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Foreword 

Kinetics is a subject of mystery and power. It is mysterious to a great many 
scientists, because at some point in their careers they acquired a fear and awe 
of mathematical techniques. It is powerful to many others because no other 
tool in all of science has such universality. Although this potential for 
mystery and power is present in many techniques, kinetics seems to be 
special in its capacity for polarizing individuals. 

Those who do not understand and fear mathematics tend either to have 
excessive admiration for kinetics ('It's too difficult for me') or excessive con-
tempt ('Kinetics can never prove a mechanism; it can merely disprove one'). 
The latter statement, while true, applies to any scientific technique, so one 
might ask why kinetics is a special target for criticism. The answer would 
seem to lie in the twin pitfalls that (a) the explanations of kinetic procedures 
are frequently confusing and imprecise and (b) the power of kinetics is 
frequently over-stated and therefore leads to error. 

In this book, Athel Cornish-Bowden does an admirable job in steering 
between these Scylla and Charybdis of kinetics. Firstly, the core of enzyme 
kinetics is explained in a simple manner which the serious biologist, who 
may not be 'a mathematical type', can follow readily. Secondly, the limita-
tions of the technique and the dangers of excessive extrapolation are clearly 
outlined. The reader is given a powerful weapon and warned that it can 
backfire if not handled properly. This is a well disciplined book. It does not 
contain everything that is known about kinetics; and that is one of its virtues. 
It has distilled some of the most important areas of kinetics, treating illus-
trative sections with rigour and clarity, which should help to provide more 
enthusiasm for kinetics and more recognition of its power for applications in 
biology and enzymology. 

DANIEL E. KOSHLAND, JR. 



Preface 
This book is written primarily for first-year research students in enzyme 
kinetics, but I hope that it will also prove useful to more advanced research 
workers and to final-year undergraduates. For the student beginning re-
search, particularly one with a first degree in chemistry or biology, it is often 
difficult to find a text that goes beyond an elementary and idealized account 
of enzyme kinetics, but does not assume a large amount of specialized back-
ground knowledge and understanding. There are several topics in enzyme 
kinetics, such as the derivation of steady-state rate equations, the analysis 
of progress curves and the statistical treatment of results, that are important 
enough to be covered at an elementary level but are usually discussed 
inadequately or not at all. 

With a proper understanding of the principles of enzyme kinetics, the 
whole subject comes within reach. It becomes more complicated, although 
not more difficult, as it is developed. For this reason, it is important to 
cover the elementary aspects thoroughly. If I have erred, therefore, I hope 
that it is in the direction of over-explaining the simple, rather than omitting 
to explain the difficult. However, I have not tried to write an exhaustive 
treatise: there is little mention of three-substrate reactions, for example, not 
because they are not important, but because they can be studied within the 
framework developed for the study of simpler reactions. In short, they 
contribute complexity rather than understanding. 

Although I hope I have been consistent in important matters in this book, 
I have deliberately avoided any attempt to use a slavishly consistent system 
of nomenclature and symbolism. There are circumstances in which S is an 
appropriate symbol for substrate, for example, and others in which A, 
B . . ., are preferable; I have therefore used both. Similarly, it is an unfortu-
nate fact that one of the two principal theories of co-operativity has been 
defined in terms of dissociation constants and the other in terms of associa-
tion constants, but it would be a hindrance rather than a help to the student 
to re-define them in a consistent way, because this would confuse any attempt 
to read the original literature. 

The emphasis throughout this book is on understanding enzyme kinetics, 
and not on information about specific enzymes. It is in no sense a catalogue 
of the properties of enzymes. Not only are there already several books that 
fulfil that role admirably, but there also seems to be a real need for a book 
that discusses the principles of enzyme kinetics at an intermediate level. I 
hope that this book will help to fill that need. 

Many mathematically inclined books begin with a descriptive introduc-



tion, designed, presumably, to lull the reader into a false sense of security. 
This book does not follow that format, because I believe that it should be 
made clear at the outset that enzyme kinetics is not a subject for anyone who 
is frightened of simple algebra or simple calculus. Chapter 1 is a resume of 
chemical kinetics, much of which should be familiar to the reader, but it is 
included in order to establish the knowledge that will be assumed in later 
chapters. It also includes a brief discussion of dimensional analysis, which 
I believe to be by far the most powerful simple method for detecting algebraic 
errors. 

Chapters 2, 4, 5 and 6 cover the essential characteristics of steady-state 
kinetics as taught in innumerable biochemistry courses, and require little 
special discussion here. I have deviated slightly from common practice by 
treating V\Km as a parameter in its own right, at least as important as Km, 
because many aspects of enzyme kinetics are far simpler to understand and 
classify in terms of Fand V\Km rather than Fand Km. Some may feel that the 
section in Chapter 6 on temperature dependence is rather short. This is 
because I feel that very few of the large number of studies on the temperature 
dependence of enzyme activity are of any value. It is rare for conditions to be 
sufficiently favourable that a temperature study can usefully be carried out. 

Chapter 3 sets out to explain as simply as possible the most useful methods 
for deriving steady-state rate equations: the student of complex mechanisms 
soon discovers that the method taught in the context of very simple mechan-
isms is virtually useless because of the hopelessly complicated algebra that it 
engenders. Although the King-Altman method has been outlined in several 
textbooks, its principle is to be found only, as far as I know, in the original, 
difficult, paper. However, I believe that anyone who often uses such an 
important method ought to have some understanding of its theoretical basis, 
and so I have tried to explain this as simply as possible. The chapter also 
includes some important developments from the King-Altman method that 
have been made in recent years. 

The study of co-operativity (Chapter 7) has developed apart from the 
mainstream of enzyme kinetics, and it has often been neglected in textbooks. 
It has developed with its own conventions, such as the more common use of 
association constants than dissociation constants. In this chapter particu-
larly, and to some extent throughout the book, the temptation to invent new 
symbols and terminology has been strong, but I have not consciously suc-
cumbed to it anywhere, except for the use of h for the Hill coefficient. This 
exception seemed justified by the very strong objection to n, which is grossly 
misleading, and the typographically cumbersome nature of nH (particularly 
when used as an exponent). 

Chapter 8 concerns an aspect of enzyme kinetics that has been almost 
completely ignored by biochemists for 60 years, for reasons that have lost 
much of their original force. I believe that it is time for integrated rate 
equations to regain the respectability that they lost with the classic work of 
Michaelis and Menten. 

Chapter 9 is an introduction to the study of fast reactions, but it does not 
pretend to be a comprehensive account, which would require a separate 
book. Instead, I have tried to cover those aspects of fast reactions that ought 



to be familiar to anyone who is working mainly on studies in the steady state, 
but who feels that the need for transient-state studies may arise occasionally. 

Chapter 10 is an introduction to the statistical aspects of enzyme kinetics. 
Many biochemists apparently believe that it is unnecessary to understand 
this topic, but they deceive themselves. The continued widespread use of the 
Lineweaver-Burk plot is evidence of the laziness of the majority who cannot 
be bothered to discover the most basic information about data analysis. 

I am grateful to Dr. J. R. Knowles and to Dr. D. E. Koshland for stimulat-
ing and developing my interest in enzyme kinetics, and to several colleagues, 
particularly Dr. R. Eisenthal, Mr. A. C. Storer, Dr. C. W. Wharton and 
Dr. E. A. Wren, for many helpful comments on the first draft of this book. 
It has gained much from their advice, and has lost numerous errors. Doubt-
less some remain, as all books that contain many equations contain errors, 
and I shall greatly appreciate it if they can be brought to my attention. 

ATHEL CORNISH-BOWDEN 



1 
Basic Principles of Chemical Kinetics 

1.1 Order of reaction 

A chemical reaction can be classified either according to its molecularity or 
according to its order. The molecularity is defined by the number of mole-
cules that are altered in the reaction. Thus, a reaction A -> products is 
unimolecular or monomolecular, a reaction A + B -> products or 2A -> pro-
ducts is bimolecular, and a reaction A + B + C -> products is trimolecular or 
termolecular. (The illogical variations in prefixes is a consequence of the un-
fortunate propensity of scientists for inventing new words from what they 
imagine to be classical roots without first determining what the roots mean. 
In this book, I shall use the first of each of the above alternatives, albeit with 
misgivings.) The order is a description of the number of concentration terms 
multiplied together in the rate equation. Hence, in a first-order reaction, the 
rate is proportional to one concentration, in a second-order reaction it is 
proportional to two concentrations or to the square of one concentration, 
and so on. 

For a simple reaction that consists of a single step, or for each step in a 
complex reaction, the order is generally the same as the molecularity. How-
ever, many reactions consist of a sequence of unimolecular and bimolecular 
steps, and the molecularity of the complete reaction need not be the same as 
its order. Reactions of molecularity greater than 2 are common, but reactions 
of order greater than 2 are very rare. It should also be noted that neither the 
molecularity nor the order of a reverse reaction need be the same as the 
corresponding molecularity or order of the forward reaction. This is an 
important consideration for metabolic reactions, which are often reversible 
and can be made to proceed in either direction by adjusting the concentra-
tions of reactants. 

For a first-order reaction A -► P, the velocity, v, can be expressed as 
follows: 

v = ^ = ka = k(a0-p) (1.1) 

1 



BASIC PRINCIPLES OF CHEMICAL KINETICS 

where a and p are the concentrations of A and P, respectively, and are 
related by the equation a + p = a0, t is time and k is a,first-order rate constant. 
This equation can readily be integrated as follows: 

J ao~P J 
kdt 

J ao~P J 
Therefore, 

— ln(a0 — p) = fei + a 

where a is a constant of integration, which can be evaluated by defining the 
time scale so that a = a0, p = 0 when t = 0. Then, a = —ln(a0), and so 

ln[(fl0-p)/fl<>] = ~kt 

which can be rearranged to give 

p = a 0 [ l -exp( - /c i ) ] (1.2) 

It is important to note that the constant of integration, a, was included in 
this derivation, evaluated and found to be non-zero. Constants of integra-
tion must always be included and calculated when kinetic equations are 
integrated; they are very rarely found to be zero. 

A simple bimolecular reaction, 2A -► P, is likely to be second order, with 
rate v given by 

v = dp/dt = ka2 = k(a0-2p)2 (1.3) 

where k is now a second-order rate constant. (Notice that conventional sym-
bolism does not, unfortunately, indicate the order of a rate constant.) 
Then, 

J (a0-2p)2 J 
kdt 

J (a0-2pr J 

Therefore, 

= /ci + a 
2(a0-2p) 

and, putting p = 0 when t = 0, we have a = l/2a0, so that 

Reactions of this type are not unknown, but they are rare, and bimolecular 
reactions are much more commonly of the type A + B -* P, in which the two 
reacting molecules are different: 

v = dp/dt = kab = k(a0-p)(b0-p) (1.5) 
In this instance, we have 

Jdp/[(fl0-p)(ft0-p)] = J/cdi 
which can be integrated to give 
2 



ORDER OF REACTION 

1 \η(^ϊ =* + « 
b0-

aoJ V*o-P, 
and putting p = 0 when ί = 0 and rearranging, we obtain 

a0(b0-p)^ 
In 

or 
PO(<*O-P\ 

flo(fcp-p) 

= (b0-a0)kt 

= exp[(b0-a0)ki] (1.6) 

The following special case of this result is of interest: if a0 P b0, then p 
must be insignificant compared with a0 at every stage in the reaction, and so 
(a0 — p) can be written simply as a0. In this case, equation 1.6 simplifies to 

p = b0[\-exp(-ka0t)~\ 

which is of exactly the same form as equation 1.2, the equation for a first -
order reaction. This type of reaction is known as a pseudo-first-order reaction, 
and ka0 is a pseudo-first-order rate constant. The situation arises most often 
when one of the reactants is the solvent, as in most hydrolysis reactions, but 
it is also advantageous to set up pseudo-first-order conditions deliberately, 
in order to simplify evaluation of the rate constant, as we shall discuss in 
Section 1.5. 

Trimolecular reactions, such as A + B + C -► P, do not usually consist of a 
single trimolecular step, and consequently they are not usually third order. 
Instead, the reaction usually consists of two or more elementary steps, such as 

A + B - + X 
X + C - P 

If one step in such a reaction is much slower than the others, the rate of the 
complete reaction is equal to the rate of the slow step, which is accordingly 
known as the rate-determining (or rate-limiting) step. If there is no clearly 
defined rate-determining step, the rate equation is likely to be complex and 
to have no constant order. Some trimolecular reactions do display third -
order kinetics, with v = kabc, where k is now a third-order rate constant, but 
it is not necessary to assume a three-body collision (which is inherently very 
unlikely) in order to account for this. Instead, we can assume a two-step 
mechanism, as above but with the first step rapidly reversible, so that the 
concentration of X is given by x = Kab, where K is an equilibrium constant. 
The rate of the reaction is determined by that of the slow second step: 

v = k'xc = k'Kabc 

where k! is the rate constant for the second step. Hence the observed third -
order rate constant is actually the product of a second-order rate constant 
and an equilibrium constant. 

Some reactions are observed to be zero order, i.e. the rate appears to be 
constant, independent of the concentration of reactant. If a reaction is zero 
order with respect to only one reactant, this may simply mean that the re-

3 



BASIC PRINCIPLES OF CHEMICAL KINETICS 

actant enters the reaction after the rate-determining step. However, some 
reactions are zero order overall, i.e. independent of all reactant concentra-
tions. Such reactions are invariably catalysed reactions and occur if every 
reactant is present in such large excess that the full potential of the catalyst 
is realized. Examples of this behaviour will be seen when enzyme catalysis 
is discussed. 

1.2 Determination of the order of a reaction 

The simplest means of determining the order of a reaction is to determine the 
rate at different concentrations of the reactants. Then a plot of log(rate) 
against log(concentration) gives a straight line with a slope equal to the 
order. If all of the reactant concentrations are altered in a constant ratio, the 
slope of the line is the overall order. It is usually useful to know the order with 
respect to each reactant, however, which can be found by altering the con-
centration of each reactant separately, keeping the other concentrations 
constant. Then the slope of the line will be equal to the order with respect to 
the variable reactant. For example, if the rate is second order in A and first 
order in B, 

dp/dt = ka2b 

then 

log dp/dt = log /c + 2 log fl + log b 

Hence a plot of log dp/dt against log a (with b held constant) will have a 
slope of 2, and a plot of log dp/dt against log b (with a held constant) will 
have a slope of 1. Both plots should give the same intercept of log k on the 
log v axis, so they provide a useful check on one another. It is important to 
realize that if the rates are determined from the slopes of the progress curve 
(i.e. a plot of concentration against time), the concentrations of all of the 
reactants will change. Therefore, if valid results are to be obtained, either the 
initial concentrations of all the reactants must be in stoichiometric ratio, in 
which event the overall order will be found, or (more usually) the 'constant' 
reactants must be in large excess at the start of the reaction, so that the 
changes in their concentrations are insignificant. If neither of these alterna-
tives is possible or convenient, the rates must be obtained from a set of 
measurements of the slope at zero time, i.e. of initial rates. This method is 
usually preferable for kinetic measurements of enzyme-catalysed reactions, 
because the progress curves of enzyme-catalysed reactions often do not 
rigorously obey the simple rate equations for extended periods of time. In 
practice, the progress curve for an enzyme-catalysed reaction often requires 
a more complicated equation than the integrated form of the rate equation 
derived for the initial rate. 

1.3 Dimensions of rate constants 

Dimensional analysis is a technique that deserves to be used much more 
4 



REVERSIBLE REACTIONS 

widely than it is. Concentrations can be expressed in M (or mol / _ 1 ) , and 
reaction rates in M S"1. In an expression such as v = ka, therefore, the rate 
constant k must be expressed in s"1 if the left- and right-hand sides of the 
equation are to have the same dimensions. All first-order rate constants have 
the dimension (time)-1, and by a similar argument second-order rate con-
stants have the dimensions (concentration)-1 (time)"1, third-order rate 
constants (concentration)"2(time)_1 and zero-order rate constants (con-
centration) (time)"1. 

Knowledge of the dimensions of rate constants provides a useful method of 
checking the correctness of derived equations: the left- and right-hand sides 
of an equation (or inequality) must always have the same dimensions, and all 
of the terms in a summation must have the same dimensions. For example, 
if (1 + i) occurs in an equation, where t has the dimension (time), then either 
the equation is incorrect, or the 1 is a time that happens to have a numerical 
value of 1 unit. Quantities with different dimensions can be multiplied or 
divided, but must not be added or substracted. Thus, if/cx is a first-order rate 
constant and k2 is a second-order rate constant, a statement such as k1 P k2 

is meaningless, just as 5 g > 25 °C is meaningless. However, a quantity such 
as k2a has the dimensions (concentration)"1 (time)"^concentration), i.e. 
(time)-1, and thus has the dimensions of a first-order rate constant, and can 
be compared with other first-order constants. 

This discussion may seem to be obvious, but it is surprising how often 
improper comparisons between rate constants are made, leading to erroneous 
conclusions. Rate constants and equilibrium constants are particularly liable 
to this type of error, because the algebraic symbols used for them do not 
usually provide any indication of the dimensions, and almost identical 
symbols are used for different types of constant. 

1.4 Reversible reactions 

Many reactions are readily reversible, and the back reaction must be allowed 
for in the rate equation: 

A J^P 

flo-P P 

In this case, 

v = άρ/dt = k+l(a0-p)-k_1p = fc+ifl0-(fc+i + fc-i)p (1.7) 

Therefore, 

f dp 
J fc + 1a0-(fc+ 1+fc_,)p 

and 
ln[/c + 1a0- ( /c+ 1+/c_1)p] 

5 
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BASIC PRINCIPLES OF CHEMICAL KINETICS 

Setting p = 0 when t = 0 gives a = -ln(/c+1a0)/(fc+i + fc-i) 
and so 

In "fc+iflo-(fc+i + fc-i)p = -(k+^k.Jt 

Therefore, 
k+iÜQ 

/ c + 1 a 0 { l -exp[ - ( / c + 1 + /c.1)r]} 
(1.8) 

A slightly more complex example is provided by a reversible bimolecular 
reaction: 

K Λ. 1 

A + B p U p 

In this case, 
* - i 

v = dp/dt = k+lab — k_1p (1.9) 

After infinite time, the net rate becomes zero, and the reactants reach their 
equilibrium concentrations, a^, b^ and p^, i.e. 

and so 

and 

k+ ι θ α ο - fc- i Poo = 0 

fc-i = k+i^oobJPao 

v = dp/dt = k+iab-(k+lao0bo0p/pO0) 

Now, by the stoichiometry of the reaction, a = a0—p and b = b0 — p, and so 

dp/dr = fc+i(fl0-p)(feo-p)-[fe+i(flo-Poo)(feo-Poo)p/PQo] 
= (k+i/Poo)(a0bo-pPao)(Pao-p) 

Therefore, 
dp f fe+i dr 

(a<A)-PPoo)(Poo-p) 

Integration of this equation gives 

Poo-P 1 
In 

-aobo + plj \a0b0-pp 

Putting p = 0 when t = 0 gives a = 1 

fc+ii 

In 

+ a 

-a0b0 + PooJ W>o. 
Therefore, 

1 
-fl(A>+Po 

In ^ θ ( Ρ α ο - Ρ ) 

Pao(aoh-PPoo) 

k+1t (1.10) 

6 



DETERMINATION OF FIRST-ORDER RATE CONSTANTS 

This equation can be rearranged to give a (rather complicated) expression 
for p, if desired. 

The differential equations that result from consideration of reactions that 
involve sequences of steps including reversible steps, such as 

A + B < = * X - P 

cannot in general be solved explicitly. Numerical solutions can be obtained 
with the help of modern computing methods, but as uncatalysed reactions of 
this type are not of great importance in biochemistry, they will not be con-
sidered further. Catalysed reactions of this type will be considered later. 

1.5 Determination of first-order rate constants 

Very many reactions are first-order in each reactant, and in these cases it is 
often possible to carry out the reaction under pseudo-first-order conditions 
overall by keeping every reactant except one in large excess. Thus, in many 
practical situations, the problem of determining rate constants can be reduced 
to the problem of determining the rate constant for a first-order reaction. We 
have seen (equation 1.2) that for a simple first-order reaction, 

p = <i0[l-exp(-Zci)] 
and in the more general reversible case (equation 1.8), 

P = ( f c + * + ^ J { l - e x P [ - ( f c + 1 + fc-t)t]} 

Now, k+la0l{k+l-\-k_l) = p^, the equilibrium value ofp, as the exponential 
term vanishes when t is large, and so 

Poo-P = Poo expJXfc+i + k-Of] (1.11) 
Therefore, 

l n i p ^ - p ) = \npOD-(k+l+k.l)t 

or, more conveniently, 

log(Poo-p) = logP(X)-[ik + 1 + k.1)t/230S] 

Thus, a plot of logip^— p) against t gives a straight line of slope 
-(k+l-^-k_l)/2303. 

Guggenheim (1926) pointed out a major objection to this plot, in that it 
depends very heavily on an accurate value of p^. In the general case where 
Poo Φ ao> a n accurate value of p^ is difficult to obtain, and even in the special 
case of an irreversible reaction when p^ = a0, the instantaneous concentra-
tion of A at zero time may be difficult to measure accurately. Guggenheim 
suggested measuring two sets of values, pt and p\, at times £, and ί·, such that 
every t\ = ί, + τ, where τ is a constant. Then, from equation 1.11, 

Poo-Pi = Poo exp[-(fc+i + fc-i)i«] 
Poo-Pi = Poo exp[-(/c + 1 + /c_1)(il.-hT)] 

(1.12) 

7 



BASIC PRINCIPLES OF CHEMICAL KINETICS 

By subtraction, 
P'i-Pt = Pooil-expC-ifc+i + fe-iWJexpC-ifc+i + fc-OiJ 

Therefore, 
1η(ρί — p.·) + (fc+1 + fe- i)ii = constant (1.13) 

So, a plot of ln( pj-p,·) against tt gives a straight line of slope -(k+1 + k-l). 
This is known as a Guggenheim plot, and it has the major advantage that it 
does not require an estimate of p^. As k+1/k-x is equal to the equilibrium 
constant, which can be estimated independently, the values of the individual 
rate constants k+1 and /c_x can be calculated from the two combinations. 

Equations 1.12 can alternatively be combined by dividing one by the other, 
to give 

Ez^h^apÜk^ + k-tä 
Poo-Pi 

which can be rearranged to give 
p\ = p00{l-exp[-(/c+1 + /c_1)T]} + plexp[-(/c+1 + /c_1)T] (1.14) 

Thus, a plot of pj against p, also gives a straight line, of slope 
exp[-(fc+1 + fc_1)r]. This plot was suggested by Kezdy, Jaz and Bruylants 
(1958) and by Swinbourne (1960). Its accuracy is about the same as that of the 
more widely used Guggenheim plot, and it is easier to plot. As p\ = pt = p^ 
when t -> oo, this plot provides a simple method of estimating p^: if the line 
p[ = Pi is drawn, the point at which it intersects the (extrapolated) plot of p\ 
against p, gives the value of p^. Both types of plot are illustrated in Figure 1.1. 

,1 , . _ I t , . . uL , 
0 5 10 15 0 20 40 60 W\ 100 

Time, min P P» 

Figure 1.1 Determination of first-order rate constants by means of (left) Guggenheim plot and 
(right) Kezdy-Swinbourne plot: In both cases p and p' are the concentrations of product at times τ 
apart, with τ = 5 min for the Guggenheim plot and τ = 2,5 or 10 min, as indicated, for the Kezdy-
Swinbourne plot 

For the first plot, Guggenheim recommended that τ should be several 
times ri? the half-time of the reaction, i.e. the time required for half-comple-
tion. In contrast, Swinbourne suggested that values οίτ in the range 0.5r̂  to 
t̂  were the most suitable in the second type of plot. He also recommended 
8 



INFLUENCE OF TEMPERATURE ON RATE CONSTANTS 

plotting the same data several times with different values of τ, in order to 
check that consistent values are obtained. This can also be done with the 
Guggenheim plot, of course, but is then much more laborious. 

Both of these plots are insensitive to deviations from first-order kinetics, 
i.e. they can give apparently good straight lines in cases when first-order 
kinetics are not accurately obeyed. For this reason, neither plot should be 
used to test the order of a reaction, which should be established independently. 

1.6 Influence of temperature on rate constants 

From the earliest studies of reaction velocities, it has been evident that they 
are profoundly influenced by temperature. The most elementary consequence 
of this effect is that the temperature must always be controlled if meaningful 
results are to be obtained from kinetic experiments. However, with care, one 
can use temperature much more positively and by carrying out measurements 
at several temperatures, one can deduce important information about 
reaction mechanisms. 

The studies of van't Hoff (1884) and Arrhenius (1889) form the starting 
point for all modern theories of the temperature dependence of rate constants. 
Harcourt (1867) had noted that the rates of many reactions approximately 
doubled for each 10°C increase in temperature, but van't Hoff and Arrhenius 
attempted to find a more exact relationship by comparing kinetic observa-
tions with the known properties of equilibrium constants. These constants, 
being thermodynamic quantities, were (and are) understood much more 
precisely than kinetic constants. Any equilibrium constant, K, varies with the 
absolute temperature, T, in accordance with the van't Hoff equation. 

d\nK _ AH° 
dT ~ RT2 U . l » 

where R is the gas constant and AH° is the standard enthalpy change in the 
reaction. By analogy with this equation, Arrhenius proposed a similar 
equation to describe the variation of a rate constant, k, with temperature: 

dln/c _ Ea 

άΤ ~ A T 1 (1.16) 

where Ea is the activation energy. Although this equation does not follow 
rigorously from equation 1.15, Arrhenius and later workers found it to be 
obeyed in practice by many reactions. Integration with respect to T gives 

In* = In A-EJRT (1.17) 

where In A is a constant of integration. This form of the Arrhenius equation is 
the most convenient for the graphical treatment of results, as it shows that a 
plot of In k against l/T is a straight line, of slope — EJR. In practice, it is 
usually more convenient to plot log k against l/T, in which case the slope is 
— £a/2.303K. This plot, which is illustrated in Figure 1.2, is known as an 
Arrhenius plot, and provides a simple method of evaluating Ea. 
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Figure 1.2 Arrhenius plot 

In order to assess the meaning of the activation energy, equation 1.17 must 
be written as 

k = Aexp(-EJRT) 

The exponential term exp( — EJRT) is often called a Boltzmann term, be-
cause, according to Boltzmann's theory of the distribution of energies amongst 
molecules, the number of molecules in a mixture that have an energy in excess 
of Ea is proportional to exp( — EJRT). We can therefore interpret the 
Arrhenius equation to mean that molecules can take part in a reaction only 
if their energy exceeds some threshold value, the activation energy. In this 
interpretation, the constant A ought to be equal to the frequency of collisions 
of molecules, Z, at least for bimolecular reactions. For some simple reactions 
in the gas phase, such as the decomposition of hydrogen iodide, A is indeed 
equal to Z, but in general it is necessary to introduce a factor P: 

k = PZexp(-EJRT) 

and to assume that, in addition to colliding with sufficient energy, molecules 
must also be correctly oriented if they are to react. The factor P is then taken 
to be a measure of the probability that the correct orientation will be spon-
taneously adopted. This equation is now reasonably in accordance with 
modern theories of reaction rates, but for most purposes it is profitable to 
approach the same result from a different point of view, known as the transi-
tion-state theory, which is discussed in the next section. 
10 
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1.7 Transition-state theory 

The transition-state theory is derived largely from the work of Eyring (1935), 
and is so called because it attempts to relate the rates of chemical reactions to 
the thermodynamic properties of a particular high-energy state of the reacting 
molecules, known as the transition state, or activated complex. As a reacting 
system proceeds along a notional 'reaction co-ordinate', it must pass through 
a continuum of energy states, as illustrated in Figure 1.3, and at some stage it 

P*Q 

8 : 8* 6* 
o · 
o · 

Reaction co-ordinate 

Figure 1.3 'Reaction profile' according to the transition-state theory: The diagrams along the 
abscissa indicate the meaning of the 'reaction co-ordinate' for a simple bimolecular reaction 

must surpass a state of maximum energy. This maximum energy state is the 
transition state, and should be clearly distinguished from an intermediate, 
which is a metastable state of minimum energy (not the minimum in the 
popular sense, but a minimum in the mathematical sense). The reaction can 
be represented as follows: 

A + B ^ X * P + Q 
where X* is the transition state. Its concentration is assumed to be governed 
by the laws of thermodynamics, so that [X*] = K*[A][B], where Kx is 
given by 

AG* = -RT\nK% = A # * - T A S * 

where AG*, A//* and AS* are the free energy, enthalpy and entropy of forma-
11 
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tion, respectively, of the transition state from the reactants. The concentration 
of X* is therefore given by 

[X*] = [A][B]exp(AS*/*)exp(-AH*/Är) 
As written, this equation, like any true thermodynamic equation, contains no 
information about time. In order to introduce time, we require quantum 
mechanical principles that are beyond the scope of this book (see, for ex-
ample, Laidler, 1965), and the rate constant for the breakdown of X* can be 
shown to beRT/Nh, where R is the gas constant, N is Avogadro's number and 
h is Planck's constant. (The numerical value oiRT/Nh is about 6.25 x 1012 s"* 
at 300 K.) Therefore, the second-order rate constant for the complete reaction 
is 

D T 

k = ^r exp (AS*/Ä) exp ( - Δ//*/Ä T) (1.18) 
Nh 

Taking logarithms, and differentiating, we obtain 

^ 4 ^ = (\H* + RT)/RT2 

Comparing this equation with the Arrhenius equation (equation 1.16), it can 
be seen that the activation energy, £a, is not equal to AH*, but \H* + RT. 
Moreover, Ea is not strictly independent of temperature, so that the Arrhenius 
plot ought to be curved. The answer to this apparent anomaly is that the 
expected curvature is so slight that one would not normally expect to detect 
it. In fact, the variation in k that results from the factor T in equation 1.18 is 
trivial in comparison with variation in the exponential term. Nonetheless, 
the difference RT between Ea and ΔΗ* amounts to about 2.6 kJ mo l - 1 at 
ordinary temperatures, and is not negligible. 

As both A and Ea in equation 1.17 can readily be determined in practice 
from an Arrhenius plot, both Δ//* and AS* can be calculated, from 

Atf* = Ea-RT « £ f l - 2 4 9 0 J m o r 1 

AS* = Rln(ANh/RT)-R « 19.1 log A + 253 J mol"1 K" 1 

where the numerical equivalents are calculated by assuming that T = 300 K 
and that A is measured in s_ 1 . For values of T in the range 273-343 K 
(i.e. 0-70°C, the greatest range of temperature likely in an enzyme kinetic 
experiment), the variation in In T is generally negligible in comparison with 
the experimental error in Ea and A. One can, in fact, avoid this slight source of 
error completely by plotting log(/c/T) against 1/T instead of the usual 
Arrhenius plot of log k against 1/T. In this case, it follows simply from 
equation 1.18 that the slope is — AHt/2303R and that the intercept is 
log(Ä/JVÄ) + AS*/2.303Ä. 

The enthalpy and entropy of activation of a chemical reaction provide 
valuable information about the nature of the transition state, and hence about 
the reaction mechanism. A large enthalpy of activation indicates that a large 
amount of stretching, squeezing or even breaking of chemical bonds is 
necessary for the formation of the transition state. For many chemical reac-
tions that occur readily at room temperature (including many enzyme-
12 
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catalysed reactions), AH* is found to be of the order of 50 kJ mol"1 . This 
value suggests that the energetic nature of the activation process is very 
similar for a wide variety of reactions, and it also accounts for Harcourt's 
observation that an increase in temperature of 10 °C often results in the rate 
being doubled. 

The entropy of activation gives a measure of the inherent probability of 
the transition state, apart from energetic considerations. If AS* is large and 
negative, the formation of the transition state requires that the reacting 
molecules adopt precise conformations and approach one another at a 
precise angle. As molecules vary widely in their conformational stability, 
i.e. their rigidity, and in their complexity, one might expect that values of 
AS* would vary widely between different reactions. This does, in fact, occur. 
The molecules that are important in metabolic processes are often large and 
flexible, and so uncatalysed reactions between them are inherently unlikely, 
i.e. — AS* is usually large. 

Equation 1.18 shows that a catalyst can increase the rate of a reaction 
either by reducing — AS* or by reducing AH*, or both. It is likely that both 
effects are important in enzymic catalysis, although in most cases it is not 
possible to obtain definite evidence of this because the uncatalysed reactions 
are too slow for — AS* and AH* to be measured. 

13 



2 
Introduction to Enzyme Kinetics 

2.1 Early studies 

The rates of enzyme-catalysed reactions were first studied in the latter part 
of the nineteenth century by numerous workers. At that time, no enzyme was 
available in a pure form, methods of assay were primitive and the use of 
buffers to control pH had not been introduced. Moreover, it was customary 
to follow the course of the reaction over a period of time, in contrast to the 
more usual modern practice of measuring initial rates at various different 
initial substrate concentrations, which gives results that are generally easier 
to interpret. It is remarkable, therefore, how much progress was made. 

Most of the early studies were concerned with enzymes from fermentation, 
particularly invertase, which catalyses the hydrolysis of sucrose: 

sucrose + water -► glucose + fructose 

O'Sullivan and Tompson (1890) studied this reaction, and made a number of 
important discoveries: they found that the reaction was highly dependent on 
the acidity of the mixture and that, provided that 'the acidity is in the most 
favourable proportion,' the rate was proportional to the amount of enzyme. 
The rate decreased as the substrate was consumed, and seemed to be pro-
portional to the sucrose concentration, although there were slight deviations 
from the theoretical curve. At low temperatures, the enzyme showed an 
approximate doubling of rate for an increase in temperature of 10 C. 
However, unlike most ordinary chemical reactions, the invertase-catalysed 
reaction displayed an apparent optimum temperature, above which the rate 
fell rapidly to zero. Invertase proved to be a true catalyst, as it was not 
destroyed or altered in the reaction, and a sample was still active after 
catalysing the hydrolysis of 100000 times its weight of sucrose. Finally, the 
thermal stability of the enzyme was very much greater in the presence of its 
substrate, sucrose, than in its absence: 'invertase when in the presence of 
cane sugar will stand without injury a temperature fully 25 °C higher than in 
its absence. This is a very striking fact, and, as far as we can see, there is only 
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one explanation of it, namely, the invertase enters into combination with the 
sugar.' A similar conclusion had been reached by Wurtz (1880), who, in 
studying the papain-catalysed hydrolysis of fibrin, had observed a precipitate 
that he suggested might be a papain-fibrin compound that acted as an 
intermediate in the hydrolysis. 

The idea of an enzyme-substrate complex was placed in a purely kinetic 
context by Brown (1892). In common with a number of other workers, he 
found that the rates of enzyme-catalysed reactions showed deviations from 
second-order kinetics. Initially, he showed that the rate of hydrolysis of 
sucrose in fermentation by live yeast appeared to be independent of sucrose 
concentration. The conflict between Brown's results with live yeast and those 
of O'Sullivan and Tompson with isolated invertase was not regarded as 
serious, because catalysis by isolated enzymes was regarded as fundamentally 
different from fermentation by living organisms. But Buchner's discovery 
(1897) that a cell-free (i.e. non-living) extract of yeast could catalyse alcoholic 
fermentation prompted Brown (1902) to re-examine his earlier results. After 
confirming that they were correct, he showed that similar results could be 
obtained with purified invertase and suggested that the enzyme-substrate 
complex mechanism placed a limit on the rate that could be achieved. Pro-
vided that the complex existed for a brief instant of time before breaking down 
to products, then a maximum rate would be reached when the substrate con-
centration was sufficiently high to convert all of the enzyme into complex, 
according to the law of mass action. At lower concentrations of substrate, the 
rate at which complex was formed would become significant, and so the rate 
of hydrolysis would be dependent on substrate concentration. 

Henri (1902,1903) criticized Brown's model on the grounds that it assumed 
a fixed lifetime for the enzyme-substrate complex between its abrupt creation 
and decay. He proposed instead a mechanism that was conceptually very 
similar to Brown's but that was expressed in more precise mathematical and 
chemical terms, with an equilibrium between the free enzyme and the enzyme-
substrate and enzyme-product complexes. Henri showed that it did not 
matter whether one assumed either or both of these complexes to be inter-
mediates in the reaction: identical kinetics would be observed whether pro-
ducts were formed by the breakdown of the enzyme-substrate complex: 

E + S*=»ES->E + P 

or whether the free enzyme were the active species in a second-order reaction: 

ES 

T l 
E + S - E + P 

This latter possibility is not now regarded as very plausible, and has only 
rarely been considered (e.g. by Viale, 1970), but it was in accord with the ideas 
of the time to assume that a catalyst acted merely by its presence. Moreover, 
the principle that two or more mechanisms may require the same form of 
rate equation (sometimes called homeomorphism) is important, and should 
always be borne in mind when kinetic experiments are interpreted. 

It is of interest that Henri allowed for an enzyme-product complex in his 
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formulation, and that the concept of competitive inhibition by product is 
implicit in the rate equation that he gave: 

k 

~ve°s 

v = '- (2.1) 
S P 

in which v is the velocity, e0 is the total enzyme concentration, s and p are the 
concentrations of free substrate and product, respectively, and /c, Ks and Kp 

are constants. If p is set equal to zero, this equation defines the values of the 
initial rates for different substrate concentrations. The more general form 
used by Henri was more appropriate to his experiments because, in common 
with other investigators of that time, he followed the course of the reaction 
over an extended period. Nonetheless, his equation is incomplete, because 
it takes no account of the overall back reaction: it implies that the accumula-
tion of product retards the forward reaction, but does not prevent it from 
going to completion. A more realistic equation (e.g. equation 2.18 below) 
makes allowance for the possibility that the reaction is incomplete at 
equilibrium. 

2.2 Work of Michaelis and Menten 

Although Brown and Henri reached essentially correct conclusions, they did 
so on the basis of experiments that were open to serious objections. O'Sullivan 
and Tompson experienced great difficulty in obtaining coherent results until 
they realized the importance of acid concentration. Brown prepared the 
enzyme in a different way and found the addition of acid to be unnecessary 
(presumably his solutions were weakly buffered by the natural components of 
the yeast), and Henri did not discuss the problem. Apart from O'Sullivan and 
Tompson, the early investigators of invertase made no allowance for the 
mutarotation of the glucose produced in the reaction, although this un-
doubtedly affected the results. 

With the introduction of the concept of hydrogen ion concentration, 
expressed by the logarithmic scale of pH (S^rensen, 1909), Michaelis and 
Menten (1913) realized the necessity for carrying out definitive experiments 
with invertase. They controlled the pH of the reaction by the use of acetate 
buffers, they allowed for the mutarotation of the product and they measured 
initial rates of the reaction at different substrate concentrations. If initial rates 
are used, the back reaction and other effects of product can legitimately be 
ignored, so that a much simpler rate equation can be used. In spite of these 
refinements, Michaelis and Menten obtained results in good agreement with 
those of Henri, and they acknowledged their debt to him and to Brown in the 
mechanism that they suggested: 

E + S < = > E S - E + P 
Like Henri, they assumed that the reversible first step was sufficiently rapid 
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for it to be represented by an equilibrium constant, Ks = es/x, where x is the 
concentration of the intermediate, ES, so that x = es/Ks. The instantaneous 
concentrations of free enzyme and substrate are not directly measurable, 
however, and so they must be expressed in terms of the initial, measured, 
concentrations, e0 and s0, using the relationships 

e0 = e + x 

s0 = s + x 

From the first of these, x cannot be greater than e0, and so, provided that s0 
is very large compared with e0, it must also be very large compared with x. 
Thus s = s0 with good accuracy. Then the expression for x becomes 

x = (e0-x)s/Ks 

which can be rearranged to give 

x = e° 
(KjsHi 

The second step in the reaction, ES -► E + P, is a simple first-order reaction, 
with a rate constant /c + 2, so that 

" = *-* = WJUTi = -κ^Ι {22) 

This equation is identical with the equation given by Henri (equation 2.1) in 
the special case when p = 0. 

Michaelis and Menten showed that this theory, and equation 2.2, could 
account accurately for their results with invertase. Because of the definitive 
nature of their experiments, which have served as a standard for almost all 
subsequent enzyme kinetic measurements, Michaelis and Menten are re-
garded as the founders of modern enzymology, and equation 2.2 (in its 
modern form, equation 2.8, below) is generally known as the Michaelis-
Menten equation. 

At about the same time, Van Slyke and Cullen (1914) obtained similar 
results with the enzyme urease. They assumed a similar mechanism, with the 
important difference that the first step was assumed to be irreversible. 

E + S—UES—^iE + P 
e0 — x s x p 

In this case, of course, x cannot be represented by an equilibrium constant; 
instead, we have 

dx/dt = k+1(e0 — x)s — k + 2x 

Van Slyke and Cullen implicitly assumed that the intermediate concentration 
was constant, i.e. dx/dt = 0, and so 

= k+ie0s 
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Therefore, 
k+1k + 2e0s k + 2e0s 

v = k+2x = -—— = —— (2.3) 
K + 2-rK+\S {K + 2/K+1)-\-S 

This equation is of the same form as equation 2.2, and empirically in-
distinguishable from it. 

At about the same time as these developments were taking place in the 
understanding of enzyme catalysis, similar conclusions were being reached 
in the study of the adsorption of gases by solids (Langmuir, 1916, 1918). 
Langmuir's treatment was considerably more general, but the case that he 
referred to as simple adsorption corresponds closely to the type of binding 
assumed by Henri and by Michaelis and Menten. He recognized the simi-
larity between solid surfaces and enzymes, although he imagined the whole 
surface of an enzyme to be 'active,' rather than limited areas or active sites. 
Hitchcock (1926) pointed out the similarity between the equations for the 
binding of ligands to solid surfaces and to proteins, and the logical process 
was completed by Lineweaver and Burk (1934), who extended Hitchcock's 
ideas to catalysis. 

2.3 Steady-state treatment 

The formulation of Michaelis and Menten, which treats the first step of 
enzyme catalysis as an equilibrium, and that of Van Slyke and Cullen, which 
treats it as irreversible, both make unwarranted and unnecessary assumptions 
about the rate constants. As we have seen, both formulations lead to the 
same form of the rate equation, and Briggs and Haldane (1925) examined a 
generalized mechanism that includes both special cases: 

k+i k+2 
E + S<=±ES >E + P 

e0 — x s x 
In this case, 

dx/dt = k+1(e0 — x)s — k_1x — k + 2x (2.4) 

If it is assumed that a steady state is achieved in which the concentration of the 
intermediate is constant, i.e. dx/dt = 0, then 

k+1e0s = (k+1s + k_l + k+2)x (2.5) 
Therefore, 

and so 

x = k\ie°S , (2.6) 

, v _ ^+ι^ + 2*ν _ k+2e0s 
V _ K + 2X - - —— — - — (1.1) 
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This equation can be written in the more general form: 

v = Vs/(Km + s) (2.8) 

where Km, known as the Michaelis constant, is defined as (k_1 + k+2)/k+1, 
and V, known as the maximum velocity, is defined as k+2e0. Equation 2.8 is 
the fundamental equation of enzyme kinetics, and is usually called the 
Michaelis-Menten equation. It applies to many mechanisms more complex 
than the Michaelis-Menten mechanism, but with more complex definitions 
of Km and V. In practice, therefore, it cannot be assumed that Km can be 
expressed simply as (/c_x + k+2)/k+l, or V as k+2e0. V is not a fundamental 
property of an enzyme, as it depends upon enzyme concentration. Provided 
that the enzyme concentration is known, it is advantageous to define a 
quantity kcat, the 'catalytic constant' or 'turnover number,'' as V/e0. For the 
Michaelis-Menten mechanism, kcat is identical with k + 2, but in general the 
more non-committal notation kcat is preferable. 

Figure 2.1 Plot of initial velocity, v, against substrate concentration, s,for a reaction obeying the 
Michaelis-Menten equation: This plot was not used or advocated by Michaelis and Menten 

The graphical form of equation 2.8 is shown in Figure 2.1. The curve is a 
rectangular hyperbola, with asymptotes s = —Km and v = V. At very small 
values of s, v is directly proportional to s: 

v * Vs/Km 

so that the reaction is apparently first order in s. It is instructive to realize 
that V/Km has this fundamental meaning as the rate constant for the reaction 
E + S-» E + P at low substrate concentrations, and that it should not be 
regarded solely as the ratio of V to Km. When s is equal to Km, the velocity is 
'half-maximal,' i.e. v = 0.5 V. At very high values of s, v approximates to V, 

19 



INTRODUCTION TO ENZYME KINETICS 

and the reaction is apparently zero order in s; under these conditions, the 
enzyme is said to be saturated. Actually, v approaches V rather slowly, and 
even when s = 10Km, v is still only 0.91 V. For this reason, V often cannot be 
found by direct measurement, but must be estimated from the velocities 
observed at sub-saturating values of 5. It is almost impossible to estimate the 
asymptotes of a rectangular hyperbola accurately, because of a tendency to 
draw them too close to the curve, unless the results are plotted in a different 
way. Methods for doing this are discussed in Section 2.5. 

It is tempting to assume that Km can be taken as a measure of the true 
binding constant, Ks, in practice, i.e. to assume that k+2 is negligible in com-
parison with fc_!. This is a very dubious assumption unless supported by 
other evidence, and should be made with great caution. There are very few 
enzymes for which the individual values of k_x and k+2 are known (for a 
review, see Eigen and Hammes, 1963) and indeed, horseradish peroxidase, 
the first enzyme for which the individual rate constants were measured, was 
found to have k+2 ^ &-i (Chance, 1943), so that it agreed much better with 
the assumptions of Van Slyke and Cullen than with those of Michaelis and 
Menten. More important, there are many mechanisms, more complicated 
than that assumed by Briggs and Haldane, that generate a steady-state rate 
equation of the form of equation 2.8. In such cases, more complex expressions 
for Km are required, which do not necessarily simplify to Ks under plausible 
conditions. In fact, Km cannot even be taken as an upper limit for Ks (Dalziel, 
1962), as it could legitimately be if the Briggs-Haldane treatment were 
completely general. 

In view of this discussion, the reader may well wonder if there is any point 
in measuring Km, if it cannot be used as a measure of binding. There are, in 
fact, several reasons for measuring Km. Firstly, in order to understand clearly 
the nature of a complex mechanism, it is usually necessary to express com-
plex effects in simple terms, which is most easily achieved by determining 
how the basic kinetic parameters Km, V and V/Km vary with the experimental 
conditions. Secondly, Km is useful purely as a predictive parameter, permitting 
the design of valid enzyme assays. In the design of an assay, it is desirable that 
the measured rate should depend only on the enzyme concentration and not 
on small errors in the substrate concentrations. Although ideally each sub-
strate should therefore be saturating (i.e. at infinite concentration), in practice 
a concentration of 10Km or greater is sufficient to make the rate insensitive to 
errors in the substrate concentration. Finally, if it is taken in conjunction 
with measurements of inhibitor binding constants (which are often true 
thermodynamic quantities; see Sections 3.7 and 4.2) for analogues of the 
substrate, Km can sometimes be interpreted cautiously as a measure of Ks. 
For example, all three stereoisomers of the pepsin substrate acetyl-L-
phenylalanyl-L-phenylalanine have competitive inhibition constants (Kt) 
similar in magnitude to Km for this substrate (Knowles, Sharp and Green-
well, 1969), and in this instance it would be perverse not to regard Km as an 
indication of Ks. Of course, this does not prove that k+2 <4 /c_ l5 but it does 
make it rather unlikely that k+2 > fe_ v Km is also likely to be equal to Ks if 
it remains constant under variations in pH or effector concentration that 
cause variations in V, as is discussed in Section 6.4. 
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2.4 Validity of the steady-state assumption 

The steady-state assumption was introduced by Bodenstein (1913) in order 
to account for the rates of certain photochemical reactions. As we have seen, 
it was used implicitly by Van Slyke and Cullen (1914) and explicitly by Briggs 
and Haldane (1925) to derive rate equations for enzyme-catalysed reactions. 
None of these workers justified it rigorously, and unfortunately a tendency 
has arisen to regard it as being axiomatic or at least obviously true. In fact, it 
is not accurately true for some uncatalysed reactions such as 

A + B* D 
where it appears to be just as plausible at first sight as in the Briggs-Haldane 
case. As the steady-state assumption has become the central assumption 
underlying the derivation of most of the rate equations used in enzyme 
chemistry, it is important to realize that it can be derived fairly simply, at 
least in the case of the Michaelis-Menten mechanism. 

If the steady-state assumption is not made, then the differential equation 
(equation 2.4) cannot be solved by putting dx/dt = 0, but instead must be 
integrated as follows: 

dx 

Therefore, 
k+le0s-(k+1s + k_1 + k + 2)x 

ln\_k+1e0s — (/c+15-f/c_1 + /c+2)x] 
— (/c+1s + /c_1H-/c+2) 

at 

= ί + α 

At the instant when the reaction starts, there can be no intermediate, i.e. 
x = 0 when t = 0, and so 

a = 
ln[fc+1£?0s] 

giving 

lnp±^ 

-(/c+1S + /c_!+/c + 2) 

Therefore, 

Hence, 

and 

^ + ι^ο5 

\rt+ jS~TfC_i~rK-|- 2/·^ 
1 -

= -(/c+15+fc_1+/c + 2)i 

= exp[-(/c+1s + /c_1 + /c+2)i] 

x = 

v = 

k+1e0s{l--exp[-{k+1s + k-1 + k+2)i]} 

Ks{l-exp[-(/c+1s+fc_1 + fe+2)t]} 
Km + s (2.9) 

where V and Km are defined as before, i.e. as k+2e0 and (k-i + k+2)lk+l, 
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respectively. Inspection of equation 2.9 shows that it reduces to the steady-
state expression (equation 2.8) when t is large, as the exponential term then 
disappears. How large t must be for this to happen will depend on the magni-
tude of (k+1s + k.1 + fc+2), but the fact that most enzyme-catalysed reactions 
are found to obey equation 2.8, except during the first fraction of a second 
after mixing, can be taken as evidence that this quantity is much greater 
than 1 s - 1 in most instances. 

An equation of the form of equation 2.9 was derived by Laidler (1955) as a 
special case of a much more general treatment than is given here. He con-
sidered the effect of allowing the reaction to proceed for long enough for the 
decrease in substrate concentration to be significant, so that it would not be 
valid to regard s as a constant equal to s0, the initial value of s. He found that a 
steady state was achieved in which 

x = 
k+1e0(s0-p) 

and so 
k-1 + k + 2 + k+1(s0-p) 

k+1k + 2e0(s0-p) V(s0-p) 
k_l + k+2 + k+l(s0-p) Km + s0-p 

(2.10) 

(2.11) 

Equations 2.10 and 2.11 are the same as equations 2.6 and 2.8 except for the 
replacement of 5 with s0 — p. It may seem contradictory to refer to a steady 
state in which x is represented by an expression in p, which varies with time. 
This paradox is resolved by consideration of the fact that the time dependence 
of x as expressed by equation 2.10 is far less than that in the transient phase, 
i.e. the period before the steady state is established. The argument used by 
Briggs and Haldane is very little affected by replacing the assumption that 

1.0, 

0.8 

0.6 

4. 

* 0.4 

0.2 

Transient phase 
(eqn.2.9) 

Steady-state phase 

Initial-velocity 
phase (eqn.2.8) 

Progress curve phase 
(eqn.2.11) 

10"6 10~a 10"* 10"3 10'2 10'1 1 

Time, s 

10 ΚΓ 10° 10' 

Figure 2.2 Time course of a reaction proceeding by the Michaelis-Menten mechanism: 
k+1 = 70 7 M- 1 s _ 1 ;k_ 1 = 7000s"1 ;k + 2 = 700s"r;k_2 = 0 ; s o = 2 x 70_ 4M;eo = 7 0 " 8 M 
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dx/dt = 0 with an assumption that dx/dt is very small: equation 2.5 becomes 
merely a good approximation instead of an exact statement. 

We can summarize these results by saying that an enzyme-catalysed re-
action normally proceeds through three definite phases, well separated on 
the time scale, as illustrated in Figure 2.2. The first, the transient phase, 
requires equations similar to equation 2.9 for its description, and is discussed 
in more detail in Chapter 9. The second, the initial-velocity phase, is the one 
in which the velocity is virtually constant, and has been by far the most 
studied of the three phases since the work of Michaelis and Menten; the bulk 
of this book is devoted to it. The final phase, in which the substrate and pro-
duct concentrations change significantly and the velocity decreases to zero, 
requires equations similar to equation 2.11 (usually in integrated form), and 
is discussed in Chapter 8. 

We have hitherto assumed that s0 > e0 (the most common situation in 
practice for studies of the steady state) in deriving rate equations. Laidler 
(1955) examined the effect of the steady-state assumption under less restricted 
conditions. He found that a slightly modified form of equation 2.11, as 
follows: 

V(so-P) 
v = 

Km + e0 + s0-p 
was valid provided that any one (or more) of the following conditions was 
satisfied: 
(\)s0 P e0; (2)6>0 > s0; (S)k_l + k + 2 > k+1e0; or (4)/c_1 + /c + 2 > k+1s0. 

As the experimenter normally has wide freedom in the choice of values of 
e0 and s0, it is usually possible to ensure that at least one of these conditions 
is satisfied. t 

Finally, it should be noted that this discussion does not provide for the 
effect of product inhibition, which may occur. This is considered in Section 
2.7. 

2.5 Graphical representation of the Michaelis-Menten equation 

If a series of initial velocities at different substrate concentrations is measured, 
it is desirable to present the results graphically, so that the values of the 
kinetic parameters and the precision of the experiment can be estimated. The 
most obvious way of plotting equation 2.8 is to plot v against 5, generating a 
rectangular hyperbola, with v = V as the asymptote for v and s = —Kmas 
the asymptote for s, as was shown in Figure 2.1. This is a most unsatisfactory 
plot in practice, because it is difficult to draw rectangular hyperbolas accur-
ately; it is difficult to estimate asymptotes accurately (there is a strong 
tendency to draw asymptotes too close to the curve); it is difficult to perceive 
the relationship between a family of hyperbolas; and it is difficult to detect 
deviations from the expected curve if they occur. These disadvantages were 
recognized by Michaelis and Menten (1913), who instead plotted v against 
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log s. This plot gives a symmetrical S-shaped curve, as shown in Figure 23, 

0.51/ 

Log (s//CJ 

Figure 2.3 Determination ofW and Km by the method of Michaelis and Menten: The plot is almost 
straight over an appreciable range of velocities, and so the maximum slope can be estimated fairly 
easily 

which has maximum slope when s 
shows that 

di; 

Km. Differentiation of equation 2.8 

KmVs 
dins (Km + s)2 

or 
dv 2.303 KmVs 

dlogs (Km + s)2 

The maximum slope occurs when s = Km9 and is equal to 2.303 V/4, i.e. 
0.576V. Hence, V can be estimated by dividing the maximum slope by 0.576. 
Michaelis and Menten then estimated Km as the value of s where the velocity 
was half of V. This can be achieved more accurately than estimating the point 
at which the maximum slope occurs. This plot is not usually used today, but 
it is of interest for several reasons: it emphasizes the relationship between the 
saturation of a protein and the ionization of an acid, which is usually repre-
sented by a titration curve in which the degree of ionization is plotted against 
pH; it is used in a more general form to represent the saturation of proteins 
that have several binding sites; it does not suffer from statistical bias in the 
way that the linear plots (which will be considered next) do, although it does 
tend to weight the observations in the middle of the range more than those 
at the extremes; and, finally, it is of historical interest. 

Most workers since Lineweaver and Burk (1934) have preferred to re-write 
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the Michaelis-Menten equation in a form that permits the results to be 
plotted as a straight line. This can be achieved in three ways: 

s = K^ s (2.12) 
v V V 

1 1 
v = V + 

s 

Vs 

(2.13) 

(2.14) 

In the first case, a plot of s/v against s gives a straight line of slope l/V and 
intercepts KJV on the s/v axis and — Km on the s axis. Similarly, straight-line 
plots are obtained from equations 2.13 and 2.14 by plotting v against v/s and 
l/v against 1/s, respectively. These three plots are illustrated in Figures 2.4-
2.6. 

Figure 2.4 Plot o/s/v against s, with error bars of + 0.05W in v 

An equation of the form of equation 2.12 was given by Langmuir (1918) in 
connection with the adsorption of gases on to solid surfaces, and was first 
given in the context of enzyme kinetics by Hanes (1932), who used it in the 
analysis of his results, although he did not present them graphically. The 
other two linear transformations, and all three plots, were introduced by 
Woolf (1932), but became widely known and used as a result of the work of 
Lineweaver and Burk (1934), Eadie (1942) and Hofstee (1952). By far the most 
widely used has been the double-reciprocal plot of l/v against 1/s, commonly 
referred to as the Lineweaver-Burk plot, but because it is also by far the worst 
plot, its use should be discouraged. 
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.Slope = -K, 

Figure 2.5 Plot ofv against v/s, with error bars of ± 0.05V in v (Eadie-Hofstee plot) 

Figure 2.6 Plot of 7/v against 7/s, with error bars of ± 0.05V in v (Lineweaver-Burk or double-
reciprocal plot) 
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Until 1961, most of the discussion of the relative merits of the three linear 
plots was concerned with their convenience and with their ability to show 
departures from the Michaelis-Menten equation clearly. So long as the 
discussion is confined to these aspects, there is little to choose between them, 
and the situation was cogently summed up by Dixon and Webb (see Hofstee, 
1959). More recently, the discussion has been concerned with the statistical 
bias inherent in all linear transformations of the Michaelis-Menten equation, 
largely as a result of the studies of Wilkinson (1961) and Johansen and Lumry 
(1961)*. Their results and the conclusions to be drawn from them are dis-
cussed in greater detail in Chapter 10, but a few important points are men-
tioned here. For definitive work, it is unwise to use any plot, linear or other-
wise, for estimating the parameters. Instead, a computer program should be 
used, as described in Chapter 10. For illustrative purposes, one of the linear 
plots can be used. It is sometimes argued that as all three of these plots are 
unsatisfactory, one might as well use the most familiar, namely the double-
reciprocal plot. However, this proposal is contrary to the principle that 
justice should not merely be done, but should be seen to be done: if an experi-
ment is illustrated with a double-reciprocal plot in which the line shown is 
derived from an independent unbiassed calculation, the line will generally 
appear incorrect on account of large deviations of some of the points at low 
substrate concentrations. This problem also arises to some extent with the 
other two linear plots, but much less severely. The plot of v against v/s has the 
disadvantage that v, usually regarded as the dependent variable, appears in 
both co-ordinates. On balance, the plot of s/v against s is the most satisfactory 
of the three. 

Eisenthal and Cornish -Bowden (1974) have recently described a completely 
different method of plotting enzyme kinetic results, which they call the direct 
linear plot. Instead of writing the Michaelis-Menten equation in the usual 
way to show the dependence of v on s, they rearrange it to show the depen-
dence of V on Km: 

V = v + -sKm (2.15) 

Thus, for any values of s and t;, it is possible to plot V against Km, as a straight 
line with slope v/s, intercept — s on the Km axis, and intercept v on the V axis. 
This straight line relates all values of V and Km that satisfy the particular 
values of s and v exactly. If straight lines are drawn in this way for several 
observations, they should intersect at a common point, the co-ordinates of 
which give the only values of V and Km that satisfy all of the observations, as 
illustrated in Figure 2.7. In a real experiment, the point of intersection is less 
well defined than that shown in Figure 2.7 on account of experimental error, 
but it is easy to find the best point, where the lines crowd closest together. It 
is also easy to recognize particularly bad observations, as they give rise to 

* Actually, Hanes (1932) noted the dangers of statistical bias in the very first paper in which a 
linear transformation of the Michaelis-Menten equation was used, but he felt them to be of 
minor importance. As he used equation 2.12, which is not seriously biassed, his assessment was 
not far from the truth. Unfortunately, the same cannot be said of the very severely biassed 
equation 2.14 and the double-reciprocal plot derived from it. 
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Figure 2.7 Direct linear plot o/V against Km: Each line represents one observation, and is drawn 
with intercepts — s on the abscissa and v on the ordinate. The point of intersection gives the co-
ordinates of the best-fit values, fcm and V 

lines that plainly disagree with the majority. The most obvious advantage of 
the direct linear plot is that it requires no calculation—not even reciprocals 
need to be determined. It also has certain valuable statistical properties, 
which are discussed in Section 10.9. 

2.6 Reversible Michaelis-Menten mechanism 

All reactions are reversible in principle, and many of the reactions of im-
portance in biochemistry are also reversible in practice, in the sense that 
significant amounts of both substrates and products exist in the equilibrium 
mixture. It is evident, therefore, that the Michaelis-Menten mechanism, as 
given, is incomplete, and that allowance should be made for the reverse 
reaction: 

E + A ^ E A ^ E + P (2.16) 
fr-i k-2 

e0 — x a x e0 — x p 

(When discussing mechanisms in which we are interested in more than one 
substrate, it is convenient not to use the symbol S for any particular substrate, 
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but to reserve it for substrates in general. In these cases, A, B , . . . are used for 
substrates of the forward reaction and P, Q , . . . for substrates of the reverse 
reaction.) The steady-state assumption is now expressed by 

dx/dt = k+1(e0 — x)a + k_2(
eo — X)P~ (/c_1 + /c+2)x = 0 

Rearranging, we obtain 
k+ie0a + k_2e0p 

x = 
k-1 + k + 2 + k+1a + k-2P 

The net rate of production of P is the difference between the forward and 
reverse reactions: 

v = k + 2x — k_2(e0 — x)p 

Substitution for x in this expression gives 

k+ ik+2e0a — k^lk^2e0p 
k_x + k + 2 + k+la+k_2p 

(2.17) 

The special case p = 0 gives the same equation as obtained before, i.e. 
equation 2.7 (although a must be replaced with a0, because the initial-rate 
condition is strictly satisfied only at zero time), while the special case a = 0 
gives the corresponding expression for the initial rate of the reverse reaction: 

_ —/c_1/c_2e0Po 
/c_1 + /c+2 + /c_2p0 

As with the expression for the forward reaction, this equation is of the form 
of the Michaelis-Menten equation (equation 2.8) and we can define 

Vr = *-!*<> 
Ki = {k.^k+2)lk_2 

for the reverse reaction, analogous to the definitions of V and Km for the 
forward reaction: 

Vs = k+2e0 

X^ = (/c_1 + /c+2)//c+1 

Using these four definitions, equation 2.17 can be re-written as 

Vsa _ Vrp 

1 + — + -2-
(2.18) 

This equation can be regarded as the general reversible form of the Michaelis-
Menten equation. It has the advantage over equation 2.17 that it does not 
imply a particular mechanism and can be regarded as purely empirical: there 
are many mechanisms more complicated than equation 2.16 that nonetheless 
generate equation 2.18. The most important of these is the more realistic 
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reversible mechanism in which the conversion of A into P and the release of P 
from the enzyme are treated as distinct reactions: 

K J . I K + 2 »^+λ 
E + A ?==± EA ^ Ε Ρ Ϊ ^ Ε + P (2.19) 

K - l K - 2 ^ - 3 

e0 — x — y a x y e0 — x — yp 

The steady-state rate equation can be derived by setting the rates of change 
of both intermediate concentrations to zero: 

dx/dt = k+1a(e0 — x — y) + k_2y — {k-i + k+2)x = 0 
dy/dt = k_3p{e0-x-y) + k + 2x-{k_2 + k+3)y = 0 

and solving the resulting simultaneous equations for x and y: 

k+i(k_2 + k + 3)e0a + k_2k_3e0p 
x = 

k-1^-2 + K - i / c + 3 + k+2k+3 

+ k+l(k_2 + k + 2 + k + 3)a + (k_l + k_2 + k + 2)k_3p 

= fc+1fc+2g0q + (fc_1 + /c+2)/c.3g0p 
fc_1/c_2 + / c _ 1 / c + 3 + fc + 2 / c + 3 

+ k+1{k_2 + k+2 + k + 3)a + {k_l + k_2 + k + 2)k_3p 

The net rate is the difference between the forward and reverse rates for any 
step: 

v = k + 2x — k_2y 

_ k+1k+2k+3e0a — k_1k_2k_3e0p 
/ c _ 1 / c _ 2 + / C _ 1 K + 3 + /c+ 2 /C+3 

+ /c+1(/c_2 + /c+2 + /c+3)a + (fc_1 + /c_2 + /c+2)/c_3/7 

This equation is of the same form as equation 2.18, but the definitions of the 
kinetic parameters are now 

Vf = 

V = 

k+2k + 3eo 

k-2 + /C + 2 + /C+3 

k- ik-2eo 

K _ i τ~ /C _ 2 - r rC _|_ 
2 

rA ^ /c_1/c_2 + /c_1/c+3H-k+2k+3 K = —*■ — z —1-- - I - J ■ --t-z- ' - t- j *2 o n ) 
k+i(k-2 + k + 2 + k+3) 

rp _ ^ - 1 ^ - 2 + ^ - 1 ^ + 3 + ^ + 2 ^ + 3 

(/C_! +/C_2 + /C + 2)/c_3 

In spite of its complex appearance, equation 2.20 simplifies to K* = k_J 
k+1 = K$, the true dissociation constant of EA, in the event that k+2 is small 
in comparison with (/c_2 + /c+3). Similarly, K„ « Kp

s if k_2 is small in com-
parison with (/c_1 + /c+2). Both of these approximations can be simultane-
ously true if k+2 <̂  /c+3and/c_2 <̂  /c_ l5 in other words if the interconversion 
of EA and EP is rate-determining in both directions. 
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Ki 

VrKt 

Km 

-PJE. 

«on 

When a reaction is at equilibrium, the net velocity must be zero and, 
consequently, if a^ and p^ are the equilibrium values of a and p, it follows 
from equation 2.18 that 

Va« Vr
Poo Λ 

and so 

K 

where K is the equilibrium constant of the reaction. This is an important 
result, and is known as the Haldane relationship (Haldane, 1930). It is true for 
any mechanism that is described by equation 2.18, not merely for the simple 
Michaelis-Menten mechanism. More complex rate equations, such as those 
which involve several substrates, require more complex relationships, but in 
all instances at least one relationship of this type must exist between the 
kinetic parameters and the equilibrium constant. 

The Haldane relationship is actually a generalization of an equation used 
earlier by von Euler and Josephson (1924) to compare the kinetic parameters 
for the enzymic hydrolysis of jS-methylglucose with the equilibrium constant 
of the reaction. Its importance was largely unrecognized, however, until it 
was applied by Bock and Alberty (1953) to the kinetic parameters of fumarase. 
Since then, it has become a standard precaution to check that kinetic results 
are in accordance with the Haldane relationship, provided, of course, that it 
is possible to follow the reaction in both forward and reverse directions. 

2.7 Product inhibition 

Product inhibition is simply a special case of inhibition, which is discussed in 
detail in Chapter 4, but because it follows very naturally from the previous 
section it is convenient to discuss it briefly here. When equation 2.18 applies, 
the rate must decrease as product accumulates, even if the decrease in sub-
strate concentration is negligible, because the negative term in the numerator 
becomes relatively more important as equilibrium is approached, and be-
cause the third term in the denominator increases. In any reaction, the nega-
tive term in the numerator can be significant only if the reaction is significantly 
reversible. Now, in many essentially irreversible reactions, such as the classic 
example of the invertase-catalysed hydrolysis of sucrose, product inhibition 
is significant. This is compatible with the simplest mechanism (equation 
2.16) only if the first step is irreversible and the second is not. This does not 
seem very likely, at least as a general phenomenon. On the other hand, the 
two-intermediate mechanism (equation 2.19) predicts that product inhibition 
can occur in an irreversible reaction if it is the second step that is irreversible. 
In such a case, the accumulation of product causes the enzyme to be seques-
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tered as the EP complex. For an irreversible reaction, equation 2.18 then 
becomes 

- VSa,K~ V'a (2.22) 

K„ can legitimately be written as Kp
s if the reaction is irreversible, because 

if fc_2 approximates to zero it is necessarily small compared with (k_l + k+2) 
(cf. equation 2.21). 

Of course, the effect of added product should be the same as the effect of 
accumulated product, so that one could measure initial rates with different 
amounts of added product. For each product concentration, the initial 
velocity for different substrate concentrations would obey the Michaelis-
Menten equation, with V = Vs and Km = K*(l +p/Kp

s). V is thus indepen-
dent of p, but Km increases linearly with p. In fact, product inhibition is some-
times of this type (e.g. the inhibition of invertase by fructose), but sometimes it 
is not [e.g. the inhibition of invertase by its other product, glucose (Michaelis 
and Pechstein, 1914)]. Moreover, there are many compounds other than 
products that inhibit enzymes. It is clear, then, that a more complete theory 
is required in order to account for these facts, which is developed in later 
chapters. 

Appendix 2.1 Hyperbolic nature of the Michaelis-Menten equation 

The plot of v against s according to the Michaelis-Menten equation is often 
described as a rectangular hyperbola. However, this description sometimes 
causes perplexity, because the hyperbolas encountered in mathematics 
always have two limbs, whereas the plot of v against s appears to have only 
one, and because the Michaelis-Menten equation, v = Vs/(Km + s), seems to 
have little in common with the usual expression of a rectangular hyperbola 
with the x and y axes as asymptotes: 

xy = a (2.23) 
and even less with the alternative expression of a rectangular hyperbola with 
asymptotes inclined at 45° to the x and y axes: 

x2 — y2 = a2 

However, substitution of x = s + Xm, i.e. x = s — ( — Km\ y = v— V, 
a = — VKm into equation 2.23 gives 

(s + KJ(v-V)= -VKm 

which is simply a rearranged form of the Michaelis-Menten equation. As the 
asymptotes of the hyperbola xy = a are the axes x = 0 and y = 0, it follows 
from the definitions of x and y that the asymptotes of the plot of v against s 
are s = — Km and v = V. As the vertical asymptote occurs at a negative 
value of 5, it is now clear why the curve appears to have only one limb: the 
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whole of the negative limb, and part of the positive limb, occur in a physically 
impossible region of the plot, and so cannot be observed. These conclusions 
are illustrated in Figure 2.8, which shows much more of the curve than it is 

Figure 2.8 Plot of\ against s according to the Michaelis-Menten equation: The part of the curve 
from s = 0 to 5Km is the same as in Figure 2.1, but a much wider range of values is shown, including 
physically impossible values, in order to display the relationship of the curve to its asymptotes 
s = -Kmand\ = V 

ever possible to observe. This is of practical importance because, whenever 
one estimates the values of Km and V from observations of s and v9 one is, in 
effect, estimating the form of the whole hyperbola from a few observations 
along a short arc. 

Figure 2.8 also illustrates a property of the curve pointed out by de Miguel 
Merino (1974): any straight line through the point of intersection of the 
asymptotes cuts the axes at two points that together provide the co-ordinates 
of a point on the curve. This property forms the basis of the direct linear plot, 
which is, however, drawn as a reflection of Figure 2.8 about the vertical axis, 
because it is treated as a plot of V against Km rather than as a construction on 
a plot of v against s. 
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3 

How to Derive Steady-State Rate 
Equations 

3.1 Introduction 

In principle, the steady-state rate equation for any enzyme mechanism can 
be derived in the same way as that for the simple Michaelis-Menten mechan-
ism : we write down expressions for the rates of change of concentrations of 
all of the intermediates, set them all equal to zero and solve the simultaneous 
equations that result. In practice, this method is extremely laborious and 
liable to error for all but the simplest mechanisms. Fortunately, King and 
Altman (1956) have described a schematic method that is simple to apply to 
any mechanism that consists of a series of reactions between different forms 
of one enzyme. It is not applicable to non-enzymic reactions, to mixtures of 
enzymes, or to reactions that contain non-enzymic steps. Nonetheless, it is 
applicable to most of the situations met in enzyme catalysis and is very useful 
in practice. It is described and discussed in this chapter. 

It is not necessary to understand the theory of the King-Altman method in 
order to apply it, and indeed the theory is considerably more difficult than 
the practice. Some readers may therefore prefer to proceed directly to the 
description in Section 3.3. However, it is generally wise to understand a 
method that one uses, in order to have an understanding of its limitations, 
and for this reason the theory of the King-Altman method is given in the 
next section. 

3.2 Principle of the King-Altman method 

Consider a mechanism in which there are n different enzyme forms, Eu 
E2 , . . . , E„. Suppose that reversible first-order reactions are possible between 
every pair of species, Ε , ^ Ε , , and let the rate constant for Et -► E, be kip and 
that for Ej -► E, be kji9 etc. Then, the rate of production of any particular 
species Ef is kuei + k2ie2+ ''' +knien, where the summation includes the 
concentration of every species except Et itself; and the rate of destruction of 
Ef is (fcii+fci2+ ' * * +kin)eh which we shall represent as Σ^ΐ/,·. Then, the 
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rate of change of et is 
de, 
-j— — klie1 + k2ie2 + ■ Z V i + " ' +k»ie» = ° 

This expression is equal to zero by virtue of the steady-state assumption. 
There are n expressions of this type, one for each of the n species. However, 
only (n— 1) of these equations are independent, because any one of them can 
be obtained by adding the other (n— 1) equations together. In order to solve 
the equations for the n unknowns, it is necessary to have one further equation, 
which is provided by the condition that the sum of concentrations of all of 
the species must be e0, the total enzyme concentration, 

ei + e2+ - · +en = e0 (3.1) 

It does not matter which of the original n equations is replaced with equation 
3.1, but it is convenient when solving for em to replace the mth equation. 
Then we will have a set of simultaneous equations as follows: 

- Σ ^ ΐ / ΐ + ^21*2 + 

fei2^1 ~ Σ ^ 2 / 2 + 

+ kmlem + 

~f" km2em + 

• + 
• + 

knlen — ^ 

kn2en = 0 

+ + e„ + + e„ = en 

klne1 + k2ne2 + · · · 4- kmnem + Σ Kfin = ° 
These n simultaneous equations can now be solved in principle by Cramer's 
rule, giving, for em 

£ = 

k\2 

k\n 

k2i 

■Tk2J 

1 

k%„ 

0 

0 

Σ*υ 
kl2 

1 

kln 

k2i 

-Zk2j · 

1 

km 

ferol 

km2 

· · 1 

• · k 

K2 

■ΣΚ 

km 

K2 

-TKj 

(3.2) 
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[In this discussion, familiarity with the properties of determinants and the 
determinant method of solving simultaneous equations ('Cramer's rule') is 
assumed. To describe these would be beyond the scope of this book, but an 
account will be found in any good algebra textbook.] Inspection of the 
numerator of this expression shows that the mth column consists entirely 
of zeros apart from e0 in the mth row. This element can be brought into the 
first row and first column by m switches of rows and m switches of columns, 
leaving the rest of the determinant unchanged; 2m must be even whether m 
is odd or even, and so the sign of the determinant will be unchanged. As the 
first column will now consist of zeros apart from e0 in the first row, it follows 
that e0 can be taken out as a factor of the determinant, leaving the order 
(n— 1) determinant, so that the numerator can be written 

^ m = CO 

^12 — Σ 2̂j 

* 1 . v2w 

If we now examine this determinant, we find: 
(1) It contains no constants kmj with m as first index. Therefore, its expansion 

cannot anywhere contain a constant kmj with m as first index. 
(2) Every constant with the same first index occurs in the same column. As 

every product of constants in the expansion must contain a term from 
each column, it follows that no product can contain two or more con-
stants with the same first index, and every index other than m must occur 
once as first index in every product. 

(3) Every constant fcfj·, where i φ m and j =f= m, occurs twice in the 
determinant, once as a non-diagonal element and once as one of the 
terms in a — Σ^ο summation. This fact has the very important conse-
quence that every product containing a cycle of indices, such as fc12/c23fc31, 
which contains the cycle 1 —>► 2 —> 3 —► 1, must cancel out in the 
expansion of the determinant (notice that within a cycle, each of a set of 
indices occurs once as a first index and once as a second index). In order 
to see why this should be so, it is simplest to look at a specific example, 
such as ki2k23k31. This product will occur as ( —k12)( —fc23)( —fc31), as 
part of ( — Σ^ι/)( — Z^2j)( — Σ ^ Χ which will be multiplied by terms 
from the other rows and columns of the determinant, but it will also 
occur as + /c12/c23fc31, from the non-diagonal elements, multiplied by 
the same terms from the other rows and columns of the determinant. The 
initial sign is positive, because an even number of switches of columns 
(switch columns 1 and 2, then 1 and 3) are required to bring these elements 
on to the main diagonal. Thus, for every product that contains 
—/c12/c23/c31 from the diagonal elements, there will be an equal and 
opposite product that contains +^12^23^31 from the non-diagonal 

36 



PRINCIPLE OF THE KING-ALTMAN METHOD 

elements. In general, if there is an odd number of constants in the cycle, 
as in this example, an even number of switches will be required in order 
to bring the non-diagonal elements on to the main diagonal, so that the 
sign will be positive, but the corresponding product from the main 
diagonal will contain an odd number of negative terms, and so will be 
negative itself. On the other hand, if there is an even number of constants 
in the cycle, the opposite will be true. However, in either event the 
products will cancel out, so that we can generalize and state that all 
cycles cancel from the final expansion. 

(4) Any product containing a non-diagonal element must contain at least 
one other non-diagonal element, because selection of any non-diagonal 
element removes two diagonal elements from the choice of elements 
available for the rest of the product (for example, if the third element of 
the fourth row is included, both the third and the fourth diagonal elements 
are excluded by the requirement that each product must contain one 
element only from each row and one element only from each column). 
Then selection of non-diagonal elements can be terminated only by 
selecting one with first and second indices that have been used already 
as second and first indices; in other words, a cycle must be completed. 
However, we have seen that all products that contain cycles must cancel 
out. Consequently, all products that appear in the final expansion must 
be derived solely from diagonal elements. As all of the constants in the 
diagonal are negative, it follows that all of the products in the expansion 
must have the same sign [positive if (n— 1) is even, negative if (n— 1) 
is odd]. 

(5) We have seen, under point (2), that every index except m must occur at 
least once as a first index. Each product contains (n— 1) constants and so 
m must occur at least once as a second index because, if it did not, every 
index that occurred as a second index would also occur as a first index, 
and the product would inevitably contain at least one cycle. 

(6) Every diagonal element — Σ^ο* c o n t a i n s every possible second index 
except i. Consequently, every product that is not forbidden by the pre-
ceding rules must appear in the final expansion. 

We can summarize the conclusions from the above discussion as follows. 
The expansion of the numerator of equation 3.2 contains a sum of products 
of (n— 1) ku constants, in each of which (1) m does not occur as first index, (2) 
every other index occurs once only as first index, (3) no cycles of indices 
occur, (4) every product has the same sign, (5) m occurs at least once as second 
index and (6) every allowed product occurs. 

After this lengthy discussion of the numerator of equation 3.2, it will be a 
relief to discover that it is not necessary to discuss the denominator in equal 
detail: the denominator has the same value for every enzyme species and, 
because the total concentration of all the species must be e0, the denominator 
must be the sum of all the different numerators, divided by e0. Because of 
this, and because all of the possible numerators have the same sign, the 
denominator must have the same sign also, so that the fraction as a whole 
must be positive. This, of course, merely confirms the physical necessity that 
all concentrations be positive. 
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We have hitherto made the assumption that reactions exist between every 
pair of species. This is, of course, unrealistic, but the absence of certain 
reactions can readily be dealt with by assigning zero values to the rate 
constants. Hence products containing such constants will be zero, and can 
therefore be omitted. 

Another objection to the above discussion is that two or more parallel 
reactions between two species may exist. In this case, the total forward rate 
will be the sum of the individual rates, and similarly for the total back rate. 
So, in the above discussion, any ktj can be considered to be the sum of a 
number of constants for parallel reactions. 

All of the products of rate constants discussed in this section can be 
regarded as 'trees' or pathways leading to one particular species from each 
of the other species. Consequently, the method to be described in the next 
section follows directly from this discussion. 

3.3 Method of King and Altman 

The following schematic method can be used to derive the rate equation for 
any mechanism. We shall use for an example one of the most important two-
substrate mechanisms: 

fc+i E + A<=± ΕΑ 
*-* 

EA + B ^ EAB 

EAB <=> EPQ 

fc+3 
EPQ <=+ EQ + P 

* - 3 

EQ < ^ + E + Q 

No rate constants are shown for the third reaction, because steady-state 
measurements provide no information about isomerizations between inter-
mediates that do not involve the take-up or release of reactants, as is 
discussed in Section 3.7. For analytical purposes, therefore, we must treat 
EAB and EPQ as a single species, even though it may be mechanistically 
more meaningful to regard them as distinct. 

The first step in the King-Altman method is to represent the mechanism 
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by a scheme that shows all of the enzyme species and the reactions between 
them: 

fe+ifl 

K, 

EQ-

-4<7 * -

k-sP 

EA 

/e + 26 

* + 2 

+ EAB 
EPQ 

All of the reactions must be treated as first-order reactions; for example, the 
second-order rate constant k+l is replaced with the pseudo-first-order rate 
constant k+1a by including the concentration of A. 

Next, a master pattern is drawn representing the skeleton of the scheme, 
in this case a square: 

It is then necessary to find every pattern that (1) consists only of lines from 
the master pattern, (2) connects every enzyme species and (3) contains no 
closed loops. Each will contain one line fewer than the number of enzyme 
species, and in this case there are four such patterns: 

For each enzyme species, and each pattern, the product of the rate constants 
in the pattern leading to that species is written down. For example, for EQ, 
the second pattern gives k_ 1/c+3/c_4^, from 

-4<7 

k + 3 

The arrow-heads are drawn (or imagined) so that from any starting point the 
arrows lead to the appropriate species, EQ, with one arrow only from each 
other species. This ensures that rules 1, 2 and 5 of the previous section are 
obeyed. Obedience to the other rules is assured by selecting patterns as 
described above. Since there are four patterns, four such products can be 
written down for each species. Then, the fraction of each species in the 
steady-state mixture is the sum of its four products divided by the sum of 
all 16 products: 
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[E]/e0 = (k_lk_2k + 4 + k_lk + 3k+4 

+ /c + 2/c + 3/c + 4b + /c_1/c_2/c_3p)/£ (3.3) 
[ΕΑ]/έ?0 = (k+1k_2k + 4a + k+1k+3k + 4a 

+ k_2k_3k_4pq + k+ik_2k_3ap)f£ 
[EAB]/e0 = (k+lk + 2k+4ab + k_1k_3k_4pq 

+ k + 2k_3k_4bpq + k+1k + 2k_3abp)/Y 
[EQ]/e0 = (k_1/e_2/c_4<7 + /c_1/c + 3/c_4g 

+ i/c + 2/c + 

In each case, the resulting expression, divided by the sum of all of the expres-
sions, shown above as Σ, represents the fraction of the total enzyme in each 
form. 

The rate of the reaction is then the sum of the rates of the steps that generate 
one particular product, minus the sum of the rates of the steps that consume 
the same product. In this example, there is one step that generates P, 

(EAB-EPQ)—^ EQ, and one step that consumes P, E Q — ^ (EAB-EPQ), 
so we have: 

ü = a r = fc+3[EAB]-fc_3[EQ]p 
= e0{k+ik+2k+3k + 4ab + k_1k+3k_3k_4pq + k+2k + 3k_3k_4bpq 

+ k+lk+2k + 3k_3abp-k_1k_2k_3k_4pq-k_lk+3k_3k_4pq 
-k + 2k+3k_3k_4bpq-k+1k+2k+3k_3abp)/Z 

= e0(k+lk+2k+3k+4ab-k-1k-2k-3k-4pq)f£ 

As it is not normally possible to measure all of the separate rate constants, 
it is convenient to express the equation in coefficient form, which permits a 
straightforward prediction of the experimental properties of a given 
mechanism: 

= e0(c1ab-c2pq) 

c3 + c4a+c5b+c6p+c1q+c8ab+c9ap+c10bq+cllpq+c12abp+cl3bpq 

where 

cl = k+1k+2k+3k+4 

C2 —— K—iK—2K—3K^4 

c3 = κ_ i(k_2 +k+3)k + 4 

c4 = k+l(k_2 +k + 3)k + 4 

c5 ~ k+2k+3k+4 

c6 — k-ik_2k_3 

ci = k- 1(/c_2 + /c + 3) /c_4 
c8 = k + ik + 2(k + 3-\-k + 4) 
c9 = k+ i/c_2/c_ 3 

c i o = k + 2k+3k_4 
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C l l = (*- 1 +^_2)Κ_3Κ_4 

C12 = ^+1^ + 2^-3 

C13 = ^+2^-3^-4 

At the steady state, the concentrations of all enzyme forms are constant. 
Plainly, therefore, Q must be produced at the same rate as P, and A and B 
must each be consumed at the same rate. Thus it does not matter which 
reactant is considered in writing down the rate equation. It is simple and 
instructive to confirm that the expressions for dq/dt, — da/dt and — db/dt 
are all identical with the expression for dp/dt that we have derived. 

3.4 Modifications to the King-Altman method 

The method of King and Altman as described is convenient and simple to 
apply to any of the simpler enzyme mechanisms. However, complex mechan-
isms often require very large numbers of patterns to be found. The derivation 
is then very laborious, and liable to errors on account of overlooking patterns 
or writing down incorrect terms. Although it is possible in principle to 
calculate the total number of patterns, it is very tedious unless the mechanism 
is very simple, because corrections must be applied for all cycles of reactions 
within the mechanism. In any event, knowing the number of patterns to be 
found may not be very helpful in finding them, and does not reduce the labour 
involved in writing down the terms. In general, for complex mechanisms, it 
is better to search for means of simplifying the procedure. A number of rules 
for carrying out this exercise have been given by Volkenstein and Goldstein 
(1966), using the theory of flow graphs, which has developed by Mason 
(1953, 1956) for the analysis of electronic networks. The simplest of these 
rules are as follows: 
(1) If there are two or more steps intercon verting the same pair of enzyme 

forms, these steps can be condensed into one by adding the rate constants 
of the parallel reactions. For example, the Michaelis-Menten mechanism 
is represented in the King-Altman method as 

which gives the two patterns ^ ^ and ^ y . Because the two reac-
tions connect the same pair of enzyme forms, they can be added, to give 

k+ls + k_2P 
E< »ES 
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This scheme is itself the only pattern, so that 
[E]/e0 = (/c_1 + fc+2)/(/c_1 + fc+2 + /c+1s + /c_2p) 

[ES]/e0 = (fc+1s + /c_2p)/(/c_1 + /e+2 + /c+1s + fc_2p) 
In more complex cases, the simplification afforded by this technique is 
very great: an example discussed by King and Altman was the general 
modifier mechanism of Botts and Morales (1953): 

As shown, this master pattern requires twelve patterns, but if the parallel 
paths are added a square is obtained, which requires only four patterns. 

(2) If the mechanism contains different enzyme forms that have identical 
properties, the procedure is greatly simplified by treating such forms as 
single species. For example, if an enzyme contains two identical active 
sites, the mechanism might be represented by 
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ES 

which can be further simplified by rule 1 to 

2k+ls 
ES; i+3-> ES9 

k_1-\-k + 2 2(k _ 3 + k+4) 

Thus, a scheme of 32 patterns has been simplified to one of a single pat-
tern, and the expressions for the three species can be written down 
immediately: 

[E]/e0 = 2(/c_1 + /c+2)(/c_3 + /c+4)/[2(/c_1 + /c+2)(/c_3 + /c + 4) 
+ 4k+1(k.3 + k+4)s + 2k+1k + 3s

2] 

and so on. 
Whenever advantage is taken of the symmetry of the master pattern 

in this way in order to condense it into a simpler scheme, statistical factors 
appear. In this example, the reaction E -► ES can occur in two ways, so 
that the total rate is the sum of the two rates, giving a rate constant that is 
double the rate constant for either of the two paths. The back reaction, in 
contrast, can occur in only one way, and so has a statistical factor of 1. 
Therefore 

* - l 

^ES 

k+1s 

becomes 
SE 

2k+1s 
E< »ES 

(3) If the master pattern consists of two or more distinct parts touching at 
single enzyme forms, it is convenient to treat the different parts separately. 
A simple example of this is provided by the case of competitive substrates, 
where a single enzyme catalyses two reactions with different substrates 
simultaneously: 

-22 
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In this case, the expression for each enzyme form is the product of the 
appropriate sums for the left and right halves of the master pattern: 

Left: £ > Right: < ] 

u· r·» > Ĵ -i < 
[EJ/^o — (^+22^+23 + ^ - 2 1 ^ - 2 2 + ^-21^+23) 

(/C+12/C+13 + /C_1 1/C_1 2 + /C_11/C+ 13)/Σ 

[ΕΑ]/έ?0 = (^+22^+23 + ^ - 2 1 ^ - 2 2 + ^-21^+23) 

{k-12k_i3p + k+lik_12a + k+ilk+13a)/Z 
[ E P ] / e 0 = (k+22k+23 + k-2ik-22 + k-2ik+23) 

(fc+12^-13P + fc+llfc+12«+fc-ll^-13P)/E 

[EB]/e0 = (k-22k-23<l + k+2ik-22b + k+2ik+23b) 

(k+ 12k + 13 + K-11^-12 + fc- 11^+13)/Σ 

[EQ]/e 0 = (k+22k-23<l + k+2ik+22b + k-2ik-23<l) 

(k+ 12k + 13 + K-11^-12 + ^ - 1 1 ^ + 1 3 / / Σ 

This last modification can be regarded as a special case of the procedure 
that we shall describe in the next section, but because it is very easy to apply 
it is convenient to treat it separately. 

Various other methods of deriving rate equations have been described 
that are claimed to be superior to the method of King and Altman. Of these, 
the method of Fromm (1970) may prove useful to those who prefer a more 
algebraic and less geometric approach. Needless to say, all valid methods 
should give equivalent rate equations. 

3.5 Compression of patterns 

The fourth modification to the King-Altman method introduced by Volken-
stein and Goldstein (actually the third in their enumeration) is the most 
useful and important, because it provides the only practical method of 
analysing complex mechanisms with six or more enzyme forms. Unfortu-
nately, it is also the most difficult to understand and use, because it is not 
purely mechanical but requires careful thought if it is to be used profitably. 
In essence, it provides a means of recognizing and using repetitive features of 
the master pattern, so that one can write down terms for several patterns 
simultaneously. 

Let us consider the following mechanism for a two-substrate, two-product 
reaction in which the substrates can bind in either order and the products 
can be released in either order: 
44 



It is scarcely practicable to apply the full King-Altman method to such a 
complex mechanism, because 32 patterns are required and the probability 
of errors is great. 

If we consider pathways that terminate at EAB, it is clear from inspection 
that every valid pattern must contain five lines and must include one and only 
one of the fragments E -► EA -► EAB or E -► EB -► EAB or E -> EP -► EAB 
or E -► EQ -► EAB. Any pattern containing E -► EA -► EAB must also 
contain either EB -► E or EB -► EAB, but not both, in order for there to be a 
connection to EB and no closed loop. The composite term (fc_2 + k+4a) must 
therefore be a factor of the sum of terms for the patterns that contain 
E -> EA -► EAB. As every pattern must also contain connections to EP and 
EQ, the same argument applies to them also, and (fc_6g + /c+8) and 
(/c_5p + k + 7) must be factors of the same sum. Consequently, we can write 
down a single term, k+1k+3ab(k-2 + k+4.a)(k_6q + k+s)(k_5p + k+1\ that 
accounts for all of the eight patterns that contain the fragment E -► EA -► EAB. 
The other three two-step fragments can be treated in a similar manner, so 
that the 32 terms in the equation for EAB can be expressed by the sum of 
four factored terms. 

The terms in the equation for E can be found by simply transposing those 
for EAB. Thus, E -► EA -► EAB becomes E <- EA <- EAB, and so in the 
first sum k+lk+3ab is replaced with fc_1fc_3, and so on. 

The terms for EA require a little more thought, because this species occu-
pies a position in the master pattern that is topologically dissimilar from 
those occupied by E and EAB. For example, the fragment E — EB — EAB 
is E -► EB -► EAB, represented by k+2k + 4ab, if it is connected to EA by 
EAB -► EA, but it is E <- EB <- EAB, represented by /c_2/c_4, if it is con-
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nected by E -► EA. However, evaluation of these terms, and those for EB, 
EP and EQ, which are similar, will be left as an exercise, because proficiency 
with this technique comes only with practice and further explanation is 
unlikely to be helpful. 

A major advantage of the technique discussed in this section, in addition 
to reducing the labour of deriving a rate equation, is that it gives an equation 
in which repetitive and symmetrical features are obvious, which is very help-
ful for locating and eliminating errors. 

3.6 Reactions containing steps at equilibrium 

Some mechanisms are important enough to be worth analysing in detail, but 
so complex that even with the aid of the methods described above they give 
rise to unmanageably complicated rate equations. In such cases, some 
simplifying assumptions are unavoidable and great simplifications often 
result if one assumes that some steps, such as protonation steps, are maintained 
at equilibrium at all times. Such assumptions may, of course, turn out to be 
false after further investigation, but they are useful as a first approximation. 

Cha (1968) has described a method for analysing mechanisms that contain 
some steps at equilibrium, which is much simpler than the full King-Altman 
analysis as each group of species at equilibrium can be treated as a single 
species. As an example, suppose we have two species X and Y at equilibrium 
with one another such that [Y]/[X] = K, and that X can be interconverted 
in a slow reaction with a third species Z: 

A< ' L· 

\\K 

- - - Y 

(The broken lines are included in the diagram to emphasize that this is a 
fragment of a complex mechanism and not a complete mechanism.) The rate 
of the slow reaction in the forward direction isk+1 [X], but this can be written 
equally well as k+ ^ ( [ X ] + [Y])/([X] + [Y]) = k+ ,([X] + [Y])/(l + K). In 
other words, X and Y can be treated as a single species, with concentration 
([X] + [Y]), and the rate constant k+l for the breakdown of X is reduced to 
k+1/(l-\-K) for the breakdown of the composite species. In general, any 
number of species in equilibrium can be treated as one species, and each rate 
constant fcf is reduced to/j/c,, whereyj is the fraction of reactive molecules in 
the equilibrium mixture. If more than one species is reactive, the rate con-
stant is the sum of the reduced rate constants for the parallel reactions, in 
accordance with rule 1 in Section 3.4. Therefore, in the example given above, 
if Y could also break down to Z, or to a species in equilibrium with Z, with a 
rate constant /c + 2, the rate constant for the breakdown of the composite 
species would be (/c+1 + /c + 2iC)/(l + K). 

This type of simplification is particularly useful in the analysis of pH 
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dependence (Chapter 7) and in the analysis of mechanisms with parallel 
pathways. In the latter case, it is often convenient to treat the alternative 
pathways as equilibria and the compulsory pathways as slow steps. Equa-
tions derived in this way are generally in accordance with experiment, but 
this does not mean that the underlying assumptions are correct: Gulbinsky and 
Cleland (1968) have shown by computer simulation that it is possible and 
indeed likely that the additional terms in the rigorous steady-state equation 
may be numerically significant and yet virtually impossible to detect, because 
of near proportionality to other terms in the equation over any reasonable 
experimental range. 

3.7 Analysing mechanisms by inspection 

The compression of patterns described in the previous section is an im-
portant example of the use of inspection for analysing mechanisms: once one 
is thoroughly conversant with the King-Altman method, it is often possible 
to reach important conclusions about the rate equation for a mechanism 
without having to derive it in detail, simply by inspecting the master pattern 
carefully. 

It is an important characteristic of the King-Altman method that every 
pattern generates a positive term, and that every term appears in the denomi-
nator of the rate equation. As there are no negative terms, no terms can cancel 
by subtraction, and so every term for which a pattern exists must appear in 
the rate equation. The only exception to this rule is that sometimes the 
numerator and denominator share a common factor that can be cancelled 
by division, which normally happens only if the rate constants are related to 
one another, as in the following mechanism for an enzyme with two indepen-
dent and identical active sites: 

In this case, the rate constants for the second site are the same as those for 
the first, apart from statistical factors, and the rate equation is 

_4k+lk + 2e0s(k_l + k + 2) + 4k+lk + 2e0s
2 

2{k_l + k+2)
2 + 4k+ls{k_l + k + 2) + 2k\ls

2 

This equation apparently contains terms in s2, but actually the numerator 
and denominator share a common factor, 2(k_l + k + 2 + k+ls), and the rate 
equation simplifies to the Michaelis-Menten equation: 
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k+1 
+ s 

In mechanisms where there are no relationships between the rate constants 
other than those required by thermodynamics, it is safe to assume that can-
cellation between numerator and denominator will not be possible, so that 
any term for which a pattern exists must appear in the rate equation. For 
example, consider the general modifier mechanism of Botts and Morales 
(1953): 

If one wished to confirm that the rate equation for this mechanism contained 
terms in s2, one could do so without deriving it by noting that there are two 
patterns that give rise to terms in s2: 

^ a n d ^ 

Apart from the value of inspection for considering individual mechanisms, 
it can be used to reach important and far-reaching conclusions about 
mechanisms in general. Consider any mechanism, which may be highly 
complex, that contains the following segment: 

X 
*xy 'yz 

"zy 

where X, Y and Z are three enzyme species. The rate equation will contain 
terms involving kyx, terms involving kyz and terms involving neither, but 
never both, so that kyxkyz will never appear as a product. Suppose now that 
Y is replaced with a mixture of two interconvertible species, Yx and Y2: 
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"xy 

*yx 
— Y1 — 

*12 

*21 
- Y 2 * -

"yz 

"zy 

\ 

How does this affect the rate equation? Firstly, any product that appeared in 
the original rate equation will reappear, multiplied by k12 or by fc21, so that 
no combinations of reactant concentrations that were originally present will 
disappear. However, in addition, there will be products that contain neither 
fc12 nor /c2i, but contain both kyx and kyz. If either of these is a simple first -
order rate constant, the form of the rate equation will not be affected, but if 
both kyx and kyz are associated with reactant concentrations, e.g. kyxa and 
kyzb, then terms that contain ab that were absent from the rate equation for 
the original mechanism appear in the rate equation for the modified mechan-
ism. The important conclusion to be drawn from this discussion is that 
isomerization of an enzyme species has no effect on the form of the rate equa-
tion unless reactants can bind to both isomers. This conclusion means that 
most types of isomerization cannot be detected by steady-state kinetics 
(although they can be detected by transient-state kinetics: see Chapter 9) 
and that the rate constants that appear in the rate equation may actually be 
combinations of rate constants for several elementary steps of the mechan-
ism. As a 'rule of thumb,' it is usual to distinguish between isomerization of 
the free enzyme, which can be detected in principle by steady-state measure-
ments, and isomerization of transitory complexes, which usually cannot. 
Actually, this discussion may be academic, because steady-state measure-
ments have never successfully identified an isomerization, either of the free 
enzyme or of another species. In fact, in at least one instance, an isomerization 
has been shown to occur by other methods, but has failed to manifest itself 
in steady-state rate measurements. This aspect is discussed further in 
Section 5.10. 

The reason why reversible steps in a mechanism cannot be treated as 
equilibria is that any net flux through a step must have the effect of unbalanc-
ing any equilibrium that might otherwise exist. However, in a dead-end 
reaction, i.e. one connected to the rest of the mechanism at one end only, 
there is no net flux, and so there is no reason why equilibrium should not be 
maintained. Consider, for example, the mechanism discussed in Section 3.3, 
with the addition of a dead-end complex, EBQ: 

k+ia 

k+2b 

For every species except EBQ, the King-Altman analysis gives the same 
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expression as before, multiplied by /c_ 5 ; EBQ requires the original expression 
for EQ multiplied by k+5. Thus, [EBQ]/[EQ] = k+sb/k-s, and EQ, B and 
EBQ are in equilibrium. The rate equation for the mechanism with dead-end 
inhibition is therefore identical with the rate equation without such inhibi-
tion, except that the terms for EQ in the denominator must be multiplied by 
(l + fc+5fc//c_5). 

Finally, inspection can be used to establish a general principle about 
mechanisms that contain two species that cannot react in unimolecular steps. 
For example, in the following mechanism, E and E' react only in bimolecular 
steps: 

As every King-Altman pattern must contain steps from E or from E' or both, 
every term in the rate equation must contain at least one reactant concentra-
tion ; in other words, the rate equation must lack a constant. By an extension 
of this argument, if there are three such species, every term in the rate equa-
tion must contain at least two reactant concentrations. Mechanisms of this 
type are called substituted-enzyme mechanisms, and are discussed further in 
Chapter 5. 

3.8 Rate equations in coefficient form 

It is often convenient to express rate equations in coefficient form, as was 
done in Section 3.3 (equation 3.4). Firstly, the equation is simpler than that 
which contains rate constants; secondly, the rate constants may not be true 
individual rate constants, because there may be isomerizations that have 
not been detected; and thirdly, the coefficients are in principle measurable 
quantities. Nonetheless, it is important to be aware of any relationships that 
may exist between the coefficients. Consider the following two equations: 

v = 
Vs Vs 

K„ 

v = 
V[(Ls/KT)(l +s/KT) + (s/KR)(l +s/KR)-] 

L( l+s /K r ) 2 + ( l+s/KÄ)2 

(3.5) 

(3.6) 

in which Kml, Km2, L, KR and KT are all positive constants. Both equations 
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apply to enzymes that contain two active sites, but equation 3.5 assumes that 
these have different Km values and act independently, whereas equation 3.6 
assumes that they are related according to the symmetry model of Monod, 
Wyman and Changeux (1965; cf. Section 7.7). In both cases, the two sites are 
assumed to have identical catalytic constants. However, for the present pur-
pose, the meanings of the two equations are not important; the point to note 
is that in coefficient form the two equations are identical: 

c1s + c2s
2 

c3-fc4s + s2 

However, it would be wrong to conclude that they are indistinguishable: 
the difficulty with this equation is that it suppresses any relationships that 
may exist between the coefficients. Consider c3 and c4: for equation 3.5, they 
are given by 

C3 = ^ m l ^ m 2 

Because of the requirement that Kml and Km2 must both be positive, c3 and 
c4 are not completely independent, but are related by the inequality 

c\ 5* 4c3 (3.7) 
For equation 3.6, c3 and c4 are given by 

L + l 
c* = 

CA = 

KT KR 

L 1 

L 1 
+ 

IS 
K.j /C 

These two equations also imply a relationship between c3 and c4, which in 
this case is 

c\ < 4c3 (3.8) 

Apart from the special case where c\ = 4c3, equations 3.7 and 3.8 are contra-
dictory. Therefore, the original models defined by equations 3.5 and 3.6 do 
not overlap, and in any experiment it should be possible to exclude one or 
other of them. 
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4 
Inhibitors and Activators 

4.1 Reversible and irreversible inhibitors 

Compounds that reduce the rate of an enzyme-catalysed reaction when they 
are added to the reaction mixture are called inhibitors. Inhibition can arise 
in a wide variety of ways, however, and there are many different types of 
inhibitor. A class that is of little importance in enzyme kinetics (except as a 
nuisance) is that of irreversible inhibitors or catalytic poisons. Inhibitors of 
this type combine with the enzyme in such a way as to reduce its activity to 
zero. Many enzymes are poisoned by trace amounts of heavy metal ions, and 
for this reason it is common practice to carry out kinetic studies in the 
presence of complexing agents, such as ethylenediamine tetraacetate. This is 
particularly important in the purification of enzymes: in crude preparations, 
the total protein concentration is high and the many protein impurities se-
quester almost all of the metal ions that may be present, but the purer an 
enzyme becomes, the less it is protected by other proteins and the more 
important it is to add alternative sequestering agents. Irreversible inhibitors 
are occasionally used in a positive way. For example, poisoning by mercury-
(II) compounds has often been used to implicate sulphydryl groups in the 
activity of enzymes. However, this application is essentially qualitative and 
non -kinetic, and catalytic poisons will not be discussed further. 

A much more important class of inhibitors is that of reversible inhibitors. 
These inhibitors form dynamic complexes with the enzyme that have different 
catalytic properties from those of the free enzyme. The inhibited enzyme 
may have an increased Km value (competitive inhibition), a reduced V value 
(pure non-competitive inhibition), V and Km reduced in a constant ratio 
(uncompetitive inhibition), or some combination of these effects (mixed 
inhibition). 

As a basis for discussion, it is useful to examine a general scheme proposed 
by Botts and Morales (1953), which includes most of the simple types of 
inhibition as special cases: 
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In this scheme, there are four species, E, ES, EI and EIS, with six reactions 
between them. All of the simple cases can be generated by omitting some of 
the reactions: thus the inhibition is competitive (Section 4.2) if EIS and the 
reactions involving it are missing; it is uncompetitive (Section 4.4) if El is 
missing; and it is mixed (Section 4.3) if El and EIS both occur but are not 
directly interconvertible. The Botts-Morales scheme is most useful for 
discussing inhibitors that are not reaction products: although these form an 
important class of inhibitors and behave kinetically in a similar manner to 
non-product inhibitors, their relationship to the scheme is less obvious. 

Some workers make a distinction between a species El, in which the 
inhibitor is bound to the substrate binding site, and IE, in which it is bound 
to a different site. This distinction is not particularly helpful and complicates 
the scheme unnecessarily, because mechanisms do not normally arise in 
which both El and IE occur. In general, if EIS is a significant species, one can 
assume that the inhibitor and substrate bind to different sites. 

The Botts-Morales scheme also includes certain activator mechanisms, in 
which the added substance increases the reaction rate. It is therefore often 
referred to as a general modifier mechanism, where the term modifier embraces 
both inhibitors and activators. 

4.2 Competitive inhibition 

The commonest type of inhibition is termed competitive inhibition, because 
the simplest explanation of it is that the inhibitor binds to the same site on 
the enzyme as the substrate, forming an abortive (i.e. non-productive) com-
plex. In other words, the substrate and inhibitor compete for the same site, so 
that only one enzyme-inhibitor complex, El, is possible. In the simplest type 
of competitive inhibition, El is a dead-end complex, as it can break down 
only by returning to E + I. Consequently (cf. Section 3.7), its concentration is 
given by a true equilibrium constant, Kt = [E] [I]/[EI], which is termed the 
inhibition constant. In many of the more complex types of inhibition, including 
most types of product inhibition, the inhibition constant cannot be treated 
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as a true equilibrium constant because the enzyme-inhibitor complex is not 
a dead-end complex. 

The complete steady-state rate equation for simple competitive inhibition 
is as follows: 

Vs 
v = — (4.1) 

KJl + i/Kd + s l } 

where i is the free inhibitor concentration and V and Km have their usual 
meanings. The equation is of the form of the Michaelis-Menten equation, i.e. 
it can be written as 

J/app5 

V = 
KT + s 

where Kapp and K^p are the 'apparent' values of V and Km and are given by 
J/app _ y 

KT = Km(l + i/Kd 

V/Km 
KappyXapp = 

l + i/Kt 

Hence the effect of a competitive inhibitor is to increase the apparent value 
of Km by the factor (1 + i/K^ to reduce that of V/Km by the same factor, and 
to leave V unchanged. V/Km is mentioned explicitly here because in most 
situations (although not this one) its behaviour is simpler than that of Km. 

4.3 Mixed inhibition 

Most elementary accounts of inhibition discuss two types of inhibition only, 
competitive inhibition and non-competitive inhibition. Competitive inhibition 
is of genuine importance, but non-competitive inhibition is a phenomenon 
that does not occur in most practical situations and it need not be considered 
in detail here. It arose originally because the earliest students of inhibition, 
Michaelis and his collaborators, assumed that certain inhibitors acted by 
reducing the apparent value of V, but had no effect on Km. This effect would 
be an obvious alternative to competitive inhibition, and was termed non-
competitive inhibition. However, it is difficult to imagine a reasonable ex-
planation of such effects: one would have to assume that the inhibitor inter-
fered with the catalytic properties of the enzyme, but that it had no effect on 
the binding of substrate. This might be possible for very small inhibitors, such 
as protons or metal ions, but seems most unlikely otherwise. In fact, non-
competitive inhibition or activation by protons is common and there are 
several instances of non-competitive inhibition by heavy-metal ions. How-
ever, non-competitive inhibition by other species is very rare, and most of the 
commonly quoted examples, such as the inhibition of invertase by a-glucose 
(Nelson and Anderson, 1926) and the inhibition of arginase by various com-
pounds (Hunter and Downs, 1945), prove, on re-examination of the original 
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|/app _ 

J^app _ 

J / a p p ^ a p p = 

V 
l + i/K'i 

KJl + i/K,) 
l + i/K', 

V/Km 
1 i ,· / IS 

data, to be examples of mixed inhibition. In general, it is best to regard non-
competitive inhibition as a special, and not very interesting, case of mixed 
inhibition, which is discussed below. 

Mixed inhibition occurs when both Vapp and νρρ/Κ%ρ vary with the 
inhibitor concentration. In the simplest case the following equations apply: 

(4.2) 

(4.3) 

This type of inhibition can be accommodated by the Botts-Morales scheme 
if EIS does not break down to products and if all binding reactions can be 
treated as equilibria. In this case, Kt is the dissociation constant of El, K\ 
the inhibitor dissociation constant of EIS and Km the dissociation constant 
of ES, i.e. Ks. Actually, the deviations from these equations that occur if the 
binding reactions are not truly equilibria are usually very small, and con-
sequently one cannot use adherence to the equations as evidence that Xm, 
Kt and K'i are true dissociation constants. 

Mixed inhibition occurs much more commonly as a particular case of 
product inhibition. If a product is released in a step that generates an enzyme 
species other than that to which the substrate binds, product inhibition is 
expected to be in accordance with equations Α.2-ΑΛ. This conclusion is not 
dependent on any equilibrium assumptions, i.e. it is a necessary consequence 
of the steady-state treatment, as can readily be shown by the methods of 
Chapter 3. The simplest of many mechanisms of this type is one in which 
product is released in the second of three steps: 

E + S ^ ± E S ^ ± E' + P 
fe-l fc-2 

^+3 

More complex examples abound in reactions that involve more than one 
substrate or product, as will be seen in Chapter 5. In these cases, identification 
of Xj and K\ with dissociation constants is not very useful. Even in this simple 
example, Kt = (/c_1 + /c+2)/c+3//c_1/c_2 and K\ = (k+2 + k+3)/k_2, neither 
of which is an equilibrium constant except in special cases, such as fc + 3 <^ k + 1. 
If/c_x = fc + 3, Ktand K\ are equal, and equation 4.3 simplifies to K^p = Km. 
This is, of course, the condition for non-competitive inhibition, but there is 
no particular reason to expect k_x and k + 3 to be equal and so there is no 
particular reason to expect non-competitive inhibition to occur in this, or 
any other, case of product inhibition. 

Because of the rareness of non-competitive inhibition, some enzymologists 
have generalized the term to include mixed inhibition. There seems to be no 
advantage in doing this, and it is a most unfortunate development, as it has 
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added ambiguity to an already confused situation. In order to avoid this 
ambiguity, it is necessary to refer to non-competitive inhibition as pure non-
competitive inhibition, on the rare occasions when one wishes to refer to 
it at all. 

4.4 Uncompetitive inhibition 

The last of the simple types of inhibition to be considered is known, rather 
unhelpfully, as uncompetitive inhibition, and is characterized by equal effects 
on V and Km but no effect on V/Km: 

J^app 

V*pp/K*pp 

l + i/K', 
Km 

l + i/K't 

= V/Km 

Comparison of these equations~with equations 4.2-4.4 shows that uncompeti-
tive inhibition is an asymptotic case of mixed inhibition in which Kt approaches 
infinity. Hence it is the converse of competitive inhibition, which is the other 
asymptotic case of mixed inhibition in which K[ approaches infinity. 

Uncompetitive inhibition is predicted for the Botts-Morales mechanism 
in the special case in which El is not formed and EIS occurs as a dead-end 
complex. This implies that the inhibitor-binding site becomes available only 
after the substrate has bound. This could happen by an induced-fit mechanism 
(Section 7.6), and appears to be the best explanation of the observation of 
uncompetitive inhibition of alkaline phosphatase by L-phenylalanine (Ghosh 
and Fishman, 1966). In other cases, the inhibitor may bind to a site made 
available by the release of one product, as in the following mechanism, which 
is known as a substituted-enzyme mechanism (Section 5.2): 

EA 

E T 

EQ 
E'B 

k, 

T -►E' 

Θ 

In this mechanism, a dead-end inhibitor that binds only to E' will be un-
competitive with respect to one substrate, A, whereas an inhibitor that binds 
only to E will be uncompetitive with respect to the other substrate, B. 
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Uncompetitive inhibition is most common as a case of product inhibition, 
particularly for reactions with three or more products (Section 5.8). In 
general, a product acts as an uncompetitive inhibitor if there exists no re-
versible pathway between the enzyme form to which it binds and the enzyme 
form to which the substrate binds. 

4.5 Plotting inhibition results 

All of the types of inhibition that have been described in the three preceding 
sections are examples of linear inhibition, so-called because for all of them 
1/Kapp and K^p/V&pp display a simple linear dependence on the inhibitor 
concentration. Linear inhibition is also sometimes termed complete inhibi-
tion, because the velocity approaches zero if the inhibitor concentration is 
high enough. Other types of inhibition are possible, as will be seen in Section 
4.7, but here we shall confine our attention to linear inhibition. 

The properties of linear inhibitors are summarized in Table 4.1, where it 

Table 4.1 CHARACTERISTICS OF LINEAR INHIBITORS 

Type of inhibition Vapp V w / K 2 " K%p 

m KJX + ilK,) 
1 + i/Kt mK ' l) 

v/Km Kjg + i/Kd 

l + i/K, (1 + i/Ki) 

V/Km — — 
1 m i + i/κ; 

can be seen that the effects of inhibitors on Kapp and Vapp/K^p are simple, 
regular and easily remembered. In contrast, the effects on K*pp are complex 
and confusing, and so it is advisable for mnemonic purposes to regard Xapp 

as the ratio of Kapp and Vapp/K^p, rather than as a parameter in its own 
right. Any of the plots described in Section 2.5 can be used to diagnose the 
type of inhibition, as they all provide estimates of the apparent values of the 
kinetic parameters. For example, if plots of s/v against s are made at several 
values of i, the intercept on the ordinate (K^p/Vapp) varies with i if there is a 
competitive component in the inhibition, and the slope (1/Kapp) varies with ί 
if there is an uncompetitive component. Alternatively, if direct linear plots 
of Kapp against K*pp are made at each value of i, the common intersection 
point shifts in a direction that indicates the type of inhibition: for competitive 
inhibition, the shift is to the right; for uncompetitive inhibition, it is towards 
the origin; and for mixed inhibition, it is intermediate between these extremes. 
These plots are illustrated in Figure 4.1. 

Other plots are needed for determining the actual values of Kt and K\. The 
simplest approach is to estimate the apparent kinetic constants at several 
values of i, and to plot Xapp/Kapp and l/J/app against i. In each case, a straight 
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Competitive 

Figure 4.1 Effect of various types of inhibition on the location of the common intersection point 
(K£fp, \app) of the direct linear plot (cf. Figure 2.7) 

line is obtained, and the intercept on the / axis gives -K{ if K^p/Vapp is 
plotted or —K\ if 1/Kapp is plotted. Now, it may seem more natural to deter-
mine Kt by plotting K*™ rather than K^pp/Kapp against i, but this is not 
advisable for the following two reasons. It is valid only if the inhibition is 
competitive, and gives a curve rather than a straight line if the inhibition is 
mixed; it is also much less accurate, even if the inhibition is competitive, 
because K^v can never be estimated as precisely as KJl

pp/Kapp. 
Another method of estimating Kh introduced by Dixon (1953), is also in 

common use. If the full equation for mixed inhibition, 

Vs 

is inverted, we obtain 

1 

*m(i+*/*,.)+s(i+*/*;·) 

(xm+5) + (xm/xI.+s/x;.)i 

(4.5) 

Vs Vs 

so that a plot of l/v against i is a straight line. If two such lines are drawn at 
different values of s, the point of intersection can be calculated by equating 
the two expressions for l/v. It is found that the lines intersect at a point where 
i = —Ki. This method provides the value of K( for any of the linear types of 
inhibition. In uncompetitive inhibition, Kt is infinite and so the lines are 
parallel. 

Although the Dixon plot does not provide the value of K'h the uncompetitive 
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inhibition constant, this value can be found by plotting s/v against i at 
several i values (Cornish-Bowden, 1974). In this case, a different set of straight 
lines is obtained that intersect at i = — K\. Both types of plot are illustrated 
in Figure 4.2. 

Competitive 

Figure 4.2 Determination of {a) K^from plots of 7/v against i at various s values, and (b) K[,from 
plots ofs/\ against i at various s values: In the case of mixed inhibition, the point of intersection can 
be above the axis in the first plot and below it in the second, or vice versa, or, if Kj = K\ (pure 
non-competitive inhibition), on the axis in both plots 

If one wishes to determine both Kt and K[ from a single plot, one can do so 
(in principle) by means of a plot described by Hunter and Downs (1945). It is 
necessary to know the uninhibited velocity, v0, at each substrate concentration, 
as well as vi9 the inhibited velocity, but this does not usually present any 
problem in practice. Writing v as v( and Vs/(Km + 5) as v0, we can rearrange 
equation 3.5 to give 

IV; Km + s 
KJKt + s/K't 

(4.6) 
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In competitive inhibition, K\ 

IV: 

Vn ~ V: 

oo, and so this equation simplifies to 

= Ki(l + s/Km) 

which is the equation for a straight line with an intercept Kt on the ordinate. 
For mixed inhibition, the line defined by equation 4.7 is a rectangular hyper-
bola, but it still has an intercept Kt on the ordinate. Instead of increasing to 
infinity as s is increased, iVi/(v0 — vt) approaches a limiting value of K'h as 
illustrated in Figure 4.3. In practice, it is likely to be difficult to locate both 

K,-

JVj_ 

2K,K,'/{Ki*Ki'>\—j, 
Ki-

te) Kj<K'i 
Kr 

iv i 
Vo-Vi 

2ΚΐΚί/(Κι+φ 
Kl· 

(b) Ki>K'j 

Km 

Figure 4.3 Determination of both K{ and KJ from a single plot of iVi/(v0 — vj against s, for {a) 
Kj < KJ {predominantly competitive inhibition) and {b) Kj > Kj {predominantly uncompetitive 
inhibition): In each case, the plot is shown as a broken line except in the range s = 0.2Km to 
s = 2Km. This is done in order to emphasize that unrealistically long extrapolations are required 
for both inhibition constants to be estimated from this type of plot, unless they are approximately 
equal 

the intercept and the asymptote accurately, but if Km is known, one can readily 
calculate the less accurately defined inhibition constant from the fact that 
ivi/(vo — vi) is equal to 2/(1/Kt+ 1/Κ[), i.e. the harmonic mean of Kt and K\, 
when s = Km. Alternatively, one can plot iVi/(v0 — v^ against 1/s instead of s; 
in this case, the intercept on the ordinate is K\. 

It is noteworthy that the right-hand side of equation 4.6 does not contain 
the inhibitor concentration. Hence velocities can be measured at a haphazard 
collection of ί and s values, but the points should still lie on a single line in a 
plot of iVi/(v0 — v^ against s. Thus the plot is appropriate for data that could 
not be plotted in any other way. This may not seem to be a great advantage, 
but it means that one can explore a much wider range of i and s values than 
would be possible with a limited number of measurements if one used any of 
the other plots. This may be useful when it is experimentally difficult to carry 
out more than a few rate determinations. 

All of the plots described in this section are useful, but they are no substi-
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tute for computation if accurate values of the inhibition constants are 
required. Statistical problems arise whenever kinetic parameters are esti-
mated graphically, and may be just as serious in the case of inhibition plots 
as they are in the simpler cases that have been thoroughly investigated. 

4.6 Intuitive approach to linear inhibition 

For any mechanism, the most reliable method of determining which of the 
kinetic parameters is likely to be affected by an inhibitor is to derive the 
appropriate rate equation and examine it critically. Nonetheless, a more 
intuitive approach may also be helpful as a mnemonic. In order to introduce 
this, it is useful to examine the intuitive meanings of Km, V and V/Km. Km 

was originally used as a measure of the binding of substrate to the enzyme 
and, although this interpretation of Km must be used very cautiously, it is 
adequate for the present purpose. An inhibitor molecule that binds to the 
same site on the enzyme as the substrate must plainly reduce the capacity of 
the enzyme to bind substrate, and so must increase K^p. Provided that it has 
no other effect, it cannot alter the reactivity of any ES molecules that are 
formed, and thus cannot affect Fapp. The term competitive is obviously 
appropriate for this type of inhibitor. In a sense, it is unfortunate that the 
term is so appropriate because, if it were not so, it is doubtful whether the 
meaningless terms non-competitive and uncompetitive would ever have 
become current. These two terms are best regarded simply as labels, with no 
connection between form and meaning. 

V is a measure of the rate that would result if the enzyme existed wholly as 
ES complex. Any inhibitor that interferes with the breakdown of ES to 
products, whether by binding to one of the intermediates to form a dead-end 
complex or by reversing one of the steps by the law of mass action, must 
therefore reduce Fapp. These effects will normally reduce the relative amounts 
of free enzyme and ES complex, however, and will therefore also alter K^p. 
Thus any compound that interferes with the breakdown of ES to products 
may be expected to be a mixed inhibitor. 

V/Km is often regarded simply as a derived quantity, the ratio of V and 
Km, but it also has a much more fundamental meaning: it is the pseudo-first-
order rate constant for the reaction 

E + S->E + P 
The Michaelis-Menten mechanism simplifies to this mechanism if the con-
centration of the ES complex is insignificant, i.e. at very low substrate con-
centrations. No saturation behaviour can be detected under such conditions 
because the small number of ES complexes that are formed exist for such a 
short time that they do not reduce the free enzyme concentration significantly, 
and so do not alter the probability of collision between free enzyme and 
substrate significantly. It is for this reason that at low substrate concentra-
tions (s < 0AKm\ a plot of v against s approximates to a straight line of slope 
V/Km. The importance of this approximation in the context of inhibition is 
that the characteristic property of an uncompetitive inhibitor is that it has 
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no effect on Vapp/K^p. It is clear from the above discussion that uncompetitive 
inhibitors characteristically have negligible effects at very low concentrations 
of ES. When this is realized, it is not difficult to understand why uncompeti-
tive inhibition arises in the particular mechanisms that it does. As has been 
seen in the previous section, there are two of these mechanisms: in the first, 
the inhibitor binds exclusively to the ES complex or another intermediate, 
but not to the free enzyme. However, at very low substrate concentrations, 
the free enzyme is the only enzyme species present at any significant con-
centration, and so an inhibitor that binds only to other forms cannot have 
any effect. The second (and more important) situation where uncompetitive 
inhibition occurs is in cases of product inhibition where the reversible 
substrate-binding and product-release steps (shown as double-headed arrows) 
are isolated from one another on both sides by irreversible steps (shown as 
single-headed arrows), e.g. 

In this mechanism, P can inhibit only by binding to EQ. This is possible at 
high concentrations of A when one of the product-release steps is rate 
determining, but it is impossible at low concentrations of A, when E + A -► EA 
becomes the rate-determining step, and E is the only significant enzyme 
species. Thus P is an uncompetitive inhibitor in this mechanism, as it in-
hibits only at high concentrations of A. Individual steps in a mechanism can 
become irreversible either because a substrate is present at a saturating 
concentration (as B in this example) or because a product is present at a zero 
concentration (as Q at zero time in this example). 

4.7 Hyperbolic inhibition and activation 

Most of the enzyme inhibitors that have been studied have been interpreted 
as linear inhibitors, i.e. one of the types considered in the earlier part of this 
chapter. Nonetheless, it is likely that there are many more exceptions than 
have been recognized, because the Botts-Morales scheme is very plausible 
and it does not, in general, predict linear inhibition except under rather 
restrictive conditions. When considering the complete Botts-Morales scheme, 
it is convenient to treat inhibition and activation together, because the differ-
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ence between them is quantitative rather than qualitative and the same 
algebra applies to both. The symbol X will be used to represent any modifier, 
whether it be an inhibitor or an activator. Then, if all of the binding steps in 
the reaction are treated as equilibria, with dissociation constants as indicated 
in the following scheme: 

EXS- -*- EX*P 

the rate equation is 

v = 
(Kai + KatX/K'x)e0S 

Km(l+x/Kx) + s(l+x/K'x)
 (4J) 

Actually, this equation applies in practice even if the binding steps are not 
at equilibrium in the steady state, because the deviations from it that occur 
in this case are usually too small to be detected. Hence Km, Kx and K'x cannot 
be interpreted as equilibrium constants, even though they were assumed to 
be so in deriving the equation. 

Equation 4.7 is of the form of the Michaelis-Menten equation, with 

(kcat + k'catx/K'x)e0 J/apP _ 

J^app _ 

p a p p ^ a p p = 

l + x/K'x 

Km(l + */Kx) 
l+x/K'x 

(4.8) 

(4.9) 

(4.10) 
Km{\ + x/Kx) 

yaw increases with increasing x if k'cat > kcat. So at high s, when v -> Kapp, 
X is an activator if k'cat > kcat but an inhibitor if k'cat < kcaV At low s, 
v -► Kapps/K^pp, and so X affects the velocity according to equation 4.10: 
in this case, v*pp/K%p increases with x if k'cJK'x > kcJKx. It is therefore 
possible for a given modifier to be an inhibitor at low s and an activator at 
high s, or vice versa. Hence the distinction between activators and inhibitors 
becomes blurred when the full Botts-Morales scheme applies. 

Equations 4.8-4.10 are all of the same general form and in each case, if the 
left-hand side of the equation is plotted against either x or 1/x, the result is a 
rectangular hyperbola that does not pass through the origin. No amount of 
algebraic manipulation can convert these plots into straight lines, because 
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each contains three independent constants. However, the curves can be 
analysed approximately by the method indicated previously in Figure 4.3 
for a curve of the same form, although in general computation is more reliable 
[see Chapter 10). Because of the shapes of these curves, modifiers that require 
the full Botts-Morales scheme are often called hyperbolic activators or 
inhibitors. Some workers use the term partial inhibition, to indicate that 
enzyme activity is not abolished totally at a saturating concentration of 
inhibitor. 

Certain special cases are noteworthy. If k'cat = 0, the equations reduce to 
those for linear mixed inhibition (Section 4.4). If k'cat = kcat, we have hyper-
bolic competitive activation or inhibition. In this case, the term competitive is 
not really appropriate, as S and X can bind simultaneously and so hardly com-
pete with one another. The term comes from the fact that equation 4.8 reduces 
to Fa p p = kcate0 = V, just as in linear competitive inhibition. The two cases 
can be distinguished by the fact that in hyperbolic competitive inhibition 
Vapp/K*PP does not approach zero when x -► oo, and a plot of K%p/Vapp 

against x is a hyperbola and not a straight line. 
In order to diagnose hyperbolic inhibition clearly, it is necessary to measure 

the inhibition behaviour at several values of i spread over a wide range. 
Failure to do this is probably the main reason why hyperbolic inhibition has 
been reported so rarely. Only in two (admittedly common) cases can in-
hibitors be reasonably expected to be linear inhibitors, viz. inhibition by 
products of the reaction (see Chapter 5) and by close substrate analogues, 
i.e. compounds that are so similar to the substrate that competition for the 
same binding site is inevitable. Even close substrate analogues may be 
hyperbolic inhibitors, e.g. the inhibition of alcohol dehydrogenase by 
methanol (Wratten and Cleland, 1965). In this case, the binding site is pre-
sumably capacious enough to accommodate ethanol and methanol at the 
same time. For all other types of inhibitor, whether physiologically significant 
or not, hyperbolic inhibition should be regarded as the norm and linear 
inhibition a deviation from it (this attitude has not been common in the past, 
however). 

Enzymes that occupy key positions in the control of metabolism are often 
found to be inhibited or activated by compounds that bear no structural 
similarity to the substrates or products of the reaction. In many cases, there 
is good evidence that the binding sites for substrate and modifier are separate. 
This phenomenon is often called allosteric inhibition or activation, and bears 
an obvious similarity to hyperbolic inhibition or activation. However, 
allosteric enzymes often display other complex properties also, and are dis-
cussed in Chapter 7. In the context of metabolic control, the term effector 
is often used instead of modifier, in order to indicate more clearly that the 
effects are assumed to have a physiological significance. 

4.8 Non-productive binding 

Much of the information that exists about the general properties of enzymes 
has been obtained from the study of a small group of enzymes, the extra-
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cellular hydrolytic enzymes, including pepsin, lysozyme, ribonuclease and, 
most notably, chymotrypsin. These enzymes share various properties that 
make them eminently suitable for detailed study: they are abundant, easily 
crystallized,* stable, monomeric and can be treated as single-substrate 
enzymes, as the second substrate is water in each case. However, they also 
share the disadvantage, which must always be remembered when interpreting 
results, that they are all usually studied with simple artificial substrates that 
are much less bulky than their ill-defined and polymeric natural substrates. 
However, an enzyme that is capable of binding a polymer is likely to be able 
to bind a small molecule in many ways. Thus, instead of a single enzyme-
substrate complex that breaks down to products, there may be in addition 
numerous 'non-productive complexes' that do not break down. This is 
illustrated in the following scheme: 

where SE represents all non-productive complexes. This scheme is the same 
as that for linear competitive inhibition (Section 4.2) with the inhibitor 
replaced with substrate, and the rate equation (cf. equation 4.1) is 

v = 
k + 2e0s 

1 + 
Kt 

(4.11) 

+ S 

If the expected values of V and Km are defined as the values they would have 
if no non-productive complexes were formed, i.e. Fexp = k + 2

eo> K„p = 
(/c_! + k+2)/k + 1 (cf. 'pH-corrected' constants, Section 6.3), then equation 4.12 
can be rearranged to give 

v = 
Vs 

Km + s 

* But crystallinity is no longer regarded as a certain guarantee of purity for enzymes; for 
example, both trypsin and urease have been available for many years in the crystalline, but far 
from pure, state. 
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where 
p/exp 

ν = ι+κϊ*/κΛ 

m i+KS*/Kt 

V/Km = V"*IK%* 

Thus the Michaelis-Menten equation is obeyed exactly for this mechanism 
and so the observed kinetics do not indicate whether non-productive binding 
is significant or not. Unfortunately, it is often the expected values that are 
of interest in an experiment, because they refer to the main productive 
catalytic pathway. Hence the measured values of V and Km may be less, by 
an unknown and unmeasurable amount, than the quantities of interest. Only 
V/Km gives a correct measure of the catalytic properties of the enzyme. 

For highly specific enzymes, plausibility arguments can be used to justify 
the exclusion of non-productive binding from consideration, but for un-
specific enzymes, such as chymotrypsin, comparison of the results for different 
substrates can sometimes provide evidence of the phenomenon. For example, 
Ingles and Knowles (1967) measured the rates of hydrolysis of a series of 
acylchymotrypsins. They found, after allowing for differences in the inherent 
reactivity of the acyl groups, that for derivatives of L-amino acids, such as 
acetyl-L-tryptophanylchymotrypsin, the rate was fastest with large hydro-
phobic groups, but for the corresponding derivatives of D-amino acids the 
opposite result was observed. The simplest interpretation is in terms of non-
productive binding: for acyl groups with the correct L configuration, the 
large hydrophobic side-chains permit tight and rigid binding in the correct 
mode, largely ruling out non-productive complexes; but for acyl groups with 
the D configuration, the same side-chains favour tight and rigid binding in 
non-productive modes. 

Non-productive binding is not usually considered in the context of in-
hibition, indeed, it is usually not considered at all, but it is plainly a special 
type of competitive inhibition and it is important to be aware of it when 
interpreting results for several substrates of an unspecific enzyme. The term 
substrate inhibition is usually reserved for the uncompetitive analogue of 
non-productive binding, which is considered in the next section. 

4.9 Substrate inhibition 

For some enzymes it is possible for a second substrate molecule to bind to the 
enzyme-substrate complex, ES, to produce an inactive complex, SES, as 
shown at the top of p. 67. This scheme is analogous to that for uncompetitive 
inhibition (Section 4.5) and gives the following equation for the initial rate: 

k+2e0s Vs 

fk_1 + k+2\ , η , w / y , = Km + s + s2IKsi 
I — £ I + s(l + s/Ksi) 
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SES 

where Vand Km are defined in the usual way as k+2e0 and (k_l + k+2)/k+1, 
respectively. This equation is not of the form of the Michaelis-Menten 
equation, by virtue of the term in s2. This term becomes significant only at 
high substrate concentrations. Hence the velocity approaches the Michaelis-
Menten value when s is small, but approaches zero instead of V when s is 
large. By differentiating with respect to s and putting di;/ds to zero, it can 
readily be shown that the maximum velocity (not equal to V) occurs when 
s2 = KmKsi. The curve of v against s is illustrated in Figure 4.4 together with 
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Figure 4.4 Effect of substrate inhibition on plots of\ against s and ofs/\ against s: In both plots, 
the solid lines are calculated with Km = 7, V = 7, with no inhibition, and the broken lines are 
calculated with the same values ofKm and V, and Ksi = 30 
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a plot of s/v against s, which is a parabola instead of a straight line. Provided 
that Ksi is much larger than Km (as is usual), the plot of s/υ against s is almost 
straight at low values of 5, and can be used in the usual way to estimate V 
and Km. 

Substrate inhibition is not usually a significant phenomenon if substrate 
concentrations are kept at or below their likely physiological values, but it 
can become important at high substrate concentrations and provides a useful 
diagnostic tool for distinguishing between possible pathways, as is discussed 
in Section 5.6. 

4.10 Inhibitors of high affinity 

At the beginning of this chapter, a distinction was drawn between reversible 
and irreversible inhibitors. Although this is a useful distinction to make, it is 
theoretically objectionable because it implies a qualitative and absolute 
difference when actually many 'irreversible' inhibitors are simply reversible 
inhibitors with a very high affinity for the enzyme. Straus and Goldstein 
(1943) showed that it is possible to treat inhibitors of high affinity without 
introducing any arbitrary qualitative assumptions. It is simplest to consider 
first the case of an inhibitor binding to an enzyme in the absence of substrate: 

E + I «± El 
e0-y k-y Ki y 

Note that the free inhibitor concentration is not assumed to be the same as 
the total inhibitor concentration, i0. At equilibrium, the concentration, y, 
of the complex El is given by 

y = (e0-y)(i0-y)/Ki (4.12) 
This equation can be rearranged to give a quadratic equation for y, but it is 
more useful to consider the fraction, a, of total enzyme in unbound form, 
i.e. a = (e0 — y)/e0, as a is more likely than y to be directly measurable. 
Eliminating y from equation 4.12, and rearranging, we obtain 

ί0 = (1-φο + μ - lV. (4.13) 

This equation now provides the value of i0 necessary to give any value of a. 
Although it can be rearranged so as to show a in terms of i0, the result is 
much less manageable than the form shown. Equation 4.13 simplifies in two 
limiting cases: 

if *o < Kn 

ife0 > Kh 
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Thus the shape of the binding curve is a function of the enzyme concentration. 
Straus and Goldstein defined three 'zones' of inhibition behaviour, namely 
Zone A for the case when equation 4.14 applies, Zone C for the case when 
equation 4.15 applies and Zone B for the intermediate case when the full 
equation 4.13 is required. A range of binding curves is shown in Figure 4.5. For 

- 1 0 1 2 3 
Log(/O/ff/) 

Figure 4.5 Fraction of enzyme in unbound form, a, expressed as a function of total inhibitor con-
centration, i0, for the system E + I +* El, with dissociation constant Kb and various values of the 
total enzyme concentration, e0, as indicated 

small values of e0 (less than about ΟΛΚ^ the shape of the curve is independent 
of Kh as expected from equation 4.14. In steady-state kinetic experiments, 
enzyme concentrations are generally very low, typically in the range 10~1 0-
10"7M. Consequently, only inhibitors of very high affinity deviate signifi-
cantly from equation 4.14 in such experiments. However, a different situation 
probably applies in living cells: Srere (1968), for example, has found the 
cellular concentrations of several important enzymes to be in the range 
10" 7 -10~~ 4 M. Zone A behaviour may therefore be much less common in 
metabolism than it is in the test-tube, and many substrates and inhibitors 
may exist to a significant extent as enzyme-bound species. High enzyme 
concentrations are also usual in equilibrium binding studies and in transient-
state kinetic experiments; in both cases, it is likely to be invalid to assume 
that free and total inhibitor or substrate concentrations are equal. 

Equation 4.13 was derived for the equilibrium case, with no substrate 
present. If substrate is added, the behaviour becomes much more compli-
cated, because in all types of inhibition except pure non-competitive in-
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hibition the addition of substrate perturbs the binding of inhibitor. If the 
binding of inhibitor is very rapid, then there is no alternative to a full solution 
of the complicated equations that describe competitive inhibition in Zone B. 
Fortunately, ,in at least some cases involving inhibitors with high affinity, the 
release of inhibitor from the El complex is slow enough for it to be possible 
to ignore perturbation of the equilibrium by addition of substrate. Thus, for 
example, Myers (1952) was able to treat the inhibition of pseudo-cholines-
terase by 'Nu 683,' a potent competitive inhibitor of the enzyme, by means of 
equation 4.13. Effectively, therefore, the slowness of the reaction between the 
enzyme and inhibitor made the inhibition appear to be non-competitive. 
By considering only the case of 50% inhibition, i.e. a = 0.5, Myers converted 
equation 4.13 into the very simple expression 

i05 = Ki + 0.5e0 

where i0 5 is the value of i0 necessary for a = 0.5. Of course, this approach is 
valid only if the rate can be measured immediately after addition of substrate 
to the enzyme, and before the inhibitor is significantly displaced. 
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5 
Reaction Pathways 

5.1 Introduction 

Much of the earlier part of this book has been concerned with reactions of a 
single substrate and a single product. Actually, such reactions are rather rare 
in biochemistry, being confined to a few isomerizations, such as the inter-
conversion of glucose 1-phosphate and glucose 6-phosphate, catalysed by 
phosphoglucomutase. In spite of this, the development of enzyme kinetics 
was greatly simplified by two facts: firstly, the many hydrolytic enzymes can 
normally be treated as single-substrate enzymes, because the second sub-
strate, water, is always present in such large excess that its concentration can 
be treated as a constant; secondly, most enzymes behave much like single-
substrate enzymes if only one substrate concentration is varied. This will be 
clear from the rate equations to be introduced in this chapter, but the proviso 
exists in this case that Km for a single substrate has a physical meaning only if 
the constant conditions are both well defined and constant. 

The mechanisms of single-substrate reactions are not entirely trivial, be-
cause most realistic models of catalysis of isomerization require that the free 
enzyme be released in a different form from that which bound the substrate. 
Instead of the simple Michaelis-Menten mechanism, therefore, the mechan-
ism is likely to be 

E + S<±ES<±E' + P 
t I 

The final isomerization, E' -► E, is in principle detectable by product -
inhibition studies; but complications arise from the fact that it is impossible 
to prevent the back reaction from occurring when product inhibition is tested 
in a one-product reaction. This is discussed further in Section 5.10. 

There are three principal kinetic methods for elucidating reaction path-
ways : measurement of initial rates in the absence of product; testing the 
nature of product inhibition; and tracer studies with radioactively labelled 
substrates. These methods are discussed in this chapter, using a general two-
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substrate, two-product reaction as an example: 

A + B++ P + Q 

This equation represents by far the commonest type of reaction in bio-
chemistry, as it describes about 60% of all known enzyme-catalysed 
reactions. More complex reactions exist, with as many as four or more 
substrates, but these reactions can be studied by a simple extension of the 
principles developed for the study of two-substrate, two-product reactions. 

5.2 Survey of two-substrate, two-product reaction mechanisms 

Almost all two-substrate, two-product reactions are formally group-transfer 
reactions, i.e. reactions in which a group, G, is transferred from one radical, 
X, to another, Y: 

GX + Y i ± X + GY 

Wong and Hanes (1962) suggested that most reasonable possibilities for this 
transfer would be encompassed by the following scheme: 

It would not be expected that all of the steps shown would occur with any one 
enzyme, and indeed it is fortunate that very few enzymes follow such a 
complex scheme: the King-Altman analysis requires 96 patterns and gives a 
steady-state rate equation of extreme complexity, containing, for example, 
terms in [Y]3. Some biotin-dependent enzymes, such as methylmalonyl-CoA 
carboxyltransferase (Northrop, 1969) and pyruvate carboxylase (Barden 
et ai, 1972), seem able to undergo most or all of the reactions in the Wong-
Hanes scheme; but a single pathway, via EG, is strongly preferred, and many 
of the reactions can be treated as equilibria (cf. Section 3.6), so that experi-
mentally the kinetic behaviour of these enzymes is much simpler than a 
rigorous equation would suggest. 

Most enzymes obey mechanisms that are much simpler than the Wong-
Hanes scheme. The main division is between mechanisms that proceed 
through a ternary complex, EGXY, so called because it contains the enzyme 
and both substrates in a single species, and those that proceed through a 
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substituted enzyme, EG. Early workers, such as Woolf (1929, 1931) and Hal-
dane (1930), assumed that the reaction would proceed through a ternary 
complex, and that this could be formed by way of either of the two binary 
complexes, EGX and EY. In other words, the substrates could bind to the 
enzyme in random order, as illustrated in Figure 5.1. The rigorous steady-
state equation for this mechanism is complex, and includes terms in [GX]2 

and [Y]2. The contribution of such terms to the rate is very slight, however, 
and Gulbinsky and Cleland (1968) have shown by computer simulation that 
unless very implausible values are assumed for the rate constants the experi-
mental rate equation is of the same form as one derived on the assumption 
that all steps except the interconversion of EXG-Y and EX-GY are at 
equilibrium. If this assumption is made, no square terms appear in the rate 
equation, and for simplicity we shall use rate equations (for random-order 
mechanisms only) derived with the rapid-equilibrium assumption. However, 
it must be emphasized that the fact that such equations are obeyed experi-
mentally does not imply that the equilibrium assumption is correct, any 
more than the fact that most enzymes obey the Michaelis-Menten equation 
implies that the Michaelis-Menten assumption of equilibrium binding is 
usually correct. The step EXG · Y τ± EX · GY cannot be detected by steady-
state measurements (cf. Section 3.7), but it is logical to include it in the 
random-order mechanism as it is formally treated as rate-determining in 
deriving the rate equation. 

The non-productive complex, EXY, is not a necessary feature of the 
random-order mechanism, but it can normally be expected to occur, because 
if both EY and EX are significant intermediates there is no reason to exclude 
EXY. Another non-productive complex (not included in Figure 5.1) can 
occur if the transferred group G is not too bulky: EXG · GY can result from 
the binding of GY to EGX or of GX to EGY. This is less likely than the 
formation of EXY, however. 

It is now generally recognized that many enzymes cannot be regarded as 
rigid templates, as suggested by Figure 5.1. Instead, it is likely that the con-
formations of both enzyme and substrate are altered upon binding, in 
accordance with the 'induced-fit' hypothesis (Koshland, 1958, \959ab\ see 
also Section 7.6). Consequently, it may well happen that no binding site 
exists on the enzyme for one of the two substrates until the other is bound. 
In such cases, there is a compulsory order of binding, as illustrated in Figure 
5.2. (Actually this is reconcilable with a rigid-template model if the second 
substrate interacts strongly with the first substrate as well as with the enzyme. 
However, this would usually lead to a random order of binding with one 
pathway strongly favoured over the other.) If both substrates and products 
are considered, four different orders are possible, but the induced-fit explana-
tion of compulsory-order mechanisms leads us to expect that the reverse 
reaction should be structurally analogous to the forward reaction, so that 
the second product ought to be the structural analogue of the first substrate. 
Thus only two of the four possibilities are very likely. This is in accordance 
with observation, and, for example, in NAD-dependent dehydrogenase 
reactions, the coenzymes are usually found to be first substrate and second 
product. 
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Figure 5.1 Ternary-complex mechanism for a two-substrate, two-product reaction, assuming that 
the substrates bind to and the products are released from the enzyme in random order: The non-
productive complex EXY is likely to be kinetically significant only at high concentrations of both 
X and Y, and is often ignored in simple treatments 
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Figure 5.2 Ternary-complex mechanism for a two-substrate, two-product reaction, assuming that 
the substrates bind to and the products are released from the enzyme in a compulsory order: This is 
presumed to arise because the binding site for the second substrate becomes recognizable only after 
an appropriate change in conformation has been induced by the binding of the first substrate. The 
non-productive complex EXY is likely to be kinetically significant only at high concentrations of 
both X and Y, and is often ignored in simple treatments 
74 



SURVEY OF TWO-SUBSTRATE, TWO-PRODUCT REACTION MECHANISMS 

For the same reason as in the random-order case, the non-productive 
complex EXY is commonly observed in compulsory-order mechanisms, as a 
result of binding of X to EY, or of Y to EX. 

At an early stage in the development of multiple-substrate kinetics, 
Doudoroff, Barker and Hassid (1947) showed by isotope-exchange studies 
that the reaction catalysed by sucrose glucosyltransferase proceeded through 
a substituted-enzyme intermediate rather than a ternary complex. Since 
then, studies with numerous enzymes, including α-chymotrypsin, trans-
aminases and flavoenzymes, have shown that the substituted enzyme is a very 
important and common alternative to the ternary complex. The substituted-
enzyme mechanism is included in the Wong-Hanes scheme, and is shown 
schematically in Figure 5.3. In the normal ('classical') form of this mechanism. 

CJ 
EG 

rUSILn ΓΜΡΓΊ ^ ^ ΓΜΠΠΡΠ 
EY EGY EG-Y 

Figure 5.3 Substituted-enzyme mechanism for a two-substrate, two-product reaction: The sites 
for X and Y are assumed to coincide or overlap, in contrast to the case for ternary-complex mechan-
isms (Figures 5.1 and 5.2). The non-productive complexes EX and EY are likely to be kinetically 
significant only at high concentrations of X and Y, respectively, and are often ignored in simple 
treatments 

the formation of ternary complexes is prevented by the fact that the binding 
sites for X and Y are either the same or overlapping. For the transaminases, 
a major group of enzymes that obey this mechanism, all four reactants are 
structurally similar, so that it is reasonable to expect the binding sites for 
X and Y to be virtually identical and the second half of the reaction is there-
fore very similar to the reverse of the first half, e.g. 
glutamate + pyridoxal-enzyme +± intermediate(s) 

<=* a-ketoglutarate + pyridoxamine-enzyme 
oxaloacetate + pyridoxamine-enzyme ±̂ intermediate(s) 

<± aspartate + pyridoxal-enzyme 
In this mechanism, it is usually possible for substrates to bind to the 'wrong' 
form of the enzyme, resulting in substrate inhibition at high concentrations 

75 



REACTION PATHWAYS 

(Section 5.6). This is almost always true of E, X and Y, but less often of EG, 
GX and GY because of steric interference between two G groups. 

The substituted-enzyme mechanism is also a compulsory-order mechanism, 
but this is less important than with ternary-complex mechanisms because 
there is only one possible order, and no random-order alternative: although 
E can often bind X or Y, there is no way for the resulting complexes to break 
down to give GX or GY. 

As mentioned earlier, certain reactions catalysed by biotin-containing 
enzymes proceed predominantly by a substituted-enzyme mechanism, but 
these are atypical in that the sites for X and Y are independent, and ternary 
complexes occur as alternative intermediates. In the rest of this chapter (and 
in the literature), the normal form of the substituted-enzyme mechanism, 
with overlapping or identical binding sites for X and Y, is to be assumed 
unless otherwise stated. 

With any of the mechanisms that have been discussed, it is possible to 
assume as a special case that two or more of the steps are concerted, i.e. that 
they can be treated as a single step. For example, the Doudoroff-Barker-
Hassid mechanism, originally proposed (1947) for sucrose glucosyltrans-
ferase, is a special case of the substituted-enzyme mechanism: 

GX X 

Y GY 

and the Theorell-Chance mechanism, originally proposed (1951) for alcohol 
dehydrogenase, is a similar special case of the compulsory-order ternary-
complex mechanism: 

Y 

Although no species EGXY occurs as an intermediate in this mechanism, it 
must occur as a transition state, and this mechanism is no less a ternary-
complex mechanism than the usual types. 
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The concerted mechanisms are mainly of historic interest, because it is 
now usually possible to detect the existence of the omitted intermediates, but 
they also provide a conveniently simple formulation for examining the 
chemistry of the two types of mechanism. In the ternary-complex mechanism, 
a direct reaction between the two substrates takes place on the enzyme 
surface, as the attacking group Y displaces the leaving group X: 

H: 
Y* EGX EGY+X 

Although the enzyme appears to have no direct role in this mechanism, it 
undoubtedly fulfils two important functions: it constrains the two substrates 
to adopt suitable conformations and locations for reaction, and it polarizes 
the electrons in the substrates so as to make them more reactive. Koshland 
(1954) called this a single-displacement reaction. He pointed out its close 
analogy with the well-known SN2 (bimolecular nucleophilic substitution) 
reactions in organic chemistry and suggested that single-displacement 
reactions would normally be accompanied by inversion of the configuration 
at the substituted atom. 

Koshland referred to the substituted-enzyme mechanism as a double-
displacement reaction, as an initial displacement of X by an attacking group 
B on the enzyme is followed by a displacement of B by the second substrate Y: 

E + GX 

rB 

^ 

E*X 

r B : 
* · 

EG+Y E*GY 

This mechanism is analogous to reactions that involve 'neighbouring-group 
effects' in organic chemistry. The net effect of two inversions of configuration 
is to regenerate the original configuration at the substituted atom. 

Retention of configuration is also possible in a single-displacement 
reaction, if the attacking group approaches on the same side as the leaving 
group ('frontside attack'). This is the SNi (internal nucleophilic substitution) 
reaction and is extremely rare in organic chemistry, being largely confined 
to reactions that involve thionyl chloride or phosgene, but may be more 
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common in enzyme-catalysed reactions, given the unusual conditions that 
presumably exist on the enzyme surface. 

The stereochemistry of enzyme-catalysed reactions provides a useful tool 
for investigating reaction mechanisms, and is complementary to the kinetic 
methods that are discussed later in this chapter. However, kinetic and 
stereochemical tests need not give identical results: not only can single-
displacement reactions result in retention of configuration, in the event of 
frontside attack, but also double-displacement reactions can obey ternary-
complex kinetics, if the first leaving group X remains bound to the enzyme 
until after the second displacement. A reasonable mechanism in which this 
would happen would be one in which X remained attached to an acidic group 
A+ as long as the basic group B" was unavailable to form an ionic bond 
withA+ : 

B:--*A GX E T ^ O T * *A B -J( XA 
-« ► 

E EGX EGX 

B" \_ Y XA ßi-fa γ 

1 EX GY EX-GY EGX-Y 

The system of Wong and Hanes for representing group-transfer reactions 
with the symbols X, Y and G is very useful in the qualitative discussion of 
mechanisms, as in this section, because it provides a very clear picture of 
each detailed mechanism. However, for a quantitative description of kinetics 
it is rather less satisfactory, because it does not distinguish in an obvious 
way between substrates and products, and it does not lend itself to a short-
hand representation of reactant concentrations. For the remainder of this 
chapter, therefore, we shall return to the use of single letters, A, B . . . , P, 
Q . . . to represent reactants. In the compulsory-order ternary-complex 
mechanism A and Q are defined as the reactants that bind to the free enzyme, 
in the random-order mechanism the labelling of reactants is arbitrary, and 
in the substituted-enzyme mechanism A and Q bind to E, and B and P to E', 
although it is arbitrary which way round E and E' are defined. These rules 
can be extended in an obvious way to mechanisms that involve more than 
two substrates or products. 

5.3 Nomenclature and schematic representation of mechanisms 

Cleland (1963) has proposed a system for representing mechanisms schema-
tically. The various forms of the enzyme are written below a line, and arrows 
are drawn to show the addition of substrates and release of products. Thus 
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the compulsory-order ternary-complex mechanism is shown as 

Random-order steps are accommodated by a branched line, as in the random-
order ternary-complex mechanism: 

The forward reaction is found by reading from left to right and following the 
arrows, and the reverse reaction by reading from right to left and reversing 
the arrows. This system provides a compact method of representing mechan-
isms, and is particularly convenient for simple compulsory-order mechan-
isms. It is less convenient for mechanisms with random-order steps and 
inhibitory side reactions, and does not readily lend itself to the inclusion of 
rate constants. 

Cleland (1963) has also proposed a general nomenclature for enzyme 
mechanisms. Firstly, all two-substrate, two-product reactions are called bi bi 
reactions. Of these, the random-order ternary-complex mechanism is called 
simply random bi bi; the compulsory-order ternary-complex mechanism is 
called ordered bi bi, although this does not distinguish it (except by conven-
tion) from the substituted-enzyme mechanism, which is called ping pong bi bi. 
All mechanisms that require binding of every substrate before any product 
can be released (i.e. ternary-complex mechanisms in the two-substrate, two-
product case) are called sequential mechanisms. Conversely, mechanisms in 
which some products are released before every substrate has bound are called 
ping pong mechanisms. Mechanisms that involve isomerization of the free 
enzyme are called iso mechanisms. The terms uni, bi, ter, quad are used in 
ambiguous cases in order to define the numbers of substrate additions and 
product dissociations. 

The Cleland system can, in principle, be applied to mechanisms of great 
complexity, although in practice a description or a diagram is clearer. For 
example, a definition such as iso bi bi uni uni ping pong is unlikely to be under-
stood as easily as 'a three-substrate, three-product mechanism in which the 
binding of the first two substrates in compulsory order is followed by the 
release of two products, then the binding of the third substrate, release of the 
third product, and finally isomerization of the enzyme to its original form,' 
and a diagram is clearer than either: 
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5.4 Rate equations 

Steady-state kinetic measurements have proved to be of enormous value in 
distinguishing between the various reaction mechanisms for group-transfer 
reactions. The development of these methods was a considerable task, on 
account of the large number of possibilities and the relatively small kinetic 
differences between them. Segal, Kachmar and Boyer (1952) were among the 
first to recognize the need for a systematic approach, and derived the rate 
equations for several mechanisms. Subsequently, Alberty (1953, 1958) and 
Dalziel (1957) made major advances in the understanding of group-transfer 
reactions, and introduced most of the methods described in this chapter. 

As all steady-state methods for distinguishing between mechanisms depend 
on differences between the complete rate equations, it is appropriate to give a 
brief account of these equations before discussing methods. The equation for 
the compulsory-order ternary-complex mechanism was derived in Section 
3.3 as an illustration of the King-Altman method, giving 

v = epjc^b-^pq) 
c3 + c4a + c5b + c6 p + cnq + c8ab + c9ap 

+ cl0bq + clipq + cl2abp + c13bpq 

This equation contains thirteen coefficients, but these were defined in terms 
of only eight rate constants, and so there must be relationships between the 
coefficients that are not explicit in the equation. Moreover, the coefficients 
are without obvious meaning. Numerous systems have been used for re-
writing rate equations in more meaningful terms (see, for example, Alberty, 
1953; Dalziel, 1957; Bloomfield, Peller and Alberty, 1962; Cleland, 1963; 
Mahler and Cordes, 1966). Of these, the simplest to understand and use is 
probably that of Cleland, modified slightly in this book to accord with the 
recommendations of the Enzyme Commission of the International Union of 
Biochemistry (1961). For any mechanism, maximum velocities in the forward 
and reverse directions are written as Vs and V\ respectively, although the 
superscripts can be omitted in unambiguous cases; in addition, for each 
reactant, a Michaelis constant, K„, K Ĵ, etc., and an 'inhibition' constant, 
Κ · \ Kf, etc., are defined. The meanings of these will become clear in sub-
sequent sections of this chapter, but in general the Michaelis constants cor-
respond to Km in a one-substrate reaction, and the inhibition constants are 
related to (but not necessarily equal to) the Kt or K\ values measured in 
product-inhibition experiments. Under certain circumstances, the inhibition 
constants are true substrate-dissociation constants, and some workers 
therefore write Ks rather than Kt for them. 
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With this system, equation 5.1 becomes 
RATE EQUATIONS 

Vs ab V'pq 

1 + 
ab _ Klap 

K* ^ K*K% ̂  K*mK? " Κ? τ Κ,ΑΚ« " ^ , Α Κ ^ ? 
a , Ο *Sp a 

pq 
+ 

abp 
+ 

bpq 
K»K*mK? 

(5.2) 

where the kinetic parameters have the values shown in Table 5.1. 

Table 5.1 DEFINITIONS OF KINETIC PARAMETERS FOR THE TWO PRINCIPAL COMPULSORY-ORDER 
MECHANISMS 

Ternary-complex mechanism Substituted-enzyme mechanism 

Parameter 

E< 
k+1a 

K + 4 /c_4<? /c_2 

/c_3p 

±EA 

k + 2b 

EQ<= 
/c + 3 

. EAB 
- E P Q 

E 4 
fe+iQ 

k + 4 

E Q -
E ' B ^ 

fc-i 
/c_4g /c_2p 

* - 3 

EA 
ET 

/c + 2 

/c + 3 ^ 
E' 

V 

yr 

κϊ 

K 

$> 

ΚΪ 
Kf 
Kf 
K? 

^ + 3 ^ + 4^0 

K + 3 + K + 4 

k-lk.2e0 

k-i + k-2 

k+3k+4 

/c+1(/c + 3 + /c + 4) 

( Κ - 2 + ^ + 3 / ^ + 4 

^ + 2(^ + 3 + K + 4) 

k-ak-2 + k+J 
( / C _ 1 + / C _ 2 ) / C _ 3 

fc-ifc-i 
( / C _ 1 + / C _ 2 ) / C _ 4 

(/c_1+/c_2)//c + 2 

(/c + 3 + /c + 4)//c_3 
K + 4/ K _ 4 

k + 2^ + 4e0 

(k 

^ + 2 + ^ + 4 
k-ik-3e0 

* - l + * - 3 
-1 + κ + 2)κ + 4 

k + i(k + 2 + ^ + 4) 

^ + 2 ( ^ - 3 + ^ + 4) 

(* 
(k 
(k 
/c_ 

(* 

+ 2 + /C + 4)K + 3 

- l+^ + 2)/c_3 

- i + fc_3)fc_2 

1( /c_3 + /c + 4 ) 

_ 1 + / c _ 3 ) / c _ 4 

* - i / * + i 

* * - 3 / * + 3 

k + 2/k-2 

k + 4/ K _ 4 

* Although equation 5.4 does not contain K* it can be re-written so that it does by means of the identity KfK^/K*K% = 

The corresponding equation for the random-order ternary-complex 
mechanism is 

Vfab 
A 
i " m K^K B 

V'pq 
KlK? 

a b p q ab 
1 H 1 l· — 1 — 1 K,A Kf Kf K? K?K* 

pq 
KlK? 

(5.3) 
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This equation is derived by assuming that all steps other than the inter-
conversion of EAB and PQ are at equilibrium. With this assumption, 
Kf, Kf, Kf and K? are the dissociation constants of EA, EB, EP and EQ, 
respectively; K„ and K* are the dissociation constants of EAB for loss of A 
and B, respectively; and K„ and K% are the dissociation constants of EPQ 
for loss of P and Q, respectively. (Although K* and K% are absent from equa-
tion 5.3, they can be introduced because in this mechanism K„Kf is inter-
changeable with K^K*, and KfK® with Κ^Κγ. These substitutions cannot 
be made in equation 5.2, and it is partly for this reason that equation 5.2 has 
a more complex appearance, apart from the additional terms that it contains.) 
However, as equation 5.3 applies within experimental error whether the 
equilibrium assumption is correct or not, the Michaelis and inhibition con-
stants should not be interpreted as true dissociation constants. 

The equation for the substituted-enzyme mechanism is 

Vs ab Vpq 

a K*b p Kjq ab ap K*bq pq 

where the kinetic parameters are again defined in Table 5.1. In coefficient 
form, this equation is the same as equation 5.1 without the constant and the 
terms in abp and bpq, but the relationships between the parameters are 
different, and equation 5.4 has K*K% wherever Κ*Κγ might be expected from 
comparison with equation 5.2. 

The rate equations are generally similar for the variants of these mechan-
isms with concerted steps, but certain terms are missing. For example, in the 
Theorell-Chance mechanism, with the binding of B and release of P in a 
single step, no term in the rate equation can contain bp as a product. The rate 
equation for this mechanism is therefore the same as equation 5.2 without 
the terms in abp and bpq. An interesting prediction results if this mechanism 
is compressed still further so that Q is released in the same concerted step: 

In this case, all of the terms in ab, ap, bq, abp and bpq disappear from the 
denominator of the rate equation, and the velocity no longer approaches a 
limiting value if a and b are both increased to large values; instead, it appar-
ently increases to infinity as a and b are made infinite. Catalase (Chance, 
1963) appears to obey such a mechanism, and shows no evidence of saturation 
at high concentrations of both substrates. Similar behaviour is expected for 
an enzyme that obeys the Doudoroff-Barker-Hassid mechanism, but there 
do not appear to be experimental examples of this. 
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5.5 Initial-velocity measurements in absence of products 

If no products are included in the reaction mixture, the initial velocity for a 
reaction following the compulsory-order ternary-complex mechanism is 
given by the following equation: 

V KfK»+K»a+K*b+ab { j 

which is obtained from equation 5.2 by omitting terms in product concentra-
tions. The meanings of V, Kf, K* and Kf; become apparent if the equation is 
examined at extreme values of a and b. If both a and b are very large, the 
equation reduces to v = V, and thus V is the velocity when both substrates 
are saturating. It corresponds in an obvious way to the maximum velocity V 
in a single-srbstrate reaction. If b is very large, equation 5.5 simplifies to 

Va 
v = Κϊ + α 

i.e. the Michaelis-Menten equation. Hence K„ is defined as the limiting 
Michaelis constant for A when B is saturating. Similarly, K% is the limiting 
Michaelis constant for B when A is saturating. Kf is not the same as Kf;, and 
its meaning can be seen by considering equation 5.5 when b is very small (but 
not zero). Then the equation becomes 

(Vb/Kl)a 
v = Kf + a 

Kf is therefore the limiting value of the Michaelis constant for A when b 
approaches zero. It is also the true equilibrium dissociation constant of EA, 
because when b approaches zero the rate of reaction of B with EA must also 
approach zero; consequently, the binding of A to E can then be maintained 
at equilibrium, and so the Michaelis-Menten assumption of equilibrium 
binding is valid in this instance. Kf does not appear in equation 5.5, because 
B does not bind to the free enzyme. Nonetheless, measurement of initial rates 
in the absence of products does not distinguish A from B, because the form 
of the equation is unchanged if the substrates are interchanged. 

If the concentration of one substrate is varied at constant (but not saturat-
ing) concentrations of the other, equation 5.5 still simplifies to the Michaelis-
Menten equation; e.g. if a is varied at constant b, we have 

Vb 

,K» + b 
v = Ki Km + Kmb\ 

+ a κΐ+b 
but Kapp and K^p, the apparent values of V and Km, depend on the value 
ofb: 

Vb 
V" - - ^ .5-6) 
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j^app Ki Κτη + Κηϊ> 

Kl + b 

In a typical experiment, various values of b would be used, and at each value 
of b the velocity would be determined at various values of a. Then Kapp and 
K^p can be determined at each value of b exactly as in the one-substrate case, 
for example by a plot of a/v against a (cf. Section 2.5). Such a plot is called a 
primary plot, in order to distinguish it from the secondary plots that will be 
described shortly. Figure 5.4 shows a typical set of primary plots for an 

Figure 5.4 Primary plots ofa/v against a at various values ofb, for ternary-complex mechanisms, 
ignoring substrate inhibition: Plots o/b/v against b at various values of a. are similar 

enzyme that obeys equation 5.5. It is characteristic of ternary complex 
mechanisms that the lines intersect at a point given by a = —Kf, 
a/v = (K£ — Kf)/V. It must occur to the left of the a/v axis, but can be either 
above or below the a axis, as K„ can be either greater or less than K*. 

Equations 5.6 and 5.8 are of the same form as the Michaelis-Menten 
equation, i.e. plots of Kapp or Kapp/X^pp against a describe rectangular hyper-
bolas through the origin, and they can be analysed in exactly the same way. 
Thus equation 5.6 can be written as 
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J/aPP y y 

so that a secondary plot of b/Vapp against b is a straight line of slope 1/Kand 
intercept K*/V on the b/Vapp axis. Similarly, equation 5.8 gives 

bKT = KfKj K^b 

j/app y y 

so that a secondary plot of bK^pp/Vapp against b is a straight line of slope 
K^/Vand intercept Κ^Κξ/V on the bK^pp/Vapp axis. All four parameters, 
V, Kf, K* and K„, can readily be calculated from these plots, which are 
illustrated in Figure 5.5. 

Figure 5.5 Secondary plots for ternary-complex mechanisms: The plot ofb/Vapp against b is also 
applicable to substituted-enzyme mechanisms 

Equation 5.7 also describes a rectangular hyperbola, but the curve does 
not pass through the origin. Instead, K^p = Kf when b—►O. It is thus a 
three-parameter hyperbola, and cannot be re-drawn as a straight line. As in 
other cases, K^p is a much less convenient parameter to examine than 
K^pp/Vapp. 

One can equally well treat B as the variable substrate instead of A, making 
primary plots of b/υ against b at the different values of a. The analysis is the 
same, and so there is no need to describe it again. The only important 
difference is that Kf does not occur in equation 5.5, and K^K^/K^ occurs 
wherever one might expect Kf from a simple interchange of A and B. 

The primary and secondary plots are mainly useful in preliminary work 
and for illustrating results. For the definitive determination of kinetic 
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constants, it is preferable to use computational methods that permit all of 
the data to be analysed simultaneously. These methods are discussed in 
Chapter 10. 

For the random-order ternary-complex mechanism, the initial rate in the 
absence of product is also given by equation 5.5 and so it is impossible to tell 
whether the order of binding is compulsory or random from initial velocity 
studies alone. Because the mechanism is symmetrical in A and B, K^K* can 
be replaced with KfK„, and these two products are equal. If the equilibrium 
assumption is correct, i.e. if the breakdown of EAB to products is slow com-
pared with the other first-order steps, then Kf and Kf are the dissociation 
constants of EA and EB, respectively, and K„ and K% are the two dissociation 
constants of EAB, for loss of A and B, respectively. The graphical and com-
putational analysis is the same as for the compulsory-order mechanism. 

For the substituted-enzyme mechanism, the initial rate in the absence of 
product is given by 

Vab 
V ~ K*a+K*b+ab (5'9) 

The most striking feature of this equation is the absence of a constant from 
the denominator. (This was shown to be characteristic of all substituted-
enzyme mechanisms in Section 3.7.) A distinctive pattern results if either 
substrate concentration is varied: for example, if a is varied, the apparent 
values of V and Km are given by 

J/app _ Vb 

K app 
Ktb 

Kl+b 
j/app y 

Kapp KA 

Only Vapp varies in the same way as for the ternary-complex mechanisms. 
The important characteristic is that Vapp/K^p is constant, and equal to 
V/K„. Vapp/K^p is also constant when b is varied, but is then equal to 
V/K*. Primary plots of a/v against a or ofb/v against b form a series of straight 
lines intersecting on the a/v or b/v axis, as shown in Figure 5.6. This pattern is 
readily distinguishable from the patterns of primary plots exhibited by the 
ternary-complex mechanisms (Figure 5.4) except in the rare case where K* 
is much smaller than KA. 

The only secondary plot required for the substituted-enzyme mechanism 
is that of b/Vapp against b, which has the same properties as the same plot for 
the ternary-complex mechanisms (Figure 5.5). 

It is easy to understand why Vapp/K^p is independent of the concentration 
of the constant substrate when it is recalled (Section 2.3) that V/Km is the 
pseudo-first-order rate constant for the reaction at very low substrate 
concentrations. If a approaches zero, the rate of production of E' must be 
slow enough for B to be able to react with it as fast as it is formed, provided 
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Figure 5.6 Primary plots o/a/v against a at various values of b, for substituted-enzyme mechanisms, 
ignoring substrate inhibition: Plots ofb/\ against b at various values of a. are similar 

that b does not itself approach zero. As both product release steps are 
irreversible at initial time, the concentration of B can have no effect on the 
rate of the complete reaction under these conditions. In other words, Vapp/ 
K^p must be independent of b. By the same argument, Vapp/K^p must be 
independent of a when b is varied. In contrast, in the compulsory-order 
ternary-complex mechanism, the two binding steps are not separated by an 
irreversible step: no matter how small a may be, the rate of the step 
EA + B <=* EAB remains dependent on b; and no matter how small b may be, 
the rate of this step remains dependent on the concentration of EA, which is 
itself dependent on a. Similar arguments apply to the random-order ternary-
complex mechanism. 

5.6 Substrate inhibition 

The results in the previous section are strictly valid only at low substrate 
concentrations because, in all reasonable mechanisms, at least one of the four 
reactants can bind to the wrong enzyme species. In the substituted-enzyme 
mechanism, the substrate and product that lack the transferred group 
normally bind to the wrong form of the free enzyme; in the random-order 
ternary-complex mechanism, the same pair bind to the wrong binary 
complex; and in the compulsory-order ternary-complex mechanism, either 
the second substrate or the first product binds to the wrong binary complex. 
In this last case, substrate inhibition can occur in either the forward or the 
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reverse reaction, but not both, because only one of the two binary complexes 
is available. For convenience, we shall take B as the reactant that displays 
substrate inhibition for each mechanism, but the results can readily be 
transformed for other reactants if desired. 

The non-productive complex EBQ in the compulsory-order ternary-
complex mechanism was considered in Section 3.3. It can be allowed for in 
the rate equation by multiplying every term for EQ by (1 + k+5b/k_ 5), where 
k_5/k+5 is the dissociation constant of EBQ. Hence equation 5.5 becomes 

Κ?ΚΪ + Κ*μ + Κ& + (Α(1+ο/Κ% Χ ■ "' 
where K* is not the same as /c_ s/k+5 because the term in ab refers only partly 
to EQ. Depending on the relative amounts of (EAB-EPQ) and EQ at the 
steady state, Kft may approximate to fe_5//c+5, or it may be much greater. 
Thus substrate inhibition may not be detectable with this mechanism at any 
attainable concentration of B. 

Substrate inhibition according to equation 5.10 is effective only at high 
concentrations of A, and is thus uncompetitive. Primary plots of b/v against 
b are parabolic, with a common intersection point at b = — Kf'K^/K^. 
Primary plots of a/v against a are linear, but have no common intersection 
point. These plots are illustrated in Figure 5.7. 

Figure 5.7 Effect of substrate inhibition by B (with K* = iOKj) on primary plots for ternary-
complex mechanisms (cf. Figure 5.4) 

In the random-order ternary-complex mechanism, the concentration of 
EQ is zero in the absence of added Q if the rapid-equilibrium assumption 
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holds. As B cannot bind to a species that is absent, substrate inhibition does 
not occur with this mechanism unless Q is added. If the rapid-equilibrium 
assumption does not hold, there is no reason why substrate inhibition should 
not occur, but the form of it is difficult to predict with certainty because of 
the complexity of the rate equation. In this case, EBQ is not a dead-end 
complex (although some workers loosely refer to it as such) because it can 
be formed from either EB or EQ, and so it need not be in equilibrium with 
either. 

In the substituted-enzyme mechanism, the non-productive complex EB 
results from the binding of B and E. It is a dead-end complex, and so 
[EB]/[E] = b/K*, where K* is the dissociation constant of EB. Equation 5.9 
therefore becomes 

KZa + KÜMl+blKft + ab ' ' ' 
Inhibition according to this equation is most effective when a is small, and 
is thus competitive. Primary plots of b/v against b are again parabolic, but 
they intersect at b = 0, i.e. on the b/v axis. Primary plots of a/v against a are 
linear, with no common intersection point, but every pair of lines intersects 
at a positive value of a. These plots are illustrated in Figure 5.8. 

Figure 5.8 Effect of substrate inhibition by B (with Kj = ΙΟΚ^) on primary plots for substituted-
enzyme mechanisms (cf Figure 5.6) 

Substrate inhibition might seem at first sight to be a tiresome complication 
in the analysis of kinetic data. Actually, it is very informative, because it 
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accentuates the difference between ternary-complex and substituted-enzyme 
mechanisms, and is usually straightforward to interpret. As substrates 
normally bind better to the correct enzyme species than to the wrong species, 
substrate inhibition is rarely severe enough at low substrate concentrations 
to interfere with the analysis described in Section 5.5. Competitive substrate 
inhibition provides strong positive evidence for the substituted-enzyme 
mechanism. In contrast, the observation that primary plots intersect on the 
a/v or b/v axis is only negative evidence, as it can occur as a special case of a 
ternary-complex mechanism. Finally, when substrate inhibition occurs in 
the compulsory-order ternary-complex mechanism, it permits an identifica-
tion of the second substrate, which would otherwise require product-
inhibition studies. 

5.7 Reverse reaction 

If a reaction can be conveniently followed in the reverse direction, it is usually 
advantageous to do so in order to confirm and amplify the information 
gained about the mechanism from studying the forward reaction. For each 
of the group-transfer reactions considered, the reverse reaction is exactly 
analogous to the forward reaction. For example, omitting the terms in a and b 
from the complete rate equation for the compulsory-order ternary-complex 
mechanism (equation 5.2) yields 

- Vpq 
V = KlK* + K*p + Klq + pq

 ( 5 · 1 2 ) 

which can be compared with equation 5.5 for the forward reaction. The minus 
sign merely indicates that the equation refers to the reverse reaction and can 
be omitted unless one wishes to consider the complete equation with all four 
reactants present. 

Just as for single-substrate single-product reactions (Section 2.6), the 
kinetic constants for the forward and reverse directions of a multiple-sub-
strate reaction are related to the equilibrium constant K by Haldane re-
lationships. For any mechanism, the velocity at equilibrium must be zero, 
which in practice means that the numerator of the rate equation must be 
zero. So for equation 5.2, 

V'a^b^ Vrp^qa 

κϊκΐ κ*κ? 
i.e. 

= 0 

κ-^κ~ ™m (513) 

where α^, b^, etc., represent the concentrations after infinite time, i.e. at 
equilibrium. 

A second Haldane relationship can be found by rearranging the definitions 
of the kinetic constants shown in Table 5.1: 
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Equation 5.13 does not depend on the definitions of the kinetic constants, 
and so is obviously true for any mechanism described by equation 5.2, i.e. for 
mechanisms that include isomerizations of EA, EAB or EQ. Perhaps 
surprisingly, equation 5.14 is also general and so applies to mechanisms that 
include isomerizations. This is not obvious and is not easy to prove, but it is 
true, and results from the fact that not only is the net velocity zero at equi-
librium, but every individual step is also at equilibrium when the complete 
reaction is at equilibrium. 

For any mechanism, one Haldane relationship can always be found to 
express the requirement of zero velocity at equilibrium, and additional 
relationships usually result from considering the definitions of the kinetic 
parameters in terms of rate constants. Thus the substituted-enzyme mechan-
ism gives 

v KfK? V'KJK* ν'κϊκ? /κΛ2 κ:κ2 
KfKf VKfKl VK^Kf \V'J Κ£Κξ 

and similar relationships exist for other mechanisms. Although these 
relationships can, in principle, be used to distinguish between mechanisms, it 
is difficult to do so in practice because the kinetic constants cannot usually 
be measured with sufficient accuracy to give an unambiguous answer. A more 
practical use of Haldane relationships is to check the self-consistency of 
results obtained in other ways. If all of the kinetic constants can be estimated, 
it is very easy to test the Haldane relationships, and it is worthwhile to do so 
routinely in order to round off a series of experiments. 

Certain additional relationships can be found between the parameters of a 
rate equation, which can be valuable in favourable cases as they provide the 
only steady-state method for detecting isomerizations of intermediates. Such 
isomerizations do not affect the form of the rate equation (cf. Section 3.7), 
but they may remove constraints on the values that the parameters may have. 
For example, if the compulsory-order ternary-complex mechanism applies 
with no isomerizations, then the definitions shown in Table 5.1 can be 
rearranged to give 

VfKt = , . *_i 
νκϊ + k_2 

and, as /c_ i and k_2 must both be positive, it follows that 

' > 1 (5.15) 

and, by a similar argument, 
νκγ 

5* 1 (5.16) 

Unlike the Haldane relationships, these results are dependent on the defini-
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tions of the kinetic parameters, and are not necessarily true for mechanisms 
with isomerization steps: if EA isomerizes, equation 5.15 no longer applies, 
while if EQ isomerizes, equation 5.16 no longer applies. Thus the failure of 
either of these equations to hold experimentally provides evidence of 
isomerization of EA or EQ; but the converse does not hold, i.e. obedience to 
equations 5.15 and 5.16 does not rule out isomerization of EA or EQ. More-
over, this type of analysis does not indicate how many steps there may be in 
any isomerization, nor can isomerization of the ternary complex itself be 
detected. (For this information, measurements in the transient phase of the 
reaction are required, as is described in Chapter 9.) Nonetheless, this type of 
argument has been used to demonstrate the existence of isomerizations for 
potato phosphatase (Hsu, Cleland and Anderson, 1966) and a number of 
other enzymes. 

5.8 Product inhibition 

Of all the techniques that are available for elucidating reaction pathways, 
product-inhibition studies are among the most useful, being both informative 
and simple to understand and use. Provided that only one product is added 
to a reaction mixture, the term in the rate equation for the back reaction is 
zero (except for one-product reactions, which are rare, and are discussed in 
Section 5.10). The only effect of product addition, therefore, is to increase the 
denominator of the rate equation, i.e. to inhibit the reaction. The question of 
whether a product acts as a competitive, uncompetitive or mixed inhibitor 
cannot be answered in an absolute sense, because the answer depends upon 
which substrate is considered to be variable. However, once this has been 
decided, the question is very straightforward: the denominator of any rate 
equation can be divided into 'variable' and 'constant' terms, according to 
whether they contain the variable substrate concentration or not; the ex-
pression for Vapp depends on the variable terms, while the expression for 
V*pp/K^p depends on the constant terms, as shown in Section 5.5. So, if we 
recall the discussion of inhibitor types in Chapter 4, a product is a competitive 
inhibitor if its concentration appears only in constant terms, an uncompeti-
tive inhibitor if it appears only in variable terms and a mixed inhibitor if it 
appears in both. If the product can combine with only one form of the 
enzyme, only linear terms in its concentration are possible, and so the in-
hibition is linear, but non-linear inhibition is also possible if the product 
can also bind to 'wrong' enzyme forms to give dead-end complexes. 

Application of these principles to the equation for the compulsory-order 
ternary-complex mechanism (equation 5.2) shows that P is a mixed inhibitor 
whether A or B is the variable substrate, because the term in p is a 'constant' 
term and the term in abp is a 'variable' term for both substrates. On the other 
hand, q appears as a product with b, but not with a, and so Q is a competitive 
inhibitor with A as variable substrate, but a mixed inhibitor with B. The 
results for the back reaction are complementary: A is mixed for P, but com-
petitive for Q, while B is mixed for both P and Q. All of these inhibitions are 
linear provided that the dead-end complex EBQ can be ignored. The occur-
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rence of this complex causes terms in b2q and ab2 to appear in the rate equa-
tion (cf. Sections 3.3 and 3.7), with the result that inhibition by B in the back 
reaction becomes non-linear. 

Certain types of product inhibition are eliminated when the constant 
substrate is present at a saturating concentration. For example, if A is 
saturating, terms in equation 5.2 that do not contain a become insignificant 
and q disappears from the rate equation, so that Q ceases to be an inhibitor 
when b is varied. On the other hand, p remains in both the 'constant' and 
'variable' parts of the denominator, and so the type of inhibition is un-
changed. Conversely, if B is saturating and a is varied, P becomes an un-
competitive inhibitor while Q remains a competitive inhibitor. 

It is a simple matter to predict the product-inhibition characteristics of 
any other mechanism. As no new principles are required for the other two-
substrate two-product mechanisms, the derivation of the results for these 
will be left as an exercise. The most reliable method is to examine the form 
of the rate equation, but the same results can usually be obtained by con-
sidering the mechanism without deriving the equation. Competitive inhibi-
tion can arise in either of two ways: if the inhibitor binds to the same species 
as the variable substrate in such a way that each excludes the other; or if it 
displaces the variable substrate when it binds (as in the Theorell-Chance 
mechanism, for example). Both possibilities mean that binding of the 
inhibitor prevents the substrate from binding, and have the same effect on the 
rate equation. Uncompetitive inhibition occurs if there is no reversible path-
way between the binding of substrate and the binding of product. In two-
product mechanisms, uncompetitive inhibition is largely confined to the 
case already considered, inhibition by the first product in the compulsory-
order ternary-complex mechanism when the second substrate is saturating. 
However, in reactions with three or more products, uncompetitive inhibition 
is more common, and invariably occurs with at least one product in com-
pulsory-order mechanisms. Consider, for example, the following mechanism: 

ER + ^-—► E * - ^ ► 

v 
EQR 
E'C * " \ " -^ E' +-

EA 

Y 
- ^ ~ » 

EAB 
P 

If only one product is present, steps in which other products are released are 
irreversible. Thus Q is an uncompetitive inhibitor for either A or B as variable 
substrate; R is uncompetitive for C; but P is not uncompetitive for any 
substrate. P becomes uncompetitive with A, however, if B is made saturating, 
because then the binding of B to EA becomes irreversible. 

If a complete reaction is experimentally reversible, its mechanism cannot 
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contain any inherently irreversible steps. However, steps can become irrever-
sible in the two ways mentioned, either because a substrate is saturating or 
because a product is absent. This statement must be interpreted with caution, 
however. A saturating concentration is one that approaches infinity, not 
merely a large one, and the concentration required to make a step irreversible 
may be much higher than can be achieved experimentally. A similar caution 
applies to the absence of product; in some cases, particularly if the reaction 
is being studied in the thermodynamically unfavourable direction, the 
product may be such a potent inhibitor that its effects are noticeable in the 
very early part of the reaction. Fumarase provides a good example of this 
problem: Alberty et al. (1954) found that it was necessary to follow only the 
first few per cent of reaction in order to obtain even approximately constant 
initial rates. This was true at low substrate concentrations for both the 
forward and reverse reactions. 

5.9 Isotope exchange 

Study of the initial rates of multiple substrate reactions in both directions, 
and in the presence and absence of products, will usually eliminate many 
possible reaction pathways and give a good indication of the gross features 
of the mechanism, but it will usually not reveal the existence of any minor 
alternative pathways because these may contribute so little to the total rate 
that they are virtually undetectable. Further information is therefore 
required in order to provide a definitive picture. Even if a clear mechanism 
does emerge from initial-rate and product-inhibition experiments, it is 
valuable to be able to confirm its validity independently. The very important 
technique of isotope exchange, which was introduced to enzyme kinetics by 
Boyer (1959), can often satisfy these requirements. 

In order to apply the results of isotope-exchange experiments, one must 
normally make two important assumptions. These are usually true and are 
often merely implied, but it is as well to state them clearly in order to prevent 
misunderstanding. The first assumption is that a reaction that involves 
radioactive substrates follows the same mechanism as the normal reaction, 
with the same rate constants. In other words, isotope effects are assumed to 
be negligible. This assumption is generally true, provided that tritium is not 
used as a radioactive atom. Even then, isotope effects are likely to be negligible 
if the tritium atom is not directly involved in the reaction or in binding the 
substrate to the enzyme. The second assumption is that the concentrations 
of all radioactive species are so low that they have no perceptible effect on 
the concentrations of unlabelled species. This assumption can usually be 
made to be true, and is very important, because it makes the analysis of 
results much simpler than it would otherwise be. 

Isotope exchange can most readily be understood in relation to an 
example, such as the transfer of a radioactive atom (represented by an asterisk) 
from A* to P* in the compulsory-order ternary-complex mechanism: 
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EAB 
EPQ 

As this exchange requires the binding of A* to E, it can occur only if there is 
a significant concentration of E. Clearly, therefore, the exchange reaction will 
be inhibited by a high concentration of either A or Q, as they compete with 
A* for E. The effects of B and P are more subtle: on the one hand, the ex-
change reaction includes the binding of B to EA*, and so a finite concentra-
tion of B is required. On the other hand, if B and P are present at very high 
concentrations, the enzyme will exist largely as (EAB-EPQ) and so there 
will be no E to which A* can bind. One would therefore expect high con-
centrations of B and P to inhibit the exchange and it is not difficult to show 
that this expectation is correct. The rates of change of labelled intermediate 
concentrations can be written in the usual way, and set to zero according to 
the steady-state assumption: 

d [EA*] = /c + 1[E]fl*-(/c_1 + /c + 2fe)[EA*] + /c_2[EAB] = 0 
di 

at 
[EA*B] = /c + 2b[EA*]-(/c_2 + /c + 3)[EA*B] + fc_3/?*[EQ]= 0 

Putting p* = 0 and solving for [EA*B], we obtain 

/c+1/c + 2[E]a*b 
[EA*B] = 

k-^k^ + k + J + k 

The initial rate of exchange, v*, is given by /c + 3[EA*B], or 
/c+1/c + 2/c + 3[E]tf*fc 

(5.17) 
/c_1(/c_2 + /c + 3) + /c + 2/c + 3b 

In order to use this expression, [E] must be known, but this presents no 
problem if the kinetic constants for the unlabelled reaction have been 
determined. It is simplest (and most usual) to study isotope exchange under 
conditions such that the unlabelled reactants are at equilibrium. In this case, 
[E] is given by 

[E] = k+xa k+1k + 2ab k_A.q 

fc-i k_,k_ k + 4 

(5.18) 
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This expression can be substituted into equation 5.17 to give 

k + ik + 2k + 3e0a*b 
k+la k+1k + 2ab k_Aq\ 

1 + - — + -—— + - — [/c_1(/c_2 + /c + 3) + /e + 2/c + 3b] 
K_l K _ 1 K _ 2 K + 4 / 

p is not included in this equation because, if equilibrium is to be maintained, 
only three of the four reactant concentrations can be chosen at will. Any one 
of a, b and q can be replaced with p by means of the identity 

_ k+lk + 2k + 3k + 4, _ pq^ 

/c_1/c_2/c_3/c_4 ab 

If b and p are varied in a constant ratio (in order to maintain equilibrium) at 
fixed values of a and q, the effect on the exchange rate can be seen by realizing 
that the denominator of equation 5.19 is a quadratic in fc, whereas the numera-
tor is directly proportional to b. Hence the equation is of the same form as the 
equation for simple substrate inhibition (cf. Section 4.9). Therefore, as b and p 
are increased from zero to saturation, the exchange rate increases to a 
maximum and then decreases to zero. 

The equations for any other exchange reaction can be derived in a simi-
lar manner. It is not necessary to maintain the unlabelled reactants at 
equilibrium, although it is much simpler to do so, because equilibrium 
equations are much simpler than steady-state equations. In the example we 
have considered, if equilibrium were not maintained, equation 5.18 would 
have to be replaced with the corresponding steady-state expression, i.e. 
equation 3.3, which is much less simple. 

In the compulsory-order ternary-complex mechanism, exchange from B* 
to P* or Q* is not inhibited by A, because saturating concentrations of A do 
not remove EA, but in fact increase its concentration. Similar results apply 
to the reverse reaction, and exchange from Q* is inhibited by excess of P, 
but exchange from P* is not inhibited by excess of Q. 

The random-order mechanism is distinguished from the compulsory-
order mechanism by the fact that no exchange can be completely inhibited 
by the alternate substrate. For example, if B is present in excess, A* cannot 
bind to E but it can bind to EB instead, to give EA*B, which can break down 
to P* or Q*. As radioactive counting can be made very sensitive, it is possible 
to detect very minor alternative pathways by isotope exchange. The caution 
must be made, however, that isotope-exchange experiments require more 
highly purified enzyme than conventional kinetic experiments if valid 
results are to be obtained. The reason for this requirement is very simple. 
Suppose one is studying alcohol dehydrogenase, which catalyses the reaction 

ethanol + NAD+ <± acetaldehyde + NADH 

A small amount of contaminating enzymes is of little importance if one is 
following the complete reaction, because it is unlikely that any of the con-
taminants is a catalyst for the complete reaction. However, exchange be-
tween NAD+ and NADH is another matter: there are numerous enzymes 
that can catalyse this exchange, and one must therefore be certain that they 
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are absent if one wants to obtain valid information about alcohol dehydro-
genase. 

Isotopic exchange permits a useful simplification of the substituted-
enzyme mechanism, in that one can study one half of the reaction only: 

This mechanism is of the same form as the complete mechanism, with P* 
and A* replacing B and Q, respectively, but the kinetics are simpler because 
the rate constants are the same for the two halves of the reaction. This, of 
course, also provides an important qualitative distinction between the sub-
stituted-enzyme and ternary-complex mechanisms, as in ternary-complex 
mechanisms no exchange can occur unless the system is complete. This 
method of distinguishing between two types of mechanism was, in fact, used 
and discussed (Doudoroif, Barker and Hassid, 1947; Koshland, 1955) well 
before the introduction of isotope exchange as a kinetic technique. 

The possibility of studying only parts of mechanisms in this way is par-
ticularly valuable with more complex substituted-enzyme mechanisms, with 
three or more substrates. In such cases, any simplification of the kinetics is 
obviously to be welcomed, and this approach has been used with some 
success, e.g. by Cedar and Schwartz (1969) in the study of asparagine 
synthetase. 

5.10 Induced transport 

Britton (1966, 1973) has introduced a very different application of isotope 
exchange, known as induced transport, that is very helpful in identifying 
enzyme isomerization steps in one-product reactions. In most respects, one-
substrate, one-product reactions are much simpler than multiple-reactant 
mechanisms, but they possess the serious complication that one cannot 
study product inhibition without allowing for the back reaction. This makes 
the unequivocal identification of an enzyme isomerization very difficult. 
Now, the very nature of one-substrate one-product reactions, which are 
inevitably isomerizations, makes the occurrence of enzyme isomerization 
likely. The simplest way one can conceive of an enzyme catalysing, say, the 
interconversion of glucose 1-phosphate (GP) and glucose 6-phosphate (PG) 
is as a phosphoenzyme, E, that reacts to form a different phosphoenzyme, E\ 
with a third step in which E' isomerizes back into E. The complete mechanism 
can be represented as shown in scheme 1. This is not, of course, the only 
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possibility, and a second is suggested by the observation that phospho-
glucomutase from rabbit muscle requires the presence of catalytic amounts 
of glucose 1,6-diphosphate (PGP). This can be accounted for within Scheme 1 
by assuming that the PGP is needed in order to convert a dephosphorylated 

form of the enzyme into the active enzyme. But another possibility is 
shown in Scheme 2, where the enzyme operates by a ternary-complex 
mechanism in which PGP is both second substrate and first product. 

Scheme 2 

G P 
PGP 

^ < 
P_G_P G P 

I I I 

P G ^^^PGP 
L-J I I I 

Other mechanisms are also possible, but two will suffice for illustration. The 
important difference is that Scheme 1 includes an enzyme isomerization 
whereas Scheme 2 does not. The two mechanisms therefore ought to be 
readily distinguishable by product-inhibition experiments: if Scheme 1 is 
correct, PG and GP should be mixed inhibitors; if Scheme 2 is correct, they 
should be competitive with one another. Accordingly, Ray and Roscelli 
(1964) studied the reaction catalysed by phosphoglucomutase from rabbit 
muscle, and found the inhibition by both glucose phosphates to be purely 
competitive, with no detectable uncompetitive component. They concluded 
that either there was no enzyme isomerization or it was so fast that E and E' 
could be regarded as a single species. Nevertheless, Britton and Clarke 
(1968) were able to show unequivocally that Scheme 1 was correct, in an 
elegant series of experiments that are outlined below. 

Britton and Clarke followed the exchange of radioactive label between GP 
and PG, but their technique differed from the usual one in the important 
respect that they allowed the labelled compounds to reach equilibrium 
before adding a large excess of unlabelled reactant, either GP or PG. They 
then followed the progress of the labelled reaction away from equilibrium. 
This may seem contrary to the laws of thermodynamics, but is in fact possible 
because of the large amount of free energy being dissipated in the unlabelled 
reaction. With 14C-labelled reactants, G*P or PG*, they found that the 
labelled reaction proceeded in the opposite direction to the unlabelled 
reaction, an observation that is readily explained by Scheme 1: in order to 
be converted into PG*, G*P must first bind to E, but in the presence of a 
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large amount of GP the concentration of E is negligible. However, even if 
/c_3 and /c + 3 are large, a small amount of E' will always be available for PG* 
to bind to. Thus the reaction G*P -► PG* is prevented by the lack of E, but 
the reverse reaction PG* -► G*P is permitted by the presence of E'. Put 
another way, although there may initially be equilibrium between G*P and 
PG*, the enzymic reaction, represented by 

E + G*P<± E' + PG* 

is far from equilibrium because of the imbalance between E and E' produced 
by the high flux of unlabelled reactants. Hence a slow conversion of PG* into 
G*P should accompany the rapid conversion of GP into PG. Conversely, in 
the presence of a large excess of PG, the labelled reaction should proceed 
slowly from G*P to PG*. 

In Scheme 2, 14C exchange requires the participation of the unlabelled 
reactants, as follows: 

PG P 
G P G*P 

PG*P G P 
I—J 1 1 1 

GP PG* ^ Pl 

GP GP PGP 

^Λ 
P G P 6 7 
I I I l—J 

PG PG N „ sC. PG 
I I L. 

PG*P 

In the presence of a large excess of GP, the right-hand cycle can only proceed 
clockwise, while the left-hand cycle can only proceed anticlockwise. Thus 
transfer from G*P to PG* is possible, but the reverse is not. Hence, if this 
scheme is correct, transfer of label should proceed in the same direction as 
the unlabelled reaction, which is the contrary of what was observed. 

Britton and Clarke were able to confirm the correctness of Scheme I by 
studying 32P-labelled reactants, GP* and P*G. They found that transfer 
was very slow and proceeded in the same direction as the unlabelled reaction. 
With Scheme 7, transfer of label in the phosphate group requires a six-step 
reaction, including 32P-labelled enzyme as an intermediate: 

GP· 

p ■ V 
I I I 

P G P · 
I L_J 

PG 

-Z. 

PmG 

P" G P 
I I I 

GP 

P· 
I I I 

Now, in this scheme (reading clockwise), unlabelled PG must be released and 
unlabelled GP must be bound. Both of these reactions are facilitated by a 
large excess of GP, and the reverse reactions are prevented. Thus transfer 
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from GP* to P*G is possible, although not very favourable, because of a 
lack of free enzyme, whereas the reverse reaction is impossible. 3 2P transfer 
should therefore proceed very slowly in the same direction as the unlabelled 
reaction, as observed. 

In Scheme 2, transfer of 3 2P requires a complex arrangement of three 
cycles, but leads to the same qualitative conclusion, i.e. transfer should 
proceed in the same direction as the unlabelled reaction. However, the 
kinetics are different for the two schemes and Britton and Clarke found that 
their observations were consistent only with Scheme 1. 

In order to avoid unnecessary complication, induced transport has been 
discussed in a purely qualitative way, but the appropriate kinetic equations 
can be derived simply using an approach similar to that used for normal 
isotope exchange. Induced transport has not so far been widely applied, but 
the example of phosphoglucomutase should demonstrate the value of the 
technique in detecting features of mechanisms that product inhibition fails 
to detect. 
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6 
Effects of pH and Temperature on 
Enzymes 

6.1 pH and enzyme kinetics 

Of the many problems that beset the earliest investigators of enzyme kinetics, 
none was more important than the lack of understanding of hydrogen-ion 
concentration, [ H + ] . In aqueous chemistry, [ H + ] varies from about 1 M 
to about 10"1 4 M, which is an enormous range that is commonly reduced 
to more manageable proportions by the use of a logarithmic scale, 
pH = — log[H+] . All enzymes are profoundly influenced by pH, and no 
substantial progress could be made in the understanding of enzymes until 
Michaelis and his collaborators made pH control a routine characteristic of 
all serious enzyme studies. The stage had been set a few years earlier by 
S0rensen (1909), who had introduced the pH scale and described the use of 
buffers in a classic paper on the importance of the hydrogen-ion concentra-
tion in enzymic studies. Whatever doubts there may now be about the proper 
interpretation of pH effects in enzyme kinetics, the practical importance of 
pH continues undiminished: it is hopeless to attempt any kinetic studies 
without adequate control of pH. 

It is perhaps surprising that it was left to an enzymologist to introduce such 
a generally useful term as pH, and it is worthwhile to reflect on the special 
properties of enzymes that created the need for it before it had been required 
in the much more highly developed science of chemical kinetics. With a few 
exceptions, such as pepsin and alkaline phosphatase, the enzymes that have 
been most studied are active only in aqueous solution at pH values in the 
range 5-9. Indeed, only pepsin has a physiologically significant activity 
outside this middle range of pH. Now, in the pH range 5-9, the hydrogen-
and hydroxide-ion concentrations are in the range 1 0 " 5 - 1 0 " 9 M , i.e. very 
low, and are very sensitive to impurities. Whole cell extracts, and crude 
enzyme preparations in general, are well buffered by enzyme and other poly-
electrolyte impurities, but this natural buffering is lost when an enzyme is 
purified, and must be replaced with artificial buffers. Until this effect was 
realized, little progress in enzyme kinetics was possible. This situation can 
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be contrasted with the situation in general chemistry: only a minority of 
reactions are studied in aqueous solution and, of these, the majority are 
studied either at very low or very high pH, at which the concentration of 
either hydrogen or hydroxide ion is high enough to be reasonably stable. 
Consequently, the early development of chemical kinetics was little hampered 
by the lack of understanding of pH. 

The simplest type of pH effect on an enzyme, when only a single acidic or 
basic group is involved, is no different from the general case of hyperbolic 
inhibition and activation that was considered in Chapter 4. Conceptually, 
the protonation of a basic group on an enzyme is simply a special case of the 
binding of a modifier at a specific site and there is therefore no need to repeat 
the algebra for this simplest case. However, there are several differences 
between protons and other modifiers that make it worthwhile to examine 
protons separately. Firstly, virtually all enzymes are affected by protons, so 
that the proton is far more important than any other modifier. It is far smaller 
than any other chemical species and has no steric effect; this means that 
certain phenomena, such as pure non-competitive inhibition, are common 
with the proton as inhibitor but very rare otherwise. The proton concentra-
tion can be measured and controlled over a range that is enormously greater 
than that available for any other modifier and therefore one can expect to be 
able to observe any effects that might exist. Finally, protons normally bind to 
many sites on an enzyme, so that it is often insufficient to consider binding 
at one site only. 

6.2 Ionization of a dibasic acid 

Every enzyme contains a large number of acidic and basic groups. Of these 
groups, most are either fully deprotonated (aspartate and glutamate) or fully 
protonated (arginine and lysine) in the neutral pH range. However, there are 
always several groups with pKa values in the range 5-9, notably the imidazole 
group of histidine and the sulphydryl group of cysteine, but also N-terminal 
amino groups and certain other groups when 'perturbed.' Hence there are 
inevitably several groups that change their state of ionization when the pH 
is varied, and one might therefore expect the treatment of enzyme ionization 
to be correspondingly complicated. Fortunately, however, the pH behaviour 
of many enzymes can be interpreted as a first approximation in terms of a 
simple model, due to Michaelis (1926), in which only two ionizable groups 
are considered. The enzyme may be represented as a dibasic acid, HEH, with 
two non-identical acidic groups: 

HEH E ♦ 2H+ 
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With the dissociation constants defined as shown in this scheme, the con-
centrations of all forms of the enzyme can be represented at equilibrium in 
terms of the hydrogen-ion concentration, [ H + ] , or, more conveniently, h: 

[ E H - ] = [HEH] Klx/h 

[HE"] = [HEH]K12/h 

[ E 2 - ] = [HEH]KllK22/h
2 = \HEH\Kl2K2Jh2 (6.1) 

Two points should be noted about these relationships: firstly, although KX1 

and K2l both define the dissociation of a proton from the same group, HE" 
is more negative than HEH by one unit of charge and so one would expect 
it to be less acidic, i.e. K11 > K21, not Kll = K2l\ similarly, Kl2 > K22. 
Secondly, the concentration of E2~ must (by the second law of thermo-
dynamics) be the same whether it is derived from HEH via E H - or via HE" ; 
the two expressions for [E 2 " ] in equation 6.1 must therefore be equivalent, 
l.C A.^jA.22 = ■**■ 12·**-21· 

If the total enzyme concentration is e0 = [HEH] + [EH~] + [HE"] + 
[E" ] , then 

t H E H ^ = F-TT ΊΓΊΓ- {62) 

+ h + h2 

EEH"1 = κβ°+κΗ K K {63) 

+ h + h2 

tHE"^ = KefKh K K {6A) 

+ h + h1 

[E-] = «K»K»'h2 ,6.5) 

+ h + h2 

These expressions show how the concentrations of the four species vary 
with /i, and, by extension, with pH, and a typical set of curves is shown in 
Figure 6.1, with arbitrary values assumed for the dissociation constants. In a 
real experiment, one can never define the curves as precisely as this, because 
it is impossible to evaluate the four dissociation constants. The reason for 
this can be seen by considering the fact that [EH~]/[HE~] = K11/Kl2, 
i.e. a constant, independent of h. Thus no amount of variation of h will 
produce any change in [EH~] that is not accompanied by an exactly pro-
portional change in [ H E - ] . Consequently, it is impossible to determine how 
much of any given property is contributed by EH" and how much by HE" 
and for practical purposes we must therefore treat EH" and HE" as a single 
species, with concentration given by 

[EH-] + [HE-] = e0/(J^ + 1 + χ ) (6-6) 
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Figure 6.1 Relative concentrations of enzyme forms as a function ofpH,for an enzyme HEH with 
two ionizable groups: p K n = 6.1; pK12 = 6.9; pK21 = 7.0; pK22 — 7.8 

where Kx = K n + K12 = ([EH"] + [HE-])fc/[HEH]) and K2 = KnK22/ 
(Κ1Χ + Κ12) = [Ε2"]Λ/([ΕΗ-] + [ΗΕ_]). Κγ and X2 are called molecular 
dissociation constants, to distinguish them from Kll9 Kl2, K2l and K22, 
which are group dissociation constants. They have the practical advantage 
that they can be measured, whereas the conceptually preferable group 
dissociation constants cannot, because it is impossible to evaluate K12/K1V 

The expressions for [HEH] and [E2~] can also be written in terms of 
molecular dissociation constants: 

tHEH] - « · / ( * £ ; + k + ') 

We shall now examine equation 6.6 in more detail, because many enzymes 
display a 'bell-shaped' activity profile characteristic of this equation. There 
are several common misconceptions about this type of bell-shaped curve. 
Firstly, although it closely resembles a Gaussian curve from some values of 
pKx and pK2 (i.e. —log Κγ and —log K2), it is not, and has a noticeably flat 
maximum if pK2 — pK1 is greater than about 3. Secondly, the values of the 
pH when [EH"] -h [HE _ ] is half-maximal are not equal to pKx and pK2, 
and are a poor approximation to them unless p X 2 ~ P ^ i is farge (which it 
often is not). However, the mean of these two pH values is equal to 
j{pKx + pK2\ and is also the pH at which the maximum occurs. The relation-
ship between the half-width of the curve and pK2 — pKx is shown in Table 6.1, 
and some representative bell-shaped curves are shown in Figure 6.2. Thirdly, 
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Table 6.1 RELATIONSHIP BETWEEN THE HALF-WIDTH* AND THE pK DIFFERENCE FOR BELL-SHAPED 
p H PROFILES 

Half-width pK2-pK1 Half-width pK2-pKx Half-width pK2-pKl 

1.14t 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

— 00 

-1.27 
-0.32 

0.17 
0.51 
0.78 
1.02 
1.22 
1.39 
1.57 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

1.73 
1.88 
2.02 
2.15 
2.28 
2.41 
2.53 
2.65 
2.77 
2.88 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

3.00 
3.11 
3.22 
3.33 
3.44 
3.54 
3.65 
3.76 
3.86 
3.96 

* The half-width is defined as the difference between the pH values at which the ordinate has half of its maximum value. 
t The half-width cannot be less than 1.14 unless the pH profile derives from a more complex mechanism than that considered 
in the text, e.g. one that involves more than two ionizable groups. 

A 5 6 7 8 9 10 11 12 
pH 

Figure 6.2 Bell-shaped curves calculated from equation 6.6 with ρΚ^ = 6.0 and pK2 = 5.0-10.0: 
Each curve is labelled with the value of pK2 — pKi» <*$ this quantity determines its shape 

even supposing that pXx and pK2 are correctly estimated, the values of the 
group dissociation constants remain unknown, unless plausibility arguments 
are invoked, with unprovable assumptions. Finally, although the condition 
pK2 < p ^ i is not impossible, it is not common because it requires co-
operative protonation (Dixon, 1973; see also Chapter 7), i.e. the group 
dissociation constants disobey the relationships Kll > K2i and Kl2 > K22. 
In fact, if these relationships hold, Kx must be at least 4K2, i.e. 
pK2-pK1 ^ 0.6. 
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6.3 Effect of pH on enzyme kinetic constants 

By a simple extension of the theory for the ionization of a dibasic acid, one 
can account for the bell-shaped pH activity curves that are often observed 
for the enzyme kinetic constants V and V/Km. (The treatment of Km is more 
complex, as will be seen.) The basic mechanism is as follows: 

H,E 

K? 

H.ES 

Kf 

S + HE" —U HES" —¥-i HE" + P 

K\ Κψ 
ES2 

The free enzyme is again treated as a dibasic acid, H2E, with two molecular 
dissociation constants, K* and Xf, as in the previous section, and the 
enzyme-substrate complex H2ES is similar, but with dissociation constants 
Κψ and Κψ. Only the singly ionized complex, HES", is able to react to give 
products. Before proceeding further, it must be emphasized that this scheme 
includes several implied assumptions that may be over-simplifications. 
Firstly, the omission of substrate-binding steps for H2E and E2~ implies 
that the protonation steps are dead-end reactions, so that they can be treated 
as equilibria (see Section 3.6). However, this is nothing more than begging 
the question, because in most cases it is most unreasonable to postulate that 
S cannot bind directly to H2E and E2". If these steps are included, the 
protonation steps cease to be dead-end reactions, and can then be treated as 
equilibria only if they are assumed to be very rapid compared with other 
steps. This may seem to be a reasonable assumption, in view of the simple 
nature of the reaction, but it may not always be true, particularly if protona-
tion is accompanied by a compulsory conformation change. 

The scheme also implies that the catalytic reaction involves only two steps, 
as in the simplest Michaelis-Menten mechanism. If several steps are postu-
lated, with each intermediate capable of protonation and deprotonation, the 
form of the final equation is not affected, but any hope of interpreting experi-
mental results in a straightforward way is lost. (Compare the effect of intro-
ducing an extra step into the simple Michaelis-Menten mechanism, Section 
2.6.) 

Finally, the assumption that only HES" can break down to give products 
may not always be true, but it is likely to be reasonable for many enzymes 
because most enzyme activities do approach zero at high and low pH values. 
Moreover, it is widely believed that many enzymes owe their remarkable 
activity to the joint reactivity of an acidic and a basic group. 

Recognizing that the present scheme may be an optimistic representation 
of the actual situation, let us consider the rate equation that it predicts. If 
there were no pH behaviour, i.e. if HE" and HES" were the only enzyme 
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species, then the scheme would reduce to the ordinary Michaelis-Menten 
mechanism, with a rate given by 

k + 2e0s Vs 

/c_i+/c + 2 \ Km + s 

where V = k + 2e0and Km = (k-1+k + 2)/k + 1 are the pH -corrected constants, 
convenient fictions analogous to the 'expected' values discussed in the con-
text of non-productive binding (Section 4.8). In reality, however, the free 
enzyme does not exist solely as H E - , nor the enzyme-substrate complex 
solely as HES~. The full rate equation is 

6.4 pH independence of Km 

It is common for Km to be independent of pH in a pH range where V varies 
greatly. When this happens, it may be taken as evidence that Km is a true 
equilibrium constant (Haldane, 1930), but the arguments that lead to this 
conclusion require careful examination as it can scarcely be claimed that it 
is obvious. In fact, examination of equation 6.8 suggests that the condition 
Xf = Κψ, Κ\ = Κψ is sufficient for Km to be independent of pH, regard-
less of the values of k_x and k + 2. However, this is incorrect, because equation 
6.8 was derived from an unrealistic model, as discussed in the previous 
section. As a remedy, steps for the binding of substrate to H2E and E2" must 
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which we can write as 

where 

(6.7) 

(6.8) 

(6.9) 

V reflects the ionization of the enzyme-substrate complex; V/Km reflects the 
ionization of the free enzyme; while Km, as usual, is complicated, being 
affected by both. For V or V/Km, the dependence on pH follows a symmetri-
cal bell-shaped curve, of exactly the form discussed in the previous section. 
For Km, it is not generally profitable to attempt to analyse the pH behaviour 
unless it is very simple, as in the special case considered in the next section. 



EFFECTS OF pH AND TEMPERATURE ON ENZYMES 

be included. It is also worthwhile to separate binding steps from catalytic 
steps, i.e. to represent HES" and HEP" as distinct species. Then we can 
make the reasonable assumption that correct protonation is necessary for 
the second, catalytic, step but is of no importance in binding steps, i.e. 
protons have no effect on substrate or product binding, and vice versa. Then 
the model becomes 

S + H,E« 
* + i 

* i 

H,ES 

*M 

S + HE", >HES" 
* - i t 

K, 

S + E2 * + i 

K, 

:ES2 

H2EP^ 
K+3 

Ϊ Η , Ε + P 

k + : 

Ki 

=±HEP"<= 
K + 3 

Ki 

K, 

EP2 
k+2 

±HE" + P 

Ki 

- + C 2 - + P 

It is not easy to derive a steady-state rate equation for such a complex 
mechanism, even with the aid of the King-Altman method (Chapter 3), as 
there are no fewer than 384 patterns to be considered. Fortunately, the prob-
lem is greatly simplified by assuming that protonation and deprotonation 
steps are very fast compared with other steps and by making full use of the 
simplification described in Section 3.6. The rate equation turns out to be the 
Michaelis-Menten equation, with V and Km defined by 

V = 
k+2k+3e0f{h) 

(k + 2 + k.2)f(h) + k+3 

Km = 
1 

k7i *-! + 
^ + 2 ( ^ + 3 " k. 

(k+2+k„2)f(h) 
l)/W 1 
')+k+3] 

where/(/z) is the Michaelis function: 

f(h) = 1 
* i 

+ 1 + 
K-

(6.10) 

(6.11) 

(6.12) 

We must now examine equations 6.10 and 6.11 in order to determine the 
circumstances in which V can be pH dependent with Km simultaneously 
independent of pH. There are in fact two such circumstances: either 
/c + 3 = k_l5 or k + 2 is very small. In either case, Km simplifies to k_l/k + i, 
i.e. the equilibrium dissociation constant of HES". Thus the original asser-
tion is proved, provided that we accept that the model is reasonable. Actu-
ally, it is difficult to avoid reaching a similar conclusion even if the model is 
made more general: if more than three steps are included in the reaction, the 
algebra becomes more complicated but the conclusion is unaltered; if all 
of the acid dissociation constants for H2E, H2ES and H2EP are assumed to 
be different, it becomes very difficult to make Km independent of pH without 
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introducing much less reasonable assumptions at the same time. 
It is of interest that it is possible for Km to be equal to fc_ Jk + x without the 

need for k + 2
 t 0 be small, if fc_ x = /c+3. At first sight, this appears to be such 

an unlikely coincidence that it can be dismissed from serious consideration. 
However, when it is recalled that in many metabolic reactions the substrate 
and product are structurally very similar to one another, and may be ex-
pected to bind to the enzyme in essentially the same way, it will be realized 
that /c_x and k+3 may easily be equal, at least approximately, as they are the 
rate constants for closely analogous reactions. 

Finally, a careful comparison ought to be made between equations 6.7 
and 6.10, as equation 6.7 is more convenient for application to experimental 
results whereas equation 6.10 is more likely to represent the true situation. 
Substituting equation 6.12 for f(h) in equation 6.10 and rearranging, we 
obtain 

ock + 2e0 

where a = k + 3/{k + 2 + ^-2 + /c+3). Comparing this equation with equation 
6.7, we see that all of the experimentally measurable quantities Ϋ, Κψ and 
Κψ are perturbed from their theoretical values of k+2e0, K± and K2, respec-
tively, by the unknown factor a, i.e. 

V/k+2e0 = KJKf = Kf/K2 = a 

From its definition, a cannot exceed unity, but nothing else can be assumed 
about its value. Further, as measured dissociation constants are always 
molecular rather than group dissociation constants, it is questionable whether 
any valid information can be obtained about the protonation equilibria of 
enzymes from kinetic measurements in the steady state. This scepticism 
appears to be fully justified, and it is wise to be very cautious when interpret-
ing pH-dependence experiments. Nonetheless, almost all studies of the pH 
dependence of enzyme kinetics have been interpreted according to the model 
in Section 6.3, and measured dissociation constants have usually been 
regarded as group dissociation constants, but it is hard to find any clear 
evidence that seriously erroneous conclusions have been reached in any 
single example. 

6.5 Ionization of groups remote from the active site 

The pH behaviour of enzymes is almost always discussed in terms of a very 
small number of ionizing groups, often only one or two, yet all enzymes con-
tain many more than two ionizing groups and one may wonder whether a 
simple treatment can have any real validity. Part of the answer to this 
difficulty has been given already, in Section 6.2: many groups ionize to a 
significant extent only outside the experimental pH range, and these groups 
do not complicate the picture. The remainder can be divided into three 
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classes: those that are directly involved in the catalytic or binding activity of 
the enzyme; those that are indirectly involved, e.g. because they are close to 
the catalytic groups or because they are required in a particular ionic form in 
order to maintain the conformation of the enzyme molecule; and those that 
are remote from the active site and have no perceptible effect on the catalytic 
activity. Any reasonable model must allow for the ionization of groups in the 
first class, and usually for groups in the second class also. Provided that there 
are only a few of these groups, it may be possible to devise a model that is 
simple enough to be manageable. Groups in the third class can legitimately 
be ignored. This may seem intuitively to be obvious, but it is dangerous to 
regard any unproved assertion as obvious and it is worthwhile to demon-
strate the truth of this particular one, at least for a very simple case. 

Let us again consider the case of a dibasic acid, as in Section 6.2: 

H+ 

E2" * 2H+ 

Let us also assume that the two groups ionize independently of one another, 
i.e. K2l = Kll and K22 = Kl2, and that only one of the two groups has 
any relevance to the activity of the enzyme, so that (for example) EH" and 
E2~ are equally active and HEH and HE" have no activity. In this case, the 
activity is proportional to ([EH~] + [E2"]). Substituting K21 = K11 and 
K22 = K12 into equations 6.3 and 6.5, we obtain 

[EH ] + [E ] = „„ - j - + - j j j - I / I + _ + - J J -

='7Gfc + 1 

Thus K12 cancels from the equation, and the pH dependence is seen to be 
exactly what it would be if the second group had not been considered. 
Similar simplifications occur in all models that allow for the ionization of 
groups that are irrelevant to the activity. 

6.6 Change of rate-determining step with pH 

The Michaelis treatment in terms of a dibasic acid is the most commonly 
invoked explanation of bell-shaped pH activity curves, but it is not only, or 
even the simplest, explanation of such effects. An alternative approach is to 
assume that there is only one ionizable group to be considered, and that it 
must be protonated in one step of the reaction but deprotonated in another, 
as in the following example: 
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E" > HE 

It is clear from inspecting the mechanism that, at very high pH values, when 
the concentration of HE is vanishingly small, substrate binding must be very 
slow and hence rate determining, but at very low pH values, the concentra-
tion of EP becomes vanishingly small and so product release must be rate 
determining. The velocity of the reaction must therefore display a bell-shaped 
dependence on pH, approaching zero at both extremes. A similar conclusion 
can be reached more rigorously by considering the form of the rate equation. 
If the protonation steps can be treated as equilibria, the rate obeys the 
Michaelis-Menten equation, with pH-dependent parameters as follows: 

V = k + 2K™e0l{KE* + h) 

= (/c_1/z + /c+2KES)(KE + /i) 
/c+1/z(KES + /*) 

V/Km = /c+1/c + 2XE%/z/(/c_1/z + /c + 2XES)(XE + /z) 

It can be seen that V displays a simple pH transition, with a single ionization 
constant equal to KES, the acid dissociation constant of HES. V/Km displays 
a bell-shaped pH profile of the same shape as in the Michaelis treatment. 
Km, as usual, is complex and it is not very useful to discuss it separately. 

If the protonation steps are not treated as equilibria, it is still possible to 
derive a manageable rate equation for this mechanism, which is simply 
a compulsory-order ternary-complex mechanism with H + as both first 
substrate and first product. Thus the equation for that mechanism (equation 
5.2, with appropriate changes in symbols) applies. This more rigorous treat-
ment shows that V displays a bell-shaped profile as well as V/Km. 

6.7 Temperature dependence of enzyme-catalysed reactions 

In principle, the theoretical treatment discussed in Sections 1.6 and 1.7 for the 
temperature dependence of simple chemical reactions applies equally well to 
enzyme-catalysed reactions, but in practice several complications arise that 
must be properly understood if any useful information is to be obtained from 
temperature-dependence studies. Firstly, almost all enzymes become de-
natured if they are heated much above physiological temperatures and the 
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conformation of the enzyme is altered, often irreversibly, with loss of catalytic 
activity. Denaturation is chemically a very complex and only partly under-
stood process, and only a simplified account is given here. Only reversible 
denaturation is considered and it is assumed that equilibrium exists at all 
times between the active and denatured enzyme and that only a single 
denatured species need be considered. 

Denaturation does not involve rupture of covalent bonds, but only of 
hydrogen bonds and other weak interactions that are involved in maintaining 
the active conformation of an enzyme. Although each individual bond is far 
weaker than a covalent bond (about 20kJmol~1 for a hydrogen bond, 
compared with about 400 kJ mol"1 for a covalent bond), denaturation 
generally involves the rupture of a large number of them. The standard 
enthalpy of reaction, \H°, for denaturation is therefore often very high, 
typically 200-500 kJ mol"1. However, the rupture of a large number of 
hydrogen bonds greatly increases the number of conformational states 
available to an enzyme molecule and so denaturation is also characterized 
by a very large standard entropy of reaction, \S°. 
The effect of denaturation on observed enzymic rate constants can be seen 

by considering a simple example: 

E' 
K\\ 

II k 
E + S - E + P 

This scheme represents an active enzyme, E, in equilibrium with an inactive 
form, E', and the catalytic reaction is treated as a simple second-order 
reaction, as is usually observed at very low substrate concentrations. The 
equilibrium constant, K, for denaturation varies with temperature according 
to the van't Hoff equation (Section 1.6): 

-RTlnK = \G° = \H°-T\S° 
where R is the gas constant, T is the absolute temperature and AG°, \H° 
and AS° are the standard Gibbs free energy, enthalpy and entropy of reaction, 
respectively. This relationship can be re-written as an expression for K : 

K = exp(\S°/R-\H°/RT) 
The rate constant k is governed by the integrated Arrhenius equation: 

k = Aexp(-EJRT) 
where A is a constant and Ea is the energy of activation. The rate of reaction 
is given by v = /c[E] [S], but the active enzyme concentration, [E], needs to 
be expressed in terms of the total enzyme concentration, e0, and so 

v = ke0s/(l + K) 

The observed rate constant, /cobs, may be defined as fe/(l + K), and varies with 
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temperature according to the equation 

fcobs = Aexpj-EJRT) 
l + exp(AS0AR-Atf°/RT) 

At low temperatures, when &S°/R is small compared with \H°/RT, the 
exponential term in the denominator is insignificant, and so feobs varies with 
temperature in the ordinary way according to the Arrhenius equation. 
However, at temperatures above \H°/\S°, the denominator increases very 
steeply with temperature and the velocity decreases rapidly to zero. 

Although this model is over-simplified, it does show why the Arrhenius 
equation appears to fail for enzyme-catalysed reactions at high temperatures. 
In the older literature, it was common for optimum temperatures for enzymes 
to be reported, but the temperature at which fcobs is a maximum is of no 
particular significance, as the temperature dependence of enzyme-catalyzed 
reactions is often found in practice to vary with the experimental procedure. 
In particular, the longer reaction mixtures are incubated before analysis, the 
lower the Optimum temperature' is found to be. The explanation of this 
effect is that denaturation often occurs fairly slowly, so that the reaction 
cannot properly be treated as an equilibrium. The extent of denaturation 
therefore increases with the time of incubation, which is not usually a prob-
lem with modern experimental techniques, because in continuously assayed 
reaction mixtures time-dependent processes are usually very obvious. 

Because of denaturation, straightforward results can usually be obtained 
from temperature-dependence studies of enzymes only within a fairly small 
range of temperature, say between 0 and 50 °C, but even within this range there 
are important hazards to be avoided when one is interpreting results. Very 
little significance can be attached to studies of the temperature dependence of 
F, V/Km or Km unless the mechanistic meanings of these parameters are 
known. Thus, if Km is a function of several rate constants, its temperature 
dependence is likely to be complex combination of different effects, and of 
little theoretical significance or interest; but if Km is known with reasonable 
certainty to be a true dissociation constant, its temperature dependence can 
provide useful thermodynamic information about the enzyme. Similarly, the 
temperature dependence of V is of interest only if there is some knowledge of 
the step in the mechanism to which it refers. 

Another difficulty that must be borne in mind is that pH and temperature 
effects are not, in general, independent, because most ionization constants 
are temperature dependent. It is therefore likely to be difficult to interpret the 
results of temperature studies unless pH-corrected parameters (see Section 
6.3) are estimated. In this connection, it is as well to remember that Kw, the 
ionization constant of water, is highly temperature dependent, and pXw 
(i.e. —log Kw) is 14.0 only at 24°G At 37°C, where enzymic reactions are 
often studied, pKw = 13.62, and so neutrality at 37°C occurs at pH 6.8 
and not at pH 7.0. Much larger deviations occur at higher temperatures. 
This consideration is of the greatest importance in studies of reactions that 
involve OH" ions directly, particularly if enzyme-catalysed rates are com-
pared with base-catalysed rates. 
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6.8 Use of temperature for studying enzyme specificity 

The tone of the previous section was intended to discourage slapdash studies 
of the temperature dependence of enzyme-catalysed reactions, but it would 
be wrong to suggest that no useful information can be obtained from tem-
perature-dependence studies; on the contrary, if proper care is taken, very 
valuable information about enzyme reaction mechanisms can be obtained. 
Enzyme specificity is a particularly fruitful area of study. Provided that one 
can be sure that one is comparing like with like—for example kcat (i.e. V/e0) 
for one substrate must refer to the same step in the mechanism as kcat for 
another substrate if the two are to be compared—then comparison of the 
activation parameters A/f* and AS* is often much more informative than 
comparison of the simple rate constants. A classic study of this type was 
carried out by Bender, Kezdy and Gunter (1964) for the a-chymotrypsin-
catalysed hydrolysis of numerous substrates. This enzyme is generally 
acknowledged to operate by an acyl-enzyme mechanism, i.e. a substituted-
enzyme mechanism in which the substrate RCO-X first acylates the enzyme, 
HE: 

k k 
RCO-X + HE^-U (RCO-X HE) —¥Λ RCO-E + HX 

with the release of the first product HX, and the acyl-enzyme RCO-E then 
reacts with water to regenerate the free enzyme and release the second 
product, RCO-OH: 

R C O - E + H 2 0 — ^ R C O - O H + H E 

As k + 2 > k + 3 for some substrates and k + 2 <^ k + 3 for others, direct compari -
son of kcat values is likely to be meaningless, but by comparing the results for 
different substrates Bender, Kezdy and Gunter were able to determine the 
values of k+2 and k+3 separately. For example, a series of ester derivatives of 
acetyl-L-tyrosine share a common value of kcat that is different from the 
value of kcat found for a similar series of derivatives of acetyl-L-tryptophan. 
This suggests that k + 2 > k+3 and kcat = k + 3 for these substrates. By this 
type of method, they were able to measure /c+3 at different temperatures for a 
series of acylchymotrypsins. They found a wide variation between derivatives 
of specific substrates, such as acetyl-L-tyrosylchymotrypsin, and derivatives 
of non-specific substrates, such as acetylchymotrypsin. However, part of this 
variation may be due to differences in the inherent (non-enzymic) reactivity 
of the acyl groups, and to correct for this Bender, Kezdy and Gunter divided 
each value of k+3 by the rate constant for saponification (i.e. hydrolysis 
catalysed by hydroxide ion) of the corresponding ethyl esters. They then 
calculated A//* and AS* for the corrected values of fc+3, with the results 
shown in Table 6.2. 

The most striking characteristic of these results is the absence of any 
significant correlation between k + 3 and AH*. Indeed, AH* varies very little, 
and it appears that energetic considerations are not of great importance in 
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Table 6.2 ACTIVATION PARAMETERS FOR THE HYDROLYSIS OF SOME ACYLCHYMOTRYPSINS 
(after Bender, Kezdy and Gunter, 1964) 

A , Relative k + 3 AH* AS* 
Acyl group (corrected) kJ mol"1 J mol"1 K" 

Acetyl-L-tyrosyl 3 540 43.3 -56.3 
Acetyl-L-tryptophanyl 942 50.4 -83.2 
rrans-Cinnamoyl 15 47.0 -124.3 
Acetyl 1 40.7 -150.8 

this step of the reaction. Instead, the variation in k+3 is almost wholly the 
result of a wide variation in AS*. This implies that the rate of the reaction is 
determined mainly by the probability that the acyl group will adopt an 
appropriate orientation in the active site. For a bulky and specific group, 
such as the acyl-L-tyrosyl group, only a few orientations are possible, so that 
the correct one has a fairly high probability, but for a small and unspecific 
group, such as the acetyl group, very many orientations are possible, and the 
correct one has a much lower probability. This interpretation is supported 
by the fact that comparisons between acylchymotrypsins derived from L-
and D-amino acids (Ingles and Knowles, 1967) led to very similar conclusions 
about the specificity of chymotrypsin, as discussed in Section 4.8. 
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7 
Control of Enzyme Activity 

7.1 Necessity for metabolic control 

It is obvious that all living organisms require a high degree of control over 
metabolic processes so as to permit ordered change without precipitating 
catastrophic progress towards thermodynamic equilibrium. It is less obvious 
that enzymes that behave in the way described in other chapters are unlikely 
to be able to provide the necessary degree of control. Hence it is appropriate 
to begin by examining an important step in metabolism, the interconversion 
of fructose 6-phosphate (F6P) and fructose 1,6-diphosphate (FDP), with a 
view to defining the qualities that are needed in controlled enzymes. The 
conversion of F6P to FDP requires ATP: 

F6P + ATP - F D P + A D P 

It is catalysed by phosphofructokinase and is the first step in glycolysis that 
is unique to glycolysis, i.e. the first step that does not form part of other 
metabolic processes as well. It is thus an appropriate step for the control of 
the whole process, and there is little doubt that it is indeed the major control 
point. Under metabolic conditions, the reaction is essentially irreversible 
and, in gluconeogenesis, it is by-passed by a hydrolytic reaction, catalysed 
by fructose diphosphatase: 

F D P + H 2 0 -> F6P +phosphate 
This reaction is also essentially irreversible. The parallel existence of two 
irreversible reactions is of the greatest importance in metabolic control: it 
means that the direction of flux can be controlled by the activities of the two 
enzymes. A single reversible reaction could not be controlled in this way, 
because a catalyst cannot affect the direction of flux through a reaction, which 
is determined solely by thermodynamic considerations. 

If both reactions were to proceed uncontrolled at similar rates, there would 
be no net interconversion of F6P and FDP, but continuous hydrolysis of 
ATP, resulting eventually in death. This situation is known as a. futile cycle, 
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and in order to prevent it it is necessary either to segregate the two processes 
into different cells, or to control both enzymes so that each is active only when 
the other is inhibited. Although control is achieved by compartmentalization 
to some extent, it is not possible in tissues such as kidney and liver that can 
carry out both glycolysis and gluconeogenesis and some degree of control 
over the activities of the two enzymes is therefore essential in these tissues. 

We must now consider whether an enzyme that obeys the ordinary laws of 
enzyme kinetics can be controlled sufficiently precisely. For an enzyme that 
obeys the Michaelis-Menten equation, v = Vs/(Km + s\ a simple calculation 
shows that an increase in velocity from O.IK to 0.9V requires an increase in 
substrate concentration from KJ9 to 9Km, i.e. an 81-fold increase, in order 
to bring about a comparatively modest increase in rate. Similarly, for any 
enzyme that obeys the equation for simple competitive inhibition, 
v = Vs/\_Km(l + i/Ki) + s], an 81-fold increase in inhibitor concentration is 
required in order to reduce the velocity from 90% to 10% of the uninhibited 
value. These effects are amplified to some extent by altering inhibitor and 
substrate concentrations in concert; for example, with the above equation an 
increase in s from KJ3 to 3Km accompanied by a decrease in i from 3Kt to 
KJ3 brings about a 9-fold increase in v from V/\3 to 9F/13. However, even 
if there are several effectors acting in concert, the qualitative situation is the 
same: a drastic change in the environment is necessary in order to bring 
about even a modest change in rate. The requirements of metabolism are 
exactly the opposite: on the one hand, the concentrations of major metabolites 
must be maintained within small tolerances, and on the other hand, reaction 
rates must be capable of changing very greatly—probably more than the 
0.1F to 0.9 V range we have considered in many cases—in response to 
fluctuations within these small tolerances. 

Clearly, the ordinary laws of enzyme kinetics are inadequate for providing 
the degree of control that is necessary for metabolism. Instead, many of the 
enzymes at control points display the property of responding with excep-
tional sensitivity to changes in metabolite concentrations. This property is 
generally known as co-operativity, because it is thought to arise in many 
instances from 'co-operation' between the active sites of polymeric enzymes. 
This chapter deals principally with the examination of the main theories that 
have been proposed in order to account for co-operativity. 

The F6P-FDP interconversion reactions illustrate another important 
aspect of metabolic control, namely the fact that the immediate and ultimate 
products of a reaction may be different. Although ATP is a substrate of the 
phosphofructokinase reaction, the effect of glycolysis as a whole is to generate 
ATP, in very large amounts if glycolysis is considered as the route into the 
tricarboxylic acid cycle and electron transport. Thus ATP must be regarded 
as a product of glycolysis, even though it is a substrate of the reaction at 
which glycolysis is controlled. Hence ordinary product inhibition of phos-
phofructokinase by ADP produces the opposite effect from what is required: 
in order to permit the steady supply of energy, phosphofructokinase ought 
to be inhibited by the ultimate product of the pathway, ATP, as in fact it is. 
This type of inhibition cannot be provided by the usual mechanisms, i.e. by 
binding the inhibitor as a structural analogue of a substrate: in some cases 
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these would produce an unwanted effect, while in others the ultimate product 
of a pathway may bear very little structural resemblance to any of the 
reactants in the controlled step, e.g. L-histidine bears very little similarity to 
phosphoribosyl pyrophosphate, its biosynthetic precursor. In order to per-
mit inhibition or activation by metabolically appropriate effectors, many 
controlled enzymes have developed sites for effector binding that are separate 
from the catalytic sites. These sites are called allosteric sites, from the Greek 
for 'another solid,' in order to emphasize the structural dissimilarity between 
substrate and effector, and enzymes that possess them are called allosteric 
enzymes. 

Many allosteric enzymes are also co-operative, and vice versa, because 
both properties are important in metabolic control. However, this does not 
mean that the two terms are interchangeable: they describe two different 
properties and should be clearly distinguished. In many cases, the two 
properties have been recognized separately: haemoglobin was known to be 
co-operative for over 60 years before the allosteric effect of 1,2-diphos-
phoglycerate was recognized; the first enzyme in the biosynthesis of histidine 
has long been known to be allosteric, but it has not been reported to be 
co-operative. 

7.2 Binding of oxygen to haemoglobin 

Although haemoglobin is not an enzyme but a transport protein, it would be 
absurd to discuss co-operativity without first discussing haemoglobin. 
Firstly, its co-operative properties were recognized (Bohr, 1903) long before 
those of any enzyme, and a large part of the effort in developing theories to 
account for co-operativity has been directed specifically at understanding the 
co-operativity of haemoglobin. Secondly, the binding of oxygen to haemo-
globin can be directly measured at equilibrium, so that one does not have to 
rely on any questionable assumptions about the relationship between 
equilibrium binding and steady-state binding. Thirdly, haemoglobin differs 
from most co-operative enzymes in being fairly stable and easy to prepare in 
large amounts; it is thus very convenient for experimentation, and has been 
thoroughly studied. Finally, haemoglobin exists alongside myoglobin, a non-
co-operative analogue used for storing oxygen in muscle, permitting a direct 
comparison that is impossible in any other case. 

The binding of a ligand X to a simple monomeric protein E can be written 
as 

K 
E + X«±EX 

where K is the association constant, and the concentration of the complex at 
equilibrium is given by 

[EX] = /C[E][X] (7.1) 

Before proceeding further, it is necessary to draw attention to two major 
differences between the symbols used in this chapter and those elsewhere in 
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the book. Firstly, equilibrium studies, particularly for haemoglobin, are 
usually discussed in terms of association constants rather than the dissocia-
tion constants that are more familiar to biochemists. This simplifies the 
appearance of many equations and, in any case, conversion of results from the 
literature to a different system would probably create more confusion than it 
would avoid. However, one major theory öf co-operativity, the symmetry 
model of Monod, Wyman and Changeux (Section 7.7), is always discussed in 
terms of dissociation constants. Secondly, in discussing co-operativity, 
abbreviated symbols for concentrations, such as x for [X], will not be used 
because it is difficult to adapt this system to the concentrations of complicated 
species, such as EX4, and because in equilibrium studies the total protein 
concentration is often of the same order of magnitude as the total ligand 
concentration. As a result, the free ligand concentration may be much smaller 
than the total ligand concentration, in contrast to the usual situation in 
steady-state kinetics. 

We can define a quantity Y, known as the fractional saturation, as the 
fraction of binding sites that are occupied at any instant, i.e. 

number of occupied binding sites [EX] 
total number of binding sites [E] + [EX] 

Then, from equation 7.1, we obtain 

γ= ™ 2) 
1 + K\X] [ } 

This equation is the Langmuir isotherm (cf. Section 2.2), and describes a 
rectangular hyperbola through the origin when Y is plotted against [X], 
which approaches 7 = 1 when [X] is large. Thus it closely resembles the 
Michaelis-Menten equation, with l/K replacing Km, and 1 replacing V (by 
definition). 

If the fractional saturation of myoglobin is measured as a function of the 
partial pressure of oxygen, the results do indeed obey equation 7.2, but the 
results for a similar experiment with haemoglobin fall on a different curve, 
which is strikingly sigmoid or S-shaped, as illustrated in Figure 7.1. Equation 
7.2 cannot account for this curve and, from the time of Hill (1910) onwards, 
much effort has been devoted to the search for a plausible physical model 
that will account for it. 

Before discussing the various models for co-operativity that have been 
proposed, it is instructive to consider an important physical difference 
between myoglobin and haemoglobin. Myoglobin is a monomer, with a 
single polypeptide chain and a single oxygen-binding site per molecule, but 
haemoglobin is a tetramer, consisting of four polypeptide chains, or subunits, 
per molecule, each with an oxygen-binding site. Moreover, although there 
are two distinct types of subunit in the haemoglobin molecule, two a-
subunits and two ß-subunits, they are similar in structure, not only to one 
another but also to myoglobin; to a first order of approximation, haemo-
globin resembles a tetramer of myoglobin. It seems obvious with hindsight 
that the differences in binding properties between the two proteins are related 
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I.Or 

M . arbitrary units 

Figure 7.1 Comparison of a hyperbolic binding curve with a sigmoid curve 

to their different degrees of association, but it is worth noting that the detailed 
information about the structures is rather recent (Kendrew et a/., 1960; 
Perutz et al., 1960) and was not available to the earlier investigators of 
co-operativity. 

7.3 Hill equation 

Hill (1910) was concerned to account for the divergent values that he and a 
number of other investigators had observed for the molecular weight of 
haemoglobin. He suggested that monomeric haemoglobin might associate 
under the influence of salts, and that the oxygen-binding properties under 
different conditions might provide evidence of this association. If each 
polymer Eh binds h molecules of ligand in a single step: 

Ε»+ΛΧ*±ΕΑ 
then the concentration of the complex EhXh is given by 

[ Ε Α ] = ^[ΕΑ][Χ]Λ (7.3) 
where Kh is the appropriate association constant. For a solution that con-
tains a fraction λ of dimer and a fraction (1 —λ) of monomer, the fractional 
saturation is given by 

λκ2{χγ q-A^rx] 
1 + K 2 [ X ] 2 + 1 + KJCX] 

Hill found that this equation fitted some of the available binding data within 
experimental error, but he felt that it was unreasonable to restrict the model 
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to monomer and dimer and that a more realistic model should include higher 
polymers, but this led to an equation that was far too complicated to be 
manageable. Accordingly, he suggested, as a purely empirical equation, the 
following: 

K " M * (7.4, Y = 
1+KjpC]1· 

This is the equation that one would obtain from equation 7.3 by assuming 
that the protein exists solely in the two forms ΕΛ and EhXh. Hill found that 
this equation, now known as the Hill equation, fitted all of the available data 
very accurately, with different values of h in the range 1.0-3.2. 

If equation 7.4 is rearranged as follows: 
Y =Kh[xf 

log 

\-Y 

Y 

it can be seen that a plot of log 

= logKfc + Älog[X] 

Y 

(7.5) 

against log[X] should be a straight 
Kl-Y) 

line of slope h. This plot, which is illustrated in Figure 7.2, is known as the 
2r 

ΐ 

-2 

/ ' 

/ 
/ 

/ 
/ 

-3 
Log [X] 

- 2 -1 

Figure 7.2 Hill plot: The line is drawn according to the Hill equation (equation 7.5), and does not 
fit the points exactly except in the middle of the range. It is often difficult to make measurements 
outside the range —1 to +1 on the ordinate, which corresponds to a range 0.09-0.91 in the value of Y 

Hill plot and provides a simple means of evaluating h and Kh. It has been 
found to fit a wide variety of binding data remarkably well for values of Y in 
the range 0.1-0.9, but deviations always occur at the extremes (as indicated 
in Figure 7.2) because equation 7.4 is at best only an approximation of a 
more complex relationship. 
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Hill was careful to disclaim any physical meaning for Kh and h9 but many 
more recent workers have supposed that h ought to be equal to n, the number 
of subunits in the fully associated protein. They have accordingly been 
puzzled that h is generally non -integral, and is rarely equal to n. However, as 
there is no reason why h should be an integer, it is in no way surprising if it is 
not. For reasons that will become clear when the Adair equation is examined 
in the next section, h cannot exceed n, so it does provide a lower limit for n. 

The exponent h is now generally known as the Hill coefficient. It is widely 
used as an index of co-operativity, as the greater the value of h the greater is 
the degree of co-operativity. Taketa and Pogell (1965) have suggested a differ-
ent parameter, the co-operativity index, RX9 defined as the ratio of the [X] 
values required for Y = 0.9 and Y = 0.1. Thus Rx has a more obvious 
experimental meaning than h, and is more convenient for discussing the 
properties of co-operative proteins in relation to their physiological role. Rx 
has the further advantage that it is a purely empirical measure, not based on 
any theoretical model of dubious validity. The relationship between the two 
indexes can be obtained by substituting 7 = 0.1 and Y = 0.9 into equation 
7.4 and solving for [X] in each case: 

Rx = 811/Λ 

This expression is only as accurate as equation 7.4, of course, but that is 
sufficient for most purposes. Some values calculated from it are shown in 
Table 7.1. 

Table 7.1 RELATIONSHIP BETWEEN THE TWO INDEXES OF CO-OPERATIVITY 

The table shows the relationship between the Hill coefficient, h, and the co-operativity index, 
Rx, suggested by Taketa and Pogell (1965). The values are calculated on the assumption that 
the Hill equation holds exactly. 

h 

0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 
6.0 
8.0 
10 
15 
20 

Rx 

6 560 
1520 
533 
243 
132 
81.0 
18.7 
9.00 
5.80 
4.33 
3.51 
3.00 
2.41 
2.08 
1.73 
1.55 
1.34 
1.25 

Negatively 
co-operative 

Non-co-operative 

(Positively) 
^ co-operative 
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7.4 Adair equation 
ADAIR EQUATION 

Adair (1925a,b), after determining that the molecular weight of haemoglobin 
was about four times greater than had previously been thought, suggested 
that there were four oxygen-binding sites per molecule, and that these sites 
were filled in a four-step process, rather than in the concerted manner 
assumed by Hill. In this case we have: 

4Kl Ε + Χ<=±ΕΧ 

EX+X<LJEX2 

EX2 + xJ=»EX3 

EX3 + xJ=±EX 4 

where the association constants are intrinsic (site) constants rather than 
molecular constants. When defined in this way, all four constants would be 
equal, i.e. Kl = K2 = K3 = X4, if the four binding sites were identical and 
acted independently of one another. 

For Adair's model, the concentrations of the various species are given by: 
[EX] = 4K1[E][X] 
[ E X 2 ] = | / C 2 [ E X ] [ X ] = βκ,κ^Ε^χγ 

[EX3] = §K3[EX2][X] = 4K1K2K3[E][X]3 

[EX4] = i/C4[EX3][X] = Κ,Κ,Κ,Κ^Ε^Χγ 

These lead simply to the following expression for the fractional saturation: 
number of occupied sites _ [EX] + 2[EX2] + 3[EX3] + 4[EX4] 

total number of sites ~ 4([E] + [EX] + [EX2] + [EX3] + [EX4]) 
Ki [X] + 3*t JC2[X]2 + 3K1K2 K3[X]3 + K1K2K3K4[X]4 

1 + 4K1[X] + 6K1K2[X]2 + 4K1K2K3[X]3 + K1K2K3K4[Xf 

(7.7) 

This result is known as the Adair equation for four sites; similar equations 
can be derived in an obvious way for other numbers of sites. If all four 
intrinsic association constants are equal, the Adair equation simplifies to 

κ^χ^ι+κ,ιχ-])3
 = κ,[χ] 

(i + K.ixy i + ^ [ x ] {'} 

i.e. equation 7.2, the equation of a hyperbola. However, as the binding curve 
for haemoglobin is not a hyperbola, all four association constants cannot be 
equal for haemoglobin. 

If KA is sufficiently large compared with Kl9 K2 and K3, equation 7.7 
simplifies to 
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ι+κ^κ,κ^χγ 
i.e. the Hill equation with Kh = K1K2K3K4 and h = 4. However, there is 
no way in which equation 7.7 can be simplified to yield a Hill coefficient 
greater than 4. Moreover, if [X] is made sufficiently small, then, whatever 
the values of the association constants, Kx [X] must eventually become greater 
than the higher order terms in equation 7.7, and so it must simplify to 

Y = *l[X] 
1 + 4K1[X] 

at very low [X]. This equation yields a Hill plot in which h approaches unity 
as [X] approaches zero. Similarly, h -► 1 as [X] -* oo. Thus, in general, for 
any values of the association constants, the Hill coefficient must approach 
unity at the extremes of [X], and cannot exceed the number of binding sites 
for intermediate values of [X]. 

Adair's model is the most general model possible for a ligand binding to a 
pure non-associating protein at equilibrium. In this context, pure is taken to 
mean that different isomeric forms of the protein are permissible provided 
that all are in equilibrium and that the isomerization does not include dis-
sociation or association. Let us consider Adair's model (equations 7.6) with 
the inclusion of an inactive species E' in equilibrium with E according to the 
following equation: 

Ε ^ + Ε ' ; [Ε'] = Χ0[Ε] 
In this case, the fractional saturation is given by 

[EX] + 2[EX2] + 3[EX3] + 4[EX4] 
" 4([E] + [Ε'] + [EX] + [EXJ + [EX3] + [EX4]) 

K1 [X] + 3K1K2[X']2 + 3K1K2K3\X]3 + K1JC2K3K4[X]4 

(1 + X0) + 4X1[X] + 6X1X2[X]2 + 4K1X2K3[X]3 + X1X2X3K4[X]4 

(7.9) 
If every term in this equation is divided by 1 + K0, it is seen to be identical in 
form with the Adair equation (equation 7.7) with the replacement of Kx by 
KJ{\ + K0\ The results are similar if any or all of the other species EX, 
EX2 etc. isomerize. Thus the form of the binding equation is unaffected by 
isomerization; conversely, the form of the binding equation cannot provide 
evidence of isomerization. 

This result can be contrasted with the effect of a species E' that is not in 
equilibrium with E: in this case, the fractional saturation is given by 

κί[χ']+3κικ2ιχγ+3κ1κ2κ3[χγ+κ1κ2κ3κ^χγ 
( [ ^ / [ E J + I ^ K ^ X J + O K ^ ^ 

This equation is not of the form of equation 7.7: division of all terms by 
[E']/[E] +1 is not equivalent to division by 1 + K0 in equation 7.9, because 
[E] is not a constant but varies with [X]. 
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In the more general case of a mixture of proteins, each capable of binding 
ligands with different binding constants, the binding equation is very 
complicated, with terms to [Χ]Ση, where Ση is the total number of different 
binding sites. As this equation is then of similar form to the Adair equation 
for a pure protein with Ση binding sites, it might seem that such a mixture 
could display greater co-operativity than any of the pure species that com-
pose it. However, this is not so because, in the absence of interactions between 
binding sites, ligands bind most strongly to the sites with the highest affinity, 
as is intuitively obvious. Thus, although mixtures do display deviations from 
the binding equations for pure proteins, the deviations are always in the 
direction of more negative co-operativity, i.e. towards higher values of Rx 

or smaller values of h. 
It follows from this discussion that the presence of square or higher order 

terms in a binding equation provides no guarantee of co-operativity. In order 
to demonstrate this more precisely, let us consider the Adair equation for a 
protein with two binding sites: 

= κ^+κ^ΐχγ 
l+2K1{X] + K1K2\X]2 

from which we find 

^_Z_) = I o g K , + k , g [ x ] + l o g (™) 

Differentiating with respect to log [X], we obtain 

(l + x^xDii+x^x]) 
From this equation, it follows that h > 1 if K2 > Kl; h = 1 if K2 = Κγ; 
and h < 1 if K2 < Kv Each of these results applies for all values of [X], 
although the numerical value of h does vary with [X], and approaches unity 
for very high or very low values of [X]. The co-operative case K2 > Kx is 
impossible unless the sites interact, because if the tighter binding site exists 
in the absence of ligand, the first ligand molecule will bind to it rather than the 
weaker site. Hence the observation of co-operativity provides clear evidence 
of interactions between binding sites, but the observation of negative co-
operativity does not provide evidence of negative interactions unless it is 
first established that the protein is pure, because negative co-operativity is 
to be expected for non-identical binding sites that do not interact. Similar 
conclusions apply to more complex binding equations. 

7.5 Pauling's treatment 

Adair's treatment of the oxygen-haemoglobin system fits the observed 
behaviour at least as well as any other model that has been proposed since, 
but it is unsatisfying, because it offers no physical explanation of the inter-
actions that give rise to the co-operativity. Several explanations have been 
presented in recent years, but one earlier treatment ought first to be men-
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tioned briefly, namely that of Pauling (1935). At a time when no information 
existed about the geometry of the haemoglobin molecule, Pauling postulated 
that the four haem groups (the sites of oxygen binding) interacted with one 
another in pairs, in such a way that the binding of oxygen to one member of a 
pair caused the association constant for binding at the other member to be 
increased by a factor that was the same for every pair. He found that if each 
haem interacted in this way with only one other haem, i.e. if the molecule 
contained two independent pairs, the resulting equation could not account 
for the observations, but if each interacted with two others, as the corners of a 
square, a close fit was possible if the interaction factor was properly chosen; 
similarly good results were possible if each haem interacted with three others, 
as the vertices of a tetrahedron. The mathematical treatment of Pauling's 
model is identical with that of the sequential model and it is therefore not 
discussed here but is deferred to Section 7.8. 

The conceptual advantage of Pauling's model over Adair's.is that it 
requires only two constants, each of which has a clear physical meaning: 
one is the unperturbed association constant for each site and the other is the 
perturbation factor brought about by oxygen binding at the interacting 
binding site. Provided that the haems were assumed to be sufficiently close 
together to interact electronically, there was no difficulty in accounting for 
the interaction in pairs, as similar interactions were (and are) well known in 
simple systems, in fact so well known that Pauling felt no need to discuss their 
physical nature in any detail. Consider, for example, the 'binding' of electrons 
to quinone: 

0 0" 0' 

0 0* 0" 

In principle, the free-radical intermediate should occur, but the electronic 
structure is such that the intermediate is greatly disfavoured at the expense 
of the two extremes; in effect, the binding is exceedingly co-operative, in 
accordance with the Hill equation for two sites. Negative co-operativity is 
even more common in simple systems, such as the binding of two protons to 
symmetrical dianions such as oxalate or succinate. 

Pauling reasoned that if the haem groups were arranged tetrahedrally on 
the surface of the haemoglobin molecule they would be too far apart (about 
4.7 nm) to interact, but if they were placed in a square on one side of the 
apoprotein they could be as close to one another as necessary. He therefore 
preferred the square arrangement, although he recognized that both arrange-
ments fitted the experimental results equally well. 

With the determination of the three-dimensional structure of haemoglobin 
(Perutz et al., 1960), it became clear that the haem groups were much too far 
apart (2.5-4.0 nm) to interact in the way that Pauling had envisaged, even if 
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each interacted with only one other. Moreover, there was no conjugated 
system of chemical bonds to permit long-range interactions (as found, for 
example, in vitamin A and many other coloured molecules). This discovery 
did not simply overthrow Pauling's explanation of co-operativity; it also 
overthrew all others, including Adair's, because all explanations included, 
either explicitly or implicitly, the concept of haem-haem interactions. The 
phenomenon of co-operativity thus became more mysterious than it had 
been since Hill's pioneering work in 1910, just when it was becoming clear that 
it was by no means confined to haemoglobin but was of the greatest im-
portance in the regulation of metabolism. 

7.6 Induced fit 

All modern theories of co-operativity are derived from the theory of induced 
fit (Koshland, 1958,1959a,b), in the sense that they all include the assumption 
that proteins are not rigid but can exist in a limited and purposive variety of 
conformations. It is appropriate, therefore, to digress slightly in order to 
consider the experimental and theoretical basis of induced fit. 

The high degree of specificity that enzymes display towards their substrates 
has impressed biochemists since the earliest work, even before anything was 
known about the physical and chemical structures of enzymes. Fischer 
(1894) was particularly impressed with the ability of living organisms to 
discriminate totally between sugars that differed only slightly and at atoms 
remote from the site of reaction. In order to explain this ability, he proposed 
that the active site of an enzyme was a negative imprint of its substrate(s), and 
that it would catalyse the reactions only of compounds that fitted precisely. 
This is very similar to the mode of operation of an ordinary (non-Yale) key 
in a lock, and the theory has long been known as Fischer's lock-and-key model 
of enzyme action. For many years, it seemed to explain all of the known facts 
of enzyme specificity, but, as more detailed research was carried out there 
were numerous observations that were very difficult to account for in terms 
of a rigid active site of the type that Fischer had envisaged. For example, the 
common occurrence of enzymes for two-substrate reactions that require the 
substrates to bind in the correct order provides one type of evidence, as 
mentioned in Section 5.2. A more striking example was the failure of water 
to react in several enzyme-catalysed reactions where one would certainly 
expect it to react. For example, hexokinase catalyses the phosphorylation of 
glucose: 

glucose + ATP -> glucose 6-phosphate + ADP 
The enzyme is not particularly specific: not only glucose, but also fructose, 
mannose and other sugars react fairly rapidly. However, water does not 
react, yet it can scarcely fail to saturate the enzyme, at a concentration of 
56 M, about 7 x 106 times the Michaelis constant for glucose, and chemically 
it is at least as reactive a compound as the sugars that do react. 

Koshland argued that these and other observations provided strong evi-
dence for Si flexible active site; he proposed that the active site of an enzyme 
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has the potential to fit the substrate precisely, but that it does not adopt the 
negative substrate form until the substrate binds. This conformational change 
accompanying substrate binding brings about the proper alignment of the 
catalytic groups of the enzyme with the site of reaction in the substrate. With 
this hypothesis, the properties of hexokinase can easily be explained: water 
can certainly bind to the active site of the enzyme, but it lacks the bulk to 
bring about the conformational change necessary for catalysis. 

Koshland's theory is known as the induced-fit hypothesis, to emphasize its 
difference from Fischer's theory, which assumes that the fit between enzyme 
and substrate pre-exists and does not need to be induced. The lock-and-key 
analogy can be pursued a little further by likening Koshland's conception to 
a Yale lock, in which the key must not merely fit but must also realign the 
tumblers before it will turn. 

The induced-fit theory has had important consequences in several branches 
of enzymology, but it was particularly important in the understanding of 
allosteric and co-operative phenomena in proteins, because it provided a 
simple and plausible explanation of long-range interactions. Provided that 
a protein combines rigidity with flexibility in a purposive and controlled way, 
like a pair of scissors, a substrate-induced conformational change at one 
point in the molecule may be communicated over several nanometres to any 
other point. 

7.7 Symmetry model of Monod, Wyman and Changeux 

Both co-operative interactions in haemoglobin and allosteric effects in many 
enzymes require interactions between sites that are widely separated in space. 
A striking example of this requirement is provided by the allosteric inhibition 
of phosphoribosyl-ATP pyrophosphorylase by histidine: Martin (1963) 
found that mild treatment of the enzyme with mercury(II) ions destroyed the 
sensitivity of the catalytic activity to histidine but did not affect either the 
uninhibited activity or the binding of histidine. In other words, the metal ion 
interfered neither with the catalytic site nor with the allosteric site, but with 
the connection between them. Monod, Changeux and Jacob (1963) studied 
many examples of co-operative and allosteric phenomena, and concluded 
that they were closely related and that conformational flexibility probably 
accounted for both. Subsequently, Monod, Wyman and Changeux (1965) 
proposed a general model in order to explain both phenomena within a 
simple set of postulates. The model is often referred to as the allosteric model, 
but the term symmetry model is preferable because it emphasizes the principal 
difference between it and later models and because it avoids the contentious 
association between allosteric and co-operative phenomena. 

The symmetry model starts from the observation that many, perhaps all, 
co-operative proteins contain several subunits in each molecule. (For 
simplicity we shall assume a tetrameric protein, but any number of subunits 
greater than one is possible.) The model includes the following postulates: 

(1) Each subunit can exist in two different conformations, designated R 
(relaxed) and T (tense). 
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(2) All subunits of a molecule must occupy the same conformation at any 
time; hence, for a tetrameric protein, the conformational states R4 and 
T4 are the only two permitted, conformational mixtures such as R3T 
being forbidden. 

(3) The two states of the protein are in equilibrium, with an equilibrium 
constant L = [T4]/[R4]. 

(4) A ligand can bind to a subunit in either conformation, but the dis-
sociation constants are different: KR = [R][X]/[RX] for each R 
subunit, ΚΊ = [T] [X]/[TX] for each T subunit, and c = KR/KT by 
definition. 

These postulates imply the following set of equilibria between the various 
forms of the protein: 

R 4 <-

4[X]/KR 4[X]/KT 

R 4 X < 

M / K R 

±T4X 

|[X]/KT 

R4.X9 <-

M / K R 

± T 4 X 2 

|[X]/XT 

R4X 4 Λ 3 « -

i[x]/KR 

T4K3 

i [X]/KT 

— T4X4 fv4X4< 

The concentrations of the ten species are related by the following expressions: 
[R4X]=4[R4][X]/KR 

[R4X2] = f[R4X][X]/KR = 6[R4][X]2/K2 

[R4X3] = f[R*X2][X]/«R = 4 [R 4 ] [X] 3 /^ 
[R4X4] = i[R4X3][X]/KR = [R4][X]4/^^ 

[T4] = L[R4] 
[T4X] = 4[T4][X]/KT 

[T4X2] = 6[T4][X]2/X| 
[T4X3] = 4[T4][X]3/K? 
[T4X4] = [T4][X]V^i 

In each equation, the 'statistical' factor 4, §, etc., results from the fact that the 
dissociation constants are defined in terms of individual sites but the expres-
sions are written for complete molecules. For example, KR = [R] [X]/[RX] 
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= f [R4X] [X]/[R4X2], because there are three unliganded R subunits in 
each R4X molecule and two liganded R subunits in each R4X2 molecule. 
The fractional saturation is now given by the equation 

[R4X] + 2[R4X2] + 3[R4X3] + 4[R4X4] 
γ = + [T4X] + 2[T4X2] + 3[T4X3] + [T4X4] 

4([R4] + [R4X] + [R4X2] + [R4X3] + [R4X4] 
+ [T4] + [T4X] + [T4X2] + [T4X3] + [T4X4]) 

= (1 + [X]/*R)3[X]/XR + Lc{\ + c[X]/*R)3 [X]/*R 

(l + [X]/XR)4 + L(l + c[X]/KR)4 [ ' } 

The form of the saturation function defined by this equation depends on the 
values of L and c. It is instructive to consider first some extreme values of 
these constants. If L = 0, i.e. the T form does not occur under any conditions, 
the equation simplifies to Y = [X]/(KR + [X]), i.e. the Langmuir isotherm. 
Similarly, if L -► 00, then Y = [Χ]/(ΚΎ+[Χ]). It therefore follows that 
deviations from hyperbolic binding occur only if both conformational states 
of the protein occur in significant amounts. This is reasonable, because if 
there is only one form of the protein the model is the same as Adair's model 
with independent and identical binding sites (cf. equation 7.8). 

Hyperbolic binding also arises if the ligand binds equally well to both 
R and T states, i.e. c = 1, as in this case it does not matter which state is 
present. Apart from these special cases, equation 7.10 predicts co-operative 
binding, although this may not be obvious unless we consider the special case 
when c = 0, i.e. X binds only to the R state. This is a natural application of 
induced fit, but it is not an essential characteristic of the symmetry model as 
proposed by Monod, Wyman and Changeux. If c = 0, equation 7.10 
simplifies to 

(1 + [X]/XR)3[X]/XR 

L+(i+[x]/icRr [,Λί) 

At very high values of [X], when [X]/KR > L, the term L in the denominator 
is negligible and the expression as a whole factorizes to the Langmuir 
isotherm; but at low values of [X] the term L dominates the denominator, 
so that the saturation curve rises very slowly from the origin. In other words, 
the curve must be sigmoid if L is large compared with 1. 

To see why the more general expression, equation 7.10, predicts co-
operativity, we must examine its relationship to the Adair equation. If the 
terms (1 + [X]/XR)3, etc., in equation 7.10 are multiplied out and rearranged, 
the equation assumes the form of the Adair equation for four sites (equation 
7.7), with the four Adair association constants defined as 

1 + Lc 

1 + Lc2 

(l + Lc)KR 

Kx = 

K2 = 
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1 + Lc3 

"( l+Lc2)KR 

= 1 + Lc4 

" ( l + Lc3)KR 

If we now examine the ratio of any pair of constants, e.g. K3/K2, we find 
X3 _ (1 + Lc3)(l + Lc) _ 1 + Lc(c2 + 1) + L2c4 

K^ " (1 + Lc2)2 " 1+ 2Lc2 + L V 
As Lc(c2 +1) ^ 2Lc2 for all positive values of L and c, it follows that the 
right-hand fraction cannot be less than 1, i.e. K3 ^ K2. Similar results apply 
to all other pairs of constants, and also apply if the model is generalized to 
include more than four binding sites and more than two conformations. The 
symmetry model must therefore give rise to positive co-operativity and can-
not give rise to negative co-operativity. Some representative binding curves 
are shown in Figure 7.3. 
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Figure 7.3 Binding curves for the symmetry model (equation 7.10), with c = 0.01 and L = 0-cc as 
indicated: Arbitrary units are used for \_X\. The curve for L = 0 is the binding curve for the pure R 
state, and the curve for L = oo is the binding curve for the pure T state. Both of these extreme 
curves would be hyperbolic (cf. Figure 7.1) if Y were plotted against [X] rather than log[X~\, 
whereas the intermediate curves would be sigmoid 

Monod, Wyman and Changeux distinguished between homotropic effects, 
or interactions between identical ligands, and heterotropic effects, or inter-
actions between different ligands, such as a substrate and an allosteric 
inhibitor. Although the model predicts that homotropic effects must be 
positively co-operative, no such restriction applies to heterotropic effects; 

131 

SYMMETRY 



CONTROL OF ENZYME ACTIVITY 

one of the most satisfying features of the symmetry model is the way in which 
it accounts for heterotropic effects with no extra complexity. Let us consider 
a case with three ligands, X, A and I, and let us assume that X and A bind only 
to the R conformation, with dissociation constants KR and Κω respectively, 
and that I binds only to the T conformation, with a dissociation constant Kv 
(Note that for X this is the simplified case defined by equation 7.11. A more 
general treatment is possible but less instructive because its predictions are 
less obvious.) For this system, there are three saturation functions for the 
three ligands, which can be calculated in the same way as before. For the 
binding of X the result is 

y (1 + [X]/*R)3[X]/KR 

If we define A = L(l + [I]/Xf)4/(1 + [A]/Ka)4, we can write this expression as 

= (1 + [X]/KR)3[X]/KR 
x Λ + (1 + [Χ]/ΚΚ)4 

which is identical in form with equation 7.11 apart from the replacement of 
the constant L with A, a function of both [I] and [A]. Clearly, I inhibits the 
binding of X, because A increases with [I], whereas A assists the binding of X. 
Both allosteric inhibition and activation are therefore accounted for very 
neatly. However, in addition, as both I and A affect A, they also affect the 
degree of co-operativity and so, according to this model, allosteric inhibition 
should be accompanied by an increase in co-operativity, whereas allosteric 
activation should be accompanied by a decrease in co-operativity. 

A number of enzymes do in fact behave in this way, as pointed out by 
Monod, Wyman and Changeux, provided that one can assume that steady-
state binding is a true reflection of equilibrium binding. Unfortunately, there 
is no more justification for making any such assumption in a complex system 
than there is in a simple system, except that if it is not made experiments must 
be confined to true equilibrium binding systems such as the binding of oxygen 
and other ligands to haemoglobin. Most biochemists regard this as an in-
tolerable restriction and in practice most of the information about hetero-
tropic effects (and indeed homo tropic effects in co-operative enzymes) comes 
from non-equilibrium studies of enzymes, with the assumption that Y = v/V, 
where v is the steady-state velocity and V is the asymptotic velocity at 
saturation. 

The assumption that Y = v/V is unfortunate, because it is difficult or 
impossible to prove, but it usually cannot be avoided because it is a hopeless 
task to try to interpret kinetic data for co-operative enzymes without making 
some simplifying assumptions. This is not, of course, a peculiarity of the 
symmetry model as all other models of co-operativity include some sim-
plifying assumptions. The assumption that Y = v/V has at least the advan-
tage of being reasonably plausible, but some of the other assumptions of the 
symmetry model are not plausible. In particular, the central assumption of 
conformational symmetry is highly questionable, and frequent and confident 
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repetition has not made it less so; the model includes no molecular mechanism 
to account for it and there is no physical law that requires it. A second diffi-
culty results from the need to treat many enzymes as perfect K systems, in the 
terminology of Monod, Wyman and Changeux; in other words, it is neces-
sary to assume that, although the R and T states may differ in their affinity for 
substrate by a factor of 1000 or more, the rate constants for breakdown to 
products do not differ at all. The plausibility of the perfect K system has never 
been seriously discussed in the literature, and indeed it has often been pre-
sented as being so obvious that no discussion was required. 

In spite of these strictures, the symmetry model was a major step forward 
in the understanding of protein co-operativity. Although there are now 
several examples in the literature of negative co-operativity, which the 
symmetry model cannot explain, there may well be some enzymes that 
agree closely with it. For example, Blangy, Buc and Monod (1968) used the 
symmetry model to provide a quantitative description of the co-operative 
properties of phosphofructokinase from Escherichia coli. This enzyme was 
particularly attractive for study, because it was possible to measure the bind-
ing of one substrate, fructose 6-phosphate, over a very wide range of concen-
trations of an allosteric activator, ADP, and an allosteric inhibitor, phos-
phoenolpyruvate. The detailed agreement between theory and experiment 
over the whole study represents a major success of the symmetry model. 

7.8 Sequential model of Koshland, Nemethy and Filmer 

Although the symmetry model incorporates the idea of purposive conforma-
tional flexibility, it departs from the induced-fit theory in permitting ligands 
to bind to both R and T conformations, albeit with different binding con-
stants. Koshland, Nemethy and Filmer (1966) showed that a more orthodox 
application of induced fit could account for co-operativity equally well. Like 
Monod, Wyman and Changeux, they postulated two conformations, which 
they termed the A and B conformations (corresponding to the T and R 
conformations, respectively), but they assumed that the B conformation was 
induced by ligand binding so that X binds only to the B conformation and the 
B conformation exists only with X bound to it. 

Koshland, Nemethy and Filmer assumed that co-operativity arose be-
cause the properties of each subunit were modified by the conformational 
states of the neighbouring subunits. This assumption is implicit in the sym-
metry model, but it is emphasized in the sequential model, which is much 
more concerned with the details of interaction, and avoids the arbitrary 
assumption that all subunits must exist simultaneously in the same conforma-
tion. Hence conformational mixtures such as AB3, A2B2, etc., are not merely 
allowed, but are required by the assumption of strict induced fit. 

Because the symmetry model was not concerned with the details of subunit 
interactions, in the previous section there was no need to consider the 
geometry of subunit association, i.e. the quaternary structure of the protein. 
However, the sequential model does require the geometry to be considered, 
because different arrangements of subunits result in different binding equa-
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tions. The emphasis on geometry and the need to treat each geometry 
separately have given rise to the widespread but erroneous notion that the 
sequential model is more general and more complicated than the symmetry 
model; but for any given geometry, the two models are about equally complex 
and neither is a special case of the other. Both models can be generalized into 
the same general model (Haber and Koshland, 1967), by relaxing the sym-
metry requirement of the symmetry model and the strict induced-fit require-
ment of the simplest sequential model, but it is questionable whether this is 
worthwhile, because the resulting equation is too complicated to use. In some 
contexts, it is helpful to refer to the ordinary form of the sequential model as 
the simplest sequential model, in order to distinguish it from the general 
model. 

In discussing the sequential model, we shall consider the 'square' geometry, 
in which each subunit is assumed to interact with its two neighbours, assum-
ing that the four subunits are arranged in a square. Tetrahedral and linear 
arrangements are also possible for four subunits, but the method of analysis 
is the same as for the square case, although the results differ in detail. If the 
A conformation is shown as a circle and the B conformation as a square, the 
six possible species for the binding of X can be drawn as follows: 

A3BX f\ r\ D O A Λ AB3X3 ΒΛ 

Note that there are two ways of drawing A2B2X2, which must be considered 
separately, because the subunit contacts are different. The concentration of 
each species can be expressed by considering the various changes needed in 
order to obtain it from the standard state, A4. For example, in order to 
obtain AB3X3 from A4 the following changes must occur: 

(1) Three subunits must undergo the conformational change A -► B. 
This is represented by K\ where Kt is the notional equilibrium con-
stant [B]/[A] for an isolated subunit. In the simplest sequential model, 
Kt is tacitly assumed to be very small, in keeping with the assumption 
that the B conformation occurs only when induced by the binding of X. 

(2) Three molecules of X must bind to three B subunits. This is represented 
by K*[X]3, where Kx is the association constant [BX]/[B] [X] for the 
binding of X to an isolated B subunit. 

(3) In the square geometry there are four interfaces between neighbouring 
subunits. In the standard state, A4, each interface can be designated AA, 
as both touching subunits are in the A conformation. However, in 
AB3X3 there are no AA interfaces; instead there are two AB interfaces 
and two BB interfaces and so KAB represents the equilibrium constant 
[AB]/[AA] for the conversion of an AA interface into an AB interface, 
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stability of the AB interface, but then another quantity, KAA, is required 
for the AA interface, which is arbitrarily assigned a value of unity. 
It is simpler and just as rigorous to regard KAB as a relative measure of 
the stability of the AB interface compared with the AA interface, and 
then no extra constant KAA is needed. Similarly, it is simplest to regard 
KBB as a measure of the stability of the BB interface compared with 
the AA interface. 

(4) Finally, a statistical factor of 4 is required, because there are four 
equivalent ways of choosing three out of four subunits. The word 
equivalent is necessary here, because non-equivalent choices must be 
treated separately: for A2B2X2 the statistical factor is 2 for the diagonal 
arrangement of ligands and 4 for the contiguous arrangement. 

Multiplying all of these terms together, we obtain 
[AB3X3] = 4[A4]X^3

iXiBiC^[X]3 

and similarly, for the other species 
[A3BX] = 4[A4-]KXK,K2UX] 

[A2B2X2] = 2\_ΑΑ-]ΚΐΚ2,(2ΚΐΒΚΒΒ + κΧΒ)[Χγ 
[B4X4] = [AJKWKUXV 

Combining all of these equations into an expression for the fractional 
saturation, we obtain 

[A3BX] + 2[A2B2X2] + 3[AB3X3] + 4[B4X4] 
" 4([A4] + [A3BX] + [A2B2X2] + [AB3X3] + [B4X4]) 

KxK,KABlXl + KlK2(2KlBKBB + KU\_Xy ^ 
_ __^ + 3KXK, KAB^BB[X] + KXKJKBB[X] 

1 + 4KxKtK%B[_X] + 2K2
xK

2
t(2k2

ABKBB + K\B) [X]2 

+4κχκ>κΙΒκ2
ΒΒ[χ-]3+KXK*KUX]4 

As written, this equation is rather complicated because it allows for every 
aspect of ligand binding. However, it is less general than it appears, because 
some of the constants always occur in the same combinations; for example, 
KxKt[X] always occurs as a product because of the assumption of strict 
induced fit. Less obvious combinations also occur because the subunit 
interactions are not independent of ligand binding; for example, KBB cannot 
occur in a product that does not contain K2

xK
2
t\X~\2, because a BB interaction 

implies the presence of two B subunits. Equation 7.12 can in fact be written 
in terms of only two constants: 

_ c2K[X-] + c2(2 + c2)K2[X-]2 + 3c2K*[_XY + K*[XT 
l + 4c2K[X] + 2c2(2 + c2)K2[X]2 + 4c2K3[X]3 + K4[X]4 { ' 

where KA = K*K*KBB = [B4X4]/[A4] [X]4 is the association constant for 
the complete four-step binding, and &■ = K\BjKBB is a measure of the 
stability of the AB interaction compared with the AA and BB interactions. 
It is useful to write the equation in this way, because it is the form required 
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for fitting it to experimental results; no fitting process is possible with the 
general form of the equation because, for example, any change in Kx can be 
exactly compensated for by an opposite change in Kt or XBB. Some curves 
calculated from equation 7.13 are shown in Figure 7.4. 

Figure 7.4 Binding curves for the sequential model [equation 7.13), with the values of K and c 
indicated: Arbitrary units are used for [X~\. The location of the half-saturation point of each curve 
is determined solely by K and the shape is determined solely by c 

The simpler equation is also useful for examining the relationship between 
the sequential model and the Adair equation. The four Adair constants are 

Kx = c2K 

K2 = U2 + c2)K 

K3 = 3X/(2 + c2) 
K4 = K/c2 

and if we consider the ratio of any pair of them, e.g. K3/K2, we find that it 
depends only on the value of c: 

K3/K2 = 9/(2 + c2)2 

Therefore, K3 < K2 if c > 1 and K3 > K2 if c < 1, and similarly for other 
ratios of constants. As there is nothing in the definition of c that requires 
either of these conditions to hold rather than the other, the sequential model 
can account for negative co-operativity (Kx > K2 > K3 > X4) just as 
easily as positive co-operativity (K1 < K2 < K3 < K4\ unlike the sym-
metry model, which is restricted to positive co-operativity. 

Koshland, Nemethy and Filmer showed that equation 7.13, and the cor-
responding equation for the tetrahedral geometry, fitted the oxygen-
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haemoglobin saturation curve about as well as the equation for the symmetry 
model. It would therefore be difficult to distinguish between the models on 
the basis of the data for haemoglobin, or any other positively co-operative 
protein. However, this does not mean that saturation curves can never 
distinguish between models: for a protein showing negative co-operativity, 
the saturation curve alone provides sufficient evidence for ruling out the 
symmetry model. In fact, several examples of negative co-operativity have 
been reported in recent years and, although some of these results may 
reflect impure samples of protein, the binding of NAD to glyceraldehyde 
3-phosphate dehydrogenase from rabbit muscle displays such an extreme 
degree of negative co-operativity (Conway and Koshland, 1968) that it 
cannot possibly be explained by impurities. 

Although the sequential model was originally proposed as a way of account-
ing for homotropic interactions, Kirtley and Koshland (1967) subsequently 
extended it in order to account for heterotropic interactions also. Their 
treatment is not easy to summarize briefly, because they considered several 
possibilities, all of them plausible enough for one to expect each to occur with 
some proteins. However, their proposals are simple to understand and to 
apply to any given set of assumptions. They recognized that a second ligand 
might induce new conformations different from both A and B, but they con-
sidered that this would give rise to such complexity that a two-conformation 
model was preferable unless it could be shown to be inadequate. They 
therefore restricted their treatment to the same two conformations, A and B, 
and assumed that the main ligand of interest, X, could bind to the B conforma-
tion only. We shall consider only one of several possible modes of binding of 
a second ligand L, but it will be clear that other modes are conceivable and 
that they can be treated in the same way. Let us assume that the protein is a 
dimer, that L can bind to the B conformation only and that it competes for 
the same binding site as X, i.e. that X and L cannot bind simultaneously to the 
same subunit. With these assumptions, the possible species are as follows: 

OO ' ΟΞ ' Ξ3 
A2 ABX B2X2 

ABL 

11 

no 
B2L2 
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If we define Kx, Kt, KAB and KBB in the same way as before, and another 
association constant KL = [BL]/[B] [L] for the binding of L to the B 
conformation, we can calculate the concentrations of all species as before. 
For example, the concentration of B2LX is given by 

[B2LX] = 2[A2]KXKL^KBB[X][L] 
We can combine all of the expressions into one for the fractional saturation 
ofX: 

[ABX] + 2[B2X2] + [B2LX] 
Υχ " 2([A2] + [ABX] + [B2X2] + [ABL] + [B2LX] + [B2L2]) 

KxKtKAB[X] + K2
XK2KBB\X\2 + KXKLK]KBB[X-] [L] 

1 + 2KxKtKAB[X-] + K2
XK2KBB\_X\2 + 2KLKtKAB[L] 

2KxKLK2
tKBB[X-] [L] + K2K2

tKBB[L]2 

At any particular value of [L], this is of the form of the Adair equation for the 
binding of X, with association constants that vary with [L]: 

JS KxKt(KAB + ^L^r^Bß[L]) 
* ι = 

K2 

1 + 2KLKiKAB[L] + K^2,KBB[L]2 

^ χ ^ ί ^ Β Β 

^ΑΒ + ^ Λ ^ Β Β Μ 

The ratio K2/Kl is 
K2 1 + 2KLKtKAB[L-] + K2K2

tKBB[Lf 
Kx c2 + 2KLKtKAB[L-] + K2K2

tKBB[LY {1M) 

where c2 is defined, as before, as K2
AB/KBB. It is clear from these equations 

that although L resembles an ordinary competitive inhibitor from the 
mechanistic point of view, its effect on the binding of X is complicated by the 
inclusion of subiinit interactions. So far as the second site is concerned, L 
acts only as an inhibitor, as K2 decreases monotonically as [L] increases, 
but if KBB > 2K2

AB, i.e. if c2 < \, L acts as an activator at low concentrations 
because then the numerator of the expression for K1 initially increases with 
[L] more steeply than the denominator. The effect of L on the co-operativity 
is fairly straightforward, as can be seen from equation 7.14: whether the 
binding in absence of L is positively or negatively co-operative, it tends 
monotonically towards non-co -operative as [L] increases. 

As there are many other equally plausible assumptions that one could 
make about the binding of L (e.g. it could bind only to the A conformation, or 
it could bind simultaneously with X, or it could induce a third conformation, 
or it could bind only when X was already bound), it is clear that a general 
treatment of the two-ligand case of the sequential model is much more 
complicated than the treatment for the symmetry model. However, it is 
questionable whether the symmetry model can truly be regarded as the 
simpler model, because its algebraic simplicity is achieved at the expense of 
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conceptual simplicity: the assumption of conformational symmetry, elegant 
though it be, is essentially arbitrary. Moreover, the sequential model can be 
applied to kinetic experiments without the need for the other arbitrary feature 
of the symmetry model, namely the concept of the 'perfect K system.' In the 
sequential model, the substrate is assumed to bind only to the B conforma-
tion ; hence all catalytic reactions occur in the same local environment, and 
it is reasonable for them to obey a single rate constant. 

Finally, some mention should be made of the concerted model This is not, 
in fact, another model, but is the name used by Koshland, Nemethy and 
Filmer to the special case of the symmetry model defined by equation 7.11, 
which they discussed with their own symbolism in order to facilitate com-
parison with the sequential model. However, it is not a special case of the 
sequential model, and it is wrong to regard it as such. 

7.9 Half-of-the-sites reactivity 

Since negative co-operativity was first observed, numerous examples of it have 
been recognized (see Levitzki and Koshland, 1969). Of these, several have 
proved to be examples of 'half-of-the-sites reactivity' (Levitzki, Stallcup and 
Koshland, 1971), an extreme type of negative co-operativity in which only 
half of the apparently identical subunits in a protein display reactivity to-
wards substrate or other reagents. This is consistent with the sequential 
model, particularly if one takes account of the fact that the individual sub-
units of any protein are asymmetric, and so the contacts between subunits 
are unlikely to be all alike (Cornish-Bowden and Koshland, 1970). However, 
MacQuarrie and Bernhard (1971) have suggested a different explanation of 
half-of-the-sites reactivity involving 'pre-existing asymmetry.' They argue 
that in some proteins the identical subunits may be assembled in such a way 
that they occupy two different types of environment, so that the protein 
molecule is asymmetric even in the absence of ligand. This is not in itself 
antithetical to the sequential approach, and Cornish-Bowden and Koshland 
(1971) have suggested, for different reasons based on a computer study of 
subunit association, that there is no a priori need for identical subunits to be 
placed in identical environments. Exponents of the sequential model (e.g. 
Stallcup and Koshland, 1973), however, have generally preferred, in the 
interests of simplicity, to assume a symmetrical arrangement of subunits 
unless there is a clear reason for rejecting it. The evidence in favour of pre-
existing asymmetry has recently been discussed in detail (Seydoux, Malhotra 
and Bernhard, 1974) and will not be pursued here. 

7.10 Other equilibrium models of co-operativity 

Frieden (1967) and Nichol, Jackson and Winzor (1967) have independently 
suggested that co-operativity may in some cases result from the existence 
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of an equilibrium between protein forms in different states of aggregation, 
such as a monomer A and a tetramer B4: 

<o = 
4A BA 

If the two forms have different affinities for ligand, the model is conceptually 
rather similar to the symmetry model, and it predicts co-operative binding 
for much the same reasons. However, the equations that describe it are more 
complicated, because the protein concentration cannot be eliminated as it 
determines the relative amounts of A and B4 in the unliganded state. 

The association-dissociation model has the major advantage that it is 
far more accessible to experimental proof than those considered previously. 
If it applies, a large change in molecular weight should accompany ligand 
binding and the degree of co-operativity should depend on the protein con-
centration. Either of these results should be readily detectable, and neither is 
expected from the other models. Reversible association does appear to 
provide a complete explanation of the co-operativity observed for the binding 
of various nucleotides to glutamate dehydrogenase (Frieden and Colman, 
1967). It may also contribute to the co-operativity of haemoglobin, which 
dissociates to a dimeric form at high salt concentrations, but it cannot 
provide a complete explanation of haemoglobin co-operativity, which is 
observed under many conditions where there is no dissociation. For any 
protein, it is an obvious precaution to check whether the observed co-
operativity varies with protein concentration; if it does, then an association-
dissociation model must be considered as a possible explanation. 

7.11 Kinetic models of co-operativity 

All of the models discussed have been essentially equilibrium models that 
can be applied to kinetic experiments only if υ/V can be interpreted as a true 
measure of Y. However, there are also several purely kinetic models with no 
equilibrium counterparts. Of these models, the simplest is the following, 
proposed by Rabin (1967): 

E + S τ± ES 

Tl II 
E' + S +± E'S - E' + P 

If the equilibrium between E and E' favours E, but the equilibrium between 
ES and E'S favours E'S (as indicated by the light and heavy arrows in the 
diagram), then S must bind more strongly to E' than to E because the second 
law of thermodynamics requires that the equilibrium constants for the 
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complete reaction E + S <± E'S must be the same for both routes. Provided 
that the breakdown reaction E'S -► E' + P is fast compared with the isomer-
izations E' -> E and ES -> E'S, the binding of S cannot reach equilibrium. 
At low concentrations of S, E' decomposes before S can bind to it, but at high 
concentrations S can bind to E' before it has time to decompose. Thus the 
apparent affinity of the enzyme for substrate increases as the substrate 
concentration increases or, in other words, the binding is co-operative. It 
is important to the argument that the reaction E'S -> E' + P must be fast, 
because if it is slow enough to be rate determining it cannot unbalance the 
substrate binding equilibrium, which cannot then be co-operative. 

As has been seen in Section 5.2, the full steady-state rate equation for a 
two-substrate reaction proceeding through a ternary complex contains terms 
in the squares of the substrate concentrations if the substrates can bind to the 
enzyme in random order. Ferdinand (1966) has suggested that these square 
terms can give rise to a sigmoid dependence of the rate on either substrate 
concentration, with suitable values of the rate constants. In principle, this 
possibility can be distinguished from equilibrium models of co-operativity 
by the absence of co-operativity in a true binding experiment. In practice, 
however, difficulties are likely because, although binding experiments are 
much easier to interpret than kinetic experiments, kinetic experiments are 
much easier to carry out accurately than binding experiments. 

Deviations from the Michaelis-Menten equation ought to occur with 
many other mechanisms that contain branched pathways (Sweeny and 
Fisher, 1968), but in practice they may be too slight to detect, as Gulbinsky 
and Cleland (1968) found with galactokinase (cf. Sections 3.7 and 5.2). At 
present, no enzyme is known to be co-operative for this type of reason, and it 
is likely that enzymologists will continue to use equilibrium models as long 
as it remains reasonable to do so. 

Although kinetic models of the co-operativity of single enzymes may be of 
minor importance, kinetic control of metabolic pathways by means of two 
or more enzymes may be of the greatest importance in living organisms. 
Newsholme and Gevers (1967) have shown that a small amount of cycling at 
an important control point, such as the pair of opposing reactions catalysed 
by phosphofructokinase and fructose diphosphatase, can be used in order to 
provide much more sensitive control of the net flux through the pathway than 
the co-operative properties of a single enzyme can provide. This proposal 
also accounts for the presence of fructose diphosphatase in muscle, which was 
previously rather puzzling as muscle does not carry out gluconeogenesis. A 
cycle such as this is actually anything but 'futile,' as the 'wasted' ATP is put to 
a very valuable purpose. 
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8 
Analysis of Progress Curves 

8.1 Integrated rate equations 

A kinetic equation can be written in two distinct forms, either as an expression 
that shows how the concentration of a reactant changes with time, or as one 
that shows how the rate of reaction varies with the concentrations of the 
reactants. The enzymologist normally considers the second of these to be 
the usual form, whereas to the chemist the first is the usual form. Chemists 
have, on the whole, continued to prefer integrated rate equations, which have 
the merit that they express what is actually measured. As has been seen in 
Chapter 2, however, the early workers in enzyme kinetics encountered many 
difficulties because they attempted to follow the usual chemical practice of 
fitting their observations to integrated equations. These difficulties were 
largely resolved when Michaelis and Menten (1913) showed that the behaviour 
of enzymes could be studied much more simply by measuring initial rates, 
when the complicating effects of product accumulation and substrate deple-
tion did not apply. An unfortunate by-product of this early history, however, 
has been that biochemists have been very reluctant to use integrated rate 
equations, even when they have been appropriate. 

In the early stages of an enzyme kinetic study, when the main problem is to 
discover what equation is obeyed and what the approximate values of the 
kinetic parameters are, the usual initial rate studies are appropriate. It is 
useful to be able to exclude product effects, or to introduce them in a con-
trolled way. However, once these preliminaries have been completed, there 
are important advantages in following the reaction over an extended period 
and observing the progressive effects of accumulation of product and 
depletion of substrate. Much more information is contained in a progress 
curve than merely the extrapolated rate at zero time. It is possible, in principle, 
to obtain accurate values of the kinetic parameters from a fairly small 
number of experiments. There is also a major advantage in being able to 
avoid the subjective nature of estimating initial rates from a curved plot: 
it is almost impossible to do this reproducibly and without bias. 
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8.2 Integrated Michaelis-Menten equation 

Before the Michaelis-Menten equation (or any other rate equation) can be 
integrated, it is necessary to introduce into it any relationships that exist 
between the reactant concentrations. Thus the substrate concentration, s, and 
the product concentration, p, are not independent, as their sum is a constant. 
Either s or p must be eliminated by means of the equation s + p = s0. So the 
appropriate form of the Michaelis-Menten equation is equation 2.11, i.e. 

άρ V(s0-p) 

and therefore 

giving 

di Km + s0-p 

(Km + s0)dp f pap 

So-P 
= \Vdt 

- (K m + s0)ln(s0-p) + p + s 0 ln ( s 0 -p ) = Vt + cc 

The condition p = 0 when t = 0 gives a = — Km In s0, and so 

Vt = p + Km\n[s0/(s0-p)~] 

or 
Vt = s0-s + Kmln(s0/s) (8.2) 

Equation 8.2 is the integrated form of the Michaelis-Menten equation, and 
it defines the time course, or progress curve, of a reaction in which the 
Michaelis-Menten equation continues to be obeyed for an extended period 
after the start of the reaction. Instead of defining p in terms of i, as we might 
have wished, it defines t in terms of p, but this need not be a great incon-
venience in practice. It is sensible to use the ln(s0/s) form of this equation, and 
of other integrated rate equations, because this avoids any confusion when 
product is added at the start of the reaction, i.e. when p0 ψ 0. 

Like its differential form, equation 8.2 can be transformed in various ways 
in order to permit plotting as a straight line: 

t 1 
ln(50/s) V 

S-^I= v -
t 

t ^KmY 1 
s0-s V \_(s0-

s0-s 
ln(s0/s)_ V 

^f Hsjs) 

(s0-s)_ 
ln(s0/s) + -

(8.3) 

(8.4) 

(8.5) 

From equation 8.3, it can be seen that a plot of i/ln(s0/s) against (s0 — s)/ 
ln(s0/s) is a straight line with slope l/V and intercept KJV on the t/\n(s0/s) 
axis. Hence it resembles the plot of s/v against s in the initial rate case. Simi-
larly, linear plots may be obtained from equations 8.4 and 8.5, which resemble 
the plots of v against v/s and of l/v against 1/s, respectively. In all three cases, 
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it is possible in principle to determine V and Km from a single run. In order 
to do this effectively, it is necessary for s0 to be well above Km, and to continue 
to follow the reaction until (s0 — s) is well above Km. For this method to be 
valid, it is also necessary to ensure that there is no significant product 
inhibition. In initial rate studies, product inhibition can usually be ignored 
if the reaction is followed only for a short time, when the product concentra-
tion can be made to approximate zero. On the other hand, if the reaction is 
to be followed over an extended period, product inhibition cannot simply be 
ignored. Moreover, it is impossible to distinguish in a single run between the 
slowing down that results from depletion of substrate and any slowing down that 
results from competitive inhibition by the accumulating product. The reason 
for this perhaps surprising fact will become clear in the next section. It should 
never be forgotten whenever equation 8.2 or its linear forms are used. 

Of the three linear forms of equation 8.2, equation 8.4 seems to have been 
used most often, after it was first applied by Walker and Schmidt (1944) to 
studies of histidine ammonia-lyase. However, in order to be consistent with 
the rest of this book, we shall instead use equation 8.3 and similar equations. 
It is in fact slightly simpler than equation 8.4 to modify to the very important 
competitive product inhibition case. 

8.3 Competitive product inhibition 

Unless it is known that product inhibition is insignificant, it is safer to assume 
that it does occur and to calculate the product inhibition constant as part of 
the analytical strategy. Hence the following equation should be used, rather 
than equation 8.1, as the basic differential equation for progress curve studies: 

dp = V(s0-p) 
dt Km{\+plKp) + s0-p

 K ' } 

This equation is modified from equation 2.22, but a has been replaced with s 
in order to emphasize that we are exclusively concerned here with irreversible 
reactions; Vf, K* and Kp

s are written simply as V, Km and Kp for the same 
reason and s is written as s0 — p because s and p must be treated as variables 
and are related by the conservation equation s + p = s0. If equation 8.6 is 
written in a slightly different form: 

dp = V(s0-p) 
dt Km + s0-(l-KJKp)p

 { ' } 

it can be seen that it is of exactly the same form as equation 8.1 and it is for 
this reason that competitive product inhibition has an effect indistinguishable 
in a single run from that of substrate depletion. If several runs are carried out 
with different values of s0, the cases become distinguishable, because the 
'constant' (Km + s0) varies with s0. A slight qualification must be made to 
this point: the coefficient of p in the denominator of equation 8.1 is — 1, but 
in equation 8.7 it is - ( 1 -KJKP\ which can be zero if Km = Kp, or positive 
if Km > Kp. The case Km = Kp might seem to be such an unlikely event that 
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it could safely be ignored, but this is not so: if Km is a good approximation 
to Ks, and if S and P possess closely similar groups that bind to the enzyme, 
it is possible that Kp « Km. In this event, equation 8.7 takes the form 

— = k(s0-p) = ks 

where k represents V/(Km + s0) and is a simple first-order rate constant (cf. 
Chapter 1). This case is, however, distinguishable from an ordinary first-
order reaction by the fact that the rate 'constant' is a function of s0. 

Because equation 8.7 is of the same form as equation 8.1, it can be inte-
grated in exactly the same way (Henri, 1903; Huang and Niemann, 1951; 
Sch^nheyder, 1952), and gives 

Vt = (l-KJKp)(s0-s) + KM+s0/KP)Wso/s) (8.8) 

This equation can also be written in linear form as 

i^4(1-*-^>(iS>) + iF<1 + ̂ > * « 
and in two other ways, as before. In this case, a plot of i/ln(s0/s) against 

(s0 — s)/ln(s0/s) again generates a straight line, but with slope -^ (\—KJKp) 
IS 

and intercept -r? (1 + s0/Kp). Clearly, three constants cannot be determined 
from a single straight line, but they can readily be found from a series of 
experiments with different s0 values. One method is to plot the intercepts of 
primary plots against s0, which gives a straight line of slope KJVKp and 
intercept KJV. Although the three kinetic constants may be calculated from 
these expressions, the relationships are not very convenient, and the following 
method, one of three described by Jennings and Niemann (1955), is much more 
elegant. 

It should first be noted that the units of f/ln(s0/s) and (s0 — s)/ln(s0/s) are 
the same as those of s0/v and s0, respectively. Consider now an extrapolation 
of the plot to (s0 — s)/ln(s0/s) = s0. Substitution into equation 8.9 gives 

R ^ = i(l-KA)So + ^ ( l + S o /X p ) 

= (s0 + Km)/V = s0/v0 

where v0 is the initial velocity. Thus a simple extrapolation generates the 
point (s0, s0/v\ exactly as is determined and plotted in initial-rate studies. 
By plotting the results of several runs on a single plot, extrapolating each 
line as described, a plot of s0/v0 against s0 results, from which V and Km can 
be determined in the usual way. This type of plot is illustrated in Figure 8.1. 

It might seem that this is an unnecessarily laborious way of generating an 
ordinary plot of s0/v0 against s0, but in fact it has much to recommend it: 
not only does it provide information about product inhibition, but it also 
provides more accurate values of s0/v0 than are usually available from 
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Figure 8.1 Determination of kinetic parameters from a series of six progress curves at different 
values of the initial substrate concentration, s0, by plotting t//n(s0/s) against (s0 — s)//n(s0/s): The 
enzyme was assumed to be subject to competitive product inhibition, and the experimental points 
{closed circles) were calculated from equation 8.9 after substituting the values Km = 3.46, Kp = 6.55, 
V = 5.7 and s0 = 1-6 {arbitrary units in each case). Points are shown for values of s from 0.9s0 
to 0.2s0 at intervals of 0.1 s0, i.e. from 10% to 80°/o completion of the reaction. For each value 
ofs0, the open square is obtained by extrapolating the line through the experimental points back to 
(s0 - s)//n(s0/s) = s0, i.e. to0% of reaction. These extrapolated points lie on a straight line of slope 
7/V and intercepts — Km and Km/V on the abscissa and ordinate, respectively (cf Figure 2.4) 

initial-rate studies. The extrapolation required is very short, and can be 
carried out much more precisely and less subjectively than an estimate of 
the slope of a curve extrapolated back to zero time. 

8.4 Inhibition by several products 

In the previous section, competitive inhibition by a single product was con-
sidered. In practice, however, there may be several products, and the observed 
competitive inhibition constant is not the inhibition constant of any one 
product but the reciprocal of the sum of the reciprocals of all of the product 
inhibition constants. Hence in the previous section Kp should be replaced 
throughout with 1/(1/Kp+ l/Kq+ · · ·). This follows from equation 8.6 
because in this equation p/Kp should be replaced with (p/Kp + q/Kq + · · ·), 
which is the same as p(l/Kp+ 1/Kq+ · · ·) if all of the products are absent at 
the start of the reaction, so that p = q = · · · at all times. 

It is desirable to be able to isolate the effects of the different products in a 
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reaction, which can be achieved by adding them separately in different 
amounts at the start of the reaction. Consider a case where there are two 
products, P and Q, of which only Q is added, with concentration q0. Then, 

dp = V(s0-p) 
df 

Kmil + 
Kn 

P + 4o 
X„ 

(8.10) 

+ s, 0 

This equation can be integrated by the same method as before to give 

Vt = X„ 1 + 4o 
Kq \ X p Kq/ j 

+ Sr ln(s0/s) + 1 - X „ 
1 

'K. 
(s0 - s) 

And, as before, plots of t/\n(s0/s) against (s0 — s)/ln(s0/s) can be constructed 
and extrapolated so as to generate a plot of s0/v0 against s0. In this case, v0 is 
the initial rate under the specified conditions, i.e. for Q present as a com-
petitive inhibitor at a concentration q0: 

Vn = 
Vs0 

Km(\+q0/Kq) + s0 

(8.11) 

and the value of Kq can be determined from the plot as described in Chapter 
4. It is not necessary for the added inhibitor to be a product of the reaction for 
this procedure to be valid. If a competitive inhibitor, I, that is not a product 
is added at the start of the reaction at a concentration i, the inhibition con-
stant, Kh can be determined as follows. If i/Kt is substituted for (p + q0)/Kq 

in equation 8.10, the equation corresponding to equation 8.11 has i/X, in 
place of q0/Kq, and so X, can be determined from the extrapolated points as 
described in Chapter 4. 

8.5 Mixed inhibition by products 

It was seen in Chapter 5 that product inhibition is not necessarily, or even 
usually, competitive. A more general case that ought to be considered 
is that where a product is a mixed inhibitor with competitive and un-
competitive inhibition constants Kp and K'p, respectively: 

dp = V(s0-p) 
di x j i + P / K P ) + ( s 0 - p ) ( i + P / X ; ) 

This equation differs in form from the others that we have considered in this 
chapter, because of the p2 term in the denominator, but it is still fairly easy 
to integrate: 

J (Xm + s0)dp 
s0-P + 

+ K' 
1 )pdp 

P2dp 
K'„(s0-p) 

= \ Vdt 
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Therefore, 

-(Km + s0)ln(s0-p) - & + ^ - Λ |> + s0ln(50-p)] 

—^i^s0-p)2-2s0(s0-p) + slln{s0-p)'] = Vt + oc 

After introduction of the condition p = 0 when t = 0, this equation readily 
simplifies to 

Vt = (l-KJKp)(s0-s) + ^ Ι ^ - + Km(\ + s0/Kp)ln(s0/s) 

This equation differs from equation 8.8 only by the appearance of the term 
j(s0 — s)2/K'p, which disappears if Kp -► oo. The cases of pure non-competitive 
and uncompetitive inhibition can be generated by inserting the conditions 
Kp -> oo and Kp = Kp, respectively, into this equation. 

Because of the square term, the mixed inhibition case does not give a 
straight line if i/ln(s0/s) is plotted against (s0 — s)/ln(s0/s): 

1 / Km sn — s\ sn — s Km ( sn \ 

ln(50/5) V\ Kp 2K'p) ln(s0/s) V \ K p. 

because the slope is no longer a constant, but changes with s. Instead, the 
plots will be curved, as shown in Figure 8.2. However, the curvature is 
relatively slight unless Kp is small compared with Kp, and may only become 
obvious in practice if the reaction is followed to 90% completion or more. 
This has two important consequences: (i) the extrapolation to obtain the 
initial velocities can be made accurately even if the inhibition is wrongly 
taken to be competitive when it is in fact mixed; (ii) significant curvature may 
pass unnoticed and give very inaccurate estimates of Kp. This means, on the 
one hand, that the occurrence of mixed inhibition provides no obstacle to the 
accurate estimation of V and Km; but it also means, on the other hand, that 
Kp should not be estimated as described unless there is independent evidence 
that the inhibition is competitive. In addition, the apparent straightness of 
plots of r/ln(s0/s) against (s0 — s)/ln(s0/s) should not be taken as evidence of 
the nature of product inhibition. This, of course, can readily be established 
by the method described in the previous section for determining individual 
product-inhibition constants, i.e. by adding various amounts of product to 
the reaction mixture. 

In general, the shapes of progress curves provide a rather insensitive test 
of whether particular equations are obeyed. In other words, it is often pos-
sible, not only in the specific situation that has been discussed, for an in-
correct equation to describe an experimental progress curve closely. It is 
always advisable, therefore, to carry out several experiments at different 
initial substrate concentrations, just as would be done in initial rate studies. 
Nonetheless, it is wrong to conclude (as some workers have done) that 
integrated rate equations have no advantages over differentiated equations: 
a thorough analysis of a progress curve will always yield more information 
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Figure 8.2 Effect of mixed inhibition by products on the method illustrated in Figure 8.1: Conditions 
are exactly as in Figure 8.1, with the same constants, but introducing an extra constant K'p = 8.27 
and applying equation 8.12 instead of equation 8.9. The extrapolated points (open squares) are 
unaffected by this change, because extrapolation to zero extent of reaction eliminates the effects 
of product 

than an estimate of the initial rate from the same data. Even if the integrated 
equation is used only to estimate the initial rate, this estimate, if carried out 
properly, should always be more accurate than an estimate of initial slope, 
because it uses more information and is less affected by subjective bias. For a 
related method of estimating initial velocities, based on the direct linear 
plot, see Cornish-Bowden (1975). 

8.6 More complex cases 

Although we have considered only the relatively simple case of an irreversible 
single-substrate reaction, the principles discussed can be extended to most 
of the important cases in enzyme kinetics. Most of the relevant rate equations 
can be integrated much more readily than is commonly realized, requiring 
little more knowledge of calculus than the ability to look up standard 
integrals in a table. Alberty and Koerber (1957) examined the integrated 
form of the reversible Michaelis-Menten equation and applied it to fumarase; 
Schwert (1969) gave the integrated forms of the rate equations for a number of 
more complex mechanisms. Although the integration of these equations is 
not difficult, the solutions are generally rather complex, so that rather cumber-
some procedures are required in order to analyse them. Moreover, integrated 
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equations have been so little used in enzyme kinetics that it is probably 
unrealistic to pursue the subject further in detail. 

In cases when it is not convenient to use the integrated rate equation (if, 
for example, the mechanism has not been established, or the enzyme is not 
stable during the course of the reaction), it is still possible to use progress 
curve data advantageously: instead of fitting the data to the true equation, 
they can be fitted instead to an equation of the form 

p = ß0 + ß1t + ß2t
2 + ß3t

3+ · · · (8.13) 

which can be shown to define any single-valued continuous function. The 
coefficients ß0, ßu ß2, ß3..., can be estimated by the method of least squares 
(Chapter 10), and then the initial velocity can be estimated from 

^ = ßl + 2ß2t + 3ß3t
2+ · · · (8.14) 

as v = ßx when t = 0. In principle, the more terms are included in an equa-
tion of this type, the better the fit becomes. However, in practice, with 
enzymic progress curves almost all of the useful information is contained in 
the first three or four terms of equation 8.13 and the values of j?4 and higher 
terms are determined largely by random error. Consequently, it is never 
advisable to go beyond the term in t3 and for many purposes the term in t2 

will define the curvature accurately enough (cf. Knowles, 1965). 
The estimation of v0 by fitting the progress curve to a power series in t has 

both advantages and disadvantages when compared with the use of inte-
grated equations. On the one hand, it can be done regardless of whether the 
correct rate equation is known or not, and is not affected by complications 
such as progressive denaturation of the enzyme during the assay. On the 
other hand, it provides much less information about the curve. The co-
efficients ß0, ßu ß2 . . . have no physical meaning, and cannot be transformed 
into physically meaningful parameters. In particular, they are not equal to 
the corresponding coefficients of the true equation expressed as an infinite 
series (this relationship holds only if both series contain an infinite number 
of terms). Although it might seem that substitution of a series of values of t 
into equations 8.13 and 8.14 would provide a series of (p, v) pairs that could 
be converted into (5, v) pairs to be analysed by using ordinary rate equations, 
this would not be a valid procedure. Pairs generated in this way would not 
be statistically independent, and could not therefore be subjected to 
statistical analysis. 

8.7 Some pitfalls 

The analysis of progress curves is fraught with traps for the unwary, and it is 
perhaps for this reason that so many enzymologists have taken the safe but 
unadventurous course of confining their attention to initial rates. In this 
section, some of the more serious errors are examined. 

In the simple cases that have been considered in this chapter, the occurrence 
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of competitive product inhibition has not affected the form of the integrated 
rate equation. Consequently, if competitive product inhibition is wrongly 
neglected, analysis of a single progress curve gives no indication of an error. 
This is also true in more complex cases because, whenever competitive pro-
duct inhibition occurs, it manifests itself as a term in p in the denominator of 
the rate equation. A negative term in p must already be present, however, 
because the substrate concentration always occurs in the denominator as a 
term in (s0 — p). Thus, the product inhibition term does not affect the form of 
the integrated rate equation unless it equals or exceeds the term already 
present. It is profitable to consider this result in its converse form: the 
observation that a progress curve is consistent with the absence of product 
inhibition provides no evidence that competitive product inhibition is absent. 
For this reason, product inhibition should always be assumed to occur unless 
it has been shown not to occur. A simple method of checking this is to carry 
out experiments at several different values of s0, as discussed in Section 8.3. 
It is worth emphasizing that product inhibition can be significant in a reaction 
that is, for all practical purposes, irreversible (cf. Section 2.7). Thus the 
knowledge of a very large equilibrium constant does not justify neglecting 
product inhibition. 

A very easy error to make is to suppose that by estimating the slope at 
various positions along a progress curve one can generate a set of velocities, 
to be analysed as if they were initial rates estimated at various different values 
of s and p. For example, s might be determined at various points, and the 
velocity at the mid-point between each pair of points might be estimated by 
the difference between 5 values divided by the time difference. This is actually 
a generalization of what was once a very common erroneous method of 
estimating the parameters of straight-line plots: suppose that a set of equally 
spaced observations yl9 y2, y^..., yn are made of a quantity y that is a linear 
function of x. Then a series of slopes, {y2 — yJ/Ax, (y3 —y2)/Ax,.. ., 
(yn — yn_l)/\x might be estimated, and then the mean taken. Unfortunately, 
however, the mean is given by: 

Estimated slope = - L fef* + * f » + . . · + hZ^l) 
n—l\\x Δχ Δχ ) 

= yn-y\ 
(n-l)Ax 

so that only the first and last values make any contribution to the answer. 
The progress curves encountered in enzyme kinetics cannot be treated as 
simply as this, but essentially the same conclusion applies, and in general it is 
true that very little weight is given to intermediate observations in methods 
of this type (Cornish-Bowden, 1972). 

A similar procedure, which is objectionable for slightly different reasons, 
is to obtain a best-fit polynomial equation of the form of equation 8.13 and 
then to insert different values of t into equation 8.14 in order to obtain a set 
of velocities. Although this method uses all of the observations, it is still 
invalid because the resulting errors in the velocities are very highly correlated 
and non-random. All of the usual statistical methods for the analysis of data 
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require that the observations be independent. When they are not, the 
estimates of the kinetic parameters may not be seriously in error, but any 
estimates of the precision of the parameters will be meaningless. The poly-
nomial method is actually a 'smoothing' technique and destroys most of the 
information about the scatter of the data. Any other smoothing method, such 
as simply drawing a smooth curve through the observed line or points, is 
open to the same objection. Whenever smoothing is carried out, by any 
method, it is not valid to take more than one value from each curve for use 
in any subsequent statistical analysis. It is natural to take the initial slope as 
this one value, but this is not essential. 

Common sense indicates that if a curve is analysed by means of, say, 50 
representative points, the precision of the analysis will not be greatly improved 
by taking 500 points from the same curve. It is unreasonable to expect the 
additional 450 points to yield significantly more information than was con-
tained in the first 50. Yet, if kinetic parameters are estimated with 50 and 
500 points from the same curve, and statistical formulae are then blindly 
applied in order to calculate standard errors, these will be found to be much 
smaller with 500 points than with 50. The paradox is resolved if it is re-
membered that statistical calculations require independent observations: if 
points are taken that are too close together, they cannot be independent. 
Unfortunately, the question of how many points should be taken from one 
curve cannot be answered simply. If data collection and analysis can be carried 
out automatically, the time required for computer analysis can be used in 
order to decide the number of points, because the inclusion of more points 
than necessary does not affect the accuracy of the parameter estimates. If data 
collection and analysis are carried out manually, however, it is obviously 
sensible to avoid unnecessary labour. In such cases, about 10 points are likely 
to be adequate to define most curves, and certainly not more than 20 are 
likely to be required. Even if only a few points are used, estimates of standard 
errors of parameters should be treated with even more scepticism than usual, 
because one has no idea how many of the observations can be considered to 
be independent. In any event, the variations between curves will normally be 
much greater than the variations between points in a single curve. It is 
sensible, if the method described in Section 8.3 is used in order to obtain 
values of the initial velocities, to regard each extrapolated initial velocity as a 
single observation and each slope as a single observation in the estimation 
οϊΚρ. 

In spite of the various problems that have been discussed in this section, 
there is no doubt that the analysis of progress curves forms a very valuable 
part of enzyme kinetics, provided that it is carried out cautiously and 
sensibly. 
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Fast Reactions 

9.1 Limitations of steady-state measurements 

It is convenient to refer to the period in a reaction before the steady state is 
reached as the transient phase. This term is commonly used in physics and 
mathematics to describe terms of the form A exp( — t/τ) that often occur in 
the solutions of differential equations. Such terms have finite and even very 
large values when t is small, but decay to zero as t is increased above τ, a 
constant called the 'relaxation time' As will be seen, they always occur in 
kinetic equations if the steady-state assumption is not made during the 
derivation. 

It is fairly obvious that experimental methods for investigating very fast 
reactions, with half-times of much less than 1 s, must be different from those 
used for slower reactions, because in most of the usual methods the time 
taken in mixing the reactants is of the order of seconds or greater. Although 
mechanical mixing devices, such as the 'stopped-flow' apparatus, permit 
more or less conventional methods to be used in the study of reactions with 
half-times as short as 10"3 s, faster reactions require different methods. 
It is rather less obvious that the kinetic equations required for fast reactions 
are also different, because in most enzyme-catalysed reactions the steady 
state is attained very rapidly and can be considered to exist throughout the 
period of investigation, provided that this period does not include the first 
second after mixing. Consequently, most of the equations that have been 
discussed in this book have been derived with the use of the steady-state 
assumption. However, fast reactions are concerned, almost by definition, 
with the transient phase before the attainment of a steady state and cannot 
be described by steady-state rate equations. This chapter is concerned with 
the derivation of rate equations for the transient phase, but first it is useful 
to examine the reasons for making transient-phase measurements. 

Although steady-state measurements have proved extremely useful in 
elucidating the mechanisms of enzyme-catalysed reactions, they suffer from 
the major disadvantage that, at best, the steady-state velocity of a multi-step 
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reaction is the velocity of the slowest step, and steady-state measurements do 
not normally provide information about any of the faster steps. Yet if the 
mechanism of an enzyme-catalysed reaction is to be understood, it is neces-
sary to have information about steps other than the slowest. As discussed in 
Chapter 5, the experimenter has considerable freedom to alter the relative 
rates of the various steps in a reaction, by varying the concentrations of the 
substrates. Consequently, it is often possible to examine more than one step 
of a reaction in spite of this limitation. However, isomerizations of inter-
mediates along the reaction pathway cannot be separated in this way. To 
take a simple example: 

E + A p U E A ^ E P ^ E + P 
/ C _ j / C _ 2 / C _ 3 

The steady-state equation for this mechanism is equation 2.18, i.e. 

= (Vfg/KZ)-(V'p/K*) 
υ \HalKt)HvlK) 

which contains only four parameters, and it is impossible to obtain from them 
the values of all of the six independent rate constants. This equation also 
applies to much more complex mechanisms where the interconversion of 
EA and EP involves several intermediates. Steady-state measurements not 
only fail to provide any information about the individual steps, but also give 
no indication of how many steps there are. In general, as mentioned in 
Section 3.3, in any part of a reaction pathway that consists of a series of 
isomerizations of intermediates, all of the intermediates must be treated as a 
single species in steady-state kinetics. This is a severe limitation and provides 
the main justification for transient-state kinetics, which are subject to no 
such limitation. 

The advantages of transient-state methods may seem to make steady-state 
kinetics obsolete, but it is likely that steady-state investigations will continue 
to predominate for many years, for reasons that will now be considered. 
Firstly, the theory of the steady state is simpler, and steady-state measure-
ments require less expensive equipment. In addition, steady-state measure-
ments need very small amounts of enzyme and, although this may be a dis-
advantage if it means that conditions in the assay mixture are very different 
from those in the cell, it will continue to be a deciding factor until methods of 
purifying enzymes have advanced far beyond their present level of conveni-
ence and efficiency. It is significant in this connection that most transient-
state studies have been carried out on enzymes of little metabolic interest, 
such as chymotrypsin, papain, ficin and lysozyme, because they are readily 
available in large amounts, and until such studies have been applied routinely 
to enzymes such as phosphofructokinase and glutamine synthetase, for 
example, it will be premature to regard the steady state as obsolete. 

One should also be aware that analysis of transient-state data suffers 
severely from a numerical difficulty known as ill-conditioning. This means 
that, even in the absence of experimental error, it is possible to fit experimental 
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results with a wide range of constants and indeed of equations. This is 
illustrated in Figure 9.1, which shows a set of points and a line calculated 
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Figure 9.1 Ill-conditioned character of exponential functions: The points were calculated from 
y = 5.7 exp(-t/1.3) + 4.7 exp(-t/4.4) + 9.3 exp{-X/14.2\ the line from y = 7.32 exp{-t/2.162) 
+ 10.914 exp(-t/12.86) 

from two different equations, both of the type commonly encountered in 
transient-state kinetics. The practical implication is that it is often impossible 
to extract all of the extra information that is theoretically present in transient -
state measurements unless the various processes are very well separated on 
the time scale. 

In conclusion, all enzymologists should be aware of the potential useful-
ness of transient-state methods, but they should not expect to abandon the 
steady state entirely. 

9.2 Transient phase of the Michaelis-Menten mechanism 

In Section 2.4, the rate equation for the Michaelis-Menten mechanism was 
derived without making the steady-state assumption, in order to demonstrate 
that under appropriate conditions a steady state would in fact be reached 
very rapidly. The transient phase of this mechanism will now be examined 
in more detail. It was found (equation 2.9) that the rate could be represented 
by: 

dp k+1k+2e0s{l-exp[-{k+1s + k_1 + k+2)t~\} 
di rC+iS~rrC_i ~r^ + 2 

(9.1) 
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It is plain from this equation that the rate is initially zero but increases rapidly 
to the steady-state value as the exponential term decays. The actual depen-
dence of p on t can be found by integrating and introducing the condition 
p = 0 when t = 0: 

k+1k + 2e0st k+ik + 2e0s{\— exp[ — (k+ls + k_i + k + 2)t~\} 
P = (9.2) 

The plot of p against i, illustrated in Figure 9.2, initially curves upwards, but 

Figure 9.2 Approach to the steady state: In the upper part of the figure, the velocity v is plotted 
against time and the broken line shows the steady-state velocity vss. In the lower part of the figure, 
the concentration of product, p, is plotted against time with the same time scale. The values were 
calculated from equations 9.1 and 9.2, with k+l =50 000 M 
s = 0.005 M and e0 = 0.000 01 M 

-\k_1 = 500s-\k + 2 ■■ 100s~ 

as the exponential term decays it becomes a straight line given by the equation 

p = , k+lk,+2e°S, (t - ^——) (9.3) 

Extrapolation of this line back to the t axis gives an intercept, τ, of 
l/(k+1s + k_1 + k+2)- As the value oft is dependent on s, a plot of l/τ against 
s gives a straight line of slope k+i and intercept (/c_ t + fe+2) on the l/τ axis, 
as was demonstrated by Gutfreund (1955) for the ficin-catalysed hydrolysis 
of benzoyl-L-arginine ethyl ester. 

9.3 'Burst' kinetics 

In studies of the chymotrypsin-catalysed hydrolysis of nitrophenylethyl 
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carbonate, Hartley and Kilby (1954) observed that, although the release of 
nitrophenol was almost linear, extrapolation of the line back to the product 
axis gave a positive intercept. Because the substrate was very poor, it was 
necessary to use high enzyme concentrations and the intercept, which is 
known as a 'burst' of product, was proportional to the enzyme concentration. 
This suggested a mechanism in which the products were released in two steps, 
the nitrophenol being released first: 

~ ~ 1 ES - < 2 > EQ ~ * E ♦ Q (9.4) 
*- i 

If the final step is rate limiting, i.e. if k+3 is small compared with k+1s, k_l 

and /c+2, then the enzyme will exist almost entirely as EQ in the steady state. 
However, it is not necessary for EQ to be formed before P can be released, 
and so in the transient phase P can be released at a rate much greater than the 
steady-state rate. It might be expected that the amount of P released in the 
burst would be equal, and not merely proportional, to the amount of enzyme. 
This is accurately true only if k+3 is very much smaller than the other rate 
constants; otherwise, the burst is smaller than the stoichiometric amount, as 
will now be shown, following a derivation based on that of Gutfreund (1955). 

If 5 is large enough to be treated as a constant, and if k+jS is large compared 
with (fc_1 + fc+2 + fc+3), then very shortly after mixing the system effectively 
simplifies, to 

P 

*-2 
FS x ^ ' EQ 

**3 

because the reaction E + S -► ES can be regarded as instantaneous and 
irreversible, and the concentration of free enzyme becomes negligible. This 
is then a simple reversible first-order reaction (cf. Section 1.4), with the 
solution 

[ES] = 

[EQ] = 

e0{k + 3 + k+2 exp[-(k + 2 + k + 3)t~\} 

K + 2 + K + 3 

/c + 2 eo{l -exp[- ( /c + 2 + /c + 3)i]} 
k + 2 + k + 3 

From these equations, expressions for dp/dt and dq/dt are readily obtained: 

— = k TESl = k+2^o{k+3
Jtk+1 exp[-(fe+ 2 + fc+3)r]} 

dt /c + 2 + /c + 3 
d<* ; r u m k+2k + 3e0{l-exp[-(k+2 + k + 3)t~\} 

d7 = fc+3[EQ] = \—ϊκ3 
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In the steady state, i.e. when t is large, the exponential term becomes negligible 
and these two equations simplify to 

dp = dq = k+2k + 3e0 

dt dt k+2 + k + 3 

However, in the transient phase dp/dt is initially much larger than dq/dt, so 
that while P displays a 'burst', Q displays a 'lag' if the linear parts of the curves 
are extrapolated back. The magnitudes of these intercepts can be calculated 
by integrating and introducing the conditions p = 0 and q = 0 when t = 0: 

k+2k+3e0t k2
+2e0{l-exp[-(k + 2 + k + 3)t']} 

k+2 + k + 3 (k + 2 + k + 3) P = T 7T— + 77; Γ Τ — ^ <9· 5 ) 

k+2k + 3e0t k + 2k+3e0{\-exp[-(k+2 + k + 3)t']} 
(9.6) 

/c + 2 + K + 3 (^ + 2 + ^+3) 

The linear part of the plot of/? against t is obtained by omitting the exponen-
tial term from equation 9.5, and extrapolation to zero time gives π, the 
magnitude of the burst: 

k+2eo _ eo 

1 + 
(k + 2 + k + 3) I K + 3 

k+ 

Thus the burst of P is not equal to the enzyme concentration, but approxi-
mates to it if k+2 > k+3. This equation implies that the burst can never 
exceed the enzyme concentration, but extrapolation of the 'linear' portion of 
a progress curve can sometimes yield an overestimate of the true burst size 
if the velocity is not truly constant in the steady state but decays at a significant 
rate. One can avoid this type of error by ensuring that the progress curve is 
truly straight during the steady-state phase. 

The lag, τ, in the production of Q can be found in a similar way, and is 
given by 

τ = l/(k+2 + fc+3) 

τ is likely to be detectable only if k + 2 is of similar magnitude to k + 3. The 
magnitude of this type of lag is independent of both enzyme and substrate 
concentrations, and so it can readily be distinguished from the type of lag 
that was discussed in the previous section. 

A pair of progress curves for this mechanism are given in Figure 9.3, 
calculated with k+2 = 10/c + 3, in order to illustrate these results. 

A rather more rigorous analysis of the mechanism shown in equation 9.4 
is possible, involving no assumptions about the relative magnitudes of the 
rate constants (Ouellet and Stewart, 1959). In the full solutions, k+1s0 and 
k-i appear in the equations together with an additional exponential term, 
which gives rise to a very brief lag before the burst occurs. This analysis 
is of great theoretical interest, but it has not proved to be of wide practical 
application and will not be further discussed here. 

The results discussed in this section have led to an important method for 
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Figure 9.3 'Burst1 kinetics: The concentrations of P and Q are shown as functions of time for an 
enzyme following the mechanism shown in equation 9.4, with k+2 = 10, k + 3 = 1 (arbitrary units), 
under saturating conditions, i.e. k+ 1s > (k_ 1 +k + 2 + k + 3) 

titrating enzymes. It is generally difficult to obtain an accurate measure of 
the molarity of an enzyme: rate assays provide concentrations in activity 
units per millilitre, which are adequate for comparative purposes but are not 
true concentrations; most other assays are really protein assays and are 
therefore very unspecific. However, equation 9.7 shows that* if a substrate 
can be found for which k+3 is either very small or zero, then the burst π is 
equal to the enzyme concentration. The end-point is also very well defined 
if /c + 3 is very small. The substrates of chymotrypsin that were examined 
originally, p-nitrophenylethyl carbonate and p-nitrophenyl acetate, showed 
values of k+3 that were inconveniently large, but subsequently Schonbaum, 
Zerner and Bender (1961) found that under suitable conditions trans-
cinnamoylimidazole gave excellent results. This compound reacts rapidly 
with chymotrypsin to give imidazole and irans-cinnamoylchymotrypsin, but 
no further reaction occurs readily. Measurement of the amount of imidazole 
released by a solution of chymotrypsin provides a measure of the amount of 
enzyme. Suitable titrants for a number of other enzymes have also been found 
(see, e.g. Bender et a/., 1966). 

Active site titration by means of burst measurements differs from rate 
assays in being relatively insensitive to changes in the rate constants: a rate 
assay demands very well defined conditions of pH, temperature, buffer com-
position, etc., if it is to be reproducible, but the magnitude of a burst is 
unaffected by relatively large changes in k + 2, such as might result from chemi-
cal modification of the enzyme, unless these reduce k + 2 to a very small value. 
Thus chemical modification alters the molarity of an enzyme, as measured 
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by this technique, either to zero or not at all. For this reason, enzyme titration 
has also been called an 'all-or-none' assay (Koshland, Strumeyer and Ray, 
1962). 

9.4 Reversible sequences of reactions 

There are two types of mechanism for which exact solutions to the rate 
equation exist. One of these is the reversible bimolecular reaction, exempli-
fied by 

E + S+±ES 

This mechanism was considered in Section 1.4. It is of rather limited applica-
tion in biochemistry, because few reactions are as simple as this. Even for 
reactions that do correspond to this mechanism, it is more usual to apply the 
approximate solutions discussed in the following sections, because these are 
very widely applicable. However, the full solution to this mechanism has been 
used occasionally, as, for example, by Ellis and Dunford (1968) for the binding 
of cyanide to peroxidase. 

The other type of mechanism for which an exact solution exists is a 
sequence of n reversible unimolecular steps: 

X0 *± Xi * X2 * ■ · · *± X, (9.8) 
The limitation to unimolecular steps is not as restrictive as it might seem 
because, although all enzyme-catalysed reactions involve at least one bi-
molecular step, it is usually possible to achieve pseudo-first-order conditions. 
The rate equations that describe the following generalized enzyme mechanism: 

E + S τ± ESi τ± ES2 <± · · · <± ES„ <± E + P 

can be solved with good accuracy if either of the following conditions holds: 
(1) If s is effectively constant, and p is effectively zero, then the first step, 

E + S -► ES l5 is pseudo-first order and the first step in the reverse 
direction, E + P->ESM , can be ignored. In this case, equation 9.8 
applies. 

(2) If a steady state exists, the steady-state rate equations can be integrated 
as described in Chapter 8. 

One or other of these conditions applies at all stages during most enzyme-
catalysed reactions. The solution for the transient phase (condition 1) 
invariably contains terms of the form exp( — ί/τ). Provided that the largest of 
these terms becomes insignificant before the substrate concentration changes 
significantly, the transient and steady-state phases can be considered separ-
ately, ignoring changes in s during the transient phase and assuming that 
changes in the concentrations of intermediates are very slow during the 
steady-state phase. 

A third condition also permits accurate solution of the rate equations: 
if a reaction is close to equilibrium, all of the non-linear terms in the rate 
equations involve products of small numbers, and can be ignored with good 
accuracy. The solutions resemble those for the transient phase and provide 
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similar information, but are often much more convenient experimentally. 
This situation is discussed in the latter part of this chapter. 

Although equation 9.8 can be treated exactly for any number of steps, it is 
easier to follow the derivation for a specific example: 

Xo 5^± Xi τ^± Χ2 (9.9) 

The system is defined by a conservation equation: 

x0 + Xi+x 2 = *tot (9.10) 
and three rate equations: 

dx0/dt = — /c+iXo + Zc.!*! (9.11) 

dxl/dt = k+1x0 — (k_l-\-k+2)x1-\-k^2x2 (9.12) 

dx2/dt = k+2xi—k_2x2 (9.13) 

Any one of the three rate equations is redundant, as their sum is the same as 
the first derivative of equation 9.10, i.e. dx0/di + dx1/di + dx2/di = 0, so 
there are in fact three independent linear differential equations in three 
unknowns. Before they can be solved, they must be converted into a single 
differential equation in one unknown. x2 can be eliminated between equa-
tions 9.10 and 9.12: 

dxjdt = fc+1x0-(fc-i + fc+2)x1 + fc_2(xtot-x0-Xi) 
= /e _ 2xtot + (/c +1 — k+2)x0 — (/c_ x +/c+2 + /c_2)x1 (9.14) 

Differentiation of equation 9.11 gives 

d2x0/di2 = -k+1dx0/dt + k_1dx1/dt (9.15) 

dxjdt is eliminated by substituting equation 9.14 in equation 9.15: 

d2x0/dr2 = — k+1 dx0/di + /c_1/c_2xtot 

+ (/c+1-fc_2)/c_1x0-/c_1(/c_1+/c + 2 + /c_2)x1 (9.16) 

Finally, x : is eliminated between equations 9.11 and 9.16: 

d2x0/dr2 + (k + ί + k _! 4- k+2 + k _ 2)dx0/di 
+ (/c_1/c_2 + /c+ 1/c+2 + /c+ χκ_2)Χο — k-lk_2xtot 

This is of the standard form d2x0/di2 + P dx0/di + Öx0 = R, and has 
the solution 

x0 = Ax exp(- i / i 1 ) + ^ 2 exp(- i / i 2 ) 
where A1 and A2 are constants of integration defined by the initial state of 
the system, and τχ and τ2 are given by: 

lAi = ^ + y ^ Z 4 Ö ) 

1 / τ 2 = 1 ( Ρ - χ / Ρ 2 ^ 4 β ) 
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If /c_x/c+2 is small compared with (k-ik_2 + k+1k+2 + k+1k_2\ these solu-
tions simplify to the following convenient values: 

lAi = k+l+k_1 (9.17) 
1/τ2 = /c + 2 + /c_2 (9.18) 

For the general case of a mechanism of n unimolecular steps, all except one 
of the unknown concentrations can be eliminated in a similar way to that 
described for equation 9.9. The conservation equation is used in order to 
eliminate the first unknown, but each subsequent elimination involves 
differentiation with respect to i, so that the resulting differential equation in 
one unknown is an nth order linear differential equation, with a solution 
containing n exponential terms. In favourable cases, some of the relaxation 
times can be associated with specific steps, as in equations 9.17 and 9.18, but 
this simplification does not apply generally. 

9.5 Jump kinetics 

One of the most useful techniques for studying rapid reactions is to observe 
the relaxation of a system back to equilibrium after a small perturbation. By 
far the most important in enzyme kinetics is the temperature-jump method, in 
which the perturbation of equilibrium is the result of a sudden increase in 
temperature. With relatively simple apparatus, a temperature increase of 
10°C in 10" 6 s is possible. As most kinetic parameters vary with temperature, 
a temperature jump is normally followed by a rapid relaxation to a new 
equilibrium. Other perturbations are possible, such as a pressure jump, but 
these are less useful because they produce much smaller changes in the kinetic 
parameters for a comparable input of energy. However, the same analysis 
applies to any type of perturbation. 

A simple binding reaction will be used as an example: 

E 4- S ^ ES 

e^ + ke s^ + As x^ + Ax 

If e^, s^ and x^ are the final equilibrium concentrations of E, S and ES, 
respectively, and k+l and /c_x are the rate constants after the perturbation, 
then the instantaneous concentrations can be represented as (e^ + Ae), 
(s^ + As) and (x^ + Ax), respectively. Hence the rate is given by 

dx/dr = /c + 1(e00 + Ae)(s00 + As)-/c_1(x00 + Ax) 
But dAx/di = dx/di and, by the stoichiometry of the reaction, \e = As = 
— Ax, and so 

dAx/di = /c+1(^00-Ax)(s00-Ax)-/c_1(x00 + Ax) (9.19) 
As there is no net rate at equilibrium, fc+^s^ = /c-xX^, and (Ax)2 can be 
neglected if Ax is small, so equation 9.19 simplifies to 
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dAx/di = - [ / C + ^ + S J + ZC.JAX 

This is a simple linear differential equation and can be solved to give 
Ax = Axoexpf-Ck + ^ + s J + fc-!]*} 

where Ax0 is the initial perturbation. Thus, provided that the initial perturba-
tion is small, the relaxation of a single-step reaction is described by a single 
exponential term with a relaxation time, τ, given by 

l/τ = fc+iteoo + O + fc-i 
As e^, s^ and L ^ ^ can normally be measured independently, measure-
ment of τ permits individual values to be assigned to k+1 and fc_ v 

Mechanisms that involve several steps can be treated in exactly the same 
way, although the derivation is more complicated. In general, the solution 
for an «-step mechanism is characterized by n relaxation times, unless the 
steps are related by thermodynamic requirements, as in 

E + S τ± ES 

II II 
E' + S +± E'S 

Here, although there are four equilibria, only three are independent because 
the fourth equilibrium constant is determined completely by the other three. 
In such cases, the number of distinct relaxation times is equal to the number 
of independent equilibria. Mechanisms of this type occur frequently in the 
treatment of proton binding. 

An important type of multi-step mechanism is one in which the initial 
bimolecular reaction is followed by several unimolecular isomerization 
steps: 

E + S«±ES+± E'S «± E ' S . . . 

The expressions for the relaxation times are the same as those for the sequence 
of unimolecular steps discussed in Section 9.4, except that the pseudo-first-
order rate constant for the bimolecular step, E + S-+ES, is /c+iie^ + s^) 
instead of simply k+1. 

Although the jump method has been discussed in terms of relaxation to 
equilibrium, the same analysis can be applied equally well to relaxation to a 
steady state: 

E + S ^ £ i ES — I E + P 

T; 
ess + Ae s0 *SS + Ax 

The relaxation rate is given by 
dAx/dr = k+1{ess + \e)s0-(k^l+k + 2)(xss + ^x) 

After introducing the steady-state condition k + 1esss0 = (k_x +k + 2)xss, and 
the stoichiometry requirement Ae = — Ax, this simplifies to 

dAx/di = — (/c+1s0 + /c_1+/c + 2)Ax 
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and has the solution 

Δχ = Δχ0 exp( — t/τ) 

where the relaxation time τ, given by 

is the same as the relaxation time for the transient phase after rapid mixing of 
reactants, discussed in Section 9.2 for the same mechanism. 

Experimentally, the important difference between the rapid-mixing and 
temperature-jump methods is in the range of relaxation times that can be 
measured. Even the most efficient mixing devices require at least 10" 3 s 
for complete mixing, and cannot be used to measure shorter relaxation times. 
In the temperature-jump method, the reactants are already mixed before the 
perturbation, and the limiting factor is the time required for heating (about 
10"6 s). Thus much shorter relaxation times can be measured. On the other 
hand, convection effects prevent the temperature-jump method from being 
used for relaxation times greater than about 10"2 s, so it cannot replace the 
rapid-mixing methods completely. 

The temperature-jump and other relaxation methods were proposed by 
Eigen (1954), and have been applied by him and co-workers to a wide range 
of systems in chemistry and biochemistry. The first application to enzyme 
kinetics occurred when Hammes and Fasella (1962, 1963) used the tempera-
ture-jump method to study the interaction of various compounds with 
glutamate-aspartate transaminase; and in recent years Hammes and co-
workers have used relaxation techniques in the study of numerous enzymes 
(see Hammes, 1968; Hammes and Schimmel, 1970). 

9.6 Sinusoidal perturbations 

In discussing jump kinetics, the perturbation has been implicitly regarded as 
instantaneous, but a more realistic approximation is to consider each rate 
constant, /c, to suffer an exponential change: 

k = k a o [ l - ^ e x p ( - i / T ) ] 
where τ is of the order of 10" 6 s and A is determined by the magnitude of the 
perturbation. This equation simplifies to the 'instantaneous' approximation, 
k = fc^, if the period of study is confined to values of t > 10" 6 s. Very much 
faster reactions can be studied with sinusoidal perturbations. These are 
commonly produced by passing ultrasonic waves, of frequency as high as 
1014 s~ \ through the reaction mixture. Ultrasonic waves are accompanied 
by local fluctuations in temperature and pressure as they are transmitted 
through a medium. In water, the temperature fluctuations are very small, but 
they have more effect than the pressure fluctuations on the kinetic parameters, 
because pressure changes have very little effect on reactions in solution. 
However, as both fluctuations are exactly in phase, it is of no consequence 
which of them produces the greater effect. Provided that the perturbations 
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are small, they produce proportionate changes in the rate constants and so, 
for a simple binding reaction: 

k+1 E + S ^ ES 

TZ 
e s x 

each rate constant varies sinusoidally in response to the sinusoidal ultrasonic 
wave: 

k+1 = k+l(l + Asma)t) (9.20) 

fc_! = k- i(l + B sin cot) (9.21) 
where Έ+1 and fc~_ x are the mean values ofk+l and fe_ l5 ω is the frequency of 
the ultrasonic wave and A and B are the amplitudes. The rate equation is 

dx/dt = k+les — k_xx (9.22) 

If e, s and x are the unperturbed values of e, s and x, then stoichiometry requires 
that 

e — e = s—~s= — (x —x) = — Δχ (9.23) 

and substitution of equations 9.20, 9.21 and 9.23 into equation 9.22 gives 

dAx/di = F+1(l +A sin cot^e-Xx^s-^-k-^l+B sin ωί)(χ + Δχ) (9.24) 
Now, if the unperturbed system is at equilibrium (or a steady 
state), and Ax, A and B are all small, so (Δχ)2, ΛΔχ and £Δχ can be neglected. 
Therefore, equation 9.24 simplifies to: 

dAx/di+fX+^e+sJ + fcLjAx = k+1es(A — B)sin cot 

which is a standard differential equation, with the solution 

k+ iisiA — B)l - sin cot — co cos cot j 
Δχ = Y 1- + R βχρ(-ί /τ) (9.25) 

^ + ω2 

where τ is given by 

1 
τ 

= k+1(e+s) + k_1 

and R is a constant of integration. The exponential term becomes negligible 
when t > τ, and equation 9.25 simplifies to 

Ti+1es(A — B)(x sin cot — ωτ2 cos ωί) 
Δ χ = : r~i 

1+ω 2 τ 2 

Comparison with an equation showing the variation of the (unattained) 
equilibrium displacement, \xeqm: 

&xeqm = k+1es(A — B)z sin cot 
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shows that the actual displacement oscillates with the same frequency as the 
equilibrium displacement, but lags behind it by tan_1(arr) rad and has a 
reduced amplitude, a, given by 

a = ^ 
(1 + ω2τ2)± 

where aeqm, given by 
<*em = k+1es(A-B)T 

is the amplitude of the equilibrium displacement. This is illustrated in 
Figure 9.4 for various values of ωτ. When ωτ is small, the reaction remains 

Figure 9.4 Response of a binding reaction E + S <=* ES to sinusoidal perturbation of the rate 
constants; The broken line shows the variation of the unattained equilibrium response, and the 
solid lines show the actual responses for three values ο/ωτ, as indicated 

close to equilibrium at all times, but as the frequency and ωτ increase it lags 
further behind and the amplitude decreases, and at very high frequencies 
there is hardly any response. 

As chemical reactions have no natural tendency to oscillate about their 
equilibria, power must be absorbed from the input ultrasonic wave to force 
the chemical oscillations. This power is proportional to the squares of both 
the amplitude and the frequency of oscillation. Hence the power absorbed 
per wavelength is proportional to α2

€ςνηω/(1-\-ω2τ2). This function has a 
maximum at a point where ω = Ι/τ, and so measurement of the power 
absorbed at different frequencies provides a simple method of measuring τ. 

The ultrasonic absorption method has been used to study numerous simple 
reactions, such as the solvation of glycine and related compounds (Hammes 
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and Pace, 1968). Investigations of enzymes have been hindered by experi-
mental difficulties, such as the need for very large amounts of material in 
order to obtain significant absorption, and by the daunting theoretical 
complexity of the expected relaxation spectrum. However, there can be no 
doubt that ultrasonic absorption will eventually become a most valuable 
technique for studying very fast steps in enzyme-catalysed reactions. It has 
been used in the study of conformational changes in poly-L-glutamic acid 
(Burke, Hammes and Lewis, 1965), with results of obvious relevance to 
enzyme kinetics. This study, and studies of simple systems, are important in 
understanding enzyme catalysis because they define 'reasonable' values for 
the rates of many elementary processes, such as solvation, protonation, de-
protonation and macromolecular conformational changes. Thus, although 
the observation that glycine solvation occurs with a relaxation time of about 
2.5 x 10"9 s does not prove that solvation occurs equally fast in all reactions, 
it does provide an estimate of the rate to be expected in other systems. Simi-
larly, the determination of the relaxation time for the helix-coil transition in 
poly-L-glutamic acid, in the range 5 x 10~8 to 10~5 s, provides an estimate 
of the rates that are possible for conformational changes in enzyme-catalysed 
reactions. 
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10 
Estimation of Rate Constants 

10.1 Value and limitations of a statistical approach 

For the last 40 years, most enzyme kinetic experiments have been analysed 
by means of linear plots of the type described in Section 2.5. The double-
reciprocal plot, in which l/v is plotted against 1/s, has been by far the most 
widely used plot but it is also, unfortunately, the most objectionable from the 
statistical point of view and provides very poor estimates of Km and V. Despite 
advances in analytical methods during recent years, the popularity of the 
double-reciprocal plot continues unabated, partly because some leading 
enzymologists have recommended it without fully understanding its faults, 
and partly because it is (very slightly) easier to use than most other methods. 

In definitive work, it is preferable to avoid all plots and to use statistical 
analysis instead, but many experimentalists have found the statistical argu-
ments rather arid, believing that the advantages to be gained from valid 
statistical analysis, are too slight to off-set the loss in convenience. It is there-
fore appropriate to introduce this chapter with a discussion of the value and 
limitations of statistical analysis in general. 

If all experiments were executed with perfect precision, there would be no 
objection to graphical methods of analysis. The only limitation would be the 
ability of the experimenter to plot the data precisely and to read off the 
results precisely. However, real experiments are always subject to experi-
mental error, and the main aim of statistical analysis is to minimize its 
deleterious effects. Graphical methods do not, in general, achieve this end, 
because it is impossible for an experimenter to give correct weight to all 
observations when drawing a line by eye, particularly if the correct weights 
vary from observation to observation. In practice, any line drawn by eye 
through a series of points is subjectively biassed. This is objectionable be-
cause a biassed line provides less accurate estimates than an unbiassed line, 
and because any bias in technique reduces the credibility of the conclusions 
that an experimenter may wish to draw. 

A second objection to graphical methods is that usually they do not provide 
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any information about the precision of the estimated kinetic constants 
(although the direct linear plot is an exception: see Section 10.9). Statistical 
calculations are much superior, in that they provide estimates of the errors 
that result from random variations in the observations. 

It is instructive to consider the various types of error that can arise in an 
experiment. Random variations are of two types, experimental error and 
sampling variation. True experimental error results from inaccuracies in 
pipetting, instrumental noise, imprecise reading of values from chart re-
corders and similar sources. Many enzymologists regard experimental error 
as the only important source of random variations in enzyme kinetics, but 
some, e.g. Reich (1970), believe that sampling variation is also important. In 
some fields it is overwhelmingly more important: no one would suggest that 
the variation in weights of a sample of 100 rats was caused by inaccurate 
weighing; instead, one would argue that the rats were not all identical and that 
their weights deviated, not from their 'correct' values, but from some idealized 
'population' value. It is open to argument whether enzyme molecules vary in 
this way and, even if they do, it is questionable whether one would expect 
'samples' from a stock solution, each containing many billions of molecules, 
to vary significantly. Nonetheless, the possibility should not be rejected out 
of hand; in particular, Reich has argued that random variations in enzyme 
kinetic experiments are too large to be explained solely by poor technique and 
instrumentation. 

Systematic variations are also of two types, namely those that result from 
lack of fit, and those that result from errors that affect all observations in a 
systematic way. Lack of fit is the type of variation that results from fitting 
observations to the wrong equation. If one made perfectly accurate observa-
tions for an enzyme that obeyed the Michaelis-Menten equation, but fitted 
them to the equation for first-order kinetics, the best possible line would not 
fit all of the observations. This type of error can often be identified by statisti-
cal tests (see Section 10.8) and, provided that the correct equation can be 
found, it can be eliminated. 

The second type of systematic variation is more serious, because it is 
present in all experiments, and cannot readily be detected. Any errors that 
affect the entire experiment, such as incorrect estimates of the enzyme and 
substrate concentrations in stock solutions, cause errors in the fitted con-
stants, but they do not increase the estimated statistical error because they 
do not cause deviations from the best-fit equation. The only way they can be 
detected is by repeating the entire experiment, including all preliminary 
preparations. One generally finds in this case that day-to-day variations in 
estimated constants are much greater than the statistical errors estimated 
from within-experiment variation. 

The practical importance of systematic errors is that the numerical preci-
sion of a kinetic constant should not be taken too seriously, but this does not 
mean that statistical calculations are of no value, because comparisons of 
numbers within an experiment can be made legitimately. For example, sup-
pose that a suspected inhibitor of an enzyme raised the estimated value of 
K^p by an amount that was less than the day-to-day variation but signifi-
cantly more than the within-experiment variation as estimated from statisti-
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cal calculations. Provided that the result was reproducible and the inhibited 
and uninhibited rates were measured in a single experiment with the same 
stock solutions, it would indicate a significant degree of inhibition. 

10.2 Variance 

In statistics, one must always make a distinction between the true value of a 
quantity, which is an unknown constant and is generally denoted by a Greek 
letter, e.g. /?, and an estimate of that quantity, which is a variable (as we can 
assign any value we like to it) and is generally denoted by the corresponding 
Roman letter, e.g. b. One may also consider the best estimate, by some cri-
terion, denoted by B (pronounced 'b-hat'), which again is a constant, as there 
will normally be only one value of B that satisfies any defined criterion. (This 
vagueness about criteria is deliberate; it is a mistake to assume that there is a 
unique criterion for assessing closeness of fit that can be applied rigidly to all 
experiments.) Different symbols should be used for b and ß because, although 
we hope that they will be equal, they are never exactly equal in practice. It is 
very important in statistical studies to be clear which quantities are variables 
and which are constants, and it should be noted that these do not in general 
correspond with what might be expected. Thus, the unknown constants a 
and ß in an equation y = <x + ßx must be replaced with the known variables 
a and b if we wish to estimate them; but the quantities x and y, which are 
variables to the experimenter, are constants to the statistician, because they 
cannot be altered during statistical analysis. 

As any estimate b differs from the true value /?, it is natural to demand some 
estimate of the magnitude of the error, b — ß. Analysis of the way in which 
different b values differ from one another provides information about the 
way in which they differ individually from ß. If we determine a large number, 

n, of values, bh it may happen that the mean value, - Σ bh approaches ß as n 

approaches infinity. If this is true, then b is, by definition, an unbiassed 
estimator* of ß; in the remainder of this section, it is assumed that we are 
discussing unbiassed estimators, although estimators in the physical sciences 
are never truly unbiassed because it is never possible to allow for all sources 
of systematic error. Hence, for an unbiassed estimator, the mean error, i.e. 

- Σ (bi — ß\ approaches zero as n approaches infinity, and it does not provide 

a useful measure of the variability of b. However, the mean squared error, 

- Σ (hi — /?)2, does not approach zero as n increases because every term in the 
summation is positive. Instead, it approaches a definite limit, known as the 
variance of bi? o r a 2 ^ ) , which does provide a measure of the variability of bt. 

The variance of bt is defined as 

* Not all statistical authorities make a distinction between an estimate, which is a particular 
value in a particular context, and an estimator, which defines a general class of estimates, but the 
distinction is sometimes useful for clarity and will be made in this account. 
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G\b^Um\nbi-ß)2 (10.1) 
n-»oo " 

but it cannot be measured, because ß is unknown and because one cannot 
carry out an infinite number of determinations. However, it can be estimated 

from the sample variance, s2(fef) = - ΣΦΐ — Β)2, where n is finite and B is the 

best-fit estimate of /?, by some criterion. A simple criterion for defining B is to 
define it as the value that makes s2(b,) a minimum. Then we have 

i.e. ΣΒ = Σ^ΐ· As B is the same for each i, ΣΒ is simply nB, and so 

B = - Ybi9 i.e. the mean of all the b=. n ̂  l l 

In general, the sample variance, s2(bf), underestimates the true variance 
σ2(ί?,) because, of all the ways in which B might be defined, we normally choose 
the definition that makes s2(bf) a minimum. Hence s2(fef) is a biassed estimator 
of o2(bi). While it is intuitively obvious that a correction for this bias is 
needed, the magnitude of the correction is not obvious, but a derivation of 
its magnitude would be beyond the scope of this book. We therefore state, 
without proof, that the bias can be corrected by multiplying the sample 
variance by n/(n— 1). In the more general case, where p parameters may have 
been estimated from n observations, the correction factor is n/(n — p\ i.e. 

When tabulating results, it is common practice to replace the variance of 
an estimate by the square root of the variance, which is known as the standard 
error. The practical advantage of this procedure is that the standard error of 
any value has the same dimensions as the value itself, so that one can write 
(for example) B = 3.21 + 0.12, where the first number is the estimate of β 
and the second is the standard error of the estimate. Nonetheless, the variance 
is much more amenable to algebraic manipulation, as squares are simpler to 
deal with than square roots, and for that reason it is preferred in theoretical 
discussions. 

In practice, we are more likely to be interested in the variance of the best 
estimate, B, than in that of the individual values, &,·. In order to calculate the 
variance of B, we must first determine the variance of a sum; so, consider the 
sum of two numbers, (x + y\ where x and y have variances defined by 

σ2(χ) = ητη±-Σ(Χι-μχ)
2 

Lim -
„-co n-

o\y) = Lim ±Σ^-μν)
2 

where μχ and μγ are the population ('true') means of x, and yh and we postu-
late that each value of x, or yt is drawn from an infinite population of possible 
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values. Then, it is logical to define the variance of (x + y) as 

o2{x + y) = Lim-XiXi + j / , - / ^ - ^ ) 2 
n-»oo n 

Each term in the summation can be analysed as 
(χ,. + ^ · - / ^ - ^ ) 2 = (χί-μχ)

2 + 2(χί-μχ)(γί-μν) + {γί-μ/ 

and so 

a2(x + y) = σ2(χ) + 2 cov(x,y)+a2(y) (10.3) 
where cov(x,y) is a new quantity, known as flie covariance of x and y, and is 
defined as 

cov(x,y) = Lim - Σ(Χί-μχ)(ϊί-μγ) (10.4) 

Clearly, the covariance is a measure of the tendency of x and y to vary in 
unison: if there is any systematic source of variation that affects both x and y, 
the covariance is significant. It is positive if x and y are affected in the same 
direction, and negative if they are affected in opposite directions. In the 
absence of systematic error, the covariance is zero and equation 10.3 simplifies 
to 

G2(x + y)=o2(x)+G2(y) (10.5) 

Applying this result to the definition of S as - YJjh we obtain 

σ2(Β) = ^ σ 2 ( Σ ^ ) = ^σ2(ί>1+ί>2+ · · · +bn) 

= 1 [cT2(fc1)+cr2(fc2)+ · · · +o2(fcJ] 

and if every bt has the same variance, we obtain 

σ
2(β) = J-„ σ2(&.) = -a2(bd (10.6) 

Sometimes one requires the variance of a product. Provided that the 
individual variances are small, one can calculate the variance of a product xy 
fairly easily, as follows. If x = μχ + εχ and y = μ̂  + ε̂ , then 

Xy = fax + εχ) (Vy + Sy) = HxVy + Vy*>x + Wy + £x£y 

Provided that it can be assumed that εχ <ζ μχ and sy <̂  /xy, then exsy is 
negligible and its variance is also negligible. Further, as μχ and μγ are con-
stants, the variance of μχμγ is zero. Therefore, in calculating the variance of 
xy, we need only consider the two middle terms of the expansion and we can 
apply equation 10.3 for the variance of a sum, to give 

σ2(χ)0 = μ2σ2(χ) + 2μχμν α>ν(χ,);) + μ2σ2();) (10.7) 
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As μχ and μγ are usually unknown, in practice they are replaced with esti-
mates, x and y. 

The variance of a quotient can be derived in a similar way, and is given by 

a2{x/y) = ^ _ 2^(X,y) + « ( 1 0 g ) 

fly fly fly 

Again, this equation is only an approximation and is valid for small errors, 
and again the unknowns are normally replaced with estimates in practice. 

Finally, it is useful to know the variance of a reciprocal. This is particularly 
valuable in enzyme kinetics because of the insight that it provides into the 
inadequacies of the double-reciprocal plot (Section 10.5). The error in 1/x 
is 

= (μ — χ)/χμ = —ε/χμ 
x μ κη η ^ 

where μ is the true value of x and ε is the error in x. Hence the variance of 1/x 
is given by 

σ2(1/χ) = σ2(χ)/χ2μ2 * σ2(χ)/χ2χ2 « σ2(χ)/χ4 (10.9) 

the last form being appropriate only when x is the best available estimate of μ. 

10.3 Simple linear regression 

At first sight, the term regression implies going back, and the relevance of 
this meaning to the use of the word in statistics is far from obvious. In fact, 
when we fit a calculated line to a set of experimental observations, we hope 
that we are 'going back' to the physical reality that gave rise to the observa-
tions. For example, if we have a set of n values of a variable, y, measured at a 
series of values of another variable, x, and we assume that the values of y 
ought to obey the equation for a straight line: 

y. = 0L + ß X i 

where the subscripts i indicate that the equation refers specifically to the ith 
observation, then we may attempt to 'go back' to the values of the constants 
a and ß that gave rise to the values of y that we observed, and this process is 
called regression. 

In all real experiments, observations are subject to error and so we cannot 
regard each measured yt as an exact measure of a + ßxt in the above case; 
instead, we must write 

y. = a + ^ H - Ci (10.10) 

where ε,- is the error in yt (note that x, is assumed to be error-free). Unfortu-
nately, the ε, values are unknown, and they remain unknown no matter how 
many observations we make and no matter how much analysis we carry out, 
because there must always be two more unknowns than equations. Hence 
there can never be sufficient information to calculate a and ß. All that is 
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possible is to estimate the most likely values of a and /?, on the basis of some 
assumptions about the nature of the zt values. 

First, equation 10.10 must be re-written in terms of known quantities: 

yt = a + bXi + ei (10.11) 

where a, b and et are assumed quantities that may approximate the true values 
of α, β and ε,. In order to avoid making expressions unnecessarily complex, 
subscripts i will be omitted in the remainder of this chapter, except where 
they are required for clarity. Similarly, for all summations the sign Σ will 
indicate summation over all observations, i.e. from i = 1 to n. The e values 
are called deviations (or residuals) rather than errors, because they need not 
be equal to the true errors, ε. As explained in the previous section, this appar-
ently pedantic distinction between true and estimated quantities is essential 
for clarity in discussing the theory of regression. Provided that the experi-
ment is unbiassed, i.e. that each ε can be assumed to come from a distribution 
with zero mean, then it is natural to assume that a and ß will best be approxi-
mated by values of a and b that make the total deviation as small as possible. 
In order to achieve this, it is first necessary to define the (deliberately) vague 
term 'total deviation' more precisely. The most obvious definition is simply 
Yß, but this is ruled out by the fact that it does not define a and b uniquely, as 
for any value of a there is a value of b that makes J^e zero, because the sum-
mation includes both positive and negative terms, which can be made to 
cancel exactly without in fact achieving a close fit to the observations. This 
difficulty can be removed either by neglecting the signs and minimizing 
ΣΜ> ^ e sum of errors with the signs omitted, or by minimizing Ye2, the 
sum of squared errors. There is little fundamental objection to the use of 
Σ | e | as a measure of closeness of fit, but it is ruled out in most practical 
applications by the fact that it leads to hopelessly difficult algebra in all but 
the simplest cases. In practice, therefore, we minimize Ye2, which is called 
the sum of squares. (In many elementary accounts, the sum of squares is 
introduced in a more enthusiastic way, and is claimed to possess certain 
fundamental advantages over other criteria. However, close examination 
shows that, while the logic may be faultless, the premises upon which it is 
built are not, and generally include several palpable falsehoods about the 
nature of experimental error. It is therefore safer and more honest to admit 
that the main virtue of the sum of squares is its convenience in algebraic 
manipulation.) 

It may happen that we know, a priori, that some observations are more 
precise than others. In such a case, it is logical to give more weight to the better 
observations in assessing the closeness of fit. Therefore, rather than the un-
weighted sum of squares, Ye2, it is usually preferable to minimize a weighted 
sum of squares, SS = Ywe2, where each w value is a weighting factor. This, 
of course, assumes some way of knowing what the weights ought to be. In 
finding the weighted mean of a set of values, it is not difficult to show that the 
variance of the mean is a minimum if each value has a weight that is inversely 
proportional to its variance; this also applies in the more general problem of 
fitting observations to an equation. [This conclusion requires the assumption 
that the errors in the observations are uncorrelated, i.e. that cov(ei5 Sj) = 0 
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for all ίφ j . This assumption is rarely likely to be exactly true, but the correct 
weights are very difficult to calculate if it is not made.] In practice, one is 
unlikely to know the exact variances of the observations, but it may often 
be possible to make a plausible guess about the way experimental error varies 
with the quantities being measured. In enzyme kinetics, it is never appropriate 
to carry out an unweighted fit to a straight line, and weights should therefore 
always be included in the definition of the sum of squares. 

Rearranging equation 10.11, we obtain 

e = y — a — bx 

and the sum of squares is given by 

SS = Yyve2 = ^w{y-a-bx)2 

For any value of b, SS varies with a according to a quadratic equation, so that 
a plot of SS against a is a parabola with a slope at any point given by 

- r—= — 2£w(y — a — bx) = — 2Xwy + 2 a £ w + 2bXwx 
da 

and similarly, for any value of a, a plot of SS against b has a slope given by 

—r- = — 2Xwxy + 2aXwx + 2b£wx 2 

ob 

For SS to be a minimum, both slopes must simultaneously be zero. Therefore, 
if a and B are defined as the values of a and b that make SS a minimum, we 
have 

αΣ\ν + ΒΣ\νχ = Σχνγ \ 
I (10.12) 

άΣχνχ + ΒΣχνχ2 = £wxy J 
These are a pair of ordinary simultaneous equations (sometimes known as 
the normal equations) that can readily be solved for the unknowns a and B\ 

ZwZwx 2 - (Zwx) 2 
b = vn ^ 2 —7^—^2~ (10.13) 

ä = ̂ β^ (10.14) 

These equations are convenient as written for calculating a and B, but they 
do not show directly how the variances of ä and B can be found. However, 
with a little ingenuity, equation 10.13 can be rearranged to read 

6 = i ^ ! ^ (10.15) 

where x = X w x / Z w is the weighted mean of the x values. This equation is of 
the form 

B = £wy (10.16) 
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where each u value is a constant given by 

(x — x)w 
Σ ( Χ — x)wx 

(10.17) 

As the errors in the y values are, by the original hypothesis, uncorrelated, 
the variance of 8 is found by applying a generalized form of equation 10.5 
to equation 10.16, i.e. 

σ2(Β) = Σ"2σ2()0 (10.18) 
Now, each weight w is, by definition, inversely proportional to a2(y) and so, 
for each i, we can write σ2(}\·) = <J2

exp/wh where a2
exp is a constant independent 

of i, and is known as the experimental variance. Equation 10.18 can therefore 
be written as 

σ 2(6)=σ2
β χ ρΣ"7νν (10.19) 

and, after some tedious but not difficult algebra, this can be rearranged into 
the form 

o\8) = ν
σ ^ Σ ! 1 ,2 (10.20) 

2 > Σ ^ χ - (Zwx) 
Although this expression appears more complex than equation 10.19, it is 
more convenient to apply because it contains only summations that appear 
also in equation 10.13; thus it requires negligible computation beyond that 
required for evaluating 8. 

Further expressions can be derived in a similar manner for the variance of 
ä and the covariance of ä and 8: 

σ2(α) = ^ Κ Σ ν ν , ν « (10.21) 
ΣννΣννχ - ( Σ ^ χ ) 

cov(ä,8) = " σ Η ' Σ ™ * .2 (10.22) 
Σνν Σ ^ * - (Σ^χ) 

All of these equations contain σ2
χρ, which is unknown, but can readily be 

estimated from the sum of squares, i.e. a2
exp % SS/(n — 2). Division by (n — 2) 

rather than n corrects for the bias that derives from the fact that SS is a mini-
mum value, and must therefore be less than the true value of Σ ^ 2 (cf. 
equation 10.2). 

It is worthy of comment that none of equations 10.13-10.22 is symmetrical 
in x and y and so regression of x on y instead of y on x would give a different 
best-fit straight line. This asymmetry is present in the initial assumption that 
y is subject to error but x is not, so that deviations from the line are measured 
parallel with the y-axis and not, as one might suppose, at right-angles to the 
line. Measurement of errors at right-angles to the line might seem to avoid 
the need for an assumption about which variable is subject to error, but in 
fact it creates far worse difficulties than it solves: not only is the algebra much 
more difficult but, in addition, the best-fit line varies according to the units 
in which x and y are measured because the lengths of lines drawn on a graph 
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have meaningful dimensions only if they are parallel with one or other axis. 
The straight line y = α + βχ + ε is the simplest of a general class of models 

known as linear models. The word 'linear' in this context is not simply a trivial 
repetition of the fact that a straight line is a straight line; it means that the 
model is of the form 

tt = 00+ 01*li +02*2»+ ' " +£i 
where y( is the only variable subject to error, /J0, ßu ß2,..., are the parameters 
of the model, and xu, x2i5. . . , are variables that are known exactly. In other 
words, a linear model is a linear function of the parameters. It may also be 
linear in the observations, but this is irrelevant. Hence the equation 
y = (x + ßx + yx2 + s is linear, even though it describes a curve and not a 
straight line, whereas the equation x/a + y/ß = 1 + ε is non-linear, even though 
it defines a straight line. The importance of linearity is that linear models can 
be analysed very simply, because they give rise to equations similar to equa-
tions 10.12 that can be solved exactly in a single step. Unfortunately, many 
of the models that occur in enzyme kinetics (and many other physical sciences) 
are non-linear, and thus require special techniques for their analysis. The 
practical value of linear regression is that in many cases models can be 
expressed in such a way that linear regression can be used in their analysis. 
Several examples of this are discussed in this chapter. 

10.4 Fitting the Michaelis-Menten equation 

Just as the idealized equation for a straight line, y = a + βχ, must be modified 
so as to include experimental error, y = α + βχ + ε, if it is to represent a real 
experimental situation, so also is the Michaelis-Menten equation, 
v = Vsj{JCm + s), incomplete until error is introduced: 

Vs 
v = ^TVs + δ (ΐα23) 

«Λ m T " ά 

(In the absence of suitable Greek letters, the symbols Ψ* and JTm represent 
the true values of V and Km. In addition, the symbols δ, d and u will be used 
instead of ε, e and w, because we shall require the original symbols for referring 
back to the results of Section 10.3.) This simple change immediately indicates 
the fault in the double-reciprocal plot and other linear transformations of the 
Michaelis-Menten equation discussed in Section 2.5: it is not easy to see at 
first how a perfectly valid algebraic transformation can give an invalid result, 
but once it is realized that it is not the transformation that is invalid but the 
starting point, the problem disappears. 

In order to fit data to equation 10.23, we can minimize the weighted sum of 
squares, SS = ^ud2, where d is ar^approximation to δ obtained by replacing 
V and Xm with estimates V and Km, respectively. In principle, therefore, the 
problem is exactly the same as that discussed in the previous section, but 
practical difficulties arise because equation 10.23 is non-linear and so SS 
cannot be minimized by simple direct means. Nonetheless, there are several 
indirect means of minimizing SS, of which we shall describe one, based mainly 
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on the work of Johansen and Lumry (1961) and of Wilkinson (1961). 
If an error term is introduced into the Michaelis-Menten equation after 

transformation to a linear form, instead of (correctly) before: 

s Jfm 1 
v Y Ϋ 

then the result is not a true transformation of equation 10.23 and ε is not equal 
to δ (which is why we need a different symbol). In fact we can show, by a simple 
piece of algebra, that 

— I^VE 
δ - w^i ( , 0 - 2 4> 

As i^9 J f m, δ and ε are all unknown, we must replace them with estimates 
V, Kmi d and e, respectively, and equation 10.24 becomes 

-Vve 
d = η—- (10.25) 

Km + s 
For V « V, Km Ä jfm and v « iTs/(Jf w + s), i.e. in the vicinity of the best-
fit solution for data that are worth fitting, V/{Km + s) « v/s. 
Thus 

d « ^ - ^ (10.26) 

These results can be used in order to minimize SS in a straightforward way, 
provided that the weights u can be defined. As discussed in the previous 
section, the weights should properly reflect the way in which the variance of 
v varies with v. In practice, this is usually unknown, but the truth probably 
lies between two limiting hypotheses: (i) simple errors in v, where each velocity 
has the same standard error, and so u = 1 for every observation; and (ii) 
relative errors in v9 where each velocity has a standard error proportional to 
its true value iTs/(jfm + s), and so u = (Jfm + s ) 2 / ^ V for each observation. 

In the first case, the minimization of SS is simply the minimization of 

The approximate form has the advantage that it contains no unknowns; so, 
as a first step in minimizing SS, we can minimize YjoAre1\s1 by means of the 
linear regression formulae given in the previous section. Thus, substituting 
a = KJV, 8 = l/V, x = s, y = s/v and w = v4/s2 into equations 10.13 
and 10.14 and rearranging, we obtain 

vx Σ^Σ^-gyz»)2
 (1028) 

Σ» V Σ»3 - TvVs Σν'/s ( ' 
. ΣΓ4Σ»7*-Σ»7*Σ»3 „ n w 

m ~ Σ^2Σ^3-Σ^ΑΣ^3/5 ( ' 
For many purposes, it is adequate to stop at this point; indeed, it may be 
argued that any attempt to refine these values is supererogatory as it implies 
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an unwarranted degree of confidence in the weighting scheme. However, for 
completeness we^hall show how to minimize SS exactly. Once approximate 
values of V and fcm are available, the first-approximation weights, v^/s2, can 
be replaced with refined weigjits, Vlv2/(K0 + s)2, where V0 and K0 are the 
approximate values ofT and^Km found from equations 10.28 and 10.29. Then 
the refined values of V and Km are given by 

V v2 V sV _(v sv2 

(10.31) 

V « ^ ^ — v^ ^2V"U ' V i ^ K ° ^ ] ' (10-3°) 
\ Λ vz \ Λ szv \ Λ sv2 \ Λ sv 
lj(K0 + s)2^(K0 + s)2~ 1^(Κ0 + 8)2/^(Κ0 + 8)2 

Σ 32υ2 γ sv _ γ 5t;2 γ s2v 

(K0 + S)2IJ(K0 + S)2 ^(K0 + s)2lj(K^sy 

^ ^ Y v2 γ 52t; γ st;2 γ sv 

LiKo + sfljiKo + s)2 L{K0 + s)2L{K0 + s)2 

This process may be repeated, substituting the new value of Km for K0, until 
Km does not change appreciably from one approximation to the next; in 
practice, this usually happens at about the fourth approximation. Notice 
that V0 does not in fact appear in equations 10.30 and 10.31, as it cancels; 
consequently, it is unnecessary to evaluate V until the last step. 

If we now examine the second weighting hypothesis, where each velocity is 
assumed to have a standard error that is proportional to its true value, we 
find, surprisingly, that the problem is much easier to solve. In this case, the 
proper weights, M, are given by u = (Km + s)2/V2s2, where the best-fit esti-
mates, Km and V, replace the unknowns 3fm and f*. Hence the sum of 
squares is given by 

ee _ v Λ2 _ V (£m + s)2V2V2e2 (10.32) 
SS-Σηα - ^ ?2{Km + s?s2 

At the minimum, Km = Km and V = V, by definition, and so 

SS = ] [>V/5 2 (10.33) 

This expression is exact only at the minimum itself but, as we are concerned 
with the minimum itself, that does not matter. As only known quantities are 
involved, 55 can be minimized in a single step; substituting ä = KJV, 
6 = l/V, x = s, y = s/v and w = v2/s2 into equations 10.13 and 10.14 and 
rearranging, we have the exact solutions: 

Σν2/*2Σν2-(Σν2Μ2 

Σν2β2Σν-Σν2βΣν^ 

Σν2Σν/*-Σν2/ϊΣν 
Σν2/32Σν-Σν2/*Σνβ 

As this result (from Johansen and Lumry, 1961) is so much simpler to apply 
than the earlier one, it may be wondered why it is so rarely used. One answer 
is that it is not, or should not be, simply a matter of choice: the proper 

179 

V = ^ , 2 / g 2 ^ , τΖΐύ^,. (10·34) 

Km = ^r2/2^ ί ΐ , Γ , / , <1 0·3 5) 



ESTIMATION OF RATE CONSTANTS 

weights are not determined by analytical convenience but by the nature of 
the experimental errors. However, this is an unrealistic answer because it 
assumes that the nature of the experimental error has been investigated, 
something that has almost never been done. A more truthful answer is that 
in straight-line regression it is much more convenient to work with simple 
errors, and one therefore tends to apply wishful thinking to the problem and 
to regard simple errors as 'correct.' In enzyme kinetics, it is actually much 
more convenient to adopt the alternative hypothesis, albeit with as little 
justification. In practice, one can gain an idea about the correct weighting 
scheme by plotting d against v and d/v against v, after fitting the data with the 
weights that one wishes to test: if the errors are truly simple (or, to use the 
proper statistical term, if the d values are homoscedastic) the points should be 
scattered in a parallel band about the v axis when d is plotted, and in a 
cuspate band when d/v is plotted, as shown in the upper part of Figure 10.1. 

Figure 10.1 Scatter plots for assessing the correctness of a weighting scheme: The upper pair of 
plots show the expected results of plotting the deviation from the fitted line, d, against the velocity, v, 
and of plotting d/v against v, in the event that all the velocities have the same standard deviation 
('simple errors'). The lower pair of plots show the expected results in the event that the standard 
deviation of each velocity is proportional to its true value ('relative errors'). In each plot, limits are 
drawn for deviations of twice the standard deviation 

If the errors are truly relative, however, so that d/v is homoscedastic rather 
than d, the points should be scattered in a wedge-shaped band when d is 
plotted, and in a parallel band when d/v is plotted, as shown in the lower part 
of Figure 10.1. The results shown are idealized, and in practice it is generally 
necessary to have a large number of points (50 or more) for the scatter to be 
clearly defined. In order to overcome this difficulty, one can combine the 
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results of several experiments, provided they were carried out under similar 
conditions by the same operator. 

Sometimes one may feel that the two cases discussed are too extreme and 
that the best choice would be a compromise between them, with weights 
given by u = (Km + s)/Vs. In this case, the data can be fitted by an obvious 
adaptation of the method described for uniform weights, as the proper 
expression for the sum of squares is now 

^ — * Zv3e2/s2 (10.36) 

which can be compared with equation 10.27 and the ensuing discussion. In 
the absence of any real information about the distribution of errors (i.e. 
usually), this may be a safer choice than either of the previous choices. 

Figure 10.2 illustrates how the choice of weighting scheme affects the 

Figure 10.2 Effect of weighting on estimates of kinetic parameters: The points shown were fitted 
to the Michaelis-Menten equation, giving v* = 18.41 and fCm = 10.41 (solid line) when simple 
errors were assumed, and V = 23.61 and £ m = 14.87 (broken line) when relative errors were 
assumed. The difference between weighting schemes is most pronounced if the data are poor and 
extend over an inadequate range of s values (as here), or if the wrong equation is fitted, e.g. if 
significant substrate inhibition is not noticed 

definition of the 'best' values of V and Km in practice. Notice particularly 
that although the two curves are similar the constants that define them are in 
poor agreement. 

10.5 Final comments at the double-reciprocal plot 

We can approach the results of the last section from a rather different point 
of view, by considering the problem as one of carrying out a least-squares 
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fit to a straight line. In Section 10.3, it was seen that in such a case each 
observation (x, y) should be given a weight that is inversely proportional to 
the variance of the dependent variable, y. For the double-reciprocal plot, the 
dependent variable is 1/v, which has a variance σ2(ν)/ν2ν2, where v is the 
calculated value of v, i.e. v = Vs/(Km + s). Therefore, if all velocities have 
the same variance (an assumption that may not always be true, as discussed 
above), the proper weights in the double-reciprocal plot are proportional to 
v2v2. As the calculated velocities are initially unknown, we can use weights t;4 

calculated from the observed velocities as a first approximation. Then we 
can refine the result with weights v2v2 until the results are self-consistent, i.e. 
until the estimate of Km does not change from one approximation to the 
next. [Some workers, such as Cleland (1967), suggest the use of 04 weights for 
the second and subsequent approximations, but this suggestion is based upon 
an incorrect form of equation 10.9 for the variance of a reciprocal, and gives 
no improvement upon the first approximation.] 

If the double-reciprocal plot is analysed with weights v2v2, the calculations 
and final results are identical with those of the previous section (equations 
10.28-10.31). Analogous analysis of the plot of s/v against s also gives identical 
results. We can then reasonably enquire in what sense the double-reciprocal 
plot is a 'worse' plot than the plot of s/v against s. The point is that for even a 
modest range of s values, the range of weights required for the double-
reciprocal plot is enormous: e.g. if s varies from 0.2Km to 2KW, with v varying 
from 0.167K to 0.667K, the weights cover a 256-fold range. It is plainly 
impossible to assign one point 256 times more weight than another when 
looking at points on a plot; hence a double-reciprocal plot provides almost 
no useful information about the experimental error. Contrast this with the 
situation for the plot of s/v against 5: here the proper weights are propor-
tional to v2v2/s2, or approximately to u4/s2, and vary over a mere 3.24-fold 
range for the same range of v. In this case, visual examination of the plot gives 
a reasonably accurate account of the experimental error. 

In this section we have hitherto assumed simple errors in v, i.e. all velocities 
have the same variance. If we now consider the alternative hypothesis of 
relative errors in v, the double-reciprocal plot remains the least satisfactory 
but the difference is far less marked: the proper weights for 1/v are now pro-
portional to v2 and vary over only a 16-fold range for the example considered 
above, whereas the proper weights for s/v are proportional to v2/s2 and 
vary over a 6.25-fold range. Incidentally, whichever plot is used in this 
instance, the proper weights should be calculated from the observed veloci-
ties, and 'refining' the result by the use of calculated velocities (Cleland, 
1967) is a progression from an easy, exact solution to a laborious approxima-
tion. 

10.6 Standard errors of V and Km 

Expressions for the variances of KJV and 1/V can be obtained very simply 
by substituting a = KJV, 8 = 1/V and x = s into equations 10.20 and 
10.21: 
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XwXws 2 - (Xw5) 2 
σ 2 ( ! / η = ^^exp

2 , v ,2 (10.37) 

<*lxp Σ ^ 5 2 

Σνν ][>s2 - (Xws)2 σ2(Κ„/Κ) = ^ " Τ ^ ,2 (10.38) 

cov(l/K, KJV) = °βγΣ™ M (10.39) 

The equations apply equally well to any weighting scheme. The variance of V 
is found from equation 10.37 by applying equation 10.9, the formula for the 
variance of a reciprocal: 

YIwY1ws2-(YIws) °2(V) ~ ^...^.."'% M <1 0 ·4 0) 

The variance of Km is obtained from equations 10.37-10.39 by applying 
equation 10.8, the formula for the variance of a quotient: 

G2(Km) « Κ2σ 
exp 

"Zws2 + 2 X m I w s + JC2Evv 
YwYws2-(Zws)2 (10.41) 

In spite of its complex appearance, this expression is easy to evaluate because 
all of the summations in it are known from the prior determination of V and 
Km. In all of the equations, a2

exp is estimated as SS/(n — 2) (cf. Section 10.3), 
and in each case the standard error is the square root of the variance. 

An important point that is not evident in practice from the determination 
of the standard errors of V and K m is that the estimates of V and Km are 
invariably highly positively correlated. Hence the actual error in V is highly 
dependent on that in Km, and vice versa. Consequently, one ought to consider 
the precision of the two parameters jointly rather than separately. Now, 
although it is possible in principle to calculate a joint confidence region as a 
constant-SS contour (see, for example, Colquhoun, 1971), it is not a practical 
proposition for routine use because the necessary calculations are very 
tedious and it is profitable to consider practical alternatives^ The simplest 
possibility is to remember the qualitative fact that V and Km are always 
highly correlated, and that a significant positive error in one is most unlikely 
to be accompanied by a significant negative error in the other. A second 
possibility is to examine the standard error of KJV, which is readily calcu-
lated from equation 10.38, as well as those of V and Km. The relative error 
in KJV is invariably smaller than that in Km, and it is often smaller than 
that in V. Hence it is worthwhile to consider whether putative errors in Km 

and V are consistent with the standard error of KJV. 
Finally, it must be remembered that calculations of standard errors make 

no allowance for sources of error that affect all points in unison. These 
sources may be much more serious than the sources of error that are con-
sidered, and there is no reason why they should produce correlated effects in 
V and Km. Thus it is often found that day-to-day variations in both para-
meters are much greater than the standard errors calculated for any one day. 
Consider, for example, the following series of Km values and standard errors 
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determined by Hwang, Chen and Burris (1973) for bacterial nitrogenase in 
five experiments: 0.131±0.016, 0.059±0.008, 0.102 + 0.027, 0.09 + 0.02, 
0.12 + 0.03 atm of nitrogen. The standard deviation between experiments for 
these results is 0.028 atm of nitrogen, so that there must be significant varia-
tion between experiments not taken into account in the individual standard 
error estimates. Moreover, the two extreme values have the two smallest 
standard error estimates, so that there seems to be very little relationship 
between the calculated errors and the actual errors in the five values. This 
type of result is by no means unusual (all that is unusual is the clarity with 
which it is presented), and it indicates that standard error estimates should 
be used with great caution. As V is directly affected by uncertainty in the true 
enzyme concentration, it is likely that results for V would show even less 
agreement between day-to-day variations and standard error estimates. 

10.7 General linear model and applications to more complex cases 

In order to fit data to equations more complex than the Michaelis-Menten 
equation, with three or more parameters, we must first consider a generalized 
straight line, the general linear model: 

yt = ßiXu + ß2Xu+ '" +βρΧΡι + ει (10.42) 
In this equation, each x requires two subscripts: the first defines the nature 
of x and the second the number of the observation; thus xlf might be the ith 
substrate concentration, x2i might be the ith inhibitor concentration, etc. 
Although no constant intercept appears explicitly in the equation, it is not 
excluded, because xu may be defined as 1 for each i, in which case β^ would be 
a constant corresponding to a in Section 10.3. (In some texts, the constant is 
defined as /?0, but this leads to unnecessary confusion because then the 
number of parameters is p+ 1 rather than p.) 

For any estimates of the parameters, bu b2,..., bp, equation 10.42 can be 
written as 

yi = blxu + b2x2i+ · · · + bpxpi + ei (10.43) 
and the weighted sum of squares can be defined as 

SS = Xwfef = Z ^ O i - M i . — & 2 * 2 i - * · * -bpXpf 

Partially differentiating with respect to each parameter in turn, we obtain 

— = -2YJwixuyi + 2blYäwix\i +2/?2 ΣννΙ·χ2ι·χ1ι·+ · · · + 2bpYwixpixu 

— = -2Zw I x 2 l } ;
I + 2fo1Zwlocll.x2l + 2b2£w/xi- ,+ · · · + 2&p£wIocpix2f 

etc. In order to find the estimates fil9 b2 · · · Sp that minimize SS, we must set 
all p expressions to zero, replace each b} with bj and rearrange: 
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/ Γ (10.44) 
*ιΣ^χΐίΧ2ί+^Σ^4+ " · +i>PZwfXp/x2i = Zwfx2f̂  J 

etc. Instead of the two simultaneous equations, equations 10.12, for the 
straight-line case, we now have p simultaneous equations. Solution of these 
equations is not the elementary problem that it might appear to be, because 
of serious arithmetical difficulties that arise whenever there are more than a 
small number of simultaneous equations to be solved. These are considered 
in Section 10.8. We can formalize the problem by stating that we require a 
set of coefficients, cjk, such that: 

£i = clt ZwiXii)>f + c21 Zwlx2l};
l+ · · · + c p l ZwfXpitt 

b2 = c12ZwiXif3'i + c22X;wix2l.)7i+ · · · +cp2XwfXpf)\· 
etc. The original set of equations, equations 10.44, are said to be inverted in 
the sense that the unknowns Su fi2,..., ßp are now written explicitly, whereas 
the terms on the right-hand side in equation 10.44, Σ ^ Χ Ι Ι ^ Ρ ZwiX2/.Vr· · . 
are now written as if they were unknowns. Thus the matrix of coefficients cjk 

is said (by definition) to be the inverse of the original matrix of coefficients 
Sw/XjiX*/· As matrix-inversion routines are available in all modern computer 
libraries, we need not concern ourselves with the mechanics of calculating 
the coefficients cjk. The important point is that not only do they provide a 
straightforward way of evaluating all of the Sj values, but they also provide a 
simple way of calculating all of the variances and covariances. For any 
parameter, 

σ%) = CjjG2
exp 

and for any pair of parameters, 

co\(8j, bk) = Cjko
2
exp 

where o2
exp is estimated from the sum of squares in the usual way as SS/(n — p). 

The validity of this result is not obvious and cannot easily be demonstrated 
without a long excursus into matrix algebra. A textbook on regression 
(e.g. Draper and Smith, 1966) should be consulted for more information. 

Most of the equations commonly encountered in steady-state kinetics can 
be written in the form of the general linear model. Consider, for example, the 
equation for the initial rate of an irreversible reaction subject to product 
inhibition (equation 2.22): 

* - m^hm+ * ,ια45) 

and suppose that we wish to minimize the weighted sum of squares, 
SS = YMji]. The equation can be written as 

ai Km . Km 1 . ίΛ(\Λ£\ 
— = — 7 H -f—Ö Pi H 7 ai + £i (10.46 
Vi Vs VfKp/1 Vf l 

where ex is not equal to dh but to —d^Jv] approximately (cf. equation 10.26). 
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This corresponds to equation 10.43 with yt = α{\υ{, bx = K„/Vf, b2 = 
K„/VfKl, b3 = l/Vf, xu = 1 (for all i), x2i = Pi and x3i = av The proper 
weights w, are given by wf = u^f/af in the first approximation, or 
wf = UiVJvf/af, where vt is the velocity calculated with the best available 
estimates of the parameters. Exactly the same considerations apply to the 
definitions of the weights ut as in the simpler case of the Michaelis-Menten 
equation (Section 10.4): if we assume simple errors in the velocities, we have 
ut = 1 for each i; if we assume relative errors in the velocities, we have 
ut = l/v*. In the latter case, v\ cancels from the expression for wh and so 
wt = vj/ajb* is an exact expression and does not require refinement; again, 
this is the same as in the simpler case. 

A high proportion of steady-state rate equations are of essentially the same 
form as equation 10.46, i.e. the right-hand side consists of a fraction with a 
single term in the numerator, and a linear expression in the denominator. 
All of these equations can be treated in the same way as equation 10.46. 
Equations with more than one term in the numerator, e.g. the equation for 
hyperbolic inhibition or activation (equation 4.7), are more difficult to fit and 
require more versatile non-linear regression techniques. Swann (1969) has 
discussed many of these techniques and Wharton et al. (1974) described and 
discussed a specific example in enzyme kinetics. 

10.8 Some difficulties in fitting data 

One could fill a separate book with a discussion of the practical difficulties 
that can arise in attempting to apply the methods described in this chapter, 
but some problems occur so frequently that some mention must be made 
of them. 

Major difficulties often arise from a source that is unexpected to the in-
experienced, namely rounding error. For most non-statistical purposes, it is 
sufficient to carry out calculations with one or two more significant figures 
than one expects to have in the final answer. However, this is not nearly 
enough for most statistical calculations, because these always involve 
measuring the difference between two large numbers at some stage, which 
always results in the loss of some significant digits. Consider, for example, the 
difference 1.38204-1.38195 =0.00009; although there are six significant 
digits in each of the original numbers, there is only one in the difference. 
It is instructive to examine the calculation of Km, by means of equation 10.28, 
for the sample set of data shown in Table 10.1. As the velocities are expressed 
to only two decimal places and the formula provides only a first approxima-
tion for Km, one might easily assume that it would be sufficient to carry only 
three decimal places at each step in the calculation. However, as shown, 
this gives a final answer of Km = 0.001/0.000 = oo. With four decimal 
places we have Km = 0.0010/0.0004 = 2.5, a considerable improvement, 
but still about 6% from the precise answer, 2.359. 

When fitting equations in several unknowns, the difficulties associated 
with rounding error become much worse. Most large modern computers 
carry out calculations with 12 or more significant digits, but even then serious 
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Table 10.1 ILLUSTRATION OF THE EFFECTS OF ROUNDING ERROR 

For a sample set of five observations (in arbitrary units), equation 10.28 is used to calculate 
the value of itm. On the left-hand side, three decimal places are carried at each step in the 
calculation. On the right-hand side, the same calculation is carried out with four decimal places. 

s v v3 v4 v3/s v4/s v4/s2 v3 v4 v3/s v4/s v4/s2 

1 
2 
3 
4 
5 

0.22 
0.31 
0.41 
0.46 
0.48 
Sums 

Km-

= 

0.011 
0.030 
0.069 
0.097 
0.111 

:0.318 

0.002 
0.009 
0.028 
0.045 
0.053 
0.137 

0.137x0.095-
0.012x0.318-
0.013-
0.004-

-0.012 
- 0.004 = 

0.011 
0.015 
0.023 
0.024 
0.022 
0.095 

0.002 
0.005 
0.009 
0.011 
0.011 
0.038 

-0.038x0.318 
-0.038x0.095 

0.001 
= 0.000 = = 00 

0.002 
0.002 
0.003 
0.003 
0.002 
0.012 

0.010 6 
0.029 8 
0.068 9 
0.097 3 
0.110 6 
0.317 2 

Km 

0.002 3 
0.009 2 
0.028 3 
0.044 8 
0.053 1 
0.137 7 

0.010 6 
0.014 9 
0.023 0 
0.024 3 
0.022 1 
0.094 9 

0.137 7x0.094 9-
0.0126x0.3172-
0.013 1-
0.004 0-

-0.012 1 
-0.003 6= 

0.002 3 
0.004 6 
0.009 4 
0.0112 
0.010 6 
0.038 1 

0.002 3 
0.002 3 
0.003 1 
0.002 8 
0.002 1 
0.012 6 

-0.038 1x0.317 2 
-0.038 1x0.094 9 

0.001 0 
= 0.000 4 = = 2.50 

difficulties can arise in the solution of simultaneous equations if one uses a 
badly designed program. One simple way of reducing (but not eliminating) 
trouble is to express all data in units chosen so that the numerical values are 
as close to 1.0 as possible, preferably between 0.1 and 10. It is far simpler to 
convert back into other units at the end of a computation than it is to search 
through a program to discover where an unexpected zero appeared. 

A related problem arises when the simultaneous equations that one has 
to solve are either singular or ill-conditioned. Equations are said to be singular 
if they purport to contain more information than they in fact do. For example, 
the following pair of equations are singular: 

x + y = 2 

2x + 2y = 4 

because the second equation contains exactly the same information as the 
first. Singular equations are always impossible to solve, and they always arise 
in regression problems if one attempts to fit equations that contain more 
parameters than the number of observations; for example, it would be 
hopeless to try to fit equation 10.45 to only two observations. This problem 
is readily avoided by the use of common sense; but ill-conditioned equations 
are more common and more difficult to avoid. This means that the simul-
taneous equations, although not strictly singular, are very nearly so, and 
require very precise computation for the unknowns to be evaluated, as with 
the following pair of equations: 

x + y = 2 

x+1.00001j; = 2.00001 

In this case, the equations have a unique solution, x = 1, y = 1, but an 
increase of 0.000 01 in the right-hand side of the second equation would 
change the solution to x = 0, y = 2. 
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Ill-conditioning arises in regression problems if the observations contain 
little or no information about some of the parameters. For example, com-
petitive inhibitors have most effect at low substrate concentrations, and a 
set of observations made exclusively at high substrate concentrations, how-
ever numerous, will often not permit evaluation of the inhibition constant. 
In more complex problems, ill-conditioning is often diagnosed by noticing 
that one parameter appears to have a relatively much higher standard error 
than the others. For example, in a case of mixed inhibition, if the standard 
errors of V, Km and K[ were all calculated to be about 5 % of the parameter 
values, but that of Kt was about 50 %, this would indicate that the experiment 
was designed badly for providing information about K, and that more ob-
servations at low substrate concentrations were required. This is one of the 
occasions in which standard errors can be of real value, because although the 
numbers themselves may mean very little, comparisons between them may 
be very helpful. 

It is not always certain that one is fitting data to the correct equation. In 
complex cases, such as with many of the models discussed in Chapter 7, the 
problem is often insoluble at the present state of experimental technique, 
because the expected differences between models are often less than experi-
mental error. In these cases, one must admit defeat, because no statistical 
analysis can extract information that is not present in the data. However, 
in other cases there are several ways of recognizing failure to use the right 
equation, or lack of fit. The simplest and quickest way is to examine the signs 
of the residual deviations. If the correct equation is fitted there should be no 
discernible pattern; but if the first ten of twenty deviations were all negative, 
and the last ten were all positive, this would suggest lack of fit, as it is an 
improbable result a priori. Exactly this sort of result would arise if one fitted 
points from a sigmoid curve to the Michaelis-Menten equation. 

A more precise test is possible if there are some observations in duplicate. 
These provide an independent measure of the experimental error, which may 
be compared with the estimate derived from the sum of squares, i.e. o2

exp. 
Provided that there are a reasonable number of duplicates (e.g. about ten in 
an experiment of about thirty observations; there is no need to carry out all 
observations in duplicate, and indeed it is better not to do so if this appreciably 
reduces the scope of the experiment) the estimates from the sum of squares and 
from the duplicates should be of the same order of magnitude. If they are not, 
and the estimate from the duplicates is much smaller, lack of fit is likely. The 
comparison can be made numerically, and tested with statistical tables (see 
Draper and Smith, 1966, pp. 26-32) but common sense is quicker and about 
as effective. It is often safer to avoid statistical tests unless one thoroughly 
understands their theoretical basis: if one blindly applies a textbook recipe 
and reaches a conclusion that is obviously wrong, one is in danger of looking 
foolish. 

When lack of fit is diagnosed, it is necessary to find an equation that fits 
better. It is not sufficient to find one that gives a smaller sum of squares, as 
the introduction of more parameters into an equation invariably reduces the 
sum of squares. At the very least, the experimental variance, σ2

βχρ = SS/(n — p\ 
should be reduced and the residual deviations should no longer display 
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symptoms of lack of fit. Again, statistical tests are available, but common 
sense is better. 

10.9 Statistical aspects of the direct linear plot 

The least-squares approach to regression problems has been presented in 
this chapter as the most convenient general method, rather than as the best. 
The reason for this is that to demonstrate that a least-squares solution to 
a problem is the 'best' solution, one must assume (i) that the random errors in 
the measurements are normally distributed; (ii) that only one measured 
variable is subject to experimental error; (in) that the correct weights are 
known; and (iv) that systematic error can be ignored. Unfortunately, one 
knows very little about the truth of any of these assumptions in practice. 
Most scientists prefer their conclusions to depend on as few unproved 
assumptions as possible, and in the last half-century a separate branch of 
statistics has developed, known as non-parametric or distribution-free 
statistics, which is predicated on minimal assumptions. Of the assumptions 
listed above, the first three are dropped but the last must be retained: indeed, 
it is clearly impossible to allow for systematic errors that have eluded all 
efforts at detection. This last assumption is usually expressed in the simpler 
form that, in the absence of other information, we assume that the error in 
any measurement is as likely to be positive as to be negative. 

The simplest example of a non-parametric statistic is the median as a 
measure of the 'average' of a sample rather than the mean. In order to find the 
median of a set of numbers, we first arrange them in order from the lowest to 
the highest value and then take the middle value; if there are an even number 
of values altogether, we take the mean of the middle two values. The great 
practical merit of the median is that it is almost unaffected by the presence of 
a few very bad values, or outliers. The mean, on the other hand, is very seri-
ously affected by outliers. The disadvantage of the median is that, if the 
observations are truly normally distributed, then the median is less 'efficient' 
than the mean, in the sense that the standard deviation of the median of a 
sample is, at worst, about 25% greater than that of the mean. For small 
numbers of observations, the difference in efficiency between the mean and the 
median is less than this value. More important, if the distribution is not 
normal, but contains even a small proportion of outliers (e.g. if 10% of values 
have a standard deviation three times greater than that of the other 90%), 
the median becomes more efficient than the mean. Another major advantage 
of the median is that it does not require weighting in order to provide a good 
estimate, because the best values in a set tend to be found near the middle of 
the range, and the worst near the extremes. Thus, although it is possible to 
weight a median, there is little advantage in doing so. In contrast, it is essen-
tial to weight a mean if it is to provide a good estimate. 

The direct linear plot of Eisenthal and Cornish-Bowden (1974) (see Section 
2.5) represents an attempt at introducing non-parametric ideas into the 
estimation of enzyme kinetic parameters, at the same time greatly simplifying 
the procedures and concepts. For any non-duplicate pair of observations 
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(sh Vi) and (s,·, Vj), there is a unique pair of values of the Michaelis-Menten 
equation (Kip Vh) that satisfy both observat 

Ku 

V» = s. 

V 

— s 

ons exactly, given by 

These values are defined by the coordinates of the point of intersection of the 
lines drawn for the two observations as described in Section 2.5. Altogether 
n observations provide \n{n — 1) such pairs of values (fewer if there are dupli-
cates). The median of the set of Ktj can be defined as Km, and the median 
of the set of VV] as V. These median values can be found very simply from the 
direct linear plot, as indicated in Figure 10.3. In order to test the validity of 

~ s5 ~ 54 ~ s 3 ~ 5 2 ~S1 

Figure 10.3 Determination of median estimates from the direct linear plot: The lines are drawn as 
in Figure 2.7, and each intersection (shown as a circle) provides an estimate K^ o/Km, and an esti-
mate Vjj of V. These estimates are marked off on the axes for clarity. Rm is then taken as the median 
Ki j value, and V as the median V^ value. If there are an even number of intersections, as in this 
example, the median is taken as the mean of the middle two values 

this procedure, Cornish-Bo wden and Eisenthal (1974) carried out a com-
puter simulation of many thousands of experiments, incorporating various 
different assumptions about the nature of experimental error. Computer-
simulated experiments have several advantages over real experiments in this 
type of study: it is possible to carry out far more of them; the true values of 
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the parameters are known; and the true distribution of experimental error is 
known. They found that the least-squares estimates were better than the 
median estimates in experiments where all of the assumptions embodied in 
the least-squares approach were correct. This result was, of course, expected, 
but the difference was surprisingly slight, and the median estimates came 
closer to the true values in about 40% of experiments. However, in experi-
ments where the least-squares assumptions were not true, e.g. the data 
contained outliers, or the weighting scheme was incorrect, or there were 
errors in s as well as v, the slight advantage of the least-squares estimates 
disappeared. Cornish-Bo wden and Eisenthal concluded that, with realistic 
assumptions about experimental error, there was no reason to prefer the 
least-squares method. 

The direct linear plot also provides a simple means of defining joint 
confidence limits for Jfm and Ϋ". At the simplest level, the scattering of the 
intersection points provides a clear qualitative picture of the precision of the 
parameters. A more exact result is obtained from consideration of the fact 
that each region bounded by the lines of the plot corresponds to a different 
permutation of signs among the residual deviations, as indicated in Figure 
10.4. This is because each line defines the boundary between the set of 

Figure 10.4 Permutations of signs among the deviations: This plot shows the same data as Figure 
10.3, but re-labelled so as to indicate that each region between the lines corresponds to a different 
permutation of signs among the residual deviations. For example, if the first deviation is negative and 
the other four are positive, the values of Xm and 'V must lie within the region labelled 15. The labels 
are obtained by treating each — as a binary zero and each + as a binary unit, and converting the 
resulting binary number {01111 for region 15) into its decimal equivalent. A conversion table is given 
as an inset in the figure. Certain conceivable regions, e.g. region 2 {for 1—), are missing 
from the plot: these correspond to permutations of signs that are impossible for the data shown, 
although they are not impossible in general 
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(Km, V) pairs for which the corresponding deviation is positive and the set of 
(Km, V) pairs for which it is negative. As, from the fundamental assumption of 
non-parametric statistics, all permutations of signs for the true errors are 
equally likely a priori, it is fairly easy to find joint confidence limits for Xm 

and V, as will now be shown. 
If the total number of positive signs is counted, one can obtain open-ended 

confidence regions, which are rigorous but inconvenient as they fail to 
exclude some obviously wrong estimates of the parameters. The reason for 
this is that it is easy to draw an obviously ill-fitting line through a set of points 
that nonetheless passes half of the points on one side and half on the other. 

More satisfactory confidence limits are found by searching for estimates of 
Jf m and Ψ* that as nearly as possible predict alternate positive and negative 
errors. In other words, we try to maximize the number of'runs' of signs among 
the deviations. On the direct linear plot, this approach favours the small 
enclosed regions close to the median estimates over the infinite open regions 
at the edges. If one takes as a confidence region the jagged region formed by 
combining all of the enclosed regions, the actual level of confidence depends 
on the number of observations, as indicated in Table 10.2. If there are twelve 

Table 10.2 PROBABILITY (EXPRESSED IN %) OF AT LEAST m 'RUNS' AMONG n RANDOM SIGNS 

A region with m ^ 3 can be found on the direct linear plot by taking all regions completely 
enclosed by the lines of the plot. A region with m ^ 4 is most easily found by labelling the plot 
as indicated in Figure 10.4. 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

m> 3 

25.0 
50.0 
68.8 
81.3 
89.1 
93.8 
96.5 
98.0 
98.9 
99.41 
99.68 
99.83 
99.91 

m ^ 4 

0.0 
12.5 
31.3 
50.0 
65.6 
77.3 
85.5 
91.0 
94.5 
96.7 
98.1 
98.9 
99.35 

or more observations, one can find a smaller region of 95 % confidence or 
better. More detail about this method and its principle is given by Cornish-
Bowden and Eisenthal (1974). For most purposes, a qualitative interpreta-
tion of the plot is likely to suffice. 

The principal advantages of the direct linear plot as a method of evaluating 
Km and V are that it is very simple to use, it is insensitive to isolated bad 
observations and it does not assume accurate knowledge of the relative pre-
cision of each observation. It is unfortunately impractical to extend the method 
to the fitting of more complex equations of three or more parameters, because 
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the computational labour increases very steeply with the number of para-
meters and with the number of observations. One can avoid this difficulty, 
however, by the secondary-plot approach described in earlier chapters for 
conventional plotting procedures. For example, in a two-substrate experi-
ment, one can use the direct linear plot as a primary plot to determine 
K%p, Vapp and Vapp/Kapp at various constant concentrations of the second 
substrate. One can then take advantage of the fact that the expressions for 
Vapp and KapP/K*pp are often of the same form as the Michaelis-Menten 
equation, e.g. (equation 5.6) Vapp = Vb/(K* + b\ and use secondary plots 
(of V against K„ in this case, with intercepts Kapp on the V axis and — b on 
the K% axis) to determine the four parameters. 

10.10 Final note 

This chapter is inevitably a compromise between the much shorter (or 
absent) account that one generally finds in a biochemistry book and the 
complete book that could profitably be written. It has been necessary to 
omit much of the background statistical knowledge that is useful in the 
practice of regression. This is particularly unfortunate in view of the dearth 
of good statistics books at an appropriate level: statistics books are divided 
between those that are rigorous but largely incomprehensible and those that 
contain a short last chapter on straight-line fitting at the end of a procession 
of recipes for f-tests, F-tests and the other paraphernalia of classical statistics. 
Fortunately, there does exist one book, 'Lectures in Biostatistics' (Colquhoun, 
1971), that combines readability, honesty (about how little we usually know 
about the validity of our assumptions) and relevance to real problems, quali-
ties that are sadly lacking from most other textbooks on the subject. 
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