

queue n (Brit.) an orderly line of one or more persons or jobs. 

Stan Kelly-Bootle 
The Devil's DP Dictionary 

Hurry up and wait. 
Old army saying. 

Have you ever encountered a queue, 
In which Poisson arrivals accrue? 

In Statistics, I'm told 
This assumption can hold... 

... But it sure sounds more fishy than true! 

Ben W. Lutek 

5.0 Introduction 
One of the most fruitful areas of applied probability theory is that of queue­
ing theory or the study of waiting line phenomena (a queue is a waiting 
line). Waiting in line (queueing) for service is one of the most unpleasant 
experiences of life on this planet. Barrer [2] says it all in the title of his pa­
per, "Queueing1 with Impatient Customers and Indifferent Clerks." Barrer 
says, 

1I cannot bring myself to spell queueing "queuing" as Barrer did. 

247 
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In certain queueing processes a potential customer is considered 
"lost" if the system is busy at the time service is demanded. The 
telephone subscriber hangs up when he gets a busy signal. A 
man trying to get a haircut during his lunch hour does not wait 
unless a chair is immediately available. Another form of this 
general situation is that in which customers wait for service, 
but wait for a limited time only. If not served during this time, 
the customer leaves the system and is considered lost. Such 
situations occur in the processing or merchandising of perish­
able goods. Many types of military engagements are similarly 
characterized. An attacking airplane engaged by antiaircraft or 
guided missiles is available for "service," i. e., is within range, 
for only a limited time. 

In spite of the catchy title, which is descriptive of the common feeling 
about queues, Barrer's paper is an innovative application of queueing theory 
to the destruction of attacking warplanes, not to general queueing theory. 

We must join a queue when we want to get cash from an automatic 
teller machine (ATM), buy stamps, pay for our groceries, purchase a movie 
ticket, obtain a table in a crowded restaurant, etc. Larson [38] discusses 
some of the psychological implications of queues. He says, 

Queues involve waiting, to be sure, but one's attitudes to­
ward queues may be influenced more strongly by other factors. 
For instance, customers may become infuriated if they experi­
ence social injustice, defined as violation of first in, first out. 
Queueing environment and feedback regarding the likely mag­
nitude of the delay can also influence customer attitudes and 
ultimately, in many instances, a firm's market share. Even if 
we focus on the wait itself, the "outcome" of the queueing ex­
perience may vary nonlinearly with the delay, thus reducing the 
importance of average time in queue, the traditional measure 
of queueing performance. This speculative paper uses personal 
experiences, published and unpublished cases, and occasionally 
"the literature" to begin to organize our thoughts on the im­
portant attributes of queueing. 

Larson discusses some techniques that help to make queues more bearable 
for humans. 

Queues are also common in computer systems. Thus, there are queues 
of inquiries waiting to be processed by an interactive computer system, 
queues of data base requests, queues of I/O (input/output) requests, etc. 
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Customer 
Population 

Figure 5.0.1. Elements of a queueing system. 

Figure 5.0.1 represents the elements of a basic queueing system, pictorially. 
We consider a queueing system to be basic if it has only one service facility, 
although there may be more than one server in the facility. (The reader may 
note that queueing is spelled "queuing" in some publications (the last e is 
elided) but I prefer "queueing" because (1) that is the way most queueing 
theory authorities spell it, and (2) it is a delightful and rare word having 
five consecutive vowels.) 

Customers from a population or source enter a queueing system to re­
ceive some type of service. The word customer is used in the generic sense 
and thus may be an inquiry message requiring transmission and process­
ing, a program requiring I/O service, a program in a multiprogramming 
computer system requiring CPU service, etc. The service facility of the 
queueing system has one or more servers (sometimes called channels). A 
server is an entity capable of performing the required service for a cus­
tomer. If all servers in the service center are busy when a customer enters 
the queueing system, the customer must join the queue until a server is 
free. 

In any system that can be modeled as a queueing system, there are 
trade-offs to be considered. If the service facility of the system has such a 
large capacity that queues rarely form, then the service facility is likely to be 
idle a large fraction of the time so that unused capacity exists. Conversely, 
if almost all customers must join a queue (wait for service) and the servers 
are rarely idle, there may be customer dissatisfaction and possibly lost 
customers as Barrer [2] noted. 

In Table 5.0.1 we list some typical computer queueing systems. 
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Table 5.0.1. Typical Queueing Systems 

Queueing System Customer Server(s) 

Airline reservation 
system 

Interactive inquiry 
system 

Interactive order 
entry system 

DASD (direct access 
storage device) 
queueing system 

Message buffering 
system 

Traveler wanting Agent plus terminal 
information and/or to a computer 
reservations reservation system 

Inquiry from 
terminal 

Order 

Request for 
records 
from DASD 

Message (incoming 
or outgoing) 

Communication line 
plus a computer 

Communication line 
plus a computer 

Channel plus control 
unit and DASD 

Message buffer(s) (all 
of them together form 
the service facility) 

Queueing theory, in many cases, enables a designer to ensure that the 
proper level of service is provided in terms of response time requirements 
(response time is the sum of customer queueing time and service time) 
while avoiding excessive cost. The designer can do this by considering 
several alternative systems and evaluating them by analytic queueing theory 
models. The future performance of an existing system can be predicted so 
that upgrading of the system can be done on a timely basis. For example, 
an analytical model of an interactive system may indicate that the expected 
load a year in the future will swamp the present system; the model may 
make it possible to evaluate different alternatives for increased capacity, 
such as adding more main memory, getting a faster CPU, providing more 
auxiliary storage, replacing some disk drives by drums, etc. We shall give a 
number of practical examples of how queueing theory can help one explore 
the alternatives available in an informed way. For very large computer 
systems, commercial analytical queueing theory modeling packages exist. 
Most of these are described in Howard and Butler [23]. 

In this chapter we discuss the elements of queueing theory and study 
some basic queueing models that are of great utility in the study of com-
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puter systems. These basic models can be used to study subsystems of 
large computer systems, such as the I/O subsystem. In the next chapter 
we show how some of these basic queueing models can be combined to 
study more complex systems in which the output of one service center may 
be the input to another (queues in tandem and networks of queues). In 
such systems there is a slight "abuse of notation" in which we refer to a 
"queue" to describe a service center plus the associated queue or queues. 
The modeling packages we mentioned above model networks of queues. 

5.1 Describing a Queueing System 

Figure 5.1.1 illustrates the primary random variables in a queueing system. 

N 

Mean Arrival Rate 

Source 
A 

T 

Interarrival Time 

Nq 

Queue 

q 

w 

Server 1 

Ns 

s 

Server c 

Figure 5.1.1. Queueing theory random variables. 

The basic queueing theory definitions and notation are listed in Table 
5.1.1. A more complete set of definitions and notation is given in Table 1 
of Appendix C. 
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Table 5.1.1. Basic Queueing Theory Notation and Definitions 

c Number of identical servers. 
L Expected steady state number of customers in the queueing 

system, E[N]. 
Lq Expected steady state number of customers in the queue, 

E[Nq]. Does not include those receiving service, .EfiVg]. 
Ls Expected steady state number of customers receiving service, 

E[Na}. 
A Mean (average) arrival rate of customers to the system. 
fj, Mean (average) service rate per server, that is, the mean 

rate of service completions while the server is busy. 
N[t] Random variable describing the number of customers in the 

system at time t. 
N Random variable describing the steady state number of 

customers in the system. 
Nq[t] Random variable describing the number of customers in 

the queue at time t. 
Nq Random variable describing the steady state number of 

customers in the queue. 
Ns[t] Random variable describing the number of customers receiving 

service at time t. 
Ns Random variable describing the steady state number of 

customers in the service facility. 
pn[t] Probability there are n customers in the system at time t. 
pn Steady state probability there are n customers in the system. 
q Random variable describing the time a customer spends in the 

queue (waiting line) before service begins. 

n Server utilization = £; = —4: • 
_ I Random variable describing the service time. E[s] = „ . 

r Random variable describing interarrival time. E[T] = 4 . 
w Random variable describing the total time a customer 

spends in the queueing system, w = q + s. 
W Expected (mean or average) steady state time a customer 

spends in the system. W = E[w] = Wq + Wg-
Wq Expected (mean or average) steady state time a customer 

spends in the queue. Wq = E[q] = W — Ws-
Ws Expected (mean or average) customer service time, E[s]. 
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There are some obvious relations between some of the random variables 
shown in Figure 5.0.1. With respect to the number of customers in the 
queueing system, we must have 

N[t] = Nq[t] + Na[t], (5.1) 

N = Nq + Ns. (5.2) 

In (5.2) we assume the queueing system has reached the steady state, that 
we now describe. When a queueing system is first put into operation and 
for some time afterwards, the number of customers in the queue and in 
service depends strongly on both the initial conditions (such as the number 
of customers queued up waiting for the facility to begin operation) and on 
how long the system has been in operation (the time parameter t). After the 
system has been in operation for some time, however, the influences of the 
initial conditions have "damped out" and state of the system is independent 
of time—the system is in equilibrium or the steady state. However, N, 
Nq, and Ns are random variables; that is, they are not constant but have 
probability distributions. 

Equation (5.2) of course implies that 

E[N] = E[Nq] + E[NS], (5.3) 

that is often written 
L = Lq + Ls. (5.4) 

There are some obvious relationships between the random variables describ­
ing time, also; clearly the total time in the queueing system for a customer 
is the sum of the queueing time (time spent in line waiting for service) and 
service time; that is, 

w = q + s, (5.5) 

and 
E[w] = E[q] + E[s}. (5.6) 

Equation (5.6) is often written 

W = Wq + Ws. (5.7) 

Some common English words have a special meaning in queueing theory. 
A customer who refuses to enter a queueing system because the queue 
is too long is said to be balking while one who leaves the queue without 
receiving service because of excessive queueing time is said to have reneged. 
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Customers may jockey from one system to another with a shorter queue for 
service. 

In order to describe a queueing system, analytically, a number of ele­
ments of the system must be known. We consider the most important of 
these below. 

Population or Source 

The primary characterization of the population or source of potential cus­
tomers is whether it is finite or infinite. An infinite source system is easier 
to describe mathematically than one with a finite source. The reason for 
this is that, in a finite source system, the number of customers in the system 
affects the arrival rate; indeed, if every potential customer is already in the 
system, the arrival rate drops to zero. For infinite population systems the 
number of customers in the system has no effect on the arrival pattern. If 
the customer population is finite but large, we sometimes assume an infinite 
source to simplify the mathematics. 

Arrival Pattern 

The ability of a queueing system to provide service for an arriving stream 
of customers depends not only on the mean arrival rate, A, but also on the 
pattern in which they arrive. Thus, if customer arrivals are evenly spaced in 
time, say every h time units, the service facility can provide better service 
than if customers arrive in clusters. (The extreme case of clustering in 
which a number of customers arrive simultaneously is called bulk arrivals.) 
We assume customer arrivals at times 

0 < t0 < ti < t2 < ■ ■ ■ < tn < ■ ■ • (5.8) 

(We always assume that observation of a queueing system begins at time 
t = 0.) The random variables Tfc = tk — tk-i, (k = 1,2,3,...), are called 
interarrival times. We usually assume that TI ,T2, . . . is a sequence of inde­
pendent identically distributed random variables and use the symbol r for 
an arbitrary interarrival time. The usual method of specifying the arrival 
pattern is to give the distribution function, A[-], of the interarrival time. 
The arrival pattern most commonly assumed for applied queueing models 
(because of its pleasant mathematical properties) is the exponential pat­
tern: A[t] = 1 — e~xt, where A is the average arrival rate. (If you are 
rusty on the exponential distribution, you should review Section 3.2.2. The 
exponential distribution is of paramount importance in queueing theory.) 

Because of the properties of the exponential distribution, summarized in 
Theorem 3.2.1, if the interarrival time of customers to a queueing system has 



5.1. DESCRIBING A QUEUEING SYSTEM 255 

an exponential distribution, the arrival pattern is called a Poisson arrival 
pattern (or process) or a random arrival pattern (or sometimes just said 
to be random). Other commonly assumed arrival patterns are constant, 
Erlang-A;, and hyperexponential. 

The symbol A is reserved (except for finite queue systems and loss sys­
tems) for the mean or average rate into the system; therefore, the average 
interarrival time, E[T], equals 1/A. (For finite queue systems (Section 5.2.2) 
and loss systems (examined in Section 5.2.4), Aa is used for average arrival 
rate into the system.) 

Service Time Distribution 
The exponential distribution is often used to describe the service time of a 
server because of the Markov or "memoryless" property of this distribution 
(Theorem 3.2.1(d)). Thus, if the service time is exponential, the expected 
time remaining to complete a customer service is independent of the ser­
vice already provided. Suppose now that the queueing system has several 
identical servers, each with an exponential service time with parameter /x, 
and that n of the servers are now busy. Let 7* be the remaining service 
time for server i (i = 1 ,2 , . . . ,n) . By the Markov property, each Tj has 
an exponential distribution with parameter fi. T, the time until the next 
service completion, is the minimum of {T\,T2,- ■ ■ ,Tn}. Hence, by The­
orem 3.2.1(h), T has an exponential distribution with parameter ra/x; the 
service facility is performing like a single exponential server with mean ser­
vice rate n/j,. In queueing theory exponentially distributed service time is 
called random service and the distribution function, Ws[-], is given by 

W8[t] = P[s<t] = l - e -"* = 1 - e-*lw». (5.9) 

Here (i is called the average service rate. The average (mean) service rate, 
(i = 1/WS, is the average rate at which a server processes customers when 
the server is busy. This definition is valid for all service time distributions. 
Other common service time distributions are Erlang-&, constant, and hy­
perexponential. The hyperexponential distribution is useful to describe a 
service time distribution with a large variance relative to the mean (see 
Section 3.2.9). 

The squared coefficient of variation. C\, defined for a random variable 
X with E[X) # 0 by 

d - %%. (,>„> 
is a useful parameter to measure the character of probability distributions 
used to represent service time or interarrival time.2 If X is constant, 

2We have discussed C^ for some special distributions in Chapter 2. It is often used 
by queueing theory specialists to compare distributions to the exponential distribution. 
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Cx = 0; if X has an exponential distribution, then Cx = 1; if X has 
an Erlang-fc distribution, then Cx = l/k; and, if X has a fc-stage hyper-
exponential distribution, then Cx > 1. (For example, if X has a two-
stage hyperexponential distribution with qi = 0.4, qi = 0.6, Hi = 0.5, and 
H2 = 0.01, then E[X] = 60.8, E[X2] = 12,003.2, Var[X] = 8,306.56, and 
Cx = 2.25.) We conclude that, for C% close to zero, the service time is 
almost constant; if C% is close to one, the service time is approximately 
exponential; if C\ is close to l/k for some positive integer k, then s can 
be approximated by an Erlang-fc distribution; and, finally, if C, > 1 then 
s has a great deal of variability and can be approximated by a two-stage 
hyperexponential distribution. Similarly if C* is close to zero, the arrival 
process has a regular pattern; if C% is close to one, the arrival pattern is 
nearly random; if C% is close to 1/A; for some positive integer fc, then r can 
be approximated by an Erlang-A: distribution; while if C* > 1, then the 
arrivals tend to cluster. 

Maximum Queueing System Capacity 

In some systems the queue capacity is assumed to be infinite; that is, every 
arriving customer is allowed to wait until service can be provided. Other 
queueing systems, called "loss systems," have zero queue capacity; thus, if a 
customer arrives when the service facility is fully utilized (all the servers are 
busy), the customer is turned away. For example, some dial-up telephone 
systems are loss systems. Still other queueing systems, such as a message 
buffering system, have a positive but not infinite capacity queue. We use K 
to represent the maximum number of customers allowed in such a system. 

Number of Servers 

The simplest queueing system, in this sense, is the single-server system 
that can serve only one customer at a time. A multiserver system has c 
(usually) identical servers and can provide service to as many as c cus­
tomers simultaneously. In an infinite server system each arriving customer 
is immediately provided with a server. Although there cannot actually be 
infinitely many servers in any system, there are queueing systems that have 
sufficient servers that they appear to have infinitely many. 

Queue Discipline (Service Discipline) 

This is the rule for selecting the next customer to receive service. The 
most common queue discipline is "first-come, first-served," abbreviated as 
FCFS or sometime called "first-in, first-out" and abbreviated FIFO. Other 
common queue disciplines include "last-come, first- served," LCFS (or "last-
in, first-out," LIFO); "random-selection-for-service," RSS (or "service-in-
random order," SIRO), that means that each customer in the queue has the 
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same probability of being selected for service; or "priority service," PRI. 
Priority service means that some customers get preferential treatment, just 
as in George Orwell's Animal Farm some animals (the pigs) were "more 
equal" than others. In a priority queueing system, customers are divided 
into priority classes with preferential treatment afforded by class. We study 
priority queueing systems in Section 5.4. 

A special notation, called the Kendall notation, after David Kendall [26], 
its originator, has been developed to describe queueing systems. The nota­
tion has the form A/B/c/K/m/Z; where A describes the interarrival time 
distribution, B the service time distribution, c the number of servers, K the 
system capacity (maximum number of customers allowed in the system), 
m the number in the population or source, and Z the queue discipline. 
Usually the shorter notation A/B/c is used, and it is assumed that there is 
no limit to the length of the queue, the customer source is infinite, and the 
queue discipline is FCFS. The symbols chosen by Kendall and traditionally 
used for A and B are 

GI general independent interarrival time 
G general service time 
Hk fc-stage hyperexponential interarrival 

or service time distribution 
Ek Erlang-A interarrival or service time distribution 
M exponential interarrival or service time distribution 
D deterministic (constant) interarrival 

or service time distribution3 

U uniform interarrival or service time distribution 

When we say a queueing model, such as M / G / l , has a general service 
time distribution, we mean the equations of the model are valid for general 
service time distributions (make few assumptions about the service time 
distribution) and thus, in particular, the equations are valid for the M / M / l 
system. However, equations developed specifically to describe an M/M/ l 
queueing system would give more information than the general equations 
developed for the M / G / l model and applied, as a special case, to M / M / l . 
Similar remarks apply to the phrase general independent interarrival time 
distribution. 

An example of the full Kendall notation is M/E4 /3/20/oo/SIRO. For 
this system the interarrival time is exponential, the service time is Erlang-
4 for each of the three servers, the maximum system capacity is 20 (3 in 
service and 17 in the queue), the source is infinite, and the queue discipline 
is service in random order. 

3Kendall used the word deterministic to describe D but degenerate is more descriptive. 
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As the Kendall notation suggests, certain properties of a queueing sys­
tem are assumed known; it is desired to calculate measures of performance 
of the queueing system from these known parameters. It is usually assumed 
that the average arrival rate A (or, equivalently, the average interarrival 
time, E[T]) and the average service rate per server p (or the average service 
time per server, Wa) are known. It is also assumed that the arrival and ser­
vice time distributions are known. (For the M / G / l model, only some of the 
moments need to be known to compute useful performance information.) 
One fundamental measure of queueing system performance is the traffic 
intensity4 a = W8/E[T], also known as the offered load. It should be noted 
that Ws is the average service time per server, while E[T] is the average in­
terarrival time for all customers entering the queueing system and not just 
for the customers who are serviced by a particular server (unless, of course, 
there is but one server). Since A = 1/E[T] and p = 1/W8, the traffic inten­
sity can also be written as XW8 or X/p. The quantity p = a/c — X/(cp) 
is called the server utilization because it represents the average fraction of 
the time that each server is busy (assuming the traffic is evenly distributed 
to the servers); that is, it is the probability that a given server is busy (as 
observed by an outside observer). 

Example 5.1.1 Consider a D / D / l queueing system with a constant inter­
arrival time of 20 seconds and a constant service time of 10 seconds. Then 
the server is busy half of the time, since p = a = 10/20 = 0.5. If the server 
is replaced by one that requires exactly 15 seconds to service a customer, 
then p = 15/20 = 0.75 and this server is busy three-fourths of the time. 
Replacing this server by one requiring exactly 30 seconds to service a cus­
tomer may save some money but the traffic intensity a = 30/20 = 1.5. In 
order to keep up the server must provide 30 seconds of service every 20 sec­
onds! This is impossible. Two servers must be provided. Thus, the traffic 
intensity a is a measure of the required number of servers and p (when it 
is less than one) is a measure of congestion. In general we can argue that 
if customers are arriving at the rate A and the c servers serve them at the 
rate cp, then we must have A < cp if the servers are to keep up. But this 
means that a = X/p < c. D 

Although server utilization, p, is a measure of congestion, there are 
some other useful measures of queueing system performance including the 
following steady state values: 

4Although traffic intensity is dimensionless, it is often referred to in units of erlangs 
in honor of the queueing theory pioneer Agner Krarup Erlang. 
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W average customer time in the system 
(queueing for and in service) 

Wq average customer queueing time 
7r„,[90] 90th percentile value of w 
7rg[90] 90th percentile value of q 
L average number of customers in system 
Lq average number of customers in the queue 
pn probability there are n customers 

in the queueing system 

Little's Law 
One of the foundations of queueing theory is the formula 

L = XW. (5.11) 

The formula (5.11) applies to any system in equilibrium in which customers 
arrive, spend a certain amount of time, and then depart. In (5.11) we 
assume that A is the average arrival rate, W is the average time a customer 
spends in the system, and L is the average number of customers in the 
system. The formula goes by a number of names, including "Little's law", 
"Little's formula", and "Little's theorem." It was first proven by John D. 
C. Little [42] in the context of a steady state queueing system in which L, A, 
and W have the queueing theory definitions. However, (5.11) holds in more 
general situations that need not have anything to do with queues. Although 
Little's law is easy to state and intuitively reasonable, the proof is difficult. 
Little [42] provided the first known proof. However, it is a rather formal, 
nonintuitive proof using the mathematical concept of metric transitivity. 
Stidham [56] has published a simpler proof that is quite general and more 
intuitive than Little's proof. We state Stidham's version of Little's theorem 
without proof. 

Theorem 5.1.1 (Little's Theorem According to Stidham) Let L(x) be the 
number of customers present at time x. Define L by 

L= lim - I L(x)dx. (5.12) 
t —► oo t J0 

Define A by 

A = lim ^ * ) , (5.13) 
t —» oo t 

where N(t) is the number of customers who arrive in the interval [0,t]. Let 
Wi be the time in the system for the ith customer and define the mean time 
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in the system W by 
1 " 

W= lim - V l f j . (5.14) 
n —» oo n t—' 

i = i 

/ / A and W exist and are finite, then so does L, and 

L = XW. (5.15) 

Proof See Stidham [56]. ■ 
In the following example we show some simple applications of Little's 

law.5 

Example 5.1.2 Little's law can be applied to the queue, itself, to prove 
that 

Lq = XWq, (5.16) 

and to the service center, alone, to prove that 

Ls = XWS = a, (5.17) 

for any number of servers. If A and WB are known for any steady state 
queueing system, then Little's law allows us to calculate all of the primary 
performance measures L, Lq, W, and Wq, if any one of them is known. For 
example, if W is known then 

L = XW, Wq = W - Ws, and Lq = XWq. □ 

Many phenomena encountered in queueing theory are not intuitive. The 
following example is one such case. 

Example 5.1.3 (A Queueing Theory Paradox) Taxis pass a certain 
corner with an average interarrival time of 20 seconds. What is the average 
time that one would expect to wait for a taxi? (Assume that you are in 
New York City so you can't telephone for a taxi.) 

Solution Intuitively, it would seem that a taxi is just as likely to arrive 
at one point in time between arrivals as any other; that is, by symmetry, 
the distribution of arrival time should be uniform on the interval from 0 to 
20 seconds. Thus, the average waiting time should be 10 seconds. This is 
true, however, only when the taxis arrive exactly 20 seconds apart. In fact, 
as is shown by Takacs [59, page 10], if w is the length of time until the next 

5 I asked John D. C. Little which of the appellations Little's law, Little's formula, or 
Little's theorem he preferred. Little said that he had no preference; he just hoped his 
name would be spelled correctly. 
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arrival of a taxi measured from the time of arrival of the person seeking a 
cab, then 

£ N = ffi{l + C * } , (5.18) 

where r is the taxi interarrival time. Thus, if the interarrival time is ex­
ponential one would expect to wait 20 seconds, on the average, for a taxi. 
It follows from Proposition 4.5.3 that, if r is exponential, so is w with the 
same parameters as r . If the interarrival time is hyperexponential with 
C% = 3. one would expect to wait 40 seconds, on the average! This well-
known "waiting time paradox" is discussed by Feller [16, pages 11, 23] (he 
uses a bus in his example rather than a taxi). Snell [55] also calls it the 
"bus paradox" and provides a BASIC program to simulate the waiting time 
for exponential r and to draw a graph of the result. D 

The above example highlights the fact that in queueing theory, intu­
ition is often misleading. One can get an appropriate intuitive picture of 
what is happening in this example by thinking of the taxi arrivals as being 
appropriately scattered along the time axis and realizing that a randomly 
chosen point on this axis is more likely to fall in a long interval between two 
arrivals than in a short one. Also, the larger C% is, the more clustered the 
arrivals are. If arrivals are clustered, then there must be some very large 
gaps between some of the arrivals to make up for the short interarrival 
times in the clusters. 

5.2 Birth-and-Death Process Models 
A number of important queueing theory models fit the birth-and-death 
process description of Section 4.3. A queueing system based on this process 
is in state En at time t if the number of customers in the system is n, that 
is, if N[t] = n. A birth is a customer arrival and a death occurs when 
a customer leaves the system after completing service. We consider only 
steady state solutions to the queueing model. Thus, given the birth rates 
{An} and death rates {/i„}, and assuming that 

5 = 1 + d + C2 + ■ ■ • < oo, (5.19) 

where 
AoAi---An_i 

Cn = , n = l , 2 , . . . , (5.20) 
A«iM2 • • • Mn 

we calculate 
1 

Po = o ' (5.21) 
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and 

Pn = P[N = n] = CnPo, n = 1 ,2 ,3 , . . . . (5.22) 

From the probabilities calculated by (5.22), we can generate measures of 
queueing system performance. 

5.2.1 The M / M / l Queueing System 
This model assumes a random (Poisson) arrival pattern and a random (ex­
ponential) service time distribution. The arrival rate does not depend on 
the number of customers in the system and, by Theorem 4.2.1, the proba­
bility of an arrival in a time interval of length ft > 0 is given by 

e-xh(Xh) = Xh(l-Xh+^-.A 

= Xh + o(h). (5.23) 

Thus, we have 
An = A, n = 0 ,1 ,2 , . . . . (5.24) 

By hypothesis, the service time distribution is given by 

Ws[t] = P[s<t] = l - e -"*, * > 0. (5.25) 

Hence, if a customer is receiving service, the probability of a service com­
pletion (death) in a short time interval, h, is given by 

1 - e-^ = l-U-nh + ̂  J = ph + o(h). (5.26) 

(Here we have used the memoryless property of the exponential distribution 
in neglecting the service already completed.) 

Thus, 
lin=H, n= 1 ,2 ,3 , . . . . (5.27) 

Therefore, the state-transition diagram for the M/M/ l queueing system is 
given by Figure 5.2.1 and, since X/p = p and each Cn is equal to pn, we 
have 

S=l + p + p2 + ---+pn + --- = —^-. (5.28) 
( 1 - P ) 
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(We assumed that p < 1, so that a steady state solution does exist.) 

X X X 

State: 0 l 2 ' " » - * 

Figure 5.2.1. State-transition rate diagram for M / M / l system. 

To sum the series for S we have used the well-known summation formula 
for the geometric series, namely, 

oo 

^2 xn = l + x + x2 + ••• = ——— i f | x | < l . (5.29) 
n = 0 *■ ' 

Hence, by (5.21) and (5.22). 

Pn = P[N = n] = (1 - p)pn, n = 0 , l , 2 , . . . . (5.30) 

But (5.30) is the pmf for a geometric random variable; that is, N has a 
geometric distribution with p — 1 — p and q — p. Hence, by Table 1 of 
Appendix A, 

L = E[N] = £ = T-B—, 
1 J P (I-P) 

(5.31) 

and 

By Little's law, 

since 

Now, 

*% = ^ j . (5.32) 

P = \WS. (5.34) 

Wq=E[q]^W-Ws = j ^ - (5.35) 

Applying Little's law, again, gives, 

Lq = E[Nq] = XWq - j ^ . (5.36) 

By (5.30), we calculate 

P[server busy] = 1 - P[N = 0] = 1 - (1 - p) = p. (5.37) 
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By the law of large numbers this probability can be interpreted as the 
fraction of time that the server is busy; it is appropriate to call p the 
"server utilization." 

We now have the four parameters most commonly used to measure the 
performance of a queueing system W, Wq, L, and Lq, as well as the pmf, 
pn, of the number in the system, N. For the M/M/1 system, we can also 
derive the exact distribution of w and q. 

If an arriving customer finds no customers in the system, (N = 0), then 
there is no queueing for service, so Wq[0] = P[q = 0] = P[N = 0] = 1 — p. 
Thus, Wq[-] has a probability concentration or mass at t = 0. However, 
if a customer arrives when n customers are already in the system, then 
this arrival has to wait through n exponential service times; that is, the 
conditional waiting time in the queue, given that n customers are in the 
system, is given by 

q = si +s2 + --- + sn, (5.38) 

where s i , S 2 , . . . , s n are n independent identically distributed exponential 
random variables, each with expected value I/p. (By the memoryless prop­
erty of the exponential distribution, there is no need to account for the 
service time already expended on the customer receiving service.) By The­
orem 3.2.6(d), g has a gamma distribution with parameters n and p, that 
means that the conditional density function of q is given by 

/,,„(*) = pe~* „ _ 1 ) r t > 0, n > 1. (5.39) 

Thus, if n > 0, 

r u.nTn~1e~>iX 

P[q <t\N = n)= ?- — - dx. (5.40) 
Jo {n ~ I ) ' 

Therefore, by the law of total probability, Theorem 2.4.2, 
oo 

P[0 < q < t] = Y, P[Q < tW = ™)PW = "]• (5-41) 
n = l 

Substituting (5.40) into (5.41) and using the fact that 

Pn = P[N = n] = (1 - p)pn = ( l " ^ ) ( ^ ) n , (5-42) 

yields 
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= f \e-»x (l - - \ eXx dx 

= - / (A* - A)e-X<"-A) dx 

= p [ l - e - ' / w r ] . (5.43) 

We have already shown that Wq[0] = 1 — p. If t > 0, we can use (5.43) to 
calculate 

Wq[t] = P[q = 0] + P[0<q<t) 
= l-p + pll-e-^) 
= 1 - pe~t/w (5.44) 

Note that, although q is discrete at the origin and continuous for t > 0, 
(5.44) is valid for all values of t > 0. 

The average waiting time in queue for those who must queue is of par­
ticular interest for queueing systems in which people are the customers. As 
Kolesar [34] noted, if people are kept waiting too long in the queue for an 
automated teller machine (ATM), they will renege; that is, leave without 
receiving service. People will not wait indefinitely for any type of service. 
By Theorem 2.8.1, 

Wq = P[q = 0] x E[q\q = 0] + P[q > 0] x E[q\q > 0] 
= (l-p)x0 + px E[q\q > 0]. (5.45) 

Hence, 
Wn Wo 

E[q\q > 0] = - 1 = -f±- = W. (5.46) 
P (1 ~ P) 

Since W = Wq + Ws, this means that, on the average, customers who must 
wait will wait in the queue one average service time longer than the average 
customer waits. 

The derivation of the distribution function W[-] is similar to that for 
Wg[-]. If a customer arrives when there are already n customers in the 
system, then the total time this customer spends in the system is the sum 
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of n + 1 independent exponential random variables, each with mean l / / i . 
Hence, the density function, fWtn{-), is the gamma density 

un+1tne~lit 

/«,»(<) = ^ , t > 0. (5.47) 

By the law of total probability, we have 
oo 

W[t\ = J ^ P\w < (|n = n\P\N - n\ 

= 1 _ g-M(l-p)* 

= l - e - ' ^ . (5.48) 

This shows that tu has an exponential distribution and that 

1 Wo 
W = — = -p-, (5.49) 

as we calculated before. 
Because w has an exponential distribution, we know that 

aw = w2 = {r^i) ■ (5-50) 
We also know, by Theorem 3.2.1, that the r th percentile value of w, nw[r], 
is given by 

^[r] = wln{mh)' (5-51) 
so that, in particular, 

irw[90] = W In 10 « 2.3W, (5.52) 

and 
^ [95 ] = W In 20 « 3W. (5.53) 
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Similarly, using the distribution function of q, we calculate 

H[r] = *-. m p w g ^ = w ln M o o ^ (5 54) 

A number of formulas for an M/M/ l queueing system are shown in Table 
3 of Appendix C and can be evaluated by the APL function MAMAl of 
Appendix B. 

Example 5.2.1 Traffic to a message switching center for Extraterrestrial 
Communications Corporation arrives in a random pattern (remember that 
"random pattern" means exponential interarrival time) at an average rate of 
240 messages per minute. The line has a transmission rate of 800 characters 
per second. The message length distribution (including control characters) 
is approximately exponential with an average length of 176 characters. Cal­
culate the principal statistical measures of system performance assuming 
that a very large number of message buffers is provided. What is the proba­
bility that 10 or more messages are waiting to be transmitted? What would 
be the average response time, W, if the traffic rate into the center increased 
by 10%? 

Solution The average service time is the average time required to transmit 
a message or 

average message length 176 char. „ „„ , . . 
Ws = %r. —j — = r — = 0.22 seconds. (5.55) 

line speed char. v ' 

sec. 

Hence, since the average arrival rate 
240 messages A messages „.„„.. A = : = 4 —, (5.56) minute second 

the server utilization 

p = \WS = 4 x 0.22 = 0.88; (5.57) 

that is, the communication line is transmitting outgoing messages 88% of 
the time. Using the M / M / l formulas of Table 3, Appendix C, we calculate 
the following.6 

6The APL function MAMAl could be used to make the computations. 



268 CHAPTER 5. QUEUEING THEORY 

L = pj{\ — p) = 7.33 messages. 

Lq — p 2 / ( l — p) — 6.45 messages. 

W = Ws/{1 -p) = 1-83 seconds. 

Wq = p x W = 1.61 seconds. 

irw[90] = W In 10 = 4.21 seconds. 

Average number of 
messages in the system. 
Average number of 
messages in queue. 
Average response time. 

Average queueing time. 

90th percentile time 
in the system. 

7rg[90] = Wln(10p) = 3.98 seconds. 90th percentile queueing time. 

Since 10 or more messages are queueing if and only if 11 or more messages 
are in the system, the required probability is pn = 0.245. If A is increased 
by 10%, so is p, which becomes 0.968, so that 

W = 
Ws 

\-p 
= 6.875 seconds. (5.58) 

This is a considerable increase from 1.83 seconds! □ 

W l Graph of = versus p. 

~\ i 1 1 1 1 1 1 1 1 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 5.2.2. — versus p for M / M / l queueing system. 
Ws 
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The reason for the large increase in response time as the utilization 
increased by 10% from 0.88 to 0.968 is shown graphically in Figure 5.2.2. 
The curve of W/Ws rises sharply as p approaches 1. That is, the slope of 
the curve increases rapidly as p grows beyond about 0.8. Since 

^ - = Wsx{l-XWs)-2, (5.59) 
dp 

a small change in p (due to a small change in A, assuming Ws is fixed) 
causes a change in W given approximately by 

f^)Ap= (jp) WsA\ = Wi(l-\Ws)-2A\. (5.60) 

Thus, if p = 0.5, a change AA in A will cause a change in W of about 
4 x Wg x AA, while, if p = 0.88, the change in W will be about 69.44 x 
Wg x AA, or 17.36 times the size of the change that occurred when p — 0.5! 

We have discussed the M/M/ l queueing system in more detail than we 
will for most of the queueing models. It is a simple but important model to 
study. It has some pleasant properties that many of the queueing models 
we will consider lack. For example, we have been able to find the complete 
probability distributions for the random variables JV, w, and q; for many 
queueing models we have difficulty in computing the average values L, Lq, 
W, and Wq. A number of systems in the world around us can be at least 
approximated by the M/M/ l system. 

5.2.2 The M / M / l / K Queueing System 
Example 5.2.1 was somewhat unrealistic in the sense that no message 
switching system can have an unlimited number of buffers. The M / M / l / K 
system is a more accurate model of this type of system in which at most K 
customers are allowed in the system: 1 in service and K — 1 in the queue. 
When there are K customers in the system, arriving customers are turned 
away. Figure 5.2.3 is the state-transition diagram for this model. Thus, as 
a birth-and-death process, the coefficients are 

This gives the steady state probabilities 

Pn=Po(-J =Poan for n = 0,1,2, . ..,K, (5.63) 
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where 
a = \Ws = -. 

Since 

K /l-aK+1\ 
1 = Po + Pi + • ■ • + PK = Po ^2 a " = ( ~j~Z ) P o ' 

n=0 ^ ' 

if A / /x, we have, 
1 - a 

Po 1-a K+l 

(5.64) 

(5.65) 

(5.66) 

Since there are never more than K customers in the system, the system 
reaches a steady state for all values of A and iz. That is, we need not 
assume that A < fi for the system to achieve the steady state. If A = /z, 
then a = 1 and 

1 
Po = K + l 

Thus, the steady state probabilities are 

pn for n — 1,2,. . . , K. 

( ( l - g ) g " , . , _ . 
i jr— ioiX^fj,, n = 0 ,1 , . . . , 

Pn = < 
1-a 

1 

K+l 
K 

\ K + l 
for A = /z, n = 0,1,... ,K. 

(5.67) 

(5.68) 

State: 0 1 K-l) [ K 

Figure 5.2.3. State-transition rate diagram for M / M / l / K system. 

It should be noted that, if A < /z, as K —» oo, each pn in (5.68) ap­
proaches the correct value for the M/M/ l system. 

If A ^ /z, then 

K 

L = ^ nP" 
n=0 
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1 - a 
K+l 1-a 

1-a 
K+l 1-a 

1-a 
K+l 1-a 

1-a 
K+l 1-a 

1-a 
1-a K+l 

K 

n=l 
K 

a^na11-1 

n=l 
K 

E dan 

An 
71 = 1 

K 

da ^ 
71=0 

d (l-aK+^ 
a da \ 1 — a 

a (K + l)aK+1 

1-a i _ aK+i 
(5.69) 

Thus, if A < fj,, the expected number in the system, L, is always less than 
for the unlimited queue length case (where L = a/(l — a)). If A = n, then 
a — 1 and 

K 
L = ^2 npn = 1 + 2 + --- + K K 

n=0 
K + l 

Thus, (5.69) and (5.70) can be summarized by 

f a (K + l)aK+1 

(5.70) 

L= ( 
K+l 

In either case, 

because 

1 - a 1 - a 

K 
2 

Lq = L-(l -p0) 

HX^fj, 

if A = /x. 

(5.71) 

(5.72) 

E[NS] = P[N = 0] x E[NS\N = 0] + P[N > 0] x E[NS \N > 0] 
= po x 0 + (l - p 0 ) x 1 
= 1-po- (5.73) 

All the traffic reaching the system does not enter the system because cus­
tomers are not allowed admission when there are K customers in the system, 
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that is, with probability PK- Thus, if Aa is the average rate of customers 
into the system, 

A. = A ( l - p j r ) . (5.74) 

We can then apply Little's law to obtain 

W=±-, (5.75) 

and 
Wq = ^ . (5.76) 

The true server utilization, p, which is the probability that the server is 
busy, is given by 

p = \aWs = \(l-PK)Ws = (l-pK)a. (5.77) 

The derivation of the distribution functions of q and w is more complex 
for the M / M / l / K model than it was for the M/M/1 model. For n = 
0 , 1 , . . . ,K — 1 let qn be the probability that an arriving customer who 
enters the system finds n customers already in the system. It can be shown 
by Bayes' theorem (Theorem 2.4.3) (see Exercise 12) that 

qn = -^—, n = 0,l,...,K-l. (5.78) 
I-PK 

Proceeding as we did in deriving W[-] for the M/M/1 model, we calculate 
(see Exercise 13) 

K-l 
W[t] = ^2 P[w < t\Na = n] x P[Na = n] 

K-\ 
= 1 - 5Z 9nQ[n;iti], (5.79) 

n=0 

where 

fc=0 

is the Poisson distribution function and Na is the random variable that 
counts the number of customers in an M / M / l / K queueing system just 
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before a customer arrives to enter the system. (Thus, iVa assumes the values 
0 , 1 , . . . , K - 1 and P[Na = n] = qn.) W[t] can be calculated with the aid 
of tables of the Poisson distribution function or by using an APL function 
such as POISSONADIST. The APL function DMAMAIAK computes the 
values of W[t] and Wq[t] for the M / M / l / K model. The same reasoning 
that led to Wq[-\ for the M/M/ l queueing system shows that Wq[t] is given 
by 

K-l 
Wq[t] = Wq[0] + £ P[q < t\Nq = n] x qn 

n = l 

K-2 
= l - ^ 9 n + 1 x Q [ n ; 4 (5.81) 

n=0 

(Q[n;/x<] was defined above.) 

Example 5.2.2 Consider Example 5.2.1. Suppose Extraterrestrial Com­
munications has the same arrival pattern, message length distribution, and 
line speed as described in the example. Suppose, however, that it is de­
sired to provide only the minimum number of message buffers required to 
guarantee that 

pK < 0.005. (5.82) 

How many buffers should be provided? For this number of buffers calculate 
L, Lq, W, and Wq. What is the probability that the time an arriving 
message spends in the system does not exceed 2.5 seconds? What is the 
probability that the queueing time of a message before transmission is begun 
does not exceed 2.5 seconds? 

Solution The M / M / l / K model fits this system with a = XWS = 0.88 
erlangs. 

The probability that all the buffers are filled, given K — 1 buffers are 
provided, is 

PK = £ Z £ £ , (5.83) 
1 - aK+1 

where a = 0.88. Equation (5.83) can be solved for px = 0.005 and a = 0.88 
to obtain K = 25.142607. Thus, we need to have 25 buffers (K = 26) 
to make pa < 0.005. Using the APL function MAMA1AK, that makes 
the calculations for the M / M / l / K system using the formulas of Table 4 of 
Appendix C, we obtain the following. 
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L — 6.449 messages. Average number of messages 
in the system. 

Lq = 5.573 messages. Average number of messages 
queued for the line. 

W =■ 1.62 seconds. Average time a message 
spends in the system (queueing for 
the line and in transmission). 

Wq — 1.40 seconds. Average time a message 
queues for the line. 

All of these performance numbers are smaller than the corresponding val­
ues for the M/M/ l model with the same A and W$. Using the APL func­
tion DMAMAIAK, we calculate W[2.5] = P[w < 2.5] = 0.77208, while 
Wq[2.5] = P[q < 2.5] = 0.8039. All the performance metrics for the 
M / M / l / 2 6 system are superior to those for the M/M/ l system of Ex­
ample 5.2.1. The penalty for this improved performance is that 100 xpK = 
0.4464% of the messages are refused and must be sent again at a later 
time. □ 

5.2.3 The M / M / c Queueing System 
For this model we assume random (exponential) interarrival and service 
times with c identical servers. This system can be modeled as a birth-and-
death process with the coefficients 

An = A n = 0 ,1 ,2 , . . . , (5.84) 

and 
/ » * n = l,2...,c, 
( cfi, n>c. 

The state-transition diagram is shown in Figure 5.2.4. Thus, by (5.20), 
with a = X/fi and p = a/c, 

<£, n = l , 2 , . . . , c , 
Cn = { c (5.86) 

p n - c s f n = c + l ,c + 2 , . . . . 
c! 

Hence, if p < 1 so that the steady state exists, then 

S = 1 
Po 

a2 a c _ 1 ac ,, , > 
= 1 + a + 2 i + -+<^rry. + d(1 + f, + p +-) 
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c— 1 n c 0° 

n=0 n=0 
C _ 1 /7™ / 1 C 

£ j n! c! (1 - p) 

Hence, 

and 

Po = {l>^P 
.,** ^-Po if n = 0 , l , . . . , c - l , 
n! (5.89) 
. ° n - c PO if n>C. 

State: ( o ) 0 (2) - ( - ) f ) ( c ) ( + ) -
fi. 2(i (c — l)/ i c/i c/t 

Figure 5.2.4. State-transition rate diagram for M/M/c system. 

We shall now derive the formula for one of the key parameters of the 
M/M/c queueing system. It is the probability that an arriving customer 
must queue for service. The formula for this number is known as Erlang's 
C formula or Erlang's delay formula and written C[c, a]. Since a customer 
must queue for service if and only if there are c or more customers already 
in the system, we know that C[c,a] = P[N > c].7 Hence, we calculate 

C[c,a) = Y2P* 
n=c 

c - 1 

= 1 - ^ P n 
71=0 

C - 1 

- '--E5 
71=0 

7I t follows from Wolff's paper, Wolff [66], that p c is the probability that an arriving 
customer will find exactly c customers in the system before the arriving customer enters. 
Hence, the arriving customer must queue for service. This explains why the summation 
in (5.90) starts at n = c and not at n = c + 1. 



276 CHAPTER 5. QUEUEING THEORY 

c-1 
a' 
n! 
1̂ 

— i _ n = 0 

C _ 1 nn nC 

n ^ + cKW) 
a_ 
c! 

c —1 -« c 
(5.90) 

» - ' ) E 3 + „ ni c! 
n=0 

Some excellent algorithms have been developed for evaluating C[c, a], that 
makes it useful for computing other performance parameters. For example, 
it is easy to show that 

d(l-p)C[c,a} 
Po = —c • (5.91) 

Also, by the definition of C[c, a], we know that 

Wq[0] = P[q = 0] = 1 - C[c, a}. (5.92) 

We can now derive the formula for Lq: 

OO 

Lq = 5Z(n - c)pn 
n=c 
oo 

= Ylkpc+k 
fc=o 

c °° 
= P°7iJlkP' 

a,TkP* 
C 

fc=0 

= Po-r{0 + lp + 2p2 + 3p3 + ---} c! 

ac d ( 1 \ 

= Po c\{l-p)2' 
pC[c, a] 

1-p ■ 
(5.93) 
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We used (5.91) in the last step of (5.93). By Little's law, 

Lq _ C[c,a]Ws _ P[N > c]V 
X ~ c(l-p) ~ c(l-p) 

Wq=L£ = C[c,a)Ws = P[N>c]Ws> ^ 

since 
„ = * * - . (5.95) 

Then we also have 

and 

W = Wq + W8, (5.96) 

L = A W. (5.97) 

We have developed the formula for Wg[0]. Now we derive the formula 
for Wq[t] when t > 0. An arriving customer must queue for service only 
if N — n > c when the customer arrives at the system. All c servers 
are busy, so, as we explained earlier (in the discussion of "Service Time 
Distribution" in Section 5.1), the time between service completions in the 
service center has an exponential distribution with average value l/(cfi). 
There are c customers receiving service and n — c customers waiting in the 
queue. Therefore, the new arrival must wait for n—c+1 service completions 
before receiving service. (If n = c, so that no customers are queueing for 
service, the new arrival must wait for one service completion. If n = c + 1, 
two service completions are required, etc.) Hence, the waiting time in queue 
is the sum of n — c+1 independent exponential random variables, each with 
mean l/(c/z); that is, it is a gamma distribution with parameters n — c + 1 
and cfi. Hence, if t > 0, we can write, since F(n — c + 1) = (n — c)!, that 

oo 

Wq[t] = Wq[0] + Y,P[9<t\N = n]xpn 
n=c 

t?c\cncJ0 (n-c)\ 
n=c 

= w, 
= Wq[0] + - ^ _ I ^-^ *e«» ^ dx 

= wvM + J0tyjye~"xic~a)dx 

Poac 

(c-a)(c-l)l[ = ^f°] + 7 7 - ^ - w ( l — t ( C - a ) ) 
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= 1 - C[c, a] + C[c, a](l - e -"« c - a >) 
= l-C[c,a]e-^c-a\ (5.98) 

We have used (5.91) and (5.92) in the last two steps of (5.98). Although 
q has a probability mass at the origin and is continuous for t > 0, formula 
(5.98) is valid for all t > 0. 

The distribution function W[-] for waiting time in the system is given 
by 

f ^ ( q - c + w t t Q ] ) ^ , , C M e_c„t(1_p); Ua^e_lt 

W[t] = J (a + l-c) (a + l-c) 

l-(l + C[c,a]fj,t)e-'it i fa = c - l . 
(5.99) 

(The formulas from which these formulas follow are derived in Section 
5.3.2. See Exercise 26.) 

Formula (5.98) can be used to calculate the r th percentile value of q, 
that is 

Ws , / 1 0 0 C [ C , O ] \ 

^r] = W^)lnV^r)- (5-100) 
The formulas for the M/M/c queueing system are given in Table 5 of 

Appendix C. Table 6 gives the fqrmulas for the special case that c = 2. 
Figure 1 of Appendix C is a graph of C[c, a] versus a for selected values of 
c. 
Example 5.2.3 KAMAKAZY AIRLINES is planning a new telephone 
reservation center. Each agent will have a reservations terminal and can 
serve a typical caller in 5 minutes, the service time being exponentially 
distributed. Calls arrive randomly and the system has a large message 
buffering system to hold calls that arrive when no agent is free. An average 
of 36 calls per hour is expected during the peak period of the day. The 
three design criteria for the new facility are 

1. The probability a caller will find all agents busy must not exceed 0.1 
(10%). 

2. The average waiting time for those who must wait is not to exceed 
one minute. 

3. Less than 5% of all callers must wait more than one minute for an 
agent. 

How many agents (and terminals) should be provided? How will this system 
perform if the number of callers per hour is 10% higher than anticipated? 
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Solution The expected peak period average arrival rate, A, is 36 calls per 
hour or 0.6 calls per minute. Therefore, the traffic intensity a = X W$ = 3 
erlangs. Thus, 4 agents are needed just to keep up with the callers. 

Translated into technical queueing theory notation the requirements for 
the system are 

1. P[JV>3] = C[c,3]<0.1. 

2. E[q\q > 0] < 1 minute. 

3. P{q > 1] < 0.05. 

We seek the minimum c such that C[c,3] < 0.1 and that the other two 
requirements are met, as well. Using Figure 1 of Appendix C,8 it appears 
that C[6,3] « 0.1. Direct calculation of C[6,3], using Erlang's C formula 
shows that it is 0.0991. Since C[5,3] = 0.236, at least 6 agents are required 
to satisfy the first design criterion. The APL function MAMAC indicates 
that for 6 agents E[q\q > 0] = 1.67 minutes. We find that eight agents 
are required, since for seven agents E[q\q > 0] = 1.25 minutes, while, for 
eight agents, E[q\q > 0] is exactly one minute. Eight agents satisfies all the 
criteria, since for eight agents, 

P[q > 1] = C[8,3] e-°-2(8-3) = 0.00476. (5.101) 

If the peak traffic is 10% higher than 36 calls per hour, then the probability 
that all eight agents are busy is 0.022, the average queueing time for callers 
delayed is 1.06 minutes, and the fraction of callers who must wait more 
than 1 minute is 0.0085. Thus, the proposed system looks good, even if 
the traffic is slightly higher than anticipated. Since p = a/8 = 3/8, each 
agent is busy only three-eighths of the time during the peak period—such 
is the price of good service! As shown in Table 5.2.1, with six agents only 
one of the design criteria is met and with four agents the performance is 
deplorable. Eight agents is a good choice. We have shown that eight agents 
should be on duty during the peak period. More than this number may be 
needed to provide for coffee breaks, I/O breaks, etc., so that eight agents 
are available for duty. D 

If the reader has calculated the performance figures in the last exam­
ple, he or she probably found that the most difficult part was calculating 
C[c, a].9 Russell Ham, a colleague of mine, developed an algorithm that 

8Using graphs like Figure 1 induces vertigo in some people. I have this problem, too. 
9Some readers report that calculating Erlang's C formula using formula (5.90) seems 

to be an unnatural act. 
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Table 5.2.1. Example 5.2.3 

c 

8 
7 
6 
5 
4 

C[c, a] 

0.0129 
0.0376 
0.0991 
0.2362 
0.5094 

E[q\q > 

1.00 
1.25 
1.67 
2.50 
5.00 

0] P[q > 1] 

0.0048 
0.0169 
0.0544 
0.1583 
0.4171 

makes it easy to calculate C[c, a] with a programmable calculator. Recently, 
it has come to my attention that the algorithm was discovered in the 1920s 
but is still not widely known. It is based on Erlang's B formula, that I will 
discuss in the next section. Erlang's B formula, B[c,a], is given by 

B[c,a] = . (5.102) 
a2 ac 

1 + a + _ + . . . + _ 

Ham's algorithm depends on the following facts that we ask you to prove 
in Exercise 25. 

(a) 

(b) 

(c) 

1 = P+%=4 (5-103) C[c, a] B[c, a] 

1 = 1 + - (5.104) 
B[l,a] a 

1 = l -i- - x * forn = 2 , 3 , - - , c . (5.105) 
B[n,a] a B[n — I,a] 

Ham's original algorithm follows. 

Algor i thm 5.2.1 HO (Ham's original algorithm) Given the traffic inten­
sity a = XWs and the number of servers c, this algorithm will generate 
B[c,a] and C[c,a]. 

Step 1. Set 

-5^—1=1 + -. (5.106) 
B[c, a] a 
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Step 2. Calculate 
1 n 1 

l + - x — —r / o r n = 2,3,--- ,c . (5.107) B[n,a] a B[n — l,a] 
Step 3. Set 

Step 4. Calculate 
*M-{?&)"■ <5108) 

Ham's original algorithm is efficient and works well on a pocket calculator 
or a computer as long as B[c, a] is large enough so that none of the terms 
1/B[n, a] causes an overflow condition. Tom Warner of IBM Canada wrote 
the following one-line APL program that will compute B[c, a] very quickly. 

[0] Z<-C WBCA A 
[1] Z - - 5 - + / x \ 1 , *(tC) * ,4 

If the algorithm is used with most calculators and for most computer 
implementations to calculate B[40,0.01], it will fail because #[40,0.01] is 
approximately 

f o w l 4 0 p-°°l 

e-o.oi x i U ^ 2 _ = £ _ _ _ x 10_80 = j 234 x 1 0-i28 ( 5 n o ) 

However, Warner's one-liner will handle this calculation easily! The modi­
fied form of the algorithm does not have overflow problems. However, I have 
not been able to write a one-line APL program to implement the modified 
algorithm. 

Algorithm 5.2.2 HM (Ham's modified algorithm) Given the traffic inten­
sity a = XWS and the number of servers c, this algorithm will generate 
B[c,a] and C[c,a]. 

Step 1. Set 
B[l,a} = - ^ - . (5.111) 

1 + a 
Step 2. Calculate 

B[n,a]= aB[" l,a} / o r n = 2,3,--- ,c . (5.112) 

Step 3. Calculate 

C[c,a}= ox
B[°'a\ • (5.113) 

1 J pB[c,a] + l-p K ' 
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5.2.4 The M / M / c / c Queueing System 
( M / M / c Loss System) 

The M/M/c/c queueing system is often called the M/M/c loss system be­
cause customers who arrive when all the servers are busy are not allowed 
to wait for service and thus are lost to the system. 

State: ( o ) Q ( a ) - Q _ D 
H 2fi cfi 

Figure 5.2.5. State-transition rate diagram for M/M/c /c system. 

The state-transition diagram is given in Figure 5.2.5. From the diagram 
we see that 

(5.114) 

a 

an 

Cn = — for n = 1,2,3,•••,c, 
TV. 

= XWs — A//i. We calculate 

s = 1 
Po 

a2 a3 ac 

= 1 + a + 2 ! + 3 ! + - - + d -

Pn = Cn X p 0 

ac 

c! 
— IOI H — 1 7 , 1 ) 

a2 ac 

(5.115) 

,c. (5.116) 

The distribution given by (5.116) is called the "truncated Poisson distribu­
tion." In particular, the probability that all c servers are busy, so that an 
arriving customer is lost, is given by Erlang's B formula or Erlang's loss 
formula: 

B[c,a] = . (5.117) 
a2 ac 



5.2. BIRTH-AND-DEATH PROCESS MODELS 283 

B[c, a] was, of course, discovered by the great queueing theory pioneer, 
A. K. Erlang. Just as with the M / M / l / K queueing model, the actual 
average arrival rate into the system, Att, is less than A because some arrivals 
are turned away. We see that 

AQ = A ( l - £ [ c , a ] ) . (5.118) 

Since no customers are allowed to wait for service, Wq and Lq are zero. We 
calculate 

L = E[N] = $ > P n = Po $ > ^ f = apo £ « «(1 " B[c, a)). (5.119) 
n=0 n=l ' n=0 

By Little's law, 

W = -f- = Ws. (5.120) 
Aa 

Of course (5.120) is obvious because there is no queueing for service. There­
fore, w has the same distribution as s and we can write 

W[t] = 1 - e**' = 1 - e*lW». (5.121) 

It was conjectured by Erlang and later proven by others10 that all the for­
mulas we have given for the M/M/c/c queueing system (except (5.121), 
of course, that becomes W[t] = P[s < t]) are also true for the M/G/c/c 
queueing system. That is, only the average value of service time is impor­
tant. Such queueing systems are called "robust systems." For a proof see 
Gross and Harris [18]. 

Example 5.2.4 The Sad Sack Clothing Company has decided to install a 
tie-line telephone system between its east coast and west coast facilities. A 
caller receives a busy signal if the call is dialed when all the lines are in use. 
An average of 105 calls per hour, with an average length of 4 minutes, is 
expected. Enough lines are to be provided to ensure that the probability 
of getting a busy signal will not exceed 0.005. How many lines should be 
provided? How many lines are required if the probability of a busy signal 
is not to exceed 0.01? What would the performance be with 10 lines? 

Solution The traffic intensity a = (105/60) x 4 = 7 erlangs. The APL 
function BCA shows that £[15,7] = 0.00332 while £[14,7] = 0.00713, 
so 15 lines are required. The smallest c such that B[c, 7] < 0.01 is 14, 
so we save only one line if we double the allowed probability of a busy 
signal. If only 10 tie-lines are provided, the probability of a busy signal is 
£[10,7] = 0.07874. D 

10According to Takacs [59, page 186], B. A. Sevastyanov gave the first correct proof 
of Erlang's conjecture in 1957. 
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The formulas for the M/M/c/K queueing system can be derived much 
as they were for the M/M/c/c system and are given in Table 8 of Appendix 
C. 

5.2.5 M/M/oo Queueing System 
A A A 

State: ( 0 

Figure 5.2.6. State-transition rate diagram for M/M/oo system. 

No real life queueing system can have an infinite number of servers; what 
is meant, here, is that a server is immediately provided for each arriving 
customer. The state-transition diagram for this model is shown in Figure 
5.2.6. We can read from the figure that 

_ an 

Cn — -, n — 1,2,3, • • • , 
n! 

so that 

Hence, 

1 °° nn 

Tin ^ — ' Ti> P° " o n ! 

a n 
Pn=e-U—, n = 0 , l ,2 ; - - - , (5.122) 

n! 
that is, N has a Poisson distribution! It can be shown (see Gross and 
Harris [18]) that (5.122) is also true for the M/G/oo queueing system. The 
fact that N has a Poisson distribution tells us that L = a is the average 
number of busy servers, with a\ = a. The M/M/oo queueing model can 
be used to estimate the number of lines in use in a large communication 
network or as a gross estimate of values in an M/M/c or M/M/c/c queueing 
system for large values of c. In Example 5.2.4, a was 7 erlangs, which is 
close to the average number of servers in use for the M/M/15/15 queueing 
system. (The exact value is 6.97676.) For the M/M/15/15 system, 

yl5 
5[15,7] = 0.0033186 « pu = e~7 x — = 0.0033106. (5.123) 

15! 
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Example 5.2.5 Calls in a telephone system arrive randomly at an ex­
change at the rate of 140 per hour. If there is a very large number of lines 
available to handle the calls, that last an average of 3 minutes, what is the 
average number of lines in use? Estimate the 90th and 95th percentile of 
number of lines in use. 

Solution The M/M/oo queueing model can be used for the estimates. 
For this example a = XWs — (140/60) x 3 = 7 erlangs. Hence, the average 
number of lines in use is 7. We can use the normal approximation as 
an estimate of percentile values. The 90th percentile value of the normal 
distribution is the mean plus 1.28 standard deviations; the 95th percentile 
value is the mean plus 1.645 standard deviations. Thus, the 90th percentile 
value of number of lines is 7 + 1.28 x \/7 — 10.38 or 10 lines; the 95th 
percentile value is 7 + 1.645 x y/7 = 11.35 or 11 lines. The APL function 
POISSONADIST shows that P[N < 10] = 0.901479 and P[N < 11] = 
0.946650. □ 

5.2.6 The M / M / l / K / K Queueing System 
(Machine Repair with One Repairman) 

(We are guilty of "abuse of notation" here. The arrival pattern to the 
repairman is not random but quasi-random; that is, the repair interarrival 
time is what is called quasi-random, as described at the end of this section.) 
This model, a limited source model in which there are only K customers, is 
variously called the machine repair model, the machine interference model, 
or even the cyclic queue model. It is one of the most useful of all queueing 
theory models. One way to view this model is shown in Figure 5.2.7. The 
population of potential customers for this queueing system consists of K 
identical devices, each of which has an operating time of O time units 
between breakdowns, O having an exponential distribution with average 
value E[0] = 1/a. (E[0] is sometimes called the "mean time to failure" and 
abbreviated MTTF.) The repairman repairs the machines at an exponential 
rate with an average repair time of 1/fi time units. The operating machines 
are outside the queueing system (outlined by dashed lines) and enter the 
system only when they break down and thus require repair. The queueing 
system always reaches the steady state because there can be no more than 
K customers in the system (one machine being repaired and K — 1 waiting 
for repairs). When n of the machines are down (not operating) then K — n 
of them are operating and the time until the next machine breaks down 
is the minimum of K — n identical exponential distributions and thus, by 
Theorem 3.2.1(h), is exponential with parameter (K — n)a. Hence, the 
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state-transition diagram to describe the system is given by Figure 5.2.8. 
From the figure we see that 

K\ ( Ws \ n 

Pn={K^ny.X{EiO)) X P ° ' n = 0 ' 1 ' " - - ' * ( 5-1 2 4 ) 

where 

Po = 
fy> K\ (WS V 
l^(^-*)!xU[o]y 

(5.125) 

Machines 

1 

2 

O 

, 

K-l 
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1 Queue 

, IVq 
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Repairman 

Ns 
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, 

, 

Figure 5.2.7. Machine repair queueing system. 
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Ka (K - l)o 

State: I 0 ) ( l j ( 2 ) "• ( f f - l ) ( K 

Figure 5.2.8. State-transition rate diagram for M/M/l/K/K system. 

If we define z = E[0]/Ws, then (5.125) can be written as 

Po = -jp- = B[K,z], (5.126) 

71=0 

where, of course, B[K,z] is Erlang's loss formula.11 Thus, the server (re­
pairman) utilization is 

p = l-po = l-B[K,z]. (5.127) 

Since p = XWS, we can calculate the actual arrival rate into the queueing 
system as 

To calculate the performance statistics for the queueing system, we reason 
as follows. For each of the K machines a complete cycle consists of an 
operating period, O, followed by a queue for repair, q, and a repair (service) 
time, 5. Thus, the average rate at which K machines break down (enter 
the queueing system) is given by 

K _ K 
E[0) + Wq + Ws ~ E[0] + W' ( 5 - 1 2 9 ) 

where 
W = Wq + Ws. 

From (5.129) we calculate 

W = ^ - E[0). (5.130) 
A 

n T o bring (5.125) into the form of (5.126), multiply the numerator and denominator 
by zK jK\ 
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We have, of course, 
Wq = W - Ws. (5.131) 

Little's law yields 
Lq = XWq, (5.132) 

and 
L = XW. (5.133) 

The most difficult part of the calculations for the machine repair model 
is p 0 = B[K,z]. Fortunately, Algorithm 5.2.2 is easy to implement on a 
programmable calculator such as a Hewlett-Packard HP-32S or HP-28S. In 
fact, I wrote the HP-32S program to do this in Allen [1]. 

Example 5.2.6 High Tale Airfreight has 20 buffered terminals on one 
communication line. The terminals are used for data entry to a computer 
system. The average time required to key an entry into the buffer is 80 
seconds; this keying time is approximately exponential. High Tale analysts 
have found they can model such systems using the machine repair model 
with Ws = 2 seconds. Calculate the throughput A and the mean response 
time W. Repeat the calculations if 50 terminals are put on the line but 
everything else remains the same. 

Solution Since z = E[0]/Ws = 80/2 = 40 for 20 terminals, we calculate 

po = £[20,40] = 0.521307. 

Thus, 
p = l - Po = 0.478693, 

and 
A = —- = 0.2393465 entries per second 

Ws 

We calculate 

W = —- E[0] = 3.56 seconds. 

For 50 terminals, we calculate 

po = £[50,40] = 0.018690671, 

so that p = 0.981309329, A = 0.490654665, and W = 21.905 seconds. □ 
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Let qn be the probability there are n machines in the repair facility 
(being repaired or awaiting repair) just before a machine breaks down; that 
is, that an inoperative machine finds n ahead of it when it arrives. It is not 
difficult to show (see Exercise 32) that 

Sn = ^ = ^ , n = 0 , l , 2 , . . . , * - ! . 

To calculate the distribution function for the time a machine spends in the 
repair facility, W[-], we proceed much as we did in deriving this formula for 
the M/M/1 and M / M / l / K queueing systems. We let Na be the random 
variable that counts the number of machines found in the repair facility by 
an arriving machine; that is, P[Na = n] = qn. We can write 

K-l 
W\t] = ^P[w<t\Na=n}P[Na = n] 

n=0 
K-l 

= ^ P[w < t\Na = n] qn. (5.134) 
n=0 

A customer (machine) that arrives when there are n customers already there 
has a time in the system equal to the sum of n + 1 independent identically 
distributed exponential random variables, each with mean 1/fi. Hence, by 
Theorem 3.2.6(d), the corresponding density function is given by 

A,,n(*) = / f ( M X ) " e ~ M * , * > 0 (5.135) 
n! 

P[w < t\Na = n}= f ^ ( / J x ) " 6 " / t Z dx. (5.136) 
Jo nl 

wlt] __ «£{j:t^ldx]q„ 
K-l 

= 1 - £ Q [ n ; / / * ] ? n , (5.137) 
n=0 

by Exercise 13, where 

Q[n;̂ ] = e-«<X;^t (5.138) 
k=o K-

and 

Therefore, 
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Similarly, 
K-l 

Wq[t] = Wq[0]+^P[q<t\Nq = n]qn 

n=l 
K~1 ft ../•.. „ \ n - l 

^[ Jo (n-1)! 
K - 2 

= 1 - 53 Q[n;Ai *]«„+!• (5.139) 
71=0 

Note that (5.139) is exactly the same as the corresponding formulas for the 
M/M/ l /K system! The formulas for W[-] agree, too. However, the <?n's in 
(5.139) are very different from those in the M / M / l / K system. □ 

The formulas for W[t] and Wq[t] can be simplified. We note that (5.127) 
and (5.124) together yield 

zK-n 

Pn = {K
K " ) ! , n = 0 , l ,2 , . . . , t f , (5.140) 

y-
k=0 

where z = E[0]/Ws- If we multiply the numerator and denominator of 
(5.140) by e~z, we see that the random variable that counts the number of 
inoperative machines has a truncated Poisson distribution (see Exercise 47 
of Chapter 2). Moreover, 

zK-n-l 

qn = {K
K_" k

 1 ) ! , n = 0,l,...,K-l, (5.141) 

fc=o K-
by Exercise 32. Thus, each qn is the pn that we would calculate if the total 
number of machines were reduced by one; that is, for a M/M/l/K—1/K—l 
system. If we use the notation of (5.138) for a Poisson sum and the notation 

_ ak 

p[k;a) = e a-^ 

for a Poisson probability, we can write (5.141) as 

_ p[K — n — l;z] 
Qn= Q[K-l;z] • 
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Thus, (5.137) becomes 

p[K - n - 1; z] Q[n; n t] 

n = Q 

It is easy to show (see Exercise 33) that 

Wm 2 . Q[K-l;z] 

Substituting (5.143) in (5.142) yields 

Similarly, we can write 

Recall that, in (5.144) and (5.145), 

Recall that Q[k; y] is defined by the Poisson sum 

k 
V 

t=0 

We ask you to show in Exercise 33 that 

(5.142) 

k 

Y,Plk-r>x}Qlr>d = Qlk-'x + rt- (5-143) 
j=0 

^ = >-QJW^' »-°-

^ - Q J w ^ < »-"■ <"«) 

-'"f1^-^13 '"«> 
Qlk;y] = e-yJ2^ (5-147) 

1 f°° 
Q[k;y] = - e~xxkdx. (5.148) 

K. Jy 
But (5.148) is the "right tail" probability of a gamma random variable with 
parameters /3 = k + 1 and a = 1; that is, if Y is such a random variable, 
the Q[k; y] = P[Y > y]. We can compute such a probability using the APL 
function GADIST or we can appeal to the definition of Q[k;y] and use 
POISSONADIST. 

Example 5.2.7 Consider Example 5.2.6. We found that the mean re­
sponse time W was 3.56 seconds. We can use (5.144) to calculate 
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Now 

and 

19 

Q[19;42.5] = e - 4 2 - 5 ] T 
42.5n 

4.376854 x 10 - 5 

n=0 

19 40" 
Q[19; 40] = e - 4 0 ^ —p = 0.000176303. 

n=0 

(We used POISSONADIST to make the calculations.) Thus, W[5] = 
0.75174. Similarly, by (5.145), we calculate 

These calculations could also be made using the APL functions DWAMRA1 
and DWQAMRA1, respectively. □ 

The equations for the machine repair model M / M / l / K / K are collected 
in Table 10 of Appendix C. 

There is a another, more general, single repairman machine repair model, 
the M/G/l/K/K queueing system, in which the repair time has a general 
distribution although the up time for each machine is exponential. The 
M/G/l/K/K system is very useful for computer system modeling. Unfor­
tunately, it is not a birth-and-death process queueing model. The derivation 
of the equations to describe this model is too advanced to give here but can 
be found in Takacs [59] and Jaiswal [25]. 

The only difference in the computations for the M/G/l/K/K system 
from that of the M / M / l / K / K system is in the calculation of p0. After 
we obtain po, we calculate p , A, Wq, and W exactly as we do for the 
M / M / l / K / K system. Of course, the formulas for the distribution functions 
of q and w no longer apply. The formula for po is 

Po 

where 

' KWS%^ {K-l\ _ 
(5.149) 

r i for n = 0 

Bn = l frh-W'AmO})} forn = 1)2)...)K_l5 
; i\ \ w*[i/E[0)} j 

(5.150) 

and, of course, Wg [8] is the Laplace-Stieltjes transform of the service (re­
pair) time. 
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Table 5.2.2. Example 5.2.8 

» B- 0 *•*(») 
0 
1 
2 
3 

1.00000 
0.02532 
0.00130 
0.00010 

1 
3 
3 
1 

Sum 

1.00000 
0.07595 
0.00389 
0.00010 

1.07994 

Example 5.2.8 Richard E. Rutledge, Jr. (Dick to his friends and subor­
dinates), a senior executive at the Blew Computer Corporation (sometimes 
called "Big Blew") believes he can model the word processing and electronic 
mail activities in his executive office suite as an M / D / l / 4 / 4 queueing sys­
tem. He generates so many letters, memos, and electronic mail messages 
each day that four secretaries ceaselessly type away at their workstations 
that are connected to a large computer system over a LAN. Each secretary 
works, on the average, for 40 seconds before he makes a request for service 
to the computer system. A request for service is processed in almost exactly 
one second. Dick has measured the mean response time using his electronic 
watch (he gets 1.05 seconds) and estimates the throughput as 350 requests 
per hour. Dick has decided to hire two additional secretaries to keep up 
with his prodigious productivity and will connect their workstations to the 
same LAN if the M/D/l/6/6 model indicates a mean response time of less 
than 1.5 seconds. Can he hire the two secretaries? 

Solution Let us first check out the present system. From the definition of 
the Laplace-Stieltjes transform for a constant service time, we see that 

w;[o) = e-e. 
Therefore, 

1-W;[i/E[Q]] l-e-*'*0
 </40 

W*s\i/E[0}} e - / 4 0 

Thus, we can write 

Bn = { n.?=i (e i / 4° - 1) for n = 1,2,3. ( 5 " 1 5 1 ) 
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Graph of W K 
l-B[K,z) 

versus K. 

25-i 

2 0 -

Figure 5.2.9. versus K for M / M / l / K / K queueing system. 
Ws 

We show the values needed to calculate po by (5.149) in Table 5.2.2. 
The values in this table were calculated to ten decimal places but are shown 
rounded to five. Hence, by (5.149), 

Po 1 + 
4 x 1 
l o ~ 

- i - i 
x 1.07994 0.90253. 

This could also be calculated by the APL function PZERO. Thus, p = 
1 - Po = 0.09747, A = p/Ws = 0.09747 requests per second or 350.88 
requests per hour. Then 

W = ^ - E[0] = 1.038 
A 

seconds. 

Dick's calculations were amazingly close to the model results! We leave it 
as an exercise for the reader (Exercise 34) to show that with six secretaries 
Po = 0.85390, A = 525.95 requests per hour and W = 1.069 seconds. The 
calculations can be made using MADAlAKAK, that uses the function 
PZERO to calculate po- These values show that Dick can add two work 
stations without seriously degrading the performance of his office staff. □ 

We can use the machine repair model (shown in Figure 5.2.7) to model 
some interactive computer systems. The computer terminals (or personal 
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computers being used as terminals) correspond to the machines and the 
central computer system to the repair facility. We think of the service 
time of the computer system as having an exponential distribution. We 
also think of the "think time" of the terminals, that corresponds to up 
time of a machine, as being exponential. (Usually the time it takes to 
receive output from the computer, think about what to do next, and input 
a request to the computer is lumped together as "think time.") In Figure 
5.2.9 we have a graph of such a system. We show the normalized response 
time, W/Ws, versus the number of active terminals, K. When there is 
only one active user (K = 1), there is no queueing for service so that 
W = Ws; the line W/Ws = 1 is an asymptote to the curve. As the number 
of active terminals grows very large (think of K = 100,000,000,000, that 
is, 100 American billion), we would expect the computer system to be busy 
most of the time, so p » 1. But then A = p/Ws « 1/Ws and adding 
more machines has little effect on the throughput. When we substitute 
this equation for A into our equation for W (equation (5.130)) we obtain 
W = K Ws -E[0] or W/Ws = K-E[0]/Ws = K-z. This means that the 
curve has the asymptote W/Ws = K—z for large K. Thus, when K is large, 
increasing it by 1 has little effect on the throughput but increases W by 
approximately Ws (W/Ws by 1). The two asymptotes to the curve intersect 
at the point (K*,l) where K* = 1 + z = (E[0] + Ws)/Ws. Kleinrock [32, 
page 209, (4.66)] calls the value K* the saturation number. He also gives 
it an interesting physical interpretation. If each terminal user has exactly 
E[0] units of think time and uses exactly Ws units of service time per 
interaction, then, with perfect synchronization, K* is the maximum number 
of terminals that can be supported with no mutual interference. Thus, for 
any real system when K is one, we have no mutual interference; when K is 
small, we have almost no mutual interference. However, as K increases past 
K* we are certain to have some mutual interference (queueing for service) 
while the formula W = KWs — E[0] for a very large number of users 
(terminals) shows complete interference! That is, for a very large number 
of users, each user delays every other user by one mean service time, Ws-
As we shall see later, the asymptotic formula W = K Ws — E[0] is valid 
also for a general service time; in fact, it is true for even more general 
"machine repair like" queueing systems. 

Figure 5.2.9 was plotted using z = 40 so that K* = 41, but the shape 
of the curve will be very similar for other values of z. 

Example 5.2.9 Consider Example 5.2.6 in which High Tale Airfreight had 
a system of 20 terminals on one communication line and was able to model 
it as a M/M/ l /20 /20 queueing system with Ws = 2 seconds and E[0] = 80 
seconds. Suppose the nature of the application changes so that the system 
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response time is nearly constant with the same mean. (For example, they 
could have attached the terminals to a lightly loaded LAN.) Let us see how 
this new system compares to the old. We will use the equations found in 
Table 11 of Appendix C. (We can check our solution using MADA1AKAK.) 
From the definition W|[0] = e~29, and, since E[0] = 80, we have 

i-w;[i/E[0]] 1-6- ' / 4 0
 i / 4 0 _ 

w;[i/E[o]} e-«/4o 
for i = 1,2,. . . , 19. Hence, 

Bn = { n r= i (e i / 4° - 1) for n = 1,2,. . . , 19. ( 5 1 5 2 ) 

To calculate p0, we substitute these values of Bn into (5.149) yielding 

19 I 2 0 x 2 
Po = 1 + 

8 0 =0 
= 0.51706. 

This calculation can also be made with the APL function PZERO. Then 
p = l _ Po = 0.48294, A = p/2 = 0.24147, and 

For this system, 

W = ^ - E[0) = 2.826 seconds. 
A 

K . = E[0} + WS=41 t e r m . n a l s 

Ws 

We leave it as an exercise (Exercise 35) to show that, if High Tale had 50 
terminals, then pQ = 0.00452, p = 0.99548, A = 0.49774 and W = 20.45 
seconds. (The asymptotic formula W = K Ws — E[0] yields the value 
W = 20 seconds.) □ 

As we indicated in the footnote at the beginning of this section, it is an 
"abuse of notation" to use the Kendall notation M / M / l / K / K to describe 
the machine repair model with one repairman, because the interarrival time 
for customer arrival at the service center is not actually exponential. The 
input to the service facility is what is called quasi-random input. As de­
scribed by Kobayashi [33, Section 2.9.2] this means that" . . . a finite number 
K of sources generate quasi-random input if (1) the probability that any 
particular source generates a request in an interval (t,t + h) is ah + o(h) 
when the source is eligible to generate a new request at time t, and (2) all 
sources act independently of the states of any other sources." The system 
we designate by M/M/c/K/K in the next section also has quasi-random 
input. 
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5.2.7 M / M / c / K / K Queueing Sys tem 
(Machine Repai r , Mul t ip le Repa i rmen) 

Ka {K - l )a (K-c+l)a 

State: 0 

2fi 

a 

K-l) K 

Cfl 

Figure 5.2.10. State-transition rate diagram for M / M / c / K / K system. 

This queueing system is similar to the machine repair model considered 
in the last section except that we have c repairmen rather than one. We 
have a birth-and-death process model with the state-transition diagram 
shown in Figure 5.2.10. From this figure we can calculate the p n ' s as 

Vn = < N 

WS 
Po, n = 0 , 1 , . . . , c 

MO], 

^HfT;)"*' n = c + l,...,K, c\c \nj \E[0]J 

(5.153) 

where 

Po SIJUO]) ^J i -eUX Ws_Y 
E[0)J 

(5.154) 

We can now calculate 
K 

Lq = ^2 ("~c)Pn-
n=c+l 

It is easy to see that 

A = K 
ElOj + W 

where W = Wq + Ws- We can apply Little's law to obtain 

Wq = ^f = jL(E[0] + Wq + W3). 

(5.155) 

(5.156) 

(5.157) 
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Solving (5.157) for Wq yields 

Wq = A - ( £ [ 0 ] + Ws). (5.158) 

We can now substitute Wq from (5.158) into (5.156) to obtain a numerical 
value for A. We can also calculate 

W = Wq + Ws, (5.159) 

and, using Little's law, 
L = XW, (5.160) 

and 
Lq = XWq. (5.161) 

The formulas for this model are collected in Table 12 of Appendix C. The 
calculation of the performance parameters of the machine repair model 
using the formulas of Table 12 are implemented by the APL program 
MACHAREP. In Table 13 of Appendix C we give the formulas for the 
machine repair model D/D/c/K/K. See Boyse and Warn [3] for the deriva­
tions. 

To derive the distribution function for q, Wq[-\, we reason that an ar­
riving machine (customer) must queue for repair (service) only if n > c, 
where n is the number of customers found in the repair system. When this 
is the case, the arrival must wait for the departure of (n — c) + 1 customers. 
(If n = c, one customer must depart, if n = c + 1, two customers must 
depart, etc.) Let Na be the number of customers an arriving machine finds 
in the repair facility so that qn = P[Na = n]. If n > c and A; = n — c, then 
P[q > t\Nq = n] is the probability that k or fewer customers depart in an 
interval of length t. But this probability is given by 

k 
P[q > t\Ng = n] = e - ^ V ^f- = Q[k; ci*t\. (5.162) 

»=o l-

Formula (5.162) follows from the fact that the service facility services cus­
tomers like a single server with an exponential distribution and mean ser­
vice time l/(cfx). Thus, the number of customers processed in an interval 
of length t has a Poisson distribution with mean c/j,t. We have 

K-l K-l 
P[q > t] = ^ P[q > t\Nq = n]qn=^2 qnQ[n - c;cut}. (5.163) 

n=c n=c 

To complete the derivation, we need the theorem stated by Reiser [50] and 
proved by Sevcik and Mitrani [54]. As Reiser states the theorem, 
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In a closed queueing network the (stationary) state probabilities 
at customer arrival epochs are identical to those of the same 
network in long-term equilibrium with one customer removed. 

In our notation this means that 

qn[K] = pn[K - 1], n = 0,l,--,K-l, (5.164) 

where qn[K] is the steady state probability that an arriving machine finds 
n machines in the repair facility when there are K machines in the system, 
and pn[K — 1] is the steady-state probability that there are n machines in 
the repair facility for a system with K - 1 machines. The qn'$ in (5.163) 
are written as qn[K] in the notation (5.164). By (5.153), when n > c, we 
can write, using z = E[0]/Ws, 

* w = d£=C0*"»M 
n\cc K\zn 

d^(K-n)\n\Po[K] 

e-cz{cz)K-n 

(K-n)l -jPo[K]- K 
c ! e-"(cz)K 

t {K^p^, (5.165) 
c! p[K;cz] 

Therefore, 

Substituting the above formula for qn[K\ into (5.163) yields 

K-i 
P[q>t] = £ p „ [ A - - l ] Q [ n - c ; c / i t ] 

K-l 

c\p\K ̂— - ^Tp[K-n-l;cz]Q[n-c;ctit] 
1 , C 2 : J „=, . n—c 

K-c-1 Jy0[K -1] 
i 
Q[K - c - l;cz + c(j,t] 

ccpp[K - 1] 
c!p[AT-l;cz] 
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ccp0[K -l]Q[K-c- 1;c(E[Q] + t)/Ws)} 
c\p{K-l;c(E[0}/Ws)] ' ^ 1 0 ' ' 

In the next to last step of (5.167), we used the identity 

k 

5>[*-j;A]Q[j;/i]=Q[M + /i] 
i=o 

from Exercise 33. Now we can use (5.167) to write 

M M / i - 1 cCpo[K ~ 1]Q[K - c ~ 1 ; c ( J ? [ Q ] + f ) ™ r ^ i f i ^ 
" W - * dp[ff-l;cl5[0]/Wy • ( 5-1 6 8 ) 

The derivation of the distribution function W[-} is much more complicated. 
It is derived in the solutions manual for Kobayashi [33]. The result is 

W[t] = 1-Cie-"W* 
+C2 x Q[K - c - 1; c(E[0] + t)/Ws) t > 0, (5.169) 

where 

and 

Ci = l+C2xQ[K-c-l;cz], (5.170) 

r = ccp0[K-l] 
2 c\(c-l)(K-c-1)1 p[K-I; cE[0]/WsY l ; 

Formula (5.154) (with K replaced by K — 1 everywhere it appears) can 
be used to calculate po[K — 1] in (5.168) and (5.171). 

Example 5.2.10 Slobovian Scientific has an interactive time-sharing sys­
tem with 80 active terminals during the peak period of the day. They 
know that this system can be modeled as a machine repair queueing sys­
tem with one repairman, that is, as an M/M/ l /80 /80 queueing system. 
Their measurements show that the average service time of the computer, 
Ws = 0.18 seconds and their average think time, E\0] = 18 seconds. 
Their performance measurements show that the average response time, 
W = 0.69 seconds, their throughput, A = 4.3 interactions per second, and 
P[w < 1 second] — 0.76. Slobovian Scientific is a growing company. They 
estimate that three months from now they will average 100 users during 
the peak period, and that within a year they will have 160 users. They 
want to estimate the performance of their current system with 100 users. 
They are considering an upgrade to their computer, that would replace the 
CPU with a multiprocessing system consisting of two CPUs identical to 
their current CPU. They want to estimate W, A, and P[w < 1 second] for 
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(a) their current system with 100 terminals, 

(b) the upgraded system with 100 terminals, 

(c) the upgraded system with 160 terminals. 

They want W < 0.8 seconds with P[w < 1 second] > .9. 

Solution 

(a) The APL programs MACHAREP and DWAMRA1 show that 
W = 1.474 seconds, A = 5.13 transactions per second, and 
P[w < 1 second] = 0.4219. This is unsatisfactory. 

(b) The M/M/2/100/100 model applies. It is necessary to correct 
for the fact that two CPUs operating as a multiprocessor system 
interfere with each other. We correct for this by assuming that 
each of the CPUs operates at 90% of the speed it would achieve 
by itself; we do this by setting W$ = 0.18/0.9 = 0.2 seconds. 
Then the APL program MACHAREP indicates that W = 0.28 
seconds, and A = 5.47 interactions per second. The APL func­
tion DWAMRAC shows that P[w < 1 second] = 0.99326. This 
performance would be very satisfactory. 

(c) The M/M/2/160/160 queueing model applies with Ws = 0.2 sec­
onds. MACHAREP indicates that W = 0.64925 seconds, and 
A = 8.5794 interactions per second, while DWAMRAC calcu­
lates P[w < 1 second] = 0.99326. The upgrade is AOK! □ 

5.3 Embedded Markov Chain Systems 
In Section 5.2 we showed how, in some cases, a queueing system can be 
modeled as a birth-and-death process. This makes it relatively easy to 
calculate the steady state distribution of number of customers in the sys­
tem and other performance measures; these include average queueing time, 
average waiting time in the system, etc. One fact makes analysis of such 
systems straightforward; it is that the stochastic process {N(t),t > 0} is 
Markov. This is true because of the memoryless property of the exponential 
service time distribution; we need not account for the service time already 
expended by a customer receiving service. When more general service times 
are allowed, not only {N(t),t > 0}, but also {R(t),t > 0}, the remaining 
service time for the current customer, is needed to predict future values of 
N(t). However, for a number of queueing systems, an embedded Markov 
chain can be constructed, that makes it possible to compute many of the 
parameters of interest. 
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5.3.1 The M / G / l Queueing System 
We assume the queueing system has a Poisson input process with average 
value A and a general service time distribution. Customers have indepen­
dent service times. The other restriction on the service time that must 
be made in order to calculate L = E[N], W = E[w], and Lq = E[q], is 
that the first and second moments of service time, E[s] and E[s2], must 
exist. In order to calculate the standard deviations of each of the primary 
random values, E[s3] must also exist and be known. Let Z(t) for t > 0 
denote the number of customers in the queueing system at time t. Let 
0 < ti < t% < ••■ < tn < ■•■ denote the successive times at which a cus­
tomer completes service. Then the sequence {Z(tn)} forms a discrete time 
process {Xn} where Xn — Z(tn) for n = 1,2,3 Thus, Xn is the number 
of customers the nth departing customer leaves behind. We will show that 
{Xn} is a Markov chain. First we note that 

_( Xn-1 + A HXn>l 
A if Xn = 0, 

where A is the number of customers who arrive during the service time of 
the (n + l)st customer. The service time, s, of the (n + l)st customer is 
independent of the service time of other customers and of the number of 
customers in the system. The arrival process is Poisson, which has station­
ary increments by Definition 4.2.1. Thus, A depends only on s and not on 
when the service began or the length of the queue. Since Xn+\ depends 
only on the value of Xn, and the independent random variable A, and not 
on Xn-i,Xn-2, etc., {Xn} is a Markov chain. 

The arrival process is Poisson but the length of the service time is a 
random variable, so A is not a Poisson random variable.12 However, we 
can write 

/•OO 

P[A = n]= P[A = n\a = t]dW8[t], n = 0 , l , . . . , (5.173) 
Jo 

by the law of total probability, where the integral is a Stieltjes integral with 
Ws[-] the distribution function of the service time. (Recall from Section 2.9 
that the Stieltjes integral /0°° h(x) dF(x) is evaluated as /0°° h(x)f(x) dx or 
^2X h(xi)p(xi), depending on whether the random variable X with distri­
bution function F(-) is continuous with density function /(•) or discrete 
with pmf p(-).) By Theorem 4.2.1, 

P[A = n\a = t] = \-!-, n = 0 ,1 ,2 , . . . . (5.174) 
n! 

12Unless, of course, the service time is constant; then A is Poisson with mean \Wg-
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Thus, 

Pa = P[Xn+1 = j\Xn = i] = P[A = j - i + l] 
/•OO 

= / P[A = j - i + l]dWs[t] 
Jo 

' f°° w (XtV~i+1 

/ e ~ / ■ , IM dWs\t] if i > t - 1 and t > 1 — ) Jo U - i + 1)! 

0 if j < i — 1 and i > 1. 

Equation (5.175) allows us to calculate P^ for i > 1. However, it does 
not tell us how to calculate the first row of the state-transition matrix P, 
that is, the probabilities of transition from the 0 state. We reason that, 
if the system is empty when a customer completes service and leaves the 
system, then no state transition can occur until a new customer arrives; 
the next transition occurs when this new customer departs. Thus, the 
state transition probabilities are the same for i — 0 as for i = 1; that is, the 
first row of P is the same as the second row. it is convenient to represent 
P in terms of the probabilities {£„}, where kn is the probability that n 
customers arrive during one service period. Thus, 

kn = P[A = n]= e-Xt^-$-dWs[t], n = 0 , l , 2 . . . . (5.175) 
Jo n-

We have 

P = 

fc<) & 1 &2 &3 ki 
k() fcl &2 &3 &4 
0 ko fcl &2 &3 
0 0 k0 fa k2 

(5.176) 

It is intuitively clear that the queueing system should be stable if and only 
if the average number of customers who arrive during one service time, 
E[A], is less than 1. But 

E[A] = f > * „ = re-»f]!**QldWs[t] 
„=0 J0 n^O nl n=0 

/•oo 
= re-»(Xt)J2{-*fdWs[t] 

/♦OO 

= X tdWs{t] = XWs=a = p. (5.177) 
Jo 
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Hence, p is the average number of customers to arrive during one service 
time. We will now prove that, if p < 1, then the embedded Markov chain 
{Xn} has a steady state probability distribution it. First we note that, since 
kn > 0 for all n, the Markov chain is irreducible. Likewise, it is aperiodic, 
since Pa > 0 for each i. So suppose p < 1 and X* = if (I — p), i = 0,1,2, 
Then, if i > 0, 

oo oo . oo / ■ \ 

E Pii xi = 22 pH J—; = E ki~i+1 f Y^~o ) 
3=0 j=0 H j=i-l V P / 

■{k0{i - 1) + hi + k2{i + 1) + k3(i + 2) + • • •} 

3=o ■ j= 
1 

Y^{ko(i - 1) + h(i - 1) + fc2(i - 1) + • • •} 

+——■{k1 + 2k2 + 3k3 + ---} 
. oo 1 oo 

fz^E^ + r ^ E ^ 
i — 1 p i 

+ T-^— = :; 1 = Xi - 1. 

Also 

1 - p 1-/5 1 - p 

oo oo . , 

Hence, by Theorem 4.4.5, the embedded Markov chain {Xn} is ergodic and 
thus, by Theorem 4.4.4, it has a steady state probability distribution. 

Taylor and Karlin [61] show that, if p = 1, then {Xn} is recurrent null, 
while, if p > 1, {Xn} is transient. In either case {Xn} has no steady 
state probability distribution. Thus, {Xn} has a steady state probability 
distribution if and only if p < 1. 

We assume, henceforth, that p < 1, so the embedded Markov chain 
{Xn} has a steady state distribution w = (7To,7ri,...) with 7Tj > 0 for each 
i, 

oo oo 

^ 7 T i = l, and itj = ^2*1 Pij, j = 0 , 1 , 2 . . . . (5.178) 
t = 0 t = 0 

The above series of equations, (5.178), is the component by component 
statement of the matrix equation it = IT P, expressing the fact that IT is a 
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stationary distribution. In terms of (5.176), the equations are 

t+ i 
iti = Tr0ki + 'Y^irjki-j+i, k = 0,1,2 (5.179) 

j = i 

We assume that X is the steady state number of customers in the system 
at departure instants; that is, 

P[X = n] = wn, n = 0 , 1 , 2 . . . . 

We define the generating functions (see Section 2.9) of the distributions n 
and K = (fco, fci, &2,...) by 

oo 

7r(z) = ^2wizi=gx(z), (5.180) 
t=0 

and 
oo 

K(z) = ^kizi=gA(z). (5.181) 
z=0 

If we multiply (5.179) by zl, we get 

m z* = w0 h z* + - £ *i *«-;+i zi+1 ~ *°ki+lzl+\ (5.182) 
Z i=o * 

for i = 0,1,2 — Summing (5.182) over i and recognizing 

i+l 

as a convolution (see Theorem 2.9.2(d)), we see that 

w(z) = 7T0 K(z) + -z[K{z)*{z) - n0k0] - ^f[K{z) - k0], (5.183) 

or 
717) (1 — z)K(z) , . , 

*{Z)= KM-z -«*&■ ( 5 J 8 4 ) 

Note that 

t=0 j=0 
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(5.185) 

and that, by Theorem 2.9.2(c), 
oo 

K'(l) = E[A) = 1£tnkn = p. 
n=0 

Hence, applying L'Hopital's rule to (5.184) yields 

1 = 7r(l) = lim n(z) 
2—»1 

= XimM^-^)K'{z)-K{z)) 
»-i K'(z) - 1 

_ 7 T Q - K " ( 1 ) _ 7T0 

l-p ~ 1 - p ' 

or 7To = 1 — p. That is, the steady state probability that the system is 
empty at departure instants is l — p, just as it was for the M/M/1 queueing 
system! 

We have shown that the queueing system has a steady state distribution 
of number of customers only at the times at which customers leave the 
system. However, it can be shown that what we have proven implies there 
exists a steady state probability distribution P = (po,pi,P2, ■ ■ • ) of number 
of customers in the system at arbitrary points in time, furthermore pn = nn 
for all n. That is, 

pn = P[N = n]=n„ = P[X = n). 

These facts are proven by Gross and Harris [18] and by Kleinrock [31]. 
Thus, 

TT(Z) = GX(Z) =9N(Z)-

Hence, we can write (5.184) as 

»<«)-»»(.)-"-g'VWj). (w») 
J\\Z) — Z 

Since 7r'(l) = E[N] = L, by Theorem 2.9.2, we can calculate L from (5.186). 
In fact (see Exercise 42), if 7r'(l) is calculated from (5.186), it yields 

L = ̂ l) = p + W^p-y (5-187) 

But the formula (5.187) is not very useful as it now stands because we do 
not know much about K"(l). But, if we let Wg[6] be the Laplace-Stieltjes 
transform of s, then, by Theorem 2.9.3, 

Ws = E[s]=-dWM 
d9 

(5.188) 
8=0 
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and 
.ai _ d2W;[9] 

d9' 
E[s2

s - -o (5.189) 
8=0 

By Theorem 2.7.2(d) and Theorem 2.9.2(c), 

E[A2} = Var[A] + E[A]2 = K"(l) + K'(l). (5.190) 

But 

gA{z) = K(z) = Tknzn= He-^^-dWslt] 
n=0 J<> i = 0 3-

= / e-XtextzdWs[t}= / e~(x~Xz)t dWs[t] 
Jo Jo 

= W;[X-\z}. (5.191) 

Thus, the generating function of A can be represented as the Laplace-
Stieltjes transform, W|[0], of the service time, evaluated at 9 = A(l — z). 
The formula (5.191) is a very useful relation. We can now use differentiation 
to solve for E[A] (that we already know is p), K"(l), and 25[.<42]. We 
calculate 

K'(z) = -AWS*(1)[A(1 - z)\ and K"(z) = A2 WS*(2)[A(1 - z)]. 

Hence, by (5.188), 

K'(l) = -\W*s
WlO} = \Ws=p, 

and, by (5.189), 
K"{1) = A2 W;{2)[0] = A2 E[s2}. (5.192) 

Substituting (5.192) into (5.187) yields 

- -4^f • 
The formula (5.193) in any of the forms shown is known as the Pollaczek-
Khintchine formula. 

Substituting formula (5.192) and K'(l) = p into (5.190) yields 

E[A2] = A2 E[s2] + p. (5.194) 
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By the law of total probability, 

Pn= An[t]dW[t), 
Jo 

where 
An[t] = P[n arrivals during time w\w = t], 

and W[-\ is the distribution function for w. But, by Theorem 4.2.1, 

An[t] = e-*{-^ 
n\ 

Hence, 

This means that 

9N 

, 0 

On — ^n — / 
JO 

,-xtW 
n\ 

dW[t). (5.195) 

(z) = E^n=re-AtE^^w 
n = 0 J° j=0 ■*' n = 0 

/•oo 

Jo Jo 
= W*[X(l-z)}, 

-\(l-z)t dW[t] 

(5.196) 

where W* [8] is the Laplace-Stieltjes transform of the waiting time in the 
system, w. 

We can differentiate (5.196) to get 

dgN(z) _ dW*[v] dv 
dz dv dz 

= A / te~x 

Jo 

Hence, by Theorem 2.9.2, 

_ dgN(z) 
dz ^ = l 

= -A 
dW*\v\ 

v=\(l-z) dv v=X(l-z) 

/•OO 

= A / *dW[i] = A 
=i Jo 

W. 

(5.197) 

(5.198) 

We have derived Little's law for the special case of the M/G/1 queueing 
system. Proceeding as we did in deriving (5.198), we obtain 

E{N(N - 1)(N - 2) • • • (N - k + 1)] = 
dkgN(z) 

dz" 
\k ET„.,fc 

z = l 

= A* E[w% (5.199) 
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for k = 1,2,3, This is a generalization of Little's law. Another impor­
tant formula is obtained by substituting (5.191) into (5.186) yielding 

_ (i-P)(i-z)w;[\(i-z)] 
9N(Z) ~ — w ; [ x ( i - , ) ] - , — ' (5-200) 

that is called the Pollaczek-Khintchine transform equation by many au­
thors. (We shall see two other transform equations that are also called by 
this name.) 

If we substitute (5.196) into (5.200) we obtain 

^-"■ - ( 1 -g -T ' ' ' " <«»> 

But, since w = q + s, by Theorem 2.9.3(d) we must have 

W* [6] = W^ [0] W;[9]. (5.203) 

Hence, by the uniqueness of the Laplace-Stieltjes transform, 

"W " eAlwm-iy <5 '2 0 4> 
We now have three equations, each of which is sometimes called the Pollac­
zek-Khintchine transform equation; that is, (5.200), (5.202), and (5.204). 
From these equations we see that, in principle, if we know the Laplace-
Stieltjes transform, W|[#], of the service time distribution, we can calculate 
the steady state probability distribution, {pn}, of number of customers in 
the system as well as the distribution functions, Wq[-\ and W[-]. Of course 
we must be able to invert the Laplace-Stieltjes transforms in order to do 
this, that is, we must find the time dependent functions that have the 
transforms (5.200), (5.202), and (5.204). We demonstrate the procedure 
for the M/M/ l queueing system. 

If the service time has an exponential distribution with Ws = l / / i , then, 
by Example 2.9.6, 

(5.205) 

Substituting (5.205) into (5.200) yields 

(l-p)(l-z)—JL 
„ t„\ A* + A( l -2 ; ) 
9N(Z) = p 

H + X(l-z) 

( ■ 

fi(l-p)(l-z) 
u, — z(u + A(l — z)) 
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( l - p ) ( l - z ) = ( l - p ) ( l - z ) 

1 - z(l + p{l - z)) (1 - z) - (1 - z)pz 

= r — ^ H i - ^ D ^ ) " i f H < i - (5.206) 

Hence, pn can be read off as the coefficient of zn in (5.206) or 
pn = (l-p)pn, n = 0 ,1 ,2 , . . . , (5.207) 

as we showed earlier. Substituting (5.205) into (5.202) yields 

(1 - P)0- M 

wm = fl + e = (i-P)gM 
1J r •■ n 9(fi + e) + \(n-n-e) e + x 

(i - P)9 (i - p)e I 
4(^ + /x)-nfl ,- ^ - ^ i . * 

M(I-P) 

J(» + rt-pff ( i - , )* + ?- I + - ( I - P ) 
p , A* 

(5.208) 
/ i ( l - p ) + 0 " 

By Example 2.9.6, this is the Laplace-Stieltjes transform of an exponential 
random variable with parameter /i(l — p), so we have 

W[t] = 1 - c-"*1 - ' )* = 1 - exp(-t /W). (5.209) 

Similarly, as we show in Example 3.4.3, if (5.205) is substituted into (5.204), 
the resulting transform can be inverted to yield 

Wq[t] = \-p exp(-t/W). (5.210) 

Takacs [60] has generated a recurrence formula for calculating moments 
of queueing time in terms of moments of service time. We state one of his 
results without proof. 

Theorem 5.3.1 (Takacs Recurrence Theorem) Consider an M/G/l queue­
ing system in which E[a J + 1] exists. Then E[q], E[q2],... ,E[qJ] also exist 
and 

where E[q°] = 1. 

Corollary / / the hypotheses of Theorem 5.3.1 are true, then the moments 
E[w],E[w2],...,E[xiP] exist and 
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£ [ ^ = E ( ; W W _ i ] > k = l,2,...,j. (5.212) 
i=0 ^ ' 

Proof of Corollary Since q and s are independent, we can write 

E[wk] = E[(q + s)k] = E 
.t=o ^ / J t=o v ' 

Theorem 5.3.1 and the corollary yield the following formulas for the M/G/1 
queueing system (see Exercise 39). 

XE[s2} _ pWt 

' « - 2 ( r = p j - i m W = ^ 4 1 1 . = f ^ i . L^± . (5.213) 

£[«*]= 2W* + ^ 1 . (5.214) 

W = Wq + W s . (5.215) 

£[«;2] = E[g2] + P^. (5.216) 
1 - / 9 

Equation (5.213) is the most famous of these equations. It is called the 
Pollaczek-Khintchine formula or Pollaczek's formula. (Formula (5.193) 
also is called by both these names, at times, but (5.213) is what authors 
are more likely to mean when they refer to Pollaczek's formula.) 

By Little's law, 
A2E[S

2] 
L« - 2 ( W J ' (5"217) 

Equations (5.213)-(5.217) show that, if we know the first three moments 
of service time, we can calculate both the expected value and the standard 
deviation for the random variables q and w. (We can do the same for N 
and Nq by Exercises 40 and 41.) However, if we know only the first two 
moments of service time we must be content with average values, only. In 
many cases knowledge of average values, only, will not enable us to make 
the kind of probability calculations we desire. It is especially valuable to be 
able to compute percentile values, such as we did for the random variables 
q and w in the M/M/ l queueing system. There is no general formula to 
calculate percentile values of w for the M/G/1 queueing system, but James 
Martin [45] gives the estimates 

7r490] ZS W+ 1.3<T, (5.218) 
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and 

nw[95]^W + 2aw. (5.219) 

(Actually, Martin gives only the second estimate, but the reasoning he gives 
to justify it yields (5.218), also.) Another approach is to approximate the 
random variable of interest with a gamma random variable or a hyperexpo-
nential random variable with the same mean and C\ value, as we showed 
in Chapter 3. 

Example 5.3.1 Four communication lines are used by a message switching 
system. Each has an average transmission time per message of 2.4 seconds 
and operates at 80% utilization during the peak period of the day. Mes­
sages for transmission arrive in a random pattern to each line; however, the 
message transmission time has a different distribution for each line. The 
transmission time for the first line is H2 with qi — 0.4, g2 = 0-6, 1/A*I = 4.8 
seconds, and l//z2 = 0.8 seconds. The service time distribution on the sec­
ond line is exponential. On the third it is Erlang-3 and on the fourth it is 
constant. Calculate Wq and W for each line and estimate TTW[90]. 

Solution The M/M/1 model applies to the second line (a special case of 
M/G/ l ) and the M / G / l queueing model applies to the other three lines. 
For the first line we use the hyperexponential formulas of Chapter 3 to 
compute Ws = 2.4 seconds, E[s2} = 19.2 seconds2, and E[s3} = 267.264 
seconds3. Since a\ = E[s2] — Wj = 13.44 second2, we calculate C\ = 
13.44/2.42 = 7/3. No special computations are necessary for the second 
line, since we can use the exact M/M/1 queueing model. For the third line 
we use the Erlang-3 formulas from Exercise 39, Chapter 3, to calculate 

E[s2] = 7.68, Cj = 1/k = 1/3, and E[s3] = 30.72. 

As we ask you to show in Exercise 44 (see Example 5.3.2), we can calculate 
the exact distribution of w for the M/H2/I queueing system of line 1, and, 
as we ask you to show in Exercise 52, the same is true for the M / D / l system 
of line 4. Since it is trivial to calculate 7r«,[90] for the M/M/1 system of line 
2, this means that we must be satisfied with an approximation to 7r„,[90] 
only for line 3. We show the results of our computations in Table 5.3.1. □ 
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Table 5.3.1. Example 5.3.1 

Line 

1 
2 
3 
4 

Dist. 

H2 
Ei 
E3 
D 

Wq 

16.0 
9.6 
6.4 
4.8 

7rw[90] 
Martin Exact 

44.98 45.07 
27.60 27.63 
18.87 — 
14.40 14.43 

We see by Table 5.3.1 that Martin's approximation for 7Tu,[90] is very good; 
it hardly seems worth the effort to calculate the exact values for lines 1 and 
4. This example dramatically demonstrates the inimical effect of "irregu­
larity" in service time, as measured by C j . (We have all been conditioned 
by television ads to recognize the deleterious effects of irregularity in our 
personal lives.) The average queueing time is twice as large for exponential 
service time as for constant service time; the same is true for the 90th per-
centile value of w. These values are about 50% higher for the H2 service 
time than they are for exponential service time. 

The M / G / l queueing model is quite a useful one because random ar­
rival patterns are quite common although random service times are not. 
The M / G / l queueing model is often used as we used it in Example 5.3.1. 
That is, to calculate means and estimated percentile values rather than at­
tempting to invert the Pollaczek-Khintchine transform equations. We will 
show in the next example how transform methods can be used to study 
the steady state M/H 2 / l queueing system. Other examples of the use of 
transform methods are given in Section 3.4 and in the exercises. D 

Example 5.3.2 Consider the M / H 2 / l queueing system. We follow Kob-
ayashi [33, Example 3.1] in using transform methods to find the steady 
state distribution of the number of customers in the system. The Laplace-
Stieltjes transform of s is given by 

Hence, 

w;[x(i-z)] = 91M1 , 92M2 
Hi + A(l - z) /x2 + A(l - z) 

9l ?2 
1+Pl(l-Z) 1 + P 2 ( 1 - Z ) ' 
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where pi = X/pi,i = 1,2. Substituting the above into (5.200) yields, after 
some simplification (see Exercise 43), the formula 

9N(Z) = 
( l - p ) [ l + ( p i + P 2 - p ) ( l - z ) ] 

PiP2*2 - (pi + Pi + P\Pi)z + 1 + Pi + Pi ~ P 

Assume that z\ and 22 are the roots of the denominator of <?;v(z) as written 
above. Then we can write gif(z) using the partial fraction representation 

9N(Z) = C1-^— + C2-
 Z2 

z\ z% — z 

where C\ and C2 are constants. Since 9N(Z) is the generating function of 
N, we know that 

9N (z) = ] T p„zn = po + V\z + Viz2 + • 
n = 0 

Therefore, 

and 

9N 

9N(0) =p0 = l-p = C1 + C2, 

( 1 ) = E p . = l = C l-£L_+ C 2-flT 
n = 0 

We solve the above two equations for C\ and C2 obtaining 

(Z! " 1)(1 " PZ2) Cx = 

and 

Now we can write 

9N(Z) = 

C2 = 

z\ - z2 

(Z2 - 1)(1 - pZl) 

z2 -z\ 

C\ C2 
y 1 

1 -
Z\ 

1 - - 1 
22 

= Ci 1 + — + 
Z\ 

+C2 1 + 

(0;-(f)": 
z2 \z2) \z2) 

It follows immediately from this representation that 

P n = C 1 2 1 - n + C 2 z 2 - n , n = 0 ,1 ,2 , . . . . 
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As an example of the use of this formula, let us consider the M / H 2 / l part 
of Example 5.3.1, that is, the line with an H2 distribution with q\ — 0.4, 
q2 = 0.6, m = 1/4.8, and p,2 — 1/0.8, and where p = 0.8, so that A = 
0.8/2.4 = 1/3. Hence, px = A//ii = 1.6, p2 = A/ / J 2 = 0.8/3 so zx,z2 are 
the roots of 

1.28z2 - 6.882 + 6.2 = 0. 

The roots are zx = 4.229870336, and z2 = 1.145129665. Therefore, C\ = 
0.087843387 and C2 = 0.112156613, so we can write 

0.371566137 0.128433865 
9N^Z' ~ 4.229870336 - z + 1.145129665 - z 

By Theorem 2.9.2(c), 

, ... 0.371566137 0.128433865 
L = gUl) = -5- + -» = 6.133. 

yNK ' (4.229870336 - l ) 2 (1.145129665 - l ) 2 

This agrees with the value we get from Little's law applied to the value 
W = 18.4 calculated in Example 5.3.1, that is, A x 18.4 = 6.133. □ 
In Exercise 44 you are asked to prove that w for an M/H2/I queueing 
system also has a H2 distribution. The formulas for the M/H 2 / l queueing 
system are collected together in Table 15 of Appendix C. Tables 16, 17, 
and 18 contain the formulas for the M / G / l queueing systems in which the 
service time is gamma, Erlang, or constant, respectively. □ 

5.3.2 The G I / M / 1 Queueing System 
The embedded Markov chain technique enables us to obtain useful results 
for the GI /M/1 queueing system. For this system we assume the interar-
rival times are described by independent, identically distributed, random 
variables. (Such an arrival pattern is called a renewal process.)13 We rep­
resent the system state by the number of customers an arriving customer 
finds in the system. This yields a stochastic process {Xn} where Xn is the 
number of customers the nth arriving customer finds in the system. By pro­
ceeding much as we did in Section 5.3.1 we can show that {.Xn} is a Markov 
chain and that, if p — (XWs/c) < 1, then a steady state probability distri­
bution {7rn} exists, where nn is the probability that an arriving customer 
finds n customers in the system for n = 0,1,2, The details of proving 
these facts are given in Takacs [59], Gross and Harris [18], Kleinrock [31], 
and Cooper [10]. 

Renewal processes are discussed in Section 4.5 of Chapter 4. 
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The reader should note the distinction between irn, the probability that 
an arriving customer finds n customers in the system, and pn, the probabil­
ity that a random observer does. Consider a D / D / l queueing system with 
E[T] — 10 minutes and Ws = 5 minutes. Then 7r0 = 1 and 7r„ = 0 for n > 1, 
while po = 0.5, pi = 0.5, and pn — 0 for n > 2. An arriving customer never 
sees another customer, although the system contains one customer half the 
time and is empty half the time. A random observer, unlike an arriving 
customer, would see this "half and half" situation. Wolff [66] showed that 
Tn = Pn for all n if and only if the arrival process is Poisson. 

Let X be the number of customers that an arriving customer finds in a 
GI/M/1 queueing system. Let {7rn} be the steady state distribution defined 
above, such that TT„ — P[X = n] for all n. The proof mentioned above also 
shows that X has a geometric distribution with 

7r„ = 7r 0 ( l -7r 0 ) n , n = 0 ,1 ,2 , . . . . (5.220) 

In addition, TT0 is the unique solution of the equation 

l - 7 r 0 = i4*[Ai7r0], (5.221) 

such that 0 < 7To < 1. In equation (5.221) A*[9] is the Laplace-Stieltjes 
transform of the interarrival time, r , and /x is the average service rate. 

Since X is geometric, we have 

E[X] = ^—^, and 4 = 1—p-. (5.222) 

Proceeding exactly as we did in deriving the distribution of q for the M/M/ l 
queueing system we find that 

Wq[t] = P[q < t] = 1 - (1 - TTO) exp(-ir0t/Ws), t > 0. (5.223) 

It is not difficult to show from (5.223) (see Exercise 59) that 

W<t 
Wq = (1-TTO)—-, (5.224) 

^o 

E[q2} = 2(1 - TTO) H^j , (5.225) 

and 

02 = ( 1 - « S ) ( ^ ) • (5.226) 

For this system the probability that an arriving customer must queue for 
service is 1 — 7TQ. 
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The same argument we used for deriving the distribution function of w 
for the M/M/ l queueing system shows that 

W[t] = P[w<t] = l - exp(Tr0t/Ws), t > 0. (5.227) 

Thus, the waiting time in the system has an exponential distribution just 
as it did for the M/M/ l system! This remarkable fact implies that 

W = — a n d CT2 = W2 ( 5 2 2 g) 

Also, since w is exponential, 

Ww[r] = wln(mh)- (5-229) 
We differentiate formula (5.223) to obtain fq, the density function of q. We 
get 

fi® = ^ ~u/°)7r° exp(-«-0</W*), * > « • (5-230) 

This means that the density function, / , of the queueing time of those who 
must queue, q', is given by 

/ W _ P[q>0]~ 1 - T T O " W ' * > U -
(5.231) 

But this is the density function of w. Hence, 

P[q' <t] = P[w<t] = l - exp(-t/W), t > 0. (5.232) 

Therefore, 
E[q'} = E[q\q > 0] = W, 

and 
Varfe'] = W2. (5.233) 

Kleinrock [31] shows that 
Po = 1 - P, (5.234) 

and 
Pn=p7ro( l -7 ro ) n _ 1 , n = l , 2 , . . . . (5.235) 

Example 5.3.3 Consider the M/M/ l queueing system. Here, 

A'W = JTe- (5"236) 



318 CHAPTER 5. QUEUEING THEORY 

Hence, (5.221) becomes 

1-7T0 = — . (5.237) 
A + flTTo 

This equation yields 
7T0 = 1 - p. (5.238) 

Since pn = irn for all n because the arrival pattern is random, we have, by 
(5.220), 

Pn = {l-P)pn, n = 0 ,1 ,2 , . . . . (5.239) 

All the other formulas for the M/M/1 queueing system now agree with 
those from the GI/M/1 model by making the substitution TTQ = \ — p. D 

Example 5.3.4 Consider the E2/M/I queueing system. It is not difficult 
to show (see Exercise 64) that, if r has an Erlang-& distribution, then 

"'W-ET+J- (5M0) 

Hence, (5.221) becomes 

1- 7 r o =( 2rf^) • 
This equation yields 

7T0 = - 2 p + 0.5 + y/2p + 0.25. (5.241) 

Hence, we can easily calculate TTQ as a function of p. □ 

Example 5.3.5 Consider the E3/M/I queueing system. By (5.240) and 
(5.221) we can write 

that yields the cubic equation 

Trg + (9p - 1)TT2
0 + 9p(3p - l)ir0 + 27p2(p - 1) = 0. (5.242) 

This equation is not easy to solve with pencil and paper but can be quickly 
solved with a scientific calculator that has a root finder, such as a Hewlett-
Packard HP-28S or any other of the HP series that has the "solve" function. 
It can also be solved easily using Mathematica. We calculated the values 
of 7To for a few values of p in the second column of Table 20 in Appendix 
C. D 
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Example 5.3.6 Consider the U / M / l queueing system where the interar-
rival times are independent random variables distributed uniformly on the 
interval from 0 to 2/A. Then, by Exercise 60, 

A'[0] = ±(l-exp(20/\). 

We thus have the equation 

1 - *o = / - ( I - exp(-27r0/p). (5.243) 

This equation must be solved numerically or with the type of calculator 
mentioned in the previous example. □ 

Example 5.3.7 Consider the D / M / l queueing system in which the ar­
rivals are equally spaced in time. For this interarrival time distribution 

A*[6]=e-elx, 

so (5.221) becomes 
1 - TTO = e-^o/x = e~Wo/p. (5.244) 

This equation, too, must be solved numerically to yield the values in column 
D of Table 20. D 

Example 5.3.8 Consider the H 2 / M / l queueing system, for which 

A1 + 0 x2 + e 
Then by (5.221), the equation to determine 7To is 

1 - To = -: 1- -; • (5.245) 
Xi + fnro X2 + fJ,nQ 

Some tedious algebra applied to (5.245) yields the quadratic equation 

/i27To + M(AI + A2 - MKO + M(? I^ I + 92A2 - Ai - A2) + AiA2 = 0 (5.246) 
The unique root of (5.246) that lies between 0 and 1 is the -KQ we seek. In 
the special case that Algorithm 3.2.2 is used to generate an H2 distribution 
for the arrival pattern with a given E[T] = 1/A and C£, then it is easy to 
show (see Exercise 61) that TTQ is given by 

TO = 0.5 - p + 0.5^/(1 - 2p)2 + 16/ogi(l - gi)(l - p). (5.247) 

Formula (5.247) is used to generate the last column of Table 20, Appendix 
C, when C£ = 20. □ 
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The values of 7r0 as a function of p for several GI/M/1 queueing systems 
are given in Table 20, Appendix C. The detrimental effects of irregularity 
are evident. The probability that an arriving customer will have to queue 
for service is much lower for completely regular arrivals (constant inter-
arrival time) than for exponential arrivals. The situation is even more 
dramatic for the H2 interarrival time distribution. For the H2 distribution 
shown in the last column of the table the probability an arriving customer 
will find the server busy is almost 19% (1 — ir0 = 0.189425) when the server 
utilization is only 10%. 

We will now give some examples of the use of Tables 19 and 20 from 
Appendix C. 

Example 5.3.9 Consider Example 5.3.1. Suppose the message transmis­
sion time on each of the four lines is exponential with an average value of 
2.4 seconds and that each line operates at 80% utilization. Suppose further 
that the arrival pattern of messages to the lines is different for each line. 
Suppose the interarrival time for the first line is H2 with qi = 0.4, qi — 0.6, 
\j\i\ — 6.0 seconds, and l/fj.2 = 10 second; the interarrival time to the 
second line is exponential; it is Erlang-3 on the third line and constant on 
the fourth line. Find Wq, W, irq[90], 7TU;[90], Lq, and L for each line. 

Solution The GI/M/1 queueing system formulas of Table 19 apply with 
values of 7To taken from Table 20. The results are summarized in Table 5.3.2, 
that should be compared to Table 5.3.1. We illustrate with the calculations 
for the first line. By Table 20, 7r0 = 0.124695. Hence, 

Wq 

W 
7Tq[90) 

^ [ 9 0 ] 

Lq 

L 

— 

= 

= 

= 

= 

(1 — 7To) = 16.85 seconds, 
no 

Wq + Ws = 19.25 seconds, 
W ln(10(l - n0)) = 41.76 seconds, 
W ln(10) = 44.32 seconds, 

(1 — 7r0)— = 5.62 messages, 
TO 

— = 6.42 messages. 

It is evident from Table 5.3.2 that irregularity in the arrival process is 
inimical to the performance of a queueing system, just as Table 5.3.1 showed 
the harmful effects of lack of regularity in the service time distribution. 
In both Example 5.3.1 and this example, we have E[T] = 3 seconds and 
Ws = 2.4 seconds. It is interesting to compare the M/E2/I queueing system 
to the E2/M/I, the M/E3/I queueing system to the E3/M/I system, and 
the M/D/ l system to the D /M/ l queueing system. They are not greatly 
different although not equal. D 

file:///j/i/
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Table 5.3.2. Results of Example 5.3.9 

Line Arrival Pattern 

Wq 
W 
7Tg[90] 
7TW[90] 
Lq 
L 

H2 

16.85 
19.25 
41.76 
44.32 

5.62 
6.42 

M 

9.60 
12.00 
24.95 
27.60 
3.20 
4.00 

E3 

5.90 
8.30 

16.28 
19.09 
1.97 
2.77 

D 

4.06 
6.46 

11.88 
14.86 

1.35 
2.15 

Example 5.3.10 Consider an E2/E2/I queueing system with p = 0.95 
and Ws = 2 seconds. Find an upper bound for W and 7Tu;[90]. 

Solution We can get two conservative estimates by approximating the 
queueing system by an M/E2/I system and by an E2/M/I system. These 
systems will each have performance parameters that are larger than those 
for the E 2 / E 2 / l model. Using the formulas of Table 17 or the APL program 
MAEKA1, we see that for the M / E 2 / l queueing system 

W = 30.5 seconds, 7Tu;[90] « 67.24 seconds. 

The formulas for the E 2 / M / l with w0 = 0.066288 from Table 20 yield 

W = 30.17 seconds, ^^[90] = 69.39 seconds. 

Thus, we can safely use W = 30.17 seconds and 7Tu;[90] = 67.24 seconds 
as upper bounds for these quantities. Later we will see some better upper 
bounds. In Example 5.5.2 we will see that W cannot exceed 21.0 seconds. 
There are some rather complex algorithms that can to used for computing 
the performance statistics for Em/Efc/c queueing systems. Tables of values 
of the queue size and waiting time distributions are given in Hillier and 
Lo [21] and the book by Hillier and Yu [22]. For example, on page 214 of 
Hillier and Yu we see that, for the E2/E2/I system of this example, with 
p = 0.95 and Ws = 2, so that A = p/Ws = 0.475, we have Lq = 8.8883. 
Thus, Wq = Lq/X = 18.7122 seconds, so that W = Wq + Ws = 20.7122 
seconds and L = XW = 9.8383 customers. D 

5.3.3 The G I / M / c Queueing System 
Most of the nice properties of the GI/M/1 queueing system carry over to the 
GI/M/c system. Just as with the former system, if p = (XWs/c) < 1, then a 



322 CHAPTER 5. QUEUEING THEORY 

steady state probability distribution {7r„} exists where nn is the probability 
an arriving customer finds n customers in the system for n = 0,1,2, The 
details of proving these facts are given in Takacs [59], Gross and Harris [18], 
Kleinrock [32], and Cooper [10]. 

The formulas for the GI/M/c queueing system are given in Table 21 of 
Appendix C. The reader will note that the level of computation required to 
calculate the performance parameters of this model increases dramatically 
over that for the GI/M/1 queueing model as c grows. The key parameter 
is w, the unique solution of the equation 

u> = A*[cp,(l -u)] (5.248) 

such that 0 < w < 1. 

Example 5.3.11 Consider the M/M/2 queueing system. Since A*[6] 
A/(A + 0), equation (5.248) becomes 

A + 2 ( l - w ) / i o + 2 ( l - w ) ' 
(5.249) 

where a = XWs-
The solution of (5.249) satisfying 0 < w < l i s w = / ) = a/2. We 

compute 

9i = A*[jn] - T T — = r ^ - , j = 1,2. 

Hence, 

and 

Therefore, 

Similarly, 

and 

Then 

Ci = 

A + jfi a + j 

9i 

C2 — C\ x 

l - 5 i 

92 

= a, 

1-92 
a 
~2 

D = 
1 

1-p 

U0 = DC0 

Ui = DCX 

1 
+ - + 

1 2 p 2 ( l - p) 
p 2p'\ 

= ( 2 p + l ) 

Da 

1 1 
P + 2 p 2 

l + P 

1 - p 

1 
VJ ip' 

= 2p 

Li + p 

1 - p 
1 + p. 

TO = U0 - Ux = 1 - p 
1 + p -
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Since irn = pn for all n because the arrival process is random, we obtain 

I ^ A n = 0. 
Pn = < (5.250) 

^ p » , n = l , 2 , . . . . 
1 + p 

This a grees with the formulas for pn in Table 6 of Appendix C. Applying 
the formulas from Table 21 yields the other formulas in Table 6. D 

The following remarkable theorem was communicated to me by the late Dr. 
Isaac Dukhovny, who provided the proof. 

Theorem 5.3.2 Consider a GI/M/c queueing system and a GI/M/1 queue­
ing system each of which has the same type of distribution of interarrival 
time and such that p < 1, Ws, and C\ are the same for both systems. Then 

Elik > QJGI/M/C = \Eb\i > °1GI/M/I- (5-251) 
Proof Let A[-] be the distribution function of the interarrival time for the 
GI/M/c system with w the unique solution of the equation w = A*[cp(l— w)] 
such that 0 < w < 1. Then, as we showed earlier, 

Wo 
Wq, = E[q\q > 0 ] G I / M / c = -Q-LJ. (5.252) 

Let r be the interarrival time for the GI/M/1 queueing system. Since p 
for this system is the same as that for the GI/M/c system, we must have 
r — CT where T is the interarrival time for the GI/M/c system. Then, if 
.4i[-] is the distribution function for r , we must have 

(5.253) A1[t] = P[r 

This shows that 

A\[6) 

<A 

= 

= 

= P[CT 

/ e" 
Jo 
/ e" 

<t]= P[T < t/c] = 

-8tdA1[t] = 

-6cz dA[z) = 

-A[t/c}. 

/•OO 

/ e~et dA[t/c 
Jo 

-- A*[cB]. (5.254) 

Therefore, the equation w = ^^[^(l — w)] becomes w = A*[cp,(l — UJ)]. This 
is exactly the equation we solved to get the value of a; in (5.252). Since 

Ws 
E[q\q > 0 ]GI /M/I = ^Z 

U) 

the proof is complete. H 
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Example 5.3.12 Consider the M/M/2 queueing system and compare it 
to the M/M/ l system. Then, since, by the last example u> = p, we have 

E[q\q > 0 ] M / M / 2 = 
Ws 

2(1 -PV 

and 
E[q\q > 0 ] M / M / I = 

Ws 

1 - p ' 
that agrees exactly with Dukhovny's theorem. □ 

One of the practical problems involved in using the GI/M/c queueing sys­
tem is in finding the solution cu to equation (5.248). Halachmi [19] derives 
the following estimate of w, 

u) = exp 
"2(1 -p) 

2/^2 1 + p'C'T 
(5.255) 

by a diffusion approximation. This can be used for w for a quick-and-dirty 
estimate of the performance parameters. The estimate can also be used as 
a starting value for a numerical method to obtain a more exact value for w. 
Of course, if you have a calculator with a root finder or have Mathematica, 
then it is almost trivial to obtain w. Another approach is to use a numerical 
method such as the Newton-Raphson algorithm. Henrici [20] is a good 
reference for numerical methods. □ 

Example 5.3.13 The computer performance analysts at Lingering Lead 
have discovered a computer subsystem that can be modeled as a D/M/2 
queueing system. They want to calculate the performance parameters when 
p = 0.9. Then a = 2p = 1.8 erlangs. Since A*[6] = e~elx = e " 8 / 1 8 , (5.248) 
becomes 

> - l ) -
u) = exp 0.9 

(5.256) 

My HP-32S shows that the correct answer to (5.256) is 0.806899833. Ha-
lachmi's estimate is 

u = e - 0 2 = 0.818730753, 

that is in error by approximately 1.47%. □ 

5.4 Priori ty Queueing Systems 
As we mentioned in Section 5.1, all customers in a queueing system need 
not be treated equally, just as in most organizations, some individuals may 
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receive preferential treatment.14 Queueing systems in which some cus­
tomers get preferential treatment are called priority queueing systems. The 
simplest queue discipline in which there are no priorities is the first-come, 
first-served assignment system, abbreviated as FCFS or FIFO (first-in, first-
out). Other nonpriority queueing disciplines include last-come, first-served 
(LCFS or LIFO), and random-selection-for-service (RSS or SIRO). There 
are some whimsical queue disciplines that are part of the queueing theory 
folklore. These include BIFO (biggest-in, first-out).15, FISH (first-in, still-
here), and WINO (whatever-in, never-out) The reader can, no doubt, think 
of others to describe personal experiences with queueing systems. 

In the priority queueing systems that we study, customers are divided 
into priority classes, numbered from 1 to n. We assume that the lower the 
priority class number, the higher the priority; that is, customers in priority 
class i are given preference over customers in priority class j if i < j . (In 
this case the customer in class i is said to have a higher priority than a 
customer in class j.) Customers within a given priority class are served, 
with respect to that class, by the FCFS queue discipline. 

There are two basic control policies to resolve the situation wherein a 
customer of class i arrives to find a customer of class j in service, where 
i < j , called preemptive and nonpreemptive systems. In a preemptive prior­
ity queueing system, service is interrupted and the newly arrived customer 
begins service. The customer whose service was interrupted returns to the 
head of the jth class. As a further refinement, in a preemptive-resume pri­
ority queueing system, the customer whose service was interrupted begins 
service at the point of interruption on the next access to the service facil­
ity. There are other variations, including preemptive-repeat, in which the 
lower priority customer repeats the entire service from the beginning. In a 
nonpreemptive priority queueing system, the newly arrived customer waits 
until the customer in service completes service before gaining access to the 
service facility. This type of system is called a head-of-the-line system, 
abbreviated HOL. 

Some nonpriority queue disciplines, that is, systems with no priority 
classes, allow preemption. One such system is the LCFS/PR (last-come, 
first-served, preemptive-resume) queue discipline. For this queue discipline 
an arriving customer preempts the customer in service. 

We assume all queue disciplines are work conserving. This means that 
customers do not leave without completing service (no reneging allowed), 
and that the server is never idle if there are customers present requiring 
service. 

14Sometimes this is necessary for business reasons or to optimize the use of a resource. 
1 5This is actually a priority system. 
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The queue discipline can have important effects on the performance of 
a queueing system. The following example is used by Shelly Weinberg of 
IBM to illustrate some of the issues of queue discipline. 

Example 5.4.1 Hapless Harry arrived at the office copying machine at 
the same time as an individual who claimed he was Leo Tolstoy. Harry 
wanted to copy a 10 page document, but Mr. Tolstoy wanted to reproduce 
his novel War And Peace (the 1,000 page version). Each wanted to go 
first; Hapless because he'd promised his boss a copy of the document and 
Mr. Tolstoy because his friend, Napoleon Bonaparte, would benefit from 
exposure to one of the greatest novels of all time. Hapless explained to Mr. 
Tolstoy that, assuming it took 10 seconds to copy each page, the average 
queueing time for the two of them, if Leo went first, would be half of 10,000 
seconds (an hour and 23 minutes), but only 50 seconds if Hapless went 
first. Unfortunately, while Harry was stating his case, General Douglas 
MacArthur moved in to begin copying his 438 page book, Reminiscences. □ 

The results of Example 5.4.1 give us an intuitive feel for the proposition 
that Wq and W are both minimized if priority is given to customers who 
have the shortest required service times. This is, indeed, true. For the 
proof see Gelenbe and Mitrani [17, page 200]. 

5.4.1 M/G/l Priority Queueing Systems 

In Section 5.3.1 we developed the equations for the M / G / l queueing sys­
tem with the assumption that the queue discipline was FCFS. In the next 
theorem we generalize the results to include two other queue disciplines. 

Theorem 5.4.1 Consider an M/G/l queueing system with any queue dis­
cipline that chooses customers by an algorithm that does not consider cus­
tomer service times or any measure of them (such as the FCFS queue dis­
cipline). Then the steady state distribution of number in the system, N, 
will be the same as for FCFS. The performance parameters W, Wq, L, and 
Lq will also be the same as for the FCFS queue discipline. However, the 
distributions of w and q will depend on the particular queue discipline in 
effect. In particular, the second moment of q will be given by (5.257) when 
the queue discipline is RSS and by (5.258) when it is LCFS/NP (last-come, 
first-served, nonpreemptive). That is, for the RSS queue discipline, 

2XE[s>] X*(E[s>})2 

E[q]-3(i-P)(2-p) + (i-Pf(2-Py (5-257) 
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while for the LCFS nonpreemptive queue discipline, 

Hfl-^&L / W ' . (5.258) 
w J 3(1 - p)2 2(1 - pf K ' 

For all queue disciplines independent of s, we have 

a\ = E[q2} - W2, (5.259) 

by Theorem 2.7.2(d), and 
<J2w=Oq + a2s, (5.260) 

since q and s are assumed independent. 

Proof The main part of the theorem is proven by Kleinrock [32]. The 
formulas (5.257) and (5.258) are proven by Cohen [9]. (5.259) and (5.260) 
are true for the reasons given in the statement of the theorem. B 

The variance of q (and therefore of w, since o2^ = a2 + a2) is greater for 
RSS than for FCFS, and for LCFS greater than RSS. To date, no one has 
derived explicit distribution functions for w ox q for the RSS and LCFS/NP 
queue disciplines, even when the service time is exponential. 

Example 5.4.2 Consider the M/H2/I queueing system representing the 
first communication line of Example 5.3.1. If the queue discipline is FCFS, 
the M/G/1 equations of Table 14, Appendix C, show that Wq = 16 seconds, 
W = 18.4 seconds, E[w2] = 756.48 seconds2 and a2

w = 417.92 seconds2. 
Theorem 5.4.1 shows that, if the queue discipline of this system is RSS, 
then Wq and W do not change, but 

0-2 = a\ + a2
s = 844.8 + 13.44 = 858.24 seconds2. 

Similarly, for the LCFS/NP queue discipline we have 

°w = <7q + °\ = 3046.4 + 13.44 = 3059.84 seconds2. □ 

Let us now consider yilQijl queueing systems in which there are n priority 
classes. We will assume that customers of the first priority class receive the 
most preferential treatment, those of the second priority class the second 
most preferential treatment, etc. We also assume that the customers from 
class i arrive in a Poisson pattern with mean arrival rate Aj, i = 1,2, . . . , n. 
Each class has its own general service time with E[si] = 1/Hi, and finite 
second and third moments E[s2], E[s?]. Thus, the total arrival stream to 
the system has a Poisson arrival pattern with 

A = Ai +A 2 + --- + An. (5.261) 
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The first three moments of service time are given by 

Ws = y £[*i] + ^E[s2) + ■■■ + ^-E[sn], (5.262) 

and, by the law of total moments, 

E[s>) = ^E[sl\ + ^E[s\) + ■■■ + ±E[sl], (5.263) 

and 
Els*) = ±E[sl] + ^E[sl\ + -.. + ^E[sl). (5.264) 

Equation (5.261)-(5.264) are valid not only for nonpreemptive queueing 
systems (HOL) and preemptive resume queueing systems but also for a 
system with the given customer classes but for which all customers are 
served on a FCFS basis. Other formulas valid for this type of system are 
given in Table 22 of Appendix C. 

The formulas for the M/G/1 nonpreemptive priority (HOL) queueing 
system are given in Table 23 of Appendix C. The proofs of the valid­
ity of these formulas are given by Gelenbe and Mitrani [17] and Laven-
berg [41]. The calculations for this model can be made using the APL 
program PAQUEUE . 

The formulas for the M/G/1 preemptive-resume priority queueing sys­
tem are given in Table 24 of Appendix C. The equations for this model are 
adapted from Lavenberg [41]. The calculations for this model can be made 
using the APL program PRAQUEUE. 

We reproduce two of the equations from Table 24 for discussion. For 
convenience we define 

aj=X1E[si] + --- + XjE[sj], j = l,2,...,n (5.265) 

and note that an — a — XW$- For this system the mean time in the system 
for a customer of class j is given by 

3 l - « ; - ! 

Formula (5.266) shows that a customer with the highest priority (a class 
1 customer) will be completely unaffected by customers of other classes. For 
j — 1 (5.266) reduces to PoUaczek's formula for an M/G/1 queueing system 

5>£[*?] 
E[Sj] + t = i 

2(1 - aj) 
, a0 = 0, j = l,2,...,n. (5.266) 
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with A = Ai, Ws = E[si], and E[s2) = E[s{]. Formula (5.266) also shows 
that class 2 customers are affected only by class 1 and class 2 customers, 
and, more generally, class j customers are affected only by those of classes 1 
through j . The situation is much different for the HOL queueing discipline. 
For this discipline we have 

EM = on ^ w l „ V ao = 0, j = l , 2 , . . . , n . (5.267) 
2(1 - a j _ i ) ( l - O j ) 

This formula shows that priority class j customers are affected directly by 
all higher priority customers because of the terms 1 — o,-_i and 1 — a,j in the 
denominator, and also indirectly by customers of all classes because of the 
numerator, XE[s2}. Both A, by (5.261), and E[s2], by (5.263), depend on all 
customer classes. Thus, adding a new priority class of lowest priority, say 
class n + 1, to a preemptive-resume priority queueing system will have no 
effect on the performance statistics for any of the existing priority classes, 
but could have a profound effect on the performance of all existing classes 
in a nonpreemptive priority system. We will illustrate this phenomenon 
after the following example. 

Example 5.4.3 Jacques Casanova, the Chief Capacity Planner at Walla 
Walla Wankel, a manufacturer of exotic electronic devices, is designing a 
new interactive computer system. Jacques envisions three types of inter­
active transactions, each of which has a Poisson arrival pattern. Type 1 
transactions arrive at a mean rate Ai = 10 transactions per second. For 
the processor planned by Mr. Casanova, the service time of these trans­
actions has an Erlang-2 distribution with mean 0.04 seconds. For Type 
2 transactions, A2 = 0.5 transactions per second with an exponential ser­
vice time with E[s^ = 0.1 seconds. For Type 3 transactions A3 = 0.01 
transactions per second. For these transactions the service time is H2 with 
E[sa] — 10 seconds, and £[«§] = 500 seconds2. Jacques wants to analyze 
the performance of the system (a) as a FCFS queueing system, (b) as a 
nonpreemptive (HOL) priority with Type 1 requests getting the highest 
priority and Type 3 requests the lowest, and (c) as a preemptive resume 
priority system with priorities assigned as in (b). 

Solution By (5.261), A = 10.51 transactions per second. Using the prop­
erties of the Erlang-2 distribution, we calculate E[al] = (1 + l/2)E[si]2 — 
0.0024 second2. Since s-z has an exponential distribution, we calculate 
E[s\) = 2! x E[s2]2 = 0.02 seconds2. We apply (5.262) to calculate Ws = 
0.05233111 seconds. Formula (5.263) yields E[s2] = 0.4789724 seconds2. 
We summarize the calculations in Table 5.4.1. They can be made using 
the APL programs NPAQUEUE, PAQUEUE, and PRAQUEUE. Table 
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5.4.1 shows an overall system improvement in going from a FCFS queue-
ing discipline to a nonpreemptive (HOL) priority system. However, the 
improvement has a detrimental effect on W2 and W3. The preemptive re­
sume priority system provides a very dramatic improvement over the HOL 
queueing system. The small price paid16 for the improvement in W, Wq, 
Wi, and W2 is an increase in W$. In Exercise 74 we ask you to investigate 
the effect on system performance of reversing the priority assignments. D 

Let us return to the discussion just prior to Example 5.4.3. Suppose 
that we have two priority classes with the Type 1 and Type 2 transactions 
like those of Example 5.4.3. Then Wi, W2, E[qi], and E[q2] would have 
the same values as those shown in Table 5.4.1 for the preemptive resume 
system. However, these values change for the HOL system as we now show. 
We calculate 

A 
Ws 

E[s2] 
P 

Wq 

Wi 

W2 

W 

= 
= 
= 
— 

= 
= 
= 
— 

10.51 transactions per second 
0.0429 seconds 
0.00324 seconds2 

0.45 
0.0294 seconds 
0.0683 seconds 
0.1515 seconds 
0.0723 seconds. 

All these values are much smaller than the corresponding values in Table 
5.4.1 for HOL with three priority classes. The Type 3 transactions have a 
tremendous negative impact on overall system performance as well as on 
the performance of Type 1 and Type 2 transactions! 

1 6 The observation that , "there is no free lunch," is as valid for queueing systems as 
everywhere else. 
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Table 5.4.1. Example 5.4.3 
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Parameter 

A 
ws 

E[s2} 
E[qi\ 
E[q2) 
E[q3] 
Wx 
W2 
W3 
Wq 

W 
Lq 
L 

FCFS 

10.51 
0.0523 
0.4790 
5.5933 
5.5933 
5.5933 
5.6333 
5.5933 
15.693 
5.5933 
5.6457 
58.786 
59.336 

HOL 

10.51 
same 
same 
4.195 
7.627 
10.17 
4.235 
7.727 
20.17 
4.364 
4.416 
45.865 
46.415 

PR 

10.51 
same 
same 
0.020 
0.118 
18.35 
0.060 
0.218 
28.35 
0.042 
0.094 
0.443 
0.993 

Input 
] , 

^ 

, 

Queue 

III 
CPU 

1 

I 

Output 

Figure 5.4.1. Round-robin system. 

5.4.2 M / G / l Processor-Sharing Priority 
This model has its genesis in the round-robin algorithm for allocating the 
CPU resource to users. The purpose of the algorithm is to give preference 
to shorter jobs. The round-robin model is shown in Figure 5.4.1. Customers 
(user requests) are assumed to arrive at the processor in a Poisson arrival 
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pattern. Each arriving customer enters the single CPU queue and waits 
in FCFS fashion for a quantum At of service time. The quantum size is 
the same for all customers. If service is completed in less than At time 
units, the customer leaves the system and the next customer in the queue 
starts service. If the entire quantum is expended but the customer has not 
completed service, the customer is forced to leave the service facility and 
return to the tail of the queue for another cycle. The cycle is repeated by 
the customer until the required service is received, whereupon the customer 
leaves the system. Kleinrock [32, Section 4.4] discovered that by letting the 
quantum At shrink to zero, he could produce an analytical model with 
much simpler expressions for the performance measures but that is a good 
approximation to a round-robin system with a small quantum. Kleinrock's 
system is called a processor-sharing system since, if there are k customers in 
the system, each receives the fraction 1/fc of the processor capacity; that is, 
the customers share the processor equally. We now give a formal description 
of the M / G / l processor-sharing queueing system. 

The M / G / l processor-sharing queueing system has a Poisson arrival 
pattern with average arrival rate A. The service time distribution is general 
with average rate p.. The queue discipline is processor-sharing which means 
that each arriving customer immediately receives his or her share of the 
processor service so there is no queue. Thus, if a customer arrives when 
there are already n — 1 customers in the system, the customer receives 
service at the average rate p/n. The following steady state relations hold, 
when p = X/p < 1: 

Pn = (l-p)pn, n = 0 , l , 2 , . . . , (5.268) 

(The number of customers in the system is geometrically distributed!) 

L = - ^ - , (5.269) 
\-p 

E[w\s = t] = —^—, (5.270) 
1 - p 

and 
W = -P-2-. (5.271) 

1 - / 0 

Although there is no queue (and thus no queueing time), a customer re­
quiring t units of service time suffers a delay because the full capacity of 
the processor is not available due to interference from other customers. 
The average of this delay, that we denote by E[q\s = t], is the difference 
between E[w\s = t] and t, the (full capacity) amount of processor time 
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needed. Thus, we have 
E[q\s = t] = -^—. (5.272) 

1 - p 
If we let / denote the density function of the service time we see that 

(•OO 

dt 

dt 

(5.273) 

/•OO 

Wq = / E[q\s = t}f(t) 
Jo 

l-PJo 
pWs 

The equations (5.268), (5.269), and (5.271)are exactly the same as the 
corresponding equations for the M / M / l queueing system! In addition the 
departure stream is Poisson, as it is for the M/M/ l system. The distri­
bution of w and q is not known in general. Ott [46] gives, in the form of 
Laplace-Stieltjes transforms and generating functions, the joint distribution 
of w and the number of customers in the system at departure for customers 
in the general M / G / l processor-sharing system. Ramaswami [49] derives 
the mean and variance of w for the GI/M/1 processor-sharing system. 

The equations for the M / G / l processor-sharing queueing model show 
that this model has some very nice properties. Equation (5.270) shows that 
the mean conditional response time is a linear function of required service 
time. A customer who requires twice as much service time as another will, 
on the average, spend twice as much time in the system. The mean response 
time W, by (5.271), is independent of the service time distribution and 
depends only on its mean value. This contrasts with the M / G / l queueing 
system in which, by Pollaczek's formula, 

2(1-p)+ s ' 

the average response time clearly depends on the second moment of the 
service time. Other nice properties of the model are discussed by Klein-
rock [32] and by Lavenberg [41]. 

Example 5.4.4 Old Domination Bank is planning to install an interactive 
time-sharing system with a large number of terminals so that the arrival 
pattern to the computer center can be modeled as random (Poisson) with 
A = 450 requests per second. The proposed computer center can be mod­
eled as a single-server, processor-sharing system with a processing rate of 
50,000,000 instructions per second. Suppose the average number of in­
structions per interaction is estimated to be 100,000, including operating 
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system overhead. Haplas Harry Harrington, the head capacity planner at 
Old Domination, wants to calculate the average response time, W, the av­
erage number of interactions being processed by the computer, L, and the 
probability that 5 or more interactions are in process at once. 

Solution Since Ws = 100,000/50,000,000 = 0.002 seconds, Haplas calcu­
lates p — XWS — 0.9. Hence, by (5.271), Haplas predicts that 

Ws W 
1 

0.02 seconds, 

and 
L = XW = 9 interactions. 

By (5.268), N has the same geometric distribution as an M/M/ l system, 
so 

P[N > n] = pn, n = 0 ,1 ,2 , . . . . 
Therefore, he predicts that 

P[N > 5] = (0.9)5 = 0.59049. D 

5.4.3 Multiserver Priority Systems 
There is a paucity of exact results for multiserver priority systems, although 
there are some approximations for closed multiserver systems, that we dis­
cuss in Chapter 6. The following result is due to Cobham [8]. 

Theorem 5.4.2 Consider the M/M/c nonpreemptive queueing system. Sup­
pose there are n priority classes with each class having a Poisson arrival 
pattern with mean arrival rate Aj, and that each customer has the same 
exponential service time requirement. Then the overall arrival pattern is 
Poisson with mean 

A = Ai+A 2 + --- + A„. (5.274) 
The performance parameters are given by 

_ AWs _ _A_ 
c c/i' 

E[qi] = 

and 

E\qj) = 

C[c,a]Ws 
c(l-AiW^/c) ' 

C[c,a}Ws 

(5.275) 

(5.276) 

- , j = 2, ...,n. 

l-iWs^xA/c 
8 = 1 

(5.277) 
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Proof See Cobham [8]. ■ 

Cobham's results together with some additional useful formulas that 
follow either from Little's law or Theorem 3.8.1 are given in Table 26 of 
Appendix C. 

Example 5.4.5 McQuyre Tyre has an interactive computer system for 
their network of stores. Phileas Fogg, Performance Czar, has successfully 
modeled the computer system during the peak period of the day as an 
M/M/3 queueing system with A = 14.7 customers per second and Ws = 0.2 
seconds. Using the M/M/c formulas, he calculates Wq — 3.2 seconds, W = 
3.4 seconds, Lq — 47.16 customers, and L — 50.1 customers. The store 
managers are upset by the average response time of 3.4 seconds. Phileas 
offers them a service level agreement whereby they will be guaranteed a 
mean response time, W, of less than one second for two out of three days 
with the mean response time on the third day not to exceed 10 seconds. 
Can Phileas live up to the agreement with the present equipment? 

Solution Phileas plans to use the priority queueing system described in 
Theorem 5.4.2. He arbitrarily assigns one third of the users to each priority 
class on the first day. On the second day he switches the priority classes; the 
first class becomes the third class, the second class becomes the first, and 
the third class becomes the second. On succeeding days the same switch 
is made so that each user spends one third of the time in each customer 
class. The results of the calculations described in Table 25, Appendix C, 
are shown in Table 5.4.2. We see that one third of the time each customer 
has a mean response time of 0.2953 seconds, one third of the time it is 
0.4749 seconds, and it is 9.454 seconds on one third of the working days. 
Phileas can live up to his agreement! □ 

Razors pain you 
Rivers are damp; 
Acids stain you; 
And drugs cause cramp. 
Guns aren't lawful; 
Nooses give; 
Gas smells awful; 
You might as well live. 

Dorothy Parker 
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Table 5.4.2. Example 5.4.5 

Parameter 

A 
Ws 

E[qi] 
E[q2) 
E[q3] 
Wx 

W2 

^ 3 
Wq 
W 
Lq 

L 

FCFS 

14.7000 
0.2000 
3.2082 
3.2082 
3.2082 
3.4082 
3.4082 
3.4082 
3.2082 
3.4082 

47.1600 
50.1000 

Nonpreemptive 

14.7000 
0.2000 
0.0953 
0.2749 
9.2543 
0.2953 
0.4749 
9.4543 
3.2082 
3.4082 

47.1600 
50.1000 

5.5 Bounds and Approximations 
In many cases when we want to use a queueing theory model to solve a 
problem we may find that our model isn't precisely one of the easy-to-solve 
models such as M/M/ l , M/M/c, M/G/c, or the machine repair model. 
In many cases we can find the exact or approximate solution in a table 
in a book such as Hillier and Lo [21], Hillier and Yu [22], Kiihn [37], van 
Hoorn [64], Sakasegawa [51], or Seelen et al. [53]. In other cases we may not 
need this much accuracy for quick-and-dirty, back-of-the-envelope calcula­
tions. We shall provide some of the simpler but most useful approximate 
formulas and bounds. 

5.5.1 Heavy Traffic Approximations 
We are especially interested in queueing systems as they approach over­
loading, that is, as the server utilization of each server approaches one. 
Naturally, the study of such systems is called heavy traffic theory. 

Theorem 5.5.1 {Heavy Traffic Approximation) Consider a GI/G/c queue­
ing system. As p = XWs/c approaches one, the distribution of queueing 
time approaches that of an exponential distribution with 

Q 2(1 -p) c ( l - p ) \ 2 J 
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Proof The proof for c = 1 was given by Kingman [28]. The general proof 
is given by Kollerstrom [35] and Kleinrock [32]. ■ 

We have stated the above theorem in the form useful for approximation. 
Kollerstrom [35] gives the more mathematically precise statement of the 
theorem. (Unfortunately, there is a typographical error in the statement of 
the result on the first page of his paper.) 

There is no easy way to estimate the error in using the heavy traffic 
approximation, but it is known that p must be very close to 1, say p — 0.999, 
for the approximation to be very accurate. We give an example below. 

Example 5.5.1 Consider an H 2 /H 2 /2 queueing system where both of the 
hyperexponential distributions have balanced means. Suppose, also, that 
C2

S = 2.5, C\ = 2, Ws = 1 second, and p = 0.98. Then, by the table on 
page 63 of Seelen et al. [53], the exact value of Wq is 54.498765 seconds. 
The heavy traffic approximation gives Wq = 56.1352 seconds, for an error 
of 3 percent. □ 

Suppose that p, C%,C\, and Ws are the same for two heavy-traffic queueing 
systems (p as 1): one GI/M/1 and the other GI/M/c. It is not difficult to 
show (see Exercise 70) that the mean queueing time for the latter system 
is approximately 1/c times the mean queueing time of the former; that is, 

WQGl/M/c ** ~WQG1/M/V 

This is what intuition would suggest, but is not true for low values of p. 
For example, the ratio of Wq for the M/M/2 queueing system, to that for 
the M/M/ l queueing model is p/(l + p); this is approximately p for small 
values of p but approaches 1/2 as p approaches 1 (the heavy traffic case). 
(The value of p / ( l + p) is 0.09091 for p = 0.1 and 0.4975 when p = 0.99.) 

5.5.2 Bounds on Queueing Systems 
In the next theorem we see that both upper and lower bounds exist for 
Wq in a GI/G/1 queueing system; they do not require the heavy-traffic 
assumption. 

Theorem 5.5.2 (Bounds for Wq) For every GI/G/1 queueing system, the 
following inequalities are true: 

w jS^ICH-Cto-rm (5.279) 

12<1 - p ) 2 I ? 
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Proof See Stoyan [57]. ■ 

Daley, in a private communication, has drawn my attention to a result 
implicit in the unpublished work of Teunis J. Ott [47] that the lower bound 
(5.280) is tight, in the sense of being attained by any D / G / l system with 
specified A, Ws, and Var[s] whenever it is true that the probability is 1 
that s is an integral multiple of r . Daley also revealed that Kreinin [36] has 
proved the following result. 

Theorem 5.5.3 (Bounds for Wq) For any Ej,/G/1 queueing system 

while for any E-y/G/1 queueing system with 7 < 1, 

where the symbol E^ means that the interarrival time r has a gamma 
distribution with parameters (3 — 7 and a = A7, so that E[T] = 1/A, 
Var[T] = 1/(A2

7), and C\ = I /7 > 1. 

Proof See Kreinin [36]. ■ 

Example 5.5.2 In Example 5.3.10 we considered an E 2 / E 2 / l queueing 
system with p = 0.95 and Ws — 2 seconds. We can apply (5.281) and 
(5.280) to conclude that 8.5 seconds < Wq < 19.0 seconds. Thus, W < 
19.0 + 2 = 21.0 seconds. This is much less than the upper bound of 30.17 
seconds we found in Example 5.3.10. The heavy traffic approximation yields 
Wq = 20.026 seconds OTW = 22.026 seconds. By the heavy traffic theorem, 
q is approximately exponential, so 7Tg[95] « Wgln20 = 56.92 seconds, if we 
use the upper bound 19.0 from (5.281) for Wq. It follows from Bonferroni's 
inequality that 

M 9 0 ] < Tg[95] + 7TS[95]. (5.283) 

Since s has an Erlang-2 distribution with mean 2, it has a gamma distri­
bution with (i — k = 2 and a = kfi = 1, and we can use MINITAB to 
calculate TTS[95] = 4.7439. Therefore, by (5.283), 

7r«;[90] < 56.92 + 4.74 = 61.66 seconds. 

This is smaller than the 67.24 seconds we estimated in Example 5.3.10. (If 
we use the exact value of Wq to estimate 5Tg[95], we obtain 7^(90] < 60.80 
seconds.) □ 
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A sharp upper bound for Wq for a GI/G/c queueing system has proven 
more elusive than that for the GI/G/1 queueing system. Kingman [29] 
proved that the value of Wq given by (5.278) for the heavy traffic case 
when c = 1 is an upper bound for Wq for all steady state systems. That 
is, Kingman proved that, for every GI/G/1 queueing system, 

for all 0 < p < 1. Daley [12, 13] improved this upper bound to obtain 
(5.279) which is smaller than (5.284). It would seem reasonable that, when 
c > 1, the heavy traffic Wq- given by (5.278) would be an upper bound 
for Wq for any GI/G/c queueing system with 0 < p < 1. Brumelle [5] 
has shown that this is true for the GI/M/c queueing system, but we .know 
how to solve this system to obtain the exact solution. However, since this 
solution requires some sophisticated computation, Brumelle's result is of 
some value. 

Daley [13] has conjectured a slightly smaller upper bound for Wq for 
a GI/G/c queueing system than that given by (5.278) of the heavy traffic 
theorem. 

Conjecture 5.5.1 (Daley's Conjecture) Consider any GI/G/c queueing 
system with 0 < p < 1. Then 

W, 

See Daley [13] for a discussion of his conjecture. The formula (5.285) ap­
pears as formula (3.6) in Daley's paper. 

Suzuki and Yoshida [58] have shown that (5.278) is an upper bound for 
Wq for a GI/G/c queueing system when 0 < p < 1/c. 

In the following theorem we give the best bounds for Wq in a GI/G/c 
queueing system that have been proven to date. Kingman [30] used a 
plausibility argument to derive the upper bound 

Wolff [67] provides a rigorous proof of (5.286). Daley has pointed out that 
the proof given by Wolff is derived by showing that Wq for the GI/G/c 
queueing system is bounded above by Wq for the related cyclic single server 
queue and thus (5.286) can be strengthened to the inequality given in the 
following theorem. 
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Theorem 5.5.4 (Bounds on Wq) Consider a GI/G/c queueing system 
with 0 < p < 1. Then 

and 
jiwscl _ wm-Mcg + iXc-i)] < 288 
2 c ( l - p ) 2c _ g 

Proof We have explained how (5.287) has been proven. To prove (5.288), 
we use some results of Brumelle [7]. He constructs a single-server queueing 
system from the original GI/G/c queueing system. This single server has 
the same input stream as the original system, but the single server works 
c times as fast as each of the original servers. That is, the service time of 
a customer is s/c, where s is the service time of a customer in the original 
system. Brumelle shows that 

Wq_M + l)(c-l)W,^Wqi ( 5 2 g 9 ) 

where Wq refers to the constructed single server system and all the other 
symbols refer to the original GI/G/c queueing system. Applying the in­
equality (5.280) to Wq in the above formula and some simple algebra yields 
(5.288). ■ 

Note that inequality (5.288) provides a positive lower bound for Wq 
when Cj[l — c(l — p)} > c(l - p), which implies that p > 1 — 1/c. This 
condition is consistent with a recent result of Daley [14], who showed that, 
when p < 1 — 1/c, there is a GI/G/c queueing system with given p, C j , 
and C\, for which Wq is arbitrarily small. 

Example 5.5.3 Computer analysts at the Fuzzy Worm Tractor Company 
have been able to model a planned computer subsystem as an H2/H2/IO 
queueing system. They estimate that p = 0.98, C\ = 4 = C\, and Ws = 2 
seconds for the initial system. They use (5.287) and (5.288) to obtain 
15 seconds < Wq < 216.4 seconds. According to the tables of Seelen et 
al. [53], the exact value of Wq is 37.4812 seconds. The heavy traffic ap­
proximation yields Wq = 40.008 seconds while Daley's conjecture (5.285) 
yields 40.0 seconds as an upper bound for Wq. □ 

5.5.3 Approximations for G I / G / c Queueing Systems 
We begin by stating a very general but quite useful approximation, that 
was developed by John Cunneen and myself. It probably has occurred to 
many other people as well, but I have not seen it in the literature. 
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Approximat ion 5.5.1 (Allen-Cunneen Approximation Formula) For any 
GI/G/c queueing system, 

The reader should note that, for the M/M/c queueing system, (5.290) is 
exact. It is also exact for M / G / l systems. For M/G/c queueing systems, 
it gives Martin's estimate (see Martin [45, page 461]). The formula was 
developed by pattern recognition, not by any formal proof. It gives reason­
ably good results for many queueing systems and is easy to compute. For 
Example 5.3.10, it yields the estimate Wq = 19 seconds. The exact value 
is 18.7122 seconds, an error of only 1.5 percent. 

Kimura [27] presents an approximation technique for the GI/G/c queue­
ing system, that utilizes several well-known approximations. His approxi­
mation is 

Wq „ W ± i £ , (5.291) 

where 

1 - C ? 1 - C j 2(C£ + C j - 1 ) ,Bnnn. 
A = z— + 2 + - i - £ 2 - (5.292) 

EW(D/M/c) EW(M/D/c) EW(M/M/c) 
where EW(M/M/c) means the value of Wq for the M/M/c queueing system 
with the same mean service time and utilization as the GI/G/c system being 
approximated. Similar remarks apply to EW(D/M/c) and EW(M/D/c). 
The EW values can, of course, be obtained from tables such as those pro­
vided by Hillier and Lo [21], Hillier and Yu [22], Kuhn [37], van Hoorn [64], 
or Seelen et al. [53]. They also can be calculated from approximation formu­
las. We will list some of those that Kimura found to be especially valuable. 
Kimura uses the following approximation formulas from Cosmetatos [11]: 

EW(D/M/c) « ^WW-[i - 4C(c, p)]EW(M/M/c), (5.293) 
EW(M/M/1) 

EW(M/D/c) « i [ l + C(c,P)]EW(M/M/c), (5.294) 

where C(c, p) is defined by 

C(c,P) = (1 - p)(c - l ) 7 1 ! ^ " 2 . (5.295) 
locp 

Kimura, of course, limits his approximation to cases where C j < 1 and 
C% < 1, except for the M/H2 /c case. 
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There is an extensive literature on approximation of queueing systems. 
Whitt [65] provides a review of approximations for the GI/G/1 queueing 
system and has been a leader in the general approximation of queueing 
systems. Tijms [62, Chapter 4] provides an excellent review of algorithms 
and approximations for queueing models. Michael van Hoorn was a stu­
dent of Tijms. His delightful Ph. D. dissertation [64] provides an excellent 
explanation of approximation methods for queueing models. 

5.6 Summary 
In this chapter we have introduced the reader to the fundamental ideas of 
queueing theory and discussed some of the basic queueing systems that are 
especially useful in computer science. We have illustrated the use of these 
systems with a number of examples. In Chapter 6 we will show how some of 
these basic queueing theory models can be combined into queueing network 
models to study more complex systems. 

S T U D E N T SAYINGS 

Roses are red; 
Violets are blue 
If X is big, 
Then p is too! 

Did you say KAMAKAZY Airline or KAMAKAZY Erlang? 

I have p-ed and p-ed until I'm c-sick. 

MINO: "Meekest in, never-out"; a queue discipline that describes the 
process of being snubbed by a snooty head waiter in an exclusive restaurant. 

5.7 Exercises 
1. [8] Four customers per minute enter the Frugal Fast Food restaurant 

during lunch hour and spend an average of 4 minutes getting their 
food (in a queue and receiving service). After receiving their food, 
40% of the customers leave the restaurant (with their food) while 
60% remain to eat their food inside Frugal Fast Food. Those who 
stay spend an average of 25 minutes consuming their food. How 
many customers are inside Frugal Fast Food during the lunch hour, 
on the average? 
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[HM20] Consider an M/M/1 queueing system in the steady state. 

(a) Show that the probability that there are n or more customers in 
the system is pn. 

(b) Use the result of part (a) to find the value of fi, such that, for 
given values of A, n, and a, with 0 < a < 1, the probability of n 
or more customers in the system is a. This value of fj, must be 
given explicitly by a formula in terms of A, n, and a. 

(c) Use the formula developed in part (b) to find fi if A = 10, n = 3, 
and a = 0.05. 

[18] Consider an M/M/1 queueing system in the steady state. Show 
that the following are true: 

(a) 

E[Nq\Nq > 0] = 1 

l-p 

(b) 
Var[7Vg|7Vg>0] = ^ - ^ . 

[Hint: Apply Theorem 2.9.2.] 

[HM20] Show that, for a stable M/M/1 queueing system, 

P2(l+P-P2) Var[AT, 9J {1-P?. 

[Hint: Apply Theorem 2.9.2.] 

[18] BRJTE LITE, Inc. has production machines that break down in a 
Poisson pattern at the rate of three per hour during the eight hour 
work day. BRITE LITE is considering the repair services of I. M. Slow 
and I. M. Fast. Slow repairs machines with an exponential repair time 
distribution at an average rate of four machines per hour for a service 
charge of $120 per eight hour day. Fast also provides exponential 
repair time but with an average rate of six machines per hour; Fast 
charges $200 per eight hour day. Which person should be hired on a 
daily basis if the cost of an idle machine is $50 per hour? By "daily 
basis" we mean the person chosen must be paid for an eight hour day 
every day, even if the person is idle some of the time. 
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6. [15] People arrive at a telephone booth at the Fly-by-Night airline 
terminal in a random pattern with an average interarrival time of 12 
minutes. The length of phone calls from the booth, including the 
dialing time, wrong numbers, etc. is exponentially distributed with 
an average time of 4 minutes. 

(a) What is the probability that an arriving person will have to wait? 
(b) What is the average length of the waiting lines that form from 

time to time; that is, those that are not of zero length? 
(c) What is the probability that an arrival will have to wait for more 

than 10 minutes before the phone is available? 
(d) The telephone company plans to add a second booth when the 

traffic increases so much that Wq > 5 minutes. At what average 
interarrival time will Wq = 5 minutes occur? 

7. [20] [This exercise is of difficulty 7 if you have an HP-32S or HP-28S 
calculator.] A clerk provides exponentially distributed service time 
to customers who arrive randomly at the average rate of 15 per hour. 
What average service time must the clerk provide in order that 90% 
of all customers will queue for service for a time not exceeding 12 
minutes? [Hint: A straightforward formula has never been found. 
You must use an iterative technique.] 

8. [10] Show that for a steady state M/M/ l queueing system, 

2 {2-p)pW2
s 

[Hint: The random variables q and s are independent so that Varfw;] = 
Var[g] + Var[s.] 

9. [8] Consider a steady state M/M/ l queueing system. Prove the follow­
ing two formulas from the formulas that have been proven and give 
the intuitive meaning of each of them. 

(a) W = (L+1)WS. 
{b)Wq = LWs. 

10. [12] In Hopeless Junction a small full service gas station is operated 
by the owner, Mirthless Snerd, by herself. On Monday mornings 
customers (cars) arrive randomly at the average rate of 15 per hour. 
Mirthless provides exponential service with a mean service time of 2.5 
minutes. Please answer the following questions. 
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(a) What is the mean number of customers waiting (queueing) for 
service? 

(b) What is the mean queueing time in minutes? 

(c) What is the mean time a customer spends at the station? 
(d) What is the mean number of customers at the station? 
(e) What is the probability that Mirthless is idle? 
(f) What fraction of time does Ms. Snerd have customers waiting? 
(g) What is the mean number of customers waiting for service when 

one or more are waiting for service? Compare with the answer 
to part (a). 

[12] Los Angeles has been struck by a crime wave. Alarmed by the 
increasing number of bank robberies and concerned about their effect 
on bank customers, the Banking Upper Management Society (BUMS) 
adopts the following policies at each bank: 

(a) A teller's window is reserved for the exclusive use of bank robbers. 
(b) In order to conserve space, bank robberies may be committed 

only by a lone bandit. 

(c) If two or more robberies occur simultaneously, the robbers are 
served on a first-come, first-served basis. 

You are engaged as a consultant by the Bank Robbers Federation 
(BARF). Your job is to determine if the proposed arrangement with 
the BUMS is adequate. [Please keep in mind the type of overshoes 
you are likely to be wearing if you don't get this right.] The data you 
are given is: 

(i) Robbers arrive at random between the hours of 9:00 a.m. and 
3:00 p.m.; the average arrival rate is five robbers per hour. 

(ii) Teller service time is exponential with an average value of 2 
minutes (for the robber's teller). (Special robber withdrawal 
forms expedite service.) 

(iii) The M/M/ l model seems to apply. 

You are asked to determine 

(1) the average time a robber must queue for service (a robbery). 
(2) the average time required for a robbery (queueing time plus 

service time). 
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(3) the probability the robber's teller is busy. 
(4) the average number of robbers in the bank. 
(5) the probability of finding three or more robbers in the bank at 

the same time. 
(6) the probability a robber spends more than 15 minutes in the 

bank. 
(7) the 95th percentile of robbery time. 

(The original version of this problem is due to Shelly Weinberg of 
IBM.) 

12. [HM22] Consider an M / M / l / K queueing system. Let qn be the prob­
ability there are n customers in the system just before a customer 
arrival that actually enters the system; that is, qn is the probability 
that there an n customers in the system when an arrival is about to 
occur. Thus, g„ = P[An\A] for n = 0 ,1 ,2 , . . . , K — 1, where An is the 
event that there are n customers in the system and A is the event that 
an arrival is about to occur. Use Bayes' theorem (Theorem 2.4.3) to 
prove that 

qn = -£i—, n = 0,l,...,K-l. 
1 ~PK 

[Hint: Since the arrival rate is Poisson P[.A|.An] = Xh + o(h).] 

13. [HM25] Show that 

k\ 
W[t] = l-Y,qn(e-»*±^tf 

n=0 \ fe=0 

for the M / M / l / K queueing system, where 

Vn 9n = 
1-PK 

[Hint: Write 

W[t] 

n = 0 
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Then make the change of variable y = x — t in each of the integrals. 
By recognizing the integral form of the gamma function 

/•OO 

T(*)= / xt-1e-xdx, t>0, 
Jo 

and using the property of the gamma function expressed as 

T(n + l) = n! n = 0 , l , . . . , 

deduce that 

I "! h fc! ' 
for n = 0, l , • • • , # - ! • ] 

14. [9] Consider the cyclic queueing model of a computer system shown 
in Figure 5.7.1 below. It represents a computer system with a con­
stant multiprogramming level of N jobs (programs) sharing the main 
memory. Server 1 is assumed to be the CPU and server 2 represents 
the I/O system.17 Servers 1 and 2 provide exponential service with 
rates /x and A, respectively. At the end of a CPU service (burst) 
a job requests I/O with probability q or leaves the system with its 
service complete with probability p = 1 — q. When a job completes 
service and leaves the system, it is immediately replaced by another 
job with identical statistics to keep the multiprogramming level at 
a constant N. N is called the multiprogramming level, abbreviated 
MPL. We consider the system to be a birth-and-death process with 
the state determined by the number of jobs (programs) at the CPU, 
either receiving service or in the queue. Thus, the system can be in 
state i for i = 0 , 1 , . . . , N. The birth-and-death coefficients are A, = A 
for i — 0 , 1 , . . . , N — 1, and fa = fiq for i = 1,2,. . . , N. The state 
transition rate diagram is given in Figure 5.7.2 below. Let pn be the 
probability that there are n customers at the CPU, that is, that the 
system is in state n. Let 

A 
P= — • liq 

Use Equation (4.29) of Chapter 4 to show that 

Pn = PnPo, 
17Models as simple as this have been used to model large mainframe computers. 
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where 

Po = 

so that 

AT 

n=0 

PO = < 

l> N + l 

- — 2 — for p ? 1 

if p = 1. 

1 - pN+1 

1 

The CPU utilization, p\, is given by p\ = 1 — po and the I/O utiliza­
tion by p2 = 1 —PTV- TO use this model to calculate mean throughput, 
A, and mean turnaround time, W, we assume that each job starts with 
a CPU burst, that is followed by an I/O burst, after which it rejoins 
the CPU queue for another CPU burst, etc. After an average of m 
CPU bursts (m need not be an integer), it exits the system to be im­
mediately replaced by another job; this keeps the multiprogramming 
level at N. Thus, each job, on the average, passes through the CPU 
system m times and the I/O system m — 1 times. The probability, p, 
that a job leaves the system after a CPU burst is given by p = 1/m. 
To calculate the throughput, A, that is the average rate at which jobs 
enter and depart the computer system, we reason that the departure 
rate is p,p when the CPU is busy and zero otherwise, so that 

A = p,p(l -po) + 0 x p 0 

= /Wi-

By Little's law, we calculate 

"-?■ 



5.7. EXERCISES 349 

t 
III 

I/O 

1 
J 

I/O Request 

. ' III 

CPU 

1 

, 

New Program 

Figure 5.7.1. Cyclic queueing model. 

q = l-p 

State: 0 

p,q pq 

Figure 5.7.2. State-transition rate diagram. 

Since the average number of visits a job makes to the CPU is m, the 
average CPU time used per job is 

m 1 
fj, pp.' 

Similarly, since, on the average, a job makes m — 1 visits to the I/O 
facility, the average job I/O time is 

m — 1 (m — 1) m q 
A rn X p\ 

Hence, the ratio of average CPU time per job to average I/O time 
per job is 

J_ 
± q» 
p\ 

Therefore, p provides a measure of the relative importance of CPU 
service and I/O service for jobs. If p < 1, the system is said to be 
I/O bound; if p > 1, the system is said to be CPU bound. Of course, 
if p w 1, the system is said to be balanced. 
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15. [12] Suppose Uptight Fawcett has a batch computer system that can 
be modeled by the cyclic computer model outlined in Exercise 14. 
Suppose the mean CPU burst time is 0.02 seconds, the mean I/O 
service time is 0.04 seconds, the mean number of CPU bursts required 
per job is 18.5, and the multiprogramming level is 10. What is 

(a) the mean throughput, A, 
(b) mean turnaround time, W, 
(c) CPU utilization, pi, and 
(d) the I/O utilization, p2? 

16. [HM18] Show that for an M/M/c queueing system in equilibrium, the 
following are true: 

(a) If n < c, 

(c~1 k 
P\AT > «1 = r»„ J V — -i- — m^^oJE^^-

\k=n 

(b) If n > c, 
P[N>n] = C[c,a}pn-c. 

(c) If c = 2, (a) and (b) reduce to 

P[N>n} = ^ - , n = l , 2 , . . . . 
1 + p 

(d) If c = 1, (a) and (b) reduce to 

P[N > n) = pn, n = 0 ,1 ,2 , . . . . 

17. [HM20] Show that, for an M/M/c queueing system in the steady state, 

2 _ pC{c,a]{l +p-pC[c,a}} 

18. 

and 

[HM20] 
state, 

Hint: Us 

aNq -

_2 
aN 

Prove that, for 

se the fact that 

( 1 - P ) 2 

= a2
Ng+a(l + C[c,a)). 

an M/M/c queueing system 

{2-C[c,a}}C[c,a]Wi 
c2(l-p)2 

in the steady 

/•OO 

/ xne~liXdx = nlti-n-1. 
Jo 
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[20] Two analysts at Exxtol Petrol, Ltd., Log Jam and Bot L. Neck, 
are having an argument. They are comparing an M/M/ l system with 
mean arrival rate A and mean service rate 2[i (we assume A < 2/x), 
with an M/M/2 system with mean arrival rate A and mean service 
rate /x for each server. Log says the M/M/2 system is best because 

WQM/M/2 < WQM/M/l ■ 

Bot responds that Log has it all wrong because 

W M / M / 1 < M/M/Af/2> 

and therefore, the M / M / l system is superior. Who is right? Note that 
the two systems have equal capacity; Log and Bot are comparing a 
single-server system to a double-server system with half-speed servers. 

[22] Phil T. Grime, the manager of the Information Center at Gritty 
Soap, provides three consultants to help personal computer users solve 
their problems. PC users with problems arrive randomly, at an aver­
age rate of 20 per 8 hour day. The amount of time that a consultant 
spends with a PC user has an exponential distribution with average 
value of 40 minutes. Users are assigned to consultants in the order of 
their arrival. 

(a) What fraction of the time is each consultant busy? 
(b) What is the mean time a user spends in the queue? 
(c) What is the mean number of users waiting for a consultant? 
(d) What is the mean time a user spends in the Information Center? 
(e) What is the mean number of users in the center? 
(f) What is the probability that all the consultants are idle? 
(g) What is the probability that all the consultants are busy but no 

one is waiting in line? 

[25] Customers arrive randomly (during the evening hours) at the 
Kittenhouse, the local house of questionable services, at an average 
rate of five per hour. Service time is exponential with a mean of 20 
minutes per customer. There are two servers on duty. 

(a) What is the probability an arriving customer must queue? 
(b) That one or both servers are idle? 
(c) What is the average time a customer spends at the Kittenhouse? 
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(d) If the Kittenhouse is raided, how many customers will be caught, 
on the average? 

(e) What is the probability that five or more customers will be caught 
in a raid? 

(f) What is the probability that both servers are idle? 

22. [C30] (See Exercise 21.) So many queueing theory students visit 
the Kittenhouse to collect data for this book that the proprietress, 
Kitty Callay (also known as the Cheshire Cat) makes some changes. 
She trains her kittens to provide more exotic but still exponentially 
distributed service and adds three more servers, for a total of five. 
Her captivated, titillated customers still complain that the queue is 
too long. Kitty commissions her most favored customer, Gnalre K. 
Renga to make a study of her establishment. He is to determine the 
mean arrival rate, A, during the peak period, the mean service time, 
Ws, and to recommend the number of servers she should provide so 
that 

(a) the mean queueing time for those who must queue will not exceed 
20 minutes, and 

(b) the probability that an arriving customer must wait for service 
will not exceed 0.25. 

Mr. Renga finds that the arrival pattern is exponential with A = 
9 customers per hour. He also determines that the service time is 
exponential with Ws = 30 minutes. 

( i) For the original system (with 5 servers), calculate the perfor­
mance measures Wq, Lq, L, and the probability of not having 
to queue for service. 

( ii) How many servers must be provided to satisfy the requirements 
(a) and (b), above? 

(iii) Assume the number of servers determined in (ii) are provided. 
Answer the questions asked in (a)-(f) of Exercise 21 for the new 
Kittenhouse, where (b) now means, "What is the probability 
that at least one server is idle?" and (f) becomes, "What is the 
probability all servers are idle?" 

23. [HM18] Howie Kramms, a computer science student at Ginger Tech., 
bragged that he could prove the following formulas for the steady 
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state M/M/c queueing system. He was willing to wager 10 dollars 
that no one else in his dormitory could. Can you call Howie's bluff? 

2C[c,a]WJ fl-c2(l-p) 

E[w2} = i 
i 2„ , 2 ,+2Wl a^c-1 

1 - c(l - p) \ e2(l - p) 

4C[c,a]Wi + 2Wi, a = c-l 

Hint: 
fOO 

tne-»tdt = n\p,-n-1. f 
Jo 

24. [C20] James Martin has suggested that 7r„,[95] for an M/M/c system 
is approximately W + 2aw. For the M/M/c system of part (iii) of 
Exercise 22, 

(a) Calculate Martin's approximation for ^^[95]. 
(b) Using (a) as a starting value, calculate 7rm[95] to at least 3 dec­

imal places, using a numerical technique and the formula for 
W[-], the distribution function of w. 

25. [20] It is shown in Section 5.2.4 that the probability that all c servers 
are busy in an M/M/c/c queueing system (M/M/c loss system) is 
given by Erlang's B formula, B[c,a], defined by 

B[c, a] = °' 
a2 ac 

1 + 0 + _ + . . . + _ 

Consider an M/M/c queueing system in the steady state. Show that 
the following are true: 

(a) 

(b) 

(c) 

1 - P + * 1 - ' ) C[c,a] y B[c,a\. 

1 = l + i . 
B[l,a] a' 

1 n 1 
= 1 + - x —, :—T for n = 2 , 3 , . . . , c. B[n,a] a B[n — I,a] 
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[P25] 

(a) Write a computer program to implement Algorithm 5.2.2. 

(b) Write a recursive program to calculate B[c, a], using steps 1 and 
2 of Algorithm 5.2.2. 

(c) Use the programs of (a) and (b) to calculate B[15,5]. Which 
program runs faster? 

[C25] JETSET Airlines, a fierce competitor of KAMAKAZY Airlines 
(Example 5.2.3), also is planning a new telephone reservation office. 
Their agents provide customers who call with an exponential service 
time. Like KAMAKAZY Airlines, calls that arrive when all agents are 
busy are held (with appropriate background music) until an agent is 
free. They expect a random pattern of customer calls with an average 
of 30 calls per hour during the peak period. 

(a) The three performance criteria are: 
1. The average time a caller waits to talk to an agent must not 

exceed 20 seconds. 
2. The average waiting time for customers who must queue for 

service must not exceed 2 minutes. 
3. Ninety-five percent of all customers must reach an agent in 

30 seconds or less. 
How many agents should be provided? 

(b) If the number of agents required for part (a) is provided, calculate 
Wq, W, E[q\q > 0], and 7rg[90] in seconds. Also compute the 
probability that w < 3.5 minutes and P[N > 5]. 

(c) What is the probability that all the agents are busy during the 
peak period? That all are idle? 

[C20] YOUTOOLCOMPUTE has 10 portable personal computers 
available for rent. The average rental time is 2.5 days and is expo­
nentially distributed. Customers arrive randomly at an average rate 
of five per day. If a computer is not available, a customer will go to 
HELL (Hewlett, Ernest, Leland, and Lial) for a computer. 

(a) What fraction of arriving customers will be lost? 
(b) What is the average number of computers on rent? 
(c) What is the probability a personal computer on rent will be on 

rent for more than five days? 
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(d) Management estimates that the profit on a computer being 
rented is $20 per day (they rent by the day, only). One of the 
computers is destroyed in an accident and cannot be replaced 
for 30 days. What is the maximum YOUTOOLCOMPUTE can 
afford to pay per day for a 30 day replacement? 

[C20] (This exercise was contributed by Dr. Ray Bryant of IBM.) 
Programmers at Prolific Programming Unlimited connect to a time­
sharing system over dedicated dial-up communication trunks. Ar­
rivals of incoming programmer calls to the trunks can be modeled as 
a Poisson arrival process with the mean rate of 0.2 calls per minute. 
The length of each time-sharing session can be modeled as a uniformly 
distributed random variable in the interval 10 to 50 minutes; session 
length is independent of the load. 

(a) How many dial-up lines (trunks) should there be to make sure 
that less than 10 percent of incoming programmer calls get busy 
signals? 

(b) With this number of lines, what is the mean number of time­
sharing sessions in progress? 

(c) What is the probability that 6 or more of the lines are in use? 

[C25] Houdini Engineering (sometimes known as Tech Type Toolers or 
T3 for short) has a large room containing 50 computer workstations 
(called "the pit") for the use of the engineering staff. During the bus­
iest period of the day, engineers arrive randomly at the mean rate of 
49 per hour and spend an average of 30 minutes at a workstation; this 
latter time is exponential. Thus, the terminal room can be modeled 
as an M/M/50 queueing system. 

(a) Calculate the performance measures W, 7r„,[90] (use Martin's 
approximation if you can't compute it exactly), L, Wq, 7rg[90], 
and Lq. 

(b) Approximate the values in part (a) by modeling the system as 
an M/M/oo system. 

[15] Lassettre and Scherr [40] used the machine repair queueing system 
to model the performance of the OS/360 time-sharing option (TSO), 
a system that allowed programmers to develop and run programs from 
a terminal in a time-sharing mode. It was, of course, the progenitor 
of the current TSO, that runs under the MVS operating system. (Al­
lan Scherr received the Association of Computing Machinery's Grace 
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Murray Hopper award in 1975 for some earlier work (Scherr [52]), in 
which he used this same queueing system to model the MIT Project 
MAC time-sharing system called CTSS for Compatible Time-Shared 
System.) For their model, Lassettre and Scherr identified the param­
eters E[0], W, Ws, and K of the machine repair system with the 
parameters of the TSO model as follows: E[0] is the average user 
time, that they defined as the mean elapsed time from the request 
for input made by the processing program to the completion of the 
requested input by the user. W is the average response time that they 
defined as the mean length of the time interval that begins with the 
completion of input and ends when the program processing this in­
put finishes and requests more input. Thus, taken together, the user 
time and the response time make up a complete cycle or interaction. 
Ws is the mean system service time, that is, the mean of the time 
required by the system to execute the program that processes the in­
put entered by the user. K is the average number of users actively 
interacting with the system. 

(a) Use Little's law to show that the mean number of interactions 
per second is given by 

A _ K 

E[0] + W 
(b) Show that the mean response time is given by 

1 ~Po 
where po 1S the probability that there are no requests for system 
service pending. 

(c) Show that the average number of users waiting for a response is 

KW 
L = w + E[oy 

(d) Show that the mean response time when there is a large number 
of users (K is large) is approximately KWs — E\0). Assume 
that the CPU is the computer system bottleneck. 

(e) The curve W/W$ versus K has the asymptote W/Ws = K — 
E[0]/Ws for large K. We see that for small values of K there is 
an asymptote to the curve, that is the horizontal line W/Ws = 1. 
The two asymptotes intersect at the point (K*, 1) where 

Ws + E[0] 
K - WS ■ 
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Kleinrock [32] calls the value of K* the saturation number, but 
Lassettre and Scherr call the point (K**, 0) where the line 
K Ws—E[0] intersects the a;—axis the saturation point and claim 
it is a fair approximation of the capacity of a time-sharing sys­
tem. Thus, 

K~ _ E[0] 
K "W 

Lassattre and Scherr use an E[0] value of 35 seconds based on 
measurements for users of terminals such as Teletypes and IBM 
2741s. Using this value of E[0], they reported that for one TSO 
system with 60 active terminals the mean response time, W, 
was 5 seconds, with Wg equal to 0.8 seconds.18 If CRT type 
terminals are acquired for this system that provide an E[0] of 
10 seconds and the throughput remains the same as before, what 
is the mean response time W? What is K** for this system? 

32. [HM25] Consider the M/M/c/K/K machine repair queueing system. 
Let pn be the probability that n of the K machines are inoperable 
(either undergoing or awaiting repair) and let qn be the probability 
that a machine that breaks down finds n inoperable machines in the 
repair facility. 

(a) Prove that 

9 n = ( t f _ - n ^ n = 0,l,...,tf-l. 

(b) For an M/M/l/K/K queueing system, prove that 

g" = (KK I* , 1 ) ! ' n = 0,l,...,K-l, 

where z = E\0]/Ws, and thus, qn has the same value as pn for 
the M/M/l/K-l/K-1 system; that is, the number of machines 
found by arriving machines is the same as that which would be 
seen at a randomly chosen instant in a system with one less 
machine. 

18 A W of 5 seconds is not what the machine repair model gives with K = 60, E[0] = 35 
seconds, and W$ = 0.8 seconds, but it is what they reported. Assume that the values of 
K, E[0], and W are correct but they made a mistake in measuring W$. 
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Hints: qn is the probability that n machines are inoperable, given that a 
machine is about to break down and thus is equal to P[.An|.A],n = 
0 , 1 , . . . ,K — 1. For part (a), use Bayes' theorem and the fact that 
P[i4|^„] = (K - n)ah + o(h) for each h > 0. For (b), write 

(K - n)pn (K - n)pn 

K-L K 

£ ( * - k)Pk 
fe=0 

and note that we have proven earlier that 
„K-n 

(K-n)\ 

— zK 

Y-^ k\ fc=0 

33. [HM28] Let p[k; A] represent the Poisson probability 

p[k;X} = e-x —, A > 0 , * = 0 , 1 , . . . . 

Let Q[k; fi\ be defined by the Poisson sum 

k , 

Q [ f c ; M ] = e - " ^ T ' M>0,fc = 0 , l , 2 , . . . . 
»=o v 

(a) Prove that 

k 

52 Plk ~ i\ MQU; A = Q[k; x + it], 

(b) Prove that 

Q[k\ 
/

OO -X K e-1JLdx = p[Y>y}, 

where Y is a gamma random variable with parameters /3 = k +1 
and a = 1. 

34. [C15] Consider Example 5.2.8. Show that, for the machine repair 
queueing system M/D/1/6/6 with E[0] = 40 seconds and W3 = 1 
second, that po = 0.85390, A = 525.95 requests per hour, and W = 
1.069 seconds. 
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35. [C30] Consider Example 5.2.9. Suppose that High Tale puts 50 work­
stations on line. Compute po, p, A, and W for the system; that is, 
for the M/D/1/50/50 system with E[0] = 80 seconds and Ws = 2 
seconds. 

36. [C20] (The computation for this exercise can be done in about 20 min­
utes with a pocket calculator. The calculations are trivial if the APL 
functions MACHAREP, DWQAMRAC, and DWAMRAC are avail­
able.) The English farnsworth company, Farnsworth Unlimited, Ltd., 
(a farnsworth is a microelectronic device for gauging the performance 
of farns) has a number of shops, each of which can be modeled as an 
M/M/2/3 /3 queueing system with E[0] = 10 minutes and Ws = 8 
minutes. Please do the following: 

(a) Calculate pt for i = 0,1,2,3, qt for i = 0,1,2, and W, Wq, L, 
and Lq for each system. 

(b) Calculate the probability that an inoperative machine must queue 
for repair. 

(c) Calculate E[q\q > 0]. 
(d) Calculate Wq[l] and W[10] when time is measured in minutes. 

37. [HM18] The M/M/c/K queueing system can be modeled as a birth-
and-death process (see Sections 4.3 and 5.2). 

(a) Draw the state-transition rate diagram and from it deduce that 

\» = { 
while 

A for n = 0 , 1 , . . . , A " - 1 , 
0 for all other n, 

for n = 1,2,... ,c 
for n = c + 1 , . . . , K 
otherwise. 

(b) Show that part (a) yields 

— Po for n = 1,2, 

Pn = 
n! 

fa\n~c 

where 

Po = 

and a = A Ws — X/fJ-

(§) po for n = c+l,...,K, 

E o a r-v /ay 
n\ c! £-> \c) 

.n=0 n = l 
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(c) From the formula 
K 

Lq= Yl (n-c)Pn, 
n = c + l 

show that 

_ acp0 r[l-{K-c+ l)rK~c + {K - c ) r*~ c + 1 ] 
Lq~ c ! ( l - r ) 2 ' 

where r = a/c. 
(d) Show that 

L = Lq + E[NS} 
e - 1 / c - 1 \ 

= L9 + X] np" + c ( ! _ X] Pn 1 • 
n=0 \ n=0 / 

(e) Let qn be the probability that an arriving customer finds n cus­
tomers in the service facility. Use the same argument as that in 
Exercise 12 to show that 

qn = -^—, n = 0,l,2,...,K-l. 
1 -PAT 

(f) Show that 
Wn 

E[q\q > 0] = ^ — . 

n=0 

(g) Let Aa be the average arrival rate of customers who actually 
enter the system. Show that 

Aa = A(l -PK)-

38. [C22] 

(a) Derive a formula for the stationary probability distribution of the 
number of customers in the system for an M/M/2/3 queueing 
system. Express pn as a function of A and /i. 

(b) Suppose the Free K. Doubt company has modeled a computer 
subsystem as an M/M/2/3 queueing system with A = 15 cus­
tomers per second and fj, = 5 customers per second. Calculate 
pn (for n = 0,1,2,3), Aa, p, Lq, L, Wq, and W for this model. 
(The original form of this exercise was contributed by Dr. Ray­
mond Bryant.) 
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39. [18] Use Theorem 5.3.1 and its corollary to prove that the following 
formulas for the M/G/1 queueing system are true: 

(a) 

'(b) 

(c) 

Wq = -TYZT)' (P o l l a c z e k ' s formula) 

„2l _ „r„2l , E[s2] E[w2]=E[q2] + T^-f) 

40. [20] Prove that, for the M/G/1 queueing system, 
3rr-31 fX2E[s2}\2 

2 _ \3E[Si 
aN = ^71 IT + 

3(1 -P) 
A2(3 - 2p)£[s2] 

+ />(1-P) 2(1 - p ) 

41. [18] Brumelle [6] proves that, for an M/G/1 queueing system, 

E[Nq(Nq - 1) • • • (Nq - k + 1)] = XkE[qk], 

for Jb = 1,2,3,.... 

(a) Use Brumelle's result to show that 
\3JTT,,3I / \ 2 7 r r „ 2 l \ 2 \2irf„2l 

a% = \*E{s*) + f\2E[s*}V + X2E\s2] 
v<7 3(1 -p) \2(1-p)J 2(1 -pY 

(b) Use part (a) and the result of Exercise 40 to show that 

Cov[Nq,Ns] = ^ ^ , 

and thus that 
r,r»r »r 1 X2 E[s2} 

[Hint: Use Theorem 2.7.2(c) and the fact that a2
Nt = p(l -

p).] Note: Since E[NsNq] ? E[Ns]E[Nq], Ns and Nq are not 
independent random variables (see Theorem 2.7.1(d)). Of course 
we would not expect them to be because the number in the queue 
clearly depends on the number in service. However, the random 
variables q and s are independent by assumption. 
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42. [HM20] Show from the fact that </w(z) is given by 

9N(Z) - — K { z y r z — 
that 

L = gN(l) = p + 
2(1 -p)' 

43. [22] Use the formula 

„ ,_,_(l~p)(l-z)W;[\(l-z)] 
9N{Z) M/TWI \i 

Ws[X{\-z)\-z 
to show that the generating function for the M/H2/I queueing system 
is 

gN{z) = (1-P)[1 + (P1+P2-P)(1-Z)] 
PlP2Z2 ~ (pi + p2 + P\P2)Z + 1 + Pi + P2 - P 

where pi = X/pi, i = 1,2. [Hint: Using the notation of Section 3.2.9, 

show that qip2 + Q2pi = Pi+ p2~ P-] 

44. [HM25] Prove that w for the M/H2/I queueing system has the two-
stage hyperexponential distribution function 

W[t] = P[w<t] = l - i r0e_ / i° ' - irbe~^bt, t > 0. (5.296) 

In (5.296) the constants are given by 

ClZl 

zi-V 
(5.297) 

n = - ^ - , (5-298) 
Z2 — 1 

Pa = A(zj - 1), (5.299) 

and 
Pb = A(z2 - 1), (5.300) 

where the constants in (5.297) through (5.300) are those used in the 
formula for 9N(Z) derived in Example 5.3.2; that is, 

9N{Z) = + • (5.301) 
z\ — z Z2 — z 

[Hint: Use the fact that gN(z) = W*[\(\ -z)}. Then use 0 = A(l - z ) 
in (5.301) to find W*[9] = gN(l - B/\).\ 
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45. [HM30] Consider the M/H2/I queueing system. Invert the Laplace-
Stieltjes transform of the queueing time, q, by the method of partial 
fractions to obtain the density function 

fq(t) = (1 - p)S(t) + C3e~at + C4e-bt, t > 0, (5.302) 

where a = — z\ and 6 = — z2 for the zeroes z\ and z2 of the polynomial 

6>2 + (/x1 + M2-A)6> + /xi /x 2 ( l -p)- (5.303) 

The parameters p\ and ^2 in (5.303) are the parameters for the dis­
tribution of s; that is, 

Ws = — + —. (5.304) 
Ml M2 

The constants C3 and C4 in (5.302) are given by 

z\ - z2 

and 
r, X{l-p)z2+p(l-p)lJ.lfJ,2 
O4 = - , 

*2 - ^ 1 
Now integrate (5.302) to show that 

Wq[t] = P[q<t] = l - ^-e~ai - ^ V 6 ' , t > 0. 
a 0 

As part of deriving (5.307), you will need to show that 

C3 , C4 

(5.305) 

(5.306) 

(5.307) 

(5.308) 

46. [HM30] Show that the density function for queueing time in the 
M/M/c/K/K queueing system is given by 

where 
MO] 

Hint: Differentiate the formula (5.309) below for Wg[<]. Note that q 
has a probability mass at the origin equal to Wq[0] = q0. In differen­
tiating (5.309), use the fact that 
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which follows from the formula 
fCX> 

Q\k\ y]= p[k; x] dx 
Jy 

of Exercise 33(b). 

where 

n=0 
47. [C15] Use the results of Exercise 44 to construct the distribution 

function of w for the first communication line of Example 5.3.1. Then 
calculate (a) W, (b) W[20], (c) E[w2}, and (d) *r«,[90]. 

48. [15] A favorite game played by two consenting mathematicians is called 
Proof or Counterexample. Player A states a theorem in the form "C 
implies D." Player B must either prove the theorem; that is, prove 
that the truth of C implies the truth of D or give a counterexample. 
A counterexample is an example in which C is true but D is false. 
You have observed that for the M/M/ l queueing system, both s and 
to are exponentially distributed and for the M/H2/I queueing system 
(see Exercise 44), both s and w have a two-stage hyperexponential 
distribution. You are player B in Proof or Counterexample and player 
A says, "For every M / G / l queueing system, s and w have the same 
form of distribution." What is your response? 

49. [M25] Consider the steady state M/H 2 / l queueing system discussed 
in Example 5.3.3. All parameters in this exercise are defined there. 
Assume z\ > z2 > 1. 

(a) Prove that 

- n + l z~n+1 

P[N>n]=d-± r+C2-—-, n = 0 , l , . . . . 
zi — 1 z2 — 1 

(b) Prove, by using part (a), that P[N > 1] = p and P[n = 0] = 1-p. 

50. [8] Consider Exercises 47 and 49. For the queueing system of Exercise 
47, calculate P[N > 3] and P[N > 5]. 
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51. [M20] Prove that, for the GI/G/c and GI /G/c /K/K steady state 
queueing systems, 

E[q\q > 0] = 
Wa 

P[q>0Y 
where P[q > 0] is the probability that an arriving customer must 
queue for service. Note that an arriving customer must queue for 
service if and only if she finds all the servers busy, but this prob­
ability is not necessarily the same as the probability that all the 
servers are busy; that is, the probability that a random observer finds 
all the servers busy. Wolff [66] has shown the two probabilities are 
the same only when the arrival process is Poisson. We have seen 
that these probabilities are different for the machine repair systems 
M / M / l / K / K and M/M/c/K/K. 

52. [T20] Consider the steady state M/D/1 queueing system. Prove the 
following: 

(a) 

where 

(b) 

W[t] = 

n=0 v s ' 

(k-l)Ws<t<kWs, k = 1,2,.... 

( 0 for t < Ws 

t - kWs' [X^Mn^) for t > Ws, 

where 
kWs <t<(k + 1)WS, k = 1,2,. . . . 

(In Example 3.4.6 we show how to compute the values of pn.) 
(c) Consider the M/D/1 queueing system of Example 5.3.1. Calcu­

late Wq[2], Wq[5], W[8], W[14.4], and W[14.43]. 

53. [12] Let b be the busy period of the server in the M/G/1 queueing 
system, that is, the time from a server start up to service a customer 
(after an idle period) until the server is again idle: Kleinrock [32] 
shows that 

W» 
£l6l = T ^ 
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(note that this is the average time a customer spends in an M/M/ l 
system), and 

so that 
2 aj + pWJ 

( 1 - P ) 3 

Find E[b], E[b2], and <r? in terms of the system parameters for 

(a) the M/M/ l queueing system, 
(b) the M/Ek/1 queueing system, and 
(c) the M/D/ l queueing system. 

54. [08] (See Exercise 53.) Assume that, for (a), (b), and (c), Ws = 2 
seconds and p = 0.8. Find the numerical values of E[b], E[b2], and 
a\ in each case, assuming for part (b) that k — 4. 

55. [08] Let N^ be number of customers served during one busy period of 
the server in the M / G / l queueing system (see Exercise 53). Klein-
rock [32] shows that 

E[Nb) = j±-

and 

so that 

E[Nfi = E[Nb) + 

P 

2p(l-p) + X2E[s2} 

( 1 - P ) 3 

2 p(l -p) + X2E[s2) 
"b (1-pf 

Find E[Nfj], E[N?}, and ajj in terms of the system parameters for 

(a) the M/M/ l queueing system, 
(b) the M/Ek/1 queueing system, and 
(c) the M/D/ l queueing system. 

56. [05] (See Exercise 55.) Assuming that Ws = 2 seconds and p = 0.8 
find the numerical values of i?[iVj], E[N?], and a% for 

(a) an M/M/ l queueing system, 
(b) an M/E4/I queueing system, and 
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(c) an M/D/ l queueing system. 

57. [10] (See Exercises 53 and 55.) Construct an #2 probability distri­
bution s using Algorithm 3.2.2 with Wg = 2 seconds and Cj = 10. 
Then for the M/H2/l queueing system with the given service time 
and p — 0.8, calculate the numerical values of E[b], E[b2], er,2, i5[JVjJ, 
E[N$, a n d a ^ . 

58. [10] Marshall [44] shows that for an M/G/1 queueing system the 
Laplace-Stieltjes transform of the interdeparture time is given by 

D.[e] = (9 + n)pw;[e] 
9 + A 

Using the above result, show that the interdeparture time distribution 
is exponential if and only if the service time is exponential. (Disney 
et al. [15] showed that the only M/G/1 queueing system having inde­
pendent, identically distributed, interdeparture times is the M / M / l 
system. Such a stream is called a renewal process. Laslett [39] showed 
that the only GI/M/1 queueing system having renewal output was the 
M / M / l system.) 

59. [HM20] Given that, for the GI/M/1 queueing system, 

Wq[t] = P[q<t] = l - ( l - n0)e-">^ws, t > 0, 

prove the following: 

(a) 

(b) 

(c) 

Wq = (l- 7 r 0 ) - A 
TO 

£[? !] = 2 ( i - » „ ) ( ^ ) ! . 

60. [HM15] Show that, if the interarrival time of r is uniformly distributed 
between 0 and 2/A, then 

1-M = S ( 1 - e - 2 * / ^ ; 
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61. [HM20] Consider the H2/M/I queueing system of Example 5.3.8. If r 
has the distribution generated by Algorithm 3.2.2 show that 

7T0 = 0.5 - p + 0.5^/(1 - 2p)2 + 16 W i ( l - qi)(l - p). 

62. [HM10] Consider the Ek/M/1 queueing system. Show that 

*■« -(srb)''■ 
63. [HM18] Consider the H2/M/I queueing system in which the parame­

ters for r are q\ = 0.4, p,\ = 0.5A, and P2 = 3A. Show that E[T] = 1/A 
and that the equation 

1 - 7 T 0 = j4*[/i7To] 

reduces to the quadratic equation 

TTI + (3.5p - l)ir0 + l-5p(p - 1) = 0. 

Show, also, that the unique value of no such that 0 < ir0 < 1 is given 
by 

7T0 = 0.5 - 1.75/9 + v/1-5625/02- 0.25/9 + 0.25. 

64. [HM20] Show that, for the GI/M/1 queueing system, 

2 p(2 - TTQ - p) 
CTjv = ^ ' 

65. [HM20] Show that, for the GI/M/1 queueing system, 

2 p(l - 7 r 0 ) [ 2 - 7 r 0 - p ( l -TTO)] 
CT^ = 3 • 

66. [15] Consider Exercise 6. Suppose the telephone system at Fly-by-
Night can be modeled as an E 2 / M / l queueing system with E[r] = 10 
minutes, and W$ = 3 minutes. Answer the following questions: 

(a) What is the probability that an arriving customer will have to 
wait to use the phone? 

(b) What is the average length of a nonempty queue? 
(c) What is the probability that an arriving customer will have to 

wait for more than 10 minutes before the phone is available? 
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67. [C18] The performance analysts at Manufacturers Handover Fist have 
successfully modeled a computer subsystem using the D / M / l queue­
ing system with E[T] = 0.02 seconds and Ws = 0.016 seconds. 

(a) For the steady state system, calculate Wq, Lq, <jq, L, W, 7r„,[90], 
W[0.1], Wg[0.08], and *,[90]. 

(b) Make the calculations of part (a), assuming that E[r] has de­
creased to 4/245 seconds. 

68. [HM10] Show that for the GI/M/1 queueing system, 

E[Nq\Nq>0] = —. 

69. [C20] Consider Example 5.3.13. Consider a D/M/2 queueing system 
with Ws = 1 second and p = 0.9 so that A = 1.8 customers per 
second. Calculate the performance parameters Wq, W, Lq, L, the 
distribution function for w, and ^,,,[90], assuming 

(a) w = e~02 (Halachmi's approximation), and 
(b) u = 0.80689933 (the correct value). 

70. [M15] Suppose p, C%, C\, and Ws are the same for two heavy-traffic 
queueing systems (p ss 1); one GI/M/1 and the other GI/M/c. Show 
that the mean queueing time for the latter system is approximately 
1/c times the mean queueing time of the former; that is, 

WQGI/M/C * ~wqai/M/r 

71. [M20] Consider the H 2 /M/c steady state queueing system with the 
Laplace-Stieltjes transform of interarrival time 

Ai + 0 A2 + 0 
where, of course, 

(a) Show that the equation 

u = A*[cfx(l-u))] (5.310) 

becomes, for this case, 

c2fj,2u)2 — cfj,u)[\i + A2 + cp] + cp[q\i + (1 — g)A2J + AiA2 = 0. 
(5.311) 
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(b) Show that, if Algorithm 3.2.2 is used to generate the distribution 
of interarrival time, then the unique solution, u>, of (5.311), with 
0 < u < 1, is given by 

w = 0.5 + p - 0.5x/(l - 2/9)2 + 16p<?(l - q){\ - p). (5.312) 

72. [C18] Too Loose Latreck Industries is considering a computer subsys­
tem that can be modeled as an H2/M/2 queueing system. Too Loose 
finds that the interarrival time can be modeled as an H2 distribution 
constructed by Algorithm 3.2.2 with C% = 64 and E[T] = 1 dnoces (a 
dnoces, that is both singular and plural, is a proprietary time unit of 
the company). Suppose Ws = 1.8 dnoces so that p = 0.9. Calculate 
w, D, Wq, Wg[300], and W[300]. 

73. [10] Lili Malign, an analyst at Luigi's Contract Service, is considering 
the queue discipline to use for one of the main office systems. Lili 
modeled this system as an M/D/ l queueing system with A = 5 cus­
tomers per hour and Wg = 9 minutes. Help her calculate Wq, W, 
and aw assuming (a) FCFS, (b) RSS, and (c) LCFS nonpreemptive 
queue discipline, respectively. 

74. [C15] Consider Example 5.4.3. Suppose Jacques's manager Fred Fudd 
tells Jacques that the system must be designed with the class priori­
ties reversed; that is, the present type 3 customers must get the top 
priority and type 1 the lowest. Help Jacques compute W\, W2, W3, 
Wq, W, Lq, and L, assuming (a) HOL and (b) preemptive resume 
priority. 
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Chapter 6 

Queueing Models of 
Computer Systems 

random adj. 1 (Of a number generator) predictable. 2 (Of an access 
method) unpredictable. 3 (Of a number) plucked from the drum, Tombola, 

by the flaky-fingered Tyche. 4 [From JARGON FILE.} (Of people, 
programs, systems, features) assorted, undistinguished, incoherent, 

inelegant, frivolous, fickle. 

sequential file n A place where things can get lost in lexicographic order. 
Compare RANDOM FILE 

random file n A place where things can get lost in any sequence. 
Compare SEQUENTIAL FILE 

Stan Kelly-Bootle 
The Devil's DP Dictionary 

6.0 Introduction 
In Chapter 5 we examined basic queueing theory and applied it to selected 
parts of computer systems. The queueing systems we studied were essen­
tially single resource systems; that is, there was but one service facility, 
although in some cases, there were multiple identical servers in the facility. 
Actual computer systems are multiple resource systems. Thus, we may 
have online terminals or workstations, communication lines, line concen­
trators, and communication controllers as well as the computer itself. The 

377 
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computer, even the simplest personal computer, has multiple resources, 
too, including main memory, virtual memory, coprocessors, memory and 
I/O caches, channels, input/output (I/O) devices, etc. There may be a 
queue associated with each of these resources. Thus, a computer system is 
a network of queues. 

In this chapter most of the models studied are multiple resource mod­
els; that is, they consist of a network of the simple queueing systems we 
considered in Chapter 5. By "network of queues" we mean that the re­
sources are interconnected. That is, input(s) to one queueing system may 
be the output(s) from one or more other queueing systems. Unfortunately 
very little can be done, analytically, with general queueing networks such 
as would be needed to model computer systems in such a way as to account 
for every resource (and every queue). Fortunately, however, a number of 
useful queueing network models do exist for modeling computer systems. 
The subset of queueing networks that are especially easy to evaluate are 
called separable or product form. The prototype of these systems is the cel­
ebrated Jackson network discovered by James R. Jackson [7]. In the most 
quoted paper of computer system modeling, Baskett, Chandy, Muntz, and 
Palacios [1] extended Jackson's model in several important ways. 

Another breakthrough in queueing theory modeling of computer systems 
was the creation of the mean value analysis algorithms (MVA) by Reiser 
and Lavenberg [20] (see also Reiser [19]), which makes it easier to solve 
many queueing network models. 

There are several ways of classifying queueing networks. One classifi­
cation is in terms of whether or not the network accepts customers from 
outside the system. A queueing network is open if customers enter from 
outside the system, circulate among the service centers for service, and de­
part from the system. In a closed queueing network, such as the machine 
repair model, a fixed number of customers circulate indefinitely among the 
service centers. In such a system, a fixed number of customers contend for 
the resources. Still other networks have some customers who enter from 
outside the system and eventually leave as well as some customers who 
always remain in the system. Such queueing networks are called mixed 
systems. 

Another useful method of classifying a queueing network model of a 
computer system is in terms of the computer workloads it models. A work­
load for a queueing network model is specified by a description of the service 
demands of the work to be performed. Computer workloads are classified 
into three basic kinds: transaction, batch, and terminal. 

A transaction workload is represented by an open model, since cus­
tomers are assumed to enter the system from outside, receive service, and 
depart. The number of customers in the system varies over time. An ex-
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ample of a transaction workload is a large interactive system with so many 
terminals or workstations that the system is not sensitive to the actual num­
ber. A typical transaction workload is processed by a data base application 
system, such as an airline reservations system. For a transaction workload 
we specify the intensity by giving the average arrival rate of transactions, A. 
Thus, we may specify that A = 5,000 transactions per hour. The primary 
performance measure for a transaction workload is the average response 
time, W, that is, average total time a transaction spends in the system. 

The queueing model for a batch workload is closed, since the number 
of customers (jobs) is assumed fixed. We visualize a system in which a 
completed job leaves the system but is immediately replaced by another 
job from a backlog. A batch workload intensity is specified by the average 
number, N, of active jobs in the system. N is not required to be an integer. 
The primary performance measures for batch workloads include average 
response time, W, as well as throughput, A. We also are interested in the 
utilizations of the servers throughout the system. 

A terminal workload model looks like the finite population system of 
Figure 6.1.1. People at terminals or workstations make service requests to 
a central processor system. We often refer to the customers as terminals. 
This workload model is a closed system, since the number of customers 
(terminals) is fixed. Thus, a terminal workload has much in common with 
a batch workload. The intensity of a terminal workload is specified by the 
average number of active terminals, N, as well as the average think time, 
T = E[t). 

We will consider some of the key definitions that are needed to study 
queueing networks. A more complete table of definitions for such systems 
is given in Table 25 of Appendix C. 

We will use K to describe the number of service centers in a queueing 
network and C to describe the number of customer classes. Service center 
k provides an average service time per visit of Sck for customers of class 
c. A customer of class c makes an average of Vck visits to node k for a 
total service demand of Dck — Vck x Sck time units of service for class 
c. The total service demand at service center k is then Dk = ^2cDck-
If the system has average throughput A, then Vck = Acfc/A, where Acfe is 
the average throughput of class c customers at node A;. For a single class 
system, this becomes 

Vk = %, (6.1) 

where A& is the average throughput of node k. Equation (6.1) is sometimes 
written 

Afc - XVk, (6.2) 
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and called the forced flow law because it shows that the throughput of any 
node determines the throughput of all the others. (For a multiclass system 
(6.2) becomes Xck = AVcfc.) 

Example 6.0.1 Gimpy Gipper, the lead performance analyst at Crum­
bling Cookies, has made measurements on his main batch processing ma­
chine. These indicate that the average number of visits each job makes to 
Drive 1 is five and that the disk throughput for Drive 1 is 10 requests per 
second. To calculate the system throughput, A, Gipper uses the forced flow 
law to conclude that 

A - *I 

_ 10 requests/second 
5 requests/job 

= 2 jobs/second. D 

One of the key performance concepts used in studying a computer system 
is the bottleneck device or server, usually referred to as the bottleneck. As 
the workload on a computer system increases some server of the system 
eventually becomes constantly busy. When this happens the combination of 
the saturated server and a randomly changing demand for that server causes 
response times and queue lengths to grow without bound. By saturated 
server we mean a server with a utilization of 1.0 or 100%. A system is 
saturated when at least one of its servers or resources is saturated. The 
bottleneck of a system is the first server to saturate as the load on the 
system is increased. We can identify the bottleneck of the system if we 
know the service demands Dk, for k = 1,2,. . . , K. The bottleneck device 
is device j where j is the integer for which Dj = Dmax, where 

Anax = max{D1,...,DK}-

It is important to note that the bottleneck is workload dependent. That 
is, different workloads have different bottlenecks for the same computer 
system. It is part of the folklore that scientific computing jobs are CPU 
bound, while business oriented jobs are I/O bound. That is, for scientific 
workloads such as CAD (computer aided design), FORTRAN compilations, 
etc., the CPU is usually the bottleneck. Business oriented workloads, such 
as data base management systems, electronic mail, payroll computations, 
etc., tend to have I/O bottlenecks. Of course, one can always find a partic­
ular scientific workload that is not CPU bound and a particular business 
system that is not I/O bound, but it is true that different workloads on the 
same computer system can have dramatically different bottlenecks. Since 



6.1. FINITE POPULATION MODELS 381 

the workload on many computer systems changes during different periods 
of the day, so do the bottlenecks. Usually, we are most interested in the 
bottleneck during the peak (busiest) period of the day. 

Example 6.0.2 Sandy Snodgrass, the lead performance analyst at Seren­
dipitous Systems, measures a small batch processing computer system. She 
finds that the CPU has a visit ratio V\ = 20 with Si = 0.05 seconds, the 
first I/O device has V2 = 11 and S2 = 0.08 seconds, while the other I/O 
device has V3 = 8 and 53 = 0.04 seconds. Hence, Sandy calculates D\ = 1 
second, D2 — 0.88 seconds, while D3 = 0.32 seconds. Sandy concludes that 
the bottleneck is the CPU (the system is CPU bound). □ 

6.1 Finite Population Models 
In this section we discuss finite population queueing systems as portrayed 
in Figure 6.1.1. We consider a simple model for a computer system with a 
terminal workload and only one class of jobs. Figure 6.1.1 illustrates what 
is commonly known as a finite population queueing model of an interactive 
system (see Muntz [17]). The central processor system consists of one 
or more CPUs with the associated main memories and I/O devices. The 
customers (users) are interacting with the central processor system through 
the N terminals (personal computers or work stations). Each customer is 
assumed to be in exactly one of three states at any instant of time: 

(1) "thinking"1 at the terminal (this time is called think time t with mean 

E[t] = T), 

(2) queueing for service at the central processor system,2 or 

(3) receiving service from the central processor system. 
We assume that a user is not allowed to make a new request for service 
until the previous request has been satisfied. 

In Figure 6.1.1 the customer can be represented as a token that travels 
around the system and that at any instant is either at a terminal, in the 
central processor queue (if there is one), or circulating through the central 
processor system. This model is closed. The particular queueing network 
model we use for the system in Figure 6.1.1 depends on what model we 
select to represent the central processor system. One of the simplest models 
is achieved by using a single exponential server with an associated queue 
to represent the central processor system. If we assume the think time is 

1 There may be a bit of optimism here. 
2Sometimes there is no queue for the central processor system, so this state is omitted. 
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exponential this yields the machine repair model that we studied in Section 
5.2.6 (the M / M / l / K / K queueing system). As Lavenberg [12] points out, 
the equations for the machine repair model are true when the think time has 
a general distribution and the central processor system has an exponential 
distribution. 

Terminals 

, 

1 

2 

N - l 

N 

1 
> 

, 

Central 
Processor 
System 

Figure 6.1.1. Finite population system. 

6.1.1 Machine Repair Model 
It seems incredible that the central processor system of a time-sharing sys­
tem could be modeled as a simple exponential distribution, but Scherr [21] 
successfully used this model to analyze the Compatible Time-Sharing Sys-
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tem (CTSS) at MIT.3 This was an early time-sharing system in which user 
programs were swapped in and out of main memory with only one com­
plete program in memory at a time. Since there was no overlap of program 
execution and swapping, Scherr used the sum of program execution time 
and swapping time as the CPU service time. The machine repair analytic 
model gave results that were very close to those for a simulation model and 
to actual measured values. 

For this model, since the operating time for machines corresponds to 
think time, with average think time E[t] = T, we have, by Little's formula, 
the mean response time 

N W = — -T. (6.4) 
A 

But A = p/Ws, so the mean response time can be written as 

NW„ 
W = —^ - T, (6.5) 

where 

and 

Po 

p=l-po, (6.6) 

-{£A«(*)V-W* ™ 
where B[-,-] is Erlang's B formula and 

T 

Example 6.1.1 Slobovian Scientific has an interactive system of 20 active 
engineering diskless workstations connected to a file server by a LAN that 
can be modeled by the machine repair queueing system. The average file 
server service time is 2 seconds, while the mean think time is 20 seconds. 
Find po, Pi A, and the average response time, W. What would be the effect 
of adding five workstations? 

3See Exercise 31 of Chapter 5 for a description of how Scherr and his colleague, 
Lassettre, used the machine repair model to model the performance of the OS/360 time­
sharing option (TSO), a system that allowed programmers to develop and run programs 
from a terminal in a time-sharing mode. 
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Graph of W N 
l-B[N,z] 

versus N. 

Figure 6.1.2. —— versus N for M / M / l / N / N queueing system. 

Ws 

Solution For 20 terminals, 

Po = -B[20,10.0] = 0.001869. 

Thus, 

p = 1 - Po = 0.998131, A = 0.49907 interactions/second, 

and W = 
20 - 20 = 20.075 seconds. 

0.49907 
With 25 workstations 

Po = 0.00002927, p = 0.99997073, 

A = 0.499985365, and W = 30 seconds. 

Thus, the addition of 5 workstations has increased the average throughput 
by only 0.18%, while increasing the mean response time by 49.44%. D 

This example illustrates the concept of system saturation. Consider 
Figure 6.1.2, the graph of W/Ws versus N, the number of active termi­
nals. When there is only one active user (N = 1), there is no queueing 
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for service so that W = W3; the line W/Ws = 1 is an asymptote to 
the curve. As the number of active terminals grows very large (think of 
N = 100,000,000,000, that is, 100 American billion) we would expect 
the computer system to be busy most of the time, so p w 1. But then 
A = p/W$ « 1/WS, and adding more machines has little effect on the 
throughput. When we substitute this equation for A into our equation for W 
(equation (6.4)), we obtain W = N Ws -T or W/Ws = N-T/Ws = N-z. 
This means that the curve has the asymptote W/Ws = N — z for large N. 
Thus, when TV is large, increasing it by 1 has little effect on the throughput 
but increases W by approximately Ws (W/Ws by 1). The two asymptotes 
to the curve intersect at the point (N*, 1) where N* = 1+z = (T+W$)/Ws. 

Kleinrock [10, page 209, (4.66)] calls the value N* the saturation num­
ber. He also gives it an interesting physical interpretation. If each ter­
minal user has exactly T units of think time and uses exactly Ws units 
of service time per interaction, then, with perfect synchronization, N* is 
the maximum number of terminals that can be supported with no mutual 
interference. Thus, for any real system, when TV is one we have no mu­
tual interference; when N is small, we have almost no mutual interference. 
However, as N increases past TV*, we are certain to have some mutual in­
terference (queueing for service) while the formula W — TV Ws — T for a 
very large number of users (terminals) shows complete interference! That 
is, for a very large number of users, each user delays every other user by 
one mean service time, Ws- As we shall see later, the asymptotic formula 
W = TV Ws — T is valid also for a general service time; in fact, it is true 
for even more general "machine repair like" queueing systems. In Example 
6.1.1, TV* = 22/2 = 11 workstations, and the increase in W due to the 
change from 20 to 25 was close to 5 x 2 = 10 seconds (it was 9.963). 

Lassettre and Scherr [11] successfully used the machine repair model to 
develop the OS/360 time-sharing option (TSO). 

Figure 6.1.2 was plotted using z = 40 so that TV* = 41, but the shape 
of the curve will be very similar for other values of z. 

6.1.2 Finite Processor-Sharing Model 
For this model we assume the think time is exponential and the central 
processor system has the processor-sharing queue discipline. Kleinrock [10, 
Section 4.11] shows that the service time distribution is restricted only by 
the requirement that the Laplace-Stieltjes transform, Wg[0], is rational, 
that is, the ratio of two polynomials in 8 (with the denominator at least 
one degree higher than the numerator). An equivalent requirement is that 
the service time s be Coxian. Then the equations of the machine repair 
model hold. That is, equations (6.4) through (6.7) hold for this model. 
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This is a very useful result. It can be used to model many interactive 
systems with at least enough accuracy to evaluate and compare upgrade 
options. 

Example 6.1.2 Let us consider the example on page 317 of Martin Reiser's 
perceptive paper, Reiser [18]. Dr. Reiser shows how to solve this problem 
with QNET4, a sophisticated APL program that was a precursor to the cur­
rent RESQ program.4 He considers a finite processor-sharing model with 20 
active terminals, mean think time T = 3 seconds, a central processor service 
rate of 500,000 instructions per second, and an average interaction require­
ment of 100,000 instructions. Therefore, Ws = 100,000/500,000 = 0.2 
seconds. Hence, z = T/Ws = 15, and p0 = B[20,15] = 0.045593216. By 
(6.5) we have 

NWS 
W = - -T = 1.191 seconds, 

1 - P o 
which agrees with Reiser's solution, as does the average throughput 

A - r—- = 4.772 interactions per second. 
Ws 

The average number in the central processor system 

XW = 5.6835, and p = 0.9544 

also agrees with Reiser's solution. D 

6.2 Jackson Networks 
James R. Jackson in his papers [7, 8] defined some queueing networks with 
remarkable properties. The network of Jackson [7] is described in the fol­
lowing theorem. The type of network defined in Jackson [8] is described by 
Kleinrock [9, Section 4.8]. 

Theorem 6.2.1 (Jackson's Theorem) Suppose a queueing network consists 
of K nodes satisfying the following three conditions: 

1. Each node consists of Ck identical exponential servers, each with av­
erage service rate fi,k-

2. Customers arriving at node k from outside the system arrive in a 
Poisson pattern with the average arrival rate Xk- (Customers also 
arrive at node k from other nodes within the network.) 

4In their book, MacNair and Sauer [14] show how to use RESQ for modeling computer 
systems. 
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3. Once served at node k, a customer goes (instantly) to node j (j = 
1,2,. . . , m) with probability pky, or leaves the network with probability 
1 t^K 
l-L,j=iPkj-

Then, for each node k, the average arrival rate to the node, Afc, is given by 
K 

Afc = Ajfe + ^TpjjfeAj-. (6.8) 

In addition, if we let p(ni,n2,... ,nn) denote the steady state probability 
that there are nk customers in the kth node for k = 1,2, ...,K, and if 
Afc < Cfc/Xfc for k = 1,2,. . . , K (so there is a steady state distribution), then 

p(m,n2,..., nm) = Pi(ni)p2(n2) ■ ■ -PK(TIK), (6.9) 

where Pk(nk) is the steady state probability that there are nk customers in 
the kth node if it is treated as an M/M/ck queueing system with an average 
arrival rate Afc and average service time l/fik for each of-the Cfc servers. 
Furthermore, each node k behaves as if it were an independent M/M/ck 
queueing system with average arrival rate Afc. 

Proof See Jackson [7]. ■ 

Input 

A 
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, 
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q = l - p 

Output 

P A 

Figure 6.2.1. M/M/1 queue with feedback. 

Example 6.2.1 Consider the simple M/M/1 feedback queueing system of 
Figure 6.2.1. Suppose the M/M/1 queueing system represents a message 
switching facility that transmits messages to the required destination. We 
assume the time to transmit a message and receive an acknowledgment of 
correct receipt is exponential. (We assume an error detecting code is used.) 
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The probability that a message is received correctly is p; with probability 
q — 1 — p the message must be retransmitted. Then, by Jackson's theorem, 

A = A + oA or A = - , and p = AWs = — . 
P PM 

Since we have an M/M/ l system, 

L = - = - , and W = - = - . 
1 — p pp — X 1 — p pp. — A 

Consider now the message switching center of Example 5.2.1, where A = 
4 messages per second and W$ = 0.22 seconds. Suppose it is the basis 
for our feedback queueing system and that the probability, p, of correctly 
transmitting a message is 0.99. Then we have A = 4.0404 messages per 
second, p = 0.8889, L = 8 messages, and W = 1.98 seconds. □ 

As the following example shows, the arrival stream to the feedback queueing 
system of the last example is not Poisson. 

Example 6.2.2 Consider the M/M/ l queueing system with Bernoulli feed­
back shown in Figure 6.2.1 and discussed in Example 6.2.1. Trivedi [25, 
Exercise 3, pages 422-423] shows that the input stream with average rate 
A has a two-stage hyper exponential distribution with 

Hi — p, p2 — A, and ?2 = 1 — 9i- However, he also shows that the output 
stream is Poisson with average rate A. D 

I've researched supermarkets 
And now I can be vocal; 
The Express line, I have found 
Behaves more like a local. 

Mimi Kay 
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Figure 6.2.2. Central server system. 

6.2.1 Central Server Model (Single Class) 
This queueing network was used by Buzen [3] to model a multiprogram­
ming computer system. Thus, it models one of the most difficult resources 
to model in a computer system; that is, the main memory of the computer. 
The central server model, shown in Figure 6.2.2, is a closed Jackson queue­
ing network model. The central server is, of course, the CPU. The model 
is closed because it contains a fixed number of programs (has a constant 
multiprogramming level), N. The programs can be thought of as markers 
or tokens that cycle around the system interminably. However, each time 
a program makes the cycle from the CPU directly back to the end of the 
CPU queue, we assume a program execution has been completed and a new 
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program enters the system. Thus, there must be a backlog of jobs ready 
to enter the computer system at all times. There are K — 1 of the I/O 
devices, each with its own queue, and each exponentially distributed with 
average service rate //& (k = 2 , 3 , . . . , K). The CPU was assumed to have 
an exponential distribution in Buzen's models, but Lavenberg and Sauer in 
Lavenberg [12, Section 3.4.2] show that the CPU can also have a general 
distribution with a processor-sharing queue discipline. The queue discipline 
is assumed to be FCFS for the I/O servers. Upon completion of a CPU ser­
vice, a job returns to the CPU queue (completes execution) with probability 
Pi or enters service at I/O device k with probability pk, k = 2 , 3 , . . . , K. 
Upon completion of an I/O service, the job returns to the CPU queue for 
another cycle. If we let (ni , r i2 , . . . , n # ) represent the state of the system, 
where nk is the number of jobs at the fcth service center, Buzen [4] pro­
vides an algorithm that allows one to calculate p(ni, n,2,..., UK) and other 
performance measures, such as the average job turnaround times and the 
utilization of all resources. His algorithm is called the convolution algo­
rithm. Buzen's algorithm is efficient but not at all intuitive. We provide 
a mean value analysis (MVA) algorithm, below, that is more intuitive and 
that can be solved using the APL program CENT and the Mathematica 
program cent. 

Algorithm 6.2.1 does not deal directly with the average service time, 
Sk = l//4t, for each visit but rather with Dk = VkSk, so that Dk, the 
service demand, is the total amount of service that a job needs at the A;th 
service center. We will not need to use the branching probabilities directly, 
either. In Algorithm 6.2.2 we show how to compute each Dk from the 
collection {Sk,Pk, k = 1,2,. . . , K}. 

Algorithm 6.2.1 Consider the central server system of Figure 6.2.2. Sup­
pose we are given the mean total resource requirement, Dk for each of the 
K resources and the multiprogramming level N. Then we calculate the 
performance measures of the system as follows. 

Step 1 [Initialize] Set Lk[0] = 0, k = 1 ,2, . . . , K. 

Step 2 [Iterate] For n = 1,2,. . . , JV, calculate 

Wk\n) = Dfc(l + L f c [n-1]) , k 
K 

W[n] = ][Vfe[n]. 

Lk[n] = X(n)Wk[n], k = 1,2, 

L,2,.. 

K. 

.,K. (6.10) 

(6.11) 

(6.12) 

(6.13) 
(6.14) 
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Step 3 [Compute performance measures] 

Set job response time (turnaround time) 

W = W[N}. 

Set throughput 
A = X[N]. 

Set server utilization 

Pk = *Dk, k = l,2,...,K.m 

In Step 2, Wjt[n] is the average total time a customer spends at the kth 
node for Vk visits (not just the time spent in one visit), and W[n] is the 
average total time a customer spends in the central server system. The key 
formula in Algorithm 6.2.1 is formula (6.10) for Wfc[n]. It says that the 
average time an arriving customer will spend at server k when there are n 
customers in the central server system is the average service required for a 
customer at the server, Dk, times the total number of customers who must 
be served, including the arriving customer. This number is one plus the 
average number of customers the arriving customer finds in the system. The 
fundamental principle of mean value analysis is that the average number 
of customers an arriving customer finds at the server is Lk[n — 1]. As 
Reiser [19], one of the discoverers of MVA, puts it, 

Mean-value analysis is based on the arrival theorem [10-11] that 
states: In a closed queueing network the (stationary) state prob­
abilities at customer arrival epochs are identical to those of the 
same network in long-term equilibrium with one customer re­
moved. 

We state the arrival theorem formally for reference. 

Theorem 6.2.2 (The Arrival Theorem) In a closed queueing network the 
(stationary) state probabilities at customer arrival epochs are identical to 
those of the same network in long-term equilibrium with one customer re­
moved. 

Proof For the proof see Sevcik and Mitrani [23]. 

■ 
Note that there is a boot strapping technique involved in Step 2. For 

n = 1 all the Lk[0] values are zero, so that each Wk[l] = Dk, by formula 
(6.10). Then we calculate A[l] using formulas (6.11) and (6.12); the latter is 
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Little's law. We can then calculate Lfc[l] = AfljW^fl] for all k, and we are 
ready for the next iteration (n = 2). We are on our way! Let us consider a 
simple example. 

Example 6.2.3 Suppose we have a computer system that consists of a 
CPU and one I/O device and that the multiprogramming level is 2. Thus, 
K = N = 2. Suppose, also, that the average CPU time needed per job is 0.4 
seconds while an average of 0.6 seconds of I/O service is required (D\ = 0.4 
seconds and D2 = 0.6 seconds). We also suppose that both service times 
are exponential. Let us step through Algorithm 6.2.1. In Step 1 we set 
Li[0] = L2[0] = 0. In Step 2, for n = 1, we compute Wi[l] = £>i = 0.4 
seconds and W2[l] = D2 = 0.6 seconds. Therefore, W[l] = 1.0 second and 
A[l] = 1/1 = 1 job per second. We compute Li[l] = 0.4 and ^ [ l ] = 0.6. 
Now we can set n = 2 and compute 

Wi[2] = 0.4(1 + 0.4) = 0.56 seconds, 

and 
W2[2\ = 0.6(1 + 0.6) = 0.96 seconds. 

Hence, W[2] = 0.56 + 0.96 = 1.52 seconds and 
2 

A = A[2] = — - = 1.3158 jobs per second, 

Pl = ADi = 0.5263, and p2 = 0.7895. □ 

The calculations for the example could be done using the APL function 
CENT or the Mathematica program cent. Now let us look at the algorithm 
needed to convert from branching probabilities to service demands. 

Algorithm 6.2.2 Consider the central server system of Figure 6.2.2. This 
algorithm will construct the parameters needed to use Algorithm 6.2.1. 

Step 1 Set the visit ratio V\ for the CPU to 

Pl 

Step 2 For n = 2 , 3 , . . . , K calculate 

V„=P„Vi. 

Step 3 [Calculate the demands, Dk] Set 

Dk = VkxSk, k = l,2,...,K. (6.15) 

Proof See Denning and Buzen [5, page 237]. ■ 
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The APL program FIX implements Algorithm 6.2.2. It is used by 
CENTP. Thus, CENTP can use as input the branching probabilities and 
the values of Sk for k — 1,2,. . . , K. FIX handles the conversion so that 
CENTP can call CENT to calculate the performance parameters using Al­
gorithm 6.2.1. 

The central server model was designed to model the contention for the 
processor and I/O resources between programs in a multiprogramming com­
puter system. It has been used with some success but, like all models, it has 
both strengths and weaknesses. Among its strengths is the fact that, unlike 
the machine repair model, it allows I/O devices of different speeds. It also 
permits the modeling of multiple programs simultaneously occupying the 
main memory. Thus, one can model the improvement that would occur if 
more main memory were obtained, so that the multiprogramming level can 
be increased. Modeling of improvements due to more or faster I/O devices 
or a faster CPU can also be obtained. There are several weaknesses in the 
model, as well. It does not represent the overlap between CPU processing 
and I/O activity for a program. It assumes that each I/O device can han­
dle service for only one program at a time and that different I/O devices 
do not interfere with each other. It also assumes random routing of I/O 
requests to I/O devices and that there is no priority system in effect for 
either the CPU or for I/O devices. Finally, the model does not represent 
the time it takes the operating system to allocate memory to incoming 
programs. These weaknesses are necessary to make the model analytically 
tractable. In spite of the weaknesses the model has produced useful results. 
In the next example, based on Ferrari et al. [6, Case 9.6, pages 423-437], 
we demonstrate how the central server model can be used. The tricky part 
of the example is that the paging rate of the paging drum depends upon 
the multiprogramming level, N. Ferrari et al. solved this problem by deter­
mining empirically the paging rate as a function of the size of the program 
under execution. 

Example 6.2.4 In Case 9.6 Ferrari et al. [6] study a multiprogrammed, 
virtual memory system, that is running a batch workload. They model 
the system as a central server model with a CPU and three I/O devices. 
The I/O devices consist of the paging drum to handle the paging requests 
of the virtual storage system, a file drum to service some of the program 
I/O requests, and a file disk to service the remainder of the I/O require­
ments. The main memory is large enough to support 400 page frames, of 
which 300 are available for user programs. The 300 page frames are di­
vided evenly among the programs. Thus, if the multiprogramming level 
N = 3, then each program has 100 page frames available. For the work­
load in the study, the CPU speed is 0.7 MIPS (millions of instructions per 
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second) and a typical program executes 2.1 million instructions, so the av­
erage total CPU time per program is 2.1/0.7 = 3 seconds. (This is D\ in 
our notation.) A program requires an average of 150 file drum accesses 
and 250 file disk accesses. The average individual file access for either the 
file drum or the paging drum requires 1/80.455 = 0.01242931 seconds. To 
apply the central server model we need to know the average number of 
paging drum accesses per program. This number depends upon the num­
ber of page frames assigned to a program. Since there are just 300 page 
frames for all the programs in main memory, the number of page frames 
assigned to a program is 300/N. Ferrari et al. provide a lifetime curve 
(Figure 9.28 of their book) for the computer system. This curve gives the 
average CPU time between page faults as a function of the number of resi­
dent page frames occupied by a program. (Professor Ferrari has assured me 
that such a curve can be constructed for a computer system by extensive 
tracing operations.) When the multiprogramming level is three, so that 
the number of resident page frames is 100, the mean time between page 
faults is 0.013 seconds. Thus, the mean number of page faults per program 
is V2 = 3/0.013 = 230. This means that the visit ratio, Vi, for the CPU 
is Vi = 230 + 150 + 250 + 1 = 631. (Vi = V2 + V3 + ■ • • + VK + 1, since 
the job always leaves the system after receiving a CPU burst.) We show 
the values of Sk, Vfc, and Dk when the multiprogramming level N = 3 in 
Table 6.2.1. It is clear that the file disk is the bottleneck for this system. 
Table 6.2.2 displays the results from running the APL program CENT for 
this model. Table 6.2.3 displays the output of the Myriad program Central 
Server for this example. (The Mathematica program cent agrees with the 
Myriad results a little more closely than CENT does.) 

When AT = 4, the lifetime curve shows that the mean time between 
page faults is approximately 0.012, so that V2 = 3/0.012 = 250 and Vi = 
250+150 + 250+1 = 651. Only three values in Table 6.2.1 need be changed 
for multiprogramming level 4; Vi, V2 and D2 = 3.10733 seconds. We show 
the model results from the Mathematica program cent for this case in Table 
6.2.4. Increasing the multiprogramming level from 3 to 4 had a desirable 
effect and an undesirable one as well. The throughput increased from 0.1168 
jobs per second to 0.12503 jobs per second, an increase of 7.05%, while the 
response time increased from 25.69 seconds to 31.99 seconds, or 24.52%. 
Ferrari et al. show that increasing the multiprogramming level beyond 
5 decreases the throughput and increases the response time, because the 
paging drum becomes the bottleneck. In fact, for N = 10 the throughput 
drops to 0.0643 jobs per second and the response time increases to 155.4 
seconds. This very poor performance is caused by thrashing—the paging 
drum is constantly bringing in new page frames and very little processing 
is accomplished. 
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Table 6.2.1. Model Input 
k Vk Sk Dk 

1 631 3/Vi 3.00000 
2 230 1/80.455 2.85874 
3 150 1/80.455 1.86440 
4 250 1/33.734 7.41092 

Table 6.2.2. Model Output 

W = 25.690 A = 0.117 
Px = 0.350 p2 = 0.334 
p3 = 0.218 p4 = 0.865 
Lx = 0.475 L2 = 0.447 
L3 = 0.263 L4 = 1.814 

Table 6.2.3. Myriad Output Example 6.2.2 

05:13:47 Myriad v 2.0 A (c) Pallas Int. Corp., 1986-1990 02/03/90 
— Global Model Parameters — 

Peripheral servers: 3 
CPUs (central server): 1 
Users in system: 3 

— Server 0 Parameters — 
Average service time per visit: 3/631 
Relative end of job frequency: 1 

— Server 1 Parameters — 
Average service time per visit: 1/80.465 
Relative visit frequency: 230 

— Server 2 Parameters — 
Average service time per visit: 1/80.455 
Relative visit frequency: 150 

— Server 3 Parameters — 
Average service time per visit: 1/33.734 
Relative visit frequency: 250 

— Central Server Analysis Results — 
Server 
System 
Central 
Periph 1 
Periph 2 
Periph 3 

Total time 
25.6888 
0.0065 
0.0166 
0.0150 
0.0622 

Util.C/,) 

35.035 
33.385 
21.773 
86.546 

Throughput 
0.1168 
73.6896 
26.8599 
17.5173 
29.1955 

Queue time 
0.0000 
0.0017 
0.0042 
0.0026 
0.0325 

Nb at servr 
3.0000 
0.4755 
0.4466 
0.2630 
1.8149 
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Table 6.2.4. Model Output 

W = 31.990 A = 0.1250 
pi = 0.375 p2 = 0.3885 
p3 = 0.233 p4 = 0.9266 
Li = 0.551 L2 = 0.5793 
L3 = 0.294 L4 = 2.5761 

For lower multiprogramming levels, the file disk is the bottleneck. By 
moving some files from the file disk to the file drum Ferrari et al. were 
able to reduce V4 from 250 to 118 while increasing V3 from 150 to 282. 
This yields the model input shown in Table 6.2.5; the output from cent is 
shown in Table 6.2.6. This system is now quite well tuned, with D\ as D2 
and D 3 « D4. Note that the throughput has increased to 0.17384 jobs per 
second while the response time has decreased to 23 seconds!5 □ 

Table 6.2.5. Model Input 

i Vj Sj Pi 
1 671 3/Vi 3.00000 
2 250 1/80.455 3.10733 
3 282 1/80.455 3.50506 
4 118 1/33.734 3.49795 

Table 6.2.6. Final Output 

W = 23.010 A = 0.174 
pi = 0.522 p2 = 0.540 
p3 = 0.609 pi = 0.608 
Li = 0.867 L2 = 0.915 
L3 = 1.111 Li = 1.107 

5Some of the data for this example came from Case 9.6, pages 423-437 of the book 
Measurement and Tuning of Computer Systems by Domenico Ferrari, Giuseppe Serazzi, 
and Alessandro Zeigner, Prentice Hall, Englewood Cliffs, NJ, 1983 with the permission 
of Professor Ferrari and Prentice Hall, Inc., Englewood Cliffs, NJ. 
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Figure 6.2.3. Open central server system. 

In Example 3.26 of Lavenberg [12], Lavenberg and Sauer use the cen­
tral server queueing model to study memory management of a multipro-
grammed computer system. Their example is somewhat different from the 
preceding example, because they are trying to optimize the performance 
of the operating system rather than improve the performance of an exist­
ing system. In both examples measurement is needed to determine the 
parameters for the central server model. 

An open model version of the central server model is often used because 
it is much simpler and therefore requires less computation. It can be used 
to model a system, such as a transaction processing system in which the 
system is not limited by the multiprogramming level. The model, shown 
in Figure 6.2.3, is a modified form of the central server model shown in 
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Figure 6.2.2. The multiprogramming level is no longer fixed, so the "New 
Program" branch is replaced by a simple outgoing arrow to indicate where 
customers exit the system. The branching probability remains p\. An 
incoming arrow leading to the CPU queue is added to indicate the arriving 
traffic with average rate A. The arrival pattern is assumed to have an 
exponential interarrival time. We assume the system is not overloaded, so 
the throughput is also A. Jackson's theorem (Theorem 6.2.1) can be applied 
to the system, as stated in the following algorithm. 

Algorithm 6.2.3 Consider the open central server system, described above. 
Suppose we are given the average arrival rate A, the average service time 
at each device, Sk, k = 2 , 3 , . . . , K, and the branching probabilities pk, k = 
2,3,...,K. Then we use Jackson's theorem to calculate the performance 
measures of the system as follows: 

Step 1 [Calculate demands] / / the demands are not known, use Algo­
rithm 6.2.2 to calculate 

Dk, k = l,2,...,K. 

Step 2 [Calculate device performance) For k = l,2,...,K, calculate 

pk = XDk Lk = — — , and Wk = — . 
1 - Pk 1 - Pk 

Step 3 [Compute system performance measures] Set average re­
sponse time (average time in system) to 

K 

w = Y,wk. 
fc=i 

Set average number of customers in the system to 
L = XW. 

The bottleneck device is device j , where j is the integer for which 
Dj = Dmax, where 

Anax = max{Di,...,DK}-

The maximum possible throughput is given by 

' 'max — 
■t^raax 

Proof The algorithm follows immediately from Theorem 6.2.1. ■ 
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Example 6.2.5 Rick Rockyfeller, a performance analyst at Sleek Slim­
ming Salons, investigates a transaction processing computer system that 
can be modeled as an open central server model with one CPU and three 
disks. Rick finds that the average transaction arrival rate is 1/5 transac­
tions per second with an average CPU service requirement of 3 seconds per 
transaction. The average I/O service requirements are 1, 2, and 4 seconds, 
respectively. Rick uses the equations of Algorithm 6.2.3 to construct Table 
6.2.7. From the table he calculates the average transaction response time 

W = Wi + W2 + W3 + W4 = 32.08 seconds, 

and the average number of transactions being processed is 

L = XW = 6.42. 

The bottleneck is the third disk drive, so the maximum possible throughput 
is 1/4 = 0.25 transactions per second. 

Rick discovers that he has inadvertently solved the example on pages 
8-9 of Lazowska et al. [13]. □ 

Table 6.2.7 
k 
1 
2 
3 
4 

Pk 
0.6 
0.2 
0.4 
0.8 

wk 7.50 
1.25 
3.33 

20.00 

Table 6.2.8 
k 
1 
2 
3 
4 

Pk 
0.6835 
0.2278 
0.4557 
0.9113 

Lk 
1.656 
0.290 
0.779 
3.274 

Example 6.2.6 For Example 6.2.5 consider a model with the same pa­
rameters Rick used, but that is now a closed central server model—thus, 
the throughput A is no longer one of the given parameters but is one of 
the performance measures calculated for the model. Suppose the multipro­
gramming level N = 6, the closest integer to the value L — 6.42 calculated 
by Rick. Then CENT yields the values in Table 6.2.8. It also shows that 
W = 26.3359 seconds and A = 0.2278. The model corresponds to a com­
puter system in which there is always a queue of jobs (customers) waiting to 
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enter the computer memory as soon as the previous job is completed, and 
in which the multiprogramming level is kept at 6. Note that, for this closed 
model, the throughput is greater than for the open model used by Rick, and 
the mean response time, W, is smaller. However, the closed model does 
not account for the waiting time outside the system and assumes there is 
always a queue of jobs waiting to enter the system. D 

The open central server model can also be used to represent the central 
processor system in Figure 6.1.1, provided the multiprogramming level need 
not be modeled. However, such a model is no longer a Jackson network 
model because each terminal cannot be modeled as an exponential server. 
Each terminal can be modeled as an infinite server, that is, as an M/M/oo 
system, often called a "delay system", but then the model is no longer a 
Jackson network but rather is a BCMP queueing network. We discuss such 
systems in the next section. 

6.3 B C M P Queueing Networks 
In their classic paper Baskett, Chandy, Muntz, and Palacios [1] generalize 
the Jackson queueing network to allow different classes of customers, each 
with different service requirements, as well as service time distributions 
other than exponential. They also allow open, closed, and mixed networks 
of queues. Finally, they allow customers to change classes after completing 
service at a service center before going to another service center. The num­
ber of service centers is K and the number of customer classes is C. There 
are four types of service centers, each with a different queueing discipline. 
The four types of service centers are: 

Type 1 

The queue discipline is FCFS, and each customer has the same exponential 
service requirement. The service rate can be load dependent with n(j) 
representing the service rate when there are j customers at the center. 

Type 2 

The queue discipline is processor-sharing, with each customer class allowed 
to have a different Coxian service time distribution. 

Type 3 

There are an infinite number of servers so that each arriving customer be­
gins service immediately. Each customer class is allowed to have a different 
Coxian service time distribution. We will sometimes describe a type 3 ser­
vice center as a delay center. 
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Type 4 

The queue discipline is LCFS preemptive repeat with a single server. The 
distribution of service time is Coxian with each customer class allowed a 
different distribution. 

For open networks there are two possible Poisson arrival patterns. In 
the first pattern, the arrival rate from outside has a mean rate, A(iV), that 
depends upon the number of customers, N, in the system. In the second 
pattern, there are C Poisson arrival streams, one for each customer class. 
The arrival rate to the j t h class depends upon the number already present 
in the class. 

In our discussion of BCMP queueing networks, we will consider im­
portant special cases. We will not consider these networks in their full 
generality. For example, we do not allow customer class switching. 

6.3.1 Single Class BCMP Queueing Networks 
The open single class BCMP queueing network model we consider is that 
of Figure 6.2.3, in which we allow not only type 1 service centers but also 
type 2 (processor-sharing) and type 3 (delay) service centers. The following 
algorithm is the MVA algorithm for this model. 

Algorithm 6.3.1 Consider the open central server system shown in Figure 
6.2.3 in which BCMP types of service centers are allowed. Suppose we are 
given the average arrival rate, X, the average service time at each device, 
Sk, k = 2 , 3 , . . . , K, and the branching probabilities, pk, k = 2,3,... ,K. 
Then we calculate the performance measures of the system as follows: 

Step 1 [Calculate demands] / / the demands are not known, use Algo­
rithm 6.2.2 to calculate 

Dk, k = l,2,...,K. 

Step 2 [Calculate device performance] For k = 1,2,. . . , K, calculate: 

Pk = XDk (6.16) 

for all service centers. Calculate 

Pk for delay centers (type 3) 

Lk = < ou ( 6 - 1 7 ) 

—"— for queueing centers (type 1 and 2) 
1 - Pk 
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and 
' Dk for delay centers 

Wk = \ (6.18) 
— for queueing centers 

v 1- Pk 

Step 3 [Compute system performance Measures] Set average re­
sponse time (average time in system) to 

K 
W = J^Wk. (6.19) 

fc=i 

Set average number of customers in the system to 

L = \W. 

The bottleneck device is device j , where j is the integer for which 
Dj — Dma,x, where 

■Dmax = max{Di,. ..,DK}-

The maximum possible throughput is given by 

x - _ L _ 
'"max — 

" m a x 

Proof See Lazowska et al. [13]. B 

Since delay centers are used primarily to represent customers at termi­
nals, delay centers rarely appear in open models. 

Our closed BCMP model for one class is shown in Figure 6.3.1 and 
is constructed by replacing the central processor system in Figure 6.1.1 
by the open central server model of Figure 6.2.3. The N terminals are 
type 3 servers (delay centers), the CPU can be considered either a type 
1 (exponential) or type 2 (PS) server and the I/O devices are all type 
1 servers. The dashed box in Figure 6.3.1 encloses the central computer 
system. The main memory of this system is not modeled. That is, there 
is no queue for requests to enter main computer memory. This means that 
no limit is imposed on the number of requests that can, simultaneously, 
reside in the central computer system. Other models, that we will discuss 
later, must be used to model systems in which the multiprogramming level 
(MPL) is specifically modeled. The MVA algorithm for calculating the 
performance measures of the computer system of Figure 6.3.1 follows. 
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Figure 6.3.1. Closed BCMP computer system. 

Algor i thm 6.3.2 Consider the closed BCMP system of Figure 6.3.1. Sup­
pose the mean think time E[t] = T for each of the N terminals. Each ter­
minal is a type 3 server. The CPU (device number N+1) is either a type 1 
or type 2 server with service demand D = DJV+I given. We are also given 
the service demands Dk, k = N + 2, N + 3,..., K for the I/O devices. Then 
calculate the performance measures of the system as follows. 

Step 1 [Initialize] Set Lk[0] = 0, k = N + 1, N + 2 , . . . , K, 
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Step 2 [Iterate] For n = 1 ,2, . . . , N, calculate 

Wk[n] = Dk(l + Lk[n-l]), k = N + 1,N + 2 , . . . , K, (6.20) 

K 

W[n]= Y, W"H 
k=N+l 

x[n] = wq^T' 
Lk[n] = X(n)Wk[n], k = N + 1,N+ 2,... ,K 

Step 3 [Compute performance measures] Set system throughput to 

X = X[N]. (6.24) 

Set job response time (turnaround time) to 

W=^--T. (6.25) 
A 

[We have already calculated W = W[iV] in Step 2, but we want to 
show the dependence of W on X, N, and T, explicitly] Set server 
utilizations to 

pk = XDk, k = N + l,N + 2,...,K. (6.26) 

Set server throughputs to 

Xk = XVk, k = N + l,N + 2,...,K. (6.27) 

We calculated Lk[N] and Wk[N] for each server in the last iteration 
of Step 2. 

Proof Formula (6.19) is the fundamental principle of MVA. Formula (6.20) 
merely says that the total time a job spends in the system is the sum of 
the times the job spends at each service center. Formulas (6.21)-(6.26) are 
all implementations of Little's law. ■ 

Example 6.3.1 Mellow Marmalade has an interactive computer system 
consisting of 50 active terminals connected to a central computer system 
as in Figure 6.3.1. The company performance analysts find that they can 
model the system by the queueing model described in Algorithm 6.3.2 with 
three I/O devices. They find that the average think time is 15 seconds, the 
mean CPU service demand per interaction (job) is 0.15 seconds, and the 

(6.21) 

(6.22) 

(6.23) 
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mean total service demand per interaction on the three I/O devices is 0.02, 
0.04, and 0.05 seconds, respectively. The calculations of Algorithm 6.3.2 
are shown, in part, in Table 6.3.1. The entries in the-table are rounded 
from those obtained using the APL program BCMP. Using the unrounded 
results, we find that A = 3.24485 interactions per second, W = 0.40904 
seconds, pcpu = 0.4867 (the CPU is the bottleneck device), and the average 
number in the central computer system L — 1.327. □ 

Table 6.3.1. Calculations of Example 6.3.1 

Lk 
Lk 
Lk 
Lk 

wk 
wk 
wk 
wk 
X 

k 
51 
52 
53 
54 
51 
52 
53 
54 

71 = 0 
0 
0 
0 
0 
-
-
-
-
-

n = l 
0.00983 
0.00131 
0.00262 
0.00328 
0.15000 
0.02000 
0.04000 
0.05000 
0.06553 

71 = 2 
0.01985 
0.00262 
0.00526 
0.00657 
0.15147 
0.02003 
0.04010 
0.05016 
0.13105 

n = 50 
0.91652 
0.06929 
0.14865 
0.19279 
0.28246 
0.02136 
0.04581 
0.05941 
3.24485 

As we previously noted, the closed BCMP system of Figure 6.3.1, as im­
plemented by Algorithm 6.3.2, has the major weakness that it assumes 
there are no memory constraints, that is, that there is always room in main 
memory to handle each transaction (job) as it arrives. This is a reasonable 
assumption for a lightly loaded system, such as the one we considered in 
Example 6.3.1. In practice every computer system must limit the multipro­
gramming level. For a lightly loaded batch or interactive system we can use 
the model described by Algorithm 6.3.2 (for a batch system, N is the fixed 
number of batch jobs in the system at all times and the mean think time is 
zero). For a very heavily loaded system with fixed multiprogramming level 
(it could be fixed at the maximum level thought feasible), the closed central 
server model of Algorithm 6.2.1 can be used to calculate the throughput A; 
then the response time formula W = N/X — T can be used to calculate the 
mean response time. 

The remaining problem, that we will now address, is the system in 
which there is an upper limit, say m, set on the multiprogramming level but 
for which the average is much lower. While the computer is in operation 
we assume that the actual MPL (multiprogramming level) will fluctuate 
from zero during the rare times when the computer is doing nothing to m 
when the maximum allowed level has been reached and there is a queue 
of transactions or jobs waiting to enter main memory. Thus, to model the 
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effect of memory on the performance of the computer system, we must take 
the fluctuating MPL into account. 

A technique has been developed for handling memory management mod­
eling in two stages. In the first stage we replace the entire central computer 
system shown in the dashed box in Figure 6.3.1 plus the queue (the queue 
that develops when the multiprogramming level m has been reached), by a 
flow equivalent service center, abbreviated FESC. This flow equivalent ser­
vice center can be thought of as a black box, that, when given the workload 
of the system, provides the same throughput and response time as the real 
system. The FESC is a load dependent server. This means that through­
put depends on the number of customers in the FESC. When there is only 
one transaction being processed (the MPL is one), the throughput and the 
mean response time are much lower than when the computer is operating 
with the maximum MPL. The second stage is to model the system of Figure 
6.3.1 with the FESC replacing the central computer system. 

The entire modeling process is somewhat complex. The following algo­
rithm provides enough detail to write the computer code to implement the 
model we have described. The computational load of this modeling process 
requires a computer, even for very simple systems. 

Algorithm 6.3.3 Consider the closed BCMP system of Figure 6.3.1. We 
assume that all the information about the computer system mentioned in 
Algorithm 6.3.2 is available. We also assume that the central computer 
system has a maximum allowed multiprogramming level (MPL) of m trans­
actions (jobs). Then calculate the performance measures of the system as 
follows. 

Step 1 [Calculate preliminary parameters.] Use Algorithm 6.2.1 to 
calculate the average service rate, fi\j] = X\j], (Afj] is the average 
throughput), for multiprogramming level j = l,2,...,m. 

Step 2 [Initialize] Set q[0] = 1 and create the vector fj, of dimension N 
where fi[j] is defined in Step 1 for j = 1,2,. . . , m and fi\j] = fi[m] for 
j = m + l,...,N. 

Step 3 [Iterate] For n = 1,2,. . . , N repeat Steps J^-6 in sequence. 

Step 4 [Compute W for n customers in *FESC] Set W = 0 and 
repeat the following calculation for j — 1,2,. . . , n. 

W = W+^-q\j-l}. 
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Step 5 [Compute X[n]] Set 

X[n) 
W + T 

Step 6 [Compute parameters] Set s = 0, and for j = n,n — l,n — 
2 , . . . , 1 , calculate 

and 
s = s + q\j). 

Then set q[0] = 1 - s. 

Step 7 [Compute performance measures] Set system throughput to 

A = X[N). (6.28) 

Set job response time (turnaround time) to W. Set server utilizations 
to 

Pk = XDk, k = N+l,N + 2,...,K. (6.29) 

Set server throughputs to 

Xk = XVk, k = N + l,N + 2,...,K. (6.30) 

Finally, 

q[j] = Pjj transactions are in process] j = 0 ,1 ,2 , . . . , N. (6.31) 

Proof See Lazowska et al. [13]. H 

Note that, in Step 2 we take note of the fact that the throughput of 
the central computer system can never exceed that which occurs when the 
maximum multiprogramming level, m, is in effect. Step 3 means that, on 
the first pass, Step 4 is executed with n = 1, then Step 5 is executed with 
n = 1, and, finally, Step 6 is executed with n = 1. This completes one pass. 
On the second pass the first pass is repeated with n = 2, etc. After Step 
6 is executed with n = N, Step 7 is executed. This is the algorithm that 
Myriad uses for its Interactive System model; that is, it kicks out exactly 
the same numbers as the Mathematica program online. The value of q[j] 
is, of course, conditioned on there being n customers in the entire computer 
system. Thus, q[j] is the probability there are j customers in the FESC, 
given that there are n customers in the model, that is, that there are n 
active terminals. 
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Example 6.3.2 Let us apply the Algorithm 6.3.3 model to the Mellow 
Marshmallow interactive computer system of Example 6.3.1. Let us use 
m = 3. The Mathematica program subcent shows that n[l] = 3.84615, 
H[2) = 5.49683, and fi[3} = 6.19921. Then online shows that Algorithm 
6.3.3 predicts A = 3.24223 transactions per second and W = 0.421502 
seconds. These values are very close to those we obtained using the Al­
gorithm 6.3.2 model. We would expect this, since the system is lightly 
loaded. Moreover, online provides the distribution of active customers X, 
that is, those that have obtained access to main memory. We find that 
P\X — 0] = 0.343824 (this is the probability that the central system is 
idle), P[X = 1] = 0.177085, P[X = 2] = 0.297981, and P[X = 3] = 0.1811. 
From these probabilities, we calculate the average number of active cus­
tomers E[X] = 1.19548. By Little's law, the average time a transaction 
spends in the central system, once a memory partition has been obtained, 
is 0.3687 seconds. Subtracting this number from W, we see that the average 
time a transaction queues for main memory is 0.05278 seconds. Although 
our new model doesn't improve the accuracy of A and W very much for 
this lightly loaded case, it does give us more detailed information. Suppose 
now that the load is doubled to 100 active users. Then online predicts that 
A = 5.9397 transactions per second, W = 1.83587 seconds, E[X] = 2.811, 
and the mean time an active customer spends in the central computer sys­
tem is 0.4733 seconds. The approximate solution generated by Algorithm 
6.3.2 is A = 6.124 transactions per second and W = 1.329 seconds. □ 

In the last example the added complexity of the FESC model, that takes 
the limitations of main memory into account, was needed only for heavily 
loaded systems. Let us consider another example, that illustrates a situa­
tion where the Algorithm 6.3.3 model is really needed. 

Example 6.3.3 Puerile Publications, a publisher of children's books, has 
30 diskless workstations connected to a computer system that acts as a file 
server on a LAN. Peter Piper, the analyst for their computer systems, uses 
the Algorithm 6.3.3 model for the system with m = 4. He has measured the 
system, which has two disk drives on the file server. He finds that D\ = .3 
seconds, D2 = 0.4 seconds, and D3 = 0.2 seconds. The mean think time 
is 10 seconds. By using subcent and online, Peter finds that A = 2.065 
transactions per second and W = 4.53 seconds. He also finds that, on the 
average, 9.35 workstations have transactions in progress, either queueing 
for the server or receiving service from it. He finds that the probability 
distribution for customers active in the server memory is po = 0.00539, p\ = 
0.01455, p2 = 0.02579, p3 = 0.03743, and p 4 = 0.91684, so that the average 
number of active customers in main memory is 3.85. The average time they 
spend there is 1.86 seconds, and the average time spent queueing to get in 
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is 2.67. seconds. The Algorithm 6.3.2 model predicts A = 2.25 transactions 
per second, W — 3.33 seconds, and L = 7.5 workstation users. □ 

6.3.2 Multiple Job Class Models 
Very few computer systems are dedicated to one application so completely 
that the system can be modeled very accurately as a single job class model. 
To do so requires a great deal of averaging over the actual classes, which 
can lead to inaccurate performance projections for upgraded systems. 

6.3.2.1 Open Multiclass Models 

An open multiclass model has only open classes. Open class models are 
very easy to solve. For this reason they are somewhat popular, although 
most open class models represent only an approximation of reality and can 
cause modeling problems for mixed systems with both open and closed 
workload classes. For this reason some experienced modelers avoid using 
mixed models. 

We assume there are C open classes in the model and that each class c 
has an arrival rate Ac. Each class also has a service demand Dck for each 
service center k. We assume that a steady state solution exists. For this to 
be true, we must have 

maxi^TAc-Ddfel < 1. (6.32) 

This condition guarantees that no service center will receive more service 
requests than it can handle. 

We can calculate the utilization of each service center by summing the 
utilizations due to each customer class. Thus, 

c 
P * = £ * c A * k = l,2,...,K. (6.33) 

c=l 

By the arrival theorem, we can write 

Dck for delay centers 

Dck Wck = i for queueing centers, (6.34) 
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where 
Pjk = ^jDjk 

for all j and A;. Little's law gives us 

Lck = XcWck. (6.35) 

The mean response time for class c customers is given by 
K 

k = i 

while, by Little's law, 
LC = XCWC. (6.37) 

6.3.2.2 Closed Multiclass Models 

These models are much more difficult to solve, both in terms of complexity 
of the algorithms and in computer time required. Many open class mod­
els can be solved in a few minutes with a pocket calculator, but a closed 
model with only a few classes and only a few workloads in each class can 
make massive demands on a computer as well as a significant investment 
in programming effort. 

A closed, multiple class workload model has C customer classes, each of 
which has a fixed population Nc. We write the vector N = (Ni,N2,. ■ ■, Nc) 
to indicate the overall population. Like all MVA algorithms this model 
depends on Little's law and the arrival theorem. Little's law is used to 
calculate the throughput XC[N] for each class by the formula 

XJN] = ^—^- (6.38) 
c l J TC + WC[N] 

where 
K 

Wc[N) = Y^wck[N] (6.39) 
fe=i 

and each WdfefiV] is calculated by (6.41) below. We apply Little's law to 
each service center k to calculate the average number of class c customers 
there as follows 

Lck[N] = Xc[N]Wck[N), (6.40) 

and sum the values to obtain 
K 

£fc[ l̂ = 5><*[JV]. (6.41) 
c=l 
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The heart of the algorithm is the equation 

{ Dck for delay centers 

(6.42) 
Dck[l + Ack[N]] for queueing centers 

where -Acfc[iV] is the number of customers at service center k seen by an 
arriving class c customer. The arrival theorem implies that 

Ack[N] = Lk[N - lc], (6.43) 
► - ♦ 

where N — l c is the population N with one class c customer removed. What 
makes the multiclass MVA algorithm difficult to implement (and even to 
describe in detail) is the following: We start with the empty population 

JfcO's 

0 = (6XS~^) (6.44) 
by setting 

Lfc[0] = 0, for k = l,2,...K. (6.45) 
Then we can use (6.42) together with (6.37)-(6.41) iteratively to calculate 
solutions for increasing populations n until we reach N. However, the 
solution for each feasible population n = (rai,ri2,. ■ ■ ,nc) (to be feasible 
we must have n = n\ + ni + • • • + nc, where nc < Nc, c = 1,2... ,C) 
requires as input the C solutions Lk[n— l c] , c = 1 ,2 , . . . ,C. Thus, the 
following concerns are the two major procedural difficulties in implementing 
the multiclass MVA algorithm: 

1. Generating all the feasible values of n satisfying the conditions (i) 
n = ni + "2 H 1- n c and (ii) n c < Nc, c = 1,2. . . , C. 

2. Saving the solutions Lk[n — l c ] , c = 1,2,. . . , C, in such a way that 
they can be retrieved as needed. 

Making sure that all the feasible values of n are actually used isn't trivial, 
either. In addition to the procedural problems, there is quite a heavy com­
putation and storage requirement for the computer system that implements 
the algorithm. 

We state the exact multiclass MVA algorithm in a concise form. It 
is described more completely by the Mathematica program Exact, that 
implements the exact multiclass MVA modeling algorithm. We will use it 
as our detailed statement of the algorithm. In the algorithm below we do 
not number the terminals but number the service centers in the central 
computer system starting with k = 1 for the CPU. 
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Algorithm 6.3.4 (Exact Closed Multiclass MVA Algorithm) Consider the 
closed BCMP system of Figure 6.3.1. We assume there are C customer 
classes, Nc customers in each class, and that each customer class c has the 
service demand Dck, k = 1,2,... ,K. Then we calculate the performance 
measures of the system as follows. 

Step 1 [Loop] Repeat Steps 2, 3, and 4 for all feasible customer popula­
tions, n. 

Step 2 [Calculate values of Wcfcfrc]] For k = 1,2,...,K, and c = 
1,2,... ,C, calculate 

for delay centers 
(6.46) 

Dck[l + Lk[n— lc]] for queueing centers 

Step 3 [Calculate values of Ac[7f ]] For c = 1,2,...,C, calculate 

XC[H] = ^ (6.47) 
c l J Tc + Wc[n] 

where 
K 

Wc[n] = YlWck[fi). (6.48) 
fc=i 

Step 4 [Calculate values of Lfcfr?]] For k = 1,2,. . . , K, calculate 

c 
Lk[n} = Yl*c{fi}Wck[n}. (6.49) 

c = l 

Table 6.3.2 
c k Dck 
1 1 0.50 seconds 
1 2 0.04 seconds 
1 3 0.06 seconds 
2 1 0.40 seconds 
2 2 0.20 seconds 
2 3 0.30 seconds 
3 1 1.20 seconds 
3 2 0.05 seconds 
3 3 0.06 seconds 
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Example 6.3.4 The performance analysts at Notorious Northgate have 
found they can model one of their small computer systems using Algorithm 
6.3.4 with three customer classes, two terminal and one batch, with N = 
{5,10,5}. There are 3 service centers with service demands Dck as given in 
Table 6.3.2. The mean think time for the first terminal class is 20 seconds; 
it is 30 seconds for the second terminal class. The results from running 
Exact for this system are shown in Table 6.3.3. All times are in seconds. 
The CPU utilization is actually slightly less than 1; the exact value is 
0.999999620457793. □ 

Table 6.3.3. Results 
c/k Xc Wc pk Lk 

1 0.210 3.81 1.0000 6.5867 
2 0.298 3.56 0.1003 0.1111 
3 0.647 7.73 0.1408 0.1628 

The program Exact is reasonably efficient. Example 6.3.4 was modeled 
in 25.93 seconds on an IBM compatible PC with a 33 MHz Intel 80386 
microprocessor. However, the exact multiclass MVA modeling algorithm 
is not practical for modeling large multiclass systems. Therefore, we will 
describe an approximate algorithm. We use the same numbering system in 
this algorithm as in Algorithm 6.3.4. 

Algorithm 6.3.5 (Approximate Closed Multiclass MVA Algorithm) Con­
sider the closed BCMP system of Figure 6.3.1. We assume there are C 
customer classes, Nc customers in each class, and that each customer class 
c has the service demand Dck, k = 1,2,. . . , K. Let e be an input to specify 
our error criterion. Then we calculate the performance measures of the 
system as follows. 

Step 1 [Calculate approximate values of Lck [N]} Set 

L$[N} = ^ (6.50) 

for all c and k. 

Step 2 [Approximate Acfc[iV]] Calculate 
Q 

Ack[N] = ?±Z±LV>[it] + J2 L?kl"} (6-51) 
i V c j = i 

3 ^c 

for all c and k. 
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Step 3 [Calculate Lck[N] ] Using the estimates for Ack[N] from Step 2, 
calculate 

{ Dck for delay centers 

(6.52) 
Dck[l + Ack[N]} for queueing centers 

for all c and k. Then we calculate 
K 

Wc[N] = J2Wck[N], (6.53) 
XC[N] = ^ £ _ _ (6.54) 

J TC + WC[NY 
for c= 1,2,. . . , C, and 

LT[N] = Xc{N]Wck[N) (6.55) 

for c— 1,2,. . . , C, and k = 1,2,. . . , K. 

Step 4 [Test] / / 

\L%\ti\-L%{N]\<^ (6-56) 
for all c and k go to Step 5. Otherwise return to Step 2 after replacing 
L(£\N] by L<$[N] for all c and k. 

Step 5 [Compute performance measures] Set Wck[N], WC[N], and 
AC[JV] to the values calculated in Step 3 for all values of c and k. If 
Lk[N] is desired, calculate it using (6.40). 

Proof See Lazowska et al. [13]. ■ 

Example 6.3.5 Suppose we compute the performance statistics for the 
computer system of Example 6.3.4 using Algorithm 6.3.5. If we use e = 
0.001, we obtain the values in Table 6.3.4. The computation requires 2.03 
seconds on an IBM compatible PC with a 33MHz Intel 80386 micropro­
cessor. If we use e = 10 - 1 3 , the output is very little different, and the 
calculation takes 11.75 seconds. Note that, although the algorithm con­
verges to a solution very quickly, the solution it produces is not the exact 
solution, no matter how small an e is used. D 

Table 6.3.4. Results 
c/k Xc Wc pk Lj, 
1 
2 
3 

0.210 
0.298 
0.620 

3.83 
3.57 
8.06 

0.9686 
0.0990 
0.1391 

6.5979 
0.1092 
0.1603 
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6.3.2.3 Mixed Multiclass Models 

Mixed multiclass models have both open (transaction) and closed (termi­
nal and batch) workload classes. Although Baskett et al. [1] assure us that 
mixed multiclass models of BCMP queueing network models of computer 
systems have solutions, the solutions tend to be "kludgy" approximate solu­
tions. We outline the solution technique given by Lazowska et al. [13]. The 
idea is to reduce the solution to the solution of a closed multiclass model, 
that we can solve using Algorithm 6.3.4 or Algorithm 6.3.5. The influence 
of the open classes on the closed classes is introduced by "inflating" the 
service demand of each closed class at each service center by dividing each 
Dck for a closed class at service center k by one minus the total utilization 
of service center k by all open classes. That is, 

D*ck = , Dck , (6-57) 
1 - P{o},k 

where P{o},k is the total utilization of service center k by all open classes. 
Thus, open classes effectively slow down the service centers for closed 
classes. We follow Lazowska et al. [13] by letting c e {O} mean that 
class c is an open workload class and similarly for c € {C}. 

Algorithm 6.3.6 Consider a mixed multiclass BCMP computer system. 
Suppose the closed classes have service demands Dck, for all c € {C} and 
k — 1,2,. . . , K. An approximate solution is given by the following steps: 

1. For each center k, calculate 

pck = AcDcfe, for allce {O}, (6.58) 

and the total utilization by all open classes 

p{o},k = ^2 Pck- (6-59) 
c6{0} 

2. Use Algorithm 6.3.4 t° solve the closed model with the open classes 
deleted, where the service demand for closed class c at service center 
k is given by 

D*ck = , Dck ■ (6-60) 
1 - P{0},k 

Then the number at each service center, throughputs, and response 
times from this model are the performance measures for the closed 
classes in the original mixed class model. The utilization, pck, for the 
closed class c at service center k is given by 

Pck — KDck- (6.61) 
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3. The mean response time, Wck, and the average number of open class 
c customers at service center k, Lck, is computed in terms of perfor­
mance measures of the closed classes as follows: 

Wck = Dck [l + L{C)'k] forallce{0}, (6.62) 
1 - P{oy,k 

Lck = KWck for all c € {#} , (6.63) 

where P{o},k was calculated in Step 1 and £{c},k l s the average total 
number of closed class customers at service center k calculated from 
the solution of the closed class model in Step 2. 

Let us consider a simple example. 

Table 6.3.5 
c k Dck 

1 1 0.20 seconds 
1 2 0.50 seconds 
2 1 0.50 seconds 
2 2 0.80 seconds 
3 1 0.80 seconds 
3 2 1.25 seconds 

Example 6.3.6 Suppose we have a computer system with one open (trans­
action) and two closed (batch) workload classes. Suppose the computer sys­
tem has two devices, one CPU and one I/O device, and that each batch class 
has one member. We also assume that Ai = 1 transaction per second, and 
the service demands are given in Table 6.3.5. Furthermore,we assume there 
is one customer in each closed class. We see that P{o},i = ^iDn — 0.2 and 
that p{0},2 = A1.D12 = 0.5 Hence, by (6.59), D^ = 0.5/(1 - 0.2) = 0.625, 
D*22 = 0.8/(1-0.5) = 1.6, Z?^ -0 .8 / (1 -0.2) = 1, and D%2 = 1.25/0.5 = 2.5, 
where all service demands are in seconds. Solving the closed model of Step 
2 in the algorithm yields the numbers in Table 6.3.6. Then, by (6.61), we 
calculate 

0.2fl + 0.45621 
Wu = — — = 0.364 seconds, 

1 -0 .2 
and 

0.5(1 + 1.5438] „ „ , „ „ 
Wu = — = 2.5438 seconds, 

1 - 0 . 5 
so that Wi = 2.908 seconds. Finally, we see that the utilization of the 
CPU is pi = X)c=i ^cDci = 0.4844, and the utilization of the I/O device is 
P2 - Ec=i XcDc2 = 0.9497. D 
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Table 6.3.6. Results 
c/k Ac Wc Lk 

2 0.2820 3.546 0.4562 
3 0.1793 5.579 1.5438 

It is evident that there is both good news and bad news about Algorithm 
6.3.6. The good news is that it is relatively easy to implement. (We leave 
it as an exercise for the reader to revise the code for the Mathematica 
program Exact to implement this algorithm.) The algorithm has been used 
to model some computer systems. The bad news is that there are some less 
than desirable features. For example, it is clear that the algorithm has 
the effect of giving all open classes priority over all closed classes, although 
this might not be true of the system that is to be modeled. The algorithm 
creates this effect by the way it inflates the service demands of closed classes 
in equation (6.59). The other, more troublesome, problem is that there is 
a double level of approximation because an open (transaction) workload is 
always an approximation of an actual workload. 

6.4 Summary 
In this chapter we have discussed a number of queueing network mod­
els of computer systems. We have limited the discussion to those that 
are relatively easy to implement. The more complex queueing network 
models are very difficult to implement and require very complex software. 
The standard reference on queueing network models of computer systems 
is the excellent book by Lazowska, Zahorjan, Graham, and Sevcik [13]. 
Schwartz [22] provides some advice on how to fit the model provided by 
a sophisticated queueing network modeling package to an actual computer 
system. 

It is the mark of an instructed mind to rest satisfied with the degree of 
precision which the nature of the subject admits, and not to seek exactness 

when only an approximation of the truth is possible. 
Aristotle 

6.5 Exercises 
1. [6] Measurements of an interactive computer system at Piper's Pickles 

show that the average response time is 1.5 seconds, the number of 
active users is 100, the CPU utilization is 75%, and the average CPU 
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time used per interaction was 0.3 seconds. What was the average 
think time? 

2. [5] An interactive computer system at Anchor Anchovies has 70 active 
terminals with a mean think time of 30 seconds. The paging disk 
averages 5 accesses per interaction with the average access time of 
0.05 seconds. The paging disk has an average utilization of 0.5. What 
is the average system response time? 

3. [8] During a period when the performance of a computer system at 
Weezl Words was being measured a particular disk was busy 30 per­
cent of the time. If each transaction required 25 accesses to the disk, 
on the average, each of which takes 25 milliseconds, what was the 
average throughput of the system? 

4. [8] An interactive system at Harvey Wallbangers was measured during 
a period in which 10 terminals were active with an average think 
time of 10 seconds. If each interaction required half a second of CPU 
processing and the CPU utilization was 40 percent, what was the 
average response time? 

5. [10] The interactive system at Myth and Smesson was measured when 
50 terminals were active, the average think time was 15 seconds, and 
the average response time was 1.5 seconds. What was the mean num­
ber of transactions active in the central subsystem? 

6. [10] Slobovian Scientific of Example 6.1.1 decides to upgrade their 
system so that the average file server service time is 0.5 seconds; all 
the other parameters are unchanged. Calculate po, p, A, and W, 
assuming the system can be modeled as a machine repair queueing 
system. 

7. [05] Consider Example 6.2.1. Suppose A and Ws are as in the example 
but that p = 0.9999. Calculate A, p, L, and W. 

8. [10 if you have Mathematica and can use cent; 22 if you must write 
your own code.] The analysts at Image Power believe they can model 
their small batch computer system as a central server model using 
Algorithm 6.2.1. They have a CPU and two I/O devices, with the 
total service demands of 2, 1, and 0.5 seconds, respectively. If the 
MPL (multiprogramming level) is 5, find A, W, pi, p2, and p3. 

9. [12] Consider Example 6.2.5. Suppose Rick upgrades the computer 
system so that the service demands are 1.5, 0.5, 1, and 2 seconds, 
respectively, for the CPU and the three I/O devices. If A = 1/5, find 
W and L. 
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10. [15 if you have Mathematica; 25 if you must write your own code.] 
Suppose Peter Piper of Puerile Publications, Example 6.3.3, discovers 
that he must add 10 more workstations to their system (business is 
booming at Puerile). Use his model to do the following: 

(a) Calculate A and W for the current system with 10 more work­
stations, that is, N = 40. 

(b) Calculate A and W with N = 40 for an upgraded file server that 
has £>i = 0.1, D2 = 0.4, and D3 = 0.2 (all values in seconds). 

(c) Calculate A and W with JV = 40 for an upgraded file server 
consisting of the original CPU but a single I/O device, that is 
much faster because of caching and a faster disk drive so that 
Di = 0.3 seconds and D2 = 0.02 seconds. 

11. [10] Interactive Systems has a transaction processing computer system 
that processes two kinds of transactions. The analysts at Interactive 
feel they can model their system as an open multiclass model de­
scribed in Section 6.3.2.1 with one CPU and two I/O devices. The 
service demands and arrival rates are described in the table below. 
Calculate Wi, W2, L\, and L2. 

C K Uck *c 
"1 I 0/2 TIT 

1 2 0.3 — 
1 3 0.4 — 
2 1 0.4 1.5 
2 2 0.3 — 
2 3 0.2 — 

12. [15 if you have Mathematica; 25 if you must write your own code.] 
Consider Example 6.3.4. Suppose it is discovered that the think times 
have been recorded incorrectly and should be 40 seconds for the first 
terminal class and 60 seconds for the second. Assume the other values 
are correct and use Algorithm 6.3.4 to calculate the correct values for 
Table 6.3.3. 

13. [15 if you have Mathematica; 20 if you must write your own code.] 
Calculate the approximate values for Exercise 12 using Algorithm 
6.3.5 with e = 0.001. 
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So naturalists observe, a flea 
Hath smaller fleas that on him prey. 
And these have smaller still to bite'em 
And so proceed ad infinitum. 

Jonathan Swift 

It is much easier to be critical than to be correct. 
Benjamin Disraeli 

The public is the only critic whose opinion is worth anything at all. 
Mark Twain 

A cynic is a blackguard whose faulty vision sees things as they are, and 
not as they ought to be. 

Ambrose Bierce 

As everyone knows, he who joins a waiting line is sure to wait for an 
abnormally long time, and similar bad luck follows us on all occasions. 

How much can probability theory contribute towards an explanation? 
... We have here a new confirmation for the persistence of bad luck. 

Assuredly Peter has reason for complaint if he has to wait three times as 
long as Paul, but the distribution (5.2) attributes to this event probability 
\. It follows that, on the average, in one out of two cases either Paul or 

Peter has reason for complaint. The observed frequency increases in 
practice because very short waiting times naturally pass unnoticed. 

William Feller 
An Introduction to Probability and Its Applications, Vol. II 
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Preface to Part Three: 
Statistical Inference 

Some people hate the very name of statistics, but I find them full of beauty 
and interest. Whenever they are not brutalized, but delicately handled by 

the higher methods, and are warily interpreted, their power of dealing with 
complicated phenomena is extraordinary. They are the only tools by which 

an opening can be cut through the formidable thicket of difficulties that 
bars the path of those who pursue the Science of man. 

Francis Galton 

Francis Galton (1822-1911) was a renowned British biologist and scientist 
who is often credited with founding or at least making respectable the field 
of regression analysis. His work on fingerprints made possible their use 
in human identification. The above Galton quote beautifully summarizes 
what statistics can and cannot do. 

Statistics has gotten some bad press. The popular quote, "There are 
lies, damned lies, and statistics,"6 strikes a responsive chord in many of us. 
Part of this attitude may be instilled in some by excellent books such as the 
ever popular How to Lie with Statistics by Darrel Huff [3]. However, Huff 
does not tell us how to lie with statistics but rather how some advertisers 
have misled the public with statements or graphs that appear to be valid 
statistics. In fact, Otto Frisch [2] shows that the widely believed statement, 
"You can prove anything with statistics," is not true; that is, it is impossible 
to use valid statistics and valid data to prove anything that isn't so. Of 
course this does not prevent some people from trying. Statistics has passed 
the test of time as being one of the most useful of all intellectual disciplines. 
The outstanding book, Tanur et al. [7], provides for the lay reader a number 
of interesting essays on how statistics has solved many real-world problems. 

6Attributed by Mark Twain to Benjamin Disraeli. 
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You may be asking yourself the following two cosmic questions:7 

• What is statistics? 

• How can it help me better understand that mysterious place, the real 
world? 

To help answer these two questions we quote from the article "STATIS­
TICS: The Field," published in Kruskal and Tanur [4]. William H. Kruskal 
says: 

My description of statistics is, of course, a personal one, but one 
that many statisticians would generally agree with. Almost any 
characterization of statistics would include the following general 
functions: 

1. to help in summarizing and extracting relevant information 
from data, that is, from observed measurements, whether 
numerical, classificatory, ordinal, or whatever; 

2. to help in finding and evaluating patterns shown by the 
data, but obscured by inherent random variability; 

3. to help in the efficient design of experiments and surveys; 
4. to help communication between scientists (if a standard 

procedure is cited, many readers will understand without 
need of detail). 

There are some other roles that activities called "statistical" 
may, unfortunately, play. Two such misguided roles are 

1. to sanctify or provide seals of approval (one hears, for ex­
ample, of thesis advisers or journal editors who insist on 
certain formal statistical procedures, whether or not they 
are appropriate); 

2. to impress, obfuscate, or mystify (for example, some re­
search papers contain masses of undisguised formulas that 
serve no purpose except that of indicating what a bright 
fellow the author is). 

These two misguided roles are what Huff writes about in his popular book. 
It is a valuable book to read to prevent specious statistics from misleading 
you. 

Wallis and Roberts [8] provide the crisp, enlightening definition, "Statis­
tics is a body of methods for making wise decisions." That is what we will 
attempt to provide in Part Three. 

7And then again, you may not be. 

426 



Some Statistical Computer Systems We Use 
in Part Three 
There are a number of valuable statistical computer systems available for 
assistance in making statistical calculations and for displaying data in vari­
ous formats. These systems are especially useful for performing exploratory 
data analysis. We have chosen three of them to use in this book, not be­
cause everyone agrees they are the best, but because they are available to 
the author and will probably be available to most readers. The systems are 
discussed in the preface and are listed again here: 

1. MINITAB [5]. 

2. the EXPLORE programs of Doane [1]. 

3. SAS/STAT for IBM PC's and compatibles [6]. 
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Chapter 7 

Estimation and Data 
Analysis 

"Would you tell me, please, which way I ought to go from here?" 
"That depends a good deal on where you want to get to," said the Cat. 

"I don't much care where—" said Alice. 
"Then it doesn't matter which way you go," said the cat. 

Lewis Carroll 
Alice's Adventures in Wonderland 

7.0 Introduction 
Heretofore we have assumed in all our probability models that we knew 
the exact probability distribution of each random variable under consider­
ation. That is, we assumed a knowledge of both the form of the probability 
distribution and the values of the parameters of the distribution. In that 
mythical place often called the real world we are sure of neither. (I am, of 
course, excepting the rare individual who has direct communication with 
the Supreme Being. If you are one of these you have no need for the re­
mainder of this book.) For most of us, our information about a particular 
random variable must be based on a sampling of observed values. Nearly 
everyone uses this technique to make judgments about such things as the 
quality of food and service at a restaurant, the entertainment value of a 
TV series, the talent of an actress or actor, etc. 

Part Three of this book is part of a subject area called statistical infer­
ence. Statistical inference is based on a sample from the population of all 
items under consideration. 
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We will usually be concerned with obtaining a sample x\, x2, ■. ■, xn of 
values from the population of all possible values of a random variable X. 
For the sample to have desirable mathematical properties it should be what 
is called a random sample. We can visualize the process of obtaining a ran­
dom sample as a step-by-step procedure in which a series of observations 
is obtained in such a way that (a) each observed or selected value is in­
dependent of the others, and (b) at each step the selected value has the 
same probability of being chosen as any other element in the population. 
This can be conceptualized as a sequence X\, X2,. ■., Xn of independent 
random variables, each with the same distribution as X. We will therefore 
define a random sample of size n to be a sequence of independent identically 
distributed random variables X\, X2, ■. ■, Xn. Once a random sample has 
been taken (the random variables have assumed values), we indicate the 
sample by xi, x2,. ■., xn. Thus, we take note of the fact that the values of 
two different random samples of size n from the same population are usu­
ally different; one random sample of five response times may be 1.2, 0.85, 
0.35, 0.87, 0.98 seconds, while another random sample may yield 0.76, 0.45, 
0.92, 1.18, 0.54 seconds. There will usually be some observed "randomness" 
between the values of two different random samples. 

For computer science applications it is usually not too difficult to obtain 
random samples. However, in the area of political sampling, this can be 
a major problem. One of the most celebrated cases of lack of randomness 
in a sample is Literary Digest's presidential poll of 1936. The Digest pre­
dicted on the basis of their poll that the Republican nominee, Governor Alf 
Landon, would defeat the incumbent Franklin D. Roosevelt by a margin of 
3 to 2. Roosevelt won by one of the most one-sided landslides in American 
political history, obtaining 62% of the popular vote and 46 of 48 states. 
Bryson [6] explains why the sample obtained by the poll was not random 
and discusses some of the myths often quoted about the poll. The poll was 
not a telephone poll taken of Literary Digest subscribers as is often stated. 

A number of questions concerning the use of a random sample have 
probably occurred to the reader. We list some of the most common concerns 
as a series of "cosmic questions" below. We will not be able to answer 
fully all of these questions in this book, but we shall attack each of them 
vigorously, if not rigorously. 

(The reader should note that we will often use \i to denote the average 
or expected value of a random variable, although the symbol was reserved 
in Chapters 5 and 6 for average service rate of a server.) 

Some Cosmic Questions 
Given the values of a random sample x\, x2, ■ ■ ■, xn from a population de-
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termined by the random variable X (Thus, we assume that X\, X2,..., Xn 

are independent with the same probability distribution as X), the following 
cosmic questions may arise. 

1. How do we estimate the values of the parameters of X such as (i = 
E[X], a2 = Var[X], and a, the standard deviation of A"? 

2. How do we make probability judgments about the accuracy of these 
estimates? 

3. Assuming that the technique for estimating a parameter 0 of X is 
to use a random variable 0 (9 is pronounced "theta hat"), called an 
estimator of 9, which depends upon the random sample,1 what are 
some desirable properties of estimators? 

We will consider these cosmic questions and other important matters in 
this chapter. 

Do what you can, with what you have, where you are. 
Theodore Roosevelt 

7.1 Estimators 
An estimator 9 of a parameter 9 of a random variable X is a random 
variable, which depends upon a random sample Xi, X2,. ■ ■, Xn. The two 
most common estimators are the sample mean, also known as the arithmetic 
mean, X , defined by 

X = if>, (7.1) 
i = i 

and the sample variance S2 defined by2 

n — 1 *-~l 

t = i 

We define the sample standard deviation S, of course, as the positive 
square root of S2. 

1 We indicate this fact by writing 9 = 6(X\,X2, ■ ■ ■ ,Xn). 
2We ask you to answer the question, "Why n — 1 rather than n in the denominator 

of (7.2)?" in Exercise 15. 
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As the names suggest, X is an estimator of fj, = E[X], S2 of a2 — 
Var[X], and S of the standard deviation a. 

There is a certain awkwardness of notation in statistics, that occurs in 
other areas of mathematics as well. This concerns the distinction between a 
function, which is a mapping from one set to another, and a particular value 
of the function. In Chapter 3 we tried to be consistent about indicating the 
distribution function of a random variable X by the symbol F, or sometimes 
F(-), but reserved the notation F(x) to represent the value of F at the point 
x, such as in the formula 

F(x) = 1 - exp(-x/E[X\), x > 0 (7.3) 

for the distribution function of an exponential random variable. When we 
indicate a random variable, which is a function, we usually use a capital 
letter such as X; we use a small x to indicate a particular value of X. (We 
consistently violated this convention in Chapters 5 and 6.) Thus, we indi­
cate a random sample, which is a collection of functions, by X\, X2,..., Xn, 
while we indicate a particular random sample that has been selected by 
x\,X2,■ ■ ■ ,xn. Similarly, when we talk about the sample mean, as in (7.1), 
we use a capital letter; we do the same for the sample variance in (7.2). An 
actual calculated value of the sample mean would be written as 

_ xi+x2 + --- + xn x = , (7.4) 
n 

where the xi,x2, ■ ■ ■, xn are the values of the sample. Similarly, the actual 
calculated value of the sample variance would be written as 

2 _ ( (*! ~ X? + (*2 ~ X)2 + ■ ■ ■ + (Xn - x)2) 
s - — , (7.5) 

where x was calculated by (7.4). 
The next theorem would receive five stars if theorems were rated with 

stars as restaurants are. This theorem will help us answer the cosmic ques­
tions that were raised in the introduction of this chapter. 

Theorem 7.1.1 (The Sampling Theorem) Let Xi, X2, ■ ■., Xn be a random 
sample of size n from a population determined by the random variable X 
that has finite mean fi = E[X] and finite variance a2 = Var[X]. Let X be 
defined by (7.1) and S2 by (7.2). Then 

(a) E[X] = M. 

(b) E[S2} = a2. 
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(c)Var[X] = £ . 
(d) For large n, the random variable 

z = ?jrE (7-6) 

has approximately the standard normal distribution. 

(e) If X has a normal distribution, then the random variable 

has the Student's t distribution with n — 1 degrees of freedom. 

Proof We omit the proof. It can be found in Kreyszig [21]. ■ 

The standard deviation of X, that, by the sampling theorem is cr/y/n, is 
often called the standard error. Since we usually do not know the value of 
a, the approximate value of the standard error is taken to be s/y/n. Note 
that, if Z in (7.6) has a standard normal distribution, then X is normally 
distributed with mean \x and standard deviation a/y/n. Before we show 
how this theorem can be applied let us discuss some desirable properties 
of estimators. We write 9 = 9(Xi,X2,- ■■ ,Xn) for an estimator of the 
parameter 0 to emphasize the fact that the value of the estimator depends 
upon the value of a random sample. 

An estimator 9 of 9 is unbiased if E[9] = 9. Intuitively this means that 
the estimated values of 9 will cluster about 9. Theorem 7.1.1 tells us that 
both the sample mean -and the sample variance are unbiased estimators. 
(The reason we divided by n — 1 in (7.2) rather than by n was to make S2 

an unbiased estimator. We ask you to prove that S2 is unbiased in Exercise 
15.) 

An estimator 9 having the property that, for each e > 0, 

lim P[\9-9\ <e] = l, (7.8) 
n—*oo 

is called a consistent estimator of 9. We also say that 9 converges in prob­
ability to 9. An estimator lacking this property, that is, an inconsistent 
estimator, could be said to "miss the point." Cramer [11] shows that the 
sample mean and the sample variance are consistent estimators. 

Let us consider some consequences of properties of the sample mean X 
as an estimator of the mean /x of X. Suppose we took k random samples, 
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each of size n, and calculated the corresponding k values of the sample 
mean, say xi,^,^- ,Xk- Then these k numbers would cluster about the 
value n because X is unbiased. The variance of X (by Theorem 7.1.1 
Var[X] = er2/n) is a measure of the tightness of the clustering about (i. By 
Chebyshev's inequality, at least three-fourths of the values Xi,X2,...,Xk 
are within two standard deviations of (i, that is, not farther than 2a/y/n 
from \x. Actually, about 95% of the sample means are this close to /x, if n is 
large enough that Z in (7.6) is approximately normal. A widely used rule of 
thumb for normality of Z and Thus, of X is that n be at least 30. The size 
that n must be depends a great deal upon the distribution of X. In fact, if 
X is normally distributed, then X is normal for n = 1. If the distribution 
of X is very different from normal, then values of n much greater than 
30 may be required, perhaps as large as 100. Doane [12] has an excellent 
EXPLORE program MONTE that will let you explore the distribution of 
X on your personal computer. 

Let us consider an example. 

Example 7.1.1 Rick Rivets, a performance analyst at Fast Fasteners, col­
lected the random sample of 40 think times shown in Table 7.1.1. He 
calculates the sample mean (9.32345 seconds) and the sample standard de­
viation (10.7977 seconds). Rick believes the think time has an exponential 
distribution. In Chapter 8 we will learn how he can test this hypothesis. 
It is tedious to calculate the above estimates with a four-function calcu­
lator. Fortunately, most scientific and business calculators have built-in 
functions to make such calculations. The EXPLORE program ANALYZ 
of Doane [12] can easily make these calculations. So, of course, can the 
MINITAB command DESCRIBE [26] and the UNIVARIATE procedure of 
SAS/STAT [27]. We will give examples of the use of these facilities in 
Section 7.3. □ 

Table 7.1.1. Random Sample 

0.171 
1.851 
3.052 
3.871 
6.292 
8.723 

13.356 
29.188 

0.672 
2.705 
3.243 
3.975 
6.349 
8.771 

13.943 
30.366 

0.715 
2.784 
3.538 
4.246 
6.406 
9.571 

15.187 
33.524 

0.932 
2.797 
3.754 
4.573 
6.539 

10.051 
23.860 
48.283 

Two more desirable properties of estimators should be mentioned. The first 
of these concerns efficiency. Clearly, if we compare two unbiased estimators, 

0.080 
1.661 
2.824 
3.857 
5.293 
7.787 

11.117 
27.031 
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9\ and #2. the one with the smaller variance will tend to be more efficient for 
a given sample size. We say that an unbiased estimator 9 is the minimum 
variance unbiased estimator of 9 if Var[#] < Var[#i] when 9\ is any other 
unbiased estimator of 9. The minimum variance unbiased estimator is said 
to be efficient. 

Theorem 7.1.2 Let Xi,X2,..., Xn be a random sample from a population 
determined by X. Then the following hold: 

(a) If X is normally distributed with mean \i and variance a2, then the 
estimators X and S2 are unbiased, consistent, minimum variance 
estimators of the parameters fi and a2, respectively. 

(b) If X is Poisson with parameter (expected value) a, then X is an un­
biased, consistent, estimator of a. It is also the minimum variance 
unbiased estimator of a. 

(c) If X is Bernoulli with parameter p, then k/n, where k is the number 
of successes observed in n independent trials, is the maximum likeli­
hood estimator of p. (We will define maximum likelihood estimator 
in Section 7.1.2.) It is also unbiased, consistent, and the minimum 
variance unbiased estimator of p. 

Proof See Hogg and Craig [18]. ■ 

Although unbiased estimators are desirable in many respects, there is 
not always one available for a particular estimate. In such cases we may 
consider a consistent estimator 9 with minimum mean-squared error, where 
we define the mean-squared error of 9 to be 

E\{9 - 9)2) = Var[0] + (E[§\ - 6)2. (7.9) 

The term E[9] — 9 is called the bias of 9 and, of course, is zero for unbiased 
estimators. It is possible for a biased estimator 9 to have a smaller mean-
squared error than any unbiased estimator, if Var[#] is small. 

We have discussed some desirable properties of estimators and have 
shown that, for some special populations, the sample mean X and the 
sample variance S2 have many of these properties. We have, however, not 
given any general methods for constructing estimators. In the next two 
subsections we consider the two most popular techniques for constructing 
estimators. 
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A mathematician named Klein 
Thought the Moebius band was divine. 

Said he, "If you glue 
The edges of two, 

You '11 get a weird bottle like mine." 

7.1.1 Method of Moments Estimation 
Suppose we are given the values x%,X2,. ■ ■ ,xn of a random sample taken 
from a population determined by a random variable X. Suppose, also, that 
X is characterized by k parameters 0\, 62, ■ ■ •, 6k, that we wish to estimate. 
We define the jth sample moment by 

Mi=l~jlxl (7-10) 

for j = 1,2,. . . , k. We then equate the fc sample moments and the popula­
tion moments £J[XJ] (defined in Chapter 2), giving 

Mj = E[X% (7.11) 

for j = 1,2,3, . . . ,k. The values 61,62,...,9k obtained by solving the 
k simultaneous equations of the form (7.11) are the method of moment 
estimates of the parameters. We illustrate this method with some examples. 

Example 7.1.2 Suppose the processing time X for an inquiry for the inter­
active computer system developed at Barnaby Brass has been found by Big 
Brass, its founder, to have a gamma distribution with parameters /3 and a 
(see Chapter 3) and that n random values of processing time xi , X2, . . . ,xn 

have been observed. We calculate Mi and M2 using (7.10). Then we set 

Mi = M = - , (7-12) 
a 

and 
M2-Mi2 = a2 = 4 - (7-13) 

a 
If we let /3, a denote the solution to these equations, we see that 

Mi2 

(M2 - Ml) 
and 

&=,„ 1 „ 2 , , (7-14) 

Mi 
d = * „ . □ (7.15) 

(M2 - M2) 
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Example 7.1.3 The pattern of arrivals to the main office of Bigbucks Fi­
nancial during the busiest period of the day has a Poisson distribution. 
The number of arrivals for each of n randomly selected 10-minute intervals 
has been collected yielding the values xi,X2,.. -,xn. Doug Dinglehoffer, 
the lead performance analyst, wants to estimate the mean arrival rate per 
10-minute interval, A = E[X], as well as the standard deviation of X. Doug 
uses the method of moments. Therefore, he sets 

A = Mi = x. 

He also sets 
M2 = E[X2} = a2 + E[X}2, (7.16) 

so the method of moments estimate of a is given by3 

<r = si Mi - M2. (7.17) 

The formulas we developed in Example 7.1.2 are the general formulas 
for estimating the mean and variance by the method of moments. That is, 
we always use 

A = Mx (7.18) 
and ^ 

<72 = M2 - M2 (7.19) 

for method of moments estimates of /x and a2. D 
We used the method of moments method in Example 3.2.7 to fit an 

Erlang-fc distribution to an observed message length distribution. 
The method of moments technique has the twin virtues of being in­

tuitively satisfying as well as easy to apply in most cases. However, the 
method of maximum likelihood, that will be discussed next, is even more 
intuitively appealing. In addition it has a deeper theoretical foundation. In 
many cases the two methods yield the same estimators. 

7.1.2 Maximum Likelihood Estimation 
The idea of maximum likelihood estimation of the parameters Q\, 62,..., 9k, 
that characterize a random variable X, is to choose the parameter value or 
values that makes the observed sample values xi , x 2 , . . . , xn most probable. 
We illustrate with an example before we set up the formal procedures. 

3We ask you to show in Exercise 6 that 

M2 - Ml = ( i ^ i ) S2. 

Thus, (7.17) becomes a = sJ^-^. 
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Example 7.1.4 The scientists at the Big Defense Company have many 
application programs collected from a number of sources. Fineas Foog, the 
program librarian, carefully tabulated the programs and discovered that 
proportion p of the programs are written in the C language. Fineas lost the 
paper on which he had written the number p; he is sure that either p = 0.6 or 
p = 0.8. He decides to estimate p from a random sample. Fifteen programs 
are selected randomly and eight are found to be C programs. Fineas uses 
the maximum likelihood estimate for p. Since X, the number of the fifteen 
programs written in C, has a binomial distribution with parameters 15 and 
p, we can calculate the probability of the observed result if p — 0.6, and if 
p = 0.8. If p = 0.6, the probability we will observe eight C programs is 

r5J(0.6)8(0.4)7 = 0.17708, 

while, if p = 0.8, the probability is 

r5J(0.8)8(0.2)7 = 0.0138. 

Hence, Fineas estimates that p = 0.6, since this value has the greater 
probability of yielding the observed sample. □ 

Suppose now that X is a random variable, discrete or continuous, whose 
distribution depends upon a single parameter 9. Let x\,x2, ■ ■ ■ ,xn be an 
observed random sample. If X is discrete, the probability that a random 
sample consists of exactly these values is given by 

l(9)=p(x1)p(x2)---p(xn), (7.20) 

where p(-) is the probability mass function of X. The function / defined 
by (7.20) is called the likelihood function and is a function of 8; that is, 
the value of (7.20) depends both upon the selected sample values and the 
choice of 9. If X is continuous with density function /(•) , then the likelihood 
function /(•) is defined by 

l(0) = f(xi)(x2)---f(xn), (7.21) 

where / is the density function of X. The maximum likelihood estimate of 
9 is the value of 9 that maximizes the likelihood function (7.20) or (7.21). 
If I'm a differentiable function of 9, then a necessary condition for I to have 
a maximum value is that 

| - a (7.22) 
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We indicate a partial derivative in (7.22) because I depends both on 6 and 
the sample values xi,X2,-. -,xn. Thus, to find the maximum likelihood 
estimate of 0 we solve (7.22) to find the value of 6 that maximizes I. If 
we replace the values X\,X2, ■ ■ ■ ,xn in the solution by the random sample 
Xi, X2,- ■ ■, Xn, we obtain the random variable 6, that is the maximum 
likelihood estimator of 6. 

If the distribution of X involves several parameters #i,#2> • • • >#fc, then 
to find the values that maximize the likelihood function, we can solve the 
system of equations 

& - < - • • ■ • • £ - * <7-23> 
to determine maximum likelihood estimates for the parameters. Some care 
must be taken to ensure that the solution of the k simultaneous equations 
(7.23) maximizes l; a minimum point is also characterized by zero partial 
derivatives. 

In many cases it is more convenient to work with L = In I, the logarith­
mic likelihood function. Since the logarithm function In is a monotonically 
increasing function, a maximum of L is a maximum of I and vice versa. In 
this case we replace (7.23) by 

dL dL dL , 

Example 7.1.5 Consider Example 7.1.4. Suppose Fineas now reports that 
perhaps the proportion p of C programs was not 0.6 or 0.8. Fineas decides 
to make a maximum likelihood estimate on the basis of the data. If the 
sample is of size n, then we can visualize the sample as a sequence of 
Bernoulli trials with probability p of success on each trial. Thus, if the 
observed number of C programs is k, then the likelihood function / is, by 
(7.20), 

i(P)=pk(i-Pr-k. 
Thus, 

L = 

and (7.24) becomes 

Solving for p yields 

lnf = k x Inp + (n - k) x ln(l - p), 

dL k n — k 
dp p 1 — p 

. k p= - . 
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This is the result of Theorem 7.1.2(c). In this example, n = 15 and k = 8, 
so 

p = — = 0.5333. D 
15 

Example 7.1.6 Pourtnoy's Complaint Service receives requests for service 
in a Poisson pattern and wants to estimate the average arrival rate A from 
the random sample k\, &2, • • • t kn of arrivals per one-minute interval. Thus, 

1(A) 

where 
-(«-*£)■ ■ • ( « - * £ ) - w ^ ' * * 1 - (7-25) 

n 
Thus, 

L - l n l - - ln(fci! x • • • x kn\) - n x A + n x I x ln(A), (7.27) 

and (7.24) is 
dL nx k 
- = - n + — = 0 . (7.28) 

Solving for A yields 
A = *. (7.29) 

Thus, the sample mean is the maximum likelihood estimate for A. This is 
the same solution we got by the method of moments in Example 7.1.3. □ 

Example 7.1.7 Suppose the random variable X has a normal distribu­
tion with parameters \x and a2. If we have obtained a random sample 
X\,X2,- ■ ■ ,xn, then the likelihood function is 

UTRT2) 

n / 2 / n , ^2> 

exp - ^ 
t = i 

Taking the natural logarithm of (7.30) we obtain 

A {xi - nf 
L(/z,<72) = - ^ x l n 2 7 r - ^ x l n a 2 - £ ^ ^ . (7.31) 

i = l 
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Setting the partial derivatives equal to zero yields 

and 
dL 
da2 

dL n 

—n 

{xt -
a2 

M) 
— = o, 

H 2a4 

(7.32) 

= 0. (7.33) 

Solving (7.32) we obtain 
jj, = Mi=x. (7.34) 

Substituting this value for jx into (7.33) yields 

^ = E ( X ' ~ X ) ' = M2 - Ml = — x S\ (7.35) 
n n 

where the second and third equalities are proven in Exercise 6. As we 
previously remarked, these are the solutions we would get using the method 
of moments. Although ft is unbiased, a2 is a biased estimator. □ 

Example 7.1.8 A method has been developed to estimate the size of an 
animal (or fish) population by performing a capture/recapture experiment. 
Suppose the actual size of the population we want to estimate is N. We 
first capture and tag r of the animals. The r animals are then released and 
allowed to mix into the general population. Later, n animals are captured 
(or recaptured) and the number of tagged animals, k, is counted. The 
probability Pk(N) that the second set of captured animals contains exactly 
k tagged animals is given by 

\n) 

since this capture/recapture experiment can be modeled exactly by a hyper-
geometric random variable with parameters n, N, and r. (See the definition 
of the hypergeometric random variable preceding Exercise 11 in Chapter 3.) 
The parameters n, N, r of our experiment correspond to the number of ele­
ments chosen without replacement, the total number of elements in the set, 
and the number of red elements in the set, respectively. For given values 
of r, k, n the value of N that maximizes Pk(N) is the maximum likelihood 
estimate of N, designated N. To find N we consider the ratio 

pk(N) (N - r)(N - n) 
Pk(N-l) N(N-r-n + k)' (7.37) 
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This ratio is larger than one if and only if Nk < rn (see Exercise 7). Thus, 
as N increases Pk(N) increases as long as N < rn/k; then it decreases. The 
value oipk(N) reaches its maximum when N is the largest integer less than 
or equal to rn/k, that is, when N = [rn/k]. (Recall that [x] is the symbol 
for "the largest integer less than or equal to x.") Suppose the population 
of fish in a small lake is to be estimated. Fifty fish are caught, tagged, and 
released. Later 40 fish are caught and 4 of them are found to be tagged. 
The maximum likelihood estimate of the number of fish in the lake is 

N = 50 x — 
4 

500. □ 

Feller [15, pages 45-46] discusses the technique of Example 7.1.8 in 
greater depth. He shows how to estimate a confidence interval for a special 
case. We should note that the maximum likelihood estimate N has a simple 
intuitive interpretation. It is approximately true that N = rn/k or the 
fraction k/n of tagged animals in the sample is equal to the fraction r/N 
of tagged animals in the population. 

And new Philosophy calls all in doubt, 
The Element of fire is quite put out, 
The Sun is lost, and the'earth and no mans wit 
Can well direct him, where to looke for it. 

John Donne 

7.2 Confidence Intervals 
In Section 7.1 we talked about some nice properties of estimators such 
as being unbiased, consistent, the minimum variance unbiased estimator, 
etc. (The reader may feel like adding "trustworthy, loyal, . . . , reverent.") 
However, not one of these desirable properties is of any help in making a 
probability judgment about the quality or accuracy of the estimate deliv­
ered. The confidence interval, as you probably suspected from the title of 
this section, is what enables us to do that. 

The idea of a confidence interval is very similar to that of an error limit 
in numerical analysis. If we calculate a value x and know that the error 
in the calculation does not exceed S (where 6 > 0), then we know the true 
value lies between x — 6 and x + 6. In the case of an estimator, we are 
dealing with a random variable, so we cannot predict with certainty that 
the true value of the parameter, 6, is within any finite interval. We can, 
however, construct a confidence interval, so there is a specified confidence 
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or probability that the true value 6 lies within the interval. The 95% and 
99% intervals are particularly popular, corresponding to a values of 0.05 
(five percent) and 0.01 (one percent). For a given confidence level, of course, 
the shorter the interval, the more accurate the estimate. 

The sequence of theorems that follow indicate how to calculate confi­
dence intervals for the parameters of some random variables of interest. 
The theorems will be interspersed with partial proofs and examples. 

Theorem 7.2.1 Let x\, X2, ■ ■ ■, xn be the values of a random sample from 
a population determined by the random variable X that has finite mean \i 
and finite variance a2. Suppose further that either: 

(a) X is normally distributed, or 

(b) n is large enough that, by Theorem 7.1.1, X is approximately normally 
distributed. 

Then, if we assume a is known, the 100(1 — a) percent confidence interval 
for n is given by 

x±E, (7.38) 

where 

E = za/2 x -^=. (7.39) 

To ensure that the width of the confidence interval does not exceed w, choose 

/ 2 x za/2 x a\2 

Proof If the stated conditions are true, (X — fi)/(o-/i/n) has (at least 
approximately) a standard normal distribution so that 

P[-za/2 < ^ ^ < Za/i] = 1 - a, (7.41) 

by the symmetry of the normal distribution. A little manipulation of (7.41) 
yields 

P[x - za/2 x —= < n < x + za/2 x —=) = 1 - a, (7.42) 
y/n y/n 

that proves (7.38) and (7.39). To prove (7.40) set 

w = 2x E, 

and solve for n. ■ 
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(Recall that by the definition in Chapter 3, za is the value of z such 
that P[Z > za] = a, where Z is the standard normal random variable.) 
The value za/2 can be picked out of Table 3 in Appendix A or chosen from 
Table 7.2.1. Of course it can also be calculated by the APL function IN, 
the MINITAB command INVCDF with the subcommand NORMAL, or the 
SAS/STAT function PROBIT. It can even be calculated by the HP-21S or 
similar calculator. The reader is cautioned that to use Table 3, one sets 
za/2 to the value of z that yields the value 1 — a/2 in the table. Thus, for 
a 95 percent confidence interval, a = 0.05 and za/2 = zo.025 = 1-96, since 
this is the z value corresponding to the Table 3 value of 1 — 0.025 = 0.975.) 

Table 7.2.1. Values of za/2 

1 - a 0.900 0.950 0.990 0.999 
za/2 1.645 1.960 2.576 3.291 

The main problem with putting Theorem 7.2.1 into practice is that 
sometimes we know neither the mean \i nor the variance a2. In these cases, 
when n is fairly large, we can use s in place of a in (7.39). When n is small, 
but X is normally distributed, we can use Theorem 7.2.2, that requires only 
numbers that can be calculated from the sample. 

Example 7.2.1 A random sample of 225 interactive response times mea­
sured at user terminals at Bonanza Banana yields x = 7 jerks (a jerk is a 
proprietary time unit whose value in seconds is known only to Barry Blast, 
Chief Systems Analyst) with a sample standard deviation of 3 jerks. Find 
a 95% confidence interval for the interactive response time. 

Solution X is approximately normal because the sample size is relatively 
large; s is a good approximation to a. As we showed above, za/2 = 20.025 = 
1.96. Hence, by (7.39), 

3 
E = 1.96 x — = 0.392 jerks. 

15 

Therefore, the 95% confidence interval is 7 ± 0.392 jerks. □ 

Example 7.2.2 Consider Example 7.2.1. Suppose Barry does not want 
the length of the 95% confidence interval to exceed 0.5 jerks. How large 
should his sample be? (Barry can enlarge the random sample of 225 values 
he has now. The current length of the interval is 2 x 0.392 = 0.784.) 



7.2. CONFIDENCE INTERVALS 445 

Solution Barry uses (7.40) to obtain 

/ 1 x l.ao x i \ 
n = 

/ 2 x l . 9 6 x 3 V , . „ , „ 
( — O S — ) = 5 5 3 1 9 -

Thus, Barry needs a sample of size 554; he must randomly select 329 more 
response times. □ 

Theorem 7.2.2 Suppose x\, X2, ■ ■ ■, xn are the values of a random sample 
from a population determined by a normally distributed random variable 
X with unknown mean and variance. Then the 100(1 — a)% confidence 
interval for the mean of X is given by 

x±E, (7.43) 

where 
E = *n-l,a/2 x -4=, (7-44) 

y/n 
and in_i, a /2 is defined by P[T > <n-i,a/2] = a / 2 , where T has a Student's 
t distribution with n — 1 degrees of freedom. 

Proof The theorem follows immediately from the fact that 

(X-E[X])/(S/Vn) 
has a Student's t distribution with n — 1 degrees of freedom. This was part 
of Theorem 7.1.1. ■ 

The value of t„_i ) a /2 can be obtained by calculation using MINITAB, 
SAS/STAT, or the HP-21S or similar calculator. It can also be obtained 
from Table 5 in Appendix A. To find £n-i,a/2 using Table 5, look under 
the column for a using the value of a /2 , and in the row labeled with an n 
value of n — 1. This is illustrated in Example 7.2.3. 

Example 7.2.3 Claude Chandon, the Chief Performance Seer at Tipplers 
Vineyards, believes X, the number of interactive message buffers in use 
during the peak period on the computer he is studying, has a normal dis­
tribution. He takes a random sample of 9 values, which yields x — 120 and 
s = 10. Assuming Claude is right about the normality of X, find a 99% 
confidence interval for the mean number of buffers in use. 

Solution For a 99% confidence interval a = 0.01. By Table 5, ^8,0.005 = 
3.355. Hence, by (7.44), 

E = 3.355 x — = 11.18 buffers, 

so the 99% confidence interval for mean number of buffers in use is 120 ± 
11.18 buffers. D 
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Theorem 7.2.2 is much more satisfying than Theorem 7.2.1, because we 
need deal only with entities that we can measure and calculate; for Theorem 
7.2.1 we had to assume a knowledge of a that we may not have. It is 
common when applying Theorem 7.2.2 to have a large confidence interval 
corresponding to a small sample. Uncertainty is to be expected if we have 
little information to base our estimate upon. 

Figure 7.2.1 illustrates the relationship between 10 typical large sample 
95% confidence intervals for a mean fi and the true value of the mean. Note 
that one of the confidence intervals fails to contain the mean. 

The next theorem tells us how to construct a confidence interval for the 
variance of a normally distributed random variable. 

fj,- 1.96-4= n H + 1.964= 

Figure 7.2.1. Ten confidence intervals. 

Theorem 7.2.3 Let X\, X2, ■ ■ ■, Xn be a random sample from a population 
determined by a normally distributed random variable X with mean \i and 
variance a2. Then the random variable Y = (n — \)S2 /o~2 has a chi-square 
distribution with n — 1 degrees of freedom. Consequently, the 100(1 — a)% 
confidence interval for a2 is given by 

(n — 1) x s2 

~Y2~ 

9 (n ■ 
<<J2 < ^ 

l ) x s 2 

Xn-l,l-<*/2 
(7.45) 

Xn-i a/2 an (* *n- i I -Q /2 c a n ^ e determined from Table 4 in Appendix 
A. They can also be calculated using MINITAB, SAS/STAT, or the HP-21S 
or similar calculator. 

Proof We omit the proof that can be found in Kreyszig [21]. 

Example 7.2.4 Hazunga Enterprises has collected the mean number of 
lines of code per programmer-day for 30 large programming projects. The 
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number of lines per programmer-day, X, has a normal distribution. If 
x = 75 and s2 = 90, find 95% confidence intervals for /x and a2. 

Solution By Table 4 of Appendix A, 

xL.o.975 = 16.047, 

and 
X29.0.025 = 45.722. 

Hence, by (7.45), the 95% confidence interval for a2 is given by 

57.984 < a2 < 162.647. 

By Theorem 7.2.2, the 95% confidence interval for \i is given by x ± E, 
where 

E = tn-i.a/2 X 4 = = 3-542. 
y n 

Hence, the 95% confidence interval for /i is given by 
71.458 < fi < 78.542. D 

This large confidence interval for a2 is typical of the results given by 
Theorem 7.2.3. It takes a very large sample to produce a narrow confidence 
interval for a2. 

Another important parameter we may want to estimate is the probabil­
ity, p, of success in one Bernoulli trial. Equivalently, p is sometimes called 
the true proportion of a population. In the latter case, we have in mind a 
population in which each member may or may not have a certain attribute. 
We call those members that have the attribute "successes" and those that 
don't, "failures." From a random sample of size n, we estimate p by count­
ing the number of successes, k. By Example 7.1.5 we know the maximum 
likelihood estimate p is k/n. The next theorem shows how to construct a 
confidence interval for p. 

Theorem 7.2.4 (Large-sample confidence interval for p). An approximate 
100(1 — Q ) % confidence interval for the Bernoulli parameter p (true pro­
portion of a population) is given by 

where 
. k P = - • n 
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(Here k is the number of successes in a random sample of size n.) To ensure 
the confidence interval has width not exceeding w, choose 

4 a £ / 2 x p ( l - p ) , _ _ , 
n > ' . (7.47) 

Proof By the central limit theorem (Theorem 3.3.1), 

P-P 
.[WEE V n 

has approximately a standard normal distribution. Hence, 

(7.48) 

P[-za/2 < P P < za/2] = l - a . (7.49) 
Jpix-p) 
V n 

A little algebra applied to (7.49) yields (7.46). By (7.46), the width of the 
confidence interval w is given by 

w = 2x za/2JP^n
 P\ (7.50) 

Solving (7.50) for n yields (7.47). 

Example 7.2.5 NSPSP (the National Society for Professional Scientific 
Programmers) obtains a random sample of 100 professional scientific pro­
grammers that contains 18 who consider themselves primarily C program­
mers. Find the 95% confidence interval for the true proportion of C pro­
grammers among all professional scientific programmers. How large a sam­
ple is required so that the confidence interval will not exceed 0.05 in length? 

Solution Since p — 0.18, (7.46) yields the confidence interval 0.1047 < 
p < 0.2553 for p. Unfortunately, the width of this confidence interval is 
0.1506, almost as large as p itself. To decrease the width of the confidence 
interval to 0.05 requires, by (7.47), n > 907.23, that is, a total sample size 
of at least 908. Hence, NSPSP should increase their sample size by 808. □ 

We summarize our confidence interval calculations in Table 7.2.2. 



7.2. CONFIDENCE INTERVALS 449 

Table 7.2.2. Confidence Intervals 
Parameter Assumptions Endpoints 

M 

M 

M l " 

M l " 

P 

~M2 

-M2 

N(fi,a2) or n large 

<r2 known 

N(n,a2) 

a2 unknown 

Independent Distributions 

a\, a\ known 
«i , ri2 large 

Independent Normal 
Distributions 

o\, o\ unknown 
but equal 

Binomial B(n,p) 
n large 

_ . a x±za/2-i= Vn 

— , . S 
X ± ln-l,a/2~pz 

x-y±za/2\ — + — 
y ni n2 

^ - y ± * n i + n 2 - 2 , a / 2 

x / ( m - i ) 4 + (n2-i)s2 
Y ni + n2 - 2 

fc j / (* /n) ( l - fc/n) 
n V n 

fi + i) 
\ 1 l " 2 / 

standard deviation n. .A sexual activity formerly considered perverted 
but now universally practiced and accepted. 

Stan Kelly-Bootle 
The Devil's DP Dictionary 

All the problems become smaller if you don't dodge them, but confront 
them. Touch a thistle timidly, and it pricks you; grasp it boldly, and its 

spines crumble. 
Admiral William Halsey 

You can observe a lot just by watching. 
Yogi Berra 



450 CHAPTER 7. ESTIMATION AND DATA ANALYSIS 

7.3 Exploratory Data Analysis 
Exploratory data analysis (EDA) seeks to reveal structure, or simple 
descriptions, in data. We look at numbers or graphs and try to find 

patterns. We pursue leads suggested by background information, 
imagination, patterns perceived, and experience with other 

data analyses. 
Persi Diaconis4 

So far in this chapter we proceeded as though we knew exactly what 
we wanted to do. We assumed we had a random sample, X\,X2,- ■. ,xn, 
determined by X, that had a known distribution type (exponential, normal, 
gamma, etc.); all we needed to do was estimate fj, and a. However, our 
sample is probably not completely random. In addition, we may have great 
doubts about the distribution of X. This may lead us into what is often 
called exploratory data analysis (abbreviated EDA) after the title of John 
Tukey's book, Tukey [30]. It is also known as preliminary data analysis 
by Cox and Snell [10] and the initial examination of data by Chatfield [8]. 
Whatever we call it, the purpose of EDA is to answer some new cosmic 
questions (not to be confused with the cosmic questions at the beginning 
of the chapter). 

More Cosmic Questions 
4. How do we screen the sample (data) for errors, outliers, and missing 

observations? 

5. How can we use descriptive statistics to analyze the data? 

6. What visual methods are available to help answer cosmic questions 4 
and 5? 

These three cosmic questions inevitably lead us to the following cosmic 
question: 

7. What is a histogram, a stem-and-leaf plot, and a box-and-whiskers 
plot; how are they used? 

My favorite visual display for analyzing data is the histogram. However, 
to be effective it must be supplemented by other displays and by descriptive 
statistics. It is best to use all the EDA display techniques in concert, espe­
cially if you have a computer available to do the computations. Statistics 

4Quoted with permission from Exploring Data Tables, Trends, and Shapes, edited by 
David C. Hoaglin, Frederick Mosteller & John W. Tukey, John Wiley, New York, 1985. 



7.3. EXPLORATORY DATA ANALYSIS 451 

books tend to make histograms seem more complicated than necessary with 
rules about how many classes you should have, how to choose class bound­
aries, etc. Therefore, it is convenient to have a good computer program to 
make choices for you. The better programs allow you to override the com­
puter choices with your own if you are not satisfied with the initial results. 
Doane's statistical system EXPLORE, Doane [12], has a routine ANALYZ, 
that produces useful descriptive statistics as well as beautiful histograms. 
The histogram algorithm uses Sturges' rule (usually), that says that the 
ideal number of classes is given by 

l + log2(n). (7.51) 

For its histogram setup procedure ANALYZ produces the screen shown 
in Figure 7.3.1. If Option 1 is chosen, ANALYZ produces a histogram 
automatically. In Figure 7.3.2 we show the result of choosing Option 2 
assuming the data under analysis is that of Table 7.3.1. If one chooses the 
options recommended by ANALYZ, then the histogram of Figure 7.3.2 is 
produced, just as though Option 1 had originally been selected. 

We have found that an effective way to get pleasing histograms is to first 
choose Option 1. If not satisfied with the histogram produced automatically 
by ANALYZ, then use Option 2 to improve the first histogram. Option 2 
can be applied over and over again until a satisfactory histogram is found; 
rarely are more than two iterations required. 

A histogram is used to display information about a sample of data by 
dividing the data into classes based on the magnitude of the data elements. 
Typically, the number of classes ranges from 5 to 20. The class intervals 
determine to which class each data element belongs. The height of the his­
togram over a class interval represents either the frequency (number of data 
elements in the class) or the relative frequency (number of elements divided 
by n). For the histogram of Figure 7.3.2 ANALYZ chose 6 classes, although 
Sturges' rule indicates that 7 classes should be used. The 6 classes are each 
of width 2 with the class boundaries falling at 0 , 2 , . . . , 12. MINITAB (Fig­
ure 7.3.3) for the same data chose 11 class intervals, each of width 1, with 
centers at 0 , 2 , . . . , 10. SAS/STAT (Figures 7.3.6 and 7.3.7) chose 6 class 
intervals (the same number chosen by ANALYZ), each of width 2, with 
centers at 0 , 2 , . . . , 10. Unfortunately, the point 10.23 fails to be registered 
in Figure 7.3.7, although it is counted in Figure 7.3.6. 

Example 7.3.1 Kari Grant, a senior performance consultant, is helping 
Gerard's Gigantic Gilded Guernsey Dairy improve the interactive perfor­
mance of their central computer system. Kari collected the random sample 
of 50 response times measured at user terminals shown in Table 7.3.1. Kari 
has access to the MINITAB statistical system on a mainframe; she also has 
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the EXPLORE programs of Doane [12] and SAS/STAT available on her 
personal computer. Figure 7.3.2 is the histogram Kari made of her data 
using the EXPLORE ANALYZ program. Figure 7.3.4 contains a set of de­
scriptive statistics that Ms. Grant produced using ANALYZ with the same 
data. Figure 7.3.5 is a similar printout of descriptive statistics provided 
as part of the output of the SAS/STAT procedure UNIVARIATE. Figure 
7.3.3 is the histogram she made using MINITAB. The histogram of Figure 
7.3.2 clearly shows the characteristic shape of an exponential distribution. 
Figure 7.3.3 looks like it could be exponential, but the cluster of values 
with midpoint 5 is surprising. Kari decided to generate a histogram using 
SAS/STAT. SAS/STAT has a procedure CHART, that can generate an 
ordinary histogram of the type seen in most statistics books with vertical 
bars like those in a prison. SAS calls it a "frequency bar chart." Kari used 
CHART to generate the conventional histogram shown in Figure 7.3.7. The 
procedure CHART can also produce another type of frequency bar chart 
that looks like most computer generated histograms; that is, it has hor­
izontal bars like Venetian blinds. Ms. Grant produced such a frequency 
bar chart for the data of Table 7.3.1 using CHART; it appears in Figure 
7.3.6. This latter histogram provides more information than the vertical 
histogram of Figure 7.3.7. It is elegant, with the midpoints explicitly listed 
and some extra useful information appended. Somehow, though, it does 
not look as exponential as Figure 7.3.2. (The collection of data in Table 
7.3.1 is a sample from an exponential distribution.) 

Kari decides to make some stem-and-leaf plots, too. Figure 7.3.8 is the 
stem-and-leaf plot she generated using MINITAB. Figure 7.3.9 is the stem-
and-leaf plot she got from the SAS/STAT UNIVARIATE procedure. It 
does not provide as much information as the MINITAB plot, but a rather 
anemic looking box-and-whiskers plot is thrown in. Kari decides that the 
sample is probably exponential, but withholds final judgment until she can 
perform some of the goodness-of-fit tests we will discuss in Chapter 8. □ 

HISTOGRAM SET-UP 
To construct the histogram, shall the computer: 
1. make all decisions automatically 
2. offer advice, but leave decisions to you 
3. leave decisions to you entirely 
? 1 
Figure 7.3.1. Histogram set up by ANALYZ. 
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Table 7.3.1. Response Time 

3.93 
0.21 
10.23 
0.29 
0.22 
4.79 
0.24 
0.63 
5.21 
3.25 

1.63 
0.19 
4.69 
0.80 
1.61 
4.93 
4.75 
1.82 
0.26 
1.25 

0.40 
2.60 
3.47 
0.65 
2.38 
0.24 
1.39 
3.45 
3.74 
0.13 

1.13 
2.24 
0.16 
0.72 
4.69 
1.52 
2.22 
0.22 
1.28 
2.87 

0.30 
0.24 
6.54 
7.15 
0.30 
2.41 
0.79 
0.94 
0.50 
0.38 

Class 
Cutoff HISTOGRAM FOR DATA.DAT 
0 + 

|****************************** 30 
2 + 

|*********** ii 
4 + 

|****** 5 
6 + 

I** 2 
8 + 

I 
10 + 

I* 1 
12 + 

Figure 7.3.2. Histogram produced by ANALYZ. 
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MTB > histogram cl 

Histogram of Cl N = 50 

Midpoint Count 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

15 
11 
8 
5 
2 
6 
0 
2 
0 
0 
1 

*************** 
*********** 
******** 
***** 
** 
****** 

** 

* 
Figure 7.3.3. Histogram produced by MINITAB. 

GENERAL FACTS: 

File = DATA.DAT 
Observations = 50 
Minimum = .13 
Maximum = 10.23 
Range= 10.1 

CENTRAL TENDENCY: 

DISPERSION: 

Variance = 4.842021 ( 4.745181 ) 
St. Dev. = 2.200459 ( 2.178344 ) 
Coef. of Var. = 103.8 ( 102.8) 
Avg. Dev. About Mean = 1.72592 
Avg. Dev. About Median = 1.6208 

SKEWNESS AND KURT0SIS: 

2nd Moment = 4.74518 
3rd Moment = 15.32232 
4th Moment = 118.5946 
Skewness =1.482 (Pearson Beta 1) 
Kurtosis =5.267 (Pearson Beta 2) 
1 Outlier(s) Detected 

Note: Standard deviation using N instead of N-1 shown in 
parentheses. 

Mean = 2.1196 
Median = 1.335 
Geom. Mean = 1. 
1st Quartile = 
2nd Quartile = 
3rd Quartile = 

.139498 
.3 
1.335 
3.45 

Figure 7.3.4. Statistics produced by ANALYZ. 
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N 
Mean 
Std Dev 
Skewness 
USS 
CV 
T:Mean=0 
Sgn Rank 
Num "= 0 

Moments 

50 
2.1196 

2.200459 
1.528577 
461.8942 
103.8148 
6.811231 

637.5 
50 

Sum Wgts 
Sum 
Variance 
Kurtosis 
CSS 
Std Mean 
P ro t» |T | 
Prob>ISI 

50 
105.98 

4.84202 
2.641456 

237.259 
0.311192 

0.0001 
0.0001 

Figure 7.3.5. Statistics produced by UNIVARIATE. 

FREQUENCY OF TIME 

TIME 
MIDPOINT 

0 
2 
4 
6 
8 

10 

i 
I 
| * • * * * * * * • * * • * * * • • * • * * « 
|************** 
|********** 
1** 
1* 
1 * 

5 10 15 20 

FREQ 

• 22 
14 
10 
2 
1 
1 

CUM 
FREQ 

22 
36 
46 
48 
49 
50 

PERCENT 

44.00 
28.00 
20.00 

4.00 
2.00 
2.00 

CUM 
PERCENT 

44.00 
72.00 
92.00 
96.00 
98.00 

100.00 

Figure 7.3.6. SAS/STAT horizontal frequency bar chart. 

FREQUENCY 
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TIME MIDPOINT 

Figure 7.3.7. SAS/STAT vertical frequency bar chart.5 

10 

I am unable to persuade SAS/STAT to plot all the points. 
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The stem-and-leaf plot or display originated as a kind of "poor man's 
histogram." It was originally used to hand order a collection of data into a 
display that looks somewhat like a histogram; it also makes the data easy 
to analyze. To construct a stem-and-leaf plot proceed as follows: 

1. Split each data value into two sets of digits. The leading (first) set of 
digits is the stem, and the trailing (second) set of digits is the leaf. 

2. List all stem digits from lowest to highest. (SAS/STAT (see Figure 
7.3.9) lists them in the opposite order but that is uncommon.) 

3. For each data element write the leaf numbers on the line labeled by the 
appropriate stem number. The leaves should be listed in increasing 
order. 

Note that the stem can consist of two or more digits. It is a good idea to 
list the leaf unit above the display as MINITAB did in Figure 7.3.8. In that 
way one can tell the size of the numbers in the plot. It is common to list 
the number of leaves on each line as SAS/STAT does. Instead, MINITAB 
lists the depth of the line on each line. The depth is the total number of 
leaves either on that line or on the other lines toward the nearest end of the 
plot (unless the depth is in parentheses). The line with parentheses around 
the depth contains the middle observation, if n is odd, and the middle two 
values, if n is even. The depth listed on this line is merely the number of 
observations on the line. The 8 in parentheses on line 2 indicates that the 
second line contains the middle two observations (observations 25 and 26); 
also indicated is the fact that there are 8 values on this line. The 9 on the 
fifth line indicates there are 9 items total on the fifth line and on higher 
numbered lines. (Actually, there are 5 items on line 5 and one each on 
lines 6, 7, 8, and 11.) It is also common to drop the trailing digits of each 
leaf, as is done in Figure 7.3.8 and Figure 7.3.9. The stem-and-leaf plot 
has some advantages over the histogram. Like the histogram it provides 
the "shape" of a distribution; in fact, a stem-and-leaf display looks a lot 
like a histogram. However the stem-and-leaf display provides additional 
information, such as: 

• Where the values are concentrated. 

• How wide the range of values is. 

• How symmetrical or nonsymmetrical the data is. 

• Whether there are gaps in the data. 

• Whether there are outliers. 
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• In some cases the actual data values (when the trailing digits of the 
leaf are not dropped). 

For large collections of data, stem-and-leaf plots become complicated and 
unwieldy, but for small sets of data a stem-and-leaf plot is superb. 

MTB > stem-and-leaf of cl 

Stem-and-leaf of Cl N = 50 
Leaf Unit =0.10 

22 
(8) 
20 
14 
9 
4 
3 
2 
1 
1 
1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1112222222233345667789 
12235668 
223468 
24479 
66779 
2 
5 
1 

2 

Figure 7.3.8. MINITAB stem-and-leaf plot. 

Stem Leaf 
10 2 
8 
6 52 
4 778892 
2 22446935579 
0 122222222333344567788913345668 

+ + + + + + 

# 
1 

2 
6 
11 
30 

Boxplot 
0 

1 
1 

+ — + — + 
* * 

Figure 7.3.9. SAS/STAT stem-and-leaf plot. 

Example 7.3.1 should give you an idea of some things you can do easily 
with computer statistical systems. 

The most important activity of professionals is pattern recognition. A 
great performance analyst can quickly examine the measurements taken at 
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a computer installation and detect patterns that tell her how well the instal­
lation is operating; she immediately knows if changes are needed and, if so, 
what changes are necessary. Similarly, a statistician with some knowledge 
of the field under study can deduce a lot just by looking at the data; par­
ticularly by using histograms, stem-and-leaf plots, and box-and-whiskers 
plots. The patterns stand out if you know what you are looking for. 

The final exploratory analysis display tool we will discuss is the box-
and-whiskers plot, often called the boxplot. I prefer the former designation 
because it has more pizzazz (sizzle). But then I would never call gar-
banzo beans (how romantic!) chick peas (ughh!). The box-and-whiskers 
plot provides more information than the histogram and the stem-and-leaf 
plot. However, in order to understand this information we need some new 
definitions. 

In the definitions to follow, we assume we are talking about a sample of 
n values, say xi,x-i, • • • 1 %n-

The race is not always to the swift, 
nor the battle to the strong, 

but that's the way to bet. 
Damon Runyon 

7.3.1 Measures of Cent ra l Tendency 
Recall from the first part of this chapter that the sample mean, x, sometimes 
called the arithmetic mean, is the sum of the sample values divided by the 
number of values; that is, by 

* = ± $ > . (7.52) 
i = l 

For the sample of Table 7.3.1 we see by Figure 7.3.4 that x = 2.1196. 
Formula (7.52) generates the infamous class average that we have all been 
concerned about when we took an exam. 

Exploratory data analysts like John Tukey tend to emphasize the sample 
median (the word "sample" is often left out) that, roughly speaking, is the 
middle observation; that is, the observation that is greater than half the 
observations and less than the other half. To pin it down exactly, we must 
consider two cases. If the size of the sample is odd, the median is the 
middle measurement when the sample is listed in increasing order. Thus, 
if the sample is 25, 27, 457, the median is 27. (The median is then the 
[n/2 + l/2]th observation from either end.) If the size of the sample is 
even, the median is the mean of the two middle values when the sample is 
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listed in increasing order. If the sample is 25, 27, 29, 457, then the median 
is (27 + 29)/2 = 28. (When n is even, the median is the average of the 
n/2th and the [n/2 + l]st values.) 

The mode is another measure of central tendency that is not used very 
much in science and engineering. The mode of a sample is the observation 
that occurs most often. It is not necessarily unique. For example, if the 
sample consists of 25 fa and 25 £'s, it has two modes. It is bimodal. If 
there were three modes it would be trimodal, etc. The set of data in Table 
7.3.1 is unimodal with a mode of 0.24. 

The sample mean, x, is the preferred measure of central tendency for 
most statisticians because it is the best estimator of the population mean, 
fj,, and because more useful theory has been developed for dealing with it 
than the other measures. EDA people prefer the median because it is more 
resistant to outliers. An outlier is an extreme value (much larger or much 
smaller than the remainder of the observations). Outliers must be checked 
to see if they are correct or an error was made in collecting the data. It is 
not always clear whether or not an outlier could be a bona fide observation. 
Entire books have been written on the subject. (See, for example, Barnett 
and Lewis [3].) Statisticians tend to suspect that any data element more 
than 3 standard deviations from the mean is an outlier. Snedecor and 
Cochran [29] list several statistical measures that can be used to determine 
whether or not a sample observation from ribrmally distributed data is an 
outlier. 

Two other important measures of central tendency, the harmonic mean 
and the geometric mean, are discussed later in this chapter. 

The power of imagination makes us infinite. 
John Muir 

7.3.2 Measures of Spread or Dispersion 
The mean, median, or mode doesn't by itself tell the whole story. For 

example, consider two very different samples that have the same mean and 
median: the first consists of the single observation 1000 and the second 
consists of the two observations 500 and 1500. Both have a mean that is 
equal to the median and both have a mean of 1000 but the samples are very 
different. We need some measure of the spread of the distribution about 
the mean or median. The simplest measure is the range. The range of a 
sample is the difference between the largest and smallest values. The range 
for the data of Table 7.3.1 is 10.23 - 0.13 = 10.1. 
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Another important characterization of spread is given in terms of per-
centiles, that we discussed in Chapter 3 for random variables. The pth 
percentile observation of a sample is the number such that p% of the values 
do not exceed it and (100 —p)% are greater. The 90th percentile value of a 
sample is the observation that divides the top 10% from the remaining 90%. 
Percentile values are commonly used to report the results of aptitude tests. 
The 25th, 50th, and 75th percentiles are also known as the lower quartile, 
middle quartile (median), and upper quartile, respectively. We will see them 
marked in our box-and-whiskers plots. 

The interquartile range is the distance between the lower (first) quartile 
and the upper (third) quartile. It is an important measure of spread in 
terms of quartiles and is easy to see on a box-and-whiskers plot. 

We have frequently used the sample variance s2 of a sample, which is 
the sum of the squared deviations from the sample mean divided by n — 1; 
that is, 

Naturally, as we have stated earlier in this chapter, s is a good estimate 
of the population standard deviation, a. It has been learned empirically, 
that is, by trial and error, that a ballpark approximation of s is given by 

r a n S e /~r,\ 
s « — — . (7.54) 

For the data of Table 7.3.1 (7.54) yields s « 10.1/4 = 2.525, which is not 
far from the correct value of 2.200459. 

The sample standard deviation is the most useful measure of spread for 
performing traditional statistical tests. 

The final measure of spread is the sample coefficient of variation. It 
is defined as the positive square root of the sample squared coefficient of 
variation, that is defined by 

a = £, (7.55) 
x 

where, of course, we assume x ^ 0. The value of the coefficient of varia­
tion (often written CV) is usually given in percent by statistical packages. 
(Figure 7.3.4 shows that ANALYZ labels the coefficient of variation "Coef. 
of Var.", and gives its value as 103.8 percent. The SAS/STAT procedure 
UNIVARIATE output in Figure 7.3.5 gives it the value 103.8148 percent 
and labels it CV.) The squared coefficient of variation is a favorite statistic 
of certain queueing theory aficionados. Some of them attribute mystical 
powers to this statistic. 
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Most people are about as happy as they make up their minds to be. 
Abraham Lincoln 

7.3.3 Measures of Shape 
Let us now consider the shape of the distribution represented by our 

sample. Statisticians (and almost everyone else) tend to think of the bell-
shaped normal distribution as the normal distribution; that is, the goodness 
of any distribution is measured relative to how much it looks like the normal 
distribution. The density function of a normal distribution is perfectly 
symmetrical about the mean (the point right under the middle of the bell). 
Any distribution that is not symmetrical about the mean is said to be 
skewed. Figure 7.3.10 displays a distribution that is skewed to the right. 
A distribution is skewed to the right if the mean is larger than the median 
and to the left if the mean is smaller than the median. The coefficient of 
skewness, often called, simply, skewness measures the lack of symmetry of 
a distribution or of a sample from a distribution. Naturally, the normal 
distribution has coefficient of skewness zero. 

The coefficient of skewness of a random variable is defined by 

3E^a. (T.56) 
where \i — E[X]. The ANALYZ program estimate of the skewness for the 
data of Table 7.3.1 is 1.482 (shown in Figure 7.3.4). The SAS/STAT esti­
mate provided by UNIVARIATE is 1.528577 (shown in Figure 7.3.5). (We 
ask you to prove in Exercise 12 that an exponential random variable has 
skewness two.6) A positively skewed distribution has a positive skewness 
coefficient just as a negative skewness coefficient indicates a distribution 
that is skewed to the left; naturally, the skewness of a symmetrical distri­
bution is zero. 

Another measure of shape is kurtosis or the kurtosis coefficient. Many 
statisticians use the following definition for the kurtosis of a random variable 
X: 

« ^ ! . (7.57, 
6Skewness estimators are very inaccurate for skewed data. I used SAS/STAT to gen­

erate 5 independent random samples from an exponential population, each of size 3,200. 
The SAS/STAT procedure UNIVARIATE was applied to each sample. The skewness 
values provided ranged from 1.689568 to 2.072886. The estimate closest to the popula­
tion skewness was 2.025028. The kurtosis estimates were between 3.584992 and 6.461421; 
the estimate closest to the population kurtosis used by SAS/STAT for exponential dis­
tributions was 6.333024. (SAS/STAT uses the convention that an exponential random 
variable has kurtosis 6.) 
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Snedecor and Cochran [29] define the kurtosis of a random variable X to 

3£^U (7.58) 

so that the kurtosis of a normal distribution is zero. SAS/STAT uses the 
same convention. 

A normal distribution has kurtosis zero according to (7.58) but three ac­
cording to (7.57). One must be careful in interpreting the kurtosis obtained 
from a computer statistical system. SAS/STAT estimated the kurtosis for 
the data of Table 7.3.1 as 2.641456; the EXPLORE program ANALYZ es­
timated it as 5.267. As we mentioned earlier, the random sample in Table 
7.3.1 is from an exponential population with kurtosis nine by (7.57) but 
six by (7.58). You may wonder exactly what kurtosis measures. According 
to the SAS Procedures Guide for Personal Computers [27] and A. S. C. 
Ehrenberg [14] it measures "heaviness of tails" or differences from the nor­
mal distribution in the proportion of the values that fall a long way from the 
mean. Doane [12] provides a practical way of making that determination 
from reasonably large samples in Appendix G of his book. 

The density of the Erlang-2 distribution is skewed to the right. 
The mean is to the right of the median. 

0.8-i 
0.7-
0.6-
0.5-
0.4-
0.3-
0.2-
0.1-
0.0-f H 1 1 

0 1 2 3 
Figure 7.3.10. Positively Skewed Distribution 

Box-and-Whiskers Plots 
Example 7.3.1 (continued) Now that you have been exposed to all the 
necessary definitions, you may want to look at some box-and-whiskers plots. 
Kari Grant of Example 7.3.1 made the MINITAB box-and-whiskers plot of 
Figure 7.3.11 (she also used the DESCRIBE command to make the informa-

median 
mean 
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tion more complete). Ms. Grant constructed the box-and-whiskers plot of 
Figure 7.3.12 using the EXPLORE program BOXPLOT. She also provided 
the table from the SAS/STAT UNIVARJATE Procedure shown in Figure 
7.3.13 to complement the somewhat sparse box-and-whiskers plot that was 
part of Figure 7.3.9. The box in a box-and-whiskers plot is constructed by 
drawing a box between the lower quartile and the upper quartile. A line is 
drawn across the box at the median so one can tell at a glance which way 
the sample is skewed. The two whiskers point to the extreme values. Thus, 
a cursory examination of a box-and-whiskers plot will tell you 

1. the upper and lower quartile values, Q$ and Q\. 

2. the interquartile range Qz — Q\. 

3. the most extreme values (lowest and highest). They are pointed to 
by the whiskers. 

4. the symmetry or asymmetry of the sample. 

The MINITAB box-and-whiskers plot of Figure 7.3.11 is an extended 
form of the standard boxplot that was developed by Velleman and Hoaglin7 

and is discussed in their book, Velleman and Hoaglin [31]. It does not use 
whiskers to mark the extreme elements. 

MTB > describe cl 

N MEAN MEDIAN TRMEAN STDEV SEMEAN 
Cl 50 2.120 1.335 1.854 2.200 0.311 

MIN MAX Ql Q3 
Cl 0.130 10.230 0.300 3.455 

MTB > boxplot cl 

-I + I * 

0.0 2.0 4 .0 6.0 8.0 10.0 

Figure 7.3.11. MINITAB box-and-whiskers plot. 

They actually wrote the code for the MINITAB box-and-whiskers plot. 
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S U M M A R Y D E S C R I P T I V E S T A T I S T I C S 

F i l e = DATA.DAT Mean = 2.1196 Skewness = 1.482 
Cases = 5 0 S t . Dev. = 2.200459 Kurtosis = 5.267 
Low = .13 1st Quar t i le = .3 
High = 10.23 2nd Quar t i le = 1.335 
Range = 1 0 . 1 3rd Quar t i l e = 3 . 4 5 

B 0 X P L 0 T (F i le = DATA.DAT) 

L0Q1 Q2 Q3 HI 

+ + + 
l - l I I 1 

+ + + 

Figure 7.3.12. BOXPLOT box-and-whiskers plot. 

Quant i les(Def=5) 
100*/. Max 
75'/. Q3 
50*/. Med 
25*/. Ql 

0% Min 

Range 
Q3-Q1 
Mode 

10.23 
3.45 
1.335 
0.3 
0.13 

10.1 
3.15 
0.24 

99*/. 
957. 
90% 
10*/. 
5*/. 
IV. 

10.23 
6.54 
4.86 
0.22 
0.19 
0.13 

Figure 7.3.13. SAS/STAT UNIVARIATE table. 

benchmark v. trans. To subject (a system) to a series of tests in order to 
obtain prearranged results not available on competitive systems. See also 

MENDACITY SEQUENCE. 
mendaci ty sequence n An ISO standard sorting sequence allowing the 

F's in a truth table to be ordered by degree of falsehood. 

=$The basic sequence, in ascending order, is: lies; damn lies; 
statistics; damn statistics; benchmarks; delivery promises; DP 
dictionary entries. Further refinements can be expected. 

Stan Kelly-Bootle 
The Devil's DP Dictionary 
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7.3.4 The Harmonic Mean 
In this section and the next we will examine two means that are seldom 
discussed in statistics books but that are useful for some applications, es­
pecially those in computer science. The first is called the harmonic mean 
and the second the geometric mean. 

The harmonic mean is particularly useful for analyzing the results of 
benchmark tests. A benchmark is a program or collection of programs whose 
running time on a computer system is used to measure its performance 
relative to other computer systems for performing the same task. 

Dongarra, Martin, and Worlton [13] provide an excellent overview of 
computer benchmarking and discuss several standard benchmarks that are 
widely used. This what they say about standard benchmarks: 

WIDELY USED B E N C H M A R K S 
Livermore Loops: computational routines extracted from 

programs at Lawrence Livermore National Laboratory; used 
to test scalar and vector floating-point performance. 

Linpack: linear algebra software library; used to test scalar 
and vector floating-point performance. 

Whetstones: synthesized benchmark of basic arithmetic; used 
to test performance of midsize and small computers. 

Dhrystones: synthesized benchmark for system-programming 
operations; used to test nonnumeric performance of mid­
size and smaller computers. 

Each of the above benchmarks is useful for deciding what computer 
will perform best for you only if your workload is similar to that measured 
by the benchmark. Recently the debit-credit benchmark has a become a 
de facto standard for measuring online transaction processing performance 
(OLTP) (see [2]). 

To give you an idea of the relative size of a couple of these benchmarks, 
I ran them on the four IBM PC AT compatible computers that I used in 
writing this book and indicate the results in Table 7.3.2. Computer A is the 
8 MHz IBM PC AT (the real thing) that I started this book with and that 
has an Intel 80286 microprocessor. All the others are IBM PC AT compat­
ibles with Intel microprocessors and floating-point coprocessors. Computer 
B has a 20 MHz 80386 microprocessor. Computer C, my office machine, 
has a 16 MHz 80386 microprocessor. Computer D, my current personal 
home computer, has a 33 MHz 80386 microprocessor and a hardware cache 
between the CPU and main memory. Another widely quoted PC bench­
mark is the SI benchmark that is part of the Norton Utilities. Peter Norton 
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claims it measures the computing power of an IBM compatible computer 
relative to the IBM PC XT. The SI rating of Computer B is 21.2 and of 
Computer D is 40.6. That is, Peter Norton, who has reached a pinnacle 
of fame never before achieved by a computer professional by appearing in 
an advertisement for a premium scotch whiskey, claims my current home 
computer has 40.6 times the computing power of an IBM XT! The manu­
facturer also claims it has an 8 MIPS rating but doesn't explain how the 
rating was measured. 

Table 7.3.2. Benchmark Results 
Computer 

A 
B 
C 
D 

Dhrystones 
1,517 
4,552 
3,251 

11,379 

Whetstones 
181.2K 

1,059.0K 
816.4K 

2,588.4K 

Example 7.3.2 Suppose you drive your car one mile at 20 miles per hour 
and a second mile at 60 miles per hour. What is your average speed for the 
two miles? 

Solution You may be tempted to add 20 to 60 and divide by 2 to obtain 
40 miles per hour, but you already know that is not the correct answer; 
otherwise the question would not have been asked the way it was. It would 
be the correct answer if we had specified that you drove for one hour at 20 
miles per hour and for one hour at 60 miles per hour. The average speed 
is the fixed speed that will move the car over the two miles in exactly the 
same time that you drove the two miles. Since 60 miles per hour is 1 mile 
per minute, it took you 1 minute to drive the second mile, and Thus, 3 
minutes to drive the first mile, for a total time of 4 minutes. Thus, the 
average speed is 2/4 = 1/2 miles per minute or 30 miles per hour. This is 
what the harmonic mean h would have given you. 

The harmonic mean h of the nonzero numbers x\, X2, ■ ■ ■, xn is defined 
by 

h = - j j - 2
 r - (7.59) 

— + — + ■•• + — 
X\ X2 Xn 

For the question as given, 

2 
h = -= 1- = 30 miles per hour. D 
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Example 7.3.3 Program A and program B each require the execution of 
1,000,000 instructions when they are executed on computer X. Program A 
has been written in an optimized form for the hardware of computer X so 
that it executes at the rate of 2,000,000 instructions per second; program 
B has not been optimized and therefore executes at the rate of 500,000 
instructions per second. If program A and program B are each executed 
once on computer X, what is the average instruction execution rate? 

Solution Program A executes in 0.5 seconds and program B in 2 seconds. 
To obtain the average instruction execution rate we need to weight each 
execution speed by the fraction of time the computer is executing at that 
speed. Therefore, the average instruction execution rate is 

0.5 2 
— x 2,000,000 + — x 500,000 = 800,000 instructions per second. 

It is simpler to make this calculation using the harmonic mean. We calculate 

2 2,000,000 
I 1 2.5 

= 800,000 instructions per second. 

500,000 2,000,000 
□ 

The unit of measure commonly used for instruction execution rate is 
millions of instructions per second, abbreviated MIPS.8 Thus, the computer 
in Example 7.3.3 is executing at 0.8 MIPS. Note that there is no 1 MIP 
computer, but there might be a 1 MIPS computer. 

One of the problems of measuring the performance of a computer system 
by running benchmarks occurs when several different benchmarks are run. 
We would like to generate a single number to summarize the performance. 
Smith [28] considers this problem and agrees with me that 

Harmonic mean should be used for summarizing performance 
expressed as a rate. It corresponds accurately with computa­
tion time that will actually be consumed by running real pro­
grams. Harmonic mean, when applied to a rate, is equivalent to 
calculating the total number of operations divided by the total 
time. 

In the following proposition, we summarize an important property of the 
harmonic mean that is useful in analyzing benchmarks and for other appli­
cations as well. 

8 When the MIPS rate is quoted by a computer manufacturer for a particular computer 
a certain mix of instructions is assumed. The mix is what the manufacturer believes to 
be typical for users of the machine. 
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Proposition 7.3.1 Consider the following situation. 

Case 1: Suppose each of Si,S2,...,sn represents the average speed of a 
car, ship, etc., each maintained over the same distance d. 

Case 2: Suppose each ofsi,S2,-..,sn represents the average computer in­
struction execution rate for a computer executing a computer program 
that executes d instructions. 

Then the harmonic mean h of s\, S2, ■ ■ ■, sn is the average speed in the case 
of a car or ship; that is, the speed that would cover the distance nxd in the 
same time as was achieved by the speeds s\,S2,. ■ ■ ,sn in succession. In the 
case of a computer, the harmonic mean is the average instruction execution 
rate over the time period that the programs are run. 

Proof We will give the proof for Case 1. It will be clear that the same 
proof applies to Case 2. For n = 1 there is nothing to prove, so assume 
that n > 2. Let ij be the time to make the first traversal of the distance d, 
t2 the time for the second traversal, . . . , tn the time for the nth traversal. 
Let 

T = t1+t2 + ... + tn. (7.60) 

Since we need to weight the speeds by the average time spent at that speed, 
the required average, s, is given by 

s = - x * i + - x s 2 + ••• + — xsn. (7.61) 

Since 
d = tiXSi, (7.62) 

U = - , (7.63) 
Si 

for i — 1,2,. . . , n, we can substitute (7.63) into (7.61) for each i. Then the 
ith term in (7.61) is 

4- X Si d 1 
£i ! = _ = i . (7.64) 

Si "t" S 2 "■ h Sn Si "•" S2 ~* ■" Sn S i T S2 ^ T Sn 

Since there are n terms identical to (7.64) in (7.61) the sum (7.61) is the 
harmonic mean. ■ 

or 

You are probably thinking the following cosmic question. 
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A Cosmic Question 
8. I understand how you used the harmonic mean to solve Example 

7.3.2 and Example 7.3.3, but what if I run a whole suite of programs 
(benchmarks) of path lengths (computer instructions) l\,h, ■ • • ,ln, 
respectively, that run at the average instruction rates S\, s2,.. ■, sn? 
How can I use the harmonic mean, or any other technique, to obtain 
the overall average instruction rate? 

Answer to a Cosmic Question 

You use the generalized harmonic mean H defined by9 

H= h+h + - + U ( 7 6 5 ) 
_ -L _ -|_ " 
S i S2 Sn 

Proposition 7.3.2 Suppose a sequence of programs of path lengths li,l2, 
..., ln instructions, respectively, run at the respective average instruction 
rates si, s2, ■ ■ ■, sn. Then the average instruction rate for running all the 
programs in sequence is given by the generalized harmonic mean, H. 

Proof For n — 1 there is nothing to prove, so assume that n > 2. The 
time it takes to run program i is given by 

U = ~, (7.66) 
Si 

for i = 1,2,. . . , n. Let us set 

T = h + t2 + ••■ + *„. (7.67) 

Weighting each speed by the average time the computer runs at that speed 
yields the average speed 

5 = | X S l + T X S 2 + ' " + T X S n ' ( 7 - 6 8 ) 

Each term in (7.68) is of the form 

T T' 
(7.69) 

9Sometimes H is called the weighted harmonic mean. See (7.82). 
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Hence, (7.68) becomes 

3 = ' 1 + ' ' t " + ' ° . (7.70) 

Since 

S i S2 Sn 

we have shown that s is given by (7.65), and the proof is complete. 

Example 7.3.4 Underground Services, a money laundering company, has 
a Model XYZ computer from Little Blue in Beta Test. Random Numbers, 
the Little Blue performance analyst studying the system, has measured the 
performance of the computer and constructed Table 7.3.3. In Table 7.3.3, 
fi is the average number of times program i is run each day, li is the average 
number of XYZ instructions executed when program i is run (measured in 
millions of instructions), and s< is the average rate at which instructions are 
executed (measured in millions of instructions per second, MIPS). Random 
wants to calculate the average instruction rate of the computer per day in 
units of MIPS (counted only when the computer is running programs, of 
course.) 

Table 7.3.3 

fi 
10 
20 
15 

U 
30 
40 
30 

Si 
3 
4 
5 

Solution Random uses the generalized harmonic mean, H. Since fi x lt is 
the number of instructions executed at the rate s*, he calculates: 

H = J/'\"L ' " " " ' ' ° " ' a = i i ^ 2 = 3.974 MIPS. □ 
' " ' 390 

h 
h 

x h + h x l2 

X l2 
S2 

+ / 3 X I 3 
, / 3 X / 3 

^ S3 

We assume in Example 7.3.4 that the average instruction rates as well 
as the path lengths are known for the programs under consideration. This 
is something that must be measured. Computer manufacturers design com­
puters with a number of different instructions, not all of which execute at 
the same speed. Designers of RISC (reduced instruction set computers) 
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use simple instructions designed to complete execution in one machine cy­
cle, with very few exceptions. This means that more of these instructions 
must be executed (at a faster instruction rate) to perform a given task than 
would be true with a CISC (complex instruction set computer). To deter­
mine the average instruction rate to perform a given task on a uniprocessor 
computer system of any architecture, the generalized harmonic mean (7.65) 
can be used. The task to be measured is performed and a monitor counts 
li, the number of times instruction i is executed for i = 1,2,. . . , n, where n 
is the number of instructions the computer can perform. We assume that 
Si for each instruction is known. Of course the instruction rate determined 
by (7.65) is valid only for one particular task. Determining a benchmark 
or suite of benchmarks that is representative of the computer workload of 
potential users of the computer system is an extremely difficult task. 

7.3.5 The Geometric Mean 
The geometric mean is defined for a sequence x\, X2, ■ ■ ■, xn of nonnegative 
numbers by the formula 

g = tyxi x x-i x ••• x xn. (7.71) 

In some cases we need to use the weighted geometric mean defined by 

G = x f 1 x x ™ 2 x . . . x x ™ » , (7.72) 

where the iwi, W2, ■ ■ •, wn are nonnegative weights such that 

Wi + wi + • • • + tun = 1. (7.73) 

The geometric mean, like the harmonic mean, appears in very few statis­
tics books10 but does have some important applications. The main appli­
cation of the geometric mean is in averaging ratios of numbers. For this 
application it functions exactly like the harmonic mean does in averaging 
speeds. 

Fleming and Wallace [17] discuss its use in analyzing benchmarking 
results. They believe that benchmarking results should be normalized to a 
particular processor, say X, by dividing the time taken for each benchmark 
to run by the time it took to run the same benchmark on processor X. Then, 
for each processor, the normalized times are averaged to obtain the overall 
rating of the processor. Fleming and Wallace prove that "the geometric 
mean is the only correct average of normalized measurements." They do 

10Wallis and Roberts [32] is a rare exception. This very readable book discusses both 
the harmonic and geometric means with examples of how each is used. 
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not indicate why you should use normalized measurements. It is not clear 
to this author exactly what normalization between two processors means 
because different processors with different architectures may accomplish a 
task in completely different ways. It would seem that the normalization 
discussed by the authors would be appropriate only for processors in a 
family of very similar machines from one manufacturer. 

I agree with Smith [28], who says 

The geometric mean has the property of performance relation­
ships consistently maintained regardless of the computer that is 
used as the basis for normalization. The geometric mean does 
provide a consistent measure in this context, but it is consis­
tently wrong. The solution to the problem of normalizing with 
respect to a given computer is not to use geometric mean, as 
suggested in [Fleming and Wallace [17]] but to always normal­
ize results after the appropriate aggregate measure is calculated, 
not before. 

We follow Smith [28] in using the numbers from Table IX in the Fleming 
and Wallace paper to show that their technique of using the geometric 
mean of normalized numbers leads to incorrect results. The results are 
shown in Table 7.3.4. The weighted arithmetic means of the times to run 
the two benchmarks show that processor X is the fastest, processor Z is 14 
percent slower than X, and processor Y is 36 percent slower than processor 
X. This is the correct way to analyze the results in terms of the time 
it takes to run the different benchmarks. However, if we calculate the 
normalized geometric mean, as advocated by Fleming and Wallace, we 
would conclude that processor Y is not the slowest machine but rather 
the fastest. This clearly is in error. The problem is that of normalizing 
the numbers. (The same result is obtained by normalizing a geometric 
mean after calculating the geometric mean as by normalizing first and then 
calculating the geometric mean.) To be fair to Fleming and Wallace, they 
do say 

RULE 3: Use the Sum (or arithmetic mean) of Raw, Unnor-
malized Results whenever This "Total" Has Some Meaning 

Example 7.3.5 Suppose the Information Systems Group at Grapeshot 
Graphite has budgets for the years 1983-1987 as shown in Table 7.3.5. 
(The budget values are in millions of dollars.) What is the average value 
of the ratio of this year's to last year's budget? 
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Table 7.3.4. Benchmark Tests 
Benchmark Weight 

1 0.6 
2 0.4 

Weighted arithmetic mean 
Normalized to X 
Weighted geometric mean 
Normalized to X 

Processor 
X 
20 
40 
28 

1.00 
26.4 
1.00 

Y Z 
10 40 
80 20 
38 32 

1.36 1.14 
23.0 30.3 
0.87 1.15 

Solution You are probably thinking that it should be the geometric mean 
because that's the section of the book you are reading; you are right. The 
geometric mean is designed to average ratios. For the ratios in Table 7.3.5 
the geometric mean is 1.195457673. It is the correct average ratio, since 

2.425 x 1.1954576734 = 4.95277. 

The arithmetic mean of the ratios in the table is 1.2, but 

2.425 x 1.24 = 5.02848, 

a value with an error of 1.529%. □ 

Table 7.3.5. Budget 
Year Budget Ratio 

~1983 2.42500 = 

1984 2.54625 1.05 
1985 2.97911 1.17 
1986 3.96222 1.33 
1987 4.95277 1.25 

You are probably thinking the following cosmic question. 

A Cosmic Question 
9. What relationship, if any, is there between the arithmetic mean, the 

harmonic mean, and the geometric mean? 
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Answer to a Cosmic Question 

The answer is given in the following proposition. 

Proposition 7.3.3 Consider a sequence of positive numbers, a\, a^,..., an. 
Recall that the arithmetic mean, A, (also called the sample mean, a, when 
ai , a 2 , . . . , an is a sample) is defined by 

A = a i + a 2 + ... + an 

n 

The harmonic mean, h, is defined by 

h = 
ai T tt2 T an 

ri (i i i v 
- x — + _ + ... + _ 
n \a\ a2 an / 

(7.75) 

The geometric mean, g, is defined by 

g = tyax x a2 x ••• x a„. (7.76) 

Then we have 
h<g<A (7.77) 

with equality if and only if all the a* 's are equal. 

Proof We present a proof of the arithmetic-geometric mean inequality 
provided by Ross Honsberger [19], that he attributes to George Polya. We 
begin by noting that it is easy to show by elementary calculus (we ask you 
to do so in Exercise 14) that the function 

ex - 1 - x 

has a unique minimum value of zero when x — 0, which means that for all 
real x, it is true that 

ex > 1+ x. 

Let a\, a 2 , . . . , an denote positive real numbers. Letting x assume the values 
{ai/A) — 1 for i = 1,2,. . . , n, we obtain the n inequalities 

_(o,M)-i > £i 
" A' 

„(o,M)-i > £2 
" A ' 
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Ja„/A)-1 > £n 
- A' 

Multiplying these inequalities together yields 

/ o i + a2 -I \-an \ ax x a2 x • • • x an 
exp (̂  j n)> - , 

which is 
> n—n ^ " 

An 

or 
9n 

1 > — 
- An' 

from which it follows that 
A>g. 

Note that A = g only if equality holds in all n relations. This means we 
must have 

2 - . - . . 
for i = 1,2, . . . , n . This shows that each a* is equal to A. This com­
pletes the proof of the arithmetic-geometric mean inequality. To prove the 
geometric-harmonic mean inequality, let us apply the arithmetic-geometric 
mean inequality to the numbers aj"1, a j 1 , . . . , a~x to obtain 

( 0 l 1 + ° 2 1 + " - + a n 1 ) > ( o r l X Q - l x . . . x a ^ l ) l / n - ( 7 J 8 ) 
n 

From the definitions of g and ft, we see that (7.78) can be interpreted as 

h-^g'1, 

that is equivalent to 
h < g. (7.79) 

Furthermore, there is equality if and only if 

„ - i _ „ - i _ _ „ - i Oi = a2 = • • ■ - an , 

that is equivalent to 
oi = 02 = • • • = an. 

This completes the proof. ■ 
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Weighted Means 
Recall the weighted geometric mean G defined by formula (7.72), that we 
repeat as 

G = a f 1 x a f 2 x - . x a „ u ' » , (7.80) 

where the u>i are nonnegative and 

u>i +w2 + --- + wn = 1. (7.81) 

The generalized harmonic mean H, defined by (7.65), can also be written 
in the form of a weighted harmonic mean 

(7.82) 

+ ^ . (7.83) 
5« 

where 

We assume that 

W = 

"-w 
W\ Wo — + — + 
«i s 2 

h 
Wi = L 

for i — 1,2,. . . , n, where 

L = J > 
i=l 

Thus, each wi is positive and (7.81) holds. We can define the weighted 
arithmetic mean, WA, by 

WA = w\ x a\ + W2 x 02 + • • • + wn x an, (7.84) 

where, of course, we assume each Wi is nonnegative and that (7.81) holds. 
The next proposition shows that the weighted means behave just like the 
unweighted means. 

Proposition 7.3.4 Consider a sequence of positive numbers, oi, a?,,..., an. 
Suppose the weighted arithmetic mean, WA, is defined by (7.84), the weighted 
geometric mean, G, is defined by (7.80) and the weighted harmonic mean, 
H, is defined by (7.82). Then the following inequalities hold with equality 
in all cases if and only if all the ai are equal. 

H<G< WA. (7.85) 
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Proof. Using the fact that - In t is convex for positive t, Boas [4] proves 
that 

G < WA, (7.86) 

with equality if and only if 

ai = a2 = • • ■ = a„. (7.87) 

We can apply (7.86) to obtain 

— + — H + — > -jjjr X - ^ j - X X -jjj-. (7.88J 

a i <*2 an a™1 a£2 <C 

Formula (7.88) can be interpreted as 

if-1 > G~\ (7.89) 
or 

tf < G. (7.90) 

It follows from previous results that we have equality in (7.90) if and only 
if 

o-i = a2 — ■ ■■ — an. (7-91) 

Yet what are all such gaieties to me 
Whose thoughts are full of indices and surds? 

x2 + 7x + 53 

_ n 
3 ' 

Lewis Carroll 

7.4 Exercises 
1. [HM15] Suppose the random variable X has the density function 

f(x)= { U + A)x\ 0 < x < l 
\ 0 otherwise. 
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Show that the maximum likelihood estimate of A based on a given 
random sample of size n is given by 

/ \ 

A — i + ^ r ^ • 
> lnxj 

2. [00] Consider a uniform random variable defined on the interval 0 < 
x < /?, where 0 is unknown. Use the method of moments to find an 
estimate of /? based on a given random sample of size n. 

3. [C15] If the n = 20 values of processing time mentioned in Example 
7.1.2 are 16.39, 25.09, 16.31, 20.94, 17.58, 19.06, 17.21, 18.48, 16.88, 
15.51, 25.87, 17.63, 29.13, 21.34, 11.14, 26.03, 23.28, 21.13, 18.46, 
14.25, find the method of moments estimates of /J and a. 

4. [C10] If the n = 20 values of number of customer arrivals in a 10 
minute period mentioned in Example 7.1.3 are 25, 32, 34, 22, 27, 29, 
23, 22, 30, 31, 33, 21, 28, 25, 24, 35, 27, 30, 34, 26, find the method 
of moments estimates of a and a. 

5. [10] Bortkiewicz [5] in 1898 fitted the Poisson distribution to the num­
ber of deaths from horse kicks in the Prussian cavalry per corps-year 
for each of 200 corps-years. His data is given in the table. Estimate 
the Poisson parameter a using the method of maximum likelihood 
and construct a 95% confidence interval for it using a = \/d. 

Horse Kick Deaths by Prussian Cavalry 

Number of Deaths Observed Number 
Corps-Years 

109 
65 
22 
3 
1 

_0 
Total 200 

0 
1 
2 
3 
4 

> 5 

6. [M15] Consider Example 7.1.3. 
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(a) Prove that 

£ & - *)2 = E x? - nw2- (7-92) 
t = l i = l 

(b) Using (a) show that 

M, _ M 2 = fH—l\ S
2. (7.93) 

7. [M15] Consider the ratio (7.37) in Example 7.1.8. Show that this ratio 
is larger than unity (that is, that Pk(N) > pk(N — 1)) if and only if 
Nk < rn. 

8. [MIO] The farm experts at Fanny Farmers Farm plan to lay out a square 
plot of land with side /i by using a long rod of length fi so the area 
of the plot is fi2. Unfortunately, the length of the rod is not known 
exactly, so n independent measurements by n independent farmers 
are taken, yielding the values x\,X2, ■ ■ ■,ocn. We assume that each X{ 
has mean fi and variance a2. 

(a) Show that (X)2 is not an unbiased estimator of /J,2, the area of 
the field. 

(b) For what value of k is the estimator (X)2 — k x S2, where S2 is 
the sample variance, an unbiased estimator for fi2? 

9. [MIO] Consider the Pascal distribution described in Chapter 3 preceding 
Exercise 20. It describes a sequence of Bernoulli trials, that continues 
until r successes occur. The probability that k failures occur before 
the r th success is given by 

(r + k - 1\ ,fc ~ „fc p(k;r,p)=t , ) x p * x g 

for k = 0 , 1 , . . . , where q = 1 — p. 

(a) Suppose r > 2. To estimate p, suppose trials are continued until 
r successes are achieved. Suppose k failures occur before the r th 
success. Then let p = (r — l)/(k + r — 1). Show that p is an 
unbiased estimator of p. 

(b) The Vice President of Information Systems wants to interview 
five Information Center users who are satisfied with the service. 
An assistant polls a number of users. The sequence of responses 
is SSFFSFFFSS, where S means the user is satisfied and F that 
he or she is not. Estimate the true proportion of Information 
Center users who are satisfied. 
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10. [C8] Elvin Prellvin, the chief statistician for Heartbreak Hotels, is 
provided with a random sample from a normal population with x — 
12.9 and s = 3.2. 

(a) If n = 121, what should Elvin obtain as a 95% confidence interval 
for n and for <r2? 

(b) Answer (a), if n = 9 rather than 121. 

11. [10] Renaissance Resistors made a random check of 50 of their pro­
fessional employees who had been provided with either a personal 
computer or a computer workstation and found that 22 of them used 
their computers for more than 6 hours per day. 

(a) Find the maximum likelihood estimate of the true proportion of 
professionals who use their computers at least 6 hours per day. 

(b) Find the 95% confidence interval for the estimate of part (a). 
(c) How large should the random sample be to ensure that the width 

of the 95% confidence interval of part (b) does not exceed 0.1? 

12. [M10] Prove that an exponential random variable has skewness two. 

13. [M10] Prove that an exponential random variable has kurtosis nine 
according to the definition used by Doane [12], (six according to 
SAS/STAT [27]). 

14. [HM08] Prove that the function g defined for all real x by g(x) = 
ex — 1 — x has a unique minimum value of zero when x = 0. 

15. [HM12] Prove that the sample variance S2 defined by (7.2) is unbiased. 
Hint: Use the formula proved in Exercise 6(a). 
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Chapter 8 

Hypothesis Testing 

All knowledge resolves itself into probability. 
David Hume 

Chance favors the prepared mind. 
Louis Pasteur 

8.0 Introduction 
In this chapter we continue our study of statistical inference. Recall that 
statistical inference is the process of drawing conclusions about a popu­
lation on the basis of a random sample. We assume that the population 
is determined by a random variable; that is, that the population consists 
of the possible values of a random variable. In Chapter 7 we examined 
the problem of estimating the values of the parameters of the random vari­
able. We were concerned not only with making the estimates, but also with 
making probability judgments about the quality of our estimates. 

Hypothesis testing is a procedure for determining, from information con­
tained in a random sample from a population, whether to accept or reject 
a certain statement (hypothesis) about the random variable determining 
the population. A statistical hypothesis is usually stated as a proposition 
concerning the distribution of this random variable. It may be a statement 
about the values of one or more of the parameters of a given distribution; 
it also may concern the form of the distribution. Examples of statistical 
hypotheses follow. In some cases they may not seem to be statistical hy­
potheses because we haven't made explicit what the random variable under 
consideration is. 

483 
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1. The average response time at the terminals used by the systems pro­
grammers does not exceed 0.5 seconds during the time period from 
10 a.m. till 12 a.m. 

2. The programmers in Department Able are more productive (in terms 
of lines of code per programmer-day) on the average than the pro­
grammers in Department Baker. 

3. The arrival pattern of requests from the interactive system used by the 
application programmers to the central computer complex is Poisson. 

A statistical hypothesis test is a formal, step-by-step procedure described 
below. It is based upon the intuitively appealing idea that, "an event with 
a low probability of occurrence does not happen very often." That is, if a 
hypothesis implies a certain event to have a low probability, its occurrence 
is evidence against the hypothesis. 

When you're away, I'm restless, lonely 
Wretched, bored, dejected, only 
Here's the rub, my darling dear, 
I feel the same when you are here. 

Samuel Hoffenstein 
Poems in Praise of Practically Nothing 

8.1 Hypothesis Test Procedure 
We define a hypothesis test procedure formally as follows: 

Procedure 8.1.1 (Procedure For Testing a Hypothesis) 

Step 1 Decide upon a null hypothesis Ho and an alternative hypothesis 
Hi. (Although, by convention, Hi is called the alternative hypothesis, 
Hi is usually the hypothesis we want to test.) 

Step 2 Select a test statistic; that is, a formula for calculating a number 
based upon the random sample, say t(Xi, X2, • • •, Xn). (Common test 
statistics are the sample mean X and the sample variance S2.) 

Step 3 Choose a, the level of significance of the test. It is usually chosen 
to be either 0.05 or 0.01, (5% or 1%), but any value between 0 and 1 
can be selected. (We will see below what a means.) 
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Step 4 Choose a rejection region (often called a critical region) for the 
test. That is, choose a set of possible test statistic values such that if 
Ho is true, then the probability that the value of the test statistic will 
fall in the rejection region is a. A critical region is often chosen to 
be all the numbers greater (or smaller) than a critical value. (This is 
a one-tailed test.) Another popular choice is the set of all numbers 
either less than a left critical value or greater than a right critical 
value. (Naturally, this is a two-tailed test.) [The complement of the 
rejection region is called the acceptance region (what else?).} 

Step 5 Calculate the test statistic of a random sample from the popula­
tion. If this value falls in the critical region, reject Ho and accept Hi, 
otherwise accept Ho ■ 

Step 6 Optionally, calculate the p-value of the test. The p-value is the 
probability that, if Ho is true, a value at least as extreme as the ob­
served test statistic will be observed. The decision rule for accepting 
or rejecting then becomes: reject Ho if the p-value is less than a. 
Whether Ho is accepted or rejected, the p-value provides useful infor­
mation. 

We illustrate the procedure in the following example. 

Example 8.1.1 Symple Symon Software has a large software development 
group. Gabriella Gauss, their Supreme Statistician, has verified that X, 
the number of lines of code per programmer week, has a normal distri­
bution with mean 300 and standard deviation 20. Symple programmers 
all write code in their proprietary programming language, Symply Super. 
Six months ago they adopted a new programming paradigm advocated by 
Super Software Sycophants. Ms. Gauss decides to use a statistical test to 
determine whether the new paradigm has led to better programmer produc­
tivity. She obtains a random sample from 100 programmers to determine 
the average number of lines of code they each produced in a recent week. 
The sample yields x = 310 lines per week. Gabriella wants to determine, 
at the 5 % level of significance, whether the mean of X has increased. 

Solution As is customary (and wise) for problems of this sort, Gabriella 
chooses the null hypothesis that there has been no change. Thus, she 
specifies HQ: H = A*o = 300 lines per week. Since she is hoping that /z has 
increased, she chooses H\: n > 300 lines per week and a = 20 lines per 
week. Clearly, a large value for x is evidence that ft has increased. But 
how large is large? If HQ is true, then, by the sampling theorem (Theorem 
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7.2.1), X is normally distributed with mean 300 and standard deviation 

Therefore, 
X - 3 0 0 

(8.2) 

is a standard normal random variable. Since zo.os = 1-645, she chose the 
rejection region to be all x such that 

x-300 > 1.645, (8.3) 

or x > 303.29. Since x is 310, Gabriella rejects Ho and concludes that 
li > 300. The procedure of this example is illustrated in Figure 8.1.1. □ 

Reject HQ 

a = 0.05 

300 303.29 

Figure 8.1.1. Example 8.1.1. 

You have probably noted from this example that statistical hypothesis 
testing is not foolproof. In Example 8.1.1 it is possible by pure chance that 
/i = 300 but for the sample of 100 programmer weeks, x is greater than 
303.29. We would reject Ho and conclude that \i > 300. This would be a 
Type I error; that is, we would have rejected Ho when it was true. The 
probability of a Type I error is a because of the way we set up the statistical 
test. The other possible error is accepting Ho when it is false. This is known 
(imaginatively) as a Type II error. We denote its probability by /?. The 
concepts of Type I and Type II errors are illustrated in Table 8.1.1. (P in 
Table 8.1.1 is the probability of the indicated result. Thus, the probability 
of accepting Ho when H\ is true is /?.) In applying a statistical test, we 
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can make only these errors. Statisticians, however, have identified a couple 
more errors made by other statisticians. A Type III error is assuming the 
wrong distribution for X. A Type IV error is solving the wrong problem. 
These latter types of errors are part of the statistical folklore but not of the 
discipline. Suppose we are comparing statistical tests of a null hypothesis 
Ho with the same level of significance a. We would like a test that will 
best avoid our making a Type II error. This characteristic is measured by 
the power of the test. It is defined to be 1 — /?. It is sometimes difficult to 
measure the power of a test. It is especially difficult if Hi is a composite 
hypothesis rather than a simple hypothesis. For a simple hypothesis not only 
the form of the distribution but also its parameters are specified. Suppose, 
in Example 8.1.1, Hi was "X has a normal distribution with mean 305 and 
standard deviation 20." Then Hi is simple and the test can be visualized 
as in Figure 8.1.2. Here /3, the probability of accepting HQ when H% is true, 
is the area under the density function for X (when Hi is true) to the left of 
303.29. Since for this calculation we assume Hi is true, /? is also the area 
of the tail of a standard normal density to the right of the value 

^ = 305-303.29 = Q 8 5 5 ( g 4 ) 

Thus, we find by consulting Table 3 of Appendix A that /3 is 0.1963. Hence, 
the power of this test is 0.8037. 

Let us illustrate the relationship between a and (3. Suppose we reduce 
a to 0.01 (one percent). The critical region becomes all x greater than 

300 + 2 x 2.326 = 304.652, (8.5) 

since zo.oi = 2.326. This means that (3 is the area under the standard 
normal density function to the right of 

305-304.652 = 0 1 7 4 > ( g g ) 

so that /3 = 0.43093. Thus, making a smaller (moving the critical value 
to the right) increases (3 while making a larger (moving the critical value 
to the left) decreases /3. The level of significance chosen for a test is a 
compromise. 

As we mentioned earlier, the desirability of a statistical test for a fixed 
a and HQ is measured by the power of the test, which is 

1 - P = P[rejecting # o | # i is true]. (8.7) 

In the sequel, whenever possible we shall compute the power of the tests 
discussed. In some cases it can be proven, mathematically, that a particular 
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test has the maximum power of any test of a simple hypothesis Ho at the 
a level of significance against an alternative composite hypothesis; such a 
test is called a uniformly most powerful test. 

The true density function is on the left, if fi = 300, 
and on the right, if ^ = 305. 

300 303.29 305 

Figure 8.1.2. Illustration of a and /3. 

Statisticians do not regard accepting the null hypothesis Ho as being 
equivalent to believing it to be true. When we accept Ho as the result of 
a statistical test, we merely believe that there is not sufficient evidence to 
reject it or that Ho may be only approximately true. Suppose, for example, 
that the null hypothesis is "X is normally distributed with mean \i = 30 
and standard deviation a = 10," while Hi is "X is normally distributed 
with standard deviation a = 10 but fj, > 30." Then, if the test fails to reject 
Ho at a particular level of significance, say 5%, we still may believe that fi 
is not exactly 30; it may be 30.001 or 29.998. We are, however, reasonably 
sure that fj, is not 35.6 or 40.2. That is, fj, does not significantly exceed 30. 
In fact, the terminology used by statisticians is to say the result of a test 
is significant if the value of the test statistic falls in the critical (rejection) 
region. 

Table 8.1.1. Type I and Type II Errors 
Decision 

Accept HQ 

Accept H\ 

Unknown Truth 
Ho true Hi true 
True decision Type II error 
P - l - a P = /3 
Type I error True decision 
P = a P = l - / ? 
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Houston, Tranquility Base here. The Eagle has landed. 
Neil A. Armstrong 

8.2 Tests of Means 
There are two basic kinds of hypothesis tests about means. They are called 
one-sample tests and two-sample tests. The first type is a test of the null 
hypothesis that the mean of a population (that is, of the random variable 
X, that determines the population) has some specified value /xo against 
some appropriate alternative hypothesis. For example, we may wish to 
test the null hypothesis that the programmers at Spacey Sputniks write 
an average of 50 lines of code per day against the alternative hypothesis 
that the average is higher. Example 8.1.1 illustrated a one-sample test of 
a mean. 

A two-sample test compares the means from two different populations. 
Thus, we might want to compare the average lines of code per day produced 
by different programming groups. 

In the next section we consider one-sample tests and in the following 
section we consider two-sample tests. 

8.2.1 One-Sample Tests of Means 
In order to be able to make a means test of a population we must have (1) 
a sample large enough to ensure that x is normally distributed or (2) a 
normal population. 

For the first alternative (as we have previously mentioned) an often used 
rule of thumb is that n > 30, although this is not an absolute guarantee 
that x is normal. We state the one-sample means test as an algorithm. 

Algorithm 8.2.1 (Test of Value of Mean for Large Sample or Small Nor­
mal Sample) Given a random sample x\,X2,...,xn from a population deter­
mined by a random variable X, this algorithm will determine at the a level 
of significance whether to accept or reject the null hypothesis HQ : fi = no 
against one of the alternative hypotheses (a) Hi : \i > fj,o, (b) Hi : fi < HQ, 
or (c) Hi: n^ /z0. 

Step 1 [Calculate the test statistic] For the large sample case (n > 30) 
calculate the test statistic 

\/n 
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If a is known it should be used in place of the sample standard devi­
ation s in (8.8). 
For the small sample case in which X is assumed to be normal (or, 
at least, approximately normal), calculate the test statistic 

Step 2 [Find the critical region] Let us consider the large-sample case 
first. The critical region for alternative hypothesis (a) is the set of all 
z such that z > za; for alternative hypothesis (b), it is the set of all 
z such that z < za. For alternative hypothesis (c), the critical region 
comprises the two tails consisting of all z such that z < —za/2 and all 
z such that z > za/2 ■ The critical regions for the small-sample case 
are very similar. We replace z by t and za by <n-i,a> where i n _i , a 
refers to a Student's t distribution with n — 1 degrees of freedom. 

Step 3 [Accept or reject Ho] If the test statistic calculated in Step 1 
falls in the critical region determined in Step 2, reject HQ and accept 
Hi; otherwise accept Ho. 

Proof We will give an indication of why Algorithm 8.2.1 should be true. 
Kreyszig [13] provides a formal proof. For the large-sample case, by the 
sampling theorem, Theorem 7.2.1, (X — fi0) / (cr / \/n) has approximately 
a standard normal distribution. If a is not known, then s should be at 
least a fair approximation to it. Hence, each of the critical regions defined 
in Step 1 does have approximately probability a. Similarly, by the same 
theorem, (X — fj,o)/(s/\/n) has a Student's t distribution with n — 1 degrees 
of freedom. Again, the critical regions determined in Step 2 have probability 
a. Kreyszig [13] proves that if X is normally distributed with a known, 
then for both of the one-tailed alternatives, Algorithm 8.2.1 provides the 
uniformly most powerful tests. ■ 

Figures 8.2.1(a) and (b) illustrate Algorithm 8.2.1. The figure to illus­
trate the test for the alternative hypothesis /i < /xo is similar to Figure 
8.2.1(a) except that HQ is rejected when z < —za. Let us consider some 
examples of the use of Algorithm 8.2.1. 

Example 8.2.1 A random sample of 400 response times taken during the 
peak period of the interactive inquiry system at Futile Finance yields a 
sample mean x of 21 time units1 with a sample standard deviation s of 12 

*It is rumored that 20 time units is equal to 0.8 seconds. Futile has subsecond response 
time. 
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time units. The service level agreement between the MIS Department and 
the users of the inquiry system is that the mean response time for the peak 
period should not exceed 20 time units. A test is to be made each day at 
the 1% confidence level (a = 0.01). Does the system pass today? 

0 za 

Figure 8.2.1(a). Alternative hypothesis \i > /x0. 

Solution The null hypothesis is that fi = 20; the alternative hypothesis 
is that n > 20. In Step 1 of Algorithm 8.2.1, we calculate z = (21 — 
20)/(12/\/400) = 20/12 = 5/3 = 1.6667. In Step 2 we find the critical 
region is the set of all z's greater than 20.01 = 2.326. Thus, we cannot 
reject Ho at the 1% level of significance. Since 20.05 = 1-645, we could 
reject HQ at the 5% level. □ 

Example 8.2.2 The mean time for a clerk to service a customer at Sala­
cious Savings is 3 minutes with a standard deviation of 1 minute; the service 
time is normally distributed. Sunny Solono, Vice President of Service, de­
cides to test the feasibility of installing an improved interactive computer 
system. He trains Super Sally to use the proposed system. (Sally is con­
sidered to be an average clerk.) He then runs a test in which she uses a 
prototype of the proposed system at the benchmarking center of the man­
ufacturer. Sally processes 16 customers during the test. The time it takes 
her to process each customer (in seconds) is shown in Table 8.2.1. Sunny 
believes the proposed system will be cost effective if the mean clerk service 
time does not exceed 110 seconds. At the 5% level of significance, does the 
test indicate that the service time criterion is satisfied? 

Solution We assume the clerk service time remains normally distributed. 
For the test HQ is // = 110 seconds; H\ is /z > 110 seconds. In Step 1 of 
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Table 8.2.1. Data 

156 73 100 110 
123 101 125 83 
92 101 64 109 
56 179 165 182 

i Accept HQ > 

-*a/2 MO Za/2 

Figure 8.2.1(b). Alternative hypothesis fj, ^ / i 0 . 

MTB > no te : Example 8 .2 .2 
MTB > t t e s t mu-110 ' l i n e s ' ; 
SUBO a l t e r n a t i v e « + l . 

TEST OF MU - 110.000 VS MU G.T. 110.000 

N MEAN STDEV SE MEAN T P VALUE 
l i n e s 16 113.687 39.140 9.785 0.38 0.36 

Figure 8.2.2. MINITAB TTEST Example 8.2.2. 

Algorithm 8.2.1, we calculate t = (113.687 - 110)/(39.14/4) = 0.38. In 
Step 2, by Table 5 of Appendix A, the critical region is the set of all 
t > 1̂5,0.05 = 1-753. Hence, we cannot reject the null hypothesis at the 
5% level of significance. Figure 8.2.2 shows the MINITAB TTEST for this 
example. Since the p-value is 0.36 we cannot reject the null hypothesis. D 
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Sample Sizes Needed 
We have discussed the size of the Type I error (a) and the size of the 
Type II error (/3) but have not emphasized the fact that the sample size 
n is important in both types of error; that is, both a and /? decrease as 
n increases. In some cases we can choose the required sample size to give 
ourselves the desired power in a hypothesis test. For example, suppose X 
is approximately normal with a unknown, and the alternative hypothesis 
is that fi> HQ. Suppose, further, that we want the power to be 1 — /? when 
the true mean fi = no + 6. Then we have 

1-/3 = P 

= P 

But, if p. = fiQ + 6, then 

x — Mo , , 
a >za\n = n0 + 6 

x - {no + 6) 6 , . 
a > z<* a IM = Mo + o 

X-(lto + 6) 
a 

(8.10) 

(8.11) 

has approximately a standard normal distribution. This implies that 

l-0 = P[z>za- (6y/n/o)\, (8.12) 

fSy/H\ 
- Z0 = Z0- I 1 za - (*£) • (8.13) 

(See Figure 8.2.3 where z = /io + za<r/y/n.) Hence, we must have 

n = (za + zp)2 x (8.14) 

By symmetry the same size n is required for the alternative hypothesis 
/i < /xo, if M = Mo — 6. Let us consider an example. 

Example 8.2.3 Consider Example 8.2.2. Suppose Sunny wants 1 — /? to 
be at least 0.8 when 6 = 20, that is, when \i = 130. How large should n be? 

Solution If 1 - (3 = 0.8, then /? = 0.2. Sunny can use a = s = 39.14. 
Hence, since to 4 decimal places, zo.os = 1.6449 and Z0.2 = 0.8416, formula 
(8.14) yields 23.68. Hence, Sunny should use n > 24. D 
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The true density function is on the left, if n = no, 
and on the right, if p, = no + *• 

no z (IQ + 6 

Figure 8.2.3. Graph to illlustrate sample sizes needed. 

Posten [22] shows that Algorithm 8.2.1 is robust as long as the popu­
lation has a distribution that is not skewed. That is, the test gives good 
results even when the population is nonnormal provided it is not strongly 
skewed. 

We will now consider two-sample tests of means. 

8.2.2 Two-Sample Tests of Means 
Statistics can be used for the most common of all decision making pro­
cesses: that of comparing the performance (or the lack thereof) of two 
entities. Thus, we may compare the productivity of two groups, the differ­
ence in effectiveness of two software systems or two programming languages, 
the difference in down time of two systems, the difference in the yield of 
good solid-state chips from different processes, etc. The test that is com­
monly used for all these comparisons is the two-sample test of means, also 
called the t-test (or ttest, because that is the name of the procedure in some 
computer statistical systems). This test is accomplished by taking indepen­
dent (usually) samples from the two populations and comparing the sample 
means. Although knowledge of hypothesis testing is not a substitute for 
knowledge of the systems under test, good statistical testing can prevent 
egregious errors. The mathematical basis for some of the manipulations 
required by a two-sample test of means is given in the following theorem, 
which is stated without proof. 

Theorem 8.2.1 Suppose two independent random variables X and Y have 
the means fix and \iy and the variance ax and a\. Then the distribution 
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of X — Y has the mean fix — HY and the variance ax +aY- Furthermore, 
if a random sample of size n is taken from the population determined by X, 
and a random sample of size m is taken from the population determined by 
Y, then the following formulas are true: 

E[X-Y] = nx-ftY, (8-15) 

and 
V a r [ X - F ] = ^ + ^ . ■ (8.16) 

n TO 
We state the two-sample test of means first for the case of large samples 

in which we do not assume that the variances of the two populations are 
equal. 

Algorithm 8.2.2 (Two-Sample Test of Means, Large Samples) Given a 
random sample x i ,X2 , . - . , x n from a population determined by X, and a 
random sample 2/1,2/2, • • • iVm from a population determined by Y, where 
X and Y are independent, this algorithm will determine, at the a level of 
significance, whether to accept or reject the null hypothesis HQ : fix—VY = 
do against one of the alternative hypotheses (a) H\ : fix — HY > do, 
(b)Hi : fix — My < do, or (c) H\ : fix — My ^ «fo- H *s assumed that 
n > 30, TO > 30, and that either (a) ax and ay are known or (6) sx and 
sy are good estimates of the respective standard deviations. 

Step 1 [Calculate the test statistic] Compute the test statistic 

z = ^ ) - d ° , (8.17) 
yj(ax/n) + (aY/m) 

If ax and ay are not known, substitute sx and sy for them. 

Step 2 [Determine the critical region] For alternative hypothesis (a), 
the critical region is the set of all z > za; for alternative hypothesis 
(b), it is the set of all z < —za; and for alternative (c), it comprises 
the two tails consisting of all z such that z < —zQ/2 and all z such that 
z > za/2> which can be written as the set of all z such that \z\ > za/2-

Step 3 [Accept or reject H0] If the test statistic of Step 1 falls in the 
critical region determined in Step 2, reject HQ; otherwise accept Ho-

Example 8.2.4 Insular Insurance has two separate interactive computer 
systems; System I and System II. Insular attempts to keep the two systems 
equally loaded so that the mean response time is the same for each system. 
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A sample of 100 response times2 from System I yields x = 20.24 time units 
with sx = 5.6 time units. A sample of 120 response times from System II 
yields y = 18.72 time units with sy = 4.2 time units. Low Pockets, the 
Supreme Performance Analyst, wants to test the hypothesis, at the 2.5% 
level of significance, that fix > Ab­
so lu t ion Low decides to use Algorithm 8.2.2 with do = 0 and the null 
hypothesis H0 : fix = Mv- The alternative hypothesis is that fix > HY-
Low calculates the statistic 

20.24-18.72 nnA , „ „ „ , 
z = . = 2.24. (8.18) 

V5.6V100 + 4.22/120 
Since zo.025 = 1-96, Low rejects the null hypothesis in favor of the hypothe­
sis that the mean response time is higher on System I. He decides to switch 
some of the users from System I to System II. Note that the hypothesis 
that Low wanted to test was not made the null hypothesis. This is the way 
such tests are usually made. □ 

Sometimes we want to compare means from two different populations 
when only small samples are available. The next algorithm shows how to do 
this when the two populations are normal even though the variances may 
not be the same. The solution given is called Welch's approximate solution 
to the Behrens-Fisher problem and is discussed in Best and Rayner [4]. In 
fact, Best and Rayner believe that Welch's approximation should be used 
even when the variances may be equal, provided v > 5 in (8.20). Ryan, 
Joiner, and Ryan [24] and other authors agree with this assessment. 

Algorithm 8.2.3 (Two-Sample Test of Means, Small Samples, Normal 
Population, Variances Not Assumed Equal) Given that xi,X2,...,x„ is a 
random sample from a normally distributed population determined by X, 
and that j / i , y2, • • •, ym is a random sample from a normally distributed pop­
ulation determined by Y, where X and Y are independent with variances 
that are unknown and not necessarily the same, this algorithm will deter­
mine, at the a level of significance, whether to accept or reject the null 
hypothesis Ho ■ fix — fJ-Y — do against one of the alternative hypotheses (a) 
Hi- MX - My > do, (b) # i : fix - V-Y < d0, or (c) Hi : fix - VY ¥" d0. 
It is assumed that at least one of n and m is less than 30 for otherwise we 
could use Algorithm 8.2.2. 
Step 1 [Calculate t h e t es t statist ic] Compute 

t=(x-y)-d0 

„2 
V n n ~ m 

2The size of the time unit is proprietary but widely believed to be 50 milliseconds. 
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Step 2 [Determine the critical region] Compute 

_ (sx/n + Syr/m)2 

V~ (s2
x/n)2/(n-l) + (s2

Y/m)2/(m-iy 
(8.20) 

The test statistic is Student's t with v degrees of freedom. The critical 
region for alternative hypothesis (a) is the set of all t > tv,a; for alter­
native hypothesis (b), it is the set of all t < —tu>a; and for alternative 
hypothesis (c), it is the two tails \t\ > tu<a/2-

Step 3 [Accept or reject Ho] If the test statistic calculated in Step 1 
falls in the critical region found in Step 2 reject Ho; otherwise accept 
it. 

The power of this test is discussed in Best and Rayner [4]. One prob­
lem with applying this test is that the value of v calculated by formula 
(8.20) may not be an integer. The SAS/STAT function PROBT and 
the MINITAB command CDF with the subcommand T are able to cal­
culate Student's t distribution for fractional degrees of freedom. However, 
MINITAB rounds down to the next smaller integer for v in the TTEST 
procedure. If you are making this calculation with a pocket calculator, you 
can round v down to the next lower integer value. The corresponding crit­
ical value of t will be a reasonable approximation to the correct value and 
will err on the conservative side. That is, the p-value will be larger than the 
exact value, so that it will be more difficult to reject the null hypothesis. 

Pearson and Please [21] show that Algorithm 8.2.3 is quite robust to 
the assumption that the populations are normal. The test is particularly 
robust when the two sample sizes are equal. If the two populations are 
symmetric, this increases the robustness. 

Example 8.2.5 Hoopers Hoops has used two different self-study courses, 
Course A and Course B, to teach its beginning programmers good pro­
gramming techniques. The success of each course is evaluated by scores the 
students achieve on the Hoopers Hula Hoop Programmers Test. Nine stu­
dents using Course A achieved an average test score of 89.6 with a sample 
standard deviation of 3.6. The seven programmers who took Course B got 
an average score of 81.9 with a sample standard deviation of 12.7. Assum­
ing test scores are normally distributed, test the null hypothesis /XA = (J,B 
against the alternative hypothesis that fi^ > HB a t the 10% level of signif­
icance, using Algorithm 8.2.3. 

Solution We calculate the test statistic 

t= . 8 9 6 - 8 1 - 9
 = 1 .556 . (8.21) 

y (3.62/9) 4- (12.72/7) 
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We calculate the number of degrees of freedom v to be 

_ (3.62/9 +12.72 /7)2 _ 
* " (3.62/9)2/8 + (12.72/7)2/6 " 6 7 5 3 6 ' ( 8 ' 2 2 ) 

We use v = 6 and find from Table 5 that <6,o.i = 1-44, so we must reject 
Ho at the 10% level of significance and conclude that Course A is the most 
effective. The SAS/STAT function TINV shows that t6.7536t0.i = 1.42029, 
while the MINITAB command INVCDF with the subcommand T yields 
*6.7536,o.i = 1.4203. The SAS/STAT function PROBT yields the exact p-
value of 0.082606. The MINITAB command CDF with subcommand T 
yields the p-value 0.0826. My HP-21S yields the p-value 0.08536 using 
i/ = 6. D 

For the next algorithm we assume that the two populations are normal 
and have the same variance. When this is true, the test is exact. In addition 
the true value of the variance can be estimated more accurately because the 
values from the two samples are pooled for the estimate. The SAS/STAT 
procedure TTEST provides a statistical test of the hypothesis that the 
variances are the same. It also calculates the p-values for Algorithms 8.2.3 
and 8.2.4, and allows the user to decide which value to use. The EXPLORE 
program TWOS AM does most of what TTEST does except that no p-values 
are calculated. The MINITAB command TTEST assumes the variances are 
unequal unless you specify that you want it to assume they are equal. In 
the next section we will discuss the two-sample test for equal variances. 

Algorithm 8.2.4 (Two-Sample Test of Means, Small Samples, Normal 
Population, Variances Equal) Given a random sample x i ,X2 , . . . , x n from 
a normally distributed population determined by X, and a random sam-
ple 2/i) 2/2 > • • •, J/m from a normally distributed population determined by Y, 
where X and Y are independent with equal but unknown variances, this 
algorithm will determine, at the a level of significance, whether to accept 
or reject the null hypothesis Ho : fix — fly = do against one of the alter­
native hypotheses (a) Hi : fix — PY > do, (b) H\ : fix — My < do, or (c) 
H\ : fix — HY ¥" do- It is assumed that at least one ofn and m is less than 
30, for otherwise we could use Algorithm 8.2.2. 

Step 1 [Calculate the test statistic] Compute 

f = ( x - l / ) - d 0 ) (8_23) 

where 
" (n - 1)3^ + ( m - l ) a y 

n + m — 2 

1/2 

(8.24) 
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Step 2 [Determine the critical region] The test statistic is Student's 
t with n + m — 2 degrees of freedom. The critical region for alternative 
hypothesis (a) is the set of all t > tn+m-2,a; for alternative hypothesis 
(b), it is the set of all t < —<n+m-2,a/ and for alternative hypothesis 
(c), it is the two tails \t\ > <n+m-2,a/2-

Step 3 [Accept or reject Ho] If the test statistic calculated in Step 1 
falls in the critical region found in Step 2, reject HQ; otherwise accept 
it. 

Proof The proof is given by Larsen and Marx [15]. ■ 

Example 8.2.6 The Hotstuff Chili Company has two teams of application 
programmers, Team Able and Team Baker, independently develop the soft­
ware for a new interactive system. (A team of experts will decide which 
of the systems to implement.) Table 8.2.2 shows the mean number of lines 
of code each of the 20 programmers on Team Able produced per day while 
Table 8.2.3 shows the corresponding mean numbers for Team Baker. The 
average for Team Able is 97.38 and for Team Baker is 87.13 lines per pro­
grammer day. Sam Cool (often called Cool Sam), the manager of MIS, 
decides to do a statistical analysis to determine whether or not Team Able 
is more productive than Team Baker—Team Able averages 10.25 lines of 
code per day more than Team Baker. Sam uses the 5% level of significance. 

Solution Sam decides to use the null hypothesis that the mean number 
of lines of code per programmer day is the same for the two teams. The 
alternative hypothesis is that the mean is larger for Team Able. Figure 
8.2.4 shows the MINITAB TWOSAMPLE solution. The subcommand AL-
TERNATIVE=+1 tells MINITAB that Hi is m > fi2. Since we did not 
use the subcommand POOLED, TWOSAMPLE assumes the variances are 
unequal and makes Welch's Behrens-Fisher correction to arrive at 34 de­
grees of freedom for the test. The value of the test statistic is 0.96 with 
a p-value of 0.17, so the null hypothesis cannot be rejected. Figure 8.2.5 
provides the solution by the EXPLORE program TWOSAM. TWOSAM 
provides the data to test the hypothesis of equal variances as well as the 
value of the test statistic and the number of degrees of freedom of the test 
statistic. The SAS/STAT TTEST solution of Figure 8.2.6 provides even 
more information. It shows that the p-value of the F-test for equal vari­
ances is 0.1415, which is strong but not overwhelming evidence in favor of 
equality of the variances. The F-test for equal variances is not a robust 
test. That is, it depends strongly upon the normality of both populations. 
We discuss the lack of redeeming features of this test in more detail at the 
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end of Section 8.3.2. The p-value 0.3431, given by the SAS/STAT pro­
cedure TTEST for the equal variances case, assumes that the alternative 
hypothesis is (i\ ^ /i2, so it is twice the correct value for the alternative 
hypothesis ^i > fi2 that we are testing. □ 

Table 8.2.2. Team Able 
121.2 
119.6 

53.798 
139.437 
81.448 

64.3 79.1 
142.7 81.4 

42.832 
66.254 
144.096 

135.7 
58.9 

105.6 
175.3 

Table 8.2.3. 
100.318 
103.859 
116.115 

68.122 
91.770 
59.682 

92.7 
20.7 

Team 

114.8 
47.8 

Baker 

138.27 
112.70 

99.532 76.452 
93.435 63.412 

87.2 
53.4 

76.585 
89.562 

63.7 
132.6 

115.624 
60.232 

MTB > TWOSAMPLE 'able' 'baker'; 
SUBO ALTERNATIVE-+1. 
TWOSAMPLE T FOR able VS baker 

N MEAN STDEV SE MEAN 
able 20 97.4 39.0 8.7 
baker 20 87.1 27.6 6.2 
95 PCT CI FOR MU able - MU baker: (-11.5, 32.0) 
TTEST MU able - MU baker (VS GT): T- 0.96 P-0.17 DF« 34 

Figure 8.2.4. MINITAB solution to Example 8.2.6. 

Any clod can have the facts, but having opinions is an art. 
Charles McCae 

/ have a feeling we 're not in Kansas anymore, Toto. 
Dorothy 

The Wizard of Oz 
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TEST FOR DIFFERENCES BETWEEN TWO SAMPLES: ABLE VS. BAKER 
1. Test of Two Means: Assuming Equal Population Variances 

Student's t » 0.960 with d.f." 38 
2. Test of Two Means: Assuming Unequal Population Variances 

Student's t « 0.960 with d.f." 38 ( d.f. « 34 using 
Welch's Behrens-Fisher correction) 

3. Test For Equality of Population Variances 
F ■ 1.994 with d.f.« 19 for numerator 

and d.f.a 19 for denominator 
4. Pooled Estimate of Population Variance 

Estimated Pooled Variance » 1140.511 
Estimated Pooled Std. Dev.» 33.77146 

Figure 8.2.5. EXPLORE TWOSAM solution to Example 8.2.6. 

Ttest Procedure 
Variable: LINES 
ID N Mean Std Dev Std Error Minimum Maximum 

a 20 97.38000000 38.97641122 8.71539050 20.70000000 175.3000000 
b 20 87.12825000 27.60183268 6.17195742 42.83200000 144.0960000 

Variances T DF Prob>IT| 

Unequal 0.9599 34.2 0.3438 
Equal 0.9599 38.0 0.3431 

For HO: Variances are equal, F'» 1.99 with 19 and 19 DF 
Prob > F'- 0.1415 

Figure 8.2.6. SAS/STAT solution to Example 8.2.6. 

We have met the enemy, and they is us. 
Pogo 

(Walt Kelly) 

What we see depends mainly on what we look for. 
John Lubbock 

8.3 Tests of Variances 
Unfortunately, the tests available concerning variance are not as extensive 
as those concerning means, and the conditions under which the tests are 
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valid are more restrictive. We must rejoice in what is available. Just as 
with means there are two basic kinds of hypothesis tests of variances. You 
guessed it: they are called one-sample tests and two-sample tests. The 
first type is a test of the null hypothesis that the variance of a population 
(that is, of the random variable X, which determines the population) has 
some specified value a\ against some appropriate alternative hypothesis. 
A two-sample test compares the variances from two different populations. 
We might want to test this hypothesis so that we know whether or not to 
pool our estimates of the variance; that is, choose whether to use Algorithm 
8.2.3 or Algorithm 8.2.4. 

In the next section we consider one-sample tests and in the following 
section we consider two-sample tests. 

God does not throw dice. 
Albert Einstein 

The die is cast. 
Julius Caesar 

8.3.1 One-Sample Test of Variance 
Unfortunately, we can test the variance only from a normal population. We 
state the test available for a normal population as an algorithm. 

Algorithm 8.3.1 (Test of Value of Variance, Normal Population) Given 
a random sample xi,X2,- ■■ ,xn from a population determined by a normal 
random variable X, this algorithm will determine at the a level of signifi­
cance whether to accept or reject the null hypothesis HQ : a2 — o~\ against 
one of the alternative hypotheses (a) Hx : a2 > cr%, (b) H\ : a2 < a\, or 
(c) Hi : a2 ± a2. 

Step 1 [Calculate the test statistic] Calculate the test statistic 

X
2 = ( n - l ) x 4 - (8-25) 

CTo 
(x2 has approximately a chi-square distribution with n — 1 degrees of 
freedom.) 

Step 2 [Find the critical region] The critical region for alternative 
hypothesis (a) is the set of all x2 > x\-i,a> for alternative hypothesis 
(b), it is the set of all x2 < Xn-i,i-a F°r alternative hypothesis (c), 
the critical region consists of the two tails x2 < X2_i i_a/2 an^ * 2 > 

Xn—l,af 
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Step 3 [Accept or reject Ho] If the test statistic calculated in Step 1 
falls in the critical region determined in Step 2, reject HQ and accept 
Hi; otherwise accept Ho-

Proof The proof follows immediately from Theorem 7.3.3. ■ 

Power of Variance Test 
It is relatively easy to calculate the power of the hypothesis test of Algo­
rithm 8.3.1 for any particular value of the true a2, say o~\. Calculation of 
the power of a number of assumed values allows one to construct a power 
curve for the test. 

Suppose that the null and alternative hypotheses are a2 = CTQ, and 
a2 > <7Q, respectively. If a2 = a2 > o~o, the power of the test is given by 

1 - /3 = P 

= P 

(n 
s2 

1)— > Xt-l,a\ 

4 
a2 = 

(n-l)4>(4)xU>2 = *; (8.26) 

But if a2 = a2, then (n — l)s2/a2 has a chi-square distribution with n — 1 
degrees of freedom; we can replace this expression in (8.26) by the symbol 
Xn-i- Thus, (8.26) becomes 

l-0 = P Y 2 > (d\ Y2 , 
An-l ■* \ 2 1 An-l,a 

(8.27) 

We can use (8.27) to calculate the power for any particular values of 0 and 
0 i . 

Let us consider an example of the use of Algorithm 8.3.1. 

Example 8.3.1 For years, the scores achieved by persons taking the Pro­
grammer Aptitude Test at Brownstain International were normally dis­
tributed with mean 82.6 and variance 19.78. With the advent of new pro­
gramming techniques two years ago, the scores seem to have changed. The 
test scores for the 150 tests observed in the last two years yield a sample 
mean of 83.2 and a sample variance of 27.3. At the 5% level of significance, 
does Algorithm 8.3.1 indicate that the variance has increased? What is the 
power of the test when the actual variance is 26.0? 

Solution The null hypothesis is H0 : a2 = 19.78 and the alternate hy­
pothesis is ifi : a2 > 19.78. The test statistic is 

27 3 
x
2 = 149 x — ^ - = 205.647. 

* 19.78 (8.28) 
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Table 4 of Appendix A is, unfortunately, not much help in calculating 
Xi49,o.o5- The SAS/STAT function CINV yields the value 178.48535277, 
the MINITAB command INVCDF with subcommand CHISQUARE yields 
178.4848, and the HP-21S yields 178.4854. Therefore, we reject H0 and 
conclude that a2 > 19.78. By (8.27), the power of the test when a2 = 26 is 

P[Xu9 > 135.79]. (8.29) 

The EXPLORE program AREA yields the value 0.773 for (8.29) as does the 
SAS/STAT program PROBCHI, the MINITAB command CDF with sub­
command CHISQUARE, the HP-21S, and the APL function CHISQUAREA-
DIST. D 

When you win nothing hurts. 
Joe Namath 

8.3.2 Two-Sample Test of Variance 
We state the two-sample test of variance as an algorithm. We assume in 
the following test that we have renamed the random variables, if necessary, 
so that 

4 > 4 . (8-30) 
so that only a right-tailed test is necessary for both alternative hypotheses. 

Algorithm 8.3.2 (Two-Sample Test of Variances, Normal Population) 
Given a random sample xi, X2, • ■ ■, xn from a normal population determined 
by X, and a randojn sample j/i, yi, • • •, ym from a normal population deter­
mined by Y, where X and Y are independent, this algorithm will determine, 
at the a level of significance, whether to accept or reject the null hypothesis 
HQ : ax = o\ against one of the alternative hypotheses (a) H\ : a\ ^ o\, 
or (6) Hi : c*2

x > a\. It is assumed that the variables are renamed, if 
necessary, so that 

sx > SY- (8-31) 
Step 1 [Calculate the test statistic] Compute the test statistic 

f=S-f. (8.32) 

Step 2 [Determine the critical region] The test statistic has a Snedecor-
F distribution with v\ = n — 1 and V2 = m — 1 degrees of freedom. 
Hence, for alternative hypothesis (a), the critical region is the set of 
all f > fa/2(n — 1,m — 1). For alternative hypothesis (b), it is the set 
of all f > fa(n — 1, TO — 1). 
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Step 3 [Accept or reject Ho] If the test statistic of Step 1 falls in the 
critical region determined in Step 2, reject Ho; otherwise accept Ho-

Proof By Theorem 7.3.3, (n — \)Sxlax and (m - l)Sy-/<7y are indepen­
dent chi-square random variables with n — 1 and m — 1 degrees of freedom, 
respectively. Therefore, (SxI'<?x)I'(&YI'°y) n a s an F distribution with pa­
rameters n — 1 and m — 1 by the definition in Section 3.2.8. Hence, when 
Ho is true, the same is true of SX/SY, so that 

P[fi-a/2(n - 1, m - 1) < & < fa/2) = 1 - a, (8.33) 
by 

and 
S2 

p{-£ > /«(" - 1, m - 1)] = a. (8.34) 

Thus, the proof is complete. ■ 

Example 8.3.2 Use Algorithm 8.3.2 to determine, at the 5% level of sig­
nificance, whether it is reasonable to suppose that the variance of the num­
ber of lines of code per programmer day is the same for the two groups of 
programmers in Example 8.2.6. 

Solution The null hypothesis is that ax = a\ and the alternative hy­
pothesis is ax ^ aY- The test statistic is 

The test statistic has an F distribution with v\ = v2 = 19. We cannot read 
/b.025(19,19) directly from Table 6 of Appendix A. However, we can read 
/o.025(20,19) = 2.51, which shows that /0.02s(19,19) > 2.51, so that we 
cannot reject the null hypothesis. (According to the SAS/STAT function 
FINV, /o.o2s(19,19) = 2.52645. It is 2.5264 according to the MINITAB 
command INVCDF with subcommand F, and 2.52645 by my HP-21S.) We 
can see from Figure 8.2.6 that SAS/STAT has determined the p-value of 
this test to be 0.1415, which agrees with the value calculated with my 
HP-21S. D 

Pearson and Please [21] show that F-tests of variance, such as those of 
Algorithms 8.3.1 and 8.3.2, are not robust to the assumption of normality. 
In fact, Moore and McCabe [19, pages 568-570], on the basis of the Pearson 
and Please paper (which they discuss in detail) claim that inferences about 
variances are "so lacking in robustness as to be of little use in practice." 



506 CHAPTER 8. HYPOTHESIS TESTING 

This agrees with my experience. This also adds credibility to the practice 
of assuming the variances are not equal when performing the two-sample 
t-test of means, that is, to using Algorithm 8.2.3 rather than Algorithm 
8.2.4 for performing the two-sample f-test of differences between means. 

Don't be afraid to take a big step when one is indicated. You can't cross a 
chasm in two small jumps. 

David Lloyd George 

When in doubt tell the truth. 
Mark Twain 

Always do right. This will surprise some people and astonish the rest. 
Mark Twain 

documentation n. [Latin documentum "warning. "\ 1 The promised 
literature that fails to arrive with the supporting hardware. 2 A single, 

illegible, photocopied page of proprietary caveats and suggested infractions. 
3 The detailed, unindexed description of a superseded package. 

Stan Kelly-Bootle 
The Devil's DP Dictionary 

8.4 Bernoulli Tests 
The Bernoulli random variable is not only the simplest but also one of the 
most useful random variables because several other useful random variables 
can easily be formulated in terms of it. Examples include the binomial, the 
geometric, and the Pascal. Theorem 7.3.4 explained how to calculate a 
confidence interval for p. We will discuss hypothesis tests concerning the 
parameter p of a Bernoulli random variable. 

8.4.1 One-Sample Bernoulli Tests 
As mentioned earlier, p is sometimes known as the true proportion of suc­
cesses in a population. In the latter case, we have in mind a population in 
which each member may or may not have a certain attribute. We call those 
members that have the attribute successes and those that don't failures, 
even though this sounds judgmental. From a random sample of size n, we 
estimate p by counting the number of successes, k. By Example 7.2.5 the 
maximum likelihood estimate of p is p = k/n. In Algorithm 8.4.1 we assume 
that the size of the sample is large enough that we can treat p as a normal 
random variable. We use the common rule of thumb that n x p o > 5 and 
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n x (1 — po) > 5, where p0 is the value of p assumed in the null hypothesis. 
The calculations then are rather simple. For smaller samples we must use 
Algorithm 8.4.2. It requires more computation than Algorithm 8.4.1 but is 
more accurate. In fact, it can be used for the large sample case as well. 

We state the large-sample, one-sample Bernoulli test as an algorithm. 

Algor i thm 8.4.1 (Test of Value of Bernoulli Parameter p, Large Sample) 
Suppose a random sample of size n from a population yields k successes 
when the true proportion of successes is p. Thus, the maximum likelihood 
estimate of p is p = k/n. This algorithm will determine at the a level of 
significance whether to accept or reject the null hypothesis Ho : p = po 
against one of the alternative hypotheses (a) Hi : p > po, (b) Hi : p < po, 
or (c) Hi : p^ Po- We assume that n x p0>5 and n x ( l - po) > 5. 

Step 1 [Calculate the test statistic] 

* = & ^ , (8.36) 
o-p 

where 

= MEE. (8.37) 
y/n 

Step 2 [Find t h e critical region] The critical region for alternative 
hypothesis (a) is the set of all z such that z > za. For alternative 
hypothesis (b), it is the set of all z such that z < za. For alternative 
hypothesis (c), the critical region comprises the two tails consisting of 
all z such that z < —2a/2 and aM z such that z > za/2 ■ 

Step 3 [Accept or reject Ho] If the test statistic calculated in Step 1 
falls in the critical region determined in Step 2, reject H0 and accept 
Hi; otherwise accept Ho. 

Proof Since E[X] = p, Algorithm 8.4.1 is a special case of Algorithm 
8.2.1. ■ 

Let us consider an example of the use of this algorithm. 

Example 8.4.1 Super Solid State (sometimes known as S-cubed) pro­
duces a popular microprocessor called the Super A. Let p be the fraction 
of the Super A microprocessors that are what Super Solid State calls super 
grade. Until recently p was 0.67. However, Super Sandy, the resident pro­
duction genius, has developed a new production process, that she claims 
will dramatically increase p. Using the new method, S-cubed produced 
200 Super A microprocessors of which 150 are super grade. Super Sandy 
decides to test the statistical hypothesis, at the 5% level, that p > 0.67. 
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Solution Super Sandy uses the null hypothesis Ho : p = 0.67 with the 
alternative hypothesis Hi : p > 0.67. She calculates 

150 
P = 200 =0.75. (8.38) 

Hence, by (8.36), z = 2.6128. Since zo.05 = 1-645, Sandy can reject 
the null hypothesis and conclude that p > 0.67. The p-value of the test is 
0.0045; there can be little doubt that the new production method is superior 
to the old. □ 

Example 8.4.2 Boob Tubes, a manufacturer of television picture tubes, 
claims that 90% or more of its tubes last at least three years. Couch 
Potatoes, a consumer advocate and publisher, challenges this claim. Couch 
collects a random sample of 200 TV tubes sold by Boob Tubes and finds 
that at least 40 of them failed within 3 years of their purchase. At the one 
percent level of significance, what does Couch Potatoes conclude? 

Solution Couch lets p be the fraction of defective tubes sold by Boob, 
that is, those that fail to function for at least 3 years. The null hypothesis 
chosen is Ho : p = 0.1 with the alternative hypothesis H\ : p > 0.1. From 
the data Couch Potatoes calculates p = 40/200 = 0.2, 

crp = y -
2 * ° ' 8 = 0.028284271, (8.39) 
200 K ' 

so that 
z = — = 3.536. (8.40) 

Since zo.oi = 2.3263, Couch decides that the null hypothesis must be re­
jected; it appears that Boob Tubes' tubes are not as long-lived as claimed. □ 

Algorithm 8.4.2 (Test of Value of Bernoulli Parameter p, Small Sample) 
Suppose a random sample of size n yields k successes when the true pro­
portion of successes is p. Thus, p = k/n. This algorithm will determine 
at the a level of significance whether to accept or reject the null hypothesis 
HQ : p = po against one of the alternative hypotheses (a) Hi : p> Po, (b) 
Hi : p < po, or (c) Hi : p±Po- Let Y be the random variable that counts 
the number of successes in the sample. Thus, under Ho, Y has a binomial 
distribution with parameters n andpo-

Step 1 [Calculate the p-value of the test] 
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For case (a), calculate the p-value using the formula 

p-value = P [ y > fc) = £ ( n ) x pj, x (1 - Po)n _ i- (8-41) 

For case (b), calculate the p-value using the formula 

p-value = P[Y < k] = ] T ( ? ) x p j x ( l - p 0 ) n _ i . (8.42) 

For case (c), ifte p-value depends upon whether k < n x p 0 or 
k > n x p 0 . If the former is true, the p-value is twice the p-value 
calculated by (8.42). If k > n x p0, then the p-value is twice the 
p-value calculated by (8.41)-

Step 2 [Accept or reject HQ] 

If the test p-value calculated in Step 1 is less than a, reject HQ and 
accept H\; otherwise accept Ho. 

Proof Algorithm 8.4.2 follows immediately from the definition of the bi­
nomial distribution. B 

Example 8.4.3 Let us apply Algorithm 8.4.2, a more exact test, to Ex­
ample 8.4.1. 

Solution Since the alternative hypothesis is that p > 0.67, we must use 
(8.41) to calculate the p-value of the test. The APL function BINSUM 
shows that the p-value is 0.00875. Hence, there is no doubt that the null 
hypothesis should be rejected in favor of the alternative hypothesis Hi : 
p > 0.67. D 

Example 8.4.4 In the Chips, a manufacturer of solid-state memory chips, 
claims that not more than one percent of its chips are defective. Computer 
Clones decides to check this claim by testing a random selection of 50 chips 
and finds that two are defective. Let p be the fraction of defective chips. 
At the 10 percent level of significance, can Computer Clones reject the 
null hypothesis Ho : p = 0.01 in favor of the alternative hypothesis Hi : 
p > 0.01? 



510 CHAPTER 8. HYPOTHESIS TESTING 

Solution Since the alternative hypothesis is Hi : p > 0.01, we calculate 
the p-value using (8.41). Thus, 

50 
\ 50 - t rvalue = JT C^Vo-Ol)' x (0.99)5 

= 1 - (5
0°)(0.01)° x (0.99)50 - W x 0.01 x (0.99)49 

= 0.089435313. (8.43) 

Since the p-value is smaller than 0.1, Computer can reject the null hypoth­
esis at the 10 percent level. It could not, however, be rejected at the five 
percent level. D 

We will now consider two-sample Bernoulli tests. 

A burden in the bush is worth two in your hands. 
James Thurber 

8.4.2 Two-Sample Bernoulli Tests 
In this section we will compare the probability of success for two indepen­
dent Bernoulli random variables X and Y. We assume that we have a 
random sample of size n from a population determined by X, that con­
tains kx successes and thus yields the estimate px = kx/n. Similarly, 
we have a random sample of size m from a population determined by Y, 
that contains fey successes and thus yields the estimate py = ky/m. In 
Algorithm 8.4.3 we consider the large-sample case in which the sampling 
distribution of px — py is approximately normal. If the null hypothesis is 
HQ : px — PY = do ̂  0, the hypothesis test procedure is slightly different 
than it is with the null hypothesis HQ : px = PY- In the former case, the 
test statistic is 

z = ( f a - f r ) - * ^ (8.44) 
sPx - PY 

where 
_ JPX(I-PX) , p y ( i - p v ) ,_._v 

sPx -PY = ]j + • (8-45) 
In the latter case we can improve our estimate of the common value of the 
probability of success by pooling our estimate, that is, by using 

. kx + ky npx + mpy p = = . (8.4b) n+m n+m 

file:///50-t
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Substituting (8.46) into (8.45) yields 

s» = ^ ' - « > ( : + = ) ■ ( 8 - 4 7 ) 

Algorithm 8.4.3 (Two-Sample Bernoulli Test, Large Samples) Suppose 
a random sample of size n from a population yields kx successes while a 
random sample of size m from another independent population yields ky 
successes. We estimate the fraction of successes in the first population 
by px = kx/n and in the second by py = ky /m. This algorithm will 
determine, at the a level of significance, whether to accept or reject the null 
hypothesis HQ : px —py = do against one of the alternative hypotheses (a) 
Hi: px -PY > d0, (b) Hi: px - PY < do, or (c) Hi : px - py # d0. 
Alternatively, the null hypothesis may be HQ : px = PY against one of the 
null hypotheses (a) Hi : px > PY> (b) Hi : px < PY, or (c) Hi : px ^ PY-
It is assumed that n x px > 5, n x (1 - px) > 5, tn x py > 5, and 
m x (1 —py) > 5. 

Step 1 [Calculate the test statistic] For the null hypothesis px -py = 
do, compute the test statistic 

Z = tix-PY)-^ ( g 4 g ) 

sPx — PY 

For the null hypothesis px = PY, the test statistic is 

z = * £ Z £ : . (8.49) 
Sp 

Step 2 [Determine the critical region] For alternative hypothesis (a), 
the critical region is the set of all z > za; for alternative hypothesis 
(b), it is the set of all z < —za; and for alternative (c), it comprises 
the two tails consisting of all z such that z < —za/2 and all z such 
that z > za/2-

Step 3 [Accept or reject HQ] If the test statistic of Step 1 falls in the 
critical region determined in Step 2, reject HQ; otherwise accept HQ. 

Example 8.4.5 In 1954 a Salk polio vaccine field trial was held to deter­
mine the effectiveness of the vaccine. Of the 401,826 children involved in 
the test 200,712 (the treatment group) were given the Salk vaccine and 
201,114 (the control group) were given a placebo. (This was a double-
blind experiment in which neither the children nor the administrators of 
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the vaccine knew which children were getting the Salk vaccine and which 
the placebo.) Only 33 of the children who received the Salk vaccine con­
tracted polio while 115 of the control group did. We let p be the fraction 
of children contracting polio. The null hypothesis is Ho : px = PY where 
Px is the proportion of children in the treated group who got polio and py 
is the proportion in the control group. The alternative hypothesis is Hi : 
Px <PY- Prom the data, we see that px = 33/200,712 = 0.000164415 and 
py = 115/201,114 = 0.000571815. We also calculate 

P = -^TT^r = 0.000368319. (8.50) 
401,826 v ' 

Hence, (8.47) yields sp = 0.00006054, so the test statistic z = -6.729. The 
p-value of the test is thus almost zero; the APL function NDIST produces 
the value 8.59 x 10 - 1 2 and the SAS/STAT function PROBNORM yields 
8.54 x 10 - 1 2 , which is confirmed by my HP-21S. We conclude that the Salk 
vaccine is effective. D 

For the small-sample Bernoulli test it is convenient to set up our hypothesis 
test procedure using the binomial distribution. Suppose X is binomial with 
parameters n and px, while Y is binomial with parameters m and py. 
Suppose also that X and Y are independent. We wish to test the null 
hypothesis Ho ■Px = PY against, say, H\ : px > py- Let k = kx + ky be 
the number of successes in n + m trials. If Ho is true so that px = PY — P> 
then 

P[X + Y = k]=(n + ™ V x (1 - P ) n + m - k . (8.51) 

P[X = kx] = (fc" ) / x x (1 - PT~kx - (8-52) 

P[Y = ky] = ( ^ V y x (1 " P)m~kY ■ (8-53) 

P[X = kx and Y = fc - kx] 

Now 

and 

Therefore, 

P[X = kx\X + Y = k] = 

(8.54) 

P[X + Y = k] 

(kx) x Ob ™kx) 

\ k ) 

for kx = 0,1, • ••, n. Let us define a random variable U by 

P[U = j \ = P[X=j\X + Y = k], (8.55) 
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for j = 0 , 1 , . . . , k. Hence, by (8.54), U is a hypergeometric random variable 
with parameters n = h, N = n+m, and r = k. (We defined hypergeometric 
random variable in Chapter 3 just before Exercise 11.) Note that under Ho, 
the conditional distribution of X given X + Y = k is independent of the 
common value of px = PY- Let us consider how to use (8.54) to test 
Ho ■ Px — PY against Hi : px > PY- For a given value of A;, it is clear 
that a small value of kx tends to support Ho, while a large value tends 
to support H\. We can therefore reject H0 at the a level if, assuming Ho, 
kx > c, where c is the smallest integer such that 

P[X > c\X + Y = k] < a. (8.56) 

This is the Fisher-Irwin test. The p-value of this test is 

k 
P[X > kx\X + Y = k] = ] T P[U = j}. (8.57) 

j=kx 

Further tests for other alternative hypotheses are given in Algorithm 8.4.4. 

Algorithm 8.4.4 (Two-Sample Bernoulli Test, The Fisher-Irwin Test) 
Let X be the binomial random variable that counts the number of successes 
in a random sample of size n from a population with the proportion px of 
successes. Let Y be a binomial random variable that counts the number of 
successes in a random sample of size m from a population with proportion 
PY of successes. Assume that X and Y are independent. This algorithm 
will determine, at the a level of significance, whether to accept or reject 
HQ: px — PY against one of the alternative hypotheses (a) H\ : px > PY, 
(b) Hi : px < PY, or (c) Hi : px i1 PY- Let k = kx + ky be the total 
number of successes in the two samples and let U be defined by (8.55). 

Step 1 [Calculate the test statistic] Calculate the number of successes 
kx in the sample from the first population. Calculate k — kx + ky, 
the total number of successes in the two populations. 

Step 2 [Determine the critical region] For alternative hypothesis (a), 
compute c, the smallest integer such that under Ho, 

P[X > c\X + Y = k] < a. (8.58) 

Then the critical region is the set of all kx > c. T he p-value of this 
test is 

k 
P[X > kx\X + Y = k] = ^ P[U = J]- (8-59) 

j=kx 
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For alternative hypothesis (b), compute c, the largest integer such 
that 

P[X < c\X + Y = k] < a. (8.60) 
Then the critical region is the set of all kx < c. The p-value of this 
test is 

P[X<kx\X + Y = k] = YiP[U = j}. (8.61) 

For alternative hypothesis (c) the critical region consists of the set of 
all kx > c\ and all kx < C2 where ci and c-i are determined as above 
with probability a/2 in each tail. The p-value of this test is two times 
the smaller tail probability, that is, two times the minimum of the two 
numbers obtained from (8.59) and (8.61). 

Step 3 [Accept or reject HQ] If the test statistic calculated in Step 1 
falls in the critical region found in Step 2 or if the p-value of the test 
is less than a, reject HQ; otherwise accept it. 

Example 8.4.6 The IRS audited the tax returns of 30 families in Boon­
docks Center. Twenty of the returns were from lower-income families and 
ten from high-income families. Four low-income families and five high-
income families had underpaid their taxes according to the IRS auditors. 
At the five percent level of significance, are the proportions of families who 
underpaid the same? 

Solution The null hypothesis is Ho : px — PY and the alternative hy­
pothesis is Hi-.px^PY- Using the APL program HYPERGADIST with 
parameters n = 9, N = 30, and r = 20 (or the Mathematica program 
hypergdist), we calculate 

9 
P[X > 4\X + Y = 9] = J T P[U = j] = 0.9816, (8.62) 

and 
4 

P[X < 4\X + Y = 9] = ] T P[U = j] = 0.1037278564, (8.63) 

where U is defined by (8.55). Therefore, the p-value of the test is 2 x 
0.1037278564 = 0.2074557. (The innovative BASIC program 6-6-1 of Ross [23] 
provides the same answer. Ross's program always uses the alternative hy­
pothesis (c), so it cannot be used to solve Exercise 8.) Hence, we cannot 
reject the null hypothesis that the proportions are the same. CI 



8.5. CHI-SQUARE TESTS 515 

The conduct of e 
Is abhorrent to me. 
He is (not to enlarge on his disgrace) 
More than a little base. 

J. A. Lindon 

8.5 Chi-Square Tests 
The chi-square test is a versatile test that is easy to perform and requires 
little calculation. It takes two basic forms: one for testing goodness-of-fit 
and one for testing independence in contingency tables. Algorithm 8.5.1 de­
scribes how to perform a goodness-of-fit test and Algorithm 8.5.2 describes 
the chi-square test of independence for a contingency table. It is the only 
goodness-of-fit test discussed in many, if not most, statistics books. By 
goodness-of-fit test, we mean a method of testing whether a given popu­
lation is determined by a particular random variable, such as exponential, 
normal, Poisson, Erlang-fc, gamma, etc. We will, of course, have some clues 
from the sample parameters, such as x or s. In addition, we may have used 
some of the exploratory data analyses techniques of Section 7.4 to deter­
mine what type of random variable we are dealing with. For example, if 
x = 10 and s = 30, we know that the underlying random variable X is not 
likely to be exponential, since the mean is equal to the standard deviation 
for an exponential distribution, but it could be gamma or hyperexponential. 

Once we have established what type of random variable we believe de­
termines the population, we can apply a goodness-of-fit test to make a 
probability judgment about our choice. Such a test is a special class of 
hypothesis test in which the null hypothesis is that the population is de­
termined by a particular type of random variable (normal, gamma, etc.) 
and the alternative hypothesis is that it is not. Unfortunately, when a 
goodness-of-fit test leads to the rejection of the null hypothesis, no conclu­
sion is obtained as to what type of random variable might fit better. 

We will now consider the chi-square goodness-of-fit test. In the next 
section we will consider some more powerful goodness-of-fit tests. The 
more powerful tests, as might be expected, require more computation and 
are more difficult to apply. 

Algorithm 8.5.1 (Chi-Square Goodness-of-Fit Test) Each element of a 
given random sample #1,0:2, • • ■ >xn> determined by the random variable X, 
falls into exactly one of k categories or cells (category and cell will be used 
interchangeably ) Ci,C2, ■••,(?*. This test will determine, at the a level 
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of significance, whether it is reasonable to suppose that the observed distri­
bution of the n sample values into categories or cells is consistent with the 
null hypothesis that X has a given distribution. 

Step 1 [Count Oi\ Count the number, d, of observed elements in cate­
gory d, for i = 1,2, • • • ,£ . 

Step 2 [Calculate the Ei] On the basis of the null hypothesis that X has 
a given distribution, calculate Ei, the expected number of elements in 
category Ci, for i = 1,2, • • •, k. 

Step 3 [Calculate x2] Calculate the chi-square statistic 

x2 = £(O^Eil (g64) 

Step 4 [Calculate the number of degrees of freedom m of the 
underlying chi-square distribution] Setm = fc-1. Then subtract 
one from m for each independent parameter that is estimated from the 
data to generate the Ei values in Step 2. 

Step 5 [Find critical value] Find the critical value Xm,a suc^ "*a* 
the probability that a chi-square random variable with m degrees of 
freedom will exceed Xma *s a- (Table 4 of Appendix A gives these 
values.) 

Step 6 [Accept or reject Ho] Ifx2 > Xm a> reject Ho; otherwise accept 
H0. 

The x2 statistic provides an intuitively satisfying measure of the devi­
ation between what is observed and what is expected. The deviation for 
each cell is first measured by (Oj — i?i)2 and then scaled by dividing by the 
Ei term. Finally, we add up the contributions from all the cells. The math­
ematical justification for the chi-square test is that the distribution of the 
X2 statistic approaches that of a chi-square distribution with m degrees of 
freedom as n —♦ oo. (This is proven in Cramer [8].) Thus, we can associate 
a probability with the result. For small values of n, the distribution of the 
X2 statistic may not be closely approximated by a chi-square distribution, 
and the chi-square test will not yield good results. It has been discovered, 
empirically, that the chi-square test works best when all the Ei are at least 
5, for if Ei is small, the division by Ei in the term (0* — Ei)2/Ei can cause 
a large error in the value of x2- We sometimes pool categories or cells to 
make each Ei > 5. Another, less demanding rule of thumb is that each 
Ei > 1 and at least 80 percent of the Ei exceed 5. Let us consider some 
examples to illustrate the test of Algorithm 8.5.1. 
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Example 8.5.1 Let us consider the horse-kick data of Exercise 5, Chap­
ter 7. This set of data, shown in Table 8.5.1, is one of the most famous 
in statistics. In his widely referenced book Bortkiewicz [6] analyzed the 
data concerning deaths caused by horse kicks in the 19th century Prussian 
cavalry. Ten Prussian cavalry corps were monitored over a period of 20 
years. The random variable X measured the number of fatal horse kicks 
per corps-year. Bortkiewicz fitted the Poisson distribution to the data. Let 
us use Algorithm 8.5.1 to determine whether or not X appears to have a 
Poisson distribution at the 5 percent level of significance. As we asked you 
to determine in the above exercise, the maximum likelihood estimate of a, 
the average number of deaths per corps-year, is 0.61 (the total number of 
deaths, 122, divided by the number of corps-years, 200, = 122/200). We 
calculate 

for i = 0,1,2,3. We also calculate 

3 

P[X>4] = l-'£P[X = i}. 
t = 0 

(The maximum number of observed fatalities in a corps-year was 4.) Then 
we calculate 

Ei = 200 x P[X = i] 

for each i. The results are shown in Table 8.5.1. Since E* = P[X > 4] = 
0.72 and JS3 = 4.11 are both less than 5, we form a new class called "> 3" 
in the revised table, Table 8.5.2. For this class, the expected value is very 
close to 5. We now apply Step 3 of Algorithm 8.5.1 to calculate 

2 _ (109 - 108.67)2 (65 - 66.28)2 (22 - 20.22)2 (4 - 4.83)2 

* ~ 108.67 + 66.28 + 20.22 + 4.83 ~ ' ' 

Since we estimated the mean of X from the data, Step 5 yields m = 2. 
By Table 4 of Appendix A, xi.o.os = 5.9915. Since 0.325 is much smaller 
than this number, we accept the null hypothesis that X has a Poisson 
distribution.3 In Figures 8.5.1-8.5.3, we show how Doane's EXPLORE 

3In fact the fit is so good that we should be a little suspicious of the data. See Freed-
man, Pisani and Purves (12, pages 425-427] for an account of how the great statistician 
Ft. A. Fisher showed that Gregor Mendel's pea experiment data were fudged. Winsor [34], 
in his review of Bortkiewicz's book, gives him high marks. He says that Bortkiewicz was 
not proclaiming the merits of the Poisson distribution but rather, "He was giving a name 
to a phenomenon of statistics which he had, or thought he had, discovered." Bishop et 
al. [5] also discuss Bortkiewicz's results as well as Mendel's pea experiment. 
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program GOODFT makes these calculations. GOODFT combines cells in 
the same manner that we did. It is a truly effortless way to apply Algorithm 
8.5.1 to the Poisson case. D 

Table 8.5.1. Horse Kick Deaths by Cavalry Corps-Year 

Number of Deaths Observed Number Estimated Number 
i Oi Ej 

0 109 108.67 
1 65 66.28 
2 22 20.22 
3 3 4.11 

> 4 1 0.72 
Totals 200 

Table 8.5.2. Horse Kick Deaths by Cavalry Corps 

Number of Deaths 
i 

0 
1 
2 

> 3 
Totals 

Observed Number 
Oi 

109 
65 
22 
4 

200 

200 

-Year (Modified) 

Estimated Number 
Ei 

108.67 
66.28 
20.22 
4.83 
200 

Example 8.5.2 Every year the World Series of professional baseball fea­
tures a series of games between an American League and a National League 
team. The series ends when one of the teams has won 4 games. (This 
team is declared the winner, of course.) Thus, a World Series consists of 
4 through 7 games. Table 8.5.3 shows the number of games of each series 
for the 50 years between 1926 and 1975. There are cynics who feel that 
the preponderance of seven-game series shows that economics has a strong 
impact on the series; the owners as well as the players make more money 
if more games are played. What can a goodness-of-fit test tell us? 

Solution Let us assume that the teams are evenly matched and that the 
games are independent. Then, for each team, the series can be thought 
of as a Bernoulli sequence of trials with the probability of success on each 
trial equal to 0.5. The Pascal distribution described preceding Exercise 20 
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in Chapter 3 seems to fit here. For each team, winning the series in n 
games is achieved if n = r + fc with r = 4 and fc = n — 4 = 0,1,2,3. This 
probability is given by 

;4,0.5)=[4 + * MxO^xOi p(k 

for fc = 0,1,2,3. Let X be the number of games of the series. Since the 
above formula yields the probability that one of the teams wins in n games, 
say the National League team, the probability that the series is completed 
in n games is given by 

P[X = n] = 2xp(n-4;4 ,0 .5) , n = 4,5,6,7, (8.65) 

since either team can win. (We note that (8.65) yields P[X = 7] = P[X = 
6] = 0.3125, P[X = 5] = 0.25, and P[X = 4] = 0.125.) Using (8.65), we 
obtain the last column in Table 8.5.3. We calculate 

2 = ( 9 - 6 . 2 5 ) 2 (11-12.5)2 (8-15.625)2 (22 -15.625)2 

X 6.25 12.5 15.625 15.625 ' ' 

Since xi.o.os = 7.8147, we accept the null hypothesis at the 5 percent level 
of significance. The p-value of the test is 0.052354. We would reject the 
hypothesis at the 10 percent level. In Exercise 13 we ask you to consider 
the situation in which one team is always favored over the other. For more 
(and deeper) discussions of the World Series problem, see Woodside [35], 
Tannenbaum [33], and Brunner [7]. Q 

Enter the value of m? 4 
X l ( o ) 

0 ? 109 
1 ? 65 
2 ? 22 
3 ? 3 
4 ? 1 

Figure 8.5.1. GOODFT data entry for Example 8.5.1. 
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... POISSON GOODNESS OF FIT TEST ... 
Mean « 0.61 events per unit of time/space 

(rounded to nearest .01) 
X P(X) f(o) f(e) 

0 
1 
2 
3 
4 and over 

Totals: 

-—__.. 
0.5434 
0.3314 
0.1011 
0.0206 
0.0036 

1.0000 

- — — 
109 
65 
22 

3 
1 

200 

108.7 
66.3 
20.2 

4 .1 
0.7 

200.0 

Figure 8.5.2. GOODFT screen for Example 8.5.1. 

DETAILS OF POISSON TEST STATISTIC CALCULATION 
2 

X [f(o) - f(e)] It(e) 

0 
1 
2 
3 and more 

0.001 
0.025 
0.157 
0.140 

Total: 0.324 
Chi-Square = 0.324 with d.f. = 2 

Figure 8.5.3. Last GOODFT screen for Example 8.5.1. 

Table 8.5.3. World Series Games 
Number Number Estimated 

of Games of Years Number 
Oi Ei 

4 
5 
6 
7 

9 
11 
8 

22 

6.250 
12.500 
15.625 
15.625 

Totals 50 50 

8.5.1 Contingency Tables 
An important application of the chi-square test is for testing the indepen­
dence of the rows and columns of contingency tables. A contingency table 
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is one in which data have a two-way classification—one by row and one by 
column. Suppose, for example, that Dr. Nancy Nipps, the chief admissions 
officer at Histate University, wants to know whether there is a difference in 
the graduation rate of male and female students who begin their academic 
careers at Histate. A random sample of entering freshman at the univer­
sity in September 1980 is taken. The students are classified by sex and by 
whether or not they graduated within five years. This data are shown in 
Table 8.5.4 in a two by two contingency table. In all contingency tables 
the goal is to determine whether the row classification is independent of 
the column classification. In Table 8.5.4 the question is, "For the entering 
students, is the proportion graduating within 5 years the same for female 
students as it is for male students?" 

Table 8.5.4. Data on entering freshmen 
Sex 

Male 
Female 
Totals 

Graduated 
15 
12 
27 

Did Not Graduate 
35 
18 
53 

Totals 
50 
30 
80 

Contingency Table Notation 
Pij The probability an observation is in row i and column j . 

pij The estimate of py. 

Pi. The marginal probability for row i: Pi. = Y!,jPi,j-

pi. The estimated marginal probability for row i: pi. = YljPij-

p.j The marginal probability for column j . p.j = YliPij-

p.j The estimated marginal probability for column j . p.j — ^2iPij. 

n The number of observations. 

Oij The observed cell count of the cell in row i, column j . 

The probability p^ is estimated by 

The marginal probabilities are estimated from the observed row totals Ri 

and column totals Cj by the formulas 

Pi. = —, (8.66) 
n 
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and 

^ = T- (8.67) 

The null hypothesis is that the row and column classifications are indepen­
dent; that is, 

Pij=Pi.xp.j- (8.68) 

The expected cell count under the assumption of independence is 

,-, ~ Ri Cj Ri x Cj 
En = n x pi xpi = n x — x —+■ = J-. 

n n n 
(8.69) 

A standard r xc contingency table of r rows and c columns is set up as 
shown in Table 8.5.5. 

Table 8.5.5. Genera! Contingency Table 
Column 

Row 1 
Row 2 

Row r 
Totals 

1 
On 
02i 

Orl 

Ci 

2 
O12 
022 

0r2 

c2 

c 
Ola 
o2 c 

Ore 
Cc 

Totals 
Rx 
R2 

Rr 
n 

The algorithm for the independence test of a contingency table should 
be stated slightly differently than the way we stated it for a goodness-of-fit 
test in Algorithm 8.5.1. 

Algorithm 8.5.2 (Chi-Square Test of Independence for a Contingency 
Table) It is assumed that a contingency table as shown in Table 8.5.5 has 
been formed from a random sample. Each observation described in the table 
is classified independently of other observations. This assumption is satis­
fied if there is only one sample that is classified by two criteria (rows and 
columns), or if each row is a random sample classified by column. This test 
will determine, at the a level of significance, whether it is reasonable to sup­
pose that the row classification is independent of the column classification. 
The mathematical formulation of the null hypothesis is Ho : Pij = p». x p_j 
for all i and j . 

Step 1 [Calculate the expected cell counts] 

Eij = 
xtj x Gj 

(8.70) 
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Step 2 [Calculate the x2 test statistic] 

X2 = Y.{°iJ ~E
Ei5? ■ (8-71) 

/ / the table is two-by-two the x2 test statistic is adjusted by the Yates 
continuity correction, and (8.71) becomes 

2 _ yv (maximum(Q, (\Oi:j - Eti\ - 0.5))2 

~f Eij 

Step 3 [Find the critical value] Set m — (r — l)(c — 1) and find the 
critical value xm a-

Step 4 [Accept or reject Ho] Ifx2 > Xm a> reject Ho; otherwise accept 
H0. 

Recently D'Agostino et al. [10] have recommended that the Yates con­
tinuity correction not be applied for the two-by-two table, although this 
has been traditional. The authors claim the Yates correction makes the 
test too conservative. In the next example we apply Algorithm 8.4.2 to 
the Nancy Nipps problem. We make the calculations with and without the 
Yates correction in the example. 

Example 8.5.3 Consider the two-by-two contingency table displayed in 
Table 8.5.4. Dr. Nipps wishes to determine whether the proportion of male 
and female students who graduate from Histate is the same. The raw data 
from Table 8.5.4 shows that the proportion for men is 15/50 = 0.3 and for 
women it is 12/30 = 0.4; the proportions do not appear to be the same. 
However, the difference may be due to sampling error. Algorithm 8.5.2 
will help Nancy decide. Applying Step 1 of the algorithm, we calculate the 
expected cell counts using (8.70). We obtain 

(8.73) 

(8.74) 

(8.75) 
ou 

and 
an y a:< 

8 0 (8-76) 

En = 

E12 = 

E21 = 

5 0 x 2 7 
80 

5 0 x 5 3 
80 

3 0 x 2 7 
80 

3 0 x 5 3 

= 16.875, 

= 33.125, 

= 10.125, 

= 10.875. 
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Since we have a two-by-two table (the table may appear to have four 
rows and four columns but only the cells containing observation counts 
are counted in making the assessment of r and c), we use (8.72) to calcu­
late the x2 *est statistic. Fortunately, in making the Yates correction, we 
find that \Oij — Eij\ = 1.875 for all i and j . Hence, we obtain 

X2 = 1.3752 x $ 3 F " = °-4510-

If we do not apply the Yates correction, as recommended by D'Agostino et 
al. [10], we find that x2 is o m y 0.83857. Since Xi.o.os = 3.8415, we accept 
the null hypothesis at the five percent level of significance with or without 
the Yates correction. The fraction who graduate seems to be the same 
for men and women. Using the SAS/STAT function CHISQUARE, the 
MINITAB command CDF with subcommand CHISQUARE, the HP-21S, 
or the EXPLORE program AREA, it is easy to show that the p-value of 
this test is 0.502 with the Yates correction and 0.3598 without it. □ 

Statistical packages remove a great deal of the labor (and chance for 
error) in statistical tests for independence. 

Fear not the atom in its fission 
The cradle will outwit the hearse. 
Man on this earth has a mission 
To survive and keep on getting worse. 

Samuel Hoffenstein 
Pencil in Air 

8.6 EDF Tests 
In this section we will discuss some goodness-of-fit tests that are both more 
powerful and more sophisticated than the chi-square tests of the last section. 
These tests are called EDF tests because they are based on a comparison 
of the empirical distribution function, Sn(-) (which we will define below) to 
the hypothesized distribution function, F(-). The function 5„(-) is defined 
in terms of a random sample from a population determined by the random 
variable X. 

Given a random sample of size n, x\,xv,... ,xn, we first sort it into 
ascending order. Thus, after sorting and renumbering (if necessary), x\ < 
X2 < ••• < xn. Then we define the empirical distribution function, Sn(-), 
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by 
Sn(x) = -, (8.77) 

n 
where i is the number of sample values < x. Thus, Sn(-) is a step function, 
that is zero for x less than the smallest Xi, has a jump of 1/n at each Xi 
(unless, of course, Xj = Xj+i = • • • = Xi+j for some j > 0 in which case the 
jump is (j + l)/n), and is 1 for all x that are greater than or equal to the 
largest Xi. 

The first EDF test that we will consider is the Kolmogorov-Smirnov 
test. This test sounds like it could be a sobriety test or a test taken in 
a bar.4 Kolmogorov and Smirnov are both well-known statisticians and 
their test is widely used. The Kolmogorov-Smirnov (K-S) test compares 
the vertical distance between Sn(x) and the assumed distribution function 
F(x) at each point x. There are three common measures of this distance 
(statistics). They are: 

D+ = sup{S„(x) - F(x)}, (8.78) 
x 

D~ = sup{F(x) - S„(x)}, (8.79) 
x 

and the most common measure D defined by 

D = max{£>+,D-}. (8.80) 

Because S„() is a nondecreasing step function and F(-) is also nondecreas-
ing (because it is a distribution function) it suffices to check (8.78) and 
(8.79) at the finite set of points x\, X2,..., x„. In fact, 

D+ = max{- - F{xi)}, (8.81) 
i n 

and 
D~ = max{F(xi) - ^ ~ ^ } . (8.82) 

i n 
The above three statistics are called supremum statistics. There is another 
class of EDF statistics called quadratic statistics. We shall limit ourselves 
to the Anderson-Darling [2] quadratic statistic, A2, defined by 

/

+oo 
(5„(x) - F(x))2F(x)(l - F(x))"1dF(x). (8.83) 

•oo 
4Some statisticians prefer to perform the test in a bar, but this is not required. 
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Stephens in D'Agostino and Stephens [9, Chapter 4] found the quadratic 
statistical tests to be more powerful than the Kolmogorov-Smimov test. He 
claims that the A2 test is one of the most powerful of the quadratic tests. 

One disadvantage of EDF goodness-of-fit tests, compared to chi-square 
tests, is that a table of critical values is required for each probability distri­
bution family, such as exponential, normal, etc. The one exception is the 
special case when all parameters are completely specified. In the most com­
mon situation, in which the parameters must be estimated from the data, a 
table of critical values is required for each distribution. In Algorithm 8.6.1 
we consider the completely specified case. 

Algorithm 8.6.1 (Kolmogorov-Smirnov and A2 Tests with Parameters 
Known) Given a random sample x\, x-i,..., xn of size n that is sorted in as­
cending order, this test will determine at the a level of significance whether 
it is reasonable to suppose that the population distribution function is F, 
where the parameters of F are assumed known. 

Step 1 [Calculate the test statistics] Calculate 

Zi = F(Xi), (8.84) 

for i = 1,2,.. . ,n , 

D+ =max{--Zi}, (8.85) 
i n 

D~ = max{^ - ^ — ^ } , (8.86) 

and 
D = max{D+,D~}. (8.87) 

Then calculate the modified value, D*, using the formula 

D* = Z ? K / « + 0.12 + ^ J . (8.88) 

The same factor is used with D+ and D~ if they are to be used in the 
test. This gives all the (K-S) statistics. Calculate A2 by the formula 

1 n 

A2 = — S^(2i - l){ln(Zi) + ln(l - Zn+i-i)} - n. (8.89) 
n i = i 

Step 2 [Accept or reject the null hypothesis] / / the modified D is 
greater than the critical value in Table 12 of Appendix A, reject Ho; 
otherwise accept it by the Kolmogorov-Smirnov test. If A2 is greater 
than the critical value in Table 12 of Appendix A, reject HQ; otherwise 
accept it by the A2 test. 
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Proof See Stephens in D'Agostino and Stephens [9, Section 4.4]. ■ 

D+ is used to test the hypothesis that F(x) < Sn(x) for all x while D~ 
is used to test the hypothesis that Sn(x) < F(x) for all x. 

Table 8.6.1 Example 8.6.1. 
1.52 

15.75 
60.72 
125.69 
459.86 

4.65 
20.92 
93.74 
151.18 
827.67 

5.36 
40.73 
95.41 
200.86 
840.33 

6.28 
40.89 
106.36 
268.75 
1087.33 

Let us consider an example of the use of Algorithm 8.6.1. 

Example 8.6.1 The Grand Viceroy of Statistics at Kolmogorov Krusty 
Krumpets is given the data of Table 8.6.1, which he's been told comes from 
a normal population with fi = 220 and <r = 300. Grand decides to use 
both the Kolmogorov-Smirnov and the A2 tests at the five percent level of 
significance to test the null hypothesis that the population is iV(220,3002) 
as claimed. 

Solution Grand uses the null hypothesis that the population is normally 
distributed with a mean of 220 and standard deviation of 300. The alter­
native hypothesis is that the distribution is different from that assumed in 
HQ. Grand uses the APL program KSASPEC to find that the modified D 
value D* is 1.34218. Since the critical value in Table 12 of Appendix A is 
1.358, he cannot reject the null hypothesis using the Kolmogorov-Smirnov 
test. The APL program AA2ASPEC, however, shows that the A2 value is 
2.569975. Since the critical value in Table 12 of Appendix A is 2.492, the 
A2 test shows Grand should reject the null hypothesis at the five percent 
level. The A2 test has more power! D 

The details of the Kolmogorov-Smirnov test are shown in Table 8.6.2. 
From the third column we see that D+ = 0.2907 and the last column shows 
that D~ = 0.2332. Hence, D = 0.2907 and D* is 

D* = D(V20 + 0.12 + ^ L ) = 4.6167£> = 1.3421. (8.90) 

This is slightly different from the value obtained by KSASPEC, which 
carried more decimal places. 

When you have eliminated the impossible, whatever remains, however 
improbable, must be the truth. 

Sherlock Holmes 
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Vision is the art of seeing thing invisible. 
Jonathan Swift 

Table 8.6.2. Kolmogorov-Smirnov Test of Example 8.6.1 

Xi 

1.52 
4.65 
5.36 
6.28 
15.75 
20.92 
40.73 
40.89 
60.72 
93.74 
95.41 
106.36 
125.69 
151.18 
200.86 
268.75 
459.86 
827.67 
840.33 
1087.33 

Zi = * (£111220) 
V 300 / 

0.2332 
0.2364 
0.2372 
0.2381 
0.2480 
0.2535 
0.2751 
0.2752 
0.2977 
0.3369 
0.3390 
0.3524 
0.3766 
0.4093 
0.4746 
0.5645 
0.7880 
0.9786 
0.9807 
0.9981 

i 
30 

-0.1832 
-0.1364 
-0.0872 
-0.0381 
0.0020 
0.0465 
0.0749 
0.1248 
0.1523 
0.1631 
0.2110 
0.2476 
0.2734 
0.2907 
0.2754 
0.2355 
0.0620 
-0.0786 
-0.0307 
0.0019 

30 
0.2332 
0.1864 
0.1372 
0.0881 
0.0480 
0.0035 
-0.0249 
-0.0748 
-0.1023 
-0.1131 
-0.1610 
-0.1976 
-0.2234 
-0.2407 
-0.2254 
-0.1855 
-0.0120 
0.1286 
0.0867 
0.0481 

We will now consider the EDF tests for exponentiality when the mean 
must be estimated from the data. 

Algorithm 8.6.2 {The Kolmogorov-Smirnov and A2 Tests for Exponen­
tiality {Mean Estimated)) Given a random sample x\,X2,...,xn of size n, 
sorted in ascending order, this test will determine at the a level of signifi­
cance whether it is reasonable to suppose that the population is exponential. 

Step 1 [Calculate the test statistics] Calculate 

1 " 
W=nX^Xii ( 8 - 9 1 ) 

W = =, (8.92) 
x 
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and 
Zi = \ - e~Wi (8.93) 

for i = 1,2,...,, n. Then calculate 

D+ = max{- -zA, (8.94) 
i n 

D~ = max{zi - ^ — ^ } , (8.95) 
i n 

and 
D = max{D+,D-}. (8.96) 

Calculate the modified form, D*, using the formula 

P* = (£>-— )(V^ + 0.26 + ^ l Y (8.97) 
n \ y/nj 

Calculate A2: 

1 n 

A2 = — J"(2i - l){ln(Zi) + ln(l - z„+i_i)} - n, (8.98) 

and the modified form, A* defined by: 

A' = A2(l + ™y (8.99) 

Step 2 [Accept or reject the null hypothesis] Reject the null hy­
pothesis that the population is exponential, if the modified value of D 
exceeds the critical value in Table 13 of Appendix A; otherwise accept 
Ho by the Kolmogorov-Smirnov test. Reject the null hypothesis that 
the population is exponential if the modified A2 exceeds the critical 
value in Table 13 of Appendix A; otherwise accept HQ by the A2 test. 

Proof See Stephens in D'Agostino and Stephens [9, Section 4.9.3]. ■ 



530 CHAPTER 8. HYPOTHESIS TESTING 

Table 8.6.3. Exponential Sample 

3.93 
0.21 
10.23 
0.29 
0.22 
4.79 
0.24 
0.63 
5.21 
3.25 

1.63 
0.19 
4.69 
0.80 
1.61 
4.93 
4.75 
1.82 
0.26 
1.25 

0.40 
2.60 
3.47 
0.65 
2.38 
0.24 
1.39 
3.45 
3.74 
0.13 

1.13 
2.24 
0.16 
0.72 
4.69 
1.52 
2.22 
0.22 
1.28 
2.87 

0.30 
0.24 
6.54 
7.15 
0.30 
2.41 
0.79 
0.94 
0.50 
0.38 

Example 8.6.2 The numbers in Table 8.6.3 are the numbers from Table 
7.3.1 and comprise a random sample from an exponential distribution with 
a mean of 2. Let us apply Algorithm 8.6.2 to the data. We used the APL 
function EXPONAT to make both the Kolmogorov-Smirnov test calcula­
tions and the A2 calculations. It calculated a modified D value of 0.9179967. 
By Table 13 of Appendix A, the critical value is 1.094, so we cannot re­
ject the null hypothesis by the Kolmogorov-Smirnov test. EXPONAT also 
yields A2 = 1.0337149 and a modified A2 value equal to 1.046119. Since 
the critical value from Table 13 is 1.321, the A2 test does not reject the null 
hypothesis, either. The data also passed the chi-square test made by the 
APL function CHISQAEXPON. This function divides the sample into four 
classes based on the sample mean and the assumption of exponentiality. 
Thus, the critical value is determined by a chi-square distribution with 2 
degrees of freedom. The critical value, xl> 0.05 1S equal to 5.9915, and the 
calculated value from the test is 2.16. We expect 10 of the 40 observations 
to be in each class. The numbers observed in the 4 classes were 16, 10, 
10, 14, respectively. The three quartiles of the data according to the null 
hypothesis are 0.60977, 1.46919, and 2.93839. The calculated p-value of the 
test is 0.339596. This calculated value was based on the assumption that 
X2 has a chi-square distribution with 2 degrees of freedom.) We ask you to 
verify these numbers in Exercise 12. □ 

The exponential distribution is so important in applied probability that 
special tests have been devised to determine whether an observed distri­
bution is exponential. Spinelli and Stephens [31] examined a number of 
tests for exponentiality. They find, for example, that the test by Shapiro 
and Wilk [28] has a major weakness in that it is not consistent; that is, 
the power of the test will not necessarily approach 1 as the sample size in­
creases. Spinelli and Stephens claim the A2 test is the best overall test for 
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exponentiality. They provide a general test for a shifted exponential that 
tests for an ordinary exponential as a special case. Algorithm 8.6.2 is the 
test recommended by Stephens in his chapter, "Tests for the Exponential 
Distribution," in D'Agostino and Stephens [9] for testing for an ordinary 
(nonshifted) exponential. 

No discussion of goodness-of-fit tests would be complete without a test 
for the normal distribution. It is, of course, the paramount probability 
distribution in statistics, theoretical or applied. D'Agostino in his chap­
ter, "Tests for the Normal Distribution," in D'Agostino and Stephens [9] 
recommends a number of tests including the Anderson-Darling EDF A2 

test. In Algorithm 8.6.3 we present the Kolmogorov-Smimov as well as 
the Anderson-Darling EDF A2 test for normality. The A2 test is the more 
powerful of the two tests, although the Kolmogorov-Smimov test is more 
frequently presented in textbooks. In fact, the Anderson-Darling test ap­
pears in extremely few textbooks. D'Agostino also says: 

For testing for normality, the Kolmogorov-Smimov test is only 
a historical curiosity. It should never be used. It has poor power 
in comparison to the above procedures. 

For testing for normality, when a complete sample is available, 
the chi-square test should not be used. It does not have good 
power when compared to the above tests. 

My experience is certainly in agreement with Professor D'Agostino's com­
ments. However, one should be aware of the chi-square and Kolmogorov-
Smimov tests, since they appear in most statistics textbooks. 

Algorithm 8.6.3 (The Kolmogorov-Smirnov and A2 Tests for Normality 
{Parameters Estimated)) Given a random sample x i , X2, ■ ■ -,xn of size n, 
that is sorted in ascending order, this test will determine at the a level 
of significance whether it is reasonable to suppose that the population is 
normal. 

Step 1 [Calculate the test statistics] Calculate 

1 n 

x = - x ^ X i , (8.100) 

i = l 

1 " 
s2 = - V V x i - x ) 2 , ( 8 . ioi) n — 1 f—' 

i = i 
Wi = ZiZl, (8.102) 
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and 
Zi = Q(Wi) (8.103) 

for i = 1,2,..., n. Then calculate 

D + = m a x { - - ^ } , (8.104) 
i n 

(i- 1) D~ = max{zi - - - } , (8.105) i n 
and 

D = max{D+,D-}. (8.106) 

Calculate the modified form of D using the formula 

D* = D(y/n~- 0.01 + ^ \ . (8.107) 

Calculate A2 

1 n 

A2 = — £ ( 2 i - l){ln(Zi) + ln(l - *,+!_«)} - n, (8.108) 
n t= i 

and the modified form defined by 

A . = i l > ( l + 2£ + ^ 6 ) . (8.109) 

Step 2 [Accept or reject the null hypothesis] Reject the null hypoth­
esis that the population is normal if the modified value of D exceeds 
the critical value in Table 14 of Appendix A; otherwise accept Ho by 
the Kolmogorov-Smirnov test. Reject the null hypothesis that the pop­
ulation is normal if the modified A2 exceeds the critical value in Table 
14 of Appendix A; otherwise accept Ho by the A2 test. 

Proof See Stephens in D'Agostino and Stephens [9, Section 4.8]. ■ 

Example 8.6.3 Fred Fripple, Performance Vizier at Macho Motors, be­
lieves the multiprogramming level for one of their computers has a normal 
distribution. A sample of the multiprogramming level for 15 randomly 
selected times is given in Table 8.6.4. Fred wants to use the Kolmogorov-
Smirnov and A2 tests at the five percent level to check his hypothesis. 
Solution The APL function NORMALAT calculates D* = 1.23296 and 
A* = 2.042969. By Table 14 of Appendix A, the critical value of D* is 
0.895, so the Kolmogorov-Smirnov test rejects the null hypothesis. The 
critical value of A* is 0.752, so the A2 test rejects the null hypothesis, 
too. □ 
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Although we used the asymptotic tables (Tables 12, 13, and 14 of Ap­
pendix A) for Kolmogorov-Smirnov tests, Lilliefors [16,17] and others have 
provided tables for Kolmogorov-Smirnov tests that can be entered with 
both D and n. Tables 7-9 of Appendix A are of this type. We chose to use 
the asymptotic tables because they can be adapted more easily to computer 
programs. The direct tables, however, can be used to construct confidence 
intervals for the true distribution function from the empirical distribution 
function and the critical value Da. For example, consider the empirical 
distribution function S40 from Example 8.6.2. By Table 8 of Appendix A, 
we can be 95% confident that the true distribution function F satisfies the 
inequality 

\F{x) - 54 0(x)| < - } = = 0.168 (8.110) 
v40 

for all real x. We can also write 

S40(x) - 0.168 < F(x) < S40(x) + 0.168 (8.111) 

with 95% confidence (and obvious changes to the upper and lower bounds 
for some values of x to prevent probability values greater than one or less 
than zero). 

Neave's outstanding book and statistical tables, [20] provides K-S ta­
bles for the normal and completely specified cases. He also provides some 
excellent examples of their use. It is difficult to praise Neave's little book 
too highly. He goes to extraordinary pains to make the tables foolproof 
to the user and supplies a number of insightful examples of the use of the 
tables. 

As with most things in life, there is good news and bad news about 
EDF goodness-of-fit tests compared to chi-square goodness-of-fit tests. The 
good news is that EDF tests are more powerful and, in many cases, easier 
to implement on a computer than chi-square tests. On the other hand, 
EDF tests tend to require more computation and thus are labor-intensive 
if only a calculator or even a programmable calculator is available. Most 
statistical packages don't directly support EDF goodness-of-fit tests, so the 
user must write some code to use the techniques. In addition, tables of 
critical values are available for only a few probability distributions. We 
provide them for the completely specified case (all distributions) and for 
the important cases of normal and exponential when the parameters must 
be estimated. Stephens, in his chapter "Tests Based on EDF Statistics," 
in D'Agostino and Stephens [9] provides tests and tables for several more 
continuous distributions including the Weibull, gamma, and Cauchy. In ad­
dition, he discusses EDF tests for discrete distributions. The discrete tests, 
however, are limited to completely specified distributions with k classes. 
Naturally, the table for this test must be somewhat limited, too. 
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We therefore recommend that EDF tests, particularly the A2 test, be 
used for testing all completely specified continuous distributions as well 
as the normal and exponential distributions. For discrete distributions we 
recommend the chi-square test. 

Table 8.6.4. Example 8.6.3 

1.75 2.10 2.11 2.50 2.60 
2.91 3.10 3.20 3.31 4.62 
5.40 8.50 13.10 19.00 25.00 

Comparisons do ofttime great grievance. 
John Lydgate, c. 1440 

8.7 Analysis of Variance 
The analysis of variance is traditionally abbreviated ANOVA. In fact, the 
whole name is rarely written out in statistical publications. It is a powerful 
tool of statistics. In this section we look at its simplest form, called one­
way analysis of variance. This form can be used to compare a number 
of population means, simultaneously. Thus, we can avoid making a large 
number of two-sample tests. 

The language often used in ANOVA derives from its roots in agriculture 
and medicine. Thus, different populations are often called "treatments." 
From this point of view, we can imagine that we have k different treatments 
where the result of applying treatment i is a normal random variable with 
mean in and variance a2. We assume there are k independent samples from 
k treatments (populations) of size ni,ri2,- •• , nfc, respectively. We assume 
that N = ni + ri2 + • • • + nk is the total number of observations. We let 
Xij be the j t h observation in the ith population or treatment. Then the 
overall sample mean, sometimes called the grand sample mean, is given by 

i * 

The total sum of squares, TSS, is given by 

i » 

TSS measures the total sum of squares of the deviation from the overall 
sample mean. Some of this variability is due to the differences within the 
population (treatment) samples and some is due to the differences between 
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the sample means of the different populations. The sum of squares for 
treatment (SST), often called the sum of squares between, is defined by 

k 

SST = Y^ m&i ~ x)2. (8.114) 
i = l 

It measures the weighted sum of squares difference between the population 
sample means and the grand sample mean. Thus, a large value of SST is an 
indication that the means of the populations are different. The error sum 
of squares (SSE), sometimes called the sum of squares within, is defined by 

k n, 

SSE = J2Y((xij-xi)2. (8.115) 
i = l j=l 

The SSE measures the sum of the square of variability within the popula­
tions (treatments). A large value of SSE is evidence against the equality of 
the means. 

The theory of ANOVA depends upon the partitioning of the total sum 
of squares. For one-way analysis of variance, we have 

TSS = SST + SSE, (8.116) 

where SST has k — 1 degrees of freedom and SSE has N — k degrees of 
freedom. Equation (8.116) is an algebraic identity. 

We now state the one-way analysis of variance algorithm. 

Algorithm 8.7.1 (One-Way ANOVA Test of k Means from Normal Pop­
ulations with Equal Variances) Given k random samples, each from an 
independent normal population with the same variance, this algorithm will 
determine at the a level of significance whether to accept the null hypothesis, 

H0: m = n2 = • • • = Hk, 

or the alternative hypothesis 

Hi : Not all the population means are the same. 

Step 1 Calculate the test statistic] Compute 

MST 
t ■ = 

where 

F = M S E ' <8-117) 

SST 
MST = -=—, (8.118) 

K X. 
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and 
SSE 

MSE = ^ - ^ . (8.119) 

(SST is defined by (8.114) and SSE by (8.115).) 

Step 2 [Determine the critical region] The test statistic F has a 
Snedecor-F distribution with k — 1 and N — k degrees of freedom. The 
critical region is the set of all F > fk-i,N-k,a-

Step 3 [Accept or reject Ho] If the test statistic calculated in Step 1 
falls in the critical region found in Step 2, reject Ho; otherwise accept 
HQ. 

Proof See Chapter 8 of Ross [23]. Ross essentially shows that MST has 
a x2 distribution with k — 1 degrees of freedom and that MSE has a x2 

distribution with N — k degrees of freedom, so that F has an F-distribution 
with parameters (degrees of freedom) k — 1 and N — k. Ross also shows 
that the expected value of MSE is a2 and that if the null hypothesis is false, 
then the expected value of MST is greater than a2. ■ 

It is customary, when making an ANOVA calculation, to display the 
partition of the total sum of squares (TSS) and the other elements of the 
calculation in an analysis of variance table in the form shown in Table 8.7.1. 

Table 8.7.1. An Analysis of Variance Table 

SOURCE DF SS MS F-Value Pr > F 

Treatments fc - 1 SST MST F p-value 

Error N-k SSE MSE 

Total N - 1 TSS 

All computer statistical systems with ANOVA routines provide an anal­
ysis of variance table as part of the output. However, some of them do 
not provide the p-value of the test, so you must look up the critical value 
of F to complete the test. The SAS/STAT procedure ANOVA and the 
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MINITAB5 command AOVONEWAY provide the p-value; the EXPLORE 
program ANOVA does not. 

Let us consider an example of the use of Algorithm 8.7.1. 

Example 8.7.1 Recall Example 8.2.6. The Hotstuff Chili Company also 
has a team of application programmers, Team Charly, in the Engineer­
ing Department. Chi Chivari (sometimes known as x2)> the manager of 
the team, has trained his programmers to use some programming tech­
niques that utilize the power of their computers to help them program 
more effectively. Table 8.7.2 shows the average number of lines of code 
per programmer-day written by each of 20 randomly selected programmers 
from Team Charly. Let us apply Algorithm 8.7.1 to test the null hypothesis 
that Teams Able, Baker, and Charly produce the same number of lines of 
code per programmer-day, on the average. 

Solution Here N = 60, k = 3, and n* = 20 for i = 1,2,3. We know 
from Example 8.2.6 that xi = 97.38 and x2 = 87.12825 lines of code per 
programmer day, respectively. We compute £3 = 137.0273, and, thus, 
x = 107.1785. Therefore, 

3 
SST = 20 x ^ ( x < - x)2 = 27,779.48, (8.120) 

t= i 

and 
3 

SSE = 5^(19)3? = 51,559.01. (8.121) 

We easily calculate MST= 13,889.74 and MSE= 904.54. Hence, 

F = MST/MSE = 15.36. 

By Table 6 of Appendix A, we estimate 

/2,57,0.0s « 3.162. (8.122) 

(SAS/STAT, MINITAB, and the HP-21S provide the more accurate value 
3.159.) Since F = 15.36, we must reject the null hypothesis. D 

Figure 8.7.1 displays the analysis of variance table provided by the 
SAS/STAT routine ANOVA for this example and the top part of Figure 

5Version 7 of MINITAB as well as the Student Edition of MINITAB provide the p-
value. Some earlier versions of MINITAB, such as those used in the examples of Ryan 
et al. [24] did not. 
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8.7.2 provides the analysis of variance table provided by the MINITAB com­
mand AOVONEWAY. Notice that the sum of squares numbers are slightly 
different from the ones we calculated. Note also that SAS/STAT provides 
the nominal p-value of the test as 0.0001. A simple calculation with the 
HP-21S shows that the actual value is approximately 4.6 x 10 - 6 . 

You may have noticed that although we used many numbers that were 
obtained from Example 8.2.6 to make the calculations, the calculations 
were not trivial. A computer is needed for any serious ANOVA computa­
tion. Some computer statistical systems also do the pairwise comparisons 
of the means for you, although Algorithm 8.7.1 does not require this. One 
technique for making the comparisons is to construct a confidence inter­
val for each mean and compare these intervals to judge the relative size of 
the means. The estimate usually used for cr2 is MSE, so the 100(1 — a)% 
confidence interval for //j is the interval from 

Xi~tN-k,a/2\J N _k (8.123) 

to 
/MSE ,„ ni. 

Xi + tN-k,a/2)Jjj—j;. (8.124) 

The MINITAB command AOVONEWAY does this calculation for you and 
provides graphs as output. The bottom part of Figure 8.7.2 shows the 
graphs provided by AOVONEWAY for the confidence intervals in Example 
8.7.1. From the graphs we see that (ii < M3 and /X2 < A*3 at the 5 percent 
level of significance but that //i and n% appear to be equal at this level of 
significance. The SAS/STAT procedure ANOVA provides a table with the 
same information as the graphs of Figure 8.7.2. 

Table 8.7.2. Team Charly 

53.798 
99.532 
139.437 
93.435 
81.448 

42.832 
76.452 
66.254 
63.412 
144.096 

100.318 
76.585 
103.859 
89.562 
116.115 

68.122 
115.624 
91.770 
60.232 
59.682 
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Analysis of Variance Procedure 

Dependent Variable: LINES 

Source 

Model 

Error 

Corrected Total 

DF 

2 

57 

59 

Sum of 
Squares 

27779.47978 

51558.98880 

79338.46858 

Mean 
Square 

13889.73989 

904.54366 

F Value 

15.36 

Pr > F 

0.0001 

Figure 8.7.1. SAS/STAT ANOVA table for Example 8.7.1. 

ANALYSIS OF VARIANCE 
SOURCE DF SS 
FACTOR 2 27779 
ERROR 57 51559 
TOTAL 59 79338 

MS 
13890 
905 

F 
15.36 

P 
.000 

LEVEL 
able 
baker 
charly 

N 
20 
20 
20 

POOLED STDEV 

MEAN 
97.38 
87.13 

137.03 

30.08 

INDIVIDUAL 95 PCT CI 'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV -+ + + +-
38.98 ( » ) 
27.60 ( * ) 
20.80 ( * ) 

_+ + + +_ 
75 100 125 150 

Figure 8.7.2. MINITAB ANOVA table for Example 8.7.1. 

In the next section we will see that, for the Kruskal-Wallis test, we can 
weaken the requirement that each population is normal with a common 
variance. 

8.8 Nonparametric Tests 
The tests of this section are called nonparametric to distinguish them from 
most of the tests we have previously considered, that is, from parametric 
tests. The name is a bit of a misnomer, since nonparametric tests do usu­
ally depend upon some parameter—a population proportion or median, for 
example. They never depend upon a normal distribution, however, so the 
term distribution-free is more accurate, although not as widely used. Many 
parametric tests depend upon the assumption that the population from 
which the sample was taken is normal. For sufficiently large samples, the 
central limit theorem can be invoked to avoid the normality assumption. 
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However, if the distribution of the population is badly skewed or otherwise 
significantly nonnormal, parametric statistical tests will not be correct for 
small sample sizes. Nonparametric tests obviate this difficulty. 

Another requirement for parametric tests is that sample statistics such 
as the sample mean and variance can be computed from the sample and used 
to estimate the corresponding population parameters. Data that are purely 
nominal in nature (such as "approve", "disapprove", and "have no opinion") 
or which are given in rank order only (such as ranking the engineers in a 
department from 1 to n) do not yield such meaningful results. 

Nonparametric tests can be used to test hypotheses about data which 
are not normal or are not measured on an interval scale. Since these tests 
do not depend on the shape of the distribution, they are sometimes called 
distribution-free tests. The reason they are more often called nonparametric 
tests is because they do not depend upon the mean or the variance. 

Nonparametric methods, as we shall see, often are computationally sim­
pler than many parametric methods and tend to be easier to understand. 
Since we know "there ain't no free lunch," we must be prepared for some 
disadvantages of nonparametric methods, too. One disadvantage of some 
nonparametric tests is that they waste information, since exact numerical 
data are often reduced to a qualitative form. Nonparametric tests also 
tend to be less sensitive than their parametric counterparts and thus re­
quire stronger evidence to reject a null hypothesis. For this reason, if the 
requirements for a parametric test are met, it is best to use it rather than 
a nonparametric test. On the other hand, if we want to test data to see if 
they are randomly selected, the only available test is a nonparametric test, 
the runs test. 

8.8.1 The Sign Test 
The sign test is one of the most versatile of the nonparametric tests and yet 
one of the simplest to apply. The first version of the test we will consider 
is the one-sample sign test. 

Algorithm 8.8.1 (One-Sample Sign Test) Given a random sample x\,X2, 
. . . , x n from a population with median m, this algorithm will determine at 
the a level of significance whether to accept or reject the null hypothesis 
Ho : m = mo against one of the alternative hypotheses (a) Hi : m > mo, 
(b) Hi : m < m0 , or (c) Hi : m ^ mo. 

Step 1 [Calculate the test statistics] Compute x+ = the number of 
sample values greater than mo, X- = the number of values less than 
mo, and x= = the number of values equal to mo- Then let the x = 
max{x+,a;_}, and m = n — #=. 
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Step 2 [Determine the p-value of the test] Let X be a binomial ran­
dom variable with parameters m and 0.5. For alternative hypothesis 
(a), the p-value is given by 

p-value = P[X > x+], (8.125) 

For alternative hypothesis (b), the p-value is given by 

p-value = P[X > x-]. (8.126) 

For alternative hypothesis (c), the p-value is given by 

p-value = 2 x P[X > x]. (8.127) 

Step 3 [Accept or reject HQ] If the p-value calculated in Step 2 is less 
than a, reject HQ; otherwise accept it. 

Proof If the null hypothesis is true, then the probability that any element 
of the random sample is greater than mo is 0.5. If we let X be the number 
of elements of the sample that are greater than mo, then X has a binomial 
distribution with parameters n and 0.5. But the same argument shows that 
Y, the number of elements of the sample smaller than mo, has the same 
distribution as X. This shows that the algorithm is valid. ■ 

Table 8.8.1 

75.2 65.1 42.6 39.7 
100.8 63.5 72.3 49.6 
45.3 92.7 79.3 32.7 
76.3 88.1 87.3 48.7 
74.7 47.6 43.2 89.8 

Example 8.8.1 Table 8.8.1 represents the average number of lines of code 
per programmer-day produced by 20 randomly selected programmers at 
Helpful Heuristics. Harry Houdini, the lead chief programmer, wants to 
test the hypothesis that the median of the mean number of lines of code 
per day of each programmer is more than 50. The null hypothesis is that 
the median is 50; the alternative hypothesis is that the median is greater 
than 50. For the sign test, Harry notes that x+ = 12 and n = 20, since no 
value in the table is equal to 50. Therefore, the p-value of the test is given 
by 

20 / „ n \ 
x S ( k: ) = 0>251723- (8.128) 

fe=12 ^ ' 
If Harry uses a = 0.05, he cannot reject the null hypothesis that the median 
is 50. D 

G 
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MINITAB has the command STEST, that will do the calculations for 
a sign test. It yields the same p-value that Harry Houdini calculated. The 
calculations can become a trifle daunting if you do not have computer as­
sistance available. The calculation in (8.125) can be made using the normal 
approximation for large values of n. It is a two step process using 

if x+ > 0.5n or 

^ - ° f > - ° - 5 " . (S.129) 
0.5Vn 

0.5y/n 
if x+ < 0.5n. Then the p-value is calculated as 

p-value = P[Z > z], (8.131) 

where Z is a standard normal variable. Formula (8.131) yields the excellent 
approximation 0.25117 as the p-value for Example 8.8.1. One would not 
expect such a good approximation when n = 20. A similar approximation 
can be used for the other alternative hypotheses when n is large. 

Algorithm 8.8.1 can be used in a slightly modified form to perform 
the sign test on paired samples. The testing of two paired samples—either 
before-and-after observations or matched pairs is a very common procedure. 
For before-and-after observations of elements of the same sample, we may be 
interested in determining the effectiveness of a class, a different procedure, 
treatment for a disease, etc. For matched pairs we consider two populations 
in which each element of the first is matched with an element of the second. 
When the populations consist of people, the matching may be on the basis 
of sex, age, IQ, health, or other factors. 

Algorithm 8.8.2 (Sign Test for Differences Between Paired Samples) Given 
n pairs of observations from two randomly obtained populations with medi­
ans mi and m,2, respectively, this algorithm will determine at the a level of 
significance whether to accept or reject the null hypothesis HQ : mi = m.2 
against one of the alternative hypotheses (a) Hi : mi > m.2, [b)H\ : m\ < 
m2 , or (c) Hi : mi ^ m,2-

Step 1 [Calculate the test statistics] Compute x+ which is the number 
of paired sample values in which the value in the second population 
is greater than that of the first; x- which is the number of paired 
sample values in which the observed value in the second population is 
less than that of the first population; and x= which is the number of 
paired sample values that are equal. Then let the x = max{a;+,a;_}, 
and m = n — x—. 
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Step 2 [Determine the p-value of the test] Let X be a binomial ran­
dom variable with parameters m and 0.5. For alternative hypothesis 
(a), the p-value is given by 

p-value = P[X > x+). (8.132) 

For alternative hypothesis (b), the p-value is given by 

p-value = P[X > x-]. (8.133) 

For alternative hypothesis (c), the p-value is given by 

p-value = 2 x P[X > x]. (8.134) 

Step 3 [Accept or reject Ho] If the p-value calculated in Step 2 is less 
than a, reject HQ; otherwise accept it. 

Proof This test can be reduced to the one-sample sign test (Algorithm 
8.8.1) by creating a new sample as follows: subtract each element of the 
first sample from the corresponding (paired) element of the second sample 
to create a new sample. Then apply the one-sample sign test to the resulting 
sample with mo = 0. H 

Table 8.8.2. Data For Example 8.8.2 

Before 
5 
2 
4 
6 
1 
3 

Accidents 
After 

3 
0 
3 
4 
0 
2 

Before 
3 
0 
1 
4 
3 
6 

After 
1 
2 
3 
1 
0 
4 

Example 8.8.2 Bigg Stuff, the mayor of RosefuU, is persuaded by Crash 
Bangg, the RosefuU Highway Czar, to install a new traffic control system 
at the 12 most dangerous intersections within the city. Table 8.8.2 shows 
the number of accidents during the six weeks before and the six weeks 
after installation of the new systems. Crash decides to use Algorithm 8.8.2 
to test at the 5% level of significance the null hypothesis that the traffic 
control system is not effective against the alternative hypothesis that it is 
(mi > 7B2). Since m_ = 10 and n = 12, the p-value of the test is 

12 12 

v ' fc=io x ' 
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Hence, Crash can reject the null hypothesis and conclude that the new 
traffic system is effective. □ 

When angry count four; when very angry, swear. 
Mark Twain 

8.8.2 The Kruskal-Wallis Test 
The Kruskal-Wallis Test, often called the Kruskal-Wallis H Test, is used in 
place of the one-way analysis of variance test when the populations cannot 
be assumed normal. Thus, it can be used to test whether or not the means 
from k independent samples are equal when the populations are not normal. 
The Kruskal-Wallis H test is due to Kruskal and Wallis [14]. It uses a 
ranking method. Let n* be the number of observations in the ith sample. 
The k samples are combined and the n = n\ + n2 + • ■ • + nk observations 
ranked from smallest to largest, substituting the appropriate rank from 
1,2, . . . ,n for each observation. Observations with the same values are 
given the average of their ranks. The sum of the ranks for each sample are 
then computed. Ri is the sum of the ranks from the ith sample. Kruskal 
and Wallis denoted by H the random variable 

nyn + 1) ■f-' rij 

When the samples are from the same distribution (HQ is true) and each 
sample consists of at least 5 observations, then H can be approximated by 
a chi-square distribution with k — 1 degrees of freedom. For small samples 
the approximation is not very good, so Kruskal and Wallis provide tables 
of the exact distribution for the case of k = 3, rn < 5. We state the test as 
a formal algorithm. 

Algorithm 8.8.3 (Kruskal-Wallis Test) Suppose we have k independent 
samples from k populations. We wish to test the null hypothesis 

Ho: the samples are from identical populations 

against the alternative hypothesis 

Hi: the populations are not identical 

at the a level of significance. 

Step 1 [Compute h] Calculate 

h = -r^Y, — -*(n + 1)-
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Step 2 [Accept or reject Ho] Ifh> xl-i a> reJect Ho> otherwise accept 
H0. 

Proof See Kruskal and Wallis [14] ■ 

Example 8.8.3 Consider Example 8.7.1. Let us use the Kruskal-Wallis 
test to test the null hypothesis that the three programming teams, Able, 
Baker, and Charly, have the same average productivity in lines of code per 
programmer day. In Table 8.8.3 we indicate the rank of each observation 
from the three teams. We see that Ri = 513, R2 = 415, and R3 = 902. 
(We checked these values using the SAS/STAT procedure NPAR1WAY.) 
Then we calculate h = 21.75377. Since xi.o.os = 5.9915, we must reject 
the null hypothesis as before. The p-value of the test is 0.00001889. The 
SAS/STAT procedure NPAR1WAY reports that h = 21.754 with the p-
value 0.0001, while the MINITAB command KRUSKAL-WALLIS reports 
that h = 21.75 with p-value 0.000. □ 

Table 8.8.3. Example 8.8.3 
Lines 

121.200 
79.100 

105.600 
114.800 
87.200 

119.600 
81.400 

175.300 
47.800 
53.400 
53.798 

100.318 
99.532 
76.585 

139.437 
103.859 
93.435 
89.562 
81.448 

116.115 

Team 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 

Rank 
36 
16 
29 
31 
19 
35 
17 
60 

3 
4 
5 

27 
26 
15 
50 
28 
23 
20 
18 
33 

Lines 
64.300 

135.700 
92.700 

138.200 
63.700 

142.700 
58.900 
20.700 

112.700 
132.600 
42.832 
68.122 
76.452 

115.624 
66.254 
91.770 
63.412 
60.232 

144.096 
59.682 

Team 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Able 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 
Baker 

Rank 
11 
44 
22 
46 
10 
51 

6 
1 

30 
42 

2 
13 
14 
32 
12 
21 

9 
8 

52 
7 



546 CHAPTER 8. HYPOTHESIS TESTING 

Table 8.8.3. (continued) Example 8.8.3 
Lines 

122.430 
131.325 
96.136 

138.884 
139.404 
135.342 
97.156 

128.118 
139.313 
124.637 

Team 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 

Rank 
38 
41 
24 
47 
49 
43 
25 
40 
48 
39 

Lines 
158.459 
163.751 
153.743 
148.112 
149.350 
167.758 
121.453 
136.361 
171.223 
117.591 

Team 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 
Charly 

Rank 
56 
57 
55 
53 
54 
58 
37 
45 
59 
34 

8.9 Summary Table 
Table 8.9.1 provides a summary of some of the simpler hypothesis tests 
from the beginning of the chapter. Unfortunately, we were not able to find 
a table format that would allow us to provide a table for the more complex 
tests, such as those for goodness-of-fit and analysis of variance. 
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Table 8.9.1 Hypothesis Tests 
Hypothesis Rejection Region of Hp 

X-fl0 
tip: M = £*0 —r~7=" — za 

Hi: n > no 

H0: H = Mo 

Hi: fi > no 

Hi- Hi > M2 

H0: P=Po 

Hi- p>pQ 

H0: pi = p2 

Hi: Hi > M2 

a/y/n 

x - Ho 
s/y/n 

^ *n—l,o 

x-y 

x-y 
i{ni-l)sl + (n2-l)s2

y fi^^ 1 

ni + n2 — 2 

ifc 
--Po 

7-a— >za 

jpoil-po) 
n 

^ *ni+n2—2,a 

ki k2 — + — 
Til Til 

Uki + k2\ / _ ki+k2\ / J _ J_\ 
\ni + n2J\ ni + n2J \ni n2J 

> Za 

Far better it is to dare mighty things, to win glorious triumphs, 
even though checkered by failure, than to take rank with those 
poor spirits who neither enjoy much nor suffer much, because 

they live in the gray twilight that knows not victory nor defeat. 
Theodore Roosevelt 
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8.10 Exercises 
1. [ClO] The number of terminals in use by Group Alfa during the lunch 

hour at Fairlady Aircraft is normally distributed. A random sample 
of 40 observed values of the number of active terminals is shown in 
the table. Assume a = 5. At the 5% level of significance, test the null 
hypothesis that the mean number of active terminals // = 20 against 
the alternative hypothesis that fx > 20. 

22.5585 
22.3250 
24.5805 
23.1480 
19.0270 
26.7180 
18.3270 
23.0950 
21.5260 
9.0565 

Random Sample 

16.7495 
23.2865 
22.1430 
16.2845 
18.8885 
27.4775 
10.4450 
26.8640 
27.2705 
18.7445 

19.8800 
15.7555 
30.7650 
21.1555 
24.2645 
22.8960 
27.1350 
18.0160 
21.5315 
24.9890 

19.8130 
11.8815 
24.0120 
22.1095 
21.9145 
14.3475 
11.1425 
9.9325 
20.2230 
17.7345 

[ClO] Fowler Heir Mining has selected the random sample of response 
times observed at the terminal used by the Vice President for Ca­
naries. The values, in seconds, are shown in the table. Assuming 
the response times are normally distributed, test the null hypothesis 
that the mean response time y, = 0.5 seconds against the alternative 
hypothesis that y. > 0.5 seconds. Use the 5% level of significance. 

Random Sample at Fowler Heir 

0.53 
0.68 

0.60 
0.49 

0.57 
0.55 

0.58 
0.51 

0.44 
0.59 

3. [8] [5 if a computer statistical system is used] The 200 programmers 
at Division A of Mickeysoft Corporation have averaged 76.21 lines of 
code per programmer-day with a sample standard deviation of 10.37. 
The 150 programmers of Division B have averaged 72.72 lines with 
a sample standard deviation of 10.07. At the one percent level of 
significance, does it appear that the programmers of Division A are 
more productive than those of Division B? 
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4. [ClO] [5 if a computer statistical system is used] Consider the situation 
of Exercise 3. Suppose it is discovered that the statistics gathered 
at Mickeysoft are based on only 6 programmers at Division A and 
5 at division B. (The numbers are the same, though.) Assume the 
distribution of lines of code per programmer-day at both divisions 
is normally distributed with the same (unknown) mean. At the one 
percent level of significance, does it now appear that the programmers 
of Division A are more productive than those of Division B? 

5. [ClO] [5 if a computer statistical system is used] Consider Exercise 3. 
Assuming the distributions of lines of code per programmer-day are 
normal, test at the 10% level of significance the null hypothesis that 
the variances of lines of code per programmer-day are the same at the 
two divisions. Use the alternative hypothesis that they are different. 

6. [ClO] Consider Exercise 2. Assuming the response time distribution 
is normal, test at the 10% level of significance the null hypothesis 
that the variance <r2 = 0.004. Use the alternative hypothesis that 
a2 > 0.004. 

7. [C15] Badyere Tire claims that 90% of its Randy Radials last for more 
than 50,000 miles. Diligent Dealer wear tests ten Randy Radials and 
finds that two of them fail before 50,000 miles. Use Algorithm 8.4.2 
to test the Badyere Tire claim at the 10% level of significance. 

8. [C20] Richilan Radials advertises that Richilan radial tires are better 
than Randy Radials. As proof, they tested 20 of their radials and 
20 Randy Radials. Richilan claims that only 2 of their tires failed to 
reach 50,000 miles, but 7 Randy Radials failed. Use the Fisher-Irwin 
test at the 5% level of significance to test Richilan's claim. The null 
hypothesis is that there is no difference in the tires. The alternative 
hypothesis is that the fraction of good Richilan tires is higher than 
the fraction of good Randy tires. 

9. [ClO] Parsimonious Peripherals has developed a new I/O device. The 
company claims that the table contains the retrieval times of 30 ran­
domly selected I/O requests. The times are in milliseconds. Parsi­
monious claims the processing times are normally distributed with a 
mean of 10 milliseconds and a standard deviation of 5 milliseconds. 
Test this claim using the chi-square test as follows. Normalize the 
data by the formula z< = (x* — 10)/5. Partition the real line into 5 
intervals such that if Ho is true, then one-fifth of the z^s would be ex­
pected in each interval. Apply the chi-square test with these intervals 
as cells. Use the 5% level of significance. 
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Parsimonious Sample 

14.560 4.102 7.514 8.873 10.373 
7.582 10.651 5.424 6.470 7.589 
3.022 8.666 1.966 17.381 15.564 

17.715 13.655 14.860 12.037 10.475 
5.298 9.750 -1.371 7.274 14.901 

18.845 16.881 7.229 16.833 9.440 

10. [C15] Whoopdedoo Fashions has taken a random sample of 15 com­
munication line times of their interactive order entry system to yield 
the values in the table. (The units of time are druds.) Use the 
Kolmogorov-Smirnov test and the A2 test to test the hypothesis that 
line time is exponential. Use the 10% level of significance. 

Whoopdedoo Fashions Sample 

2.31 17.29 26.23 79.83 30.35 
3.59 1.29 0.58 4.81 15.87 

28.73 3.87 18.99 2.81 62.46 

11. [C15] Consider the random sample of response times in Exercise 2. 
Use the Kolmogorov-Smirnov and A2 tests at the 5% level to test the 
hypothesis that the response time is normally distributed. Assume 
the mean and variance are not known. 

12. [10] Without using the APL function CHISQAEXPON, verify that 
the numbers for the chi-square test for exponentiality at the 5 percent 
level of significance quoted in Example 8.6.2 are correct. 

13. [15] Consider Example 8.5.2. Suppose that for each World Series one 
team is more likely to win each game than the other. Assume the 
probability of winning each game is 0.6 for one team and 0.4 for the 
other team. Analyze the 50 games that we analyzed in Example 8.5.2, 
at the 5 percent level of significance. 

14. [C15] Silicon Valley Doodads has 4 computers in the central computer 
center that are run 3 shifts per day. Andy Exponential, the manager 
of the computer center, makes up the following contingency table, by 
computer and shift, of the number of times that the operators of a 
particular computer have been forced to do an IPL (initial program 
load) during the shift. Andy wants to test at the 5 percent level of 
significance whether the need for an IPL on a computer is independent 
of the computer and the shift. Please make the calculation for Andy. 
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Computer 

Shift 1 
Shift 2 
Shift 3 
Totals 

A 
5 
7 
1 

13 

B 
3 

12 
2 

17 

C 
2 
9 
4 

15 

D 
7 

16 
2 

25 

Totals 
17 
44 

9 
70 

15. [20] A consumer testing organization tests three brands of pickup 
trucks by crashing them into a barrier and recording the repair cost 
in dollars. Six vehicles of each type were tested. The results are 
recorded in the table below. Use one-way analysis of variance to test 
the hypothesis that the average damage to each brand of pickup is 
the same. Use the five percent level of significance. 

Pickup 
Gorilla 

200 
50 

150 
75 

100 
250 

Warrior 
75 

470 
20 

140 
220 
210 

Gladiator 
120 
570 
600 
450 
700 
350 

16. [20] Solve Exercise 15 using the Kruskal-Wallis test. 
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Chapter 9 

Regression and 
Correlation Analysis 

An optimist is someone who believes the future is uncertain. 
Edward Teller 

Never make forecasts; especially about the future. 
Samuel Goldwyn 

9.0 Introduction 
In this chapter we study the relationship between two random variables, 
say X and Y. It is customary to call X the predictor or independent ran­
dom variable and Y the response or dependent random variable. The two 
procedures commonly used to study the relationship between the random 
variables X and Y are regression analysis and correlation analysis. 

The primary measurement used in correlation analysis is the correlation 
(coefficient) of X and Y, written p(X, Y), which we defined in Chapter 2 
by the formula 

p(X,Y) = C 0 v ( * ' y )
1 / 2 , (9.1) 

FK ' (VarpqVartF])1/2 V ' 
provided both variances are nonzero. As we noted in Chapter 2, \p(X, Y)\ < 
1 with equality if and only if P[Y = aX + 6] = 1 for some a and 6. For a 
proof of this result, see Rice [18, pages 125-127]. Thus, p can be used to 
measure the strength of the linear association between X and Y. We will 
find that correlation analysis is a useful tool in linear regression analysis. 

555 
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For regression analysis, a key definition is the curve of regression of Y 
on X, which we defined in Chapter 3 by the equation 

/

oo 
yfY\x(y\x)dy. (9.2) 

-oo 
The curve of regression of Y on X is used to describe the statistical rela­
tionship between X and Y. It is particularly useful when the curve turns 
out to be a straight line. The result of Theorem 3.2.5(c) is that if X and 
Y have a bivariate normal distribution, then the curve of regression of Y 
on X is the straight line 

E[Y\X = x] = lxy\x = liY + ^-{x-l*x), (9.3) 

and for each x,Y = YX is a normal random variable with mean 

E[Yx] = w + /"*(«-/*> (9.4) 
o~x 

and standard deviation 
o~Yz = ay y/l — p 2 . (9.5) 

Similar remarks apply to the curve of regression X on Y. 
When we apply regression analysis to real life situations, of course, we 

do not know the exact parameters of the random variables X and F , so 
we cannot calculate the curve of regression of 7 on X. What is usually 
done is to observe the value of the random variable Y for each of n different 
values of x, say x\,#2, • • • >%n- When the n independent experiments have 
been performed, we have n pairs of numbers (xi, yi), (x2,2/2)1 • • •, (xn, yn)-
We can then plot these n pairs of points to form a scatter diagram. The 
scatter diagram is a useful tool to make an assessment about the possible 
relation between X and Y. A curve can often be fitted to the data to define 
a relationship between the two random variables. The relationship that is 
estimated is 2?[F|X = x] versus x, that is, the regression of Y on X. 

It would seem that curve-fitting might be a better choice of words to 
describe this kind of procedure than regression analysis, but the expression 
is rooted in history. Regression is the word used by Sir Francis Galton to 
describe some anomalies discovered in his pioneering work in predicting the 
heights of children from the heights of their parents. He found that parents 
who were taller than average also had children who were taller than average 
but that their children tended to be shorter than their parents. Galton 
called this phenomenon "regression to mediocrity." The word regression 
has been adopted by statisticians to represent all techniques in which one 
random variable is predicted from the values of another random variable or 
from the values of several other random variables. 
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9.1 Simple Linear Regression 

For this model it is assumed that the curve of regression of Y on X is of 
the form 

E\Y\X = x] = fa + fax for all x, (9.6) 

where 0o and fa are constants, that is, where the curve is a straight line. 
Simple linear regression is applied after the known constants x\, x%,..., xn 

are chosen by the investigator for the values of x at which Y is observed 
to yield the set of pairs (x\, j/i), (x2, yz), ■ ■., (x„,y„). The following addi­
tional mathematical assumptions are made for what is called the standard 
statistical model: 

1. The random variables Y{, z = 1,2,. . . , n are of the form 

Yi = 0o + faxi + e{, i = l,2,...,n. (9.7) 

2. The random variables ei, €2 , . . . , en in (9.7) are errors that create the 
deviations about the linear relationship fio + fax, i = 1,2, . . . , n, 
respectively. The errors are independent and normally distributed 
with 

E[ti] = 0 and Varfc] = a2, i = 1,2,. . . , n. (9.8) 

It follows from these two assumptions that each Yi has a normal distribution 
with 

E[Yi\ = E[Y\X = Xi] = E[0O + fax* + e j = A) + faxi = in, (9.9) 

and 

VarfFi] = Var[Y\X = xt] = Var[A> + fax{ + a] = Var^] = a2. (9.10) 

The random variables Y\,Y2,... ,Yn are mutually independent because of 
the mutual independence of t\, e^,..., en. 

In Table 9.1.1 we show the number of pages and the price of 21 books 
reviewed in the November 1989 issue of Technometrics. (Four additional 
books were reviewed with no price given.) 
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Table 9.1.1. Data for Books Reviewed 
Pages 

264 
427 
273 
546 
328 
296 
63 

Price 

45.00 
45.00 
36.00 
51.00 
59.95 
47.50 
8.75 

Pages 

405 
53 
130 
243 
188 
595 
96 

Price 

45.00 
7.95 

39.95 
39.95 
39.95 
48.64 
9.95 

Pages 

307 
88 
163 
265 
370 
475 
393 

Price 

37.50 
25.00 
45.00 
59.40 
84.25 
55.00 
51.95 

300 
PAGES 

600 

Figure 9.1.1. Scatter diagram for data in Table 9.1.1. 

The scatter diagram for the data in Table 9.1.1 is shown in Figure 9.1.1. 
The data look slightly linear, but it would be difficult to fit a straight line 
to the data by eye. In the next section we will show how we fit the straight 
line to the data using the least squares method. 

9.1.1 Estimation of Parameters 
We must estimate three parameters from the data for the simple linear 
regression model. The three parameters to be estimated are /?o, p\, and 
a2. The first two parameters could be estimated if we could find a straight 
line that fits the observed points [x\, j/i), (22 > V2), ■•■ > (^m Vn) hi the scatter 
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diagram. The most popular method in use is the least squares method, in 
which each of the deviations j/j — po — faxi is squared and added together 
to form the sum of squares 

n 

S[Po, fa] = J > < ~0o- PiXi]2- (9-11) 
i = l 

To apply the method of least squares, we choose the slope, fa, and intercept, 
po, of the straight line to minimize S[po,fa]. The minimizing values are 
designated by po and fa. To find po and fa, we calculate 

| f = - 2 £ > - / ? « - A * * ] , (9-12) 
°0o i=1 

and 
as — = - 2 V Xi[yi -(30- faXi). (9.13) 
dfa ~ 

Setting these partial derivatives equal to zero, we obtain the following equa­
tions for the parameters po and fa. 

n n 

i = l t = l 

and 
n n n 

A j ] n + A j ; * ? = ^ j i j j . (9.15) 
t= l i = l i = l 

Solving for p"0 and p"i, we obtain 

A , (9.16) 

x=l \ t = l / 

and 
0o= V-fax. (9.17) 

An equivalent formula for pi is given by 
n n 

^2(xi - x)(yi - y) Y2(xi - x)vi n 

fa = ^-a = -5=1 = £ ci2/i. (9.18) 
5>-x) 2 S(x,-x)2 i=1 
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Thus, 0\ is a linear combination of the y'^s. We ask you to prove, in Exercise 
2, that (9.18) is equivalent to (9.16). 

A shorthand notation for some of the parameters used in the derivations 
of $o and J3i is widely used (with slight variations). This notation makes 
it much easier to write down some of the formulas. Following Mosteller, 
Fienberg, and Rourke [15], we define 

SSx = Y^(xi - x)2 = ^ x\ - rix2, (9.19) 
t= i »=i 

SSy = £ > - y)2 = £ y? - nf, (9.20) 
t = i t = i 

and 

Sxy = Yi(xi - x)(vi -v) = YlXiVi ~ nx y- (9-21^ 
i = l «=1 

Draper and Smith [6] use the above notation with x and y written 
in capital letters but use Sxx in place of SSx and Syy in place of SSy. 
Montgomery and Peck [14] use the same notation as Draper and Smith 
except that they do not capitalize x and y. 

Using the above notation, we can write (9.18) as 

& = l i = E c ^ ' (9-22) 
t = i 

where __ 

— TST- (923) 

Example 9.1.1 For the data of Table 9.1.1, my HP-42S shows that 
21 21 

] T Xi = 5,968 *jT x2 = 2,180,968 
»=i t= i 

21 21 
5 2 Vi = 882.69 ^ y2 = 43,621.3521 
«=i »=i 

21 
5 2 Wi = 288,500.5 x = 284.190476 y = 42.03286 
*=i 

Sxy = 32,648.391688 and SSx = 484,919.24037. 
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Hence, by (9.22), 
$i = ^ = 0.0776385, (9.24) 

and, by (9.17), 

0o = 42.03286 - 0.0776385 x 284.190476 = 19.9687. 

Hence, the least squares line or sample regression ofY on X is given by 

y = 19.9687 + 0.0776385x, (9.25) 

where x is the number of pages. Thus, a book costs, on the average, 
$19.9687 plus $0.0776 per page. Figure 9.1.2 shows the MINITAB statistics 
for this regression example produced by the MINITAB command REGRESS. 
The first table of these statistics shows that $0 = 19.969 and ft = 0.07764. 
We will explain the other statistics later. Using (9.25) to calculate the es­
timated price for the first edition of the book you are reading, we obtained 
$50.25, although the list price was $39.95. □ 

Most serious pocket calculators (both scientific and business), where se­
rious means a purchase price of about $30 or more, have a built-in facility 
for simple linear regression analysis. Most will provide the slope and inter­
cept of the least squares regression line, as well as the sample correlation 
coefficient, r, that we will discuss below. In addition, intermediate quan­
tities, such as 53 Xi, 5^2/i, $3x*2/«> ]Cx2> c a n De obtained. Many will also 
calculate estimated values for y given x; that is, y = $o + ft a;. It is fright­
fully dull work to calculate these numbers with a four-function calculator. 

It is important when doing simple linear regression to look at the scat­
ter diagram to see whether the data appear to be linear. Anscombe [1] 
has provided four data sets, each containing eleven points, that have iden­
tical least squares lines and identical regression statistics but very different 
scatter diagrams. We show the scatter diagrams in Figures 9.1.3-9.1.6.1 

Clearly, only the first data set has a reasonable straight line fit. The 
second data set looks like a curve such as a parabola would fit the points, but 
a straight line does not. The third data set looks like a straight line with one 
point that popped out—probably an error in the data. The measurement 
for that data point may have been improperly recorded. The last data set 
has all the points on a vertical line except for one unusual point. Linear 
regression is certainly not called for if the unusual point really belongs to 

1 Adapted by permission from Professor Francis J. Anscombe, "Graphs in Statistical 
Analysis," The American Statistician, 27(1), (February 1973), 17-21. 
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The regression equation is 
Price = 20.0 + 0.0776 Pages 

Predictor 
Constant 
Pages 

Coef 
19.969 

0.07764 

Stdev 
6.367 

0.01976 

t-ratio 
3.14 
3.93 

P 
0.005 
0.001 

s = 13.76 R-sq = 44.8*/. 

Analysis of Variance 

R-sq(adj) = 41.9*/, 

SOURCE 
Regression 
Error 
Total 

DF 
1 
19 
20 

SS 
2923.0 
3596.4 
6519.4 

MS 
2923.0 
189.3 

F 
15.44 

P 
0.001 

Unusual Observations 
Obs. Pages Price 
15 370 84.25 

Fit Stdev.Fit Residual St.Resid 
48.69 3.45 35.56 2.67R 

R denotes an obs. with a large st. resid. 

Figure 9.1.2. MINITAB statistics for Example 9.1.1. 

the data set. Although the MINITAB command REGRESS provides almost 
identical statistics for the four data sets, it does issue a warning that there 
is an outlier in Data Set 3. It does the same for Data Set 4. The Anscombe 
data sets are delivered with the MINITAB system. 

Anscombe's first data set. 

15-i 

Anscombe's second data set. 

Figure 9.1.3. Figure 9.1.4. 
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Anscombe's third data set. Anscombe's fourth data set. 

15-i 15-i 

Figure 9.1.5. Figure 9.1.6. 

Although we have provided an algorithm for constructing the least 
squares line, we have not provided any method besides looking at the scat­
ter diagram to judge how well a straight line represents the relationship 
between the random variables X and Y. That is our next objective. 

In Theorem 9.1.1 we provide some useful properties of the estimators 
ft, and ft. 

Theorem 9.1.1 Let ft and ft be the least squares estimators for the sim­
ple linear regression model with the standard statistical assumptions. Then 
ft and ft are normally distributed with the following parameters: 

(a) E0O] = ft 
(b) E[ft] = ft 

(c) Var[ft] = « = 1 

nSSx' 

Finally, each ft is the maximum likelihood estimator of ft and has mini­
mum variance among all unbiased linear estimators of Pi. ( The fact that ft 
has the minimum variance among all unbiased linear estimators is known 
as the Gauss-Markov theorem and does not require the assumption that the 
errors e* 's are normally distributed.) 

Proof By (9.18) we have 

ft = X>yi, (9.26) 
i = l 
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where 
Ci = i = 1 , 2 , . . . , n . 

SSx 
(9.27) 

Hence, $i is a linear combination of the n independent normal random 
variables Y\, F2, • • ■, Yn, so that by Theorem 3.2.4, 0i is normal with mean 

E0i] = 5 3 CiE{Yi\ = 5 3 Ci(/30 + PiXi) 
»=1 i = l 

n n 

= 0Q 5 ^ Cj + /3X 5 3 Cî t = A, (9.28) 
i = l i = l 

because 
n n 

53 Cj = 0 and 53 CiXi = *' 
t= i t= i 

as we ask you to prove in Exercise 3. We calculate 

£(*<-*)2 

Var[/3i] = ^ c^Var^] = -f=i 
« = i ~ \ 2 530^ - x) 

» = i 

rcr = . (9.29) 
SSx 

This proves that p*i is normally distributed and that (b) and (d) are true. 
The remainder of the proof is similar. See Montgomery and Peck [14] for 
the remainder of the proof, except the proof that each p* is the maximum 
likelihood and minimum variance unbiased estimator of /%. These facts are 
proved by Neter et al. [17]. ■ 

Since po and p\ are normally distributed, if we had an estimate of a2 

we could calculate confidence limits for po and fa, as well as perform other 
useful statistical tests. The parameter a2 is a measure of the expected 
vertical spread about the least squares line in the scatter diagram and thus 
a measure of how well this line represents the relation between X and Y. 

The ith predicted {fitted) value, written jfe, is j/< = po + p"iXi (i = 
1,2,. . . , n), and the ith residual is e* = j/j—&. Thus, in the scatter diagram 
the residuals are the vertical distances between the plotted points and the 
least squares line. We define the error sum of squares by 

.-. \2 SSE = 5>,2 = 5 > - & ) (9.30) 
» = i i = l 
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The following theorem gives us the estimate usually used for a2 as well 
as other useful information. 

Theorem 9.1.2 Suppose the hypotheses of Theorem 9.1.1 are true. Then 
the mean square error a2 defined by 

a2 = s2 = *^L = MSE (9.31) 

is an unbiased estimator of a2. The random variable 

(n - 2)MSE 
a2 (9.32) 

has a chi-square distribution with n—2 degrees of freedom so the 100(1—a)% 
confidence interval for a2 is given by 

( n - 2 ) M S E ^ ( n - 2 ) M S E ^ 
Xn-2,a/2 Xn-2,l-a/2 

By Theorem 9.1.1, the estimated variance of $o is given by 
n 

-2 E*? 
4 =^—s2, (9.34) 

00 nSSx 
and the estimated variance of fliis given by 

s 2 
s2, = —. (9.35) 

01 SSx 
Furthermore, each of the normalized random variables 

ft-Pi 
Sa 

, i = 0,1, (9.36) 

has a Student's t distribution with n — 2 degrees of freedom. Hence, the 
100(1 — a)% confidence interval for the intercept 0o is given by 

/30±*„-2,a/2XSg0 , (9.37) 

and the 100(1 — a)% confidence interval for the slope Pi is given by 

Pi±tn_2tQ/2xs0i. (9.38) 

Proof See Montgomery and Peck [14, pages 16-28]. ■ 
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MSE is also called the residual mean square. The number s = \/MSE is 
called the standard error, the standard error of the estimate or the standard 
error of regression and is often written as se. 

The relation (9.36) for i = 1 is used to test the null hypothesis, Ho'. Pi = 
0, against the alternate hypothesis, Hi: pi ^ 0, as a basic measure of the ef­
fectiveness of the regression equation. Failure to reject this null hypothesis 
implies that there is no linear relationship between X and Y. Similarly, us­
ing (9.36) for i = 0 is the basis for the test of Ho: Po = 0 versus H\: Po ¥" 0. 
However, this test is not quite as important in determining the effectiveness 
of the regression study. We present the following algorithms for testing the 
significance of Pi and PQ. 

Algorithm 9.1.1 (Test of significance of the parameter Pi) This algorithm 
will determine at the a level of significance whether to accept or reject the 
null hypothesis, Ho: Pi = 0, against the alternative hypothesis, Hi: Pi ^ 0. 

Step 1 [Calculate the test statistic] Calculate 

t=^-, (9.39) 

using the formulas in Theorem 9.1.2. 

Step 2 [Accept or reject Ho] If 

\t\ > tn-2,a/2i 

reject Ho and accept Hi; otherwise accept HQ. 

Algorithm 9.1.2 (Test of significance of the parameter Po) This algorithm 
will determine at the a level of significance whether to accept or reject the 
null hypothesis, Ho: Po = 0, against the alternative hypothesis, H\: Po ^ 0. 

Step 1 [Calculate the test statistic] Calculate 

t = -^- , (9.40) 

using the formulas in Theorem 9.1.2. 

Step 2 [Accept or reject Ho] If 

\t\ > tn-2,a/2, 

reject Ho and accept Hi; otherwise accept Ho-

Proof The proofs of the two algorithms are immediate from Theorem 
9.1.2. ■ 
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The above algorithms are executed in standard statistical packages such 
as MINITAB and SAS/STAT. For example, the results of the tests are 
given by MINITAB in Figure 9.1.2 for the data of Table 9.1.1. The value 
of \t\ = \$i/s& | is 3.93, given in the column t-ratio and row Pages. Since 
the p-value is 0.001, we can reject the null hypothesis at the 0.1% level. 
Similarly, we can reject the null hypothesis that /3o = 0 in favor of the 
alternative hypothesis that /% ^ 0, at the 0.5% level of significance. 

Example 9.1.2 Consider Example 9.1.1. Let us calculate a 95% con­
fidence interval for a2, /?o, and for (3\. From Figure 9.1.2 we see that 
MSE= 189.3. Hence, (9.33) yields 

109.48 < a2 < 403.828, 

since Xi9,o.o25 = 32.8523268 and Xi9,o.975 = 8.906516. We also see by 
Figure 9.1.2 that s^o = 6.367 and s^ = 0.01976. (In Exercise 4 we ask you 
to verify that these are the values that are yielded by formulas (9.34) and 
(9.35), respectively.) Since <i9,0.25 = 2.0930, by (9.37) the 95% confidence 
interval for /?0 is 19.9687± 13.3261 or 6.6426 to 33.2948. Similarly, by (9.38) 
the 95% confidence for ft is 0.07764 ± 0.04136 or 0.03628-0.1190. □ 

9.1.2 Analysis of Variance in Linear Regression 
In Theorem 9.1.2 we saw that the error sum of squares, SSE, can be used 
to estimate a2 by the formula 

a2 = - ^ = MSE. (9.41) 
n — 2 

SSE can also be interpreted as a measure of how much variation in Y is 
left unexplained by the linear regression model. The total sum of squares, 
SST, is defined by 

n 
S S T ^ G / i - y ) 2 . (9.42) 

t= i 
Note that from the definition of SSy, we have SSj, = SST. The following 
proposition provides some information about the total sum of squares. 

Proposition 9.1.1 The total sum of squares, SST, can be written as 

SST = SSR + SSE, (9.43) 

where 
n 

SSE = 5 > i - y i ) 2 , (9.44) 
t= i 



Furthermore, 

and 

SSR = £(fc-y)a. 
t= i 

SSR = Pi Sxy, 

SSE = SSy — Pi SXy 
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and 
n 

(9.45) 

(9.46) 

(9.47) 

Proof The equation (9.43) follows immediately from the following equa­
tion, which we will prove. 

f > - V? = £ > - V? + £ > - Hi)2- (9-48) 
»=i «=i «=i 

To prove (9.48), we write 

E(yi-y) 2 = it[(vi-y) + (yi-yi)? 

= £>-»)a+x>-&)a 
»=i »=i 

n 

+ 2 £ ( & - F ) ( y i - t t ) . (9-49) 

But 

»=i «=i 
]T(2/t - v)(Vi -Vi) = 5 3 e^Vi ~ y"> 

i = l 
n n 

= 5Zei(/3o + / 9 i x i ) - y ^ e i 

n n n 
= Po^2ei + $iYieiXi-yYiei = 0,(9.50) 

t= i t = i t = i 

because the residuals satisfy the two equations 

5 3 ej = 0 and 5 3 e<x« = °> (9-51) 
t= i «=i 
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as can be seen by setting 

0 = H - = -2 f > - A, - PiXi) = -2 T eu (9.52) 
°Po <=i i=i 

and 
0 = | J = -2 f" Xi[yi - ft, - 0lXi] = -2 V eiXi. (9.53) 

Equation (9.50) substituted into (9.49) yields the proof of (9.48), that 
is equivalent to (9.43). 

In Exercise 5 we ask you to prove that (x, y) is on the regression line so 
that y = J3Q + 0ix. Therefore, we can write 

n 
TT\2 SSR = Y,(yi-y)' 

«=i 
n 

= £ [ / 3 0 + kxi - 0o + fax)? = £[&(*< - *)? 
»=1 t = l 

= ( A ) 2 ^ ( ^ - ^ ) 2 = (/3i)2SSI=/315xy, (9.54) 

« = i 

n 

»=1 t = l 

«=1 

since SIy = /JiSS* by (9.22). This proves (9.46). Formula (9.47) follows 
from (9.46), since SS„ = SST. ■ 

Hogg and Tanis [11, pages 492-493] show the validity of the ANOVA 
table (Table 9.1.2) for simple linear regression. 

Table 9.1.2. ANOVA Table for Simple Linear Regression 

SOURCE DF SS MS F-Value Pr > F 

Regression 1 SSR MSR F p-value 

Error n - 2 SSE MSE 

Total n - 1 SST 

In the table 
MSR = ——, 
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since SSR has only one degree of freedom. The F-value is 

b ~ MSE" ( 9 > 5 5 ) 

The value of F provides the test of the null hypothesis that j3i = 0, against 
the alternative hypothesis that /3i ^ 0. The null hypothesis is rejected if 
F > .Fi,n-2;a> since F has an F-distribution with 1 and n — 2 degrees of 
freedom. This turns out to be equivalent to the t-test that we described 
earlier (Algorithm 9.1.1), since 

(PoY = MSR 
W o / MSE' 

and the square of a Student's t distribution with n — 2 degrees of freedom 
is an F distribution with 1 and n — 2 degrees of freedom. Most computer 
statistical systems provide both tests for the significance of /?i. For example, 
the SAS/STAT procedure REG claims the lvalue of the t-test for the data 
of Table 9.1.1 is 3.93 with a p-value of 0.0009. It gives an F value of 15.422 = 
3.9296312 with a p-value of 0.0009. See Figures 9.1.11-9.1.12. MINITAB 
provides roughly the same numbers in Figure 9.1.2 but with slightly less 
precision. The ANOVA table that is generated by the MINITAB command 
REGRESS for Example 9.1.1 appears in Figure 9.1.2, while that given by 
the SAS/STAT procedure REG appears in Figure 9.1.12. 

9.1.3 Correlation Analysis 
In Chapter 2 we defined the correlation {coefficient) of X and Y, written 
P(X,Y), by 

P(X,Y)= C o v ( * ' F )
1 / 2 , (9.56) 

(VarpqVarfF])1/2 V ' 
provided both variances are nonzero. We mentioned that \p(X,Y)\ < 1 
with equality if and only if P[Y = aX + b] = 1 for some a and b. Thus, the 
correlation coefficient p is a measure of the strength of linear association 
between two variables. A correlation coefficient with absolute value near 
1 does not necessarily mean there is a predictive relationship between the 
two variables. For example, it was once noticed that there was a strong 
correlation between the number of stork nests and the number of babies 
born in English villages. This does not mean, however, that storks bring 
babies or that babies attract storks. The reason for the correlation is that 
both variables are partially determined by the size of a village. A large 
village tends to have lots of stork nests and babies and a small village a 
paucity of both. 
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9.1.3.1 The Coefficient of Determination 
Suppose the least squares line fits the data in the scatter diagram very 
closely. Then 

n 

SSE = Y,(vi - vif = s sy - &Sxy (9-57) 
i = l 

will be small. Since SSR = SST - SSE, this means that SSR will be large. 
The regression sum of squares, SSR, is interpreted as the amount of total 
variation that is explained by the regression model, that is, attributed to an 
approximate linear relationship between Y and X. Hence, the coefficient 
of determination, R2, defined by 

2 _ SSR _ SST - SSE _ SSE 
R ~ SST " SST " * SST' (9'58) 

is the ratio of the explained variation to the total variation. It is clear 
from the definition of R2 that 0 < R2 < 1, and the closer it is to one, the 
better a straight line fits the data in the scatter diagram. It is one when all 
the points in the scatter diagram lie on a straight line, as in Figures 9.1.7-
9-. 1.8. As the symbol suggests, R2 is the square of the sample regression 
coefficient, r, that we will discuss below. For the least squares line of Figure 
9.1.1, R2 = 0.448, while in Figures 9.1.3-9.1.6, R2 = 0.667. An R2 value 
of 0.667 is considered evidence that the values of y can be predicted from 
those of x using the regression line. For scientific or engineering problems, 
however, we like to see R2 values of at least 0.8. The R2 value of 0.448 
in Example 9.1.1 shows that the number of pages is not very useful for 
predicting the price of a book by using the least squares line. 

9.1.3.2 The Sample Coefficient of Correlation 

When we perform a simple linear regression study we do not know the value 
of the population correlation coefficient p(X, Y), so we estimate it by the 
sample correlation coefficient, r, that is defined by 

n 

^ ( x j - x)(yi - y) 

- - i = 1 - S x y (9.59) n » v/fSSxpSy] 

\ i = i » = i 
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Correlation r = +1 . Correlation r = — 1. 

Figure 9.1.7. Figure 9.1.8. 

Correlation r = 0. Correlation r = 0. 
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Kass [12] shows that r can be written as 

X-Y 
r = P\\v\ 

= cos{U,V), 

5 10 15 

Figure 9.1.10. 
20 

(9.60) 

where U and V are the elements of n-dimensional Euclidian space defined 
by U = (ui, «2, • • • , "n) where Ui = x, — x~, and V = (vi, v2,..., vn) where 
Vi = Vi — y, i = 1,2,. . . , n. Thus, r has a geometric interpretation. 

If all the points in the scatter diagram fall on the least squares line, 
then r = 1 if, as in Figure 9.1.7, the slope is positive so that increasing 
values of x correspond to increasing values of y. If all points of the scatter 
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diagram fall on a straight line with negative slope, as in Figure 9.1.8, then 
r = — 1. The sample correlation r for Figures 9.1.9-9.1.10 is zero. The 
points in Figure 9.1.9 fall on the parabola y = (x — 10)2 but certainly not 
on a line. One would expect r to be zero for Figure 9.1.10 because there is 
no way to fit a straight line to the points in a satisfactory way. The least 
squares line, however, is y = 50. 

There is a close relationship between the sample correlation coefficient 
r, and p\. From the relationships 

r = . ^ , (9.61) 
v/[SSx][SSy] 

and 
h = | f , (9.62) 

we conclude that A " (Iff " (9'63) 
Although (9.63) shows that r and 0i are closely related, they measure 
different things. The sample correlation coefficient r measures the degree 
of linear association between Y and X; $i is the estimated slope of the 
regression line, that is, the estimated change in y for a unit change in x. 

We calculate 

r2 = ( j g i ) a S S , = j g i S g , 

= — =R2, (9.64) 
SST 

which shows that the coefficient of determination R2 is the square of r. 

Algorithm 9.1.3 Given two random variables X and Y with sample corre­
lation coefficient r, this algorithm will test at the a level of significance the 
null hypothesis, HQ: p — 0, against the alternative hypothesis, Hi: p ^ 0. 

Step 1 Calculate the test statistic 

to = ̂ # 2 - (9.65) 
y/l-r2 

Step 2 Accept or reject H0 If 

|*o| > tn-2,a/2, 

reject the null hypothesis and accept Hi. 
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Proof Hogg and Craig [10, pages 339-342] show that if the null hypothesis 
is true, then to has a Student's t distribution with n —2 degrees of freedom. 
The proof follows from this fact. ■ 

Snedecor and Cochran [21, Section 10.5] prove that this test is equivalent 
to the <-test we gave in Algorithm 9.1.1. 

Example 9.1.3 The sample correlation coefficient for the data of Table 
9.1.1 is 0.66959. Since n = 21, t0 = 3.92965. Table 5 of Appendix A 
indicates that £19,0.025 = 2.093, so we can reject the null hypothesis at the 
5% level of significance. The p-value of the test is 0.00089971. Hence, 
we can reject the null hypothesis at the 0.09% level of significance. These 
numbers agree with those produced by SAS/STAT in Figure 9.1.11. D 

We exhibit some output produced by several SAS/STAT procedures in ap­
plying simple linear regression to the data of Table 9.1.1. SAS/STAT pro­
vides the same data we obtained from the MINITAB command REGRESS 
and displayed in Figure 9.1.2. SAS/STAT provides slightly more decimal 
digits of precision. (The MINITAB command REGRESS, however, pro­
duced a warning that the point (370,84.25) appeared to be an outlier while 
the SAS/STAT procedure REG produced no such warning.) Figure 9.1.11 
shows part of the output from the SAS/STAT Procedure REG. It pro­
vides the estimates of the parameters /?o and /3i together with the t-tests 
to determine whether they are significant. 

Figure 9.1.12 provides the ANOVA table for Example 9.1.1. Slightly 
more information is provided than the MINITAB ANOVA table shown in 
Figure 9.1.2. 

Price Versus Pages 

Variable DF 
INTERCEP 1 
PAGES 1 

Parameter 
Estimate 
19.968731 
0.077639 

Standard 
Error 

6.36704128 
0.01975708 

T ior HO: 
Parameter'O 

3.136 
3.930 

Prob > |T| 
0.0054 
0.0009 

Figure 9.1.11. SAS/STAT parameter estimates for Example 9.1.1. 
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Dependent Variable: PRICE 

Analysis of Variance 

Source 

Model 
Error 
C Total 

Root 
Dep 
C.V. 

HSE 
Mean 

DF 

1 
19 
20 

13 
42 
32 

Sum of 
Squares 

2922.96646 
3596.40297 
6519.36943 

.75807 R-

Mean 
Square 

2922.96646 
189.28437 

■square 
.03286 Adj R-sq 
.73169 

0, 
0, 

F Value 

15.442 

.4484 

.4193 

Prob>F 

0.0009 

Figure 9.1.12. SAS/STAT ANOVA table for Example 9.1.1. 

Figure 9.1.13 shows the statistics generated by the SAS/STAT proce­
dure CORR. (There is a similar procedure in MINITAB.) It shows that 
r = 0.66959 for Example 9.1.1. It also gives the mean, standard deviation, 
the sum of the values of xi and y*, and the p-value of the test that p = 0. 

CORRELATION ANALYSIS 

Simple Statistics 

Mean Std Dev Sum 

284.19048 155.71115 5968 
42.03286 18.05460 882.69000 

Variable 

PAGES 
PRICE 

Variable 

PAGES 
PRICE 

N 

21 
21 

Simple Statistics 

Minimum 

53.00000 
7.95000 

Maximum 

595.00000 
84.25000 

Price Versus Pages 

CORRELATION ANALYSIS 

Pearson Correlation Coefficients / Prob > IRI under Ho: Rho»0 / N ■ 21 
PAGES PRICE 

PAGES 

PRICE 

1.00000 
0.0 

0.66959 
0.0009 

0.66959 
0.0009 

1.00000 
0.0 

Figure 9.1.13. SAS/STAT correlation analysis for Example 9.1.1. 
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9.1.4 Interval Estimation of Predicted Values 
One of the major reasons for using regression analysis is for estimating 
values of the response variable from the predictor variable. Thus, for a value 
of x, say #o, we estimate the corresponding y value to be j/o = @o + ft^o-
In Example 9.1.1 we were interested in estimating the cost of a book of 390 
pages. The value $50.25 that we calculated is the estimate of the average 
cost of a statistics book of 390 pages. In general, when we fix XQ and 
calculate j / 0 = $o + /?iXo, we are estimating 2?[y|X = xo] = /?o + /?i^o-
Montgomery and Peck [14, pages 29-31] show that the estimator j/o = 
$o + /?iXo f° r ̂ '[yi-X' = xo] is unbiased and has a normal distribution with 
variance 

1 . ( x - x 0 ) 2 1 

- + n SSx 
(9.66) 

They also show that the 100(1 — a) confidence interval for £ [ F | X = XQ] is 

Vo - tn-2,a/2 4/MSE 
1 (X-Xp)2 

SSx n 

< E[Y\X = x0] < yQ + tn-2,a/2 J M S E 1 (X-Xp) 2 

n SSx 
(9.67) 

This confidence interval is narrowest when xo = x, as one would expect. 
Of even greater importance than the estimation of 2?[y|X = xo] is 

the prediction of y when x = xo. Montgomery and Peck[14, pages 31-33] 
show that j/o = $o + z^i^o is also an estimator of j/o- They show that the 
100(1 — a)% prediction interval for the predicted value y0 at x0 is given by 

j/0 - *»-2,o/2 4/MSE 1 1 (X-Xp) 2 

n SSx 

< 2/0 < V0 + tn-2,c*/2 W MSE 

Let us consider an example. 

i + I + (£^a)! 
n SSx 

(9.68) 

Example 9.1.4 Consider Example 9.1.1. Based on a simple linear regres­
sion applied to the data of Table 9.1.1, the average price for a statistics 
book reviewed in Technometrics with 390 pages is $50.25. By (9.67), the 
95% confidence interval for the average price of a 390 page book is $42.59 
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to $57.91 since £19,0.025 = 2.093, SSx= 484,919.24037, x = 284.190476, 
MSE= 189.3 and 

n SSx 

Similarly, the 95% prediction interval for the price of a book of 390 pages 
is $20.44 to $80.05. In Figure 9.1.14 we show the MINITAB command and 
subcommand that will make this calculation for us, assuming that cl is the 
"pages" data of Table 9.1.1 and c2 is the "price" data. We have left out 
several pages of additional output generated by the MINITAB command 
regress. By "95% C. I." MINITAB means the 95% confidence interval for 
the mean of the predicted value and by "95% P. I." MINITAB means the 
95% prediction interval of the predicted value. D 

MTB > regress c2 1 cl; 
SUBC> predict 390. 

Fit Stdev.Fit 95% C.I. 95% P.I. 
- 50.25 3.66 ( 42.59, 57.91) ( 20.44, 80.05) 

Figure 9.1.14. MINITAB output for Example 9.1.3. 

9.1.5 Errors and Diagnostics 
Regression analysis is one of the best developed parts of statistics. There is 
no doubt that if the hypotheses of the standard statistical model are true, 
the theory can yield very good results. Nevertheless, more egregious statis­
tics has probably been perpetuated using linear regression than all the other 
statistical methods put together. We have provided some of the standard 
measures of goodness of fit of the least squares line for the simple linear 
regression model. However, as the MINITAB output for Anscombe's fourth 
data set (the scatter plot is shown in Figure 9.1.6) shown in Figure 9.1.16 
demonstrates, a bad set of data can give good statistics. In fact, the statis­
tics shown in Figure 9.1.16 are almost identical to those for Anscombe's 
first data set, whose scatter diagram appears in Figure 9.1.3. How can one 
doubt a model with R2 = 0.667, s = 1.236, and good numbers in all the 
other right places? Fortunately, MINITAB does provide the diagnostic in 
the last line, that warns the user that the point at (19,12.5) has a large 
influence because of the large value of x. There are really two parts to the 

*«-2,a/2 i/MSE 



578 CHAPTER 9. REGRESSION AND CORRELATION ANALYSIS 

problem of getting good results with regression analysis. The first is deter­
mining whether the hypotheses of the standard statistical model are valid, 
that is, whether X and Y jointly have a bivariate normal distribution. The 
second problem is determining points that are outliers or have unusual in­
fluence. An outlier is a point that doesn't seem to fit in with the remainder 
of the data. A point whose removal causes major changes in the analysis 
is called influential. The two problems are not completely independent, of 
course. Fortunately, diagnostic techniques have been developed and added 
to statistical packages such as MINITAB and SAS/STAT to make it easier 
for practitioners to use regression analysis with more confidence. 

The parameters, such as R2, r, s, and the ANOVA table, do not tell us 
whether the hypotheses of the standard statistical model are valid. The key 
to this problem seems to lie with the analysis of the residuals. Montgomery 
and Peck [14, pages 57-70] show how to analyze the residuals with different 
kinds of plots. The detailed analysis of residuals is beyond the scope of this 
book but is covered in Atkinson [2], Cook and Weisberg [4], and in chapter 
5 of Weisberg [22]. 

MTB > regress c6 1 cS 'resids' 'fits' 
The regression equation is 

Y4 « 3.00 + 0.500 X4 
Predictor Coef Stdev t-ratio p 

Constant 3.002 1.124 2.67 0.026 
X4 0.4999 0.1178 4.24 0.002 
s « 1.236 R-sq « 66.7'/, R-sq(adj) » 63.0'/. 
Analysis of Variance 
SOURCE DF SS MS F p 

Regression 1 27.490 27.490 18.00 0.002 
Error 9 13.742 1.527 
Total 10 41.232 
Unusual Observations 
Obs. X4 Y4 Fit Stdev.Fit Residual St.Resid 
8 19.0 12.500 12.500 1.236 0.000 * X 

X denotes an obs. whose X value gives it large influence. 
MTB > note The above was Anscombe's fourth data set. 

Figure 9.1.16. MINITAB output for fourth Anscombe data set. 

The second problem is more tractable and most statistical packages provide 
help. We will follow Hoaglin [9] in developing some of the concepts. Hoaglin 
shows that we can write the fitted y values, &, in the form 

n 

yi = ^2,hijVj * = l ,2 , . . . ,n , (9.69) 
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where h^ indicates how changing yj affects j/i and is defined by 
1 (Xj - x)(Xj - X) 

hij = - + — J- . (9.70) 
X>*-*)2 ~\2 

fc=l 

The number hij shows how changing yj affects &. The symmetric nxn ma­
trix H = (h^) is called the hat matrix because it takes the vector of observed 
y-values (j/i, 2/2, • • • > Vn)T into the vector of fitted y-values (j/i, j/2, • • •, Vn)T• 
Usually, we are concerned with the observed and fitted y-values at the same 
data point. In linear regression, the leverage of observation i is ha, the cor­
responding diagonal element of the hat matrix. For the simple regression 
line, 

fc« = U !Xi~W)2 • (9.71) 

The hat matrix and its diagonal elements have the following basic proper­
ties: 

1. H is a projection matrix, that is, H2 = H. 

2. 0 < ha. 

3. In simple linear regression, 53"=1 »̂« = 2 (unless all the Xj are equal), 
so the average size of an ha is 2/n. 

4. If ha = 0 or ha = 1, then h^ = 0 for all j ^ i. 
The extreme cases ha = 0 and ha = 1 can be interpreted as follows. If 
ha = 0, then j/j = 0; it is not affected by y. or any other yj. An example 
of this phenomenon occurs with x = 0 when fitting a straight line through 
the origin. If ha = 1, then yi = j/<, and the regression model always fits 
this data point exactly. 

Equation (9.71) shows that for simple linear regression, the observations 
farthest from x are the ones that have the highest leverage. Thus, in Figure 
9.1.6, the rightmost point has high leverage. Sure enough, as previously 
noted, in Figure 9.1.16 we see that MINITAB says "X denotes an obs. 
whose X value gives it large influence" about this point. 

It is customary to use hi in place of ha to simplify the notation. Then 
each residual e< has the standard deviation o\/\ — hi, that is estimated 
by av^l — hi. Dividing e< by its estimated standard deviation yields the 
standardized residual 
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MINITAB and other statistical systems use the standardized residuals to 
identify outliers. Thus, in Figure 9.1.2, MINITAB identifies the point 
(370,84.25) as being one with a large standardized residual value of 2.67. 
MINITAB identifies every data point with a standardized residual greater 
than 2. Many statisticians use the rule of thumb that any observation with 
\yi — J/t| > 3se should be considered an outlier. 

One key technique in evaluating the influence of an observation is to 
delete the observation from the regression analysis and see how various 
results change. To denote a quantity calculated from the data without 
observation i it is customary to append (i) which is read as not i or i 
omitted. Thus, yi(i) is the predicted y-value at Xj when the regression is 
fitted to the data without observation i. The measure most commonly used 
to measure the influence of observation i on the fitted value & is DFITS*, 
defined to be the result of dividing the difference of & and y~i(i) by an 
estimate of the standard error of jfc. Hoaglin [9] derives the formula 

DFITS* = ^ki6i . (9.73) 
3(0(1 -In) 

The MINITAB command REGRESS has a subcommand that will calculate 
DFITS. 

Another measure used to detect outliers is the studentized residual de­
fined by 

e* = %=■ (9-74) 
s(i)y/l — hi 

The MINITAB command REGRESS has a subcommand that will generate 
the studentized residuals. Hoaglin shows that the following relation holds 
between DFITS and the studentized residual e\: 

( h \ 1 / 2 

DFITS* = ( - ^ — J e*. (9.75) 

Hoaglin uses a real data set showing the number of employees and the cost 
of public affairs for 12 U.S. government agencies to demonstrate the use 
of regression diagnostics. We provide a demonstration in Table 9.1.3, that 
displays the fitted value j / * , the standard residual, DFITSj, and the studen­
tized residual e\ for each Xi in Anscombe's third data set, whose graph is 
shown in Figure 9.1.5. The point (13.0,12.74) is clearly an outlier. The val­
ues in Table 9.1.4 were created using the MINITAB command REGRESS 
with subcommands DFITS and TRESIDUAL. 
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Table 9.1.3. Anscombe's Third Data Set 
Xi 

10 
8 
13 
9 
11 
14 
6 
4 
12 
7 
5 

Vi 
7.99973 
7.00027 
9.49891 
7.50000 
8.49945 
9.99864 
6.00082 
5.00136 
8.99918 
6.50055 
5.50109 

Std. Res. 
-0.46018 
-0.19633 
2.99999 
-0.33085 
-0.59695 
-1.13497 
0.07042 
0.38070 
-0.75518 
-0.06974 
0.21188 

DFITSi 
-0.146 
-0.062 

676.904 
-0.099 
-0.219 
-0.790 
0.030 
0.247 
-0.336 
-0.025 
0.111 

< 
-0.44 
-0.19 

1216.69 
-0.31 
-0.57 
-1.16 
0.07 
0.36 
-0.74 
-0.07 
0.20 

9.1.6 Regression through the Origin 
In some cases the nature of the random variables means that we would 
expect that Y = 0 when X = 0 so that the curve of regression of Y on X 
must go through the origin. Then, if the curve of regression of Y on X is 
linear, 

Y = piX + e, (9.76) 
where e is 7V(0, a2). (We are assuming the standard statistical model.) 
Montgomery and Peck [14, pages 38-43] show that 

n 

h = " ^ • 0-77) 

They also show that the residual mean square is given by 

a2 = — = MSE. (9.78) 
n — 1 

The MINITAB command REGRESS has a subcommand NOCONSTANT 
that calculates the regression line that goes through the origin. Similarly, 
the SAS/STAT procedure REG has an option NOINT that suppresses the 
intercept term. 

Example 9.1.5 Andy Allright, Lead Performance Wizard at Big Britches, 
is studying a computer system dedicated to batch processing. He discov­
ers that there are two random variables associated with each job: X, the 
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number of disk I/O operations, and Y, the CPU time per job. He wants to 
predict Y from X. He made the measurements in Table 9.1.4 and decides to 
build a simple regression line through the origin with X the number of disk 
I/O operations, measured in thousands, and Y the CPU time, measured in 
seconds. Figure 9.1.17 shows the MINITAB commands and output for the 
model. The regression line is thus y = 14.2575 a;, where y is CPU seconds 
and x is the number of I/O operations in thousands for the job. Thus, 
a job that requires 1,000 I/O operations will require 14.2575 seconds of 
CPU time, according to the model. MINITAB does not provide R2 for this 
model, because it is difficult to interpret for a regression line through the 
origin. However, the t-ratio of 71.44 for fri shown in the first table indicates 
that Andy has a good fit. The ANOVA table also indicates a good fit. Just 
to be on the safe side, however, Andy runs MINITAB with no subcommand, 
thus allowing a constant term. This shows a great fit, too! The R2 value is 
0.982 and the standard error of regression s = 3.201, that is smaller than 
that for the through-the-origin line. However, the lvalue for the constant 
term is only 1.15 with a p-value of 0.283, so the null hypothesis that /% = 0 
cannot be rejected. The through-the-origin line appears to be the best. We 
show the scatter diagram with both regression curves in Figure 9.1.18. It 
is clear from the scatter diagram that both lines provide a good fit to the 
data. □ 

Table 9.1.4. Big Britches Data 

Disk I/O Ops. CPU Time Disk I/O Ops. CPU Time 
(Thousands) 

X 

4.2 
5.3 
3.6 
4.1 
3.1 

Seconds 
y 

58.3 
72.6 
55.0 
61.7 
48.9 

(Th ousands) 
X 

6.7 
7.1 
2.7 
5.2 
7.2 

Seconds 
y 

95.3 
99.9 
35.2 
78.3 
99.8 
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MTB > regress c2 1 cl 'reside' 'fits'; 
SUBO NOCONSTANT. 

The regression equation is 
CPU » 14.3 {\it 1/0} 

Predictor 
NOCONSTANT 
I/O 

s - 3.258 
Analysis of 

SOURCE 
Regression 
Error 
Total 

Coef 

14.2575 

Variance 

DF 
1 
9 
10 

Stdev 

0.1996 

SS 
54189 

96 
54285 

t-ratio p 

71.44 0.000 

MS F p 
54189 5104.36 0.000 

11 

Figure 9.1.17. MINITAB solution to Example 9.1.5. 

MTB > regress c2 1 cl 

The regression equation is 
CPU » 3.84 + 13.5 1/0 

Predictor 
Constant 
1/0 

Coef 
3.840 

13.5487 

Stdev 
3.338 
0.6465 

t-ratio 
1.15 

20.96 

P 
0.283 
0.000 

s » 3.201 R-sq « 98.2% 

Analysis of Variance 

R-sq(adj) = 98.0% 

SOURCE 
Regression 
Error 
Total 

DF 
1 
8 
9 

SS, 
4500.3 

82.0 
4582.3 

MS 
4500.3 

10.2 

F 
439.15 

P 
0.000 

Figure 9.1.18. MINITAB solution with constant term. 
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Figure 9.1.19. Curves for Example 9.1.5. 

9.2 Nonlinear Regression 

So far we have considered only the case where the curve of regression of Y on 
X is linear, that is, where 2?[y|X = x] = /30 + /?ix. In this section we shall 
consider cases in which the regression curve is nonlinear but for which the 
methods of Section 9.1 can be applied, by applying a transformation to the 
sample data to "straighten out the curve." We shall consider polynomial 
regression, where i£[y|.Y = x] = #o + fax + fi%x2 H 1- /?fcxfe, as part of 
the section on multiple linear regression. 

9.2.1 Regression with Transformed Variables 

Often a nonlinear model relating Y to X can be transformed on X or Y 
(or both), such that the transformed random variable Y' can be written as 

y ' = A) + /M" . (9.79) 

In Table 9.2.1 we show some of the common transformations that are used 
to obtain a relation of the form (9.79). 
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Table 9.2.1. Useful Transformations 
Original Linear 
Relationship Transformation Relationship 

(a)K = /30 + | - X' = ± Y' = 0o + 0iX' 

(b)- = 0o + faX Y' = - Y' = (3o + PiX 

( c ) p = /9b + | X' = ±, r = i Y' = fh + (hX' 

(d) Y = ae0x Y' = \n(Y) Y' = ln(a) + 0X 

{e)Y = ax0 y ' = ln(Y), X' = ln(X) K ' = ln(a) + jSX' 

(f)y = a + /31n(JT) X ' = ln(X) y = a + /9X' 

The major advantage of making one of transformations in Table 9.2.1 is 
that the normal equations of the simple linear regression model can be 
used to estimate the two parameters of the transformed equations. Thus, 
standard statistical packages, such as MINITAB and SAS/STAT, can be 
used to calculate the estimates. The least squares method can be used with 
the untransformed data to calculate the parameters of a nonlinear curve fit 
to the data, assuming one can decide what curve to use, but the calculations 
tend to be very difficult. 

Table 9.2.2 
Miles Driven 
(Thousands) 

X 

5 
10 
15 
25 
35 
45 
55 

!. Tire Wear Data 
Percentage 

Usable 
y 

82.5 
65.6 
55.0 
35.5 
24.6 
15.2 
10.9 

Hv) 
4.41280 
4.18358 
4.00733 
3.56953 
3.20275 
2.72130 
2.38876 
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Exponential data set. Transformed data set. 

lOO-i 
80-
60-
40 
20 
0 

0 
—r 
15 30 

Figure 9.2.1. 

i 
45 60 

Figure 9.2.2. 

Example 9.2.1 The relationship described by transformation (d) in Table 
9.2.1 is called an exponential curve (not to be confused with the exponential 
distribution). We illustrate the least squares curve fit of exponential data 
by the data in Table 9.2.2, that was produced by making tests on Turbo 
Tire premium tires. The second column describes the percentage of tires 
that still can be used after being driven the number of miles shown in 
column one. For example, the first row shows that after 5000 miles, 82.5% 
of the tires can still be used; 17.5% of them have failed. We apply the 
transformations to y specified in Table 9.2.1 by taking the natural logarithm 
of y to get the value in column 3 of Table 9.2.2. We use the MINITAB 
REGRESS command to find that the least squares line for the transformed 
data is y' = 4.60606 - 0.040823 x. The linear fit is excellent with R2 = 
99.9%. Since ln(a) = 4.60606, our estimate of a is exp(4.60606) = 100.089, 
and our estimate of /? is -0.040823. Hence, our final equation for y is 
y = 100.089 exp(—0.040823 x). The scatter plot of the original observations 
is displayed in Figure 9.2.1; the scatter plot of the of the transformed data is 
shown in Figure 9.2.2. My HP-42S has an exponential curve fitting routine, 
that yields y = 100.0890269exp(-0.040823031x). D 

You may have the following cosmic questions in mind: 

1. I can often see from the scatter diagram of the original observations 
that the curve of regression should be a curve rather than a straight 
line, but how do I decide what curve might fit? That is, how do I 
decide which of the transformations in Table 9.2.2 to use? 

2. If I successfully transform the data and get a linear fit, how do I 
calculate confidence intervals on the resulting parameters and on the 
estimates of y values? 
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There are several answers to the first question. In some cases one knows 
from physical considerations that the form of the relationship between y 
and x is exponential, or one of the other forms in Table 9.2.1 but the values 
of the parameters are not known. Applying the transformation and fitting 
a straight line using simple linear regression will yield an estimate of the pa­
rameters, as we saw in Example 9.2.1. In other cases we don't know which 
transformation will be successful. However, by using a statistical package 
such as MINITAB or SAS/STAT, we can apply test transformations and 
make scatter diagrams until we find one that looks approximately linear. 
Ryan et al. [19, pages 254-257] provide some helpful examples of this tech­
nique. We recommend that you use the MINITAB command GPLOT (a 
high resolution plotting routine) rather than the ordinary plotting com­
mand PLOT. PLOT, like the SAS/STAT procedure of the same name, has 
a rather low resolution, so the plot of points on an actual straight line may 
not look like a straight line. When using SAS for this type of plot, it is bet­
ter to use the high resolution routines in the SAS package SAS/GRAPH, 
although this package requires a large amount of hard disk space. 

In earlier days, engineers plotted the scatter diagram on graph paper 
with special scaling such as semilog paper that has logarithmic scaling on 
one axis, or log-log paper, that has logarithmic scaling on both axes. Using 
this method, if the points fall on a straight line, the form of the relationship 
between y and x is clear. For example, if semilog paper is used and a linear 
relationship is apparent, then transformation (d) of Table 9.2.1 should be 
used. Similarly, if log-log paper is used, a linear relationship in the plot 
would indicate that transformation (e) should be used. If none of the 
transformations in Table 9.2.1 are effective, it may be necessary to use 
polynomial curve fitting, the subject of a later section. 

The answer to the second question is that unless some special hypotheses 
are true, one cannot make such predictions with much certainty. There are 
some special cases in which this can be done, but the assumptions are rather 
stringent. Some statisticians make interval estimates on the transformed 
data if the transformed error e' appears to be normally distributed. Tests 
must be performed on the residuals to see if this is a reasonable assump­
tion. Draper and Smith [6, Chapter 5] discuss regression with transformed 
variables in great depth. 

Lives of great men all remind us 
We can make our lives sublime. 
And, departing, leave behind us 
Footprints on the sands of time. 

Henry Wadsworth Longfellow 
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9.3 Multiple Linear Regression 
For this model it is assumed that the curve of regression of Y on X = 
(Xi, X2,..., Xk) is of the form 

E[Y\X = (x i ,x 2 , ■ ■ ■,xk)] = Pa + j9ixi + p2x2 + • • • + PkXh + e*. (9.80) 

for all (11,12 >... ,Xk), where Po,Pi, • • ■ ,Pk are constants. 
This model is called the multiple linear regression model with k explana­

tory variables (or regressors) x\, x2,..., Xk-
The data in multiple linear regression consist of n (k + l)-tuples of the 

form (xu, X2i, • • •, Xki, Vi), i = 1,2,. . . , n, where the Xji values are assumed 
to be known without error, but the yi values are values of random variables. 

The following additional mathematical assumptions are made for what 
is called the standard statistical model: 

1. The random variables Yi, i = 1,2,. . . , n are of the form 

Yi = 0o + PiXu + l32X2i + --- + PkXki+ei, i = l , 2 . . . , n . (9.81) 

2. The random variables ei ,€2, . . . ,e„ in (9.81) are errors that create the 
deviations about the linear relationship 

0o + PiXu + p2Xii + --- + 0kXki, (9-82) 

for i = 1,2,. . . , n, respectively. The errors are independent and nor­
mally distributed with 

E[ti\ = 0 and Var[€j] = a2, i = l,2,...,n. (9.83) 

It follows from these assumptions that each Yi has a normal distribution 
with 

E[Yi] = E[Y\X = (xli,x2i,...,xki)} 
= E[/3Q + PlXu + 02X2i + •■■ + PkXki + €i] 

= 0o + Ihxu + 02X2i + ■ ■ ■ + PkXki (9-84) 

and 

Var[yj] = Var[Y|X = (xu, x 2 i , . . . , xki)] 
= Var[^0 + Pixu + Pix2i H + 0kxki + e<] 
= Var[ei]=<r2. (9.85) 

The random variables Yi,Y2,... ,Yn are mutually independent because of 
the mutual independence of ei, e2, ■ ■ ■, en-
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9.3.1 Estimation of Parameters 

Just as we did for simple linear regression, we fit the multiple regression 
model (9.80) by the method of least squares. To do this we minimize 

S[Po, Pi,P2,---, Pk] = £ ( » * ~Po~ 0i*ii ~ 02X2i PiXki)2- (9.86) 
i - l 

To do this we set to zero the k + 1 partial derivatives 

— = - 2 Y)[Vi -00- Plxli 0kXki], 
d0o £f 
— - = -2Y\\yi - 0o ~ 0ixu pkxki](xji), j = l,2,...,k, 
d0i i=i 

to obtain the k + 1 normal equations 

n n n n 

J30n + Pi ^2 xu + P2 Y^ x* + •- ■ + 0k YlXki = YlVi 
«=1 i = l t = l i = l 

n n n n n 

00 Y2xu+& 5Z x « + 0 2 Y 2 x u X 2 i +' ■ ■+P* YlxuXki = ]C X u y " 
t = l t = l *=1 i = l i = l 

n n n t» n 

00 ^2 X2i + &1 5Z X2iXU + ^2 H X2i + • • • + 0k ^2 X2iXki = $ZX2iJ/i ' 
i = l i = l »=1 i = l »=1 

00 5Z Xfc» + & Y2 X*«X1« + 02 Y2 Xk*X2i + " ' + 0k Y2 Xki = Y2XkiVi-
«=1 t = l i=l i = l t = l 

We solve the above normal equations to obtain the least squares estimates 
0o, Pi, 02, ■ ■ • , Pk of the parameters PQ, PI, PI, • ■ ■, Pk- For the standard 
statistical model, these estimates are also the maximum likelihood estimates 
of the parameters. Unfortunately, when A: > 2 we no longer have simple 
formulas for the estimates. Fortunately, we can turn the computation over 
to a personal computer statistical system, such as MINITAB, SAS/STAT, 
or EXPLORE. 
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Diameter 
8.3 
8.8 
10.7 
11.0 
11.1 
11.3 
11.4 
12.0 
12.9 
13.7 
14.0 
14.5 
16.3 
17.5 
18.0 
20.6 

Height 
70 
63 
81 
66 
80 
79 
76 
75 
85 
71 
78 
74 
77 
82 
80 
87 

Table 9.3.1. 
Volume 

10.3 
10.2 
18.8 
15.6 
22.6 
24.2 
21.4 
19.1 
33.8 
25.7 
34.5 
36.3 
42.6 
55.7 
51.5 
77.0 

Tree Data 
Diameter 

8.6 
10.5 
10.8 
11.0 
11.2 
11.4 
11.7 
12.9 
13.3 
13.8 
14.2 
16.0 
17.3 
17.9 
18.0 

Height 
65 
72 
83 
75 
75 
76 
69 
74 
86 
64 
80 
72 
81 
80 
80 

Volume 
10.3 
16.4 
19.7 
18.2 
19.9 
21.0 
21.3 
22.2 
27.4 
24.9 
31.7 
38.3 
55.4 
58.3 
51.0 

Let us consider an example. 

Example 9.3.1 The data in Table 9.3.1 have been collected for 31 trees 
at Loggers Lumber. The analysts at Loggers feel that the trees are rep­
resentative of the trees of interest and want a simple formula to calculate 
the volume of a tree from the diameter and height. Suppose they try Unear 
regression. Let Xi be the diameter of a tree, X2 the height of a tree, and 
Y the volume. Then the normal equations become 

n n n 

A>« + $1 53 x « + ^2 53 x2i = 53 Vi 
t = l t = l t = l 

n n n n 

A)53 I"+^ 1$3 x«+^ 253 x" a ; 2 i = 53XliJ/i 
i = l «=1 t = l t = l 

n n n n 

$0 53 X2i + 01 ^ XuX2i + $2 53 Xli = 53X 2 i 2 / i 

i = l «=1 i = l «=1 

If we substitute the values of the sums in the above normal equations (Math-
ematica made it easy to calculate the sums), we obtain the following set of 
three simultaneous equations: 

31A) + 410.7/?i + 2356/?2 = 935.3 
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410.7A, + 5736.55ft + 31524.7ft = 13887.9 
2356ft + 31524.7ft + 180274ft = 72962.6 

The Mathematica Solve function yields the solution: 

ft = -57.9865 ft = 4.70835 ft = 0.339204. 

The MINITAB solution is shown in Figure 9.3.1. The fit of the linear 
regression appears to be excellent, except for the tree with diameter 20.6 
which appears to be an outlier. D 

MTB > regress c3 2 cl c2 

The regression equation is 
VOLUME - - 58.0 + 4.71 DIAMETER + 0.339 HEIGHT 

Predictor 
Constant 
DIAMETER 
HEIGHT 

Coef 
-57.988 
4.7082 
0.3393 

Stdev 
8.638 
0.2643 
0.1302 

t-ratio 
-6.71 
17.82 
2.61 

P 
0.000 
0.000 
0.014 

s » 3.882 R-sq ■ 94.87. R-sq(adj) » 94.4% 

Analysis of Variance 

SOURCE 
Regression 
Error 
Total 

SOURCE 
DIAMETER 
HEIGHT 

DF 
2 
28 
30 

DF 
1 
1 

SS MS 
7684.2 3842.1 254 
421.9 
8106.1 

SEQ SS 
7581.8 
102.4 

Unusual Observations 
Obs.DIAMETER 
31 20. .6 

VOLUME 
77.000 68 

15.1 

Fit Stdev 
.515 1 

F 
.97 

.Fit 

.850 

P 
0.000 

Residual 
8.485 

St.Resid 
2.49R 

R denotes an obs. with a large st. resid. 

Figure 9.3.1. MINITAB output for Example 9.3.1. 

You may be thinking, "What's this nonsense? Don't you remember the 
formula we learned in grade school that the volume of a cylinder is given by 
itr2h, where r is the radius and h the length?" However, if this formula is 
applied to the data in Table 9.3.1, the calculated volume is 2.5-3 times too 
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large. Trees are not shaped like a cylinder but taper from the bottom to the 
top. The data on the trees we give in Table 9.3.1 can be found on page 329 
of Ryan et al. [19]. The data set is an actual sample of black cherry trees in 
Allegheny National Forest, Pennsylvania. The tree data were obtained from 
the book Forest Mensuration by H. Arthur Meyer, Penns Valley Publishers, 
State College, Pennsylvania, 1953. It appears in the MINITAB worksheet 
TREES and can be accessed by the MINITAB command RETRIEVE. In 
Table 9.3.1 the diameter of a tree is given in inches, the height in feet, 
and the volume in cubic feet. The diameter is measured 4.5 feet above 
the ground. The true volume of a tree is obtained by cutting the tree 
down, submerging it in a tank of water, and measuring the amount of water 
displaced, according to Archimedes' principle. Mosteller, Fienberg, and 
Rourke [14, Example 7, pages 392-395] discuss the problem of estimating 
the volume of a tree from the diameter and height. They point out that the 
volume of a cone, that is one-third the volume of a cylinder, might be more 
appropriate. They show how to use the nonlinear estimator V = Cr2h. 
They linearize it by using linear regression on y = ln(V). The result is very 
sensitive to the data. It appears that the linear relationship we developed 
in Example 9.3.1 would work well for the purpose of estimating the total 
volume of lumber in a tract. 

9.3.2 Analysis of Variance for Multiple Regression 
Most of the procedures that we use in multiple linear regression are simple 
extensions of those used in simple linear regression analysis. We test the 
usefulness of the multiple regression equation as a predictor by construct­
ing an analysis of variance table and performing an F test. We can also 
determine confidence and prediction intervals, but the equations are much 
more complex and require a computer for implementation. 

We can partition the total sum of squares (SST) of the response variable 
into the sum of squares due to regression (SSR) and the sum of squares due 
to error (SSE); that is, 

SST = SSR + SSE. 

Just as with simple linear regression, we have SST = £)(j/ — y)2, SSR = 
H(y — F)2 ' anc* SSE = ^2(y — y)2. In simple linear regression there are 
two population parameters, /?o and /3i, so SSE has n — 2 degrees of free­
dom. For multiple linear regression there are k + 1 population param­
eters, /?o,/3i,-.,/3fc, so SSE has n - (k + 1) degrees of freedom. Simi­
larly, SSR has k degrees of freedom rather than 1. Then SST must have 
n — (k + 1) + k = n — 1 degrees of freedom. Statistical packages, such 
as SAS/STAT and MINITAB, present the analysis of variance results in a 
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table like Table 9.3.2. For this table we have 

M S R = ^ , 
k 

and 
MSE S S E 

n — k — 1 

Table 9.3.2. ANOVA Table for Multiple Linear Regression 

SOURCE DF SS MS F-Value Pr > F 

Regression k SSR MSR F p-value 

Error n-k-1 SSE MSE 

Total n -1 SST 

Just as for simple linear regression, the F-value is given by 

MSR 
~ MSE' 

The value of F provides the test of the null hypotheses that fii = /?2 = 
• • • Pk = 0, against the alternative hypothesis that at least one /% is not 
zero. If the null hypothesis is true, then changes in predictor variables 
have no effect on the response variable. Thus, if the null hypothesis is 
true, the regression equation has no value. Since F has an F-distribution 
with k and n — k — 1 degrees of freedom, the null hypothesis is rejected 
if F > Fk,n-k-i,a- MINITAB and SAS/STAT provide the p-value of the 
test, that is, the probability that, if the null hypothesis is true, a value of 
F larger than that actually observed will occur. Thus, the p-value is given 
by 

p-value = P[Fktn-k_! > F}. • 

If the p-value is small, the null hypothesis can be rejected. In Table 9.3.1 
MINITAB indicates that the p-value is zero. My HP-21S indicates that the 
p-value actually is 1.0712 x 10"18 , which is rather small. 
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Just as for the simple linear regression case, MSE is the unbiased es­
timator of a2 usually used, and se = \/MSE is the standard error of the 
estimate. 

We define the coefficient of multiple determination, R2, by the formula 

R2 = 
SSR 
SST 

= 1 -
SSE 
SST' 

Just as in the simple linear regression case it measures how much of the 
observed variation is due to the regression equation. We have 0 < R2 < 1. 
If R2 is close to one, the regression model is a good predictor while if it 
is near zero the regression model is a poor predictor. Figure 9.3.1 shows 
that R2 = 0.948 for Example 9.3.1. MINITAB and SAS/STAT provide the 
adjusted R2 value, R2, as well as R2 in their regression procedures. R2 is 
denned by 

SSE/(n - k-1) 
Ri = i- SST/(n - 1) 

(9.87) 

It can be shown that 

R-l < R2-
Some statisticians feel that the adjusted value is a better indicator of the 
success of the regression model than R2. 

The F value from the analysis of variance table and R2 are related by 
the simple formula 

>2 / i. _ 
1 (9.88) 

R2 (n-k-l\ 
~1-R2{ k ) 

9.3.3 Inferences in Multiple Regression 
Most books on linear regression put everything into matrix notation. We 
won't bother to do that, here, but it will be convenient to state a few results 
in terms of the matrix C = (X'X)~l, where X is the n by k + 1 matrix 
given by 

1 i n a;i2 ••• zifc 
1 #21 X22 • • • X2k 

X = 
1 ^n l %n2 •Ef»k 

(9.89) 

and X' is the transpose of X obtained by interchanging the rows and 
columns to form a k + 1 by n matrix. Thus, C i s a f c + l by fc + l square 
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matrix that is written as 

C = 

Coo Coi C02 • • • Cok 
Cio C\i C\2 • • ■ Cik 

(9.90) 

Cfco Cfci Cfc2 • • ■ Cfcfc 

to make it easier to state some of the results of the following theorem: 

Theorem 9.3.1 Let fa, fa, fa, • ■•, $k be the least squares estimators of 
the parameters fat, fa, fa, •■■, 0k for the multiple linear regression model 
with the standard statistical assumptions. Then each of the fa is normally 
distributed with mean fa and variance cr2Cu, where Cu is the ith diagonal 
element of the matrix C = (X'X)~X. Furthermore, each of the normalized 
random variables 

fa-fa 
VMSECi i ' 

i = 0, l,...,k (9.91) 

has a Student's t distribution with n — (k + 1) degrees of freedom. Hence, 
the 100(1 — a)% confidence interval for fa is given by 

k ±*n_fc_i,Q/2 x VMSE CU, i = 0 , l , . . . , fc . (9.92) 

Finally, each 0i is the maximum likelihood estimator of A and has mini­
mum variance among all unbiased linear estimators of fa. ( The fact that fa 
has the minimum variance among all unbiased linear estimators is known 
as the Gauss-Markov theorem and does not require the assumption that the 
errors, u, are normally distributed.) 

Proof See Montgomery and Peck [14, Chapter 4] for the proof of every­
thing except the proof that each fa is the maximum likelihood and minimum 
variance unbiased estimator of fa, which is proved by Neter et al. [17]. ■ 

The quantity 
«A = y/MSECii (9.93) 

is called the standard error of the regression coefficient fa. Although we 
could use the formula (9.93) to compute the standard error, for multiple 
linear regression we would use a statistical system such as MINITAB or 
SAS/STAT to make the calculation for us because of the labor involved 
in hand calculation. Once we find by the F test or by the value of R2 

that there appears to be a significant regression relationship, we will want 
to assess the significance of the individual regression coefficients fa. The 
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above theorem shows that each 0i is an unbiased estimator of 0i and that 
($i—f3i)/sp, has a Student's t distribution with n—k — 1 degrees of freedom. 
Hence, we can calculate confidence intervals for the 0i and test hypotheses 
concerning their values. To test the significance of an individual regression 
coefficient, we test Ho: 0i = 0 versus Hi: 0i ^ 0. For this test we use the 
i-ratio, t&. = 0i/s&. If \t&] > tn-k-i,a/2i w e reject the null hypothesis 
and accept Hi. The t-ratios and p-values of the tests are given by the 
MINITAB command REGRESS and by the SAS/STAT procedure REG. 
Thus, in Table 9.3.1 we see that the p-values for the constant term and the 
coefficient of DIAMETER are zero while the p-value for the coefficient of 
HEIGHT is 0.014. 

Example 9.3.2 Consider the regression equation 

VOLUME = -57.988 + 4.7082 DIAMETER + 0.3393 HEIGHT, (9.94) 

which was developed in Example 9.3.1. Let us construct a 95% confidence 
interval for 0U the coefficient of DIAMETER in (9.94). From the MINITAB 
output in Figure 9.3.1, we see that sa = 0.2643. Since tz has a Student's t 
distribution with 31 — 2 — 1 = 28 degrees of freedom and £28,0.025 = 2.0484, 
the 95% confidence interval for 0i is given by 

Pi ± *28,o.o25S& or 4.1668 <0i< 5.2496. D 

Table 9.3.3. 
Xi 

0.9 
1.2 
1.5 
1.7 
2.1 
2.4 

x2 
10 
13 
14 
16 
17 
21 

y 
35 
40 
45 
46 
50 
65 

Example 9.3.3 Harry Hewdy of Kashmir Kravits decides to use multiple 
linear regression with the data in Table 9.3.3 to predict y from xi and x^. 
He constructed the matrix X described by equation (9.89) as 

10 \ 
13 
14 
16 ' 
17 
21 j 

I 1 0.9 
1 1.2 
1 1.5 
1 1.7 
1 2.1 

V 1 2.4 
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Using Mathematica he calculated the matrix C to be 

8.30389 8.65537 -1.46864 
C= | 8.65537 15.3208 -2.22062 

-1.46864 -2.22062 0.335977 

He found that using s = VMSE = 2.894 from Figure 9.3.2, part of the 
output from the MINITAB command REGRESS for the data in Table 
9.3.3, the formula (9.93) 

«A = VMSE Cu, (9.95) 

with the values of Cu from the matrix C, he obtains the same values 
for the standard errors as are given in Figure 9.3.2. That is, he obtains 
3^ = 2.894^8.30389 = 8.339, s^ = 2.894\/15.3208 = 11.328, and s^ = 
2.894^0.335977 = 1.677. (Recall that we assume the rows and columns are 
numbered 0, 1, 2.) □ 

The regression equation is 
C3 » 4.73 - 2.8 Cl + 3.08 C2 

Predictor 
Constant 
Cl 
C2 

Coef 
4.731 
-2.83 
3.081 

Stdev 
8.339 
11.33 
1.677 

t-ratio 
0.57 
-0.25 
1.84 

P 
0.610 
0.819 
0.164 

s = 2.894 R-sq ■ 95.3'/. R-sq(adj) » 92.1% 

Figure 9.3.2. Output from REGRESS for Example 9.3.2. 

Just as for simple linear regression, multiple linear regression allows the 
calculation of confidence intervals for the estimated mean of the prediction 
variable and confidence limits for the predicted values. Recall that you 
should use confidence intervals for the mean predicted value if you want 
the limits to show the region that should contain the population regression 
curve. You should use confidence limits on the predicted values if you want 
the limits to show the region that should contain most of the population of 
all possible observations. Thus, the latter interval is expected to be much 
wider. Both types of intervals are very difficult to compute by hand for 
multiple regression models but can be obtained with ease from a statistical 
package such as MINITAB, or SAS/STAT. . Therefore, we shall not give 
the exact formulas. They can be found in all advanced linear regression 
books, such as Draper and Smith [6] or Neter et al. [17]. 
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9.3.4 Selection of Independent (Predictor) Variables 
There are some special opportunities as well as pitfalls in multiple linear 
regression. It often happens that there are a number of independent vari­
ables that could be used in the model. We would like to use only those 
that are important, that is, those that make a difference. From a compu­
tational point of view, it would also be desirable to use a small number of 
variables. The goal is to determine the best subset of variables to include 
in the regression model. One difficulty is that the variables are rarely truly 
independent in the probabilistic sense. Thus, the obvious strategy of start­
ing with all the variables in the model and then eliminating variables one 
at a time, eliminating the variable with the smallest p-value at each stage, 
will often not yield the best subset. The p-value usually depends upon the 
other variables in the model. Fortunately, statistical computer systems can 
aid the selection process. If there are not too many variables to consider, 
one can have the computer try all possible subsets of independent variables. 

Example 9.3.4 The MINITAB worksheet REALEST.MTW in the stu­
dent edition contains information on each home sold in Oxford, Ohio, dur­
ing 1987. A description of the data is given in Table 9.3.4. 

Table 9.3.4. Description of REALEST.MTW 

Column 
Cl 
C2 
C3 
C4 
C5 
C6 
C7 

Name 
SELLS 
ASKS 
BATHS 
BEDROOMS 
AGE 
BASEMENT 
CARS 

Description 
Selling price of house 
Asking price of house 
Number of bathrooms 
Number of bedrooms 
Age of house (years) 
Basement? 
Size of garage (cars) 

The BASEMENT variable is an indicator variable that tells us whether 
there is a basement and will not be considered in the analysis. Our initial 
trial is to use all five of the other variables, as we show in the MINITAB 
REGRESS output of Figure 9.3.3. The overall fit is certainly good, with 
the p-value for the F-test essentially zero. Surprisingly, all the individual 
coefficients appear to be significant except for the number of bathrooms and 
the number of bedrooms, especially the latter. These are the two values 
most often used to categorize a house! Since we are operating intuitively, 
let us drop both the number of bedrooms and the number of bathrooms for 
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our next trial, shown in Figure 9.3.4. Our statistics indicate that we are 
able to predict almost as well with only three variables as we did with five 
and all of the coefficients are highly significant. 

For our next trial we used the MINITAB command BREG, that tries all 
possible subsets and reports all those that look promising. The output from 
this trial is shown in Figure 9.3.5. The output shows that we made the best 
three variable choice. Our choice can be improved only slightly by adding 
the variable BATHS. This four variable model has the same R2 value as 
the full five variable example, but has a slightly smaller standard error. 
The command BREG uses a very efficient algorithm so it took very little 
computer time to generate the results shown in Figure 9.3.5. SAS/STAT 
has a procedure called RSQUARE, that always identifies the model with 
the largest R2 for each number of variables considered. It also reports the 
Cp value. It can be used to investigate all subsets of variables. RSQUARE 
is somewhat more accurate than BREG but also much slower. It appar­
ently uses double precision for all calculations while BREG on my IBM PC 
compatible with an Intel 386 microprocessor seems to use single precision 
arithmetic. □ 

The regression equation is 
SELL $ - 6.36 + 0.712 ASK $ 

+ 3.37 CARS 
+2.79 BATHS +0.22 BEDROOMS - 0.111 AGE 

43 cases used 8 cases contain missing values 

Predictor 
Constant 
ASK $ 
BATHS 
BEDROOMS 
AGE 
CARS 

s - 4.045 

Analysis of 

SOURCE 
Regression 
Error 

Total 

Coef 
6.364 

0.71242 
2.786 
0.217 

-0.11065 
3.3746 

R-sq 

Variance 

DF 

Stdev 
3.269 

0.03433 
1.774 
1.068 

0.02948 
0.8318 

- 96.5% 

SS 
5 16694.1 
37 605.3 

42 17299.4 

t-ratio 
1.95 

20.75 
1.57 
0.20 
-3.75 
4.06 

R-sq(adj) » 

MS 

P 
0.059 
0.000 
0.125 
0.840 
0.001 
0.000 

96.0% 

F 
3338.8 204.09 0 
16.4 

P 
.000 

Figure 9.3.3. MINITAB REGRESS output. 
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The regression equation is 
SELL $ « 9.39 + 0.737 ASK $ - 0.125 AGE + 3.95 CARS 

43 cases used 8 cases contain missing values 

Predictor 
Constant 
ASK $ 
AGE 
CARS 

Coef 
9.391 

0.73692 
-0.12525 
3.9503 

Stdev 
2.418 

0.02994 
0.02586 
0.7666 

t-ratio 
3.88 
24.61 
-4.84 
5.15 

P 
0.000 
0.000 
0.000 
0.000 

4.089 R-sq - 96.2% R-sq(adj) - 95.9% 

Analysis of Variance 

SOURCE 
Regression 
Error 
Total 

DF 
3 
39 
42 

SS 
16647.3 
652.1 

17299.4 

MS 
5549.1 
16.7 

F 
331.89 

P 
0.000 

Figure 9.3.4. MINITAB REGRESS output. 

MTB > breg 'sell $' c2 c3 c4 c5 c7 

Best Subsets Regression of SELL $ 

43 cases used 8 cases contain missing values. 

Vars '8 

1 
1 
2 
2 
3 
3 
4 
4 
5 

R-sq 

91.9 
42.3 
94.1 
94.0 
96.2 
95.0 
96.5 
96.3 
96.5 

Adj. 
R-sq 

91.7 
40.9 
93.8 
93.7 
95.9 
94.6 
96.1 
95.9 
96.0 

C-p 

46.5 
571.3 
25.9 
26.8 
4.9 
17.6 
4.0 
6.5 
6.0 

s 

5.8395 
15.605 
5.0722 
5.1097 
4.0890 
4.6992 
3.9934 
4.1221 
4.0447 

B 
E 
D 

A B R 
S A O C 
K T 0 A A 
H M G R 

$ S S E S 

X 
X 

X X 
X X 
X XX 
XX X 
XX XX 
X X X X 
X X X X X 

Figure 9.3.5. MINITAB REGRESS output. 
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MTB > stepwise 'sell $' c2 c3 c4 c5 c7 

STEPWISE REGRESSION OF SELL $ ON 5 PREDICTORS, WITH N - 43 
N(CASES WITH HISSING OBS.) - 8 N(ALL CASES) - 51 

CONSTANT 

ASK $ 
T-RATIO 

BATHS 
T-RATIO 

CARS 
T-RATIO 

AGE 
T-RATIO 

S 
R-SQ 

6.4188 

0.819 
21 

5 
91 

.59 

.84 

.92 

0.6128 

0.736 
18.66 

7.1 
3.79 

5.07 
94.05 

-0.5208 

0.744 
20.29 

5.3 
2.88 

2.57 
2.76 

4.70 
95.02 

6.6762 

0.715 
22.32 

2.9 
1.70 

3.39 
4.14 

-0.108 
-4.00 

3.99 
96.50 

9.3907 

0.737 
24.61 

3.95 
5.15 

-0.125 
-4.84 

4.09 
96.23 

Figure 9.3.6. MINITAB output. 

For comparison, we ran the most common procedure used by statistical 
computer systems. This technique, called stepwise regression, starts with 
the first variable listed and adds new variables only if they meet certain 
criteria. Variables can be dropped, too, as we see in Step 5. We will discuss 
the procedure in more detail below. Figure 9.3.6 shows the MINITAB 
command to initiate the procedure, with the variables considered in the 
order listed. Note that the final choice is the three variable model that we 
got by intuition and that the routine never gave the output of using all five 
variables. □ 

Recall that we assume we have observed each of n cases for the k predic­
tors (independent variables) Xi, X2, ■. ■, Xk and a response Y. We use the 
convention in the following discussion that p is the number of predictors in 
a selected subset, usually including an intercept. Thus, for the full subset 
p = fc + 1. 

Although we have not specifically noted what criteria are used by MINITAB 
and other statistical systems to evaluate the goodness of fit of a subset of the 
predictors, we see from Figure 9.3.5 that the MINITAB command BREG 
uses R2, R\, s = se, and Mallow's Cp. Mallow's Cp is defined by 

SSE 
Cp = ^ - + 2p-n, (9.96) 

& 
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where SSEP is the error sum of squares for the p variable subset and a2 is 
the mean squared error, MSE, for the full set of variables X\, X2, • ■ ■, X^. 
It is a little difficult to use Cp as a criterion for comparing the goodness of 
different subsets although Mallows claims that a good subset should have 
Cp « p. Computer algorithms using Cp to select good subsets usually 
choose those with the smallest values of Cp. Thus, in the above example, 
the model using ASK $, AGE, and CARS would be rated better on the basis 
of Cp than the model using ASK $, BATHS, and CARS, for two reasons. 
The former has a much smaller Cp value, 4.9 versus 17.6. In addition, 4.9 
is much closer to 4 than 17.6 is. 

Since statistical packages tend to use similar algorithms for selecting 
variables, we will describe the algorithm for testing all subsets of variables 
by quoting from the MINITAB manual [13], which describes the algorithm 
used for the command BREG: 

Computational Method 
BREG employs a procedure called the Hamiltonian Walk, that 
is a method for "visiting" all possible subsets in the same num­
ber of steps; one step for each subset. That is, all 2 m — 1 subsets 
are visited in 2 m — 1 steps, and a different subset regression is 
evaluated at each step. Each subset in the Hamiltonian Walk 
differs from the preceding subset by the addition or deletion of 
only one variable. The method used to perform the regression 
calculations is the sweep operator described in Goodnight's pa­
per [8]. The sweep operator "sweeps" a variable in or out of the 
regression on each step of the Hamiltonian Walk, and calculates 
the SSE for each subset. [For more information, see [7, 20, and 
8].] 

The stepwise procedures are the most popular selection methods. How­
ever, Weisberg [22, page 214] warns: 

The stepwise methods are easy to explain, inexpensive to com­
pute, and widely used. The comparative simplicity of the re­
sults from stepwise regression seems to appeal to many analysts. 
But stepwise methods must be used with caution. The model 
selected in a stepwise fashion need not optimize any reasonable 
criterion function for choosing a model. The apparent order­
ing of the predictors is an artifact of the method and need not 
reflect relationships of substantive interest. Finally, stepwise 
regression may seriously overstate significance of results. 

If the number of variables is small, it is a good idea to test all subsets 
of the variables. Since the algorithms used by most computer statistical 
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systems are quite fast, this will not take much computer time and finding 
the best regression model is more likely. 

The basic selection method calculates an F-statistic for each variable in 
the model. We use the notation S S E ^ i , . . . , Xp] for the sum of squares er­
ror for the multiple regression model that uses the variables Xi, X2, ■. ■, Xp 
with the corresponding mean square error MSE[Xi , . . . , Xp] while SSE[Xi, 
. . . , Xi-i, Xi+i,..., Xp] is the sum of squares error for the same system 
with the variable Xi removed. Then, if the variables X\,..., Xp are in the 
model, the F-statistic for Xi is 

SSE[Xi, . . . , A i - i , A J - H , . . . , Xp] — SSE[Xi, . . . , Xp] . . 
MSE[Xi, . . . ,Xp] 

and has 1 and n — p — 1 degrees of freedom. If the F-statistic for any 
variable is less than the parameter F-out (this parameter is called SLSTAY 
in SAS and FREMOVE in MINITAB), then the variable with the smallest 
F-statistic is removed from the model. The regression equation is calculated 
for this smaller model and the procedure goes to a new step. The square 
root of the F-statistic is the familiar t-ratio or i-statistic, that is printed 
out by most statistical systems, rather than the F-statistic. 

If no variable can be removed, the basic selection procedure attempts 
to add a new variable. An F-statistic is calculated for each variable not yet 
in the model. If the model now contains X\,... ,XP, then the F-statistic 
for the new variable Xp+i is 

SSEpfi , . . ■, Xp] - SSE[Xi , . . . , Xp, Xp+i] . . 
MSE[X!,..., XP,XP+1] 

The variable with the largest F-statistic is added provided it is larger than 
the parameter F-Add (this parameter is called FENTER in MINITAB and 
SLENTRY for SAS). Thus, the new variable that most reduces the error 
sum of squares is added. The regress equation is then calculated and the 
procedure goes to a new step. If no variable can be added, the stepwise 
procedure ends. 

There are several modifications of the basic selection procedure, includ­
ing forward selection and backwards elimination. 

The forward selection procedure adds variables in the same manner as 
the basic selection procedure, but once a variable is entered, it is never 
removed. The forward selection procedure ends when no variable not in 
the equation can be entered. 

The backwards elimination procedure starts with the model containing 
all the variables. The procedure then removes variables, one at a time, 
using the same method as the basic selection procedure. No variable, once 
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removed, is allowed to reenter the model. The backwards elimination pro­
cedure ends when no variable in the model can be deleted. 

Although a computer statistical system is a great aid to an analyst in 
choosing the best regression model, there is no algorithm that can guar­
antee the best possible model. The greatest asset to the analyst is a deep 
knowledge of the area under study and of each of the variables, including 
expected sign and magnitude of the coefficient. 

Example 9.3.5 Sally Selling, the most successful realtor in Oxford, Ohio, 
in early 1988, examines the results of Example 9.3.4. She knows that the 
selling price is in units of $1000 (a grand), as is the asking price. Sally knows 
that most people ask more for a house than they can sell it for but that, 
on the average, they get about 75 percent of what they ask for. She knows 
that the number of bathrooms has little effect upon the price of houses in 
Oxford because almost all houses have an adequate number of bathrooms. 
Similarly, the number of bedrooms has little effect upon housing prices 
because most houses have at least three. Garages are a different matter. 
Because of the inclement weather, everyone wants to keep all cars inside; a 
garage brings a premium of about $4000 per car space. The age of a house, 
in years, has little effect unless the house is quite old, when it could have a 
substantial negative effect. Sally likes the regression formula 

SELL $ = 9.391 + 0.73692 ASK $ - 0.12525 AGE + 3.9503 CARS. D 

9.3.5 Polynomial Regression 
For polynomial regression it is assumed that the curve of regression of Y 
on X is of the form 

E[Y\X = x] = 0o + fox + fox2 + ■■■ + foxk, (9.99) 

so that the regression model can be represented as 

Yi = fo + fax, + fox? + ■ ■ ■ + j3kxk + £i, t = l , 2 , . . . , n . (9.100) 

Polynomial regression is used to fit curves to scatter diagrams in which 
a straight line does not provide a good fit because a curve is required to 
fit the trend, that is, when the plot looks curved. This model is actually 
a special case of the multiple linear regression model with x\ = x, x2 = 
x2,... ,Xk = xk. Hence, the methodology for the multiple regression model 
can be applied directly to the polynomial model. This may seem strange, 
but although the model is nonlinear in x, it is linear in the regression 
coefficients @o, fo,..., fo. 
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The polynomial model is of degree k, corresponding to the degree of 
its highest order term. As one would expect, the higher the degree of 
the polynomial, the more complex a curve it can represent. To keep the 
analysis simpler, the goal is to choose the polynomial of lowest order that 
will adequately represent the trend in the scatter diagram. The first de­
gree polynomial is a straight line. The second degree polynomial is called 
a quadratic and has a curve with just one bend. The cubic or third de­
gree polynomial has a curve with two bends. In general, the fcth degree 
polynomial has a curve with at most k — 1 bends. 

X 
1 
3 
5 
7 
9 

Table 9.3.5 
y x 

24.08 2 
20.47 4 
18.48 6 
26.10 8 
43.00 10 

y 
17.21 
20.63 
21.45 
32.74 
41.99 

40-

30-

20 

10-

Figure 9.3.7. Scatter diagram for data in Table 9.3.5. 

Example 9.3.6 Mickey Mike of Funnyland wants to fit a curve to the data 
in Table 9.3.5. He would prefer a simple linear curve but thinks he may 
have to consider a polynomial. He constructs the scatter diagram of Figure 
9.3.7. (This figure also shows the least squares linear regression line and 
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the least squares quadratic curve for the data.) Mickey uses the REGRESS 
command of MINITAB to fit a straight line to the data and gets the output 
of Figure 9.3.8. The fit is not too bad. The p-value for the F test is only 
0.004 and both coefficients are significant at a reasonable level. However, 
R2 is only 67.3% so Mickey uses REGRESS again to fit a quadratic to the 
data and obtains the output of Figure 9.3.9. The new regression curve is 

y = 26.177 - 4.261 x + 0.6202 x2, 

that has an R2 value of 92.5% with very small p-values on all the tests. The 
value of the standard error, s, has declined from 5.735 for the linear model 
to 2.930 for the quadratic model. Figure 9.3.7, too, seems to indicate that 
the quadratic fit is superior to the linear fit. Mickey is convinced that he 
should use the quadratic model. □ 

The regression equation is 
y » 12.6 + 2.56 x 

Predictor 
Constant 
X 

Coef 
12.533 
2.5603 

Stdev 
3.918 

0.6314 

t-ratio 
3.20 
4.05 

P 
0.013 
0.004 

s « 5.735 R-sq ■ 67.3% R-sq(adj) ■ 63.2% 

Analysis of Variance 

SOURCE DF SS MS F p 
Regression 1 540.80 540.80 16.44 0.004 
Error 8 263.16 32.89 
Total 9 803.96 

Figure 9.3.8. MINITAB output Example 9.3.6. 
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The regression equation is 
y ■ 26.2 - 4.26 z + 0.620 xsquared 

Predictor 
Constant 
X 
xsquared 

s - 2.930 

Analysis of 

SOURCE 
Regression 
Error 
Total 

Coef 
26.177 
-4.261 
0.6202 

R-sq 

Variance 

DF 
2 
7 
9 

Stdev 
3.446 
1.439 
0.1275 

- 92.5X 

SS 
743.86 
60.09 
803.96 

t-ratio 
7.60 
-2.96 
4.86 

R-sq(adj) ■ 

MS 
371.93 
8.58 

P 
0.000 
0.021 
0.000 

■ 90.4X 

F P 
43.32 0.000 

SOURCE DF SEQ SS 
x 1 640.80 
xsquared 1 203.06 

Figure 9.3.9. MINITAB output Example 9.3.6. 

There are often computational difficulties with polynomial regression 
because of the correlation between X, X2, and higher-power terms. A 
transformation used to improve accuracy is x{ = (x< —x)/sx, where sx is 
the sample standard deviation of the Xj's. When we use this transformation, 
we are using normalized coordinates. In Exercise 19 we ask you to try the 
normalizing transformation. 

Polynomial regression can also employ more than one independent vari­
able. For example, a model employing a second order polynomial in two 
variables could be written as 

Yi = A) + 01 XU + 02 X2i + frl X\i + 022 X2
2i + 012 XUX2i + ti, (9.101) 

for i = 1, . . . , n, where 0i2 xuX2i represents the cross-product term. Natu­
rally, the regression of Y on X = (X\, X2) is given by 

E[Y\X = (x1,x2)} = 0o+0iXi+p2x2+f311x2
1+l322xl+l312Xix2. (9.102) 
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Table 9.3.6. Example 9.3.7. 
Lines 

2000 
1500 
1250 
1000 
2500 
2750 
3000 

750 
800 

1120 

CPU time 
(seconds) 

42 
35 
37 
20 
57 
60 
68 
30 
31 
26 

Cost 
dollars 
15.03 
10.81 
11.33 
6.36 

21.68 
23.40 
25.81 

7.63 
8.84 
7.37 

Example 9.3.7 Simply Scintillating has a central computer system that 
runs a certain batch program for Department Widget many times per day. 
(The program is started remotely from the workstations on the Scintillating 
LAN, but the printout is made at the computer center and delivered by 
messenger.) Relentless Rudy, the Chief Analyst, decides to model the cost 
per run of the program using the regression model 

y = 0o + P\ xi + /32 x2 + 0u xix2 + e, 

where xi is the number of lines printed and x2 is the CPU time used by 
the program. He uses the 10 measurements of Table 9.3.6 to construct his 
model. The output from the MINITAB command REGRESS is shown in 
Figure 9.3.10. Relentless finds, as is often the case, that there are some 
good things about the model and some problems, too. (The old good news, 
bad news.) The good news is that R2 = 99.6 percent, the standard error 
s is only 0.5804, and the p-value of the F-test is very small. However, 
three out of four of the coefficients are not significant at the 5% level of 
significance. We ask you to help Relentless in Exercises 20 and 21. □ 
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The regression equation is 
y = - 1.90 + 0.00223 xl + 0.256 x2 +0.000020 xl.x2 

Predictor 
Constant 
xl 
x2 
xl.x2 0 

a - 0.5804 

Analysis of 

SOURCE 
Regression 
Error 
Total 

Coei 
-1.903 

0.002228 
0.25620 

.00002038 

R-sq 

Variance 

DF 
3 
6 
9 

Stdev 
1.843 

0.001227 
0.06209 

0.00002348 

» 99.6% 

SS 
472.37 
2.02 

474.39 

t-ratio 
-1.03 
1.82 
4.13 
0.87 

R-sq(adj) -

MS 

P 
0.342 
0.119 
0.006 
0.419 

99.47. 

F 
157.46 467.46 0 
0.34 

P 
.000 

Figure 9.3.10. REGRESS output Example 9.3.7. 

After we have applied a computer procedure to select a list of possible re­
gression models to use for our study, we need to make the final choice. Part 
of this final choice must involve the use of diagnostic procedures to detect 
possible errors. Multiple linear regression has all the error opportunities of 
simple linear regression, plus some new ones that are due to problems of 
interaction of the regressors. Fortunately, all the techniques we discussed 
in Section 9.1.5 are available for multiple regression, too. Many of the ad­
vanced techniques depend upon a detailed analysis of the residuals, which 
is an advanced topic that we won't cover here, but that is discussed in the 
more advanced books listed in Section 9.1.5. 

One special problem of multiple linear regression is multicollinearity, 
that is high correlation between the regressor variables. An ideal situa­
tion would be that in which each regressor is strongly correlated with the 
predictor variable but weakly correlated with each other. Multicollinearity 
means that some of the regressors are strongly correlated with each other. 
If only two regressors are strongly correlated, the multicollinearity is easy 
to detect. More complex linear dependence is more difficult to detect. 

One indication of multicollinearity is when none or almost none of the 
individual /3's are significant, even though the overall F-test is significant. 
We saw this in Example 9.3.7. When this happens we can usually remove 
one of the regressors from the model. 

Another indication of multicollinearity is obtaining radically different 
values for some of the /3j's when only minor changes are made to the model 
by adding or deleting data. 

The best way to remove multicollinearity is to drop regressors selectively, 
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if they are found to be highly correlated with other regressors. 

Give us the fortitude to endure the things which cannot be changed, and 
the courage to change the things which should be changed, and the wisdom 

to know one from the other. 
Oliver J. Hart 

9.4 Exercises 
For these exercises, if you do not have a statistical computer system avail­
able, you should have a calculator with linear regression built in, such as 
the HP-21S. Otherwise, some of the exercises will be very tedious. 

1. [15] See Example 9.1.1. In the table below we show the number of 
pages and the price of 20 books reviewed in the November 1988 issue 
of Technometrics. (Two other books were reviewed with no price 
given.) 

Books Reviewed Data 
Pages Price Pages Price Pages Price 

311 
415 
408 
699 
416 
307 
171 

34.50 
80.00 
34.50 
33.95 
25.00 
34.95 
17.95 

610 
278 
492 
687 
447 
429 
162 

49.95 
34.95 
39.25 
42.50 
36.95 
69.75 
19.95 

384 
232 
435 
540 
614 
260 
-

49.95 
32.50 
29.95 
99.75 
72.95 
34.95 
-

Let X be the number of pages and Y the price of the books. 

(a) Draw the scatter diagram for the data. Does it look like a straight 
line would fit the data? 

(b) Find the least squares regression line. How well does it seem to 
fit the data? Are there any outliers? 

(c) Find the average number of pages per book and average price 
per book. 

(d) Use the equation of the least squares regression line to estimate 
the price of a book with 390 pages. How does this compare to 
the estimate we made in Example 9.1.1? 
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2. [15] Prove that the formula (9.18) for $i is equivalent the formula 
(9.16). 

3. [20] Consider the proof of Theorem 9.1.1. Prove that £ " = 1
 c« = ° a n d 

4. [10] Consider Example 9.1.2. Prove that, for this example, (9.34) yields 
S0o = 6.367 and (9.35) yields s^ = 0.01976. You may assume that 
a2 = 189.3 and that you are given the values calculated in Example 
9.1.1. 

5. [5] Show that the fitted linear regression line y = fa + fax goes through 
the point (x,y). 

6. [7] Analysts at Blithering Boats have constructed the linear regression 
line y = 15 + 2.3x. 

(a) What is the estimated change in the mean value of y when x 
increases by 2? 

(b) If y = 42.62, determine x. 

7. [5] Suppose an analyst at Dogwood's Doughnuts is constructing a simple 
linear regression line with 41 points. She has calculated 5xy = —540, 
SSX = 130, y = 35.7, and x = 12.3. Find the least squares regression 
line. 

8. [12] Wimpering Willie is constructing a simple linear regression line 
with 25 points. Willie has calculated the value of SSE to be 374.2. 

(a) What is the standard error, ae? 
(b) For x = 75, y = 126.3. If the observation (75,140.2) is part of the 

original data set, should it be considered an outlier according to 
the oft quoted rule of thumb that any point for which |j/j — y\ > 
3se is an outlier? 

(c) If the observation (75,140.2) has hi = 0.07, what is the standard 
residual of the point? 

(d) Would MINITAB flag the observation of part (c) as "an obser­
vation with a large standard residual?" 

9. [10] Consider Example 9.1.1. Using the results calculated in the ex­
ample and the parameters calculated by the MINITAB command 
REGRESS and shown in Figure 9.1.2, do the following: 
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(a) Find the 95% confidence interval for /?i. 
(b) Test the null hypothesis H0 : (3X = 0.07 against Hi : /?x ^ 0.07 

at the 5% level of significance. 

10. [10] The sample correlation coefficient, r, between two random vari­
ables is 0.625. 

(a) If n = 21, test the null hypothesis HQ: p = 0 against the alter­
native hypothesis H\: p ^ 0 at the 5% level of significance. 

(b) What is the p-value of the test? 

11. [ClO] If n = 17 and the intermediate values for a simple linear regres­
sion model are 

53 x = 136 53!/ = 552.212 ^ XV = 5081.33 

J ] x2 = 1496 53 V2 = 19031.7, 
do the following: 

(a) Calculate Sxy, SSx, and SSy. 
(b) Find the sample regression of V on X. 
(c) Construct the ANOVA table. 

12. [10] Professor Ruddy Redback checks the chlorine residual in his swim­
ming pool at the times shown in the following table, after his pool 
service has treated the pool with a water purifier. 

Hours Chlorine Residual 
(after treatment) (parts per million) 

x y 

06 
12 
18 
24 
30 
36 

1.86 
1.73 
1.61 
1.50 
1.39 
1.30 

Use the method of least squares to fit an exponential curve of the 
form y = aexp(/3x) to the data for Professor Redback's pool. 
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[12] The Perfect Product Prediction Company has collected the data 
shown in the table for the sales of Golden Jelly Belly jelly beans in 
ten market areas. The price is in cents for 5 beans and the sales are 
in thousands of cartons. 

X 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

V 

97.46 
90.56 
84.54 
79.26 
74.57 
70.40 
66.66 
63.28 
60.22 
57.44 

Use the method of least squares to fit a curve of the form y = ax0 to 
the data. 

[8] Henry Hunk, the head statistician at the Hunky Dory Boat Com­
pany, uses the multiple linear regression model 

Y = 0O + 0i xi + ■ ■ ■ + 05 x5 + e, 

that seems to satisfy the standard statistics model assumptions. His 
least squares calculations from 30 data points yield SSE = 0.42 and 
R2 = 0.93. Test the null hypothesis, H0: 0i = 02 = •■■ = 0s = 0, 
against the alternative hypothesis, H\: At least one of the parameters 
0i,02,■■■i0b is not zero. Use a = 0.05. 

[10] Sweet Suzy at Candy Canes has developed the linear multiple 
regression model 

y = 18.7 + 3.2xi+0.015a;2, 

that seems to satisfy the standard statistics model assumptions. Her 
least squares calculations from 30 data points also yield 

SA = 0.0036 and R2 = 0.78. 
P2 
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(a) Test the null hypothesis, H0 : 0\ = /% = 0, against the alternative 
hypothesis, Hi : At least one of the parameters 0\, 02 is not zero. 
Use a = 0.05. 

(b) Test the null hypothesis, Ho: 02 = 0, against the alternative 
hypothesis, Hi : 02 # 0. Use a = 0.05. 

16. [08] Show that for the multiple linear regression model, the F-value 
from the analysis of variable table, and R2 are related by the simple 
formula (9.88), 

1 - R2 \ k ) ' 

17. [10] In a multiple regression study at Carnal Cruises, part of the 
ANOVA table is as follows: 

SOURCE DF SS 
Regression 4 48 
Error 36 36 

(a) What is the sample size? 

(b) How many predictor variables are there? 

(c) Test the null hypothesis that all of the predictor variable coeffi­
cients are zero, against the alternative hypothesis that at least 
one of the coefficients is not zero. Use a = 0.05. 

(d) Calculate the standard error of the estimate. 

18. [10] George Grep found the following, partially filled in, ANOVA table 
from a multiple regression study with 3 predictor variables. Help 
George by filling in the five blank spaces in the table (don't forget 
MSE). 

SOURCE DF SS MS 
Regression 170.30 
Error 
Total 9 538.24 

(a) Calculate R2. 
(b) Test the null hypothesis that all of the predictor variable coef­

ficients are zero, against the alternative hypothesis that at least 
one of the coefficients is not zero. Use a = 0.05. 
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19. [20] You will need a computer system, such as MINITAB, SAS/STAT, 
or EXPLORE to do this exercise. Sam Spade of Hilbert Hackers has 
discovered the following table that relates x to y. He wants to fit a 
cubic to the data and is concerned about the numerical stability of 
the calculations. Help Sam by doing the following: 

(a) Fit the regression function y = fa + fa x + fa x2 + fa x 3 to the 
data. Record the values of/So, fa, fa, fa, the estimated standard 
deviation of fa, R2, and se. Is fa significant at the five percent 
level? 

(b) Standardize x by the formula x = {x — x)/sx, and fit the regres­
sion function y = /3Q" + /3j x + {S\ (x')2 + /3 | (x ')3 to the data. 
Then record the same values that you recorded for (a) and make 
the same test. 

Data 
x y x y x y 
10 7 10 8 10 6 
15 12 15 15 15 13 
20 10 20 11 20 7 
25 14 25 16 25 17 

20. [15] You will need a computer for this exercise and the next. 
Fit the regression equation y = fa + faxi + fax% to the data 
of Table 9.3.6. Compare the fit to that of the model fitted in 
Example 9.3.7. 

21. [25] Consider Example 9.3.7. Consider the regressors x\, X2, and 
X3 = £1X2 used in that example, plus the regressors x4 = x\, 
and X5 = x\. Then find the best subsets of regressors of size 1, 
2, 3, and 4. 

Alan Turing 
Found alluring 
Machines whose only fault 
Was that they would not halt. 

Karl David 
Wells College 

The dice of God are always loaded. 
Ralph Waldo Emerson 
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I shall never believe that God plays dice with the world. 
Albert Einstein 

God not only plays dice. He also sometimes throws the dice where 
they cannot be seen. 

Stephen Hawking 

We figured the odds as best we could, and then we rolled the dice. 
Jimmy Carter 
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Appendix A 

Statistical Tables 

A. l Discrete Random Variables 
Table 1A. Properties of Some Common Discrete Random Variables1 

Random 
Variable 

Bernoulli 

Binomial 

Parameters 

0 < p < 1 

n 

0<p<l 

P(-) 

p(k) = pkq1~k 

k = 0,l 

P(k) = ( ^ P V - * , 
k = 0 , 1 , . . . ,n 

Multinomial n,r,pi,ki p(k) = "• p?pf ■■■ p* 
KI!K2 ' •••krl 

«=i 
r 

y] k{ = n, where k — (ki, k2, ■ ■ ■, kr) 
t = i 

19 = 1-P-

619 
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Table 1A. (continued) 

Random 
Variable Parameters p(-) 

/ r \ (N - r\ 
Hypergeometric N > 0 p(k) = ^ ' * ^-, 

0 
n, A; > 0 fc = 0 ,1 , . . . , n, where 

k < r and n — k < N — r. 

Mh).. .(ri) 
Multivariate V r< = N p(ku k2,..., *i) = W W ^ -

0 
Hypergeometric for fcj € {0,1 , . . . , n}, fc< < r< Vi 

and J J ki = 
« = i 

Geometric 

Pascal 

(negative 
binomial) 

Poisson 

0 < p < 1 

0 < p < 1 
r positive 
integer 

a > 0 

p(k) = qkp, k = 0 ,1 , . . . . 

Jb = 0,1, • - -

p(k) = e-°£, * = 0,1,-.-
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Table IB. Properties of Some Common Discrete Random Variables2 

Random 
Variable 

Bernoulli 

Binomial 

Multinomial 

Hypergeometric 

Multivariate 
Hypergeometric 

Geometric 

z-transform 

q+pz 

{q+pz)n 

(Pi*i + P2Z2 
+ ---+przr)n 

— 

— 

P 
1 — qz 

E[X] 

P 

np 

E[Xi] = 
npi 

nr 
N 

— 

£ 
P 

Var[X] 

pq 

npq 

Vax[Xi] = npiqt 

nr(N — r)(N — n) 
N2(N - 1) 

— 

9 
P2 

Pascal pT(l—qz) r — — 
P p1 

(negative 
binomial) 

Poisson ea(* ^ a a 

2Qi = l-pi. 
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A.2 Continuous Random Variables 

Table 2A. Properties of Some Common Continuous Random Variables 
Random 
Variable Parameters Density /(•) 

Uniform a < b —^—, a < x < b, 0 otherwise 
b — a 

Exponential a > 0 f(x) = ae~ax, x > 0, 0 if x < 0 

Gamma /3,a > 0 f(x) = ^ p f i e~ax, x > 0 
0, x < 0 

Erlang-fc k > 0 f(x) = ^ f c l e-»kx, x > 0 

/ i > 0 0, x < 0 

#fc 3 ft, A*. > 0 f{x) = J T ftWe-"' *, x > 0 
»=i 

y * = I o, *<o 

Chi-square n > 0 /(x) = ^^/l^jT» x > °' ° i f x ^ ° 

Normal cr > 0 ^'-^fe-'h^) 
^ _ m -(n+l)/2 

Student's £ n **>=%£»+#:> 
n, m 

f(x) (n/m)"/ 2 r r (n + m)/2lx(("/2)-1) 
M ' r (n /2 ) r (m/2 ) ( l + (n/m)x)(n+m"2' 

Hyperexponential with A; stages. 
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Table 2B. Properties of Some Common Continuous Random Variables 

Gamma 
a 

A 
a2 

Random 
Variable 

Uniform 

Exponential 

E[X] 

a + b 
2 

1. 
a 

Var[X] 

{b -af 
12 

1 
a2 

Laplace-Stieltjes 
Transform X*[0] 

e-bO_e-aO 
0(a - b) 

a 
a + 0 

\a + ej 

Erlang-k 
kii2 \kfi + ej 

Hk ?m 
Chi-square n 2n \l + 26j 

n/2 

Normal fj. exp {-On - \e2a2) 

Student's t 0 for n > 1 
n-2 

for n > 2 does not exist 

m if m > 2 ——i -=- f if m > 4 does not exist 
m - 2 n ( m - 2 ) 2 ( m - 4 ) 

4Hyperexponential with k stages. 
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A.3 Statistical Tables 

The Normal Distribution Functions $(z) -f 
J — < 

Table 3 

■dt 
\Pt^ 

0.00 0.01 0.02 0.03 o.ou 0.05 0.06 0.07 0.08 0.09 
.50000 , 
.53983 , 
.57926 
.61791 , 
.6554 2 
.6911+6 . 
.72575 . 
.75804 , 
.78814 , 
.81594 , 
.84134 , 
.864 33 , 
.884 93 
.90320 , 
.91924 
.93319 . 
.°4 52 0 , 
.9554 3 , 
.964 07 , 
.97128 . 
.97725 . 
.98214 . 
.93610 . 
.98928 , 
.99130 , 
.99379 , 
.99534 . 
.99653 . 
.99744 . 
.99813 . 
,99865 . 
.99903 , 
.99931 , 
.99952 . 
.99966 , 
.99977 . 
.99984 , 
.99989 . 
.99993 , 

,50399 
,54380 
,58317 
,62172 
.65910 
,69497 
,72907 , 
,76115 , 
,791.03 , 
,81859 , 
,84375 , 
,86650 , 
,88686 
,"0490 
,92073 
,934 43 
,94 630 , 
95637 , 
,964 85 , 
97193 , 
97778 . 
98257 , 
9864 5 , 
98956 , 
,99202 , 
,99396 , 
99547 . 
99664 . 
99752 . 
99819 . 
99869 , 
99906 , 
,99934 , 
99953 . 
,99968 , 
99978 , 
99935 , 
99990 . 
9"9'>3 , 

.50798 
,54776 
,58706 
.62552 
.66276 
.69847 
,73237 
, 76424 
,79389 
,82121 
.84 614 
,86864 
.88877 
,90658 
.92220 
,93574 
,"4 738 
95728 
,96562 
97257 
,97831 
9830 0 
,98679 
98983 
,99224 
99413 
9956 0 
99674 
99760 
99825 
V9874 
99910 
,99936 
99955 
99969 
99978 
99985 
99<>90 
99993 

.51197 

.55172 
,59095 
.62930 
.6664 0 
.70194 
.73565 
.76730 
.79673 
,82381 
,84849 
.87 076 
,89065 
.90824 
.92364 
.93699 
.94 84 5 
.95818 
,96638 
.97320 
.97882 
.99,341 
.98713 
.99010 
.9924 5 
.99430 
.99573 
.99633 
.99767 
.99831 
.99878 
.99913 
.99938 
.99957 
.99970 
.99979 
.99986 
.99990 
.99994 

.51595 
,55567 
. 594 83 
.63307 
.67003 
.70540 
.73391 
.770 35 , 
,79955 
.82639 , 
.35083 
.87286 
.89251 
.90988 
.92507 
.93822 
.94 950 
.9590 7 , 
.96712 
.97381 , 
,97932 
.98382 , 
.98745 
.99036 
.99266 , 
.994 46 , 
.99585 , 
.99693 . 
.99774 , 
.99836 . 
.99882 , 
.99916 , 
.9994 0 , 
.99958 , 
.99971 , 
.9*980 , 
.99986 , 
.99991 . 
.99994 , 

.51.994 
,55962 
.59871 
.63683 
.67364 
.70884 
.74215 
,77337 
,80234 
,82894 
.85314 
,87493 
.894 35 
,91149 
.92647 
.9394 3 
.95053 
95994 
, 96784 
974 41 
,97982 
,98422 
.93778 
99061 
,99236 
,994 61 
99598 
99702 
99781 
9994 1. 
,99886 
99918 
99942 
99960 
,99972 
99981 
,99987 
99991 
99994 

.52392 

.56356 

.60257 

.64058 

.67724 

.71226 

.74537 

.77637 

.30511 

.33147 

.8554 3 

.87698 

.89617 

.91308 

.92735 

.940 62 

.95154 

.96080 

.96856 

.9750 0 

.98030 

.984 61 

.98309 

.99086 

.99305 

.9Vi|77 

.996 09 

.99711 

.99738 

.99846 

.99889 

.99921 

.99944 
,99961 
.99973 
.99981 
.99987 
.99992 
.99994 

.52790 
,56749 
.60642 
.64 431 
.63032 
.71566 
.74857 
.77935 
.80785 
.83398 
.85769 
.8790 0 
,89796 
.91.466 
.92922 
.94179 
.95254 
.96164 
.96926 
.97558 
.98077 
,9850 0 
.9384 0 
.99111 
.99324 
.994 92 
.99621 
.99720 
.99795 
.99851 
.99393 
.99924 
.99946 
.99962 
.99974 
.99932 
.99988 
.99992 
.99995 

.53188 

.57142 
,61026 
,64 803 
.68439 
.71904 
.75175 
.78230 
.81057 
.83646 
.35993 
,8810 0 
.89973 
.91621 
.93056 
.94295 
.95352 
.96246 
.96995 
.97615 
.93124 
.98537 
.98870 
.99134 
.99343 
.99506 
.99632 
.99728 
.99801 
.99856 
.99896 
.99926 
,99948 
.99964 
.99975 
.99983 
.99988 
,99992 
.99995 

.53586 

. !T»753!VJ 

.614 09 

.65173 

.63793 

.7224 0 

.75490 

.78524 

.81327 

.33891 

.86214 

.88298 

.90147 

.91774 

.93189 

.94 4 08 
,954 49 
'. 96327 
,97062 
.97670 
.98169 
.93574 
.98899 
.99158 
.99361 
.99520 
,99643 
.99736 
.99307 
.99861 
.9990 0 
.99929 
.99950 
.99965 
.99976 
.99983 
.99989 
.99992 
.99995 
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Table 4 

Critical Values of the Chi-Square Distribution* 

0.995 0.990 0.975 0.950 0.05 0.025 0.010 0.005 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 
70 
80 
90 

100 
2. 

0.0»393c 

0.0100 
0.0717 
0.2070 
0.4117 
0.6757 
0.9893 
1.3444 
1.7350 
2.1559 
2.6032 
3.0738 
3.5650 
4.0747 
4.6009 
5.1422 
5.6972 
6.2648 
6.8440 
7.4339 
8.0337 
8.6427 
9.2604 
9.8862 

10.520 
11.160 
11.808 
12.461 
13.121 
13.787 
20.707 
27.991 
35.535 
43.275 
51.172 
59.196 
67.328 

-2.5758 

0.0M5r 
0.0201 
0.1148 
0.2971 
0.5543 
0.8721 
1.2390 
1.6465 
2.0879 
2.5582 
3.0535 
3.5706 
4.1069 
4.6604 
5.2294 
5.8122 
6.4078 
7.0149 
7.6327 
8.2604 
8.8972 
9.5425 

10.196 
10.856 
11.524 
12.198 
12.879 
13.565 
14.257 
14.954 
22.164 
29.707 
37.485 
45.442 
53.540 
61.754 
70.065 

-2.3263 

0.0S8T 
0.0506 
0.2158 
0.4844 
0.8312 
1.2373 
1.6899 
2.1797 
2.7004 
3.2470 
3.8158 
4.4038 
5.0087 
5.6287 
6.2621 
6.9077 
7.5642 
8.2308 
8.9066 
9.5908 

10.283 
10.982 
11.689 
12.401 
13.120 
13.844 
14.573 
15.308 
16.047 
16.791 
24.433 
32.357 
40.482 
48.758 
57.153 
65.647 
74.222 

-1.9600 

0.0»393< 
0.1026 
0.3518 
0.7107 
1.1455 
1.6354 
2.1674 
2.7326 
3.3251 
3.9403 
4.5748 
5.2260 
5.8919 
6.5706 
7.2609 
7.9616 
8.6718 
9.3905 

10.117 
10.851 
11.591 
12.338 
13.091 
13.848 
14.611 
15.379 
16.151 
16.928 
17.708 
18.493 
26.509 
34.764 
43.188 
51.739 
60.392 
69.126 
77.930 

- 1.6449 

3.8415 
5.9915 
7.8147 
9.4877 

11.071 
12.592 
14.067 
15.507 
16.920 
18.307 
19.675 
21.026 
22.362 
23.685 
24.996 
26.296 
27.587 
28.869 
30.144 
31.410 
32.671 
33.924 
35.173 
36.415 
37.653 
38.885 
40.113 
41.337 
42.557 
43.773 
55.759 
67.505 
79.082 
90.531 

101.879 
113.145 
124.342 
+ 1.6449 

5.0239 
7.3778 
9.3484 

11.143 
12.833 
14.449 
16.013 
17.535 
19.023 
20.483 
21.920 
23.337 
24.736 
26.119 
27.488 
28.845 
30.191 
31.526 
32.852 
34.170 
35.479 
36.781 
38.076 
39.364 
40.647 
41.923 
43.194 
44.461 
45.722 
46.980 
59.342 
71.420 
83.298 
95.023 

106.629 
118.136 
129.561 
+ 1.9600 

6.6349 
9.2103 

11.345 
13.277 
15.086 
16.812 
18.475 
20.090 
21.666 
23.209 
24.725 
26.217 
27.688 
29.141 
30.578 
32.000 
33.409 
34.805 
36.191 
37.566 
38.932 
40.289 
41.638 
42.980 
44.314 
45.642 
46.963 
48.278 
49.588 
50.892 
63.691 
76.154 
88.380 

100.425 
112.329 
124.116 
135.807 
+ 2.3263 

7.8794 
10.597 
12.838 
14.860 
16.750 
18.548 
20.278 
21.955 
23.589 
25.188 
26.757 
28.300 
29.819 
31.319 
32.801 
34.267 
35.719 
37.156 
38.582 
39.997 
41.401 
42.796 
44.181 
45.559 
46.928 
48.290 
49.645 
50.993 
52.336 
53.672 
66.766 
79.490 
91.952 

104.215 
116.321 
128.299 
140.169 
+ 2.5758 

* Adapted from Biometrika Tables for Statisticians, (E. S. Pearson and H. O. Hartley, eds.). Vol. 1,4th 
ed. Cambridge University Press, Cambridge, 1966, by permission of Biometrika Trustees. 

* For n > 100 use 

Z.' = n ( . - 1 + , . 

where z, is given on the bottom line of the table. 
' The expression 0.0*393 means 0.0000393, etc. 

*'Jf} 
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Table 5 
Critical Values of the Student-t Distribution* 

0.10 0.05 0.025 0.01 0.005 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
00 

3.078 
1.886 
1.638 
1.533 
1.476 
1.440 
1.415 
1.397 
1.383 
1.372 
1.363 
1.356 
1.350 
1.345 
1.341 
1.337 
1.333 
1.330 
1.328 
1.325 
1.323 
1.321 
1.319 
1.318 
1.316 
1.315 
1.314 
1.313 
1.311 
1.310 
1.303 
1.296 
1.289 
1.282 

6.314 
2.920 
2.353 
2.132 
2.015 
1.943 
1.895 
1.860 
1.833 
1.812 
1.796 
1.782 
1.771 
1.761 
1.753 
1.746 
1.740 
1.734 
1.729 
1.725 
1.721 
1.717 
1.714 
1.711 
1.708 
1.706 
1.703 
1.701 
1.699 
1.697 
1.684 
1.671 
1.658 
1.645 

12.706 
4.303 
3.182 
2.776 
2.571 
2.447 
2.365 
2.306 
2.262 
2228 
2.201 
2.179 
2.160 
2.145 
2.131 
2.120 
2.110 
2.101 
2.093 
2.086 
2.080 
2.074 
2.069 
2.064 
2.060 
2.056 
2.052 
2.048 
2.045 
2.042 
2.021 
2.000 
1.980 
1.960 

31.821 
6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.8% 
2.821 
2.764 
2.718 
2.681 
2.650 
2.624 
2.602 
2.583 
2.567 
2.552 
2.539 
2.528 
2.518 
2.508 
2.500 
2.492 
2.485 
2.479 
2.473 
2.467 
2.462 
2.457 
2.423 
2.390 
2.358 
2.326 

63.657 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
3.355 
3.250 
3.169 
3.106 
3.055 
3.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 
2.845 
2.831 
2.819 
2.807 
2.797 
2.787 
2.779 
2.771 
2.763 
2.756 
2.750 
2.704 
2.660 
2.617 
2.576 

* Adapted from Biometrika Tables for Statisticians (E. S. 
Pearson and H. O. Hartley, eds.), Vol. 1, 4th ed. Cambridge 
University Press, Cambridge, 1966, by permission of Bio­
metrika Trustees. 
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Table 6 

Critical Values of the F Distribution' 

f„(n,m) 

Denom­
inator 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
00 

Numer­
ator 

n 1 

161.40 
18.51 
10.13 
7.7! 
6.61 
5.99 
5.59 
5.32 
5.12 
4.96 
4.84 
475 
4.67 
4.60 
4.54 
4.49 
4.45 
4.41 
4.38 
4.35 
4.32 
4.30 
4.28 
4.26 
4.24 
4.23 
4.21 
4.20 
4.18 
4.17 
4.08 
4.00 
3.92 
3.84 

2 

199.50 
19.00 
9.55 
6.94 
5.79 
5.14 
4.74 
4.46 
4.26 
4.10 
3.98 
3.89 
3.81 
3.74 
3.68 
3.63 
3.59 
3.55 
3.52 
3.49 
3.47 
3.44 
3.42 
3.40 
3.39 
3.37 
3.35 
334 
3.33 
3.32 
3.23 
3.15 
3.07 
3.00 

3 

215.70 
19.16 
9.28 
6.59 
5.41 
4.76 
4.35 
4.07 
3.86 
3.71 
3.59 
3.49 
3.41 
3.34 
3.29 
3.24 
3.20 
3.16 
3.13 
3.10 
3.07 
3.05 
3.03 
3.01 
2.99 
2.98 
2.96 
2.95 
2.93 
2.92 
2.84 
2.76 
2.68 
2.60 

4 

224.60 
19.25 
9.12 
6.39 
5.19 
4.53 
4.12 
3.84 
3.63 
3.48 
3.36 
3.26 
3.18 
3.11 
3.06 
3.0! 
2.96 
2.93 
2.90 
2.87 
2.84 
2.82 
2.80 
2.78 
2.76 
2.74 
2.73 
2.71 
2.70 
2.69 
2.61 
2.53 
2.45 
2.37 

fo.oy{% "») 

5 

230.20 
19.30 
9.01 
6.26 
5.05 
4.39 
3.97 
3.69 
3.48 
3.33 
3.20 
3.1! 
3.03 
2.96 
2.90 
2.85 
2.81 
2.77 
2.74 
2.71 
2.68 
2.66 
2.64 
2.62 
2.60 
2.59 
2.57 
2.56 
2.55 
2.53 
2.45 
2.37 
2.29 
2.21 

6 

234.00 
19.33 
8.94 
6.16 
4.95 
4.28 
3.87 
3.58 
3.37 
3.22 
3.09 
3.00 
2.92 
2.85 
2.79 
2.74 
2.70 
2.66 
2.63 
2.60 
2.57 
2.55 
2.53 
2.51 
2.49 
2.47 
2.46 
2.45 
2.43 
2.42 
2.34 
2.25 
2.17 
2.10 

7 

236.80 
19.35 
8.89 
6.09 
488 
4.2! 
3.79 
3.50 
3.29 
3.14 
3.01 
2.91 
2.83 
2.76 
2.71 
266 
2.61 
2.58 
2.54 
2.51 
2.49 
2.46 
2.44 
2.42 
2.40 
2.39 
2.37 
2.36 
2.35 
2.33 
2.25 
2.17 
2.09 
2.0! 

8 

238.90 
19.35 
8.85 
6.04 
4.82 
4.15 
3.73 
3.44 
323 
3.07 
2.95 
2.85 
2.77 
2.70 
2.64 
2.59 
2.55 
2.5! 
2.48 
2.45 
2.42 
2.40 
2.37 
2.36 
2.34 
2.32 
2.31 
2.29 
2.28 
2.27 
2.18 
2.10 
2.02 
1.94 

9 

240.50 
19.38 
8.81 
6.00 
4.77 
4.10 
3.68 
3.39 
3.18 
3.02 
2.90 
2.80 
2.7! 
2.65 
2.59 
2.54 
2.49 
2.46 
2.42 
2.39 
2.37 
2.34 
2.32 
2.30 
2.28 
2.27 
2.25 
2.24 
2.22 
2.21 
2.12 
2.04 
1.96 
1.88 

" Adapted from Biometrika Tables for Statisticians (E. S. Pearson and H. O. Hartley, eds.). VoL 1, 4th ed. Cambridge 
University Press, Cambridge, 1966, by permission of Biometrika Trustees. 
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Table 6 

Critical Values of the F Distribution (Continued) 
Denom­

inator 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
X 

Numer-

n 10 

241.9 
19.40 
8.79 
5.96 
4.74 
4.06 
3.64 
3.35 
3.14 
2.98 
2.85 
2.75 
2.67 
2.60 
2.54 
2.49 
2.45 
2.41 
2.38 
2.35 
2.32 
2.30 
2.27 
2.25 
2.24 
2.22 
2.20 
219 
2.18 
2.16 
2.08 
1.99 
1.91 
1.83 

12 

243.9 
19.41 
8.74 
5.91 
4.68 
4.00 
3.57 
3.28 
3.07 
2.91 
2.79 
2.69 
2.60 
2.53 
2.48 
2.42 
2.38 
2.34 
2.31 
2-28 
2.25 
2.23 
2.20 
2.18 
2.16 
2.15 
2.13 
2.12 
2.10 
2.09 
2.00 
1.92 
1.83 
1.75 

15 

245.9 
19.43 
8.70 
5.86 
4.62 
3.94 
3.51 
3.22 
3.01 
2.85 
2.72 
2.62 
2.53 
2.46 
2.40 
2.35 
2.31 
121 
2.23 
2.20 
2.18 
2.15 
2.13 
2.11 
2.09 
2.07 
2.06 
2.04 
2.03 
2.01 
1.92 
1.84 
1.75 
1.67 

20 

248.0 
19.45 
8.66 
5.80 
4.56 
3.87 
3.44 
3.15 
2.94 
2.77 
2.65 
2.54 
2.46 
2.39 
2.33 
2-28 
2.23 
2.19 
2.16 
2.12 
2.10 
2.07 
2.05 
2.03 
2.01 
1.99 
1.97 
1.96 
1.94 
1.93 
1.84 
1.75 
1.66 
1.57 

/ O . O J K m) 

24 

249 1 
19.45 
8.64 
5.77 
4.53 
3.84 
3.41 
3.12 
2.90 
2.74 
2.61 
2.51 
2.42 
2.35 
2.29 
2.24 
2.19 
2.15 
2.11 
2.08 
2.05 
2.03 
2.01 
1.98 
1.96 
1.95 
1.93 
1.91 
1.90 
1.89 
1.79 
1.70 
1.61 
1.52 

30 

250.1 
19.46 
8.62 
5.75 
4.50 
3.81 
3.38 
3.08 
2.86 
2.70 
2.57 
2.47 
2.38 
2.31 
2.25 
2.19 
2.15 
2.11 
2.07 
2.04 
2.01 
1.98 
1.% 
1.94 
1.92 
1.90 
1.88 
1.87 
1.85 
1.84 
1.74 
1.65 
1.55 
1.46 

40 

251.1 
19.47 
8.59 
5.72 
4.46 
3.77 
3.34 
3.04 
2.83 
2.66 
2.53 
2.43 
2.34 
2.27 
2.20 
2.15 
2.10 
2.06 
2J03 
1.99 
1.96 
1.94 
1.91 
1.89 
1.87 
1.85 
1.84 
1.82 
1.81 
1.79 
1.69 
1.59 
1.50 
1.39 

60 

252.2 
19.48 
8.57 
5.69 
4.43 
3.74 
3.30 
3.01 
2.79 
2.62 
2.49 
2.38 
2.30 
2.22 
2.16 
2.11 
2.06 
2.02 
1.98 
1.95 
1.92 
1.89 
1.86 
1.84 
1.82 
1.80 
1.79 
1.77 
1.75 
1.74 
1.64 
1.53 
1.43 
1.32 

120 

253.3 
19.49 
8.55 
5.66 
4.40 
3.70 
377 
2.97 
2.75 
2.58 
2.45 
2.34 
2.25 
2.18 
2.11 
2.06 
2.01 
1.97 
1.93 
1.90 
1.87 
1.84 
1.81 
1.79 
1.77 
1.75 
1.73 
1.71 
1.70 
1.68 
1.58 
1.47 
1.35 
1.22 

X 

254.3 
19.50 
8.53 
5.63 
4.36 
3.67 
3.23 
2.93 
2.71 
2.54 
2.40 
2.30 
2.21 
2.13 
2.07 
2.01 
1.96 
1.92 
1.88 
1.84 
1.81 
1.78 
1.76 
1.73 
1.71 
1.69 
1.67 
1.65 
1.64 
1.62 
1.51 
1.39 
1.25 
1.00 
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Table 6 

Critical Values of tha F Distribution (Continued) 
Denom­
inator 

m 

i 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
X 

Numcr-
• tof — — — — 

n 1 

4052 
98.50 
34.12 
21.20 
16.26 
13.75 
12.25 
11.26 
10.56 
10.04 
9.65 
9.33 
9.07 
8.86 
8.68 
8.53 
8.40 
8.29 
8.18 
8.10 
8.02 
7.95 
7.88 
7.82 
7.77 
7.72 
7.68 
7.64 
7.60 
7.56 
7.31 
7.08 
685 
6.63 

2 

4999.5 
99.00 
30.82 
1800 
13.27 
10.92 
9.55 
8.65 
8.02 
7.S6 
7.21 
6.93 
6.70 
6.51 
6.36 
6.23 
6.11 
6.01 
5.93 
5.85 
5.78 
5.72 
5.66 
5.61 
5.57 
5.53 
5.49 
5.45 
5.42 
5.39 
5.18 
4.98 
4.79 
4.61 

3 

5403 
99.17 
29.46 
16.69 
12.06 
9.78 
8.45 
7.59 
6.99 
6.55 
6.22 
5.95 
5.74 
5.56 
5.42 
5.29 
5.18 
5.09 
5.01 
4.94 
4.87 
4.82 
4.76 
4.72 
4.68 
4.64 
4.60 
4.57 
4.54 
4.51 
4.31 
4.13 
395 
3.78-

4 

5625 
99.25 
28.71 
15.98 
1139 
9.15 
7.85 
7.01 
6.42 
5.99 
5.67 
5.41 
5.21 
5.04 
4.89 
4.77 
4.67 
4.58 
4.50 
4.43 
4.37 
4.31 
476 
4.22 
4.18 
4.14 
4.11 
4.07 
404 
4.02 
3.83 
3.65 
3.48 
3.32 

/o.oi(«. « ) 

5 

5764 
99.30 
2874 
15.52 
10.97 
8.75 
7.46 
6.63 
6.06 
5.64 
5.32 
5.06 
4.86 
4.69 
4.56 
4.44 
4.34 
4.25 
4.17 
4.10 
4.04 
3.99 
3.94 
3.90 
3.85 
3.82 
3.78 
3.75 
3.73 
3.70 
3.51 
3.34 
3.17 
3.02 

6 

5859 
99.33 
27.91 
15.21 
10.67 
8.47 
7.19 
6.37 
5.80 
5.39 
5.07 
4.82 
4.62 
4.46 
4.32 
4.20 
4.10 
4.01 
3.94 
3.87 
3.81 
3.76 
3.71 
3.67 
3.63 
3.59 
3.56 
3.53 
3.50 
3.47 
3.29 
3.12 
2.96 
2.80 

7 

5928 
99.36 
27.67 
14.98 
10.46 
8.26 
6.99 
6.18 
5.61 
5.20 
4.89 
4.64 
4.44 
4.28 
4.14 
4.03 
3.93 
3.84 
3.77 
3.70 
3.64 
3.59 
3.54 
3.50 
3.46 
3.42 
3.39 
3.36 
3.33 
3.30 
3.12 
2.95 
2.79 
2.64 

8 

5982 
99J7 
27.49 
14.80 
10.29 
8.10 
6.84 
6.03 
5.47 
5.06 
4.74 
4.50 
4.30 
4.14 
4.00 
3.89 
3.79 
3.71 
3.63 
356 
3.51 
3.45 
3.41 
3.36 
3.32 
3.29 
376 
373 
370 
3.17 
2.99 
2.82 
2.66 
2.51 

9 

6022 
9 9 J 9 
27.35 
14.66 
10.16 

7.98 
6.72 
591 
5.35 
4.94 
4.63 
4.39 
4.19 
4.03 
3.89 
3.78 
3.68 
3.60 
3.52 
3.46 
3.40 
3J5 
3.30 
3.26 
3.22 
3.18 
3.15 
3.12 
3.09 
3.07 
2.89 
2.72 
2.56 
2.41 
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Table 6 

Critical Values of the F Distribution (Continued) 
Uenom-
inalor 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
X 

Numer-

n 10 

6056 
99.40 
27.23 
14.55 
10.05 
7.87 
6.62 
5.81 
5.26 
4.85 
4.54 
4.30 
4.10 
3.94 
3.80 
3.69 
3.59 
3.51 
3.43 
3.37 
3.31 
3.26 
3.21 
3.17 
3 13 
3.09 
3.06 
303 
3.00 
2.98 
2.80 
2.63 
24' ' 
2.32 

12 

6106 
99.42 
27.05 
1437 
9.89 
7.72 
6.47 
5.67 
5.11 
4.71 
4.40 
4.16 
3.96 
3.80 
3.67 
3.55 
3.46 
3.37 
3.30 
3.23 
3.17 
3.12 
3.07 
3.03 
2.99 
2.96 
2.93 
2.90 
2.87 
2.84 
2.66 
2.50 
2.34 
2.18 

15 

6157 
99.43 
26.87 
14 JO 
9.72 
7.56 
6.31 
5.52 
4.96 
4.56 
4.25 
4.01 
3.82 
3.66 
3.52 
3.41 
3.31 
32) 
3.15 
3.09 
3J03 

2.98 
2.93 
2.89 
2.85 
2.81 
2.78 
2.75 
2.73 
2.70 
2.52 
2.35 
2.19 
2.04 

20 

6209 
99.45 
26.69 
14.02 
9.55 
7.40 
6.16 
5.36 
4.81 
4.41 
4.10 
3.86 
3.66 
3.51 
3.37 
3.26 
3.16 
3.08 
3.00 
2.94 
2.88 
2.83 
2.78 
2.74 
2.70 
266 
2.63 
2.60 
2.57 
2.55 
2.37 
2.20 
2.03 
1.88 

/o.oil 

24 

6235 
99.46 
26.60 
13.93 
9.47 
7.31 
607 
5.28 
4.73 
4.33 
4.02 
3.78 
3.59 
3.43 
329 
3.18 
3.08 
3.00 
2.92 
2.86 
2.80 
2.75 
2.70 
2.66 
2.62 
2.58 
2.55 
2.52 
2.49 
2.47 
2.29 
2.12 
1.95 
1.79 

n. m) 

30 

6261 
99.47 
26.50 
13.84 
9.38 
723 
5.99 
5.20 
4.65 
4.25 
3.94 
3.70 
3.51 
3.35 
3.21 
3.10 
3.00 
2.92 
2.84 
2.78 
2.72 
2.67 
2.62 
2.58 
2.54 
2.50 
2.47 
2.44 
2.41 
2.39 
2.20 
2.03 
1.86 
1.70 

40 

6287 
9947 
2641 
13.75 
929 
7.14 
5.91 
5.12 
4.57 
4.17 
3.86 
3.62 
3.43 
3.27 
3.13 
3i>2 
2.92 
2.84 
2.76 
2.69 
2.64 
258 
2.54 
2.49 
2.45 
2.42 
2.38 
2.35 
2.33 
2-30 
2.11 
1.94 
1.76 
1.59 

60 

6313 
99.48 
26.32 
13.65 
920 
7.06 
5.82 
5.03 
4.48 
4.08 
3.78 
3.54 
3.34 
3.18 
3.05 
2.93 
2.83 
2.75 
2.67 
2.61 
2.55 
2.50 
2.45 
2.40 
2.36 
2.33 
2.29 
2.26 
22) 
2.21 
2.02 
1.84 
1.66 
147 

120 

6339 
99.49 
26.22 
13.56 
9.11 
6.97 
5.74 
4.95 
4.40 
4.00 
3.69 
3.45 
3.25 
3.09 
2.96 
2*4 
2.75 
2.66 
2.58 
2.52 
2.46 
2.40 
2.35 
2.31 
2.27 
223 
220 
2.17 
2.14 
2.11 
1.92 
1.73 
1.53 
1-12 

X 

6366 
99 50 
26.13 
13.46 
9.02 
6.88 
5.65 
4.86 
4.31 
3.91 
3.60 
3.36 
3.17 
3.00 
2.87 
2.75 
2.65 
2.57 
2.49 
2.42 
2.36 
2.31 
2.26 
2.21 
2.17 
213 
2.10 
206 
2.03 
2.01 
1.80 
1.60 
1.38 
1.00 



A.3. STATISTICAL TABLES 631 

Table 6 

Critical Values of the F Distribution (Continued) 
Denom­
inator 

m 

! 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
JO 

Numer-

n 1 

647.8 
38.51 
17.44 
12.22 
10.01 
8.81 
8.07 
7.57 
7.21 
6.94 
6.72 
6.55 
6.41 
6.30 
6.20 
6.12 
6.04 
5.98 
5.92 
5.87 
5.83 
5.79 
5.75 
5.72 
5.69 
5.66 
5.63 
5.61 
5.59 
5.57 
5.42 
5.29 
5.15 
5.02 

2 

799.5 
39.00 
16.04 
10.65 
8.43 
7.26 
6.54 
6.06 
5.71 
5.46 
5.26 
5.10 
4.97 
4.86 
4.77 
4.69 
4.62 
4.56 
4.51 
446 
4.42 
4.38 
4.35 
4.32 
4.29 
4.27 
4.24 
4.22 
420 
4.18 
4.05 
3.93 
3.80 
3.69 

3 

864.2 
39 17 
15.44 
9.98 
7.76 
6.60 
5.89 
5.42 
5.08 
4.83 
4.63 
4.47 
4.35 
4.24 
4.15 
4.08 
4.01 
3.95 
3.90 
3.86 
3.82 
3.78 
3.75 
3.72 
369 
3.67 
3.65 
3.63 
3.61 
3.59 
3.46 
3.34 
3.23 
3.12 

4 

899.6 
39.25 
15.10 
9.60 
7.39 
6.23 
5.52 
5.05 
4.72 
4.47 
4.28 
4.12 
4.00 
3.89 
3.80 
3.73 
3.66 
3.61 
3.56 
3.51 
3.48 
3.44 
3.41 
3.38 
3.35 
3.33 
3.31 
3.29 
3.27 
3.25 
3.13 
3.01 
2.89 
2.79 

/o.o2s(n. « ) 

5 

9218 
39.30 
14.88 
936 
7.15 
5.99 
5.29 
4.82 
4.48 
4.24 
4.04 
3.89 
3.77 
3.66 
3.58 
3.50 
3.44 
3.38 
3.33 
3.29 
3.25 
3.22 
3.18 
3.15 
3.13 
3.10 
3.08 
3.06 
3.04 
3.03 
2.90 
2.79 
2.67 
2.57 

6 

937.1 
39.33 
14.73 
9.20 
6.98 
5.82 
5.12 
465 
4.32 
4.07 
3.88 
3.73 
3.60 
3.50 
3.41 
3.34 
3.28 
3.22 
3.17 
3.13 
3.09 
3.05 
3.02 
2.99 
2.97 
2.94 
2.92 
2.90 
2.88 
2.87 
2.74 
2.63 
2.52 
2.41 

7 

948.2 
39.36 
1462 
9.07 
6.85 
5.70 
4.99 
4.53 
4.20 
3.95 
3.76 
3.61 
3.48 
3.38 
329 
3.22 
3.16 
3.10 
3.05 
3.01 
2.97 
2.93 
2.90 
2.87 
2.85 
2.82 
2.80 
2.78 
2.76 
2.75 
2.62 
2.51 
2.39 
2.29 

8 

956.7 
39.37 
14.54 
8.98 
6.76 
5.60 
4.90 
4.43 
4.10 
3.85 
3.66 
3.51 
3.39 
3.29 
3.20 
3.12 
3.06 
3.01 
2.96 
2.91 
2.87 
2.84 
2.81 
2.78 
2.75 
2.73 
2.71 
2.69 
2.67 
2.65 
2.53 
2.41 
2.30 
2.19 

9 

963.3 
39.39 
14.47 
8.90 
6.68 
5.52 
4.82 
4.36 
4.03 
3.78 
3.59 
3.44 
3.31 
3.21 
3.12 
3.05 
2.98 
2.93 
2.88 
2.84 
2.80 
2.76 
2.73 
2.70 
2.68 
2.65 
2.63 
2.61 
2.59 
2.57 
2.45 
2.33 
2.22 
2.11 
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Table 6 
Critical Values of the F Distribution (Continued) 

Denom­

inator 
m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
oc 

Numer-

n 10 

968.6 
39.40 
14.42 
8.84 
6.62 
5.46 
4.76 
4.30 
3.96 
3.72 
3.53 
3.37 
3.25 
3.15 
3.06 
2.99 
2.92 
2.87 
2.82 
2.77 
2.73 
2.70 
2.67 
2.64 
2.61 
2 59 
2.57 
2.55 
2.53 
251 
2.39 
2.27 
2.16 
205 

12 

976.7 
39.41 
14.34 
8.75 
6.52 
5.37 
4.67 
4.20 
3.87 
3.62 
3.43 
3.28 
3.15 
3.05 
2.96 
2.89 
2.82 
2.77 
2.72 
2.68 
2.64 
2.60 
2.57 
2.54 
2.51 
2.49 
2.47 
2.45 
2.43 
2.41 
2.29 
2.17 
2.05 
1.94 

15 

9849 
39.43 
14.25 
8.66 
6.43 
5.27 
4.57 
4.10 
3.77 
3.52 
3.33 
3.18 
3.05 
2.95 
286 
2.79 
2.72 
2.67 
2.62 
2.57 
2.53 
2.50 
2.47 
2.44 
2.41 
2.39 
2.36 
2.34 
2.32 
2.31 
218 
2.06 
1.94 
1.83 

20 

993.1 
39.45 
14.17 
8.56 
6.33 
5.17 
4.47 
4.00 
3.67 
3.42 
3.23 
3.07 
2.95 
2.84 
2.76 
2.68 
2.62 
2.56 
2.51 
2.46 
2.42 
2.39 
2.36 
2.33 
2.30 
2.28 
2.25 
2.23 
2.21 
2.20 
2.07 
1.94 
1.82 
1.71 

fo.onin. m) 

24 

997.2 
39.46 
14.12 
8.51 
6.28 
5.12 
4.42 
3.95 
3.61 
3.37 
3.17 
3.02 
2.89 
2.79 
2.70 
2.63 
2.56 
2.50 
2.45 
2.41 
2.37 
2.33 
2.30 
2.27 
2.24 
2.22 
2 19 
2.17 
2.15 
2.14 
2.01 
1.88 
1.76 
1.64 

30 

1001 
39.46 
14.08 
8.46 
6.23 
5.07 
4.36 
3.89 
3.56 
3.31 
3.12 
2.96 
2.84 
2.73 
2.64 
2.57 
2.50 
2.44 
2.39 
2.35 
2.31 
2.27 
2.24 
2.21 
2.18 
216 
2.13 
2 11 
2.09 
2.07 
1.94 
1.82 
1.69 
1.57 

40 

1006 
39.47 
14.04 
8.41 
6.18 
5.01 
4.31 
3.84 
3.51 
3.26 
3.06 
2.91 
2.78 
2.67 
2.59 
2.51 
2.44 
2.38 
2.33 
2.29 
2.25 
2.21 
2.18 
2.15 
212 
2.09 
2.07 
2.05 
2.03 
2.01 
1.88 
174 
161 
1.48 

60 

1010 
39.48 
13.99 
8.36 
6.12 
4.96 
4.25 
3.78 
3.45 
3.20 
3.00 
2.85 
2.72 
2.61 
2.52 
2.45 
2.38 
2.32 
2.27 
2.22 
2.18 
2.14 
2.11 
2.08 
2.05 
2.03 
2.00 
1.98 
1.96 
1.94 
1.80 
1.67 
1.53 
1.39 

120 

1014 
39.49 
13.95 
8.31 
6.07 
4.90 
4.20 
3.73 
3.39 
3.14 
2.94 
2.79 
2.66 
2.55 
2.46 
2.38 
2.32 
2.26 
2.20 
2.16 
2.11 
2.08 
2.04 
2.01 
1.98 
1.95 
1.93 
1.91 
1 89 
1.87 
1.72 
1.58 
1.43 
1.27 

cc 

1018 
39.50 
13.90 
8.26 
6.02 
4.85 
4.14 
3.67 
3.33 
3.08 
2.88 
2.72 
2.60 
2.49 
2.40 
2.32 
2.25 
2.19 
2.13 
2.09 
2.04 
2.0P 
1.97 
1.94 
1.91 
1.88 
1.85 
1.83 
1.81 
1.79 
1.64 
1.48 
1.31 
100 
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Table 8 
Critical Values of D in the Kolmogorov-Smirnov Test 

for the Exponential Distribution with Mean Unknown' 

Sample 
size 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

Over 30 

Level of significance for D = 

a = 0.20 

0.451 
0.396 
0.359 
0.331 
0.309 
0.291 
0.277 
0.263 
0.251 
0.241 
0.232 
0.224 
0.217 
0.211 
0.204 
0.199 
0.193 
0.188 
0.170 
0.155 
0.86/V^ 

x = 0.15 

0.479 
0.422 
0.382 
0.351 
0.327 
0.308 
0.291 
0.277 
0.264 
0.254 
0.245 
0.237 
0.229 
0.222 
0.215 
0.210 
0.204 
0.199 
0.180 
0.164 
0.91/Vn 

a = 0.10 

0.511 
0.449 
0.406 
0.375 
0.350 
0.329 
0.311 
0.295 
0.283 
0.271 
0.261 
0.252 
0.244 
0.236 
0.229 
0.223 
0.218 
0.212 
0.191 
0.174 
0 . 9 6 / ^ 

max | F(x) — 

a = 0.05 

0.551 
0.487 
0.442 
0.408 
0.382 
0.360 
0.341 
0.325 
0.311 
0.298 
0.287 
0.277 
0.269 
0.261 
0.253 
0.246 
0.239 
0.234 
0.210 
0.192 
1 . 0 6 / ^ 

SM\ 

a = 0.01 

0.600 
0.548 
0.504 
0.470 
0.442 
0.419 
0.399 
0.380 
0.365 
0.351 
0.338 
0.326 
0.315 
0.306 
0.297 
0.289 
0.283 
0.278 
0.247 
0.226 
1.25A/S 

* Adapted from Table 1 of H. W. Lilliefors, On the Kolmogorov-Smirnov 
test for the exponential with mean unknown, J. Amer. Statist. Assoc. 64 (1969), 
388, with permission of the author and publisher. 
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Table 9 
Critical Values of D in the Kolmogorov-Smirnov Test 

for Normality with Mean and Variance Unknown* 

Sample 

size 
n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

Over 30 

a = 0,20 

0.300 
0.285 
0.265 
0.247 
0.233 
0.223 
0.215 
0.206 
0.199 
0.190 
0.183 
0.177 
0.173 
0.169 
0.166 
0.163 
0.160 
0.142 
0.131 
0.736/yn 

Level of significance for D = 

a = 0.15 

0.319 
0.299 
0.277 
0.258 
0.244 
0.233 
0.224 
0.217 
0.212 
0.202 
0.194 
0.187 
0.182 
0.177 
0.173 
0.169 
0.166 
0.147 
0.136 
0J6i./y/n 

a = 0.10 

0.352 
0.315 
0.294 
0.276 
0.261 
0.249 
0.239 
0.230 
0.223 
0.214 
0.207 
0.201 
0.195 
0.189 
0.184 
0.179 
0.174 
0.158 
0.144 
0.805/,/n 

max|<D(r) - z 

a = 0.05 

0.381 
0.337 
0.319 
0.300 
0.285 
0.271 
0.258 
0.249 
0.242 
0.234 
0.227 
0.220 
0.213 
0.206 
0.200 
0.195 
0.190 
0.173 
0.161 
0.U6/y/n 

a = 0.01 

0.417 
0.405 
0.364 
0.348 
0.331 
0.311 
0.294 
0.284 
0.275 
0.268 
0.261 
0.257 
0.250 
0.245 
0.239 
0.235 
0.231 
0.200 
0.187 
1031/^/n 

" Adapted from Table 1 of H. W. Lilliefors. On the Kolmogorov-Smirnov test for 
normality with mean and variance unknown, J. Amer. Statist. Assoc. 62 (1967), 400, 
with permission of the author and publisher. Correction for n = 25 provided by 
Professor Lilliefors. 
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A.4 The Laplace-Stieltjes Transform 

Table 10. Laplace Transform Properties and Identities5 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

Function 

fit) 

af(t) + bg(t) 

> ( * ) ' a 

f(t - a) for 

e~atf(t) 

tf(t) 

«»/(*) 

/o/(«)<?(*-

df{t) 
dt 

<rf{t) 
dtn 

J* f{x) dx 

oa 

> 0 

t >a 

- u)du 

parameter 

Transform 

/*[«] = j£e-" / («)* 

arm + bg*[0] 

af[a0] 

e-a6r[6\ 

/ * [ * + <*] 

dr\e\ 
dG 

v ; ddn 

r[B)g*\0] 

orm-m 
n 

0" /*[?!-53 *""* /(i_1)(°) 
m 

6 

dfy\ 
da 

5 All functions / are assumed to be piecewise continuous and of exponential order. 
That is, there exist positive constants M and a such that | / ( t) | < Meat for t > 0. 
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Table 11. Laplace Transform Pairs 

Function Transform 

1. f(t) r[0} = f~e-<»f(t)dt 

2. f(t) = c c 
6 

tn, n = 1,2,3, • 
0 n+l 

< . , a > 0 n-±il 
^a + l 

eot —L—, 9>a 
6-a 

6. 

7. 

8.6 

9. 

10.7 

11. 

teat 

tneat 

6{t) 

6(t - a) 

U(t - a) 

f(t - a)U(t --a) 

i , 6>a 
(6-a)2 

n ! Q> a 
{9 - a ) n + 1 

1 

e-a6 

e-ae 
e 

e-a9f*{6\ 

6The Dirac delta function «(•) is defined by 6{t) = 0 for t / 0 but f _ 6(t 
a)f(t) dt = /(a) for each / and each e > 0. 

7The unit step function U(-) is defined by 

1U. s f 0 for t < a 
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A.4.1 Goodness-of-Fit Tables 
Table 12. Upper Percentage Points for Kolmogorov-Smirnov and A2 

Tests with Parameters Known8 

Upper-tail significance level a 
Statistic 

T 
Significance Level a 

Modified T 0.10 0.05 0.025 0.01 

D+(D~) D+(v^ + 0 .12+°4 i ) 1.073 1.224 1.358 1.518 

D £>(,/n + 0.12+0-4i) 1.224 1.358 1.480 1.628 
/n 

A2 f o r a l l n>5 1.933 2.492 3.070 3.857 

Table 13. Upper Percentage Points for Kolmogorov-Smirnov and A2 

Exponentiality Tests, Mean Estimated8 

Upper-tail significance level a 
Statistic Significance Level a 

T Modified T 0J0 (T05 OJ025 OJOT 

(L2 w /r , n OR _I_ QJ5 D (J5_L^)(v/H + 0.26+^) 0.995 1.094 1.184 1 .298 

A2 A2{1.0+°j£) 1.062 1.321 1.591 1.959 

Table 14. Upper 
Normality Tests, 

Percentage Points for Kolmogorov-
Parameters Estimated8 

-Smirnov and A2 

Upper-tail significance level a 
Statistic 

T 
Significance Level 

Modified T 0.10 0.05 0.025 
a 

0.01 

0.85 D D(y/E - 0.01 + ^&) 0.819 0.895 0.995 1.035 

A2 yl2(1.0+04^ + 2 - # ) 0.631 0.752 0.873 1.035 

8Table 12 is adapted from Table 4.2, Table 13 from Table 4.11, and Table 14 from 
Table 4.7 of Goodness-of-Fit Techniques by R. B. D'Agostino and M. A. Stephens, Marcel 
Dekker, New York, 1986 with permission. 



Appendix B 

APL Programs 

All the APL programs mentioned in the book are listed here. The programs 
were written using the APL*PLUS system from STSC, Inc. As in the first 
edition of this book the programs are "naive" in the sense that with a 
few exceptions, no attempt has been made to optimize the efficiency of 
execution. The queueing theory programs are, for the most part, direct 
translations of the equations of Appendix C. No attempt has been made to 
organize the calculations to minimize round-off error or to avoid numerical 
instabilities. Therefore, no guarantee can be made that a given program will 
produce correct results. I have tested the programs extensively, however, 
and know of no errors in the programs. 

There are a number of excellent APL textbooks so I will not attempt to 
introduce the language here. My favorite introduction is the excellent book 
by Jerry R. Turner [5]. Ramsey and Musgrave [4] provide an elementary 
introduction to statistical computing in APL. The book by Gilman and 
Rose [1] is a classic and is current with PC versions of APL as well as APL2, 
the latest IBM version of APL. The short handbook by Dave Macklin [3] 
provides some useful public domain utility functions. It has a very practical 
format, so that one can see exactly how an included function works. I found 
Lee's Quick Reference Guide [2] indispensable when writing APL*PLUS 
code. 

Cited References 
[1] Leonard Gilman and Allen J. Rose, APL: An Interactive Approach, 3rd 

ed., John Wiley, New York, 1984. 

[2] Christopher H. Lee, Quick Reference Guide APLkPLUS System for the 
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PC, STSC, Rockville, MD, 1988. 

[3] Dave Macklin, The APL Handbook of Techniques, IBM, White Plains, 
NY, 1978. 

[4] James B. Ramsey and Gerald L. Musgrave, APL-STAT: A Do-It-
Yourself Guide to Computational Statistics Using APL, Lifetime Learn­
ing Publications, Wadsworth, Inc. Belmont, CA, 1981. 

[5] Jerry R. Turner, APL Is Easy!, John Wiley, New York, 1987. 
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B.l APL Programs 

V ALPHA AA2ASPEC Z 
[13 flTHIS FUNCTION PERFORMS THE ANDERSON-DARLING TEST 
[2 3 BFOR SPECIFIED DISTRIBUTION FUNCTION AS DEFINED IN 
C 33 AMY ALGORITHM 8.6.1. 
14 3 AA2«-C(-+N)x+/CCC2xI«-iN«-p.Z)-l)xCC»Z)+»(l-4>Z))»-N 
[53 'THE VALUE OF THE ANDERSON-DARLING STATISTIC A-SQUARED IS' 
[63 * A A 2 
[7 3 -»CCALPHA=0.01),£ALPHA=0.025).CALPHA=0.05))/S1.S2.S3 
[8 3 -»TEST 
[93 S1:-»CAA2>3.857)TEND 
[103 D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA' '.(ALPHA 
[113 -»0 
[123 S2:-»CAA2>3.07)TEND 
[13 3 D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA* ',»ALPHA 
[14 3 -»0 
[153 S3:-»CAA2>2.492)TEND 
[16 3 0«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA- '.(ALPHA 
[17 3 -»0 
[183 TEST: 
[193 ■»CCALPHA=0.1),CALPHA=0.15))/S4,S5 
[203 0<-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
[213 -*0 
[223 S4:-»(AA2>1. 933)TEND 
[23 3 D<-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= '.*ALPHA 
[243 -*0 
[253 S5:-»CAA2>1.61)TEND 
[26 3 0«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',»ALPHA 
[273 -»0 
[28 3 END: D«-'THE NULL HYPOTHESIS IS REJECTED FOR ALPHA' ' , *ALPHA 

V Z«-C BBCA A;B;N 
[13 BBBCA CALCULATES ERLANG'S B FORMULA WHERE 
[23 ftCIS THE NUMBER OF SERVERS AND A IS THE 
[33 ATRAFFIC INTENSITY OR OFFERED LOAD 
[4 3 Z«-A*l+A 
[53 N«-l 
[63 START:-»0xj.C<N<-N+l 
[73 ■»START.Z«-B+N+B«-AxZ 



642 APPENDIX B. APL PROGRAMS 

B.2 APL Programs 
V NAT BCMP D 

Cl] flTHIS PROGRAM EXECUTES ALGORITHM 6.3.1 
[2] flTHE CALL IS NAT BCMP D WHERE NAT IS THE CATENATION 
[3] BOF THE NUMBER OF TERMINALS WITH THE MEAN THINK TIME AND 
[4] DD IS THE VECTOR OF SERVICE DEMAND TIMES. STARTING WITH 
C5] fiTHAT FOR THE CPU. 
[6] N«-NAT[13 
[7 3 T4-NATC2 3 
[83 K«-pD 
[9 3 L»-KpO 
[103 14-0 
[113 L00P:-»PERFXLN<I«-I+1 
£12 3 W«-Dx(l+L) 
C13 3 WN<-+/W 
114 3 LAMBDA«-I+WN+T 
C153 3>LAMBDAXW 
[163 -»LOOP 
[17 3 PERFt'THE THROUGHPUT IS *.»LAMBDA 
[18 3 'THE RESPONSE TIME IS ',<WN 
[19 3 'THE SERVER UTILIZATIONS ARE • 
[203 *LAMBDAxD 
[213 'THE NUMBER AT EACH SERVER IS ' 
[223 *L 
[23 3 'THE RESPONSE TIME AT EACH SERVER IS ' 
[24 3 *W 
[25 3 'THE AVERAGE NUMBER OF CUSTOMERS IN COMPUTER SYSTEM' 
[263 'IS '.»+/L 

V 

V Z«-C2 BH2 EX;Q1;Q2;MU1;MU2 
[13 BBH2 CALCULATES THE PARAMETERS FOR A TWO STAGE HYPEREXPONENTIAL 
[23 ARANDOM VARIABLE WITH BALANCED MEANS THAT HAS A GIVEN SQUARED 
[33 ((COEFFICIENT OF VARIATION, C2. AND MEAN. EX. THE CALLING 
[4 3 BSEQUENCE IS *C2 BH2 EX'. THE OUTPUT IS THE VECTOR Q1AQ2AMU1AMU2 
[53 fiNEEDED AS THE LEFT PARAMETER BY THE TWO STAGE HYPEREXPONENTIAL 
[63 ((DISTRIBUTION FUNCTION H2ADIST. 
[7 3 Ql«-0.5x(l-C[CC2-l) + (C2 + l))*0.5)3 
[83 Q2<-1-Q1 
[93 MUl«-2xQlx+EX 
[10 3 MU2«-2xQ2x+EX 
[113 Z*-Q1.Q2,MU1.MU2 

V 

v z«-NP BINOMIAL K;X;Y;N;P;Q 
[13 fiBINOMIAL COMPUTES THE PROBABILITY THAT A BINOMIAL RANDOM VARIABLE 
[2 3 fiWITH PARAMETERS N AND P ASSUMES THE VALUE K. NP IS THE VECTOR 
[3 3 AFORMED BY CATENATING N AND P. 
[43 N«-NP[13 
[53 P«-NPt23 
[63 Q«-l-P 
[7 3 Z*-*(CCKx(«P))-(-lTX*-+\»VK)) + (CCN-K)x(«Q))-(-lTY«-+\»l.CN-K))) + C + /»vN)) 

7 
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B.3 APL Programs 
V Z«-I BINSUM PAN 

[13 BTHIS FUNCTION IS ESSENTIALLY A TRANSLITERATION OF THE FUNCTION 
[2 3 BPROGRAM 3-1 OF SHELDON ROSS'S BOOK "INTRODUCTION TO PROBABILITY 
C3 3 BAND STATISTICS FOR ENGINEERS AND SCIENTISTS". IF X IS A BINOMIAL 
C43 BRANDOM VARIABLE WITH PARAMETERS N AND P. AND I IS A NUMBER BETWEEN 
[5] RO AND N, BINSUM WILL CALCULATE THE PROBABILITY THAT Xsl. THE 
£63 fiCALL IS 'I BINSUM P.N '. THIS FUNCTION USES THE FUNCTION IF. 
[7] BLAST CHANGE 1/31/88 
[83 P«-1TPAN 
C9] N«-~1TPAN 
1103 S«-C1-P)*N 
C113 -»L1 IF S=0 
C12 3 A«-P+l-P 
C13 3 T«-S 
114 3 -»END IF 1 = 0 
tl53 Z«-UNx(Ipl))-CCl.I)-l)) + l.I 
[163 Z«-AxZ 
[173 Z[13«-SxZ[13 
[183 Z«-+/x\Z 
[19 3 T«-T+Z 
[203 Z«-T 
[213 -»END 
[223 L1:J«-I 
[233 -»JUMP IF(NxP3£j 
[24 3 J«-INXP 
[253 JUMP:Ul«-»CCCN+l)xCCJ)pl))-ClJ)) 
[263 U2*-»<taJ 
[273 I>+/CU1-U23 
[283 3>L+CJx«P) + (N-J)x»l-p 
[293 L«-*L 
[303 B«-C1-P)*P 
[313 T«-+/x\CCBx(<J>U)) + CCN-J) + (VJ3)) 
[32 3 -»ABEND IF J = I 
[33 3 C«-+B 
[34 3 T<-T+ + /x\CCxCC-CJ+lCI-J))) + CN+l))) + CJ + >.CI-J)) 
[353 ABEND:Z«-(T+l)xL 
[363 END:-*0 

V 

V Z«-BRANCH X 
[13 BTHIS FUNCTION DEMONSTRATES HOW THE FUNCTION " I F " WORKS. 
[23 BIF WAS BORROWED FROM THE APL HANDBOOK OF TECHNIQUES. 
[33 -»L1 IF X=0 
[4 3 -»L2 IF X*0 
[53 Ll:Z«-0 
[63 -»0 
[73 L2:Z«-1 

V 
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B.4 APL Programs 
V KAN CENT D 

[13 K«-KAN[13 
[2 3 N«-KANt2 3 
133 1>0XIK 
[4] M«-0 
t 5 3 START: ->ENDx I ( N<M«-M+1) 
163 W«-Dxl+L 
C7] WN«-+/W 
18 3 LAMBDAN«-M+WN 
[9] L«-LAMBDANxW 
tl03 -»START 
til3 END: "THE COMPUTER RESPONSE TIME IS ',»WN 
[12] 'THE THROUGHPUT IS '.CLAMBDAN 
[13] "THE UTILIZATION OF EACH DEVICE IS ' 
[14 3 LAMBDANxD 
[15] 'THE NUMBER OF CUSTOMERS AT EACH DEVICE IS' 
[16] L 

V 

v KAN CENTP PAS;K;D 
Cl] ACENTP CALCULATES THE STATISTICS FOR THE 
[23 RCENTRAL SERVER MODEL. IT USES THE FUNCTION 
[3] AFIX TO PROVIDE THE PARAMETER NEEDED FOR THE 
[4] APROGRAM CENT WHICH MAKES THE CALCULATIONS FOR 
[53 RTHE MODEL USING THE EXACT MVA ALGORITHM 
[63 K«-1TKAN 
[73 D«-K FIX PAS 
[83 KAN CENT D 

V 

7 Z«-T CHISQUAREADIST N:BETA;ALPHA 
[13 ACHISQUAREADIST IS THE DISTRIBUTION FUNCTION FOR A CHISQUARE 
[2 3 RRANDOM VARIABLE WITH N DEGREES OF FREEDOM. 
[ 3 3 BETA«-N+2 
[4 3 ALPHA«-0.5 
[53 BETAAALPHA«-BETA, ALPHA 
[63 Z+T GADIST BETAAALPHA 

V 

V ALPHA CHISQAEXPON Y;X 
[13 flTHIS FUNCTION PERFORMS THE CHISQUARE TEST ON THE SAMPLE. V. TO 
[2 3 ADETERMINE. AT THE ALPHA LEVEL OF SIGNIFICANCE. WHETHER OR NOT 
[3 3 AY IS A RANDOM SAMPLE FROM AN EXPONENTIAL POPULATION. 
[4 3 X4-SORT Y 
[53 XBAR«-C + /X)+N«-p,X 
[63 ACALCULATE QUARTILES 
[7 3 X25«--XBARx»0.75 
[83 X50«— XBARx»0.5 
[93 X75«--XBARx»0.25 
[103 O«-C + /CX<X25)).(+/UX25sX)A(X<X503)).( + /(CX50sX)A(X<X75)3), + /CX75sX) 
til] E«-4pN+4 
[12] CHISQ«-+/(CO-E)*2)+E 
tl3 3 Q4-CHISQ CHISQUAREADIST 2 
tl4 3 P«-l-Q 
tl53 'THE P VALUE IS '.»P 
116 3 -»(P<ALPHA)tEND 
[17 3 'THE POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA* ' ,»ALPHA 
[18 3 -»0 
[19 3 END:'THE NULL HYPOTHESIS MUST BE REJECTED FOR ALPHA- ',*ALPHA 

V 
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B.5 APL Programs 
V CHlAN Z 

[13 N*-p.Z 
[2 3 Z1«-IN 0.2 
[31 Z24-IN 0.4 
[43 Z3«-IN 0.6 
[53 Z4«-IN 0.8 
163 E«-5p(N+5) 
[7] 0«-l5 
[8] 0[13«-+/CZ<Z1) 
C9] 0C23«-+/(Z1SZ)ACZ<Z2) 
1103 Ot33«-+/(Z2SZ)A(Z<Z3) 
[113 Ot43«-+/(Z3aZ)A(Z<Z4) 
[123 0[53«-+/CZ4sZ) 
[133 CHISQ«-+/C(CO-E)*2)+[N+5)) 
[14 3 PVAL<-1-CHISQ CHISQUAREADIST 4 
[153 'THE VALUE OF CHISQUARE IS ',»CHISQ 
[16 3 'THE P-VALUE OF THE TEST IS •,*PVAL 

7 

7 P CONDEXPECT EXAYEX2AY 
[13 nCONDEXPECT CALCULATES THE MEAN ,EX. THE SECOND MOMENT. EX2. 
[23 flTHE VARIANCE . VARX, AND THE STANDARD DEVIATION ,SIGX. 
[33 flWHERE THE FIRST AND SECOND MOMENTS OF X GIVEN Y ARE KNOWN. 
[4 3 ftTO CALL TYPE ' P CONDEXPECT EXAYEX2AY ' WHERE P IS THE SET 
[53 fiOF VALUES OF THE PROBABILITY MASS FUNCTION OF Y AND 
[63 SEXAYEX2AY IS THE VECTOR OF CONDITIONAL EXPECTATIONS OF 
[7 3 AX GIVEN Y CATENATED WITH THE VECTOR OF THE SECOND CON -
[8 3 ADITIONAL MOMENTS OF X GIVEN Y. 
[9 3 N«-pP 
[103 EX«-+/PxNTEXAYEX2AY 
[113 EX2«-+/PxNAEXAYEX2AY 
[12 3 VARX«-EX2-EX*2 
[13 3 SIGX«-VARX*0.5 
[143 'THE MEAN OF X IS '.VEX 
[153 'THE SECOND MOMENT OF X IS ',»EX2 
[163 'THE VARIANCE OF X IS *,»VARX 
[17 3 'THE STANDARD DEVIATION IS '.»SIGX 

7 

7 Z«-C CACAA A;RHO;B 
[13 B«-C WBCA A 
[2 3 RHO«-A+C 
[33 Z«-B+URH0XB) + C1-RH0)) 

7 

7 LAMBDA DMAMAlAK ESA K A T ; E S ; K ; T ; A ; P 0 ; P ; Q 
[13 BTHIS FUNCTION COMPUTES THE DISTRIBUTION FUNCTION 
[2 3 nFOR BOTH QUEUEING TIME AND SYSTEM TIME FOR 
[33 fiTHE M/M/l/K QUEUEING SYSTEM. THE CALL IS 
[4 3 BlAMBDA DMAMAlAK ES. K. T. THE FUNCTION 
[53 APARTIALASUM IS USED BY THIS FUNCTION. 
[63 E S « - E S A K A T [ 1 3 
[7 3 K«-ESAKAT[2 3 
[83 T « - E S A K A T [ 3 3 
[93 A4-LAMBDAXES 
[103 P0«-C1-A) + 1-A*K+1 
[113 P«-P0xA*C"l+vK+13 
[123 Q«-P[lK3 + Cl-P[K+13J 
[13 3 MUAT«-T+ES 
[14 3 WT«-1- + /QXCMUAT PARTIALASUM K-l) 
[15 3 WQT«-l- + /C14.Q)x(MUAT PARTIALASUM K-2) 
[163 "THE PROBABILITY THE WAITING TIME IN THE SYSTEM,' 
[173 'IS NOT GREATER THAN T. WT, IS '.»WT 
[18 3 'THE PROBABILITY THE QUEUEING TIME. Q. ' 
[193 'IS NOT GREATER THAN T, WQT. IS ' ,»WQT 

7 
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B.6 APL Programs 
V Z«-K DWQAMRAl EOAESAT;EO;ES;T;NUMERATOR;DENOMINATOR 

tl] RTHIS FUNCTION IS THE DISTRIBUTION FUNCTION FOR THE 
[23 RQUEUEING TIME, WQ, FOR THE MACHINE REPAIR MODEL WITH 
[33 RONE REPAIRMAN. THE CALL IS K DWQAMRAl EO, ES, T. IN THE 
[4] RCALL K IS NUMBER OF MACHINES. EO THE AVERAGE UP TIME 
153 RFOR A MACHINE, AND T IS THE TIME. THUS 
C6] R20 DWQAMRAl 80,2.5 YIELDS 0.8931653946. 
[7 3 EO«-EOAESAT[13 
[8] ES«-EOAESAT[2 3 
C9] T«-EOAESAT[3 3 
[103 NUMERATORS CEO+T3+ES3POISSONADIST K-2 
[113 DENOMINATORS EO+ES3POISSONADIST K-l 
[12 3 Z«-l-NUMERATOR*DENOMINATOR 

V 

7 z«-KAC DWQAMRAC EOAESAT;K;C;EO;ES;T;P0;Q1;P 
[13 RTHIS IS THE DISTRIBUTION FUNCTION FOR THE QUEUEING TIME 
[2 3 ROF A MACHINE IN A MACHINE REPAIR MODEL WITH K MACHINES 
[3 3 RAND C REPAIRMEN. 
[43 K«-KAC[13 
[53 C«-KAC[2 3 
[63 EO«-EOAESAT[13 
[7 3 ES«-EOAESAT[2 3 
[8 3 T « - E O A E S A T [ 3 3 
[93 P0«-CK,C)POCEO.ES) 
[103 Ql«-CCxCEO+T)*ES)POISSONADIST K-C+l 
[113 P<-CCxEO+ES)POISSON K-l 
[123 Z<-l-CC*C)xPOxQl*C!C)xp 

7 

v z«-c DWQAMAMAC AAESAT;A;ES;T 
[13 RTHIS THIS IS THE DISTRIBUTION FUNCTION FOR QUEUEING 
[2 3 RTIME FOR THE M/M/C QUEUEING SYSTEM. THE CALL IS 
[33 RA DWQAMAMAC A.ES.T. 
[4 3 A«-AAESAT[1] 
[53 ES«-AAESAT[2 3 
[63 T*-AAESAT[3 3 
[7 3 CCA«-C CACAA A 
[8 3 Z«-l-CCAx*-CC-A)xT+ES 

V 

V Z«-K DWAMRAl EOAESAT;EO;ES:T;NUKERATOR;DENOMINATOR 
[13 RTHIS FUNCTION IS THE DISTRIBUTION FUNCTION FOR THE 
[2 3 RSYSTEM TIME, W. FOR THE MACHINE REPAIR MODEL WITH 
[33 RONE REPAIRMAN. THE CALL IS K DWAMRAl EO. ES. T. 
[4 3 RK IS THE NUMBER OF MACHINES, EO THE AVERAGE UP TIME 
[53 RFOR A MACHINE, AND T IS THE TIME. THUS 
[63 R20 DWAMRAl 80.2.5 YIELDS 0.751742371. 
[7 3 EO«-EOAESAT[13 
[83 ES«-EOAESATC2 3 
[93 T<-EOAESAT[3 3 
[103 NUMERATOR*CCEO+T3+ES3POISSONADIST K-l 
[113 DENOMINATOR*-CEO+ESJPOISSONADIST K-l 
[12 3 Z«-l-NUMERATOR+DENOMINATOR 

7 
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v Z«-KAC DWAMRAC EOAESAT;K;C;EO;ES:T;P0;Q1:Q2;P;C1;C2 

[1] RTHIS IS THE DISTRIBUTION FUNCTION FOR THE TOTAL TIME A 
[2] ft.MACHINE IS DOWN IN A MACHINE REPAIR MODEL WITH K MACHINES 
[3] RAND C REPAIRMEN. 
[43 K«-KACm 
[5] C«-KAC[23 
[63 E0«-E0AESAT[13 
[7] ES«-EOAESAT[2 3 
[83 T*-EOAESAT[3 3 
[93 P0«-(K.C)POCEO.ES3 
1103 Ql«-CCx(EO+T)+ES)POISSONADIST K-C+l 
£113 Q2«-CCxEO+ES)POISSONADIST K-C+l 
C123 P«-(CxEO+ES)POISSON K-l 
C133 C2«-CC*C)xP0+( !C)x(C-l)xC !K-C+l)xP 
[14 3 Cl«-l + CC2xQ2) 
[153 Z«-(l-Clx*-T+ES)+C2xQl 

7 

v Z4-c D W A M A M A C AAESAT;CCA;A;ES;T;Cl;C2 
[13 RTHIS IS THE DISTRIBUTION FUNCTION FOR TIME IN THE 
[2 3 RSYSTEM, W. FOR AN M/M/C QUEUEING SYSTEM. THE CALL 
[33 RIS C DWAMAMAC A.ES.T. 
[4 3 A « - A A E S A T [ 1 3 
[53 E S « - A A E S A T [ 2 3 
[63 T«-AAESAT[3 3 
[7 3 CCA«-C CACAA A 
[8 3 RHO«-A+C 
[93 -»EXCEPTxiA=C-l 
[103 C1«-(A+1-CC+CCA))+C-CA+1) 
[113 C2«-CCA+A+1-C 
[12 3 Z«-l + (Clx*(-T+ES))-C2x*(-CxTx(l-RHO)+ES) 
[13 3 -»0 
[14 3 EXCEPT: Z«-l-Cl+CCAxT+ES)x*C-T+ES) 

V 

7 Z«-T ERLANG JCAEX;Y 
[13 RFINDS THE PROBABILITY THAT AN ERLANG-K RANDOM VARIABLE X WITH MEAN EX 
[2 3 RASSUMES A VALUE LESS THAN OR EQUAL TO T; THAT IS. IT IS THE 
C3 3 RDISTRIBUTION FUNCTION OF X. 
[43 Y<-KAEXm.KAEXm+KAEX[2 3 
[53 Z«-T GADIST Y 

V 
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B.8 APL Programs 
V ALPHA E X P O N A T X 

Cl] BTHIS FUNCTION CALCULATES THE EDF STATISTICS D. WASQUARED, UASQUARED, 
[2 3 RAND AASQUARED FOR TESTING FOR EXPONENTIALITY AS DESCRIBED BY 
[33 ASPINELLI AND STEPHENS, TECHNOMETRICS. NOVEMBER 1987. 
[4] fiTHE FUNCTION ALSO TESTS THE MODIFIED ANDERSON*DARLING (AASQUARED) 
[53 RAT SEVERAL LEVELS OF SIGNIFICANCE USING THE TABLE ON PAGE 135 
[63 fiOF THE STEPHEN'S BOOK. HE HAVE MODIFIED THE CACLCULATION HERE 
[7] fiFOR THE NONSHIFTED EXPONENTIAL ONLY AS DESCRIBED BY STEPHENS IN 
[8] BHIS BOOK ON PAGES 134 AND 101 
[9] X«-X[*X3 
[10] XBAR«-C + /X) + CN«-p.X) 
til] 'XBAR IS ',»XBAR 
[ 12 ] W«-X+XBAR 
[13] Z«-l-*-W 
[14] K-1.N 
[15] DPLUS«-r/C(I+N)-Z) 
[16] DMINUS«-r/(Z-CI-l)+N) 
[17] D«-DPLUS [ DMINUS 
[18] V«-DPLUS+DMINUS 
[19] 'THE VALUE OF THE KOLMOGOROV-SMIRNOV STATISTIC, D. IS ' ,*D 
[20] MD«-CD-0.2+N)x((SN)+0.26 + 0.5+SN«-N*0.5) 
[21] 'THE MODIFIED VALUE OF D IS ',»MD 
[22] MV«-CV-0.2+SN)xCSN+0.24 + 0.35+SN) 
[23] "THE VALUE OF V IS ',*V 
[24] 'THE MODIFIED VALUE OF V IS ',»MV 
[25] WA2<-+/CZ-CU2xI)-l)+2xN))*2 
[26] WA2«-WA2 + + 12xN 
[27] 'THE VALUE OF THE CRAMER-VON MISES STATISTIC. WASQUARED, IS '.*WA2 
[28] ZBAR*C+/Z)*N 
C29] U A 2 « - W A 2 - N X ( C Z B A R - 0 . 5 ) + 2 ) 
[30] 'THE VALUE OF THE WATSON STATISTIC. UASQUARED, IS ',*UA2 
[31] AA2«-U-+N)x + /CC(2xI)-l)x( [«)+•( l-<t>Z))))-N 
[32] 'THE VALUE OF THE ANDERSON-DARLING STATISTIC. AASQUARED, IS ',*AA2 
[33] MAAA2*-AA2x(l+C0.6*N)) 
[34] 'THE VALUE OF THE MODIFIED ANDERSON-DARLING STATISTIC IS ',»MAAA2 
[35] -»CCALPHA=0.01).CALPHA=0.025).CALPHA=0.05))/S1,S2,S3 
[36] -»TEST 
[37] Sls-»CMAAA2>1.959)TEND 
[38] D«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ',#ALPHA 
[39] -»0 
[40] S2:-»(MAAA2>1.591)tEND 
[41] 0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA* ',*ALPHA 
[42] -»0 
[43] S3:-»CMAAA2>1.321)TEND 
[44] 0<-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA = ' , * ALPHA 
[45] -»0 
[46] TEST: 
[47] ■♦( (ALPHA=0.1) , CALPHA=0.15) , CALPHA=0. 25) )/S4 ,S5 ,S6 
[48] 0«-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
[49] -»0 
[50] S4:-»(MAAA2>1.062)TEND 
[51] D<-'POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ',*ALPHA 
[52] -»0 
[533 S5:-»CMAAA2>0.916)TEND 
[ 54 ] 0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA = ' , *ALPHA 
[55] -»0 
[56] S6:-»CMAAA2>0.736)tEND 
[57] 0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ',*ALPHA 
[58] -»0 
[59] END: D«-' THE POPULATION IS NOT EXPONENTIAL FOR ALPHA= ' . *ALPHA 
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[ i ] 
[2] 
m 
[4] 
[5] 
[6] 
[7] 
[8] 
[93 
[10 
[11 
[12 
[13 
[14 
[15 
[16 
[17 
[18 
[19 
[20 
[21 
[22 
[23 
[24 
[25 
[26 
[27 
[28 
[29 
[30 
[31 
[32 
[33 
[34 
[35 
[36 
[37 
[38 
[39 
[40 
[41 
[42 
[43 
[44 
[45 
[46 
[47 
[48 
[49 
[50 
[51 
[52 
[53 
[54 
[55 
[56 
[57 

7 ALPHA EXPONATEST X 
fiTHIS FUNCTION CALCULATES THE EDF STATISTICS D. WASQUARED, UASQUARED, 
BAND AASQUARED FOR TESTING FOR EXPONENTIALITY AS DESCRIBED BY 
BSPINELLI AND STEPHENS. TECHNOMETRICS, NOVEMBER 1987. 
ATHE FUNCTION ALSO TESTS THE MODIFIED ANDERSON*DARLING (AASQUARED) 
BAT SEVERAL LEVELS OF SIGNIFICANCE USING THE TABLE ON PAGE 473 
BOF THE REFERENCED PAPER. 
X«-SORT X 
XBAR<-C + /X)+N«-p.X 
'XBAR IS ' ,*XBAR 
BHAT«-NxCXBAR-X[ 1] )+N-l 
' BHAT IS ' , *BHAT 
AHAT«-X [ 1 ] -BHAT+N 
•AHAT IS * ,»AHAT 
W«-CX-AHAT)+BHAT 
Z«-l-*-W 
I«-tN 
DPLUS«-r/CCI+N)-Z) 
DMINUS«-r/CZ-CI-l)*N) 
D«-DPLUSrDMINUS 
V*-DPLUS + DMINUS 
'THE VALUE OF THE KOLMOGOROV-SMIRNOV STATISTIC, D, IS ',*D 
'THE VALUE OF SQUARE-ROOT OF N TIMES D IS ',*CN*0.5)xD 
•THE VALUE OF SQUARE-ROOT OF N TIMES V IS ',»CN*0.5)xV 
WA2«-C + /CZ-CU2xI)-l)+2xN))*2)++12xN 
•THE VALUE OF THE CRAMER-VON MISES STATISTIC. WASQUARED, IS ',*WA2 
ZBAR«-( + /Z)+N 
UA2«-WA2-Nx(CZBAR-0.5)*2) 
•THE VALUE OF THE WATSON STATISTIC, UASQUARED. IS '.*UA2 
AA2«-CC-+N)x + /CU2xI)-l)x((»Z)+»Cl-<l>Z))))-N 
•THE VALUE OF THE ANDERSON-DARLING STATISTIC, AASQUARED, IS '.*AA2 
MAAA2«-AA2X(1+C5.4*N)-C11*NXN)) 
•THE VALUE OF THE MODIFIED ANDERSON-DARLING STATISTIC IS ',*MAAA2 
-»CCALPHA=0.01),(ALPHA=0.025),CALPHA=0.05))/S1,S2,S3 
-»TEST 
S1:-»CMAAA2>1.959)TEND 
D«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ' , *ALPHA 
-»0 

S2:-KMAAA2>1. 591)TEND 
0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ' , »ALPHA 
■♦0 
S3:-»CMAAA2>1.321)TEND 
0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA* ' . *ALPHA 
-»0 

TEST: 
-»C(ALPHA=0.1).CALPHA=0.15),CALPHA=0.25))/S4,S5,S6 
D«-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
-»0 
S4:-»CMAAA2>1. 062) TEND 
D«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ' , »ALPHA 
-»0 
S5:-»CMAAA2>0. 916)TEND 
D«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ' , »ALPHA 
•♦0 
S6:-»CMAAA2>0. 736) TEND 
D«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ' , »ALPHA 
-»0 

END: D«-' THE POPULATION IS NOT EXPONENTIAL FOR ALPHA= '.*ALPHA 
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v EK-K FIX PAS;P;S;VCPU;TRUNCP;VEND;V 

£13 BTHIS FUNCTION IS NEEDED BY THE PROGRAM CENTP 
£2 3 fiTO SET UP THE PARAMETERS FOR THE FUNCTION CENT 
£3 3 P«-KTPAS 
£4 3 S«-K1PAS 
£53 VCPU«-+PE13 
£63 TRUNCP«-14P 
£ 7 3 VENEX-TRUNCPxVCPU 
£8 3 V«-VCPU,VEND 
E 9 3 IX-VXS 

V 

V Z<-C2 GH2 EX;Q1;Q2:MU1;MU2 
£13 BGH2 CALCULATES THE PARAMETERS Ql, Q2. MU1, AND MU2 FOR THE TWO 
£2 3 ftSTAGE HYPEREXPONENTIAL DISTRIBUTION WITH THE GAMMA NORMALIZATION. 
£3 3 fiTHE CALLING SEQUENCE IS ' C2 GH2 EX' WHERE C2 IS THE DESIRED SQUARED 
£4 3 RCOEFFICIENT OF VARIATION AND EX IS THE DESIRED MEAN. 
£53 fiTHE OUTPUT IS THE VECTOR Q1AQ2AMU1AMU2 THAT IS NEEDED AS THE LEFT 
£63 ftPARAMETER OF THE TWO STAGE HYPEREXPONENTIAL DISTRIBUTION FUNCTION 
£73 BH2ADIST 
£83 MUl«-C2*EX)xl+((C2-0.5) + EC2 + l) )*0.5 
£9 3 MU2«-C4+EX)-MU1 
£103 Ql«-MUlxCCMU2xEX)-l)+MU2-MUl 
£113 Q2«-1-Q1 
£12 3 Z«-Q1.Q2.MU1,MU2 

V PIO G I A M A I L A M B D A A E S 
£13 HTHIS FUNCTION COMPUTES THE PERFORMANCE STATISTICS 
£2 3 fiFOR THE GI/M/1 QUEUEING SYSTEM. THE CALL IS 
£33 ftPIO GIAMA1 LAMBDA ES WHERE PIO IS THE PROBABILITY 
£43 BAN ARRIVING CUSTOMER WILL FIND THE SYSTEM EMPTY. 
E 5 3 LAMBDA«-LAMBDAAES £ 13 
£63 E S « - L A M B D A A E S £ 2 3 
£7 3 RHO«-LAMBDAxES 
£8 3 'SERVER UTILIZATION, p. IS ',»RHO 
£9 3 W«-ES+PI0 
£10 3 WQ«-W-ES 
£113 VARQ«-Cl-PIO*2)x(ES*PIO)*2 
£12 3 SIGQ<-VARQ*0.5 
£13 3 C2Q<-VARQ*WQ*2 
£14 3 'THE AVERAGE QUEUEING TIME. WQ , IS *.*WQ 
£15 3 'WITH STANDARD DEVIATION. SIGQ. '.»SIGQ 
£163 'C-SQUARED FOR Q, C2Q, IS *,»C2Q 
£17 3 '90TH PERCENTILE QUEUEING TIME, PIQ90. IS' 
E183 0«-PIQ90«-CWx«10xCl-PI0))f0 
£19 3 '95TH PERCENTILE QUEUEING TIME. PI95, IS' 
£203 0«-PIQ95«-(Wx»20x(l-PI0))r0 
£213 'THE DISTRIBUTION OF QUEUEING TIME FOR THOSE WHO' 
£223 'MUST IS THE SAME AS W. THAT IS, EXPONENTIAL.' 
£23 3 'THE AVERAGE WAITING TIME IN THE SYSTEM, W, IS' 
£243 W 
£25 3 'WITH STANDARD DEVIATION ',»W 
E26 3 'C-SQUARED FOR W IS 1. SINCE W IS EXPONENTIAL ' 
£27 3 '90TH PERCENTILE WAITING TIME IN THE SYSTEM, PIW90,' 
£28 3 ' I S '.*Wx«10 
£29 3 '95TH PERCENTILE WAITING TIME IN THE SYSTEM, PIW95,* 
£303 ' IS ',*Wx«20 
£313 LQ«-LAMBDAXWQ 
£32 3 I>LAMBDAXW 
£333 VARN«-RHOxC2-CPI0+RHO))+PI0*2 
£34 3 VARNQ«-RHOx(l-pi0)x((2-PI0)-RHOxCl-PI0))+PI0*2 
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[35] SIGN«-VARN*0.5 
[36] SIGNQ«-VARNQ*0.5 
[37] 'THE AVERAGE NUMBER IN THE QUEUE, LQ, IS' 
[38] LQ 
[39] 'THE STANDARD DEVIATION OF NQ, SIGNQ, IS' 
[40] SIGNQ 
[41] 'THE AVERAGE NUMBER IN THE SYSTEM. L. IS' 
[42] L 
[43] 'THE STANDARD DEVIATION OF N. SIGN, IS' 
[44 3 SIGN 

V 

V X«-T GADIST B E T A A A L P H A 
[I] BGADIST IS THE DISTRIUTION FUNCTION FOR A GAMMA RANDOM VARIABLE WITH 
[2] ^PARAMETERS BETA AND ALPHA. THE NOTATION WE USE IN THE SECOND EDITION. 
[3] ATHE CORRESPONDING NOTATION IN THE FIRST EDITION IS ALPHA AND LAMBDA. 
[4] SIN THE SECOND EDITION NOTATION TO CALCULATE THE PROBABILITY THAT SUCH 
[5] AA RANDOM VARIABLE ASSUMES A VALUE ST, TYPE 'T GADIST BETA,ALPHA' 
[6 3 AFOR EXAMPLE, TO CALCULATE THE PROBABILITY REQUESTED IN THE FIRST PART 
[7] BOF EXAMPLE 3.25, TYPE '7.2 GADIST 2.5 0.5' AND GET THE ANSWER 0.79381408. 
[8] AWE USED PART OF THE FUNCTION IGF FROM ANSCOMBE'S BOOK. 
[ 9 3 A«-BETA AALPHA [ 1 ] 
[10] Z<-BETAAALPHA [ 2 ] xT 
[II] X«-A IGF Z 

7 
V Z4-Q1AQ2AMU1AMU2 H2ADIST X 

[1] BH2ADIST IS THE DISTRIBUTION FUNCTION OF A TWO-STAGE HYPEREXPONENTIAL 
[2] ARANDOM VARIABLE, U. THE CALLING SEQUENCE IS 'Y H2ADIST X*. Y IS A VECTOR 
[3] AOBTAINED BY CATENATING Ql. Q2. MUl, AND MU2 AND X IS THE VALUE IN THE 
[4] AFORMULA 'P[UsX3' WHERE U IS THE HA2 DISTRIBUTION IN QUESTION. 
[5] Ql«-QlAQ2AMUlAMU2[l] 
[6] Q2«-Q1AQ2AMU1AMU2[2] 
[7] MU1«-Q1AQ2AMU1AMU2 [ 3 ] 
[8] MU2«-Q1AQ2AMU1AMU2U] 
[9] Z«-l-CCQlx*-MUlxX) + CQ2x*-MU2xX)) 

V 

V Z«-C HAM A;RHO 
[1] Z«-B-KRHOxB«-C BBCA A) + l-RHO«-A+C 

y 

V Z«-K HYPERG MANAR 
[1] M«-MANAR[1] 
[2] N«-MANAR[2] 
[3] R«-MANAR[3] 
[4] Z«-CK!R)xC(M-K)!CN-R)) + CM!N) 
[5] ATHIS FUNCTION CALCULATES THE PROBABILITIES FOR A HYPERGEOMETRIC 
[6] ARANDOM VARIABLE. IN THE NOTATION GIVEN JUST BEFORE EXERCISE 11 
[7] AIN CHAPTER 3 OF THE SECOND EDITION M (WHICH WE CALLED LITTLE N) 
[8] AIS THE SIZE OF THE SAMPLE. N IS THE SIZE OF THE POPULATION, AND 
[9] HR IS THE NUMBER OF RED ELEMENTS. THIS FUNCTION CALCULATES THE 
[10] APROBABILITY THAT EXACTLY K RED ELEMENTS ARE FOUND IN THE SAMPLE 
[113 AOF SIZE M. THE CALL IS K HYPERG M.N.R. 

V 
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B.12 APL Programs 
V Z«-J HYPERGADIST MANAR;! 

[13 Z«-0 
[23 I«-"l 
t33 START:->OxvJ<I«-l+l 
[4 3 Z«-Z+I HYPERG M A N A R 
[53 -»START 
£63 fiTHIS FUNCTION IS THE DISTRIBUTION FUNCTION FOR A 
[73 BHYPERGEOMETRIC DISTRIBUTION WITH PARAMETERS M, N, AND R. 
[83 BIT CALLS THE FUNCTION HYPERG. SEE THAT FUNCTION FOR MORE 
[93 BDISCUSSION. THE CALL IS J HYPERGADIST M.N.R. IT RETURNS 
[103 BTHE PROBABILITY THAT THE RANDOM VARIABLE ASSUMES THE VALUE 
[113 BNOT EXCEEDING J. 

V 

V Z«-A IF B 
[13 BIF IS A VERY USEFUL FUNCTION BORROWED CIN THE TOM SAWYER SENSE) 
[2 3 BFROM THE APL HANDBOOK OF TECHNIQUES, IBM ORDER NUMBER 
[33 AS320+5996. IT IS USED IN MANY OF MY FUNCTIONS. SEE. FOR 
[4 3 BEXAMPLE, BRANCH. WHICH WAS WRITTEN TO TEST IT. 
[53 Z«-BJ<A 

V 

V S«-A IGF Z;J;K;R 
[13 ATHIS IS THE INCOMPLETE GAMMA FUNCTION ADAPTED FROM THE VERSION IN 
[2 3 BTHE FRANCIS ANSCOMBE BOOK 'COMPUTING IN STATISTICAL SCIENCE THROUGH 
[3 3 flAPL. IN THE NOTATION I USE IN THE SECOND EDITION OF MY BOOK, THE 
[4 3 fiCALLING SEQUENCE IS *A IGF Z* WHERE A IS BETA AND Z IS ALPHAxT. 
[53 BTHE VALUE CALCULATED IS THE VALUE OF THE DISTRIBUTION FUNCTION 
[63 BOF A GAMMA RANDOM VARIABLE WITH PARAMETERS BETA AND ALPHA AT 
[7 3 BTHE POINT T. 
[8 3 -»DLC+l+(A/,A>0)A(0 = ppA)AppZ«-,ZrO 
[93 •*0.pD«-'NO GO. ' ,S«-' ' 
[103 -»(A=IA)/L2 
[113 S«-Z*Z 
[123 -*C0=K«-+/J«-Z*7.107)/L1 
[13 3 S[J/\.pS3«-l-C*-J/Z)x(CJ/Z)o.*A-lR) + . + (l+R=l.R)x!A-l.R«-r7.107+A 
[143 L1:-»C0 = K < - + / J « - C Z > 0 ) A ~ J ) / 0 
[15 3 -»0,S[J/lpS]«-C*-J/Z)x((CJ/Z)o.*-l+A+>.R)xl+C + 2x-l+CA+R)+J/Z)o.xR=i.R) + .-i-!-l+A 
[16 3 L2:S«-l-C*-Z)x(Zo.*-l+».A) + . + !-l + J.A 

V 

V X*IN P;T 
[13 BTHIS IS ESSENTIALLY ANSCOMBE'S FUNCTION INIF. HE SAYS IT IS THE 
[23 BODEY-EVANS APPROXIMATION. ''IN'* IS THE INVERSE STANDARD NORMAL 
[3 3 BFUNCTION. 
[4 3 T«-PL1-P 
[53 T*-C-2xeT)*0.5 
[63 Y«- 0.09934846266 0.588581570495 0.531103462366 
[73 Y«-Y, 0.10353775285 3.8560700634E-3 
[83 X«-(xp-0.5)xT-C(To.*0.V4) + .x 0.322232431088 1 0.342242088547 0.020423121024 
[93 

V ALPHA KS XAY 
[13 N«-CpXAY) + 2 
[23 X«-NTXAY 
[33 Y«-NiXAY 
[43 FJ«-UN)+N 
[53 FJ1«-CUN)-1)+N 
[63 DPLUS«-r/FJ-Y 
[7 3 DMINUS«-r /Y-FJ1 
[83 D«-DPLUS[DMINUS 
[93 MD«-Dx(CN*0.5) + 0.12+C0.11+N*0.5)) 
[103 'MODIFIED D IS '.*MD 

V 
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V ALPHA KSAEXPON Y 

[13 flTHIS FUNCTION PERFORMS THE KOLMOGOROV-SMIRNOV TEST 
£23 fiFOR EXPONENTIAL DISTRIBUTION (UNKNOWN MEAN) AS DEFINED IN 
[33 ASCHEAEFFER AND MCCLAVE ON PAGE 329. 
[4 3 FJ«-UN)+N«-pY 
[53 FJ1<-(UN)-1)+N 
[63 YBAR«-£ + /Y)+N 
[73 FY«-l-*-Y+YBAR 
[8 3 DPLUS«-r/FJ-FY 
[93 DMINUS«-r/FY-FJl 
[103 D«-DPLUSrDMINUS 
[113 MD*-(D-0.2+N)x((N*0.5)+0.26 + (0.5+N*0.5)) 
[12 3 'MODIFIED D IS *.*MD 
[13 3 -»(<ALPHA=0.01).(ALPHA=0.025).CALPHA=0.05))/S1,S2.S3 
[14 3 -»TEST 
[153 Sl:-»CMD>1.308)tEND 
[163 O'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ' ,»ALPHA 
[173 -»0 
[183 S2:-»(MD>1.19)TEND 
[193 D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA = ',»ALPHA 
[203 -»0 
[213 S3:-»(MD>1.094)TEND 
[22 3 0«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= *.»ALPHA 
[23 3 -»0 
[24 3 TEST: 
[253 -»( (ALPHA=0.1) . (ALPHA=0.15) ) /S4 ,S5 
£263 D*-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
£273 -»0 
£283 S4:-KMD>0.99)TEND 
[29 3 £3«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',*ALPHA 
[303 -»0 
£313 S5:-»£MD>0.926)TEND 
[32 3 0«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',*ALPHA 
£33 3 -+0 
[343- END: D«-' THE NULL HYPOTHESIS IS REJECTED FOR ALPHA= '.»ALPHA 

V 
V ALPHA KSANORMAL Y 

£13 flTHIS FUNCTION PERFORMS THE KOLMOGOROV-SMIRNOV TEST 
£2 3 flFOR NORMAL DISTRIBUTION (UNKNOWN MEAN AND VARIANCE) 
[33 RAS DEFINED BY SCHEAEFFER AND MCCLAVE ON PAGE 329. 
(43 FJ«-UN)+N«-pY 
[53 FJ1«-(UN)-1)+N 
[63 YBAR«-£ + /Y)+N 
[73 S«-C( + /£Y-YBAR)*2)+N-1)*0.5 
[83 FY«-NDIST(Y-YBAR)+S 
[93 DPLUS«-r /FJ-FY 
[103 DMINUS«-[/FY-FJl 
[113 D«-DPLUSrDMINUS 
[12 3 MD«-Dx(((N*0.5)-0.01) + £0.85+N*0.5)) 
[133 'MODIFIED D IS ',*MD 
[14 3 ■♦((ALPHA=0.01),(ALPHA=0.025).(ALPHA=0.05))/S1,S2,S3 
[ 15 3 -»TEST 
[163 Sl:-»(MD>1.035)tEND 
£17 3 D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= *.*ALPHA 
£18) -»0 
£193 S2:-»(MD>0.955)TEND 
£203 0<-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= * ,*ALPHA 
£213 -»0 
£223 S3:-»(MD>0.895)TEND 
£23 3 D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ' ,»ALPHA 
£243 -»0 
[253 TEST: 
£26 3 -»(£ALPHA=0.1),(ALPHA=0.15))/S4.S5 
£27 3 D*-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
£283 -»0 
£293 S4:-KMD>0. 819)TEND 
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I30D D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',»ALPHA 
[311 -»0 
[32] S5:-»CMD>0.775)TEND 
[33 3 D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',»ALPHA 
[34] -»0 
[35] END:D«-'THE NULL HYPOTHESIS IS REJECTED FOR ALPHA* *.*ALPHA 

V 
V ALPHA KSASPEC FY 

[I] BTHIS FUNCTION PERFORMS THE KOLMOGOROV-SMIRNOV TEST 
[2] RFOR SPECIFIED DISTRIBUTION FUNCTION AS DEFINED IN 
[3] BSCHEAEFFER AND MCCLAVE ON PAGE 329. 
[4] FJ«-UN)-i-N«-pFY 
[ 5 ] F J K - U U O - D + N 
[ 6 ] DPLUS«-[/FJ-FY 
[ 7 ] DMINUS«-r/FY-FJl 
[ 8 ] D«-DPLUSrDMINUS 
[ 9 ] MD«-Dx(CN*0.5) + 0 . 1 2 + C 0 . 1 1 + N * 0 . 5 ) ) 
[10] 'MODIFIED D IS *,*MD 
[II] -»((ALPHA=0.01).(ALPHA=0.025),(ALPHA=0.05))/S1,S2,S3 
[ 12 ) -»TEST 
[13] S1:-»CMD>1.626)TEND 
[ 14 ] D«-' NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ' . *ALPHA 
[15] -»0 
[16] S2:-»CMD>1.48)TEND 
[17] 0«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',*ALPHA 
tl8] -»0 
[19] S3:-KMD>1.358)TEND 
[20] Q«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ' , »ALPHA 
[21] -»0 
[22] TEST: 
[23] -KCALPHA=0.1),CALPHA=0.15))/S4,S5 
[24] a*-'ALPHA IS NOT ONE OF THE ALLOWED VALUES* 
[25] -»0 
[26] S4:-»(MD>1.224)TEND 
[27] 0«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ' , *ALPHA 
[28] -»0 
[29] S5:-»CMD>1.138)TEND 
[30] D«-'NULL HYPOTHESIS APPEARS TO BE TRUE FOR ALPHA= ',»ALPHA 
[31] -»0 
[32] END: D«-' THE NULL HYPOTHESIS IS REJECTED FOR ALPHA= ',»ALPHA 

7 
V X MACHAREP Y 

[I] RTHIS FUNCTION CALCULATE THE STATISTICS FOR THE MACHINE REPAIR 
[2] BQUEUEING SYSTEM WITH K MACHINES AND C REPAIRMEN. 
[3] fiCALLING SEQUENCE IS X MACHAREP Y WHERE X IS THE VECTOR 
[4] BK. C AND Y IS THE VECTOR EO. ES WHERE EO IS THE AVERAGE TIME 
[5] BA MACHINE IS IN OPERATION AND ES IS THE AVERAGE REPAIR TIME. 
[6] K«-X[l] 
[7] C«-X[2] 
[8] EO«-Y[l] 
[9] ES<-Y[2] 
[10] Zl«-*Z«-EO*ES 
[II] PNAPO«-l,CJ!K)xZl*CJ«-lC) 
[12] PNAPO«-PNAPO.C!J)x( + !C)xC + CC*(J-CmxCJ!K)xZl*CJ«-C+lK-C) 
[13] P«-PNAP0xP0«"r + /PNAP0 
[14] BP IS THE VECTOR OF PROBABILITES THAT THERE ARE N 
[15] BMACHINES DOWN FOR N=0. 1 K. 
[16] LQ«-+/P[(C+l) + \.K-C]xi.K-C 
[17] WQ<-LQXCE0+ES)*CK-LQ) 
[ 18 ] LAMBDA«-K-i-ETB«-EO+WQ+ES 
[ 19 ] RH0«-LAMBDAXES*C 
[20] W«-WQ+ES 
[21] L«-LAMBDAXW 
C22] Q«-KtCK-C"l+lK+l)Jxp+K-L 
[23] D«-+/P[C+tK-C-13 
[24] WQAD«-WQ+D 
[25] N2«-+/Px(_l + iK+l)*2 
[26] SIGN«-CVARN«-N2-L*2]*0.5 
[27] 'THE UTILIZATION OF EACH REPAIRMAN IS *,»RHO 
[28] 'LAMBDA, THE AVERAGE THROUGHPUT OF THE QUEUEING' 
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[293 'SYSTEM IS '.(LAMBDA 
[30] 'THE AVERAGE RESPONSE TIME. W, IS '.«W 
[3X3 'THE AVERAGE QUEUEING TIME, WQ, IS ',*WQ 
C32] 'THE AVERAGE NUMBER OF MACHINES DOWN. L. IS '.»L 
[33 3 'THE AVERAGE NUMBER OF MACHINES WAITING TO BE' 
[34] 'REPAIRED. LQ. IS '.*LQ 
[35] 'THE AVERAGE QUEUEING TIME FOR THOSE WHICH MUST' 
[36] 'WQAD, IS ',»WQAD 
[37] 'THE PROBABILITY A MACHINE MUST WAIT FOR SERVICE IS '.*D 

7 
7 ALPHA MCHISQAEXPON Y;X 

[XI flTHIS FUNCTION PERFORMS THE CHISQUARE TEST ON THE SAMPLE. Y, TO 
[2] ADETERMINE, AT THE ALPHA LEVEL OF SIGNIFICANCE. WHETHER OR NOT 
[3] AY IS A RANDOM SAMPLE FROM AN EXPONENTIAL POPULATION. 
[4 3 X«-SORT Y 
[5] XBAR«-C + /X)+N«-p,X 
[6] flCALCULATE TENTILES 
[7] XlO«--XBARx«0.9 
[8] X20«—XBARx»0.8 
[9] X30«--XBARx«0.7 
[10] X40«--XBARx«0.6 
[XX] X50<—XBARx»0.5 
[12] X60«--XBARx»0.4 
[13] X70*~XBARx«0.3 
[14] X80«~XBARx«0.2 
[15] X90<—XBARx«0.X 
[16] O«-C + /CX<XI0)),C + /CCXI0SX)ACX<X20))),( + /CCX20SX)ACX<X30))) 
[17] O«-O,C + /(CX30SX)ACX<X40))).C + /CCX403X)ACX<X50))) 
[X8] O«-O,( + /CCX50SX)A(X<X60))).( + /(CX60SX)ACX<X70))} 
[19] O*-O.C + /((X70sX)A(X<X80))).C + /(CX80sX)A(X<X90))) 
[20] O«-O.C + /CX90sX)) 
[2X] E«-I0pN+I0 
[22] CHISQ«-+/CCO-E)*2)*E 
[23] Q<-CHISQ CHISQUAREADIST 8 
[24] P«-I-Q 
[25] 'THE P VALUE IS ',»P 
[26] -»CP<ALPHA)TEND 
[27] 'THE POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= '.»ALPHA 
[28] -»0 
[293 END:'THE NULL HYPOTHESIS MUST BE REJECTED FOR ALPHA= ',*ALPHA 

7 
V Z«-MEAN X 

[X] Z«-( + /X)+N«-p.X 
7 

• 7 MOMENTS Y 
[X] SMOMENTS CALCULATES THE FIRST THREE MOMENTS OF A TWO STAGE 
[2] AHYPEREXPONENTIAL RANDOM VARIABLE. THE CALL IS 'MOMENTS Y' 
[3] BWHERE Y IS THE VECTOR FORMED BY CATENATING QX, Q2. MUX, AND MUX. 
[4] QI«-Y[I3 
[5] Q2«-Y[2] 
[6] MUX«-Y[3] 
[7] MU2<-Y[4] 
[8] ES«-CQI+MUI)+Q2+MU2 
[9] ES2«-2X(QI+MUI*2)+Q2+MU2*2 
[10] ES3«-6X(QX+MUX*3)+Q2+MU2*3 
[XI] 'THE MEAN, ES, IS ',»ES 
[12 3 'THE SECOND MOMENT. ES2, IS ',»ES2 
[13 3 'THE THIRD MOMENT. ES3, IS '.»ES3 

7 
7 K MAD/UAKAK EOAES;Z;EO:ES;RHO;W;P0;LAMBDA 

[1] flTHIS FUNCTION CALCULATES THE STATISTICS FOR THE MACHINE 
[2 3 ftREPAIR MODEL WITH CONSTANT REPAIR TIME. 
[33 ECM-EOAES[X] 
[4] E S « - E 0 A E S [ 2 ] 
[53 P0«-K PZERO Z4-EO+ES 
[6] RHO^X-PO 
[7] LAMBDA«-RHO+ES 
[8] W<-CK+LAMBDA )-EO 
[9] 'THE PROBABILITY THE REPAIRMAN IS IDLE IS ',*P0 
[10 3 'THE SERVER (REPAIRMAN) UTILIZATION IS '.»RHO 
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111] 'THE MEAN TIME WAITING FOR REPAIRS IS ',»WQ«-W-ES 
[12 3 'THE MEAN NUMBER WAITING FOR REPAIRS IS *,»LAMBDAxWQ 
[131 'THE MEAN TIME A MACHINE IS DOWN, W. IS *.»W 
[14] "THE MEAN NUMBER OF MACHINES DOWN IS '.*LAMBDAxW 
[151 'THE THROUGHPUT, LAMBDA. IS ',*LAMBDA 

V 
V K M A E K A I X 

[I] IAMBDA«-X[13 
t23 ES«-X[2] 
C 3 ] RHO«-LAMBDAxES 
£41 RK-l-RHO 
[5] ES2<-C1+*K)XES*2 
t6] ES3«-C1 + 2*K)XES2XES 
[7] LQ«-CES2xLAMBDA*2)*2xRl 
C 8 3 WQ«-LQ+LAMBDA 
[ 9 ] WQAQ«-WQ*RHO 
[10] EQ2«-C(*3xRl)xLAMBDAxES3) + C+2)x(Cl«-LAMBDAxES2+Rl)*2 
[II] VARQ«-EQ2-WQ*2 
[12] SIGQ«-VARQ*0.5 
[13] L«-LQ+RHO 
[ 14 ] W«-L*LAMBDA 
[ 1 5 1 EW2«-EQ2+ES2+R1 
[ 1 6 1 VARW«-EW2-W*2 
[ 1 7 ] SIGW«-VARW*0.5 
[ 1 8 ] VARN«-((*3xRl)xES3xLAMBDA*3) + (0 .25xCLAMBDA*2)xCl*23 
[ 19 ] VARN«-VARN+ ( (3-2XRHO) xClxLAMBDA+2 ) +RHOXR1 
[ 2 0 ] SIGN«-VARN*0.5 
[21] 'THE AVERAGE NUMBER QUEUEING.LQ. IS ' ,»LQ 
[22] 'THE AVERAGE TIME WAITING IN QUEUE. WQ. IS ' . »WQ 
[23] 'WITH STANDARD DEVIATION, SIGQ. '.*SIGQ 
[24] 'THE AVERAGE QUEUEING TIME FOR THOSE WHO MUST' 
[25] 'WAIT. IS ',*WQAQ 
[26] 'THE AVERAGE NUMBER IN THE SYSTEM. L. IS '.»L 
[27] 'WITH STANDARD DEVIATION *.*SIGN 
[28] "THE AVERAGE TIME IN THE SYSTEM.W, IS '.»W 
[29 3 'WITH STANDARD DEVIATION ',*SIGW 
[30 3 'THE MARTIN RULE ESTIMATE OF THE 90TH PERCENTILE' 
[31] 'TIME IN THE SYSTEM IS ' ,»W90«-W+1. 3XSIGW 
[32] 'THE C-SQUARED VALUE FOR WAITING TIME IS * ,*C2Q«-VARQ+WQ*2 
[33] 'THE C-SQUARED VALUE FOR SYSTEM TIME IS ' ,*C2W«-VARW+W*2 
[34] 'THE C-SQUARED VALUE FOR NUMBER IN THE SYSTEM IS * ,#C2N«-VARN*L*2 

V 
7 X MiGAl ES;PIW90;PIW95 

[1] A MAGAl CALCULATES THE USUAL STATISTICS FOR THE 
[2] B M/G/1 MODEL USING THE POLLACZEK-KHINTCHINE 
[3] fl EQUATIONS. THE CALLING SEQUENCE IS ''LAMBDA SIG MAGAl ES'' 
[4] fi WHERE LAMBDA IS THE AVERAGE ARRIVAL RATE. SIG IS THE STANDARD 
[5] B DEVIATION OF SERVICE TIME. AND ES IS AVERAGE SERVICE TIME. 
[63 LAMBDA«-X[1] 
C7] SIG«-X[2J 
[8] RHO«-LAMBDAxES 
[9] LQ«-(( CLAMBDAxSIG)*2)+RHO*2)+2x(l-RHO) 
[10] L«-LQ+RHO 
[113 WQ«-LQ+LAMBDA 
[ 12 ] W«-WQ+ES 
[13] 'THE SERVER UTILIZATION. RHO. IS '.»RHO 
£14 3 'THE AVERAGE NUMBER IN THE SYSTEM IS '.*L 
[153 'THE AVERAGE NUMBER WAITING FOR SERVICE IS ',»LQ 
[16 3 'THE AVERAGE TIME IN THE SYSTEM IS '.»W 
117 3 ' THE AVERAGE WAITING TIME IS ' , »WQ 
[18 3 'THE AVERAGE WAITING TIME FOR CUSTOMERS DELAYED IS ',»WQ*RHO 

V 
V LAMBDA MAGAlAEXT X 

[13 A MAGAlAEXT CALCULATES THE USUAL STATISTICS FOR THE 
[23 B M/G/1 MODEL. BUT ALSO CALCULATES THE STANDARD DEVIATIONS 
[3 3 B AND THE C-SQUARED VALUES FOR MANY OF THE VARIABLES SO 
[4 3 fi THAT ERLANG APPROXIMATIONS CAN BE MADE. THE CALLING 
[5 3 B SEQUENCE IS '' LAMBDA MAGAlAEXT ES ES2 ES3 *' 
[63 fl WHERE ES ES2 ES3 ARE THE FIRST THREE MOMENTS OF 
[7 3 B THE SERVICE TIME DISTRIBUTION. 
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[8] ES«-XC1] 
C9] ES2«-X[2] 
[10] ES3<-X[3] 
[11] RHO«-LAMBDAxES 
[12] LQ«-CLAMBDA*2)xES2+2x(l-RHO) 
[13 3 L«-LQ+RHO 
[14] VARN«-CLAMBDA*3)xES3+3x(l-RHO) 
[153 VARN«-VARN+(LAMBDA*4)xCES2*2)+4xCl-RHO)*2 
[16] VARN«-VARN+(LAMBDA*2)x(3-2xRHO)xES2+2x(l-RHO) 
[17] VARN<-VARN+RH0X(1-RH0) 
[18] SIGN<-VARN*0.5 
[ 19 ] WQ«-LQ+LAMBDA 
[20] EQ2«-CLAMBDAxES3+3xCl-RH05)+2xWQ*2 
[21] VARQ«-EQ2 -WQ* 2 
[22] SIGQ«-VARQ*0.5 
[23] W«-WQ+ES 
[243 EW2«-EQ2+ES2 + l-RHO 
[25] EW2«-EW2 
[26] VARW«-EW2-W*2 
[27] SIGW«-VARW*0.5 
[28] 'SERVER UTILIZATION,RHO, IS ',*RHO 
[29] *THE AVERAGE NUMBER IN THE SYSTEM. L. IS ' , »L 
[30] 'WITH STANDARD DEVIATION '.*SIGN 
[31] 'C-SQUARED FOR NUMBER IN THE SYSTEM IS ' ,»C2N«-VARN+L*2 
[32] 'THE AVERAGE NUMBER QUEUEING ,LQ, IS ',*LQ 
[33] 'THE AVERAGE TIME IN THE SYSTEM,W, IS ',#W 
[34] 'WITH STANDARD DEVIATION ',*SIGW 
[35] 'C-SQUARED FOR TIME IN THE SYSTEM IS ' ,»C2W«-VARW+W*2 
[36] 'THE AVERAGE QUEUEING TIME.WQ, IS ' ,»WQ 
[37 5 "WITH STANDARD DEVIATION ',*SIGQ 
[38] 'C-SQUARED FOR QUEUEING TIME IS ' ,*C2Q«-VARQ+WQ*2 
[39] ' THE MARTIN ESTIMATES OF 90TH AND 95TH' 
[40] ' PERCENTILES OF TIME IN THE SYSTEM ARE' 
[41] D«-W+1.3xSIGW 
[42] 0«-W+2xSIGW 

7 
V LAMBDA MAMAl ES;RHO;L;SIGN;W;WQ;SIGQ;W90;W95;Q90;Q95 

[I] BTHIS FUNCTION CALCULATES THE STATISTICS FOR THE CLASSICAL 
[2] BM/M/1 QUEUEING SYSTEM. THE CALL IS IS GIVEN ON LINE 0 
[3] RWHERE LAMBDA IS THE AVERAGE ARRIVAL RATE AND ES IS THE 
[4] BAVERAGE SERVICE TIME. 
[5] RHO«-LAMBDAxES 
[6] 'THE SERVER UTILIZATION, p. IS ',»RHO 
[7] 'THE MEAN NUMBER IN THE SYSTEM, L, IS' 
[8] D«-L«-RHO-H-RHO 
[9] 'WITH STANDARD DEVIATION. SIGN. ' 
[10] 0«-SIGN«-CL+C1-RHO))*0.5 
[II] 'THE MEAN NUMBER IN THE QUEUE, LQ. IS' 
[ 121 0«-LQ«-RHOxL 
[13] 'WITH STANDARD DEVIATION. SIGNQ. ' 
[14] D«-SIGNQ«-CCL*2)x(l+RHO-RHO*2))*0.5 
[15] 'THE MEAN TIME IN THE SYSTEM. W. IS' 
[16] 0«-W«-ES+1-RHO 
[17] 'WITH STANDARD DEVIATION ',*W 
[18] 'THE MEAN TIME IN THE QUEUE, WQ, IS' 
[ 19 ] D«-WQ«-RH0XW 
[20] 'WITH STANDARD DEVIAITON, SIGQ, * 
[213 0«-SIGQ«-SIGNxESxC2-RHO)*0.5 
[22] 'THE MEAN QUEUEING TIME FOR THOSE WHO MUST QUEUE IS W' 
[23] 0«-W 
[24] 'THE MEAN NUMBER QUEUEING WHEN THE QUEUE IS NOT EMTPY' 
[25] 'IS '.»+l-RHO 
[26] '90TH PERCENTILE TIME IN THE SYSTEM IS ',*Wx«10 
[27] '95TH PERCENTILE TIME IN THE SYSTEM IS ',*Wx«20 
[28] '90TH PERCENTILE QUEUEING TIME IS ',*CWx»10xRHO)TO 
[293 "95TH PERCENTILE QUEUEING TIME IS ',»CWx«20xRHO){0 

V 
V LAMBDA MAMAlAK X 

[1] B MAMAlAK CALCULATES THE STATISTICS FOR THE M A M A I 
[2] B MODEL RESTRICTED SO THAT NO MORE THAN K CUSTOMERS 
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[3] S ARE ALLOWED IN THE SYSTEM. 
[4] ES«-X[1] 
[5] K«-X[2] 
[ 6 ] U«-LAMBDAxES 
[7] P0«-C1-U)+XN1<-1-U*K+1 
[8] P«-POxU*C_l + VK+l) 
[9) PK«-POxU*K 
[10] 'THE PROBABILITY. PSUBZERO, THAT THE SYSTEM IS EMPTY IS' 
[11] PO 
C12] 'THE PROBABILITY THAT AN ARRIVING CUSTOMER IS TURNED' 
[13] 'AWAY. PSUBK, IS '.»PK 
[14] 'THE TRAFFIC INTENSITY, U, IS •,*U 
C15: 'THE SERVER UTILIZATION. RHO, IS '.»Cl-PK)xU 
[16] L«-CUxl+CCKxU)-(K+13)xU*K) + CXU«-l-U)xXNl 
C17] EN2«-+/PXC"1 + I.K+1)*2 
[18] VARN<-EN2-L*2 
[19] C2N«-VARN+L*2 
[20] SIGN<-VARN*0.5 
[21] LQ<-L-(1-P0) 
[22] ENQ2<-+/PC2 + VK-l]x(i.K-l)*2 
[23] VARNQ<-ENQ2-LQ*2 
[24] C2NQ«-VARNQ+LQ*2 
[25] SIGNQ«-VARNQ* 0. 5 
[26] LAMBDAA«-LAMBDAxCl-PK) 
[27] WQ«-LQ+LAMBDAA 
[28] W«-WQ+ES 
[29] WQAQ«-WQ+C1-P0) 
[30] "THE AVERAGE NUMBER IN THE SYSTEM. L. IS ',*L 
[31] 'WITH STANDARD DEVIATION '.»SIGN 
[32] 'C-SQUARED FOR NUMBER IN THE SYSTEM, N, IS '.»C2N 
[33] 'THE AVERAGE NUMBER WAITING, LQ. IS ' ,»LQ 
[34] 'WITH STANDARD DEVIATION '.»SIGNQ 
[35] 'C-SQUARED FOR NUMBER IN THE QUEUE, NQ. IS '.CC2NQ 
[36] 'THE AVERAGE TIME IN THE SYSTEM, W. IS ',»W 
[37] 'THE AVERAGE WAITING TIME, WQ, IS • ,*WQ 
[38] 'THE AVERAGE WAITING TIME FOR THOSE WHO MUST WAIT IS *.*WQAQ 

V 
V C MAMAC AAES;C:ES;RHO;LAMBDA;CCA;LQ;VARNQ;SIGNQ;WQ;W 

[I] BTHIS FUNCTION CALCULATES THE STATISTICS FOR THE M/M/C 
[2] RQUEUEING SYSTEM. THE CALL IS ON LINE 0. 
[3] A«-AAES[1] 
[4] ES«-AAESC2] 
[5] RHO«-A+C 
[6] LAMBDA«-A+ES 
[7] 'THE AVERAGE ARRIVAL RATE IS '.»LAMBDA 
[8] CCA«-C CACAA A 
[ 9 ] ' THE PROBABILITY ALL SERVERS ARE BUSY IS ' , *CCA 
[10] 'THE SERVER UTILIZATION, p. IS ',»RHO 
[II] LQ«-RHOxCCA+l-RHO 
[12] 'THE AVERAGE NUMBER IN THE QUEUE IS ',«LQ 
[13] VARNQ«-LQx(l+RHO-RHOxcCA) + l-RHO 
[14] 'WITH STANDARD DEVIATION • ,»SIGNQ»-VARNQ*0.5 
[15] VARN<-VARNQ+AxCl+CCA) 
[16] WQ«-LQ+LAMBDA 
[ 17 ] ' THE AVERAGE QUEUEING TIME IS ' , »WQ 
[18] VARQ«-C2-CCA)xCCAx(ES*2) + UCl-RHO)*2)xC*2) 
[19] 'WITH STANDARD DEVIATION ',»VARQ*0.5 
[20] 'THE AVERAGE QUEUEING TIME FOR CUSTOMERS DELAYED IS' 
[21] D«-WQ+CCA 
[22] W«-WQ+ES 
[23] L+LAMBDAXW 
[24] 'THE AVERAGE NUMBER IN THE SYSTEM IS ',*L 
[25] 'WITH STANDARD DEVIATION ',»VARN*0.5 
[26] 'THE AVERAGE TIME IN THE SYSTEM IS ',*W 
[27] -»LAAACAlxiA=C-l 
[28] EW2«-C2xCCAxES*2) + CA*l-C) 
[29] EW2«-EW2x(l-(C-A)*2) + (C-A)*2 
[30] -»LASIGAW,EW2«-EW2+2xES*2 
[31] LAAACA1:EW2«-((4XCCA)+2)XES*2 
[32] LASIGAW:VARW«-EW2-W*2 



B.19. APL PROGRAMS 659 

B.19 APL Programs 
C33 3 SIGW«-VARW*0.5 
[34 3 'WITH STANDARD DEVIATION ',*SIGW 
[35 3 K«-ES*C-A 
[36 3 WQ90«-0rKx«10xCCA 
[37 3 WQ95«-0[Kx«20xCCA 
[38 3 'THE 90TH PERCENTILE QUEUEING TIME IS ',*WQ90 
[393 'THE 95TH PERCENTILE QUEUEING TIME IS ',*WQ95 
[403 'THE MARTIN ESTIMATE OF 90TH PERCENTILE SYSTEM TIME IS' 
[413 D«-EST90«-W+1.3xSIGW 
[42 3 Xl«-W 
[43 3 X2«-W+2XSIGW 
[44 3 'THE 90TH PERCENTILE SYTEM TIME BY FUNCTION PIW90 IS' 
[453 0«-CPIW90«-C PIW90 A.ES.X1.X2 
[463 'THE MARTIN ESTIMATE OF 95TH PERCENTILE SYSTEM TIME IS' 
[47 3 0«-EST95«-W*2xSIGW 
[483 CPIW95*-C PIW95 A.ES.X1.W+2XSIGW 
[493 'THE 95TH PERCENTILE SYSTEM TIME BY FUNCTION PIW95 IS' 
[503 CPIW95 

V 
V P«-NDIST T;S;R;Z 

[13 fi ' NIDST T ' EVALUATES THE STANDARD NORMAL DISTRIBUTION 
[23 B FUNCTION AT THE POINT OR VERCTOR T. USING FORMULA 26.2.17 
[3 3 fi IN ABRAMOWITZ A N D STEGUN. 
[4 3 R«-pT 
[53 S«-CT<0)/lpT«-,T 
[63 T[S3«— T[S3 
[73 P«-C + CO2)*0.53x*-CT*2)+2 
[83 T«-*l + 0.2316419xT 
[9 3 Z«-"0.356563782+Txl.781477937+Tx-1.821255978+Txl. 330274429 
[103 P«-l-PxTx0.31938153+TxZ 
[113 P[S3<-1-P[S3 
[12 3 P«-RpP 

7 
V X NEXPONATEST ALPHA 

[13 fiTHIS FUNCTION CALCULATES THE EDF STATISTICS D, WASQUARED. UASQUARED. 
[2 3 BAND AASQUARED FOR TESTING FOR EXPONENTIALITY AS DESCRIBED BY 
[33 fiSTEPHENS IN HIS BOOK ON PAGES 134 AND 101. IT TESTS FOR THE 
[4 3 BUNSHIFTED EXPONENTIAL. 
[53 fiTHE FUNCTION ALSO TESTS THE MODIFIED ANDERSON+DARLING CAASQUARED3 
[63 fiAT SEVERAL LEVELS OF SIGNIFICANCE USING THE TABLE ON PAGE 473 
[7 3 flOF THE SPINELLI/STEPHENS PAPER IN NOV 1987 TECHNOMETRICS. 
[8 3 X«-SORT X 
[93 XBAR«-C + /X)+N«-p,X 
[103 'XBAR IS '.*XBAR 
[113 W<-X+XBAR 
[123 Z«-l-*-W 
[13 3 I«-iN 
[143 DPLUS«-r/(CI+N)-Z) 
[153 DMINUS«-r/CZ-(I-l)+N3 
[163 D«-DPLUSrDMINUS 
[17 3 V*-DPLUS+DMINUS 
[183 'THE VALUE OF THE KOLMOGOROV-SMIRNOV STATISTIC, D, IS ',*D 
[193 'THE VALUE OF SQUARE-ROOT OF N TIMES D IS '.»(N*0.5)xD 
[203 'THE VALUE OF SQUARE-ROOT OF N TIMES V IS ',»CN*0.5)xV 
[213 W A 2 < - + / C Z - ( ( C 2 X I ) - 1 ) + 2 X N ) 3 * 2 
[223 "THE VALUE OF THE CRAMER-VON MISES STATISTIC. WASQUARED, IS ',»WA2 
[233 ZBAR«-C + /Z)+N 
[243 UA2«-WA2-NxCCZBAR-0.53*2) 
[25 3 'THE VALUE OF THE WATSON STATISTIC, UASQUARED. IS * , » U A 2 
[26 3 AA2«-CC-+N)x+/(CC2xI)-l)xCC»Z)+»Cl-OZ))»-N 
[273 'THE VALUE OF THE ANDERSON-DARLING STATISTIC. AASQUARED. IS ',»AA2 
[28 3 MAAA2«-AA2x(l+(5.4+N)-Cll+NxN)) 
(29 3 'THE VALUE OF THE MODIFIED ANDERSON-DARLING STATISTIC IS ' ,*MAAA2 
[303 -»[(ALPHA=0.01).CALPHA=0.025).(ALPHA=0.05)3/S1,S2.S3 
C313 -»TEST 
[323 S1:-*CMAAA2>1.959)TEND 
[33 3 0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= '.»ALPHA 
[343 -»0 
[353 S2:-»CMAAA2>1.591)tEND 
[36 3 0«-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ',*ALPHA 
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B.20 APL Programs 
[37 3 -»0 
[383 S3:-»CMAAA2>1.321)TEND 
[39 3 D<-'POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA- ',»ALPHA 
1403 -»0 
[413 TEST: 
[42 3 -»(CALPHA=0.1).(ALPHA=0.15),CALPHA=0.25))/S4,S5.S6 
[433 0«-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
[443 -»0 
[453 S4:-»CMAAA2>1. 062) TEND 
[463 0«-'POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA= ',*ALPHA 
[473 -»0 
[483 S5:-»CMAAA2>0.916)TEND 
[49 3 □«-'POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA- ',»ALPHA 
[503 -»0 
[513 S6;-»CMAAA2>0.736)TEND 
[52 3 0<-' POPULATION APPEARS TO BE EXPONENTIAL FOR ALPHA- '.»ALPHA 
[533 -»0 
[54 3 END: 0«-* THE POPULATION IS NOT EXPONENTIAL FOR ALPHA= ' ,»ALPHA 
[553 
[563 
[57 3 

V 
V ALPHA NORMALAT X 

[13 BTHIS FUNCTION CALCULATES THE EDF STATISTICS D. WASQUARED. UASQUARED. 
[2 3 RAND AASQUARED FOR TESTING FOR NORMALITY AS DESCRIBED BY 
[3 3 RSTEPHENS IN HIS BOOK. 
[43 fiTHE FUNCTION ALSO TESTS THE MODIFIED ANDERSON-DARLING (AASQUARED) 
[53 BAT SEVERAL LEVELS OF SIGNIFICANCE USING THE TABLE ON PAGE 123 
[63 BOF THE STEPHEN'S BOOK. HE HAVE MODIFIED THE CACLCULATION HERE 
[7 3 BFOR THE NONSHIFTED EXPONENTIAL ONLY AS DESCRIBED BY STEPHENS IN 
[83 RHIS BOOK ON PAGES 122 AND 101 
[93 X«-X[AX3 
[103 XBAR«-C + /X) + CN«-p,X) 
[113 'XBAR IS •,»XBAR 
[123 S*-C( + /(X-XBAR)*2)+N-1)*0.5 
[13 3 W«-CX-XBAR)+S 
[14 3 Z«-NDIST W 
[153 I«-lN 
[163 DPLUS«-r/UI+N)-Z) 
[173 DMINUS«-r/(Z-CI-l)+N) 
[18 3 Dt-DPLUSTDMINUS 
[19 3 'THE VALUE OF THE KOLMOGOROV-SMIRNOV STATISTIC. D, IS ',»D 
[203 MD«-Dx(SN+(0.85+SN«-N*0.5)-0.01) 
[213 'THE MODIFIED VALUE OF D IS ' ,#MD 
[22 3 AA2«-U-+N)X + /CU2XI)-1)XC(«Z)+»C1-«>Z))))-N 
[23 3 'THE VALUE OF AASQUARED, IS ' ,*AA2 
[24 3 MAAA2«-AA2XC1+C0.75+N) + C2.25+N*2)3 
[25 3 'THE VALUE OF THE MODIFIED AASQUARED STATISTIC IS ',»MAAA2 
[263 •»CCALPHA=0.01).(ALPHA=0.025).(ALPHA*0.05))/S1.S2.S3 
[27 3 -»TEST 
[283 S1:-»CMAAA2>1.035)TEND 
[29 3 D«-'POPULATION APPEARS TO BE NORMAL FOR ALPHA* '.*ALPHA 
[303 -»0 
[313 S2:-»(MAAA2>0.873)tEND 
[32 3 D«-• POPULATION APPEARS TO BE NORMAL FOR ALPHA= ' ,»ALPHA 
[333 -»0 
[343 S3:-»(MAAA2>0.752)TEND 
[353 D«-' POPULATION APPEARS TO BE NORMAL FOR ALPHA' • ,»ALPHA 
[363 -»0 
[37 3 TEST: 
[38 3 •♦(CALPHA=0.1),(ALPHA=0.15).fALPHA-0.25))/S4.S5.S6 
[39 3 D«-'ALPHA IS NOT ONE OF THE ALLOWED VALUES' 
[403 -»0 
[413 S4:-»CMAAA2>0.631)TEND 
[42 3 0«-' POPULATION APPEARS TO BE NORMAL FOR ALPHA = • ,*ALPHA 
[433 -»0 
[443 S5:-»(MAAA2>0.561)TEND 
[45 3 D«-'POPULATION APPEARS TO BE NORMAL FOR ALPHA = '.»ALPHA 
[463 -»0 
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B.21 APL Programs 
[47] S6:-KMAAA2>0.47)TEND 
[48 3 a*-' POPULATION APPEARS TO BE NORMAL FOR ALPHA = '."ALPHA 
[49] -»0 
[50] END:0«-"THE POPULATION IS NOT NORMAL FOR ALPHA' '.*ALPHA 

V 
V Z«-MU PARTIALASUM K;N 

[1] ATHIS FUNCTION IS NEEDED FOR THE FUNCTION 
[2] BDMAMAIAK. IT COMPUTES A SEQUENCE OF POISSON 
[ 3 ] ASUMS. 
[4) N«-0 
[5] Z«-*-MU 
[6] START:-»0xvK<N«-N*l 
C7] •*START.Z«-Z,MU POISSONADIST N 

y 
V Z«-C PIN90 AAESAX1AX2;A:ES 

[I] BTHIS FUNCTION ESTIMATES THE 90TH PERCENTILE VALUE 
[2] nOF W FOR THE M/M/C QUEUEING SYSTEM. XI AND 
[3] AX2 BRACKET THE VALUE. 
t41 A«-AAESAXlAX2[l] 
[5] ES«-AAESAX1AX2[2J 
[6] X1«-AAESAX1AX2 [ 3 ] 
[7] X2«-AAESAX1AX2 [ 4 ] 
[ 8 ] N«-0 
[91 TEST:-»0UT IF 50<N«-N+1 
[10] T«-CXl+X2)+2 
[II] ->HIGH IFCC DWAMAMAC(A,ES.T))>0.9 
[12] E«-ID«-CC DWAMAMACCA.ES,T))-0.9 
[13] -»OUT IF E<1E"4 
[14] -»TEST,Xl«-CXl*X2)+2 
[15] HIGH:-»TEST.X2«-CXl+X2)+2 
[16] OUT:Z«-T 

V 
V Z«-C PIW95 AAESAX1AX2;A;ES 

[I] BTHIS FUNCTION ESTIMATES THE 95TH PERCENTILE VALUE 
[2] BOF W FOR THE M/M/C QUEUEING SYSTEM. XI AND 
[3] BX2 BRACKET THE VALUE. 
[ 4 ] A«-AAESAX1AX2 [ 1 ] 
[5] ES«-AAESAX1AX2 [ 2 ] 
[6] X1«-AAESAX1AX2[3] 
[ 7 } X2«-AAESAX1AX2 [ 4 ] 
[8] N<-0 
[9] TEST:-»OUT IF 50<N<-N*1 
[10] T<-CXl + X2)+2 
[II] -»HIGH IFCC DWAMAMAC(A.ES.T))>0.95 
[12] E«-ID«-CC DWAMAMAC(A.ES.T))-0.95 
[13] -»OUT IF E<1E"4 
[14] -»TEST,X1«-(X1+X2)*2 
[15] HIGH:-»TEST,X2«-CXl*X2)+2 
[16] OUT:Z«-T 

V 
V Z«-X PO Y;K;C;EO:ES;Z1;PNAPO 

[I] BTHIS FUNCTION CALCULATES THE PROBABILITY THAT ALL MACHINES ARE UP 
[2] BFOR A MACHINE REPAIR MODEL WITH K-1 MACHINES. C REPAIRMEN, AVERAGE 
[31 BUP TIME PER MACHINE EO AND AVERAGE REPAIR TIME ES. 
[4] BTHE CALL IS X PO Y WHERE X * K. C AND Y - EO. ES. 
[5) K«-XC1]-1 
[6] C«-XC2 3 
[7] EO<-Y[l] 
[8] ES«-Y£2] 
[9] Zl«-+Z«-EO+ES 
[10] PNAPO«-l.CJ!K)xZl*CJ«-lC) 
[II] PNAP0«-PNAP0,C!J)X( + !C)X( + (C*CJ-C)))X(J!K)XZ1*(J«-C*VK-C) 
[12J Z«-P0«-++/PNAP0 

7 
V Z«-ALPHA POISSON K;X 

[1] A ' ALPHA POISSON K ' COMPUTES THE PROBABILITY THAT 
[2] B A POISSON RANDOM VARIABLE WITH MEAN ALPHA ASSUMES 
[3] A THE VALUE K. 
[4] Z«-C*-ALPHA)x*CKxC«ALPHA))-("ltX«-+\»vK] 

V 
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B.22 APL Programs 
V Z«-ALPHA POISSONADIST N 

[13 fi ' ALPHA POISSONADIST N ' COMPUTES THE PROBABILITY 
(2 3 B THAT A POISSON RANDOM VARIABLE WITH MEAN ALPHA 
[3] fi ASSUMES A VALUE s N; THAT IS, THE DISTRIBUTION 
[4] R FUNCTION OF THE VARIABLE. 
15] Z<-C*-ALPHAJx + /l,*C(»ALPHA)xiN)-+\«lN 

V 
V M POLL N 

[13 BPOLL ASSUMES A LINE WITH M TERMINALS, N OF 
[2] BWHICH ARE READY TO TRANSMIT. POLL CALCULATES 
[3] BTHE PROBABILITY THAT 1.2 M-N+l POLLS ARE 
£4 3 BREQUIRED TO FIND THE FIRST READY TERMINAL. 
[53 BTHE AVERAGE. EX. VARIANCE, VARX, AND THE 
[63 BSTANDARD DEVIATION. SIGX. ALSO ARE COMPUTED. 
[73 P<-UN-1)!M-UM-N3 + 1) + (N!M) 
[83 X«-lCM-N) + l 
[93 EX«-+/XxP 
[103 VARX«-+/CCX-EX)*2)xP 
[113 SIGX«-VARX*0.5 
[12 3 'THE AVERAGE NUMBER OF POLLS REQUIRED IS: • 
[13 3 EX 
[14 3 'THE STANDARD DEVIATION. SIGX. IS * ;SIGX 
[153 'TO SEE THE PROBABILITY THAT 1, 2 M+N+l' 
[163 'POLLS ARE REQUIRED, TYPE P.' 

V 
V Z«-M POLL2M N;P;X 

[13 ft THIS FUNCTION IS USED BY MPOLL. 
[23 P«-C(N-1)!M-XCM-N) + 13 + CN!M) 
[33 X«-UM-N) + 1 
[4 3 Z«-+/PxXxX 

V 
V Z«-M POLLM N;P;X 

[13 fl THIS FUNCTION IS USED BY MPOLL. 
[23 P«-CCN-l)!M-t(M-N)+l) + CN!M) 
[33 X«-l(M-N) + l 
[43 Z«-+/PxX 

V 
V Z«-X POWER N 

[13 I«-0 
[23 Z«-X 
[33 START: -»0*lCNsI«-I + l) 
[43 Z«-Z+.xX 
[ 5 3 -»START 

V 
V PLAPES P R A Q U E U E PES2 

[13 B P R A Q U E U E IS A PROGRAM FOR CALCULATING THE STATISTICS FOR 
[23 BAN M/G/l PREEMPTIVE-RESUME QUEUE ING SYSTEM. 
[33 BTHE CALL IS LINE 0 WHERE PLAPES IS THE CATENATION OF 
[4 3 ft PL. THE VECTOR OF MEAN ARRIVAL RATES OF PRIORITY CLASSES, 
[53 BWITH ES. THE VECTOR OF MEAN SERVICE TIME OF CLASSES. 
[63 BPES2 IS THE VECTOR OF SECOND MOMENTS OF SERVICE TIME. 
[73 N«-pPES2 
[ 8 3 PLAMBDA4-NT PLAPES 
[93 PES«-(-N)T PLAPES 
[103 LAMBDA" / PLAMBDA 
[113 PROB«-PLAMBDA+LAMBDA 
[12 3 ES«-+/PROBxPES 
[13 3 ES2«-+/PROBxPES2 
[14 3 PU«-0,*\PLAMBDAXPES 
[15 3 DIVK-NTC1-PU) 
[163 DIV2«-C-N)TC1-PU) 
[ 1 7 3 PV«-+\PLAMBDAXPES2 
[ 1 8 3 PW«-CPES+PV+2xDIV2)+DIVl 
[ 1 9 3 PI>PLAMBDAXPW 
[ 2 0 3 PWQ«-PW-PES 
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B.23 APL Programs 
[213 PLQ«-PLAMBDAxPWQ 
[22 3 WQ«-+/PROBxPWQ 
C 2 3 3 LQ«-LAMBDAXWQ 
124 3 W « - + / P R O B X P W 
t25 3 1>LAMBDAXW 
£26 3 'ES= '.»ES 
[27 3 'ES2 = *.*ES2 
[28 3 'LAMBDA= '.CLAMBDA 
[293 'RHO= '.*RHO 
[303 'WQ= ' ,»WQ 
[313 'W= '.»W 
[323 'LQ= '.»LQ 
[333 'L= ',»L 
[34 3 'THE AVERAGE QUEUEING TIMES FOR THE • 
[35 3 'THE RESPECTIVE PRIORITY CLASSES ARE:' 
[363 PWQ 
[37 3 'THE CORRESPONDING SYSTEM TIMES ARE:' 
[383 PW 
[39 3 'THE AVERAGE NUMBER IN THE SYSTEM FROM THE* 
[40 3 'RESPECTIVE CLASSES IS:' 
[413 PL 
[42 3 'THE CORRESPONDING MEAN NUMBER QUEUEING IS:' 
[43 3 PLQ 

V 
V P«-K PZERO Z 

[13 fiTHIS IS A FUNCTION WHICH CALCULATES THE PROBABILITY THERE 
[23 RARE NO MACHINES DOWN FOR THE M/G/l/K/K MACHINE REPAIR SYSTEM. 
[33 AK IS THE NUMBER OF MACHINES AND Z*EO+ES. 
[4 3 P«-*l+CK+Z3x+/((-l+iK3!J3xl,x\(*t[tJ«-CK-13)+Z3 3-l 

V 
V P L A P E S P A Q U E U E PES2 

[13 BPAQUEUE IS A PROGRAM FOR CALCULATING THE STATISTICS FOR 
[2 3 fiAN M / G / l NONPREEMPTIVE QUEUEING SYSTEM CAN H O L SYSTEM) 
[3 3 fiTHE CALL IS LINE 0 WHERE PLAPES IS THE CATENATION OF 
[43 fiPL. THE VECTOR OF MEAN ARRIVAL RATES OF PRIORITY CLASSES, 
(53 RWITH ES. THE VECTOR OF MEAN SERVICE TIME OF CLASSES. 
[63 ftPES2 IS THE VECTOR OF SECOND MOMENTS OF SERVICE TIME. 
[7 3 N<-pPES2 
[83 PLAMBDA«-NfPLAPES 
[9 3 PES«-C-N)TPLAPES 
[103 LAMBDA*-* /PLAMBDA 
[113 PROB+-PLAMBDA+LAMBDA 
[ 12 3 ES«-+ / P R O B x P E S 
[13 3 ES2«-+/PROBxPES2 
[14 3 PU«-0. ♦ \PLAMBDAxPES 
[153 DIV1«-NT(1-PU) 
[163 DIV2«-C-N)t(l-PU) 
[17 3 PWQ«-0.5xLAMBDAxES2+DIVlxDIV2 
[18 3 PW«-PWQ+PES 
[ 19 3 PL«-PLAMBDAXPW 
C203 PLQ«-PLAMBDAxpWQ 
[213 WQ«-+/PROBxPWQ 
[22 3 LQ«-LAMBDAXWQ 
[23 3 W«-WQ+ES 
[24 3 L*-LAMBDAxW 
[253 'ES= '.»ES 
[263 'ES2- '.»ES2 
[27 3 'LAMBDA^ '.•LAMBDA 
[283 *RHO= ',»RHO 
[293 'WQ= ',»WQ 
[303 'W= '.»W 
[313 'LQ= *.»LQ 
[32 3 'L= *.*L 
[33 3 'THE AVERAGE QUEUEING TIMES FOR THE ' 
[34 3 'THE RESPECTIVE PRIORITY CLASSES ARE:' 
[35 3 PWQ 

file:///PLAMBDAxPES
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B.24 APL Programs 
[363 'THE CORRESPONDING SYSTEM TIMES ARE:' 
[37 3 PW 
[38] 'THE AVERAGE NUMBER IN THE SYSTEM FROM THE' 
[39] 'RESPECTIVE CLASSES IS:' 
[40] PL 
[41] 'THE CORRESPONDING MEAN NUMBER QUEUE ING IS: ' 
[42] PLQ 

V 
V Z«-C RBCA A ; B 

[1] Z«-A*l+A 
[23 -»0x\.C=l 
[3] Z«-B+C+B«-Ax((C-l)RBCA A ) 

V 
V R«-U ROUNDS A 

[1] fiROUNDS FUNCTION FROM THE APL HANDBOOK OF TECHNIQUES 
[2 3 AU IS A SCALAR OR CONFORMABLE STRUCTURE OF SPECIFIED UNITS 
[3] R«-CxA)xUxl0.5+IA+U 

V 
V Z«-SORT X 

[1] Z«-X[*X3 
V 
V STAT X 

[1] XBAR4-MEAN X 
[2] S2«-(+/CX-XBAR3*2) + (N«-pX3-l 
[3] S«-S2*0.5 
[43 'THE SAMPLE MEAN IS '.»XBAR 
[53 'THE SAMPLE VARIANCE IS ',*S2 
[6] 'THE SAMPLE STANDARD DEVIATION IS ' ,»S 

7 
V Z«-C WBCA A 

[13 Z«-+*/x\l,0(iC)+A 
V 
v z«-WH K1AK2AK3;K1;K2;K3:C2:X;Y;V;MU1;MU2;Q1;Q2 

[1] flWH CALCULATES THE PARAMETERS FOR A TWO STAGE HYPEREXPONENTIAL 
[2 3 flRANDOM VARIABLE WHICH HAS THE FIRST THREE MOMENTS EQUAL TO 
[3] «K1. K2. AND K3. RESPECTIVELY. THE CALL IS 'WH Kl. K2. K3 * . 
C4 3 flTHE OUTPUT IS THE VECTOR Q1AQ2AMU1AMU2 NEEDED AS THE LEFT 
[53 nPARAMETER BY THE TWO STAGE HYPEREXPONENTIAL 
[6] nDISTRIBUTION FUNCTION H2ADIST AND BY THE FUNCTION MOMENTS AS 
[7 3 flTHE RIGHT PARAMETER. MOMENTS COMPUTES THE FIRST, SECOND AND 
[83 BTHIRD MOMENTS OF A TWO STAGE HYPEREXPONENTIAL DISTRIBUTION. 
[93 Kl«-KlAK2AK3[13 
[10 3 K2«-KlAK2AK3[2 3 
[113 K3«-KlAK2AK3[3 3 
[123 C2«-CK2+K1*2)-1 
[13 3 -»ERROR IF C2<1 
[143 X«-CKlxK3)-1.5xK2*2 
[153 -»ERROR IF X<0 
[16 3 Y«-K2-2xKl*2 
[17 3 V«-C(CX+1.5xY*2)-3xtKl*2)xY)*2) + 18x(Kl*2)xY*3 
[183 MUl«-+((X+C1.5x(Y*2)) + C3x(Kl*2)xY))+V*0.5)+6xKlxY 
[193 MU2«-+CCX+(1.5x(Y*2 3) + (3x(Kl*2 3xY))-V*0.5)+6xKlxY 
[203 Ql«-CKl-C+MU2)) + ((+MUl)-(+MU2)3 
[213 Q2«-1-Q1 
[22] Z«-Q1.Q2,MU1,MU2 
[23] -»0 
[24] ERROR:'WHITT''S CRITERIA IS NOT SATISFIED' 
[25] -»0 

V 
V X«-WAT Z 

[13 AWAT CALCULATES THE NORMALIZED RES PONE TIME. THAT IS, THE 
[2] nMEAN RESPONSE TIME DIVIDED BY THE MEAN THINK TIME, FOR THE 
[33 flFINITE PROCESSOR SHARING MODEL WHEN THE NUMBER OF TERMINALS 
[4 3 flIS WHAT KLEINROCK CALLS THE SATURATION .NUMBER. THE Z 
[53 flIN THE CALL IS THE RATIO OF THE MEAN THINK TIME TO MEAN 
[63 flSERVICE TIME. 
[73 X«-U1++Z) + C1-C1+Z)WBCU Z33-1 

V 



Appendix C 

Queueing Theory 
Formulas 

In a lobby in South Tennessee 
Teenage Pollaczek gained his "esprit" 

He watched as some guests 
Made the lineups congest, 

Then he left, humming Fi Fo, Fum Fee! 

Ben W. Lutek 

Table 1, an extension of Table 5.1.2, provides the basic queueing theory 
notation and definitions for the queueing theory of Chapter 5. Table 2 
explains the relationship between the random variables of queueing theory 
models. Tables 3 through 27 provide queueing theory formulas for the 
models of Chapter 5. Table 28 provides definitions for queueing theory 
networks. The remaining tables provide the queueing theory formulas for 
the models of Chapter 6. APL programs are displayed in Appendix B 
to implement the formulas for most of the models. All equations refer to 
steady state values. 
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C.l Notat ion and Definitions 
Table 1. Basic Queueing Theory Notation and Definitions 

a Traffic intensity a = XWS or offered load. The 
international unit of traffic intensity is the erlang, 
named for A. K. Erlang, a queueing theory pioneer. 

A[t] Distribution function of interarrival time, 
A[t] = P[T < t). 

b Random variable describing the busy period for a 
server. 

B[c, a] Erlang's B formula. Probability all servers busy in 
M/M/c/c system. Also called Erlang's loss formula. 

c Number of servers in service facility. 
C[c, a] Erlang's C formula. Probability all servers busy in 

M/M/c system. Also known as Erlang's delay formula. 
C\ Squared coefficient of variation of a positive random 

variable. C% = ^ffi. 

D Symbol for constant (deterministic) interarrival 
or service time. Also used to represent a constant 
in several formulas. 

Ek Symbol for Erlang-fc distribution of interarrival 
or service time 

E[Nq\Nq > 0] Expected (mean or average) queue length of 
nonempty queues. 

E[q\q > 0] Expected (mean or average) queueing time for 
customers delayed. 

FCFS Symbol for "first-come, first-served" queue discipline. 
FIFO Symbol for "first-in, first-out" queue discipline. 

Identical with "first-come, first-served." 
G Symbol for general probability distribution of service 

time. Independence usually assumed. 
GI Symbol for general independent interarrival time 

distribution. 
H2 Symbol for two-stage hyperexponential distribution. 

Can be generalized to k stages. 
K Maximum number of customers allowed in queueing 

system. Also size of population in finite population 
models. 

L Expected steady state number of customers in the 
queueing system, E[N]. 

ln(-) Natural logarithm function (log to base e.) 
Lq Expected steady state number of customers in the 

queue, E{Nq}. 
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Table 1. Basic Queueing Theory Notation and Definitions (continued) 

L$ Expected steady state number of customers receiving 
service, E[NS]. 

LCFS Symbol for "last-come, first-served" queue discipline. 
LIFO Symbol for "last-in, first-out" queue discipline. 

Same as LCFS. 
A Mean arrival rate of customers into the system. 
Aa Actual mean arrival rate into a queueing system 

for which some arrivals are turned away, 
e.g., the M/M/c/c system. 

XT Mean throughput of a computer system measured 
in transactions or interactions per unit time. 

M Symbol for exponential interarrival or service time. 
\i Mean service rate per server, that is, the mean rate 

of service completions while the server is busy. 
Ha, fib Parameters of the two-stage hyperexponential 

distribution of w for the M/H2/I queueing system. 
N[t] Random variable describing the number of customers 

in the system at time t. 
N Random variable describing the steady state number of 

customers in the system. 
Nq[i\ Random variable describing the number of customers in 

the queue at time t. 
Nq Random variable describing the steady state number of 

customers in the queue. 
Nb Random variable describing the number of customers 

served by a server in one busy period. 
Ns [t] Random variable describing the number of customers 

receiving service at time t. 
Ns Random variable describing the steady state number of 

customers in the service facility. 
O Operating time of a machine in a machine repair 

queueing model. The time a machine remains in 
operation after repair before repair is again necessary. 

""o! 7T& Parameters of the distribution function of w for the 
M/H2/I queueing system. 

nx[r] The r th percentile for random variable X where X 
can be s, w, q, etc. 

pn[t] Probability there are n customers in the system at time t. 
pn Steady state probability that there are n customers in 

the system. 
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Table 1. Basic Queueing Theory Notation and Definitions (continued) 

PRJ Symbol for priority queueing discipline. 
PS Symbol for "processor sharing" queue discipline. 
q Random variable describing the time a customer spends 

in the queue before service begins. 
qi A parameter of a hyperexponential random variable. 
q' Random variable describing time a customer who must 

queue spends in the queue before receiving service. Also 
called conditional queueing time. 

RSS Symbol for queue discipline "random selection for service." 

p Server utilization = <4j = —c: • 
s Random variable describing the service time. E[s] = Jj. 
pi Utilization of component i in a queueing network. 

Also used to represent -^ for some M / G / l systems. 
SIRO Symbol for "service in random order," which is 

identical to RSS. It means each customer in queue 
has the same probability of being served next. 

r Random variable describing interarrival time. 
E[T) = 1. 

U Symbol for uniform interarrival or service time. 
w Random variable describing the total time a customer 

spends in the queueing system, w = q + s. 
W[t] Distribution function of w, W[t] = P[w < t}. 
W Expected steady state time a customer spends in 

the system. W = E[w] = Wq + Ws-
Wq[t] Distribution function of q, Wq[t] = P[q < t\. 
Wq Expected steady state time a customer spends 

in the queue. Wq = E[q] = W - Ws-
Ws[t] Distribution function of s, Ws[t] = P[s < t]. 
Ws Expected customer service time, E[s] = i . 
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C.2 Relationships between Random Variables 
Table 2. Relationships between Random Variables 

a = —*-*■ = XWs- Traffic intensity in erlangs. 

P=% = cu- Server utilization. The probability any 
particular server is busy. 

w = q + s. Total waiting time in the system. 

W = Wq + Ws. Mean total waiting time in steady state system. 

N = Nq + Ns. Number of customers in steady state system. 

L = XW Mean number of customers in steady state 
system. This formula often called 
Little's law. 

Lq = XWq. Mean number in steady state queue. 
This formula also called Little's law. 

L$ = XWS Mean number of customers receiving service 
in steady state system. This formula 
sometimes called Little's law. 
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C.3 M / M / 1 Queueing Formulas 
Table 3. Formulas for M / M / 1 Queueing System 

P = XWS, Pn = P[N = n] = (l-p)pn, n = 0 , l , - - . 

P[N >n} = pn n = 0,1, • • •. See Exercise 2. 

L = E[N] = XW = - £ - , at = P——. 
1 J 1-p N (1-p)2 

Xg = AWg = -^—, (T]̂  = P (1 + P~2
P \ See Exercise 4. 

i-b- v-w^>°i=(if-rtJ 
E[Nq\Nq > 0] = T——, Var[JV9|Wg > 0] = ^ g . See Exercise 3. 

W[t] = P[«; < t] = 1 - exp (—pj , P[w >t} = exp C-l\ 

W = E[w] = —?-, ol = W\ 
1-p 

irw[r] = WIn ( 1 0° ) , ^[90] = Win 10, jr,„[95] = Wln20 
\ 100 — r) 

Wq{t] = P[q < t] = 1 - pexp ( ^ j , P[q > t] = pexp ( ^ j . 

Wq=P^, al={2-p)pWJ- See Exercise 8. Q 1 - p ' q ( 1 - p ) 2 

jrg[90] = max{Wln(10p),0}, 7rg[95] = max{Wrln(20/9),0}. 
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C.4 M / M / l / K Queueing Formulas 
Table 4. Formulas for M / M / l / K Queueing System 

' (1 - a)an 

Pn = < 
if A # n, 

(l-aK+1) 

if A = //, 
K + l 

for n = 0,1, • • •, K, where a = AW .̂ 
Aa = (1 - pjr)A. Mean arrival rate into system. 

L=< 

[ a[l-(K + l)aK + KaK+1] ._ . , 

X . . . 
— if A = u. 

k 2 

Lq = L-(l-pQ), qn = - ,n = 0,1,- •• ,K - 1. 
1 - p j r 

i f - i 
W[t] = l-5]«»g[n;/it], 

n=0 
where 

fe=0 

_ L < 7 
A a A a 

J f - 2 

Wg[t] = i-52«»+iQ[n;/i*]. 
n=0 

£?bl« > 0] = — 2 - , p = ( l - p j r ) a . 
1-Po 
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C.5 M / M / c Queueing Formulas 
Table 5. Formulas for M/M/c Queueing System 

Po = 

Pn = < 

' c -1 n 
v—\ U 
^ n! c 

.n=0 

( an 
-rPo n! 

an 

I c!c"-cPu 

ac 

( 1 - P ) 

—J 

if n < c, 

if ra > c. 

c!(l - p)P[N > c) 
ac 

P[N > n] 
Po 

Po 

c - i „fc 

î  + *(w) if rc < c 

acp"-c 
= P[iV > c];on-c if n > c 

^"^-^wr aP[N > c] 
iwq = 

where 

P[N>c] = C[c,a} = c - l "- x „n „c 

P-rtSSr + s n = 0 
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Table 5. Formulas for M/M/c Queueing System (continued) 

2 _ pC[c,a\[l + p - pC[c,a\] 

*N*= ( T ^ • 
L = XW = Lq + a. 

<*\t = *Nq + o(l + P[N > c])- Wq[0] = 1-P[N> c]. 

Wq[t] = l-P[N>c] exp[-cp,i(l - p)}. Wq = PiN>c)Ws 
c(l - p) 

2_[2-C[e,a]]C[c,a]WS 
aZ = q ~ c2(l - p)2 • 

yL J l c ( l -p) \ 100-r Js 

W« 
7ro[90] = max{0, , , ln(10C[c,o])}. 

c(l - p) 

Ws 
7ra[95] = max{0, — ln(20C[c, a])}. 

c(l - p) 

^ = P[q < t\q > 0] = 1 - exp ( ~ ^ ~ P ) ) , t > 0. 

£[9|<Z > 0] = 2%'] = c ( l - p ) 

v a r M,>o] = ( -^_) 2 . 

{ 1 + Cic""* + C2e-^*(1-"> if a ^ c - 1 

l - { l + C[c,a]/i*}e~'J ' i fa = c - l 
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Table 5. Formulas for M/M/c Queueing System (continued) 

where 

C-I^5--
and 

r _ P[N>c] 

W = Wq + Ws. 

E[w2} = { (a + 1 - c)<r(l — pf 

if a = c — 1 2{2P[N > c] + 1}W$ 

a2
w = E[w2\ - W2. 

7ru;[90] « W + 1.3<7tu, 7Tt,y[95] « W + 2crw (estimates due to James Martin). 
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C.6 M / M / 2 Queueing Formulas 

Table 6. Formulas for M /M/2 Queueing System 

a = . 

Po = 

Pn = 

P[N 

Lq = 

\WS, 

1 - P 
1 + p ' 

2p0pn, 

>n] = 

--XWq: 

P=f-

n = 1, 

2pn 

1 + p ' 

2p3 

1-P 2 

2,3, 

n = 

» 

P[iV > 2] = C[2, a] is the probability that an arriving customer must queue 
for service. P[N > 2] is given by 

P[N>2]=C[2,a] = 

rr2 -aNq-
2P3[(1 + P ) 2 -

(1 -P 2 ) 2 

2P2 

1 + P 

-2p3] 

2p 
1 - P 2 

„2 _ „ 2 ,2p(l + p + 2p') 
aN = aN„ + 

Q 1 + p 

l + p-2p2 

"M i + , 
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Table 6. Formulas for M /M/2 Queueing System (continued) 

2p2 
Wq[t] = 1 - - f - exp[-2pi(l - p)] 1 + p 

^m 
2_p2(l + p-p2)Wi 

' 9 = ( 1 -P 2 ) 2 ' 

7rg[r] = max{0, In ( ^ """„, , ., ) }• 
/ 200p2 \ 
V(100-r)(l + p ) / 

T«[90] = max{0, _ ^ _ in ^ ^ L ) }. 
91 2 (1-p) \l + pjf 

7ra[95} = max{0, ^ 8 In (^L.\ }. 91 2 (1-p) V l + p / 

^ - P[g < *|g > 0] = 1 - exp ( ~ 2 ^ s " ^ ) , t>0. 

E[q\q>0) = Effl= Wl 

/ Ws Vm[q\q > 0] = ' S 

2(1 " p) 
2 

W[t] = 

2(1 - p ) , 

l - p 2 - 2 p 2 l - p - 2 p * 
1 + l-—L—e~^ + 2 ^ _ ^ e _ 2 M t ( 1 _ p ) if fl ^ x 

1 - {1 + ^ l e " " ' ifa = l. 
3 
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Table 6. Formulas for M/M/2 Queueing System (continued) 

677 

W = Wa + Ws = 
Ws 

( p2[l-A(l-p)2}W2 

E[w2] = { 

K 3 s 

<4 = E[w2] - W2. 

(2p-l)(l-p)(l-p2) 

10 

+ 2Wj if a ^ 1 

i fo= 1 

TTW [90] « W + 1.3aw, % [95] &W+ 2aw 
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C.7 M / M / c / c Queueing Formulas 

Table 7. Formulas for M/M/c /c Queueing System ( M / M / c loss) 

a = \Ws 

n' pn = — n = 0 , l , . . . , c . 
a2 ac 

1 + a + _ + . . . + _ 

The probability that all servers are busy, pc, is called Erlang's B 
formula, B[c,a], and thus, 

B[c,a] = 
a2 ac 

1 + a + _ + . . . + _ 

A„ = A(l — B[c, a]) is the average arrival rate of customers who actually 
enter the system. Thus, the true server utilization, p, is given by 

KWS 

L = XaWs. 

W = — = Ws. 

H r W - l - - p ( ^ ) 
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Table 7. Formulas for M/M/c /c Queueing System ( M / M / c loss) (continued) 

All of the formulas except the last one are true for the M/G/c/c queueing 
system. For this system we have 

W[t] = Wa[t], 

where Ws[-] is the distribution function for service time. 

C.8 M / M / c / K / K Queueing Formulas 

Table 8. Formulas for M /M /c /K Queueing System 

a = XWS. 

p°= £ - + - £ ( - ) 
n = 0 n ! c! n = i \ c / 

( a" 
-po if n = l , 2 , . . . , c , 

Pn= < 
n\ 

— ( § ) " Cpo ifn = c + l , . . . , K 
c! 

The average arrival rate of customers who actually enter the system is Aa = A(l — p& 

The actual mean server utilization, p, is given by 

XaWs 
P= • 
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Table 8. Formulas for M/M/c/K Queueing System (continued) 

c!(l — r) 

where 

a 
c 

c - l / c - l 
L = Lq + £[ATS] = L ? + ^ n p „ + c l - ^ p n . 

n=0 \ n=0 / 

By Little's law, 

and 

L 
W = —. K 

qn = —, n = 0,1,2,...,K -1, 
1-PK 

where qn is the probability that an arriving customer who enters the system 
finds n customers already there. 

Wn 
E[q\q>0} = ^ — . 

i - 5 > 
n = 0 
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C.9 M / M / o o Queueing Formulas 

Table 9. Formulas for M/M/oo Queueing System 

a = XWS. 

an 
pn = — e a , n = 0, l , - - . n! 

Since N has a Poisson distribution, 

L = a and ajy = o. 

By Little's law, 

W = - = Ws. 

Since there is no queueing for service, 
Wq = Lq= 0, 
and 
W[t] = P[w <t} = Ws[t\; 
that is, w has the same distribution as s. All the above formulas are true 
for the M/G/oo queueing system, also. 
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C.10 M / M / l / K / K Queueing Formulas 
Table 10. Formulas for M / M / l / K / K Queueing System 

The mean operating time per machine (sometimes called the mean time to 
failure, MTTF) is 
E[0] = 1 
The mean repair time per machine (by one repairman) is 

The probability, po, that no machines are out of service is given by 

K\ ( Ws V 
Po 

[y, K\ ( Ws \ k l 

L(K-k)\\E[0]) 
A=0 

= B[K,z], 

where B[-, ■] is Erlang's B formula and 
- - E[Q) 

Ws ' 
Then, pn, the probability that n machines are out of service, is given by 

K\ 
pn = — -z np0, n = 0 ,1 , . . . ,K . 

(K — ny. 
The formula for pn can also be written in the form 

n = 0,l,...,K. Pn -

P = 

A = 

w -. 

L = 

Wq 

zK 

(K-
K 

E 
fc=0 

1-Po 
p 

Ws' 
K 

~ A 

XW. 

= w -

-n 

n)\ 

jfc! 

E[0). 

ws. 
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Table 10. Formulas for M/M/l/K/K Queueing System (continued) 

„K-n-l 

_(K-n)pn_ (K-n-l)\ _ 
qn = ;— = K 1 k , n = 0,1,2, ...,K - 1, 

T-
k=0 

K-L K-1-" 

where qn is the probability that a machine that breaks down finds n 
machines in the repair facility. 

w\t\ = p[W<t] = i - ^ l : \ ^ \ t > 0 , 

where 

Q{n;x) = e-xY^tjj 
— XK 

fc=0 

Wq[t] = P[q<t] = l - ^ ( K 2 ! 2 ^ , * > 0 . 

Wn 
E[q\q > 0] = — Z - . 

l - 9 o 
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C.l l M / G / l / K / K Queueing Formulas 

Table 11. Formulas for M / G / l / K / K Queueing System 

The mean operating time per machine (sometimes called the mean time to 
failure, MTTF) is 
E[0] = 1 . 
The mean repair time per machine (by one repairman) is 
WS = ^. 
The probability, po, that no machines are out of service is given by 

Po = 1 + 
KWi 
E[0] n=0 v ' 

- 1 

where 

r i for n = 0 

and Wg[6] is the Laplace-Stieltjes transform of s. 

p = 

W--

L = 
Wq 

Lq 

1-Po 
_£_ 
Ws' 

K 

xw. 
= w-
= XWq 

E[0] 

■Ws. 

The derivation of these equations can be found in Priority Queues by N. 
K. Jaiswal, Academic Press, 1968. 
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C.12 M / M / c / K / K Queueing Formulas 

Table 12. Formulas for M/M/c/K/K Queueing System 

The mean operating time per machine (sometimes called the mean time to 
failure, MTTF) is 
E[0] = 1 
The mean repair time per machine (by one repairman) is 

"rs n~ 
The probability, po, that no machines are out of service, is given by 

Po sG^-i^cK 
where 

E[0] 
z = Ws 
Then, pn, the probability that n machines are out of service is given by 

( IK 

Pn = < 

(„)« _ nP0 n = 0 , l , . . . , c 

n: 
V»- £ 

c'.c 
K 

{K
n)z-np0 n = c+l,...,K. 

Lq= 5Z (n - c)pn. 
n = c + l 

= Lq(E[Q] + Ws) 
9 K-Lq 

X = H . 
E[0] + Wq + Ws 

W=—- E[0]. 
A 

L = XW. 
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Table 12. Formulas for M / M / c / K / K Queueing System (continued) 

(K - n)pn 
In 

K-L 
where qn is the probability that a machine which breaks down finds n 
inoperable machines already in the repair facility. We denote qn by qn[K] 
to emphasize the fact that there are K machines. It can be shown that 

qn[K}=pn[K-l], n = 0 , l , . . . , i f - l . 
w 11 ccp(K-n-l;cz) pn[K - 1] = ———————-Po[K - 1], 

c! p(K-l;cz) 
where, of course, 

a" _ P(k;a) = —e a. 

c\p{K - 1; cz) 
where 

k 

Q(k;a) = e-aY,^-
n 

n=0 

W[t) = P[w<t] = l-Cl eM-t/Ws) + C a
Q ( ^ . " C " l i c (

i
2 + *M)), t > 0, 

Q(K — c - \;cz) 
where C\ = 1 + Ci and 

c!(c- 1)(K -c- l)'.p{K — 1;cz) 
The probability that a machine that breaks down must wait for repair is 
given by 

K - l c - l 

D = 53 Qn = ! _ 53 9«-
n=c n=0 

£%!<? > 0] = - ^ . 
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C.13 D / D / c / K / K Queueing Formulas 

Table 13. Formulas for D /D /c /K /K Queueing System 

The mean operating time per machine (sometimes called the mean time to 
failure, MTTF) is 

E[0] = 1 

The mean repair time per machine (by one repairman) is 

}, 

Ws 

P = 

_ 1 

min{l 

where 

z = 

A = 

W ■ 

E\0] 
Ws ' 

cp/j.= 

K 
~ A 

K 

c(l + 

cp 
Ws 

E[0}. 

z) 

L = XW. 

Wq = W - Ws. 

Lq = XWq. 

The equations for this model are derived in "A straightforward model of 
computer performance prediction" by John W. Boyse and David R. Warn 
in ACM Comput. Surveys, 7(2), (June 1972). 
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C.14 M / G / l Queueing Formulas 

Table 14. Formulas for M / G / l Queueing System 

The z-transform of N, the steady-state number of customers in the system, 
is given by 

9N(Z) = V P n * = — , 
^ w;[\(i -z)]-z 

where WJ[0] is the Laplace-Stieltjes transform of the service time s. The 
Laplace-Stieltjes transforms of w and q are given by 

wm = (i-zOwSM 
e-x + xw;[e] 

and 

9 0 - A + AWs*[0] 
respectively. Each of the three transforms above is called the Pollaczek-
Khintchine transform equation by various authors. The probability, pQ, of 
no customers in the system has the simple and intuitive equation po = 1—p, 
where the server utilization p = XW$- The probability that the server is 
busy is P[N > 1] = p. 

Wq = j^B. = £^L (L±*L) (Pol laczek>s formula). 
" 2(1-p) 1 - p V 2 ) 

Lq = XWq. 
a2 _ A3£[a3] } (X^E^V X*E[s>) 
CTJV' 3 ( 1 - p ) \2{\-p)) 2(1 -p) 

m q > 0 ] = ^ ( ^ 
i-p y 2 

oq = E[a*]-Wl 
W = Wq + W8. 
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Table 14. Formulas for M/G/1 Queueing System (continued) 

L = XW = Lq + p. 

2 

3(1 -p) \2(1-p)J 2(1 -p) a% = ^m + (^m\+^-^E^+p(i-p). 

E[w2] = E[q2} + ^ 3 . 
1-p 

a2
w = E[w2] - W2. 

7ru,[90] w W + 1.3<rw, nw[95] « W + 2aw. 

Table 15. Formulas for M/H2/I Queueing System 

The ^-transform of the steady-state number in the system, N, is given by 
, , V^ n ^ Zl ^ Z2 

yNK*) — t 

» 
where zi 
P1P2Z2 -
where 
P = XWS, 

X 
Pi = —, 

Mi 

and 
r (Z2 
02 

1=0 
— w 

z\ -
1 <->2 , 

- Z Z2 — Z 

and 22 are the roots of the equation 
(Pl + P2+ P\P2)Z + 1 + Pl + P2 - P = 0, 

1 

i = 1,2 

- 1 ) ( 1 -

Z\ - Z2 

- 1 ) ( 1 -

•1 

■ pz2) 

PZl) 

z2 - zi 
It follows from the formula for <?JV(Z) above that 
P» = Ciz^n + C2Z2~n, n = 0,1, • • •. 



-n+1 , , -n+l 
2" 
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Table 15. Formulas for M/H2/I Queueing System (continued) 

In particular, p0 — 1 — p. 

P[JV>n] = d ^ - l - + C , 
zi-1 z2-l 

It follows from this formula that 
P[N > 1] = p. 
Wq[t] = P[q<t] = l - C5e~at - C6e~bt, t > 0, 
where a = — £i, 6 = — £2, for C11C2 the roots of 
6>2 + (A*I + /x2 - A)0 + /xiM2(l - p) = 0, 
and where 
^ _ A(l - p)Ci + p(l - p)/*iM2 

a(Ci - C2) 
and 

A( l -p )C 2 + p(l-p)p>iM2 C6 = 
KC2 - Ci) 

A£[s2] 
Wq = ^ 7 - ^ = • ^ L ( 1 + * ) • (Pollaczek's formula) 

E[q\q >0} = 

2(1 - p) 1 - p 
W5 / l + C* 

1 - p \ 2 

E[q*] = 2W* + ^ l - . 
q 3 ( 1 - p ) 

In this formula we substitute 

Mi M2 
Then 

W[i] = P[w<t] = l - irae-vo* - ■rcbe->il>t, t > 0, 
where 
na = C\ • 

T*b = C 2 
*2 

22 
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Table 15. Formulas for M/H2/I Queueing System (continued) 

Mo = 
and 
M6 = 
W = 

E[w 

-- A(zi - 1), 

= A(*2 - 1). 
= Wq + Ws. 

\-p 
where, of course, 

EW 

°w-

r2 

Lq-

< 

L = 

0%: 

, _ 2gi 2g2 
J 2 2 

Mi M2 
= £[u;2] - W2. 

E[w2} 
W2 ' 

p* 

\-p 

_ m*3) + 
3(1 - p) 

XW = Lq + p. 
X*E[s3) 1 

3(1 -P) \ 

( ^ ) 
(x2E[s2]\ 

W-P)J 
' A 2 £ [ S

2 ] Y 

,2(1 -p)J 

2
 + *2E[s2] 

2(1 - p) 

1
 ( X2(3-2p)E[s2} 

2(1 -P) 
+ p(l-p)-
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Table 16. Formulas for M/Gamma/1 Queueing System 

Since s has a gamma distribution, 

a 
Since 

1 
Oo — —, 

this means that 
E[s2} = W2(l + C2), 
E[s3) = W$(l + C2)(l + 2C2), 
and 

n - l 
E[sn] = W^Y[(l + kC2

s), n = l,2,--. 
k=i 

The probability, po, of no customers in the system is given by 
Po = 1 - P, 
where p = XWs- The probability the server is busy is 
P[N > 1] = p. 

Wq = J * p l = p . ( i ± S ) (Pollaczek's formula). 

Lq = XWq. 

2 _p2(l + C2) 
aN 2(1 -p) 

2> 
Q 2(1 - p) 

E[q2) = 2W2 + ^ s 

a2=E[q
2)-W2. 

W = Wq+Ws. 

i | p2(l + C2) | 2p(l + 2C2) 

PW2(1 + C2)(1 + 2C2) 

3(1 - p) 
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Table 16. Formulas for M/Gamma/1 Queueing System (continued) 

L = XW = Lq + p. 
p3(l + C2)(l + 2C2) , / V ( l + C j ) \ 2 , p2(3-2p)(l + C2) 

aN~ 3(1 - p) + 2(1 - p) + 2(1 - p) 
+ p(l-p). 

E[w2) = E[q2} + W
2(l + C2) 

1-p 
a2

w = E[w2} - W2. 
irw[90] &W + 1.30-w, 7ru;[95] « W + 2aw. 

Table 17. Formulas for M/Ek/l Queueing System 

Since s has an Erlang-fc distribution, 

E |*" !=H)H) {i+n-r-)ws- -'•'•-
Thus, 
E{s2} = W2(l + ^ , 

and 

^ . H , ( 1 + I ) ( , + H). 
The probability, po> of no customers in the system is given by 
Po = 1 - P, 
where p = AVTS. The probability the server is busy is given by 
P[N > 1] = p. 

k 
Wq = 

XE[s2} = pWs 

2(1 - P) 1-p 

Lq = XWq. 

2 
\ / 

(Pollaczek's formula). 

,2 _ p2{\ + k) 
'N, 9 2fc(l - p) 

l | p2(l + k) | 2p(fc + 2) 
2ifc(l - p) 3k 
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Table 17. Formulas for M/Ek/1 Queueing System (continued) 

E[q\q >0 ] = 
\-p 

A + i \ 
2 

V / 

E[q2] = 2W2 + 

aq = E[q2]-W2. 
W = Wq + Ws. 
L = XW = Lq + p. 

pW2(k + l)(Jb + 2) 
3fc2(l - p) 

*l = 
p3(k + l)(k + 2) 

3ifc2(l - p) 2(1 - p) 

l \ \ p 2 ( 3 - 2 p ) ( l + -

+ 2(1 -p) 
+ P(l - P). 

w2 1 + 
E[w2) = E[q2] + 

\-p 
a2

w = E[w2) - W2. 
TTIO[90] « W + 1.30-u,, 7ru;[95] aW + 2aw. 
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Table 18. Formulas for M / D / l Queueing System 

Since s has a constant distribution, 
E[sn] = Wg, n = l , 2 , - - - . 
The generating function, <7JV(Z)> for the steady-state number of customers 
in the system is given by 

(l-p)(l-z) 
9N(Z) = — — ■ 

1 - zep{1-2) 

If we assume 
\zfAi-*)\ < 1, 
we can expand </AT(Z) in the geometric series 

oo 

9N(Z) = (1-P)(1-Z)YI[^1-')] ■ 

Hisashi Kobayashi, in his book, Modeling and Analysis, Addison-Wesley, 
Reading MA, 1978, proved that, by comparing the coefficients of zn in the 
above series and in the definition 

oo 

9N(Z) = ^ P n Z " , 
n=0 

it can be shown that 
Po = 1 - P, 
Pi = (1 - p)(e" - 1), 
and 

Pn = (l-p)y. n = 2 ,3 , - - - . 

The distribution function of q is given by 
't-(k-l)Ws\ k~1 ft 

Wqlt] = f£pn+pk[-
n=0 \ Ws J 

where 
(k - l)Ws < t < kWs, k = l,2,.... 
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Table 18. Formulas for M/D/1 Queueing System (continued) 

Thus, 
Wq[0}=po. 

PWa Wq = 
2 ( 1 - p ) 

W[q\q > 0] = 
Wa 

2(1 -P) 
PW2

S E[q2} = 2W2 + 
q 3(1 - p ) 

c2 = E[q
2}-W2. 

Lq = XWq = 
2(1 - p) 

* , ~ q 3(1 -p) 

0 

+ 2(1 - p) 2(1 -P) 

for i < Ws 

for t > Ws, 
n=0 

where 
kWs < t < (k + 1)WS, fc = 1,2,. 
W = Wq + Ws. 

W2 

E[w2] = E[q2}+^-. 
1-p 

o2
w = E[w2) - W2 

L = \W = Lq+p. 

'N 3 ( 1 - p ) \ 2 (1 - Y 
-p)j 

P 2 (3 -2p) 
2 ( 1 - p ) 

+ p ( l - p ) . 
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C.15 G I / M / 1 Queueing Formulas 
Table 19. Formulas for G I /M /1 Queueing System 

The steady state probability that an arriving customer will find the system 
empty, 7To, is the unique solution of the equation 1 — 7To = A*[/i7ro] such 
that 0 < TTO < 1, where A* [9] is the Laplace-Stieltjes transform of r . The 
steady state number of customers in the system, N has the distribution 
{pn}, wherepo = P[N = 0] = 1-p, a n d p n = p7r0( l-7ro)n~\ n = 1,2, • ••, 
with 

T P A 2 P(2 ~ 7TQ - p) 
L = —, and a*N = - . 

TO 7I"0 
(1 ~ 7T0)p 

Lq = . 
TTO 

2 _ p ( l ~ 7T0)(2 - 7TQ - p ( l - 7T0)) 
°Nq ~ ^ • 

1 '° 
£[w,|iv, > o] = —. 

i"o 
W« 

W = —-. 
TO 

W[t] = P[w < t] = 1 - exp(-t/W). 

iTw[r] = Win 

nw[90] = Wh 

Wq = (1 - TTQ) 

. 1 0 0 - r j 
nw [90] = W In 10, TT^ [95] = W In 20. 

Ws 

n0 , 

W9[«] = P[« < *] = 1 - (1 - w 0 )exp(- t /W) . 

**> — H » ( " ) } ' 
</', the queueing time for those who must, has the same distribution as w. 
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Table 20. 7TQ versus p for G I /M/1 Queueing Systems1 

p 

0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
0.950 
0.980 
0.999 

E2 

0.970820 
0.906226 
0.821954 
0.724695 
0.618034 
0.504159 
0.384523 
0.260147 
0.131782 
0.066288 
0.026607 
0.001333 

E3 

0.987344 
0.940970 
0.868115 
0.776051 
0.669467 
0.551451 
0.424137 
0.289066 
0.147390 
0.074362 
0.029899 
0.001500 

U 

0.947214 
0.887316 
0.817247 
0.734687 
0.639232 
0.531597 
0.412839 
0.284028 
0.146133 
0.074048 
0.029849 
0.001500 

D 

0.999955 
0.993023 
0.959118 
0.892645 
0.796812 
0.675757 
0.533004 
0.371370 
0.193100 
0.098305 
0.039732 
0.001999 

H2 

0.815535 
0.662348 
0.536805 
0.432456 
0.343070 
0.263941 
0.191856 
0.124695 
0.061057 
0.030252 
0.012039 
0.000600 

H2 

0.810575 
0.624404 
0.444949 
0.281265 
0.154303 
0.081265 
0.044949 
0.024404 
0.010575 
0.004999 
0.001941 
0.000095 

C.16 GI /M/c Queueing Formulas 

Table 21. Formulas for GI /M/c Queueing System 

Let 7rn, n = 0,1,2, • • • be the steady state number of customers that an arriving 
customer finds in the system. Then 

( c - 1 

TTn = < 

E(-1)'~BQW n = 0,l,...,c-2 

Dujn~c, n = c—l , c , . . . , 
where u is the unique root of the equation u = A*[cfi(l — UJ)] such that 
0 < u < 1, where A*[6] is the Laplace-Stieltjes transform of r , 
9j=A*\jn], j = l,2,...,c, 

1For the Hi distribution described in the next-to-last column, <ji = 0.4, m = 0.5A, 
1x2 = 3A. The H2 distribution described in the last column was generated by Algorithm 
3.2.2 of Chapter 3 with C£ = 20. Thus, qi = 0.024405, m = 2qxX, and /x2 = 2g2>. 



C.16. GI/M/C QUEUEING FORMULAS 

Table 21. Formulas for GI/M/c Queueing System (continued) 

699 

Cj = < 3 

j = o, 

D = 

and 

- l 

Un = DCn± JA-(!*L^hl), n = 0,l...,c-l. 

Wq[t] = P[q < t] = 1 - P[q > O j e - ^ 1 - " ) ' , t > 0, 
where 

D ... DWS _ r , . , Ws P[q > 0] = Wq = E[q\q > 0] 
c ( l - w ) 1 - w ' c ( l - o ; ) 2 ' 

If c(l - w) # 1, then 
W[t] = P[w<t] = l + {G- l)c-"* - G e - ^ 1 - " ) ' , * > 0, 
where 

a. ° . 
( l - w ) [ l - c ( l - w ) | 

When c(l — w) = 1, then 
W[t] = P[w < t] = 1 -

We also have 
W = Wq + Ws. 

1 + 
DfJLt 

1 - w 
e -"*, t > 0. 

AW c - l 1 1 l* = l - ^ - A W , 5 > - i T - " 
A W « T „ - I 

i = i ^ c> 

n 
Pn = 

AWj*«- i 

, n = 1,2,... ,c — 1 

, n = c,c + 1,- • ■ . 
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C.17 M / G / l Priority Queueing 
Table 22. Formulas for M / G / l Queueing System (classes, no priorities) 

There are n customer classes. Customers from class i arrive in a Poisson 
pattern with mean arrival rate A», i = 1,2,. . . , n. Each class has its own 
general service time with E{si\ = l/fa, and finite second and third moments 
E[s2], E[s?]. All customers are served on a FCFS basis with no considera­
tion for class. The total arrival stream to the system has a Poisson arrival 
pattern with 

The first three moments of service time are given by 

Ws = ^E[Sl] + ^-E[s2] + ■■■ + ^E[sn], 
A A A 

E[s*} = ±E[sl} + ^E[sl} + ... + ±E[sl), 
A A A 

and 

E[s*} = ±E[sl} + ^E{Sl) + ... + ^E[sl). 
A A A 

By Pollaczek's formula, 

2(1 -P) 
The mean time in the system for each class is given by 
Wi = Wq + E[Si], i = l,2,...,n. 
The overall mean customer time in the system, W, is given by 

A A A 
The variance of queueing time is given by 
j 2 _ A£[,3] A2 (g[s2])2 

q 3(1 -p) 4(1 -p)2 ' 
The variance of system time by class is given by 
<Jwi=aq + alv * = l , 2 , . . . , n . 
The second moment of w by class is 
E[wf] = al)i+W?, z = l , 2 , . . . , n . 
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Table 22. Formulas for M/G/1 Queueing System (classes, no priorities) 
(continued) 

Thus, the overall second moment of w is given by 

E[w2} = ±E[w2] + ^E[w2} + ■■■ + ±E[wl), 
A A A 

and 
a% = E[w2} - W2. 
The standard M/G/1 formulas now hold for Lq, L, <r^ , and crjy. Martin's 
estimates for the 90th and 95th percentiles of w can also be used. 

Table 23. Formulas for M/G/1 Nonpreemptive Priority Queueing System 
(also known as a head-of-the-line queueing system (HOL)) 

There are n customer classes. Class 1 customers receive the most favor­
able treatment; class n customers receive the least favorable treatment. 
Customers from class i arrive in a Poisson pattern with mean arrival rate 
A», i — 1,2, . . . , n. Each class has its own general service time with E[si] — 
1/fc, and finite second and third moments E[s2], !?[«<]. Customers are 
served on a nonpreemptive priority basis. The total arrival stream to the 
system has a Poisson arrival pattern with 

A = Ai +A 2 +•■• + An. 

The first three moments of service time are given by 

Ws = ^E[Sl] + ^-E[s2] + ■■■ + ^E[sn), 
A A A 

E[s2] = ±E[s2} + ^-E[s2} + • • • + ^E[s2
n), 

A A A 
and 

E[s3} = ±E[Sl} + ^E[sl) + ... + ^E[sl}. 
A A A 



702 APPENDIX C. QUEUEING THEORY FORMULAS 

Table 23. Formulas for M/G/1 Nonpreemptive Priority Queueing System 
(continued) 

Let 
aj = Ax£[si] + \2E[s2] + ■■■ + \jE[8j], j = 1,2,. . . , n 
and note that 
an — a = XWS. 
The mean queueing time for each class is given by 

*«-*»'-,,, "?, >■ 
2 ( l - o i _ i ) ( l - o J ) 

j = l , 2 , . . . , n , a0 = 0. 
The mean number of customers in queue j is 
Lqj=\jWqj, j = l,2,...,n. 
The overall mean queueing time, Wq, is given by 
W9 = ^E[qi) + ^-E[q2) + • • ■ + ^-E[qn}. 

A A A 
The mean time spent in the system for each class is 
Wj = E[WJ] = E[qj] + E[Sj], j = 1,2,. . . , n, 
and the mean number in each customer class in the system is 
Lj = XjWj, j = l,2,...,n. 
The mean overall customer time in the system is 
W = Wq + W3. 
The mean number of customers of all classes queueing for service is 
Lq = XWq, 
and in the system is 
L = XW. 
The variance of time in the system for each customer class is given by 

2 2 XEis3} 
" ' *> 3 ( 1 - a ^ O V - « ; ) 

A E [ S 2 ] J 2 £ A J E [ S 2 ] - XE[S2] 

+. ^ = 1 -
^ l - a ^ - O ' a - o , - ) 2 

\Etffe\iEti] 
+ ^ , ? = l , 2 , . . . , n . 

2 ( l - a i _ 1 ) 3 ( l - a j ) ' 

file:///Etffe/iEti
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Table 23. Formulas for M / G / l Nonpreemptive Priority Queueing System 
(continued) 

The overall variance of w is given by 

°l = j Kt + W?] + ^A [al2 + Wj] 

The variance of queueing time by customer class is given by 
Oqj = Kj ~ Vsj, j = l , 2 , . . . , n . 
Then, by Theorem 2.7.2(d), 
E[q]) = al+W*., j = l , 2 , . . . , n . 

Therefore, 

E[q2} = ± E[q\] + ^ E[ql\ + • • • + y E[&. 

Finally, 

Table 24. Formulas for M / G / l Preemptive Priority Queueing System 

There are n customer classes. Class 1 customers receive the most favor­
able treatment; class n customers receive the least favorable treatment. 
Customers from class i arrive in a Poisson pattern with mean arrival rate 
Aj, i = 1,2,. . . , n. Each class has its own general service time with E[si] = 
1/Hi, and finite second and third moments E[s?], E[s?]. The priority system 
is preemptive resume, which means that if a customer of class j is receiving 
service when a customer of class i < j arrives, the arriving customer pre­
empts the server and the customer who was preempted returns to the head 
of the line for class j customers. The preempted customer resumes service 
at the point of interruption upon reentering the service facility. The total 
arrival stream to the system has a Poisson arrival pattern with 

A = Ai+A 2 + --- + An. 
The first three moments of service time are given by 

Ws = ^E[Sl] + ^E[s2) + ■■■ + ^E[sn], 
A A A 

E[s*} = ±E[sl} + ^E[sl} + ... + ^Elsl}, 
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Table 24. Formulas for M/G/1 Preemptive Priority Queueing System 
(continued) 

E[s*] = ±E[,*] + ^-E[sl] + ■■■ + ^E[sl}. 
A l " A l 2J A 

Let a, = XiE[si] + X2E[s2] + • • • + XJE[SJ], j = 1,2,. . . , n 
and note that 
an = a = XWs-
The mean time in the system for each class is 

Wj = E[Wj] = 
1 — a,_ ■j-i 

E[Bi] + -^ 
2 ( 1 - % ) 

a0 = 0, j = l , 2 , . . . , n . 
The corresponding mean time in the queue is 
Wq. = E[wj] - E[Sj], j = 1,2,. . . , n. 
The mean number of customers in queue j is 
Lqj=XjWqv j = l,2,...,n. 
The overall mean queueing time, Wq, is given by 

Wq = &E[qi] + ^ E[q2] + ■■■ + ~E[qn]. 
A A A 

The mean number in each customer class in the system is 
Lj = XjWj, j = l,2,...,n. 
The mean overall customer time in the system is 

W = —W1 + —W2 + --- + — Wn = Wq + Ws. 
A A A 

The mean number of customers of all classes queueing for service is 
Lq = XWq, 
and in the system is 
L = XW. 
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Table 24. Formulas for M/G/1 Preemptive Priority Queueing System 
(continued) 

The variance of time in the system for each customer class is given by 

Els/'EXiEtf] 
ol = ^ ^ i -

+ !=1 + _ ^ Z 
3(1 - a,--!)2^ - a,) 4(1 - aj.^l - a,)2 

+ - ^ ^ - ^ '- a0 = 0, j = l ,2 , . . . ,n . 
2(1 - a j -O^ l - a,) 

The overall variance of w is given by 

The variance of queueing time by customer class is given by 
,n. 

Then, by Theorem 2.7.2(d), 
£[g?] = <r2. + W | . , j = l ,2 , . . . ,n . 
Therefore, 
E[q>] = ±E[q>} + ± £fe2] + • • • + ^ £ % 2 ] . 
Finally, 
< r 2 = i % 2 ] - W 2 . 
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Table 25. M / G / l Processor-Sharing Queueing System 

The Poisson arrival stream has an average arrival rate of A and the average 
service rate is p. The service time distribution is general with the restriction 
that its Laplace transform is rational, with the denominator having degree 
at least one higher than the numerator. Equivalently, the service time, s, 
is Coxian. The priority system is processor-sharing, which means that if a 
customer arrives when there are already n — 1 customers in the system, the 
arriving customer (and all the others) receive service at the average rate 
p/n. Then pn = pn{\ — p), n = 0 , 1 , . . . , where p = \/p. We also have' 

L = —?—, E[w\s = t] = -t—, and W = - ^ - . 
1 - p \ - p 1 - p 

Finally, 

E[q\s = t] = - ^ - , and Wq = ^ ~ 
1 - p H 1 — p 

Table 26. M/G/c Processor-Sharing Queueing System 

The Poisson arrival stream has an average arrival rate of A. The service 
time distribution is general with the restriction that its Laplace transform 
is rational, with the denominator having degree at least one higher than 
the numerator. Equivalently, the service time, s, is Coxian. The priority 
system is processor-sharing, which works as follows. When the number of 
customers in the service center, N, is less than c, then each customers is 
served simultaneously by one server; that is, each receives service at the 
rate p. When N > c, each customer simultaneously receives service at the 
rate cp/N. We find that just as for the M / G / l processor-sharing system, 
W and the probability distribution of the steady state number of customers 
in the system are independent of the form of the service time distribution 
and depend only upon the mean, W$. However, the distribution function 
of w cannot in general be obtained. It is shown by Lavenberg and Sauer in 
Computer Performance Modeling Handbook, (edited by Lavenberg), Aca­
demic Press, 1983, that the formulas for pn, L, a2

N W, and Wq for the 
M/G/c processor-sharing queueing system are exactly the same as those 
for the M/M/c queueing system. 
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C.18 M / M / c Priority Queueing 
Table 27. M/M/c Nonpreemptive (HOL) Queueing System 

707 

There are n priority classes with each class having a Poisson arrival pattern 
with mean arrival rate A*. Each customer has the same exponential service 
time requirement. Then the overall arrival pattern is Poisson with mean 

A = Ai + A2 + - ■ + Xn-

The server utilization 

P = 

Wqi 

and 

AW. s. _ 
C Cfl 

C[c,a]Ws 

c U - A j W y c ) ' 

Wqj = C[c,a}Ws 

1 - f W,5>J /c 1 - (wsJ2Ail /c 
, j = 2 , . . . , n. 

Wj = Wqj +WS, j = l , 2 , . . . , i 
Lqj=XjWqj, j = l , 2 , . . . , n . 
Lj=\jWj, j = l,2,...,n. 

A A A 
L 9 = XWq. 
W = Wq + Ws. 
L = XW. 
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C.19 Queueing Networks 
Table 28. Queueing Network Notation and Definitions 

C Number of customer classes. 
Dck Average service time provided by service center k 

for each class c customer while it is in the network. 
Dck = Vck x Sck-

Dfe Average service time for all customers at service 
center k. Dk = ^cDck. 

E[t] Expected (mean or average) think time of a user 
at an interactive terminal or workstation. 
E[t] = T. 

K Number of service (resource) centers in the 
network. 

Lck Average number of class c customers at service 
center k. 

Lk Average number of customers of all classes at 
service center k. 

Lqck Average number of class c customers queueing 
for service at service center k. 

Lqk Average number of customers of all classes 
queueing for service at service center k. 

Xck Average throughput of class c customers at 
service center k. 

Afc Average throughput of customers of all classes at 
service center k. Some authors use this symbol 
to denote the throughput of class k customers. 

A Average system throughput. The average rate that 
customers pass through the system. Usually refers 
to the rate that interactive users are serviced or the 
rate that batch jobs are processed. 

fick Average service rate (per visit) of class c customers 
at service center k. /ike = 1/Sck-

Nc Number of class c customers in a closed queueing 
network. 

N Number of customers of all classes in a closed 
queueing network. Average number of interactive 
users. Average number of batch jobs in process. 
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Table 28. Queueing Network Notation and Definitions (continued) 

nck Number of class c customers at service center k. 
Often used to describe the state of the network. Not 
the average value. 

nfc Number of customers of all classes at service center k. 
Often used to describe the state of the network. Not 
the average value. 

Pk(nk) Marginal probability there are nk customers of all 
classes at service center k. 

Pkj Probability a customer who completes service at 
service center k will branch to service center j . 

pck Utilization of service center A; by class c customers. 
pk Utilization of service center k by customers of all 

classes. Thus, the total utilization of the center. 
Sck Average service time per visit of class c customers 

at service center k. 
T Average think time. T = E[t\. 
Vck Visit ratio of class c customers at service center k. 

Thus, the average number of visits a class c customer 
makes to service center k. 

Wck Average time a class c customer spends at service 
center k (queueing for and receiving service). This 
is Vkc times the average time per visit to service 
center k. 

Wc Average time a class c customer spends in the 
network. Wc - £ f e Wck. 
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Table 29. Finite Population Queueing Model of Interactive System 

Terminals 

, 

1 

2 

N-l 

N 

1 

< 

Central 
Processor 
System 

Figure 6.1.1. Finite Population System. 

The CPU may have an exponential distribution, in which case the system 
is a machine repair model with one service center. The other alternative is 
that the CPU service time is general with the restriction that its Laplace 
transform is rational, with the degree of the denominator at least one higher 
than the numerator. Equivalently, the service time is Coxian. When the 
service time is general, the queue discipline must be processor-sharing. For 
this model, since the operating time for machines corresponds to think time, 
with average think time E[t] = T, we have, by Little's formula, the mean 
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Table 29. Finite Population Queueing Model of Interactive System (continued) 

response time 

W-Z-T. 
A 

But A = p/Ws so the mean response time can be written as 

p 
where 
P = 1 - Po, 
and 

- l 

Po ItoJ(JV-t)! \TJ I 
where B[-,-] is Erlang's B formula and 

- T 

Z~\Vs' 
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C.22 Graph of p for Machine Repair 

0.3 0.4 0.5 0.6 0.7 0.80.91.0 4 6 6 7 8 9 10 30 40 60 60 70 8090101 2 3 

7 — 
Fig. 3 Server utilization p as a function of K and z = £[0] /^[*] = /«/« for 

the M/M/1//f//f queueing system (machine repair). 



Appendix D 

Mathematica Programs 

All the Mathematica programs mentioned in the book are listed here. The 
programs were written using Version 1.2 of Mathematica. The queue4 
package contains the Exact program for the solution of closed, multiclass, 
BCMP queueing models of computer systems, plus the subfunctions that 
are used by that program. In addition, queue4 contains the Approx pro­
gram, which gives the approximate solution of closed, multiclass, BCMP 
queueing models of computer systems. All the other Mathematica programs 
mentioned in the book are in the queue3 package. 

The Stephen Wolfram book [2] which comes with Mathematica, is of 
course, must reading for using this powerful system. Roman Maeder's book 
[1] was also very useful in writing the packages. 

Cited References 
[1] Roman Maeder, Programming in Mathematica, Addison-Wesley, Red­

wood City, CA, 1990. 

[2] Stephen Wolfram, Mathematica: A System for Doing Mathematics by 
Computer, Addison-Wesley, Redwood City, CA, 1988. 

D. l Mathematica Programs 
BeginPackage["queue3'"] 
queue3::usage*"This is a collection of functions used in this book." 
gammadist::usage»"Computes the value of the gamma distribution using 
the notation in this book." 
hyperg::usage-"The pmf of the hypergeometric distribution." 
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hypergdist::usage="The distribution function of the hypergeometric 
distribution." 
mmc::usage="Computes the performance statistics for the H/M/c queueing system." 
mmck::usage="Computes the performance statistics for the H/M/c/K queueing 
system." 
bca::usage="Erlang's B (loss) formula." 
cca::usage="Erlang's C (delay) formula." 
cent::usages"Computes the performance statistics for the central server 
model with fixed MPL N." 
online::usage="Computes the performance statistics for terminal system 
with FESC to replace the central server model of the computer system. 
subcent can be used to calculate the rates needed as input." 
subcent::usage="Computes the throughput for a central server model with 
fixed MPL." 
Begin["queue3'private'"] 
gammadist/: gammadist[alpha., beta., t_] :-

Gamma[beta, 0, alpha*t]/Gamma[beta] 

hyperg[n_, nsucc_, ntot_, k_] := 
Binomial[nsucc, k]*Binomial[ntot - nsucc, n - k]/Binomial[ntot, n] 

hypergdist[n_, nsucc., ntot., x_] := 
Sum[hyperg[n, nsucc, ntot, k], {k, 0, Hin[x, nsucc, ntot]}] 

bca[c_, a_]:= 
Block[{t=l,n}, 

Do[t= a t /(n+ a t ) , {n, 1, c}] ; 
Return [t] 

] 
cca[c_,a_]:= 
Block[ {n, b, cca}, 

rho =a/c j 
b=a/(l+a); 
For[n=2, n<=c, n++, b= a*b/(n+a*b)] ; 
cca=b/(rho*b+l-rho); 
Return[{cca}] ; 

] 

mmc[ c_, x., s_ ] := 
(* x is lambda, s is mean service time *) 
Block[ {n, a, w, rho, b, cca, QueueTime }, 

a = x s ; 
rho =a/c ; 
b=a/(l+a); 
For[n=2, n<=c, n++, b= a*b/(n+a*b)] ; 
cca=b/(rho*b+l-rho)j 
QueueTime = cca*s/(c*(l-rho)) ; 
w=QueueTime+s; 

(* QueueTime is mean time in the queue *) 
(* w is mean time in the system *) 

Return[{QueueTime, w, rho, cca}] ; 
] 
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mmck[ c_, k_, x_, s_ ] := 
Block[ {cf, kf, n, a, p, pO, pk, q, Xa, QueueTime }, 

cf = Floor[c] ; 
kf = Floor[k] ; 
a = x s ; 
p = i ; 
pO = 1 ; 
q = 0 ; 
For[n=l, n<=cf, n++, p ■ p a/n ; pO = pO + p ] ; 
For[n=c+l, n<=kf, n++, p = p a/cf ; p O = p O + p ; q = q + (n-cf) * p ] ; 
pk = p / pO ; 
Xa = x * (1-pk) ; 
QueueTime = (q / pO ) / Xa ; 
w=QueueTime + s; 
(* pk is the probability a customer is lost *) 
(» Xa is true throughput *) 
(* QueueTime is mean time in queue *) 
(* w is mean time in system *) 
Return[{pk, Xa, QueueTime, w}] ; 

] 

cent[k_,N_, D.]:= 
(» central server model *) 
(* k is number of service centers *) 
(* N is MPL, D is service demand vector *) 
Block[{L, w, wn, n, lambdan, rho}, 
L»Table[0, {k}]; 
For[n=l, n<=N, n++, u=D*(L+l); wn=Apply[Plus,w]; lambdan=n/wn; 
L-lambdan w; rho=lambdan D]; 
(• lambdan is mean throughput *) 
(* wn is mean time in system *) 
(* L is vector of number at servers *) 
(* rho is vector of utilizations •) 
Return[{lambdan, wn, L, rho}]j 
] 

online/: online[srate_, N_, T_]:= 
Block[{n, w,s}, 
m=Length[srate]; 
x=Table[Last[srate] , {N-m}]; 
nsrate-Join[srate , x ] ; 
q=Join[{ l} , Table[0, { N - l } ] ] ; 
s=0; 
qO=l; 
For[n=l, n<=N, n++, 
w=0; 
For[j=l , j<=n, j++, 
w=w+(j /nsrate [ [ j ] ] )*I f [ j> l , q [ [ j - l ] ] , qO] ; 
lambda=n/(T+w) ] ; 
s=0; 
For[j=n, j>=l , j — , 
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q[[j]] = (lambda/nsrate[[j]])»If[j>l, q[ [ j - l ] ] ,qO] ; 
s=s+q[[j]]]; 
qO=l-s 
] ; 
qplus=Join[{qO},q]; 
(* lambda is mean throughput *) 
(* v is mean response time *) 
(* qplus is vector of conditional probabilities •) 
Return[{lambda,w, qplus}]; 
] 

subcent/: subcent[k.,N_, D_] : = 
Block[{L, w, wn, n, lambdan, rho}, 
L=Table[0, {k}] ; 
For[n=l, n<=N, n++, w=D*(L+l); wn=Apply[Plus,w]; lambdan=n/wn; 
L=lambdan w; rho-lambdan D]; 
Return[{lambdan}]; 
] 

End[] (* end 'private' context *) 
EndPackage [] 

BeginPackage["queue4'"] 

queue4::usage="This is a collection of queueing theory programs used 
to model computer systems." 
Exact::usage="Exact[ Nc_?VectorQ, Tc_?VectorQ, Dck_?MatrixQ ] 
computes the performance statistics for a closed, multiclass BCMP 
queueing system where Nc is the population vector, Tc is the 
vector of think times and Dck is the matrix of service demands 
by workload class. The output consists of four performance vectors: 
Wc the vector of response times by class, Lambdac the vector of 
throughputs by class, Lk the vector of number of customers at each 
service center, and Rhok the vector of the total utilization of each 
service center." 
Approx::usage"1 Approx[ Nc_?VectorQ, Tc_?VectorQ, Dck_?MatrixQ, 
epsilon.Real ] computes the approximate performance statistics for 
a closed, multiclass BCMP queueing system where Nc is the population 
vector, Tc is the vector of think times and Dck is the matrix of 
service demands by workload class. The output consists of four 
performance vectors: Wc the vector of response times by class, Lambdac 
the vector of throughputs by class, Lk the vector of number of 
customers at each service center, and Rhok the vector of the total 
utilization of each service center." 

Begin["queue4'private'"] 

FixPerm[ numC_, PVc_, Nc_ ] := 
Block[ {i, m = PVc }, 

For[i=numC, i>l, i — , 
If[m[[i]] > Nc[[i]], 
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m [ [ i - l ] ] = m [ [ i - l ] ] + m [ [ i ] ] - N c [ [ i ] ] ; 
m[[ i ] ]=Nc[ [ i ] ] ] ] ; 

I f [ m[[ l ] ] > N c [ [ l ] ] , { } , m] 
] 

Fir8tPerm[ numC., Nc_, n_ ] := 
Block[ {m}, 

m = Table[ 0, { numC } ] ; 
m[[numC]] = n ; 
FixPerm[numC, m, Nc ] 

] 

NextPerm[ numC., Nc_, PVc. ] := 
Block[ {m=PVc, i=numC, j } , 

While[ m[ [ i ] ] == 0 , i— ] ; 
I f [ i = = l , Return [{}] ] ; 

m [ [ i ] ] ~ ; 
i— ; 
While[ ( i >= 1) kk (m[[ i ] ] == N c [ [ i ] ] ) , i— ] ; 
I f [ i < 1, Return [{}] ] ; 
m[[i]]++ ; 

For[j=i+l , j<numC, j++, 
m[[numC]] = m[[numC]] + m[[j ] ] ; 
m[[ j ] ] = 0 ] ; 

FixPerm[numC, m, Nc ] 
] 

Exact[ Nc.TVectorQ, Tc.TVectorQ, Dck.TMatrixQ ] := 

Block[ { n, PVc, PVcml, Wck, Wc, Lambdac, Lckl, Lck2, Ltmp, Rhok, Lk, 
numC = Length[Nc], numK = Dimensions[Dck][[2]], 
Ntot, Wtot, zVectorK } , 

zVectorK = N[ Table[0, {numK}] ] ; 
Ntot = Sum[ N c [ [ c ] ] , { c , 1, numC} ] ; 
Lckl[ Table[0, {numC}] ] = zVectorK ; 

For[n=l, n <= Ntot, n++, 
PVc = FirstPerm[numC, Nc, n ] ; 
While[PVc!= { } , 

Wck = Table[(PVcml = PVc ; 
If [ PVcml[[c]] > 0 , 

PVcml [ [ c ] ] — ; 
Dck[[c]] * ( 1 + 
If[0ddQ[n], Lckl [PVcml], Lck2 [PVcml] ] ) , 
zVectorK]), 

{ c , 1, numC} ] ; 

Lambdac = Table[ ( Wtot = Tc[ [c ] ] + Apply[Plus, Wck[[c]] ] 
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I f [ Wtot > 0, PVc[[c]] / Wtot, 0 ] ) , 
{ c , 1, numC} ] ; 

Ltmp ■ Lambdac . Wck ; 
If[0ddQ[n], Lck2[PVc]»Ltmp, Lckl[PVc]«Ltmp ] ; 

PVc = NextPerm[numC, Nc, PVc ] ] ; 
If [0ddQ[n], Clear [Lckl] , Clear [Lck2]] 

] ; 

Wc - Apply[Plus, Wck, 1 ] ; 
Rhok = Lambdac . Dck ; 
Lk = Lambdac . Wck ; 

Return[{Wc,Lambdac,Lk,Rhok }] ; 

] / ; Length[Nc] ■■ Length[Tc] »» Length[Dck] 

Appro*[ Nc.?VectorQ, Tc_?VectorQ, Dck.?MatrixQ, epsi lon.Real ] := 

Block[ { Flag, Wck, Lambdac, newL, Lk, Lck, Wc, Lk, Rhok, 
numC = Length[Nc], numK « Dimensions[Dck][[2]] } , 

Lck = N[Table[ Nc[[c]]/numK, { c , 1, numC}, {k, 1, numK} ] ] ; 
Flag = True ; 
While[Flag=»True, 

Lk ■ Apply[Plus, Lck ] ; 
Wck = Table[ Dck[[c,k]] * 

(1 + Lk[[k]] - Lck[[c,k]] + < ( N c [ [ c ] ] - l ) / N c [ [ c ] ] ) Lck[[c,k]] ) , 
{ c , 1, numC}, {k, 1, numK} ] ; 

Wc = Apply[Plus, Wck, 1 ] ; 
Lambdac « Nc / ( Tc + Wc) ; 

Flag * False ; 
Lck = Table[(newL = Lambdac[[c]] Wck[[c,k]] ; 

If [ Abs[ Lck[[c ,k]] - newL ] >" eps i lon , Flag-True] ; 
newL), { c , 1, numC}, {k, 1, numK} ] ; 

] ; 

(• Compute f ina l r e su l t s *) 

Rhok = Lambdac . Dck ; 
Lk * Lambdac . Wck ; 
Return[{Wc,Lambdac,Lk,Rhok }] ; 

] / ; Length[Nc] - - Length[Tc] «= Length[Dck] 

End[] (* end 'private' context *) 
EndPackage [] 
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Answers to Exercises 

E. l Answers to Exercises 

Chapter 2 
1. (a) 0.3645. (b) 0.4275. (c) 0.8585. (d) 0.0665. 5. 1 - (13/64) = 
1283/1296. 8. 0.99978. 9. (a) Three. (b) Four. 10. Four. 
12. (a) 1 - ( | ) 4 = 671/1296 = 0.5177469. (b) 1 - (§§)24 = 0.491403876. 
13. (4

2
7) -r (5

2°) = 0.88244898. 14. (a) 36 -=- (5
5
2) = 36/2,598,960 = 

0.000013852. (b) (13x48)-=-(5
5
2) = 0.000240096. (c) [(4) x 13 x (*) x 12]-r 

(5
5
2) = 0.001440576. (d) [4 x (ft3) - 10)]-^-ft2) = 5108-rft2) = 0.00196540. 

(e) (10x45-40)-=-ft2) = 0.003924647. 15. [ft3) x 45]-=-ft2) = 0.50708283. 
16. 0.501177394. 17. (a) [13 x (4) x ft2) x 43] -s- (5

5
2) = 0.422569028. 

(b) [ft3) x (I)2 x 11 x 4] -5- ft2) = 0.047539016. (c) [13 x 4 x ft2) x 42] -5-

ft2) = 0.021128451. 18. (a) 1-s-Q = 1.574769 x l0~ 1 2 . (b) ( „ ) - S - Q = 
0.012790948. (c) 4 -r (**) = 6.299078 x 10"1 2 . 22. (a) 3/11. (b) 5/13. 
(c) 3/7. 23. (a) 0.83. (b) 0.6944. (c) 0.6.0. 24. (a) 1/3. (b) 1/2. 
(c) No. 25. (a) 0.39375. (b) 0.125-5-0.3975 = 0.31746. 26. (a) 0.315. 
(b) 0.12-r0.315 = 0.38095. 2 7 . 4 / 9 . 29. (a) 1/6. (b) 1/30. (c) 3/10. 
3 1 . (a) Let pn be the probability of no match. Then we have the following 
table. 

~n pn \pn - (1 - e - 1 ) | 
2 0.500 0.132 
3 0.667 0.035 
4 0.625 0.007 

721 
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32. (a) 5/8 = 0.625. (b) 1/4. (c)l/24. 33 . (a) 18 (b) 10. 35. 
(a) 1,2,3,4 (b) p(l) = 20/35, p(2) = 10/35, p(3) = 4/35, p(4) = 
1/35. 37. mean = 3.951425, standard deviation = 2.29543. 38. (a) 
No. (b) 75/216,15/216,1/216. (c)-$0.0787. 40. P[A2\A] = 0.2950, 
P[A3\A] = 0.1475, P[AA\A] = 0.2212. 4 1 . (a) px(0) = I = px(l), 
py(0) = | , P y ( l ) = | ,Py(2) = §. (b) p%=2 = I , p £ } y = a = | . 
(c) No. p(x,y) ^ PX{X)PY(V) for at least one x and one y. (d) E[X] = 
1/2, £[F] = 11/8, Var[X] = 1/4, Var[F] = 31/64. (e) Pz(0) = I , p z ( l ) = 

i Pz(2) = J,pz(3) = | . 44. xp = £[X] + ^ ^ / T T I . 46. C = 

[ e " a E * L o a * / * ! ] • 47. 94 bytes. 48. (a) Method B. (b) Yes. 49. 

(a) 96 (b) 3,734. 5 1 . (a) *$ft$r = 0.1054981993. (b) [ Q / © ] 3 = 
0.028043904. (c) 1 -q7 where q = 1-P[A]. 53 . (a) ( f ^ / Q = 0.18176 
(b) 1 - Q / ( S ) " 4 ( ? 2 ) / Q = 0-4073. 54. (a) 2 ( » ) / ( S ) = 11/50 
(b) 2 ( » ) / ( S ) = 13/50. 55. 2 4 / [ ( S ) ( » ) ( S ) ] = 4.473877 x l < r » 
56. (a) (1 - p 2) 2 . (b) (1 - p2)2p + (1 - p). (c) 0.8789, 0.96973 
58. Probability KoUossal overbooked 0.36473; Teeny 0.34868. 6 1 . (a) 
fx(x) = f - x. fY(y) = \ - y . No. (b) fX\Y{x\y) = (2 - x - »)/(§ - y) 
fY\x(v,x) = {2-x- y)/(§ - x). (c) E[X\Y = y] = (3y - 4)/(6» - 9) 
E[Y\X = x] = (3x - 4)(6x - 9). 62. (a) fx{x) = e~x. fy(y) = e~* 
Yes. (b) fx\Y(x\y) = e-x.fY\X{y\x) = e~v. (c) 1. 1. 63. 585/1326 -
90/204 = 45/102 = 0.44118. 64. 4/9. 65. 0.5. 66. 2/3. 67. 1 -
1/2! + 1/3! — • • • — 1/52! w 1 — e _ 1 . The two numbers are equal to at least 
10 decimal places. 68. $11 to John, $5 to Mark. 69. 1/24, 3/24 = 
$0,125. 70. 1/3. 7 1 . (a) 1/3 (b) 3/1 72. 3/8 74. (a) 0.0345. (b) 
0.57534. 75. (a) 2/5 (b) $15.00. 

Chapter 3 
1. 405/1024. 0.08789. 2. 3/16. 0.10057. 1 - q4 = 0.56419. 3 . 0.498184. 
4. p(k) = qk~lp. E[X] = l/p. Vai[X] = q/p2. 5. 2.5. q4 = 0.1296. 6. 
(a) 0.62419. (b) 0.69927. 7. 300. 9. 0.01134. 10. 0.1008. 12. 0.5665. 
13. 371/455. 14. 0.74190. 15. (a) pk = (i)(3lk)/Q, k = 1,2,3. (b) 4/5. 
16. 0.013635. 0.01416. 17. (a) 0.04979. Normal approx. 0.05391 Binomial 
approx. 0.05322. (b) 0.05008. Normal approx. 03615. Binomial approx. 
0.05072. 18. 0.0053878. 19. 0.669524. 20. E[X] = rq/p. Var[X] = rq/p2. 
2 1 . 0.994555. 22. 1.0. 23 0.323324. 26. (a) k = 9,10. Max. prob. 
0.12511. (b) 0.71429. (c) 0.75 by Chebyshev. Normal approx. 0.96012. 27. 
exp(-2.4) = 0.09072. 29. 0.0902. 30. 0.136691. Normal approx. 0.13567. 
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32. 0.14197. Poisson approx. 0.14288. 33 . 0.0026646. Normal approx. 
0.00104. 34. (a) Binomial with n = 500, p = 1/365. For (b), (c), see table. 

Ex. 34. Ch. 3 
k Pk Poisson 

~0 0.25366 0.25414 
1 0.34844 0.34814 
2 0.23883 0.23845 
3 0.10892 0.10888 
4 0.03718 0.03729 
5 0.01013 0.01022 

35. (a) 0.77687. (b) 0.13534. 37. (a) 8 sec. (b) 0.265. (c) 0.242424. 
(d) No. 38. ln(100) = 4.61 or about 5 raisins. 43 . Both have mean 20. 
(a) Variance 40. (b) Variance 34. 44. 0.8926. 45 . Erlang-5 with mean 
1/90. 47. (a) Gamma with parameters 5 and a. (b) 0.4405. 48. 108,241. 
5 1 . (a) 38,416. (b) 36,880. 57. (a) 0.8487961172. (b) 0.8571234605. 
58. (a) (i) 0.91044. (ii) 0.74107. (iii) 0.89973. (iv) 0.94950. (b) (i) 0.915. 
(ii)0.73936. (iii) 0.89936. (iv) 0.95264. 59. (a) /? = 0.25. a = 1/40 = 0.025. 
E[X3] = 45,000. P[X < 15] = 0.804799. (b) 9 l = 0.1127016654. q2 = 1-ft. 
Hi = 0.02254033308. fi2 = 0.1774596669. E[X3} = 60,000. P[X < 15] = 
0.8576827036. (c) qi = 0.7390457219. q2 = 1 - qi- Hi = 0.3673320053. 
fi2 = 0.03266799469. E[X3] = 45,000. P[X < 15] = 0.8371453882. 60. 
9i = 0.3486818046. q2 = 1 - gx. m = 0.373986598. /x2 = 10 - H\. 6 1 . 
Same solution as Example 3.2.9. 65. Poisson with parameter Xp. 66. 
(a) Poisson with parameter Xp. (b) E[Y] = 1 = Var[K]. 67. (a) 
Poisson with parameter A = 30 people, (b) E[Y] = Var[y] = 30 people. 
68. K = 2,f(t) = 2e~2t,E[X3] = 3/4. 69. E[X] = 1,P[X = E[X\] = 
0,Var[X] = l. 

Chapter 4 
1. No. 2. (a) 

' 0.5 0.3 0.2 " 
0.2 0.5 0.3 
0.2 0.2 0.6 

(b) (0.26,0.37,0.37). (0.285506,0.326605,0.387889). 3 . All are recurrent. 
4. Classes {0,1}, {2,3}, {4}. First two classes are recurrent. Last is 
transient. 5. 0.8677. 6. 0.1988. 8. P[N(t) = ifc] = e x p ( - 7 5 ) ^ . 
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Chapter 5 
1. 16 + 60 = 76 people. 2. (b) /x = A a - 1 / " . (c) y, = 27.1442. 5. Cost 
per eight-hour day with I. M. Slow is $1,320; with I. M. Fast $600. Hire 
Fast fast. 6. (a) 1/3 (b) 1.5. (c) 0.062959. (d) 7.2 minutes. 7. 2.486028 
minutes. 10. (a) 1.5625. (b) 6.25 minutes, (c) 8.75 minutes, (d) 2.1875. (e) 
0.375. (f) 0.390625. (g) 2.6667. 11 . (1) 1 min. (2) 4 min. (3) p = 0.25. (4) 
1/3. (5) 0.253 = 0.015625. (6) e " 3 7 5 = 0.023517746. (7) 11.983. 15. (a) 
1.4274 jobs per sec. (b) 2.457 jobs per sec, and 4.07 sec. (c) 7.006 sec. (d) 
0.999197. 19. Log is right because WqM/M/2 < WqM/M/1. Bot is right be­
cause WM/M/I < WM/M/2- Both are right! If users (people) experience the 
waiting and the service separately, Log's system would probably be prefer­
able because people seem to dislike waiting for service even more than slow 
service once it begins. If queueing and service is not separately felt by the 
user, then Bot's system is best. This is usually the case for computer sys­
tems. 20. (a) 5/9. (b) 8.993 minutes, (c) 0.3747. (d) 48.993 minutes, (e) 
2.1414. (f) 0.17266. (g) 0.133226752. 2 1 . (a) 0.7576. (b) 0.2424. (c) 65.45 
minutes, (d) 5.45. (e) 0.43841. (f) 0.0909. 22. (i) Wq = 45.75 minutes, 
Lq = 6.86 customers, L = 11.36 customers, and probability of not queueing 
is 0.2375. (ii) 7. (iii) 0.2172, 0.7828, 32.61 minutes, 4.89 customers, 0.4999, 
0.0105. 24. (a) 94.43754953 minutes, (b) 93.89452 minutes. 26. (a) The 
APL function HAM implements Algorithm HM by first calling the APL 
function BBCA to calculate B[c, a]. HAM then returns C[c, a] and sets the 
global variable B to B[c,a\. (b) See the APL function RBCA. (c) BBCA 
and RBCA both yield £[15,5] = 0.0001572562863. The timing routines of 
APL*PLUS show that each function requires 270 milliseconds on an 8MHZ 
IBM PC AT. The one-line APL function WBCA requires only 50 millisec­
onds! The function RBCA is a memory grabber and will give an APL WS 
FULL error for relatively small values of c. 27. (a) 4 agents, (b) All times 
in seconds. Wq = 5.37. W = 185.37. E[q\q > 0] = 72. 7r,[90] = 28.79. The 
probability that w < 3.5 minutes is 0.6758. P[N > 5] = 0.028. 28. (a) 
0.32195. (b) 8.4756. (c) 0.1353. (d) $14.48. 29 (a) 9. (b) 5.549 lines, (c) 
0.5135. 30. (a) W = 30.000005 min. ^ [ 9 0 ] = 69.0776 min. L = 24.500004 
engineers. Wq = 5 x 10~6 min. 7rg[90] = 0. min. L, = 4 x 1 0 - 6 en­
gineers. (b) W = 30 min. 7r„,[90] = 69.0776 min. L = 24.5 engineers. 
Wq = 7Tq[90] = Lq = 0. 3 1 . (e) W = 30 seconds. K** is 12.5 terminals. 

Chapter 6 
1. 38.5 seconds. 2. 5 seconds. 3 . 0.48 trans, per sec. 4. 2.5 sec. 
5. 5.56. 6. p 0 = 0.521307, p = 0.478693, A = 0.957386, W = 0.890216. 7. 



E.l. ANSWERS TO EXERCISES 725 

A = 4.0004, p = 0.880088, L = 7.33945, W = 1.8347 sec. 8. A = 0.488189, 
W = 10.2419 sec, pi = 0.976378, p2 = 0.488189, p3 = 0.244094. 9. W = 
5.694 sec, L = 1.139. 10. (a) A = 2.11 trans, per sec, W = 8.965 sec. 
(b) A = 2.378 trans, per sec. W — 6.818 sec (c) A = 3.21 trans, per sec, 
W = 2.48 sec. 11 . Wx = 3.53 sec, W2 = 3.867 sec, Lx = 3.53, L2 = 5.80. 
12. 

c/k 
1 
2 
3 

Ac 
0.1151 
0.1582 
0.7326 

wc 3.4242 
3.2132 
6.8248 

Pk 
0.999999 
0.072876 
0.098325 

Lk 
5.7153 
0.0785 
0.1088 

c/k 
1 
2 
3 

Ac 
0.1151 
0.1582 
0.7141 

wc 3.4303 
3.2158 
7.0016 

Pk 
0.977789 
0.071959 
0.097212 

Lk 
5.7195 
0.0771 
0.1070 

Chapter 7 
2. 0 = 2xx. 3. 19.96372, 1.01931. 4. 27.9, 4.2767. 8. (b) k = 1/n. 
9. (b) 4/9. 10. (a) 12.1506 < p, < 13.6494, 7.508 < a2 < 14.658. 
(b) 10.440 < p < 15.360, 3.731 < a2 < 60.934. 11. (a) 0.44 
(b) 0.3024 < p < 0.5776. (c) 379. 

Chapter 8 
I . z = 0.56964, p-value 0.2845, accept H0. 2. t = 2.567 , p-value 0.015. 
Reject HQ. 3 . Assuming equal variances, t = 3.155, df = 348, p-value 
0.0008. Reject HQ. Programmers of Division A more productive. 4 . 
t = 0.563, df — 9, p-value 0.2936. Accept HQ. NO difference in productivity. 
5. F = 1.06 with df = 199 for numerator, df = 149 for denomina­
tor. p-value 0.355. Accept Ho. Variances appear to be equal. 6. \ 2 = 

9.96, x io l = 14.684. p-value 0.3537. Accept HQ. Variance appears to be 
0.004. 
7. Ho : p = 0.9, Hi : p < 0.9, p-value 0.2639. Accept H0. 8. p-value 
0.06369. Cannot reject H0. No apparent difference in tires. 9. \ 2 = 4.33, 
X4,o.o5 = 9-4877, p-value 0.363. Accept H0. 10. Modified D is 1.0184. Crit­
ical value 0.995. Fails Kolmogorov-Smirnov test for exponentiality. Modi­
fied A2 value is 0.8721. Critical value 1.062. Passes the A2 test for exponen­
tiality. 
I I . Modified D value 0.4949. Critical value 0.895. Passes Kolmogorov-
Smirnov test for normality. Modified A2 value 0.1843. Critical value 0.752. 
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Passes A2 test for normality. 12. 
0.03337. Must reject H0. 13. x 

2 _ 

2 _ 
X' = 6.8, xi.o.os = 5.9915, p-value 

= 8.726, X3.0.05 = 7.815, p-value 
0.03316. Reject H0. 14. x = 5.59, xi.o.os = 12-592, p-value 0.4706. 
Cannot reject Ho. 15. The following MINITAB solution shows that we 
must reject the null hypothesis that the means are the same. 

ANALYSIS OF VARIANCE 
SOURCE DF SS 
FACTOR 2 372019 
ERROR 15 370958 
TOTAL 17 742978 

LEVEL 
Cl 
C2 
C3 

POOLED STDEV 

MEAN 
137.5 
189.2 
465.0 

157.3 

MS 
186010 
24731 

F 
7.52 

P 
0.005 

INDIVIDUAL 95 PCT CI'S FOR MEAN 
BASED ON POOLED STDEV 

STDEV + + +-
77.1 ( * ) 
157.7 ( * ) 
208.3 ( » ) 

+ + +-
200 400 600 

16. The following MINITAB Kruskal-Wallis test shows that the means are 
not equal because the distributions are not identical. 

MTB > kruskal-uallis c4 c5 

LEVEL 
1 
2 
3 

OVERALL 

NOBS 
6 
6 
6 
18 

MEDIAN 
125.0 
175.0 
510.0 

AVE. RANK 
6.6 
7.9 
14.0 
9.5 

Z VALUE 
-1.64 
-0.89 
2.53 

H « 6.58 d.f. - 2 p - 0.038 
H » 6.59 d.f. = 2 p « 0.037 (adj. for ties) 
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Chapter 9 
1. (a) The set of data does not look very linear. 

IOO-I 

80- • 
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Scatter Diagram for Exercise 1. 

(b) The least-squares line is y = 18.47 + 0.06085 x. Since r2 = 0.208 there 
is not a good linear fit. The highest point is certainly an outlier. 

(c) The average number of pages per book is 414.9 and average cost per 
book is $43.71, compared to 284.2 and $42.03, respectively, for the books 
in Example 9.1.1. (d) $42.20, compared to $50.25. 6. (a) 4.6. (b) x = 
12.009. 7. y = 91.05 - 4.5*. 8. (a) 4.034. (b) An outlier, since et = 
3.45 se. (c) 3.573. (d) Yes. 9. (a) 0.03628 < ft < 0.11900. (b) Cannot 
reject H0. 10. (a) t0 = 3.4899, *i9,0.025 = 2.093. Reject H0. 
(b) P[t19 > 3.499] = 0.001225437, so the p-value is 0.00245. 11 . (a) 
Sxy = 663.634, SSX = 408, SSy = 1094.165. (b) y = 19.4706 + 1.62655*. 
(c) SSR = 1079.43, SSE = 14.73, MSE = 0.98207, F = 1099.1, so the 
ANOVA table is 



728 APPENDIX E. ANSWERS TO EXERCISES 

ANOVA Table for Exercise 11 

SOURCE DF SS MS F-Value Pr > F 

Regression 1 1079.43 1079.43 1099.1 0 

Error 15 14.73 0.98 

Total 16 1094.16 

The exact values are very sensitive to rounding. The ANOVA table pro­
vided by the MINITAB command REGRESS for the original data follows. 

Analysis of Variance 

SOURCE DF SS MS F 
Regression 1 1079.4 1079.4 1095.76 
Error 15 14.8 1.0 
Total 16 1094.2 

12. a = f.998, j3 = -0.0119918. 13. a = 1620.35, 0 = -1.06513. 
14. F = 63.77. Reject H0. 15. (a) F = 47.86. Reject H0. (b) f-ratio for 
$2 is 4.167. Reject H0. 17. (a) 41. (b) 4. (c) F = 12. Reject HQ. (d) 1. 
18. 

SOURCE DF SS MS 
Regression 3 510.90 170.30 
Error 6 27.34 4.56 
Total 9 538.24 

(a) 0.9492. (b) F = 18.6869. Reject HQ. 19. (a) The regression equation 
is y = 4.751 + 0.3313 x + 0.000112 x3. REGRESS kicked out the coefficient 
of x2 because it was too correlated to x. The requested values are shown 
in the MINITAB REGRESS output below. The output also shows that 
none of the constants are significant at the 5 percent level. The regression 
equation is 

y = 4.75 + 0.331 Cl +0.000112 C3 

Predictor Coef Stdev t-ratio p 
Constant 4.751 7.281 0.65 0.530 
Cl 0.3313 0.6685 0.50 0.632 
C3 0.0001120 0.0006698 0.17 0.871 

s = 3.052 R-sq « 46.5'/. R-sq(adj) = 34.6% 

P 
0.000 



E.l. ANSWERS TO EXERCISES 729 

Analysis of Variance 

SOURCE 
Regression 
Error 
Total 

DF 
2 
9 
11 

SS 
72.860 
83.806 
156.667 

MS 
36.430 
9.312 

F 
3.91 

P 
0.060 

(b) The standardized regression equation is y = 11.3333 — 5.678 (x ) + 
5.488 (x )3. Note that the quadratic coefficient is zero. The parameters 
requested are shown in the REGRESS output below. The output also 
shows that /3| is significant, as are /?J and /30. 
The regression equation is 
y » 11.3 - 5.68 Cl - 0.000 C2 + 5.49 C3 

Predictor 
Constant 
Cl 
C2 
C3 

Coef 
11.3333 
-5.678 
-0.0000 
5.488 

Stdev 
0.7307 
1.698 

0.6227 
1.084 

t-ratio 
15.51 
-3.34 
-0.00 
5.06 

P 
0.000 
0.010 
1.000 
0.000 

s » 1.581 R-sq ■ 87.2'/. R-sq(adj) » 82.4% 

Analysis of Variance 

SOURCE 
Regression 
Error 
Total 

DF 
3 
8 
11 

SS 
136.667 
20.000 
156.667 

MS 
45.556 
2.500 

F 
18.22 

P 
0.001 

20. The output of REGRESS with the regressors x\ and #2 follows. 
The regression equation is 
y » - 3.42 + 0.00308 xl + 0.298 x2 

Predictor 
Constant 
xl 
x2 

Coef 
-3.4189 

0.0030789 
0.29831 

Stdev 
0.5779 

0.0007257 
0.03809 

t-ratio 
-5.92 
4.24 
7.83 

P 
0.000 
0.004 
0.000 

s ■ 0.6701 R-sq ■ 99.5% R-sq(adj) ■ 99.4% 

Analysis of Variance 

SOURCE 
Regression 
Error 
Total 

DF 
2 
7 
9 

SS 
472.11 
2.27 

474.39 

MS 
236.06 
0.32 

F 
726.36 

P 
0.000 

21. The somewhat compressed output from the SAS/STAT procedure 
RSQUARE follows. It provides the values of R2 and Cp for subsets of 
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all sizes from the variables xi,...,x5. The MINITAB command BREG 
is unable to function with all 5 variables at once, because of correlation 
between variables, but, by using it with four variables at a time, it is possible 
to get all subsets of 4 or fewer variables with some of them repeated a 
number of times. BREG also provides the standard error. 

Number in 
Model 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 

R-square 

0.98326062 
0.98287178 
0.97845274 
0.97110568 
0.95317924 

0.99520456 
0.99516722 
0.99339874 
0.99076440 
0.98572588 
0.98529410 
0.98504462 
0.98459249 
0.98365213 
0.97116680 

0.99590342 
0.99587885 
0.99585591 
0.99573979 
0.99570323 
0.99567847 
0.99448483 
0.99310827 
0.99016242 
0.98546949 

0.99712672 
0.99600702 
0.99593177 
0.99588199 
0.99575159 

C(p) 

18.33935 
18.90473 
25.33010 
36.01286 
62.07821 

2.97266 
3.02694 
5.59835 
9.42873 
16.75482 
17.38264 
17.74539 
18.40279 
19.77009 
37.92399 

3.95650 
3.99222 
4.02558 
4.19442 
4.24758 
4.28358 
6.01915 
8.02069 
12.30402 
19.12762 

4.17780 
5.80586 
5.91528 
5.98766 
6.17727 

Variables 
in 
X3 
X2 
X5 
X4 
XI 

XI 
X2 
X2 
XI 
X2 
X4 
X3 
X3 
XI 
XI 

XI 
X2 
X2 
XI 
XI 
X2 
XI 
XI 
XI 
X3 

XI 
XI 
XI 
X2 
XI 

Model 

X2 
X4 
X3 
X5 
X5 
X5 
X5 
X4 
X3 
X4 

X2 
X3 
X4 
X2 
X2 
X3 
X3 
X4 
X3 
X4 

X3 
X2 
X2 
X3 
X2 

X4 
X4 
X5 
X3 
X5 
X5 
X5 
X5 
X4 
X5 

X4 X5 
X3 X4 
X4 X5 
X4 X5 
X3 X5 

5 0.99724900 6.00000 XI X2 X3 X4 X5 



Index 

A 
Allen-Cunneen approximation for­

mula, 341 
Alternative hypothesis, 486 
Analysis of variance (ANOVA) 

One-Way, 534-539 
in simple linear regression, 567-

570 
for multiple linear regression, 

592-594 
Anderson-Darling A2 test, 525-

533 
ANOVA table 

for one way ANOVA, 536 
for simple linear regression, 

567 
for multiple linear regression, 

593 
Approximations for queueing sys­

tems see Queueing the­
ory 

Armstrong, Neil, 489 
Arrival theorem, 391 
Axioms of a probability measure 

see Probability measures 
Axioms of a a-algebra, 16 

B 
Bayes' theorem, 29 
Benchmark, 464 

Dhrystones, 465-466 
Linpack, 465 
Livermore Loops, 465-466 

Whetstones, 465-466 
Bernoulli 

process, 204 
random variables see Discrete 

probability distributions 
sequence of trials, 74 
trial, 74, 111 

Bernoulli tests, 506-514 
one sample, 506-510 
two sample, 510-514 

Berra, Yogi, 449, 
Bias, 435 
Binomial coefficient, 22 
Binomial distribution, 111-113 

as approximation to hyper-
geometric distribution, 182-
183 

normal approximation to, 159-
162 

Poisson approximation to, 117-
119 

Binomial random variables, see Dis­
crete probability distri­
butions 

Birth-and-death process, 210-221 
Birthday problem, 32-34 
Blake, William, 210 
Bonferroni's inequalities see Inequal­

ities 
Box-and-whiskers plot, 462-464 
Boxplot, see Box-and-whiskers plot 
Bortkiewicz, 116, 120, 478, 517-

518 
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Bottleneck, 380-381 
Bridge (the game), 20, 88-90,100-

101 
Brown, Peter F., 224 
Browning, Elizabeth Barrett, 20 
Buzen's algorithm, 390 

C 
Caesar, Julius, 502 
Carroll, Lewis, 40, 60, 429, 477 
Carter, Jimmy, 616 
Central limit theorem, 158-164 
Central server model of multipro­

gramming, 389-400 
Chapman-Kolmogorov equations, 

222 
Chebyshev inequality, see Inequal­

ities 
Chi-square distribution, 144-146 
Chi-square tests, 515-524 

categories (cells),515-516 
Coefficient of determination, R2, 

571 
Coefficient of multiple determina­

tion, R2, 594 
adjusted, R%, 594 

Coefficient of skewness, 461 
Combination, 20, 24 
Complement of event, 13 
Combinatorial analysis, 20-24 
Conditional density function, 6 1 -

62 
Conditional expectation, 60-67 
Conditional fcth moment, 62 
Conditional probability, 24-34 
Conditional probability mass func­

tion, 61 
Confidence intervals, 442-449 
Confidence intervals for 

differences of two means, 449, 
497-503 

mean (a known), 443 

INDEX 

mean (a unknown), 445 
mean response in regression, 

576 
proportion, 447-448 
regression coefficients, 565, 595 
variance, 446 

Contingency tables, 520-524 
Continuity correction, 160 
Continuous probability distribu­

tions, 121-158 
bivariate normal, 135-136 
chi-square distribution, 144-

146 
Coxian, 154-158 
Erlang-k, 141-144 
exponential, 38-39, 43-44,123-

129 
F, 147-148 
gamma, 137-141 
hyperexponential, 148-154 
normal, 129-135 
Student's t, 146-147 
uniform, 121-123 

Continuous random variables, 38-
40, 121-158 

jointly, 47 
Convolution, 58 

algorithm for central server 
model, 389 

theorem, 57 
Correlation analysis, 557, 572-577 
Correlation coefficient, 51, 555, 571 

sample, r, 571-575 
Counting process, 201-202 
Covariance, 51 
CPU bound, 349, 380-381 
Critical region, 487 
Cumulative distribution function, 

see Distribution function 
Curve fitting, 556 
Curve of regression, 556 
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C\, see Squared coefficient of vari­
ation 

Cyclic queueing models, 347-349 

D 
D/D/c /K/K queueing system (ma­

chine repair), 687 
Daley's conjecture, 339 
David, Karl, 106, 241, 615 
DeMoivre-Laplace limit theorem, 

159-160 
Density function, 38 

joint, 47 
DFITS, 582 
Diaconis, Persi, 450 
Dirac delta function, 168 
Discrete probability distributions 

Bernoulli distribution, 73-74, 
111 

binomial distribution, 74, 111— 
113 

geometric distribution, 114-
115 

hypergeometric distribution, 
181, 441 

multinomial distribution, 180 
multivariate hypergeometric 

distribution, 183 
negative binomial (Pascal) dis­

tribution, 184-185 
Poisson distribution, 59, 70, 

115-120, 185-186 
uniform, 120 

Discrete random variables, 110-
120 

definition, 36, 110 
Distribution function, 35 

marginal, 46 
Donne, John, 442 

E 

EDA, see Exploratory data anal­
ysis 

EDF tests, 524-534 
quadratic statistics, 525 

Ehrenberg, A. S. C , 20 
Ehrenfest urn model, 233 
Einstein, Albert, 110, 121, 502, 

616 
Elementary Renewal theorem, 238 
Emerson, Ralph Waldo, 615 
Empirical distribution function, 524 
Empty set, 0, 12 
Equally likely outcomes, 15 
Ergodic, 228-232 
Erlang-A; random variables, see Dis­

crete probability distri­
butions 

Erlang's B formula, B[c,a], 282-
283 

Erlang's C formula, C[c, a], 275-
276 

Erlang's delay formula, see Erlang's 
C formula 

Erlang's loss formula, see Erlang's 
B formula 

Error sum of squares, 534, 564, 
567 

Error, Type I, 488, 490 
Error, Type II, 488, 490 
Estimation of regression parame­

ters, 591-594 
Estimators, 431-442 

consistent, 433 
efficient, 435 
maximum likelihood, 437-439, 

441-442, 447 
method of moments, 436-437 
minimum mean-squared error, 

435 
minimum variance unbiased, 

435 
unbiased, 433 
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Event, 10-14 
complement of, 13 
elementary, 10 
impossible see Empty set 

Events 
complementary, 13 
independent, 27 
mutually exclusive, 14 

Expected value, 40-41, 50 
Exploratory data analysis, (EDA), 

450 
Exponential random variables, see 

Continuous probability dis­
tributions 

F 
^-distributed random variables, 147-

148 
Feller, William, 44, 81, 88, 116, 

138, 161, 180, 227, 228, 
230, 420, 442 

FESC (flow equivalent service cen­
ter), 406-408 

Finite population queueing mod­
els, 381-386 

Finite processor-sharing model of 
computer system, 385-
386 

Fitted values, 566 
Forced flow law, 379-380 

G 
Gambler's ruin, 232-233 
Gamma function, 137 
Gamma random variables, see Con­

tinuous probability dis­
tributions 

Geometric random variables, see 
Discrete probability dis­
tributions 

Generating function (z-transform), 
72-73 

INDEX 

George, David Lloyd, 508 
GI/M/c queueing system, 321-324 
GI/M/1 queueing system, 315-321 
Goldwyn, Samuel, 555 
Goodness-of-fit tests, 515 

see also 
Chi-square test, Kolmogorov-

Smirnov test 

H 
Halsey, Admiral William, 449 
Ham, Russell, 61, 95, 121, 279 
Ham's algorithm, 280-281 
Hart, Oliver J., 610 
Hat matrix, 579 
Hawking, Stephen, 616 
Head-of-the-line system, see HOL 

priority queueing system 
Heavy traffic approximation, 336 
Henry, Patrick, 24 
Histogram, 450-458 
Hoffenstein, Samuel, 486, 524 
HOL priority queueing system, 328 
Holmes, Sherlock, 1, 46, 527 
Homogeneous in time, 220 
Hyperexponential random variables, 

148-154 
algorithms for generating, 149-

152 
Hypothesis testing, 485 

test procedure, 486-487 

I 
Impossible event, see Empty set 
Independent 

events see events 
increments, 203 
random variables, 49-50 

Inequalities, 76-85 
Bonferroni's inequality, 82-83 
Bonferroni's inequalities, 82 
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Chebyshev's inequality, 77-
79 

Markov's inequality, 76-77 
one-sided inequality, 79-81 

Influential point, 578 
Interarrival time, 254 
Interval estimation, 576-577 
I/O bound, 380 

J 
Jackson, James R., 386, 387 
Jackson's theorem, 386 
Joint probability mass function, 

46 
Joint probability density function, 

47 
Joint distribution function, 52 

K 
Kay, Mimi, 388 
Kelly-Bootle, Stan, 67, 76, 247, 

377, 449, 464, 508 
Kelvin, Lord (William Thomson), 

158 
Kendall, David, 257 
Kendall notation, 257 
Kleinrock, Leonard, 306, 315, 327, 

337, 385, 386 
Knuth, Donald, 94 
Kobayashi, Hisashi, 296, 313 
Kolmogorov-Smirnov test, 528-533 
Kreyszig, Erwin, 433, 446, 490 
Kronecker delta function, 222 
Kruskal-Wallis test, 544-546 
Kurtosis, 461-462 

coefficient of, 461 

L 
Laplace-Stieltjes transforms, 75-

76, 164-170, 176-177 
Laplace transform, 75, 164-171, 

176-177 

735 

Law of large numbers, 84 
Law of total expectation, 63 
Law of total moments, 63 
Law of total probability, 26 
Law of the unconscious statisti­

cian, 41 
Least squares, 

line, 563 
method of 560-569 

Life 
current, 237 
excess, 237 
total, 237 

Likelihood function, 438 
Lincoln, Abraham, 461 
Literary Digest, 430 
Little, John D. C , 259, 260 
Little's formula, see Little's law 
Little's law, 259-260 
Little's result, see Little's law 
Longfellow, Henry Wadsworth, 14, 

589 
Lutek, Ben W., 106, 247, 664 

M 
M / G / l priority queueing systems, 

326-331 
M / G / l processor-sharing queue­

ing system, 331-334 
M / G / l queueing system, 302-315 
M / G / l / K / K queueing system, (ma­

chine repair), general re­
pair time, 292-296 

M/H2/I queueing system, 313-315 
M/M/c loss system, see M/M/c/c 

queueing system 
M/M/c queueing system, 274-281 
M/M/c/c queueing system, 282-

284 
M/M/c/K queueing system, 284 
M/M/c/K/K queueing system (ma­

chine repair, multiple re-
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pairmen), 297-301 
M/M/oo queueing system, 284-

285 
M/M/ l queueing system, 262-269 
M / M / l / K queueing system, 269-

274 
M / M / l / K / K queueing system (ma­

chine repair), 285-292 
Machine repair queueing system, 

see 
D/D/c/K/K, 
M/M/ l /K /K , or 
M/M/c/K/K queueing systems 

Marginal distribution function, 46 
Marginal probability mass func­

tion, 46 
Markov chains, 219-233 

aperiodic, 224 
irreducible, 224 
periodic, 224 

Markov inequality, see Inequali­
ties 

Markov process, 219-220 
Markov property 

of exponential distribution, 123-
124 

of geometric distribution, 115 
Mass points, 36 
Maximum likelihood estimation, 

see Estimation, maximum 
likelihood 

McCae, Charles, 500 
Mean, 40 

arithmetic, 431, 458, 474 
generalized harmonic, 469-470, 

473-474 
geometric, 471-474 
harmonic, 466-468, 474 
sample (also called arithmetic) 

431-432, 458 
weighted arithmetic, 476-477 

weighted geometric, 471, 476-
477 

weighted harmonic, 476-477 
Mean value analysis (MVA), 378 

algorithm for central server 
model, 390-391 

algorithm for closed multiclass 
model, 411 

algorithm for mixed multiclass 
model, 415 

Median, 459 
Memoryless property, see Markov 

property 
Method of moments estimation, 

see Estimators 
MIPS, 467 
Mode, 459 
Moment 

of a random variable, 44-45 
sample, 436 

Moment generating function (z-
transform), 67-69 

Montmort's problem, 93 
MTTF (mean time to failure), 218 
MTTR (mean time to repair), 217 
Muir, John, 459 
Multiclass models 

open, 409-410 
closed, 410-414 
mixed, 415-417 

Multiplication principle, 21 
Multiplication rule, 25 

general, 25 
Myriad, 395 

N 
Namath, Joe, 504 
Nonparametric tests, 539-545 
Normal random variables, see Con­

tinuous probability dis­
tributions 

Norton, Peter, 465, 466 
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Null hypothesis, 484 

0 
o(h), 202-203 
Odds, 19-20 

against, 19 
for, 19 

One-sided inequality, see Inequal­
ities 

Outlier, 459, 580 

Parker, Dorothy, 335 
Parzen, Emanuel, 225, 229, 230, 

231 
Pasteur, Louis, 485 
Pattern recognition, 457 
Percentile value, 124, 460 
Permutation, 20 
pmf, see Probability mass func­

tion 
Pogo, 501 
Poincare's formula, 81 
Poker, 88-90 
Poisson arrival pattern, 254-255 
Poisson process, 204-208 
Poisson random variables, see Dis­

crete probability distri­
butions 

Pollaczek-Khintchine formula, 307 
Pollaczek-Khintchine transforma­

tion, 309 
Pollaczek's formula, see Pollaczek-

Khintchine formula 
Polling, 23, 64-65 
Polya, George, 474 
Population, 249, 254, 430 
Power of a test, 489 
Predicted (fitted) value, 566 

interval estimate of, 578-579 
Predictor variable, 557 

selection of, 600-606 

Priority queueing system, 325-336 
HOL (head-of-the-line prior­

ity queueing system), 328 
M / G / l , 326-331 
M / G / l processor-sharing (PS), 

331-334 
multiserver, 334-335 
preemptive-resume, 328 

MSE (mean squared error, also 
called residual mean square), 
567 

Probability, see also Conditional 
probability, 15-16 

posterior, 29 
prior, 29 

Probability density function see 
Density function 

Probability distribution function 
see Distribution function 

Probability distributions, see Con­
tinuous probability dis­
tributions and Discrete 
probability distributions 

Probability mass function (pmf), 
36 

Probability measures, 15-20 
axioms of a probability mea­

sure, 16 
Probability theory, 9-86 

basic concepts, 10 
event see Event 
sample space, 10 

Proportion 
true, of population, 447 

Pure-birth process, 211 
Pure-death process, 211 

Q 
Queueing network 

BCMP, 400-417 
closed, 378 
finite population, 381-382 
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finite processor-sharing, 385-
386 

machine repair, 382-385 
Jackson, 378, 386-400 
open machine repair, 397-399 
product form, 378 
separable (same as product 

form), 378 
Queue discipline, 256 

BIFO, 325 
FCFS, 256, 325 
FISH, 325 
LCFS, 256, 325 
WINO, 325 

Queueing systems 
birth-and-death process, 261-

301 
describing a, 251-261 
embedded Markov chain, 301-

324 
multiserver, 256 
networks of queues, 325-336 
priority, 325-326 
single-server, 256 
steady-state, 253 

Queueing theory, 247-342 
arrival pattern, 254-255 
bounds, 337, 338-340 
approximations, 336, 340-342 

R 
Random 

experiment, 10 
sample, 430 
walk, 226 

Random arrival pattern, see Pois-
son arrival pattern 

Random variables, 34-40 
continuous, see Continuous ran­

dom variables 
dependent, 50 

INDEX 

discrete, see Discrete random 
variables 

independent, see Independent 
random variables 

jointly distributed, 46-60 
moment of, 44 
parameters of, 40-46 

Realization, (sample path), 200-
201 

Regression 
estimation of parameters, 558-

567 
multiple linear, 588-610 
nonlinear, 584-587 
polynomial, 604-610 
simple linear, 557-584 
through the origin, 5813-584 

Reisser, Martin, 386, 391 
Renewal process, 234-238 

Poisson, 236-237 
Reproductive property, 59 
Residual, 564 

standardized, 579 
studentized, 580 

Roosevelt, Theodore, 431, 547 
Runyon, Damon, 458 

S 
Sample spaces, 10 
Sampling theorem, 432 
Saturated, 380 
Saturation number, 385 
Scatter diagram, 558, 559 
Server, 249 

utilization, p, 258 
Service discipline see Queueing dis­

cipline 
Service demand, 379 
Service time, 255 
Shelley, Percy Bysshe, 208 
Significance 

level of, 486 



INDEX 739 

Significant, 490 
Sign test, 540-544 
Skewed, 461-462 
Skewness, 461 

coefficient of, 461 
Snedecor and Cochran, 459, 461, 

576 
Squared coefficient of variation, C\, 

45, 255, 460 
SSE (error sum of squares), 536, 

566, 569, 594 
SSR (regression sum of squares), 

570, 571, 594, 
SST (sum of squares for treatment), 

534 
SST (total sum of squares), 569, 

594 
Standard deviation, 

sample, 431 
Standard error, 433 

of regression, 568 
of the estimate, 568 

Standard statistical model, 559, 
590 

State 
absorbing, 217 
equilibrium, 229 
recurrent, 226-227 
recurrent null, 226-227 
recurrent nonnull (positive re­

current), 227-228 
steady, 229 
transient, 226 

State space (for stochastic process) 
discrete parameter, 200 
continuous parameter, 200 
probability distribution of, 228 
transition probability, 220 

Stem-and-leaf plot, 456-458 
Stochastic process, 199-200 

index set, 200 
Student's t random variables, see 

Continuous probability dis­
tributions 

Sturges' rule, 451 

T 
Takacs recurrence theorem, 310 
Teller, Edward, 555 
Test 

sensitivity, 30 
specificity, 30 

Tests of means, 489-501 
one-sample, 4891-494 
two-sample, 494-501 

Tests of proportions (Bernoulli test) 
one-sample, 506-510 
two-sample, 510-514 

Tests of variance, 501-506 
one-sample, 502-504 
two-sample, 504-506 

Think time, 381 
Thomas, Lewis, 9 
Thoreau, Henry David, 34 
Thurber, James, 510 
Transform methods, 67-76, 164-

177 
Transition probability matrix, 222 
Tucker, Sophie, 67 
Twain, Mark, 164, 506, 544 
Type I, II, III, and IV errors, 488-

489 

U 
Unbiased, 433 
Uncorrelated, 51 
Uniform random variables 

continuous, see Continuous prob­
ability distributions 

discrete, see Discrete proba­
bility distributions 

Uniformly most powerful test, 490 

V 
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Variance, 42, 51-52 
sample, 431 

Venn diagram, 13 

W 
Weak law of large numbers, 84-85 
Whitt, Ward, 151-152 
Workload, 378 

batch, 378-379 
terminal, 378 
transaction, 378-379 

Y 
Yates' adjustment see Continuity 

correction 
Yates' correction see Continuity 

correction 
Youden, W. J., 135 

Z 
z-transform, see Generating func­

tion 


