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Preface

Computer vision and image analysis requires interdisciplinary collab-
oration between mathematics and engineering. This book addresses the
area of high-accuracy measurements of length, curvature, motion param-
eters and other geometrical quantities from acquired image data. It is a
common problem that these measurements are incomplete or noisy, such
that considerable efforts are necessary to regularise the data, to fill in
missing information, and to judge the accuracy and reliability of these
results. This monograph brings together contributions from researchers in
computer vision, engineering and mathematics who are working in this area.
A number of the chapters are expanded from invited lectures presented at
the international computer science center at Dagstuhl/Germany which is
funded by the German federal and two state governments. The editors
gratefully acknowledge this support.

The invited authors are well-known experts in their area and have been
encouraged to stress the survey character of their contributions. These are
fundamental work, directed to applications in computer vision and engi-
neering. Each paper was reviewed by at least three independent referees,
and we thank all referees (see list below) for their efforts. Their comments
were very valuable in order to improve the quality of this research mono-
graph. The help of Jovǐsa Žunić in finalizing the Latex files is very much
appreciated.

By its nature, it was difficult to categorize the chapters in this book.
We decided for a division into three parts, which should be of help to
demonstrate the themes running through this volume.

Although geometry underlies most contributions in the present volume,
it is possible to draw distinctions. Contributions in Part I are mainly con-
cerned with continuous geometry, including algebraic tools designed for
geometry, such as Clifford algebras in the chapters by Sommer and Perwass,
and quaternions in the contribution of Farouki. The chapters by Noakes and
Kozera concern geometrical aspects of approximation and interpolation. A
somewhat more specific application of geometry to computer vision is given
in the chapter by Robles-Kelly.

Discrete geometry in computer vision (Part II), including the important
emerging area of digitization, has a different flavour. Even more than with
other contributions to this volume, incomplete information is ever-present.
The two chapters by Eckhardt, and by Doerksen-Reiter and Debled-Rennes-
son discuss segmentations of borders in a digital image into convex and
concave parts. Linh, Imiya and Torii consider polygonalization and poly-
hedrization algorithms for approximating borders in 2D and 3D images.

xiii



PREFACE

Binary tomography (i.e., reconstruction of binary images from projections)
is the subject of the chapter by Weber, Schnörr, Schule and Hornegger. Lin-
ear discriminant analysis for features derived from digital images is applied
by Skarbek, Kucharski and Bober for face recognition. Huxley, Klette and
Žunić study the accuracy of approximating real moments based on data
available in digital images. 3D shape recovery based on digital images is
the subject of the following two chapters; Tankus, Sochen and Yeshurun
use shading models, and Imiya considers shadows.

Part III is concerned with approximation and regularisation methods
that can be interpreted in a statistical or deterministic way. Typical applica-
tions include robust denoising of signals and images, the reliable estimation
of model parameters, and motion estimation in image sequences. This area
is characterised by transparent mathematical models, optimality results and
performance evaluation. It includes two contributions on motion analysis:
The chapter by Bruhn and Weickert evaluates a novel confidence measure
for variational optic flow methods, while Kanatani and Sugaya review their
contributions on feature point tracking in video sequences. The subsequent
chapters deal with approximation methods: Fenn and Steidl establish con-
nections between robust local estimation methods in image processing and
approximation theoretical techniques for scattered data. The contribution
by Mrázek et al. presents a unified framework for edge-preserving denoising
and interpolation, while Mühlich’s work deals with data fitting to geometric
manifolds. The contribution by Obereder et al. concludes this category by
presenting an analysis of higher order bounded variation regularisation in
terms of generalised G norms.

Finally, it has to be said that the majority of contributions transcend
the categories we have (sometimes arguably) assigned. This reflects the
interdisciplinary nature of the work. We hope that the reader will enjoy an
exciting journey.

Reinhard Klette
Ryszard Kozera
Lyle Noakes
Joachim Weickert

Auckland, Perth, Saarbrücken, March 2005.
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THE TWIST REPRESENTATION OF FREE-FORM OBJECTS∗

GERALD SOMMER
Institute of Computer Science, Christian-Albrechts-University,
Kiel, Germany

BODO ROSENHAHN
Centre for Image Technology and Robotics, University of

land, Auckland, New Zealand

CHRISTIAN PERWASS
Institute of Computer Science, Christian-Albrechts-University,
Kiel, Germany

Abstract. We give a contribution to the representation problem of free-form curves and
surfaces. Our proposal is an operational or kinematic approach based on the Lie group
SE(3). While in Euclidean space the modelling of shape as orbit of a point under the
action of SE(3) is limited, we are embedding our problem into the conformal geometric
algebra R4,1 of the Euclidean space R

3. This embedding results in a number of advan-
tages which makes the proposed method a universal and flexible one with respect to
applications. It makes possible the robust and fast estimation of the pose of 3D objects
from incomplete and noisy image data. Especially advantagous is the equivalence of the
proposed shape model to that of the Fourier representations.

Key words: shape representation, conformal geometric algebra, Lie algebra, Fourier trans-
form, free-form curves, free-form surfaces, motor, twist

1.1. Introduction

Two objects can be said to have the same shape if they are similar in the
sense of Euclidean geometry. By leaving out the property of scale invariance,
we can define the shape of an object as that geometric concept that is
invariant under the special Euclidean group. Furthermore, we allow our

∗ This work has been partially supported (G.S. and C.P.) by EC Grant IST-2001-3422
(VISATEC), by DFG Grant RO 2497/1-1 (B.R.), and by DFG Graduiertenkolleg No.
357 (B.R. and C.P.).

Auck

 
3 

R. Klette et al. (eds.), Geometric Properties for Incomplete Data, 3-22. 
© 2006 Springer. Printed in the Netherlands.  
  
 



4 G. Sommer, B. Rosenhahn and C. Perwass

objects to change their shape in a well-defined manner under the action of
some external forces.

The literature on shape modelling and applications is vast. May it be
visualization and animation in computer graphics or shape and motion
recognition in computer vision. The central problem for the usefulness in
either field is the chosen representation of shape.

Here we present a new approach to the modelling of free-form shape
of curves and surfaces which has some features that make it especially
attractive for computer vision and computer graphics. In our applications of
pose estimation of 3D objects we could easily handle incomplete and noisy
image data for numerically stable estimations with nearly video real-time
capability.

That new representation results from the fusion of two concepts:

1) Free-form curves and surfaces are modelled as the orbit of a point
under the action of the Lie group SE(3), caused by a set of coupled
infinitesimal generators of the group, called twists (Murray et al., 1994).

2) These object models are embedded in the conformal geometric algebra
(CGA) of the Euclidean space R

3 (Li et al., 2001), that is R4,1. Only
in conformal geometry the above mentioned modelling of shape unfolds
its rich set of useful features.

The concept of fusing a local with a global algebraic framework has been
proposed already in (Sommer, 1997). But only the pioneering work in (Li
et al., 2001) made it feasible to consider the Lie algebra se(3), the space of
tangents to an object, embedded in R4,1, as the source of our shape model
instead of using se(3) in R

3.

The tight relations of geometry and kinematics are known to the math-
ematicians for centuries, see e.g. (Farouki, 2000). But in contrast to most
applications in mechanical engineering we are not restricted in our approach
by physically feasible motions nor will we get problems in generating spatial
curves or surfaces.

By embedding our design method into CGA, both primitive geometric
entities as points or objects on the one side and actions on the other side
will have algebraic representations in one single framework. Furthermore,
objects are defined by actions, and also actions can take on the role of
operands.

Our proposed kinematic definition of shape uses infinitesimal actions to
generate global patterns of low intrinsic dimension. This phenomen corre-
sponds to the interpretation of the special Euclidean group in CGA, SE(3),
as a Lie group, where an element g ∈ SE(3) performs a transformation of
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an entity u ∈ R4,1,

u′ = u(θ) = g {u(0)} (1)

with respect to the parameter θ of g. Any special g ∈ SE(3) that represents
a general rotation in CGA corresponds to a Lie group operator M ∈ R

+
4,1

which is called a motor and which is applied by the bilinear spinor product

u′ = MuM̃ , (2)

where M̃ is the reverse of M . This product indicates that M is an orthogo-
nal operator. If g is an element of the Lie group SE(3), than its infinitesimal
generator, ξ, is defined in the corresponding Lie algebra, that is ξ ∈ se(3).
That Lie algebra element of the rigid body motion is geometrically inter-
preted as the rotation axis l in conformal space. Then the motor M results
from the exponential map of the generator l of the group element, which is
called a twist:

M = exp
(
−θ

2
l

)
. (3)

While θ is the rotation angle as the parameter of the motor, its generator
is defined by the five degrees of freedom of a line l in space.

In our approach, the motor M is the effective operator which causes
arbitrarily complex object shape. This operator may result from the mul-
tiplicative coupling of a set of primitive motors {M i|i = n, ..., 1} ,

M = MnMn−1...M2M1. (4)

Each of these motors M i is representing a circular motion of a point around
its own axis.

Based on that approach rather complex free-form objects can be de-
signed which behave as algebraic entities. That means, they can be trans-
formed by motors in a covariant and linear way. To handle complete objects
in that way as unique entities makes sense from both a cognitive and a
numeric point of view.

The conformal geometric algebra R4,1 makes this possible. This is caused
by two essential facts. First, the representation of the special Euclidean
group SE(3) in R4,1 as a subgroup of the conformal group C(3) is isomor-
phic to the special orthogonal group SO+(4, 1). Hence, rigid body motion
can be performed as rotation in CGA and therefore has a covariant rep-
resentation. Second, the basic geometric entity of the conformal geometric
algebra of the Euclidean space is the sphere. All geometric entities derived
by incidence operations from the sphere can be transformed in CGA by an
element g ∈ SE(3), that is a motor M ∈ R

+
4,1, in the same linear way, just

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS



6 G. Sommer, B. Rosenhahn and C. Perwass

as a point in the homogeneous Euclidean space R
4. Because there exists a

dual representation of a sphere (and of all derived entities) in CGA, which
considers points as the basic geometric entity of the Euclidean space in
the conformal space, all the known concepts from Euclidean space can be
transformed to the conformal one.

Finally, we can take advantage of the stratification of spaces by CGA.
Since the seminal paper (Faugeras, 1995) the purposive use of stratified
geometries became an important design principle of vision systems. This
means that an observer in dependence of its possibilities and needs can
have access to different geometries as projective, affine or metric ones. So
far this could hardly be realized. In CGA we have quite another situation.

The CGA R4,1 is a linear space of dimension 32. This mighty space
represents not only conformal geometry but also affine geometry. Note that
the special Euclidean group is a special affine group. Because R4,1 is derived
from the Euclidean space R

3, it encloses also Euclidean geometry, which
is represented by the geometric algebra R3,0. In addition, the projective
geometric algebra R3,1 is enclosed in R4,1. Thus, we have the stratification
of the geometric algebras R3,0 ⊂ R3,1 ⊂ R4,1. This enables to consider
metric (Euclidean), projective and kinematic (affine) problems in one single
algebraic framework.

1.2. Rigid Body Motion in Conformal Geometric Algebra

After giving a bird’s eye view on the construction of a geometric algebra
and on the features of the conformal geometric algebra, we will present the
possibilities of representing the rigid body motion in CGA.

1.2.1. SOME CONSTRUCTIVE PRINCIPLES OF A GEOMETRIC
ALGEBRA

A geometric algebra (GA) Rp,q,r is a linear space of dimension 2n, n =
p + q + r , which results from a vector space R

p,q,r. We call (p, q, r) the
signature of the vector space of dimension n. This indicates that there are
p/q/r unit vectors ei which square to +1/− 1/0, respectively. While n = p
in case of the Euclidean space R

3, R
p,q,r indicates a vector space with a

metric different than the Euclidean one. In the case of r �= 0 there is a
degenerate metric. We will omit the signature indexes from right if the
interpretation is unique, as in the case of R

3.
The basic product of a GA is the geometric product, indicated by juxta-

position of the operands. This product is associative and anticommutative.
There can be used a lot of other product forms in CA too, as the outer
product (∧) and the inner product (·).
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The space Rp,q,r is spanned by a set of 2n linear subspaces of different
grade called blades. Giving the blades a geometric interpretation makes the
difference of a GA from a Clifford algebra. A blade of grade k, a k-blade
B〈k〉, results from the outer product of k independent vectors {a1, ...,ak} ∈
R

p,q,r ≡ 〈Rp,q,r〉1,

B〈k〉 = a1 ∧ ... ∧ ak = 〈a1...ak〉k, (5)

where 〈·〉 is the grade operator. There are lk =
(
n
k

)
different blades of grade

k, B〈k〉j , j = 1, ..., lk. If e0 ∈ Rp,q,r, e0 ≡ 1, is the unit scalar element and
e1...n ∈ Rp,q,r, e1...n ≡ e1...en ≡ I, is the unit pseudoscalar element of
the GA, then B〈0〉 is the scalar blade and B〈n〉 ≡ I is the pseudoscalar

blade. Hence,
n∑

k=0

lk = 2n is the dimension of the GA. Blades are directed

numbers, thus I〈k〉 = ei1 ∧ ...∧eik gives the direction of a blade. Any linear
combination

Ak =
l∗∑

j=1

αjB〈k〉j , l∗ ≤ lk , αj ∈ R (6)

is called a k-vector, Ak ∈ 〈Rp,q,r〉k. This rich structure of a GA can be
further increased by the linear combination of k-vectors,

A =
k∗∑

k=k∗

βkAk , 0 ≤ k∗ < k∗ ≤ n , βk ∈ R (7)

Here A is called a (general) multivector. It is composed of components of
different grade. The multivector may result from the geometric product of
an r-vector Ar with an s-vector Bs,

A = ArBs = 〈ArBr〉|r−s| + 〈ArBs〉|r−s|+2 + ... + 〈ArBs〉r+s (8)

with the pure inner product

Ar ·Bs = 〈ArBs〉|r−s| (9)

and the pure outer product

Ar ∧Bs = 〈ArBs〉r+s. (10)

All other components of A result from a mixture of inner and outer prod-
ucts. The product of two multivectors, A and B, can always be decomposed
in the sum of an even and an odd component,

AB =
1
2
(AB + BA) +

1
2
(AB −BA). (11)

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS



8 G. Sommer, B. Rosenhahn and C. Perwass

In the case of the product of two vectors, a and b, a, b ∈ 〈Rp,q,r〉1, we get

ab =
1
2
(ab + ba) +

1
2
(ab− ba) = a · b + a ∧ b (12)

= 〈ab〉0 + 〈ab〉2 = α + A2 (13)

with α ∈ 〈Rp,q,r〉0 and A2 ∈ 〈Rp,q,r〉2.
An important concept of a GA is that of duality. This means that it is

possible to change the blade base of a multivector A ∈ Rp,q,r. Its dual is
written as A∗ and is defined as

A∗ = A · I−1, (14)

where I is the unit pseudoscalar of Rp,q,r. In the case where Ak ∈ 〈Rp,q,r〉k
the dual is given by A∗

k = An−k ∈ 〈Rp,q,r〉n−k. The duality expresses the
relations between the inner product null space, IPNS, and the outer product
null space, OPNS, of a multivector, see (Perwass and Hildenbrand, 2003).
The OPNS defines a collinear subspace of dimension k to a k-blade B〈k〉 ⊂
Rp,q,r which is given by all x ∈ R

p,q,r so that

x ∧B〈k〉 = 0. (15)

The IPNS defines a subspace of Rp,q,r which is orthogonal to a k-blade
B〈k〉 ⊂ Rp,q,r and, hence

x ·B〈k〉 = 0. (16)

1.2.2. CGA OF THE EUCLIDEAN SPACE

The conformal geometry of Euclidean and non-Euclidean spaces is known
for a long time (Yaglom, 1988) without giving strong impact on the mod-
elling in engineering with the exception of electrical engineering. There are
different representations of the conformal geometry. Most disseminated is
a complex formulation (Needham, 1997). Based on an idea in (Hestenes,
1984), in (Li et al., 2001) and in two other papers of the same authors in
(Sommer, 2001), the conformal geometries of the Euclidean, spherical and
hyperbolic spaces have been worked out in the framework of GA.

The basic approach is that a conformal geometric algebra (CGA) Rp+1,q+1

is built from a pseudo-Euclidean space R
p+1,q+1. If we start with an Eu-

clidean space R
n, the construction R

n+1,1 = R
n ⊕ R

1,1, ⊕ being the direct
sum, uses a plane with Minkowski signature for augmenting the basis of
R

n by the additional basis vectors {e+, e−} with e2
+ = 1 and e2− = −1.

Because that model can be interpreted as a homogeneous stereographic
projection of all points x ∈ R

n to points x ∈ R
n+1,1, this space is called the
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homogeneous model of R
n. Furthermore, by replacing the basis {e+, e−}

with the basis {e,e0}, the homogeneous stereographic representation will
become a representation of null vectors. This is caused by the properties
e2 = e2

0 = 0 and e · e0 = −1. The relation between the null basis {e,e0}
and the basis {e+, e−} is given by

e := (e− + e+) and e0 :=
1
2
(e− − e+). (17)

Any point x ∈ R
n transforms to a point x ∈ R

n+1,1 according to

x = x +
1
2
x2e + e0 (18)

with x2 = 0. In fact, any point x ∈ R
n+1,1 is lying on an n-dimensional

subspace Nn
e ⊂ R

n+1,1, called horosphere (Li et al., 2001). The horosphere
is a non-Euclidean model of the Euclidean space R

n.
It must be mentioned that the basis vectors e and e0 have a geometric

interpretation. In fact, e corresponds the north pole and e0 corresponds the
south pole of the hypersphere of the stereographic projection, embedded in
R

n+1,1. Thus, e is representing the points at infinity and e0 is representing
the origin of R

n in the space R
n+1,1.

By setting apart these two points from all others of the R
n makes R

n+1,1

a homogeneous space in the sense that each x ∈ R
n+1,1 is a homogeneous

null vector without having reference to the origin. This enables coordinate-
free computing to a large extent. Hence, x ∈ Nn

e constitutes an equivalence
class {λx, λ ∈ R} on the horosphere. The reduction of that equivalence class
to a unique entity with metrical equivalence to the point x ∈ R

n needs a
normalization.

The CGA R4,1, derived from the Euclidean space R
3, offers 32 blades

as basis of that linear space. This rich structure enables one to represent
low order geometric entities in a hierarchy of grades. These entities can
be derived as solutions of either the IPNS or the OPNS depending on
what we assume as the basis geometric entity of the conformal space, see
(Perwass and Hildenbrand, 2003). So far we only considered the mapping
of an Euclidean point x ∈ R

3 to a point x ∈ N3
e ⊂ R

4,1. But the null
vectors on the horosphere are only a special subset of all the vectors of
R

4,1. All the vectors of R
4,1 are representing spheres as the basic entities

of the conformal space. A sphere s ∈ R
4,1 is defined by its center position,

c ∈ R
3, and its radius ρ ∈ R according to

s = c +
1
2
(c− ρ)2e + e0. (19)

And because s2 = ρ2 > 0, it must be a non-null vector. A point x ∈ N3
e

can be considered as a degenerate sphere of radius zero. Hence, spheres s

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS
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and points x are entities of grade 1. By taking the outer product of spheres
si, other entities of higher grade can be constructed. So we get a circle z
(grade 2), which exists outside the null cone in R

4,1,

z = s1 ∧ s2 (20)

as solution of the IPNS. If we consider the OPNS on the other hand, we are
starting with points xi ∈ N3

e and can proceed similarly to define a circle Z
and a sphere S as entities of grade 3 and 4 derived from points xi on the
null cone of R4,1 according to

Z = x1 ∧ x2 ∧ x3 (21)
S = x1 ∧ x2 ∧ x3∧ x4. (22)

These sets of entities are obviously related by the duality u∗ = U .
Finally,

X = e ∧ x

is called the affine representation of a point (Li et al., 2001). This represen-
tation of a point is used if the interplay of the projective with the conformal
representation is of interest in applications as in (Rosenhahn, 2003). With
respect to lines l and planes p or L and P we refer the reader to (Sommer
et al., 2004).

Let us come back to the stratification of spaces mentioned in Section 1.
Let be x ∈ R

n a point of the Euclidean space, X ∈ R
n,1 a point of the

projective space and X ∈ R
n+1,1 a point of the conformal space. Then the

operations which transform the representation between the spaces are for
R3 −→ R3,1 −→ R4,1

X = e ∧X = e ∧ (x + e−), (23)

and for R4,1 −→ R3,1 −→ R3

x = − X

X · e−
=

((e+ ·X) ∧ e−) · e−
(e+ ·X) · e−

· (24)

1.2.3. THE SPECIAL EUCLIDEAN GROUP IN CGA

A geometry is defined by its basic entity, the geometric transformation
group which is acting in a linear and covariant manner on all the entities
which are constructed from the basic entity by incidence operations, and
the resulting invariances with respect to that group. The search for such a
geometry was motivated in Section 1. Next we want to specify the required
features of the special Euclidean group in CGA.
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To make a geometry a proper one, we have to require that any action
A of that group on an entity, say u, is grade preserving, or in other words
structure preserving. This makes it necessary that the operator A applies
as versor product (Perwass and Sommer, 2002)

A {u} = AuA−1. (25)

This means that the entity u should transform covariantly (Dorst and
Fontijne, 2004). If u is composed by e.g. two representants u1 and u2

of the basis entities of the geometry, then u should transform according to

A {u} = A {u1 ◦ u2} = (Au1A
−1) ◦ (Au2A

−1) = AuA−1. (26)

The invariants of the conformal group C(3) in R
3 are angles. The conformal

group C(3) is mighty (Needham, 1997), but other than (25) and (26) it is
nonlinear and transforms not covariantly in R

3. Besides, in R
3 there exist

no entities other than points which could be transformed.
As we have shown in Section 2.2, in R4,1 the situation is quite different

because all the geometric entities derived there can be seen also as algebraic
entities in the sense of Section 1. Not only the elements of the null cone
transform covariantly but also those of the dual space of R4,1. Furthermore,
the representation of the conformal group C(3) in R4,1 has the required
properties of (25) and (26), see (Li et al., 2001). All vectors with positive
signature in R4,1, that is a sphere, a plane as well as the components
inversion and reflection of C(3) compose a multiplicative group. That is
called the versor representation of C(3). This group is isomorphic to the
Lorentz group of R4,1. The subgroup, which is composed by products of an
even number of these vectors, is the spin group Spin+(4, 1), that is the spin
representation of O+(4, 1). To that group belong the subgroups of rotation,
translation, dilatation, and transversion of C(3). They are applied as a
spinor S, S ∈ R

+
4,1 and SS̃ = |S|2. A rotor R,R ∈ 〈R4,1〉2 and RR2 = 1,

is a special spinor. Rotation and translation are represented in R4,1 as
rotors.

The special Euclidean group SE(3) is defined by SE(3) = SO(3)⊕R
3.

Therefore, the rigid body motion g = (R, t), g ∈ SE(3) of a point x ∈ R
3

writes in Euclidean space

x′ = g {x} = Rx + t. (27)

Here R is a rotation matrix and t is a translation vector. Because SE(3) ⊂
C(3), in our choice of a special rigid body motion the representation of
SE(3) in CGA is isomorphic to the special orthogonal group, SO+(4, 1).
Hence, such g ∈ SE(3) does not represent the full screw, but a general
rotation in R4,1, that is the rotation axis in R

3 is shifted out of the origin
by the translation vector t.

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS
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That transformation g ∈ SE(3) is represented in CGA by a special
rotor M , called a motor, M ∈ 〈R4,1〉2. The motor may be written as in
equation (3). To specify the line l ∈ 〈R4,1〉2 by the rotation and translation
in R

3, the motor has to be decomposed into its rotation and translation
components. The normal rotation in CGA is given by the rotor

R = exp
(
−θ

2
l

)
(28)

with l ∈ 〈R3〉2 indicating the rotation plane which passes the origin. The
translation in CGA is given by a special rotor, called a translator,

T = exp
(

et

2

)
(29)

with t ∈ 〈R3〉1 as the translation vector. Rotors constitute a multiplicative
group. If we interprete the rotor R as that entity of R4,1 which should be
transformed by translation in a covariant manner, then

M = TRT̃ . (30)

We call this special motor representation the twist representation. Its ex-
ponential form is given by

M = exp
(

1
2
et

)
exp

(
−θ

2
l

)
exp

(
−1

2
et

)
. (31)

This equation expresses the shift of the rotation axis l∗ in the plane l by
the vector t to perform the normal rotation and finally shifting back the
axis.

Because SE(3) is a Lie group, the line l ∈ 〈R4,1〉2 is the representa-
tion of the infinitesimal generator of M , ξ ∈ se(3). We call the generator
representation a twist because it represents rigid body motion as general
rotation. It is parameterized by the position and orientation of l which are
the Plücker coordinates, represented by the rotation plane l and the inner
product (t · l), (Rosenhahn, 2003),

l = l + e(t · l). (32)

The twist model of the rigid body motion, equation (30), is that one we
are using in that paper. The most general formulation of the rigid body
motion is the screw motion (Rooney, 1978). But instead of presenting that
in detail, we refer the reader to the report (Sommer et al., 2004).

A motor M transforms covariantly any entity u ∈ R4,1 according to

u′ = MuM̃ (33)
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with u′ ∈ R4,1. An equivalent equation is valid for the dual entity U ∈ R4,1.
Because motors concatenate multiplicatively, a multiple-motor transforma-
tion of u resolves recursively. Let be M = M2M1, then

u′′ = MuM̃ = M2M1uM̃1M̃2 = M2u
′M̃2. (34)

It is a feature of any GA that also composed entities, which are built by
the outer product of other ones, transform covariantly by a linear transfor-
mation. This is called outermorphism (Hestenes, 1991) and it means the
preservation of the outer product under linear transformations. Following
Section 1, this is an important feature of the chosen algebraic embedding
that will be demonstrated in Section 3.

1.3. Shape Models from Coupled Twists

In this section we will approach step by step the kinematic design of alge-
braic and transcendental curves and surfaces by coupling a certain set of
twists as generators of a multiple-parameter Lie group action.

1.3.1. THE KINEMATIC CHAIN AS MODEL OF CONSTRAINED MOTION

In the preceding section we argued that each entity ui contributing to the
rigid model of another entity u is performing the same transformation,
represented by the motor M . Now we assume an ordered set of non-rigidly
coupled rigid components of an object. Such model is called a kinematic
chain (Murray et al., 1994). In a kinematic chain the task is to formulate
the net movement of the end-effector at the n-th joint by movements of
the j-th joints, j = 1, ..., n − 1, if the 0-th joint is fixed coupled with
a world coordinate system. These movements are discribed by the motors
M j . Let Tj be the transformation of an attached joint j with respect to the
base coordinate system, then for j = 1, ..., n the point xj,ij , ij = 1, ...,mj ,
transforms according to

Tj(xj,ij ,M j) = M1...M jxj,ijM̃ j ...M̃1 (35)

and

T0(x0,i0) = x0,i0 . (36)

The motors M j are representing the flexible geometry of the kinematic
chain very efficiently. This results in an object model O defined by a
kinematic chain with n segments and described by any geometric entity
uj,ij ∈ R4,1 attached to the j-th segment,

O =
{
T0(u0,i0), T1(u1,i1 ,M1), ..., Tn(un,in ,Mn)|n, i0, ..., in ∈ N

}
. (37)

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS
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If uj,ij is performing a motion caused by the motor M , then

u′
j,ij = M

(
Tj(uj,ij ,M j)

)
M̃ (38)

= M(M1...M juj,ijM̃ j ...M̃1)M̃ . (39)

1.3.2. THE OPERATIONAL MODEL OF SHAPE

We will now introduce another type of constrained motion, which can be
realized by physical systems only in special cases but should be understood
as a generalization of a kinematic chain. This is our proposed model of
operational or kinematic shape (Rosenhahn, 2003). An operational shape
means that a shape results from the net effect, that is the orbit, of a point
under the action of a set of coupled operators. So the operators at the end
are the representations of the shape. A kinematic shape means the shape for
which these operators are the motors as representations of SE(3) in R4,1.
The principle is simple. It goes back to the interpretation of any g ∈ SE(3)
as a Lie group action (Murray et al., 1994), see equation (1). But only in
R4,1 we can take advantage of its representation as rotation around the axis
l, see equations (3), (30) and (31).

In Section 2.2 we introduced the sphere and the circle from IPNS and
OPNS, respectively. We call these definitions the canonical ones. On the
other hand, a circle has an operational definition which is given by the
following. Let xφ be a point which is a mapping of another point x0 by
g ∈ SE(3) in R4,1. This may be written as

xφ = Mφx0M̃φ (40)

with Mφ being the motor which rotates x0 by an angle φ,

Mφ = exp
(
−φ

2
Ψ
)

. (41)

Here again is Ψ the twist as a generator of the rotation around the axis l, see
equation (3). Note that Ψ = αl, α ∈ R. If φ covers densely the whole span
[0, ..., 2π], then the generated set of points

{
xφ

}
is also dense. The infinite

set
{
xφ

}
is the orbit of a rotation caused by the infinite set {Mφ}, which

has the shape of a circle in R
3. The set {xφ} represents the well-known

subset concept in a vector space of geometric objects in analytic geometry.
In fact, that circle is on the horosphere N3

e because it is composed only
by points. We will write for the circle z{1} instead of

{
xφ

}
to indicate the

different nature of that circle in comparison to either z or Z of Section
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2.2. The index {1} means that the circle is generated by one twist from a
continuous argument φ. So the circle, embedded in R4,1, is defined by

z{1} =
{
xφ| for all φ ∈ [0, ..., 2π]

}
. (42)

Its radius is given by the distance of the chosen point x0 to the axis l whose
orientation and position in space depends on the parameterization of l. That
z{1} is defined by an infinite set of arguments is no real problem in the case
of computational geometry or applications where only discretized shape is
of interest. More interesting is the fact that in the canonical definitions
of Section 2.2 the geometric entities are all derived from either spheres or
points. In the case of the operational definition of shape, the circle is the
basic geometric entity instead, respectively rotation is the basic operation.

A sphere results from the coupling of two motors, Mφ1 and Mφ2 , whose
twist axes meet at the center of the sphere and which are perpendicularly
arranged.

The resulting constrained motion of a point x0,0 performs a rotation on
a sphere given by φ1 ∈ [0, ..., 2π] and φ2 ∈ [0, ..., π],

xφ1,φ2
= Mφ2Mφ1x0,0M̃φ1M̃φ2 . (43)

The complete orbit of a sphere is given by

s{2} =
{
xφ1,φ2

| for all φ1 ∈ [0, ..., 2π] , φ2 ∈ [0, ..., π]
}

. (44)

Let us come back to the point of generalization of the well-known
kinematic chains. These models of linked bar mechanisms have to be phys-
ically feasible. Instead, our model of coupled twists is not limited by that
constraint. Therefore, the sphere expresses a virtual coupling of twists.
This includes both location and orientation in space, and the possibility of
fixating several twists at the same location, for any dimension of the space
R

n. There are several extensions of the introduced kinematic model which
are only possible in CGA.

First, while the group SE(3) can only act on points, its representation
in R4,1 may act in the same way on any entity u ∈ R4,1 derived from either
points or spheres. This results in high complex free-form shapes caused
from the motion of relatively simple generating entities and low order sets
of coupled twists.

Second, only by coupling a certain set of twists, high complex free-form
shapes may be generated from a complex enough constrained motion of a
point.

Let u{n} be the shape generated by n motors Mφ1 , ...,Mφn . We call it
the n-twist model,

u{n} =
{
xφ1,...,φn

| for all φ1, ..., φn ∈ [0, ..., 2π]
}

(45)

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS
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with

xφ1,...,φn
= Mφn ...Mφ1x0,...,0M̃φ1 ...M̃φn . (46)

1.3.3. FREE-FORM OBJECTS

There are a lot of more degrees of freedom to design free-form objects
embedded in R4,1 by the motion of a point caused by coupled twists.
While a single rotation-like motor generates a circle, a single translation-like
motor generates a line as a root of non-curved objects. Of course, several of
both variants can be mixed. Other degrees of freedom of the design result
from the following extensions:

− Introducing an individual angular frequency λi to the motor Mφi
also

influences the synchronization of the rotation angles φi.
− Rotation within limited angular segments φi ∈ [αi1 , ..., αi2 ] with 0 ≤

αi1 < αi2 ≤ 2π is possible.

Let us consider the simple example of a 2-twist model of shape,

u{2} =
{
xφ1,φ2

| for all φ1, φ2 ∈ [0, ..., 2π]
}

(47)

with

xφ1,φ2
= Mλ2φ2Mλ1φ1x0M̃λ1φ1M̃λ2φ2 , (48)

λ1, λ2 ∈ R and φ1 = φ2 = φ∈ [0, ..., 2π].
That model can generate not only a sphere, but an ellipse (λ1=−2,λ2 =1),

several well-known algebraic curves (in space), see (Rosenhahn, 2003),
such as cardioid, nephroid or deltoid, transcendental curves like a spiral, or
surfaces. For the list of examples see Table 1.1.

Interestingly, the order of nonlinearity of algebraic curves grows faster
than the number of the generating motors.

1.3.4. EXTENSIONS OF THE CONCEPTS

By replacing the initial point x0 by any other geometric entity, u0, built
from either points or spheres by applying the outer product, the concepts
remain the same. This makes the kinematic object model in conformal space
a recursive one.

The infinite set of arguments φi of the motor Mφi
to generate the entity

u{n} will in practice reduce to a finite one, which results in a discrete entity
u[n]. The index [n] indicates that n twists are used with a finite set of
arguments {φi,ji |ji ∈ {0, ...,mi}}.
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TABLE 1.1. Simple geometric entities generated from up to three twists

Entity Generation Class

point twist axis intersected with a point 0twist curve

circle twist axis non-collinear with a point 1twist curve

line twist axis is at infinity 1twist curve

conic 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = −2

line segment 2 twists, building a degenerate conic 2twist curve λ1 = 1, λ2 = −2

cardioid 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = 1

nephroid 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = 2

rose 2 parallel non-collinear twists, j loops 2twist curve λ1 = 1, λ2 = −j

spiral 1 finite and 1 infinite twist 2twist curve λ1 = 1, λ2 = 1

sphere 2 perpendicular twists 2twist surface λ1 = 1, λ2 = 1

plane 2 parallel twists at infinity 2twist surface

cylinder 2 twists, one at infinity 2twist surface

cone 2 twists, one at infinity 2twist surface

quadric a conic rotated with a third twist 3twist surface

The previous formulations of free-form shape did assume a rigid model.
As in the case of the kinematic chain, the model can be made flexible. This
happens by encapsulating the entityu[n] into a set of motors

{
Md

j |j = J, ..., 1
}
,

which results in a deformation of the object.

ud
[n] = Md

J ...Md
1u[n]M̃

d

1...M̃
d

J (49)

Finally, the entity ud
[n] may perform a motion under the action of a motor

M , which itself may be composed by a set of motors {M i|i = I, ..., 1}
according to equation (4),

ud′
[n] = Mud

[n]M̃ . (50)

But a twist is not only an operator but it may play in CGA also the role
of an operand,

Ψ′ = MΨM . (51)

This causes a dynamic shape model as an alternative to (49).
So far, the entity u{n} was embedded in the Euclidean space. Lifting up

the entity to the conformal space, u{n} ∈ R4,1, is simply done by

u{n} = e ∧
(
u{n} + e−

)
= e ∧U{n} (52)

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS

with U{n} being the shape in the projective space R3,1.
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1.4. Twist Models and Fourier Representations

The message of the last subsection is the following. A finite set of coupled
twist (or nested motors) performs a constrained motion of any set of ge-
ometric entities, whose orbit uniquely represents either a curve, a surface
or a volume of arbitrary complexity. This needs a parameterized model
of the generators of the shape. In some applications the reverse problem
may be of interest. That is to find a parameterized twist model for a given
shape. That task can be solved: Any curve, surface or volume of arbitrary
complexity can be mapped to a finite set of coupled twists, but in a non-
unique manner. That means, that there are different models which generate
the same shape.

We will show here that there is a direct and intuitive relation between
the twist model of shape and the Fourier representations. The Fourier series
decomposition and the Fourier transforms in their different representations
are well-known techniques of signal analysis and image processing. The
interesting fact that this equivalence of representations results in a fusion
of concepts from geometry, kinematics, and signal theory is of great im-
portance in engineering. Furthermore, because the presented modelling of
shape is embedded in a conformal space, there is also a single access for
embedding the Fourier representations in either conformal or projective
geometry. This is quite different from the recent publication (Turski, 2004).

1.4.1. THE CASE OF A CLOSED PLANAR CURVE

Let us consider a closed curve c ∈ R
2 in a parametric representation with

t ∈ R. Then its Fourier series representation is given by

c(t) =
∞∑

ν=−∞
γν exp

(
j2πνt

T

)
(53)

with the Fourier coefficients γν , ν ∈ Z as frequency and j, j2 = −1, as the
imaginary unit and T as the curve length.

This model of a curve has been used for a long time in image processing
for shape analysis by Fourier descriptors (these are the Fourier coefficients)
(Zahn and Roskies, 1972).

We will translate this spectral representation into the model of an
infinite number of coupled twists by following the method presented in
(Rosenhahn et al., 2004). Because equation (53) is valid in an Euclidean
space, the twist model has to be reformulated accordingly. This will be
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shown for the case of a 2-twist curve c{2} based on equation (27). Then
equation (48) can be written in R3 for φ1 = φ2 = φ as

xφ = Rλ2φ

(
(Rλ1φ(x0 − t1)R̃λ1φ + t1)− t2

)
R̃λ2φ + t2 (54)

= p0 + V 1,φp1Ṽ 1,φ + V 2,φp2Ṽ 2,φ. (55)

Here the translation vectors have been absorbed by the vectors pi and the
V i are built by certain products of the rotors Rλiφ. We call the pi the phase
vectors. Next, for the aim of interpreting that equation as a Fourier series
expansion, we rewrite the Fourier basis functions as rotors of an angular
frequency i ∈ Z, in the plane l ∈ R2, l2 = −1,

Rλiφ = exp
(
−λiφ

2
l

)
= exp

(
−πiφ

T
l

)
. (56)

All rotors of a planar curve lie in the same plane as the phase vectors pi.
After some algebra, see (Rosenhahn et al., 2004), we get for the transformed
point

xφ =
2∑

i=0

pi exp
(

2πiφ

T
l

)
(57)

and for the curve as subspace of R
3 the infinite set of points

c{2} = {xφ| for all φ ∈ [0, ..., 2π] and for all i ∈ {0, 1, 2}} . (58)

A general (planar) curve is given by

c{∞} = {xφ| for all φ ∈ [0, ..., 2π] and for all i ∈ Z} , (59)

respectively as Fourier series expansion, written in the language of kine-
matics

c{∞} =

{
lim

n−→∞

n∑
i=−n

pi exp
(

2πiφ

T
l

)}
(60)

=

{
lim

n−→∞

n∑
i=−n

RλiφpiR̃λiφ

}
. (61)

A discretized curve is called a contour. In that case equation (60) has to
consider a finite model of n twists and the Fourier series expansion becomes
the inverse discrete Fourier transform. Hence, a planar contour is given
by the finite sequence c[n] with the contour points ck,−n ≤ k ≤ n, in
parametric representation

ck =
n∑

i=−n

pi exp
(

2πik

2n + 1
l

)
, (62)

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS
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and the phase vectors are computed as a discrete Fourier transform of the
contour

pi =
1

2n + 1

n∑
k=−n

ck exp
(
− 2πik

2n + 1
l

)
. (63)

These equations imply that the angular argument φk is replaced by k.

1.4.2. EXTENSIONS OF THE CONCEPTS

The extension of the modelling of a planar curve, embedded in R
3, to a 3D

curve is easily done. This happens by taking its projections to either e12,
e23, or e31 as periodic planar curves. Hence, we get the superposition of
these three components. Let cj

[n] be these components in the case of a 3D
contour with the rotation axes l∗j perpendicular to the rotation planes lj .
Then

c[n] =
3∑

j=1

cj
[n] (64)

with the contour points of the projections cj
k, j = 1, 2, 3 and −n ≤ k ≤ n,

c j
k =

n∑
i=−n

pj
i exp

(
2πik

2n + 1
lj

)
. (65)

Another useful extension is with respect to surface representations, see
(Rosenhahn et al., 2004). If this surface is a 2D function orthogonal to a
plane spanned by the bivectors eij , then the twist model corresponds to
the 2D inverse FT. In the case of an arbitrary orientation of the rotation
planes lj instead, or in the case of the surface of a 3D object, the procedure
is comparable to that of equation (65). The surface is represented as a
two-parametric surface s(t1, t2) as superposition of the three projections
sj(t1, t2).

In the case of a discrete surface in a two-parametric representation we
have the finite surface representation s[n1,n2],

s[n1,n2] =
3∑

j=1

sj
[n1,n2] (66)

with the surface points of the projections sj
k1,k2

, j = 1, 2, 3 and −n1 ≤ k1 ≤
n1, −n2 ≤ k2 ≤ n2,

sj
k1,k2

=
n1∑

i1=−n1

n2∑
i2=−n2

pj
i1,i2

exp
(

2πi1k1

2n1 + 1
lj

)
exp

(
2πi2k2

2n2 + 1
lj

)
(67)
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and the phase vectors

pj
i1,i2

=
1

2n1 + 1
1

2n2 + 1
pj′

i1,i2
(68)

p j′
i1,i2

=
n1∑

k1=−n1

n2∑
k2=−n2

sj
k1,k2

exp
(
− 2πi1k1

2n1 + 1
lj

)
exp

(
− 2πi2k2

2n2 + 1
lj

)
(69)

Finally, we will give the hint to an alternative model of a curve c ∈ R4,1, see
(Rosenhahn, 2003). While equation (60) expresses the additive superposi-
tion of rotated phase vectors in Euclidean space, the multiplicative coupling
of the twists directly in conformal space is possible.

The discussed equivalence of the twist model and the Fourier repre-
sentation has several advantages in practical use of the model. The most
important may be the applicability to low-frequency approximations of the
shape. For instance in pose estimation (Rosenhahn, 2003) the estimations of
the motion parameters of non-convex objects can be regularized efficiently
in that way. Instead of estimating motors, the parameters of the twists are
estimated because of numeric reasons.

1.5. Summary and Conclusions

We presented an operational or kinematic model of shape in R
3. This model

is based on the Lie group SE(3), embedded in the conformal geometric alge-
bra R4,1 of the Euclidean space. While the modelling of shape in R

3 caused
by actions of SE(3) is limited, a lot of advantages result from the chosen
algebraic embedding in real applications. As one of these the possibility of
conformal (and projective) shape models should be mentioned. We did not
discuss any applications in detail. Instead, we refer the reader to the website
http://www.ks.informatik.uni-kiel.de with respect to the problem of pose
estimation. In that work we could show that the pose estimation based on
the presented shape model can cope with incomplete and noisy data. In
addition to that robustness the pose estimation is numerically stable and
fast.

Because the chosen twist model is equivalent to the Fourier representa-
tion (in some aspects it overcomes that), the proposed shape representation
unifies geometry, kinematics, and signal theory. It can be expected that this
will have a great impact on both theory and practice in computer vision,
computer graphics and modelling of mechanisms.

An extended version of this paper can be found as report (Sommer
et al., 2004).

THE TWIST REPRESENTATION OF FREE-FORM OBJECTS
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Zahn, C. and R. Roskies: Fourier descriptors for plane closed curves. IEEE Trans.

Computers, 21:269–281, 1972.

e



UNCERTAIN GEOMETRY WITH CIRCLES, SPHERES

AND CONICS
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Abstract. In this text the description of uncertain geometric entities is extended from
points, lines and planes to circles, spheres and 2D-conic sections. While the former has
been treated previously by Kanatani (Kanatani, 1996), Förstner (Förstner et al., 2000)
and Heuel (Heuel, 2004) in matrix spaces, the latter can be treated advantageously in
a multilinear setting using Clifford algebra. It is shown how error propagation can be
applied to Clifford algebra operations in general, and specifically for the construction
of circles, spheres and 2D-conic sections. While circles and spheres are treated in the
Clifford algebra of conformal space (Hestenes, 1991; Li et al., 2001), the construction
of uncertain 2D-conic sections is treated in the Clifford algebra of a specially developed
vector space. Some results on synthetic data are presented.

Key words: Clifford algebra, error propagation, conformal space, conic sections

2.1. Introduction

Spatial reasoning is one of the central tasks in Computer Vision. It al-
ways has to deal with uncertain data. Projective geometry has become
the working horse for modelling multiple view geometry, while modelling
uncertainty with statistical tools has become a standard. Geometric rea-
soning in projective geometry with uncertain geometric elements has been
advocated by Kanatani in the early 90’s, and recently made transparent
and generalized to basic entities in projective geometry including transfor-
mations by Förstner and Heuel, exploiting the multilinearity of nearly all
relations, such as incidence and identity, which results from the underlying
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1998; Faugeras and Luong, 1998).
This paper generalizes geometric reasoning under uncertainty towards

circles and spheres, which play a role in many computer vision applications.
The basic step is to embed all entities into a more general algebra, namely
the Clifford algebra of conformal space as proposed by Hestenes et al.
(Hestenes, 1991; Li et al., 2001). The basic elements in conformal algebra
are spheres in any dimension, including points, straight lines, planes but
also point pairs, i. e. spheres in E

1 and circles, i. e. spheres in E
2. We also

introduce the Clifford algebra over the vector space of 2D-conics, which, to
the best of our knowledge, has not yet been discussed in the literature. This
allows us to model 2D-conics and their intersections and thus also apply
geometric reasoning under uncertainty to these entities. Clifford algebra is
similar to Grassmann-Cayley algebra and also covers projective geometry
(Hestenes and Ziegler, 1991).

Modelling uncertainty of uncertain homogeneous entities is not straight
forward (cf. (Collins, 1993)). In case of good relative accuracy, i. e. direc-
tional errors of less than 1 %, the representation with covariance matrices
has been widely accepted (cf. e. g. (Kanatani, 1996; Criminisi, 2001)). A
direct integration into projective geometry has been proposed by Förstner
(Förstner et al., 2000). For the simple case of the join l = x×y = S(x)y =
−S(y)x, where S(x) = [x]× is the skew matrix induced by the 3-vector x,
we obtain:

Σl,l = S(y)Σx,xST(y) + S(x)Σy,yS
T(x)

for independent 2D points with covariance matrices Σx,x and Σy,y, e. g.

Σx,x =

⎡⎣ σ2
x σxy 0

σxy σ2
y 0

0 0 0

⎤⎦
This type of uncertainty representation and propagation can be extended
to all types of geometric entities and also transformations within projective
geometry, in case the expressions are multilinear in the given entities.

The paper generalizes these developments towards circles, spheres and
conic sections by embedding all entities in a more general algebra. The
paper is organized as follows: Sect. 2.2 presents the basic concepts of
Clifford algebra making the multilinearity of the expressions explicit.
Sect. 2.3 describes the embedding of n-spheres into Clifford algebra via the
special instance of conformal algebra and the versatility of the concept.
Sect. 2.4 introduces the embedding of 2D-conics in a 6D-vector space and
the Clifford algebra over this vector space. Based on the statistical error
propagation in sect. 2.5 the uncertainty propagation in conformal algebra
and the algebra of conics is demonstrated for 3D circles and 2D conics.

Grassmann-Cayley algebra; see (White, 1995; Faugeras and Papadopoulo,

C. Perwass and W. Förstner
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2.2. Clifford Algebra

Without explaining exactly what it is, we will denote a Clifford algebra on
R

n by C�(Rn), or simply C�n if it is clear that we are forming the Clifford
algebra over the reals. The latter will in fact be the case for the whole of this
text. For more detailed introductions to Clifford algebra see e.g. (Hestenes
and Sobczyk, 1984; Porteous, 1995; Lounesto, 1997; Dorst,, 2001; Perwass
and Hildenbrand, 2003). A Clifford algebra C�n over a vector space R

n has
dimension 2n. An algebraic basis of C�n may therefore be denoted by a set
{Ei}2

n

i=1 of so called basis blades. It may be shown that these basis blades
satisfy a number of constraints with respect to the algebra product which
is also called the geometric or Clifford product. This product will simply
be denoted by juxtaposition, i.e. the geometric product of two elements
A,B ∈ C�n is written as AB. The basis blades of C�n have the following
properties:

∃E1 such that EiE1 = E1Ei = Ei, ∀i ∈ {1, . . . , 2n},
EiEi = λi E1, λi ∈ {−1, 1}, ∀i ∈ {1, . . . , 2n},
EiEj =

∑2n

k=1 gk
ij Ek, ∀i, j ∈ {1, . . . , 2n}.

(1)

The last condition basically says that the geometric product of basis
blades is invertible. For example, given indices (i, j, k) such that EiEj = Ek,
we find that

EiEj = Ek ⇐⇒ EiEjEj = EkEj ⇐⇒ EkEj = λj Ei,

and thus gi
kj = λj .

A general element of C�n is called multivector. In terms of basis blades
a general multivector A ∈ C�n may be given by A =

∑2n

i=1 αi Ei. In the
following we will use the Einstein summation convention, that a superscript
index repeated within a product as a subscript index is implicitly summed
over its range. That is, a multivector may be written as A = αi Ei, if it
is clear that i ∈ {1, . . . , 2n}. The geometric product of two multivectors
A,B ∈ C�n, with A = αiEi and B = βiEi, is then given by

AB = (αi Ei) (βj Ej) = αi βj EiEj = αi βj gk
ij Ek. (2)

Writing the result multivector M ∈ C�n of M = AB as M = µiEi then
gives

M = AB ⇐⇒ µkEk = αi βj gk
ij Ek ⇐⇒ µk = αi βj gk

ij ∀k. (3)

This shows that if multivectors in C�n are expressed as vectors in R
2n

, the
geometric product between them becomes a bilinear function. Therefore, if
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we want to discuss error propagation in Clifford algebra, we can look at the
error propagation of bilinear functions. Note that other products available
in Clifford algebra like the inner and outer product, which will be discussed
in the following, may also be expressed in this way.

As an example for an {Ei}2
n

i=1 basis, consider the space R
4 with or-

thonormal basis {e1, e2, e3, e4}. A basis for the Clifford algebra C�(R4) is
then be given by

{1, e1, e2, e3, e4, e2e3, e3e1, e1e2, e4e1, e4e2, e4e3,

e2e3e4, e3e1e4, e1e2e4, e1e2e3, e1e2e3e4}
(4)

Each of the elements of this basis may now be denoted by one Ei. From the
associativity of the algebra product (e1(e2e3) = (e1e2)e3) and the signature
of the vector space, in this case eiei = 1, the particular values of the tensor
gk

ij follow. For example, using the above basis we can define E1 := 1,
E2 := e1, E3 := e2, . . ., E8 := e1e2, . . ., E16 := e1e2e3e4. We then clearly
have E2 E3 = E8. Hence, g8

23 = 1 and gk
23 = 0∀ k �= 8.

The representation of algebra products in the form of equation (3) al-
lows us to apply standard error propagation directly to Clifford algebra,
as will be seen later on. However, this representation is not particularly
enlightening when it comes to the description of geometry. Geometry is in
fact represented through the null-spaces of algebraic entities with respect
to particular algebra products. In Clifford algebra these are the inner and
the outer product (Hestenes and Sobczyk, 1984) and in Grassmann-Cayley
algebra the meet and join (Faugeras and Luong, 1998).

The outer product is a special operation defined within Clifford algebra
and is denoted by ∧. It is, in fact, equivalent to the exterior product of
Grassmann algebra. The outer product is associative and distributive. For
vectors x,y ∈ E

n it is also anti-commutative, i. e. x∧y = −y∧x. Another
important property is that if x∧y = 0, then x and y are linearly dependent.
More generally, for a set {x1, . . . ,xk} ⊂ R

n of k ≤ n mutually linearly
independent vectors, (x1 ∧x2 ∧ . . .∧xk) ∧ y = 0 if and only if y is linearly
dependent on {x1, . . . ,xk}. The outer product of a number of vectors is also

independent vectors gives a blade of grade k, a k-blade.
The set of vectors in R

n whose outer product with the k-blade gives
zero, spans a k-dimensional subspace. The null space of a k-blade in some
C�(Rn) with respect to the outer product, i. e. the outer product null space
of a k-blade, is therefore a k-dimensional subspace of R

n. Geometrically
this means for Euclidean space E

3 that a vector represents a line through
the origin, a 2-blade (or bivector) a plane through the origin, and a 3-blade

called a blade. The grade of a blade is simply the number of vectors that”

wedged” together give the blade. Hence, the outer product of k linearly
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(or trivector) the whole E
3. For more details see (Hestenes and Ziegler,

1991).
Instead of looking at the null space of algebraic entities with respect

to the outer product, we can do the same for the inner product of Clifford
algebra. The inner product will be denoted by ·. For vectors x,y ∈ R

n,
their inner product is just the same as their scalar product denoted by ∗.
That is, x · y = x ∗ y ∈ R. This may be called the

”

metric” property
of the inner product, since the result of the scalar product of two vectors
depends on the metric of the vector space they lie in. However, the inner
product also has some purely algebraic properties for elements in C�(Rn),
which are independent of the metric of the vector space R

n. For example,
let x,a,b ∈ R

n, then the inner product of x with a ∧ b gives,

x · (a ∧ b) = (x · a)b− (x · b)a. (5)

Since (x ·a) and (x ·b) are scalars, we see that the inner product of a vector
with a bivector results in a vector. In terms of the null space of entities with
respect to the inner product, this formula shows that vector x lies in the
inner product null space of a ∧ b if and only if x lies in the inner product
null space of a and b. That is, the inner product null space of a ∧ b is the
intersection of the inner product null spaces of a and b. For example, in the
Clifford algebra of projective space C�(PE

3), vectors a and b may represent
planes w.r.t. their inner product null space. Hence, the bivector a∧b then
represents the intersection line of the two planes.

2.3. Conformal Space

In the previous section it was shown how Clifford algebra can be used
to represent geometric entities like lines and planes through the origin in
C�(E3). Conformal space extends this idea by embedding a n - dimensional
Euclidean space in a nonlinear manner in a (n + 2)-dimensional space.
Conformal space takes its name from the fact that certain types of re-
flections in conformal space represent inversion in Euclidean space and
conformal transformations can be represented by combinations of inver-
sions. See (Needham, 199; Li et al., 2001) for more details. In this text we
cannot go into all the details relating to conformal space and the Clifford
algebra over this space. We can only state the important formulae and give
a basic idea of how we can use conformal space to work with geometric
entities.

As before we will denote vectors in a n-dimensional Euclidean vector
space E

n by small, bold faced letters as in x. Note that even though we will
work in the following with the conformal space of 3-dimensional Euclidean
space, all formulae extend directly to n dimensions. In order to obtain a
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conformal space, which we will denote by PK
n, we extend the orthonormal

basis {ei}ni=1 of E
n by two orthogonal basis vectors {e+, e−} with e2

+ = 1
and e2− = −1. The embedding of a Euclidean vector x in conformal space
is then given by

X = x + 1
2 x2 e∞ + eo, (6)

where e∞ := e− + e+ and eo := 1
2(e− − e+). The properties of e∞ and

eo are therefore e2∞ = e2
o = 0 and e∞ · eo = −1. We use the null basis

{e∞, eo} instead of the Minkowski basis {e+, e−} since e∞ and eo have a
clear semantic meaning as the point at infinity (there is only one) and
the origin, respectively. We can now ask which Euclidean vectors y ∈ E

3

when embedded in conformal space, lie in the inner product null space of
αX, with α ∈ R. Since we know that the embedding of y in conformal
space is Y = y + 1

2y
2 e∞ + eo, the question becomes for which y the inner

product of Y and αX becomes zero. We find that Y · (αX) = α (Y ·X) =
α ( − 1

2 (y − x)2), which is clearly zero if and only if y = x. Similarly, we
can ask what a vector of the form S = X− 1

2 ρ2 e∞, with ρ ∈ R, represents,
where X is the same as above. We find that Y·S = −1

2 (y−x)2+ 1
2 ρ2, which

is zero if and only if (x−a)2 = ρ2. Note that if x and y are elements of E
2,

Y ·S is equivalent to this equation. That is, a vector of the form of S in PK
2

represents a circle in E
2 centered on x with radius ρ. In PK

3, S represents
a sphere centered on x with radius ρ and in even higher dimensional spaces
it would represent a hypersphere. This shows that it is possible to represent
circles and spheres in a linear manner in conformal space, which is of course
due to the non-linear embedding of Euclidean vectors.

In fact, the embedding of a vector and the metric from equation (6) are
equivalent to the embedding of Euclidean vectors in PK

2 and the metric of
the basis {e1, e2, e∞, eo} of PK

2.
Since equation (5) holds in any Clifford algebra, it is also valid for

C�(PK
3). Given two vectors S1,S2 ∈ PK

3 both representing spheres in E
3,

their outer product S1 ∧S2 represents the intersection circle of the spheres
with respect to the inner product null space of the bivector. That is, we
can also represent circles in E

3 in a linear manner in conformal space PK
3.

While a circle is represented in the inner product null space by the inter-
section of two spheres, it may be shown that in terms of the outer product
null space a circle through three points x,y, z ∈ E

3 can be represented by
the outer product of the three corresponding conformal vectors X, Y and
Z. For E

2 this is then equivalent to the circle equation above, albeit not the
same since X∧Y∧Z results in a trivector and not in a vector. Furthermore,
four points X1,X2,X3,X4 ∈ PK

2 are co-circular if X1∧X2∧X3∧X4 = 0.
As it turns out, within the Clifford algebra over conformal space, the

only geometric entity that can be represented is a sphere, albeit in any
dimension and with any radius. For example, a sphere with infinite radius,
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i. e. a plane, can be represented with finite components. A point, on the
other hand, is a sphere with zero radius and a sphere in E

1 is a point pair.
The following list shows the geometric entities in E

3 represented by blades
of different grades in C�(PK

3), in terms of their outer product null space.
The {Xi} ⊂ PK

3 are assumed to be the conformal embeddings of Euclidean
vectors {xi} ⊂ E

3.

X1 : Point x1

X1 ∧X2 : Point pair (x1, x2)
X1 ∧ e∞ : Point pair (x1, ∞)

X1 ∧X2 ∧X3 : Circle through x1, x2, x3

X1 ∧X2 ∧ e∞ : Line through x1, x2

X1 ∧X2 ∧X3 ∧X4 : Sphere through x1, x2, x3,x4

X1 ∧X2 ∧X3 ∧ e∞ : Plane through x1, x2, x3

X1 ∧X2 ∧X3 ∧X4 ∧X5 : The whole space E
3.

(7)

2.4. The Vector Space of Conic Sections

In conformal space we defined a particular embedding of Euclidean vectors
in a higher dimensional vector space with particular properties. The
Clifford algebra over this conformal vector space then allowed for the
linear representation of circles, spheres, etc. A set of geometric entities of
particular interest in computer vision are conic sections. It would therefore
be advantageous to be able to form a Clifford algebra over a vector space
such that conics and their intersections can be represented. This is indeed
possible and may be done in the following way.

It is well known that given a symmetric 3×3 matrix A, the set of vectors
x = (x, y, 1)T that satisfy xT A x = 0, lie on a conic. This can also be written
using the scalar product of matrices, denoted here by ∗, as (x xT) ∗ A = 0.
It makes therefore sense to define a vector space of symmetric matrices in
the following way. If aij denotes the component of matrix A at row i and
column j, we can define a transformation T that maps elements of R

3×3 to
R

6 as

T : A ∈ R
3×3 �→ (a13, a23,

1√
2
a33,

1√
2
a11,

1√
2
a22, a12)

T ∈ R
6. (8)

A vector x ∈ R
3 may now be embedded in the same six dimensional space

via x := T (x xT). If we define a := T (A), then xT A x = 0 can be written
as the scalar product

x · a = 0 ⇐⇒ x2 a11 + y2 a22 + 2xy a12 + 2x a13 + 2y a23 + a33 = 0. (9)
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Finding the vector a that best satisfies the above equation for a set of points
is usually called the algebraic estimation of a conic, see e.g. (Bookstein,
1979).

We will denote the 6D-vector space in which 2D-conics may be repre-
sented by D

2 ≡ R
6. A 2D-vector (x, y) ∈ R

2 is transformed to D
2 by the

function

D : (x, y) ∈ R
2 �→ (x, y, 1√

2
, 1√

2
x2, 1√

2
y2, xy) ∈ D

2. (10)

The Clifford Algebra C�(D2) has (algebra) dimension 26 = 64. The inner
product null space of a vector A ∈ D

2 is the set of all those vectors
X ∈ D

2 that satisfy X · A = 0. As was shown before, this null space is
a (possibly degenerate) conic. Furthermore, the inner product null space of
the outer product of two vectors A,B ∈ D

2, A ∧B, now has to represent
the intersection of the conics represented by A and B. Let xi ∈ R

2 and let
Xi ∈ D

2 be defined by Xi = D(xi)∀ i. Then the outer product null space
of blades in C�(D2) may be shown to represent the following objects.

X1 : Point x1

X1 ∧X2 : Point pair (x1, x2)
X1 ∧X2 ∧X3 : Point triplet (x1, x2, x3)

X1 ∧X2 ∧X3 ∧X4 : Point quadruplet (x1, x2, x3,x4)
X1 ∧X2 ∧X3 ∧X4 ∧X5 : The conic through x1, x2, x3, x4, x5.

(11)

In particular, it can be shown that the outer product null space of X1∧X2∧
X3 ∧X4 ∧X5 is the same as the inner product null space of its dual, which
is a vector. Hence, this is also a simple way to construct the symmetric
matrix that represents a conic through five points. Note that to the best of
our knowledge the Clifford algebra C�(D2) has not yet been discussed in the
literature. We believe that it offers an intuitive way to deal with 2D-conics
and warrants further investigation.

2.5. Error Propagation in Clifford Algebra

It was shown previously that operations like the geometric, inner and outer
product in Clifford algebra are basically bilinear functions. This implies
that standard error propagation methods (cf. e. g. (Koch, 1997)) can be
applied in the evaluation of these products. Therefore, we can, for example,
evaluate the mean circle through three points, given the three points with
corresponding covariance and cross-covariance matrices in conformal space.
The same could be done, given two spheres with appropriate covariance and
cross-covariance matrices. Before the details of such calculations are pre-
sented, error propagation in Clifford algebra is introduced from a somewhat
more general point of view.
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Let {Ei}2
n

i=1 denote again the algebra basis of C�(Rn). Given three mul-
tivectors A,B, M ∈ C�(Rn), with A = αiEi, B = βiEi and M = µiEi, we
may regard them as vectors in some R

m, with orthonormal basis {ei}mi=1,
where m = 2n. In this vector space the multivectors may be written as col-
umn vectors a = [α1, . . . , αm]T, b = [β1, . . . , βm]T and m = [µ1, . . . , µm]T,
respectively. We use here sans serif letters to denote vectors in R

m in order
to distinguish them from (multi-)vectors in C�(Rn). The relation between
multivectors in C�(Rn) and their representation in R

m may be regarded as
an isomorphism Φ between these two spaces, whereby Φ(A ∈ C�n) = a ∈ R

m

and Φ−1(a) = A. This isomorphism also transforms Clifford algebra prod-
ucts to matrix products with special matrices. For example, if M = A ∧B
then

m = Φ(M) = Φ(A ∧B) = U(Φ(A)) Φ(B) = U(a) b,

where U(a) is a matrix whose entries depend on a. In the following all
matrices will be written as capital sans-serif letters. The form of matrix
U is derived through the following considerations. A product in C�(Rn)
between two multivectors can be expressed as a bilinear function g which
is a map R

m × R
m → R

m and may be written as g(a, b) := αi βj gk
ij ek,

where again we have implicit sums over i, j and k. The object gk
ij is again

the 3-valence tensor from equation (1). It encodes the relation between the
basis blades of C�n for a particular product. For example, if gk

ij encodes
the outer product, then the equation M = A∧B may be written in R

m as

m = g(a, b) ⇐⇒ µk = αiβj gk
ij ∀k. (12)

If we now denote the matrix of derivatives of g(a, b) with respect to the {βj}
as U(a), and with respect to the {αi} as V(b), we can write M = A ∧ B
equivalently in R

m as
m = U(a) b = V(b) a. (13)

Note that U and V are basically the Jacobi matrices of g.

2.5.1. ERROR PROPAGATION

Suppose now that multivectors A and B cannot be known exactly. Instead
only their expectation value, covariance and cross-covariance matrices are
known. The question is then how general Clifford algebra operations can
be performed while propagating the covariances of the initial multivectors.

In the following we will denote random variables by underlining the
variable name. That is, A and B denote two random multivector variables
with an embedding in R

m as Φ(A) = a = [αi, . . . , αm]T and Φ(B) = b =
[βi, . . . , βm]T. The expectation value of a random variable will be denoted
by overlining the variable name and the expectation value operator will
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be denoted by E . The covariance matrix of a and b will be denoted by
Σa,b. Given the expectation values ā, b̄, the covariance matrices Σa,a, Σb,b,
and the cross-covariance Σa,b of a and b, we ask what the expectation and
covariance matrix of a bilinear function g(a, b) as defined in equation (12)
is. By expanding g(a, b) with a Taylor expansion about the expectation
values of a and b, we find that

m̄ = E [g(a, b)] = U(ā) b̄ + tr((Hk)T Σa,b)ek, (14)

where Hk is the Hessian matrix of the kth component of g, and tr(U) denotes
the trace of a matrix U. In this case the Hessian matrix is simply Hk = gk

ij .
Note that in most cases the term containing the Hessian matrix will be
negligible. By using the same Taylor expansion of g as before, it may be
shown that the covariance matrix of g(a, b) is approximately given by

Σm,m = V(b̄) Σa,a, V
T(b̄) + U(ā) Σb,b, U

T(ā)
+ V(b̄) Σa,b, U

T(ā) + U(ā) Σb,a, V
T(b̄),

(15)

where we neglected an additional term tr((Hr)T Σa,b) tr((Hs)T Σa,b) for
each element Σrs

m,m. For most applications it may be assumed that this is
a good approximation. Furthermore, the cross-covariance matrix of g(a, b)
and another random multivector variable c ∈ R

m is given by

Σm,c = U(b̄) Σa,c + V(ā) Σb,c. (16)

Note that in the previous two equations the matrices U and V are the
Jacobean matrices of the bilinear function g. Equations (14), (15) and (16)
complete describe error propagation for any combination of Clifford algebra
operations.

2.5.2. CONFORMAL SPACE

For any expression we want to obtain in the Clifford algebra of conformal
space C�(PK

3), we can now use the equations presented in the previous sec-
tion to implement error propagation. Nevertheless, the initial expectation
values and covariance matrices will typically only be given for vectors in
Euclidean space E

3 and not for the corresponding embedded vectors in PK
3.

We therefore first have to do the error propagation for the embedding of
a Euclidean random vector variable x ∈ E

3 into conformal space, where
we will denote the corresponding conformal random vector variable by
X ∈ PK

3. Note that while x is 3-dimensional, X is (3 + 2)-dimensional,
and therefore also the corresponding covariance matrices will be of different
dimensions. We find that the expectation value of X is given by

X̄ = E [K(x)] = x̄ + 1
2 x̄2 e∞ + eo + 1

2 tr(Σx,x) e∞, (17)
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where K is the function describing the embedding of a Euclidean vector in
conformal space. This result is obtained by calculating the expectation value
of the Taylor expansion of K(x) about x̄. The term tr(Σx,x) is typically very
small and may be neglected. If we denote by JK(x̄) the Jacobi matrix of K
evaluated at x̄, then the covariance matrix ΣX,X of X is given in terms of
the covariance matrix Σx,x of x as

ΣX,X = JK(x̄) Σx,x JT
K(x̄). (18)

Denoting the components of x̄ by {ξ̄i}, the Jacobi matrix is in fact given
by

JK(x̄) =

⎡⎣ 1 0 0 ξ̄1 0
0 1 0 ξ̄2 0
0 0 1 ξ̄3 0

⎤⎦T

. (19)

The cross-covariance ΣX,Y is simply given in terms of Σx,y as

ΣX,Y = JK(x̄) Σx,y JT
K(ȳ). (20)

2.5.3. EVALUATION OF CIRCLES

We mentioned earlier that in conformal space a circle may be represented
by the outer product of three points, where a point is represented by a
vector as given in equation (6). The problem we now want to discuss is,
given three points in Euclidean space with associated covariance and cross-
covariance matrices, what is the expected circle through these three points
and what is its covariance matrix.

In order to somewhat simplify the formulas in the following, when we
write a (multi-)vector we mean in fact the expectation value of a corre-
sponding random (multi-)vector variable. For example, we will simply write
x instead of x̄.

Let x̄, ȳ, z̄ ∈ E
3 denote the expectation of three Euclidean vectors. Their

corresponding covariance and cross-covariance matrices are Σx,x, Σy,y, Σz,z,
and Σx,y, Σy,z, Σz,x. In section 2.5.2 we have shown how these three Eu-
clidean vectors together with their covariance and cross-covariance matrices
may be embedded in conformal space. The corresponding conformal vectors
will be denoted by X̄, Ȳ, Z̄ and the corresponding covariance and cross-
covariance matrices likewise. Once this is done, we can use equations (14)
and (15) to first evaluate P̄ = E [X̄∧ Ȳ] and the corresponding ΣP,P. Then
we use equation (16) to evaluate ΣP,Z. This then enables us to calculate
C̄ = E [P̄ ∧ Z̄] and ΣC,C. We could, of course, also have evaluated the
Jacobians directly for the trilinear product X̄ ∧ Ȳ ∧ Z̄ and then found the
expectation and covariance. The former method is however useful since it
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Figure 2.1. Standard deviation circles if vector x̄ has variance in only one component.

applies to any combination of products. Note that the statistical relation
between the components of the trivector C̄ are linear, while the relation
between the actual radius, center and normal of the circle need not be.
That is, due to the conformal embedding not only the representation of a
circle is linearized but also the statistical relationship between its embedded
components.

This allows us to very easily evaluate the standard deviation circles of
the mean circle C̄. We do this by evaluating a singular value decomposition
(SVD) on ΣC,C. The singular vectors that correspond to non-zero singular
values give the principal components of ΣC,C, while the singular values
give the variances along them. If C̄ were a point, the principal components
would give the axes of an ellipsoid which represents the surface of standard
deviation about this point. In the present case, where C̄ represents a circle,
we have to draw for each point on the ellipsoid a circle. Hence, if ΣC,C only
has one principal component, we obtain two standard deviation circles as
shown in figure 2.1. Here points ȳ and z̄ were held fixed and only point x̄
was taken to have a variance along one dimension. The central black circle
is the mean circle which goes through all three points. The two gray circles
are the ones that will occur with a likelihood of exp(−1

2), i. e. they give the
standard deviation from the mean.

If we now only hold point z̄ fixed and assume that x̄ and ȳ each have a
variance in one dimension, then ΣC,C has two principal components that
give the axes of an ellipse. If we draw for each point on the ellipse one
circle, we obtain the surface shown in figure 2.2. That is, each circle on
the surface has a probability of exp(−1

2) to occur. How the actual circle
parameter may be extracted from a trivector C ∈ C�(PK

3) that represents
it, may be found in some detail, for example, in (Li et al., 2001). Only a
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Figure 2.2. Standard deviation surface if vectors x̄ and ȳ have each a variance in only
one component.

short overview will be given here.
First of all, evaluate L = C · e∞ and A = C ∧ e∞. It turns out that L

represents w.r.t. the inner product null space, the line through the center
of the circle with direction perpendicular to the plane the circle lies in.
A represents w.r.t. the outer product null space, the plane the circle lies
in. The intersection of A and L may simply be evaluated by P = L · A,
whence P is of the form P = X ∧ e∞, if X gives the center of the circle.
The normal of the plane the circle lies in is given by N = L · (e3 ∧ e2 ∧ e1).
However, N still has to be normalized, since its magnitude is related to
the radius of the circle. The radius r can simply be evaluated by r2 =
−(C ·C)/(A ·A). In fact, S = C/A results in a vector of the same form
as the vector representing a sphere in section 2.3. The center and radius of
S are then the same as those of the circle C. Note that error propagation
can be applied to all of the above calculations, such that expectation values
and covariance matrices are available for all of these properties.

2.5.4. EVALUATION OF CONICS

Constructing a conic from five uncertain points in D
2 is very similar to

constructing a circle from three uncertain points in conformal space PK
3.

We assume that we are given five points in R
2, each with an associated

covariance matrix. These are embedded in D
2 using standard error propa-

gation.
Let D again denote the function embedding vectors from R

2 in D
2. A

random vector variable x ∈ R
2 is embedded in D

2 via X = D(x). The
expectation value of X is then given by X̄ = E [D(x)] ≈ D(x̄). If we denote
by JD(x̄) the Jacobi matrix of D evaluated at x̄, then the covariance matrix
ΣX,X of X is given in terms of the covariance matrix Σx,x of x as

ΣX,X = JD(x̄) Σx,x JT
D(x̄). (21)
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Denoting the components of x̄ by {ξ̄i}, the Jacobi matrix is given by

JD(x̄) =
[

1 0 0
√

2ξ̄1 0 ξ̄2

0 1 0 0
√

2ξ̄2 ξ̄1

]T

. (22)

The cross-covariance ΣX,Y is simply given in terms of Σx,y as

ΣX,Y = JD(x̄) Σx,y JT
D(ȳ). (23)

Figure 2.3 shows an example for such a construction. Given are five
points, of which two have a non-zero covariance matrix indicated by small
black bars. Taking the outer product of these five points after having them
embedded in D

2, we can evaluate the mean conic, represented as black
conic, and also the covariance matrix of the conic. In this case the covari-
ance matrix is of rank 2, which generates a whole set of conics that have
probability exp(−1

2) of a occurring, represented by the gray conics. It can
be seen that the area swept by this set of

”

standard deviation conics” has
a highly non-linear shape. Nevertheless, this surface is represented by the
covariance matrix of the conic in D

2.

Figure 2.3. Standard deviation conics if two of the five points have rank 1 covariance
matrices (indicated by small black bars).

2.6. Fitting of Circles and Conics to Data

There is also a linear solution to find the best circle that passes through
a set of points in E

3, or the best conic that passes through a set of points
in E

2, in a least squares sense. This follows directly from equation (13). In
both cases the entities we would like to evaluate can be calculated from a
set of linear constraint equations. In conformal space we can in this way
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extend the method given, for example, in (Delonge, 1972; Bookstein, 1979)
for fitting circles in 2D-Euclidean space, to 3D-Euclidean space.

In the space of conics D
2, it is not only possible to fit conics but also

the intersection of conics to data by solving a linear system of equations.
For example, if the data consists of four clusters of points, then fitting the
intersection of two conics to the data will return a point quadruplet whose
points specify the centers of the clusters.

Figure 2.4. Result of linear fitting of a circle to a set of slightly scattered points in E
3.

2.6.1. FITTING IN CONFORMAL SPACE

Here is a short description of how a circle may be fitted to a set of 3D-points
using the Clifford algebra of conformal space. It was mentioned earlier that
if a point X lies on a circle C, then X ∧C = 0. If we write c = Φ(C) and
x = Φ(X), then this condition can be written as U(x) c = 0. That is, c lies
in the null space of the matrix U(x). Given a set of points {x1, . . . , xk} that
all have to lie on a circle, we can define a matrix W that contains the set of
matrices {U(x1), . . . , U(xk)} stacked on top of each other. The condition a
circle passing through all these points then has to satisfy becomes Wc = 0.
We could now simply find the null space of W using a SVD. However, this
would give the subspace of multivectors and not trivectors that satisfy the
constraint. Therefore, we first remove those columns from W that are not
related to trivector components and only then find the null space. Since a
SVD gives the best solution in a least squares sense, we should obtain a
fairly good solution for the best circle fit, even though we have not taken
the covariance matrix of the {xi} into account. As discussed in (Chernov
and Lesort, 2002), this simple method is therefore only likely to supply a
good initial guess for an iterative algorithm (Gander et al., 1994). Figure
2.4 shows an example of a circle fitted to a set of artificially generated noisy
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3D-points using this method. Of course, any linear regression method, as
for example the Gauss-Helmert model may be applied here.

2.6.2. FITTING IN THE SPACE OF CONICS

In order to fit a conic to a set of points, the same method as above can be
used, only this time in C�(D2). A conic C ∈ C�(D2) is represented by the
outer product of five points, and any point represented by a vector X ∈ D

2

that lies on the conic satisfies X∧C = 0. The dual representation of a conic
in C�(D2) is a vector. This vector can be evaluated by the dual operation
in Clifford algebra. Writing the dual of C as C∗, the constraint a point
satisfies when it lies on the conic is X · C∗ = 0. Writing this constraint
again as U(Φ(X)) Φ(C) = 0 allows us to apply the same method we used
for circles to evaluate the conic.

As mentioned before, this way of fitting a conic to data is well known.
However, using the Clifford algebra representation, we can use the same
linear approach to fit any entity that can be represented in the algebra
to any other representable entity. For example, the outer product of two
vectors X,Y ∈ D

2 representing points in R
2, represents this pair of points.

Hence, we can also fit a conic to point pairs. Maybe more interestingly, we
can also fit point pairs to a set of data points. Since the outer product of
four vectors in C�(D2) represents a point quadruplet, it is also possible to fit
a point quadruplet to a set of points. An example of this is shown in figure
2.5. In C�(D2) a point quadruplet can also be regarded as the intersection
of two conics, since for every point quadruplet there exists a whole pencil
of conics who all intersect in the same four points. For better visualization
two conics of such a pencil are drawn in figure 2.5. As can be seen, the two
conics intersect more or less in the centers of the four clusters. Hence, C�(D2)
offers a simple, linear method to find the centers of up to four clusters in a
set of data points.

Figure 2.6 shows the result of fitting point quadruplets to line segment
structures, which are of particular interest in computer vision problems. It
can be seen that the two conics drawn in each example intersect on the line
structures in such a way that the structures may be further analyzed. This
offers a method to distinguish between junctions and corners in images and
also to evaluate the opening angle and orientation of corners. A detailed
description of an algorithm based on this type of conic fitting can be found
in (Perwass, 2004).

The Gauss-Helmert model (cf. e. g. (Koch, 1997)) is a linear model for
a least-squares fitting of parameters to uncertain data, given constraints
between the parameters and the data and constraints on the parameters
alone. A Gaussian distribution of each data point is assumed, such that data
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Figure 2.5. Result of linear fitting of a point quadruplet represented as the intersection
of two conics to a set of scattered points in E

2.

Figure 2.6. Fitting point quadruplets (represented as intersections of two conics) to
line segment structures.

points are fully described by their mean value and covariance (matrix).
We already saw in section 2.2 that operators in a Clifford algebra may
be represented by bilinear function. In section 2.5 it was then shown how
this fact may be used to apply error propagation to Clifford algebra. The
representation of Clifford algebra products as bilinear functions using the
Φ-isomorphism also allows us to apply linear regression models like the
Gauss-Helmert model to Clifford algebra.

2.7. Conclusions

In this text we presented a method of constructing circles in 3D-Euclidean
space and conics in 2D-Euclidean space from a number of uncertain points
using error propagation methods. The main advantage of representing
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cles in E
3 and conics in E

2 through elements of a Clifford algebra, is that
this representation is (multi-)linear. This allows us to employ standard
error propagation methods to find the mean circle through three points
or the mean conic through five points and also their respective covariance
matrices. These covariance matrices may then also be used to visualize the
standard deviation of the circle and conics, respectively. In this setting it
is also possible to extend the well known linear model of fitting circles in
2D-Euclidean space, as presented, for example, in (Delonge, 1972;
Bookstein, 1979), to 3D-Euclidean space. Furthermore, it is possible to fit the
intersection of conics, which may be point quadruplets, triplets, doublets
or single points, to sets of data vectors. Furthermore, we have shown that
the constraint equations for fitting a circle to a set of scattered points
in E

3 can be given by a set of linear equations. This extends the well
known linear model of fitting circles in 2D-Euclidean space, as presented,
for example, in (Delonge, 1972; Bookstein, 1979), to 3D-Euclidean space.
We gave an example of solving such a system of linear equations with a
SVD. In future work we will investigate the application of standard sta-
tistical estimation models to this problem. Another topic of investigation
is to develop statistical methods in Clifford algebra to test, for example,
whether a line intersects a circle (conic), or whether a point lies on a circle
(conic), etc. Note that a software tool called CLUCalc is available from
www.clucalc.info, for investigating and visualizing the Clifford algebra
expressions and their error propagation as presented here.
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ALGORITHMS FOR SPATIAL

PYTHAGOREAN-HODOGRAPH CURVES
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Abstract. The quaternion representation for spatial Pythagorean-hodograph (PH) curves
greatly facilitates the formulation of basic algorithms for their construction and manip-
ulation, such as first-order Hermite interpolation, transformations between coordinate
systems, and determination of rotation-minimizing frames. By virtue of their algebraic
structures, PH curves offer unique computational advantages over “ordinary” polynomial
curves in geometric design, graphics, path planning and motion control, computer vision,
and similar applications. We survey some recent advances in theory, algorithms, and
applications for spatial PH curves, and present new results on the unique determination
of PH curves by the tangent indicatrix, and the use of generalized stereographic projection
as a tool to obtain deeper insight into the basic structure and properties of spatial PH
curves.

frame, arc length, elastic energy, Hermite interpolation, tangent indicatrix

3.1. Introduction

Pythagorean-hodograph curves (Farouki and Sakkalis, 1990; Farouki, 2002)
incorporate special algebraic structures that offer computational advan-
tages in diverse application contexts, such as computer aided design, com-
puter vision, computer graphics, robotics, and motion control. Planar PH
curves are most conveniently expressed in terms of a complex variable model
(Farouki, 1994), which facilitates key constructions (Albrecht and Farouki,
1996; Farouki, 1996; Farouki et al., 2001; Farouki and Neff, 1995; Jüttler,
2001; Moon et al., 2001). To achieve a necessary-and-sufficient characteri-

al., 2002; Farouki et al., 2002). Our goal in this paper is to survey new algo-
rithms that employ this representation (Choi and Han, 2002; Farouki, 2002;
Farouki et al., 2002; Farouki and Han, 2003; Farouki et al., 2003; Jüttler

et
zation for the spatial PH curves, a quaternion model is required (Choi
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and Mäurer, 1999); to describe new results on the unique correspondence
between PH curves and tangent indicatrices; and to highlight important
open problems concerning the theory, construction, and applications of
spatial PH curves.

Among the key distinguishing features of any PH curve r(t)—as distinct
from an “ordinary” polynomial curve—we cite the following:

− The cumulative arc length s(t) is a polynomial in the curve parameter t,
and the total arc length can be computed exactly by rational arithmetic
on the curve coefficients (Farouki, 1992).

− Integral shape measures, such as the elastic energy—the integral of
the square of curvature—are amenable to exact evaluation (Farouki,
1996).

− PH curves admit real-time interpolator algorithms that allow computer
numerical control (CNC) machines to accurately traverse curved paths
with speeds dependent upon time, arc length, or curvature (Farouki

al., 1998; Farouki and Shah, 1996; Tsai et al., 2001).
− The offsets (or parallels) to any planar PH curve admit an exact

rational parameterization—likewise for the “tubular” canal surfaces
that have a given spatial PH curve as the “spine” curve (Farouki
et al., 2002; Farouki and Sakkalis, 1990; Farouki and Sakkalis, 1994).

− An exact derivation of rotation-minimizing frames (which eliminate
the “unnecessary” rotation of the Frenet frame in the curve normal
plane) is possible for spatial PH curves (Farouki, 2002). These incur
logarithmic terms—efficient rational approximations are available as
an alternative (Farouki and Han, 2003).

− PH curves typically yield “fair” interpolants (with more even curvature
distributions) to discrete data—as compared to “ordinary” polynomial
splines or Hermite interpolants (Albrecht and Farouki, 1996; Farouki,
1996; Farouki and Neff, 1995; Farouki and Sakkalis, 1994; Moon et al.,
2001).

Our plan for this paper is as follows. After reviewing basic properties of
the quaternion formulation for spatial PH curves in Section 3.2, we briefly
summarize in Section 3.3 the first-order Hermite interpolation problem
using this form. Computation of rotation-minimizing frames on spatial PH
curves is then discussed in Section 3.4. A remarkable property of PH curves
is newly identified in Section 3.5: they are uniquely determined (modulo
translation and uniform scaling) by the tangent indicatrix, the curve on the
unit sphere describing the variation of the tangent vector. In Section 3.6 we
discuss the generalized stereographic projection as a means to obtain deeper
insight into the structure of the space of spatial PH curves. Throughout
the paper we identify important open problems in the theory, algorithms,

et
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and applications of spatial PH curves that deserve further investigation.
Finally, Section 3.7 summarizes the recent advances and makes some closing
remarks.

3.2. Quaternion formulation of spatial PH curves

The defining characteristic of a Pythagorean-hodograph (PH) curve r(t) in
R

n is the fact that the coordinate components of its derivative or hodo-
graph r′(t) comprise a Pythagorean n-tuple of polynomials—i.e., the sum
of their squares coincides with the perfect square of some polynomial σ(t).
Satisfaction of this condition requires the incorporation of a special alge-
braic structure in r′(t), dependent on the dimension n of the space1 under
consideration.

The polynomial σ(t) defines the parametric speed of the curve r(t)—i.e.,
the rate of change

σ =
ds

dt

of its arc length s with respect to the curve parameter t. The fact that σ(t)
is a polynomial (rather than the square-root of a polynomial) in t is the
source of the many advantageous properties of PH curves.

In the planar case (n = 2), a necessary-and-sufficient condition for
r′(t) = (x′(t), y′(t)) to be Pythagorean, with gcd(x′(t), y′(t)) = constant,
can be expressed (Farouki and Sakkalis, 1990) as

x′2(t) + y′2(t) = σ2(t) ⇐⇒

⎧⎪⎨⎪⎩
x′(t) = u2(t)− v2(t)
y′(t) = 2 u(t)v(t)
σ(t) = u2(t) + v2(t)

for some polynomials u(t), v(t). The complex-variable model (Farouki, 1994)
for planar PH curves succinctly embodies this condition: identifying the
point (x, y) with the complex number x + i y, the Pythagorean hodograph
structure is ensured by writing r′(t) = w2(t) for any complex polynomial
w(t) = u(t) + i v(t) with gcd(u(t), v(t)) = constant. The complex formu-
lation simplifies many algorithms (Albrecht and Farouki, 1996; Farouki,
1996; Farouki et al., 2001; Farouki and Neff, 1995; Jüttler, 2001; Moon
et al., 2001) for planar PH curves.

1 PH curves have also been defined in the Minkowski metric of relativity theory (Choi
et al., 2002; Moon, 1999): such “MPH curves” play a key role in reconstructing the
boundary of a shape from its medial axis transform.
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In the spatial case (n = 3), we need2 four polynomials (Choi et al., 2002;
Dietz et al., 1993) to characterize the Pythagorean nature of a hodograph
r′(t) = (x′(t), y′(t), z′(t)). Namely,

x′2(t) + y′2(t) + z′2(t) = σ2(t) ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′(t) = u2(t) + v2(t)− p2(t)− q2(t)
y′(t) = 2 [ u(t)q(t) + v(t)p(t) ]
z′(t) = 2 [ v(t)q(t)− u(t)p(t) ]
σ(t) = u2(t) + v2(t) + p2(t) + q2(t)

for some polynomials u(t), v(t), p(t), q(t). The quaternion formulation for
spatial Pythagorean hodographs, first introduced in (Choi et al., 2002),
provides a very elegant and succinct embodiment of this structure.

Quaternions can be represented as pairs A = (a,a) and B = (b,b)
where a, b are the scalar parts and a = axi + ayj + azk, b = bxi + byj + bzk
are the vector parts. For brevity, we will often simply write a for the “pure
scalar” quaternion (a,0) and a for the “pure vector” quaternion (0,a). The
sum and product of A, B are given by

A + B = (a + b,a + b) , A B = (ab− a · b, ab + ba + a× b) .

Note that the product is non-commutative (i.e., BA �= AB in general).
Now if A(t) = u(t) + v(t)i + p(t)j + q(t)k is a quaternion polynomial,

and A∗(t) = u(t)− v(t)i− p(t)j− q(t)k is its conjugate, the product

r′(t) = A(t) iA∗(t) = [u2(t) + v2(t)− p2(t)− q2(t) ] i
+ 2 [u(t)q(t) + v(t)p(t) ] j + 2 [ v(t)q(t)− u(t)p(t) ]k (1)

generates the PH structure in R
3 (j or k can be interposed between A(t),

A∗(t) in place of i, yielding a permutation of u(t), v(t), p(t), q(t)). We
may express (1) as r′(t) = |A(t)|2 U(t) iU∗(t), where |A(t)|2 = A(t)A∗(t)
and U(t) = (cos 1

2θ(t), sin 1
2θ(t)n(t)) defines a unit quaternion, expressed

in terms of an angle θ(t) and a unit vector n(t). The product U(t) i U∗(t)
defines a spatial rotation of the basis vector i by angle θ(t) about the axis
vector n(t), while the factor |A(t)|2 imposes a scaling of this rotated vector.
Thus, we can interpret the form (1) as generating a spatial hodograph
through a continuous family of spatial rotations and scalings of the basis
vector i.

An important feature of the form (1) is its structural invariance (Farouki
et al., 2002) under arbitrary spatial rotations of the coordinate system.3

2 An earlier formulation (Farouki and Sakkalis, 1994) employing only three polyno-
mials provides a sufficient, but not necessary, characterization of spatial Pythagorean
hodographs (this form is not rotation-invariant).

3 This is essential for a characterization of spatial Pythagorean hodographs to be
sufficient and necessary, and distinguishes (1) from an earlier formulation (Farouki and
Sakkalis, 1994), which is only sufficient.
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Namely, when the coordinate system r̃ = (x̃, ỹ, z̃) is obtained from r =
(x, y, z) by a rotation through angle φ about the unit vector n = nxi +
nyj + nzk, the hodograph in the new coordinate system becomes r̃′(t) =
Ã(t) i Ã∗(t), where Ã(t) = U A(t) with U = (cos 1

2φ, sin 1
2φn). The compo-

nents ũ, ṽ, p̃, q̃ of Ã can be expressed in terms of those of A in matrix form
as ⎡⎢⎢⎢⎣

ũ

ṽ

p̃

q̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos 1

2φ −nx sin 1
2φ −ny sin 1

2φ −nz sin 1
2φ

nx sin 1
2φ cos 1

2φ −nz sin 1
2φ ny sin 1

2φ

ny sin 1
2φ nz sin 1

2φ cos 1
2φ −nx sin 1

2φ

nz sin 1
2φ −ny sin 1

2φ nx sin 1
2φ cos 1

2φ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u

v

p

q

⎤⎥⎥⎥⎦ .

Adoption of the quaternion model for spatial PH curves greatly facil-
itates the formulation and solution of key problems in their construction
and analysis, and offers new theoretical insights. Compared to the complex-
number model for planar PH curves, however, it requires greater care and
attention to detail in its use, due to the non-commutative nature of the
quaternion product.

3.3. First-order spatial PH quintic Hermite interpolants

A basic algorithm (Farouki et al., 2002) in the construction of spatial PH
curves is concerned with the problem of first-order Hermite interpolation,
i.e., interpolation of given end points p0, p1 and derivatives d0, d1 by a
spatial PH curve r(t) for t ∈ [ 0, 1 ]. The lowest-order PH curves capable of
solving this problem for arbitrary data are—as with planar PH curves—
quintics.

Whereas the planar PH quintic Hermite interpolation problem yields
four distinct solutions (Farouki and Neff, 1995) in general, interpolation by
spatial PH quintics incurs a two-parameter family of solutions (Farouki et
al., 2002). The shape of these interpolants may depend rather sensitively on
these two free parameters, and the question of choosing “optimal” values
for them is still an open problem (one possibility is to impose an addi-
tional constraint, such as a helicity condition (Farouki et al., 2003), on the
interpolants).

To construct spatial PH quintic Hermite interpolants, we begin by
inserting a quadratic quaternion polynomial

A(t) = A0(1− t)2 + A12(1− t)t + A2t
2

into the representation (1). Here the quaternion coefficients A0, A1, A2 are
to be determined by matching the Hermite data p0, d0 and p1, d1. The
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conditions r′(0) = d0, r′(1) = d1, and
∫ 1
0 r′(t) dt = p1 − p0 thus yield

(Farouki et al., 2002) the system of three equations

A0 iA∗
0 = d0 , A2 iA∗

2 = d1 , (2)

(3A0 + 4A1 + 3A2) i (3A0 + 4A1 + 3A2)∗

= 120(p1 − p0) − 15(d0 + d1) + 5(A0 iA∗
2 + A2 iA∗

0) (3)

for A0, A1, A2. This system may be solved by noting that the equation

A iA∗ = d (4)

for a given vector d = |d|(λ, µ, ν) admits a one-parameter family of solu-
tions

A(φ) =
√

1
2(1 + λ)|d|

(
− sin φ ,

cos φ (i + µj + νk) + sin φ (νj− µk)
1 + λ

)
where φ is a free angular variable. The quaternion A serves to scale/rotate
the basis vector i into the given vector d—the appearance of a free param-
eter in the solution reflects the fact that, in R

3, there is a continuous family
of spatial rotations that will map one unit vector into another.

Equations (2) can be solved directly for A0, A2 using the known form
of the solution to (4). These quaternions depend on free parameters, φ0

and φ2 say. Substituting them into (3) we may determine 3A0 +4A1 +3A2,
and hence A1, using the solution to (4). Again, this incurs a new free
parameter—φ1, say. Although the complete solution incurs three indeter-
minate angular variables φ0, φ1, φ2, close inspection reveals (Farouki et al.,
2002) that the Hermite interpolants depend only upon the differences of
these angles. Hence, we may take φ1 = 0 without loss of generality, and the
Hermite interpolants to p0, p1 and d0, d1 comprise a two-parameter family.
Once A0, A1, A2 are known, the Bezier control points of the interpolant are
given by

p1 = p0 +
1
5

A0 iA∗
0 ,

p2 = p1 +
1
10

(A0 iA∗
1 + A1 iA∗

0) ,

p3 = p2 +
1
30

(A0 iA∗
2 + 4 A1 iA∗

1 + A2 iA∗
0) ,

p4 = p3 +
1
10

(A1 iA∗
2 + A2 iA∗

1) ,

p5 = p4 +
1
5

A2 iA∗
2 ,
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Figure 3.1. Examples of spatial PH quintics constructed as first-order Hermite
interpolants.

with p0 being an arbitrary integration constant. Examples of spatial PH
0 2

ure 3.1.
A challenging open problem is to generalize the formulation and so-

lution of the two-point Hermite interpolation to the smooth interpolation
of N + 1 points p0, . . . ,pN in R

3 by C2 spatial PH quintic splines. In
the planar case, the PH spline problem incurs solution of a “tridiagonal”
system of N quadratic equations in N complex unknowns (Albrecht and
Farouki, 1996). An analogous quaternion system can be formulated in the
spatial case (Farouki et al., 2003). In solving it, one must account for the
non-commutative nature of quaternion products, and the residual freedoms
associated with each spline segment.

3.4. Rotation-minimizing frames on spatial PH curves

An adapted frame along a space curve r(t) is a right-handed system of
three mutually orthogonal unit vectors (t, e1, e2) of which t = r′/|r′| is
the tangent vector, and e1, e2 span the normal plane at each point such
that e1 × e2 = t. The most familiar example is the Frenet frame (t,n,b)
comprising the tangent, normal n (pointing to the center of curvature), and
binormal b = t × n. The variation of the Frenet frame with arc length is
described (Kreyszig, 1959) by the equations

dt
ds

= d× t ,
dn
ds

= d× n ,
db
ds

= d× b , (5)

where the Darboux vector is given in terms of the curvature κ and torsion
τ by

d = κb + τ t . (6)

Fig
values, are shown inquintic Hermite interpolants, for specific φ , φ
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Equations (5) characterize the instantaneous variation of the Frenet frame
as a rotation about the vector d, at a rate given by the “total curvature”

ω = |d| =
√

κ2 + τ2 .

However, the Frenet frame is often unsuitable for use as an adapted
frame in applications such as geometric design, computer graphics, anima-
tion, motion planning, and robotics. The vectors (t,n,b) do not, in general,
have a rational dependence on the curve parameter t, and at inflection
points (where κ = 0) n and b may suffer sudden inversions. Furthermore,
the component τ t of the instantaneous rotation vector (6) corresponds
to an “unnecessary” rotation in the curve normal plane, that yields un-
desirable results in computer animation, swept surface constructions, and
motion planning. Among the many adapted frames (Bishop, 1975) on a
space curve, (Klok, 1986) has suggested the rotation-minimizing frame
(RMF) as the most suitable for such applications. The RMF is defined
so as to “cancel” the τ t component of the rotation vector by setting[

e2

e3

]
=

[
cos θ sin θ
− sin θ cos θ

] [
n
b

]
,

where the angular function θ(t) is defined4 (Guggenheimer, 1989) by

θ(t) = θ0 −
∫ t

0
τ(u) |r′(u)|du . (7)

Because this integral does not admit a closed-form reduction for “ordi-
nary” polynomial and rational curves, schemes have been proposed to
approximate RMFs or to approximate given curves by “simple” segments—
e.g., circular arcs—with known RMFs (Jüttler, 1998; Jüttler and Mäurer,
1999; Jüttler and Mäurer, 1999; Wang and Joe, 1997).

For PH curves, the integrand in (7) is a rational function, and thus
admits closed-form integration (Farouki, 2002). A simplification of this
integral arises through the fact that PH curves exhibit the remarkable
factorization

|r′ × r′′|2 = σ2ρ ,

where σ = u2 + v2 + p2 + q2, and ρ is the polynomial defined by

ρ = 4 [ (up′ − u′p)2 + (uq′ − u′q)2 + (vp′ − v′p)2 + (vq′ − v′q)2

+ 2(uv′ − u′v)(pq′ − p′q) ] .

Thus, for a PH curve, we have

dθ

dt
= − [ r′(t)× r′′(t) ] · r′′′(t)

σ(t) ρ(t)
.

4 An incorrect sign before the integral is given in (Guggenheimer, 1989).
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For PH quintics, (r′×r′′)·r′′′ is of degree 6, while σ and ρ are both quartic in
t. The latter must be factorized to perform a partial fraction decomposition
of the integrand: this can be accomplished by Ferrari’s method (Uspensky,
1948). Complete details on the closed-form integration of this equation may
be found in (Farouki, 2002).

Figure 3.2. Comparison of Frenet frame (left), Euler-Rodrigues frame (center), and the
rational approximation of rotation-minimizing frame (right) on a spatial PH quintic (for
clarity, the tangent vector is omitted). Note the sudden reversal of the Frenet frame at
the inflection point.

Since the integral in (7) involves rational and logarithmic terms, we
describe in (Farouki and Han, 2003) an alternative rational approximation
scheme, based on the equation

dθ

dt
= 2

u′v − uv′ − p′q + pq′

u2 + v2 + p2 + q2

characterizing the variation of the RMF relative to the Euler-Rodrigues
frame (ERF), defined (Choi and Han, 2002) by

t(t) =
A(t) iA∗(t)
A(t)A∗(t)

, u(t) =
A(t) jA∗(t)
A(t)A∗(t)

, v(t) =
A(t)kA∗(t)
A(t)A∗(t)

.

The ERF is a rational adapted frame defined on spatial PH curves. In
Figure 3.2 we compare the Frenet frame, ERF, and rational RMF approx-
imation on an inflectional PH quintic—the superior behavior of the RMF
is clearly apparent.

A natural question is when (or whether) one can have a rational RMF
on a given non-planar polynomial curve. Note that the curve must be a PH
curve to have a rational adapted frame, since only PH curves have rational
unit tangents. A partial answer to this question can be given in terms of
the ERF, defined above (Choi and Han, 2002): the minimum degree of
non-planar PH curves that have rotation-minimizing ERFs is seven.
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3.5. Tangent indicatrix uniquely determines PH curves

The hodograph r′(t) of a parametric curve can be expressed as the product
of a scalar magnitude and a unit vector

r′(t) = σ(t) t(t) ,

both dependent on the curve parameter t. As noted above, σ(t) = |r′(t)|
is the parametric speed (the derivative of arc length s with respect to t).
The vector t(t) = r′(t)/σ(t) traces a locus on the unit sphere, the tangent
indicatrix of the curve. Whereas the parametric speed specifies the magni-
tude of the hodograph r′(t) at each point, the tangent indicatrix indicates
its direction. Integration of a hodograph yields a unique curve, modulo a
translation corresponding to the integration constant. We will show that,
for PH curves, σ(t) plays a somewhat redundant role in the determination
of a curve from its hodograph r′(t)—r(t) is uniquely detemined (modulo
uniform scaling) by the tangent indicatrix only.

This property distinguishes PH curves from “ordinary” polynomials
curves, for which both the parametric speed and tangent indicatrix influence
the shape of the curve r(t) obtained by integration of the hodograph r′(t) =
σ(t) t(t). Two ordinary polynomial curves with the same tangent indicatrix
but different parametric speeds have, in general, quite different shapes.
Note also that, for PH curves, the tangent indicatrix t(t) = r′(t)/σ(t) is a
rational curve on the unit sphere, since σ(t) is a polynomial (whereas, for
an ordinary polynomial curve, it is the square root of a polynomial, and
hence t(t) is not rational).

PROPOSITION 3.1. Let r(t), r̃(t) be two polynomial PH curves whose
hodographs have relatively prime components. If these curves possess the
same tangent indicatrix, they differ by at most a translation and uniform
scaling, i.e., r′(t) = γ r̃′(t) for some γ �= 0.

Proof Since r(t) = (x(t), y(t), z(t)) and r̃(t) = (x̃(t), ỹ(t), z̃(t)) are both
PH curves, polynomials σ(t) and σ̃(t) exist such that their hodographs

r′(t) = (x′(t), y′(t), z′(t)) and r̃′(t) = (x̃′(t), ỹ′(t), z̃′(t))

satisfy

x′2(t) + y′2(t) + z′2(t) = σ2(t) and x̃′2(t) + ỹ′2(t) + z̃′2(t) = σ̃2(t) .

Furthermore, since x′(t), y′(t), z′(t) and x̃′(t), ỹ′(t), z̃′(t) are relatively prime,
σ(t) and σ̃(t) never vanish, and we can assume σ(t) > 0 and σ̃(t) > 0 for
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all t. The tangent indicatrices of r(t) and r̃(t) are then t(t) = r′(t)/σ(t)
and t̃(t) = r̃′(t)/σ̃(t), and if they are the same we must have

x′(t) =
σ(t)x̃′(t)

σ̃(t)
, y′(t) =

σ(t)ỹ′(t)
σ̃(t)

, z′(t) =
σ(t)z̃′(t)

σ̃(t)
.

We claim that σ̃(t) divides into σ(t). The Proposition then follows, since
we can swap the roles of σ(t) and σ̃(t), and thus σ(t) = γ σ̃(t) for some
γ �= 0.

Consider the equation x′(t) = σ(t)x̃′(t)/σ̃(t). Since x′(t) is a polynomial,
each non-constant factor of σ̃(t) must divide into either σ(t) or x̃′(t), and
an analogous statement holds for y′(t) and z′(t). However, if we postulate
that a non-constant factor of σ̃(t) divides into x̃′(t), but not σ(t), we must
conclude that this factor also divides into ỹ′(t) and z̃′(t), which contradicts
the fact that gcd(x̃′(t), ỹ′(t), z̃′(t)) = constant. Hence, we may deduce that
σ(t) = γ σ̃(t) for some γ �= 0. �
COROLLARY 3.1. Given a rational curve q(t) = (a(t), b(t), c(t))/σ(t)
on the unit sphere in R

3 with gcd(a(t), b(t), c(t)) = constant, there is—
modulo scaling and translation—a unique polynomial PH curve r(t) =
(x(t), y(t), z(t)) with gcd(x′(t), y′(t), z′(t)) = constant that has q(t) as its
tangent indicatrix.

Proof Since q(t) lies on the unit sphere, we have a2(t)+b2(t)+c2(t) =
σ2(t). Since gcd(a(t), b(t), c(t)) = constant, σ(t) is never zero, and thus we
may assume σ(t) > 0 for all t. Clearly, for any scalar factor γ �= 0 and
integration constant r0,

r(t) = γ

∫
σ(t)q(t) dt + r0

defines a PH curve, and the uniqueness of r(t), modulo the uniform scaling
γ and translation r0, follows from the Proposition. �

Although we have phrased the above results in terms of spatial PH
curves, they obviously also apply to planar PH curves (for which the tangent
indicatrix lies on the unit circle, rather than the unit sphere).

3.6. Inversion of spatial Pythagorean hodographs

In (Farouki, 1994) we addressed the question of “how many” planar PH
curves exist by showing that, in the plane, the infinite sets of regular
PH curves and of regular “ordinary” polynomial curves have the same
cardinality—we can establish a one-to-one correspondence between their
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members (corresponding curves are of different degree). This was accom-
plished by invoking the map z→ z2 and its inverse in the complex-variable
model for planar PH curves.

In seeking an analogous result for spatial PH curves, we need the abil-
ity to invert the map A(t) → r′(t) defined by (1)—i.e., given a spatial
Pythagorean hodograph r′(t), we wish to identify the pre-image curve(s)
A(t) in quaternion space that generate it through expression (1). In Sec-
tion 3.3 we gave the general solution to the analogous equation (4) for a
fixed vector d. However, this solution is not appropriate to the problem of
inverting (1), since if we replace d by r′(t) it exhibits the factor

√
|r′(t)|

and we require a polynomial pre-image A(t).
(Dietz et al., 1993) give a constructive proof for the existence of poly-

nomials u(t), v(t), p(t), q(t) satisfying (1) for a given r′(t) by invoking the
generalized stereographic projection. Since it is not convenient for actually
computing the pre-image, our goal here is to re-work this proof into a
practical algorithm.

GENERALIZED STEREOGRAPHIC PROJECTION

The notation in (Dietz et al., 1993) differs somewhat from our quaternion
model: (x0, x1, x2, x3) denote homogeneous coordinates in real 3-dimensional
projective space RP

3, and the hodograph r′(t) = (x′(t), y′(t), z′(t)) is mapped
to its tangent indicatrix by the correspondence x0 = σ, x1 = x′, x2 = y′,
x3 = z′. The generalized stereographic projection δ maps points

(p0, p1, p2, p3) ∈ RP
3

to points (x0, x1, x2, x3) on the unit sphere (satisfying x2
1 + x2

2 + x2
3 = x2

0)
according to

x0 = p2
0 + p2

1 + p2
2 + p2

3 ,

x1 = 2p0p1 − 2p2p3 ,

x2 = 2p1p3 + 2p0p2 ,

x3 = p2
1 + p2

2 − p2
0 − p2

3 .

This is equivalent to the quaternion formulation if we identify

(x′, y′, z′, σ) = (x3, x2, x1, x0) and (u, v, p, q) = (p2, p1, p3, p0) .

Now suppose we are given a Pythagorean hodograph r′(t) with rel-
atively prime coordinate components in R[t]. Then the tetrad members
x0, x1, x2, x3 are also relatively prime in R[t]. We describe how to compute
a pre-image p0, p1, p2, p3 under the above quadratic transformation.
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1. Re-write the condition x2
1 + x2

2 + x2
3 = x2

0 as (x1 + ix2)(x1 − ix2) =
(x0 + x3)(x0 − x3).

2. Compute d = gcd(x1, x2) in R[t] such that x1 + ix2 = d(x̃ + ix̃2) and
gcd(x̃1, x̃2) = 1 in R[t].

3. Factorize d in R[t] and x̃1 + ix̃2 in C[t].
4. Let r be a factor of d in R[t]. We claim that r divides into either x0 +x3

or x0 − x3, but not both. For, if r divides into both it must be a real
common factor of x0 and x3, but r is already a real common factor of
x1 and x2, which contradicts the fact that x0, x1, x2, x3 are relatively
prime in R[t]. Hence, we can write d = r1 · · · rms1 · · · sn such that the
ri’s are factors of x0 + x3 and the si’s are factors of x0 − x3.

5. Let γ1 . . . γκ be a prime factor decomposition of x̃1 + ix̃2 in C[t] (note
that some factors may be repeated). Since we have already removed
all the real factors, there is no pair i �= j such that γi = γj . Since
C[t] is a unique factorization domain, we can uniquely arrange the
decomposition into groups α1 . . . αρ and β1 . . . βσ such that the first
divides into x0 +x3 and the second x0−x3. Note that if γi divides into
x0 + x3, so does γi.

6. From the preceding two steps, we have x0 +x3 = (r1 · · · rm)2|α1 · · ·αρ|2
and x0 − x3 = (s1 · · · sn)2|β1 · · ·βσ|2. Defining φ = r1 · · · rmα1 · · ·αρ

and ψ = s1 · · · snβ1 · · ·βσ, one can verify that p0 = Re(ψ), p1 = Re(φ),
p2 = Im(φ), p3 = Im(ψ) constitute a solution (in fact pi/

√
2 gives the

exact form but we ignored the common constant multiple).

For example, consider the case

x0 = 7− 8 t + 13 t2 + 2 t3 + 4 t4 ,

x1 = −6 + 8 t− 4 t2 + 10 t3 ,

x2 = 2 + 8 t + 2 t3 + 4 t4 ,

x3 = 3− 8 t + t2 + 2 t3 .

Then x1 and x2 are relatively prime in R[t], and we have

x1 + ix2 = (t + 1− 2i)(2t− 1 + i)(t− i12(1−
√

5))(2i t + 1 +
√

5) ,

x0 + x3 = (t + 1 + 2i)(t + 1− 2i)(2t− 1 + i)(2t− 1− i) .

Hence, we can set α1 = t + 1 − 2i, α2 = 2t − 1 + i, β1 = 2i t + 1 +
√

5,
β2 = t− i(1−

√
5)/2. Then φ = 1+ t+2t2 +i3(1− t) and ψ = 2t+i2(1+ t2),

giving p0 =
√

2t, p1 = (1 + t + 2t2)/
√

2, p2 = 3(1− t)/
√

2, p3 =
√

2(1 + t2).
However, this solution is not unique. In fact x0, x1, x2, x3 were initially

constructed using p0 = 1 + t + t2, p1 = −1 + 2t + t2, p2 = 2 − t + t2,
p3 = 1− t + t2. The non-uniqueness has also been noted in the quaternion
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formulation (Farouki et al., 2002)—if we define

⎡⎢⎢⎣
û(t)
v̂(t)
p̂(t)
q̂(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos ξ − sin ξ 0 0
sin ξ cos ξ 0 0

0 0 cos ξ sin ξ
0 0 − sin ξ cos ξ

⎤⎥⎥⎦
⎡⎢⎢⎣

u(t)
v(t)
p(t)
q(t)

⎤⎥⎥⎦
then û(t), v̂(t), p̂(t), q̂(t) and u(t), v(t), p(t), q(t) define the same PH curve.

This is also apparent from the generalized stereographic projection. The
pre-image δ−1(Q) of any point Q = (x0, x1, x2, x3) on the sphere comprises
the straight line λA + µB in RP

3, where A = (x2, 0, x0 + x3,−x1), B =
(x1, x0 + x3, 0, x2) and λ, µ ∈ R. In fact, one can verify that

δ(λA + µB) = 2(λ2 + µ2)(x0 + x3)(x0, x1, x2, x3) .

Now suppose we have a degree-2n curve x(t) = (x0(t), x1(t), x2(t), x3(t))
on the unit sphere such that x0(t), . . . , x3(t) are relatively prime in R[t]. The
pre-image of this curve under the generalized stereographic projection, i.e.,
the set S = {δ−1(x(t)) : t ∈ R}, is clearly a ruled surface with base curves
given by A(t) = (x2(t), 0, x0(t) + x3(t),−x1(t)) and B(t) = (x1(t), x0(t) +
x3(t), 0, x2(t)). Note that these two base curves are also of degree 2n.

However, a theorem in (Dietz et al., 1993) states that we can always find
another pair {P (t), P̃ (t)} of base curves whose degree is just n. If P (t) =
(p0(t), p1(t), p2(t), p3(t)), we can take P̃ (t) = (−p3(t), p2(t),−p1(t), p0(t)).
For each t, the four points A(t), B(t), P (t), P̃ (t) are collinear.

3.7. Closure

The quaternion formulation for spatial PH curves, first introduced in (Choi
et al., 2002), has paved the way for development of basic algorithms con-
cerned with their construction, analysis, and applications. In this paper,
we surveyed these new developments and identified a number of impor-
tant open problems. Compared to planar PH curves, the construction of
spatial PH curves typically incurs free parameters. A deeper theoretical
understanding of the role of these parameters, and their optimal selection,
remains to be achieved.
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CUMULATIVE CHORDS, PIECEWISE-QUADRATICS

AND PIECEWISE-CUBICS
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The University of Western Australia
35 Stirling Highway Crawley, WA 6009, Perth
Australia
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Abstract. Cumulative chord piecewise-quadratics and piecewise-cubics are examined in
detail, and compared with other low degree interpolants for unparameterized data from
regular curves in R

n, especially piecewise-4-point quadratics. Orders of approximation
are calculated and compared with numerical experiments. Good performance of the
interpolant is also confirmed experimentally on sparse data. This work may be appli-
cable in computer graphics and vision: image segmentation, medical image processing,
or computer aided geometrical design.

Key words: interpolation, cumulative chord parameterization, length and trajectory
estimation

4.1. Introduction

Let γ : [0, T ] → R
n be a smooth regular curve, namely γ is Cr for some

r ≥ 1 and γ̇(t) �= 0 for all t ∈ [0, T ]. Our task is to estimate γ from an
ordered m + 1-tuple Q = (q0, q1, . . . , qm) of points in R

n, where qi = γ(ti),
0 = t0 < t1 < . . . < ti < . . . < tm = T , and m. Depending on what is
known about the ti the problem may be straightforward or unsolvable. Set
δ = max{ti − ti−1 : i = 1, 2, . . . ,m}. For admissible samplings we assume
that δ → 0 as m→∞.
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Figure 4.1. 7 data points on the spiral γsp (dashed) in Example 4.2, interpolated by a
uniform piecewise-quadratic γ̂sp (solid), with d(γ̂sp) = d(γsp) + 2.422 × 10−3.

EXAMPLE 4.1. Kozera et al., 2003 If the ti are given then piecewise La-
grange interpolation through successive k+1-tuples (qi, qi+1, qi+2, . . . , qi+k),
k ≥ 1 and i = 0, k, 2k, 3k, . . ., approximates γ with uniform errors at most
δk+1. Without real loss we may suppose m divisible by k.

However in practice the ti may not be given, so that Q is the only
data available for approximation. Then γ can at most be approximated
up to reparameterizations: we seek piecewise-quadratic and piecewise-cubic
curves γ̂ : [0, T̂ ] → R

n with γ̃ ≡ γ̂ ◦ ψ uniformly close to γ, for some
piecewise-C1 reparameterization ψ : [0, T ]→ [0, T̂ ].

DEFINITION 4.1. A family {fδ, δ > 0} of functions fδ : [0, T ]→ R is said
to be O(δp) when there is a constant K > 0 such that, for some δ0 > 0,
|fδ(t)| < Kδp for all δ ∈ (0, δ0) and all t ∈ [0, T ]. In such a case write
fδ = O(δp). For a family of vector-valued functions Fδ : [0, T ]→ R

n, write
Fδ = O(δp) when ‖Fδ‖ = O(δp), where ‖ · ‖ denotes the Euclidean norm.

An approximation γ̃ : [0, T ]→ R
n to γ determined by Q is said to have

order p when γ̃− γ = O(δp). Of course a larger order means the image of γ̂
resembles γ([0, T ]) more closely, at least in the limit as δ → 0. A different
but related comparison can be made between the length

d(γ) ≡
∫ T

0
‖γ̇(t)‖ dt

of γ and that of γ̂. Piecewise-linear interpolation approximates γ to order
2, but piecewise-quadratic approximations can actually degrade estimates:

( )

1
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0.4

0.2

-0.2
1.51.2510.750.50.25-1.25-0.5
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EXAMPLE 4.2. If we guess ti ≈ t̂i = i
m , then the resulting uniform

piecewise-quadratic γ̂ : [0, 1] → R
n is sometimes uninformative. For in-

stance suppose ti = (3i+(−1)i+1)
3m , take n = 2, and define a spiral γsp : [0, 1]→

R
2 by γsp(t) = (t + 0.2)(cos(π(1− t)), sin(π(1− t))). Then d(γsp) = 2.452.

When m is small γ̂sp does not much resemble γsp: in Fig. 4.1, m = 6
and d(γ̂sp) = d(γsp) + 2.422 × 10−3 Errors in length tend to cancel and
the curve is a worse approximation than these numbers suggest. When
m is large γ̂sp looks more like γsp: in Figure 4.2, m = 30. In this case
however d(γ̂sp) = d(γsp) + 8.163× 10−2, with nearly 34 times the error for
m = 6. Even piecewise-linear interpolation with 31 points is better, with
error −3.622× 10−3.

Without knowing the ti it seems difficult to match the order 3 achieved
in Example 4.1 (and also to extend it to the same orders for length estima-
tion), but it turns out that higher order approximations are achievable for
many planar curves γ, and for fairly general sampling schemes, including
more-or-less uniform sampling:

DEFINITION 4.2. The ti are said to be sampled more-or-less uniformly
when there are constants 0 < Kl < Ku such that, for any sufficiently large
integer m, and all 1 ≤ i ≤ m,

Kl

m
≤ ti − ti−1 ≤

Ku

m
.

Then Kl
m ≤ δ ≤ Ku

m , and increments between successive parameters are
neither large nor small in proportion to T

m .

In Example 4.2 sampling is more-or-less uniform, with Kl = 1
3 ,Ku = 5

3 .
On the other hand the samplings from Example 4.5, 4.6, and 4.9 are not
more-or-less uniform. For n = 2, with γ : [0, T ] → R

2 being C4 and
strictly convex, Theorem 4.1 below guarantees order 4 approximations
by piecewise quadratics γ̂, called piecewise-4-point quadratics because the
quadratic arcs interpolate quadruples of points in Q rather than triples
as in Example 4.1, 4.2. Implementations of such schemes, also studied in
(de Boor et al., 1987), (Lachance and Schwartz, 1991), (Mørken, 1997),
(Rababah, 1995), (Schaback, 1989), usually require solutions of systems of
nonlinear equations.

THEOREM 4.1. (Noakes and Kozera, 2002), (Noakes and Kozera, 2003)
Let n = 2. Let γ be regular, strictly convex and Cr where r ≥ 4. Let
Q be sampled more-or-less uniformly. Then there is a piecewise-quadratic
curve γ̂ : [0, 1] → R

2, calculable in terms of Q, and a piecewise-Cr repa-
rameterization ψ : [0, T ] → [0, 1], with γ̂ ◦ ψ = γ + O(δ4), and d(γ̂) =
d(γ) + O(δ4).
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Figure 4.2. 31 points on the spiral in Example 4.2, interpolated by a uniform
piecewise-quadratic γ̂sp (solid), with d(γ̂sp) = d(γsp) + 8.163 × 10−2.

The requirement that γ be planar and strictly convex seems very restric-
tive. An alternative, noted in Chapter 11 of (Kvasow, 2000), is Lagrange
interpolation based on cumulative chord length parameterizations (Epstein,
1976), (Lee, 1992). More precisely, set

t̂0 = 0 and t̂j = t̂j−1 + ‖qj − qj−1‖ , for j = 1, 2, . . . ,m .

For k dividing m and i = 0, k, 2k, . . . , m − k, let γ̂ be the curve satis-
fying γ̂(t̂j) = qj for all j = 0, 1, 2, . . . ,m, and whose restriction γ̂i to
each [t̂i, t̂i+k] is polynomial of degree at most k. Call γ̂ : [0, T̂ ] → R

n,
where T̂ =

∑m
j=1 ‖qj − qj−1‖, the cumulative chord piecewise degree-k

approximation to γ defined by Q. Our main result is

THEOREM 4.2. Suppose γ is a regular Cr curve in R
n, where r ≥ k+1 and

k is 2 or 3. Let γ̂ : [0, T̂ ]→ R
n be the cumulative chord piecewise degree-k

approximation defined by Q. Then there is a piecewise-Cr reparameteri-
zation ψ : [0, T ] → [0, T̂ ], with γ̂ ◦ ψ = γ + O(δk+1), and if additionally
mδ = O(1) then d(γ̂) = d(γ) + O(δk+1). Also, if r ≥ 4, k = 2, and if, for
some ε ∈ (0, 1], we have the uniformity condition

ti+1 − 2ti + ti−1 = O(δ1+ε) for i = 1, 3, 5, . . . ,m− 1 , (1)

then if mδ = O(1) we have d(γ̂) = d(γ) + O(δ3+ε).

EXAMPLE 4.3. Sampling is said to be ε-uniform when there is a C∞
reparameterization φ : [0, T ]→ [0, T ] such that

ti = φ(
Ti

m
) + O(

1
m1+ε

) .
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Then (1) holds. For piecewise-quadratic interpolation based on guessed uni-
form grids t̂i = i, γ̂ = γ + O(δ1+2ε), and d(γ̂) = d(γ) + O(δ4ε) (Noakes
et al., 2001), (Noakes et al., 2001). Evidently, Theorem 4.2 asserts better
orders of approximation except when ε = 1. Note here that any ε-uniform
sampling arises from two types of perturbations of uniform samplings: first
via a diffeomorphic distortion φ : [0, T ] → [0, T ] combined subsequently
with added extra distortion term O(1/m1+ε). The perturbation via φ has no
effect on both d(γ) and geometrical representation of γ. The only potential
nuisance stems from the second perturbation term O(1/m1+ε).

Unlike Theorem 4.1, Theorem 4.2 holds for any sufficiently smooth
regular curve γ (not necessarily convex) in any Euclidean space R

n, and is
applicable even without tight conditions on sampling (for length estimation
we need a weak constraint mδ = O(1) which is automatically satisfied by
more-or-less and ε-uniform samplings). Cumulative chord piecewise-cubics
approximate at least to order 4, as do the piecewise-4-point quadratics of
Theorem 4.1. Notice also that cumulative chord piecewise-quadratics and
piecewise-cubics approximate to the same order as in Example 4.1, where
the ti are given. Cumulative chord piecewise-quadratics also match length
estimates for ε-uniform sampling where the ti are given (Kozera et al.,
2003).

A related work on cumulative chord piecewise-quartics and C1 interpola-
tion with cumulative chord cubics can be found in (Kozera, 2003), (Kozera,
2004), (Kozera and Noakes, 2004), and (Kozera and Noakes, 2005). After
some preliminaries in Section 4.2, the main result i.e. Theorem 4.2 is proved
in Section 4.3. In Section 4.4, Theorem 4.2 is illustrated by examples and
compared with other results. In the last Section 4.5 the relevant conclusions
are drawn and some possible applications are hinted.

4.2. Divided Differences and Cumulative Chords

First recall some facts about divided differences (de Boor, 2001): the first
divided difference of γ at ti is

γ[ti, ti+1] ≡
γ(ti+1)− γ(ti)

ti+1 − ti
,

and, for k = 2, 3, . . . ,m− i, the kth divided difference is defined inductively
as

γ[ti, ti+1, . . . , ti+k] ≡
γ[ti+1, ti+2, . . . , ti+k]− γ[ti, ti+1, . . . , ti+k−1]

ti+k − ti
.

Newton’s Interpolation Formula is γ(t) = L + R, where

L ≡ γ(ti) + (t− ti)γ[ti, ti+1] + (t− ti)(t− ti+1)γ[ti, ti+1, ti+2] +
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. . . + (t− ti)(t− ti+1) . . . (t− ti+k−1)γ[ti, ti+1, . . . , ti+k]

is the polynomial of degree at most k interpolating γ at ti, ti+1, . . . , ti+k,
and

R ≡ (t− ti)(t− ti+1) . . . (t− ti+k)γ[t, ti, ti+1, . . . , ti+k] .

When γ is Ck+1 and ti, ti+1, ti+2, . . . , ti+k+1 ∈ (t − δ̃, t + δ̃) where δ̃ > 0
then, for j = 1, 2, . . . , n, the jth component of the k+1th divided difference
is given by

γ[t, ti, ti+1, . . . , ti+k]j =
γ

(k+1)
j (t̃j)
(k + 1)!

, (2)

for some t̃j ∈ (t−δ̃, t+δ̃). We now work with the hypotheses of Theorem 4.2.
In particular γ is Cr and regular, where r ≥ k+1 and k is 2 or 3. After a Cr

reparameterization, as in (Klingenberg, 1978) Chapter 1, Proposition 1.1.5,
we can assume γ is parameterized by arc-length, namely ‖γ̇‖ is identically
1. Then

〈γ̇, γ̇〉 ≡ 1 , 〈γ̈, γ̇〉 ≡ 0 , 〈d
3γ

dt3
, γ̇〉 ≡ − 〈γ̈(t), γ̈(t)〉 = −κ(t)2, (3)

where κ(t) is the curvature ‖γ̈(t)‖ of γ at t ∈ [0, T ]. For i = 0, k, 2k, . . . , m−
k, let ψi : [ti, ti+k]→ [t̂i, t̂i+k] be the polynomial function of degree at most
k satisfying ψi(ti+j) = t̂i+j , for 0 ≤ j ≤ k [the analytical formula for ψi

is given by Equation (10)]. Substituting for the t̂i+j in the first divided
difference, we find

ψi[ti+j , ti+j+1] = ‖γ[ti+j , ti+j+1]‖ , (4)

for j = 0, 1, . . . , k − 1. Using (4) to substitute in the second divided differ-
ence,

ψi[ti, ti+1, ti+2] =
‖γ[ti+1, ti+2]‖ − ‖γ[ti, ti+1]‖

ti+2 − ti
, and so

|ψi[ti, ti+1, ti+2]| ≤
‖γ[ti+1, ti+2]− γ[ti, ti+1]‖

ti+2 − ti
= ‖γ[ti, ti+1, ti+2]‖ .

By (2) and because γ is C2, the right hand side is bounded, and therefore
ψi[ti, ti+1, ti+2] = O(1). The same can be said for the right hand side of (4).
The assumption that γ is C3 permits us to say more:

LEMMA 4.1. ψi[ti+j , ti+j+1] = 1+O(δ2), for j = 0, 1. Also ψi[ti, ti+1, ti+2] =
O(δ).
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Proof By (4) and Taylor’s Theorem, ψi[ti+j , ti+j+1] = ‖γ[ti+j , ti+j+1]‖

= ‖γ̇(ti+j) +
γ̈(ti+j)

2
(ti+j+1 − ti+j) + O((ti+j+1 − ti+j)2)‖ . (5)

Because ‖γ̇‖ ≡ 1 and 〈γ̇, γ̈〉 ≡ 0, the Binomial Theorem gives

ψi[ti+j , ti+j+1] = 1 + O((ti+j+1 − ti+j)2) , (6)

proving the first part. The second assertion follows by comparing (6) with
the definition of the second divided difference, because ti increases with
i. �

The next lemma uses the sampling condition (1).

LEMMA 4.2. Let γ be C4. Then ψi[ti+j , ti+j+1, ti+j+2] = O(δ1+ε) for
0 ≤ j ≤ k − 1. Also if k = 3, then ψi[ti, ti+1, ti+2, ti+3] = O(1).

Proof By Taylor’s Theorem, ‖γ[ti+j , ti+j+1]‖ is

‖γ̇ +
γ̈

2
(ti+j+1 − ti+j) +

d3γ

dt3
(ti+j+1 − ti+j)2

6
+ O((ti+j+1 − ti+j)3)‖ ,

where γ̇, γ̈, d3γ
dt3

are evaluated at ti+j , and 0 ≤ j ≤ k. Therefore, and by
Equation (3), ‖γ[ti+j , ti+j+1]‖ is

(1 − κ2

12
(ti+j+1 − ti+j)2 + O((ti+j+1 − ti+j)3))1/2

= 1− κ2

24
(ti+j+1 − ti+j)2 + O((ti+j+1 − ti+j)3) , (7)

by the Binomial Theorem, with κ evaluated at ti+j . Therefore, for 0 ≤ j ≤
k − 1,

ψi[ti+j , ti+j+1, ti+j+2] = −κ2 (ti+j+2 − ti+j+1)2 − (ti+j+1 − ti+j)2

24(ti+j+2 − ti+j)

+O((ti+3 − ti)2)

= −κ2

24
(ti+j+2 − 2ti+j+1 + ti+j)

+O((ti+3 − ti)2) , (8)

where κ is evaluated at ti+j . This proves the first part. For k = 3 we then
obtain

ψi[ti, ti+1, ti+2, ti+3] = −κ2

24
(ti+3 − 3ti+2 + 3ti+1 − ti)

ti+3 − ti
+ O(ti+3 − ti)

= O(1) , (9)
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where κ is evaluated at ti. �
By Newton’s Interpolation Formula, as ψi is polynomial of degree at
most 3,

ψi(t) = ψi(ti) + (t−ti)ψi[ti, ti+1] + (t−ti)(t−ti+1)ψi[ti, ti+1, ti+2] (10)

+(k − 2)(t− ti)(t− ti+1)(t− ti+2)ψi[ti, ti+1, ti+2, ti+3] ,

for k = 2, 3. Differentiating twice, for k = 2, 3, we first have

ψ̇i(t) = ψi[ti, ti+1] + (2t− ti − ti+1)ψi[ti, ti+1, ti+2] + (k − 2)·

((t−ti+1)(t−ti+2)+(t−ti)(t−ti+2)+ (t−ti)(t−ti+1))ψi[ti, ti+1, ti+2, ti+3] ,

and then

ψ̈i(t) = 2ψi[ti, ti+1, ti+2]
+2(k − 2)(3t− ti − ti+1 − ti+2)ψi[ti, ti+1, ti+2, ti+3] .

So, by Lemmas 4.1, 4.2,

LEMMA 4.3. ψ̇i = 1 + O(δ2) and ψ̈i = O(δ). When γ is C4 and k = 3,
d3ψi

dt3
= O(1).

In particular, ψi is a C∞ diffeomorphism for δ small, which we assume from
now on.

LEMMA 4.4. For k = 2, 3, and s ∈ [t̂i, t̂i+k], γ̂i(s), dγ̂i

ds , d2γ̂i

ds2 are O(1). For

k = 3 and if γ is C4, then d3γ̂i

ds3 is O(1).

Proof γ̂i is the polynomial of degree at most k interpolating γ ◦ (ψi)−1

at ti, ti+1, . . . , ti+k, and the derivatives to order k of γ ◦ (ψi)−1 are O(1)
by Lemma 4.3. By (2) the divided differences to order k of γ ◦ (ψi)−1 are
also O(1). By Newton’s Interpolation Formula, these are nonzero constant
multiples of the derivatives of γ̂ to order k. �
Remark. Let fi : [ai, bi] → R

n with ai < bi, be given for 0 ≤ i ≤ l. By
the track-sum of {fi}li=0 we understand the function f : [0, T̄ ]→ R

n, where
T̄ =

∑l
i=0(bi − ai) satisfying:

f(t) = f0(t + a0) , t ∈ [0, T̄0] , T̄0 = b0 − a0 ;
f(t) = fk+1(t + ak+1 − T̄k) , t ∈ [T̄k, T̄k+1] , T̄k+1 = T̄k + bk+1 − ak+1 ;

for 0 ≤ k ≤ l − 1.
Let ψ : [0, T ] → [0, T̂ ] be the track-sum of the ψi defined in

Equation (10).
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4.3. Proof of Main Result - Theorem 4.2

By Lemmas 4.3, 4.4, all coefficients of the polynomials γ̂i and ψi are O(1),
So the restriction γ̂i ◦ ψi of γ̂ ◦ ψ to [ti, ti+k] is a polynomial of degree
at most k2 and with all coefficients O(1). So all derivatives of the Ck+1

function f i ≡ γ̂i ◦ ψi − γ : [ti, ti+k]→ R
n are O(1). By Lemma 2.1 of Part

I of (Milnor, 1963), because f i(ti+j) = 0 for 0 ≤ j ≤ k,

f i(t) = (t− ti) . . . (t− ti+k−1)gi(t) where gi(t) = (t− ti+k)hi(t) ,

with gi, hi : [ti, ti+k]→ R
n C1 and C0 respectively. Also hi = O(dk+1f i

dtk+1 ) =

O(1), so that gi = O(δ), and ġi = O(dk+1f i

dtk+1 ) = O(1). So

f i = O(δk+1) and ḟ i = O(δk) . (11)

In particular γ̂ ◦ψ approximates γ uniformly with O(δk+1) errors. To com-
pare lengths, write γ̂i ◦ ψi ≡ γ̃i. Then ˙̃γ

i
(t) = (1 + 〈ḟ i(t), γ̇(t)〉)γ̇(t) +

v(t), where v(t) is the projection of ḟ i(t) onto the line orthogonal to γ̇(t).
By (11), v = O(δk) and, because ‖γ̇‖ ≡ 1,

‖ ˙̃γi
(t)‖ = (1 + 〈ḟ i(t), γ̇(t)〉)‖γ̇(t)‖+ O(δ2k) .

Then ∫ ti+k

ti

(‖ ˙̃γi
(t)‖ − ‖γ̇(t)‖) dt =

∫ ti+k

ti

〈ḟ i(t), γ̇(t)〉 dt + O(δ2k+1)

which, on integration by parts, becomes −
∫ ti+k

ti
〈f i(t), γ̈(t)〉 dt + O(δ2k+1).

By (11) the right hand side is O(δk+2), namely∫ ti+k

ti

‖γ̇(t)‖ dt− d(γ̃i) = O(δk+2) .

So as mδ = O(1) we arrive that

d(γ̂) = Σ
m
k
−1

j=0 d(γ̃jk) = d(γ) + O(δk+1) .

When r ≥ 4, k = 2, and (1) holds, we can say more. As before,∫ ti+2

ti

(‖ ˙̃γi
(t)‖ − ‖γ̇(t)‖) dt = −

∫ ti+2

ti

〈f i(t), γ̈(t)〉 dt + O(δ5) . (12)

Now hi = O(1) and, since r ≥ 4, hi is C1 with ḣi = O(1) by Lemma 2.1 of
Part I of (Milnor, 1963) again. Therefore 〈hi(t), γ̈(t)〉 = ai + O(δ), where
ai ≡ 〈hi(ti), γ̈(ti)〉 = O(1), and

〈f i(t), γ̈(t)〉 = ai(t− ti)(t− ti+1)(t− ti+2) + O(δ4) .
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Figure 4.3. 7 points on the spiral γsp (dashed) in Example 4.2, 4.4, interpolated by a
piecewise-4-point quadratic γ̂sp (solid), with d(γ̂sp) = d(γsp) − 1.155 × 10−2.

Now by (1)∫ ti+2

ti

(t−ti)(t−ti+1)(t−ti+2) dt =
1
12

(ti−ti+2)3(ti+2−2ti+1+ti) = O(δ4+ε) .

So Equation (12) gives∫ ti+2

ti

(‖ ˙̃γi
(t)‖ − ‖γ̇(t)‖) dt = O(δ4+ε) ,

and then as mδ = O(1)

Σ
m
2
−1

j=0 d(γ̃2j) = d(γ) + O(δ3+ε) .

This supplementary argument does not apply when k = 3. Indeed, in the
next Section the orders of approximation in Theorem 4.2 for cumulative
chord piecewise-cubics are seen to be best-possible, even when sampling is
ε-uniform.

4.4. Numerical Experiments

Here are some experiments, using Mathematica, and admissible samplings
from smooth regular curves in R

2 and R
3. First we verify Theorem 4.1, 4.2

in the situation of Example 4.2.

EXAMPLE 4.4. Uniform piecewise-quadratics, piecewise-4-point quadrat-
ics, cumulative chord piecewise-quadratics and cumulative chord piecewise-
cubics based on the 7-tuple Q of Example 4.2 are shown as solid curves in

1
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Figure 4.4. 7 points on the spiral γsp (dashed) in Example 4.4, interpolated by a
cumulative chord piecewise-quadratic γ̂sp (solid), with d(γ̂sp) = d(γsp) − 2.459 × 10−2.

Figure 4.1, 3, 4.4, and 4.5 respectively. Figure 4.3, 4.4 show markedly better
approximations to γsp than Figure 4.1, and in Figure 4.5 the cumulative
chord piecewise-cubic is nearly indistinguishable from the dashed spiral. The
respective errors in length estimates are −1.155 × 10−2, −2.459 × 10−2,
−1.048 × 10−3 and 2.422 × 10−3. For larger values of m differences in
performance are more marked:

− Uniform piecewise-quadratics behave badly with respect to length es-
timates, as noted in Example 4.2.
− Piecewise-4-point quadratics with m = 30, 99, 198 yield errors
5.499×10−5, 5.127×10−7, 3.200×10−8 respectively in length estimates.
The numerical estimate of order of convergence for length estimates,
based on samples of up to 199 points is 3.93.
− Cumulative chord piecewise-quadratics with m = 30, 100, 200 yield
errors 1.738× 10−4, 4.332× 10−6, 5.302× 10−7 respectively in length
estimates. The numerical estimate of order of convergence for length
estimates, based on samples of up to 201 points is 3.03.
− Cumulative chord piecewise-cubics with m = 30, 99, 198 yield
errors 9.514 × 10−6, 8.741 × 10−8, 5.670 × 10−9 respectively. The
numerical estimate of order of convergence for length estimates, based
on samples of up to 199 points is 3.96.

So the orders of convergence for length estimates given in Theorem 4.2
for cumulative chord piecewise-quadratics and piecewise-cubics are sharp.
Note that condition mδ = O(1) holds for sampling from Example 4.2 used
also here. Although γ̂sp is not C1, differences in left and right derivatives
(at t3 in Figure 4.3, 4.5 and t2, t4 in Figure 4.4) are hardly discernible for
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Figure 4.5. 7 points on the spiral γsp of Example 4.4, interpolated by a cumulative
chord piecewise-cubic γ̂sp (solid), with d(γ̂sp) = d(γsp) − 1.048 × 10−3.

piecewise-4-point-quadratics and cumulative chord piecewise-quadratics and
piecewise-cubics. Such features are practically invisible when m is large.

Piecewise-4-point quadratics and cumulative chord piecewise-cubics have
the same orders of convergence, but cumulative chord piecewise-cubics and
piecewise-quadratics are more generally applicable: curves need not be pla-
nar or convex and sampling need not be more-or-less uniform for estimating
orders of approximation.

EXAMPLE 4.5. Let γc : [0, 1] → R
2 be the cubic, with inflection point

(0, 0), given by γc(t) = (t − 0.5, 4(t − 0.5)3). Given m, take ti to be i
m

or (i−1)
m + 1

m2 according as i is even or odd. Then sampling is clearly
not more-or-less uniform, though again mδ = O(1) holds. The plot for
cumulative chord piecewise-quadratic interpolation of − log |d(γ̂c) − d(γc)|
against log m in Figure 4.6, for m = 4, 6, . . . , 100, appears almost linear,
with least squares estimate of slope 3.86. Theorem 4.2 says the slope should
be at least 3.

EXAMPLE 4.6. Figure 4.7 shows a cumulative chord piecewise-quadratic
interpolant γ̂h of 9 points on the elliptical helix γh : [0, 2π] → R

3, given by
γh(t) = (1.5 cos t, sin t, t/4). The exact formula for the sampling is defined
below. Although sampling is uneven, sparse, and not available for interpo-
lation, γ̂ seems very close to γh: d(γh) = 8.090 and d(γ̂h) = 8.019. For (not
more-or-less uniform) samplings where ti is 2πi

m or 2π(i−1)
m + 2π

m3/2 according
as i is even or odd, and m = 50, 52, . . . , 200, the order of convergence for
length with cumulative piecewise-quadratics is estimated as 3.91. Theorem
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Figure 4.6. Plot of -log |d(γ̂c) − d(γc)| against log m for a cubic with inflection point,
sampled irregularly, as in Example 4.5.

4.2 asserts at least 3. Note that here mδ = O(1) also holds. Figure 4.8
shows a cumulative chord piecewise-cubic interpolant γ̂h of 10 points on the
helix. Approximation is visually very good, and d(γ̂h) = 8.179. Using m =
75, 78, . . . , 300 the numerical estimate of order of convergence for length is
4.013 confirming sharpness of Theorem 4.2 in respect of piecewise-cubics

with sampling conditions of the form (1) and mδ = O(1).

EXAMPLE 4.7. Let γc : [0, 1] → R
2 be the cubic γc(t) = (πt, (πt+1

π+1 )3).

Given m, define ti = i
m + (−1)i+1

m1+ε for 0 ≤ i ≤ m. Then sampling is ε-
uniform, and cumulative chord piecewise-quadratic interpolation for m =

0

3.97, respectively for length estimates. We found no additional increase in
convergence order for ε > 1.

A key ingredient in the proof of Theorem 4.2 is to show that all co-
efficients of quadratic and cubic ψi are O(1). This need not be the case
for the higher degree ψi needed to extend the proof to show higher order
approximations by cumulative chord piecewise-quartics (see (Kozera, 2003)
or (Kozera, 2004)).

EXAMPLE 4.8. For m divisible by 4 and i = 0, 4, 8, . . . ,m − 4, consider
(very nearly uniform) samplings of the form

ti =
i

m
, ti+1 =

i + 1
m

, ti+2 =
i + 2
m

+
1

2m
, ti =

i + 3
m

, ti+4 =
i + 4
m

.

15

12.5

10

7.5

5

2.5

1 2 3 4

without strong conditions on sampling.

Next we verify sharpness of Theorem 4.2 in respect of piecewise-quadratics

ders rates for length estimations as α
40, 42, . . . , 200, with ε = 0.0, 0.1, 0.25, 0.5, 0.75, 1, 3, yields convergence or-

= 2.98, 3.09, 3.25, 3.50, 3.76, 4.01,
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Figure 4.7. 9 points on the elliptical helix γh (dashed) in Example 4.6, interpolated by
a cumulative chord piecewise-quadratic γ̂h (solid), with d(γ̂h) = d(γh) − 7.029 × 10−2.

Given C4 γ : [0, T ] → R
n, let ψi : [ti, ti+4] → [t̂i, t̂i+4] be the polynomial

of degree at most 4 satisfying ψi(ti+j) = t̂i+j for j = 0, 1, 2, 3, 4. The proof
of Lemma 4.2 shows that the ψi[ti+j , ti+j+1, ti+j+2, ti+j+3] = O(1) for j =
0, 1, and consequently α ≡ ψi[ti, ti+1, ti+2, ti+3, ti+4] = O(m). Writing
dj = ‖qi+j − qi‖ for j = 1, 2, 3, 4, a calculation gives

α =
m4

90
(−3d1 + 7d2 − 25d3 + 5d4) . (13)

As in the proof of Lemma 4.2,

d1 =
1
m

(1− κ

24m2
+ O(

1
m3

)) , d2 =
3

2m
(1− 3κ

32m2
+ O(

1
m3

)) ,

d3 =
1

2m
(1− κ

96m2
+ O(

1
m3

)) , d4 =
1
m

(1− κ

24m2
+ O(

1
m3

)) ,

where κ is evaluated at ti. Substituting into Equation (13),

α = − κ

96
m + O(1) .

So, except when γ is affine, α is unbounded.

EXAMPLE 4.9. Notice that the condition mδ = O(1) (satisfied implic-
itly by more-or-less and ε-uniform samplings but not by general admissible
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Figure 4.8. 10 points on the elliptical helix γh (dashed) in Example 4.6, interpolated
by a cumulative chord piecewise-cubic γ̂h (solid), with d(γ̂h) = d(γh) + 8.952 × 10−2.

samplings, where δ → 0) is a necessary condition for Theorem 4.2 to hold.
Indeed, for γc defined as in Example 4.7 and sampled according to

t0 = 0 and ti =
1√
m

+
(i− 1)(

√
m− 1)

(m− 1)
√

m
, 1 ≤ i ≤ m

(for which mδ �= O(1)) cumulative chord piecewise-quadratic interpolation
gives and estimate for d(γ) approximation (with 2 ≤ m ≤ 200) equal to
2.09 < 3, claimed by Theorem 4.2 and k = 2. A similar effect appears for
k = 3.

4.5. Conclusions

Quartic and cubic orders of convergence for length and trajectory esti-
mates established in Theorem 4.2 for cumulative chord piecewise-cubics and
piecewise-quadratics are sharp. At least the latter was verified for n = 2, 3 in
case of computing d(γ). The above orders match the corresponding orders
of approximations for piecewise-cubics and piecewise-quadratics used with
tabular points ti known (assumed unavailable in our discussion). Curves
need not be planar nor convex and sampling need not be more-or-less
uniform. For length estimation an extra weak but necessary condition on
sampling mδ = O(1) is needed. Our scheme also performs well on sporadic
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data (i.e. m << ∞). As demonstrated experimentally, for m small, both
γ and d(γ) are well approximated as well as the jump of discontinuities in
derivatives of the interpolant at the junction knots, where two consecutive
chords are glued together, is also marginal. An extension of this work to
smooth interpolation, where the so-called cumulative chord C1 piecewise-
cubics are used can be found in (Kozera and Noakes, 2004), (Kozera and
Noakes, 2005) and (Kozera, ).

These good qualities should make cumulative chord piecewise-cubics
and piecewise-quadratics useful for many applications. For example, image
segmentation for image interpretation in medicine. Such tasks are usually
approached using snakes (Blake and Isard, 1998), (Desbleds-Mansard et al.,
2001) or (Kass et al., 1988) which are curves satisfying some variational
condition. Typically an initial snake is chosen as a spline determined by
specifying data points of interest. When these points are irregularly spaced
the parameterization becomes an important issue. Because of the good
behavior noted already, cumulative chord piecewise-cubics and piecewise-
quadratics seem an excellent choice.

Acknowledg ments: This work was supported by the Alexander von
Humboldt Foundation Fellowship.
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SPHERICAL SPLINES

LYLE NOAKES
School of Mathematics and Statistics
The University of Western Australia

Abstract. The idea of replacing line segments by geodesics in Riemannian manifolds to
generalize classical constructions of Bezier polynomials has been around at least since
1985 (Shoemake, 1985), (Duff, 1985). However rather little is known about generalized
Bezier curves in spheres. The practical use of generalized Bezier curves for interpolating
spherical data is limited by a lack of systematic methods for constructing spherical control
polygons. This is a serious defect, because spherical Bezier splines are sensitive to the
choice of control polygon, and the control polygons are difficult to visualize even in
the practically significant case of S3. After reviewing some of the difficulties with the
standard alternative of normalized quadratic polynomial splines, we focus on elementary
properties of generalized Bezier quadratics in spheres. These C∞ spherical curves remain
within the spherical convex hull of the control polygon, resemble the control polygon,
and their derivatives at endpoints can be written down explicitly. Using these results,
we show how to blend generalized Bezier quadratic segments into generalized C1 Bezier
quadratic splines. We then introduce two methods for the automatic construction of
control polygons for generalized Bezier quadratic splines, resulting in spherical splines
that are optimal according to two different criteria. The JE-optimal curves are very easy
to construct, and much better behaved than normalized quadratic splines. The JS-optima
are more costly to compute, with correspondingly better properties.

Key words: interpolation, spline, Bezier, control polygon, sphere, geodesic

5.1. Introduction

For m ≥ 1 denote the unit sphere

{x ∈ Em+1 : ‖x‖ = 1} ⊂ Em+1

by Sm, where Em+1 is Euclidean m+1-space, namely R
m+1 equipped

with the Euclidean norm,

‖x‖ ≡
√

x2
1 + x2

2 + . . . + x2
m+1.

The problem of interpolating and approximating spherical data in the
m-dimensional manifold Sm is much more widespread than might at first be
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thought (Angeles and Akras, 1989), (Brady et al., 1982), (Paul, 1979), (Tan
and Potts, 1989), (Taylor, 1979), (Watson, 1983), (Fisher, 1993), (Fisher
et al., 1987), (Buss and Fillmore, 2001). As explained in Section 5.8, inter-
polation in S3 is closely related to interpolation in the group SO(3) of
rotations of E3, and thereby to planning of rigid body trajectories.

Section 5.2 reviews some of significant approaches to problems of this kind.
The literature has many tradeoffs between mathematical difficulty, quality
of performance, computational speed, and ease of implementation. From the
point of view of quality (and mathematical interest) there is a lot to be said
for the variational approach, but such methods are complicated to imple-
ment and computationally costly. The present chapter focuses on methods
that are easy to code and computationally quick, while avoiding the perfor-
mance problems associated with familiar methods. Interpolants based on
classical methods in E3. like the normalized polynomial splines in Section
5.3, sometimes perform very badly. Readers most interested in engineering
implementations may choose to go directly to Section 5.8 for pseudocode
for spherical splines adapted to quadratic interpolation in SO(3).

As well as these practical issues, we take the opportunity in Section 5.4
to explore the mathematics of the building blocks for our spherical Bezier
splines, namely the spherical Bezier quadratics. Although such generalized
Bezier curves in spheres have been used since the mid 1980s ((Shoemake,
1985), (Duff, 1985)), little has been said about their mathematical prop-
erties. Theorem 5.1 contributes some properties of the derivatives of these
nonpolynomial curves. Then, in Section 5.5 Theorem 5.1 is applied to
prove properties of spherical Bezier splines (Theorem 5.2). If a spherical
Bezier spline is degenerate there may be isolated points where the curves
are not C1: such occurrences are rare.

At the end of 5.5 we turn to the practical problem of choosing an initial
velocity for a spherical Bezier quadratic spline when this is not given by
the data. For ordinary quadratic polynomial splines in Euclidean space this
amounts to choosing a control polygon for the interpolant. Spherical Bezier
quadratic splines are sensitive to such choices and, unlike the Euclidean
situation, their control polygons are difficult to visualise. So an automatic
method is needed for choosing spherical control polygons or, equivalently,
initial velocities y1. Section 5.6 introduces a performance measurement
JE for y1, whose optimum is usually unique, given in closed form by
Theorem 5.3. This method is very easy to implement, extremely quick, and
much better behaved than normalized polynomial splines (Example 5.4).
Of course JE is only one of many plausible performance measurements.

A more geometrical criterion is given by JS in Section 5.7. There may be
more than one JS-optimum, and because there is no closed-form formula,
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JS-optima are found by an iterative numerical scheme. The optimization
is simple to implement and performs quickly (the pseudocode in Section
5.7 has 7 easy steps). The additional computational effort sometimes gives
substantial improvements over the JE-optimum (Example 5.5). Spherical
Bezier quadratic splines using either JE or JS-optima offer good compro-
mises between the excellent performance of variational methods, and the
speed and ease of implementation of schemes based on polynomial splines.

5.2. Background

There are many methods for interpolation and approximation in mani-
folds, with a rich variety of interesting features, and no single method has
all the advantages of classical polynomial spline interpolation in Em.

− Chart-based interpolants are generally low-quality, but still enjoy a
degree of popularity, because they are easily implemented and closely
related to classical methods. The idea is to describe smooth m-manifolds
locally in terms of subsets of R

m. For instance, using stereographic
projection, the whole of Sm is described using only two charts. Then
within each chart we have available the whole apparatus of classical
approximation theory in Euclidean m-space Em. There are book-
keeping problems in keeping track of local interpolants and piecing
them together. More immediate practical diffficulties arise through the
geometrical distortions inherent in modelling Sm locally by subsets of
Em. In extreme cases these distortions manifest as near-singularities
in charts, with serious consequences for quality and stability of in-
terpolants, and these problems usually occur to some extent unless
many charts are used (Noakes, 2003). With more numerous charts
book-keeping problems come to the fore, causing different kinds of
instabilities.

− A different approach, also building on classical approximation theory,
is to normalize interpolants in the ambient space Em+1. Normalized
polynomial splines, for instance, are even easier to implement than
chart-based interpolants, and falls down in similar ways when con-
secutive spherical data points are widely spaced, as seen in Section
5.3. Again the most immediate difficulties are caused by geometrical
distortions which can cause large variations in speeds of interpolants.
Because of these variations, normalized polynomial splines are gen-
erally unsuitable for interpolating sparse or censored data, especially
where velocity estimates are needed.

− Variational interpolants in manifolds (Gabriel andKajiya,1985), (Noakes
et al., 1989) minimize integrals of Lagrangians, usually of order 2 or
higher, which have something to do with the performance of the inter-
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polant and usually generalize some accepted performance measurement
in classical approximation theory. The variational theory has received
quite a lot of attention (Gabriel and Kajiya, 1985), (Noakes et al.,
1989), (Chapman and Noakes, 1991), (Brunnett, 1994), (Camarinha

al., 2001), (Camarinha, 1996), (Silva-Leite et al., 2000), (Camarinha
et al., 1995), (Chapman and Noakes, 1991), (Crouch and Silva-Leite.,
1995), (Krakowski, 2003), (Noakes, 2003), (Noakes (a), 2004), (Noakes
(b), 2004), (Giambo et al., 2002), (Giambo et al., 2003), and the in-
terpolants are typically of very high quality: indeed optimal in some
well-defined sense. The theory has links to classical mechanics, and is
mathematically significant, but hard to implement, and not yet ready
for real-time applications.

− By replacing line segments in Euclidean space with , some construc-
tions of classical approximation theory can be extended to define in
manifolds (Shoemake, 1985), (Duff, 1985). This attractive idea uses
geometrical methods to avoid the worst features of chart-based and
normalized spline interpolants. On the other hand, although gener-
alized Bezier curves do not quite match the quality of variational
interpolants (Noakes, 2003), they are reasonably straightforward to
implement. From the beginning, generalized Bezier curves in manifolds
were intended to be used as segments of splines. For more recent work
see (Crouch et al., 1999), (Altafini, 2001). However there are some
major obstacles to the practical use of generalized Bezier curves for
interpolation, especially are

• still some degree of mystery about their mathematical properties,
and
• lack of systematic methods for constructing spherical control poly-

gons to use generalized Bezier curves as segments of generalized
splines. Comparing Examples 5.4, 5.5 of the present paper, the spher-
ical control polygon is seen to be critical for the quality of the
interpolant.

The present paper contributes in both respects. In Section 5.4 some
mathematical results are proved about generalized Bezier curves. Using
these results, Section 5.6 and Section 5.7 give methods for constructing
spherical control polygons that are optimal in two different senses, lead-
ing to automatic constructions of control polygons. Automatic methods
are valuable, because control polygons in Sm are difficult to visualize
for m > 2, and the case m = 3 is significant in applications to rigid
body motion. Our methods yield pleasing results in examples where
normalized polynomial splines are unsuccessful.

et



SPHERICAL SPLINES 81

− For still more methods of interpolation in manifolds we refer to (Buss
and Fillmore, 2001), (Barr et al., 1992), (Noakes, 1994), (Noakes,
1997), (Noakes, 1998), (Kang and Park, 1999), (Park and Ravani,
2001), (Zefran et al., 1996), (Zefran and Kumar (a), 1996), (Zefran
and Kumar (b), 1996), (Zefran and Kumar, 1998), (Zefran et al., 1998),
(Belta and Kumar, 2002), (Altafini, 2001), (Altafini, 2001a).

In Section 5.4 we review in Sm, and establish some of their mathematical
properties, including relationships between generalized Bezier curves, , and
the spherical convex hull of the control vertices. Estimates are given for
speeds of generalized Bezier curves. We also prove results on derivatives
at endpoints of generalized Bezier curves, and use these in Section 5.5
to construct . The generalized splines depend in an essential way on a
choice of parameter y1 ∈ Sm, which determines the control polygon of
the generalized Bezier quadratic spline. Section 5.6 gives a straightforward
method for choosing y1 in an optimal way. The resulting JE-optimal
spherical splines are easy to implement, and have much better properties
than normalized quadratic splines, as seen by comparing Examples 5.1, 5.4
where the same data is interpolated by a normalized quadratic polynomial
spline and the JE-optimal spherical spline respectively. In Section 5.7 a
second method is introduced, where y1 optimizes the more geometrical
quantity JS(y1). This requires more numerical computation than the JE-
optimum, but yields beautiful interpolants in tricky cases like Example
5.5, compared with in Example 5.1 and the JE-optimum in Example 5.4.
First, for background, we review normalized quadratic splines.

5.3. Normalized Quadratic Polynomial Splines

A C1 quadratic polynomial spline x : [0, n] → Em+1 interpolating
x0, x1, . . . , xn ∈ Em+1 at 0, 1, 2, . . . , n may be given as follows.

− Choose v0 ∈ Em+1 and let x|[0, 1] be the quadratic polynomial
satisfying x(0) = x0, ẋ+(0) = v0, x(1) = x1.

− For 1 < i ≤ n let x|[i− 1, i] be the quadratic polynomial satisfying
x(i− 1) = xi−1, ẋ+(i− 1) = ẋ−(i− 1), x(i) = xi.

As discussed in (de Boor, 2001) Chapter VI, the choice of v0 may have a
significant global effect on x. In the present paper the xi are given in
Sm and x is required to map into Sm, where m ≥ 1. Unless the xi are
all equal a quadratic polynomial spline x is not a curve in Sm, but if
x is never 0 its normalization x̂, given by

x̂(t) ≡ x(t)
‖x(t)‖ ,
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is C1 and can be used instead. This works best when the xi are sampled
frequently and regularly from a smooth curve. In other cases normalized
polynomial splines can be unsatisfactory.

EXAMPLE 5.1. For m = 2, n = 7, v0 the midpoint of x0, x1, and

x0 = ( 1.000000, 0.0000000, 0.0000000)
x1 = (−0.995244, 0.0497622, 0.0837469)
x2 = ( 0.990989, 0.0990989, 0.0901104)
x3 = (−0.988840, 0.1483260, 0.0139545)
x4 = ( 0.977820, 0.1955780, −0.0740071)
x5 = (−0.965972, 0.2414930, −0.0926294)
x6 = ( 0.957483, 0.2872450, −0.0267536)
x7 = (−0.942049, 0.3297170, 0.0618913)

the normalized quadratic polynomial spline interpolant x̂ : [0, 7]→ S2 with
breakpoints 1, 2, 3, 4, 5, 6 is shown in Figure 5.1, together with the xi la-
belled by i. Although x̂ is C1, changes in direction near breakpoints
are relatively abrupt. Points are plotted on a uniform grid of size 3500 in
[0, 7], showing large variations in speed.

An alternative is to use a C1 quadratic polynomial spline interpolant
x : [0, n] → Em+1 with breakpoints 3/2, 5/2, . . . , (2n − 3)/2, following

Figure 5.1. x̂ : [0, 7] → S2 in Example 5.1.

1
5

7

2 6
40
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Figure 5.2. Speeds of x̂ : [0, 7] → S2 in Example 5.1.

Chapter VI of (de Boor, 2001) : details are given in an Appendix. If the
xi lie in Sm and x is never 0 its normalization is a C1 interpolant
x̂ : [0, n]→ Sm. However the phenomena observed in Example 5.1 persist.
To address these difficulties we first replace normalized quadratic polyno-
mials by spherical Bezier quadratics, which are curves in Sm defined using
spherical geometry. The task of blending spherical Bezier quadratics into
spherical Bezier splines is taken up in Section 5.5.

5.4. Spherical Bezier Quadratics

The spherical distance d(y, z) for y, z ∈ Sm is defined as arccos <
y, z >, where arccos maps to [0, π] and < , > is the Euclidean inner
product. A great circle arc is a constant-speed curve γ : [a, b]→ Sm whose
image is contained in the intersection of Sm with some 2-dimensional
vector subspace of Em+1. The arc is minimal when γ(s) �= −γ(t) for
any a < s < t < b. In the following definition, and in Theorem 5.1, the
most important case is where γ̇L(1) and γ̇R(0) are linearly independent.

DEFINITION 5.1. Let γL, γR : [0, 1]→ Sm be minimal great circle arcs,
of lengths θL, θR, satisfying γL(1) = γR(0). Define β ≡ β(γL, γR) :
[0, 1]→ Sm as follows.

− If γ̇L(1), γ̇R(0) are linearly independent d(γL(s), γR(s)) < π for
s ∈ (0, 1). Define β(s) = γM,s(s), where γM,s : [0, 1] → Sm is
the minimal great circle arc from γL(s) to γR(s). Define β(0) =
γL(0) and β(1) = γR(1).
− If θRγ̇L(1) = θLγ̇R(0), let γM : [0, 1]→ Sm be the great circle arc
from γL(0) to γR(1), such that γM ([0, 1]) = γL([0, 1])∪γR([0, 1]). If
θL = θR = 0 let β(s) = γL(0) for all s ∈ [0, 1]. Otherwise define

β(s) = γM (
(2− s)sθL + s2θR

θL + θR
).
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− If θRγ̇L(1) = −θLγ̇R(0), define

β(s) = γL(
(2− s)sθL − s2θR

θL
) or β(γL, γR) = β̄(γ̄R, γ̄L),

according as θL ≥ θR or not.
Here ȳ(s) ≡ y(1− s) for y : [0, 1]→ Sm.

A subset K of Sm is said to be when any minimal great circle arc
whose endpoints are contained in K is entirely contained in K. Therefore
Sm is spherically convex, and so is any intersection of its spherically convex
subsets. The intersection of all spherically convex subsets of Sm containing
a given subset X of Sm is called the (spherical) convex hull < X >. When
X contains a pair of antipodal points < X > is the whole of Sm, but
the converse is false, for instance when X = {(cos jπ/3, sin jπ/3) : j =
0, 1, 2} ⊂ S1. From Definition 5.1,

β([0, 1]) ⊆ < {γL(0), γL(1) = γR(0), γR(1)} > .

For s ∈ [0, 1], d(β(s), γL(0)) ≤ sθL + s((1 − s)θL + sθR) = s((2 −
s)θL + sθR), and the quantity on the right is maximized when s =
1. Therefore, and since

β(γL, γR) = β̄(γ̄R, γ̄L), (1)

max{d(β(s), γL(0)), d(β(s), γR(1))} ≤ θL + θR.

Define π : [0, 1]→ Sm by π(s) = γL(2s) or γR(2s− 1) for s ≤ 1/2 or
s ≥ 1/2 respectively. The piecewise great-circular spherical curve π can
be thought of as the control polygon of the generalized Bezier curve β. The
Bezier curve resembles its control polygon as follows. The following result
is proved in an Appendix.

PROPOSITION 5.1. For s ∈ [0, 1/2] and s ∈ [1/2, 1] respectively,

d(β(s), π(s)) ≤ (1− s)θL + sθR − |(1− 3s + s2)θL + (s− s2)θR|

≤ 3θL + θR

4
d(β(s), π(s)) ≤ (1− s)θL + sθR − |(s− s2)θL + (−1 + s + s2)θR|

≤ θL + 3θR

4
.

COROLLARY 5.1. d(β(1/2), π(1/2)) ≤ 1
4(θL+θR) + 1

2 min{θL, θR} and,
for all s ∈ [0, 1],

d(β(s), π(s)) ≤ (1− s)θL + sθR.
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Evidently β is continuous on [0, 1], C∞ on (0, 1), β(0) = γL(0),
β(1) = γR(1). To study derivatives of β, we first define D ≡ {(y, z) ∈
Sm × Sm : d(y, z) < π} and δ : D × [0, 1] → Sm by δ(y, z, q) =
γy,z(q) where γy,z : [0, 1]→ Sm is the minimal great circle arc from y to
z. Then δ(y, z, q) = δ(z, y, 1− q), and δ(Ry, Rz, q) = Rδ(y, z, q) for any
R ∈ SO(m + 1). In an Appendix we prove

LEMMA 5.1. Given (y, z) ∈ D, q ∈ [0, 1] and C∞ ω : [0, 1]→ Sm with
ω(0) = y, write ω̇(0) = v‖ + v⊥ where v‖ is a multiple of γ̇y,z(0) and
< v⊥, γ̇y,z(0) >= 0. For θ ≡ d(y, z) �= 0,

d

dt
|t=0δ(ω(t), z, q) =

< v‖, γ̇y,z(0) >

θ2
γ̇y,z(q) +

sin(1− q)θ
sin θ

v⊥

and when θ = 0 the left hand side is ω̇(0).

From Lemma 5.1 and symmetry of δ,

LEMMA 5.2.

‖∂δ(y, z, q)
∂y

‖ ≤ 1
sin θ

, ‖∂δ(y, z, q)
∂z

‖ ≤ 1
sin θ

, ‖∂δ(y, z, q)
∂q

‖ = θ.

If γ̇L(1), γ̇R(0) are linearly dependent then from Definition 5.1

‖β̇(s)‖ ≤ 2 max{θL, θR}.

PROPOSITION 5.2. Let γ̇L(1), γ̇R(0) be linearly independent, and for
s ∈ [0, 1] let θs be the length of the minimal great circle arc γM,s. Then

‖β̇(s)‖ ≤ θs +
θL + θR

sin θs
.

The proof is given in an Appendix. Another Appendix proves much more
precise statements about velocities at endpoints:

THEOREM 5.1. Except when γ̇L(1), γ̇R(0) are linearly independent
with either θL = π or θR = π,

β̇(0)+ = 2γ̇L(0) and β̇(1)− = 2γ̇R(1). (2)

If γ̇L(1), γ̇R(0) are linearly independent with θL = π,

β̇(0)+ = γ̇L(0) + π
γ̇L(0) + γ̇R(0)
‖γ̇L(0) + γ̇R(0)‖ . (3)
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If γ̇L(1), γ̇R(0) are linearly independent with θL = π and θR < π,

β̇(1)− = 2γ̇R(1). (4)

If γ̇L(1), γ̇R(0) are linearly independent with θR = π,

β̇(1)− = γ̇R(1) + π
γ̇R(1) + γ̇L(1)
‖γ̇R(1) + γ̇L(1)‖ . (5)

If γ̇L(1), γ̇R(0) are linearly independent with θR = π then, according as
θL < π or not,

β̇(0)+ = 2γ̇L(0) or β̇(0)+ = γ̇L(0) + π
γ̇L(0) + γ̇R(0)
‖γ̇L(0) + γ̇R(0)‖ . (6)

Now we interpolate spherical data by spherical Bezier quadratic splines,
namely .

5.5. Spherical Bezier Quadratic Splines

Given x0, x1, x2, . . . , xn ∈ Sm, define self-adjoint linear endomorphisms
ρi of Em+1 by

ρi(w) ≡ 2 < w, xi > xi − w, where w ∈ Em+1 and 0 < i < n.

A (cardinal) spherical (Bezier quadratic) spline is a curve x : [0, n] →
Sm constructed as follows.

DEFINITION 5.2. Choose a minimal great circle arc γL
1 : [0, 1]→ Sm with

γL
1 (0) = x0. Set y1 ≡ γL

1 (1) and, for 0 < i < n, yi+1 = ρi(yi). Choose
minimal great circle arcs γR

i : [0, 1] → Sm from yi to xi, and let
γL

i+1 = ρi ◦ γ̄R
i . For i = 1, 2, . . . , n and t ∈ [i− 1, i] set

x(t) = β(γL
i , γR

i )(t− i + 1).

The spherical spline x is C∞ away from breakpoints 1, 2, . . . n− 1, and
everywhere-continuous. Also x(i) = xi for i = 0, 1, . . . n. The arcs
γL

i , γR
i for i = 1, 2, . . . n constitute the spherical control polygon, and with

control vertices yi. The spherical spline x is nondegenerate when, for all
i = 2, . . . , n, yi �= −xi−1. In an Appendix we prove

THEOREM 5.2. Let x be a spherical spline. Then ‖ẋ(i)+‖ ≤ 2π for
i = 0, 1, 2, . . . , n− 1 and ‖ẋ(i)−‖ ≤ 2π for i = 1, 2, . . . , n. If m = 1 or
x is nondegenerate x is C1. If x is nondegenerate ‖ẋ(i)‖ < 2π for
all i = 1, 2, . . . , n.
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So, at least at knots, spherical splines do not achieve very high speeds.
Proposition 5.2 gives bounds on speeds between knots of nondegener-
ate splines. Theorem 5.1 can be used to determine whether a degenerate
spherical spline is C1.

EXAMPLE 5.2. Let x0 = x1 = . . . = xn. If γL
1 and the γR

i are
chosen constant then the spherical spline x is constant, and nonde-
generate. Alternatively, for v a unit vector orthogonal to x0, choose
γL

1 (s) = x0 cos sπ + v sin sπ and γR
i = −γL

1 for 1 ≤ i ≤ n. Then
γ L

i = γL
1 , y1 = y2 = . . . yn = −x0, x(t) = x0 cos 2πt + v sin 2πt, and

x is degenerate if n > 1.

So even when m > 1, some degenerate spherical splines are C1. However
most are not.

EXAMPLE 5.3. Let x0 = x1 = x2 = (1, 0, 0) ∈ S2 and v = (0, 1, 0). For
θ ∈ (0, π] choose γL

1 (s) = (cos sθ, sin sθ, 0), γR
1 (s) = (cos(1 − s)θ,

sin(1 −s)θ, 0), γR
2 (s) = (cos(1− s)θ,− sin(1− s)θ, 0). Then x(t) is

(cos 2(1− t)tθ, sin 2(1− t)tθ, 0) or

(cos 2(2− t)(t− 1)θ,− sin 2(2− t)(t− 1)θ, 0)

according as 0 ≤ t ≤ 1 or 1 ≤ t ≤ 2, and x is degenerate if and
only if θ = π. Whether x is degenerate or not, its image is not smooth at
x(1/2) or x(3/2). Alternatively, choose γL

1 (s) = (cos sπ, sin sπ, 0), γR
1 =

−γL
1 , and γR

2 (s) = −(cos sπ, 0, sin sπ). Then x is degenerate and, by
(2), (3) of Theorem 5.1,

ẋ(1)− = 2π(0, 1, 0) and ẋ(1)+ = π(0, 1 +
1√
2
,− 1√

2
),

as illustrated in Figure 5.3, where the curve is trimmed towards beginning
and end, showing left and right tangent directions at x(1) = (1, 0, 0). The
labels 1, 2, 3, 4 are in increasing order of progression along the curve.

For quadratic polynomial splines the choice of y1 affects the interpolant
more or less globally, although the effect can be localized, for instance by
placing breakpoints at knot averages as in Section 5.3. We adopt an almost
opposite strategy, choosing y1 to moderate the geometry of the spherical
control polygon, thereby influencing the spherical spline. In this way the
control polygon for an interpolating spherical Bezier quadratic spline is
determined automatically, depending on the geometric criterion. First we
introduce a performance measurement whose optima can be written down
in closed form.
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Figure 5.3. The non-C1 spherical spline in Example 5.3, showing tangent directions
ẋ(1)±.

5.6. Moderating Euclidean Accelerations

DEFINITION 5.3. The ith Euclidean acceleration of

x0, y1, x1, y2, x2, y3, . . . , xn−1, yn, xn

is
αi ≡ 4(xi − 2yi + xi−1) ∈ Em+1.

Define JE : Sm → [0,∞) by JE(y1) ≡
n∑

i=1

‖αi‖2 = 64n + 16
n∑

i=1

‖xi−1 + xi‖2 − 64
n∑

i=1

< yi, xi−1 + xi > =

64n + 16
n∑

i=1

‖xi−1 + xi‖2 − 64 < y1, x
∗ >, where x∗ ≡

n∑
i=1

z∗i with

z∗1 ≡ x1+x0, and, for 2 ≤ i ≤ n, z∗i ≡ ρ1◦ρ2◦ . . .◦ρi−1(xi+xi−1).

Writing x∗
0 ≡ x0, x∗

1 ≡ x1 and x∗
i ≡ ρ1 ◦ ρ2 ◦ . . . ◦ ρi−1xi for

i = 2, 3, . . . , n,

x∗ = x∗
0 + 2 (

n−1∑
i=2

x∗
i ) + x∗

n,

and we have

THEOREM 5.3. If x∗ = 0, JE is constant. For x∗ �= 0, JE achieves
its minimum at

y∗1 ≡
x∗

‖x∗‖ ,

its maximum at −y∗1, and has no other critical points.
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When y1 minimizes JE the spherical spline x : [0, n]→ Sm determined
by y1 for x0, x1, . . . , xn is called JE-optimal.

EXAMPLE 5.4. For constant data, as in Examples 5.2, 5.3, the JE-
optimal spherical spline is constant. The JE-optimum x : [0, 7]→ S2 for
the data in Example 5.1 is illustrated in Figure 5.4. Tracing along arcs in
order of nodes, the changes in direction are much less abrupt, although the
change near x2 is rather noticeable. Speeds seem much more uniform than
in Example 5.1 (as confirmed by Figure 5.6 of Example 5.5).

5.7. Moderating Variations in Speed

For a nondegenerate spherical Bezier quadratic spline, let θ0 be the length
of the great circle arc γL

1 , and for 1 ≤ i ≤ n let θi be the length of
γR

i . By Theorem 5.2, ‖ẋ(i)‖ ≤ 2θi for i = 0, 1, 2, . . . n, where θ0

depends on y1, and θj is a function of yj for 1 ≤ j ≤ n. However
yj = ρj−1 ◦ . . . ◦ ρ2 ◦ ρ1(y1). So all θj depend ultimately on y1. Define
JS : Sm → [0,∞) by

JS(y1) ≡
n∑

i=1

(θi − θi−1)2.

Figure 5.4. The JE-optimal spherical spline x : [0, 7] → S2 in Example 5.4.
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Then, for y1 ∈ Sm and v1 ∈ TSm
y1

, writing vj = ρj−1◦ . . .◦ρ2◦ρ1(v1) for
1 ≤ j ≤ n, 1

2(dJS)y1(v1) =

(θ1 − θ0)(dθ1(v1)− dθ0(v1)) +
n∑

i=2

(θi − θi−1)(dθi(vi)− dθi−1(vi−1))

= − < v1, x̃(y1) >

where, for x̃i ≡ xi
sin θi

,

x̃(y1) ≡ (θ1 − θ0) (x̃1 − x̃0) + (θ2 − θ1) (ρ1(x̃2) − x̃1) +

n∑
i=3

(θi − θi−1) ρ1 ◦ ρ2 ◦ . . . ◦ ρi−2(ρi−1(x̃i) − x̃i−1).

From this follows

THEOREM 5.4. The gradient at y1 ∈ Sm of JS : Sm → [0,∞) is

−2(x̃(y1) − < x̃(y1), y1 > y1).

If y1 is a critical point of JS then either x̃(y1) = 0, or θi = 0 for
some i = 0, 1, 2, . . . , n, or

y1 = ± x̃(y1)
‖x̃(y1)‖

. (7)

When y1 minimizes JS the corresponding spherical spline is called JS-
optimal. There may be more than one JS-optimum for a given set of data.
For instance the spherical splines in Example 5.2 are JS-optimal, as is the
first in Example 5.3.

The point y∗1 of minimum of JE , written down explicitly in Theorem
5.3, can be used to start a simple spherical gradient descent for JS , based
on the first part of Theorem 5.4:

1. choose a learning rate h > 0,
2. set y1

1 = y∗1,
3. for j ≥ 1 take yj+1

1 to be the unit vector in the direction of

yj
1 + h (x̃(y

j

1) − < x̃(y
j

1), y
j

1 > y
j

1),

4. if JS(y
j+1

1 ) > JS(y
j

1) try decreasing h,

5. if JS(y
j

1
)− JS(y

j+1

1
) > 0 is small try increasing h,

6. if JS(yj+1

1
) ≈ JS(yj

1
), after several steps, exit and return y

j

1,
7. otherwise replace j by j + 1 and return to 3.
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Because JS measures a more geometrical but related phenomenon, the
additional computational effort required to find a JS-optimum may be well
worthwhile.

EXAMPLE 5.5. For the data in Examples 5.1, 5.4, the value of JS for the
JE-optimum y∗1 is 21.77. Using gradient descent with h = 0.01, JS de-
creases to

18.61, 15.34, 12.23, 9.21, 7.25, . . . , 0.3658

after 70 iterations. After 30 additional iterations JS settles at 0.365706 and
the corresponding JS-optimum x : [0, 7] → S2, shown in Figure 5.5, is
more regular in overall appearance than the JE-optimum and somewhat
similar locally.

Figure 5.5. The JS-optimal spherical spline x : [0, 7] → S2 in Example 5.5.

As noted in Theorem 5.2, speeds at knots for any nondegenerate spher-
ical Bezier quadratic spline are bounded above by 2π. This bound is ap-
proached by the JE-optimum of Example 5.4, whose speeds are shown in
Figure 5.6, along with speeds for the JS-optimum. The latter are signifi-
cantly more uniform, with less abrupt changes of derivatives at breakpoints.
Comparing with Figure 5.2, speeds of both spherical splines are far more
uniform than those of the normalized quadratic polynomial spline in
Example 5.1.

1 7
5

2 6
43
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Figure 5.6. Speeds for the JE (more variable) and JS optima in Examples 5.4,
5.5.

5.8. Spherical Bezier Quadratic Splines in SO(3)

Up to now the emphasis has been on mathematics of spherical Bezier
quadratic splines, but now we turn to an important area of applications.
The present section is more or less independent of the rest of this chapter,
and much more accessible to readers whose primary interests are in applica-
tions. The formulae are sufficiently explicit to be coded without knowledge
of quaternions, although such knowledge is needed to explain where the
formulae come from.

For applications in computer graphics and rigid body motion, it is an im-
portant and well-known fact that the space SO(3) of orthogonal 3 × 3
real matrices of determinant 1 is much more like a sphere than Euclidean
3-space E3. More precisely, identifying E4 in the usual way with the
space H of , the unit sphere S3 in E4 corresponds to the space of unit
quaternions. Quaternionic multiplication restricts to a group multiplication
on S3, and the formula

Ψ(q)r = qrq−1 (8)

defines a group homomorphism Ψ : S3 → SO(3) with respect to matrix
multiplication on SO(3). In (8) q ∈ S3 and r is a pure-imaginary
quaternion, corresponding to a point in E3. On the right hand side multi-
plication and inversion are quaternionic. Then Ψ is C∞, surjective, and
its kernel as a group homomorphism is ±1. In this way a unit vector

q =
[

q1 q2 q3 q4

]T ∈ S3 ⊂ E4

5

4

3

2

1000500 1500 2000 2500 3000 3500
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gives a rotation

Ψ(±q) = 1− 2

⎡⎣ q2
3 + q2

4 − q2q3 + q1q4 − q1q3 − q2q4

−q2q3 − q1q4 q2
2 + q2

4 q1q2 − q3q4

q1q3 − q2q4 − q1q2 − q3q4 q2
2 + q2

3

⎤⎦
where T means “transpose”. Conversely any R ∈ SO(3) is Ψ(q) where

q1 = ± 1
2

√
1 + Trace(R). For q1 �= 0 :

q2 =
1

4q1
(R3,2 −R2,3)

q3 =
1

4q1
(R1,3 −R3,1)

q4 =
1

4q1
(R2,1 −R1,2).

If q1 = 0 set q2 = ±
√

1+R1,1

2 .

For q1 = 0, q2 �= 0 : q3 =
1

2q2
R1,2 q4 =

1
2q2

R1,3.

For q1 = q2 = 0 : q3 = ±
√

1−R3,3

2
q4 = ±

√
1−R2,2

2
.

So we have a C∞ one-to-one correspondence between rotation matrices
R ∈ SO(3) and pairs of points ±q ∈ S3, where the standard Riemannian
metric on S3 corresponds to a bi-invariant (left and right-invariant (Milnor,
1963)-Section 21) Riemannian metric with respect to the Lie group struc-
ture of SO(3). This, together with the constructions in Sections 5.4, 5.5, 5.6
5.7 of spherical Bezier quadratic splines, can be used to construct spherical
splines in SO(3) interpolating given rotations R0, R1, . . . , Rn ∈ SO(3) as
follows.

− Choose x0 ∈ S3 to be either ±q where Ψ(q) = R0 .
For 1 ≤ i ≤ n now find q so that Ψ(q) = Ri, and choose xi ∈ S3 to
be whichever of ±q is nearer xi−1 (in case of a tie think, or choose
either).
For 1 ≤ i ≤ n− 1 define ρi : E4 → E4 by

ρi(w) = 2 < w, xi > xi − w

where < , > is the Euclidean inner product (dot-product).

−

−

,
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− Set x∗
0 = x0, x∗

1 = x1 and, for 2 ≤ i ≤ n,

x∗
i = ρ1 ◦ ρ2 ◦ . . . ◦ ρi−1(xi).

− Set x∗ = x∗
0 + 2

∑n−1
i=2 x∗

i + x∗
n. If x∗ = 0 think, or choose

y∗1 ∈ S3 arbitrarily. If x∗ �= 0 set

y1 =
x ∗

‖x∗‖
where ‖ ‖ is the Euclidean norm on E4. Alternatively, let y1 be a
minimizer of JS , calculated according to the pseudocode in Section
5.7.

− For 1 ≤ i ≤ n− 1 set yi+1 = ρi(yi).
− Follow the procedure in Definition 5.2 to construct x : [0, n]→ S3.
− Set R = Ψ ◦ x : [0, n]→ SO(3).

Then R is usually C1, interpolates R0, R1, . . . , Rn at 0, 1, . . . , n, and
inherits the good behaviour of spherical Bezier quadratics in S3. More
can be said, but this algorithm is straightforward to implement, and the
interpolant is excellent compared with current practice.

5.9. Conclusion

Interpolation by C1 curves in spheres is a basic task for modelling rigid
body motion. The problem is not adequately dealt with by normalized
polynomial splines. Interpolation by curves satisfying variational conditions
has also received attention (Gabriel and Kajiya, 1985), (Noakes et al., 1989),
(Chapman and Noakes, 1991), (Camarinha et al., 1995), (Crouch and
Silva-Leite., 1995), (Crouch et al., 1999), (Camarinha et al., 2001), (Noakes,
2003), (Noakes (a), 2004), but is not ready for practical applications.

The alternative of replacing line segments by great circles in thedeCastlejau
algorithms is well-known (Shoemake, 1985), (Duff, 1985), (Noakes, 1994),
(Noakes, 1997), (Noakes, 1998), (Noakes, 1999), (Noakes, 2002), (Crouch et
al., 1999), but is problematic because of difficulties in constructing control
polygons. By addressing this problem the present paper seeks to make the
generalized non-recursive deCastlejau algorithm a more attractive tool for
spherical interpolation.

Spherical Bezier quadratic splines are C∞ away from breakpoints, C1

everywhere when nondegenerate, and much easier to construct than splines
made from Riemannian cubics (Noakes et al., 1989). Given x0, x1, . . . xn ∈
Sm, a spherical Bezier quadratic spline x : [0, n]→ Sm with breakpoints
at 1, 2, . . . , n− 1, and satisfying

x(0) = x0, x(1) = x1, x(2) = x2, . . . , x(n) = xn,
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is determined by a single parameter y1 ∈ Sm, corresponding to a control
polygon for the spherical spline. We choose y1 to optimize relation-
ships between the data x0, x1, x2, . . . , xn and the geometry of the control
polygon, according to two different criteria.

According to our first criterion, y1 is chosen as the typically unique
minimizer y∗1 of a sum of squares of so-called Euclidean accelerations
of the control polygon. It turns out y∗1 is straightforward to compute.
Excessive variations in speeds, encountered in normalized quadratic poly-
nomial splines, are reduced by a factor of around 35 in one example, and
we are aware of no case where normalized quadratic splines are superior.

In terms of spherical geometry, amore natural performance meaurement is
the sum JS of squares of differences in speed between subsequent knots.
The derivative of JS is simple to write down and, with the JE optimum
as a starting point, a simple kind of gradient descent minimizes JS . The
resulting JS-optimal spherical Bezier spline is even more attractive than
the JE-optimum. Variations in speed are reduced by a further factor of
4 and the curve has a much more regular appearance.

there are striking differences between the JE-optimal spherical spline in
Example 5.4 and the JS-optimum in Example 5.5. Certainly this kind
of data is likely to pose special problems for any method of spherical in-
terpolation, and such marked differences are not observed in all examples.
Nonetheless sensitivity of spherical splines to the choice of control polygon is
well-demonstrated. This makes it all the more important to have automatic
methods for choosing spherical control polygons according to geometric
criteria that are relevant to particular applications. The present paper is
a step in this direction, with applications to interpolation in SO(3) and
planning trajectories of rigid bodies.

Appendix A: A Quadratic Polynomial Spline x : [0, n]→ Em+1

The discussion following Example 5.1 concerns a C1 quadratic polyno-
mial spline interpolant x : [0, n]→ Em+1 with breakpoints 3/2, 5/2,. . . , (2n−
3)/2. This is constructed as the track-sum of the following quadratic
polynomials:

− a1s
2 + b1s + c1 for s = t ∈ [0, 3/2] interpolating x0, x1, y1 at

s = 0, 1, 3/2 namely

a1 =
4
3
y1 +

2
3
x0 − 2x1, b1 = − 4

3
y1 −

5
3
x0 + 3x1, c1 = x0.

− a2s
2 + b2s + c2 for s = t − 2 ∈ [−1/2, 1/2], C1 at s = −1/2 and

Although both offeradvantages over normalizedquadraticpolynomial splines,
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interpolating x2, y2 at s = 0, 1/2 namely

a2 = 2(y1 − 2x2 + y2), b2 = − y1 + y2, c2 = x2,

17
3

y1 + y2 = − 1
3
x0 + 3x1 + 4x2.

− for 2 < i < n− 1 and s = t− i ∈ [−1/2, 1/2], ais
2 + bis+ ci, C1 at

s = −1/2 and interpolating yi−1, xi, yi at s = −1/2, 0, 1/2, namely

ai = 2(yi−1 − 2xi + yi), bi = − yi−1 + yi, ci = xi,

yi−2 + 6yi−1 + yi = 4(xi−1 + xi).

− an−1s
2 + bn−1s + cn−1 for s = t − i + 1 ∈ [−1/2, 1], C1 at s =

−1/2 and interpolating xn−1, xn at s = 0, 1, namely

an−1 =
4
3
yn−2 − 2xn−1 +

2
3
xn, bn−1 = − 4

3
yn−2 + xn−1 +

1
3
xn,

cn−1 = xn−1,

yn−3 +
17
3

yn−2 = 4xn−2 + 3xn−1 −
1
3
xn.

Solving the n− 2 linear equations for y1, y2, . . . yn−2 also determines the
ai, bi, ci.

Appendix B: Proof of Proposition 5.1
For s ∈ [0, 1/2], d(β(s), γL(2s)) ≤

min{sd(γL(s), γR(s)) + sθL, (1− s)d(γL(s), γR(s)) + sθR + (1− 2s)θL}

≤ min{fL(s), fR(s)}
where

fL(s) ≡ s(2− s)θL + s2θR

and
fR(s) ≡ (2− 4s + s2)θL + s(2− s)θR.

So
d(β(s), π(s)) ≤ 1

2
(fL(s) + fR(s)− |fL(s)− fR(s)|) =

(1− s)θL + sθR − |(1− 3s + s2)θL + s(1− s)θR|

≤ 3θL + θR

4
because fL is maximized on [0, 1/2] by s = 1/2. The result now follows
from (1).
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Appendix C: Proof of Lemma 5.1
By rotation-invariance, we can suppose y = (cos θ, sin θ, 0, . . . , 0) and
z = (1, 0, . . . , 0) for some θ ∈ [0, π). Also, without loss, either v‖ or
v⊥ is 0. For v‖ = 0, after another rotation, we can assume

ω(t) = (cos θ, sin θ cos tψ, sin θ sin tψ, 0, . . . , 0)

where ψ ∈ R. Then

δ(ω(t), z, q) = (cos rθ, sin rθ cos tψ, sin rθ sin tψ, 0, . . . , 0)

where r ≡ 1− q, and

d

dt
|t=0δ(ω(t), z, q) = (0, 0, ψ sin rθ, 0, . . . , 0) =

sin rθ

sin θ
v⊥.

For v⊥ = 0 we can suppose ω(t) = (cos(θ+tψ), sin(θ+tψ), 0, . . . , 0).
Then

δ(ω(t), z, q) = (cos(rθ + tψ), sin(rθ + tψ), 0, . . . , 0) and

d

dt
|t=0δ(ω(t), z, q) = ψ (− sin rθ, cos rθ, 0, . . . , 0) = ψ γ̇y,z(q).

Appendix D: Proof of Proposition 5.2
Since γ̇L(1), γ̇R(0) are linearly independent,
0 < min{θL, θR} < π and, for any t ∈ [0, 1],

0 < θt ≤ (1− t)θL + sθR < π.

So for some ε > 0 independent of t, and any

q, r ∈ It,ε ≡ (t− ε/2, t + ε/2) ∩ [0, 1],

(δ(γL(0), γL(1), q), δ(γR(0), γR(1), r) ∈ D.

Since δ is C∞, so is µ : It,ε × It,ε × [0, 1]→ Sm given by

µ(q, r, s) = δ(δ(γL(0), γL(1), q), δ(γR(0), γR(1), r), s),

and, by Lemma 5.2,

‖∂µ

∂q
|r=s=t‖ ≤

θL

sin θt
, ‖∂µ

∂r
|q=s=t‖ ≤

θR

sin θt
, ‖∂µ

∂s
|q=r=t‖ = θt.

Since β(t) = µ(t, t, t),

‖β̇(t)‖ ≤ θL + θR

sin θt
+ θt.
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Appendix E: Proof of Theorem 5.1
If γ̇L(1), γ̇R(0) are linearly dependent (2) follows on differentiating the
formulae in Definition 5.1 for β(s). For γ̇L(1), γ̇R(0) linearly independent
with 0 ≤ θL, θR < π, for some ε > 0,

(δ(γL(0), γL(1), q), δ(γR(0), γR(1), r)) ∈ D

whenever q, r ∈ [0, ε). Since δ is C∞, so is

µ : [0, ε)× [0, ε)× [0, 1]→ Sm

given by

µ(q, r, s) = δ(δ(γL(0), γL(1), q), δ(γR(0), γR(1), r), s),

and
∂µ

∂q
|r=s=0 = γ̇L(0) =

∂µ

∂s
|q=r=0 while

∂µ

∂r
|q=s=0 = 0.

For small s > 0, β(s) = µ(s, s, s). So

β̇(0)+ =
d

ds
|s=0µ(s, s, s) = 2γ̇L(0),

and (1) completes the proof of (2) in this case. If γ̇L(1), γ̇R(0) are linearly
independent with θL = π, for small s > 0

γL(s) = γL(0) + sγ̇L(0) + O(s2),
γR(s) = −γL(0) + sγ̇R(0) + O(s2),

γR(s)− γL(s) = −2γL(0) + sγ̇R(0)− sγ̇L(0) + O(s2),
< γR(s)− γL(s), γL(s) > = −2 + O(s2),

and
γR(s)− γL(s)− < γR(s)− γL(s), γL(s) > γL(s) =

sγ̇R(0) + sγ̇L
i (0) + O(s2).

Because < γL(s), γR(s) > = − 1 + O(s2),

d(γL(s), γR(s)) = π + O(s)

and so

β(s) = γL(0) + sγ̇L(0) + sπ
γ̇R(0) + γ̇L(0)
‖γ̇R(0) + γ̇L(0)‖ + O(s2),

where the denominator is nonzero by linear independence, and since γ̇L(0) =
−γ̇L(1). This proves (3). If γ̇L(1), γ̇R(0) are linearly independent with
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θL = π and θR < π, for small r ≡ 1− s, γL(s) = γR(0) + O(r),

γR(s) = γR(1)− rγ̇R(1) + O(r2),
γL(s)− γR(s) = −γR(1) + γR(0) + O(r),

< γL(s)− γR(s), γR(s) > = −1+ < γR(0), γR(1) > +O(r),

γL(s)− γR(s)− < γL(s)− γR(s), γR(s) > γR(s) =

γR(0)− < γR(0), γR(1) > γR(1) + O(r).

Also < γL(s), γR(s) >=< γR(0), γR(1) > +O(r) = cos θR + O(r). Since
θR �= 0, π, d(γL(s), γR(s)) = θR + O(r). So β(1− r) =

γR(1)− rγ̇R(1) + rθR γR(0)− < γR(0), γR(1) > γR(1)
‖γR(0)− < γR(0), γR(1) > γR(1)‖ + O(r2)

= β(1)− 2rγ̇R(1) + O(r2).

This proves (4). Applying (1) to (3), (4) proves (5), (6).

Appendix F: Proof of Theorem 5.2
Since ‖γ̇(i)‖ ≤ π, ‖ẋ(i)±‖ ≤ 2π by Theorem 5.1. If, for some i =
2, . . . , n, yi = −xi−1 then yi−1 = −ρi−1xi−1 = −xi−1, and the minimal
great circle arcs γR

i−1, γ
L
i are not determined solely by their endpoints, but

also by γ̇R
i−1(1) which can be any vector wi−1 of length π orthogonal

to xi−1. Then γ̇L
i (0) = wi−1 and, by (5), (2) of Theorem 5.1,

ẋ(i− 1)− = wi−1 + π
wi−1 + γ̇L

i−1(1)
‖wi−1 + γ̇L

i−1(1)‖ and

ẋ(i− 1)+ = wi−1 + π
wi−1 + γ̇R

i (0)
‖wi−1 + γ̇R

i (0)‖ ,

unless either γ̇L
i−1 or γ̇R

i (0) happens to be a multiple of wi−1. When m =
1 this is precisely what happens, and then ẋ(i−1)− = 2wi−1 = ẋ(i−1)+ by
(3) of Theorem 5.1. Alternatively, for any m, if yi �= −xi−1 then
ẋ(i− 1)− = 2γ̇L

i (0) = ẋ(i− 1)+, again by (3) of Theorem 5.1. So if either
m = 1 or x is nondegenerate then x is C1 at x1, . . . , xn−1. So x is
C1. Furthermore ‖ẋ(i)‖ = 2‖γ̇L

i (0)‖ < 2π when x is nondegenerate.
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Abstract. In this chapter, we describe the use of graph-spectral methods for purposes
of surface height recovery. Here, our input is a 2D field of surface normal estimates,
delivered, for instance, by shape-from-shading, shape-from-texture or photometric stereo.
We commence by showing how to use the surface normals to obtain a graph whose edge-
weight matrix is related to the surface curvature. With this weight matrix at hand, we
proceed to recover a path across the field of surface normals whose curvature is minimum.
To do this, we present two alternatives. The first of these concerns a combinatorial
optimisation over the nodes in the graph. The second one, consists in recovering the
random walk making use of a probability matrix, equivalent, by row-normalisation, to
the matrix of edge-weights. For both methods, the solution is equivalent, up to scaling, to
the leading eigenvector of the edge-weight matrix. Once the minimum curvature path has
been recovered, surface integration can be performed by threading the surface normals
together along the path. We perform experiments on synthetic and real-wold imagery
whose fields of surface normals are delivered by a shape-from-shading algorithm.

Key words: surface reconstruction, Markov chain, curvature, graph seriation

6.1. Introduction

Surface integration is a process that provides the means of converting a
field of surface normals ( i.e. the projection of the Gauss map of a surface
from the unit sphere onto the image plane) into an explicit 3D surface
representation. This problem of reconstructing the surface from its Gauss
map arises when attempting to infer explicit surface structure from the
output of low-level vision modules such as shape-from-shading and shape-
from-texture (Rockwood and Winget, 1997). The process involves selecting
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a path through the surface normal locations. This may be done using either
a curvature minimising path or by advancing a wavefront from the occluding
boundary or singular points. By traversing the path, the surface may be
reconstructed by incrementing the height function using the known distance
travelled and the local slope of the surface tangent plane. This is a matter of
straightforward trigonometry. It must be stressed that the choice of the path
can be critical. If the surface does not satisfy the integrability constraint,
(i.e. the x derivative of the y-component of the surface normal must be equal
to the y derivative of the x-component of the surface normal, and hence the
Hessian must be symmetric), then the shape of the reconstructed surface
is affected by the choice of integration path.

6.1.1. RELATED LITERATURE

The most direct method of height recovery is path-based. In the origi-
nal work on shape-from-shading by Horn and Brooks (Horn and Brooks,
1986; Horn, 1990) the surface height recovery process is applied as a post-
processing step. The process proceeds from the occluding boundary and
involves incrementing the surface height by an amount determined by the
distance traversed and the slope angle of the local tangent plane. Unfortu-
nately, this process is highly sensitive to noise and errors in surface normal
direction accumulate rapidly as the front propagates inwards. In an attempt
to regulate the errors, Wu and Li (Wu and Li, 1988) average the surface
normal directions to obtain height estimates.

More sophisticated path-based methods may be developed if differential
geometry is used. For instance, Dupuis and Oliensis (Dupuis and Oliensis,
1992) have described a method which involves propagation in the direction
of the steepest gradient from singular points. A fast variant of this algo-
rithm is described by Bichsel and Pentland (Bichsel and Pentland, 1992)
who compute the relative height of the surface with respect to the highest
intensity point.

An alternative approach to surface reconstruction is to pose the prob-
lem of height recovery as one of energy minimisation. Leclerc and Bobick
(Leclerc and Bobick, 1991) have developed a direct numerical method for
height recovery from shading information which uses curvature consistency
constraints. In related work, Tsai and Shah (Tsai and Shah, 1994) de-
scribe a fast surface height recovery method, which works well except
at the locations of self-shadows and numerically singular points. Recent
work by Karaçali and Snyder (Karaçali and Snyder, 2003; Karaçali and
Snyder, 2004) has shown how surfaces can be reconstructed under partial
integrability constraints. This analysis is applicable when surface height
discontinuities are present.
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The recovery of the surface height function can also be posed as the
solution of a differential equation. In the level-set method of Kimmel, Bruck-
stein, Kimmia and Siddiqi (Kimmel et al., 1995) surface reconstruction is
incorporated as an integral component into the shape-from-shading process.
They use the apparatus of level-set theory to simultaneously solve the im-
age irradiance equation and recover the associated surface height-function
under constraints provided by surface integrability.

An elegant and ingenious solution is proposed by Frankot and
lappa (Frankot and Chellappa, 1988)who project the surface normals into

the Fourier domain to impose integrability constraints and hence recover
surface height. There have been a number of extensions to this work. For
instance, a so-called “lawn mower” algorithm has been proposed to impose
consistency and surface integrability on the field of surface normals by
aligning their directions (Noakes et al., 1999). In a related development,
Wei and Klette (Wei and Klette, 2003) have shown how the quality of
the recovered surface may be improved by incorporating more complex
regularisers into the Fourier domain analysis.

Several of these methods are described in more detail and compared in
the comprehensive review paper of Zhang, Tsai, Cryer and Shah (Zhang
et al., 1999).

6.1.2. MOTIVATION

The recovery of the integration path is clearly one of optimisation, which
can be solved using a number of techniques including direct numerical
methods and level set techniques. However, one of the methods that has not
received attention is that of posing the problem in a graph-spectral setting
and using eigenvector methods to recover the solution. The idea underpin-
ning graph-spectral methods is to abstract the problem in hand using a
weighted graph. Here the nodes represent the basic image entities and the
weighted edges represent affinity relations between them. By computing
the eigenvalues and eigenvectors of the weight matrix, it is possible to find
groups or clusters of entities. The graph-spectral method is in fact one of en-
ergy minimisation since the eigenvectors can be shown to be minimisers of a
quadratic form. In fact, graph-spectral methods have recently proved highly
effective in image processing and computer vision. Perhaps the best known
method is that of Shi and Malik (Shi and Malik, 2000) which has shown
how to locate image regions by recursively bisecting a weighted graph that
represents the affinity of pairs of pixels. The method is based on the nor-
malised cut. This is a measure of the relative weight of the edges connecting
the two parts of the partition (the cut) to the weight assigned to the edges
within the two parts of the bisection (the association). A relaxed solution to

Chel
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the bisection problem is found by locating the eigenvector associated with
the second smallest eigenvalue of the Laplacian matrix (the degree matrix
minus the affinity weight matrix). Although it is convenient to work with
the Laplacian, since it is positive semi-definite, grouping and segmentation
can also be performed using an edge-weight or affinity matrix. For instance,
both Sarkar and Boyer (Sarkar and Boyer, 1998) and Perona and Freeman
(Perona and Freeman, 1998) have developed matrix factorisation methods
for line-segment grouping that use eigenvectors of an affinity matrix rather
than the associated Laplacian. The Sarkar and Boyer (Sarkar and Boyer,
1998) method can be understood as maximising the association (i.e. the
total edge weight) of the clusters.

The methods described above all share the feature of using the eigen-
vectors of a Laplacian or an affinity matrix to define groups or clusters
or objects. However, graph-spectral methods can also be used for path
analysis tasks on graphs. For instance, it is well known that the path
length distribution can be computed from the spectrum of eigenvalues of
the adjacency matrix (Biggs, 1993). Ideas from spectral-graph theory have
also been used to analyse the behaviour of random walks on graphs (Lovász,
1993; Chung, 1997; Cvetković et al., 1980). In addition, there are important
relationships between the eigenvectors of the edge weight matrix and other
quantities related to random walks. These include the access time for a
node (i.e. the expected number of time steps that must have elapsed before
the node is visited) and the mixing rate (i.e. the rate at which the random
walk converges to its steady state). The relationship between the leading
eigenvector of the edge weight matrix and the steady state random walk
has been exploited in a number of areas including routeing theory and
information retrieval (Azar et al., 2000; Kleinberg, 1998).

The advantage of graph-spectral methods is that they can be used to
find approximate or relaxed solutions without the need for parallel iterative
updates at the pixel-site level. These methods also obviate the need for
complex search algorithms. However, although they have been applied to
region segmentation and grouping problems, graph-spectral methods have
not been applied to curve detection problems of the sort that arise in the
determination of the optimal integration path.

Hence, in this paper we pose the recovery of the surface integration
path in a graph-spectral setting. According to our graph-based abstraction
of the surface reconstruction process, each pixel-site is represented by a
node, the edge structure is determined by connectivity on the pixel lattice,
and the edge-weights are determined by the change in surface normals
directions. By using this graph theoretical setting, we can make use of the
edge-connected path on the pixel lattice to perform surface height recovery.
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amount determined by the slope of the local tangent plane.
The integration algorithms presented here have both local and global

features. The graph-spectral approach allows to locate an ordering of the
sites on the pixel lattice that minimise a quadratic energy function. How-
ever, this ordering is not guaranteed to be connected, and a local search
procedure must be used to ensure connectivity. Rather than commencing
from a specification of the recovery of the integration path in terms of a
random walk, we couch the process in an energy minimisation setting. The
minimisation problem is formulated so as to encourage path connectivity.

6.2. Affinity Matrix

Here, our goal is to recover the surface height information from the field
of surface normals by pursuing a graph-spectral analysis. To this end, we
require a transition weight matrix which reflects both, the connectivity of
the pixel lattice and the fact that the field is obtained by translating the
surface normals from each point on a curved surface to a projection plane.
From a computational standpoint, the aim is to find a path on the projec-
tion plane along which simple trigonometry may be applied to increment
the estimated height function. To be more formal, suppose that the surface
under study is S and that the field of surface normals is constructed on
the plane Π. Our aim here is to find a curve ΓΠ across the plane Π that
can be used as an integration path to reconstruct the height-function of the
surface S. The projection of the curve ΓΠ onto the surface S is denoted by
ΓS . Further, suppose that κ(l) is the sectional curvature of the curve ΓS
at the point q ∈ S with parametric coordinate l. We seek the path ΓS that
minimises the total squared curvature

E(ΓS) =
∫

ΓS
κ(l)2dl (1)

For the surface S sampled on the plane Π the field of unit surface normals
consists of the set �Nq where q ∈ Π. Accordingly, and following do Carmo
(Do Carmo, 1976), we let Πq(S) represent the tangent plane to the surface
S at the point q which belongs to the curve ΓS . To compute the sectional
curvature κ(l) we require the differential of the surface or Hessian matrix
d �Nq : Πq(S) → Πq(S). The maximum and minimum eigenvectors λ1 and
λ2 of d �Nq are the principal curvatures at the point q. The corresponding
eigenvectors �e1 ∈ Πq(S) and �e2 ∈ Πq(S) form an orthogonal basis on the
tangent plane Πq(S). At the point q the unit normal vector to the curve ΓS
is �n and the unit tangent vector is tq ∈ Πq(S). The sectional curvature of

Γ at q is given by κ(l) = (�tq ·�e1)2(λ1−λ2)+λ2

�n· �Nq
, where (�tq · �e1)2(λ1 − λ2) + λ2 is

As the path is traversed, the surface height function is incremented by an
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the normal curvature and α = arccos�n · �Nq is the angle between the curve
normal and the surface normal.

In practice, we will be dealing with points which are located at discrete
positions on the pixel lattice. Suppose that i and j are the pixel indices
of neighbouring points sampled on the pixel lattice along the path ΓS .
With this discrete notation, the cost associated with the path is given by
E(ΓS) =

∑
(i,j)∈ΓS Ei,j =

∑
(i,j)∈ΓS κ2

i,jli,j , where κi,j is an estimate of the
curvature based on the surface normal directions at the pixel locations i and
j, and li,j is the path distance between these points. The energy associated
with the transition between sites i and j is Ei,j = κ2

i,jli,j .
In order to compute the path curvature appearing in the expression for

the transition energy, we make use of the surface normal directions. To
commence, we note that |κi,j | = 1

Ri,j
where Ri,j is the radius of the local

circular approximation to the integration curve on the surface. Suppose that
the surface normal directions at the pixel locations i and j are respectively
�Ni and �Nj . The approximating circle connects the points i and j, and has
the path segment li,j as the connecting chord. The change in direction of the
radius vector of the circle is θi,j = arccos �Ni · �Nj , and hence cos θi,j = �Ni · �Nj .
If the angle θi,j is small, then we can make the Maclaurin approximation

cos θi,j � 1 − θ2
i,j

2 = �Ni · �Nj . Moreover, the small angle approximation to

the radius of curvature of the circle is Ri,j = li,j
θi,j

. Hence, κ2
i,j = 2(1− �Ni· �Nj)

l2i,j
.

The geometry outlined above is illustrated in Figure 6.3.1a.
As a result, we find that the cost associated with the step from the site

indexed i to that indexed j is Ei,j = 2
li,j

(1 − �Ni · �Nj). With the energy
function at hand, we attempt to find the minimum energy integration path
ΓS so as to satisfy the condition ΓS = arg minΓ̂ E(Γ̂). As mentioned earlier,
to do this, we require a suitable matrix representation of the step costs
between pairs of sites on the plane Π. Hence, for the pixel-sites indexed i
and j, we define the transition weight matrix to have elements

W (i, j) =
{

exp[−βEi,j ] if j ∈ Ni

0 otherwise (2)

where Ni is the set of pixel-neighbours of the pixel-site indexed i and β is
a constant. As a result, the curvature weight is only non-zero if sites abut
one-another.

6.3. Combinatorics and Random Walks

There are clearly a number of ways in which the energy can be minimised.
These might include expectation-maximisation (Leite and Hancock, 1997),
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relaxation labelling (Zucker et al., 1988) or stochastic methods (Williams
and Jacobs, 1997). However, here we choose to present two akin approaches
that yield a result which is equivalent up to scaling. These are a combinato-
rial optimisation method which solves the problem by performing seriation
on the edge-weight matrix and a random walk approach that makes use
of the apparatus of Markov chains to recover the path whose curvature is
minimum.

Thus, the section is organised as follows. We commence by presenting a
graph seriation solution that draws on combinatorial optimisation. This is
a method that hinges in optimising a penalty function by means of seriating
the nodes in the graph subject to connectivity constraints. Having presented
a combinatorial approach to the problem, we proceed to show how random
walks may be employed to recover the surface height from the field of
normals. By casting the problem in a probabilistic setting, we show that
the steady state probability of the Markovian process associated to the
weight matrix is equivalent, up to scaling, to the solution yielded by graph
seriation.

6.3.1. GRAPH SERIATION

In Section 2, we showed how the change in surface normal directions could
be used to compute the elements of the transition weight matrix. In this
section, we pose the problem of locating an integration path that maximises
the total curvature weight as a process of graph-spectral seriation.

To commence, we pose the problem in a graph-based setting. The set of
pixel sites can be viewed as a graph G = (V,E) G = (V,E, W ) with index-
set V and edge-set E = {(i, j)|(i, j) ∈ V × V, i �= j}. Let the curvature
minimising path commence at the node j1 and proceed via the sequence
of edge-connected nodes Γ = {j1, j2, j3, ...} where (ji, ji−1) ∈ E. Further,
we suppose that the element W (ji, ji+1) of the transition weight matrix

Figure 6.1. Geometry of the path recovery process.
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associated with the move between the nodes ji and ji+1 can be regarded
as a pairwise similarity measure. With these ingredients, the problem of
finding the path that minimises the curvature between adjacent pixel-sites
can be viewed as one of seriation, subject to edge connectivity constraints.

As noted by Atkins, Boman and Hendrikson (Atkins et al., 1998), many
applied computational problems, such as sparse matrix envelope reduction,
graph partitioning and genomic sequencing, involve ordering a set according
to a permutation � = {�(j1), �(j2), . . . , �(j|V |)} so that strongly related
tokens are placed next to one another. The seriation problem is that of
finding the permutation � that satisfies the condition

�(ji) < �(jk) < �(jl)⇒ {W (ji, jk) ≥W (ji, jl)∧W (jk, jl) ≥W (ji, jl)} (3)

This task has been posed as a combinatorial optimisation problem which
involves minimising the penalty function

g(�) =
|V |∑
i=1

|V |∑
k=1

W (ji, jk)(�(ji)− �(jk))
2

for a set of N elements and a symmetric, real transition weight matrix W .
Unfortunately, the penalty function g(�), as given above, does not im-

pose edge connectivity constraints on the ordering computed during the
minimisation process. Furthermore, it implies no directionality in the tran-
sition from the node indexed ji to the one indexed ji+1. To overcome these
shortcomings, we turn our attention instead to the penalty function

g(�) =
|V |−1∑
i=1

W (ji, ji+1)(�(ji)− �(ji+1))
2 (4)

where the nodes indexed ji and ji+1 are edge connected. After some algebra,
it is straightforward to show that

g(�) =
|V |−1∑
i=1

W (ji, ji+1)(�(ji)
2 + �(ji+1)

2)− 2
|V |−1∑
i=1

W (ji, ji+1)�(ji)�(ji+1)

(5)
It is important to note that g(�) does not have a unique minimiser. The
reason for this is that its value remains unchanged if we add a constant
amount to each of the coefficients of �. We also note that it is desirable
that the minimiser of g(�) is defined up to a constant λ and solutions to
polynomials in the elements of W . Therefore, we subject the minimisation
problem to the constraints

λ�(ji)
2 =

|V |∑
k=1

W (jk, ji)�(jk)
2 and

|V |∑
k=1

�(jk)
2 �= 0 (6)
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Since the coefficients �(ji+1) are inversely proportional to λ−W (ji+1, ji),
the coefficient �(ji+1)

2 increase with decreasing sectional curvature (i.e. the
similarity tends to one). The effect of this is to enforce edge connectivity
while favouring paths of small local curvature, and also to minimise the
overall cost of the path.

Combining the constraint conditions given in Equation 6 with the defi-
nition of the penalty function given in Equation 5, it is straightforward to
show that the permutation � satisfies the condition

|V |∑
k=1

|V |−1∑
i=1

(W (jk, ji) + W (jk, ji+1))�(jk)
2 = λ

|V |−1∑
i=1

(�(ji)
2 + �(ji+1)

2) (7)

Using matrix notation, we can write the above equation in the more com-
pact form

JWφ = λJφ (8)

where φ = {�(j1)
2, �(j2)

2, . . . , �(j|V |)
2}T and J is the N ×N matrix

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 0
0 2 0 . . . 0 0
0 0 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 0
0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(9)

Hence it is clear that locating the permutation � that minimises g(�) can
be posed as an eigenvalue problem, and that φ is an eigenvector of W . This
follows from the fact that Equation 8 can be obtained by multiplying both
sides of the eigenvector equation Wφ = λφ by J . Furthermore, due to the
norm condition of the eigenvector, the constraint

∑|V |
k=1 �(jk)

2 �= 0 is always
satisfied. Taking this analysis one step further, we can premultiply both
sides of Equation 8 by φT to get the matrix equation φT JWφ = λφT Jφ.
As a result, it follows that

λ =
φT JWφ

φT Jφ
(10)

This expression is reminiscent of the Rayleigh quotient. It also suggests
the plausibility of using the mathematical techniques commonly employed
to study the asymptotic behaviour of non-homogeneous Markov chains
(Bremaud, 2001) to take our analysis further.

We note that the elements of the permutation � are required to be real.
Consequently, the coefficients of the eigenvector φ are always non-negative.
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Since the elements of the matrices J and W are also positive, it follows that
the quantities φT JWφ and φT Jφ are positive. Hence, the set of solutions
reduces itself to those that correspond to a constant λ > 0. We also require
the coefficients of the eigenvector φ to be linearly independent of the all-ones
vector e = [1, 1, . . . , 1]T .

With these observations in mind, we focus on proving the existence of
a permutation that minimises g(�) subject to the constraints in Equation
6, and demonstrating that this permutation is unique. To this end, we use
the Perron-Frobenius theorem (Varga, 2000). This concerns the proof of
existence regarding the eigenvalue λ∗ = maxi=1,2,...,|V |{λi} of a primitive,
real, non-negative, symmetric matrix W , and the uniqueness of the cor-
responding eigenvector φ∗. The Perron-Frobenius theorem states that the
eigenvalue λ∗ > 0 has multiplicity one. Moreover, the coefficients of the
corresponding eigenvector φ∗ are all positive and the eigenvector is unique.
As a result, the remaining eigenvectors of W have at least one negative
coefficient and one positive coefficient. If W is substochastic, φ∗ is also
known to be linearly independent of the all-ones vector e. As a result, the
leading eigenvector of W is the unique solution of g(�).

6.3.2. RANDOM WALKS

To take our analysis further and make the relationship to the field of
surface normals more explicit, we cast the problem of surface height re-
covery into a random walk setting. In order to profit from a Markov chain
approach to the problem, we commence by row-normalising the weight
matrix W so its rows sum to unity. To do this, we compute the degree
of each node deg(i) =

∑|V |
j=1 W (i, j). With the diagonal degree matrix

D = diag(deg(1), deg(2), . . . , deg(|V |)) at hand, the transition probability
matrix is given by P = D−1W . The elements of the transition matrix
are hence given by Pi,j = 1

deg(i)Wi,j . It is interesting to note that the
transition matrix P is a row stochastic matrix. Moreover, it is related to
the normalised symmetric positive definite matrix Ŵ = D− 1

2 WD− 1
2 =

D
1
2 PD− 1

2 . As a result, we can write P = D− 1
2 ŴD

1
2 . It is worth not-

ing in passing that the matrix Ŵ is related to the normalised Laplacian
L = D− 1

2 (D −W )D− 1
2 = I −D− 1

2 WD− 1
2 = I − Ŵ .

Our aim is to use the steady state random walk on the graph G as an
integration path for surface height recovery. The walk commences at the
pixel j1 and proceeds via the sequence of pixel sites Γ = {j1, j2, j3, ...}. If
the random walk can be represented by a Markov chain with transition
matrix P , then the probability of visiting the pixel sites in the sequence
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above is

PΓS
= P (j1)

∏
l∈ΓS

Pjl+1,jl
=

∏
l∈ΓS

Wjl+1,jl

deg(l)
(11)

Substituting for the path energy, we have that

PΓS
=

exp
[
−2β

∑
l∈ΓS

{
1− �Nl. �Nl+1

}]
∏

l∈ΓS
deg(l)

=
1

ZΓS

exp[−EΓS
] (12)

where

EΓS
= 2β

∑
l∈ΓS

{
1− �Nl. �Nl+1

}
(13)

and
ZΓS

=
∏
l∈ΓS

deg(l) (14)

Hence, the integration path is a Markov chain with energy function EΓS

and partition function ZΓS
. Further, let Qt(i) be the probability of visiting

the pixel site indexed i after t-steps of the random walk and let Qt =
[Qt(1), Qt(2), . . .]T be the vector whose components are the probabilities of
visiting the sites at time t. After t time steps, we have that Qt = P tQ0. If
Ŵ t is the result of multiplying the symmetric positive definite matrix Ŵ

by itself t times, then P t = D− 1
2 Ŵ tD

1
2 .

To develop a spectral method for locating the steady state random walk,
we turn to the spectral decomposition of the normalised affinity matrix Ŵ

Ŵ = D− 1
2 WD− 1

2 =
|V |∑
i=1

λiφiφ
T
i (15)

where the λi are the eigenvalues of Ŵ and the φi are the corresponding
eigenvectors. By constructing the matrix Φ = (φ1|φ2| . . . |φ|V |) with the
eigenvectors of Ŵ as columns and the matrix Λ = diag(λ1, λ2, ...., λ|V |)
with the eigenvalues as diagonal elements. We can write the spectral de-
composition in the more compact form Ŵ = ΦΛΦT . Since, the eigenvectors
of Ŵ are orthonormal, i.e. ΦΦT = I, we can have that Ŵ t = ΦΛtΦT .
Substituting the spectral expansion of the matrix Ŵ into the expression
for the state-vector of the random walk at time step t, we find

Qt = D− 1
2 ΦΛtΦT D

1
2 Q0 =

{ |V |∑
i=1

λt
iD

− 1
2 φiφ

T
i D

1
2

}
Qo (16)
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Recall that the leading eigenvalue of Ŵ is unity. Furthermore, from
spectral graph theory (Chung, 1997), provided that the graph G is not a
bipartite graph, then the smallest eigenvalue λ|V | > −1. As a result, when
the Markov chain approaches its steady state, i.e. t→∞, then all but the
first term in the above series become negligible. Hence, the steady state
random walk is given by

Qs = lim
t→∞Qt = D

1
2 φ∗φT

∗ D− 1
2 Q0 (17)

This establishes that the leading eigenvector of the normalised affinity ma-
trix Ŵ determines the steady state of the random walk. It is also important
to note that the equilibrium equation for the Markov process is Qs = PQs,
where Qs is the vector of steady-state site visitation probabilities. Hence,
since the leading eigenvalue of P is unity, then it follows that Qs is the
leading eigenvector of P . For a more complete proof of this result see the
book by Varga (Varga, 2000) or the review of Lovasz (Lovász, 1993).

We aim to visit the pixel sites on the lattice in the order of their steady-
state state probabilities. Suppose that the initial state vector for the sites is
uniform, i.e. Q0 = ( 1

|V | , . . . ,
1
|V |)

T . As a result, the steady-state probability
of visiting the pixel site i is

Qs(i) =
1
|V |

|V |∑
j=1

√
deg(j)
deg(i)

φ∗(i)φ∗(j) =
1
|V |

φ∗(i)√
deg(i)

|V |∑
j=1

√
deg(j)φ∗(j) (18)

Since the summation appearing above is the same for all pixel sites, the
probability rank order is determined by the quantity ψ∗(i) = φ∗(i)√

deg(i)
.

Hence, it is the scaled leading eigenvector

ψ∗ = D− 1
2 φ∗ =

[
φ∗(1)√
deg(1)

, . . . ,
φ∗(|V |)√
deg(|V |

]T

(19)

that determines the probability rank order of the sites in the steady state
random walk. Hence, the leading eigenvector of the matrix Ŵ satisfies the
condition

φ∗ = arg max
Φ

φT Ŵφ = arg max
Φ

φT D− 1
2 WD− 1

2 φ (20)

We can make the relationship to the raw field of surface normals more
explicit by introducing the matrix F = ( �N1| �N2| . . . | �N|V |) with the surface
normals as columns. When the constant β is small, then making use of the
Maclaurin expansion of the exponential weighting function we can write
W = eeT − β(eeT − F T F ), where e is the all-ones vector of length |V |.
In practice, we use a 4-pixel neighbourhood to compute the weight matrix,
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and hence D � 4I. As a result, when β is small we can write D− 1
2 WD− 1

2 �
1
4(eeT − β[eeT − F T F ]). The path is the one that satisfies the condition

φ∗ = arg max
Φ

φT F T Fφ = arg min
Φ

|V |∑
i=1

|V |∑
j=1

�Ni · �Njφ(i)φ(j) (21)

Hence, the integration path will minimise the change in surface normal
direction.

Our aim is to use the sequence of pixel sites given by the probability rank
order to define a serial ordering for the sites on the pixel lattice. If we visit
the sites of the pixel lattice in the order defined by the magnitudes of the
coefficients of the leading eigenvector of the normalised affinity matrix, then
the path is the steady state of the Markov chain. Unfortunately, the path
followed by the steady state random walk is not edge-connected. Hence,
we need a means of placing the pixel sites in an order in which edge-
connectivity constraints are preserved using the elements of the leading
eigenvector φ∗.

6.4. Algorithm Description

In the previous section, we presented two alternatives to the problem of
recovering the surface height from the field of normals projected onto the
image plane. In this section, we elaborate on the description of the first
of these two approaches. The reason for preferring the seriation approach
over the Markovian one is one of numerical stability. Despite of the fact
that both approaches are equivalent, up to scaling, the seriation method is
less prone to numerical errors due to the lack of the scaling step for both,
the weight matrix and its leading eigenvector.

To recover the minimum curvature path we commence from the pixel
site associated with the largest component of φ∗, i.e. the largest site prob-
ability. We then sort the elements of the leading eigenvector such that
they are both in the decreasing magnitude order of the coefficients of the
eigenvector, and satisfy edge connectivity constraints on the graph. The
procedure is a recursive one that proceeds as follows. At each iteration, we
maintain a list of pixel sites visited. At iteration k let the list of pixel sites
be denoted by Lk. Initially, L0 = jo where j0 = arg maxj φ∗(j), i.e. j0 is
the component of φ∗ with the largest magnitude. Next, we search through
the set of first neighbours Nj0 = {k|(j0, k) ∈ E} of jo to find the pixel site
associated with the largest remaining component of φ∗. The second element
in the list is j1 = arg maxl∈Nj0

φ∗(l). The pixel site index j1 is appended to
the list of pixel sites visited and the result is L1. In the kth (general) step
of the algorithm we are at the pixel site indexed jk and the list of pixel sites
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visited by the path so far is Lk. We search through those first-neighbours
of jk that have not already been traversed by the path. The set of pixel
sites is Ck = {l|l ∈ Njk

∧ l /∈ Lk}. The next site to be appended to the path
list is therefore jk+1 = arg maxl∈Ck

φ∗(l). This process is repeated until
no further moves can be made. This occurs when Ck = ∅ and we denote
the index of the termination of the path by T . The serial ordering of the
pixel sites that results from this edge-based sorting is the integration path
Γ = LT .

6.5. Height Recovery

Our surface height recovery algorithm proceeds along the sequence of pixel
sites defined by the order of the coefficients of the leading eigenvector
associated with the edge-weight matrix. If the path is Γ = (j1, j2, j3, . . .),
where the order is established using the method outlined in Section 6.4,
we can increment the surface height-function as we move from site to site
in this path. In this section, we describe the trigonometry of the height
incrementation process.

At step n of the algorithm, we make a transition from the pixel with
path-index jn−1 to the pixel with path-index jn. The distance between the
pixel-centres associated with this transition is

rn =
√

(x2
jn
− xjn−1)2 + (yjn − yjn−1)2 (22)

This distance, together with the surface normals �Njn = [Njn(x), Njn(y),
Njn(z)]T and �Njn−1 = [Njn−1(x), Njn−1(y), Njn−1(z)]T at the two pixel-sites
may be used to compute the change in surface height associated with the
transition. The height increment is given by

hn =
rn

2

{
Njn(x)
Njn(y)

+
Njn−1(x)
Njn−1(y)

}
(23)

If the height-function is initialised by setting zj0 = 0, then the centre-height
for the pixel with path-index jn+1 is zjn+1 = zjn +hn. The geometry of this
procedure is illustrated in Figure 6.3.1b.

6.6. Experiments

In this section, we present results for our surface height recovery method.
In all our experiments, for purposes of recovering the integration path, we
have used the graph-spectral seriation method. We have done this in order
to be consistent with the algorithm description presented in Section 4. We
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Figure 6.2. Top row: Artificially generated data; Middle row: Reconstructed surface;
Bottom row: Error plot.

have divided our experimental evaluation into two parts. We commence
with a sensitivity study aimed at evaluating the method on synthetic data.
In the second part of the section, we focus on real-world data.

6.6.1. SYNTHETIC DATA

In this section, we provide some experiments on synthetic data. The aim
here is to determine the accuracy of the surface reconstruction method. To
this end, we have generated synthetic surfaces. From the surfaces, we have
computed the field of surface normal directions. We have then applied the
graph-spectral method to the field of surface normals to recover an estimate
of the surface height.

In Figure 6.2, we show the results obtained for a series of different
surfaces. In the top row, we show the original synthetic surface. The middle
row shows the surface reconstructed from the field of surface normals. The
bottom row shows the absolute error between the ground-truth and the
reconstructed surface height. The surfaces studied are a dome, a sharp
ridge, a torus and a volcano. In all four cases the surface reconstructions
are qualitatively good. For the reconstructed surfaces, the mean-squared
errors are 5.6% for the dome, 10.8% for the ridge, 7.8% for the torus and
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for surfaces containing sharp creases.
We have repeated these experiments under conditions of controlled

noise. To do this, we have added random measurement errors to the sur-
face height. The measurement errors have been sampled from a Gaussian
distribution with zero mean and known variance. In Figure 6.3, we show
the result of reconstructing the surfaces shown in Figure 6.2 when random
height errors have been added. In the left-hand column of the figure we
show the field of surface normals for the noise-free surface. In the second
column, we show the field of surface normals for the noise-corrupted surface.
In the third column, we show the reconstructed height-function obtained
from the noisy surface normals. The fourth, i.e. rightmost, column shows
the difference between the height of the surface reconstructed from the noisy
surface normals and the ground-truth height function. In the case of all four

Figure 6.3. Left-hand column: Needle-map without added noise; Second Column: Nee-
dle-map with Gaussian noise added (worst case with variance set to unity); Third column:
Reconstructed surface; Right-hand column: Error plot.

4.7% for the volcano. Hence, the method seems to have greater difficulty
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surfaces, the gross structure is maintained. However, the recovered height is
clearly noisy. The height difference plots are relatively unstructured. These
are important observations. They mean that our graph-spectral method
simply transfers errors in surface normal direction into errors in height,
without producing structural noise artefacts.

To investigate the effect of noise further, in Figure 6.4, we plot the
mean-squared error for the reconstructed surface height as a function of
the standard deviation of the added Gaussian noise. From the plots for the
different surfaces shown in Figure 6.2, it is clear that the mean-squared
error grows slowly with increasing noise standard deviation.

6.6.2. REAL-WORLD DATA

The second part of our experimental evaluation focusses on real-world im-
agery. Here, we have applied our surface recovery method to needle-maps
extracted making use of the shape-from-shading algorithm of Worthington
and Hancock (Worthington and Hancock, 1999). It should be stressed,
however, that the method can be used in any situation where surface-
data is presented in the form of a field of surface normals sampled on a
plane. Hence, it can also be used in conjunction with shape-from-texture
and motion analysis.

In the top row of Figure 6.5, we show our first example. The image used
is that of a detail of a porcelain urn. The four panels in the top row of the
figure convey the following information. The panel in the left-hand side,
shows the raw image. The second and third panels show two views of the
reconstructed surface. The main features to note here are that both, the
convexities and concavities on the surface are well reconstructed. In the far-
right panel we show the integration path, i.e. the order of the components
of the leading eigenvector, for each site in the path. The path appears to
follow the main height contours on the surface patches.

The second and third rows repeat this sequence of images for two im-
ages from the University of Central Florida data-base which is used in the
comparative study of Zhang et al. (Zhang et al., 1999). The images are
those of a vase and a bust of Beethoven. The overall shape of the vase
is well reconstructed and the fine detail of the face of Beethoven is well
reproduced.

6.7. Conclusions

In this chapter, we have described how the surface height may be recovered
making use of graph-spectral methods. The work described here can be
further extended and improved in a number of different ways. Firstly, there
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Figure 6.4. Surface reconstruction error versus noise variance.

Figure 6.5. Results on real-world imagery.
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Cvetković, D., M. Doob, and H. Sachs: Spectra of Graphs: Theory and Application.
Academic Press, 1980.

Do Carmo, M. P.: Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.
Dupuis, P. and J. Oliensis: Direct method for reconstructing shape from shading. In Proc.

IEEE Conf. Computer Vision Pattern Recognition, pages 453–458, 1992.
Frankot, R. T. and R. Chellappa: A method of enforcing integrability in shape from

shading algorithms. IEEE Trans. Pattern Analysis Machine Intelligence, 4:439–451,
1988.

Horn, B. K. P.: Height and gradient from shading. Int. J. Computer Vision, 5:37–75,
1990.

Horn, B. K. P. and M. J. Brooks: The variational approach to shape from shading.
Computer Vision Graphics Image Processing, 33:174–208, 1986.

Karaçali, B. and W. Snyder: Reconstructing discontinuous surfaces from a given gradient
field using partial integrability. Computer Vision Image Understanding, 92:78–111,
2003.
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is clearly scope for using more elaborate differential geometry to construct
the affinity matrix. One possibility here is to attempt to ensure consistency
of the integration path direction, and that of the local minimum curvature
direction. Another possible direction is to develop a more sophisticated
model for the integration path. Here, we have sought the path that is
the steady state random walk of a Markov chain on a graph. This is a
type of diffusion process. A more principled approach may be to pose the
recovery of the integration path as the solution of a stochastic differential
equation. In other words, the integration path may be posed as the solution
of a Fokker-Plank equation. Finally, it may be interesting to investigate
whether the idea of recovering a path using graph-spectral methods can be
applied to 2D curve enhancement problems. In particular, the behaviour of
curves in noisy imagery is frequently posed as a diffusion process. Hence,
the behaviour of the transition probabilities is governed by a stochastic
differential equation, and the steady state random walk is a natural way to
characterise such systems.
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SEGMENTATION OF BOUNDARIES INTO CONVEX AND

CONCAVE PARTS
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Abstract. Representing a set by its boundary means a considerable losslesss data reduc-
tion by decrease of dimensionality. The price for this reduction is that usually boundaries
are topologically much more complex than the sets described by them.

The aim of this paper is to present an approach for handling the boundary of a set.
This approach does not make use of differential geometry. It is shown that it is indeed
possible to derive important structural properties of a set by inspecting only its boundary.

Key words: planar sets, boundaries, convex and concave parts

7.1. Introduction

A set in the plane (or in higher dimensional space) can be described
efficiently by means of its boundary (or surface) whenever the boundary
has the Jordan property which means that it separates the plane into
two connected components, the interior and the exterior. In this paper
the following question is investigated: What can be said about a set if its
boundary is probed in a finite number of points?

When investigating the boundary of a set, it is appropriate to impose
‘tameness’ assumptions on it. In the context of image processing, polygonal
or even discrete sets are considered, so the usual tools of differential geome-
try are not adequate. Consequently, a ‘differentialless’ geometry in the sense
defined in (Latecki and Rosenfeld, 1998) should be adapted. A very efficient
description of a set can be found by attributing its boundary with predicates
as convex or concave parts (Latecki and Lakämper, 1999). This representa-
tion is closely related to the ‘Curvature Scale Space’ (see e.g. (Mokhtarian,
1997)). In the latter approach the curvature zero crossing points were used
as signatures in scale space. These curvature crossing points correspond to
points where convex and concave parts of the boundary curve overlap. This
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means that the description by means of convex and concave parts is more
general than the curvature zero crossings since the former does not make
use of any concept from differential geometry. Moreover, by labeling parts
of the boundary between curvature crossing points as convex or concave
parts, ambiguities can be avoided. This is of major importance for shape
coding algorithms (Heuer et al., 1999).

The mapping associating to each linear functional the set of its local
maximizers on a nonempty compact convex set is upper semi–continuous
(this concept will be defined later, see Definition 5.1). Moreover, an upper
semi–continuous inverse for this map can be found. The study of this map
yields insights into the structure of the boundary of a given set. The map-
ping can be deformed to yield a homeomorphism from the unit sphere onto
the boundary of the set. Moreover, by a finite number of boundary points
and tangent directions one can find a directionally convex set containing
the given set.

In the general case, things become very complicated. It becomes neces-
sary to rule out ‘wild’ boundary parts. A minimal requirement is that the
boundary of the set under consideration should have the Jordan property.
However, some more structure has to be imposed in order to get practi-
cal results. A certain regularity condition is stated which is theoretically
tractable and practically acceptable.

In ((Scherl, 1987), see also (Eckhardt et al., 1987)) constructed a docu-
ment processing system. In this system, a set (e.g. a letter, a word, a text
line . . . ) is represented by a rather small subset of boundary points together
with tangent information. By means of this representation the amount of
data can be reduced very efficiently while retaining sufficient information
to perform typical pattern recognition tasks like segmentation of letters,
words, text lines, or a classification of different document components (text,
structuring elements, pictures), or classification of specific letter styles in
the text (serifs, slanted letters).

The aim of this paper is to give a theoretical framework for the concepts
mentioned above which is able to cover also the discrete case. First, some
known theoretical results about properties of boundaries of sets are given.
Under a certain regularity condition the boundary consists of finitely many
convex and concave parts which can be used for describing the boundary. In
the second part it is shown that the boundary of a convex set in R

d can be
mapped “almost homeomorphic” onto the sphere Sd−1. The generalization
to the nonconvex case is indicated. It was not intended here to provide
algorithmic details, this is partially done in Helene (Dörksen, 2004).
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7.2. Sets and Surfaces in R
d

We consider sets in R
d. Denote by 〈·, ·〉 the ordinary scalar product and by

‖ · ‖ the Euclidean norm in R
d. The natural topology of R

d is generated by
declaring the sets (open balls)

Bε(x) =
{

y ∈ R
d | ‖y − x‖ < ε

}
(for ε > 0) to be open sets. If the specific value of ε > 0 does not matter
we write B(x) instead of Bε(x).

Let S ⊆ R
d be a bounded set. Denote by cl S its topological closure, by

int S its interior and by Γ = bd S the boundary of S.
In R

d the sphere Sd−1 is defined by

Sd−1 =
{

x∗ ∈ R
d | ‖x∗‖ = 1

}
.

The elements x∗ in Sd−1 are also termed directions.

DEFINITION 7.1. A (closed) surface in R
d is a set Γ which is home-

omorphic to the sphere Sd−1. A surface in R
2 is also termed a (closed)

curve.

One important tool of our investigations will be convexity theory (see
the books (Eggleston, 1958), (Valentine, 1964) or (Rockafellar, 1970)).

DEFINITION 7.2. A set S ⊆ R
d is said to be convex if x, y ∈ S and

0 ≤ λ ≤ 1 together imply (1− λ)x + λy ∈ S.

DEFINITION 7.3. Given any set S ⊆ R
d. The convex hull of S is the

smallest convex set which contains S. It is denoted by conv S.

Since the intersection of any system of convex sets is always convex, the
concept of the convex hull is well defined.

DEFINITION 7.4. Let D ⊆ Sd−1 be a set of directions.
The set S is D–convex if for all x∗ ∈ D and for all x ∈ R

d the set
S ∩ {x + tx∗ | t ∈ R} is convex (i.e. an interval).

By this Definition, a D–convex set needs not be connected, in contrast
to convex sets. The intersection of any system of D–convex sets is always
D–convex. However, the intersection of connected D–convex sets is not
necessarily connected (see Example 7.1). By taking the intersection of all
D–convex sets containing a given set S, we obtain the D–convex hull of S
which is the smallest D–convex set containig S. For properties of D–convex
sets see (Fink and Wood, 2004).
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S1

S2

S1

S2

The sets S1 and S2 are both connected and D–convex with respect to
D = {(0, 1), (1, 0)}. Their intersection (shaded area) is D–convex but
not connected.

Figure 7.1. Intersection of two D–convex sets.

EXAMPLE 7.1. In Figure 7.1 an example of two sets is given which are
convex with respect to two directions in the plane and connected whose
intersection, however, is D–convex but not connected.

7.3. Convex and Concave Points

Given a set S ⊆ R
d with boundary Γ. Generally we assume that S is a

compact set.

DEFINITION 7.5. x ∈ Γ is a convex point of S if there is a neighborhood
B(x) such that B(x) ∩ S is convex. Denote by T0 ⊆ Γ the set of all convex
points of S.

x ∈ Γ is a concave point of S if there is a neighborhood B(x) such that
B(x) ∩ CS is convex (CS = R

d \ S is the complement of S). Denote by
S0 ⊆ Γ the set of all concave points of S.

In Figure 7.5 below one can find examples for convex (pictures T, L) and
concave points (S, L) as well as a point which is neither convex nor concave
(picture I). Generally it is possible that a dense subset of the boundary
consists of points of the latter type (see the discussion at the begin of
Section 7.5 below). We have to impose regularity conditions in order to
rule out such situations.

From the Separation Theorem for Convex Sets (Valentine, 1964, Part
II) we conclude:

If x is a convex point of S then
C1 there exists a neighborhood B(x) and a direction x∗ ∈ Sd−1 such
that z ∈ B(x) and 〈z, x∗〉 > 〈x, x∗〉 imply z /∈ S.
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If x is a concave point of S then
C2 there exists a neighborhood B(x) and a direction x∗ ∈ Sd−1 such
that z ∈ B(x) and 〈z, x∗〉 < 〈x, x∗〉 imply z ∈ S.

This observation leads to the Definition

DEFINITION 7.6. x ∈ Γ is a T–point (‘Top point’) of S if there is a
neighborhood B(x) and a direction x∗ ∈ Sd−1 such that z ∈ B(x) and
〈z, x∗〉 > 〈x, x∗〉 imply z /∈ S. Denote by T ⊆ Γ the set of all T–points
of S.

x ∈ Γ is an S–point (’Saddle point’) of S if there is a neighborhood
B(x) and a direction x∗ ∈ Sd−1 such that z ∈ B(x) and 〈z, x∗〉 < 〈x, x∗〉
imply z ∈ S. Denote by S ⊆ Γ the set of all S–points of S.

REMARK 7.1. The notations ‘T–point’ and ‘ S–point’ are due to Scherl
(Scherl, 1987) who introduced these concepts in the context of document
analysis.

For deciding whether a given boundary point is a T– or S–point only
information from the boundary is needed together with an indication on
which side of the boundary the set is situated. In contrast, for deciding
whether a boundary point is convex or not, information has to be gathered
from its neighborhood which contains points not on the boundary. Therefore,
the concept of T– or S–points is more well–suited for practical applications
than the concept of convex and concave points.

REMARK 7.2. There exist examples of nonconvex sets whose boundaries
consist only of T–points. (Tietze, 1929) gave a condition guaranteeing that
this situation cannot happen (see condition A in Section 7.4 below and
(Valentine, 1964, Theorem 4.4)).

We can associate to each T– or S–point of Γ a direction x∗ ∈ Sd−1 such
that C1 or C2, respectively, holds for this point. This lead (Scherl, 1987)
to the following Definition:

DEFINITION 7.7. The pair (x, x∗) is a T or a x∗–T ( S or x∗–S) descriptor
of S if x ∈ Γ is a T– ( S–) point and if C1 (C2) with direction x∗holds in x.

There are points on the boundary which are T–points as well as S–
points. For convenience we give them an extra name:

DEFINITION 7.8. x ∈ Γ is an L–point (‘Line point’) of S if x is as well
a T– as an S–point. Denote by L ⊆ Γ the set of all L–points of S.
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We define further:

DEFINITION 7.9. A point x ∈ Γ is an extreme T–point if there exists a
direction x∗ ∈ Sd−1 such that 〈z, x∗〉 > 〈x, x∗〉 implies z /∈ S. Denote by
ET ⊆ Γ the set of all extreme T–points of S.

A point x ∈ Γ is an extreme S–point if there exists a direction x∗ ∈ Sd−1

such that 〈z, x∗〉 > 〈x, x∗〉 implies z /∈ S. Denote by ES ⊆ Γ the set of all
extreme S–points of S.

We state some rather simple topological properties which follow directly
from the definitions.

LEMMA 7.1. The sets T0 and S0 are open subsets of Γ.
L = T0 ∩ S0 = T ∩ S is open.
The sets ET and ES are closed subsets of Γ.

DEFINITION 7.10. Given a set S ⊆ R
d with boundary Γ. The subset Γ0

of Γ is termed a convex patch of the boundary if conv Γ0 ⊆ S ∪ Γ.
Γ0 is termed a concave patch of the boundary if conv Γ0 ⊆ CS ∪ Γ,

where CS = R
d \ S is the complement of S.

Clearly, Γ0 is a concave patch of the boundary of S if and only if it is a
convex patch of the (dlosure of) boundary of CS.

In the following we will investigate questions like these:

− Are boundary patches consisting entirely of convex (concave) points
convex (concave) patches?

− If Γ = bd S is the union of finitely many convex patches, does this
imply that S is convex?

− What can be said about points of Γ which are neither convex nor
concave points?

− How many convex or concave points do exist on the boundary of a —
say closed, connected, bounded — set? More mathematically: is the
set T ∪ S dense on Γ?

The first two questions were answered by a couple of Theorems due
to Henrich Tietze (see (Tietze, 1929; Tietze, 1928; Tietze, 1927a; Tietze,
1927b) and (Valentine, 1964, Part IV)). The last two questions are not easy
to answer. We need very deep results from topology or else very strong
assumptions (e.g. the requirement that all boundary points are ‘tame’
(Latecki and Rosenfeld, 1998)).
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7.4. S–Points and D–Convexity

We now are going to answer the first two questions above concerning convex
and concave points or patches, respectively. It should be remarked here,
however, that all results proved in this section hold only in the plane R

2.
We introduce the following assumption:

A The interior int S of the set S is connected and S is regular closed, i.e.
S = cl int S.

LEMMA 7.2. Let S ⊆ R
2 be a set fulfilling condition A.

Assume that there exists a direction x∗ ∈ S1 and a number α such that
the set {x ∈ S | 〈x, x∗〉 = α} is not connected.

Then there exists an S–point x ∈ Γ. More precisely, either the pair
(x, x∗) or the pair (x,−x∗) is an S–descriptor pair of S.

The assertion of the Lemma is essentially the assertion of the Theorem
Léja and Wilkosz (Léja and Wilkosz, 1924) (see (Valentine, 1964, Theorem
4.8)). The assumption involving direction x∗ ∈ S1 is equivalent to the
assumption that S is not convex.

Lemma 7.2 may be sharpened as follows:

COROLLARY 7.1. Let D ⊆ S1.
If a set S ⊆ R

2 fulfilling condition A does not contain any ±x∗–S–
descriptor points with x∗ ∈ D then it is D–convex.

The contrary of the Corollary is not necessarily true as it is illustrated
in Figure 7.4. In order to prove the converse of the Corollary we need a
nondegeneracy assumption.

�

The set S in the picture is D–convex with respect to the set D containing
the horizontal and the vertical directions. However, there is a vertex
point (marked •) which is an S–point of S.

Figure 7.2. Example of a D–convex set.
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DEFINITION 7.11. Let (x, x∗) be an S–descriptor of a set S ⊆ R
d. x is

termed a strict S–point with respect to x∗ ∈ Sd−1 if for any line � through
x perpendicular to x∗, the component of � ∩ S containing x is closed.

REMARK 7.3. The requirement that a point is a strict S–point is not a
‘local’ one since one has to check in each case when an S–point is en-
countered which is adjacent to a component of L, whether the point on the
other end of the component is also an S–point. This is the reason why the
concept of D–convexity, which is a very natural concept in the framework
of digital geometry (see (Fink and Wood, 2004)), is ‘harder’ to handle than
ordinary convexity (see (Debled–Rennesson et al., 2000; Debled–Rennesson
and Reveillès, 1995; Eckhardt and Reiter, 2003; Eckhardt, 2001)).

LEMMA 7.3. Given a set S ⊆ R
2 fulfilling condition A. Let D ⊆ S1.

If Γ contains a strict S–descriptor (x, x∗) with x∗ ∈ D then S is not
D–convex.

The proof of this Lemma is an extension of the proof of Léja and
Wilkosz’ Theorem (Valentine, 1964, Theorem 4.8).

We now are able to state a Characterization Theorem for D–convexity.

THEOREM 7.1. Given a set S ⊆ R
2 with property A. Let D ⊆ S1.

S is D–convex if and only if its boundary Γ contains no strict S–
descriptors (x, x∗) with x∗ ∈ D.

The proof of this Theorem follows immediately from Lemma 7.3 and
Lemma 7.2.

For a subset D of directions we define D–convex and D–concave patches
of the boundary as in Definition 7.10 by replacing the convex hull by the
D–convex hull.

We define a strict T–descriptor of the set S to be a strict S–descriptor
of the (closure of the) +complement of S.

With these definitions we state:

THEOREM 7.2. Let S ⊆ R
2 be a set with boundary Γ fulfilling condition

A.

1. A connected subset Γ0 of Γ is a convex (concave) patch of Γ if and only
if it consists entirely of T– (S–) points.

2. A connected subset Γ0 of Γ is a D–convex (D–concave) patch of Γ if and
only if does not contain any strict S–descriptors (strict T–descriptors)
(x, x∗) with x ∈ Γ0 and x∗ ∈ D.



SEGMENTATION OF BOUNDARIES 133

7.5. Regular Boundaries

In order to answer the questions concerning T and S from the end of
Section 7.3 we need concepts from topology. The last one of these questions
is indeed very deep and it cannot be treated here. There are indeed sets
having nontrivial parts of the boundary consisting entirely of points which
are neither T– nor S–points. An example of such a set (the ‘Warsaw circle’)
is given in (Giraldo et al., 1999). In this example, however, the boundary
is not a Jordan curve. Based on a characterization of Jordan curves in
the plane by ((Schönflies, 1900; Schönflies, 1900), see (Rinow, 1975, §40)),
Kaufmann (Kaufmann, 1931) was able to prove that for a Jordan boundary
the set T ∪S is dense on the boundary. The famous von Koch curve (Koch,
1906) is an example of a Jordan curve with the property that all three sets
T , S and also the complement of these both sets are dense on the curve.
We need a strong regularity condition to rule out such situations. Generally
we assume that the boundary Γ of a set S ⊆ R

d is a surface, i.e. that it is
a homeomorphic image of Sd−1.

DEFINITION 7.12. x ∈ Γ is a regular point of S if there is a neighborhood
B(x) such that both B(x)∩T and B(x)∩S consist of at most finitely many
connected components.

The boundary of a set is called a regular boundary if it consists only of
regular boundary points.

REMARK 7.4. In R
2 a point x is regular if and only if there is a neigh-

borhood B(x) such that either

1. B(x) ∩ (T ∪ S) consists of exactly one connected component, or else
2. (B(x) ∩ Γ) \ {x} consists of two connected components. Each such

component is completely contained in T or S.

There remains one class of boundary points on regular boundaries:

DEFINITION 7.13. x ∈ Γ is an I–point (‘Indifferent point’) of S if x is
regular and neither a T–point nor an S–point. Denote by I ⊆ Γ the set of
all I–points of S.

By definition, I–points are always isolated points on the (regular) bound-
ary. They separate components of T and S. In Figure 7.5 examples for all
types of regular points in the plane R

2 are shown.

7.6. Upper Semi–Continuous Mappings

For analyzing the boundary of a set wee need some results from the theory
of set–valued mappings (see (Aubin and Frankowska, 1990)).
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� T � S

� L � I

The set S is shaded, the boundary point x under consideration is marked •.
The line through the point indicates the line perpendicular to x∗.

Figure 7.3. Types of regular points in the plane.

DEFINITION 7.14. Let E and F be two topological spaces and denote by
P(F ) the collection of all non–empty subsets of F . A point–to–set mapping
f : E −→ P(F ) is said to be upper semi–continuous if, for any point x0 ∈ E
and any open set U ⊆ F with f(x0) ⊆ U , there exists a neighborhood V of
x0 such that f(x) ⊆ U for all x ∈ V .

Consequences

− Every continuous function is upper semi–continuous.
− Every upper semi–continuous point–to point mapping is continuous
− The composition of upper semi–continuous mappings is upper semi–

continuous.

DEFINITION 7.15. For a set–valued mapping f : E −→ P(F ) we define
a set–valued inverse mapping. For y ∈ F let

f−1(y) = {x ∈ E | y ∈ f(x)}.

The assertions of the following two Theorems follow directly from the
definition of upper semi–continuity:

THEOREM 7.3. Assume that the set–valued mapping f : E −→ P(F ) is
upper semi–continuous and in addition assume that f(x) is connected for
all x ∈ E.

Then for each connected subset S ⊆ E the image f(S) is also connected.
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THEOREM 7.4. The set–valued mapping f : E −→ P(F ) is upper semi–
continuous if and only if for each closed set S ⊆ F the set f−1(S) is
closed.

REMARK 7.5. As a consequence of the Theorem, if f maps E into the
system of all closed subsets of F then f−1 maps F into the system of all
closed subsets of E.

7.7. Tangent Mappings

DEFINITION 7.16. Let S be a nonempty compact subset of R
d. The func-

tion µ : Sd−1 −→ R which is defined by

µ(x∗) = max
x∈S
〈x, x∗〉

is called the support functional of S (see (Kindratenko, 2003, Section
2.3.)).

The set–valued mapping Ψ : Sd−1 −→ P(S) with

Ψ(x∗) = arg max
x∈S
〈x, x∗〉

is called the tangent mapping of S.

It is well–known (see e.g. (Aubin and Frankowska, 1990)) that µ is
continuous and that Ψ is upper semi–continuous whenever S is a nonempty
compact subset of R

d.

REMARK 7.6. For nonempty compact S ⊆ R
d all sets Ψ(x∗) are closed

since

Ψ(x∗) = S ∩ {x ∈ R
d | 〈x, x∗〉 = µ(x∗)}.

THEOREM 7.5. Let S be a nonempty closed convex subset of R
d.

The set–valued mapping Ψ−1 : S −→ P(Sd−1) with

Ψ−1(x) = {x∗ ∈ Sd−1 | x ∈ Ψ(x∗)}
is upper semi–continuous.

LEMMA 7.4. Assume that the conditions of Theorem 7.5 hold. Let y ∈
bd S and x∗

1, x
∗
2 be two directions in Ψ−1(y).

Then all directions from the set{
x ∈ R

d | x = λ1x
∗
1 + λ2x

∗
2, λ1, λ2 ≥ 0

}
∩ Sd−1

belong to Ψ−1(y).
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REMARK 7.7. Lemma 7.4 states that all directions in Ψ−1(y) can be ob-
tained as the intersection of a convex cone with vertex Θd (= origin of R

d)
and Sd−1. This implies that Ψ−1(y) is always a connected subset of Sd−1.

7.8. Structure of Regular Boundaries — The Convex Case

Ψ−1, the inverse of the tangent mapping Ψ, is only a well–defined mapping
on Γ if S is a convex set. Whenever S is convex, Ψ−1 is even an upper semi–
continuous mapping. Hence, the pair (Ψ, Ψ−1) is in the convex case ‘nearly’
a homeomorphism. We sketch here, how this can be shown rigourosly. First
we need a concept from convexity theory:

DEFINITION 7.17. Let S be a closed convex set and x ∈ bd S. The direc-
tion x∗ ∈ Sd−1 is termed the normal vector of a supporting hyperplane at
S in x whenever 〈z, x∗〉 > 〈x, x∗〉 implies z /∈ S (see C1).

The Separation Theorem for Convex Sets (Valentine, 1964, Part II)
guarantees that a convex set has at least one supporting hyperplane in
each of its boundary points.

DEFINITION 7.18. Let S be a nonempty bounded closed convex set in R
d.

S is smooth if for each boundary point of S the supporting hyperplane
is uniquely determined.

S is strictly convex if all supporting hyperplanes meet the boundary of
S in exactly one point.

If a set S is strictly convex then the mapping Ψ is a point–to–point map
from Sd−1 to the boundary Γ of S. If S is smooth then the inverse map Ψ−1

is a point–to–point map. Hence, if S is smooth and strictly convex, then
both Ψ and Ψ−1 are continuous and inverse to each other, consequently,
Ψ : Sd−1 −→ Γ is a homeomorphism.

THEOREM 7.6.
Given a closed bounded convex set S with nonempty interior and a real

number ε > 0.
Then there exists a closed bounded convex set Sε which is smooth and

strictly convex such that S ⊆ Sε and dH(S, Sε) < ε.
Here, dH denotes the Hausdorff distance for sets, this means in this

context (S⊆Sε) that for each xε ∈ Sε there is an x ∈ S such that ‖x−xε‖< ε.

For a proof of this Theorem see (Eggleston, 1958, Theorem 34).
For any closed bounded convex set S with boundary Γ which has non

empty interior we can construct an ε–homeomorphism in the following way:
-
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− Construct Sε as in Theorem 7.6.

− The mapping Ψε : Sd−1 −→ bd Sε is a homeomorphism.

− Select any point x0 ∈ int S. The central projection Πx0 : bd Sε −→ Γ
with center x0 is

Πx0(x) = {x0 + λ(x− x0) | λ > 0 maximal such that
x0 + λ(x− x0) ∈ S}.

Πx0(x) exists for any x �= x0 by compactness of S and is a homeomor-
phism.

− Let Ψ : Sd−1 −→ P(Γ) be the — generally set–valued — map as
defined above. The composite mapping Πx0 ◦ Ψε : Sd−1 −→ Γ is a
homeomorphism with the property that for given ε > 0 there exists
a number C such that for each x∗ ∈ Sd−1 and each x ∈ Ψ(x∗) there
exists an xε = Πx0Ψε(x∗) such that ‖x− xε‖ < C · ε and for each each
xε = Πx0Ψε(x∗) there exists an x ∈ Ψ(x∗) such that ‖x− xε‖ < C · ε.

7.9. General Plane Sets with Regular Boundaries

If a set S ⊆ R
2 has a regular boundary then its boundary consists of a

finite number of components of T (convex parts of the boundary) and S
(concave parts).

Generally, for the convex hull conv S of a (compact) set, we can apply
the results derived above. Specifically, for each ε > 0 there exists an
ε– homeomeorphism bd conv S −→ S1 as shown above.

The convex defect S \ conv S consists by regularity of the boundary
of a finite number of components. Each of these components consists of
finitely many convex or concave parts. We can construct for each of these
parts an ε–homeomeorphism on a new copy of S1 so that we finally get
an ε–homeomeorphism mapping the boundary of S onto a finite number
of S1’s. Instead of elaborating this procedure formally, we illustrate it by
means of a simple example (see Figure 7.10).

Along convex or concave parts of a set in R
2 the succession of de-

scriptors is not arbitrary. Since S1 is oriented and since there is an ε–
homeomeorphism mapping each convex or concave part of the boundary
onto S1, also the boundary is oriented. Note, however, that the succession
of descriptors is reverted by transition from a convex to a concave part
and vice versa. Scherl illustrated this effect by means of so–called legal
descriptor cycles (Scherl, 1987, Figure 5.2.4.), see Figure 7.9.
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Descriptor directions corresponding to multiples of π
4 are indicated.

These directions are the main directions in the digital plane Z
2.

Figure 7.4. Scheme of descriptor cycles and legal transitions.

7.10. Applications

It has been shown by (Scherl, 1987) by means of numerous examples and
also by a prototype implementation that it is possible to describe shape by
a relatively small number of descriptor points. As in Scherl’s experiments
we consider the case of plane sets and the set of descriptors belonging to
directions k · π

4 which are well adapted to the digital plane Z
2 which is the

set of all points of the plane having integer coordinates.
The extraction of the descriptors can be done very efficiently as a by–

product of boundary extraction at virtually no additional cost. The oriented
set of all descriptors (points with a label indicating the corresponding tan-
gent direction and also pointers indicating the succession relation of the
descriptor points on the oriented boundary) yields a data reduction while
retaining the rough shape of the set under consideration.

The boundary and the descriptors may be viewed as a pyramid struc-
ture:

− The bottom of the pyramid is the ordered sequence of boundary points
of the set which is coded in some appropriate manner (e.g. by means
of a chain code).
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− Digital sets are subsets of Z
d. Under certain known conditions (which

means that some discrete Jordan Theorem holds, i.e. a set is uniquely
determined by its discrete boundary) a digital set can be represented by
means of its boundary. Specifically for plane digital sets it is possible to
select a subset of the boundary points which can be joined according to
the orientation of the boundary as to to yield a faithful representation
of the set, i.e. the reduced boundary is a polygonal Jordan curve which
contains exactly all points of the given set in its interior (Eckhardt and
Reiter, 2003).

− A subset of the boundary of a set – or else of any faithful represen-
tation of the boundary of a digital set – is given by the oriented set
of all descriptors. The tangents corresponding to the T–descriptors
belonging to a set D of directions yield the D–convex hull of the set.
By joining any two descriptor points which are immediate successors
on the oriented boundary, a closed polygonal curve is obtained which,
however, in general needs not to be a simple curve. Nevertheless, these
curves can be efficiently used for a rough representation of shape.

− The set of all extreme T–descriptors belonging to a set D of directions
(here all directions k · π

4 ) provide the smallest convex polytope whose
sides have directions from D (a so–called D–polytope) which contains
the set under investigation.

The data structure provided by this pyramid can be used for different
pattern recognition tasks. For example, the linear time convexity detection
algorithm from (Debled–Rennesson et al., 2000) starts at the top of the
pyramid with direction set D = {k · π

2 }. First, the authors verify D–
convexity of the given set. Then the boundary of this set is segmented
by means of all descriptor points and descriptor tangents having directions
from D. This results in boundary parts having a very favourable structure
considering convexity detection.

An interesting subject is the investigation of this ‘Scherl–pyramid’ under
discrete boundary evolution (Latecki and Lakämper, 1999). Specifically, the
information obtained from a faithful representation of a digital set can be
used to control the evolution process. This, however, is far beyond the topic
of this paper (see (Eckhardt and Reiter, 2003)).

If only information from a finite number of ‘probes’ of boundary points
is available (together with tangent directions) then the observation that
the sequence of descriptors along the boundary is oriented can be used to
find inclusions for the missing parts of the boundary if it is assumed that
the directions between two successive probes lie within a certain interval.
Such ‘interpolation’ assertions can be easily derived. We give one simple
example:
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THEOREM 7.7. Given in the plane a set S with oriented boundary Γ.
Let (x1, x

∗
1) and (x2, x

∗
2) be two T–descriptors of S. Assume that on the

boundary part Γ12 which is between (in the sense of the orientation of Γ)
x1 and x2 there are only descriptors (x, x∗) which are between (in the sense
of orientation of S1) x∗

1 and x∗
2. Then Γ12 is completely contained in the

parallelogram of all x ∈ R
2 satisfying the inequalities

〈x2, x
∗
1〉 ≤ 〈x, x∗

1〉 ≤ 〈x1, x
∗
1〉 ,

〈x1, x
∗
2〉 ≤ 〈x, x∗

2〉 ≤ 〈x2, x
∗
2〉 .

The proof of this assertion follows from investigating the convex hull
of Γ12. In Figure 7.10 an illustrative example is shown. It is possible to
derive inclusions for other situations where also S–descriptors are taken
into account.

�

���

x∗
2

x∗
1

����

�

�
�

��

�
�

�
�� �

�
�

��

S

Long arrows indicate the orientation of the boundary.

Figure 7.5. Example for Theorem 7.7.

We conclude this discussion with a simple example. In Figure 7.10 a
digital set and its boundary is given. The process of finding a stack of S1’s
such that the convex and concave parts of the (outer) boundary can be
homeomorphically mapped on this stack is illustrated in Figure 7.10. In Fig-
ure 7.10 the smallest convex D–polygon containing the set as obtained from
the extreme T–descriptors is shown as well as the polygonal approximation
which is found by joining the descriptor points by line segments.

7.11. Conclusions

Under suitable conditions it is possible to derive properties of boundaries
of sets using only tools from convexity theory without making any differ-
entiability assumptions. It was shown that the boundary of a set can be
mapped ‘almost’ homeomorphically to a stack of spheres.
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In the left picture a digital set is given. The right picture shows the
boundary of the set. The boundary can be understood to consist of two
closed polygonal curves in R

2.

Figure 7.6. Digitization of letter ‘A’.
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The set D consists of all directions k · π
4 .

Figure 7.7. D–convex hull (left) and descriptor approximation (right).

By gathering informations from a finite number of points along the
boundary one can extract properties which are relevant for the shape of
a set. These properties can be arranged in a hierarchical manner as a
pyramid structure. The informations obtained in this way can be used for
defining convex and concave parts of the boundary and for investigating
and controlling discrete evolution of boundary curves.
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Descriptor tangents with angles k · π4 are indicated by Tk or Sk, respectively.

The descriptor tangent T6 at the bottom of the set meets the set in two
disjoint components. Therefore the two upper copies of S1 are cut up
and the points corresponding to T6 on the upper and the middle copy
are identified as indicated to make the mapping of the boundary to the
stack of circles biunique.

Figure 7.8. Mapping of the outer boundary of a set on a stack of descriptor cycles.

There are two important topics which are not treated here. One of them
is the extension to higher dimensions. It is possible to derive properties of
higher dimensional sets by investigating two–dimensional sections of them.
The second problem not treated here is much more difficult. Usually in
applications sets are given in a discrete manner as ‘digital sets’. Therefore
it is desirable to have a completely discrete theory. However, it turns out
that the discrete case is much more complicated than the continuous one
(Debled–Rennesson et al., 2000; Debled–Rennesson and Reveillès, 1995;
Dörksen, 2004; Eckhardt and Reiter, 2003; Eckhardt, 2001).
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Polonaise de Mathématique, 2:222–224, 1924.

Mokhtarian, F.: Silhouette–based occluded object recognition through curvature scale
space. Machine Vision Applications, 10:87–97, 1997.

Lehrbuch der Topologie. Deutscher Verlag der Wissenschaften, Berlin, 1975.
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Priceton, NJ, 1970.
Scherl, W.: Bildanalyse allgemeiner Dokumente. Springer, Berlin, 1987.
Schönflies, A.: Die Entwicklung der Lehre von den Punktmannigfaltigkeiten. Jber.

Deutsch. Math.-Verein., VIII:1–250, 1900.
Schönflies, A.: Die Entwicklung der Lehre von den Punktmannigfaltigkeiten. Bericht

erstattet der Deutschen Mathematiker-Vereinigung.Teil II. Jber. Deutsch.Math.-Verein.,
Ergänzungsband II, 1900.



144 U. Eckhardt

Tietze, H: Bemerkungen über konvexe und nichtkonvexe Figuren. J. reine und ange-
wandte Mathematik , 160:67–69, 1929.
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CONVEX AND CONCAVE PARTS OF DIGITAL CURVES
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Abstract. Decomposition digital curves into convex and concave parts is of relevance in
several scopes of image processing.

In digital plane, convexity cannot be observed locally. It becomes an interesting
question, how far one can decide whether a part of a digital curve is convex or concave by
a method which is “as local as possible”. In (Eckhardt and Reiter, 2004), it was proposed
to define meaningful parts of a digital curve as meaningful parts of the corresponding
polygonal representation. This technique has an approximative character.

In our considerations, we use geometry of arithmetical discrete line segments (Reveillès,
1991; Debled-Rennesson and Reveillès, 1995). We will introduce an exact method to define
convex and concave parts of a digital curve.

Key words: digital geometry, digital convexity, discrete line, convex and concave curves,
polygonal representation

8.1. Introduction

Roots of digital geometry can be found in practical applications of digital
image processing and computer graphics. A considerable part of books on
digital geometry is devoted to convexity (see e.g. (Voss, 1993, Chapter
4.3)). It is a simple observation that convex parts of objects determine their
visual parts. They are of importance, for example, for recognition objects
by comparing with given shapes from a database. However, the problem is
that many significant parts are not convex, since a visual part may have
concavities. So, one is interested in decomposition the boundary of a digital
set into convex and concave parts.

In an earlier paper (Latecki and Lakämper, 1999), such a partition
was performed by segmenting the boundary into digital line segments. In
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an other paper (Eckhardt and Reiter, 2004), it was proposed to define
meaningful parts of the boundary by meaningful parts of the correspond-
ing polygonal representation. The first method is much rougher, however,
both techniques have an approximative character. Also, recent publications,
whose discussions are related to the considered problem, e.g. (Coeurjolly
et al., 2004) is about digital arc segmentation, (Brimkov and Klette, 2004)
elucidates new aspects of digital curves and surfaces, shall attract attention.

Decomposition into meaningful parts allows simplification shapes by
discrete evolution (Latecki and Lakämper, 2002). The aim of this paper is to
investigate the discrete evolution process and its properties specifically with
respect to convex and concave parts of the boundary from a low-level point
of view. The principal idea is to use geometrical properties of arithmetical
discrete lines (Reveillès, 1991; Debled-Rennesson and Reveillès, 1995).

In 1987, a method based on sets of descriptors was proposed (Scherl,
1987). Descriptors are points of local support with respect to a finite number
of directions. In a certain sense, Scherl’s descriptors segment the boundary
of a set into components which are “suspicious candidates” for being convex
or concave parts.

In Section 1 of this paper, we recall definitions about discrete curves.
Then, in Section 2, we present definition and geometrical properties of
arithmetical discrete lines which are used to define fundamental segments
of 8-curves introduced in Section 3. Thanks to this notion, an adaptation
of the concept of convex and concave curves is proposed in Section 4. In
Section 5, the decomposition curves into maximal convex and concave parts
is studied. Finelly, in Section 6, an application to fundamental polygonal
representations of digital curves is presented.

8.2. Digital Curves on Z
2

The digital space Z
d is the set of all points in Euclidean space R

d having
integer coordinates. Digital space Z

2 is also called digital plane. Subsets of
digital plane are termed digital sets, often they are also called digital objects
or digital images. Single elements of Z

2 are termed grid points. A digital
set consisting of all grid points which are lying on a horizontal, vertical or
diagonal real line in R

2 is called a horizontal, vertical or diagonal grid line.
The neighborhood structure is a significant concept in the study of

digital objects. In our considerations, we concentrate on 8-neighborhood
structure for sets and 4-neighborhood structure for their complements.
Generally, the choice of two different notions, one for the object and another
for its complement is related to avoiding certain paradoxes (Kong, 1989).

DEFINITION 8.1. Given an 8-connected digital set K ⊆ Z
2. K is called a

digital 8-curve whenever each point x ∈ K has exactly two 8-neighbors in
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K with the possible exception of at most two points, the end points of the
curve, having exactly one neighbor in K.

A curve without end points is termed a closed curve.

Each digital 8-curve can be ordered (or oriented) in a natural manner.
Let us consider an ordered finite 8-curve K = (κ1, · · · , κn), where κi is an
8-neighbor of κi+1 for i = 1, 2, · · · , n−1. Then, the curve K can be described
by means of a simple compact ordered data structure. It contains coordi-
nates of κ1 and a sequence of code numbers {0, 1, · · · , 7}. Codes indicate
for each point of K which of its neighbors will be the next point on the
curve. This data structure was proposed in (Freeman, 1961) and is known
as chain code.

DEFINITION 8.2. Given an ordered digital 8-curve K = (κ1, · · · , κn). For
k ∈ {0, 1, · · · , 7} the curve K is called a (k, k + 1(mod 8))-curve whenever
the chain code representation of K consists exclusively of two chain codes
k and k + 1(mod 8).

In 1987, so-called shape descriptors (Scherl, 1987) were introduced. De-
scriptors are boundary points of an 8-connected digital set belonging to
local extrema of linear functionals with main directions in digital planekπ

4 ,
k = 0, 1, · · · , 7. Hence, Scherl’s descriptors are segments of horizontal, ver-
tical and diagonal grid lines. They belong to locally convex or concave
parts of the set and termed T - or S-descriptors, respectively. In Figure 8.1,
descriptor points of a digital image are demonstrated.

The succession of descriptor points on the oriented boundary is not
arbitrary (Eckhardt and Reiter, 2004; Scherl, 1987). It can be shown that
the boundary of an 8-connected digital set can be decomposed into (k, k+1
(mod 8))-curves. Moreover, the part between two such successive curves
consists only of descriptor points (Eckhardt and Reiter, 2004).

Since each (k, k + 1(mod 8))-curve is an image by a rotation of some
(0, 1)-curve, in the later sections we may concentrate, without loss of gen-
erality, on (0, 1)-curves.

8.3. Discrete Lines and Convexity

The arithmetical definition of discrete lines was introduced in (Reveillès,
1991).

DEFINITION 8.3. A discrete line with a slope a/b, b �= 0 and pgcd(a, b) =
1, lower bound µ, arithmetical thickness ω is the set of grid points which
satisfies the double diophantine inequality

µ ≤ ax− by < µ + ω

with all integer parameters.
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Figure 8.1. Scherl’s descriptors of ‘Letter A’ are indicated by dark voxels.

A (finite or infinite) subsequence of a discrete line is called a discrete
line segment.

We denote the preceding discrete line by D(a, b, µ, ω). We are mostly
interested in naı̈ve lines which verify ω = sup(|a|, |b|), we shall denote them
by D(a, b, µ). Without loss of generality, we may consider discrete lines
under restrictions a, b > 0 and a < b, therefore ω = max(a, b) = b.

Real straight lines ax− by = µ and ax− by = µ + b− 1 are called upper
leaning line and lower leaning line of D(a, b, µ), respectively. Grid points
which satisfy the mentioned equalities are called upper or lower leaning
points. We remark that the distinction between lower and upper leaning
points depends on the equation, there is here no geometrical invariancy.
Considering a discrete line segment of D(a, b, µ) with minimal a and b, we
may denote by UF (LF ) the upper (lower) leaning point of the segment
whose x-coordinate is minimal. In the same way, we denote by UL (LL) the
upper (lower) leaning point whose x-coordinate is maximal. In Figure 8.2,
an example of a discrete line segment is demonstrated.

It can be shown (Reveillès, 1991) that a discrete line D(a, b, µ) with
slope a/b ≤ 1 has exactly one grid point on each vertical line. If a/b < 1,
then the intersection between D(a, b, µ) and any horizontal line is composed
by [b/a] or [b/a]+1 successive grid points, where [ ] means the integer part.

A discrete line D(a, b, µ), where 0 < a < b, is 8-connected and satisfies
chord property (Debled-Rennesson and Reveillès, 1995; Reveillès, 1991), i.e.
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Figure 8.2. Segment of a discrete line D(5, 8,−4). Dashed lines represent upper and
lower leaning lines of the segment, leaning points are indicated by pale and dark triangles.

for P,Q ∈ D(a, b, µ) and for U = (xU , yU ) lying on the straight line segment
joining P and Q there exists R = (xR, yR) ∈ D(a, b, µ) such that max(|xR−
xU |, |yR − yU |) < 1. It follows that a discrete line segment is a digital
straight line segment (Hübler et al., 1981). Finite digital curves satisfying
chord property are discrete line segments. There are infinite digital curves
which possess chord property and, however, are not discrete lines (Hübler,
1989).

LEMMA 8.1. (Reveillès) A discrete line D(a, b, µ), whose parameters
satisfy 0 < a < b, is an 8-curve.

The movement from left to right along a discrete line with 0 < a < b
occurs by using two translations, either (x, y) �→ (x + 1, y) or (x, y) �→
(x + 1, y + 1). In our denotation, it is a (0, 1)-curve.

LEMMA 8.2. Each discrete line D(a, b, µ), whose parameters satisfy 0 <
a < b, is a (0, 1)-curve.

The term of convexity is a central subject of many geometrical inves-
tigations. Particularly, in application oriented disciplines of geometry, it
plays an important role. Basic constructions of digital geometry are dis-
crete lines, discrete line segments and digitally convex sets. They belong
since beginning of the research in digital geometry to frequently examined
objects.

In Euclidean geometry, a set in R
d is said to be convex if whenever it

contains two points, it also contains the line segment joining them. Already
in the two-dimensional case, there were observed difficulties by direct trans-
fer of this definition into digital circumstances (see e.g. (Hübler, 1989)). In
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the literature, there exist different types of digital convexity. The most
common of them are studied in (Kim, 1982; Kim and Rosenfeld, 1980; Kim
and Rosenfeld, 1982; Minsky and Papert, 1965).

Let K = (κ1, · · · , κn) be a segment of a discrete line D(a, b, µ). The
problem to determine the convex hull of elements belonging to K is solved
in (Debled-Rennesson et al., 2003). The convex hull of K is a closed polyg-
onal curve which can be subdivided into two polygonal curves joining κ1

and κn : the lower frontier and upper frontier of the convex hull. It is clear
that lower leaning points belong to the lower frontier, upper leaning points
belong to the upper frontier. How to detect all points which belong to the
lower and upper frontier is shown in (Debled-Rennesson et al., 2003, Propo-
sition 3). Since the curve K is a segment of a discrete line, the intersection
of K and its convex hull consists only of elements of K. This fact justifies
the following concept of a digitally convex curve:

DEFINITION 8.4. A digital curve K is said to be lower digitally convex
(upper digitally convex) if there is no grid point between K and the lower
(upper) frontier of the convex hull of K.

Algorithm SegConv for testing convexity of digital curves is proposed
in (Debled-Rennesson et al., 2003). This algorithm has linear time com-
plexity.

8.4. Fundamental Segments of 8-curves

DEFINITION 8.5. Let K = (κ1, · · · , κn) be a (0, 1)-curve. Parameters a
and b in discrete line segments considered below are assumed to be minimal.
A part (κi, · · · , κj) is called a fundamental segment of K whenever one of
the following conditions is true:

− i = 1, j = n and (κ1, · · · , κn) is a segment of D(a, b, µ). Then K
consists of one single fundamental segment.
− i = 1, j < n and (κ1, · · · , κj) is a segment of D(a, b, µ) such that
(κ1, · · · , κj+1) is not a segment of any discrete line. Here, (κ1, · · · , κj)
is the first fundamental segment of K.
− i > 1, j = n and (κi, · · · , κn) is a segment of D(a, b, µ) such that
(κi−1, · · · , κn) is not a segment of any discrete line. Here, (κi, · · · , κn)
is the last fundamental segment of K.
− i > 1, j < n and (κi, · · · , κj) is a segment of D(a, b, µ) such that
(κi−1, · · · , κj) and (κi, · · · , κj+1) are not segments of any discrete line.

The fundamental segment (κi, · · · , κj) will be denoted by F (a, b, µ).

This definition means that the convex hull of a fundamental segment of
K and the left or right added point consists at least of one grid point of the
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complement of K (Debled-Rennesson et al., 2003, Remark 6). Hence, fun-
damental segments are maximal possible subsets of K belonging to discrete
lines.

By definition, fundamental segments do not depend on the orientation
of K. All fundamental segments can be ordered in the sense of the oriented
curve, we mark these by Fi(ai, bi, µi), i = 1, · · · ,m. It is clear that two suc-
cessive fundamental segments have always different slopes, their common
part is not empty, and it is always a segment of a discrete line. In addition,
more than two fundamental segments can possess common parts of K.

Clearly, the decomposition of a (0, 1)-curve into fundamental segments
is unique. The problem to find this decomposition is equivalent to the
problem to determine subsets of the curve having constant tangents. A
linear algorithm for computing such subsets is proposed in (Feschet and
Tougne, 1999).

In Figure 8.3, fundamental segments of a digital (0, 1)-curve are indi-
cated.

Figure 8.3. Fundamental segments of a digital curve. The first point of the curve is
(0, 0). Lower bounds µi, i = 1, · · · , 6 are computed with respect to (0, 0).

8.5. Convex and Concave Curves

Fundamental segments allow an adaption of the concept of convex and
concave curves from continuous theory.

DEFINITION 8.6. Let K be a (0, 1)-curve and Fi(ai, bi, µi), i = 1, · · · ,m be
successive fundamental segments of K. The curve K is called convex (con-
cave) whenever the sequence of slopes of fundamental segments is increasing
(decreasing), i.e. aj

bj
<

aj+1

bj+1

(
aj

bj
>

aj+1

bj+1

)
, 1 ≤ j ≤ m− 1.

If K is a discrete line segment, then it is convex as well as concave.

F1  (1, 7, -5)
F2  (2, 5, 7)

F3 (1, 4, -1)

F4  (8,  11, 71)

F5  (3,  5, 17)
F6 (1,  3, -13)
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Since the sequence of fundamental segments does not depend of the
orientation of K, the concave curve is a convex one if the orientation of K
is turned back. In following considerations, we will prove only convex case,
the concave case can be formulated analogously and shown by duality.

Leaning points of fundamental segments of convex curves are located
not arbitrarily. Namely, they appear in the successive order on the curve.
This statement is proved in the next lemma.

We mark the x- and y-coordinate of a point P as xP and yP , respectively.

LEMMA 8.3. Let K be a convex (0, 1)-curve and Fi(ai, bi, µi), i = 1, · · · ,m
be fundamental segments of K. Then xLLj

≤ xLFj+1
for all 1 ≤ j ≤ m−1.

Proof Given fundamental segments Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1)
of K. Let Π be the polygonal set consisting of edges e1: ajx−bjy = µj+bj−1
and e2: aj+1x − bj+1y = µj+1 + bj+1 − 1 which are lower leaning lines of
Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1). One single vertex V = (xV , yV )
of Π is the intersection point of e1 and e2. Obviously, K is above Π. Since
the sequence of slopes is increasing, it holds xLLj

≤ xV and xV ≤ xLFj+1
. �

In Figure 8.4, a convex curve with different locations of lower leaning
points of fundamental segments is represented.

Figure 8.4. Convex curve and its lower leaning points of fundamental segments
Fi(ai, bi, µi), i = 1, 2, 3. For lower leaning points holds xLL1

< xLF2
and xLL2

= xLF3
.

Let us assume that for leaning points LLj and LFj+1 of fundamental
segments Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1) of a convex curve K holds
xLLj

= xLFj+1
. Then LLj = LFj+1 is a vertex of the lower frontier of the

convex hull of K. Before the case xLLj
< xLFj+1

will be examined, we
introduce concept of supporting lines.

A real line L is called a lower supporting line in P ∈ K (briefly, LSL) if
P ∈ L and there exists a (continuous) neighborhood N(P ) of P such that

F1 (2, 5, -10)

F2 (4, 7, 4)

F3 (5, 6, 24)

L L3

L F2

L L2=LF3

L F1=LL1
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all elements in K ∩N(P ) are lying on or above L. A convex curve K with
a fundamental segment F (a, b, µ), whose leaning points are LF and LL, is
lying on or above lower leaning line of F (a, b, µ). Hence, ax− by = µ+ b−1
is a LSL in LF , LL and all grid points which belong to K on the real line
segment [LL, LF ]. Moreover, there exists no grid point between the segment
(LF , · · · , LL) of K and [LF , LL]. If the whole curve K is on or above a LSL,
then the LSL is also called a global lower supporting line (briefly, GLSL).

If an arbitrary (0, 1)-curve K with m fundamental segments Fi(ai, bi, µi)
and a GLSL in P ∈ K such that P ∈ (LF1 , · · · , LLm) are given, then P
belongs to one of lower leaning lines of Fi(ai, bi, µi). Obviously, there can
exist a GLSL in P which is before LF1 or after LLm , however, this case does
not play any role for our further considerations.

LEMMA 8.4. Let K be a convex (0, 1)-curve and Fi(ai, bi, µi), i = 1, · · · ,m
be fundamental segments of K. Let us assume xLLj

< xLFj+1
for some

1 ≤ j ≤ m− 1. Then there is no grid point between fundamental segments
Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1) and the polygonal set with succes-
sive edges e1: ajx − bjy = µj + bj − 1, e2: the real line through LLj and
LFj+1, and e3: aj+1x− bj+1y = µj+1 + bj+1 − 1.

Proof Real lines e1 and e3 are lower leaning lines of fundamental segments
Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1). It follows that there is no grid
point between the polygonal set with both edges, whose intersection point
is the vertex V , and these fundamental segments. Thus, we only must show
that elements of (LLj , · · · , LFj+1) are lying above e2.

Let us assume P ∈ K is one single point inside the triangle with vertices
LLj , LFj+1 , V . Illustration is given in Figure 8.5. We deduce that there exists

Figure 8.5. Illustration to Lemma 8.4.

a GLSL in P . Hence, P is on one of lower leaning lines of fundamental
segments, but not on e1 or e3, i.e. there must exists a fundamental segment
between Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1). It leads to a contradiction
that both fundamental segments are successive.
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Analogously, the case, where more than one points are inside the tri
an

-
gle, leads to this contradiction. �
Now we are able to show the equivalence between convex and lower

digitally convex curves.

THEOREM 8.1. Let K = (κ1, · · · , κn) be a (0, 1)-curve. The curve K is
convex if and only if K is lower digitally convex.

Proof Let Fi(ai, bi, µi), i = 1, · · · ,m be fundamental segments of K.
1. Let us assume K is convex. We consider a polygonal curve Π con-

sisting of vertices of the lower frontier of the convex hull of F1(a1, b1, µ1)
before LF1 , intersection points of lower leaning lines of Fj(aj , bj , µj) and
Fj+1(aj+1, bj+1, µj+1), j = 1, · · · ,m − 1 and vertices of the lower frontier
of the convex hull of Fm(am, bm, µm) after LLm . Since K is convex, Π pos-
sesses increasing slopes and there is no grid point between Π and the curve
K. By Lemma 8.3, for two successive fundamental segments Fj(aj , bj , µj)
and Fj+1(aj+1, bj+1, µj+1) holds xLLj

≤ xLFj+1
. If xLLj

= xLFj+1
, then

LLj = LFj+1 is a vertex of Π. In the case xLLj
< xLFj+1

for the slope s of the
real line segment [LLj , LFj+1 ] holds aj

bj
< s <

aj+1

bj+1
. According to Lemma 8.4,

there is no grid point between (LLj , · · · , LFj+1) and [LLj , LFj+1 ]. In this case,
we modify the polygonal curve Π by replacing the vertex which is intersec-
tion point of lower leaning lines of Fj(aj , bj , µj) and Fj(aj+1, bj+1, µj+1) by
vertices LLj and LFj+1 . Hence, modified Π has all successive vertices of the
lower frontier of the convex hull of K and there is no grid point between K
and the frontier.

2. We assume that there is no grid point between K and the lower
frontier of the convex hull of K. In the case m = 1, the statement is, obvi-
ously, true. If m > 1, then the curve K possesses at least two fundamental
segments. It is clear that the points LF1 and LLm are always vertices of the
lower frontier.

Let us assume m = 2 and slopes of F1(a1, b1, µ1) and F2(a2, b2, µ2) are
decreasing, i.e. LF1 and LL2 are vertices of the lower frontier and there
exists no other vertex between them. Then, there must be at least one grid
point between (LF1 , · · · , LL2) and [LF1 , LL2 ]. Otherwise, (LF1 , · · · , LL2) is a
discrete line segment belonging to the curve contradicting the consecutivity
of F1(a1, b1, µ1) and F2(a2, b2, µ2).

For m > 2 the similar arguments lead to a contradiction when we assume
that slopes of Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1), 1 ≤ j ≤ m − 1 are
decreasing. �
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8.6. Decomposition of Curves into Meaningful Parts

Let us consider a digital (0, 1)-curve K. By means of fundamental segments
of K and their slopes, we are able to define convex and concave parts of K
which are maximal.

DEFINITION 8.7. Let K be a finite (0, 1)-curve and Fi(ai, bi, µi), i =
1, · · · ,m be fundamental segments of K. A part consisting of successive
fundamental segments Fu(au, bu, µu),· · ·,Fv(av, bv, µv), 1 ≤ u ≤ v ≤ m is
called a maximal convex part of K whenever one of the following conditions
is true:

− u = 1, v = m and aj

bj
<

aj+1

bj+1
, 1 ≤ j ≤ m− 1.

− u �= 1, v �= m, au−1

bu−1
> au

bu
, av

bv
> av+1

bv+1
and aj

bj
<

aj+1

bj+1
for all u ≤ j ≤

v − 1.
− u = 1, v �= m, av

bv
> av+1

bv+1
and aj

bj
<

aj+1

bj+1
for all 1 ≤ j ≤ v − 1.

− u �= 1, v = m, au−1

bu−1
> au

bu
and aj

bj
<

aj+1

bj+1
for all u ≤ j ≤ m− 1.

A maximal concave part of K is defined in the same manner by replacing
the signs ‘<’ and ‘>’ in the above definition.

It is clear that a convex (concave) curve consists exactly of one single
maximal convex (concave) part. Maximal parts overlap each other. If the
curve is neither convex nor concave, then each of its maximal convex and
concave part has at least two fundamental segments. The common compo-
nent of two successive meaningful parts consists exactly of one fundamental
segment.

Let us concentrate on Figure 8.6, where the curve from Figure 8.3 is
represented again. Slopes of 6 fundamental segments are ai

bi
= 0.1429,

0.4, 0.25, 0.7273, 0.6, 0.3333. We deduce that the curve possesses four
maximal parts: convex consisting of F1(a1, b1, µ1) and F2(a2, b2, µ2); con-
cave with F2(a2, b2, µ2) and F3(a3, b3, µ3); convex with F3(a3, b3, µ2) and
F4(a4, b4, µ4); concave consisting of F4(a4, b4, µ4), F5(a5, b5, µ5) and
F6(a6, b6, µ6). The point P belonging to each maximal part is indicated.

We are interested in partitionning an arbitrary curve K into maxi-
mal possible meaningful parts. First, we are able to decompose K into
(0, 1)-curves using Scherl’s descriptors (see Section 8.2). Next, the pre-
decomposition into convex and concave parts can be defined in the following
manner: the segment of K between descriptor points is convex or concave
whenever it is convex or concave part of the corresponding (0, 1)-curve. Ob-
viously, the pre-decomposition possesses no maximal possible parts. Finely,
using the fact that T -descriptors belong to a convex part and S-descriptors
to a concave part we can determine the maximal possible meaningful parts
of the curve.
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Figure 8.6. Maximal convex and concave parts of the curve from Figure 8.3.

8.7. Fundamental Polygonal Representations of Digital Curves

In this section, we shortly discuss an important application of decomposi-
tion curves into fundamental segments. Let K be a finite (0, 1)-curve and
F (a, b, µ) a fundamental segment of K. The (whole) segment F (a, b, µ)
is located above the lower leaning line ax − by = µ + b − 1 and under
the upper leaning line ax − by = µ. Moreover, there is no grid point
between the segment and these leaning lines. We consider two successive
fundamental segments Fj(aj , bj , µj) and Fj+1(aj+1, bj+1, µj+1). The com-
mon part of segments is located above (under) both lower (upper) leaning
lines ajx − bjy = µj + bj − 1 and aj+1x − bj+1y = µj+1 + bj+1 − 1
(ajx− bjy = µj and aj+1x− bj+1y = µj+1). Hence, segments Fj(aj , bj , µj)
and Fj+1(aj+1, bj+1, µj+1) are above (under) the polygonal curve Π with
edges given by mentioned real lines and the vertex given by their intersec-
tion point. There exists no grid point between these polygonal curves and
fundamental segments.

Considerations above allow to introduce a concept of fundamental polyg-
onal representations:

DEFINITION 8.8. Let K be a finite (0, 1)-curve and Fi(ai, bi, µi), i =
1, · · · ,m fundamental segments of K. A polygonal curve Π with edges given
by lower (upper) leaning lines of Fi(ai, bi, µi) and vertices given by their
intersection points in successive order is called lower (upper) fundamental
polygonal representation of K.

Figure 8.7 shows fundamental polygonal representations of the curve
from Figure 8.3.
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Figure 8.7. Fundamental polygonal representations of the curve from Figure 8.3.

We collect some simple properties of fundamental polygonal represen-
tations:

1. There is no grid point between fundamental polygonal representations
and the digital curve.

2. Vertices of fundamental polygonal representations are, generally, not
grid points.

3. The lower (upper) fundamental polygonal representation of a convex
(concave) digital curve possesses only convex (concave) vertices.

4. Fundamental polygonal representations have the same convexity prop-
erties as the digital curve.

5. Representations are translations of each other and have the same Eu-
clidean lengths.

6. If for lower (upper) leaning points of fundamental segments Fi(ai, bi, µi),
i = 1, · · · ,m of a convex (concave) curve holds

LLj = LFj+1 (ULj = UFj+1) 1 ≤ j ≤ m− 1

then vertices of the lower (upper) fundamental polygonal representation
between LF1 and LLm (UF1 and UFm) are vertices of the lower (upper)
frontier of the convex hull of K.

In the end, we will in short discuss on the computational complexity of
presented procedures.

Partitionning the boundary of a digital set into (0, 1)-curves corresponds
to detection descriptor points on the boundary. It can be shown (Scherl,
1987) that descriptor points can be obtained within linear time. On the
basis of the algorithm (Feschet and Tougne, 1999), partitions of (0, 1)-
curves into maximal convex and concave parts lead to a linear algorithm. In
the same manner, it allows to construct a linear algorithm for determining
fundamental polygonal representations.
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8.8. Conclusions

Discrete lines, discrete line segments and digitally convex sets are basic
constructs of digital geometry. Using Scherl’s descriptors each digital set
can be decomposed into convex and concave parts by the method proposed
here which is exact. This technique is related to the characterization of
discrete lines (Debled-Rennesson and Reveillès, 1995).

An important application of this decomposition is the possibility to find
a polygonal representation with the same convexity properties. The polygo-
nal representation of a set can be used as a basis for further simplification of
the representing polygonal set by discrete evolution (Latecki and Lakämper,
2002). However, in spite of the precision, there is a disadvantage of the
presented decomposition. It is the fact that the corresponding polygonal
representation can possess vertices whose coordinates are not integers.

As alternative polygonal representations would be representations hav-
ing “only few” uncorresponding convex or concave parts, but whose vertices
are elements of Z

2. Our group is preparing a further paper about linear
algorithm for such polygonal representations of digital sets.
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BY OPTIMISATION

TRUONG KIEU LINH
School of Science and Technology, Chiba University, Japan

ATSUSHI IMIYA
IMIT, Chiba University
Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

AKIHIKO TORII
School of Science and Technology, Chiba University, Japan

Abstract. In this paper, we first derive a set of inequalities for the parameters of
a Euclidean linear object from sample pixels on a plane (voxel in a space), and an
optimisation criterion with respect to this set of constraints for the recognition of the
Euclidean object. Second, using this optimisation problem, we prove uniqueness and
ambiguity theorems for the reconstruction of a Euclidean object. Finally, we develop a
polygonalisation (polyhedralisation) algorithm for the boundary of a discrete shape on a
plane (in a space).

Key words: linear discrete object, integer linear programming, polygonalisation, polyhe-
dralisation

9.1. Introduction

Combinatorial geometry provides a methodology on the construction of
efficient algorithms for geometric data processing, such as CAD-modelling,
geographical information systems, robotics and so on. On the other hand,
since geometric data are expressed as digital data in the computers which
achieve the data manipulation on geometric data, we are required to design
appropriate data processing expression.

Digital geometry provides a traditional data expression in the comput-
ers. As interface between digital geometry and combinatorial geometry, in
this paper, we aim to develop a class of algorithms to transform digital
data, which are dealt in digital geometry, to discrete data such as polygons
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and polyhedra, which are dealt in computational geometry. The transforms
which yields polygons and polyhedra from digital data are called polyg-
onalisation and polyhedralisation, respectively. In this paper, we develop
algorithms for these transformations employing integer linear programming
(Korte and Vygen, 2000). In this paper, we deal with the recognition stage
as a combinatorial optimisation problem (Korte and Vygen, 2000). The
algorithm achieves invertible data compression of digital objects, since
the algorithm transforms collections of pixels and voxels to collections of
line and plane parameters, respectively, the number of elements of which
are usually smaller than the number of pixels and voxels of digital objects.

Recently, a linear-programming based method for the recognition of
linear manifolds has been proposed (Francon et al., 1996; Buzer, 2003). This
method is based on the mathematical property that a point set determines
a system of linear inequalities for the parameters of a line and a plane, and
the recognition process for a plane is converted to the computation of the
feasible region for this system of inequalities.

The other class for recognition of linear manifold is based on the binary
relation among local configurations of voxels in 3×3 and 3×3×3 regions, on
a plane and in a space, respectively, which characterise local properties of
discrete planes (Barneva et al., 2000; Schramm, 1997; Vittone and Chassery,
1999; Reveilles, 1995; Sivigion et al., 2004).

Our method proposed in this paper is based on the former method
for the derivation of constraints on parameters of the Euclidean plane
that passes through sample voxels. Furthermore, we derive a minimisation
criterion for the parameters of the Euclidean plane with respect to the
constraints yielded from a set of pixels and voxels on a line and a plane.
Linear programming framework solves the l1-norm criterion (Ben-Tel and
Nemirovski, 2001) for the plane fitting, which is robust against outer layers
and noise. Therefore, the method is suitable for the reconstruction of planes
from samples with intervals (Neumaier, 2001). Treating samples of voxels
as samples with intervals, we derive an algorithm for the reconstruction of
the Euclidean planes from collection of sample voxels.

9.2. Optimisation Problem for Recognition

9.2.1. RECOGNITION OF PLANE IN A SPACE

Setting p = (p, q, r)� to be a point in three-dimensional discrete space Z3,
a cube

v(p) = {x| |x− p| ≤ 1
2
, |y − q| ≤ 1

2
, |z − r| ≤ 1

2
, }, (1)
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for x = (x, y, z)� in three-dimensional Euclidean space R3, is called a voxel
of R3. Hereafter, P = {xi}ki=1 stands for the set of the centres of the voxels
V = {v(xi)}Ni=1. We call an element of P a grid.

For vector a = (a, b, c)� in Z3 such that gcd(a, b, c) = 1 and integer µ,
the supercover of the plane a�x + µ = 0 is the collection of voxels which
satisfy the inequality

|a�x + µ| ≤ 1
2
|a|1. (2)

where |x|1 is the l1 norm of vector x.
We can consider that a ≥ 0, (a ≥ 0, b ≥ 0, c ≥ 0), substituting

(x,−y, z)�, (x, y,−z)�, and (x,−y,−z)� to (x, y, z) in Equation (2). for
the cases ab < 0, ac < 0, and ab, ac < 0, respectively. Therefore, assuming
that a ≥ 0, we develop an algorithm for the reconstruction of a Euclidean
plane from sample voxels.

DEFINITION 9.1. If all elements in a collection of girds P are elements
of the supercover of a plane, we call that the elements of P are coplanar.

This definition leads to the definition of recognition and reconstruction of
a supercover.

DEFINITION 9.2. For a collection of grids P , the process to examine
coplanarity of elements of a collection of grids is recognition of a supercover.
The computation of the parameters of the plane from coplanar grids is the
reconstruction of plane.

These definitions of recognition and reconstruction imply that the computa-
tion of parameters of a plane from sample voxels achieves both recognition
and reconstruction. Therefore, we develop an algorithm for the computation
of parameters of a plane from a supercover.

Computation of parameters of a plane from sample voxels is stated as
the following problem.

PROBLEM 9.1. For a collection of sample grids {xi}ki=1, if there exists a
Euclidean plane whose supercover contains all voxels {v(xi)}ki=1, compute
parameters a and µ.

This problem is mathematically equivalent to finding parameters a and
µ which satisfy the system of inequalities

|a�xi + µ| ≤ 1
2
|a|1, i = 1, 2, · · · , k. (3)
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Setting sx = (sgnx, sgny, sgnz)� for x = (x, y, z)�, Equation (3) derives
the system of inequalities

a�(xij + sa) ≥ 0, xij = xi − xj (4)

−a�xi −
1
2
|a|1 ≤ µ ≤ −a�xi +

1
2
|a|1, (5)

for i, j = 1, 2, · · · , k, i �= j. Since the vector (xij + sa), such that i �= j, is
a constant for i, j = 1, 2, · · · , N , Equation (4) determines a cone in Z3 as
shown in Figure 9.1 (a). We call this integer cone defined by Equation (5)
the feasible region of the parameters for the recognition of a plane from
sample voxels.

Using the inequality

1
2
|a|1 ≤

1
2
(|a|1 + |µ|) ≤ |a|1 + |µ|, (6)

we solve the following problem for the computation of the parameter of a
plane from sample voxels.

PROBLEM 9.2. Find a ∈ Z3 and µ ∈ Z which minimises J = I + |µ|, for
J ∈ Z with respect to

−a�xi +
1
2
y ≤ µ ≤ a�xi +

1
2
y, (7)

and for I which minimises I = |a|1, for a ∈ Z3 with respect to

a�yij ≥ 0, i, j = 1, 2, · · · , k, i �= j, (8)

where
yij = xi − xj + sa. (9)

In the following, we prove the uniqueness theorem for the reconstructed
plane by minimisation of J in Problem 9.2.

THEOREM 9.1. If and only if |a|1 = 2n, the supercover |a�x+µ| ≤ 1
2 |a|1

contains 2× 2× 2 cubes.

Proof If |a|1 = 2n, the Euclidean line a�x + µ = 0 passes through
the point x + 1

2e for x ∈ Z3. Moreover, for voxels p(x) and p(x + ei), if
|a�x + µ| ≤ 1

2 |a|1, the Euclidean plane a�x + µ = 0 passes through the
point x + 1

2e, and |a|1 = 2n. �
This theorem implies the following corollary.
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COROLLARY 9.1. For grids in P which satisfy the system of double in-
equality |a�xi + µ| ≤ 1

2 |a|1, if |a|1 = 2n, then only a�x + µ = 0 passes
through all voxels in V .

This corollary leads to the conclusion that for a supercover, 2×2×2 cubes
guarantee the uniqueness of the Euclidean reconstruction of a plane. We
state another theorem:

THEOREM 9.2. For grids P which satisfy the system of double inequality
|a�xi + µ| ≤ 1

2 |a|1, if |a|1 = 2n + 1, for |γ| ≤ 1
2 , a line a�x + µ + γ = 0

passes through all voxels in V .

Proof If |a|1 = 2n + 1, we have 0 ≤ a�xi + µ + γ + |a|1
2 ≤ |a|1 for

|γ| ≤ 1
2 . Therefore, a�xi +µ+γ = 0 and a�xi +µ = 0 determine the same

set of voxels. �
For |a|1 = 2n + 1, planes exist in the strip whose centre is a�x + µ = 0

and width is 1/2n|a�a| for n = 3. For an integer λ and |γ| < 1
2 , if λµ + λγ

is an integer, both a�x + µ + γ = 0 and λa�x + λµ + λγ = 0 are the same
plane. Therefore, |λ| is larger than 1, since

|a|1 + |µ| < |λ|(a1 + |µ|) < |a′|1 (10)

for a′ = (λa�, λ(µ + γ))�. This inequality geometrically means that the
plane which minimises (|a|1 + |µ|) is the central plane in the strip region.
From these theorems, we have the following property on the solution of the
Problem 9.2.

THEOREM 9.3. The solution which minimises both J and I uniquely
determines a plane, if the feasible region is not the empty set.

Hereafter, we call a 2× 2× 2 cube a bubble. For gcd(a, b, c, µ) = 1, let
b = (a′, b′, c′), for gcd(a, b, c) = g, a′ = a

g , b′ = b
g , c′ = c

g .
For the supercover of the plane L, namely ax+by+cz+µ = 0, elementary

number theory derives relations in Tables 9.1 and 9.2, on the uniqueness of
the Euclidean reconstruction of planes with bubbles and with out bubbles,
respectively, from the geometrical and algebraic properties of bubbles. In
the tables, Q is the set of all quotient numbers. In Tables 9.1 and 9.2,
the centre plane of the supercover L is the plane which minimises the
optimisation criterion.

The equivalent planes of L are planes which define the same supercover
with L. The universal planes of L are the planes which contain all voxels
of the supercover of L. The supercover of the universal plane of L always
contains bubbles. These relations imply that if gcd(a, b, c) = 1, the plane
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which minimises the criterion is uniquely computed. Furthermore, if a +
b + c = odd, the plane reconstructed from the supercover does not pass
through the corners of voxels.

TABLE 9.1. Reconstruction of a Plane From the Supercover with
Bubbles.

gcd(a, b, c) a + b + c Equivalent Plane Universal Plane

a′ + b′ + c′

1 a + b + c : even L ∅

2 a′ + b′ + c′: odd L ∅

> 2 × × ×

TABLE 9.2. Reconstruction of a Plane from the Supercover without Bubbles

|a|1
|b|1 Centre plane Equivalent plane Universal plane

gcd(a, b, c) = 1

ka�x + kµ + kε = 0

|a|1 L where 2a�x + 2µ ± 1 = 0

odd k ∈ Z, |ε| < 1
2
, kε ∈ Z

gcd(a, b, c) = 2

ka�x + kµ + kε = 0

|b|1 L where a�x + µ ± 1 = 0

even k ∈ Z, |ε| < 1 kε ∈ Z

gcd(a, b, c) > 2

a
′�x + µ′ = 0 ka�x + kµ′ + kε = 0

|b|1 where µ′ ∈ Z, where 2a
′�x + 2µ′ ± 1 = 0

odd µ
g
− 1

2
< µ′ < µ

g
+ 1

2
k ∈ Z, |ε| < 1

2
, kε ∈ Z

2a
′�x + 2µ′ + 1 = 0 ka

′�x + kµ′ + kε = 0 a
′�x + µ′ = 0

|b| where µ′ ∈ Z, where or

even µ
g
− 1 < µ′ < µ

g
k ∈ Z, 0 < ε < 1, kε ∈ Z a�x + µ′ + 1 = 0

.
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The minimisation criterion determines a series of parallel planes a�e =
k for e = (1, 1, 1)� and integer k. We set Sk = {a|a > 0, a�e = k, k > 3 }.
Here, Sk is a convex polygon on the plane a�e = k. a�yij ≥ 0, a ≥ 0,
and e�P aa = 0, where P a is the orthogonal projector to plane a = 0,
determine a convex polygon in on a plane a = 0. The projection of Sk to
the plane a = 0 is a convex polygon. Figure 9.1 (b) shows the projection of
the common set of a plane and a cone. We set this projection of Sk to the
plane a = 0, as Sk(a)′.

If we can determine integer points a′ = (0, b, c)� in Sk(a)′, an = k −
a

′�e. This geometric property leads to the conclusion that it is possible to
reduce the dimensions of the search space. Therefore, we have the following
algorithm:

step 1: Set a�e = k for k ≥ 3
step 2: Compute the vertices of Sk

step 3: Project Sk to the plane ak = 0 and set it as Sk(i)′.
step 4: If there exist an integer points in Sk(i)′, then set them a′,

else go to k := k + 1 and go to step1.
step 5: For the integer point Sk(i)′, set ai = k − a

′�e.
step 6: Compute µ.

9.2.2. RECOGNITION OF LINE ON A PLANE

Setting p = (p, q)� to be a point in two-dimensional discrete space Z2, a
square,

p(p) = {x| |x− p| ≤ 1
2
, |y − q| ≤ 1

2
}, (11)

for x = (x, y)� is called a pixel of R2.
For two-dimensional vector a = (a, b)� of Z2 and integer µ, the super-

cover of line a�x+µ = 0, for gcd(a, b) = 1, is the collection of pixels which
satisfy the inequality

|a�x + µ| ≤ 1
2
|a|1. (12)

Setting c = 0 the relations in Tables 9.1 and 9.2 are satisfied for lines on a
plane. Therefore, the algorithm developed in the previous subsection also
reconstruct a line from sample pixels on a plane setting c = 0. The fan of
the feasible region of parameters is shown in Figure 9.1 (c).
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Figure 9.1. Feasible Regions of a Plane and a Line: (a) The feasible region of a plane
in a space. (b) The projection of a common region of this feasible region and a plane
a + b + c = k for a, b, c ≥ 0. These projections reduce the sizes of the search space. (c)
The feasible region of a line in a plane. The algorithm searches solution which minimises
|a| + |b| in a two-dimensional cone.

9.2.3. RECOGNITION OF A LINE IN 3D SPACE

The reconstruction of a line in 3D space is decomposed into the recon-
struction of supercovers on planes x = 0, y = 0, and z = 0. In this
case, setting P α, α = 1, 2, 3 to be the orthogonal projection matrix to
planes perpendicular to the vector eα, e1 = (1, 0, 0)�, e1 = (0, 1, 0)�, and
e1 = (0, 0, 1)�, respectively, a spatial line is expressed as

|a�
α P αxα + µα| ≤

1
2
|aα|1, α = 1, 2, 3. (13)

Therefore, the recognition of spatial line is expressed as the following prob-
lem.

PROBLEM 9.3. For a collection of sample grids {xi}ki=1 in Z3, if there
exists a Euclidean line whose supercover contains all voxels {v(xi)}Ni=1,
compute parameters aα and µα for α = 1, 2, 3.

Figures 9.2 (a), (b), and (c) show the supercovers of a plane, a line in a
space, and a line on a plane, respectively.

The supercover of a line in a space yields superovers of lines in mu-
tually orthogonal three planes which are perpendicular to e1, e2, and e3.
Therefore, bubbles on planes are the projections of bubbles in a space. In a
space there exists four class of bubbles, (2× 2× 1)- (1× 2× 2)- (2× 1× 2)-
parallelepipeds, whose projections are bubbles on x-y, y-z, and z-x planes,
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Figure 9.2. Supercover of Linear Object in a Space and on a Plane: (a), (b), and (c)
are supercover of a plane, aline in a space, and a line on a plane, respectively.

respectively and (2×2×2)-cubes, whose projections are bubbles on all x-y,
y-z, and z-x planes, respectively. These properties lead to the conclusion
that geometrical property of the supercover of a line in a space is described
as the combination of geometrical properties of three projected supercovers
on three planes.

We have the next theorem for the bubbles of the supercover of a line in
a space.

THEOREM 9.4. For the supercover of a line in a space

0 ≤ ax + bz + µ1 + |a|+|b|
2 ≤ |a|+ |b|

0 ≤ ay + cz + µ2 + |a|+|c|
2 ≤ |a|+ |c|

0 ≤ cx− by + µ3 + |b|+|c|
2 ≤ |b|+ |c| (14)

a, b, c, µ1, µ2 ∈ Z, µ3 = cµ1−bµ2

a ,

iff

µ1 + a+b
2

gcd(a, b)
,
µ2 + a+c

2

gcd(a, c)
,

cµ1−bµ2

a + c−b
2

gcd(b, c)
∈ Z, (15)

the supercover contains bubbles.

If a line in a space is described as,

a1x + b1y + c1z + d1 = 0
a2x + b2y + c2z + d2 = 0, (16)

we have the equations
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Figure 9.3. Feasible Region of a Line in a Space: (a) The feasible region of a line in
a space is a polyhedral cone determined as the common cone of three cones, which are
feasible regions of projections of a line to planes x = 0, y = 0, and z = 0. (b) The
projection of the feasible region to the plane c = 0 is used to reduce the dimension of the
search space.

{
(a1b2 − a2b1)x + (c1b2 − c2b1)z + (d1b2 − d2b1) = 0
(a1b2 − a2b1)y + (a1c2 − a2c1)z + (a1d2 − a2d1) = 0,

(17)

This property implies that the system of inequalities

⎧⎨⎩
0 ≤ (a1b2 − a2b1)x + (c1b2 − c2b1)z + (d1b2 − d2b1) + ω1

2 ≤ ω1

0 ≤ (a1b2 − a2b1)y + (a1c2 − a2c1)z + (a1d2 − a2d1) + ω2
2 ≤ ω2

0 ≤ (a1c2 − a2c1)x− (c1b2 − c2b1)y + (d1c2 − d2c1) + ω3
2 ≤ ω3,

(18)

where

ω1 = |a1b2 − a2b1|+ |c1b2 − c2b1|,
ω2 = |a1b2 − a2b1|+ |a1c2 − a2c1|, (19)
ω3 = |a1c2 − a2c1|+ |c1b2 − c2b1|,

determines the supercover of the line defined as Equation (16), that is, the
supercover of a line in a space is expressed as the supercover of lines on
planes x = 0, y = 0, and z = 0. This geometrical property derives the
following algorithm for the reconstruction of a Euclidean line in a space
from a set of voxels.
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step 1: Set k := 3.
step 2: Compute feasible regions for (a, b), (a, c), (c, b).
step 3: Set a + b + c = k.
step 4: Compute vertices of the feasible region s

on the plane a + b + c = k.
step 5: Compute the projection of the feasible region s

onto the plane c = 0,
and set it as s′.

step 6: Compute integer solutions in s′.
step 7: Compute µ1, µ2, and µ3.
step 8: If all of µ1, µ2, and µ3 are not integers then k := k + 1

and go to step 3, else output solutions .

In the algorithm above, we used the method for the computing feasible
region of a Euclidean line in a plane. Figures 9.3 (a) and (b) show the
feasible region and its projection to the plane c = 0, respectively for the
reconstruction of a line in a space.

9.3. Polygonalisation and Polyhedralisation

9.3.1. POLYGONALISATION ON PLANE

Setting P to be a digital curve which is a sequence of 4-connected pixels,
the polygonalisation on a plane is described as follows.

PROBLEM 9.4. For a digital boundary curve P, setting {pij}
n(i)
j=1 = Pi,

derive a partition of P, P = ∪n
i=1Pi, such that |Pi ∩Pi+1| = ε, where ε is

an appropriate integer, which minimises

J =
n∑

i=1

(|ai|1 + µi) (20)

for the system of inequalities,

|a�
i xij + µi| ≤

1
2
|ai|1, (21)

for i = 1, 2, · · · , n and j = 1, 2, · · · , n(i).
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Using geometrical properties of the supercover, we introduce the following
algorithm.

step1 : Input a pixel sequence P = {pi}ni=0.
step2 : Set head = 0, j = 0.
step3 : Settail = head + 3.
step4 : Lj = {pi}head

tail .
step5 : If there exists a line lj which passes through Lj = {pi}head

tail

with the condition that |a|+ |b| is odd,
then set tail = tail + 1 and go to step 3

step6 : If j = 0, then set j = j + 1, head = tail and go to step 2.
step7 : if j > 0, then compute the common point Aj−1 of lj−1and lj .
step8 : If Aj−1 exists and lies in Lj or Lj−1, then go to step 10.
step9 : Set head = head− 1, and go to step3.
step10 : Output Lj−1, lj−1

step11 : If tail < n, then set head = tail, j = j + 1 and go to step3.
step12 : If tail = n, then stop.

According to the greedy property of the algorithm, this algorithm stops
and fulfils the uniqueness of the solution for the starting point.

9.3.2. POLYGONALISATION IN SPACE

Setting P to be a digital curve which is a sequence of 6-connected voxels,
the polygonalisation in a space is described as follows.

PROBLEM 9.5. For a digital curve P, setting {pij}
n(i)
j=1 = Pi, derive a

partition of C
P = ∪n

i=1Pi, |Pi ∩Pi+1| = ε, (22)
where ε is an appropriate integer, which minimises

J =
n∑

j=1

(|aj |1 + |µj |1) (23)

where aj = (aj , bj , cj)� and µ = (µ1j , µ2j , µ3j), for the system of inequali-
ties, ⎧⎨⎩

0 ≤ ajxi + bjzi + µ1j + ω1
2 ≤ ω1j

0 ≤ ajyi + cjzi + µ2j + ω2
2 ≤ ω2j

0 ≤ cjxi − bjyi + µ3j + ω3
2 ≤ ω3j

(24)
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Figure 9.4. An Example of Parts of a Pixel Sequence and the Feasible Regions for parts:
(a), (b), (c), and (d) are 4, 5, 11, and 12 successive pixels from a sequence. (e), (f), (g),
and (h) are feasible regions for these parts of the sequence. For the configuration of (a),
Euclidean lines are exist since the feasible regions not empty. For the configuration of
(d), there exists no answer, since the feasible region is the empty set.

determines the same supercover, where ω1j = |aj | + |bj |, ω2j = |aj | + |cj |,
and ω3j = |cj |+ |bj | and µ3j = cjµ1j−bjµ2j

aj
.

To solve this minimisation problem, we prepare the following theorem.

THEOREM 9.5. Setting p1 = (x1, y1, z1)� and p2 = (x2, y2, z2)� to be a
pair of points on supercover⎧⎨⎩

0 ≤ ax + bz + µ1 + ω1
2 ≤ ω1

0 ≤ ay + cz + µ2 + ω2
2 ≤ ω2

0 ≤ cx− by + µ3 + ω3
2 ≤ ω3

(25)

determines the same supercover, where ω1 = |a| + |b|, ω2 = |a| + |c|, and
ω3 = |c|+ |b|, the number of voxels between p1 and p2 along this supercover
is

N(p1,p2) = |p1 − p2|+ 1, (26)
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Figure 9.5. Local Configuration of Voxels on Digital Curve in a Space: (a) Pair of
endpoints of a segment in a discrete curve. (b) In the common voxels of a pair of line
segments, we add a line segment for the reconstruction.

if the supercover does not contain 2×2×1, 2×1×2, 1×2×2, and 2×2×2
bubbles.

Using these properties of the supercover in a space and the plane polygo-
nalisation algorithm, a spatial polygon is yielded from a sequence of voxels.

step 1: Input P = {pi}n0 .
step 2: Set head = 0, j = 0, Lj = {pi}tail

head.
step 3: Set tail = head + 3
step 4: If there exist a supercover of a 3D line Lj contains Lj ,

then go to step 6, else go to step6.
step 5: tail = tail + 1 and go to step 4.
step 6: Compute the polygonal vertices and output Lj−1 and Lj−1

step 7: If tail < n, then set head = tail, j = j + 1
and go to step 3, else stop.

If a pair of discrete line segments Li and Li+1 share a unique voxel vij ,
that is Li ∩ Li+1 = {v(xi)} as shown in Figure 9.5, we call Li and Lj is
crossing. Step 5 detects these discrete line segments and Euclidean lines
whose supercover coincides discrete lines. However, the detected Euclidean
lines usually do not cross. Therefore, in step 6, the algorithm generates a
line segment which connects Li and Li+1 in the voxel vij . This line segment
Li i+1 is also described by integer parameters, since this line connects points
whose elements are rational numbers.
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9.3.3. POLYHDERALISATION

Let C(x) to be the union of the 6-neighbourhood of voxels v(x) and point
v(x). Furthermore, for a connected voxel-set A, C(A) expresses the union
of voxel-set A and voxels which are 6-connected to the boundary of A
and S(Pj) expresses the supercover of plane Pj . Moreover, V1,2,4 means
one of V1, V2 and V4. Then, setting |A| to be the cardinality of a set
A, for 6-connected, the relation 1 ≤ |C(x)| ≤ 7 is satisfied. Furthermore,
a point x which satisfies the relation 2 ≤ |C(x)| ≤ 3 lies on an edge or
a vertex. According to these geometric properties, we select a collection
of connected points which satisfy the relation 3 ≤ |C(vi)| ≤ 4. These
geometrical conditions derive the following algorithm.

step 1: Input 6-connected voxels V = {vi}n0
step 2: Select start voxel vhead and set j = 0,

where N6(vhead) ≥ 4.
step 3: Compute CCCC(vi) and set V = {vi}tail

head.
step 4: For V = {vi}tail

head compute supercover,
if a supercover exists, then set it as Sj and go to step 5,
else go to step 2.

step 5: Compute C(V ) and set V = C(V ).
step 6: For V = {vi}tail

head compute supercover,
if a supercover exists, then set it as Sj and go to step 5,
else go to step 7.

step 7: In V \ V , if a portion of Sj exists,
add them to V , with the condition that
the new pint-set V = {vi}tail

head is connected
step 8: Select a voxel from C(V ) \ V and add it to V .
step 9: For V compute supercover, if a supercover exists,

then set it as Sj and go to step 5,
else output Sj and j = j + 1.

step 10: If tail < n, then set head = N6C
−1(V )

and go to step2, else stop.

The algorithm assumes that, the 6-connected boundary voxels are ex-
tracted from discrete object D. For example, setting N26 to be the 26-
neighbourhood of the origin in Z3, the boundary voxels ∂D is extracted
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as
∂D = D \ (D�N26), (27)

where A�B is the Minkowski subtraction of B from A.
Parameters of faces allow us to classify voxels of discrete objects using

the relation,

xi

{
∈ L(aj , µj), if |ajx

�
i + µj | ≤ 1

2 |aj |1,
/∈ L(ai, µj), otherwise, (28)

where

L(a, µ) =
{

x | |a�x + µ| ≤ 1
2
|a|1

}
, (29)

and voxels in L(a, µ) are 6-connected. Since voxels on the plane is uniquely
determined using the relation

L(ai, µi) =
{

x | |aix
� + µi| ≤

1
2
|ai|1

}
, (30)

we can reconstruction a collection of voxels D from the collection of param-
eters P through the boundary voxels ∂D. Therefore, our algorithm achieves
data compression by transforming the collection of voxels D to a collection
of parameters of planes P through the collection of boundary voxels ∂D.

Since the vector a for (a�, µ)�, which determines a plane segment on the
discrete boundary, is the normal vector of the plane a�x + µ = 0, a is the
normal vector of the plane segment L(a, µ). This geometric property implies
that the algorithm also estimates the normal of the discrete boundary.

9.4. Numerical Examples

In this section, we first show numerical examples which suggest asymptot-
ical uniqueness of the reconstructed results for 2D polygonalisation. For a
sampled circle of fixed radius, we have evaluated the length of the perimeter
and the area encircled by the reconstructed polygon, selecting each point as
the starting point of the polygonalisation. The result in Figure 9.6 shows
that the length and area of the reconstructed polygon from a digitised
circle is numerically independent to the starting points. The second and
third examples show the error analysis for the lengths and areas of the
reconstructed circles against the length of radius. For the evaluation, we
show the same geometric features of minimum perimeter polygons recon-
structed from the same collections of sample points. These examples show
that the reconstructed circle by our method asymptotically converges to
the original circles by increasing the resolution, since the evolution of the
radius is mathematically equivalent to the inclusion of the resolution.
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Figure 9.6. Error Analysis in 2D: (a) For a circle with a fixed radius, selecting each
pixel as the start point, we evaluated the area encircled by the reconstructed polygon.
Numerically, the area is approximately independent to the selection of the start point.
(b) For circles with various radii, we evaluated the area encircled by the reconstructed
polygon. For the comparison, we evaluated the areas of the outer isotetic polygon, the
inner isotetic polygon, the minimum perimeter polygon, and the polygon reconstructed
by our method. The error against the ideal area of circle degrees when the radius of
the circle increases. (c) For circles with various radii, we evaluated the perimeter length
of the reconstructed polygon. For the comparison, we evaluated the areas of the outer
isotetic polygon, the inner isotetic polygon, the minimum perimeter polygon, and the
polygon reconstructed by our method. The error against the ideal area of circle degrees
when the radius of the circle increases. (d)For circles with various radii, we evaluated
the the number of edges of the reconstructed polygon. The number of edges of polygon
reconstructed by our method is smaller than that of edges of the minimum perimeter
polygon.

Next, we show error analysis on flatness of polygonalisation in a space.
For the evaluation of the flatness, setting λi and ui for i = 1, 2, 3 to be the
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S =
n∑

n−1

did
�
i , di = pi − pi−1, (31)

of the reconstructed polygon, where pn+i = pi and λ1 ≥ λ2 ≥ λ3. We
have evaluated three features, θ = cos−1 u�

1 n, c1 = λ2/λ1, and c2 = λ3/λ1,
where n is the normalised normal vector of a plane on which original circle
lies. In Figure 9.7, (a), (b), and (c) show the reconstructed polygon super-
imposed to the collection of voxels and three features against the radius of
a series of circles. These results also show that our 3D polygonalisation is
stable.

Figure 9.7. Flatness in 3D: For the evaluation of numerical accuracy of the polygonali-
sation in a space, we evaluated the flatness of the reconstructed spacial planar polygons
whose support planes are not perpendicular to the axes of three-coordinates. (a) shows a
reconstructed polygon. (b) shows the flatness parameters against the radius of the circles
for circles which lie on the plane perpendicular to the vector (1, 2, 3)�. (c) shows the
flatness parameters against the radius of the circles for circles which lie on the plane
perpendicular to the vector (1, 1, 1)�. For these two numerical examples, graphs show
the reconstructed polygons are planar.

In Figure 9.8, we show (a) a sequence of pixels and (b) a reconstructed
polygon from pixels of (a). The algorithm extracted 202 edges from 1994
pixels for the planar problem. Figure 9.8 (c) shows the reconstructed poly-
gon superimposed on a sequence of voxels.

For the polyhedralisation, since the qualitative evaluation criteria
are still under consideration, we show the extracted parameters from real
data. Furthermore, we show a result for the classification of voxels on the
boundary.
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(a) (b) (c)

Figure 9.8. Results of Polygonalisation in 2D and 3D: (a) A sequence of pixels. (b) A
reconstructed polygon from pixels of (a). (c) 3D polygon superimposed on a sequence of
voxels.

For the complete polyhedralisation, we are required to apply spatial
polygonalisation process to these voxels. In Table 9.3, we show parameters
extracted from the boundary voxels of Figure 9.9 (c). For example voxels,

(−3, 6,−13)�, (−11, 9,−11)�, (−9, 2,−8)�, (−15, 1,−4)�

(−13, 10,−11)� (−12, 10,−12)� (−17, 10,−9)� (−8, 4,−10)�

(−17, 2,−4)� (−8, 3,−9)� (−9, 5,−10)� (−18, 3,−4)�

(−16, 10,−10)�

lie on plane 3x + 4y + 6z + 62 = 0. Therefore, the normal vector of these
voxels is (3, 4, 6)� for the collection of these voxels.

9.5. Concluding Remarks

We have dealt with supercover models on a plane and in a space. We first de-
rived a set of inequalities for the parameters of a Euclidean linear manifold
from sample points, and an optimisation criterion with respect to this set of
constraints for the recognition of a Euclidean linear manifold. Then using
this optimisation problem, we proved uniqueness and ambiguity theorems
for the reconstruction of Euclidean linear manifolds. Finally, we developed
an algorithm for the computation of the parameters of a Euclidean linear
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Figure 9.9. 3D Reconstruction: (a) shows a digital tetrahedron, and (b) shows the recon-
structed polyhedron. (b) is digital non-convex polyhedron which we extracted parameters
of surface elements.

manifold from pixels and voxels on a plane and in a space, respectively.
The theory proposed in this paper is valid for the recognition of naive and
standard manifolds.

For the 18-connectivity, Sivignon, et al (Sivigion et al., 2004) proposed a
polyhedralisation algorithms. We proposed a polygonalisation algorithm for
4-connected planar discrete objects (Linh and Imiya, 2003). The paper is
extention of our method to 3-dimensional objects. We detect linear objects
from pixels and voxels in a plane and a space using parameter space expres-

TABLE 9.3. Parameters of faces: 36 Euclidean faces extracted from Small
Knight with 5861 boundary faces.

Parameters of the planes

(11, 1, 1, 233)� (3,−10, 4,−8)� (19,−13, 13, 238)� (0, 0, 1, 9)�

(1,−1, 9, 104)� (1, 1,−3,−62)� (1, 0,−6,−87)� (3, 2, 0,−31)�

(2,−1,−18,−347)� (3, 2, 0,−52)� (1,−4, 28, 525)� (2,−9, 0,−89)�

(1, 4, 0, 29)� (1, 2, 0, 17)� (2,−2,−7,−155)� (9,−1, 1, 194)�

(2, 14, 3,−75)� (3, 3, 1, 20)� (3, 2, 2, 38)� (9, 1,−1, 158)�

(3, 4, 6, 62)� (5, 2, 8, 110)� (1, 0, 2, 25)� (8, 0,−1, 143)�

(0, 1, 0, 6)� (1,−4,−4,−107)� (8,−11,−2,−39)� (1, 0,−6,−103)�

(11, 21, 1,−78)� (1, 0, 0,−7)� (11, 3,−9,−102)� (2, 2, 1, 21)�

(1, 0, 2, 32)� (0, 0, 1, 15)� (0, 1, 0,−3)� (0, 0, 1, 12)�

.
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sion of linear objects, (Bhattacharya and Rosenfeld, 2003; Bhattacharya
and Rosenfeld, 1994; Sivigion et al., 2004). We showed that geometry of
feasible regions of parameters in the parameter space for polygonalisation
and polyhedralisation.
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BINARY TOMOGRAPHY

BY ITERATING LINEAR PROGRAMS
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Abstract. A novel approach to the reconstruction problem of binary tomography from a
small number of X-ray projections is presented. Based on our previous work, we adopt a
linear programming relaxation of this combinatorial problem which includes an objective
function for the reconstruction, the approximation of a smoothness prior enforcing spa-
tially homogeneous solutions, and the projection constraints. We supplement this problem
with an unbiased concave functional in order to gradually enforce binary minimizers.
Application of a primal-dual subgradient iteration for optimizing this enlarged problem
amounts to solve a sequence of linear programs, where the objective function changes in
each step, yielding a sequence of solutions which provably converges.

Key words: discrete tomography, combinatorial optimization, linear programming, d.c.
programming

10.1. Introduction

Discrete Tomography is concerned with the reconstruction of discrete-valued
functions from projections. Historically, the field originated from several
branches of mathematics like, for example, the combinatorial problem to
determine binary matrices from its row and column sums (see the survey
(Herman and Kuba, 1999, chapter 1). Meanwhile, however, progress is not
only driven by challenging theoretical problems (Gardner and Gritzmann,
1997; Gritzmann et al., 1998) but also by real-world applications where
discrete tomography might play an essential role (cf. (Herman and Kuba,
1999, chapters 15–21)).
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The work presented in this paper is motivated by the reconstruction of
volumes from few projection directions within a limited range of angles.
From the viewpoint of established mathematical models (Natterer and
Wübbeling, 2001), this is a severely ill-posed problem. The motivation for
considering this difficult problem relates to the observation that in some
specific medical scenarios (see below), it is reasonable to assume that the
function f to be reconstructed is binary-valued . This poses one of the es-
sential questions of discrete tomography: how can knowledge of the discrete
range of f be exploited in order to regularize and solve the reconstruction
problem?

10.1.0.1. Medical Application
A potential application of discrete tomography in the field of medical imag-
ing is the 3D reconstruction from Digital Subtraction Angiography (DSA)
images. DSA is a common technique for separating contrast-filled vessels
from the background. To this end, two images of the same scenery are taken,
one with contrast-agent and another one without (see Figure 10.1). This
results in low-noise projection images as input data for the reconstruction
of a function which is assumed to be binary.

− =

Figure 10.1. Illustration Digital Subtraction Angiography (DSA) imaging. A pair of
images is taken from each projection direction, one (left) with and another one (center)
without contrast agent. Subtraction of both images yields an image (right) that shows
the distribution of the contrast agent only. The images at hand were taken from a
dough phantom. We simulated the absence of the contrast agent by simply removing
the phantom from the scenery.

10.1.0.2. Problem Statement
The imaging geometry is represented by a linear system of equations Ax =
b. Each projection ray corresponds to a row of matrix A, and its pro-
jection value is the corresponding component of b. The row entries of A
represent the length of the intersection of pixels (voxels in the 3D case) of
the (arbitrarily) discretized volume and the corresponding projection ray
(see Fig. 10.2). This corresponds to the assumption that the function to
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be reconstructed is binary-valued, i.e. x is a binary-valued vector. Each
component xi ∈ {0, 1} indicates whether the corresponding pixel (belongs
to the reconstructed object, xi = 1, or not, xi = 0 (see Fig. 10.2). The
reconstruction problem is to compute the binary indicator vector x from
the under -determined linear system of projection equations:

Ax = b, x = (x1, ..., xn)� ∈ {0, 1}n (1)

Figure 10.2. Discretization model leading to the algebraic representation of the
reconstruction problem: Ax = b, x ∈ {0, 1}n.

10.2. Previous Work and Contribution

Linear programming in the context of binary tomography was originally
suggested in (Aharoni et al., 1997) in order to find invariant elements,
i.e. pixels that have the same value for all feasible solutions to a given
reconstruction problem, see (Matej et al., 1999) as well.

Due to noise in the measurement vector b when dealing with real data,
(1) is likely to have no feasible solution. In order to take advantage of contin-
uous problem formulations and numerical interior point methods, Fishburn
et al. (Fishburn et al., 1997) considered the relaxation xi ∈ [0, 1], i =
1, · · · , n, and investigated the following linear programming approach for
computing a feasible point:

min
x∈[0,1]n

〈0, x〉, Ax = b (2)

In particular, the information provided by feasible solutions in terms of
additivity and uniqueness of subsets S ⊂ Z

n is studied in (Fishburn et al.,
1997).

Gritzmann et al. (Gritzmann et al., 2000) introduced the following linear
integer programming problem for binary tomography

max
x∈{0,1}n

〈e, x〉, e := (1, . . . , 1)�, Ax ≤ b , (3)
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and suggested a range of greedy approaches within a general framework for
local search. Compared to (2), the objective function (3), called best-inner-
fit (BIF) in (Gritzmann et al., 2000), looks for the maximal set compatible
with the measurements. Furthermore, the formulation of the projection
constraints is better suited to cope with measurement errors and noise.

In (Weber et al., 2003; Weber et al., 2004), we studied the relaxation
of (3) xi ∈ [0, 1], for all i, supplemented with a standard smoothness prior
enforcing spatial coherency of solutions∑

〈i,j〉
(xi − xj)

2 (4)

Here, the sum runs over all 4 nearest neighbors of the pixel grid (6 neigh-
bors in the 3D case). In order to incorporate this prior into the linear
programming approach (3), we used the following approximation by means
of auxiliary variables {z〈i,j〉}:

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉+ α

2

∑
〈i,j〉

z〈i,j〉 (5)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

10.2.0.3. Contribution
A global minimizer of the linear program (5) can straightforwardly be com-
puted using an interior point method. In (Weber et al., 2004) we showed
that for sparse volume structures, like blood vessels in the brain, in prin-
ciple, rather accurate 3D-reconstructions may result from solving (5), pro-
vided an additional user parameter determining the rounding [0, 1] � xi →
{0, 1}, ∀i, is set properly in a postprocessing step.

To get rid of this parameter, we supplement (5) with a concave func-
tional enforcing binary solutions x ∈ {0, 1}n. Applying a two-step subgra-
dient minimization technique leads to a sequence of programs of type (5),
whose solutions converge to a local binary-valued minimizer.

Our approach may be regarded as an alternative to (Kleinberg and
Tardos, 1999; Censor, 2001)wheredifferent techniques have been suggested for
rounding solutions of relaxed optimization problems. Rather than rounding
in a postprocessing step, we integrate both objective functionals for recon-
struction and binary-valued solutions into a single optimization problem,
and solve it with a suitable mathematical programming approach.
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10.3. Optimization Approach

Our approach reads:

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉+ α

2

∑
〈i,j〉

z〈i,j〉 +
µ

2
〈x, e− x〉 (6)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Compared to (5), we supplemented in (6) the concave functional
µ

2
〈x, e− x〉 =

µ

2

∑
i

xi − x2
i , (7)

which is minimal at the vertices of the domain [0, 1]n. Furthermore, since
it vanishes at {0, 1}n, it does not alter binary minimizers of the original
problem. Our strategy is to choose an increasing sequence of values for µ
and to minimize for each of them (6).

Problem (6) is no longer convex, of course. To explain our approach for
computing a minimizer, we put

z := (x�, · · · , z〈i,j〉, · · ·)� (8)

and rewrite all constraints of (6)

0 ≤ xi ≤ 1 , Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

in the form
Ãz ≤ b̃ , (9)

Using the notation

δC(z) = { 0 , z ∈ C +∞, z �∈ C

for the indicator functions of a convex set C, problem (6) then reads:

min
z

f(z) ,

where (cf. definition (8))

f(z) = −〈e, x〉+ α

2

∑
〈i,j〉

z〈i,j〉 +
µ

2
〈x, e− x〉+ δK(b̃− Ãz) , (10)

= g(z)− h(z) , (11)

K = R
n
+ is the standard cone of nonnegative vectors, and

g(z) = −〈e, x〉+ α

2

∑
〈i,j〉

z〈i,j〉 + δK(b̃− Ãz) , (12)

h(z) =
µ

2
〈x, x− e〉 . (13)
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Note that both functions g(z) and h(z) are convex, and that g(z) is non-
smooth due to the linear constraints.

To proceed, we need the following basic concepts (Rockafellar, 1972)
defined for a function f : R

n → R := R ∪ {−∞,+∞}, and a set C ⊂ R
n:

dom f := {x ∈ R
n | f(x) < +∞} effective domain of f

f∗(y) := sup
x∈Rn

{〈x, y〉 − f(x)} conjugate function

∂f(x) := {v | f(x) ≥ f(x) + 〈v, x− x〉 , ∀x} subdifferential of f at x

We adopt from (Pham Dinh and Elbernoussi, 1998; Pham Dinh and
Hoai An, 1998) the following two-step subgradient algorithm for minimizing
(11):

Subgradient algorithm:
Choose z0 ∈ dom g arbitrary.
For k = 0, 1, · · ·, compute:

yk ∈ ∂h(zk) , (14)
zk+1 ∈ ∂g∗(yk) . (15)

The investigation of this algorithm in (Pham Dinh and Hoai An, 1998)
includes the following results:

PROPOSITION 10.1. ((Pham Dinh and Hoai An, 1998)). Assume g, h :
R

n → R be proper1, lower-semicontinuous and convex, and

dom g ⊂ domh , domh∗ ⊂ dom g∗ . (16)

Then

(i) the sequences {zk}, {yk} according to (14), (15) are well-defined,
(ii) {g(zk)− h(zk)} is decreasing,
(iii) every limit point2 z∗ of {zk} is a critical point3 of g − h.

1 A function is called proper if its domain is non-empty.
2 An limit point is a point which is the limit of a sequence, also called a accumulation

point.
3 A critical point of function is a point were the subgradient of this function includes

zero.
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10.4. Reconstruction Algorithm

We apply (14), (15) to problem (6). Condition (16) holds, because obviously
domg ⊂ domh, and g∗(y) = supz {〈z, y〉−g(z)}<∞ for any finite vector y.

(14) reads

yk = ∇h(zk)

= µ(xk − 1
2
e) (17)

since
∂h(z) = {∇h(z)}

if h is differentiable (Rockafellar, 1972). To compute (15), we note that g
is proper, lower-semicontinuous, and convex. It follows (Rockafellar, 1972)
that

∂g∗(y) = {z | g∗(y) ≥ g∗(y) + 〈z, y − y〉, ∀y} (18)
= argmaxz{〈y, z〉 − g(z)} , (19)

which is a convex optimization problem. Hence, (15) reads:

zk+1 ∈ argminz{g(z)− 〈yk, z〉}

Inserting yk from (17), we finally obtain by virtue of (12), (9), and (8):

Reconstruction algorithm (µ fixed)
Choose z0 ∈ dom g arbitrary.
For k = 0, 1, ..., compute zk+1 as minimizer of the linear program:

min
x∈[0,1]n,{z〈i,j〉}

−
〈

e + µ(xk − 1
2
e), x

〉
+

α

2

∑
〈i,j〉

z〈i,j〉 (20)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Here, Ax ≤ b are the original constraints from (6).

In practice, we start with µ = 0 and repeat the reconstruction algorithm for
increasing values of µ, starting each iteration with the previous reconstruc-
tion zk. This outer iteration loop terminates when ∀i, min{xi, 1− xi} < ε.

Note that for µ = 0, we minimize (5), whereas for µ > 0 it pays to shift
in (20) the current iterate in the direction of the negative gradient of the
“binarization” functional (7). While this is an intuitively clear modification
of (5), convergence of the sequence of minimizers of (20) is not obvious.
Proposition 10.1, however, proves the convergence.
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10.5. Experimental Results

We compare iterative linear programming (20), with the regularized best
inner fit approach (5).

(a) Original, 64× 64, exp. 1. (b) Original, 256× 256, exp. 2.

Figure 10.3. From each image, 3 projections (noiseless), 0◦, 45◦, and 90◦ were taken
for setting up the two reconstruction problems used in our evaluation.

For evaluation purposes, we created two reconstruction problems from
the images shown in figure 10.3. From each image, three projections (noise-
less) were taken, 0◦, 45◦, and 90◦. Figure 10.4 shows the reconstruction
results of the regularized best inner fit approach (5). This result illustrates
that both reconstruction problems are not easy to solve due to the large area
covered by the objects and the corresponding amount of self-occlusions.

Throughout all experiments, the parameter µ was initialized with 0.
After each iteration µ was increased by 0.1 in the first experiment and 0.05
in the second one. Further, the regularization parameter α was chosen as
0.5 in the first and 1.0 in the second experiment.

Comparison of the results for (20) and (5) in figures 10.5 and 10.7,
respectively, shows the superior performance of the approach (20). The
reason is that, through iterating the linear programs, rounding is not done
as a separate post-processing step, but during optimization, while taking
into account the projection constraints. Figures 10.8 and 10.9 illustrate
intermediate results for both reconstruction problems after different num-
bers of iterations. One can see how the solution converges towards a binary
vector because of the increasing influence of the functional (7). Figure 10.6
further illustrates this process.

In further experiments, we tested the behavior of our approach in the
presence of noise. Therefore, we added a normal distributed error, µ = 0.0
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(a) Regularized BIF, exp. 1. (b) Regularized BIF, exp.2.

Figure 10.4. Results obtained by the regularized best inner fit approach (5).

Figure 10.5. Comparison between the regularized best inner fit approach and our
approach proposed in this paper.

and σ ∈ {1.0, 2.0}, to the projection data from the first experiment and
computed reconstructions from this data. Results of these experiments are
shown in the figures 10.10 and 10.11. In case of noiseless projections α =
0.25 is a good choice. However, it turned out that in case of noisy projections
it is preferable to choose a higher value of α. We checked different values
of α ∈ {0.25, 0.5, 0.75}.

Concerning computation time, a single iteration (solving one LP) of the
64× 64 image costs about 7 seconds on a 3 GHz Intel Pentium 4, while it
was about 4 minutes and 6 seconds for the 256× 256 image.
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(a) First reconstruction problem. (b) Second reconstruction problem.

Figure 10.6. Both graphs show the percentage of non-binary pixels per iteration. The
graph in (a) corresponds to the first reconstruction experiment and to the images shown
in figure 10.8. After 9 iterations the solution became binary which in this case was the
original image. The graph in (b) shows the same data for the second experiment which
is shown in figure 10.9. After 51 iterations the curve dropped down to 0.07%. We simply
used a threshold, t := 0.5, for this tiny fraction of pixels and terminated our algorithm.

(a) Regularized BIF. (b) Iterated LPs (51 Iterations).

Figure 10.7. Comparison between regularized BIF and iterating LPs for the second
experiment. We terminated the iterated LPs after 51 iterations and set the remaining
non-binary pixels (0.07%) to zero in order to obtain a binary solution.

10.6. Conclusion and Further Work

In this paper we have shown a new reconstruction approach based on linear
programming for the problem of discrete tomography. Unlike other LP
methods, the rounding process is now explicitly done within the recon-
struction process and not as a postprocessing step after the reconstruction.
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Figure 10.8. (a)–(e) Results at different iterations of our proposed reconstruction
method. The original image is shown in figure 10.8(f) from which three projections,
0◦, 45◦, and 90◦ were taken.
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Figure 10.9. (a)-(e) show the results at different iteration steps. The original image is
shown in (f) from which three projections, 0◦, 45◦, and 90◦, were taken.
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Figure 10.10. In order to test the behavior of our algorithm in the presence of noise
we added a normal distributed (µ = 0.0, σ = 1.0) error to the projection data (again
3 projections, 0◦, 45◦, and 90◦). (a) Percentage of the absolute difference between the
original image and the solutions of the first 20 iterations. (b) Percentage of the undecided
pixels (neither 0 nor 1) of the first 20 iterations. (c)-(e) Reconstructions (50 iterations)
with different choices of α ∈ {0.25, 0.5, 0.75}. (f) Original image.
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Figure 10.11. Reconstructions from noisy projection data, normal distributed error
(µ = 0.0, σ = 2.0) error added to the projection data. Three projections, 0◦, 45◦, and 90◦.
(a) Percentage of the absolute difference between the original image and the solutions
of the first 20 iterations. (b) Percentage of the undecided pixels (neither 0 nor 1) of
the first 20 iterations. (c)-(e) Reconstructions (50 iterations) with different choices of
α ∈ {0.25, 0.5, 0.75}. (f) Original image.
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Hence, the problem constraints of the linear program do affect the rounding.
On the other hand, one has to solve a sequence of LPs instead of a single
one which of course leads to more computationally effort. However, the
linear programs do not differ too much from each other, as only the target
vector c has to be modified. Therefore, it would be interesting to see if
this can be exploited in order to speed-up computations. For instance, the
decomposition of linear programs appears to be attractive in this context
since the decomposition of matrix A has to be done only once and could
then be used in all iterations.
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Abstract. In this paper, we propose a cascade of Dual-LDA (DLDA) operators for Face
Recognition. We show that such an approach results in efficient and low-dimensional
feature space for face representation with enhanced discriminatory power. Comparative
results to classical LDA and cascade of classical LDA algorithms are presented, showing
significantly improved performance. A theoretical analysis for Fisher and DLDA is also
presented. Experimental evaluation of the proposed FR algorithm, conducted on MPEG
test set with over 8000 images of 929 individuals, shows state-of-the-art performance.

Key words: cascade of classifiers, linear discriminant analysis, dual linear discriminant
analysis, feature extraction, face recognition, face descriptor

11.1. Introduction

Face recognition (FR) is a very complex problem, mainly due to signif-
icant intra-class variations in appearance due to pose, facial expression,
aging, illumination and imaging conditions, hair style, etc. Despite constant
improvements in the performance and robustness of FR systems, which
accelerated recently, even the most advanced systems often fail to meet the
requirements of many key applications.

A great number of different approaches to face recognition have been
proposed in the last two decades - a good overview of the first decade can
be found in (Chellappa et al., 1995). Recently, newly emerging techniques
attempt to improve performance by explicitly modelling or compensating
for the variations in facial appearance (Bronstein et al., 2004). They use
3D head shape models and head pose estimation, texture models, and
illumination models, but still data acquisition requirements limit their use
to the range of very specialized applications.
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So far, appearance-based approaches operating directly on 2D images
and processing them as holistic patterns seem to be the most successful
group when dealing with standard video cameras. They usually use prin-
cipal component analysis (PCA) or linear discriminant analysis (LDA) for
dimensionality reduction and feature selection. LDA attempts to find a
linear transformation for the learning sequence which gives the best sep-
aration for classes. The measure of separation is based on data variances
in each class and for class means, too. LDA in its certain special forms is
known from the 1930s and it is linked to the name of R.A. Fisher – the
famous English statistician (Fisher, 1936). Most general cases of LDA were
introduced when pattern recognition theory had established its position
about thirty years later (compare (Devijver et al., 1982)).

There is a common perception that LDA-based algorithms outperform
PCA-based algorithm because they select a low-dimensionality represen-
tation by trying to maximize its discriminatory capabilities. The first
application of the LDA to face recognition was presented by Belhumeur

almost 10 years ago (Belhumeur et al., 1997). Recently, it has
become apparent that classical LDA has several weaknesses and that its
performance depends strongly on the implementation (i.e. how the Fisher
criterion is maximized). Several new realizations of the LDA algorithm with
improved performance have been proposed: Direct-LDA (Yu et al., 2001),
fractional-step LDA (Lu et al., 2003), etc.

In this paper, we introduce a novel approach to Face Recognition based
on a cascade of Dual-LDA (DLDA) operators. DLDA has been recently
proposed by the authors (Skarbek et al., 2004) and shown to provide su-
perior discriminatory performance compared with classical LDA. Here, we
further extend the framework and introduce an algorithm which uses a
cascade of DLDA operators applied to the subsets of the facial images data.
The paper consists of four sections, describing the theoretical background
behind LDA and DLDA, the design of our FR algorithm based on Cascade
of DLDA operators, experimental evaluation of the performance using the
Equal Error Rates(EER) measure, and comparison with other proposals
which took part in the MPEG-7 contest over the years 2001-2002.

11.2. LDA theoretical background

The multidimensional linear discriminant analysis assumes the projection
of data from R

N into R
r for certain 1 < r < N. Two separation measures

are analyzed: the original Fisher’s ratio (between-class variance over within-
class variance) and its inverse ratio (within-class variance over between-class
variance).

et al.
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11.2.1. WITHIN AND BETWEEN-CLASS VARIANCES OF VECTORS

Let Y = [y1, . . . , yL] be the projected data in r dimensional space, i.e.
yi = W txi, xi ∈ R

N , W ∈ R
N×r, yi ∈ R

r. Let the number of elements xi

which represents class j = 1, . . . , J be Lj , i.e. L = L1 + . . . + LJ . We can
identify elements in Y extracted from j−th class by the index set Ij .

The class separation s(Y ) is measured by the ratio of between-class
variance varb(Y ) and within-class variance varw(Y ) (� accounts for a def-
inition):

s(Y ) � varb(Y )
varw(Y )

(1)

The unbiased vector between-class variance is defined with use of the
Euclidean norm ‖ · ‖ as follows :

varb(Y ) � 1
J − 1

J∑
j=1

Lj‖yj − y‖2 (2)

where the class vector mean yj and grand vector mean y are:

yj � 1
Lj

∑
i∈Ij

yiy � 1
L

L∑
i=1

yi (3)

The unbiased vector within-class variance has the form:

varw(Y ) � 1
L− J

J∑
j=1

∑
i∈Ij

‖yi − yj‖2 (4)

Since the LDA projection transforms the point xi onto the point yi =
W txi, the above statistics for vector data Y can be expressed by statistics
on vector data X. Within-class variance for the projected data Y depends
on the input data X through the matrix Sw(X) called the within-class
scatter matrix:

Sw(X) =
1

L− J

J∑
j=1

∑
i∈Ij

(xi − xj)(xi − xj)t (5)

varw(Y ) = trace(W tSw(X)W ) (6)

Similarly, between-class variance for the projected data Y depends on
the input data X through the matrix Sb(X) called the between-class scatter
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matrix:

Sb(X) =
1

J − 1

J∑
j=1

Lj(xj − x)(xj − x)t (7)

varb(Y ) = trace(W tSb(X)W ) (8)

Optimization of vector variances can be reduced to the optimization of
scalar variances of Yk � [(y1)k, . . . , (yL)k], k = 1, . . . , r using the following
formulas:

varw(Y ) =
r∑

k=1

varw(Yk) (9)

varb(Y ) =
r∑

k=1

varb(Yk) (10)

Therefore, the class separation measure can be expressed as follows:

s(Y ) � varb(Y )
varw(Y )

=
trace(W tSbW )
trace(W tSwW )

11.2.2. WITHIN AND BETWEEN-CLASS COVARIANCE MATRICES

A natural requirement for W = [w1, . . . , wr] can be stated: find such projec-
tion vectors wk, k = 1, . . . , r that the within-class variance of each projected
component is one, i.e.:

varw(Yk) = wt
kSwwk = 1, wk⊥ker(Sw)

and each between-class variance wt
kSbwk is maximal for k = 1, . . . , r.

However, the requirements for the best solution of such a problem should
take into account mutual relationships between component variables.

We introduce now the concept of covariance to have the measure for
relationships between components which are related to class context.

The within-class covariance matrix covw(Y ) is defined as follows:

covw(Yk, Yl) � 1
L− J

J∑
j=1

∑
i∈Ij

((yi)k − (yj)k)((yi)l − (yj)l)

covw(Y ) � [covw(Yk, Yl)]1≤k,l≤r (11)
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The between-class covariance matrix covw(Y ) has the form:

covb(Yk, Yl) � 1
J − 1

J∑
j=1

Lj((yj)k − (y)k)((yj)l − (y)l) (12)

covb(Y ) � [covb(Yk, Yl)]1≤k,l≤r (13)

Basing on above definitions it can be easily proved that covariance
matrices are actually the projected scatter matrices:

covw(Y ) = W tSw(X)W (14)
covb(Y ) = W tSb(X)W (15)

11.2.3. MULTIDIMENSIONAL LDA PROBLEM

The natural requirement for our multidimensional projection is the decor-
relation between the components of the projected data, in both the within
and between class contexts

covw(Yk, Yl) = 0, covb(Yk, Yl) = 0, k, l = 1, . . . , r, l �= k

The imposed conditions for component variances and covariances can
be written in the compact way:

W tSwW = Ir×r, W tSbW is diagonal (16)

Finally, we can formulate the multidimensional LDA problem.
Given data matrix X = [x1, . . . , xL], xi ∈ R

N , find a projection matrix
W = [w1, . . . , wr] ∈ R

N×r, rank(W ) = r, wk⊥ker(Sw) which performs
at the same time the diagonalization of both scatter matrices Sw and Sb,
makes component within-class variances equal to one, and maximizes the
between-class variance varb(W tX):

W ∗ � arg max
W⊥ker(Sw),W tSwW=I; W tSbW is diagonal

r∑
k=1

wt
kSbwk (17)

The solution W of the problem defined by the equation Eq. 17 is found
among members of the LDA models family Fr(X) that can be compactly
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characterized as follows (Skarbek et al., 2003):

Fr(X) � { W ∈ R
N×r : W = Uq0Λ

−1/2
q0 Vr

Sw(X) REVD= Uq0Λq0U
t
q0

,

A � Uq0Λ
−1/2
q0 , AtSb(X)A REVD= Vr0Σr0V

t
r0

1 ≤ r ≤ r0

}

(18)

11.2.4. DUAL MULTIDIMENSIONAL LDA PROBLEM – DLDA

The dual problem minimizes the reversed goal function under the dual
constrains:

W tSbW = Ir×r,W
tSwW is diagonal (19)

The dual LDA problem formulation is as follows.
Given data matrix X = [x1, . . . , xL], xi ∈ R

N , find a projection matrix
W = [w1, . . . , wr] ∈ R

N×r, rank(W ) = r, wk⊥ker(Sb) which performs at the
same time the diagonalization of both scatter matrices Sb and Sw, makes
component between-class variances equal to one, and minimizes the within-
class variance varw(W tX):

W ∗ � arg min
W⊥ker(Sb),W tSbW=I; W tSwW is diagonal

r∑
k=1

wt
kSwwk (20)

The solution W = AVr of the problem defined by the equation Eq. 20
is found in terms of matrices A, Vr, as shown below.

Let us consider the reduced eigenvalue decomposition (REVD) for Sb =
Uq0Λq0U

t
q0

, where the first q0 = rank(Sb), columns in U and Λ are chosen,
Λ = diag(λ1, . . . , λN ), λ1 ≥ . . . ≥ λN . Then the search space has the form:

B = {a : atSba = 1, a⊥ker(Sb)}
= {Aα : A � Uq0Λ

−1/2
q0

, α ∈ R
q0 , ‖α‖ = 1}

Now, the behavior of the objective function wtSww can be analyzed using
REVD for AtSwA � Vr0Σr0V

t
r0

, where r0 = rank(AtSwA) : wtSww =
αtAtSwAα = αtVr0Σr0V

t
r0

α.
Minimization of wtSww with the constraint 1− αtα = 0 by Lagrangian

multipliers leads to the stationary points αk = vk with value σk, k =
1, . . ., r0.Therefore, the optimal point for the goal function f(W )=f(w1,...,wr)
can be combined from stationary points wk = Avk of the quadratic form
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wtSww for r ≤ r0 :

f(W ) = trace(W tSwW ) =
r∑

k=1

wt
kSwwk (21)

f(W ) ≥
r0∑

k=r0−r+1

vt
kA

tSwAvk =
r0∑

k=r0−r+1

vt
kVr0Σr0V

t
r0

vk (22)

=
r0∑

k=r0−r+1

σk (23)

Hence, the optimal projection W = AVr, r ≤ r0, and DLDA models can be
compactly characterized dually to LDA as follows:

Dr(X) � { W ∈ R
N×r : W = Uq0Λ

−1/2
q0 Vr0−r+1..r0

Sb(X) REVD= Uq0Λq0U
t
q0

,

A � Uq0Λ
−1/2
q0 , AtSw(X)A REVD= Vr0Σr0V

t
r0

1 ≤ r ≤ r0

}

(24)

where Vr..r′ denotes submatrix of matrix V consisting of columns with
indices from r to r′.

If both scatter matrices Sb and Sw are nonsingular then the domains
for both goal functions are equal and the DLDA problem is equivalent to
the LDA problem. However, in practice scatter matrices are singular with
different kernel subspaces. Therefore, in general, dual LDA will produce
different results. This conclusion is clearly supported by experiments pre-
sented in Section 4, showing that DLDA finds a more compact feature
subspace compared to LDA.

It appears that if W is the dual LDA projection, Y = W tX = [y1, . . . , yL]
and the random variable Ew is the within class error yk − yl for randomly
chosen vectors yk, yl ∈ Y from the same class, i.e. k ∈ Ij and l ∈ Ij

for certain j = 1, . . . , J, we can identify variances for these error vectors
without any additional computation.
Let the covariance matrix for within-class errors R(Ew(Y )) be defined as
follows:

R(Ew(Y )) �
J∑

j=1

1
L2

j

∑
k,l∈Ij

(yk − yl)(yk − yl)t
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As can be proved this covariance matrix is proportional to the within-class
scatter matrix Sw(Y ):

R(Ew(Y )) = 2Sw(Y ) = 2W tSw(X)W = 2Λ′

Λ′ is the diagonal matrix in the diagonalization of Sw(Y ).
Therefore, the distance δ(yk, yl) between DLDA features yk, yl ∈ R

r,
measured by likelihood of feature error yk − yl, is the weighted Euclidean
distance, where component weights are inverses of eigenvalues for the co-
variance matrix R(Ew(Y )) :

δ(yk, yl) =
r∑

i=1

(y1,i − y2,i)2

λ′
i

. (25)

11.2.5. ALGORITHM 2SS4DLDA

The proposed algorithm is derived using the observation that REVD on
scatter matrix can be replaced by singular value decomposition (SVD)
working directly on appropriately normalized original data matrix X. This
normalization actually computes within-class errors for original data vec-
tors and between-class errors for group means.

In the LDA case our algorithm finds features which on average produce
the maximum variance of between-class error on a good approximation of
within-class errors. By the above LDA properties the algorithm 2SS4LDA
(two singular subspaces for LDA) has been proposed (Skarbek et al., 2004).

On the other hand the DLDA algorithm finds features which on average
produce the minimum variance of within-class error on a good approxima-
tion of between-class error.

Algorithm 2SS4DLDA

Input:

– Data matrix X = [x1, . . . , xL], xi ∈ R
N

– Class membership vector I

– Singular subspace dimensions q, r

Output:
– DLDA model W ∈ R

N×r

– Corrected q, r

Method: Steps 1-9:

1. Compute the global centroid c and class centroids: C ← [c1, . . . , cJ ];
2. Perform centroid shifting and normalization for data matrices X, C :

if i ∈ Ij then yi ← (xi − cj)/
√

Lj , i = 1, . . . , L,
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dj ← (cj − c)
√

Lj/J, j = 1, . . . , J

3. Find the singular subspace of D = [d1, . . . , dJ ] by SVD for Y obtaining
Uq0 ← [u1, . . . , uq0 ] corresponding to singular values

Λ1/2
q0
←

[√
λ1, . . . ,

√
λq0

]
, q0 � rank(D)

4. If q > q0 then q ← q0; If q < q0 then Uq ← [u1, . . . , uq] and

Λ1/2
q ←

[√
λ1, . . . ,

√
λq

]
5. Compute the whitening projection matrix: Aq ← UqΛ

−1/2
q ;

6. Make the whitening projection for normalized data vectors:

yi ← At
wyi, i = 1, . . . , L

7. Find the singular subspace of Y � [y1, . . . , yL] by SVD for Y obtaining
Vr0 ← [v1, . . . , vr0 ] corresponding to all positive singular values:

(Λ′)1/2
r0
←

[√
λ′

1, . . . ,
√

λ′
r0

]
, r0 � rank(Y )

8. If r > r0 then r ← r0; If r < r0 then V(r0−r+1)..r0 ← [vr0−r+1, . . . , vr0 ] and

(Λ′)1/2
(r0−r+1)..r0

←
[√

λ′
r0−r+1, . . . ,

√
λ′

r0

]
9. Compute DLDA model, i.e. the projection matrix W : W ← AqV(r0−r+1)..r0 .

The 2SS4DLDA algorithm is based on two singular value approxima-
tions applied respectively to the normalized class means data matrix and
the normalized multi-class input data matrix.

In Step 5 of the algorithm the extreme points of a hyper-ellipsoid. L′1 �
{a ∈ R

N : a⊥ker(Sb), atSba = 1} are found and inserted as columns
into the matrix A. With this operation the domain of the class separation
function f(W ) � s(Y ) is narrowed to make values of f(W ) bounded.

Next, in Step 6 optimization of f(W ) on its domain is reduced to the
optimization on the unit sphere.

The 2SS4DLDA algorithm is controlled by subspace dimension param-
eters q and r. The first singular subspace of dimension q is designed for
normalized class means and is used to compute new coordinates for the
original data. The second singular subspace is built in this new coordinates.
In a sense it is nested SVD procedure. The feature vectors are computed
using r left singular vectors spanning the second singular subspace.
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11.3. Cascade of operators framework

This section presents in detail our framework and illustrates how the algo-
rithm derived in Section 2 is used to ensure convenient optimization of its
performance.

Figure 11.1. Three stage cascade of DLDA operators.

Our Face Recognition framework is shown in Figure 11.1. It forms a
three stage cascade of operators with DLDA playing the main role as a
tool for providing a compact set of features of great discriminative power.
The cascade is a kind of complex feature extractor returning for every input
facial image its corresponding descriptor.

The operators may be perceived as black boxes taking a signal on input
and producing a signal on output. Each is controlled by several external
parameters. Therefore, the behaviour of the whole cascade and its perfor-
mance in FR applications depends on the values set for each individual
operator as well as the manner they are connected in a framework.

Figure 11.2 shows which regions of a typical facial image are used at
the input of the cascade. Six types of facial images may be manually dis-
tinguished: holistic one (1), upper and lower half of the holistic image (1.1,
1.2), central image (2) and analogously its upper and lower half (2.1, 2.2).
This particular choice is quite intuitive and other types of image selection
may be utilized as well.

It should be noted however, that the central image, by focusing on
the center of the normalized image is less influenced by variations of the
background or hair style. Furthermore, the use of the upper and lower com-
ponent images, in combination with the cascade architecture and DLDA
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Figure 11.2. Facial image parts on cascade’s input.

algorithm, enables our algorithm to extract local features linked to the eye
region and the mouth-chin region.

The Fourier operator presented in Figure 11.1b) transforms the image
intensity input into the frequency domain using the 2D Discrete Fourier
Transform. Apart from the change of representation, it also makes a se-
lection of the coefficients included in output feature vector. The selection
process controlled by two bound spatial frequencies ωx and ωy is illustrated
in Figure 11.3. Process of finding ωx and ωy usually goes independently for
every input facial component.

Figure 11.3. The way of selecting coefficients in the Fourier operator block.

The Fourier operator has outputs corresponding to the real parts Ri,
imaginary parts Ii and amplitudes Ai of the selected spectrum coefficients.
Scanning the blocks of coefficients row-wise and putting them into a vector
g forms the input data for DLDA operators that follow next.

The main advantage of applying the Fourier preprocessing is increased
robustness to image misalignment (vertical and horizontal shift) and conse-
quently to pose variations. In addition, by selecting only certain frequency
coefficients at this step, we can reduce problem dimensionality already at
the input stage.

One can effortlessly replace DFT with any other transformation e.g.
DCT or fractal operator to find out suitable input feature space for the
given sort of problem.

The LDA and DLDA operators (Figure 11.1c,d)) apply respective linear
transformation to the input feature vector g, the former performing extrac-
tion using 2SS4LDA algorithm and latter using 2SS4DLDA algorithm. Each
algorithm is controlled by two parameters q and r setting the appropriate
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singular subspace dimensions and determining dimensionality of the output
feature vector.

The input vector may be composed of multiple outputs of cascade
previous stages which are simply merged in that case (compare Figure
11.1a)).

The normalization operator shown in Figure 11.1e) produces on output
the vector of unit length h̃ obtained by dividing each component of the
input vector h by its length. The normalization is usually needed to ensure
the comparability of vectors obtained by processing inputs from different
sources of the cascade i.e. different image parts.

Figure 11.1f) presents the quantization operator appearing in the last
stage of cascade and converting vector component value x into discrete level
using following operations:

1. thresholding: x̃ ← x
kσ , where σ is the standard deviation of vector

component and k is the threshold factor
2. clamping: if x̃ < −1 then x̃← −1 else if x̃ > 1 then x̃← 1− 2−2b

3. level assignment: xq ← !(x̃ + 1)2b−1"

Instead of operations 1 and 2 an additional normalization may be ap-
plied. The quantization operator takes two parameters: threshold factor k
and size of the face descriptor in bits b.

Although the cascade illustrated in Figure 11.1a) has exactly defined
architecture, a concept of making the cascade from operator blocks allows
for flexibility in using many possible configurations depending on the given
FR problem properties. As it was mentioned various image partitionings
and different transformation operators could be applied to tune the cascade
performance. However, the process of choosing DLDA parameters has to be
repeated for every change in order to obtain the best recognition quality.
In the next section we present the possible solution of this task.

11.4. Results of the FR experiments

The face recognition experiments were set up according to MPEG-7 Visual
Core Experiment (VCE) (Bober , 2002). 11845 gray-level photos of 1433
different persons in various poses and illumination conditions were utilized
of which 3655 images of 504 persons constituted the training set and the
rest i.e. 8190 images of 929 persons formed the testing set. Every facial
image had size 46x56 and eyes manually located.

The distance δ between two facial images was computed using formula
Eq. 25 where eigenvalues are directly obtained in Step 8 of 2SS4DLDA
algorithm.
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The enhanced distance δ′ between the feature vector q of the query
image and the image feature vector f in the database also takes into account
the distance from the average feature vector f̄ obtained for all images for
the given person (excluding the query image):

δ′(q, f) � δ(q, f) + δ(q, f̄)
2

.

As the measure of recognition algorithm performance the Equal Error
Rate (EER) was used. This is defined as a point on the Receiver Operator
Characteristic (ROC) curve where false acceptance rate equals to false
rejection rate and is commonly employed in face recognition experiments,
specially in verification task. Other important factors affecting the useful-
ness of the cascade especially for the indexing applications were extraction
complexity and descriptor size.

In the next subsections the results for cascades of increasing complexity
will be presented starting from a single stage through the two stage case
coming finally to the three stage architecture presented on the Figure 11.1.
The results are presented with stress put on comparison between facial
feature extractors using LDA and DLDA transformations.

In all experiments the descriptor’s components are quantized to 5 bits
(b = 5) to conform to both versions of the MPEG-7 face descriptor.

11.4.1. SINGLE STAGE CASCADE

The first experiment investigates the behaviour of the LDA and DLDA
single operators applied only to the holistic image with or without the pres-

Figure 11.4. EER as function of first singular subspace dimension q for LDA (left) and
DLDA (right); r=20; Two bottom lines are for different ωx and ωy value pairs.

ence of the Fourier operator. Figure 11.4 illustrates a relationship between
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Figure 11.5. EER as function of first singular subspace dimension q for various
descriptor sizes r; LDA on the left, DLDA on the right.

parameter q of the LDA/DLDA operator and the EER for the descriptor
size set to 20.

The use of various combinations of Fourier outputs is examined: real
and imaginary parts, amplitudes alone, all three together as well as the
influence of the Fourier operator’s parameters ωx, ωy (i.e. bound spatial
frequencies) on the recognition performance.

It can be seen that adding a Fourier operator improves the performance,
but also results in decreasing of the extraction complexity due to using
only selected coefficients. In the situation considered, the size of the Fourier
features vector is at most 570 while the intensity vector is 2576 components
large.

The amplitudes alone show very poor performance, but together with
real and imaginary parts of the spectrum outperform noticeably the inten-
sity case. The proper spatial frequencies setting can improve results a little.
The performance of DLDA and LDA operators proves to be quite similar,
even LDA is slightly better.

All further results on the holistic image were obtained using the fixed
Fourier operator settings: ωx = 10, ωy = 10.

Figure 11.5 shows results when Fourier operator with real and imaginary
outputs is used for various sizes of the descriptor r. The EER values are
better for LDA case but the best DLDA performance is reached for much
smaller size of the descriptor; r = 10 compared to r = 50 for LDA.

11.4.2. TWO STAGE CASCADE

In the second experiment we compare the performance of the two stage
cascade with the single stage case. The meaningful illustration of advantage
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of such an approach is presented in Figure 11.6b). As a result of processing
the real, imaginary parts and amplitudes through separate DLDA operators
and then merging them using the DLDA operator on the second stage we
get noticeably smaller EER values than merging them to form an input of
the single DLDA operator (Figure 11.4b)).

Better results can be achieved when the amplitudes from the holistic
image are replaced by the merged amplitudes obtained from Fourier opera-
tors applied separately to the upper and lower halves of the holistic image
(Table 11.1, ωx = 11, ωy = 9). EER performance of the LDA/DLDA single
stage operating only on these merged amplitudes is presented in Figure
11.7; it is very low compared to the results shown in Figure 11.4. That
fact proves that such a partitioning of the facial image provides additional
information from the discriminatory point of view.

From Table 11.1 we also see that combining optimal DLDA operators as
far as the single stage is concerned does not usually mean the best result for
two stage cascade. This may happen due to low-dimensional inputs to the
DLDA operator on the second stage. They simply provide too few features
for this DLDA operator to find their better combinations. Significantly, the
improving properties of the cascade can be noted only for DLDA operators

Figure 11.6. EER as function of the descriptor size r for various values of first singular
subspace dimension q for the given cascade architecture (top); LDA on the left, DLDA
on the right.

(compare Figure 11.5a) and 11.6a)).
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Figure 11.7. EER as function of first singular subspace dimension q for various
descriptor sizes r for f1.1 and f1.2 input images; LDA on the left, DLDA on the right.

Table 11.2 contains analogous results for the two stage cascade acting
on the central image and its upper and lower half. These are substantially

TABLE 11.1. Selected best results for two stage cascade (top) of LDA (bottom left)
and DLDA (bottom right) operators on holistic image. The pair q1, r1 corresponds to
upper operator block on first stage; q, r to the operator on the second stage.
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worse than in the holistic image case due to a smaller amount of information
provided on the input of the cascade.

TABLE 11.2. Selected best results for two stage cascade (top) of LDA (bottom left)
and DLDA (bottom right) operators on central image. The pair q1, r1 corresponds to
upper operator block on first stage; q, r to the operator on the second stage.

11.4.3. THREE STAGE CASCADE

In the third experiment we follow with the optimization making use of the
best results found among two stage cascades analyzed. In Table 11.3 the
best selected results are summarized.

The last entry contains the best result found not by extending the best
cascades as we do in this section but by exhaustive search of an arbitrary
chosen subset of the available parameters. It is an important observation
showing that the full optimization of the cascade can only be done by
checking every combination of cascade parameters, for both the DLDA and
Fourier operators.

Nonetheless, the improvement in terms of EER with respect to single
stage DLDA operator is about 250%.

11.5. Performance comparison

The MPEG-7 Video Experts Group set up in 2000 (WG11, 2000) a ex-
periments framework to encourage researchers to develop new methods
of face recognition. In their call for proposals the stress was put on face
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TABLE 11.3. Selected best results for three stage cascade of LDA
(top) and DLDA (bottom) operators. The parameter sequence cor-
responds to top-to-bottom and left-to-right layout of the cascade
as seen in Figure 11.1.

parameter sequence EER

350,40; 200,40; 120,40; 100,40; 80,50; 80,60; 95,20 4.56%

350,40; 200,40; 120,40; 100,40; 80,50; 80,60; 100,25 4.32%

350,40; 200,40; 120,40; 100,40; 80,50; 80,60; 95,35 3.78%

350,40; 200,40; 120,40; 100,40; 80,50; 80,60; 95,25 4.26%

parameter sequence EER

200,20; 50,20; 60,30; 40,30; 40,30; 60,40; 70,45 2.04%

200,20; 50,20; 60,30; 40,30; 40,30; 60,40; 70,30 2.18%

200,20; 50,20; 60,30; 40,30; 40,30; 60,40; 70,40 2.07%

200,20; 50,20; 60,30; 40,30; 40,30; 60,40; 70,35 2.11%

200,20; 100,80; 120,30; 70,70; 100,44; 100,54; 98,48 1.90%

retrieval (FIR) accuracy, both matching and feature extraction complexity,
and face descriptor’s size. In (Bober , 2002) the person identification (PID)
accuracy was added as the next objective as well as strict rules for the
core experiments were settled. These rules considering facial data used are
described in Section 11.4.

The Average Normalized Modified Retrieval Rank (ANMRR) was used
as the FIR accuracy measure (WG11, 2000). In the PID experiment the
Average Success Rate (ASR) was used (Bober , 2002).

To fully test proposed solutions against various pose and illumination
conditions this experiment was divided into seven parts denoted
PID1,...,PID7.

Altough many different proposals were submitted during the contest, in-
cluding number of various extensions of the Principal Component Analysis
(e.g. (Skarbek, 2002)), Independent Component Analysis ((Hyunwoo et al.,
2002)) and 2D Hidden Markov Models ((Nefian et al., 2001)) the Linear
Discriminant Analysis (LDA) applied to the selected set of Fourier features
((Tae-Kyun et al., 2002), (Kamei et al., 2002), (Kamei et al., 2002)) proved
to be the most successful approach.

In the Table 11.4 the best proposals in terms of ANMRR and ASR are
summarized where the Advanced Face Recognition (AFR) (Kamei et al.,
2002) descriptor is a result of combining the first two proposals. It has two
versions, mandatory (mAFR) that became a part of standard, and extended
(eAFR) taking additionally into consideration the intensity information as
well as applying pose compensation to the input facial image.
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The concept of making use of discriminative information from various
parts of image inspired us to elaborate the more generic and flexible solution
that was presented in this paper. The results placed in the last row of the
Table 11.4 were obtained using the best three stage cascade architecture
found in process of optimization described in Section 11.4.3 (compare Table
11.3).

TABLE 11.4. FIR and PID accuracy for selected best proposals in MPEG-7 contest
compared to best 3 stage cascade of DLDA operators (cDLDA)

FIR PID1 PID2 PID3 PID4 PID5 PID6 PID7

Kamai et al. 0.39 0.94 0.81 0.61 0.82 0.62 0.94 0.82

Tae-Kyun et al. 0.35 0.97 0.81 0.57 0.92 0.58 0.96 0.79

mAFR 0.33 0.97 0.83 0.64 0.94 0.65 0.96 0.81

eAFR 0.27 0.98 0.88 0.74 0.94 0.74 0.98 0.86

cDLDA 0.31 0.95 0.85 0.67 0.89 0.68 0.95 0.8

The computational complexity of all these solutions is determined by
the extraction step i.e. the sequence of operations required to obtain a face
descriptor from a single intensity image given the pre-computed model. In
the MPEG-7 contest the complexity was expressed in terms of multipli-
cations and additions number. The approximate results comparing both
versions of AFR descriptor and our best three stage cascade architecture
are given in the Table 11.5.

TABLE 11.5. Extraction complexity for AFR descriptor in
comparison to best 3 stage cascade of DLDA operators

mAFR eAFR best 3 stage DLDA cascade

multiplications 291K 952K 131K

additions 291K 952K 131K

size in bits 240 640 240
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11.6. Conclusions

In the paper we have proposed a new Face Recognition framework which
uses a multi-layer cascade of DLDA operators. DLDA is shown to give a very
concise and efficient feature representation, compared to classical LDA ap-
proaches. By appropriately cascading DLDA operators, further significant
gains in performance can be achieved. Clearly, the cascade architecture is
superior in extracting much of the discriminant information present in facial
images.

We have also shown how to design an FR algorithm using the proposed
framework, analyzing its behaviour and showing performance at each stage
of the cascade.

The proposed algorithm uses a Fourier-based representation applied to
six regions of the facial image, which are fed into a three-layer cascade of
DLDA operators. Extensive experiments on a collection of facial databases,
performed according to the protocols defined by the MPEG-7 group, show
that the proposed algorithm outperforms single stage DLDA and matches
the performance of the state-of-the-art FR algorithms.
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Abstract. Moments play an important role in picture analysis, pattern recognition, or
classification. The presentation of Euclidean sets by digital pictures causes an inherent
loss of information. There are infinitely many different preimages with identical corre-
sponding digital pictures. The problem we discuss here is how efficiently real geometric
moments of planar convex shapes can be reconstructed from their digital pictures in
dependency on the applied grid resolution and order of considered moments.

Key words: digital shapes, moments, discrete moments

12.1. Introduction

Moments have been widely used in shape recognition and identification.
The moment-concept has been introduced by Hu (Hu, 1962) into picture
analysis. Since then a variety of new moment-types and moment-based
methods has been developed and used. We mention a few of them: object
recognition (Dudani et al., 1977), reconstruction of geometric properties of
regions (Jain et al., 1995), and motion analysis (Pei et al., 1994).

These methods and applications are the reason for the ongoing strong
interest in moment calculations. In general, the (a, b)-moment, denoted by

∗ J. Žunić is also with the Mathematical Institute, Serbian Academy of Sciences and
Arts, Belgrade.
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ma,b(S), of a planar set S is defined by

ma,b(S) =
∫
S

∫
xayb dx dy .

The moment ma,b(S) has the order a+b. The moments ma,b are also
called geometric moments. In applications of picture analysis and pattern
recognition real objects are acquired as binary pictures at a given resolution.
In the manifold of different digitization models, we specify that for a set
S its digitization is defined to be the union of all grid squares (i.e., pixels
in the grid cell model) whose centers belong to S, which is called Gauss
digitization in (Klette et al., 2004).

Formally speaking, if the centers of pixels are presented as points in
the integer grid and if r denotes the picture resolution (i.e., the number of
pixels per measure unit), then the set

D(r · S) = {(i, j) | (i, j) ∈ r · S ∩ Z2} (1)

is the binary picture of set S (also called shape) on a regular orthogonal
grid having resolution r. As usual, r · S = {(r · x, r · y) | (x, y) ∈ S} is the
dilation of S by the factor r. For r = 1, D(S) = {(i, j) | (i, j) ∈ S ∩ Z2} is
the digitization on the integer grid (i.e., one pixel per measure unit).

In picture analysis or pattern recognition, the exact values of moments
ma,b(S) remain unknown. Therefore it seems appropriate (in accordance
with (1)) to approximate ma,b(S) as follows:

ma,b(S) =
1

ra+b+2
·ma,b(r · S)

=
1

ra+b+2
·
∫
r·S

∫
xayb dx dy ≈ 1

ra+b+2
·

∑
(i,j)∈D(r·S)

ia · jb (2)

Throughout the article, for a planar set S and natural numbers a and
b, the corresponding discrete moment of S is denoted as µa,b(D(S)) and
defined by

µa,b(D(S)) =
∑

(i,j)∈S∩Z2

ia · jb

The order of µa,b(D(S)) is a + b and µ0,0(D(S)) = #D(S).
In this article we assume that grid points have nonnegative coordinates,

and that the origin is placed in the lower left corner of the considered array
(i.e., a set of pixels carrying a picture). Under these assumptions, if a shape
S is given then µa,b(D(S)) equals the number of integer points inside of the
3D body Ba,b(S) defined as

Ba,b(S) = {(x, y, z) | (x, y) ∈ S, 0 < z ≤ xa · yb} (3)
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In other words,
µa,b(D(S)) = #

(
Ba,b(S) ∩ Z3

)
(4)

The article is focused on the error in the approximation ma,b(S) ≈
r−(a+b+2) · µa,b(D(r · S)), where real moments are estimated by the
corresponding discrete moments. This problem is equivalent (see (2)) to
the study of the order of magnitude of

|ma,b(r · S)− µa,b(D(r · S))| (5)

This article deals with planar convex shapes only, but due to the defini-
tion of geometric moments, our results can also be extended to sets which
are unions, intersections and set differences of a finite number of convex
sets.

In the rest of this article it will always be assumed that the studied
shapes are bounded by “piecewise smooth” curves. To be precise, by a
piecewise smooth curve C we mean that C is composed of finitely many
pieces Ci which can be given by an equation y = φ(x) or x = θ(y), and
the functions φ(x) and θ(y) have at least continuous derivatives up to the
order of three.

Throughout the article we assume that the following smoothness con-
ditions are satisfied on a curve C bounding a given shape S:

(1) The radius of curvature ρ and its derivative
dρ

dψ
exist on each piece Ci

and are continuous functions of ψ on Ci.
(2) On each piece Ci, the radius of curvature ρ has a maximum value and

a non-zero minimum value.
(3) On each piece Ci, the radius of curvature has a bounded number of

local maxima and minima.

12.2. Related Results

The number of lattice points inside of convex bodies is intensively studied
in number theory ((Davenport, 1951; Krätzel, 1981)). Taking into account
(4), a direct application of Davenport’s result (Davenport, 1951) (for the
case of sets specified here) says that

|ma,b(r · S)− µa,b(r · S)|

is upper bounded by 1 plus the total sum of projections of Ba,b(r · S) onto
the xy-plane, xz-plane, yz-plane, x-axis, y-axis, and z-axis. In other words,
we have

|ma,b(r · S)− µa,b(r · S)| =
∣∣ma,b(r · S)−#

(
Ba,b(r · S) ∩ Z3

)∣∣
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≤
r·xmax∫

0

(r · ymax)b · xa · dx +

r·ymax∫
0

(r · xmax)a · yb · dy

+ r2 · xmax · ymax + xa
max · yb

max · ra+b + r · xmax + r · ymax + 1

=
(

xa+1
max · yb

max

a + 1
+

xa
max · yb+1

max

b + 1

)
· ra+b+1 + r2 · xmax · ymax

+ xa
max · yb

max · ra+b + (xmax + ymax) · r + 1 (6)

where xmin = min{x | (x, y) ∈ S}, xmax = max{x | (x, y) ∈ S}, ymin =
min{y | (x, y) ∈ S}, and ymax = max{y | (x, y) ∈ S}. If a + b is bounded
(a, b ≥ 0), and the set S is fixed, we have

|ma,b(r · S)− µa,b(r · S)| = O
(
ra+b+1

)
. (7)

Moments having an order of up to two, and limitations in estimating
basic geometric features from corresponding digital pictures, are studied
in (Klette et al., 1999). The results have been extended in (Dudani et al.,
2000) to moments of arbitrary bounded order.

In this article we will demonstrate how the use of Huxley’s result (see
Theorem 2) can lead to an estimate for (5) which is better than the estimate
(7) if applied to convex sets which satisfy some smoothness conditions
(which are defined in a way to be not very restrictive) on their boundaries.

12.3. The Number of Grid Points inside a Closed Curve

Let C be a piecewise smooth convex closed curve in the plane. Generally
speaking, a lattice (or grid) L in the plane is the set of all points with
vectors m · ω̃1 + n · ω̃2, where ω̃1 and ω̃2 are linearly independent vectors,
and m and n run through all integers, positive, negative or zero. The points
of L are called lattice points. We are mainly interested in the case

ω̃1 =
(

1
r
, 0

)
and ω̃2 =

(
0,

1
r

)
where r is large and positive. Let f(x, y) be a weighting function. We want
to evaluate the sum

∑
f(m,n) over points m · ω̃1 + n · ω̃2 of L which lie

inside or on the curve C.
The tangent angle ψ is defined by the ratios

cos ψ : sinψ : 1 = 1 : φ′(x) :
√

1 + φ′(x)2
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or
cos ψ : sinψ : 1 = θ′(y) : 1 :

√
1 + θ′(x)2

The arc length s satisfies(
ds

dx

)2

= 1 + φ′(x)2

or (
ds

dy

)2

= 1 + θ′(y)2

The radius of curvature is

ρ =
∣∣∣∣ ds

dψ

∣∣∣∣
Once again, our discussion is restricted to the lattice with

ω̃1 =
(

1
r
, 0

)
and ω̃2 =

(
0,

1
r

)
.

By rescaling with factor r, lattice L becomes the integer grid, and the curve
C is expanded by factor r to the homothetic curve r ·C. We must consider
the contour lines E(t) of the function f(x, y), the locus of points where
f(x, y) = t. The contour line E(t) may be made up of disjoint components.
We define the inside of E(t) to be that side of E(t) on which f(x, y) > t.
Now let D(t) be the closed region of the (x, y) plane consisting of points
which are both inside or on the closed curve r · C, and inside or on the
contour line E(t). Using the Riesz interchange

f(x, y) =
∫

(x,y)∈D(t)

dt

we convert the calculation of the sum
∑

f(m,n) into the problem of
counting all the lattice points in D(t), possibly with averaging over t. We
suppose that the components of E(t) are either straight lines, or curves
convex inwards, or curves convex outwards. We can express the region D(t)
as a finite sum or difference of convex sets Dj(t).

The boundary of the set D(t) consists of parts of the curve r · C and
parts of the contour line E(t), so the same is true for the boundary Cj(t)
of each component Dj(t).

Let
xj(t) = max

Dj(t)
x − min

Dj(t)
x
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yj(t) = max
Dj(t)

y − min
Dj(t)

y.

Further, let Rj(t) be the maximum radius of curvature of the boundary
Cj(t); if a part of Cj(t) is a straight line, then Rj(t) =∞.

Let Aj(t) be the area of Dj(t).
We state two previously known results.

THEOREM 12.1. (Krätzel 1981). The number of lattice points in the
convex set Dj(t) is equal to

Aj(t) + O (xj(t) + yj(t) + 1) .

Note. The theorem in presented form is proved by Krätzel (Krätzel,
1981) but he attributed that result to Gauss. Even that Gauss nowhere
states an estimate for the remainder term, his argument in (Gauss, 1876)
for ellipses leads to the estimate that the error term is of order no bigger
than the length of the major axis.

THEOREM 12.2. (Huxley 2003). Suppose that Cj(t) consists of bound-
edly many components, each of which satisfies the conditions (1), (2), and
(3) above. Then there is a dimensionless constant A, calculated from the
shapes of the components of Cj(t) but independent of the scale of measuring
the length, such that if the minimum radius of curvature of each Cj(t) is at
last A, then the number of points of the integer lattice in Dj(t) is

Aj(t) + O
(
Rj(t)

131
208 · (log Rj(t))

18627
8320

)
The constant implied in the order of magnitude notation is also calculated
from the shapes of the components of Cj(t) but independent of the length
scale.

Gauss’s argument already makes it clear that the error is a boundary
effect. The proof of Theorem 2 begins by dividing the boundary into four or
more parts, and on each part choosing a coordinate transform of the form

X = a · x + b · y, Y = −b · x + a · y

where a and b are integers. The equation of the boundary becomes Y =
g(X). If the boundary does not contain a straight line, then we can
arrange for the function g(X) to have“nice”properties, such as the deriva-
tives g′′(X) and g(3)(X) being bounded away from zero and infinity. This
construction is explained in Section 18 of the monograph (Huxley, 1996).
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12.4. Moment Calculations

We need to describe the contour lines E(t)

f(x, y) = t

of the function f(x, y). We write f1, f2 for
∂f

∂x
,

∂f

∂y
, and so on for further

partial derivatives. The gradient vector of f(x, y) is (f1, f2, ) so the anti-
clockwise tangent vector to the curve E(t) is (−f2, f1), making an angle ψ
with the x-axis, where

tanψ =
dy

dx
=
−f1

f2

The arc length s on E(t) satisfies the following equation:

∂s

∂x
= sec ψ =

√
f2
1 + f2

2

f2

To find the radius of curvature we have as follows:

f2
1 + f2

2

f2
2

· ∂ψ

∂x
= sec2 ψ · ∂ψ

∂x
=

∂(tanψ)
∂x

=
∂

∂x

(−f1

f2

)

=
f1

f2
2

·
(

f12 +
dy

dx
· f22

)
− f2

f2
2

·
(

f11 +
dy

dx
· f12

)

=
f1

f2
2

·
(

f12 −
f1 · f22

f2

)
− f2

f2
2

·
(

f11 −
f1 · f12

f2

)

=
−(f2

1 · f22 − 2 · f1 · f2 · f12 + f2
2 · f11)

f3
2

It follows that the radius ρ of curvature is equal to

ds

dψ
=

−
(
f2
1 + f2

2

)3/2

f2
1 · f22 − 2 · f1 · f2 · f12 + f2

2 · f11

The following special case shows some inherent difficulties. We consider the
monomial weight

f(x, y) = xa · yb

with a ≥ 0, b ≥ 0. Since f(x, y) is homogeneous, we write the contour lines
as

f(x, y) = λ · ra+b
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where λ is a bounded parameter for points inside the curve r · C. If a = 0
or b = 0, then contour lines E(λ · ra+b) are straight lines, and Theorem 2 is
not applicable. However, the equations Y = g(X) of the contour lines are
so simple that we can appeal directly to the method underlying Theorem
2, which is to estimate sums ∑

m

ρ(g(m))

where ρ(t) is the row-of-teeth function

ρ(t) = [t]− t +
1
2

The only coordinate changes that we need are of the form X = ±x, Y = ±y,
or X = ±y, Y = ±x, with

g(X) = r ·
(

λ · ra

Xa

)1/b

or g(X) = r ·
(

λ · rb

Xb

)1/a

If a = 0, then the contour lines are ordinates Y = λ1/b · r, and if b = 0,
then the contour lines are Y = λ1/a · r. We consider these cases later.

We compute the radius of curvature for a > 0 and b > 0. We have

f1 =
a · f
x

, f2 =
b · f
y

,

f11 =
a · (a− 1) · f

x2
, f12 =

a · b · f
xy

, f22 =
b · (b− 1) · f

y2

and

ρ =
(b2 · x2 + a2 · y2)3/2

a · b · (a + b) · x · y (8)

We consider the first quadrant, where x and y are positive. If x ≤ y,
then (8) gives the following:

ρ ≤ ((a2 + b2) · y2)3/2

a · b · (a + b) · x · y ≤
(a + b)2

a · b · y
2

x
≤ (a + b)2

a · b ·
(

y2·a+b

λ · ra+b

)1/a

Similarly, if y ≤ x then (8) gives

ρ ≤ (a + b)2

a · b

(
xa+2·b

λ · ra+b

)1/b

We consider the path of the contour line E(λ ·Ma+b) which lies inside the
curve r · C, so that x and y have an order of at most O (r) and

ρ = O

(
r ·max

{
1

λ1/a
,

1
λ1/b

})
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We write the error bound of Theorem 2 as

O
(
Rk · (log R)µ

)
where R is the maximum radius of curvature.

We use Theorem 2 if

Rk · (log R)µ = O(r) (9)

(i.e., log R = O(r)), and the error bound in Theorem 2 becomes

O
((

λ−k/a + λ−k/b
)
· rk · (log r)µ

)
.

If
λ ≤ max

{
r

−a·(1−k)
k , r

−b·(1−k)
k

}
(10)

then (9) is false and we use Gauss’s Theorem 1. We write λ0 for the value
on the right of (10), and λ1 for the maximum of λ on D.

The corresponding continuous moment is

W =
∫
D

∫
f(x, y)dxdy =

∫
D

∫ ⎛⎜⎝ ∫
(x,y)∈D(t)

dt

⎞⎟⎠ dxdy

=
∫ ∫

D(t)

∫
dxdydt =

∫ ∑
j

Aj(t)dt

with sign changes if some of the regions Dj(t) count negatively. The discrete
moment is

V =
∑
m

∑
n

(m,n)∈D

f(m,n) =
∑
m

∑
n

(m,n)∈D(t)

∫
(m,n)∈D

dt =
∫ ⎛⎜⎝∑

m

∑
n

(m,n)∈D(t)

1

⎞⎟⎠ dt

= ra+b ·
λ1∫
0

⎛⎜⎝∑
m

∑
n

(m,n)∈D(λ·ra+b)

1

⎞⎟⎠ dλ

= ra+b ·
λ∫

λ0

∑
j

(
Aj(λ · ra+b) + O (r)

)
dλ
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+ra+b ·
λ∫

λ0

∑
j

(
Aj(λ · ra+b) + O

(
rk ·max

{
1

λk/a
,

1
λk/b

}
· (log r)µ

))
dλ

=

λ∫
λ0

∑
j

Aj(λ · ra+b)dλ + O
(
λ0 · ra+b+1

)

+O
(
ra+b+k · (log r)µ ·max

{
λ

1−k/a
1 , λ

1−k/b
1

})
= W +

(
ra+b+k ·

(
(log r)µ ·max

{
r−( a

k
−1)·(1−k), r−( b

k
−1)·(1−k)

}))
= W + O

(
ra+b+k · (log r)µ

)
since λ1 is bounded. We assume that min{a, b} > k.

If b = 0 and a > 0, then the contour lines E(t) are abscissae x = c,
and Theorem 1 is directly applicable. The method in the proof of Theorem
1 shows that the error term depends on the position of the straight line
with respect to the integer lattice. For an integer m, values t = (m + 1

2)a

specify the contour line E(t) to be defined by x = m + 1
2 (i.e., a straight

line equidistant from the two closest lattice lines), and the contribution of
E(t) to the edge error is zero. The rest of the boundary of D(t) is a part of
the curve r ·C, and the method in the proof of Theorem 2 ((Huxley, 2003))
tells us that for t = (m + 1

2)a, in the notation of Theorem 2, the number of
integer points in Dj(t) is equal to

Aj(t) + O
(
Rk · (log R)µ

)
where R is the maximum radius of curvature of the curve r · C, with R =
O(M). We have, for some integer m0,

V = ma
0 ·

∑
m

∑
n

(m,n)∈D

1 +
∑

j

∑
m≥m0

∑
n

(m,n)∈Dj((m+1/2)a)

((m + 1)a −ma)

= ma
0 ·

(
A + O

(
Rk · (log R)µ

))
+

∑
m≥m0

((m + 1)a −ma) ·
∑

j

(
Aj · ((m + 1/2)a) + O

(
Rk · (log R)µ

))
where A denotes the area of D. We can write

V = U + O
(
ra+k · (log r)µ

)
(11)
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and
U =

∫
D

∫
[[x]]adxdy (12)

where U is the discretized moment involving [[x]] (i.e., the nearest integer
to x).

It remains to estimate

W − U =
∫
D

∫
(xa − [[x]]a)dxdy =

∑
m≤m0

m+1/2∫
m−1/2

∫
(x,y)∈D

(xa −ma)dydx

The upper and lower branches of the curve r ·C have equations of the form
y = g(x), with a radius of curvature

ρ =
(1 + g′2)3/2

|g′′|

The radius of curvature has an order of magnitude M , so we have

g′′ = O

(
(1 + g′2)3/2

M

)
(13)

In general we wish to estimate integrals of the type

m+ 1
2∫

m− 1
2

(xa −ma) · g(x)dx

O (ra) is a trivial estimate. We use this if g′(x) is very large. The
trapezium role estimate is

1
2

(((
m +

1
2

)a

−ma

)
g

(
m +

1
2

)
+

((
m− 1

2

)a

−ma

)
g

(
m− 1

2

))

+O

(
max | d2

dx2
(xa −ma) · g(x)

)
(14)

The explicit term in (14) is

1
2
·
((

1
2
· a ·ma−1 + O

(
ra−2

))
· g

(
m +

1
2

)
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+
(
−1

2
· a ·ma−1 + O

(
ra−2

))
· g

(
m− 1

2

))

=
1
4
· a ·ma−1

(
g

(
m +

1
2

)
− g

(
m− 1

2

))
+ O

(
ra−1

)
= O

(
ra−1 ·

(
1 + max |g′(x)|

))
(15)

For the error term in (14) we have

d2

dx2
(xa−na)·g(x) = a·(a−1)·xa−2 ·g(x)+2·a·xa−1 ·g′(x)+(xa−ma)·g′′(x)

Following (13), we are able to estimate this expression as

O

(
ra−1 ·

(
1 + max |g′(x)|+ max |g′(x)|3

r

))
(16)

The maxima in (15) and (16) are over the interval m − 1
2 ≤ x ≤ m + 1

2 .
Since the radius of curvature has r as an order of magnitude, for t ≥ 1 the
interval of x-values where |g′(x)| ≥ t has the length

O

(
r√

1 + t2

)
= O

(r
t

)
(17)

We use the trivial estimate O (ra) if

max |g′(x)| ≥ r2/3

which happens for O
(
r1/3

)
values of m; see (17). We split the remaining

range of m-values into such subintervals that g′(x) ≤ 1 or 2r ≤ |g′(x)| ≤
2r+1, for some integer r. The values of m with |g′(x)| ≤ 1 contribute O (ra)
to (12), and values with 2r ≤ |g′(x)| ≤ 2r+1 contribute

O

(
r
2r
· ra−1 ·

(
1 + 2r +

23r

r

))
= O

(
ra + 22r · ra−1

)
(18)

Finally we sum (18) over 2r ≤ r2/3, and we see that

W − U = O
(
ra+1/3

)
This is smaller than the error term in (11).

THEOREM 12.3. Let C be a simple closed curve satisfying the smoothness
conditions piecewise on finitely many pieces Cj.
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(1) The radius of curvature ρ and its derivative
dρ

dψ
exists on Ci, and

are continuous functions of ψ on Ci.
(2) On each piece Ci, the radius of curvature has a maximum value and
a non-zero minimum value.

(3) On each piece Ci, the radius of curvature ρ has a bounded number
of local maxima and minima.

Let r ·C denote the curve C expanded by a factor r. Let D be the closed
region of points inside or on the curve r · C. Let a ≥ 0, b ≥ 0 be integers.
We consider the continuous moment

W = ma,b(D) =
∫
D

∫
xa · ybdxdy

and the discrete moment

V = µa,b(D) =
∑
m

∑
n

(m,n)∈D

ma · nb

then
V = W + O

(
ra+b+k · (log r)µ

)
where k =

131
208

= 0.6298... and µ =
18627
8320

. The constant implied in the O

sign depends on a and b.

12.5. Conclusions

In this article we considered how efficiently the real moments ma,b(S) of
a given planar shape S can be computed from the digital pictures of the
shape S. By equations (3) and (4) the problem can be transformed into the
estimation of the number of lattice points inside a 3D body (see (3)).

How efficiently the number of integer points N(R) in a closed bounded
region R approximates the volume of R in a given d-dimensional space?
This question has already been studied in literature. The answer is very
simple if R is obtained from a fixed region R1 by uniform dilation about
the origin with linear ratio of dilation r. Then it follows that the number
N(R) of integer points in R = r ·R1 is equal to

N(R) = rd · V olume of (R1) + O
(
rd−1

)
(19)

This means that in 3D the error term has an order of magnitude bounded
by O

(
r2

)
.
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However, this result can not directly be applied to the problem consid-
ered here because Ba,b(S) from (3) is not of the form r ·R1.

Davenport’s result (Davenport, 1951) gives a solution for the studied
problem (see (6) and (7)). The error term is estimated as O

(
ra+b+1

)
, if

a + b is the order of the considered moment.
In this article we have shown how a better estimate can be derived,

assuming that we estimate real moments of real shapes having no straight
line segment on their boundaries. The derivation is based on a result in
(Huxley, 2003). If straight line sections on boundaries are allowed then the
previous estimate is the best possible.

Davenport’s result (6) can be applied directly to estimating the error
term in the approximation ma,b(r · S) ≈ µa,b(r · S), even for unbounded
a+b. It seems reasonable that the error term which comes from (6), can be
improved by extending the method presented here to cases of a reasonable
relation between r (applied resolution) and a+b (the order of moments). A
more careful calculation would elucidate the dependence on the exponents
a and b, allowing Theorem 2 to be used as long as a and b do not exceed
some small fractional power of r. In pattern recognition or picture analysis,
it seems appropriate to assume a + b# r; but such an estimation remains
as a problem for a future investigation.
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Abstract. Shape-from-Shading (SfS) is a fundamental problem in Computer Vision.
Its goal is to solve the image irradiance equation. One prominent solution is the Fast
Marching Method of Kimmel and Sethian. When the light source is oblique, Kimmel and
Sethian proposed to rotate the image to the light source coordinate system and then
solve an ‘almost’ Eikonal equation. This paper presents a new iterative variant of the
Fast Marching Method which copes better with images taken under oblique light sources.
Robustness is achieved by avoiding the change of coordinate system. The advantages of
the proposed method are demonstrated on synthetic and real images.

Key words: Shape-from-Shading, Eikonal equation, Fast Marching, oblique light sources

13.1. Introduction

Shape-from-Shading (SfS) is one of the fundamental problems in Computer
Vision. First introduced by Horn in the 1970s (Horn, 1977), its goal is to
solve the image irradiance equation, which relates the reflectance map to
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image intensity. An efficient way to solve this equation numerically is the
celebrated Fast Marching Method of Sethian (Kimmel and Sethian, 2001),
(Sethian, 1999).

Various methodologies have been proposed since the introduction of the
field of Shape-from-Shading by Horn (Horn, 1975), (Horn, 1977), (Horn,
1986) in the 1970s. Horn’s book (Horn and Brooks, 1989) reviews the early
approaches which include characteristic strips and Calculus of Variations.
(Zhang et al., 1999) categorizes Shape-from-Shading techniques by their
modus operandi. Namely, minimization approaches: (Zheng and Chellappa,
1991), (Lee and Kuo, 1993); propagation approach: (Bichsel and Pentland,
1992); local approach: (Lee and Rosenfeld, 1985); linear approaches: (Pent-
land, 1984), (Tsai and Shah, 1994). A newer minimization approach is that
of citehancock:model-sfs, which uses the Mumford-Shah functional to derive
diffusion kernels. Other researchers put topological properties of the sur-
face to use (e.g., citekimmel:globalsfs) or employ deformable models (e.g.,
(Samaras and Metaxas, 1999)). These are only examples, as the amount of
work in the field of Shape-from-Shading is too large to describe herein.

Of particular relevance to this paper are works which utilize Level-Set
and Fast Marching methodologies (see (Sethian, 1999) for a deep insight).
These approaches refer to the image irradiance equation as describing the
motion of a front (e.g., (Osher and Sethian, 1988), (Kimmel et al., 1995)).
The Fast Marching Method re-orders the computation, to make it a one-
pass solution of the Eikonal equation, based on the observation that the
upwind difference structure of the numerical approximation allows us to
propagate information “one way”, that is from smaller values to larger
values ((Sethian, 1996a), (Sethian, 1996b)). (Sethian, 1996a) proves the
Fast Marching Method converges to the viscosity solution (see: (Crandall
and Lions, 1983), (Lions, 1982) for the definition and properties of viscosity
solutions).

(Kimmel and Sethian, 2001) implemented the Fast Marching Method
as an optimal algorithm for surface reconstruction. They referred to the
image irradiance equation as an Eikonal equation for vertical light sources.
Solution of the equation for oblique light sources is obtained by rotation
of the image coordinate system to that of the light source (as inspired by
(Lee and Rosenfeld, 1985)).

While the Fast Marching Method is a highly efficient numerical solution
to the image irradiance equation for vertical light sources, it is suboptimal
for oblique light sources. For non-vertical light sources, the rotation of
coordinate systemrequires an a-priori knowledgeof the depth of the surface.
As this knowledge is exactly the goal of the algorithm, one must employ an
approximation, which reduces the robustness of the algorithm. This paper
presents two new ways to employ the Fast Marching Method for oblique
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light sources as well. The first algorithm iteratively repeats the rotation
with improved depth maps, while the second algorithm iteratively applies
the complete Fast Marching Method for the Eikonal equation in the case
of an oblique light source and avoids any rotation. Comparison with the
original algorithm (Kimmel and Sethian, 2001) would demonstrate that the
second algorithm overcomes the limitations of the original.

The paper is organized as follows. First, we present the notation and
basic assumptions (Section 13.2), and review the Fast Marching Method
(Section 13.3). We then propose the two iterative methods for improved
accuracy in cases where the light source is oblique (Sections 13.4, 13.5).
Section 13.6 compares the original method with the two new ones on both
synthetic and real-life images. Finally, Section 13.7 draws the conclusions.

13.2. Notation and Assumptions

Let us first describe the notation and assumptions that hold throughout
this paper. Photographed surfaces are assumed representable by functions
of real-world coordinates. z(x, y) denotes the depth function in a real-
world Cartesian coordinate system whose origin is at camera plane. A
real-world coordinate (x, y, z (x, y)) is projected orthographically onto
image point (x, y).The intensity and surface normal at this image pointare
denoted: I(x, y) and �N(x, y), respectively. The intensity function I(x, y) is
assumed to be a positive, Lipschitz continuous function and lower than 1
(in order to ensure the existence of the strict viscosity subsolution) (see
(Rouy and Tourin, 1992) for details). The scene object is Lambertian,
and is illuminated by a point light source at infinity whose direction is:
�L = (ps, qs,−1).

13.3. The Fast Marching Method

This section reviews the Fast Marching method of (Kimmel and Sethian,
2001) for vertical and oblique light sources.

13.3.1. MOTIVATION

The Shape-from-Shading problem for a Lambertian surface under direc-
tional light (assuming orthographic projection) is not well posed and may
have infinitely many solutions (see, for example: (Brooks and Chojnacki,
1994), (Brooks et al., 1992a), (Deift and Sylvester, 1981), (Brooks et al.,
1992b), (Oliensis, 1991), (Dupuis and Oliensis, 1992), (Kozera, 1997), (Klette
et al., 1998)). Various methodologies were suggested in the literature to deal
with the ill-posedness (one such example is Photometric Stereo: (Ikeuchi

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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et al., 1986), (Woodham, 1989), (Onn and Bruckstein, 1990), (Klette et

boundary conditions. Indeed, in many applications it is unrealistic to
assume that one has these data, which are the goal of the algorithm. But as we
would see, in the case of Fast Marching, Dirichlet boundary conditions are
required merely at critical image points, not on image boundaries. At crit-
ical points it is possible to obtain the true depth by global topology solvers
(e.g., (Kimmel and Bruckstein, 1995); see (Kimmel and Sethian, 2001) for
more details). We are therefore interested in Fast Marching techniques.

The next subsection would present a consistent and monotone (“up-
wind”) numerical scheme which lies at the heart of the Fast Marching
Method, and is the key to obtaining a unique viscosity solution. For the
Eikonal equation, (Rouy and Tourin, 1992) showed that an iterative algo-
rithm based on this scheme with Dirichlet boundary conditions on image
boundaries and at all critical points converges towards the viscosity
solutionwith the same boundary conditions. While the algorithm of (Rouy
and Tourin, 1992) requires the Dirichlet boundary conditions on image
boundaries and at all critical points, the Fast Marching Method needs
the Dirichlet conditions only at critical points. Existence of the viscosity
solution was proven in (Lions, 1982) and uniqueness, in (Rouy and Tourin,
1992) and (Ishii, 1987). (Sethian, 1996a) proved that the Fast Marching
Method produces a solution that everywhere satisfies the discrete version
of the Eikonal equation. We next describe the algorithm.

13.3.2. FAST MARCHING FOR VERTICAL LIGHT SOURCES

The algorithm of (Kimmel and Sethian, 2001) stems from the orthographic
image irradiance equation:

I(x, y) = �L · �N(x, y) =
pszx + qszy + 1

‖�L V ert
√

z2
x + z2

y + 1
(1)

For a vertical light source, that is �L = (0, 0,−1), the equation becomes an
Eikonal equation which can be written as:

p2 + q2 = F̃ 2 (2)

where p
def= zx, q

def= zy and F̃ =
√

(I(x, y))−2 − 1.
Following (Kimmel and Sethian, 2001), we use the numerical approxi-

mation (originally introduced in (Rouy and Tourin, 1992) as a modification
of the scheme of (Osher and Sethian, 1988)):

pij ≈ max{D−x
ij z,−D+x

ij z, 0}
qij ≈ max{D−y

ij z,−D+y
ij z, 0}

1999)). However, one may enforce uniqueness by adding the Dirichlet
al.,
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where
D−x

ij z
def=

zij − zi−1,j

∆x

is the standard backward derivative and

D+x
ij z

def=
zi+1,j − zij

∆x
,

the standard forward derivative in the x-direction (zij
def= z(i∆x, j∆y)).

D−y
ij z and D+y

ij z are defined in a similar manner for the y-direction.
Substituting the numerical approximation into Equation 2, we get the

discrete equation:(
max{D−x

ij z,−D+x
ij z, 0}

)2
+

(
max{D−y

ij z,−D+y
ij z, 0}

)2
= F̃ 2

ij (3)

where F̃ij
def= F̃ (i∆x, j∆y). The solution of this equation at point (i, j),

assuming depth is known at neighboring pixels, is:

zij =

{
min{z1, z2}+ F̃ij , if | z2 − z1 |≥ F̃ij

1
2

(
z1 + z2 ±

√
2F̃ 2

ij − (z1 − z2)2
)

, if | z2 − z1 |< F̃ij
(4)

where z1
def= min{zi−1,j , zi+1,j} and z2

def= min{zi,j−1, zi,j+1}.

13.3.3. FAST MARCHING IN LIGHT SOURCE COORDINATES

For oblique light sources (i.e., �L �= (0, 0,−1)), (Kimmel and Sethian, 2001)
adopted the idea of (Lee and Rosenfeld, 1985) to rotate the brightness
image to light source coordinates. This yields an ‘almost’ Eikonal equation
(as (Kimmel and Sethian, 2001) called it), which is solved in a manner
similar to the vertical case, but in the new coordinate system.

Rotation to the light source coordinate system is, however, nontrivial.
The image irradiance equation (Equation 1) is invariant to depth transla-
tion. That is, z(x, y) and z(x, y) + c (for a constant c) generate identical
irradiance. This occurs at coordinates (x, y) which are the camera coor-
dinates (See Figure 13.1a). Following the rotation, one solves the vertical
light source case of the image irradiance equation (Equation 2), which is
also invariant to depth translation. However, it is now solved in a different
coordinate system, so the direction of invariance is the direction of the
new z-axis (i.e., the light source direction). Figure 13.1b demonstrates the
invariance following the rotation.

Because of its dependence on surface depth, the rotation of the two
surfaces: z(x, y) and z(x, y) + c to light source coordinates differ in the
general case. In particular, the new (x, y) coordinates, which we denote:

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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Figure 13.1. Demonstration of the invariance properties of the orthographic image
irradiance equation (a) and the equation used after rotation of the image to the light
source coordinates (b).

(x′, y′), may be different. But these coordinates are also the new image
coordinates. Thus, the image pixels used for the computation are different:
I(x′, y′) vs. I(x′ + cl1, y

′ + cl2), respectively, where l1 = ps/‖�L‖ and l2 =
qs/‖�L‖ (the proof is omitted for brevity). Thus, a depth translation, which
should preserve the irradiance under the orthographic model, requires a
translation of the (x, y) coordinates as well, due to the rotation to light
source coordinates. For works on the perspective model, see: (Tankus
et al.,2003), (Tankus et al., 2004a), (Tankus et al., 2004b).This would be
further demonstrated by experimental results (Section 13.6.2).

As a result of the dependence of image coordinates on surface depth,
the new image coordinates may lie outside image boundaries. No doubt,
this results in loss of information. In our implementation, for pixels outside
image boundaries, we duplicated the intensity of the nearest pixel on the
boundary.

Another source of error in the calculation of the rotation is the use
of an approximation for the depth of the surface. An approximation is
necessary because the true depth is yet unknown when the rotation to light
source coordinates takes place. (Kimmel and Sethian, 2001) suggested to
approximate depth as the minimal depth of neighboring pixels.

The use of the approximated depth for the rotation to light source
coordinates results in an inaccurate rotation. Following that, the algorithm
solves the vertical light source problem in light source coordinates, and
rotates the resultant surface back to the original coordinates. The “inverse”
rotation, however, is not exactly inverse to the first rotation, as it uses a
more accurate depth map. An inaccurate rotation affects the shape of the
[xy] domain of the reconstructed surface. Consequently, a rectangular image
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is not necessarily reconstructed in a rectangular [xy] domain, even though
the projection model is orthographic.

13.4. A Rotation Iterative Solution

One way to improve the results of the Fast Marching Method for oblique
light sources is to try and reduce the approximation error of the rotation
to the light source coordinates.

The suggested method is iterative. It uses the depth recovered by the
Fast Marching Method to recalculate the rotation. With this new rotation,
rotate the image once again to the light source coordinates, and solve the
vertical problem in the new coordinate system. From the depth so obtained,
recalculate the rotation, solve the vertical problem and so forth. We would
call this method: Iterative Rotation.

13.5. The Equation Iterative Solution

A different modus operandi to overcome the aforementioned flaws of the
Fast Marching Method is to avoid any rotation to light source coordinates
at all. Instead, we solve a series of Eikonal equations which are approxi-
mations to the image irradiance equation. Each equation should refine the
approximation of its predecessor.

To formulate the approximate equations, we transform the image irra-
diance equation for an oblique light source (Equation 1) into the form:

p2 + q2 = F 2(p, q) (5)

where:

F (p, q) def=

√√√√1−
(

psp + qsq + 1

‖ �L ‖ I(x, y)

)2

A significant difference between the vertical and oblique cases is the depen-
dence of F on p and q.

An important observation described in (Kimmel and Sethian, 2001) is
that when updating the depth values according to the discrete equation
(Equation 3), information always flows from small to large values. Based
on this, the Fast Marching Method reconstructs depth in an “upwind”
fashion. It first sets all z values to the correct height values at local minima
and to infinity elsewhere. Then, every step extends the reconstruction to
higher depths. Reconstruction is thus achieved in one pass.

Nevertheless, a single pass may not be enough to solve the aforemen-
tioned formulation of the oblique problem (Equation 5), because the
approximate solution(the right-hand side of Equation 4)depends onF ,which

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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depends on both p and q. Hence, we suggest another iterative method. At
each iteration, F is calculated using the depth recovered at the preceding
iteration:

p2
n+1 + q2

n+1 = F 2(pn, qn) (6)

where pn and qn are the values of p and q at the nth iteration. The algorithm
is thus:

1. Step 0: Initialize (p0, q0) by the Fast Marching Method of (Kimmel and
Sethian, 2001).

2. Step n:

a) Based on the approximation (pn, qn), calculate the right-hand side
of Equation 6, namely, evaluate F 2(pn, qn).

b) As we computed F 2(pn, qn), Equation 6 is now eikonal. Use Equa-
tion 4 to obtain a solution: (pn+1, qn+1).

c) Following each iteration we normalize the depth function z(x, y) (di-
vide by the mean z value) to compensate for the lack of knowledge
of grid size (∆x,∆y).

3. Let n := n + 1, and repeat Step n.

We call this method: Iterative Equation.
This iterative process results in a series of Eikonal equations, each

solved by the Fast Marching Method. (Sethian, 1996a) showed that the Fast
Marching Method produces a solution that everywhere satisfies the discrete
version of the Eikonal equation. Therefore, the Fast Marching solution of
each of the equations in the series satisfies the discrete version of that
equation. As a result, when the series of solutions to the Eikonal equations
converges, the limit is the correct solution of the discrete version of the
original equation (i.e., the solution of the image irradiance equation with
an oblique light source).

Empirically, in all experiments the series of solutions converged. In fact,
very few iterations were necessary to obtain this convergence (i.e., to get
close enough to the limit).

13.6. Experimental Results

13.6.1. THE EXPERIMENTS

To evaluate the contribution of the proposed algorithms, we compared them
with the original formulation of the Fast Marching Method (Kimmel and
Sethian, 2001). The evaluation involved both synthetic images and real-life
images. The synthetic images were produced from a given depth map using
the image irradiance equation (Equation 1). The derivatives in the equation
were calculated numerically.
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The initialization of the algorithms is based on points of local minima.
For synthetic images, these were extracted automatically from the true
depth map. For real images, they were located visually in each photograph
by a human viewer, and their depths were arbitrarily set to the same
constant. To demonstrate the aforementioned undesired features of the
Fast Marching Method (Kimmel and Sethian, 2001) (Section 13.3.3), we
ran the algorithms twice for each surface. In the second run, the depth of
the original initialization (described above) was translated by a constant.
Theoretically, this should merely translate the whole reconstruction along
the z-axis by the same constant.

In our comparison we checked five iterations of the iterative Fast March-
ing Methods for each example. For the Iterative Equation method, we found
out that all iterations (maybe except for the first one) yielded visually-
identical images, which implies the suggested algorithm converges very
fast.

To quantitatively evaluate the performance of the algorithms on syn-
thetic data, we adopted three criteria from (Zhang et al., 1999). These are:
mean depth error, standard deviation of depth error, and mean gradient er-
ror. For completeness, we also supply the standard deviation of the gradient
error, even though it is considered nonphysical.

13.6.2. COMPARATIVE EVALUATION

Figure 13.2 compares the original Fast Marching Method with the two iter-
ative methods (Iterative Rotation and Iterative Equation) on the following
depth map:

z(x, y) def= 100 + cos
(√

x2 + (y − 2)2
)

where: x, y ∈ [−3.0788, 3.0788] (image size: 50 × 50 pixels). The Itera-
tive Rotation does not improve upon the original Fast Marching; their
reconstructions are very similar. The original Fast Marching Method
reconstructed only a part of the cosine function (the upper rightpart of
the surface in Figure 13.2C, iteration: 0), due to the translated [xy]
coordinates in the calculation.This part corresponds to the lower-left part
of the original surface (Figure 13.2B). The rest of the reconstruction is a
result of a calculation using pixels outside image boundaries (as described
in Section 13.3.3). The Iterative Equation, on the other hand, reconstructed
the right-hand side of the cosine correctly, with more noise on the left hand
side (part of the elevated domain of the cosine appears almost flat there).
Table 13.1 presents the error rates according to the aforementioned criteria.
As expected, all error rates of the Iterative Rotation and Fast Marching
methods are very close to one another. The Iterative Equation algorithm
obtained lowest error rates according to all criteria.

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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A. Lambertian image.

B. Original surface.

iter# Iterative Rotation: Iterative Equation:

0.

1.

2.

3.

4.

5.

C. Reconstruction comparison.

Figure 13.2. Three variants of the Fast Marching Method for

z(x, y) = 100 + cos
“p

x2 + (y − 2)2
”
. Each row corresponds to a different iteration

(Row 0 is the original Fast Marching). Lighting is identical for all reconstructions, and
is equal to that of (A).
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TABLE 13.1. Error rates for the algorithms on z(x, y) = 100 + cos
“p

x2 + (y − 2)2
”
.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev. of

Iters.: Error: Depth Error: Error: Grad. Error:

Fast Marching: 1 0.51687 0.29194 2.20442 1.01374

Iterative Rotation: 1 0.51636 0.29127 2.16523 1.01180

Iterative Rotation: 2 0.51692 0.29179 2.20046 1.01357

Iterative Rotation: 3 0.51697 0.29185 2.20573 1.01359

Iterative Rotation: 4 0.51699 0.29189 2.20869 1.01362

Iterative Rotation: 5 0.51697 0.29186 2.20626 1.01355

Fast Marching: 1 0.51687 0.29194 2.20442 1.01374

Iterative Equation: 1 0.37269 0.28148 1.05731 0.88570

Iterative Equation: 2 0.37213 0.28217 1.05174 0.88535

Iterative Equation: 3 0.37189 0.28203 1.05107 0.88494

Iterative Equation: 4 0.37188 0.28202 1.05104 0.88493

Iterative Equation: 5 0.37188 0.28202 1.05104 0.88493

Figure 13.3 shows the famous example of the Vase (x, y ∈ [−63.5, 63.5];
image size: 128× 128; background depth: 100). The original Fast Marching
yielded a sharp bulge at the foot of the vase. The bulge appears in a domain
whose reconstruction was computed from pixels outside image boundaries.
Iterative Rotation recovers similar surfaces. The Iterative Equation method,
on the other hand, reconstructed a much smoother vase. Its stronger re-
semblance to the original is not only visible but can also be quantified by
all error measures (Table 13.2). The Iterative Rotation and Fast Marching
methods equate; the mean depth error of Iterative Rotation is even a little
higher than that of Fast Marching.

Figure 13.4 introduces a real-world example taken by endoscopy from
the gastric angulus1 (cropped image size: 64×64). The algorithm of Kimmel
and Sethian reconstructs two of the gastric folds. However, the recon-
structed wall of the gastric angulus seems to consist of perpendicular planes
(instead of small folds on a main low-convexity surface). On the right-hand
side of the reconstruction, the surface appears “higher” (i.e., larger y-rates2)

1 Original is from www.gastrolab.net, courtesy of The Wasa Workgroup on Intestinal
Disorders, GASTROLAB, Vasa, Finland.

2 Recall, that the [xy] domain is perpendicular to the optical axis, so the coordinate
system of the reconstructed surfaces is: x – to the right; y – up; z – away from the viewer.

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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A. Lambertian image.

B. Original surface.

iter# Iterative Rotation: Iterative Equation:

0.

1.

2.

3.

4.

5.

C. Reconstruction comparison.

Figure 13.3. Three variants of the Fast Marching Method for the Vase example. Each
row corresponds to a different iteration (Row 0 is the original Fast Marching). Lighting
is identical for all reconstructions, and is equal to that of (A).
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C. Reconstruction comparison.
Figure 13.4. Three variants of the Fast Marching Method for an endoscopic image of
the Gastric Angulus. Each row corresponds to a different iteration (Row 0 is the original
Fast Marching). Lighting is identical for all reconstructions, and is approximately that
of (B). Only (B) was used for the reconstruction.

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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TABLE 13.2. Error rates for the algorithms on the Vase example.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev. of

Iters.: Error: Depth Error: Error: Grad. Error:

Fast Marching: 1 7.95881 5.87365 13.99250 26.45452

Iterative Rotation: 1 8.04165 5.84769 13.99933 26.28860

Iterative Rotation: 2 8.07961 5.85130 13.99862 26.29129

Iterative Rotation: 3 8.04709 5.85250 13.99551 26.36240

Iterative Rotation: 4 8.07280 5.85283 13.99254 26.34710

Iterative Rotation: 5 8.05496 5.85172 13.98958 26.34410

Fast Marching: 1 7.95881 5.87365 13.99250 26.45452

Iterative Equation: 1 4.12683 3.36455 5.70288 14.27210

Iterative Equation: 2 4.47005 3.49335 5.48740 14.09266

Iterative Equation: 3 4.52750 3.51408 5.45683 14.09894

Iterative Equation: 4 4.54517 3.51939 5.44802 14.09603

Iterative Equation: 5 4.55495 3.51974 5.44278 14.08841

Iteration #19. Iteration #20.

Figure 13.5. Reconstruction of the Gastric Angulus example by the Iterative Rotation
method. The iterations following the 19th and 20th are repetitions of these two (there is
no visual difference). The running conditions described in Figure 13.4 are valid here as
well.

than on the left-hand side. Thus, the [xy] domain of the reconstructed
surface is not rectangular. As explained in Section 13.3.3, this is due to
inaccurate rotation to the light source coordinate system. Iterative Rota-
tion seems to have improved the reconstructed shape. After 19 iterations,
it begins to flip between two reconstructed surfaces (Figure 13.5). The
three gastric folds are reconstructed in both states, with better results in
the odd states. In the Iterative Rotation reconstruction, some cavities are
present near the central fold. The upper-right part of the surface is also not
faithfully recovered. The contours of the recovered folds are not as smooth
as in the original image. The Iterative Equation method seems to have
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Algorithm: Reconstruction from Reconstruction from
Original Initialization: Translated Initialization:

Fast
Marching:

Iterative
Rotation:
(Iteration #5)

Iterative
Equation:
(Iteration #5)

Figure 13.6. Comparison of the three algorithms on the Cosine example. Each algorithm
was run with two initializations which were identical up to a constant translation along
the z-direction (c = −90). Only the Iterative Equation algorithm remained invariant
to the translation, while the two others showed a significant change between initializa-
tions. Thus, the Iterative Equation algorithm better maintains the invariance to depth
translations.

reconstructed the three gastric folds in quite an accurate manner. Its accu-
racy appears to be higher than that of the Iterative Rotation method and
in less iterations: only 1 iteration was necessary for the Iterative Equation
to converge.

13.6.3. COMPARISON OF ROBUSTNESS IN DEPTH TRANSLATION

In this subsection, we would like to evaluate the robustness of the algo-
rithms in depth translations. We therefore juxtapose the reconstructions of
surfaces z(x, y) and z(x, y) + c (c is constant) by the three methods. To
obtain reconstructions of z(x, y) + c, we increased the initial depth values
(at minima points) by a constant with respect to the initial values employed
to reconstruct z(x, y). Theoretically, the reconstructions should be identical
up to depth translation, due to the invariance of the orthographic image
irradiance equation.

In the following examples, only one iteration of the iterative methods is
displayed, for the sake of brevity.

Figure 13.6 shows the reconstructions of the Cosine example of Fig-
ure 13.2 by the three methods. The reconstructions in the middle column

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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c = 0 c = 24.75 c = 49.5 c = 74.25 c = 99

Figure 13.7. Reconstruction of the Cosine example by the Fast Marching method with
different translations of the depth function. Depth translation results in [xy] translation
in the calculation of rotation to light source coordinates. Below each reconstruction is its
translation (c) with respect to the original depth function.

are identical to those of Figure 13.2. The initializations used for creating
them were taken from the original depth map. The rightmost column was
created with the translated initializations, so reconstructions should be
translated. Nevertheless, only the Iterative Equation method reconstructed
a surface of the same shape for the two initializations. The Fast Marching
and Iterative Rotation methods were highly affected by the depth trans-
lation. As Figure 13.7 demonstrates, the difference between the surfaces
reconstructed by Fast Marching with different depth translations is due to
translation in the x and y coordinates in the calculation of the rotation to
light source coordinates (as explained in Section 13.3.3). This translation
requires some of the pixels to be taken from outside image boundaries,
so in practice their values are duplicated from boundary pixels. Other
pixels are simply shifted in place when the depth map is translated. The
specific translation used (namely, c = −90) seems to have improved the
reconstruction drastically. Indeed, it reduced the amount of pixels outside
image boundaries prominently.

Figure 13.8 displays the reconstructed Vase (see Figure 13.3) for the
original and translated initializations. For the Fast Marching method the
translation was so large that the vast majority of pixels were taken from
outside image boundaries. Thus, the reconstructed surface is almost planar,
showing no sign of the original structure of the vase. Again, the change in
reconstruction is prominent for the Fast Marching and Iterative Rotation
methods, but not for Iterative Equation.

Figure 13.9 presents the original and translated reconstructions for the
Gastric Angulus example of Figure 13.4. The depth-translated initializa-
tion shifts the reconstructions of the Fast Marching and Iterative Rotation
methods in the [xy] plane. Thus, some of the pixels are evaluated outside
image boundaries. Pay attention that in this real-life example the true
depth at minima points was a-priori unknown, and the algorithm was
initialized based on a human guess. A different guess could result in a
significant change to the reconstruction. The Iterative Equation maintained
its response in spite of the depth translation.
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Algorithm: Reconstruction from Reconstruction from
Original Initialization: Translated Initialization:

Fast
Marching:

Iterative
Rotation:
(Iteration #5)

Iterative
Equation:
(Iteration #5)

Figure 13.8. Comparison of the three algorithms on the Vase example. The initialization
was translated by c = +1000 with respect to the original one. The Fast Marching Method
and the Iterative Rotation methods yielded similar results. Both changed substantially
with the change of initialization. In contrast, the Iterative Equation method maintained
the invariance to depth translation.

From the figures, one can see that the Fast Marching and Iterative
Rotation methods were highly affected by the translation in contrast with
the theoretic invariance of the underlying equation. This demonstrates
the drawbacks of rotation to light source coordinates discussed in detail
in Section 13.3.3. As opposed to these two algorithms, the variation in
reconstruction by the Iterative Equation method was very small. Quan-
tification of the results in the form of depth and gradient errors appears
in Tables 13.3 and 13.4 (for the synthetic examples only). Table 13.3
(the Cosine example) confirms the visual impression that reconstructions
by the Fast Marching and Iterative Rotation methods were improved by the
specific translation selected for this example. Indeed, due to the translation
the error rates dropped significantly with respect to those of Table 13.1.
However, they are still slightly higher than those of the Iterative Equation
method (except for the standard deviation of the gradient error, which is
considered nonphysical). In Table 13.4 (the Vase example), all error rates
of the Fast Marching and Iterative Rotation methods altered with respect
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Algorithm: Reconstruction from Reconstruction from
Original Initialization: Translated Initialization:

Fast
Marching:

Iterative
Rotation:
(Iteration #19)

Iterative
Equation:
(Iteration #5)

Figure 13.9. Comparison of the three algorithms on the Gastric Angulus example with
two initializations. The difference between initializations was c = +90. Only the Iterative
Equation method exhibited invariance to depth translation, while the two others showed
a pronounced change between initializations.

to the corresponding values in Table 13.2. Their change is not as strong as
for the Cosine example, but is still higher than that of the Iterative Equa-
tion method. In both Tables 13.3 and 13.4 variations in the error rates of
Iterative Equation are only minor. Pay attention, that identical error rates
do not imply identical reconstructions. Nevertheless, a significant change
to these measures certainly indicates a notable change in surface shape.

We see, that in all examples, the Iterative Equation method appears to
outrank the methods which rotate the image to the light source coordinate
system: Fast Marching and Iterative Rotation.

When comparing the complexity of the three algorithms, no doubt the
original one is the fastest, by containment. However, as the examples show,
the speed in this case is at the expense of accuracy. The Iterative Equation
method converges very fast and no more than 2 iterations were ever required
to obtain it, so the speed difference turns out to be of secondary importance.

13.7. Conclusions

This research proposes an efficient and robust solution to the problem of
Shape-from-Shading which handles both vertical and oblique light sources
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TABLE 13.3. Comparison of algorithms on z(x, y) = 100 + cos
“p

x2 + (y − 2)2
”
, with

initialization translated by −90. Pay attention to the sharp change in all measures of the Fast
Marching and Iterative Rotation methods with respect to Table 13.1.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev. of

Iters.: Error: Depth Error: Error: Grad. Error:

Fast Marching: 1 0.38683 0.28843 1.43113 0.80503

Iterative Rotation: 1 0.38089 0.27686 1.40019 0.75335

Iterative Rotation: 2 0.37521 0.28065 1.37679 0.77419

Iterative Rotation: 3 0.35533 0.26359 1.28275 0.72974

Iterative Rotation: 4 0.35734 0.26579 1.29597 0.74782

Iterative Rotation: 5 0.35535 0.26404 1.28020 0.73735

Fast Marching: 1 0.38683 0.28843 1.43113 0.80503

Iterative Equation: 1 0.36179 0.27772 1.02285 0.86817

Iterative Equation: 2 0.35912 0.27893 1.00283 0.85665

Iterative Equation: 3 0.35695 0.27596 1.00111 0.85411

Iterative Equation: 4 0.35850 0.27733 1.00394 0.85671

Iterative Equation: 5 0.35869 0.27748 1.00448 0.85694

under the orthographic projection model. The suggested solution is a vari-
ant of the Fast Marching Method of (Kimmel and Sethian, 2001). It employs
the Fast Marching Method iteratively for oblique light sources. Each it-
eration solves an approximation to the image irradiance equation. The
resultant solution serves for successive refinement of the approximating
equation. We called this algorithm: the Iterative Equation method. When
this refinement process converges, convergence is to the correct solution of
the original equation.

We compared reconstruction by the original Fast Marching Method,
the Iterative Rotation method (which successively refines the rotation to
light source coordinates) and the Iterative Equation method on both syn-
thetic and real-life examples (from endoscopy). We also demonstrated why
rotation of the image to light source coordinates, as required by the Fast
Marching and Iterative Rotation methods, is unstable. The Iterative Equa-
tion method outperformed the two other methods, and remained invariant
to depth translations (due to its convergence to the correct solution).

In terms of runtime, the original Fast Marching Method is faster than
the suggested ones. However, convergence of the Iterative Equation method
is very fast; in all examples no more than 2 iterations were ever necessary.

SHAPE-FROM-SHADING BY ITERATIVE FAST MARCHING
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TABLE 13.4. Comparison of algorithms on the Vase example with translated initialization
(+1000). Note the significant change in mean gradient error of the original Fast Marching
Method with respect to Table 13.2.

Algorithm: No. of Mean Depth Std. Dev. of Mean Grad. Std. Dev. of

Iters.: Error: Depth Error: Error: Grad. Error:

Fast Marching: 1 9.36239 5.74319 14.35475 18.95690

Iterative Rotation: 1 9.36239 5.74319 14.35475 18.95690

Iterative Rotation: 2 9.36239 5.74319 14.35475 18.95690

Iterative Rotation: 3 9.36239 5.74319 14.35475 18.95690

Iterative Rotation: 4 9.36239 5.74319 14.35475 18.95690

Iterative Rotation: 5 9.36239 5.74319 14.35475 18.95690

Fast Marching: 1 9.36239 5.74319 14.35475 18.95690

Iterative Equation: 1 4.60417 3.56963 5.45874 14.25520

Iterative Equation: 2 4.60904 3.57800 5.44469 14.26232

Iterative Equation: 3 4.60800 3.57882 5.44469 14.26547

Iterative Equation: 4 4.60788 3.57916 5.44462 14.26633

Iterative Equation: 5 4.60779 3.57945 5.44472 14.26703
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SHAPE FROM SHADOWS

ATSUSHI IMIYA
IMIT, Chiba University
Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

Abstract. This paper clarifies a sufficient condition for the reconstruction of an ob-
ject from its shadows. The objects considered are finite closed convex regions in three-
dimensional Euclidean space. We show a result that a series of pairs of shadows measured
using a general stereo system with some geometrical assumptions is sufficient for full re-
construction of a convex object. Second, we show that a class of non-convex objects, which
we define as slice convex objects, are also reconstractable from a series of shadows. Third,
we clarify relations between shape reconstruction from shadows and image reconstruction
from projections, which is the essential mathematical tool in medical imaging. Fourth we
introduce a metric for similarity among objects from the collection of their shadows.

Key words: shape reconstruction, computerized tomography, convex object, non-convex
object, voting, shape carving

14.1. Introduction

In n-dimensional Euclidean space Rn for n ≥ 2, let ω be the unit vector
on Sn−1. A finite closed convex body K in Rn (Guggenheimer, 1977) is
expressed as

K = {x|x�ω ≤ p(ω), ω ∈ Sn−1}, (1)

where p(ω) is the distance from the origin to a tangent plane to K. An
intersection of a plane σ⊥, which is perpendicular to σ and passes through
the origin, and finite closed convex body K is a shadow of K projected
from the direction σ, that is,

S(σ) = {x|x�σ = 0} ∩K. (2)

Let ∂S(σ) be the boundary curve of the shadow on plane σ⊥. Setting
x�ω = p(ω) to be the tangent plane to ∂S(σ), it is possible to reconstruct
a finite closed convex body K from shadows observed from all directions
on Sn−1 (Campi, 1986).

R. Klette et al. (eds.), Geometric Properties for Incomplete Data, 259-279. 
© 2006 Springer. Printed in the Netherlands.  
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For a point a, a line in Rn is

l(a,ω) = {x|x = a + tω, t ∈ R}. (3)

For a finite closed convex body K,

C(a) = {ω|K ∩ L(a,ω) = ∅}, (4)

is the view cone with respect to the view point a. A set

P (a) = C(a) ∩ a⊥, (5)

where a⊥ is the plane which is perpendicular to vector a and passes through
the origin, is a shadow observed by the perspective projection. A set P (a)
corresponds the shadow observed by a pinhole camera in three-dimensional
Euclidean space. In this paper, we deal with the problem of the reconstruc-
tion of K from P (a) in three dimensional Euclidean space. This problem
is called “Shape from shadow” (Laurentini, 1994; Laurentini, 1995; Aloi-
monos, 1988)

In the previous papers (Imiya and Kawamoto, 2001) and (Imiya and
Kawamoto, 2002), we showed a sufficient condition for the full reconstruc-
tion of a finite closed convex body (Imiya and Kawamoto, 2001). Further-
more, we proved that a class of non-convex objects can be reconstructed
fully from shadows (Imiya and Kawamoto, 2002). This paper is a sequel
to these two papers. In this paper, we show the mathematical relations
between “Shape from shadow” and object reconstruction from line inte-
grals, which is the central mathematical tool for image reconstruction from
projections in medical imaging. Furthermore, we deal with mathematical
aspects of voting (Kawamoto and Imiya, 2001) and carving (Kutulakos and
Seitz, 1999) methods for the object reconstruction.

In the classical publication (Radon, 1917), Radon introduced a problem
to reconstruct a function from its line integrals and plane integrals on a
plane and in a space, respectively. Nowadays, this theory is an irreplaceable
mathematical tool for medical imaging (Tuy, 1983; Smith, 1985; Ludwing,
1966; Solmon, 1976; Hammaker, 1980; Kuba, 1984). Although in computer
vision, a main reconstruction problem is the recovery of the object surface
from photometric measurements (Zheng, 1994; Aloimonos, 1988; Vaillant
and Faugeras, 1992), the reconstruction problem in medical imaging is the
non-invasive visualisation of distributions in the interior of an object. In
the reconstruction of a function from line integrals, we can extract the
boundaries of projections and reconstructed function. Therefore, it is pos-
sible to reconstruct the object boundary from its line and plane integrals
in three-dimensional Euclidean space (Stark and Peng, 1988; Prince and
Willsky, 1990). This relation suggests that image reconstruction from pro-
jections and shape reconstruction from shadows have mathematically many
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relations (Gardner, 1995; Li, 1988; Richardson, 1996; Kölzow, 1989). In
this paper, we re-summerise the results in our previous papers and show
the relations between our results and mathematics in medical imaging.
Furthermore, we introduce a metric for similarity among objects (Schwartz
and Sharir, 1987) from the collection of their shadows. This metric measures
similarity of objects from a collection of shadows without reconstructing
objects from their projections.

14.2. Shape from Shadow

14.2.1. SUPPORT LINES AND PLANES

Setting (x, y)� to be an orthogonal coordinate system on a plane, a support
line of a planar convex object is expressed as

x cos θ + y sin θ = p(θ), (6)

where ω = (cos θ, sin θ)� and p(θ) are the unit normal of this line and
the distance from the origin to this line, respectively. The boundary of a
closed convex object is reconstructed from the collection of support lines,
for 0 ≤ θ < 2π, as(

x
y

)
=

(
cos θ sin θ
− sin θ cos θ

)(
p(θ)
d
dθp(θ)

)
. (7)

This analytical relation between a convex shape on a plane and its tangent
planes was sometimes dealt with in computer vision by several authors
(Zheng, 1994; Vaillant and Faugeras, 1992; Skiena, 1992; Skiena, 1991).

Setting (x, y, z)� to be an orthogonal coordinate system on a plane, a
support plane of a 3D convex object is expressed as

x cos φ sin θ + y sin φ sin θ + z cos θ = p(θ, φ), (8)

where ω = (cos φ sin θ, sin φ sin θ, cos θ)� and p(θ, φ) are the unit normal of
this plane and the distance from the origin to this plane, respectively. The
boundary of a closed convex object is reconstructed from the collection of
support planes, for 0 ≤ θ ≤ π and 0 ≤ φ < 2π, as⎛⎝ x

y
z

⎞⎠ =

⎛⎝ cos φ sin θ sin θ sin φ cos θ
cos φ cos θ sin φ cos θ − sin θ
− sin φ cos φ 0

⎞⎠⎛⎝ p(θ, φ)
∂
∂θp(θ, φ)

1
sin θ

∂
∂φp(θ, φ)

⎞⎠ . (9)

This relation is seen in the reference (Guggenheimer, 1977) in the context
of low-dimensional convex geometry.
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If slices of an object along an z-axis are convex, we can reconstruct this
object, for 0 ≤ θ < 2π as⎛⎝ x

y
z

⎞⎠ =

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠⎛⎝ p(θ)
d
dθp(θ)
z

⎞⎠ . (10)

Therefore, if slices of a non-convex object with respect to a direction are
convex, we can reconstruct this non-convex object using Equation (10).

From shadows on the imaging planes, if we can construct p(θ) for 0 ≤
θ < 2π and p(θ, φ), for 0 ≤ θ ≤ π and 0 ≤ φ < 2π, we can reconstruct an
object. In this section, we show an orbits of the camera centre and a class
of object which allow us to transform from shadows to p(θ) for 0 ≤ θ < 2π
and p(θ, φ), for 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

14.2.2. RECONSTRUCTION OF CONVEX OBJECT

Setting a to be the origin of rays for the observation of shadow, we denote
the shadow of K on an imaging plane as K̃(a) and denote the boundary of
shadow as ∂K̃(a). Furthermore, we denote the boundary curve of ∂K̃(a)
as r(a). The boundary of shadow ∂K̃(a) is a closed curve on an imaging
plane. The vector

l(a) = r(a)/|r(a)|, r(a) ∈ ∂K̃(a) (11)

is the N-vector (Kanatani, 1993) of r(a) in the world coordinate system
(Kanatani, 1993). l(t,a) moves on a closed curve ∂L(a) on the unit sphere
for each a. We call these closed curve ∂L(a) the N-curve of r(a).

For a point x̃ ∈ K̃(a), setting x(a) to be the N-vector of x̃, we define
a cone

C(a) = {x|x = λx(a), λ ≥ 0} . (12)

We call C(a) the view-cone at a. The boundary of C(a) is

∂C(a) = {x|x = λl(a), l(a) ⊂ ∂L(a), λ ≥ 0} . (13)

If a pair of view-cones which have the same vertex satisfy the relation

C1(a) ⊆ C2(a), (14)

we write ∂L1(a) $ ∂L2(a), where ∂Li(a) is called the associated N-curve
of a view-cone Ci(a).

If l(t,a) moves on ∂L(a), n(t,a) moves on the unit sphere and forms a
closed curve ∂N(a), which we call the orthogonal N-curve. From geomet-
rical consideration, it is obvious that if ∂L1(a) $ ∂L2(a), then ∂N1(a) %
∂N2(a). Furthermore, setting

∂C(a)⊥ = {x|x = λn(a), λ ≥ 0} (15)
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if Equation (14) holds, then the relation C1(a)⊥ ⊇ C2(a)⊥ holds. Setting
C1(a) and C2(a) to be view-cones of K and B to be a sphere which encircles
K, respectively, we obtain the following theorem, where the origin of the
world coordinate system is at the centre of B.

THEOREM 14.1. For a bounded closed set A in R3, if⋃
a∈A

C2(a)⊥ ⊇ R3, (16)

then we can reconstruct K from shadows which are obtained by perspective
projection.

Proof ∀a ∈ A ⊂ R3, the relation C1(a)⊥ ⊆ R3 holds. If
⋃

a∈A C2(a)⊥ ⊇
R3, then we obtain

R3 ⊆
⋃

a∈A

C2(a)⊥ ⊂
⋃

a∈A

C1(a)⊥ ⊆ R3. (17)

This relation concludes the relation
⋃

a∈A C1(a)⊥ = R3. Furthermore, this
equation leads to

⋃
a∈A n1(t,a) = S2. �

In the following, we show some examples of a bounded closed set A.

EXAMPLE 14.1. Let P1 and P2 be a pair of perpendicular planes which
pass through the centre of B. Setting a1 and a2 to be circles on P1 and P2

of the centre of which are at the centre of B with radii a and b, respectively,
if a−2 + b−2 > r−2, where r is the radius of B, then a1 ∪ a2 is an example
of A.

EXAMPLE 14.2. Let P1 and P2 be a pair of parallel planes which touch
B. Setting a1 and a2 to be circles with the radius d, the centre of which are
on B, if d > r, d1 ∪ d2 is an example of A.

14.2.3. RECONSTRUCTION OF NON-CONVEX OBJECTS

Equation (7) concludes that if an object is expressed as generalised cylin-
der of convex planar shape and if we know the axis of this object, we
can reconstruct this object from a series of two-dimensional perspective
projections. For the reconstruction of each slice, we are required to observe
shadows from all points on a circle which encircles each slice. Figure 14.1
(a) illustrates the reconstruction of generalised cylinder from a series of
perspective projections.

In the following, we assume that on each slice there exists only one
closed finite region.
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Figure 14.1. Reconstruction of Non-Convex Object: (a) A slice and its support lines
of a generalised cylinder whose slices are convex, where c, t, a, and A are the axis of a
generalised cylinder, the tangent vector of the axis curve at a slice, the camera centre,
and a circle on which the camera centre moves, respectively. (b) A slice of non-convex
object and its support lines, where a and A are the camera centre, and a circle on which
the camera centre moves, respectively.

When a slice of an object is convex and we can observe this slice from
all points on the circle which encircles this slice on the same plane, we
can reconstruct this slice using two-dimensional method. Since all slices
of a convex object are convex, we can reconstruct a convex object from a
collection of slices which are perpendicular to a axis of slice.

For the reconstruction of an object from two-dimensional perspective
projections, each point on the boundary is required to lie at least on a
convex slice as shown in Figure 14.1 (b). A banana is an example of such
a shape.

Using a geometry transform, it is possible to obtain support lines of
a slice from all directions. This geometrical property implies the following
lemma, when we observe a series of shadows from vertices which lie on a
sphere encircling this object.

LEMMA 14.1. From the collection of shadows which observed from vertices
which lie on a sphere encircling this object, we can obtain the collection of
two-dimensional perspective projections of a slice form a point which moves
on a circle encircling this object.

For any points on the boundary, if there exists at least one unique
convex slice curve which contains this point, we call this object a slice
convex object. A convex closed object is slice convex.

A banana-shape object in Figure 14.1 (b) is non-convex but slice convex.
This geometric property and Lemma 14.1 derives the following theorem.

THEOREM 14.2. A slice convex object is uniquely reconstructible from the
collection of shadows observed from vertices which lie on the whole sphere
encircling this object.



SHAPE FROM SHADOWS 265

This theorem permits us for the reconstruction of a class of non-convex
objects from shadows. Furthermore, In this expression, the axis for the
reconstruction is not required to be a straight line.

Next, we show an example camera motion for the measurement of two-
dimensional perspective projections of a slice convex object.

EXAMPLE 14.3. If the camera centre moves on the union of three cylin-
ders, as shown in Figures 14.2 (a) and (b),

x2 + y2 = R2, |Z| ≤ L, R < L
y2 + z2 = R2, |Z| ≤ L, R < L
z2 + x2 = R2, |Z| ≤ L, R < L

(18)

keeping the optical axis of the camera to path through the origin, we can
obtain the same collection of shadows with measured from the camera whose
centre moves on the sphere.

This camera motion is easier than the spherical motion for the practi-
cal instrumentation since three fixed axes of rotation are required for the
measurement of shadows, since as shown in Figure 14.2 (b) this measuring
system has three axes of rotation.

Figure 14.2. Three Orthogonal Cylinders on which the Camera Centre Moves.

14.2.4. RECONSTRUCTION OF SLICE CONVEX OBJECTS

For a slice convex object V with respect to axis λv0 for |v0| = 1 and λ �= 0,
setting A[v] to be a reconstructed object with respect to the axis λv, for
λ �= 0, we have the following theorem

THEOREM 14.3. For an object V the relation

V =
⋂

v∈S2

A[v] (19)

is satisfied if V is slice convex with respect to axis λv0.
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Proof For vectors v0 �= v

V = A[v0] ⊇
⋂

v∈S2

A[v] ⊇ V . (20)

Since V is slice convex with respect to axis λv0, we have the relation

V =
⋂

v∈S2

C[v]. (21)

These two relations imply the theorem. �
In the most of previous works for the reconstruction of object from

shadows, a method is applied for objects which are rotationally symmetry.
and, in these works, the symmetry axis with respect to which an object
is slice convex are assumed to be pre-determined. However, this theorem
implies that without pre-detecting the axes for the slice convex we can
reconstruct this object if we can measure shadows of slices using perspec-
tive projections from vertices over the sphere. This is an important result
derived from geometric analysis in this paper.

If an object is defined as the common region of a finite number of slice
convex objects, that is, object V is expressed as

V =
n⋂

α=1

A[aα], |aα| = 1, (22)

for λ �= 0, where λaα is the axis with respect to which slices of an object is
convex, we have the relation

V =
n⋂

α=1

A[aα] ⊇
⋂

v∈S2

A[λv] ⊇ V . (23)

This relation leads to the following theorem.

THEOREM 14.4. Object V is reconstructed as

V =
⋂

v∈S2

A[v]. (24)

14.2.5. EXAMPLES OF SLICE CONVEX OBJECTS

We show some examples of slice convex objects and axes with respect of
which objects are slice convex.

For a set of points A and a constant λ > 0, we define

λA = {y|y = λx, x ∈ A}, (25)
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and

A⊕ {a} = Aa

= {y|y = x + a, x ∈ A}. (26)

Setting B to be the unit-volume cube whose centroid is at the origin of
the coordinate, that is,

B = {(x, y, z)�||x| ≤ 1
2
, |y| ≤ 1

2
, |z| ≤ 1

2
}, (27)

a set

BL = A \ (
1
2
Ba ∪

1
2
Bb) (28)

for a = 1
4(e1 + e2 + e3) and b = 1

4(e1 − e2 + e3), is a L-shape polyhedron
and a slice convex object with respect to the axes λe2 and λe3 as shown in
Figure 14.3 (a).

Therefore, the shape holds the relation

BL =
⋃

λ∈R

A[e2], BL =
⋃

λ∈R

A[e3]. (29)

It is reconstructible from perspective projections, if the camera centre
moves on a sphere which encircles this object.

The L-shape block is slice convex with respect to axes λ(−e2 + e3) and
curve c(s),

s(s) =

⎧⎪⎪⎨⎪⎪⎩
(

1
2 − s

)
e3 − 1

4e2, 0 ≤ s ≤ 1
2

1√
2
(s− 1

2)(e2 − e3)− 1
4e3,

1
2 ≤ s ≤ 1

2 +
√

2
4{

(1 +
√

2
4 − s

}
e2 − 1

4e3,
1
2 +

√
2

4 ≤ s ≤ 1 +
√

2
4 .

(30)

Figure 14.3. Examples of Slice Convex and Non-Slice Convex Polyhedra. (a), (b), and
(c) are slice convex polyhedra and (d) is a non-slice convex polyhedron. It is possible to
reconstruct polyhedra (a), (b), and (c) from shadows. (d) is non-slice-convex object.
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Setting P (s) to be the slice perpendicular to curve c(s) the boundary
of this block on the plane P (s) is a rectangle for 1

2 ≤ s ≤ 1
2 +

√
2

4 .
A polyhedron

BB = ∪4
i=0Bi (31)

such that

B0 = 1
2B B1 = 1

2B ⊕ {1
2e3}

B2 = 1
2B ⊕ {−1

2e3} B3 = 1
2B ⊕ {1

2(e2 + e3)}
B4 = 1

2B ⊕ {1
2(−e2 + e3}

(32)

is a banana shape polyhedron which is slice convex with respect to axis λe3

as shown in Figure 14.3 (b). Therefore, this shape also holds the relation

BB = ∪λ∈RB[e3], (33)

A polyhedron

N = B \
(

1
2
C ⊕ {v}

)
(34)

is, however, a non-convex and non-slice convex object as shown in Figure
14.4 (d) for vector v = 1

4(e1 + e2 + e3)
A polyhedron in Figure 14.4 (d) is the common polyhedron of three slice

convex polyhedra shown Figures 14.4 (a), (b), and (c). This is an example
for an object which satisfies Equation (22).

14.3. Tomography and Shape from Shadow

14.3.1. SHAPE RECONSTRUCTION BY TOMOGRAPHY

The line integral of a function define on a finite closed convex region K in
R2 is

f̌(t, ω) =
∫ ∞

−∞
f(tω + sω⊥)ds, (35)

where ω = (cos θ, sin θ)� ∈ S and ω⊥ = (− sin θ, cos θ)�. If we reconstruct
f(x) from f̌ , we can automatically reconstruct the boundary of K. There-
fore, if we have the line integrals of an object on slices perpendicular to
the z-axis. We can reconstruct the boundary of an object in a space. This



SHAPE FROM SHADOWS 269

Figure 14.4. Example of a Polyhedron which is the Common Part of Slice-Convex
Polyhedra. Polyhedron (d) is constructed by the common part of polyhedra (a), (b), and
(c), which are slice convex, although polyhedron (d) is non-slice convex.

geometrical property allows us to reconstruct an object in a space from a
collection of line integral on a series of parallel slices.

The plane integral of a function in R3 is

f̌(t, ω) =
∫

ω⊥
f(tω + xθ + yσ)dxdy, (36)

where ω�θ = 0, and σ = ω × θ, for ω ∈ S2 and θ ∈ S2. If we reconstruct
f(x) from f̌ ,

f(x) = − 1
8π2

∫
S2

f̌ (2)(x�ω,ω)dω, (37)

we can automatically reconstruct the boundary of K in a space.
Setting

h(ω⊥,ω) =
∫ ∞

−∞
f(ω⊥ + xω)dx, (38)

where ω⊥ = (t, s)�, we have the relation

f(x) =
∫

S2

∆
1
2 h(Pω⊥x,ω)dω, (39)

for Laplacian ∆, and

f̌(t,ω) =
∫ ∞

−∞
h(ω⊥,ω)ds. (40)

Equation (39) reconstructs the distribution in the object and the boundary
of the object. The decomposition of a plane integral to the two-step line
integrals in Equation (40) means that from two-dimensional distributions
on the planes ω⊥ = (t, s)� computed by line integrals in a space, we can
reconstruct functions as

f(x) = − 1
8π2

∫
S2

∂2

∂t2

{∫ ∞

−∞
h(ω⊥,ω)ds

}∣∣∣∣
t=x�ω

dω (41)
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and we can automatically reconstruct the boundary of the region in which
the function is defined. The outer integral of Equation (41) is computed
on the unit sphere S2. This decomposition of plane integral corresponds to
the reconstruction of an object which is slice-convex with respect to many
directions convex object from shadows.

In Figure 14.5, we show the orbit of a camera-centre and a ray-source.
(a), (b), and (c) show the orbits of the camera-centre for object reconstruc-
tion from shadows. These configurations reconstruct a finite closed convex
body fully. (c), (d), and (e) show the orbits of the ray-source for image
reconstruction from projections. Configurations (d) and (e) reconstruct a
function from its cone beam projections (Tuy, 1983; Smith, 1985; Axelsson,
1994). Configurations (a) and (d), and (b) and (e) correspond. However,
for the reconstruction of a function from its line integrals obtained using
con-beam projections, we need a line which connects two parallel circles
as a part of the ray-source orbit. For both shape from shadow and image-
reconstruction from projections, since a sphere is equivalent to the common
region of cylinders whose axial-direction moves on the unit sphere as shown
in Figure 14.6, it is possible to convert a three-dimensional problem to a
collection of two-dimensional problems.

Setting f(x) to be a positive, and integrable and square integrable
function defined in K, for a a ∈ R3 and ω ∈ S2,

g(a,ω) =
∫ ∞

0
f(a + tω)dt (42)

is the divergent x-ray transform (Hammaker, 1980). Reconstruction of f(x)
from g(a,ω) is the mathematical model for the reconstruction of volume
distributions form cone beams for the x-ray computerised tomography. The
relation

f̌(Pωa,ω) = g(a,ω) + g(a,−ω), (43)

where Pω is the orthogonal projector to ω⊥, allows us to reconstruct an
object from collection of divergent projections. This relation corresponds
to the reconfiguration of support lines and planes for the reconstruction of
an object from view cones.

If source point a moves on the orbits which is same geometry with the
view-points orbit defined in example 2 for a = b, it is possible to reconstruct
fully f(x) from g(a,ω). Therefore, from g(a,ω), we can reconstruct ∂K in
the same condition with Example 14.1.

On the other hand our data are shadows of f(x) measured by perspec-
tive projections. Therefore, denoting the characteristic function of g(a,ω)
and the ray cone as

χ(a,ω) =
{

1, if g(a,ω) > 0
0, otherwise, (44)
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Figure 14.5. Orbit of a Camera-Centre and a Ray-Source: (a), (b), and (c) show the
orbits of the camera-centre for object reconstruction from shadows. These configurations
reconstruct a finite closed convex body fully. (c), (d), and (e) show the orbits of the
ray-source for image reconstruction from projections. Configurations (d) and (e) recon-
struct a function from its cone beam projections. Configuration (f) is for multi-slice
method for the reconstruction.

and
C(a,ω) = {(a,ω) |χ(a,ω) = 1, a ∈ R3,ω ∈ S2}, (45)

respectively, we obtain the following relations

K =
⋂

a∈A

C(a,ω), ∂K =
⋂

a∈A

∂C(a,ω), (46)

where ∂C(a,ω) is the boundary of C(a,ω).
The support plane method for shape reconstruction is an algebraic

expression of the second equation of Equation (46). These geometric prop-
erties show a mathematical relationship between shape from shadows and
the image reconstruction form projections of the x-ray computerised
tomography since shape from shadows focuses to shape reconstruction.

For comparison of shape from shadows and and image reconstruction
from projections. First we reconstruct a cube from perspective projections.
Our cube B is the intersection of six half spaces x ≤ 1, x ≥ −1, y ≤ 1,
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Figure 14.6. Set of the Camera Centre and the Ray-Source Position: A sphere in (a)
is equivalent to the common region of cylinders whose axial-direction moves on the unit
sphere (b).

y ≥ −1, z ≤ 1, and z ≥ −1. Therefore, this object is convex. The vertices
of cube B is

p1 = (1, 1, 1)�, p2 = (−1, 1, 1)�,
p3 = (−1,−1, 1)�, p4 = (1,−1, 1)�

q1 = (1, 1,−1)�, q2 = (−1, 1,−1)�,
q3 = (−1,−1,−1)�, q4 = (1,−1,−1)�.

When the centre of camera moves on a circle x2 + y2 = R2, R > 1, setting
δ = sin−1 1

R , the support planes are

−δ ≤ θ ≤ δ : |ξ,pn−1,pn,a| = 0, |ξ,pn, qn,a| = 0,
|ξ,pn−1,pn,a| = 0, |ξ, qn−1,pn−1,a| = 0

δ ≤ θ ≤ −δ + π
2 : |ξ, pn,pn+1,a| = 0, |ξ,pn+1,pn+2,a| = 0,
|ξ,pn+2, qn+2,a| = 0, |ξ, qn+2, qn+1,a| = 0,
|ξ, qn+1, qn,a| = 0, |ξ, qn,pn,a| = 0,

(47)

where a = (R cos θ, R sin θ, 0)� and ξ = (x, y, z, 1)�. These support planes
are periodic with respect to argument θ with period π

2 and do not express
z = 1 and z = −1. Therefore, we cannot reconstruct cubes from perspective
projections from the view cones whose vertices lie on a circle encircling this
cube.

Assuming that point b = (0, R sin φ,R cos φ)� moves on circle y2 +z2 =
R2, the support planes of cube B which path through point b are

−δ ≤ θ ≤ δ : |ξ, pn−1,pn,a| = 0, |ξ,pn, qn,a| = 0,
|ξ,pn−1,pn,a| = 0, |ξ, qn−1,pn−1,a| = 0

δ ≤ θ ≤ −δ + π
2 : |ξ, pn,pn+1,a| = 0, |ξ,pn+1,pn+2,a| = 0,
|ξ,pn+2, qn+2,a| = 0, |ξ, qn+2, qn+1,a| = 0,
|ξ, qn+1, qn,a| = 0, |ξ, qn,pn,a| = 0,

(48)
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for

p̄1 = p1, p̄2 = q1, p̄3 = p2, p̄4 = q2,
q̄1 = p4, q̄2 = q4, q̄3 = q3, q̄4 = p3.

(49)

These support planes are periodic with respect to argument φ with period
π
2 .

This collection of planes contains planes z = 1 and z = −1. Therefore,
using the orbit of the camera centre for the perspective projections, we can
completely reconstruct a cube.

This collection of planes contains planes z = 1 and z = −1. Therefore,
using the orbit of the camera centre for the perspective projections, we can
completely reconstruct a cube. In Figure 14.7 (a), we show a shadow of a
cube and a view cone of this cube and in Figure 14.7 (b), the view cones
for θ = 0, θ = π

4 , and θ = π
2 .

Figure 14.7. A View Cone of a Cube: (a) and the boundaries of shadows for θ = 0,
θ = π

4
, and θ = π

2
(b).

Next, we show the reconstruction of a cube as the common region of
view cones using the idea of image reconstruction from projections. We use
same symbols with the case of the reconstruction of a cube from support
planes. The view cones of cube B are

−δ ≤ θ ≤ δ |η,pn−1,pn,a| ≥ 0, |η,pn, qn,a| ≥ 0,
|ξ,pn−1,pn,a| ≥ 0, |ξ, qn−1,pn−1,a| ≥ 0

δ + π
2 ≤ θ ≤ − sin+π

2 |ξ,pn,pn+1,a| ≥ 0, |ξ,pn+1,pn+2,a| ≥ 0,
|ξ,pn+2, qn+2,a| ≥ 0, |ξ, qn+2, qn+1,a| ≥ 0,
|ξ, qn+1, qn,a| ≥ 0, |ξ, qn,pn,a| ≥ 0,

(50)
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and

−δ ≤ φ ≤ δ |ξ, p̄n−1, p̄n, b| ≥ 0, |ξ, p̄n, q̄n, b| ≥ 0,
|ξ, p̄n−1, p̄n, b| ≥ 0, |ξ, q̄n−1, p̄n−1, b| ≥ 0

δ + π
2 ≤ θ ≤ −δ + π

2 |ξ, p̄n, p̄n+1, b| ≥ 0, |ξ, p̄n+1, p̄n+2, b| ≥ 0,
|ξ, p̄n+2, q̄n+2, b| ≥ 0, |ξ, q̄n+2, q̄n+1, b| ≥ 0,
|ξ, q̄n+1, q̄n, b| ≥ 0, |ξ, q̄n, p̄n, b| ≥ 0,

(51)

for a = (R cos θ, R sin θ, 0)� and b = (R sin θ, 0R cos θ)�. The view cones
are periodic with respect to arguments θ and φ with period π

2 . The inter-
section of these view cones is a cube B.

14.3.2. VOTING METHOD

Setting the characteristic function in the view cone to be

c(x;a,ω) =
{

1, x ∈ C(a,ω)
0, otherwise, (52)

if we vote c(x;a,ω) in to the space, we have a function

k(x) =
∑
a∈A

c(x;a,ω). (53)

as the results of voting. For a positive integer τ , a set of points

Kτ = {x|, k(x) ≥ τ} (54)

defines an object. The construction of shape by Kτ is called shape recon-
struction by voting. Furthermore, an algorithm for the computation of Kτ is
called shape carving. Equation (53) is a geometric version of backprojection
in image reconstruction from projections (Solmon, 1976; Hammaker, 1980).

The voting process is the same operation with shape from shadows for
slice convex objects, if we can obtain tangent lines at each point from all
directions. Therefore, we have the following theorem.

THEOREM 14.5. Voting process reconstruct slice convex objects from shad-
ows if we have orthogonal views from all directions in S2.

The boolean version (Kawamoto and Imiya, 2001) of Equation (53) for
lines with finite width, which is adopted in applications is

K =
⋂
a∈A

{
⋂

l(a)∈C(a,ω)

l(a)⊕B}, (55)

where B is the ball with radius δ, since {l(a) ⊕B} defines a straight bar
in a space whose centre line is l(a).
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14.4. Metrics among Convex Objects

According to the brief survey of classical results in convex geometry in
Section 14.2, parametrisation of a closed convex surface is achieved using
the support plane expression. Using this parametrisation, we define a metric
among convex objects.

For a vertex x on K which is parametrised by the support plane ex-
pression of a convex object, setting

g =
1
4π

∫ 2π

0

∫ π

0
x sin θdθdφ, E =

√
1
4π

∫ 2π

0

∫ π

0
|x|2 sin θdθdφ, (56)

a vector x̄ = 1
E (x − g) determines a normalised parametrisation which is

invariant under scaling and translation. Then for a rotation matrix R, we
define a metric among convex objects K1 and K2 as

d(K1,K2) = min
R

√
1
4π

∫ 2π

0

∫ π

0
|x̄1 −Rȳ2|2 sin θdθdφ, (57)

For x ∈ ∂K1 and y ∈ ∂K2, if there is a transformation y = λRx+c we
write K1 ∼ K2 for a pair of convex objects. For this metric, we have the
theorem.

THEOREM 14.6. If and only if K1 ∼ K2, d(K1,K2) = 0 and d(K1,K2).

Proof

d(K1,K2) + d(K2,K3)

= min
R1

√
1
4π

∫ 2π

0

∫ π

0
|x̄1 −R1x̄2|2 sin θdθdφ

+ min
R2

√
1
4π

∫ 2π

0

∫ π

0
|x̄2 −R2x̄3|2 sin θdθdφ

≥ min
R1R2

√
1
4π

∫ 2π

0

∫ π

0

∣∣RT
1 x̄1 −R2x̄3

∣∣2 sin θdθdφ

≥ min
R3

√
1
4π

∫ 2π

0

∫ π

0
|x̄1 −R3x̄3|2 sin θdθdφ

= d(K1,K3), (58)

where R3 = R1R2. Thus, d(K1,K2) satisfies the three axioms of
distance. �



276 A. Imiya

This theorem concludes that Equation (57) defines a metric which is
invariant under rotation, translation and scaling. Furthermore, setting

M =
1
4π

∫ 2π

0

∫ π

0
x̄1x̄

T
2 sin θdθdφ, (59)

Equation (57) becomes

d(K1,K2) =
√

1− tr(MMT )
1
2 . (60)

Thus, using cross correlation of normalised parametrisation of convex ob-
jects, we can compute the distance between two convex objects (Schwartz
and Sharir, 1987).

Setting ∆(A,B) to be the symmetry difference of a pair of regions A
and B in Rn such that

∆(A,B) = |(A ∪B) ∩ (A ∩B)|, (61)

we define the similarity measures of convex objects as,

d(K1,K2) = min
R,t

∆(K1(R, t),K2), (62)

where
Ki(R, t) = {y|y = Rx + t, x ∈ Ki}, (63)

for a rotation matrix R and a translation vector t,

d̃p(K1,K2) = min
R,t

∫
S2

{
∆(K̃1(Rω ⊕ {Pω⊥t}), K̃2(ω))

}
dω, (64)

for parallel projections and

d̃c(K1,K2) = min
R,t

∫
a∈{A(R,t)}

∆(K̃1(a), K̃2(a))ds, (65)

for perspective projections, which measure view corns, where s is the length
on a curve a and

A(R, t) = {y|y = Ra + t, a ∈ A}. (66)

Equation (62) is a set theory analogous to eq. (57). Equation (64) is a
similarity measure computed by shadows over all directions in S2. There-
fore, we can compute similarities of convex objects from shadows without
reconstructing them. Furthermore, Equation (65) is a view-based metric
which depends on the orbit of the camera for the reconstruction.
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In R2, assuming that the origin of object lies inside of the camera orbit,
we define

f(θ, t) =
{

1, if −p(θ + π) ≤ t ≤ p(θ),
0, otherwise. (67)

Setting S(θ, t) = {(θ, t)|f(θ, t) = 1}, we have

d̃p2(K1,K2) = min
φ,s

∆(S1(θ − φ, t− s), S2(θ, t))

= min
φ,s

∫ 2π

0
|f1(θ − φ, t− s)− f2(θ, φ)|dθ (68)

14.5. Conclusions

We summarise some open problems for shape from shadow. Analysis done in
Section 14.2.2 does not depend on the dimensions of spaces. Therefore, our
analysis might solve shape from shadow in the general dimensional spaces.
In n-dimensional Euclidean space, k-dimensional rays observe (n − k)-
dimensional shadows for n > k ≥ 1. This hierarchy of the rays and shadows
might derive the same mathematical properties of the X-ray transform and
Radon transform (Solmon, 1976). Specially as an application, shape carving
in 4-dimensional spatio-temporal space is interested in motion analysis for
robot vision.

In the theory of line integrals, the Fourier-Plancherel formula, which
relates the L2 norms of an function and its transform, is well studied
(Solmon, 1976). This relation allow us to evaluate the reconstruction errors
from errors in the projections. The formula in shape from shadow is the
relation between Equations (62) and (64). Furthermore, the construction of
the robust and accurate computation of Equation (68) is also an open prob-
lem. Using this definition, machine parts are clarified from mechanically
measured data (Rao and Goldberg, 1994; Rao and Goldberg, 1995).
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Approximation and Regularization



A CONFIDENCE MEASURE FOR

VARIATIONAL OPTIC FLOW METHODS
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66041 Saarbrücken, Germany

Abstract. In this paper we investigate the usefulness of confidence measures for varia-
tional optic flow computation. To this end we discuss the frequently used sparsification
strategy based on the image gradient. Its drawbacks motivate us to propose a novel,
energy-based confidence measure that is parameter-free and applicable to the entire class
of energy minimising optic flow techniques. Experimental evaluations show that this
confidence measure leads to excellent results, independently of the image sequence or the
underlying variational approach.

Key words: optic flow, confidence measures, differential techniques, variational methods,
partial differential equations, performance evaluation

15.1. Introduction

The recovery of motion fields from image sequences is one of the key
problems in computer vision. Given two consecutive frames of an image
sequence, one is interested in finding the projection of the 3-D motion onto
the image plane: the so-called optic flow field. In order to estimate this
displacement field, optic flow methods often use a constancy assumptions
on image features such as the grey value.

At that point, the handling of incomplete data plays a very important
role: In general, these constancy assumptions cannot provide sufficient data
to determine a unique solution of the optic flow problem. For instance,
in the case of the grey value constancy assumption this incompleteness
manifests itself in the aperture problem. In this case not more than the flow
component parallel to the image gradient can be calculated. At locations
where the gradient is zero, not even this component is computable and no
estimation is possible.
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In order to cope with these situations, variational methods regularise the
problem by assuming smoothness or piecewise smoothness of the resulting
flow field. At locations where the problem of incomplete data occurs, this
regularisation fills in information from the neighbourhood and thus allows
the estimation of a 100 % dense flow field.

However, it is clear that these estimates cannot have the same reliabil-
ity at all locations. It would therefore be interesting to find a confidence
measure that allows to assess the reliability of a dense optic flow field.
In particular, such a measure would allow to identify locations where the
problem of incomplete data has been solved successfully. Therefore, it is
not surprising that (Barron et al., 1994) have identified the absence of such
a good measure as one of the main drawbacks of variational optic flow
techniques.

In our paper we address this problem. By discussing the frequently
used confidence measure based on the image gradient, we show why this
method is not appropriate for sparsifying dense flow fields from variational
methods. As a remedy, we propose a novel energy-based confidence measure
that offers several advantages and works well over a large range of densities.

Related work. In spite of the fact that there exists a very large
number of publications on variational optic flow methods (see e.g. (Horn
and Schunck, 1981; Nagel and Enkelmann, 1986; Weickert and Schnörr,
2001; Brox et al., 2004)) and on confidence measures for local optic flow
approaches – most of them based on the evaluation of the aperture prob-
lem; see e.g. (Bigün et al., 1991; Simoncelli et al., 1991)) – there has been
remarkably little work devoted to the application of confidence measures in
the context of variational optic flow methods. First approaches go back to
(Barron et al., 1994) who used the magnitude of the image gradient to de-
cide on the local reliability of a flow estimate. More recently, (Haußecker and
Spies, 1999) proposed a general classification of confidence measures. How-
ever, they neither introduced any novel confidence measures for variational
methods, nor performed a qualitative evaluation of existing concepts.

Organisation of the chapter. Our paper is organised as follows. In
Section 15.2 we give a review on variational methods and discuss different
types of regularisation strategies. The gradient-based confidence measure by
(Barron et al., 1994) that is widely used to sparsify the resulting flow fields is
discussed in Section 15.3. Based on the results of this discussion we propose
a novel energy-based confidence measure in Section 15.4 and perform a
systematic experimental evaluation in Section 15.5. Finally, Section 15.6
concludes this paper with a summary.
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15.2. Variational Optic Flow Computation

Let us consider some image sequence f(x, y, t), where (x, y) denotes the
location within a rectangular image domain Ω, and t ∈ [0, T ] denotes time.
In order to retrieve objects in subsequent frames of this image sequence,
many optic flow methods assume that corresponding pixels have the same
grey value, i.e. that the grey value of objects remains constant over time. If
we denote the movement of such an object by (x(t), y(t)) this assumption
can be formulated as

0 =
df(x(t), y(t), t)

dt
. (1)

By applying the chain rule this leads to the following optic flow constraint
(OFC):

0 = fxu + fyv + ft, (2)

where subscripts denote partial derivatives and the optic flow field satisfies
(u, v)� = (∂tx, ∂ty)�.

Evidently, this single equation is not sufficient to uniquely determine the
two unknowns u and v. In particular at locations where the image gradient
is zero, no estimation of the optic flow is possible. In all other cases, only the
flow component parallel to ∇f := (fx, fy)� can be computed, the so-called
normal flow:

wn = − ft

|∇f |
∇f

|∇f | . (3)

In the literature, this ambiguity is referred to as the aperture problem.

15.2.1. GENERAL STRUCTURE

Variational methods overcome the aperture problem by imposing an ad-
ditional constraint on the solution: They assume that the resulting flow
field is smooth or piecewise smooth. Then the optic flow can be computed
as minimiser of a global energy functional, where both deviations from
the data and deviations from the smoothness constraint are penalised. Let
∇3 := (∂x, ∂y, ∂t)� denote the spatiotemporal gradient, let D (u, v,∇3f)
stand for a data term (e.g. the squared OFC) and let S (∇3u,∇3v,∇3f)
represent a constraint on the smoothness of the resulting flow field. Then
the corresponding energy functional is given by

E(u, v) =
∫

Ω×[0,T ]
D (u, v,∇3f)︸ ︷︷ ︸
data term

+α S (∇3u,∇3v,∇3f)︸ ︷︷ ︸
smoothness term

dx dy dt, (4)

where α serves as regularisation parameter that steers the smoothness of
the estimated flow field.
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15.2.2. PROTOTYPES FOR VARIATIONAL METHODS

Let us now take a closer look at the different regularisation strategies
that may serve as smoothness constraints. As classified in (Weickert and
Schnörr, 2001) there are basically three different types of regularisation:
Homogeneous regularisation that assumes overall smoothness, image-driven
regularisation that assumes piecewise smoothness and respects discontinu-
ities in the image data, and flow-driven regularisation that assumes piece-
wise smoothness and respects discontinuities in the flow field. Moreover,
when considering image and flow-driven regularisation, one can distinguish
between isotropic and anisotropic smoothness terms. While isotropic regu-
larisers do not impose any smoothness at discontinuities, anisotropic ones
permit smoothing along the discontinuity but not across it.

In order to demonstrate the different regularisation concepts and to
allow for a systematic experimental evaluation, we have chosen three pro-
totypes of variational methods that cover all types of regularisation.

15.2.2.1. The Combined Local–Global Method
As prototype for the class of optic flow techniques with homogeneous reg-
ularisation we consider the so-called combined local-global (CLG) method
(Bruhn et al., 2002; Bruhn et al., 2005). This technique combines the dense
flow fields of the global approach of (Horn and Schunck, 1981) with the
high noise robustness of the local method of (Lucas and Kanade, 1981).

Let w = (u, v, 1)� denote the spatiotemporal extended flow vector.
Then the energy functional of the CLG method is given by

E(u, v) =
∫

Ω×[0,T ]
w�Jρ(∇3f)w + α (|∇3u|2 + |∇3v|2) dx dy dt. (5)

where the matrix Jρ(∇3f) is the so-called structure tensor (Bigün et al.,
1991; Förstner and Gülch, 1987; Rao and Schunck, 1991) given by Kρ ∗
(∇3f ∇3f

�), the symbol ∗ denotes convolution in each matrix component,
and Kρ is a Gaussian with standard deviation ρ. One should note that for
ρ→ 0 the spatial variant of the CLG approach comes down to the Horn and
Schunck method, and for α→ 0 it becomes the Lucas–Kanade algorithm.

15.2.2.2. The Method of Nagel and Enkelmann
For the class of optic flow methods with image-driven regularisation we
consider the anisotropic technique of (Nagel and Enkelmann, 1986). This
method assumes the flow field to be smooth everywhere except across dis-
continuities in the image data. This can be realised by penalising only the
projection of the flow gradient onto the plane orthogonal to the image gra-
dient. The corresponding energy functional for the spatiotemporal variant
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of the Nagel-Enkelmann algorithm is given by (Nagel, 1990)

E(u, v) =
∫

Ω×[0,T ]
(fxu + fyv + ft)2

+α (∇3u
�D(∇3f)∇3u)

+α (∇3v
�D(∇3f)∇3v) dx dy dt, (6)

with the regularised projection matrix

D(∇3f) =
1

2|∇3f |2 + 3ε2

⎛⎝f2
y + f2

z + ε2 −fxfy −fxfz

−fxfy f2
x + f2

z + ε2 −fyfz

−fxfz −fyfz f2
x + f2

y + ε2

⎞⎠ (7)

perpendicular to ∇3f , where ε serves as regularisation parameter.

15.2.2.3. The TV-based Regularisation Method
In contrast to image-driven regularisation methods, flow-driven techniques
reduce smoothing where edges in the flow field occur during computation.
Our representative for this third class of variational optic flow techniques is
an isotropic method that penalises deviations from the smoothness assump-
tion with the L1 norm of the flow gradient magnitude. This corresponds to
total variation (TV) regularisation (Rudin et al., 1992). It can be related to
statistically robust error penalisation (Huber, 1981), since large deviations
from smoothness are penalised less severely than in the commonly used
quadratic (Tikhonov) regularisation (Tikhonov and Arsenin, 1977). As a
consequence, large gradient features such as edges are better preserved.
Our energy functional is given by

E(u, v) =
∫

Ω×[0,T ]
(fxu + fyv + ft)2

+α
√
|∇3u|2 + |∇3v|2 + ε2 dx dy dt, (8)

where ε serves as small regularisation parameter. Related spatial energy
functionals have been proposed by (Cohen, 1993; Deriche et al., 1995;
Kumar et al., 1996), and similar spatiotemporal functionals have been
investigated in (Weickert and Schnörr, 2001).

15.2.3. THE FILLING-IN EFFECT

The strategy of regularising the solution by a smoothness assumption has
a useful side-effect: Variational methods always yield 100 % dense flow
fields. At locations with ∇3f ≈ 0, the data term does not allow a reliable
computation of a local flow estimate. However, the smoothness term fills



288 A. Bruhn and J. Weickert

in information from the neighbourhood. This can be explained as follows:
Since the contribution of the data term to the energy functional is very small
at these locations, the smoothness term becomes relatively more important.
As a consequence, the local flow estimate is adjusted to its neighbour-
hood in accordance with the smoothness constraint. This propagation of
neighbourhood information is the so called filling-in effect.

15.3. The Gradient-Based Confidence Measure

As we have seen in the previous section, the aperture problem does only
allow the direct computation of the normal flow. Since this requires the
gradient at the corresponding pixel to be different from zero, (Barron et al.,
1994) proposed to connect the reliability of a flow estimate to the magnitude
of the underlying image gradient. Thus, the following confidence measure
is obtained:

cgrad = |∇f |. (9)

However, this ad-hoc criterion suffers from two drawbacks. Large gradients
often result from noise and occlusions. Therefore, evaluating the magnitude
of the gradient rewards exactly those locations, where the estimation of
the optic flow is particularly problematic. It is not surprising, that the
application of such a measure can only be of limited success. Moreover, it
is clear that a-priori measures that only judge the initial situation before
the computation, are not in the best position to decide on the reliability
of a local flow estimate. They are simply not capable of considering the
propagation of neighbourhood information for solving the aperture prob-
lem. This applies in particular to variational optic flow methods since they
rely on the global filling-in effect of the regulariser.

15.4. A Novel Energy-Based Confidence Measure

In order to capture the filling-in effect of the regulariser in a better way, one
should think of involving the computed flow in the decision process. Let us
now demonstrate how this can be accomplished in a natural way. As we
know from Section 15.2, variational methods are based on the minimisation
of an energy functional. This energy functional penalises deviations from
model assumptions by summing up the local deviations from the image
domain. At locations where this deviation is small, the computed flow
respects the underlying model. At locations where the deviation is large,
on the other hand, the model assumptions are violated severely. In this
context it appears very natural to use this indicator for assessing the local
reliability of the computation. Thus, we propose a confidence measure where
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the reliability is inversely proportional to the local energy contribution:

cener =
1

D (u, v,∇3f) + α S (∇3u,∇3v.∇3f) + ε2
, (10)

Here ε serves as small regularisation parameter that prevents the denom-
inator from becoming singular. Its actual value is not important since we
are only interested in a ranking of the confidence at different locations.

Apart from its simplicity, this confidence measure has several addi-
tional advantages. Firstly, it is a consequent continuation of the concept
of variational methods: The confidence measure is based on exactly the
same assumptions as the underlying energy functional. There is no reason,
why other constraints should be used for evaluating the reliability of the
estimated flow field: if other constraints are considered important, they
should have been taken into account earlier by incorporating them in the
variational model for computing the flow field. Secondly, the energy-based
confidence measure allows to consider the filling-in effect of the regulariser:
in contrast to the image gradient this measure is based on the evaluation
of the flow field. Evidently, this is the only data where the filling-in effect
is present. Thirdly, it allows to detect noise and occlusions to a certain
degree. Those locations have a relatively high energy and are thus easily
identified. Fourthly, the proposed confidence measure can be derived in a
straightforward way from any energy functional. This makes it applicable
to the entire class of energy minimising optic flow techniques. And finally,
it is parameter-free. Since the parameters have already been set before the
computation of the flow field there is no need to readjust them afterwards.

15.5. Results

In order to be able to quantify the reliability of confidence measures in
the experimental section we restrict ourselves to image sequences for which
the ground truth is available. In particular, this allows us to compute error
measures such as the frequently used average angular error. It is defined as
the arithmetic mean of

arccos

(
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)
(11)

where (uc, vc) denotes the correct flow, and (ue, ve) is the estimated flow
(cf. also (Barron et al., 1994)).

In our first experiment we compare the performance of the gradient
and the energy based confidence measures. To this end we use the spa-
tiotemporal approach with locally integrated data term and homogeneous
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Figure 15.1. Comparison of the gradient, eigenvalue and energy-based confidence
measures for the Yosemite sequence with clouds using the 3-D approach with locally
integrated data term and homogeneous regularisation (CLG).

regularisation (CLG) and compute the flow field between frame 8 and 9 of
the famous Yosemite 1 sequence with clouds. Then, we successively sparsify
the estimated flow field by applying the confidence measures independently,
and calculate the corresponding average angular errors within a density
range from 100 % to 1 %.

The resulting graphs for both confidence measures are depicted in Fig-
ure 15.5. Moreover, a third graph is shown that illustrates the optimal
sparsification performance with respect to the average angular error. By
removing those locations first that contribute most to the average angular
error - this requires the correct flow field - it constitutes the theoretical
bound for all other confidence measures. As one can see, the proposed en-
ergy based criterion performs very favourably. It outperforms the gradient
based confidence measure by far. One can also observe that the angular
error decreases monotonically under sparsification over the entire range
from 100 % down to 1 %. This is a clear indication for an interesting
finding that may seem counterintuitive at first glance: Regions in which the
filling-in effect dominates give particularly small angular errors. At such
regions the data term vanishes and only the smoothness term contributes
to the local energy. However, this contribution is often very small, since the

1 ftp://csd.uwo.ca/pub/vision/
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Figure 15.2. From left to right, and from top to bottom: (a) Frame 8 of the Yosemite
sequence with clouds (316 × 256 pixels). (b) Magnitude of the ground truth. Brighter
structures indicate larger values. (c) Magnitude of the computed field for a spatiotempo-
ral approach with locally integrated data term and homogeneous regularisation (CLG).
(d) 25 % quantile sparsified using the optimal confidence measure. (e) Ditto for the
gradient-based confidence measure. (f) Ditto for the energy-based confidence measure.
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Figure 15.3. Performance of the energy-based confidence measures for different
sequences using the 3-D approach with isotropic flow-driven regularisation (TV).

regulariser allows a smooth extension of the flow field in most cases.
The results also confirm our expectation that |∇f | is not necessarily a

good confidence measure: Areas with large gradients may represent noise or
occlusions, where reliable flow information is difficult to obtain. The filling-
in effect, however, may create more reliable information in flat regions by
averaging less reliable information from all the surrounding high-gradient
regions.

The corresponding flow fields with a density of 25 % shown in Figure
15.5 confirm these considerations. Obviously, only the energy-based crite-
rion allows a realistic sparsification of the computed flow field. The result
of the gradient based confidence measure, however, does not coincide very
well with the flow field obtained from the optimal sparsification criterion.

Our second experiment investigates the performance of the energy-based
confidence measure for a variety of image sequences. To this end we use the
spatiotemporal approach with isotropic flow-driven regularisation (TV) and
compute flow fields for three different image sequences. We consider the
Marble 2 sequence by Otte and Nagel shown in Figure 15.5 (a)-(b) , the
Office 3 sequence by (Galvin et al., 1998) shown in Figure 15.5 (c)-(d) and
the Diverging Trees sequence by Fleet shown in Figure 15.5 (e)-(f).

2 http://i21www.ira.uka.de/image sequences/
3 http://www.cs.otago.ac/nz/research/vision/
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Figure 15.4. From left to right, and from top to bottom: (a) Frame 16 of the 512 × 512
Marble sequence. (b) Magnitude of the ground truth. (c) Frame 10 of the 200×200 Office
sequence. (d) Magnitude of the ground truth. (e) Frame 20 of the 150× 150 Translating
Trees sequence. (f) Magnitude of the ground truth.
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Figure 15.5 shows that the application of the energy-based confidence
measure improves the estimation significantly in all three cases.

In particular at the beginning of the sparsification process a fast decay
of the average angular error can be observed. The reason for this behaviour
lies in the removal of wrong flow estimates caused by areas with high noise
or occlusions. Due to the massive occurrence of contradictory information in
these areas, either the smoothness term or the data term are large. As a con-
sequence, these locations are considered very unreliable by the confidence
measure and are already removed at an early stage of the sparsification.

Figure 15.5. Performance of the energy-based confidence measure for the Yosemite
sequence with clouds using different variational approaches.

We have seen that the proposed confidence measure based on the evalua-
tion of the local energy contribution performs well for a variety of sequences.
Since it is applicable to the entire class of energy minimising optical flow
methods, let us now investigate its performance for different variational
techniques. To this end we consider all three global approaches introduced
in Subsection 15.2.2 and use our energy-based confidence measure to spar-
sify the computed flow fields for the Yosemite sequence with clouds. The
corresponding graphs are presented in Figure 15.5. As one can see, they
show once more an almost monotonic decay of the average angular error
under sparsification. In particular, the observed behaviour is independent
of the underlying variational approach. This is another confirmation of our
findings that the evaluation of the local energy contribution is a simple
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TABLE 15.1. Comparison between the “non-dense” results from (Bar-
ron et al., 1994; Weber and Malik, 1995; Ong and Spann, 1999) and our
results for the Yosemite sequence with cloudy sky (adapted from (Bruhn
et al., 2005). AAE = average angular error. CLG = average angular error
of the spatiotemporal approach with locally integrated data term and
homogeneous regularisation (CLG) with the same density. The sparse
flow field has been created using our energy-based confidence criterion.
The table shows that using this criterion clearly outperforms all results
of non-dense methods.

Technique Density AAE CLG + cener

Singh, step 2, λ1 ≤ 0.1 97.7 % 10.03◦ 6.04◦

Ong/Spann 89.9 % 5.76◦ 5.26◦

Heeger, level 0 64.2 % 22.82◦ 3.00◦

Weber/Malik 64.2 % 4.31◦ 3.00◦

Horn/Schunck, original, |∇f | ≥ 5 59.6 % 25.33◦ 2.72◦

Ong/Spann, tresholded 58.4 % 4.16◦ 2.66◦

Heeger, combined 44.8 % 15.93◦ 2.07◦

Lucas/Kanade, λ2 ≥ 1.0 35.1 % 4.28◦ 1.71◦

Fleet/Jepson, τ = 2.5 34.1 % 4.63◦ 1.67◦

Horn/Schunck, modified, |∇f | ≥ 5 32.9 % 5.59◦ 1.63◦

Nagel, |∇f | ≥ 5 32.9 % 6.06◦ 1.63◦

Fleet/Jepson, τ = 1.25 30.6 % 5.28◦ 1.55◦

Heeger, level 1 15.2 % 9.87◦ 1.15◦

Uras et al., |(|H) ≥ 1 14.7 % 7.55◦ 1.14◦

Singh, step 1, λ1 ≤ 6.5 11.3 % 12.01◦ 1.07◦

Waxman et al., σf = 2.0 7.4 % 20.05◦ 0.95◦

Heeger, level 2 2.4 % 12.93◦ 0.76◦

confidence indicator that is efficient and widely applicable at the same
time.

In our final experiment we compare our sparsified flow fields to the best
non-dense results from the literature (see also (Bruhn et al., 2005)). To
this end we use the spatiotemporal approach with locally integrated data
term and homogeneous regularisation (CLG) and compute the flow field
for the Yosemite sequence with clouds. Using the energy-based confidence
measure, the obtained flow field is then sparsified in such a way that the
reduced densities coincide with the densities of other optic flow methods
from the literature. The corresponding average angular errors are presented
in Table 15.5. As one can see, our sparsified flow fields have a significantly
lower angular error than all other methods with the same density. In this
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case errors down to 0.76 ◦ are reached for a flow density of 2.4 %. To our
knowledge, these are the best values that have been obtained by non-dense
methods for this sequence in the entire literature.

15.6. Summary and Conclusion

The absence of good confidence measures is regarded as one of the main
drawbacks of variational optic flow methods. The goal of the present paper
was to address this problem.

We have seen why the popular gradient-based measure fails: it rewards
high-gradient regions where noise and occlusions dominate, and it ignores
the filling-in effect of the regulariser, since it is an a-priori measure that
does not take into account the estimated flow field.

As a remedy we have proposed a novel energy-based alternative that
is both natural and simple: The confidence is chosen to be inversely pro-
portional to the local energy contribution. This measure is applicable to
the entire class of energy minimising optic flow techniques and it does not
require additional parameters. It puts highest confidence to those locations
where the model assumptions are satisfied most.

Our experiments have shown that the energy-based confidence measure
performs significantly better than the gradient-based one. It may lead to
excellent sparsification results, independently of the image sequence or the
underlying variational approach. This is also confirmed by a final compari-
son to results from the literature, in which our sparsified flow fields proved
to be more accurate than those of all other non-dense methods.
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VIDEO IMAGE SEQUENCE ANALYSIS:

ESTIMATING MISSING DATA

AND SEGMENTING MULTIPLE MOTIONS
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Okayama University, Okayama 700-8530 Japan

Abstract. We discuss two issues of video processing based on our recent results: missing
data estimation and multiple motion segmentation. We first show that for a rigidly moving
scene we can reliably extend interrupted feature point tracking by imposing a geometric
constraint based on the affine camera modeling. For scenes of multiple motions, many
techniques have been proposed for segmenting moving objects into individual motions.
However, many methods perform very poorly for real video sequences. We resolve this
mystery by analyzing the geometric structure of the degeneracy of the motion model,
which leads to a new segmentation algorithm. We demonstrate its effectiveness, using
real video images.

Key words: video processing, feature tracking, missing data estimation, outlier removal,
motion segmentation, affine camera model

16.1. Introduction

Video processing is one of the central topics for media technology today,
and tracking feature points through the image sequence is a first step of
many applications including 3-D reconstruction. Here, we discuss two issues
in this respect based on our recent results (Sugaya and Kanatani, 2004a;
Sugaya and Kanatani, 2004b).

The first issue is missing data: Feature point tracking fails when the
points go out of the field of view or behind other objects. Many techniques
have been proposed to estimate the missing data (Brandt, 2002; Jacobs,
2001; Saito and Kamijima, 2003; Tomasi and Kanade, 1992), but most
of them are based on tentative 3-D reconstruction from sampled frames,
assuming that they are correct. Here, we describe a more reliable scheme
which integrates extrapolation and outlier removal. The procedure is based
on (Sugaya and Kanatani, 2004a).
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The second issue is multiple motion segmentation for classifying feature
point trajectories into independent motions. For this task, too, many tech-
niques have been proposed (Chen and Suter, 2004; Costeira and Kanade,
1998; Gear, 1998; Ichimura, 1999; Ichimura, 2000; Inoue and Urahama,
2001; Kanatani, 2001; Kanatani, 2002a; Kanatani, 2002b; Park et al., 2004;
Vidal and Ma, 2004; Vidal and Hartley, 2004; Wu et al., 2001). According
to our experiments, however, many methods that exhibit high accuracy
in simulations perform rather poorly for real video sequences. We show
that this inconsistency is caused by the degeneracy of the motion model on
which the segmentation is based. This finding leads to a new segmentation
algorithm described in (Sugaya and Kanatani, 2004b). We demonstrate its
effectiveness, using real video images.

This paper is organized as follows. Section 2 summarizes the geometric
constraints. Section 3 describes our outlier removal procedure. Section 4 de-
scribes how we extend partial trajectories. In Section 5, we show real video
examples of trajectory extension. In Section 6, we describe our principle of
multiple-motion segmentation. In Section 7, we analyze the degeneracy of
motion model. Section 8 describes our segmentation algorithm. In Section 9,
we show real video examples. Section 10 concludes this paper.

16.2. Geometric Constraints

Our method is based on the geometric constraints described in (Chen and
Suter, 2004; Debrunner and Ahuja, 1998; Huynh et al., 2003; Irani, 2002;
Kanatani, 2001; Kanatani, 2002a; Kanatani, 2002b; Kanatani and Sugaya,
2004; Sugaya and Kanatani, 2002a; Sugaya and Kanantani, 2002b; Sugaya
and Kanatani, 2003; Sugaya and Kanatani, 2004a; Sugaya and Kanatani,
2004b). Suppose we track N feature points over M frames. Let (xκα, yκα)
be the coordinates of the αth point in the κth frame. We stack all the
coordinates vertically and represent the entire trajectory by the following
2M -D trajectory vector :

pα =
(

x1α y1α x2α y2α · · · xMα yMα

)�
. (1)

For convenience, we identify the frame number κ with “time” and refer to
the κth frame as “time κ”.

We regard the XY Z camera coordinate system as a reference, relative
to which the scene is moving. Consider a 3-D coordinate system fixed to
the scene, and let tκ and {iκ, jκ,kκ} be, respectively, its origin and basis
vectors at time κ. Let (aα, bα, cα) be the coordinates of the αth point with
respect to this coordinate system. Its position with respect to the reference
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frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

We assume an affine camera, which generalizes orthographic, weak
perspective, and paraperspective projections (Kanatani and Sugaya, 2004;
Poelman and Kanade, 1997): the 3-D point rκα is projected onto the image
position (

xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively,a 2×3 matrix and a 2-D vector de -ter
mined by the position and orientation of the camera and its internal
parameters at time κ. Substituting Equation (2), we have(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors determined by the position
and orientation of the camera and its internal parameters at time κ. From
Equation (4), the trajectory vector pα in Equation (1) can be written in
the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -D vectors obtained by stacking
m̃0κ, m̃1κ, m̃2κ, and m̃3κ vertically over the M frames, respectively.

Equation (5) implies that all the trajectories are constrained to be in the
4-D subspace spanned by {m0, m1, m2, m3}. In addition, the coefficient of
m0 in Equation (5) is identically 1 for all α. This means that the trajectories
are in the 3-D affine space within that 4-D subspace (Kanatani, 2002b).

16.3. Outlier Removal

Before extending partial trajectories, we must remove incorrectly tracked
trajectories, or “outliers”, from among observed complete trajectories. For
this, we adopt the method described in (Sugaya and Kanatani, 2003), which
also discusses problems about the approach in (Huynh and Heyden, 2001).
Let n = 2M , where M is the number of frames, and let {pα}, α = 1, ...,
N , be the observed complete n-D trajectory vectors. The procedure is as
follows (Sugaya and Kanatani, 2003):

1. Randomly choose four vectors q1, q2, q3, and q4 from among {pα}.
2. Compute the n× n (second-order) moment matrix

M3 =
4∑

i=1

(qi − qC)(qi − qC)�, (6)
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Figure 16.1. Removing outliers by fitting a 3-D affine space.

where qC is the centroid of {q1, q2, q3, q4}.
3. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the matrix M3, and {u1,

u2, u3} the orthonormal system of corresponding eigenvectors.
4. Compute the following n × n projection matrix (I denotes the n × n

unit matrix):

P n−3 = I −
3∑

i=1

uiu
�
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−3(pα − qC)‖2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard deviation.
6. Repeat the above procedure a sufficient number of times (we stopped

if S did not increase for 200 consecutive iterations), and determine the
projection matrix P n−3 that maximizes S.

7. Remove those pα that satisfy

‖P n−3(pα − qC)‖2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distribution with r degrees of

freedom.

The term ‖P n−3(pα−qC)‖2, called the residual , is the squared distance of
point pα from the fitted 3-D affine space. We assume that the noise in the co-
ordinates of the feature points is an independent Gaussian random variable
of mean 0 and standard deviation σ. Then, the residual ‖P n−3(pα− qC)‖2
divided by σ2 should be subject to a χ2 distribution with n− 3 degrees of
freedom with expectation (n− 3)σ2. The above procedure effectively fits a
3-D affine space that maximizes the number of the trajectories whose resid-
uals are smaller than (n− 3)σ2. Then, we remove those trajectories which
cannot be regarded as inliers with significance level 1% (Figure 16.1). We
have confirmed that σ = 0.5 is a reasonable value (Sugaya and Kanatani,
2003).
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16.4. Trajectory Extension

After removing outlier trajectories, we optimally fit a 3-D affine space to
the resulting inlier trajectories. Let {pα}, α = 1, ..., N , be their trajectory
vectors. We first compute their centroid and the (second-order) moment
matrix

pC =
1
N

N∑
α=1

pα, M =
N∑

α=1

(pα − pC)(pα − pC)�. (10)

Let λ1 ≥ λ2 ≥ λ3 be the largest three eigenvalues of the matrix M , and
{u1, u2, u3} the orthonormal system of corresponding eigenvectors. The
optimally fitted 3-D affine space is spanned by the three vectors of u1, u2,
and u3 starting from pC .

If the αth point can be tracked only over κ of the M frames, its tra-
jectory vector pα has n − k unknown components (k = 2κ). We partition
the vector pα into the k-D part p

(0)
α consisting of the k known components

and the (n− k)-D part p
(1)
α consisting of the remaining n − k unknown

components. Similarly, we partition the centroid pC and the basis vectors
{u1, u2, u3} into the k-D parts p

(0)
C and {u(0)

1 , u
(0)
2 , u

(0)
3 } and the (n− k)-D

parts p
(1)
C and {u(1)

1 , u
(1)
2 , u

(1)
3 } in accordance with the division of pα.

We first test if each of the partial trajectories is sufficiently reliable. Let
pα be a partial trajectory vector. If image noise does not exist, the deviation
of pα from the centroid pC should be expressed as a linear combination of
u1, u2, and u3. Hence, there should be constants c1, c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0) (11)

for the known part. In the presence of image noise, this equality does not
hold. If we let U (0) be the k× 3 matrix consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3 as

its columns, Equation (11) is replaced by

p(0)
α − p

(0)
C ≈ U (0)c, (12)

where c is the 3-D vector consisting of c1, c2, and c3. Assuming that k ≥
3, we estimate the vector c by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C ), (13)

where U (0)− is the generalized inverse of U (0). It is computed by

U (0)− = (U (0)�U (0))−1U (0)�. (14)
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The residual, i.e., the squared distance of point p
(0)
α from the 3-D affine

space spanned by {u(0)
1 , u

(0)
2 , u

(0)
3 } is ‖p(0)

α − p
(0)
C − U (0)ĉ‖2. Under our

noise model, the residual ‖p(0)
α − p

(0)
C − U (0)ĉ‖2 divided by σ2 should be

subject to a χ2 distribution with k−3 degrees of freedom. Hence, we regard
those trajectories that satisfy

‖p(0)
α − p

(0)
C −U (0)ĉ‖2 ≥ σ2χ2

k−3;99 (15)

as outliers with significance level 1%.
The unknown part p

(1)
α is estimated from the constraint implied by

Equation (11), namely

p(1)
α − p

(1)
C = c1u

(1)
1 + c2u

(1)
2 + c3u

(1) = U (1)c, (16)

where U (1) is the (n− k)× 3 matrix consisting of u
(1)
1 , u

(1)
2 , and u

(1)
3 as its

columns. Substituting Equation (13) for c, we obtain

p̂(1)
α = p

(1)
C + U (1)U (0)−(p(0)

α − p
(0)
C ). (17)

Evidently, this is an optimal estimate in the presence of Gaussian noise.
However, the underlying affine space is computed only from a small number
of complete trajectories; no information contained in the partial trajectories
is used, irrespective of how long they are. So, we also incorporate partial
trajectories in the following manner.

Note that if three components of pα are specified, one can place it,
in general, in any 3-D affine space by appropriately adjusting the remain-
ing n − 3 components. In view of this, we introduce the “weight” of the
trajectory vector pα with k known components in the form

Wα =
k − 3
n− 3

. (18)

Let N be the number of all trajectories, complete or partial, inliers or
outliers. The optimization goes as follows:

1. Set the weights Wα of those trajectories, complete or partial, that are
so far judged to be outliers to 0. All other weights are set to the value
in Equation (18).

2. Fit a 3-D affine space to all the trajectories. The procedure is the
same as before except that Equations (10) are replaced by the weighted
centroid and the weighted moment matrix

pC =
∑N

α=1 Wαpα∑N
α=1 Wα

, M =
N∑

α=1

Wα(pα − pC)(pα − pC)�. (19)
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3. Test each trajectory if it is an outlier, using Equation (15).

4. Estimate the unknown parts of the inlier partial trajectories, using
Equation (17).

These four steps are iterated until the fitted affine space converges.
In the course of this optimization, trajectories once regarded as outliers
may be judged to be inliers later, and vice versa. In the end, inlier partial
trajectories are optimally extended with respect to the affine space that is
optimally fitted to all the complete and partial inlier trajectories.

The iterations may not converge if the initial guess is very poor or a
large proportion of the trajectories are incorrect. However, this did not
happen in any of our experiments using real video sequences.

We need at least three complete trajectories for guessing the initial affine
space. If no such trajectories are given, we may use the method of Jacobs
(Jacobs, 2001), but it is much more practical to segment the sequence
into overlapping blocks, extending partial trajectories over each block, and
connecting the blocks.

16.5. Experiments

Figure 16.2(a) shows five decimated frames from a 50 frame sequence
(320× 240 pixels) of a static scene taken by a moving camera. We detected
200 feature points and tracked them using the Kanade-Lucas-Tomasi algo-
rithm (Tomasi and Kanade, 1991). When tracking failed at some frame, we
restarted the tracking after adding a new feature point in that frame. In the
end, we obtained 29 complete trajectories, of which 11 are regarded as inliers
by the procedure described in Section 3. The marks � in Figure 16.2(a)
indicate their positions; Figure 16.2(b) shows their trajectories.

Using the affine space they define, we extended the partial trajectories
and optimized the affine space and the extended trajectories. The optimiza-
tion converged after 11 iterations, resulting in the 560 inlier trajectories
shown in Figure 16.2(c). The computation time for this optimization was
134 seconds. We used Pentium 4 2.4B GHz for the CPU with 1 GB main
memory and Linux for the OS. Figure 16.2(d) is the extrapolated image of
the 33th frame after missing feature positions are restored: using the 180
feature points visible in the first frame, we defined triangular patches, to
which the texture in the first frame is mapped. We reconstructed the 3-D
shape by factorization based on weak perspective projection (Kanatani and
Sugaya, 2004) (Figure 16.2(e)); see (Sugaya and Kanatani, 2004a) for more
experiment results.
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Figure 16.2. (a) Five decimated frames from a 50 frame sequence and 11 points correctly
tracked throughout the sequence. (b) The 11 complete inlier trajectories. (c) The 560
optimal extensions of the trajectories. (d) The extrapolated texture-mapped image of
the 33th frame. (e) The reconstructed 3-D shape.

16.6. Multiple Motion Segmentation

So far, we have regarded the observed trajectories as points undergoing a
single rigid motion. We now consider the case in which multiple motions
exist.

Equation (5) states that the trajectory vectors of points that belong to
one object are constrained to be in the 4-D subspace spanned by {m0,
m1, m2, m3}. Hence, multiple moving objects can be segmented into
individual motions by separating the trajectories vectors {pα} into distinct
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4-D subspaces. This is the principle of the method of subspace separation
(Kanatani, 2001; Kanatani, 2002a).

Equation (5) also states that the trajectory vectors of points that belong
to one object are constrained to be in a 3-D affine space within that 4-D
subspace. Hence, multiple moving objects can be segmented into individ-
ual motions by separating the trajectory vectors {pα} into distinct 3-D
affine spaces. This is the principle of the method of affine space separation
(Kanatani, 2002b).

Theoretically, the segmentation accuracy should be higher if we use
stronger constraints. For real video sequences, however, we have found that
the affine space separation accuracy is often lower than that of the subspace
separation (Sugaya and Kanatani, 2002a; Sugaya and Kanantani, 2002b).
We will resolve this inconsistency in shortly.

As in the case of a single motion, we first need to remove outlier trajec-
tories. If the trajectories were segmented into individual classes, we could
apply the method of Section 3 to each motion separately. In the presence
of outliers, however, we cannot do correct segmentation, and hence we do
not know the affine spaces.

This difficulty can be resolved if we note that if the trajectory vectors
{pα} belong to m d-D subspaces, they should be constrained to be in a
dm-D subspace and if they belong to m d-D affine spaces, they should be
in a ((d + 1)m− 1)-D affine space. So, we robustly fit a dm-D subspace
or a ((d + 1)m− 1)-D affine space to {pα} by RANSAC and remove those
that do not fit to it. We observed that all apparent outliers were removed
by this method, although some inliers were also removed for safety (Sugaya
and Kanatani, 2003).

16.7. Structure of Degeneracy

The motions we most frequently encounter are such that the objects and the
background are translating and rotating 2-dimensionally in the image frame
with varying sizes. For such a motion, we can choose the basis vector kκ in
Equation (2) in the Z direction (the camera optical axis is identified with
the Z-axis). Under the affine camera model, motions in the Z direction
do not affect the projected image except for its size. Hence, the term
cαm̃3κ in Equation (4) vanishes; the scale changes are absorbed by the
scale changes of m̃1κ and m̃2κ over time κ. It follows that the trajectory
vector pα in Equation (5) belongs to the 2-D affine space passing through
m0 and spanned by m1 and m2 (Sugaya and Kanatani, 2002a; Sugaya and
Kanantani, 2002b).

If, in addition, the objects and the background do not rotate, we can fix
the basis vectors iκ and jκ in Equation (2) to be in the X and Y directions,
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Figure 16.3. (a) If the motions of the objects and the background are degenerate, their
trajectory vectors belong to mutually parallel 2-D planes. (b) The data distributions
inside the individual 2-D planes are modeled by Gaussian distributions.

respectively. Thus, the basis vectors iκ and jκ are common to all objects
and the background, so the vectors m1 and m2 in Equation (5) are also
common. Hence, the 2-D affine spaces, or planes, of all the motions are
parallel (Sugaya and Kanatani, 2004b) (Figure 16.3(a)).

Note that parallel 2-D planes can be included in a 3-D affine space. Since
the affine space separation method attempts to segment the trajectories
into different 3-D affine spaces, it does not work if the objects and the
background undergo this type of degenerate motions. This explains why
the accuracy of the affine space separation is not as high as expected for
real video sequences.

16.8. Degeneracy-tuned Learning

We now describe a learning procedure tuned to the parallel 2-D plane degen-
eracy (Sugaya and Kanatani, 2004b). First, we model the data distributions
inside the individual 2-D planes by Gaussian distributions (Figure16.3(b)).
As before, we let n = 2M . Suppose N n-D trajectory vectors {pα} are
already classified into m classes by some means. Initially, we define the
weight W

(k)
α of the vector pα by

W (k)
α =

{
1 if pα belongs to class k
0 otherwise . (20)

Then, we iterate the following procedures A, B, and C in turn until all the
weights {W (k)

α } converge (we stopped the iterations when the increments
in W

(k)
α are all smaller than 10−10).

A. Do the following computation for each class k = 1, ..., m.
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1. Compute the fractional size w(k) and the centroid p
(k)
C of the class k:

w(k) =
1
N

N∑
α=1

W (k)
α , p

(k)
C =

∑N
α=1 W

(k)
α pα∑N

α=1 W
(k)
α

. (21)

2. Compute the n× n moment matrix M (k):

M (k) =
∑N

α=1 W
(k)
α (pα − p

(k)
C )(pα − p

(k)
C )�∑N

α=1 W
(k)
α

. (22)

B. Do the following computation.

1. Compute the total n× n moment matrix

M =
m∑

k=1

w(k)M (k). (23)

2. Let λ1 ≥ λ2 be the largest two eigenvalues of the matrix M , and u1

and u2 the corresponding unit eigenvectors.
3. Compute the common n× n projection matrices:

P =
2∑

i=1

uiu
�
i , P⊥ = I − P . (24)

4. Estimate the noise variance in the direction orthogonal to all the affine
spaces by

σ̂2 = max[
tr[P⊥MP⊥]

n− 2
, σ2], (25)

where tr[ · ] denotes the trace and σ is an estimate of the tracking
accuracy. As before we used the value σ = 0.5 (pixels).

5. Compute the n× n covariance matrix of the class k by

V (k) = PM (k)P + σ̂2P⊥. (26)

C. Do the following computation for each trajectory vector pα , α = 1, ...,
N .

1. Compute the conditional likelihood P (α|k), k = 1, ..., m, by

P (α|k) =
e−(pα−p(k)

C ,V (k)−1
(pα−p(k)

C ))/2√
|V |(k)

. (27)
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2. Recompute the weights {W (k)
α }, k = 1, ..., m, by

W (k)
α =

w(k)P (α|k)∑m
l=1 w(l)P (α|l) . (28)

After the iterations of A, B, and C have converged, the αth trajectory is
classified into the class k that maximizes W

(k)
α , k = 1, ..., N .

In the above iterations, we fit 2-D planes of the same orientation to
all classes by computing the common basis vectors u1 and u2 from all
the data. We also estimate a common outside noise variance from all the
data. Regarding the fraction w(k) (the first of Equations (21)) as the a
priori probability of the class k, we compute the probability P (α|k) of
the trajectory vector pα conditioned to be in the class k (Equation (27);
common multipliers that will cancel out in Equation (28) are omitted).
Then, we apply Bayes’ theorem (Equation (28)) to compute the a posterior
probability W

(k)
α , according which all the trajectories are reclassified. Note

that W
(k)
α is generally a fraction, so one trajectory belongs to multiple

classes with fractional weights until the final classification is made.
This type of unsupervised learning (Schlesinger, 1968; Schlesinger and

Hlaváč, 2002) (mathematically equivalent to the EM algorithm (Dempster
et al., 1977)) is widely used for clustering. However, the iterations are very
likely to be trapped at a local maximum. So, correct segmentation cannot
be obtained by this type of iterations alone unless we start from a very
good initial value.

16.9. Multi-stage Learning

If we know that degeneracy exists, we can apply the above procedure for
improving the segmentation. However, we do not know if degeneracy exists.
If the trajectories were segmented into individual classes, we might detect
degeneracy by checking the dimensions of the individual classes, but we
cannot do correct segmentation unless we know whether or not degeneracy
exists.

We resolve this difficulty by the following multi-stage learning (Sugaya
and Kanatani, 2004b). First, we use the affine space separation assuming
2-D affine spaces, which effectively assumes planar motions with varying
sizes. For this, we use the Kanatani’s method (Kanatani, 2002b), which
combines the shape interaction matrix of Costeira and Kanade (Costeira
and Kanade, 1998), model selection by the geometric AIC (Kanatani, 1998),
and robust estimation by LMedS (Rousseeuw and Leroy, 1987). Then, we
optimize the resulting segmentation by using the parallel plane degeneracy
model, as described in the preceding section.
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The resulting solution should be very accurate if such a degeneracy
really exists. However, rotations may exist to some extent. So, we relax
the constraint and optimize the solution again by using the general 3-D
motion model. This is motivated by the fact that if the motions are really
degenerate, the solution optimized by the degenerate model is not affected
by the subsequent optimization, because the degenerate constraints also
satisfy the general constraints.

In sum, our scheme consists of the following three stages:

1. Initial segmentation by the affine space separation using 2-D affine
spaces.

2. Unsupervised learning using the parallel 2-D plane degeneracy model.
3. Unsupervised learning using the general 3-D motion model.

The last stage is similar to the second except that 3-D affine spaces are
separately fitted to individual classes. The outside noise variance is also
estimated separately for each class; see (Sugaya and Kanatani, 2004b) for
the actual procedure.

Here, we assume that the number m of motions is specified by the
user. For example, if a single object is moving in a static background, both
moving relative to the camera, we have m = 2. Many studies have been
done for estimating the number of motions automatically (Costeira and
Kanade, 1998; Gear, 1998; Inoue and Urahama, 2001), but none of them
seems successful enough. This is because the number of motions is not
well-defined (Kanatani, 2002a): one moving object can also be viewed as
multiple objects moving similarly, and there is no rational way to unify
similarly moving objects into one from motion information alone, except
using heuristic thresholds or ad-hoc criteria. If model selection such as the
geometric AIC (Kanatani, 1998) and the geometric MDL (Kanatani, 2004)
is used, the resulting number of motions depends on criteria (Kanatani,
2002a). In order to determine the number m of motions, one needs high-level
processing using color, shape, and other information.

16.10. Real Video Experiments

Figure 16.4 shows five decimated frames from three video sequences A, B,
and C (320× 240 pixels). For each sequence, we detected feature points in
the initial frame and tracked them using the Kanade-Lucas-Tomasi algo-
rithm (Tomasi and Kanade, 1991). The marks � indicate their positions.

Table 16.1 lists the number of frames, the number of inlier trajectories,
and the computation time for our multi-stage learning. The computation
time is reduced by compressing the trajectory data into 8-D vectors (Sugaya
and Kanatani, 2002a). We used Pentium 4 2.4GHz for the CPU with 1GB
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A:

B:

C:

Figure 16.4. Three video sequences and successfully tracked feature points.

TABLE 16.1. The computation time
for the multi-stage learning of the se-
quences in Figure 16.4.

A B C

# of frames 30 17 100

# of points 136 63 73

CPU time (sec) 2.50 0.51 1.49

main memory and Linux for the OS. Table 16.2 lists the accuracies of
different methods (“opt” stands for “optimized”) measured by (the number
of correctly classified points)/(the total number of points) in percentage.

As we can see, the Costeira-Kanade method fails to produce meaningful
segmentation. Ichimura’s method is effective for sequences A and B but not
so effective for sequence C. For sequence A, the affine space separation is
superior to the subspace separation. For sequence B, the two methods have
almost the same performance. For sequence C, the subspace separation
is superior to the affine space separation, suggesting that the motion in
sequence C is nearly degenerate. For all the three sequences, our multi-stage
learning achieves 100% accuracy.

16.11. Concluding Remarks

We discussed two issues of video processing, missing data estimation and
multiple motion segmentation, based on our recent results (Sugaya and
Kanatani, 2004a; Sugaya and Kanatani, 2004b).
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TABLE 16.2. Segmentation accuracy (%) for the
sequences in Figure 16.4.

A B C

Costeira-Kanade 60.3 71.3 58.8

Ichimura 92.6 80.1 68.3

subspace separation 59.3 99.5 98.9

affine space separation 81.8 99.7 67.5

opt. subspace separation 99.0 99.6 99.6

opt. affine space separation 99.0 99.8 69.3

multi-stage learning 100.0 100.0 100.0

First, we described our method for extending interrupted feature point
tracking (Sugaya and Kanatani, 2004a). We alternate optimal extension
of the trajectories and optimal estimation of the affine space. To increase
robustness, we test the reliability of the extended trajectories in every step
and remove those judged to be outliers.

Next, we studied multiple motion segmentation. Our analysis of the
geometric structure of the degeneracy of the motion model leads to a spe-
cial type of degeneracy, which results in the multi-stage learning scheme
described in (Sugaya and Kanatani, 2004b). We demonstrated its effective-
ness, using real video images.

The source codes of the programs we used are available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html.
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of Education, Culture, Sports, Science and Technology, Japan, under a
Grant in Aid for Scientific Research C(2) (No. 15500113).
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Abstract. In this paper, we modify the robust local image estimation method of
R.van den Boomgaard and J. van de Weijer for the approximation of scattered data.
The derivation of our knot and data dependent approximation method is based on the
relation between the Gaussian facet model in image processing and the moving least
square technique known from approximation theory. Numerical examples demonstrate
the advantages of our robust scattered data approximation.

Key words: moving least squares, quasi-interpolation, polynomial reproduction, robust
estimators, bilateral filters

17.1. Introduction

A popular approach to scattered data approximation is the moving least
squares (MLS) method which requires in contrast to standard interpolation
methods by radial basis functions only the solution of small linear systems
of equations. The size of these systems is governed by the degree of the poly-
nomials which are reproduced by the method. The MLS approximation is
theoretically well examined, see, e.g., (Fasshauer, 2003b) and the references
therein. In particular, the Backus–Gilbert approach offers another way to
look at the polynomial reproduction property which in turn determines the
approximation order of the method.

On the other hand, there exist various local linear methods for smooth-
ing noisy data in image processing. One example is the Gaussian facet
model introduced by R. van den Boomgaard and J. van de Weijer (van
den Boomgaard and van de Weijer, 2003) in the linear scale–space context.
Interestingly, this method is basically the same as the MLS technique with
a Gaussian weight function. The only difference consists in the fact that in
scattered data approximation we know the (noisy) function only at some
special, in general nonequispaced knots and no data are given within these

 

R. Klette et al. (eds.), Geometric Properties for Incomplete Data, 317-334. 
© 2006 Springer. Printed in the Netherlands.  
 

317 



318 M. Fenn and G. Steidl

knots, while in denoising problems in image processing the noisy function
is known on the whole grid. This leads to a formulation with shifted basis
functions in the MLS approach in contrast to the Gaussian facet model.

In their averaging process, the MLS method and its variants give similar
weights to data within a similar distance from the evaluation point, where
neighbors are heavier weighted even if these neighbors are on very different
levels of the function. Consequently, edges are smoothed. This led to the
development of robust estimation procedures and nonlinear filters that also
data–adaptively determine the influence of each data point on the result.
Among the rich variety of these methods, see, e.g., (Sochen et al., 2001) and
the references therein, we focus on the robust Gaussian facet model (van
den Boomgaard and van de Weijer, 2003). Having the relation between the
linear approaches in image processing and scattered data approximation in
mind, we modify this robust model in such a way that it can be also ap-
plied to scattered data. Moreover, we change the method slightly toward a
generalized bilateral filter approach that does not only reproduce constants
but also polynomials of higher degree.

This chapter is organized as follows: first, we consider the linear methods
used independently in image processing and scattered data approximation,
where we start with the continuous MLS method in Subsection 2.1 and
move to the discrete method in Subsection 2.2. In Subsection 3.1, we
use these results for introducing our robust scattered data approximation
method. Its power is demonstrated by numerical examples in Subsection
3.2. The paper is concluded with a short summary.

17.2. MLS from different points of view

The aim of this section is twofold. Firstly, we want to show the relation
between the well examined MLS method in approximation theory and the
Gaussian facet model recently introduced in the context of linear scale–
space theory by R. van den Boomgaard and J. van de Weijer (van den
Boomgaard and van de Weijer, 2003). It is not hard to see that both
methods differ only by the formulation with shifted basis functions such
that applied to spaces of polynomials they lead to the same result. However,
we find it useful to direct the attention of people from the image processing
society to theoretical results from approximation theory and vice versa,
to benefit from new ideas in image processing for the approximation of
scattered data.

Secondly, the MLS results of this section will serve as the basis for
our robust approach in Section 3. In particular, we will use the MLS
approximation as initial input for our iterative algorithm.
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17.2.1. CONTINUOUS MLS

Let
V := span{ϕj : j = 1, . . . ,M}

be an M -dimensional space of real–valued functions defined on R
d. Al-

though some results can be formulated in this general setting, we will
restrict ourselves to polynomial spaces. More precisely, let V := Πd

s be
the space of d-variate polynomials of absolute degree ≤ s. Then V has
dimension M =

(
s+d

s

)
. Our main reason for the restriction to polynomial

spaces is that Πd
s can be also spanned by the translates of ϕj with respect

to an arbitrary fixed x ∈ R
d, i.e.,

V = span{ϕj(· − x) : j = 1, . . . ,M}. (1)

Let w be a non–negative weight function with moments∫
Rd

w(t) dt = 1 and
∫
Rd

tαw(t) dt <∞ for all α ∈ N
d
0, |α| ≤ 2s.

Then
〈p, q〉w :=

∫
Rd

p(t)q(t)w(t) dt

is an inner product on V with norm ‖p‖2w =
∫

Rd p2(t)w(t) dt.
Now the continuous MLS problem can be formulated as follows, see,

e.g., (Belytschko et al., 1996): for a given function f ∈ L∞(Rd) and x ∈ R
d

find the coefficients cj = cj(x) such that

u(x, t):=
M∑

j=1

cj(x)ϕj(t) (2)

minimizes the functional

J(x):=
∫
Rd

(f(t)− u(x, t))2w(t− x) dt. (3)

Then

u(x) = u(x, x) =
M∑

j=1

cj(x)ϕj(x) (4)

can be taken as an approximation of f(x). Obviously, for arbitrary fixed
x ∈ R

d, the function u(x, ·) is the w(· − x)–orthogonal projection of f onto
V .
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On the other hand, we obtain by (1) that the polynomial ũ(x, ·) of the
form

ũ(x, t) :=
M∑

j=1

aj(x)ϕj(t− x) (5)

which minimizes (3), i.e.,∫
Rd

(f(t)− ũ(x, t))2w(t−x) dt =
∫
Rd

(
f(x+ t)−

M∑
j=1

aj(x)ϕj(t)
)2

w(t) dt (6)

is also the w(· − x)–orthogonal projection of f onto V . Consequently,
u(x, t) = ũ(x, t) and

u(x) = ũ(x, x) =
M∑

j=1

aj(x)ϕj(0). (7)

The approximation (7) of f , where the coefficients aj = aj(x) are deter-
mined by the minimization of (6) is exactly the approximation method (van
den Boomgaard and van de Weijer, 2003). considered in (van den Boom-
gaard and van de Weijer, 2003). In particular, they have used monomials ϕj ,
where ϕ1 ≡ 1, as basis functions in (7), so that they have only to compute
u(x) = a1(x). This simplification of MLS by using shifted monomials was
also mentioned in (Fasshauer, 2003a). Having finished this paper we realized
that the shifted approach (5) was also examined in detail in (Liu et al.,
1997).

The minimization problem (6) can be solved for any fixed x ∈ R
d by

setting the gradient with respect to a(x) := (aj(x))M
j=1 to zero. Using the

vector notation ϕ(t) := (ϕk(t))
M
k=1, this leads to

a(x) = G−1
(
〈f(x + ·), ϕk〉w

)M

k=1
=

(
〈f(x + ·),

(
G−1ϕ(·)

)
j
〉w

)M

j=1
, (8)

where
(
G−1ϕ(·)

)
j

denotes the j–th component of the vector and where the
Gramian G is given by

G := (〈ϕj , ϕk〉w)M
j,k=1.

In summary, we obtain by (7) and (8) that

u(x) =
〈
f(x + ·),

M∑
j=1

(G−1ϕ(·))jϕj(0)
〉

w

=
∫
Rd

f(x + t)q(t)w(t) dt =
∫
Rd

f(x + t)ψ(t) dt, (9)
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where

q(t) :=
M∑

j=1

(G−1ϕ(t))jϕj(0) and ψ(t) := q(t)w(t). (10)

In other words, u is the correlation of f with the function ψ.
R. van den Boomgaard and J. van de Weijer have used the monomials

of absolute degree ≤ s as basis of Πd
s . We can orthogonalize this basis

with respect to 〈·, ·〉w so that the new basis fulfills 〈ϕj , ϕk〉w = ‖ϕj‖2wδjk

(j, k = 1, . . . ,M). Then G = diag(‖ϕj‖2w)M
j=1 is a diagonal matrix and the

polynomial q in (10) can be represented alternatively as

q(t) =
M∑

j=1

ϕj(0)
‖ϕj‖2w

ϕj(t). (11)

The function ψ has various properties.

PROPOSITION 17.1. The function ψ in (10) fulfills the moment condition∫
Rd

tαψ(t) dt = δ0α (|α| ≤ s) (12)

and has, for all p ∈ Πd
s, the reproducing property∫

Rd

p(t + x)ψ(t) dt = p(x). (13)

Proof Let {ϕj : j = 1, . . . ,M} be w-orthogonal. Then it is easy to
check that the Christoffel-Darboux kernel

K(t, x) =
M∑

j=1

1
‖ϕj‖2w

ϕj(x)ϕj(t)

is a reproducing kernel in Πd
s with respect to 〈·, ·〉w, i.e.,∫

Rd

p(t)K(t, x)w(t) dt = p(x) for all p ∈ Πd
s .

In particular, we obtain for the monomials p(t) = tα with |α| ≤ s and x = 0
by (11) that ∫

Rd

tαK(t, 0)w(t) dt =
∫
Rd

tαψ(t) dt = δ0α.
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By the binomial formula this implies for any fixed x ∈ R
d that∫

Rd

(t + x)αψ(t) dt = xα.

Consequently, (13) holds true. �
In the following, we are mainly interested in radial weights w.

PROPOSITION 17.2. Let w(t) = ω(‖t‖) be a radial weight function, where
‖ · ‖ denotes the Euclidian norm in R

d. Then the function ψ in (10) is also
radial.

Proof On the one hand, the polynomial p(y):=
∑s′

k=0 γk y2k with
s′:= !s/2" which satisfies∫

Rd

‖t‖2jp(‖t‖) ω(‖t‖) dt = δ0j (j = 0, . . . , s′)

is uniquely determined and p(‖t‖) ∈ Πs
d. Since on the other hand the

polynomial q ∈ Πs
d in (10) is also uniquely determined by the moment

condition (12), it suffices to show that p(‖ · ‖) actually fulfills∫
Rd

tαp(‖t‖) ω(‖t‖) dt = δ0α. (|α| ≤ s) (14)

Switching to polar coordinates, the left side of (14) reads as

∞∫
0

r|α|+d−1p(r) ω(r) dr

∫
Sd−1

tα dS,

where dS is the element of the (d − 1)-dimensional measure on the unit
sphere Sd−1 in R

d. If α contains any odd component, then it is easy to
check by the orthogonality of sin and cos functions, that

∫
Sd−1 tα dS = 0,

cf. (Folland, 1999, p. 80). Otherwise, we have by definition of p with |α| = 2j
that ∞∫

0

r|α|+d−1p(r) ω(r) dr =
∫
Rd

‖t‖2jp(‖t‖) ω(‖t‖) dt = δ0α

This completes the proof. �
EXAMPLE 17.1. The most popular weight function is the Gaussian

w(t):= π−d/2e−|t|2 .
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By the separability of the d-variate Gaussian, orthogonal polynomials with
respect to the d-variate Gaussian weight are given by the tensor products of
the univariate Hermite-polynomials

Hn(y):= (−1)ney2 dn

dyn
e−y2

.

Using their three-term recurrence relation

H0(y) = 1, H1(y) = 2y, Hn+1(y) = 2yHn(y)− 2nHn−1(y),

we see that H2n+1(0) = 0 and H2n(0) = (−1)n (2n)!
n! . Moreover, it is well

known that 〈Hn,Hk〉w = 2n n! δnk, so that

H2n(0)
‖H2n‖2w

=
(−1)n

4nn!
.

Consequently, we obtain for even s and t := (t1, . . . , td) by (11) that

ψ(t) =
∑
|α|≤s,

α even

d∏
j=1

Hαj (tj)
(−1)βj

4βjβj !
w(t)

(
βj :=

αj

2

)

=
∑
|α|≤s,

α even

d∏
j=1

dαj

dtαj
ω(tj)

(−1)βj

2αjβj !

=
∑
|α|≤s,

α even

dα

dtα
w(t)

(−1)|α|/2

2|α|β1! · · ·βd!

=
s/2∑
r=0

(−1)r

22rr!

∑
|α|=2r,

α even

r!
β1! · · ·βd!

dα

dtα
w(t)

=
s/2∑
r=0

(−1)r

4rr!
∆rw(t),

where ∆w(t):=
∑d

j=1
∂2

∂t2j
w(t) is the Laplacian of w and ∆rw(t) its r-th

iterate. In particular, we have for d = 2 that

s 0 2 4

ψ w(t) w(t)− 1
4∆w(t) w(t)− 1

4∆w(t) + 1
32∆2w(t)

.
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These special functions were also computed in (van den Boomgaard and
van de Weijer, 2003) and the corresponding polynomials q in the context of
the so–called approximate approximation in (Fasshauer and Zhang, 2004).
For the relation of q to generalized Laguerre polynomials see (Maz′ya and
Schmidt, 1996) and the references therein. Since the difference of a function
f and a multiple of its convolution with the Laplacian of the Gaussian
approximates a backward diffusion, the convolution with ψ for s ≥ 2 leads
to a better reproduction of f in particular at edges. This is another way
of looking at the improvement of the approximation by a better polynomial
reproduction with increasing s. The influence of the additional sharpening
terms in ψ is illustrated in (van den Boomgaard and van de Weijer, 2003)
and in our examples in Subsection 3.2.

Other weights used in the scattered data literature are the Wendland
functions (Wendland, 1995). In contrast to the Gaussian these functions
have a compact support. For d = 2 and s = 1 the corresponding functions
ψ can be found in (Fasshauer, 2003a).

Another popular weight function in image processing is the character-
istic function w(x) := χ{x:‖x‖∞≤C}, which leads to the so-called Haralick
facet model (Haralick et al., 1983).

REMARK 17.1. The computation of our approximating function u of f
in (9) requires the discretization of the correlation integral. If we use the
rectangular quadrature rule over a grid of mesh size h and equispaced inte-
gration knots {xk := hk : k ∈ Z

d}, we obtain

u(x) ≈ hd
∑
k∈Zd

f(xk)ψ(xk − x).

If we replace w by its dilated version wσ = 1
σd w( ·

σ ), then ψ with
respect to wσ becomes ψσ = 1

σd ψ( ·
σ )and the discretized continuous MLS

approximation of f with respect to wσ with σ =
√

Dh is

u(x) ≈ u√
Dh = D−d/2

∑
k∈Zd

f(xk)ψ
(

xk − x

h
√

D

)
. (15)

The right-hand side of (15) is known as approximate approximation of
f . In (Maz′ya and Schmidt, 2001) the authors have proved that for f ∈
L∞(Rd)∩Cs+1(Rd) and a function ψ satisfying the moment condition (12),
the following error estimate holds true

‖f − u√
Dh‖C = O(hs+1 + ε(ψ, D)),

where ε(ψ, D) denotes a saturation error which can be controlled by appro-
priately choosing the dilation factor σ of the generating function ψ.
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Note that (Maz′ya and Schmidt, 2001) contains also error estimates if
nonequispaced knots xk are used in (15).

17.2.2. DISCRETE MLS

In scattered data approximation, the function f is in general only known
at nonequispaced knots xk ∈ R

d (k = 1, . . . , N), where N ≥M . Instead of
using a continuous MLS approach with a discretization of the convolution
integral at these knots, we prefer a discrete MLS approach. Basically, we
have the same setting as in Subsection (17.2.1), (2–4), except that we want
to minimize

J(x):=
N∑

k=1

(f(xk)− u(x, xk))
2w(xk − x) (16)

instead of (3). For fixed x ∈ R
d, this is a weighted least squares problem

for the coefficients cj = cj(x) which has the solution

c(x) = (Φ W (x) ΦT )−1Φ W (x) f, (17)

where c(x):= (cj(x))M
j=1, f:= (f(xk))

N
k=1 and

Φ:= (ϕj(xk))
M,N
j,k=1, W (x):= diag(w(xk − x))N

k=1.

Here we have to assume that the points xk ∈ R
d are distributed such that

Φ has full rank, i.e., not all xk lie on the zero set of a polynomial of degree
≤ s. Then, by (4),

u(x) = ϕ(x)T c(x) (18)

is taken as approximation of f(x).

REMARK 17.2. In the case s = 0, i.e., V = {1} and M = 1, we obtain
that Φ = (1, . . . , 1) and consequently by (17) and (18) that

u(x) = c1(x) =

N∑
k=1

f(xk)w(xk − x)

N∑
k=1

w(xk − x)
. (19)

This approximation is known as Shepard’s method (Shepard, 1968). The
approximate value u(x) of f(x) is the weighted average of the values f(xk),
where the weights decrease with an increasing distance of xk from x. We
will have a look at this method again in connection with bilateral filters.
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REMARK 17.3. From the Backus-Gilbert approach (Bos and Šalkauskas,
1989) it is well–known that, for an appropriate function g, the function ψg

which solves the constrained minimization problem

1
2

N∑
k=1

ψ2
g(xk, x)

g(xk, x)
−→ min

subject to the polynomial reproducing property

N∑
k=1

p(xk)ψg(xk, x) = p(x) for all p ∈ Πd
s (20)

is given by
(ψg(xk, x))N

k=1 = ϕ(x)T
(
Φ D ΦT

)−1
Φ D,

where
D := diag(g(xk, x))N

k=1.

Usually, g(x, xk):= w(xk − x) is chosen in the literature. Then, by (17),
we can rewrite (18) in the form

u(x) =
N∑

k=1

f(xk)ψw(xk, x). (21)

This approach is also known as quasi-interpolation of f . If f is a polynomial
of absolute degree ≤ s, then, by the constraint (20), it is reproduced exactly,
i.e., u coincides with f .

Note that on the other hand, the discrete MLS problem can be consid-
ered with the shifted formulation (5), where one has to minimize a discrete
functional corresponding to (6). This leads directly to the form (21) of u.

17.3. Robust local approximation of scattered data

In (van den Boomgaard and van de Weijer, 2003), the authors suggested a
robust Gaussian facet model for various applications in image processing.
Robust estimators classically dealt with statistical outliers, but can be also
used to better reconstruct edges. In this section, we want to use the robust
facet approach in a slightly more general form for the approximation of
(noisy) scattered data. Furthermore, we propose a novel method which
seems to be more related to the idea of bilateral filters.
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17.3.1. GENERALIZED BILATERAL FILTERS

In order to make our approximation more sensible with respect to edges
we introduce a differentiable function ρ in J which punishes small differ-
ences harder but sees larger differences more gently, i.e., instead of (16) we
minimize the functional

Jρ(x):=
N∑

k=1

ρ
(
(f(xk)− u(x, xk))

2
)
w(xk − x).

In (16) we have simply used ρ(r2) = r2. In this section, we apply

ρ(r2):=
√

r2 + ε2 (ε# 1) (22)

which results (approximately) in a weighted �1-norm of (f(xk)−u(x, xk))
N
k=1

in Jρ, and
ρ(r2) = 1− e−r2/(2m2) (23)

which gives an approximation of a weighted �0-norm. The function (23)
was suggested in (van den Boomgaard and van de Weijer, 2003). While the
function ρ in (22) and thus Jρ are still strictly convex, ρ becomes nonconvex
in (23).

Computing the gradient of Jρ(x) with respect to c�(x) (� = 1, . . . ,M)
and setting this gradient to zero, leads to the following nonlinear system of
equations

Φ W (x)Bρ(x) ΦT c(x) = ΦW (x)Bρ(x) f, (24)

where

Bρ(x):= diag
(
ρ′((f(xk)− u(x, xk))2)

)N

k=1
(25)

= diag
(
ρ′((f(xk)−

M∑
�=1

c�ϕ�(x− xk))2)
)N

k=1
.

Note that for ρ defined by (22) or (23) the function ρ′(r2) is a monotone de-
creasing function in r2. In contrast to the diagonal matrix W (x) appearing
in (17), we incorporate now the diagonal matrix W (x)Bρ(x) which does not
only depend on the knots xk, but also on the data f(xk). Thus, we obtain
both a knot and data dependent method. We solve (24) by a fixed point
iteration, i.e., we compute successively

c(i+1)(x) = (Φ W (x)B(i)
ρ (x) ΦT )−1Φ W (x)B(i)

ρ (x) f,

where

B(i)
ρ (x):= diag

(
ρ′((f(xk)−

M∑
�=1

c
(i)
� (x)ϕ�(xk − x))2)

)N

k=1
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and set
u(i+1)(x):= ϕ(x)T c(i+1)(x). (26)

As initial vector c(0)(x) we use the values obtained from the discrete MLS
in Subsection (17.2.2). The question of convergence of this iterative method
is still open.

REMARK 17.4. If s = 0, then we obtain as in Remark (17.2), that u(i)(x) =
c
(i)
1 (x), in particular, after one iteration,

u(1)(x) =

N∑
k=1

f(xk)w(xk − x)ρ′((f(xk)− u(0)(x))2)

N∑
k=1

w(xk − x)ρ′((f(xk)− u(0)(x))2)
. (27)

For x:= xj (j = 1, . . . , N) and input u(0)(xj):=f(xj), the approximation
(27) is known as bilateral filter (Tomasi and Manduchi, 1998). In contrast
to Shepard’s method (19) do the weights of the values f(xk) in (27) not
only decrease with an increasing distance of xk from x, but also with an
increasing distance of f(xk) from f(x) (or its approximation u(0)(x)). Thus
the averaging process is reduced at edges. We remark that a generalization
of bilateral filters for piecewise linear functions that completely differs from
our approach was given in (Elad, 2002).

Based on Remark (17.4) and Remark (17.3) we propose the following
new approximation method which can be considered as a generalization
of the bilateral filter. Obviously, the division by

∑N
k=1 w(xk−x)ρ′((f(xk)−

u(0)(x))2) in (27) ensures at each iteration step i that u(i) reproduces con-
stants f ≡ C. By Remark (17.3), the idea of using bilateral filters for
scattered data approximation can be generalized such that polynomials of
arbitrary absolute degree ≤ s are reproduced. We have to compute

u(i+1)(x):= ϕ(x)T (Φ W (x)D(i)
ρ (x) ΦT )−1Φ W (x)D(i)

ρ (x) f, (28)

where

D(i)
ρ (x):= diag

(
ρ′((f(xk)− u(i)(x))2)

)N

k=1
.

In contrast to B
(i)
ρ in (25), where we find it difficult to interpret the dif-

ferences f(xk)− u(i)(x, xk), our diagonal matrix D
(i)
ρ contains the approx-

imated differences f(xk)− f(x) ≈ f(xk)− u(i)(x). The function ρ′ may be
any appropriate decreasing function. Moreover, as initial data u(0) we can
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take any reasonable approximation of f . Of course, for s = 1, both methods
(26) and (28) coincide.

17.3.2. NUMERICAL EXAMPLES

In this section, we present numerical examples with the proposed algorithms
in one and two dimensions. The algorithms were implemented in C. As
weight function w, we have always used a dilated Gaussian function wσ(y) =
e−y2/(2σ2) which we have truncated for |y| > 3σ. In this presentation, we
have restricted ourselves to the nonlinear function ρ(r2) = 1 − e−r2/(2m2)

in (23). However, we have computed various examples with the function ρ
in (22) as well. In 2D, these results look very similar to those obtained by
applying (23). The corresponding images can be found at our web page

http://kiwi.math.uni-mannheim.de/~mfenn/RMLS.html

The nonlinear methods were always performed with five iterations, since we
observed reasonable convergence in all our experiments within ≤ 5 iteration
steps.

Figure (17.1) shows a onedimensional example with the

’

ramp’-signal.
The first row contains the original 256 pixel data in (a) and 64 scattered
data points (uniformly distributed random numbers) with some Gaussian
noise added in (b). Here the signal-to-noise ratio (SNR) defined by

SNR = 20 log10

‖z − z̄‖2
‖n‖2

with z standing for the original signal with mean z̄, and n representing
noise, is 8 dB. The following rows of Figure (17.1) show the results of the
MLS approximation in (c)–(e), of iteration scheme (26) with the diagonal
matrix Bρ in (f)–(h), and of our generalized bilateral filter (28) with the
diagonal matrix Dρ in (j)–(k), where the polynomial reproduction degree
increases from s = 0 to s = 2 from left to right. The parameters σ for
the knot-dependent weights and the parameter m for the data-dependent
weights were chosen such that the optical impression was the best. In the
MLS approximations, we have taken σ = 3/64, and in the nonlinear schemes
(26) and (28), the parameters σ = 6/64 and m = 0.2. As initial data for
the iterative algorithms we have always used the results from the MLS ap-
proximation with the same degree of polynomial reproduction. However, it
should be noted that our algorithm (28) has shown a quite robust behavior
with respect to the choice of the initial data. Even very rough initial data
approximations, e.g., a simple linear approximation, has led to nearly the
same results (j)–(k).
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Figure 17.1. (a) original signal; (b) scattered noisy signal (1/8 of the original data, SNR
= 8); (c)–(e) MLS approximation; (f)–(h) method (26); (i)–(k) our generalized bilateral
filter (28).

As expected, the MLS approximation smoothes at edges. This effect can
be reduced by using the data dependent iteration schemes. However, the
nonlinear method (26) still introduces some artefacts at edges. The same
effect can be observed in 2D.

Since the original signal is piecewise linear, the methods which re -
duce quadratic polynomials (right column) do not bring some further
improvements.

Figure 17.2 compares scattered data approximation in 2D. We took the
256 × 256 pixel image

’

trui.png’ in (a), added some Gaussian noise with
SNR = 16 dB in (b). Finally, we chose randomly 1/16 of the data in (c).
The images (d)–(f) in the second row of Figure 17.2 show the results of
the MLS approximation for s = 0, 1, 2 from left to right. The parameter
σ = 6/256 was chosen such that the images look best. However, we have also
computed the images with respect to that parameter σ which gives the best
SNR. The results are reported at our web page. The third and fourth row

rop
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Figure 17.2. (a) original image; (b) noisy image (SNR = 16); (c) scattered noisy image
(1/16 of the data); (d)–(f) MLS with s = 0 (SNR=7.62), s = 1 (SNR=7.73), s = 2
(SNR=9.79); (g)–(i) method (26) with s = 0 (SNR=8.70), s = 1 (SNR=8.58), s = 2
(SNR=10.48); (j)–(l) our generalized bilateral filter (28) with s = 0 (SNR=8.82), s = 1
(SNR=9.41), s = 2 (SNR=10.62). The parameter σ = 6/256 was chosen such that the
images in (d)–(f) are visually best and the parameter m in (g)–(l) such that the SNR is
optimal.

present the results for the nonlinear methods (26) and (28), respectively,
with an increasing degree of the polynomial reproduction s = 0, 1, 2 from
left to right and with the same parameter σ = 6/256. The parameter m in
(23) was chosen such that we have obtained the best SNR. In general, we
had m ∈ [0.18, 0.28]. The SNR of each image can be found in the caption of
Figure 17.2. The quality of the images improves with an increasing degree
of polynomial reproduction. As expected, the nonlinear methods produce
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(a)

Figure 17.3. Approximation of 873 scattered data points from the

’

glacier’ at the
128 × 128 grid; (a) 3-D plot of (c); (b) original data (dotted) and contour plot of the
MLS approximation with s = 2, (c) our generalized bilateral filter (28) with s = 2.

somewhat sharper images. In order to observe this effect more carefully,
the reader may have again a look at details of the images at our web page.
The best result was obtained with our generalized bilateral filter (28) and
s = 2. Note that one iteration step takes less than two seconds here.

Figure 17.3 is based on a data set frequently used in numerical examples
for scattered data approximation: we are given 873 scattered data points
representing certain contour lines of a glacier. First, we applied the MLS
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method with σ = 6/128 and s = 2. The contour plots evaluated at the
128× 128 grid are presented in (b). Part (c) of the figure shows the result
for our algorithm (28) applied with σ = 8/128, m = 15 and s = 2. The
corresponding 3D plot can be seen in (a).

The contour plots (b), (c) reveal the differences of both methods.
Although the MLS approximation (b) is quite good, our nonlinear method
(c) better reconstructs smaller structures. For example, the peaks in the
middle right part of the images are smoothed by the MLS, but retain by
our algorithm.

17.4. Summary

We have introduced a robust local scattered data approximation method
which can be considered as a generalization of bilateral filters for scattered
data. In particular, the averaging process takes spatial and data values into
account. Our approach provides better polynomial reproduction properties
than the original bilateral filters at the cost of solving small linear systems
of equations. Numerical examples have proved the advantages of the new
method with respect to the reproduction of edges. However, this is our first
attempt to incorporate robust estimators in scattered data approximation.
A couple of theoretical questions is still open. In particular, the convergence
behavior of the algorithm and its dependence on the distribution of the
scattered knots as well as stability properties were not examined up to now.
Furthermore, it should be possible to further speed up the performance
of the algorithm by using fast Fourier transforms at nonequispaced knots
(NFFT). The NFFT was considered by the authors in various papers (Fenn
and Steidl, 2004; Kunis and Potts, 2002) and was recently applied by
E. G. Fasshauer and J. G.Zhang (Fasshauer and Zhang, 2004) for scattered
data approximation.

Acknowledg ment: The basic idea of this paper goes back to a talk
given by R. van den Boomgaard within the Mathematical Image Analysis
Group in Saarbrücken in February 2004.
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ON ROBUST ESTIMATION AND SMOOTHING

WITH SPATIAL AND TONAL KERNELS∗

PAVEL MRÁZEK, JOACHIM WEICKERT,
AND ANDRÉS BRUHN
Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science, Building 27
Saarland University, 66123 Saarbrücken, Germany

Abstract. This paper deals with establishing relations between a number of widely-used
nonlinear filters for digital image processing. We cover robust statistical estimation with
(local) M-estimators, local mode filtering in image or histogram space, bilateral filtering,
nonlinear diffusion, and regularisation approaches. Although these methods originate
in different mathematical theories, we show that their implementation reveals a highly
similar structure. We demonstrate that all these methods can be cast into a unified
framework of functional minimisation combining nonlocal data and nonlocal smoothness
terms. This unification contributes to a better understanding of the individual methods,
and it opens the way to new techniques combining the advantages of known filters.

Key words: image analysis, M-estimators, mode filtering, nonlinear diffusion, bilateral
filter, regularisation

18.1. Introduction

Image smoothing for the task of denoising or simplification of the visual
information is a well established and thoroughly studied topic. A large
number of methods have been proposed and new ones continue to appear.
However, it is still not easy to see the advantages of the various approaches,
and the relations between different methods are only partly understood.

This paper is intended as a contribution in this direction: by studying
several methods and their relations, we end up with a better understanding

∗ This research was partly funded by the project Relations between Nonlinear filters in
Digital Image Processing within the DFG Priority Program 1114: Mathematical Methods
in Time Series Analysis and Digital Image Processing, and by the grant No. A2075302 of
the Grant Agency of the Academy of Sciences of the Czech Republic. This is gratefully
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Figure 18.1. Examples of the tasks addressed by methods studied in this paper. Top:
image simplification (input image on the left, processed with local mode filter on the
right). Bottom: image denoising (noisy image on the left, filtered using TV flow on the
right).

of each of them. We focus on M-estimators from robust statistics, me-
dian filters, mode filtering, bilateral filter, nonlinear diffusion filtering, and
regularisation techniques (see Figure 18.1 for examples). Although these
methods seem very different at the first glance and originate in different
mathematical theories, we will show that they can lead to highly similar
discrete algorithms. From there, it is not far to the observation that all these
methods can be cast in a single unified framework of discrete regularisation
theory: they can all be derived from minimisation of a single energy func-
tional with (possibly nonlocal) data and (possibly nonlocal) smoothness
terms.

This unifying framework has several advantages. Firstly, it explicitly
shows all the freedom in selecting the penaliser type, the parameters, and
the balance between smoothness and data terms; seing that freedom, it is
natural to require that any reasonable smoothing methods motivates the
choice of these parameters using some assumptions about the data to be re-
constructed, and the noise present in the signal. Secondly, it makes explicit
what assumptions are used to derive a given, previously known method from
the general settings. Thirdly, after showing known methods as just special
members of a whole family of discrete filters, the unifying framework allows
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to design novel methods tailored to the particular properties of the data
and noise, and combine the advantages of known filters.

Related work. Several recent papers have offered interesting connections
between different filtering strategies. In (Winkler et al., 1999) the rela-
tions between statistical methods (M-estimators) and iterative solvers are
studied. The link between iterative mean shift algorithm, mode filters and
clustering was analysed in (Cheng, 1995). The relations between mean, me-
dian and mode filters in the continuous settings were addressed by (Griffin,
2000). Mode filters and their connections to other approaches represented
the main topic of (van de Weijer and van den Boomgaard, 2001; van den
Boomgaard and van de Weijer, 2002). (Sochen et al., 2001) focused on the
links between energy minimization, partial differential equations and adap-
tive filtering. Finally, (Elad, 2002) studied the relations between bilateral
filters, robust estimation and diffusion filters. Compared to these papers,
our work covers a larger number of methods and it includes them all into
a single, unified framework.

Organisation of the paper. Our paper is organised as follows. Sections
18.2 to 18.7 represent a brief tour of several nonlinear filters for image
processing, from robust statistical estimation and histogram operations to
local M-smoothers, regularisation theory, diffusion filtering and bilateral
filters. The methods differ in the use of information from local, global or
windowed neighbourhood, and in computing the estimates relying either on
the original data directly, or using a gradually smoothed image. Section 18.8
then proposes a unified framework which covers all of the presented methods
by combining a nonlocal smoothness term and a nonlocal data term with
tonal and spatial weight functions into a single functional. Section 18.9
shows some image filtering examples, and the paper is concluded with a
summary in Section 18.10.

18.2. Statistical estimation

Let us assume there is an unknown (constant) signal u, and it is observed K
times. We obtain the noisy samples fi, i = 1, . . . ,K according to fi = u+n
where n stands for the noise. If n is a zero-mean Gaussian random variable,
one can estimate u by calculating the sample mean u = 1

K

∑K
j=1 fj . The

mean u is the maximum a posteriori (MAP) estimate of u, and minimises
the l2 error E(u) =

∑K
j=1(u− fj)2.

Complications arise if the noise n is not normally distributed, e.g. if it
has heavier tails (i.e. there are more outliers, or more distant outliers in
the data). This can be caused either directly by the noise properties, or
when not a single constant u, but e.g. two constants get mixed in the data
(we have to estimate a constant value near a discontinuity in the signal).
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The classical statistical solution is to use more robust error norms, and this
leads to the theory of M-estimation (Huber, 1981; Hampel et al., 1986). An
M-estimate of a constant value u from noisy data fj is found by minimising

E(u) =
K∑

j=1

Ψ(|u− fj |2) (1)

where the error norm Ψ can attain for example one of the forms presented
in Table 18.1. The right column of Table 18.1 gives an overview of what

TABLE 18.1. Examples of error norms for M-estimators. The parameter λ
serves as contrast parameter.

error norm → estimation result

(a) Ψ(s2) = s2

−5 −4 −3 −2 −1 0 1 2 3 4 5

→ mean

(b) Ψ(s2) = |s|
−5 −4 −3 −2 −1 0 1 2 3 4 5

→ median

(c) Ψ(s2) = 1 − e−s2/λ2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

→ mode approximation

(d) Ψ(s2) = min(s2, λ2)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

l

→ mode approximation

element minimises the functional (1) with the given error penaliser Ψ. For
the l2 norm (a), the solution is the mean of the noisy samples. The l1
norm (b), the formula is minimised by the median. For the robust error
norms (c) and (d), the influence of outliers is very much reduced, and
the solution u minimising (1) approximates a mode (maximum) of the
probability density underlying the noisy samples. Mode ideally corresponds
to the most frequent value present in the data. For the discrete noisy
samples, the maximum of the density can be only estimated e.g. using
suitable smoothing kernels; see (Cheng, 1995) for some examples and a
connection to iterative solvers. Note that while the l2 and l1 norms lead
to a convex functional minimisation, the robust error norms (c) and (d) in
Table 18.1 are nonconvex, and their corresponding functionals E(u) may
exhibit multiple local minima.

18.3. Histogram operations

In image analysis, the data (grey values) fi are measured at positions (pix-
els) xi, and we want to find a solution vector u = (ui)i=1,...,N where each
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output value ui belongs to the position xi. We construct the M-estimates
ui by minimising

E(u) =
N∑

i=1

N∑
j=1

Ψ(|ui − fj |2). (2)

E(u) can be minimised by gradient descent (converging towards a local
minimum if Ψ is nonconvex), where each element ui may be processed
independently. Initialising by u0

i = fi, the gradient descent becomes

uk+1
i = uk

i − τ
∂E

∂ui

= uk
i − τ

N∑
j=1

Ψ′(|uk
i − fj |2) 2 (uk

i − fj)

=
(
1− 2τ

N∑
j=1

Ψ′(|uk
i − fj |2)

)
uk

i

+ 2τ

N∑
j=1

Ψ′(|uk
i − fj |2) fj (3)

Here τ is the step size. To speed up convergence, τ can be chosen adaptively
to the data such that it is larger in plateaus and smaller in areas of large
slope; see (Cheng, 1995). Setting

τ :=
1

2
∑N

j=1 Ψ′(|uk
i − fj |2)

, g(s2) := Ψ′(s2), (4)

we can rewrite (3) into the iterative formula

uk+1
i =

∑N
j=1 g(|uk

i − fj |2) fj∑N
j=1 g(|uk

i − fj |2)
. (5)

Note that in this formulation, the spatial distance between solution ui

and the input samples fj is not taken into consideration since the index
j runs through all pixels. This procedure is equivalent to operations with
the histogram of the input image. As an example, Figure 18.2 (b) shows
the steady state when iterating (5) with a weighting function g that was
chosen in order to correspond to the penaliser Ψ from Table 18.1(c). This
results in replacing each pixel by a local mode of the image histogram. We
may thus regard it as an image adaptive quantisation strategy.
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Figure 18.2. Local mode filtering. (a) Left: input image. (b) Center: iteratively smoothed
using eq. (5) and the penaliser from Table 18.1(c) in a global spatial window. This
approximates mode filtering of the histogram. (c) Right: processed with the local iterative
filter from eq. (9). The tonal weight g(s2) = exp(−s2/λ2) was combined with the soft
spatial window (8) with θ = 5. This approximates a local mode filter.

18.4. Local M-smoothers

While the previous method was a global, histogram-based technique, it is of-
ten desirable to estimate a grey value of a pixel from a local neighbourhood
only. In the framework of M-estimation, this can be achieved by introducing
a second weighting term, which depends on the spatial distance between
the position of restored pixel ui and the input sample fj . For the local
M-smoothers, the functional to minimise has the following structure (Chu
et al., 1998; Winkler et al., 1999):

E(u) =
N∑

i=1

∑
j∈B(i)

Ψ(|ui − fj |2) w(|xi − xj |2) (6)

where the spatial weights w represent e.g. a hard disk-shaped window
around the current position xi,

w(s2) =
{

1 s2 < θ
0 otherwise, (7)

or a soft window (Chu et al., 1998),

w(s2) = e−s2/θ2
. (8)

The local window B(i) is introduced in (6) for computational convenience
only, to make the index j run through the neighbourhood of xi where
w(|xi − xj |2) exceeds some threshold of contribution importance.

In the same way as in the previous section, a minimisation of (6) with
adaptive time steps leads to the iterative formula

uk+1
i =

∑
j∈B(i) g(|uk

i − fj |2) w(|xi − xj |2) fj∑
j∈B(i) g(|uk

i − fj |2) w(|xi − xj |2)
(9)
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where the function w is called spatial weight, in order to distinguish it from
the tonal weight g. The iterative process is initialised with u0

i := fi. Note
that, both in (5) and in (9), we are only interested in the steady state for
k →∞, not in the evolution towards this minimiser.

As stated in (Winkler et al., 1999), the procedure (9) is called W-
estimator, and represents one possibility to obtain a solution to the local
M-estimation problem. It converges to a local minimum of (6) close to the
input data. Depending on the penaliser Ψ, the iterations may lead e.g. to
a local mode approximation as in Figure 18.2 (c) (Griffin, 2000; van de
Weijer and van den Boomgaard, 2001; van den Boomgaard and van de
Weijer, 2002; Comaniciu and Meer, 2002), or to an approximation of a
windowed median filter or Gaussian smoothing.

18.5. Bayesian and regularisation frameworks

By taking the windowed M-estimator (6) and decreasing the spatial window
size θ, we arrive at the weighting

w(|xi − xj |2) =
{

1 if xi = xj ,
0 otherwise. (10)

This leads to the functional

ED(u) =
N∑

i=1

Ψ(|ui − fi|2). (11)

For any reasonable penaliser Ψ, (11) is minimised by ui = fi.
It is clear that such a solution is not desired: a good estimate can-

not be obtained by looking at a single noisy sample. However, estimation
formulated using a local neighbourhood is a highly successful practice,
but it has to be combined with some assumptions about the signal to
be recovered. In the Bayesian terminology such an assumptions is called
prior information, in the framework of regularisation theory it is named
smoothness term or regulariser; see e.g. (Bertero et al., 1988; Geman and
Geman, 1984; Mumford, 1994).

We construct a smoothness term to express our assumptions about
the signal. For the sake of convenience, let us now focus on a continuous
modeling where (11) is replaced by

ED(u) =
∫

Ω
Ψ(|u− f |2) dx (12)

where Ω ⊂ IRm is the image domain, and f, u : Ω→ IR denote the original
and filtered image, respectively. In the classical example of the Mumford–
Shah functional (Mumford and Shah, 1989) where the signal is assumed to
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be piecewise constant with step-like discontinuities, we have

ES(u) =
∫

Ω\Γ
|∇u|2dx + β |Γ|

where Γ is the set of discontinuities and |Γ| denotes its length (one-dimensional
Hausdorff measure). The smoothness of the image is measured by the
squared gradient magnitude |∇u|2. We see that deviations from the smooth-
ness are not penalised at the discontinuities. The parameter β balances the
image smoothness against the measure of the discontinuity set Γ.

It was shown e.g. in (Winkler et al., 1999) that the explicit boundaries
Γ can be expressed implicitly using a robustified prior: Let γ denote the
discontinuity indicator function

γ(x) =
{

1 on Γ (edge),
0 on Ω\Γ (no edge),

and
Ψβ(|∇u|2) := min{|∇u|2, β} (13)

the cup function from Table 18.1 (d). Then it follows that

min
u

ES(u) = min
u,Γ

(∫
Ω\Γ
|∇u|2dx + β |Γ|

)

= min
u,γ

∫
Ω

(
(1− γ) |∇u|2 + β γ

)
dx

= min
u

∫
Ω

min
γ∈{0,1}

((1− γ) |∇u|2 + β γ) dx

= min
u

∫
Ω

Ψβ(|∇u|2) dx. (14)

For smoother penalisers Ψ, the discontinuity indicator γ may also attain
intermediate values from the interval [0, 1] (Nordström, 1990).

In the Bayesian / regularisation framework, the data and smoothness
terms are combined into a single functional, thus balancing the measured
data against the smoothness assumptions. The resulting functional has e.g.
the form

E(u) = ED(u) + α ES(u)

=
∫

Ω

(
ΨD(|u− f |2) + α ΨS(|∇u|2)

)
dx (15)

with some regularisation parameter α > 0. As an example, the continuous
Mumford–Shah functional fits into this framework if we choose ΨD(s 2):= s2
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and ΨS(s2) := min(s2, λ2). Discrete versions of such functionals are
considered e.g. in (Blake and Zisserman, 1987; Nikolova, 2000; Nikolova,
2001).

18.6. Diffusion filtering

For the sake of completeness, it should be mentioned that equation (15) also
covers nonlinear diffusion filters with and without a fidelity term: Choosing
ΨD(s2):= s2, every mininiser of (15) has to satisfy necessarily the Euler–
Lagrange equation (Courant and Hilbert, 1953)

0 = div
(
g(|∇u|2)∇u

)
− u− f

α
(16)

where g(s2):= Ψ′
S(s2). Its solution can be regarded as the steady state of

the diffusion–reaction process

∂u

∂t
= div

(
g(|∇u|2)∇u

)
− u− f

α
. (17)

where the “time” t is a purely numerical parameter. Such “biased” diffusion
processes with a fidelity term have been considered by (Nordström, 1990) in
the nonconvex and by (Schnörr, 1994; Stevenson et al., 1994; Charbonnier
et al., 1997) in the convex case. They yield the filtered image at infinite
time (t→∞).

Alternatively, in (Scherzer and Weickert, 2000) it has been argued that
by rewriting (16) as

u− f

α
= div

(
g(|∇u|2)∇u

)
(18)

it becomes evident that this process can be regarded as an implicit time
discretisation of the diffusion process

∂u

∂t
= div

(
g(|∇u|2)∇u

)
, (19)

u(t = 0) = f (20)

with a single time step of size α. This is a classical, “unbiased” nonlinear
diffusion filter as is considered e.g. in (Perona and Malik, 1990; Weickert,
1998). Note that, in contrast to (16), such a filter gives the desired result
at finite diffusion time t = α.

Recently, it has also been shown (Steidl et al., 2004; Mrázek et al.,
2003) that discrete diffusion filtering has close relations to wavelet shrinkage
(Donoho, 1995).



344 P. Mrázek, J. Weickert and A. Bruhn

18.7. Bilateral filtering

Since digital images are sampled on a quadratic pixel grid, it becomes
necessary to consider discrete variants of the continuous functional (15).
For the data term, this has already been discussed. Therefore let us now
focus on the smoothness term ES(u) = ΨS(|∇u|2).

One possibility is to estimate the image gradient magnitude as a sum of
squared differences from a pixel to its neighbours. The discrete smoothness
penaliser is then expressed in the following way:

ES(u) =
N∑

i=1

ΨS

( ∑
j∈N (i)

|ui − uj |2
)

(21)

where N (i) stands for the set of 4-neighbours of a pixel i. Just by ex-
changing the order of summation and penalisation in the last term, we can
express the assumption of image smoothness in a slightly different way:

ES(u) =
N∑

i=1

∑
j∈N (i)

ΨS(|ui − uj |2). (22)

This change of operation ordering leads to an anisotropic smoothness mea-
sure; see also (Weickert and Schnörr, 2001).

Let us now increase the size of the neighbourhood from which the
expression (22) is estimated. Then the smoothness term becomes

ES(u) =
N∑

i=1

∑
j∈B(i)

Ψ(|ui − uj |2) w(|xi − xj |2) (23)

where B(i) is the larger neighbourhood set, and the summation is addition-
ally weighted by a function w of the spatial distance between pixels.

The functional (23) can be minimised by an iterative procedure

uk+1
i = uk

i − τ
∂E

∂ui
, τ :=

1
2

∑
j∈B(i) Ψ′(|uk

i − uk
j |2)

.

Setting g(s2):= Ψ′(s2) leads to the weighted averaging scheme

uk+1
i =

∑
j∈B(i) g(|uk

i − uk
j |2) w(|xi − xj |2) uk

j∑
j∈B(i) g(|uk

i − uk
j |2) w(|xi − xj |2)

(24)

Equation (24) is exactly the bilateral filter (Tomasi and Manduchi, 1998);
see also (Smith and Brady, 1997) for related ideas. While bilateral filtering
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Figure 18.3. Overview of the methods studied in this paper and their corresponding
energy functionals.

was originally proposed as a heuristic algorithm, we derived it here as an
iterative solver to minimise the anisotropic smoothness term (23) which is
evaluated in a nonlocal window.

One should observe the large amount of structural similarities between
the local M-smoother (9) and the bilateral filter (24). However, there is
one significant difference: Local M-smoothing uses the initial image in
the averaging procedure and searches for the steady state, while bilateral
filtering uses the evolving image and has to stop after a certain number of
iterations in order to avoid obtaining a flat image.

Moreover, it should be noted that an alternative functional to justify
the bilateral filter was proposed in (Elad, 2002). Differently to the one
presented here, the functional of Elad contains a windowed smoothness
term combined with a local data term. Also, bilateral filter can be viewed
as an approximation to the Beltrami flow (Barash, 2002; Spira et al., 2003).

18.8. Unifying framework

Figure 18.3 presents an overview of the energy functionals minimised by
all the methods discussed so far. Starting from statistical M-estimation
at the top, we went counterclockwise down the left branch via histogram
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operations, introduced spatial window weighting w into the functional, and
derived local M-estimators. Reducing the window size and combining data
with a smoothness assumption, we arrived at regularisation methods fitting
into the Bayesian framework at the bottom of Figure 18.3. Concentrat-
ing on the smoothness term only, we estimated the gradient magnitude
|∇u| using discrete samples, extended the size of the estimation window,
formed an anisotropic smoothness measure, and derived the bilateral filter
on the right. The circle can be closed to histogram-based global methods
by extending the spatial window size.

We observe that the methods classify into two main branches: the data-
based on the left, and the smoothness-based on the right of Figure 18.3. The
data-based methods correspond to statistical estimation from noisy data,
while the right branch leads to the known methods of image smoothing. Un-
fortunately, these labels are sometimes confused and a method optimising
the smoothness term is claimed to represent a robust statistical estimator.
We have seen that the methods have a highly similar structure, but believe
that the terms estimation and smoothing should not be used as equivalent.

The spatial extent of each filter is controlled by the weight function w,
from global methods at the top (w = 1) to local approaches at the bottom.
Let us focus on the methods in the middle, where the weight w specifies
a finite window. We said that the regularisation methods contain a (local)
data term and a (local) smoothness term. If we understand the local
M-estimators as a data term (expressed using a nonlocal window for each
pixel) and the bilateral filter as a smoothness term (again using a finite
window), it is natural to combine them into a single, unified functional:

E(u) =
N∑

i=1

N∑
j=1

σ ΨD(|ui − fj |2) wD(|xi − xj |2)

+(1− σ) ΨS(|ui − uj |2) wS(|xi − xj |2). (25)

Depending on the choice of the penalising functions ΨD, ΨS and on the
extent of the spatial weighting functions wD and wS , the single formula-
tion (25) covers all the filters discussed so far. They are summarised in
Table 18.2.

The unification of methods into a single framework has several advan-
tages. It contributes to the understanding of each method as it makes
explicit what parameters ΨD, wD, ΨS , wS , σ are needed to derive a given
filter. We can see all the freedom that this class of methods offers: four
weighting functions (and their parameters) plus the parameter σ ∈ [0, 1]
balancing the data against the smoothness term. Obviously, to obtain a
reasonable and well performing filter, the choice of parameters should be
motivated by some arguments about the data and noise properties. Last
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TABLE 18.2. Filtering methods structured according to the used penaliser (from
Table 18.1 (a), (b), (c)), extent of the spatial weight w, and correspondence to the
data or smoothness terms.

penaliser windowed data local smoothness windowed smoothness

(a) mean linear diffusion

(b) median TV diffusion

(c) mode approximation nonlinear diffusion bilateral filter

but not least, we have seen that known filters represent just several special
cases in the framework of functional (25). New methods can be designed to
combine the advantages of known filters. This remains the topic for further
research.

Some more questions are left open, though. For example, what is the
meaning of the smoothness term calculated from a larger window as in (23)?
A single pixel may then be directly connected to quite distant pixels, which
leads to large-scale smoothing effects of a single filter iteration, but the local
topology (e.g. the classical notion of connected regions) is lost, similarly to
the locally orderless images (Koenderink and van Doorn, 1999).

18.9. Experiments

In this section we present several examples in order to demonstrate the
effect of individual filter components on the final results. We stress that the
pictures are intended to visualise the main effects. They are not intended
to claim that one method performs better than the other: optimised results
in terms of image simplification or denoising can be obtained by each of
them by tuning the parameters.

Figure 18.4. Input images for the filtering examples. Noise-free on the left (used in
Figures 18.5 and 18.6), noisy on the right (Gaussian noise, SNR=4; used in Figure 18.7).
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Figure 18.5. Filtering using the penaliser Ψ(s2) = 1−e−s2/λ2
(Table 18.1d) with varied

size of the spatial neighbourhood. Top: local M-smoothers (data term, steady state of
iterating (9)). Bottom: bilateral filtering (smoothness term, 200 iterations based on (24)).

The first image simplification example is shown in Figure 18.5. The
penaliser Ψ(s2) = 1 − exp(−s2/λ2) was employed, and the soft spatial
window (8) had varied size (θ = 1, θ = 3, θ = 10, cropped circularly into
windows of sizes 3 × 3, 7 × 7, and 21 × 21, respectively). We observe that
the image filtered via the data term minimisation (i.e. local M-estimator,
top row of Figure 18.5) becomes smoother as the window size increases.
In this case the steady state is depicted. In the bottom row (smoothness
term, bilateral filter) the effect of different window sizes is fairly small if the
same number of iterations is used. We observe that already a small window
applied iteratively leads to global effects.

Figures 18.6 and 18.7 demonstrate the influence of the penaliser type
on the result, starting from a noise-free and a noisy image, respectively.
All images were created using a 7× 7 soft spatial window. The l2 penaliser
blurs the image most and removes noise very well, while the local mode
approximations on the right of Figures 18.6 and 18.7 perform better at
preserving the discontinuities, but the result is also more sensitive to noise.
The l1 penalisation in the center column can represent a good compro-
mise between contrast preservation and noise removal, depending on the
particular task and data properties.
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Figure 18.6. Effect of the penaliser type on the filtering result (with soft spatial
weighting (8), θ = 3).

18.10. Conclusion

In this paper we focused on the relations between nonlinear filters for digital
image processing. We covered statistical M-estimation, mean and median
filtering, mode approximation, regularisation and nonlinear diffusion ap-
proaches, and bilateral filtering. We have shown that all these methods can
be cast into the unified framework of functional minimisation where the
functional consists of a (possibly nonlocal) data and (possibly nonlocal)
smoothness term. The mutual influence of image pixels is controlled by
weighting functions depending on the spatial and tonal distances.

The unified formulation brings new insight and clarifies the relations
between different methods. It makes explicit what assumptions are needed
to derive known methods (often proposed ad hoc) from the general frame-
work. Then, novel methods can be designed to combine the advantages of
known filters and suit the particular data properties.
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Figure 18.7. Effect of the penaliser type on the filtering result, starting from the noisy
image in Fig 18.4 right (filtering in a soft window (8), θ = 3).
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352 P. Mrázek, J. Weickert and A. Bruhn

robust estimation and mean-shift analysis as used in early vision tasks. In Proc. Int.
Conf. Pattern Recognition, volume 3, pages 927–930, 2002.

Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.
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SUBSPACE ESTIMATION

WITH UNCERTAIN AND CORRELATED DATA

MATTHIAS MÜHLICH
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Robert-Mayer-Str. 2–4, 60054 Frankfurt, Germany

Abstract. Parameter estimation problems in computer vision can be modelled as fit-
ting uncertain data to complex geometric manifolds. Recent research provided several
new and fast approaches for these problems which allow incorporation of complex noise
models, mostly in form of covariance matrices. However, most algorithms can only
account for correlations within the same measurement. But many computer vision
problems,e.g. gradient-based optical flow estimation, show correlations between different
measurements.

In this paper, we will present a new method for improving total least squares (TLS)
based estimation with suitably chosen weights and it will be shown how to compute them
for general noise models. The new method is applicable to a wide class of problems which
share the same mathematical core. For demonstration purposes, we included experiments
for ellipse fitting from synthetic data.

Key words: total least squares based estimation, noise models, ellipse fitting

19.1. Introduction

19.1.1. THE ERRORS-IN-VARIABLES (EIV) MODEL

Parameter estimation problems of the general form

ϕ(�xi0, �p
′) = 0 ∀ i = 1, . . . ,m (1)

are ubiquitous in computer vision. Here �p′ ∈ IRn stands for the parameter
vector that has to be estimated and �xi0 ∈ IR� denotes some true but
unknown vectors (index i for different measurements), of which only some
error-prone versions

�xi = f(�xi0, �ei)
are available (for instance, �xi ∈ IR4 could be the stacked coordinates of
corresponding points in a stereo image). Some (possibly non-linear) func-
tion f combines true values and errors; however, the assumption of additive
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noise �xi = �xi0 + �ei is often reasonable. When �xi0 is replaced by �xi in (1),
we only achieve approximate equality: ϕ(�xi0, �p

′) ≈ 0. Usually, we have
an overdetermined system, i.e. (much) more measurements than unknown
parameters, or, mathematically: m > n. The model defined by (1) is known
as errors-in-variables (EIV) model.

19.1.2. THE TOTAL LEAST SQUARES (TLS) MODEL

EIV estimation problems can be linearized to yield an equation

�a′Ti �p′ ≈ b′i (�a′i ∈ IRn) (2)

for each measurement i. For many computer vision problems (most notably
fundamental matrix estimation, homography estimation and camera cali-
bration), this linearization means constructing bi-linear forms of (�xT , 1)T ;
in these cases, the common linearization scheme is known as direct linear
transform (DLT) (Hartley and Zisserman, 2000).

Stacking these row vectors on top of each other gives A′�p′ ≈ �b′ with
A′ ∈ IRm×n. For simplicity of notation, we add �b′ as an additional column
to A′: A = (A′|�b′). Analogously, we append −1 to �p′ to construct �p. We
obtain the much more convenient homogeneous form:

A�p ≈ �0 . (3)

Estimation problems of this type are known as total least squares (TLS)
problems. 1

19.1.3. INCLUDING ERRORS IN THE TLS CONCEPT

A general error model is defined by A = f(A0,D) with a true data
matrix A0 and an error matrix D, both of which being unknown. The
‘true’ TLS equation A0�p = �0 only has a non-trivial solution if A0 is rank-
deficient. Therefore, solving a TLS problem is equivalent to estimating a
rank-deficient approximation Â for A such that

‖A− Â‖ = ‖D̂‖ → min (4)

under some appropriate norm (or error metric). Throughout this paper,
quantities with a hat symbol on top denote estimated values.

1 In (1), we introduced a model with only one constraint per measurement. We set the
multidimensional case aside to keep things simple here, but the extension to q constraints
per measurement is straightforward: ϕ becomes vector-valued and the 
ai and bi in (2)
have to be replaced by q × n-matrices (resp. q-vectors) for each measurement. But the
final result after stacking everything on top of each other is the same again: A
p ≈ 
0.
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The TLS solution is widely equated with the singular value of A cor-
responding to the smallest singular value. This narrows the view on the
potential of TLS-based approaches considerably because nothing was said
about some special error model yet and how to solve for it. With the only
exception of the constraint between measurement and parameters being
linearized (equation (1) vs equation (2)), this model is in no way less
general than the EIV approach. Most computer vision problems can be
written in linear form and even the usual assumption of additive noise
in EIV problems carries over to the equally usual assumption of additive
noise in TLS problems because elements of A are usually constructed as
multi-linear forms of �xi.

In this paper, the TLS notion will be restricted to the definitions given
so far – no assumption on certain error metrics is made with the term ‘TLS’
itself. It is important to stress that taking the right singular vector is just
one variant of TLS-based methods; this method will be denoted plain TLS
or PTLS from now on. Other TLS-based approaches can differ widely in
the way they are solved; for instance, constrained TLS (CTLS) (Abatzoglou
et al., 1991) needs iterative optimization.

PTLS estimation is widely used because it provides a closed form so-
lution that is very easy to compute – and under certain assumptions it is
indeed a statistically optimal solution. If we use an additive error model
A = A0+D and errors of all elements of D are zero-mean and independent
and identically distributed (iid), then taking the right singular vector cor-
responding to the smallest singular value as TLS solution minimizes mean
squared error of the estimate. If additionally errors are Gaussian, then
PTLS is even a maximum likelihood estimator (van Huffel and Vandewalle,
1991).

However, these assumption are often not very realistic; therefore, PTLS
estimates can be very erroneous (e.g. highly biased in case of fundamental
matrix estimation without prior data normalization). The reason is simple:
PTLS implicitly takes the Frobenius norm as norm in equation (4) – and
of course, it is not always the ‘appropriate norm’ indeed.

Note that in general the iid noise assumption is even violated if the
underlying measurements �xi contain iid noise because of the non-linearity
of the constraints in (1) with respect to the measurements (e.g. conic
fitting: linear in the six homogenous conic parameters, quadratic in the
measurements). The linearization of this equation usually introduces data-
dependent (heteroscedastic) error terms and the data normalization (Hart-
ley and Zisserman, 2000) that is common practice before applying PTLS
effectively alleviates this effect.
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19.1.4. TLS AND SUBSPACE METHODS

The TLS estimation problem can easily be embedded in the more general
class of subspace estimation problems. In these problems, we have to esti-
mate a rank-deficient matrix from a noisy measured matrix of higher rank.
A prominent computer vision problem that belongs to this group (and
which is not a TLS problem) is the factorization method in multi-view
structure from motion (Irani and Anandan, 2000; Hartley and Zisserman,
2000).

Subspace problems can therefore be formulated as the problem of di -vi
ding a matrix A = A0 + D into two parts A = Â + D̂ (data subspace
and error subspace). The term ‘subspace’ refers to the row and column
subspaces of the matrices Â and D̂.

The central point of this paper will be the presentation of the new
scheme for subspace estimation problems (including TLS problems as a
subset). This new approach called ETLS retains the property of providing
an easy-to-compute closed-form solution. The rest of this paper is organized
as follows: After a short review and comparison of different approaches to
parameter estimation problems in computer vision in section 19.2, we will
define a general error model for subspace problems in section 19.3. After
discussion of statistical optimality for TLS estimation in section 19.4, the
equilibrated TLS (ETLS) approach will be introduced (section 19.5). We
continue with some experimental results in section 19.6 before we conclude
with the summary.

19.2. Literature Review

Different parameter estimation approaches differ in several aspects: com-
putational complexity, robustness against outliers, ability to include un-
certainty information on the measured quantities �xi, ability to account
for correlations between different measurements �xi and �xj . Some methods
provide confidence bounds or even full posterior probability distribution
function for the estimates, some do not. Additionally, for iterative methods,
the convergence properties can be meaningful.

Basically, the methods range from fast suboptimal approximations to
exhaustive search on complex manifolds in high dimensional space and it
is everything but easy to give a fair comparison. Nevertheless, we try to
summarize the basic concepts used in computer vision problems, trying
to focus on more general methods instead of highly specialized ones.
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19.2.1. COMPLEX ERROR MODELS AND THE TLS MODEL

The advantage of the TLS problem �aT
i �p ≈ 0 over the general EIV model

ϕ(�xi, �p) ≈ 0 is that it is linear in the constraints. If we set possible problems
with the linearization process aside (Matei and Meer, 2000), we can exploit
the reduced mathematical complexity to allow a thorough statistical treat-
ment of the errors, i.e. not only in terms of second order statistical moments,
but compute likelihood functions p(�ai|�x) that only depend on the desired
parameters.

In (Nestares et al., 2000), Nestares et al. showed how to compute p(�ai|�x)
if a probability density function for the noise p(�di) and a conditional prior
on the nuisance parameters, i.e. p(�ai0|�x), are given. The likelihood function
is defined by an integral over the nuisance parameters. For Gaussian noise
and Gaussian priors with same covariance matrix (up to scale), this is
possible analytically.

If noise and/or nuisance prior of measurement i are non-Gaussian (or if
they are both Gaussian with different covariance matrices – the assumption
of same covariances is highly restrictive!) one has to resort to numeri-
cal integration, but computation of the likelihood function still remains
possible.

However, computation of the likelihood function for the whole matrix
A, i.e. p(A|�x), is only tractable if the measurements are independent. Then
p(A|�x) can be written as a product of row-vector likelihoods p(�ai|�x). Under
certain assumptions, it can be shown that the negative log-likelihood func-
tion is similar to the cost function defined for the HEIV model in (Matei
and Meer, 2000).

19.2.2. ITERATIVE METHODS BASED ON COST FUNCTIONS

Many algorithms essentially consist in the optimization of a suitable cost
function. The proper definition and minimization of such a function can
be a complicated task, especially if some information on the uncertainty
of measurements �xi is to be incorporated. Most problems are only math-
ematically tractable if the uncertainty information is restricted to second
order statistical moments, i.e. we assume that first and second order sta-
tistical moments are known. The error mean values can be subtracted in a
preprocessing step and, therefore, it means no loss of generality to assume
that measurements are unbiased and characterized by different covariance
matrices Ci = E

[
�xi�x

T
i

]
.

The (theoretically optimal) “gold standard” is the bundle-adjustment
method derived in the photogrammetry community long ago. But the ex-
treme computational complexity of this method is much more problematic
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in computer vision than in photogrammetry and this led to the development
of several faster algorithms with comparable estimation quality.

An early problem of the subspace kind is ellipse fitting. For this problem,
one famous early iterative algorithm was developed by Sampson (Sampson,
1982). This algorithm, however, has the major drawback of producing
biased estimates. Kanatani studied this problem and developed several
renormalization schemes (Kanatani, 1996) which essentially consist in
removing the estimated bias in each iteration step.

Chojnacki et al. developed an new and very straightforward iterative
method based on a variational approach which is called fundamental numer-
ical scheme (FNS) (Chojnacki et al., 2000). Recently, the FNS method was
extended to incorporate some special kind of constraints on the estimated
parameters (the constraint function φ(�x) = 0 must be homogeneous of some
degree κ; additionally, some conditions must apply for the measurement
matrix) (Chojnacki et al., 2004).

In (Matei and Meer, 2000), Matei and Meer provide an another iterative
method for solving EIV problems when covariance matrices Ci are available
for each measurement �xi. This method is called heteroscedastic EIV or, in
short, HEIV. This approach does not allow to handle ancillary constraints in
the iterative estimation process, but the enforcement of these constraints by
proper (iterative) projection on the manifolds defined by these constraints
is studied.

Both HEIV and FNS do not allow the different measurements do be
correlated. An important example for problems with strongly correlated
measurements is gradient-based orientation estimation, e.g. the estimation
of optical flow. For this problem, Ng . gave a EIV-based solution in
(Ng and Solo, 2001) which assumes simple iid errors in the images but han-
dles the resulting (much more complicated!) noise model for the gradients
correctly.

Summarizing this section, one can say that research during the last few
years provided fast approximations to the bundle-adjustment algorithm
which can handle heteroscedastic noise and show an estimation quality
comparable to bundle-adjustment. General ancillary constraints, however,
are usually hard to include in the algorithm itself, and (with certain excep-
tions for special forms of constraints) one has to resort to two step algo-
rithms which consist of an unconstrained estimate followed by a subsequent
enforcement of the constraints.

et al



SUBSPACE ESTIMATION 359

19.3. Generalized Error Model for Subspace Problems:
Covariance Tensors

In this section, we will define a generalized (additive) error model for the
TLS problem A = A0 +D ≈ �0 that abandons any reference to certain rows
being constructed from certain independent measurements. Every element
of D will be treated equally and arbitrary variances and covariances shall
be allowed.

As a consequence, we have to transfer the concept of covariance matrices
describing the uncertainty of random vectors to a higher dimension. The
matrix D is an arbitrary m× n random matrix and its uncertainty has to
be described with a m× n×m× n covariance tensor.

19.3.1. THE COVARIANCE TENSOR OF A RANDOM MATRIX

Let us assume that the error matrix D is a zero-mean random matrix and all
covariances between elements ip and jq, i.e. E [(D)ip(D)jq], are known (row
indices: i, j; column indices: p, q). We can now define a four-dimensional
tensor CD ∈ IRm×n×m×n

(CD)ipjq = E [(D)ip(D)jq]

which fully decribes the error structure up to second order statistics. This
model is much more general than some other methods presented in the
previous section where only different covariance matrices Ci for each row
vector were allowed – in the framework presented here, this would mean

(CD)ipjq = E [(D)ip(D)jq] = (Ci)pq δij . (5)

Sometimes this assumption is valid – but in many cases, e.g. for computa-
tion of optical flow from the structure tensor of the space-time volume, the
row vectors are highly correlated.

19.3.2. COVARIANCE PROPAGATION FOR TENSORS

If we start from the EIV approach (i.e. the measurement equation is not
linearized yet), all we have is a n × � random matrix E containing errors
in the �-dimensional measurements. Analoguously to the linearized D ∈
IRn×m, we can define a covariance tensor of E (denoted as CE).

Now the question arises of how to propagate the covariance informa-
tion from CE to CD, the covariance tensor of the TLS error matrix D.
But the answer is simple: We have to use the Jacobian matrix of the
linearization functions, i.e. Ji = ∂�aT

i
(�x)

∂�x
. This is best done row by row;
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the cross-covariance matrices of the rows i and j transform as:2

E
[
�di

�dT
j

]
= Ji (E

[
�ei�e

T
j

]
) JT

j (6)

where �dT
i and �eT

i are the i-th row vectors of D and E, respectively. This
is a straightforward extension of covariance propagation for covariance ma-
trices. Now we know how to construct CD if necessary; we will refer to this
tensor as C (without subscript) for the rest of the paper.

19.3.3. VECTORIZING RANDOM MATRICES

In order to form the TLS error matrix D ∈ IRm×n, we arranged m row
vectors �dT

i on top of each other. Alternatively, we could have stacked m

column vectors �di to form a long vector �d ∈ IRmn. The covariance matrix
Cd of this vector would contain exactly the same elements as CD, but
arranged in different shape; both forms are different representations of the
same thing.

This mapping between the ‘big random vector plus covariance matrix’
and the ‘random matrix plus covariance tensor’ representations allows to
transfer certain known concepts to the random matrix world: we define the
unit covariance tensor I as the mapping of the case Cov

[
�d
]

= Imn (the
mn dimensional identity matrix):

(I)ijk� = (Im)ik (In)j� = δik δj� . (7)

In analogy to the inverse covariance matrix, we furthermore define the
inverse covariance tensor C−1. It solves C−1 · C = I when summing over
the two inner indices and is given by the tensorized inverse covariance
matrix C−1

d .

19.4. Solving EIV and TLS Problems

In this section, we will discuss the statistical optimality of TLS based
estimation and relate it to general EIV estimation approaches.

2 If probability density functions of the errors 
ei were available, it could be advisable to
carry them through the full non-linearity instead and compute the second order statistical
moments (i.e. covariances) afterwards. But in general, this leads to ugly integrals which
have to be solved numerically.
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19.4.1. THE GENERAL APPROACH: CONSTRAINED MINIMIZATION IN
MEASUREMENT SPACE

Let us now assume that the data model ϕ(�xi0, �p) = 0 (for all i = 1, . . . ,m)
is non-linear and characterized by zero-mean additive errors �xi = �xi0 + �ei

with known second order moments.
Stacking measurements �xi (and errors �ei) to long mn-dimensional vec-

tors with covariance matrix Ce, the general approach for solving EIV
problems is minimizing the Mahalanobis distance

J = (�̂x− �x)TC−1
e (�̂x− �x) → min , (8)

where the individual parts of �̂x have to be compatible with the data model.
If individual measurements are uncorrelated (equation (5) from ‘random
matrix perspective’ or block-diagonal Ce from ‘long random vector’ per-
spective), this equation can be simplified further. Let Cov [�xi] = Ci be the
covariance matrix of the i-th measurement. Then

J =
m∑

i=1

(�̂xi − �xi)TC−1
i (�̂xi − �xi) → min (9)

holds subject to all �xi being compatible with the data model.
In principle, we are interested in a cost function in parameter space,

but all we have now is a cost function on the nuisance parameters, i.e. in
the high dimensional space of measurements (which is much less handy).
This function has to be minimized subject to non-linear constraints given
by the data model.

The general solution concept for this type of problems is as follows:
assuming that some approximate solutions already exist, one can linearize
the constraints and iteratively compute additive correction terms for the
previous approximate solutions (using the Gauß-Helmert model on the
linearized equations; see e.g. (Förstner, 2001)).

19.4.2. ESTIMATION USING THE (LINEARIZED) TLS MODEL

In the TLS model, we assumed that ϕ(�xi0, �p) depends linearly on the
elements of �p, i.e. we consider the data model constraint

ϕ(�x, �p) = A�p =

⎛⎜⎝ �aT
1
...

�aT
m

⎞⎟⎠ �p = �r ≈ �0 (10)

Let ri = �aT
i �p be the residual (deviation from data model) for the i-th row

and �r = (r1, . . . , rM )T be the vector of all residuals.
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Estimation now leads to minimizing the Mahalanobis norm of the resid-
ual vector, i.e. minimizing the cost function

J = �rTC−1
r �r (11)

where Cr stands for the covariance matrix of the residual vector. If the as-
sumption of uncorrelated measurements (and therefore uncorrelated resid-
uals) is reasonable, this covariance matrix is a diagonal matrix:

Cr = Cov [�r] = diag
{
σ2

i

}
. (12)

The variance σ2
i of the residual ri is given by (in first order approximation):

σ2
i =

(
∂(�pT�ai)

∂�xi

)
Cov [�xi]

(
∂(�aT

i �p)
∂�xi

)T

= �pTJiCov [�xi]JT
i �p = �pT Cov [�ai] �p .

(13)
The key point is that the matrix inversion C−1

r in (11) now transforms to
a sum of fractions:

J = �rTC−1
r �r =

∑
i

(�pT�ai)σ−2
i (�aT

i �p) =
∑

i

�pT (�ai�a
T
i )�p

�pT Cov [�ai] �p
(14)

and the parameter value which minimizes this cost function can be termed
estimate:

�̂p = arg min
�p

J . (15)

Let us define Si = �ai�a
T
i and Ci = Cov [�ai]. Then (11) can finally be written

as

J =
∑

i

�pTSi�p

�pTCi�p
(16)

This is exactly the function JAML (AML for ‘approximated maximum likeli-
hood’ (in case of Gaussian errors)) which is minimized in the FNS approach
(Chojnacki et al., 2000) (but here, we presented a much shorter derivation).
However, it is important to stress that this derivation is restricted to a
certain assumption: it holds if and only if the individual measurements are
uncorrelated.

19.4.3. A GENERAL COST FUNCTION FOR SUBSPACE ESTIMATION
PROBLEMS

In the last section, we started from minimizing the Mahalanobis distance
in measurement space. Basically the same can be done with the linearized
measurements.
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The covariance tensor C can be rearranged to a symmetric and positive
definite (mn)× (mn)-matrix C; this is exactly the covariance matrix of the
‘vectorized’ version �d ∈ IRmn of the m × n error matrix D which can be
constructed by stacking all column vectors �di on top of each other. Estimat-
ing the error matrix D is then equivalent to minimizing the Mahalanobis

distance of the estimated �̂d:

Jopt = �̂d
T

C−1 �̂d subject to rank {A−D} = r .

We can also write down Jopt in matrix space (C−1 being the ‘tensorized’,
i.e. simply rearranged3, inverse covariance matrix C−1):

Jopt =
∣∣∣D̂∣∣∣2

C
=

∑
ipjq

(D)ip(C−1)ipjq(D)jq subject to rank {A−D} = r .

(17)
In case of Gaussian iid errors in �d (or in D, respectively), this defines
a maximum likelihood estimate. Note that the optimality of PTLS for iid
noise can be seen easily from (17): For iid noise, (C−1)ipjq = (C)ipjq = δijδpq

and J
(iid-noise)
opt =

∑
ip(D)2ip = ‖D‖2F becomes identical to the Frobenius

norm – which is exactly the norm under which rank approximations using
SVD are optimal.

The criterion Jopt seems obvious, but nevertheless, we have to be careful:
the used error metrics is statistically justified, but what we minimize here
is the distance between the measured matrix A and the estimate Â, i.e. the
distance between A and the nearest point on the manifold of rank-deficient
matrices.

But this is not necessarily identical to the expected distance between
the estimate and the underlying true matrix A0. Having a predefined rank
is an inherently nonlinear constraint for a matrix and the nearest matrix
(in terms of the matrix norm defined in (17)) on the manifold of rank r
matrices is not necessarily the true matrix A0 in expectation.

The criterion Jopt is valid under the additional constraint of unbiased

estimation, i.e. E
[
Â

]
must not deviate from A0. But under this con-

straint, the cost function Jopt can be used for evaluating the performance
of different algorithms—including possible correlations between different
measurements.

3 In MATLAB, these rearrangement operations can easily be done by defining some
tensor T and matrix M and setting T(:) = M(:); no special function is required.
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19.4.4. A NEW DECOMPOSITION OF A COVARIANCE TENSOR

We will now show how to achieve unbiased subspace estimation. Let C ∈
IRm×n×m×n be the covariance tensor of the random matrix D. By per-
muting second and third indices we can construct a m×m× n× n tensor
that can be mapped on a matrix M ∈ IRm2×n2

. This matrix M can be
decomposed using the singular value decomposition, i.e.

M =
n2∑

p=1

αp �xp �yT
p

where �xp ∈ IRm2
and �yp ∈ IRn2

are the left resp. right singular vectors
and σp are the singular values. Both �xp and �yp can be re-arranged to
square matrices Xp ∈ IRm×m and Yp ∈ IRn×n. Doing this, the tensor
C is decomposed into the following sum of basic tensors Tp:

(C)ijk� =
n2∑

p=1

αp (Xp)ik (Yp)j�︸ ︷︷ ︸
(Tp)ijk�

=
n2∑

p=1

(Tp)ijk� . (18)

An iid random matrix is defined by (C)ijk� = δikδj�. If this special covari-
ance tensor is fed into the tensor decomposition algorithm described above,
the result is

(C)ijk� = (Im)ik (In)j� , (19)

i.e. the sum disappears and the only left and right ‘singular matrices’ are
identity matrices. We can exploit the tensor decomposition to define a trans-
formation rule for covariance tensors. If a random matrix D is transformed
according to D̃ = WLDWR

T , then its (decomposed) covariance tensor is
transformed in the following way:

(C̃)ijk� =
∑

p

αp (WLXpWL
T )ik (WRYpWR

T )j� . (20)

In (Stewart, 1990), Stewart introduced cross-correlated matrices. These are
random matrices that can be constructed from an iid random matrix D
by applying a transformation with arbitrary non-singular matrices WL and
WR. However, no method was provided to determine whether a given ran-
dom matrix is cross-correlated or not. Using the calculus developed above,
this is simple: Applying transformation rule (20) on (19) yields

(C̃)ijk� = (WLWL
T )ik (WRWR

T )j� ,

i.e. cross-correlated matrices are exactly those matrices that are defined by
one base tensor only (no summation anymore). If the random matrix D
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given for a TLS problem is cross-correlated, then a whitening transforma-
tion can be computed; one only has to invert the Cholesky factors of X1

and Y1.
Some generalizations of basic subspace estimation algorithms for non-

iid cases are in fact generalizations to cross-correlated noise. This applies to
2D homography estimation (Mühlich and Mester, 2001) and factorization
with uncertainty information (Irani and Anandan, 2000).

weighted sum. If the inverse covariance tensor is now decomposed into
base tensors, we can rewrite Jopt as is a sum of weighted expressions that
are quadratic in the elements of D̂.

19.5. Equilibrated TLS/Subspace Estimation

Under the error model A = A0 + D with E [D] = 0, achieving unbiased
subspace estimation boils down to two simple requirements that have to be
fullfilled; this can be done with appropriate weighting transformations.

19.5.1. UNBIASED SUBSPACE ESTIMATION USING EQUILIBRATION

In (Mühlich and Mester, 1998), TLS estimation is examined and it has been
shown that unbiased estimates of right singular vectors of A (the smallest of
which being the TLS solution vector) require that E

[
DTD

]
is proportional

to the identity matrix:
E
[
DTD

]
∝ In (21)

(IM denoting the M ×M identity matrix). The reason for this is simple:
right singular vectors are eigenvectors of ATA = A0

TA0 +A0
TD+DTA0 +

DTD. In expectation, the second and third term vanish and the eigenvectors
of ATA are only identical to those of A0

TA0 (i.e. the true ones) if (21) holds;
adding a multiple of the identity matrix only increases eigenvalues, but does
not change eigenvectors.

If (21) does not hold, in general4 the errors will introduce a bias in the
right singular vectors. However, there is a very simple solution: transform
the matrix to another (reweighted) space (Ã = WLAWT

R ), do the rank
reduction there, and transform back. This technique is called equilibration
(Mühlich and Mester, 1999).

A = W−1
L WLAWR

T︸ ︷︷ ︸
Ã=USVT

W−T
R (22)

4 The degenerate case which preserves the correct eigenvectors is: A0 and D share the
same right singular vectors and the adding of D does not change the order of singular
values. In this very special case, (21) is not a necessary condition. Otherwise, it is.
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Equilibration means that we approximate Ã with a rank-deficient matrix ˆ̃A.
As long as both equilibration matrices are non-singular, they are guaranteed
to preserve the rank; therefore transforming back gives an approximation
Â for A with the desired lower rank.

It is obvious that a weighting transformation changes error metrics –
but it was not clear how to choose weights in general, especially for the left
equilibration before.

Fulfilling (21) in the transformed space is sufficient for unbiased TLS
estimates. But in case of general subspace estimation it is not enough. SVD
is defined by both the left and right singular vectors and not right singular
vectors only. Even for TLS type estimates, a well chosen left equilibration
is important because it reduces the variance of the estimate.

An obvious extension of (21) is a second analogous requirement:
E
[
DDT

]
∝ Im. In general (see last footnote again, now for both left and

right singular vectors), fulfilling these two requirements is the only way
to get unbiased estimates for all singular vectors, which is required for
unbiased subspace estimation using the SVD for matrix approximation.

Both requirements can be fulfilled in a transformed space, but the
problem is the coupling we get for left and right equilibration matrices:
the coupled equation system

E
[
D̃T D̃

]
= WRE

[
DT (WL

TWL)D
]
WR

T ∝ In (23)

E
[
D̃D̃T

]
= WLE

[
D(WR

TWR)DT
]
WL

T ∝ Im (24)

cannot be solved for both WL and WR easily. But it becomes tractable
with covariance tensor decomposition.

A reweighting of the measurement matrix according to (22), i.e. Ã =
WLAWT

R , changes the covariance tensor C to

(C̃)ijk� =
∑

p

αp(WLXpWL
T )ik(WRYpWR

T )j�

Here we see the advantage of the new tensor decomposition: The left (resp.
right) hand equilibration matrix only affects the matrices Xp (resp. Yp).

The two requirements E
[
D̃T D̃

]
∝ Im and E

[
D̃D̃T

]
∝ In now transform

to

∑
p αpTr

{
WLXpWL

T
}

(WRYpWR
T ) ∝ In (25)∑

p αp(WLXpWL
T )Tr

{
WRYpWR

T
}
∝ Im . (26)
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This equation system (25) and (26) can be solved iteratively for WL

and WR, i.e. we

1. set R(0) = 1/N IN ; k = 1
2. use (26) to compute L(k) from R(k−1) and scale it to Frobenius norm

1.
3. use (25) to compute R(k) from L(k) and scale it to Frobenius norm 1.
4. Terminate if R(k) and R(k−1) do not differ much; otherwise k = k + 1

and continue at step 2.

This procedure converges very fast and we never had any convergence prob-
lems in various different experiments. In case of cross-correlated matrices,
both WL and WR are fully determined after the first iteration.

19.5.2. MODIFICATIONS FOR RANK-DEFICIENT COVARIANCE
MATRICES

In general, all the (cross-)covariance matrices Cij = Cov [�ai,�aj ] are singular
if (linear) covariance propagation (equation (6)) is used; then their maxi-
mum rank is the maximum rank of the covariance matrices of measurement
vectors �xi), i.e. � at most. We cannot avoid this effect. But this is not
a problem. Only if all these matrices share a common null space, then
problems can arise because loss functions (see section 19.4.2) are undefined
in this part of parameter space then.

Applications exist where some columns of the TLS measurement matrix
A are free of errors (ellipse fitting in the experimental section will be a
good example: the last column contains only 1s). Assuming that the last
columns of A are error-free, equation (21) has to be replaced by E

[
DTD

]
∝

diag {1, . . . , 1, 0, . . . , 0}. If k is the dimensionality of the erroneous column
subspace, then the right equilibration matrices only have rank k as well (if
the last columns of A are error-free, then only the first k rows and columns
of WR are non-zero).

In the rank reduction step (approximation of rank n erroneous matrix
A by a matrix of lower rank; rank n− 1 in case of TLS estimation), error-
free columns simply mean that these columns must not be modified. The
concept presented here goes back to Demmel (Demmel, 1987) who studied
the problem of approximating a matrix with another matrix of lower rank
when only a submatrix is allowed to be modified. We adapted this concept
to TLS estimation in the equilibration context.

So let us assume we have to solve the (already equilibrated, just to avoid
tilde symbols everywhere) TLS problem A�p ≈ �0 and we know that the last
n − k columns of A are free of errors. Let A ∈ IRm×n be partitioned into
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A = (A1|A2): erroneous A1 ∈ IRm×k and error-free A2 ∈ IRm×(n−k). Let
the SVD of A2 be:5

A2 = USVT =
(
U⊥|U‖

)(
0
S‖

)
VT . (27)

Actually, we are mainly interested in the orthogonal matrix U = (U⊥|U‖).
The columns of U are a basis for the vector space spanned by the column
vectors of A, and more specifically, U‖ ∈ IRm×k is a basis for the span of
A2, while U⊥ ∈ IRm×(m−(n−k)) is orthogonal to it.

Then A can be transformed to

Ã = UTA =
( UT

⊥A1 0
UT

‖ A1 UT
‖ A2 .

)
(28)

In the context of equilibration, this can be seen as an additional left equi-
libration; therefore, the solution of Ã�p ≈ �0 is also the solution of A�p ≈ �0
and no back transformation for the estimate �̂p is necessary.

In the upper right part of Ã, we get 0 because U⊥ is orthogonal to A2.
The lower (n− k) rows (UT

‖ A1|UT
‖ A2) = UT

‖ A have rank (n− k), i.e. full
rank, and therefore, the TLS problem can be reduced to

UT
⊥A1�p1 ≈ �0 . (29)

Let �̂p1 be the PTLS solution of this problem (i.e. plain TLS solution in an
appropriately equilibrated space). We now define

�̂p2 = − (UT
‖ A2)−1UT

‖ A1︸ ︷︷ ︸
T

�̂p1 (30)

and �̂p
T

= (�̂p
T

1 , �̂p
T

2 ). Then �̂p is the optimal solution of Ã�p ≈ �0. Proof:

Ã�̂p =

(
UT

⊥A1�̂p1

UT
‖ A1�̂p1 − (UT

‖ A2)(UT
‖ A2)−1UT

‖ A1�̂p1

)

=
(

UT
⊥A1�̂p1

�0

)
≈ �0 . (31)

This means that the estimation is carried out in a lower dimensional space
(and thus gets faster). Note that Ã1 has m−(n−k) rows (and not m like A

5 Attention: we need the singular values to come last in S. This reflects the fact
that we modelled the error-free columns in A to come last – which is the usual way of
e.g. modelling offset parameters. Given the usual output of SVD procedures, the role of
parallel and perpendicular parts is exchanged.
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or A1); in some sense, we concentrated the relevant information contained
within A1 in fewer row vectors.

Our presentation was optimized for easier understanding; we silently
skipped one import aspect and we have to make up for this now. The term
(UT

‖ A2)−1 could raise suspicion. Is this inverse defined? But looking at
(27), we see that

T = (UT
‖ A2)−1UT

‖ A1 = (S‖VT
‖ )−1UT

‖ A1

= V‖S−1
‖ UT

‖ A1 = A†
2A1 (32)

where A†
2 denotes the (Moore-Penrose-)pseudoinverse of A2 and everything

is indeed well defined.
Finally, we have to consider the equilibration weights again. In equili-

brated space (characterized by WL and WR), the same derivation hold if
A1 and A2 are replaced by their equilibrated versions Ã1 = WLA1WT

R and
Ã2 = WLA2 (right equilibration only for erroneous part!). For instance,
the reduced TLS problem in equilibrated space is defined by

Ã1�̃p1 = UT
⊥WLA1WR�̃p1 ≈ �0 (33)

where U⊥ is constructed from the SVD of Ã2.
Let us summarize this subsection: exploiting fixed columns in A allows

to reduce the dimensionality of the estimation problem to estimating a k-
dimensional vector �̂p1 only and reconstructing the remaining elements with
(32) and (30) at the end.

19.6. Experimental Results

The proposed method is applicable to a wide class of problems. We picked a
very illustrative one for our experimental analysis: conic/ellipse fitting. This
problem is important for many applications, known to be highly sensitive
to errors and biased for PTLS estimation.

A conic in IR2 is determined by a homogeneous 6-vector:

p1 x2 + p2 y2 + p3 xy + p4 x + p5 y + p6 = 0

The measured data points are two-dimensional and the usual plain TLS
approach suffers from the effect that a non-linear problem is embedded in
a higher dimensional space which ‘disturbs’ the error metric. The result
is well-known: if data points are only available from a certain arc of the
ellipse, the fitted ellipses tend to be too small, i.e. the estimate is biased.
We will show that our algorithm produces unbiased estimates.
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Figure 19.1. 12 runs of our ellipse fitting algorithm. True ellipse (solid; identical in
all images), PTLS estimate (dashed) and ETLS estimate (dotted). The bias of PTLS
(ellipses tend to be too small) is clearly visible. Data points are always chosen in lower
left part of ellipse.

We have defined a test ellipse (parameter vector �p =
(.1, .2, .5, 10, 10, 50)T ) and have taken 10 randomly chosen 2D points
in the lower left arc of the ellipse. All points were disturbed by zero-mean
additive Gaussian noise. The noise in the 10 measurements was assumed to
be correlated, i.e. we used a random 10× 2× 10× 2 covariance tensor (here:
190 degrees of freedom). Note that previously known ellipse fitting schemes
like FNS (Chojnacki et al., 2000) only allow individually different but
uncorrelated covariance matrices for each measurement (here: 10 · 3 = 30
degrees of freedom).

From our perturbed data, we estimated the conic parameters (here: a
unit vector in IR6). One big advantage of ellipse fitting over other multidi-
mensional parameter estimation problems is that the estimation quality can
be visualized easily by plotting an ellipse with reconstructed parameters.
Figure 19.6 shows 12 consecutive runs of our program. The solid light line
is the true ellipse, the dashed line is the PTLS estimate and the dotted
ellipse represents the ETLS estimate.

the measured points would be useless because they would appear per-
fectly on the ellipse. The dots indicating the data points were therefore
displaced 50 times the chosen error from their true location (the corre-
sponding plus signs). The bias of the PTLS estimates is clearly visible in
figure 19.6. In these 12 consecutive runs, the ‘PTLS-ellipses’ were too small
10 times, too large once, and in upper right image, the PTLS estimated
conic was no ellipse at all.

We also tested FNS with the same data (as covariance input, we
extracted the row vector covariance matrices from the covariance tensor—
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which means ignoring all correlation between different measurements) and
experienced major convergence problems; in many situations, this method
failed to estimate an ellipse. Good estimates were only possible for low noise
levels.

We used a general conic estimation scheme here and no estimator which
enforces an ellipse solution (e.g. (Haĺı̌r and Flusser, 1998)). Firstly, this
leaves this example simple and easy to understand and secondly, it demon-
strates that the necessity to prevent a wrong type of conic mainly arises
by the usage of a wrong error metric. For the given example, our algorithm
hardly ever estimates non-ellipses although it could in principle do so.
Nevertheless, a combination of our approach and (Haĺı̌r and Flusser, 1998)
is possible and should improve estimates in close situations.

19.7. Conclusion

Eigensystem based estimation schemes are ubiquitous in computer vision.
Their estimation quality can often be improved by some previous data
normalization, but still there is a desire to do further iterative optimization.
The new method presented here provides a closed-form solution and might
eliminate this need for many computer vision problems (or at least alleviate
convergence for subsequent optimization).

In some sense, we generalized data normalization (which is a small sub-
set of possible equilibration transformations) to more complex error models,
and most importantly, we can derive and justify the statistically correct
equilibration transformation, given the covariance information on the input
data. Some predefined data transformation strategy (e.g. shifting to center
of mass and isotropic scaling) is the first step in the correct direction, but
not more than that.

Additionally, our approach applicable in cases where correlation be-
tween different measurements has to be modelled; these problems cannot
be treated properly with many other approaches which only account for
covariances in the same measurement.

Ongoing research will focus on the development of a unified framework
that combines the method presented here with approaches like HEIV and
FNS; the mathematical core of most algorithms is very similar.
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Abstract. Recently Y. Meyer gave a characterization of the minimizer of the Rudin-
Osher-Fatemi functional in terms of the G-norm. In this work we generalize this result to
regularization models with second order derivatives of bounded variation. This requires
us to define generalized G-norms. We present some numerical experiments to support the
theoretical considerations.
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20.1. Introduction

In this paper we are concerned with minimization of bounded variation type
regularization functionals of the form

F (u) :=
1
2

∫
(u− f)2 + αp(u) (α > 0) ,

with
p(u) = ‖Dku‖ for k = 1, 2 and p(u) =

∫
|∆u| .

Here ‖Dku‖ denotes the total variation semi-norm of the (k− 1)-th deriva-
tive of u and

∫
|∆u| denotes the variation measure of ∆u. The results of
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this paper can be generalized to higher order derivatives (i.e., for functionals
with regularization terms ‖Dku‖ , k = 3, . . .) but it is omitted due to the
notational complexity.

The special case k = 1 is the Rudin-Osher-Fatemi (ROF) functional
(Rudin et al., 1992) (see also (Osher and Fedkiw, 2003; Osher and Paragios,
2003)) - the minimizer is called bounded variation regularized solution. Since
the invention of the ROF-model several results for characterizing proper-
ties of the minimizer have been derived. Moreover, in special situations
of data f the minimizer could be calculated analytically: Strong & Chan
(Strong and Chan, 1996) characterized the minimizer of the ROF-model
for 1 dimensional data and for spherically symmetric data f (see also
Ring (Ring, 2000)). Nikolova (Nikolova, 2000; Nikolova, 2004a) analyzed
the ROF-model in a discretized setting; in the latter paper also higher
order derivatives of bounded variation have been used. Osher & Esedoglu
(Osher and Esedoglu, 2004) analyzed generalized ROF-models. Y. Meyer
(Meyer, 2001) gave a characterization of properties of the minimizer of the
ROF-functional in terms of the G-norm. These results will be generalized
to characterize minimizers of the functional F , i.e., involving regularization
functionals with second order derivatives of bounded variation. Motivated
from the taut-string algorithm commonly used in statistics (cf. Mammen
& Geer (Mammen and Geer, 1997), Davies & Kovac (Davies and Kovac,
2001), and Dümbgen & Kovac (Dümbgen and Kovac, 2004)) and Y. Meyer’s
(Meyer, 2001) characterization of the minimizer we are able to reformu-
late bounded variation regularization as a bilateral contact problem. The
well-known (undesirable) effect of stair casing of the bounded variation
regularized solution can be limited by smoothing in contact zones with the
tube.

In a discrete setting, for analyzing one dimensional data f , there exist
various ways for calculating minimizers of the ROF-model: Mammen &
Geer (Mammen and Geer, 1997) showed that the taut-string algorithm,
commonly used in statistics, minimizes the ROF-model. Brox & Mrázek &
Steidl & Weickert & Welk (Brox et al., 2003; Mrázek et al., 2003; Steidl
et al., 2004) proved that wavelet thresholding based on the Haar wavelet
is equivalent to minimizing the discretized ROF-model, which in turn is
equivalent to solving the discretized total variation flow equation

∂u

∂t
=

(
ux

|ux|

)
x

at time α. Note that the ROF model can be interpreted as a fully implicit
time step of the total variation flow equation with step length α. In higher
space dimensions properties of the total variation flow equation have been
derived by Belletini & Caselles & Novaga (Bellettini et al., 2002), Andreu
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& Ballester & Caselles & Diaz & Mazön (Andreu et al., 2000; Andreu et al.,
2001; Andreu et al., 2001a; Andreu et al., 2002) and Alter & Caselles &
Chambolle (Alter et al., 2003). Note however, that the equivalence relations
do not hold in higher space dimensions.

The outline of this work is as follows: In Section 20.2 we recall some basic
facts on G-norms and bounded variation regularization. In Section 20.3 we
recall tube methods. Finally in Section 20.4 we present some numerical
experiments.

20.2. Higher Order G-Norms

In this section we introduce generalized G-norms. We give a quite general
definition, although in the subsequent sections (for notational convenience)
only the cases k = 1, 2 and s = 2 (see below) are used. This section is central
to prove G-norm properties of minimizers of regularization functionals and
thus presented in great generality.

For k = 1, 2, . . . and s ∈ [1,∞] we denote by

Gk,s(α):= {v = (∇·)k�v : ‖|�v|ls‖L∞ ≤ α} = {v : ‖v‖Gk,s ≤ α} ,

where �v : R
n → R

n×k. Here

(∇·)k�v =
∑

il = 1, . . . , n
l = 1, . . . , k

∂kvi1,...,ik

∂xi1 . . . ∂xik

denotes the k-th divergence and

|�v|ls =

⎛⎜⎜⎜⎜⎜⎝
∑

il = 1, . . . , n
l = 1, . . . , k

|vi1,...,ik |s

⎞⎟⎟⎟⎟⎟⎠
1/s

.

Moreover

∇kv =
[

∂kv

∂xi1 . . . ∂xik

]
il = 1, . . . , n
l = 1, . . . , k

denotes the k-th derivative.
If not specified otherwise we denote by | · | = | · |l2 the Euclidean norm

(respectively Frobenius norm for matrices and tensors). We call

‖v‖Gk,s:= inf{‖|�v|ls‖L∞ : v = (∇·)k�v}
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generalized G-norm. For k = 1 and s = 2 the generalized G-norm corre-
sponds to the classical definition (see (Meyer, 2001)). We denote by

G:= {v : ‖v‖Gk,s <∞}

the set of all distributions v which have finite G-norm. Analogously to
Meyer (Meyer, 2001) (see also (Scherzer, 2004)) it can be shown that for
everyv ∈G, there exists�v satisfying v = (∇·)k�v with‖v‖Gk,s = ‖|�v|ls‖L∞ <∞.

In the following, for notational convenience, we omit in the case k = 1
the first index in the pair of subscripts, i.e., Gs := G1,s. For s ∈ [1,∞] let
s∗ ∈ [1,∞] satisfy 1 = 1/s + 1/s∗.

In the following we make use of results from functional analysis and
measure theory. Appropriate references, where the necessary results can
be found are Yosida (Yosida, 1995), Zeidler (Zeidler, 1993), and Evans &
Gariepy (Evans and Gariepy, 1992).

Below we show that G is Banachspace, by showing that it is a dual of a
Sobolev space. In the case k = 1 and s = 2 this result is stated in (Meyer,
2001).

THEOREM 20.1. The set G associated with the norm ‖ ·‖Gk,s is a Banach
space, which is the dual of the Sobolev space

W̃ k,1:= C∞
0 ,

where the closure is taken with respect to the norm

‖w‖W k,1,s∗:=
∫
|∇kw|ls∗ .

By “G is the dual space of W̃ k,1” we mean not only that the sets are identical
but also the associated norms are identical, i.e., ‖ · ‖Gk,s = ‖ · ‖(W k,1)∗.

Proof On the linear space C∞
0 , ‖ · ‖W k,1,s∗ is a norm. Therefore the

completion, W̃ k,1 is a Banach space (see e.g. (Yosida, 1995)).
In the following we denote by (W̃ k,1)∗ the dual of W̃ k,1 and by

∇k : W̃ k,1 → L1(Rn, Rn×k) .

u → ∇ku

With the space of absolutely integrable functions from R
n into R

n×k, L 1(Rn, Rn×k),
we use the product space norm

∫
|�v|ls∗ . The operator is injective. With re-

spect to the specified norms the operator ∇k is an isometrical isomorphism
between W̃ k,1 and the range of ∇k. Thus the range of ∇k is closed.

Denoting by (∇k)∗ the dual operator and by X∗ the dual space of a
Banach space X, it follows from Banach’s closed range theorem (see e.g.
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(Zeidler, 1993, p777)) and the fact that the dual of L1 is isometrically
isomorph to L∞ (in signs =̂) that the adjoint operator

(∇k)∗ : L∞(Rn, Rn×k)=̂
(
L1(Rn, Rn×k)

)∗
→ (W̃ k,1)∗ .

�w → (∇k)∗ �w

satisfies that the range of (∇k)∗ equals the complement of the kernel of ∇k.
Since ∇k is injective the kernel is trivial and thus the complement is the
whole space (W̃ k,1)∗.

In particular, since (∇k)∗ = (∇·)k, this shows that any element of
(W̃ k,1)∗ can be written as (∇·)k �w.

From the definition of the space G we have the characterization

G=̂
L∞(Rn, Rn×k)

N((∇·)k)
.

Here N denotes the kernel of a linear operator and X
Y denotes the factor-

ization space of X with respect to Y . Using that (∇·)k is the adjoint of ∇k

we see that
L∞(Rn, Rn×k)

N((∇·)k)
=

L∞(Rn, Rn×k)
N((∇k)∗)

.

Using that L∞ and L1 are isometrically isomorph and that
N((∇k)∗) = (Range(∇k))⊥, we get

L∞(Rn, Rn×k)
N((∇k)∗)

=̂
(L1(Rn, Rn×k))∗

(Range(∇k))⊥
.

Since Range(∇k) is closed in L1(Rn, Rn×k), we have

(L1(Rn, Rn×k))∗

(Range(∇k))⊥
=̂Range((∇k)∗) = (W̃ k,1)∗ .

Combination of the identities gives the desired result. �
The above proof applies to any space which is constructed as the com-

pletion of C∞
0 . The characterization with the G-norm relies on the dual

operator. For the k-th derivative it is the k-th divergence operator. The
adjoint of the Laplacian is the Laplacian and so on.

We note that W̃ k,1 is independent of 1 ≤ s∗ ≤ ∞. Moreover, W̃ k,1 is
not the standard Sobolev space W k,1, where in its definition the closure of
C∞

0 is taken with respect to the norm

‖w‖W k,1 =
k∑

l=0

‖|∇lw|l2‖L1 .
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In fact from the Gagliardo-Nirenberg-Sobolev inequality (see e.g. (Evans
and Gariepy, 1992)) it follows that

‖|∇k−1w|lr‖Lpn ≤ C

∫
|∇kw|lr for every w ∈ W̃ k,1 , (1)

where

pn:=
n

n− 1
for space dimension n ≥ 2 and pn:=∞ for n = 1 . (2)

LEMMA 20.1. Assume that there exists α > 0 such that for every v ∈ C∞
0∣∣∣∣∫ wv

∣∣∣∣ ≤ α

∫
|∇kv|ls∗ (3)

holds, then ‖w‖Gk,s ≤ α.

Proof The linear operator

L: C∞
0 → R , v →

∫
wv

can be extended to a linear bounded operator on W̃ k,1. Note that by (3)
for a sequence {vn}n∈N converging to v, {Lvn}n∈N is a Cauchy sequence
and thus convergent with limit Lv.

Therefore, from (3) it follows that w ∈ (W̃ k,1)∗, with dual norm (which
equals the G norm) is less than α. �

Let

G∆(α) := {v = ∆ṽ : ‖ṽ‖L∞ ≤ α} = {v : ‖v‖G∆ ≤ α} .

We define
‖v‖G∆ := inf{‖ṽ‖L∞ : v = ∆ṽ} .

The proof of the following theorem is analogous to the proof of Theorem
20.1 and thus omitted.

THEOREM 20.2.
G∆:= {v : ‖v‖G∆ <∞}

associated with the norm ‖ · ‖G∆ is a Banach space, which is the dual of

W∆:= C∞
0 ,

where the closure is taken with respect to the norm

‖ w‖W∆ :=
∫
|∆w| .

Moreover,
‖ · ‖G∆ = ‖ · ‖(W∆)∗ .
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The proof of the following lemma is analogous to the proof of Lemma
20.1 and thus omitted.

LEMMA 20.2. Assume that there exists α > 0 such that for every v ∈ C∞
0∣∣∣∣∫ wv

∣∣∣∣ ≤ α

∫
|∆v| (4)

holds, then ‖w‖G∆ ≤ α.

In the following we highlight some properties of functions of bounded vari-
ation. For more background on this subject we refer to Evans & Gariepy
(Evans and Gariepy, 1992).

DEFINITION 20.1. The space of functions of bounded variation BV
consists of functions u ∈ Lpn satisfying

‖Du‖s∗:= sup
{∫

u(∇·)�ϕ : �ϕ ∈ C1
0 (Rn; Rn) , |�ϕ(x)|ls ≤ 1

}
<∞ .

The standard definition of BV requires u ∈ L1 (cf. (Evans and Gariepy,
1992)). Actually the assumption u ∈ Lpn is less restrictive, since any
function u ∈ L1 satisfying ‖Du‖s∗ < ∞ is in Lpn (which follows from the
Gagliardo-Nirenberg-Sobolev inequality). Note that for u ∈ W̃ 1,1, ‖Du‖s∗ =∫
|∇u|ls∗ .

In this paper we further consider functions with derivatives of bounded
variation and functions of bounded Laplacian. To avoid notational difficul-
ties we just consider the case s = s∗ = 2. The generalization to the case
s �= 2 is obvious.

DEFINITION 20.2.

− We define the set of functions with derivatives of bounded variation
BVk as functions u ∈ L2 satisfying

‖Dku‖:=

sup

⎧⎪⎨⎪⎩
∫

u(∇·)k �ϕ : �ϕ ∈ Ck
0 (Rn; (Rn × R

n . . . Rn)︸ ︷︷ ︸
k×

) , |�ϕ(x)| ≤ 1

⎫⎪⎬⎪⎭
<∞ .

− The space of functions of bounded Laplacian (BV∆) consists of func-
tions u ∈ L2 satisfying

‖∆u‖:= sup
{∫

u∆ϕ : ϕ ∈ C2
0 (Rn; R) , |ϕ(x)| ≤ 1

}
<∞ .

Note that for u ∈ C∞
0 , ‖∆u‖ =

∫
|∆u|.

( )

( )
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We consider BVk and BV∆ as subsets of L2. This is not standard, but
simplifies the notation considerably. We could actually proceed iteratively
(analogously to Definition 20.1) and define BVk as a subset of W k−1,pn which
can be embedded in Lq with pn ≤ q ≤ n

n−k for 1 < k < n and in L∞ if
k ≥ n. We avoid distinguishing between the different cases, by defining BVk

and BV∆ as subsets of L2. The space BV2 is commonly denoted as the space
of bounded Hessian (see e.g. Demengel (Demengel, 1984)).

We have the following Lemma:

LEMMA 20.3. Assume w ∈ L2.

1. Let ‖w‖G2,2 ≤ α, then for any h ∈ BV2∣∣∣∣∫ wh

∣∣∣∣ ≤ α‖D2h‖ . (5)

2. Let ‖w‖G∆ ≤ α, then for any h ∈ BV∆∣∣∣∣∫ wh

∣∣∣∣ ≤ α‖∆h‖ . (6)

Proof The proof of the second item is analogous and thus omitted. For
h ∈ C∞

0 and w = (∇·)2 �w satisfying ‖|�w|‖L∞ = ‖w‖G2,2 it follows that∣∣∣∣∫ wh

∣∣∣∣ =
∣∣∣∣∫ (∇·)2 �wh

∣∣∣∣ =
∣∣∣∣∫ �w∇2h

∣∣∣∣ ≤ ‖w‖G2,2‖D2h‖ . (7)

Let h ∈ BV2, then there exists a sequence {hl}l∈N in C∞
0 such that hl → h

in L2 and ‖D2hl‖ → ‖D2h‖. Consequently, from (7) it follows that∣∣∣∣∫ wh

∣∣∣∣ = liml→∞
∣∣∫ whl

∣∣
≤ lim inf

l→∞
‖w‖G2,2‖D2hl‖

= ‖w‖G2,2‖D2h‖ .

�
20.3. Tube Methods

In this section we recall some basic facts on the minimizer of the ROF-
functional:

THEOREM 20.3. Let f ∈ L2. Then the minimizer uα of the generalized
ROF functional

1
2

∫
(u− f)2 + α‖Du‖s∗
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1. uα ∈ L2 ∩ BV;
2. uα ≡ 0 if and only if ‖f‖Gs ≤ α;
3. If ‖f‖Gs > α, uα is characterized by

a) ‖uα − f‖Gs = α and
b)

∫
(f − uα)uα = α‖Duα‖s∗.

For s = 2 this results has been given in (Meyer, 2001) and for general s it
has been presented in (Osher and Scherzer, 2004).

Let Φ be measurable and satisfy ∆Φ = f with Ff := ∇Φ ∈ L∞
loc.

All along this paper we have been considering data filtering on R
n. If we

consider data smoothing on a bounded, smooth domain Ω, the existence of
a solution of Laplace’s equation ∆Φ = f with Neumann boundary data is
guaranteed if

∫
f = 0. For R

n we assume the existence of a solution of this
equation, which imposes further requirements on the data f . By definition
‖ρ − f‖Gs ≤ α if and only if ρ − f = (∇·)�v and ‖|�v|ls‖L∞ ≤ α. This is
equivalent to

ρ = (∇·)(�v + Ff ) and ‖|�v|ls‖L∞ ≤ α .

Or in other words, ρ is the divergence of a vector valued function �ρ which
is in a tube around the “primitive” of f (to be precise, we solve Laplace’s
equation and differentiate). The tube is a subset of R

2n around the vector
valued function Ff . We recall that uα is the divergence of a vector valued
function �uα and the distance between �uα and Ff is less than α, i.e.,
‖|Ff − �uα|ls‖L∞ ≤ α. Note that the tube geometry varies with s and has
an impact on the solution (cf. (Osher and Esedoglu, 2004)). For s = 2 the
tube has a cylindrical shape and for s = 1 or ∞ the tube is a slot.

The following geometric interpretations of the bounded variation reg-
ularized solutions uα are immediate: the associated vector field �uα does
not have contact with the tube if and only if ‖f‖Gs ≤ α. For more back-
ground on the concept of tube methods we refer to (Hinterberger et al.,
2003; Scherzer, 2004).

20.3.1. HIGHER ORDER DERIVATIVES OF FUNCTIONS OF BOUNDED
VARIATION

To our knowledge Chambolle & Lions (Chambolle and Lions, 1997) first
studied BV-models with second order derivatives for denoising. Their
approach consists in minimization of the functional

FC−L(u1, u2):=
1
2

∫
(u1 + u2 − f)2 + β‖Du1‖+ α‖D2u2‖

satisfies:
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minimizer of the functional

FD(u) :=
1
2

∫
(u− f)2 + α‖D2u‖ . (8)

The motivation for studying this type of regularization arises from nonde-
structive evaluation to recover discontinuities of a derivative of a potential
u in impedance problems. The discontinuities of u are locations of material
defects (see e.g. Isakov (Isakov, 1990; Isakov, 1998)). Later on second order
models for denoising have been considered by Chan & Marquina & Mulet
(Chan et al., 2000) and Lysaker & Lundervold & Tai (Lysaker et al., 2003).
It can also be used for segmentation of low contrast data (Hinterberger and
Scherzer, 2003).

20.3.2. CHARACTERIZATION OF MINIMIZERS OF REGULARIZATION
FUNCTIONALS WITH HIGHER ORDER DERIVATIVES

In the following we summarize some basic characterization for the minimizer
of the functional FD and F∆. The following results can be generalized
in a straight forward manner to higher order derivatives: the following
proofs of the results require only elementary calculations and references
to the general lemmas in Section 20.2, which can be generalized for higher
order derivatives. However, for the sake of simplicity of notation we restrict
attention to the case k = 2 and s = 2. The case s �= 2 can be treated by
following the proofs in (Osher and Scherzer, 2004).

THEOREM 20.4. Assume f ∈ L2. Then,

1. the functional FD attains a unique minimizer uα ∈ L2 with ∇uα ∈ Lpn.
2. ‖f‖G2,2 ≤ α if and only if uα is zero.

Proof

1. The existence of minimizer of the functional FD follows from its weak
lower semi continuity and coercivity in L2. The weak lower semi con-
tinuity of FD follows from the weak lower semi continuity of

∫
(u −

f)2 in L2 and the weak lower semi continuity of the Radon measure
‖D2u‖. The functional

∫
(u − f)2 is strictly convex and the regular-

ization functional ‖D2u‖ is convex. Thus FD is strictly convex and
attains a unique minimizer. The assertion ∇u ∈ Lpn follows from the
Gagliardo-Nirenberg-Sobolev inequality.

2. We have u ∈ BV2 if and only if FD(u) < +∞. From the definition of a
minimizer uα of FD it follows that for every h ∈ BV2, ε �= 0

1
2

∫
(uα − f)2 + α‖D2uα‖

with 0 < α, β. The asymptotic model, for β → +∞, for denoising has been
introduced in (Scherzer, 1998): the noisy function f is approximated by the
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≤ 1
2

∫
(uα + εh− f)2 + α‖D2(uα + εh)‖

≤ 1
2

∫
(uα − f)2 + ε

∫
(uα − f)h +

ε2

2

∫
h2

+ α
(
‖D2uα‖+ |ε|‖D2h‖

)
Consequently, it follows by dividing the terms in the inequality by |ε|
and taking ε→ 0± afterward that∣∣∣∣∫ (uα − f)h

∣∣∣∣ ≤ α‖D2h‖ for h ∈ BV2 . (9)

If uα ≡ 0, then from (9) it follows that for every h ∈ BV2∣∣∣∣∫ fh

∣∣∣∣ ≤ α‖D2h‖ . (10)

If (10) holds, then for every h ∈ BV2 we have

FD(h)− FD(0) =
1
2

∫
((h− f)2 − f2) + α‖D2h‖

≥
∫
−fh + α‖D2h‖

≥ 0 .

Or in other words uα ≡ 0 is a global minimizer. That is, we have shown
that uα ≡ 0 if and only if (10) holds for every h ∈ BV2.
From (10), the assumption f ∈ L2, and Lemma 20.1 it follows that
‖f‖G2,2 ≤ α. Conversely, if ‖f‖G2,2 ≤ α, then from Lemma 20.3 it
follows that for any h ∈ BV2∣∣∣∣∫ fh

∣∣∣∣ ≤ ‖D2h‖ · ‖f‖G2,2 ≤ α‖D2h‖ .

That is, we have shown that (10) holds for every h ∈ BV2 if and only
if ‖f‖G2,2 ≤ α and referring back to the above equivalence relation the
assertion follows.

�
THEOREM 20.5. Let f ∈ L2 satisfy ‖f‖G2,2 > α. Then u = uα minimizes
FD if and only if

1. u ∈ BV2 ,
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2.
‖u− f‖G2,2 = α , (11)

3. and
−

∫
(u− f)u = α‖D2u‖ . (12)

Proof From the assumption ‖f‖G2,2 > α it follows from Theorem 20.4
that uα �= 0.

From the definition of a minimizer uα of FD it follows that for every
0 �= |ε| < 1

1
2

∫
(uα − f)2 + α‖D2uα‖ ≤

1
2

∫
((1 + ε)uα − f)2 + α(1 + ε)‖D2uα‖ ,

showing that

−ε

∫
(uα − f)uα −

ε2

2

∫
u2

α ≤ αε‖D2uα‖ .

Dividing the inequality by |ε| and taking ε→ 0± shows (12). Since ‖D2uα‖ �=
0, it follows from (9) that ‖uα−f‖G2,2 = α. To prove the converse direction
we note that for u ∈ BV2 satisfying ‖u− f‖G2,2 = α it follows from Lemma
20.3 that for any function h ∈ BV2

‖D2(u + h)‖ ≥ − 1
α

∫
(u + h)(u− f) . (13)

From (13), and (12) it follows that for any function h ∈ BV2

1
2

∫
(u + h− f)2 + α‖D2(u + h)‖

≥ 1
2

∫
(u− f)2 +

∫
h(u− f)−

∫
(u + h)(u− f)

=
1
2

∫
(u− f)2 + α‖D2u‖ .

This shows that u is a global minimizer. �
In the following we consider the problem of minimization of the func-

tional
F∆ :=

1
2

∫
(u− f)2 + α

∫
|∆u| .

Analogously as for FD it can be proven that the functional F∆ attains a
unique minimizer in BV∆. For f ∈ L2 it follows from the general results
above that ‖f‖G∆ ≤ α if and only if uα is zero.
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The minimizer uα of F∆ is in the tube G∆. Geometrically this means
that the second primitive of uα (to be precise the second primitive is the
solution of Laplace’s equation ∆u = uα) is in a tube of radius α around
the second primitive of f .

20.4. Numerical results

In this section we present some numerical results for minimizing the func-
tionals FROF and F∆ or FD, respectively.

We concentrate on minimization of the functionals for one dimensional
input data f . For higher dimensional data the tube properties cannot be
visualized easily and are not as illustrative.

The first examples is discrete bounded variation minimization for ana-
lyzing one dimensional data. There the Rudin-Osher-Fatemi functional is
discretized with a one-sided difference operator. The according optimality
condition has been solved with a fixed point iteration. In the case of
1-dimensional data one might alternatively use the taut-string algorithm
(cf. (Mammen and Geer, 1997)) for calculating the BV-minimizer. For one
dimensional discrete data, a simple method to minimize the ROF model
has been proposed in (Nikolova, 2004). In Figure 20.4 (left row) we have
plotted synthetic data f with different noise levels, and the discrete BV-
minimizer. In the case of noise free data (top figure) significant stair casing
occurs in the inclined part of the function.

The stair casing effect is inherent to the minimizer of the ROF-model
(see (Ring, 2000)). At least in the discrete setting the BV-minimizer can
be exactly calculated with the taut-string algorithm (Mammen and Geer,
1997). The taut-string algorithm consists in integration of the discrete data,
constructing a tube around the (discrete) primitive, and finding a string of
minimal length in the tube. The finite difference quotient of the taut-string
is the BV-minimizer. Since the primitive of the piecewise linear function f̂
according to the sample data f is quadratic in the inclined region, here the
taut-string approximates the inclined region by a piecewise linear function,
resulting in a significant stair-casing. In the inclined region the stair casing
can be removed by taking into account the information that the primitive
is quadratic in the inclined region, and therefore the BV-minimizer must be
linear. Thus in these regions we can use linear approximations and prevent
some stair casing. Locally quadratic regions of the discrete BV-minimizer
are detected when two consecutive samples have contact with the tube. In
this case we approximate the BV-minimizer by a piecewise linear function
instead of a piecewise constant. This visual correction has been performed
in the right row of Figure 20.4. The bottom of Figure 20.4 provides a zoom
into the BV-minimizer and the correction. In the noise free case the inclined
part of the reconstruction is perfect linear.
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Figure 20.1. Left: Bounded variation regularization. Right: Smoothing in contact zones,
using the characterization of minimizers with the G-norm. Top: Exact Data. Middle Noisy
Data. Bottom: Zoom in the bounded variation regularized solution and the smoothing in
contact zones.

Original f (red) - noisy f (green) - reconstructed f (blue)

Original f (red) - noisy f (green) - reconstructed f (blue)
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In the next example (cf. Figure 20.4) we present some experiments for
minimization of F∆. From the analytical results we know that uα ∈ G∆(α).
The numerical results show that the reconstruction has contact at loca-
tions, where the data f has discontinuities. Discontinuities in the derivative
show up significantly in the tube, but do not have contact with the tube
boundary. In comparison bounded variation regularization does not reveal

Figure 20.2. Top: Synthetic data and minimizer of F∆ Bottom: Second primitive of the
minimizer reveals features at multiple scales.

a separation in multiple scales for discontinuities in the function and deriva-
tive (cf. Figure 20.4). The bottom left image of Figure 20.4 has four pumps,
which indicate the discontinuities (large pumps with contact to the tube)
and small pumps for the discontinuities of the derivatives. This behavior is
also clearly visible for the noisy data (cf. bottom right image of Figure 20.4).
For purely denoising this model has the disadvantage that the reconstruc-
tion reveals a “ramp-shape” effect and to an imprecise edge localization,
but on the other hand also discontinuities in the first derivative can be
recognized. Bounded variation regularization has either contact with the
tube or is linear in between. Note that for bounded variation regularization
the tube is around the first primitive, while it is around the second in the
second order model.
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Figure 20.3. Top: Data f and uα (BV minimizer). Middle: The first primitive of uα is
in a tube around the primitive of f . Bottom Zoom, to visualize the primitive of uα − f .
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by the FWF Österreichischer Fonds zur F̈orderung der wissenschaftlichen
Forschung), grant Y-123 INF-N04 and P-15617-N04. The work of S.O. was
supported by NSF grants ACI-0321917 and DMS 0312222. O.S. would like
to thank Markus Grasmair for stimulating discussions on dual spaces.

References

Alter, F., V. Caselles, and A. Chambolle: Evolution of convex sets in the plane by the
minimizing total variation flow. Preprint, University Paris-Dauphine, 29 pages, 2003.

Andreu, F., C. Ballester, V. Caselles, and J. M. Mazön: Minimizing total variation flow.
C. R. Acad. Sci. Paris Ser. I Math., 331:867–872, 2000.

Andreu, F., C. Ballester, V. Caselles, and J. M. Mazön: The Dirichlet problem for the
total variation flow. J. Funct. Anal., 180:347–403, 2001.

Andreu, F., C. Ballester, V. Caselles, and J. M. Mazön: Minimizing total variation flow.
Differential Integral Equations, 14:321–360, 2001.

Andreu, F., V. Caselles, J. I. Diaz, and J. M. Mazön: Some qualitative properties for the
total variation flow. J. Funct. Anal., 188:516–547, 2002.

Bellettini, G., V. Caselles, and M. Novaga: The total variation flow in R
N . J. Differential

Equations, 184:475–525, 2002.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4
10.90.80.70.60.50.40.30.20.10

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2
10.90.80.70.60.50.40.30.20.10

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2
10.90.80.70.60.50.40.30.20.10

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
10.90.80.70.60.50.40.30.20.10

10.90.80.70.60.50.40.30.20.10

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025
10.90.80.70.60.50.40.30.20.10

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

e



DUAL NORMS IN BOUNDED VARIATION TYPE REGULARIZATION 389

Brox, T., M. Welk, G. Steidl, and J. Weickert: Equivalence results for TV diffusion and
TV regularisation. In Proc. Scale-Space Methods in Computer Vision( Griffin, L.D. and
M. Lillholm, editors), pages 86 100, LNCS 2695, Springer, Berlin, 2003.

Chambolle, A. and P. L. Lions: Image recovery via total variation minimization and
related problems. Numer. Math., 76:167–188, 1997.

Chan, T., A. Marquina, and P. Mulet: High-order total variation-based image restoration.
SIAM J. Sci. Comput., 22:503–516 (electronic), 2000.

Davies, P. L. and A. Kovac: Local extremes, runs, strings and multiresolution. Ann.
Statist., 29:1–65, 2001.
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