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LIST OF SYMBOLS 

ai borehole radius 
a2 radius of the invasion zone 
A magnetic vector potential, defined by H = curl A 
B magnetic induction vector, B = fiH 
c ratio of coil moments 
D dielectric displacement vector D — eE 
e charge 
E vector electric field, volts/meter 
En electric field component normal to surface 
^ 0 primary electric field 
<f electromotive force, volts (also EMF) 
h skin depth, {2/aiiijjY^'^ 
h normalized magnetic field strength 
HQ primary magnetic field vector, amps/meter 
Hs secondary magnetic field vector, amps/meter 
H formation thickness 
lyi), Ky{) modified Bessel functions of the 

first and second kind of argument () 
In inphase part of 
/ current, amps 
j current density vector, amps/meter^ 
Ji component of current density 
Ji^O, Yjy{) Bessel functions of the first and second kind of argument () 
k'^ = iuj/i{a + iLje) square of a complex wave number 
MT transmitter moment, amps-meter^ 
MR receiver moment, amps-meter^ 
n unit vector normal to a surface 
n number of coil turns 
L inductance, henries 
L probe length 
/ linear dimension 
p = L/h scaled length 
Gi geometric factor of a borehole 
G2 geometric factor of an invasion zone 
Gs geometric factor of a formation 
Gi geometric factor of z-part of medium 
Qr radial differential response 
r i coil radius 



Xll 

R resistance, ohms 
i? — (r^ + 2:^)^/^ radius in spherical coordinates 
Q quadrature part of 
S conductance, mhos 
s ratio of conductivities 
t time, seconds 
tr ramp time 
T period, seconds 
U scalar potential, volts 
S volume charge density, coulombs/meter^ 
A difference 
p resistivity, ohm-meter 
a electrical conductivity, mhos/meter 
da apparent conductivity 
e normalized electromotive force 
e displacement of the probe with respect to borehole axis 
So dielectric permittivity of free space 
(f){) probability integral function 
$ , (f) magnetic flux or occasionally phase 
A coefficient of anisotropy 
H magnetic permeability, henries/meter 
fiQ magnetic permeability of free space, An x 10~^ H / m 
To = pso time constant of a medium 
T = {27rpt X 10^)^/^ scaled variable used in transient induction logging 
(jj angular frequency (radians/second) or occasionally a solid angle 



INTRODUCTION 

Induction well logging is an established method for surveying the electrical conductivity 
of rocks surrounding a borehole and proceeded from the early efforts of H. G. Doll (1949, 
1952). In its simplest form, an induction well-logging device consists of two coils; one 
is a transmitter and the other is a receiver. The transmitter coil is energized with an 
alternating current at frequencies of twenty kilohertz and much higher, while the electro-
motive force, caused by a change of the magnetic field, is detected at the receiver coil. 
In almost all cases with some important exceptions, the axes of the coils are coincident 
with the axis of the borehole. The separation between the transmitter and receiver coils 
is termed the probe length, and this parameter is commonly used to control the depth of 
investigation of the logging device away from the borehole axis. The electromotive force, 
which is detected at the receiver coil, is linearly dependent on the amount of the current 
provided to the transmitter coil, as well as strengths of currents that are induced in the 
surrounding medium. The actual distribution of these additional currents depends on the 
electrical structure of the medium, and in particular, on the conductivity. For this reason, 
by measuring the electromotive force in the receiver coil one can, in principle, determine 
the conductivity of the formation opposite which the induction device is located. 

In those cases, when the borehole axis is perpendicular to the boundaries between 
formations, the current flow path in the medium forms a circle, located in a horizontal 
plane and centered on the borehole axis. Correspondingly, induction logging is very 
sensitive to thin conductive layers, but it has difficulty in detecting relatively thin and 
resistive beds. 

H. Doll also introduced the differential multi-coil probes, which became very efficient 
logging tools and defined the path of development and application of induction logging 
over almost forty years. The use of these differential measurements in induction logging 
provides a result in which the effect of the borehole fluid, and in many cases also the 
invasion zone, on measurements is greatly reduced. Such devices are described in detail 
in this monograph. 

H. Doll did not only invent induction probes, but also suggested a very useful though 
approximate theory for the method, which helped immensely to develop principles of an 
interpretation and to aid in the design parameters of focusing probes. For simplification 
of the mathematical problem Doll has considered that the induction coils on the logging 
tool are essentially magnetic dipoles, and for sufficiently low frequencies or a highly re-
sistive medium the skin effect can be neglected. In other words, an interaction between 
the various induced currents is not strong enough to affect their magnitude appreciably. 
Respectively, the currents everywhere in the medium are in phase with one another, this 
phase being ninety degrees shifted with respect to the current in the transmitter coil. 

With these approximations the magnitude of the current, induced in the formation at 
any point, can be calculated by using quite simple formulae. This also allows the definition 
of a straightforward geometrical factor, which characterizes the relationship between the 
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magnetic fields and the conductivity at an arbitrary point of a medium. According to this 
approximate theory, the magnetic field, contributed by the induction currents, has only 
the quadrature (out-of-phase) component, with the in-phase component of the magnetic 
field being zero. 

The concept of the geometric factor for an assembly of elementary rings with centers 
located on the axis of the borehole plays an essential role in Doll's theoretical approach. 
By using such geometrical factors Doll was able to calculate the electromotive force, arising 
in the receiver and caused by various parts of a medium, and to investigate the vertical 
and radial responses of different induction probes. 

The approach, developed by Doll, is so satisfactory that it remains virtually unchanged 
in developing procedures of interpretation, if the so-called induction parameter is suf-
ficiently small. Of course, this theory is valid when the electric field is tangential to 
boundaries and, correspondingly, surface charges are absent. 

In almost sixty years, since the first development by H. Doll, research on various aspects 
of induction well-logging has been carried out around the world, and there have been 
some rather significant advances in theory, interpretation, probe design and equipment. 
Moreover, completely new modifications of induction logging have been developed and 
their principles are described in our monograph. As a result of the efforts of scientists and 
engineers in the United States, former Soviet Union and other countries, induction well-
logging has become the most powerful tool for a determination of formation conductivity 
in uncased wells. 

Because much of the development of induction logging was done in proprietary research 
by logging services and oil companies, the technical articles that appeared in journals 
do not properly reflect the real volume of research that has been done on the method. 
For this reason, it is probably impossible to attribute the proper respect to everyone 
who has contributed in the development of induction well-logging in the western commu-
nity. Among those who carried through the work started by H. Doll, are J. H. Moran, 
K. S. Kunetz, W. C. Duesterhoeff, J. L. Dumanoir, M. P. Tixier, M. Martin, A. J. deWitte, 
and D. A. Lowitz. Later their activity was continued by S. Gianzero, J. Tabanou, B. An-
derson, T. Barber, G. Minerbo, B. Clark, S. Chang, V. Druskin, T. Habashy, and many 
others. 

In the USSR, parallel development of theory, interpretation and equipment of induction 
logging, based on Doll's concepts of the geometric factor and focusing probe, was started 
at almost the same time. Also, during this research, new modifications of induction 
logging were introduced and some of them became conventional and are now used over 
the world. 

Theoretical investigations performed by L. Alpin, S. Akselrod, A. Kaufman, Y. Ku-
dravchev, and V. Nikitina allowed us to understand the behavior of the quasistationary 
electromagnetic fields, caused by the magnetic dipole in a medium with cylindrical as well 
as horizontal interfaces. These studies helped to design equipment and focusing probes 
with optimal radial and vertical characteristics (S. Akselrod, M. Plusnin). 

Almost from the beginning, the frequency of the transmitter current was chosen much 
higher than in the west, and it was done in order to improve the vertical responses of 
probes (Kaufman, 1962). At the same time, it was demonstrated that the quadrature and 
in-phase components of the secondary magnetic fields deliver a different depth of investi-



gation (Kaufman, 1959). For this reason, it is natural that the conventional equipment 
of induction logging is able to measure both these components. 

As was pointed out, the remarkable simplicity of Doll's theory is related to the fact 
that interaction of induced currents is neglected. In order to take into account this effect 
and improve the quality of an interpretation of logging data, a new approach, also an ap-
proximate one. was suggested (Kaufman, 1962). This method allows us relatively quickly 
to evaluate the field, subjected to an influence of the skin effect in a formation, when 
there are both cylindrical and horizontal interfaces. Much later, this rather complicated 
problem was solved by V. Dimitriev, L. Tabarovsky, V. Zakharov using the method of 
integral equations. 

At the beginning of the 1960's there was the first attempt to develop induction log-
ging without the use of multi-coil focusing probes. By analogy with the lateral logging 
soundings with lateral probes, widely used in the former Soviet Union, the induction lat-
eral soundings were suggested (Kaufman, 1962). The patent was applied, several papers 
were published that described principles of an interpretation of the apparent conductivity 
curves with two- and three-coil probes of a different length. Additionally, an influence of 
the in-phase component of the magnetic field on the radial responses was studied, as well 
as the use of different frequencies for probes of different lengths. 

At that time, the logging industry was not ready to accept this approach and rejected 
it. However, with time, attitude to multi-array systems was completely changed, and 
during the last twenty years this type of induction logging has been widely used as the 
conventional method. To a great extent its progress is related to the development of 
the dielectric logging. At the beginning, borehole measurements of the dielectric con-
stant of formations were performed with a tool that is similar to the capacitor. Then, it 
was suggested to measure this parameter inductively, that is, using the induction probe 
(Kaufman, 1963). This approach was successfully developed by D. Daev, who introduced 
a new approach, namely, measuring the ratio of amplitudes of the magnetic field and the 
difference of phases with the three-coil probe. It turned out that measurements of these 
parameters in induction logging also provide excellent radial and vertical responses, if 
frequencies are properly chosen. For this reason, they are either measured or calculated 
in the multi-array tool, as well as in the logging while drilling. 

At the end of the 1960's serious attention was paid to other modifications to induction 
logging. One of them is based on the use of transient fields, when measurements are 
performed in the absence of the primary magnetic field (Kaufman and Sokolov, 1972). 
The study of the secondary fields, caused by induced currents in a medium with either 
cylindrical or horizontal interfaces allowed one to describe the radial and vertical responses 
of the two-coil probe and find the most optimal range of time for measurements. 

Finally, theoretical investigations were performed which demonstrate that induction 
probes with special orientations of coils allow us to evaluate an anisotropy of formations 
(Kaufman and Kagansky, 1971). This study is also useful for application of induction 
logging in horizontal wells. 

In this monograph we describe the physical principles and theory of almost all possible 
modifications of induction logging. At the same time, such topics as inverse problems are 
out of the scope of this book. 

A need for a fundamental understanding of principles on which induction logging is 



based does not require any special justification. The first chapter of this monograph is 
devoted to an explanation of the physical laws of classical electrodynamics and provides 
this background. 

In the last chapter of the book we consider the outstanding results obtained by 
V. Druskin and L. Knizhnerman in 3D mathematical modeling of the response of in-
duction logging tools in complicated models of a medium. 

We would like to note that the theory of induction logging presented in this volume can 
be applied not only to logging after drilling but to logging while drilling as well. 



Chapter 1 

BASIC ELECTROMAGNETIC LAWS AND 
MAXWELL'S EQUATIONS 

This chapter describes the principal laws of electromagnet ism, which are important in 
electrical logging methods based on the use of direct and alternating fields. Although these 
laws are treated in numerous excellent books, examples and models, usually given, are not 
very appropriate for understanding the behavior of the fields in nonuniform conducting 
media. The purpose of this chapter is to present the basic laws of electromagnetism 
from a point of view that will facilitate the application of the theory to problems in 
electromagnetic logging. 

We will first consider the laws of Coulomb, Biot-Savart and Faraday, emphasizing their 
experimental origin and the areas in which they can be applied. The relationship between 
these laws and Maxwell's equations will then be described to further explore their physical 
meaning and especially the precise sources of electric and magnetic fields. 

Special attention will be paid to the set of equations which describes the quasistation-
ary or quasistatic fields and provides an accurate model for induction logging, with the 
exception of dielectric logging where very high frequencies are used. 

We will finally consider the formulation of the Helmholtz equations for magnetic and 
electric vector potentials, which are useful in solving boundary value problems in a con-
ducting medium. 

1.1. Coulomb's Law 

As a starting point, we will assume that the reader accepts the concept that an electric 
charge is the source of an electric field. As a consequence, the distribution of electric 
charges is the main factor in controlling the field. In describing electric fields, we will 
make use of such functional descriptions of charges as volume, surface and linear densities 
of charge. 

The volume density of charge, S, is defined by the equation: 

<5 = lim ^ (1.1) 

where de is the charge in an elementary volume dV. It is clear that as the element of 
volume dV decreases, the charge in the elementary volume decreases as well. In the limit, 
as the ratio of the total charge to the volume remains constant, we obtain a nonzero 
charge density. 



de = Sh dS 

Figure 1.1. Definition of an element of charge within a thin layer. 

de=AdZ 
d̂  / de=Ad/ 

Figure 1.2. Definition of linear charge density. 

The volume density of charge is the most general way in which to describe a charge 
distribution, but in some particular cases, we might also wish to define such functions as 
a surface or a linear density of charge. Suppose that the volume density S is invariant in 
the direction perpendicular to the surface of the thin layer (see Fig. 1.1). The elementary 
volume charge can then be written as: 

de=^6hdS 

where h is the thickness of the thin layer and d^ is an elementary area of its surface. 
Let the thickness h tend to zero while the charge density S increases without limit in 
such a way that the product Sh remains constant; we thereby obtain a definition for an 
elementary surface density of charge: 

de^^dS (1.2) 

where E is the surface density of charge. 
Similarly, when charges are distributed in a rod-like volume of small cross-section, as 

shown in Fig. 1.2, and we are only concerned with the field at distances which are far 
greater than its dimensions d/ii and d/i2, it is often convenient to define a linear elementary 



change de and a linear density A as follows: 

de = Ad; (1.3) 

In doing so, we replace the volume within the rod by a line that carries the same amount 
of charge. 

On occasion, it is also convenient to define a point charge e by assuming that the whole 
charge density under consideration is concentrated within an infinitesimal distance about 
a single point in the medium. 

Elementary volume, surface and linear charges have a common feature in that they 
are situated within volumes of which at least one characteristic dimension is very small 
with respect to the distance to the point at which the field is being observed. They differ 
from each other in unit dimensions. The volume density for an elementary volume charge 
always remains finite, while for elementary surface and linear charges, the volume density 
must be assumed to increase without limit within the charged volume. Actually, in accord 
with eq. 1.2 we have: 

6 = E/h as /i ^ 0 

Inasmuch as E is finite, the volume density of surface charge becomes infinite as the 
function l/h becomes infinite. 

For an elementary linear charge, we have: 

6 - A/d/iid/i2 

where dhi and d/i2 are the linear dimensions of the cross-section (Fig. 1.2). As dhi and 
d/i2 tend to zero, the volume density of linear charge increases without limit more rapidly 
than was the case for a surface charge. 

The dimensions for charge densities are also different for each type of distribution. The 
proper units for volume charge density are Coulombs per cubic meter. For surface and 
linear charge densities, the unit becomes Coulombs per square meter and Coulombs per 
meter, respectively. These differences in units must be carefully looked after in problems 
in which these approximations are used. As one might expect, these various degrees of 
concentration of charge into linear or sheet-like volumes result in different behaviors of 
the electric field near these charges. A point charge has the distribution characterized by 
the maximum concentration of charges in a volume, with the volume density of charge 
going to infinity as 1/h^ (here h is taken to be the linear dimension of an elementary 
volume around the point where the charge is suppose to concentrate). 

Now let us discuss the main subject of this section, that is. Coulomb's law. Experimen-
tal investigations carried out by Coulomb and other researchers have shown that the force 
acting between an elementary charge de{q) situated at point q and another elementary 
charge de(a) situated at point a, is described by an extremely simple expression: 

^ ^ 1 d e ( ^ (1.4) 



Figure 1.3. Definition of the sign of the force defined by Coulomb's law. 

where Lqa is the vector: 

Lqa — LqaLq^ 

with Lga being the distance between points q and a, while L^^ is a unit vector directed 
along the Hue connecting points q and a, and SQ is a constant known as the dielectric 
permeability of free space. In the practical system of units, this constant is: 

eo = : ^ x 10- ' F/m 

also: 

1 
- 9 X 10' m/F 

ATTSO 

Equation 1.4 can be rewritten as: 

1 de(gOde(a) 0 .. .^ 

The electric force of interaction between two elementary charges is directly proportional 
to the charge strengths, inversely proportional to the square of the distance between them, 
and has the same direction as the unit vector L^^ when charges are of the same sign, or 
the opposite one when charges are of opposite sign (see Fig. 1.3). 

This expression is of course valid only as long as the distance between charges is far 
greater than the dimensions of the volume wherein the charges are situated. In order to 
define the electrical force of interaction between charges when one or both are contained in 
volumes possessing dimensions comparable to the distance between the charges, one must 
make use of the principle of superposition. According to this principle, each charge exerts 
a force on every other charge such that the size of the force is independent of the presence 
of additional charges. Using this principle, an arbitrary volume distribution of charges 
can be represented as a sum of elementary volumes. For example, the force between an 
elementary charge at point a, de(a),and a charge distributed in a volume V, as is shown 
in Fig. 1.4, can be written as: 

47r£o J Lla 



Figure 1.4. Distribution of charge in a volume. 

where q indicates the position of any point within the volume V. The total electric force 
F{q) is the vector sum of all individual forces contributed by the individual elementary 
charges. 

Extending this approach to a more general case in which all types of charges are present 
(volume, surface, linear and point charges) and again applying the principle of superposi-
tion, we obtain the following expression for the electrical force of interaction between an 
elementary charge de(a) and a completely arbitrary distribution of charges: 

F{a) = 
de(a) 

47r£:o rw^'^i E{q) dS 
Lqa + 

/ 

X{q)dl. 
+ E ei(g)^ 

(1.7) 

where 8dV, E d 5 , Ad/ and ê  are the symbols representing elementary volume, surface, 
linear and point charges, respectively. 

At this point, we will define the strength of the electric field, E{a), as being the ratio 
of the force of electrical interaction, F(a) , to the size of the elementary charge de(a) 
(considered to be a test charge) at point a: 

E{a) = F{a) 
de(a) 

(1.8) 

For convenience, the strength of the electric field is usually referred to merely by the term 
electric field. It does not have the same dimension as a force, and has, in the practical 
system of units, the dimension of volts per meter. 

The electric field E can be thought of as the force field acting on a test charge de 
inserted in the region of interest. If the electric field is known, it is a simple matter, using 
eq. 1.8, to calculate the force of interaction F. As follows from eq. 1.7, the expression for 
the electric field can be written as: 

E{a) 
1 

47r£o / ^ ^ - / 
E(g)d5 

Lna + 
/ 

X{q)dl. 
(1.9) 

If the distribution of charges is given, the function E only depends on the coordinates at 
which the test point is located. Because it depends only on position, the function is termed 
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Figure 1.5. A charge on a plane surface. 

a field. When the electric field does not vary with time, it only depends on distribution of 
charges in the medium, and its calculation using eq. 1.9 presents no fundamental diflBculty. 
Considering only the portion of the field contributed by charges, a change in the electric 
field with time indicates that at some place in space there has been a simultaneous change 
in charge density. 

In order to have a complete description of the field behavior, it is necessary to investigate 
a second source of the electric field, a source which acts when a time-varying magnetic 
field is present. But before considering this, let us further investigate the nature of the 
electric field caused by charges only. 

First of all, let us consider several examples of fields caused by specific distributions of 
electric charges. 

1.1.1. Example I: Normal Component of the Electric Field Caused by a 
Planar Charge Distribution 

Suppose that there is a surface charge distribution on a plane surface a shown in Fig. 1.5. 
Let us introduce a vector dS: 

dS = dSn 

where n is the unit vector directed from the back side of the plane (1) toward the front side 
(2). We need only consider the normal component of the field, that is, the component 
which is perpendicular to the surface. In accord with Coulomb's law, as expressed in 
eq. 1.4, every elementary charge T>{q)dS located at point q creates a field described by 
the equation: 

dE{a) = 
1 ^iq)dS. 

(1.10) 
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Therefore, the normal component of this field is: 

d ;̂̂  = dEcos{Lqa, n) =- —— cos(Lq«, n) 

''''' ^ - (1.11) 
•cos{Lga,n) 

1 nq)dSLga 

47r£:o ^ L -^qa 

where (Lqa^n) is the angle between directions Lqa and n. It is clear that the product: 

dS LqaCOs{Lqa,n) 

can be written as a scalar product as follows: 

dS Lqa COs{Lqa, Tl) = dS ' Lqa = ~dS ' Laq 

because Lqa = -Laq. 
Thus the normal component of the electric field can be written as: 

because Laq = Lqa. 
As can be seen, the quantity dujaq defined as: 

d'^a, = ^^j^ (1.13) 

represents the solid angle subtending the element dS from point a. In a similar manner, 
the solid angle subtended by the entire surface S as viewed from point a is: 

J ^aq 
S 

This expression allows us to find the solid angle when the surface S is of arbitrary shape. 
For example, with an observation point inside a closed surface, the solid angle is 47r. If 
the observation point is situated outside a closed surface, the solid angle subtended by 
the surface is zero. This can be derived from the fact that the closed surface could also 
be represented as two open surfaces, as shown in Fig. 1.6, which are viewed from any 
external point with the same solid angle by magnitude, but opposite in sign. In so doing, 
we must remember that the sign for the solid angle is defined by the angle between the 
direction of the vector L and the vector dS. 

Returning again to the calculation of the normal component En (Fig. 1.5), we can write 
it as: 

Er, = - J - f^dUga (1.15) 
47r£o J 
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Figure 1.6. Representation of a closed surface by two open surfaces. 

In particular, if the charge is distributed uniformly on the surface (E = const) we have: 

En = -J^Ua^ (1.16) 

where Ua is the solid angle subtended by surface S when viewed from point a. It is obvious 
(see Fig. 1.7) that the solid angle uja is either positive or negative depending on whether 
the front side or the back side of the surface is viewed. 

With increasing distance from the surface 5, the solid angle decreases, and correspond-
ingly the normal component of the field becomes smaller. In the opposite case, when the 
point a is considered to approach the surface, the solid angle increases and in the limit 
becomes equal to -~2IT and -f 27r when observation point a is located either on the front 
side (2) or the back side (1) of the surface, respectively. 

Thus we have the following expressions for the normal component of the electric field 
on either side of the plane surface: 

t = -''''" (U7) 

These two expressions indicate that the normal component of the electric field is discon-
tinuous across the surface 5. Let us examine the normal component in some detail. The 
normal component of the electric field can be written as the sum of two terms: 

E„ = EP„ + Ef (1-18) 

where E^ is the part of the normal component caused by the elementary charge E(p) dS lo-
cated in the immediate vicinity of point p, and £̂ f "^ is the normal component contributed 
by all the other surface charges. 

It is clear that: 

E^^ia) = - j ^ S / du; - - - - ^ Ec^^-^(a) 
4TCO J 47reo 

S-p 

where a;'̂ ~^(a) is the sohd angle subtended by the plane surface S minus the element 
of surface dS{p) as viewed from point a. Letting point a approach the element of area 
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Figure 1.7. Illustrating the fact that the angles subtended by a surface can be either 
positive or negative depending on the view point. 

dS(p), the solid angle subtended by the rest of the surface tends to zero, and the normal 
component is determined by the charge located on the elementary surface dS{p) only: 

E^-P ^ 0 asa^p 

During the same process, the solid angle subtended by the surface element dS'(p), no 
matter how small its area is, tends to ±27r when viewed from an infinitesimally small 
distance from point p: 

uj^ -^ ±27r as a —̂  p 

Therefore, the normal component of the field on either side of the surface is determined 
exclusively by the elementary charge located in the immediate vicinity of the point p: 

J^^^ (1.19) 
£^)(p) = — S ( p ) 

The difference in sign of the field on either side of the surface reflects the fundamental fact 
that the electric field shows the direction along which an elementary positive charge will 
move under the force of the field. Therefore, the discontinuity in the normal component 
as a test point passes through the surface is caused by the elementary charge located near 
the observation point only. For example if there is a hole in the surface, the component 
on either side of the surface is £̂ f ~ ,̂ and therefore the field is continuous along a line 
passing through the hole. 

We can generalize these results to the case in which the surface carrying the charge 
is not planar. Making use of the same approach based on the principle of superposition 
and the definition of solid angles, we arrive at the following expressions for the normal 
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(S-p) * 0 

Figure 1.8. Illustrating the fact that the normal component of electric field caused by 
charges locate on the surface but outside the element dS is not necessarily zero at a point 
P-

component on either side of the surface: 

ZSQ 

(1.20) 

In contrast to the previous case, the normal component E^~^{p) caused by the charges 
located on the surface but outside the element dS{p) is not necessarily zero (see Fig. 1.8). 
However, we can readily recognize a very important feature of this part of the field. 
Inasmuch as these changes are located at some distance from point p, their contribution 
to the field is a continuous function when observation point a passes through element 
dS{p), and therefore: 

Correspondingly, eq. 1.20 can be written as: 

(1.21) 

E^:\p) 
So 

+ Et" 

E^\p) = ^^ + Et^ 

This means that the discontinuity in the normal component is, as before: 

(1.22) 

£0 
(1.23) 
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Figure 1.9. Under the action of an applied field, positive and negative charges residing 
inside a closed conductor move in opposite directions. 

and it is caused by charges located within the elementary surface area dS{p) only. 
It should be emphasized that eq. 1.23 is a fundamental equation describing the elec-

tromagnetic field behavior and is valid for any rate of change of the field with time. We 
might say in essence, even though we risk getting ahead of ourselves, that eq. 1.23 is the 
surface analogy of the third Maxwell equation. 

1.1.2. Example II: Effect of a Conductor Situated within an Electric Field 

We will now consider a second example which illustrates the electrostatic induction phe-
nomenon. First of all, let us suppose that a conductive body of arbitrary shape is situated 
within the region of influence of an electric field ^o as shown in Fig. 1.9. Under the ac-
tion of the field, the positive and negative charges residing inside the conductor move 
in opposite directions. As consequence of this movement, electric charges accumulate on 
both sides of the conductor. In so doing, they create a secondary electric field, which 
is directed in opposite direction to the primary field inside the conductor. The induced 
surface charges distribute themselves in such a way that the total electric field inside the 
conductor disappears, that is: 

Ei = 0 (1.24) 

where Ei indicates the electric field strength within the conductor. This process is called 
electrostatic induction. At this point it is appropriate to make several comments: 

• In our description of this phenomenon, we have given a very approximate explana-
tion of the process in which only the electrostatic field is considered to be present. 
In fact, the process of accumulation of charges involves other phenomena, as in par-
ticular the appearance of a time-varying magnetic field, which plays an important 
role that will be examined later. 

• The phenomenon of electrostatic induction is observed in any conductive body, re-
gardless of its electrical resistivity. For example, the conductive body could be 
composed of metal, or of an electrolytic solution, of minerals or rocks. It is funda-
mental, however, that the charges that create the primary field are situated outside 
the conductor. We will later see that the magnitude of the resistivity plays a role 



16 

in determining the time which is required for the electric field to vanish inside the 
conductor, but it does not change the final result of electrostatic induction, that is, 
the internal electric field goes to zero. 

• Considering this effect, we assumed that the conductor has finite dimensions. This 
condition is not important and electrostatic induction would be observed in an 
infinite medium as well. For example, suppose that an electric charge eo is placed in 
a nonconducting borehole as is shown in Fig. 1.10. In this case, charges of opposite 
sign than eo appear on the borehole surface and are distributed in such a way that 
the total electric field of these charges within the borehole is not zero (though it does 
not contain any information about the distribution of resistivity in the medium). As 
it concerns induced charges having the same sign as the charge eo, they are moved 
to infinity. 

• An electric field which does not depend on time within a certain range can be created 
by various ways. For instance, it can be generated inductively from a current in a 
close loop, and whose intensity would increase linearly with time. At the same time, 
electrostatic induction is usually observed when the sources of the primary field are 
electric charges. Deviations from this rule have very extremal character. 

Returning again to the electrostatic induction phenomenon (Fig. 1.9), it should be 
obvious that the secondary electric field contributed by the surface charge can be defined 
from the equation: 

s 

where E(^) is the surface density of charge. Correspondingly, condition 1.24 can be 
rewritten as: 

^o(a) + - ^ / ^ ^ L , . = 0 (1.26) 

s 

where EQ is the primary field contributed by external sources. 
If, for instance, a single point charge e is situated outside the conductor, electric field 

at any point inside the conductor is: 

Eo{a) = j^-^Loa (1.27) 

where a is the point at which E is observed. 
It results from this fact that the electric field caused by a given system of charges does 

not depend on the properties of the medium. If the field changes, this means that new 
charges develop. 
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E=0 

P 3 ^AH = QO 

Figure 1.10. Illustration of the electrostatic induction when an electric charge is located 
within nonconducting borehole (p is the resistivity of the medium). 

In our case, positive and negative charges arise at the surface of a conductor at the 
same time, so that the total charge of the neutral conductor remains zero: 

Ee* 0 (1.28) 

If a conductor has infinite dimensions (Fig. 1.10), charges of one sign appear at infinity 
and condition 1.28 is still vahd. 

In conclusion, let us make one more remark. The distribution of charges caused by elec-
trostatic induction is not usually known before-hand, and their determination constitutes 
one of the classical problems of the theory of electrical fields. 

It is appropriate to notice that there are several very well-developed numerical tech-
niques allowing us to solve this problem, such as the method of integral equations, the 
method of finite differences, and others. 

At this point, we can describe some general problems involving the electric fields caused 
by charges. It is obvious that when the charge distribution is unknown, we cannot make 
use of Coulomb's law to calculate the field. Unfortunately, in most cases of interest in 
electric logging, the distribution of charges is unknown, and Coulomb's law is of no help in 
determining the field. This is why we must consider some general features of the electric 
field caused by charges. 

Proceeding from Coulomb's law, we can obtain fundamental equations for this field. 
First of all, let us introduce the concept of electric fiux N through a given surface S as 
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6S = 6Sn 

Figure 1.11. Representation of electric flux as being the surface integral of the scalar 
product of the electric field and the surface. 

being the surface integral of the scalar product of the field E to the unit vector n normal 
to that surface, as illustrated in Fig. 1.11: 

= / N= I EdS 
s 

(1.29) 

where E-dS = EdS cos {E, dS). 
Suppose that an elementary charge, de, situated at point g, is the sole source of an 

electric field. In accord with Coulomb's law, the flux of the corresponding electric field 
through an arbitrary surface S is given by: 

N = 
de 

ATTSO I Lqp • dS 
(1.30) 

where p is an arbitrary point on the surface 5 . Inasmuch as this integral represents the 
solid angle u) subtended by the surface S as seen from point g, we can write: 

/ 
E'dS = 

de 

ATTSO 
(^s{q) 

In the particular case in which the surface is closed and the charge de is located inside 
it, the solid angle LOS{Q) is in and we have: 

/ 
(1.31) 

It should be clear that when the charge is located outside the surface S, the flux of the 
electric fleld caused by the charge is zero. 

Equation 1.31 has been obtained in the case of an elementary charge. Using the principle 
of superposition, we can derive the following equation for an arbitrary distribution of 
charges: 

/ 
E-dS = -

£o 
f 6dV+ /sd5'+ f Xdl + J2^i (1.32) 



19 

where (̂ , S, and A are volume, surface and linear charge densities, respectively, and ê  is 
a point charge, all of which are located inside the surface S. The flux caused by charges 
outside the surface is zero. 

The following comments should be made about eq. 1.32: 

• A change in position of the charge within the volume V limited by surface S alters 
the value of the field E at the surface, but does not affect the value of the flux 
because it is a function of the total charge within the surface only. 

• The surface S can have quite an arbitrary shape and position. In particular, it can 
intersect portions of the medium characterized by different electrical properties, as 
shown in Fig. 1.10. 

Assuming a distribution of charge described by the volume density S, we have: 

E'dS = ev/£o (1.33) / 

where ey is the volume charge within the volume V: 

ey= f SdV 
V 

Usually, the total charge ey is the sum of two types of charges, one being free charges, 
which are free to move, and the other being polarization charges. The displacement of 
charges will not be considered here, and therefore we will normally mean that the charge 
ey is the free charge. 

Equation 1.33, which was developed directly from Coulomb's law, is in fact the third 
of Maxwell's equations, valid both for constant and time-varying fields. Omitting the 
subscript V on the charge e, we have: 

/ 
E'dS = e/so (1.34) 

This equation shows the relationship between field values observed on various points of 
the surface S and can be interpreted from two points of view. If the charge e is known, 
eq. 1.34 can be considered to be an integral equation in an unknown variable: the normal 
component of the field. In contrast, when the electric field is known, the use of the fiux 
allows us to determine the sources of the field. If we wish to find the relationship between 
fiux and source within an elementary volume, we can make use of Gauss's theorem: 

<j>E-dS^ fdivEdV (1.35) 
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where 5 is a closed surface surrounding the volume V. Applying this equation to an 
elementary volume where the function d i v ^ is nearly constant, we have: 

E'dS c^divEdV 

or, in the hmit: 

divE = — i E-dS (1.36) 

s 

Thus the divergence of the electric field characterizes the flux of the vector E through a 
surface limiting an elementary volume. In accord with eqs. 1.34-1.36 we have: 

divE = S/so (1.37) 

The divergence of the electric field along with the flux through an arbitrary closed surface 
characterizes the distribution of charges. However, eq. 1.37 describes the volume density 
of charges in the vicinity of any point, that is, it has a differential character, distinct from 
that of eq. 1.34. 

Both eqs. 1.34 and 1.37 are valid for electromagnetic fields regardless of the rate of 
change of the field with time. Equation 1.37 is the third Maxwell equation in differential 
form. We must stress that there is a fundamental difference between the two forms 
presented above for the third Maxwell equation. While the integral form can be applied 
everywhere, it is necessary to be careful in the use of the differential form. This caution 
must be exercised because the function div E might not be defined at certain points, lines 
or surfaces. As a matter of fact, div E is expressed in terms of the first spatial derivatives 
of the field components. In Cartesian coordinates for example, we have: 

div E = —— + —-^ + — -
ox oy oz 

At points where one of the derivatives is not properly behaved, eq. 1.37 cannot be 
applied. In other words, it does not permit us to describe the nature of sources at such 
locations. A very important example from electrical logging where this equation cannot be 
applied is provided by any model in which electrical charges are distributed at interfaces 
representing a step-wise change in resistivity. As was shown in the first example of this 
section, the normal component of the electric field is a discontinuous function of the spatial 
variable through a surface charge and therefore the normal derivative dEn/dn does not 
exist on the surface. Therefore, in order to characterize sources on such interface, one 
must use the third Maxwell equation in integral form (eq. 1.34). 

Applying it to an elementary cylindrical surface enclosing a small piece interface, as 
shown in Fig. 1.12, we obtain a well-known relationship: 

E f - £ ; « = i:/eo (1.38) 
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dS2 ^2 

(1) 

(2) 

Figure 1.12. Definition of an elementary cylindrical surface that encloses a small piece of 
an interface between two regions with different resistivity. 

where E is the surface charge density, En and En are the normal components of the 
electric field on either side of the surface, and n is a unit normal vector directed from the 
reverse side to the front side of the surface. Equation 1.38 can be interpreted as being 
the surface analogy of eq. 1.37, and is another form the third Maxwell equation as well. 

Comparing eq. 1.38 and 1.23, we see that they exactly coincide. This follows directly 
from the fact that the discontinuity of the normal component En is due to the presence 
of surface charges. In particular, if the surface charge is absent at some point, the normal 
component of the field is found to be continuous. 

By starting with Coulomb's law, we have obtained three useful forms of the third 
Maxwell third equation: 

/ 
E'dS = e/eo div E = S/so E^^^^ - E^^^ = E/^o (1.39) 

s 

Each of them characterizes the distribution of charges, and one can say that they are the 
same tool of analysis written in three different ways. 

Another highly useful concept that illustrates some of the fundamental characteristics 
of the electric field can be introduced as follows: 

0 

/ 
E'dl (1.40) 

The integral represents the voltage of the electric field between points a and 6, measured 
along some given path L (Fig. 1.13). The scalar product E • dl can be written as: 

E'dl^Edl cos{E, dl) = Edl cos a 

where a is the angle between the electric field vector and the tangent to the path L at 
every point. From the physical point of view, the product E - dl is an element of work 
performed by the electrical field transporting a unit positive charge along the elementary 
displacement dl. This product has the dimension of a work per unit charge, and in the 
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Figure 1.13. An arbitrary path along which the dot product of electric field and direction 
is integrated. 

practical system of units has the dimension of volts. Therefore, the integral in eq. 1.40 
represents the work of voltage done in carrying a unit charge between points a and b along 
the pa th L. In the general case of any function E, this integral depends on the particular 
path of integration L which is chosen and on the terminal points a and b. Starting from 
Coulomb's law, it can be demonstrated that the voltage of the electric field caused only 
by static charges is independent of the pa th followed and only depends on the terminal 
points. 

Assume tha t the source for the field is a single elementary charge de. In accord with 
Coulomb's law, the electric field is: 

1 MQ) 
47r£o L^av 

E{p) = jzr-rr^L,, (i.4i) 

where Lqp is the vector directed from point q to point p. If both terminal points a and 
b are situated on the same radius vector L^p, and the path of integration is along this 
radius (Fig. 1.14), the voltage between these points is very easily calculated: 

b 

V= 1 E-dl^ 
a 

inasmuch as: 

b 

_ de{q) f dl • Lqp 

~ inso J L^qp 
a 

de{q) j dl 

~ i-jreo J Ll^ 
a 

dl' Lqp — dl Lqp cos 0 = Lqp dl 

Carrying out the integration as indicated above, we obtain: 

y=^ABl(l_^l\ (1.42) 

Now assume that points a and b are situated on two different radius vectors Lqa and 
Lqb as shown in Fig. 1.15. Let us choose the path Li as consisting of two parts . The first 
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de(q) 

Figure 1.14. Illustration of a case in which the points a and h are on a common radius 
vector issued from the position of the electric charge. 

part is a simple sicaU and the second one is the segment h'h along the radius vector Lqiy. 
In this case the voltage can be written as: 

V •• 

de(g) 

47r£o 

0 

J LI ^J 
re ab' h' 

dl'R qp 

^qp 

Since the scalar product Lqp • dZ on ab' is zero, the integral along the arca6 ' vanishes. 
Thus the voltage between points a and b is again equal to: 

V = 
dejq) 

ATTSO 

1 1 
(1.43) 

If instead of the pa th Li we consider a more arbitrary pa th L2, it is clear tha t this pa th 
can be decomposed as a sum of elements of arcs and of radius vectors as illustrated in 
Fig. 1.16. All contributions along simple arcs are zero, while the sum of integrals along 
all the radius vectors is: 

V = 
dejq) 

ATTCO 

1 1 

Lqb 

tha t is, it is equal to the voltage along the path Li . 
We have established the second fundamental characteristic of an electric field, namely 

tha t the voltage between two points does not depend on the particular pa th along which 
integration is carried out, but is determined by the terminal points only. This fact can 
be expressed formally as follows: 

0 0 0 

E'dl (1.44) 

L2 Ln 

Making use of the principle of superposition, this result can be generalized to a field caused 
by any distribution of charges. It must be stressed again that this result is valid only for 
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de(q) 

Figure 1.15. Example of a case in which the points a and b are situated on difTerent radius 
vectors. 

Figure 1.16. An arbitrary path that can be represented as the sum of radius vectors and 
arcs. 

-acb 

bda 

Figure 1.17. A path of integration along a closed contour L which can be broken down 
into the summations of two open contours. 
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electric fields caused by constant charges, and that it cannot be applied to time-varying 
fields. 

The independence of the voltage on the path can be written in another form: let us 
consider a close contour L as shown in Fig. 1.17, which consists of two other contours Lach 
and Ladh' In accord with eq. 1.44, we have: 

f E'dl= I E'dl (1.45) 
acb adb 

In these integrals, the element dZ is directed from a to h. Changing the direction of 
integration in the right-hand side of eq. 1.45, we can write: 

f E-dl = - f Edl, 
adb bda 

f E'dl = - I E'dl, or 
acb be 

acb 

acb bda 

E-dl+ f E-dl = 0, oi 
acb bda 

E-dl = 0 (1.46) 

L 

Thus the voltage along an arbitrary closed path is zero. Sometimes the quantity ^^ E -dl 
is called the circulation of the electric field or the electromotive force (EMF). 

The path L can have an arbitrary shape, and it can intersect media characterized 
by various physical properties. In particular, it can be completely contained within a 
conducting medium. Because of the fact that the electromotive force caused by electric 
charges is zero, a Coulomb force field can cause an electric current by itself. This is the 
reason why non-Coulomb forces must be considered in order to understand the creation 
of current flow. Equation 1.46 is the first Maxwell equation for electric fields which do 
not vary with time, given in its integral form, and relates the values of the field various 
points in the medium. To obtain eq. 1.46 in diflFerential form, we will make use of Stoke's 
theorem, according to which for any vector A having first spatial derivatives, the following 
relationship holds: 

JA.6,^1 c u r l A - d S (1.47) 

In this expression, the orientations for dl and dS are obtained according to right-hand 
rule convention illustrated in Fig. 1.18. 

The function A is a vector expressed in terms of the spatial derivatives of the compo-
nents of A. As an example, in Cartesian coordinates, A expressed as follows: 

curl A = (^-^]i+(^-^] •+(^-^]k 
\ dy dz ) \ dz dx ) \ dx dy ) 



26 

A 6S 

61 

Figure 1.18. Use of the right-hand rule to define the direction of dZ and dS. 

Similar relationships can be written in other orthogonal systems of coordinates. We 
can demonstrate that curl A characterizes the maximum change voltage in the vicinity of 
a source point, in the direction perpendicular to the field. In accord with eqs. 1.46 and 
1.47, we obtain a differential form of the first equation for the electric field: 

curli^ = 0 (1.48) 

This equation, as well as eq. 1.46, reflects the fact that the voltage along a closed path 
must be zero. It is appropriate to emphasize that both of them follow directly from 
Coulomb's law. 

As has been previously mentioned, Stoke's theorem (eq. 1.46) is valid only when the 
first spatial derivative exist. Thus, this equation cannot be used at points where one of 
the components is a discontinuous function of position. In order to obtain a differential 
form of eq. 1.46 vahd at such points, we will apply this equation along an elementary path 
as shown in Fig. 1.19. 

Considering that elements dV and dl'^ are separated by an arbitrarily small distance dh 
which tends to zero, we have: 

E • dZ" -\-E'dV + 2{E -dh)=0 

and in the limit: 

E^^^ dl' - E[^^ dl' = 0 

so that finally: 

^(2) _ ^(1) = 0 (1.49) 

Thus the tangential component of the field is a continuous function through a charged 
surface. 

We have now derived three forms of the first equation based on Coulomb's law: 

/ • 

E-dl = 0 curl E = 0 ^f' - E^^^ = 0 (1.50) 
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E(^) (2) 

Figure 1.19. Application of Stoke's theorem along an elementary path. 

Each of them expresses the same fact, that is, the electromotive force caused by electric 
charges is zero, or in other words, the voltage between two arbitrary points does not 
depend on the path of integration. 

We must make an important comment about eq. 1.50. The first two relationships are 
not valid when the field is time-varying, since the second source for an electric field, that 
is the change of the magnetic field intensity with time, is not taken into account. On the 
other hand, the surface analog of these equations remains valid for any electromagnetic 
field. This reflects the fact that this result was obtained assuming that the area surrounded 
by the path of integration vanishes and, consequently, the flux of the magnetic induction 
through this area is zero. 

Let us note one further thing. Although the equations § E • dl = 0, cuiYE = 0 are 
not valid for time-varying electromagnetic flelds, this does not mean that Coulomb's law 
is inapplicable. In a further analysis, we will have the chance to demonstrate that in 
many cases time-varying charges create electric fields which are practically described by 
Coulomb's law. 

Returning to the first field equation, let us consider one more important feature of the 
electric field caused only by charges. In fact, according to eq. 1.48, the field can be written 
as: 

E = -gv8.dU (1.51) 

inasmuch as: 

curl grad U = 0 

is an identity relationship. 
The scalar function U is called the potential of the electric field. In accord with eq. 1.51, 

the direction of the field E coincides with the direction of maximum decrease of the 
potential, and the projection of the field on any direction I can be expressed in terms of 
the potential as follows: 

Equations 1.51 and 1.52 are useful in determining the field when the potential is known. 
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At this point, we will write an expression for the voltage using the potential. For this 
purpose, let us write the following equality for the differentiation of the potential: 

or r 

dU = -^dl = gvadU- dl = -E- dl (1.53) 

where d[ = d/ io, io is a unit vector. 
Integrating the last of these terms along any path between two given points a and 6, 

and considering that the voltage does not depend on the path followed, we obtain: 

0 0 

I Edl = - I dU = U{a)-U{b) (1.54) 

Thus the voltage of the electric field between two points can be expressed as the difference 
of potential between these points. 

We can now use eq. 1.54 to define the potential caused by a distribution of charges. 
From this equation, we have: 

f/( 

0 

a) = U{h)+ j E-dl (1.55) 

It is obviously reasonable to assume that at great distances from the source the potential 
will vanish. Then letting b equal infinity in eq. 1.55 and assuming that the potential at 
that distance is zero, we have: 

oo 

Uia) = I E-dl (1.56) 

Suppose now that the source of the electric field is a single elementary charge, de, 
situated at the point q. Using eqs. 1.41 and 1.56, we obtain: 

Uia) = 
1 de 

4neo Lga 
(1.57) 

Making use of the principle of superposition for an arbitrary distribution of volume, 
surface, linear and point charges, we arrive at the following expression for the potential: 

U{a) 
47reo J ^qa J ^qa J ^qa •_. ^qa -'qa J ^qa 

S 

(1.58) 

Comparing this last expression with eq. 1.9, we see that the potential is related with 
charges in a much simpler way than is the electric field. This simplicity is an important 
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reason for making use of the potential. Having defined U as we have, the electric field is 
very easily found by applying eq. 1.52. 

In conclusion, we will derive equations reflecting the behavior of the potential. Substi-
tuting eq. 1.51 into eq. 1.37, we obtain: 

d i v g r a d t / = - ^ ^ o (1.59) 

or 

V^U = AU=-S/eo 

where the operator V^ or A is the Laplacian operator. As an example, in Cartesian 
coordinates, eq. 1.59 becomes: 

d^U d^U d^U _ S 
Qj.2 Qy2 g^2 Q^ 

that is, the simple sum of the partial second derivatives of the potential with respect to 
each of the spatial derivatives is directly proportional to the volume density of charge 
taken with the opposite sign. Equation 1.59 is most commonly called Poisson's equation 
for the potential and describes the behavior of the potential at points where the volume 
density of charge is non-zero. In areas free of charge, it simplifies and becomes Laplace 
equation for the potential: 

d^U d^U d^U _ 
dx^ dy'^ dz^ 

We will derive a general solution for Poisson's equation when the source of the field, and 
therefore of the potential, is a volume charge only. In accord with eq. 1.58, the potential 
U caused by such charges is the volume integral: 

"("'•jii;/ 
6{q) dV 

Lqa 
(1.62) 

On the other hand, Poisson's equation describes the potential everywhere, whether a 
charge is present or not. Therefore, the right-hand side of eq. 1.62 satisfies this equation 
and is a solution. It is obvious that Poisson's along with Laplace equation describes the 
potential only when the second spatial derivatives of this function exist, that is, when 
the first spatial derivatives of the field do exist. Unfortunately, there are many cases 
when this condition is not met and when consequently eqs. 1.60-1.61 cannot be used. 
Among these, the most important case is that of a surface distribution of charges. As has 
been shown before, the tangential component of the electric field is continuous through 
a charge-carrying surface, while its normal component is discontinuous. Therefore, the 
derivative in the normal direction does not exist. For this reason, we will define another 
equation to describe the behavior or the potential near surface charges. 
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U(a")-U(a') = \E6l 

Figure 1.20. Calculations of the difference of potential when passing through a charged 
surface. 

In accord with eq. 1.56, the potential on either side of a surface is (Fig. 1.20): 

oo oo 

U{a') = f Edl U{a") = f Edl 
a' a" 

or 

a' 

U{a")-U[a')^ I Edl (1.63) 
a" 

Inasmuch as the field on both sides is finite and the distance between points a' and 
a" is vanishingly small, the diff"erence in potential between the two sides tends to zero. 
Therefore, the potential of the electric field is a continuous function through any charge-
carrying surface: 

Ui = U2 (1.64) 

This condition can be considered as the surface analogy of Poisson's equation. 
We have so far mostly considered electric fields caused by specified charges in free 

space. We have also investigated the field of charges tha t accumulate at interfaces between 
conductors, which along with other source charges create a static field. We will now show 
that Coulomb's law still manifests itself when there is a current flowing in a conducting 
medium. In so doing, we will make use of Ohm's law which relates current density to the 
electric field as follows: 

j = aE (1.65) 

where j is current density, which is a vector directed along the current flow and with 
magnitude equal to the amount of charge passing through a unit area oriented perpen-
dicular to the flow, during a unit time interval. It is clear that the total current / flowing 
through a surface S is related to the current density as: 

I^ • dS (1.66) 
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When the current is measured in amperes, the current density has the units of amperes 
per square meter. 

In Ohm's law, the coefficient of proportionahty indicated by the symbol a^ and which 
is usually determined experimentally, is defined as the conductivity of the medium. The 
units of conductivity are Siemens per meter, or mho per meter. In logging practice, the 
reciprocal of conductivity, p = l/cr, is often used and is called resistivity. The units for 
resistivity are ohm-meters. 

In Ohm's law, the electric field need not be a field created by charges only, and it can 
be written as consisting of two parts: 

E = E""-\-E''^^^'' (1.67) 

where E^ is the field contributed by charges only and is governed by Coulomb's law, while 
pother -g ̂ YiQ electric field contributed by all other types of sources (electrochemical fields 
caused by diffusion of ions in rocks, or electric fields induced by time-varying magnetic 
fields for example). Physical phenomena such as piezoelectricity or thermoelectricity also 
give rise to electric fields. Assuming that the field does not depend on time and that the 
observation point is located well away from other sources, we can take the total electric 
field in Ohm's law as being the Coulomb field: 

E^E"" (1.68) 

We will in addition make use of the principle of conservation of the electric charge, 
reflecting the fact that the flux of direct current density through a closed surface is zero: 

/ 
j'dS = 0 (1.69) 

This equation is amenable to a direct interpretation. The integral on the left-hand side 
is the amount of charge passing through a closed surface per unit time, including those 
charges which enter the volume as well as the ones which leave it. If the total of the 
two contributions were not zero, we would observe a change in the total charge inside the 
surface during any interval of time, and consequently the electric field would not remain 
constant. This is the reason why eq. 1.69 is valid for direct currents. 

Applying Gauss's theorem, we obtain the principle of conservation of the charge in 
differential form: 

divi = 0 (1.70) 

In contrast to the case of eq. 1.69, this equation only applies at points where the first 
spatial derivatives of current density exist. However, there are places such as interfaces 
between media with different conductivities where the tangential component of current 
density is a discontinuous function. According to eq. 1.49, we have (Fig. 1.21): 
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^i+^^ti+^ 

Figure 1.21. Illustration of the fact that the tangential component of the current density is 
a discontinuous function through an interface between media with different conductivities. 

The derivative of the tangential component of the vector j is not defined at such an 
interface. To obtain a surface analogy of eq. 1.70, we will repeat the algebra carried out 
in deriving eq. 1.38. In so doing, we obtain: 

J l ' ^ = i ? (1.71) 

that is, the normal component of current density is a continuous function at interfaces. 
We have now obtained three equations describing the conservation of the charge: 

f j - d S = 0 divi = 0 j r = i r (1-72) 

It is remarkable that these equations remain valid for time-varying electromagnetic fields 
so long as the time variation has a quasistationary character. 

At this point, we are prepared to demonstrate that in a conducting medium, the current 
field j is accompanied by the appearance of electric charges, these being the sole source of 
the electric field at places where E^^^^^ = 0. Let us first of all assume that the conductivity 
of the medium varies continuously from place to place, and that discontinuous interfaces 
are absent. In accord with eqs. 1.65 and 1.70 we may write: 

divj = dwaE = 0 (1.73) 

Making use of the rules of derivation of the product of a scalar by a vector we obtain: 

div aE = a div E + E • grad a = 0 

and hence 

div £; = - ^ ^ 1 1 1 ^ (1.74) 
a 

Making use of eq. 1.37, we finally have: 

5 = -e,^^^^^ (1.75) 
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Figure 1.22. Illustration of the behavior of the normal component of the electric field near 
an interface. 

Thus a volume distribution of charge appears in a conducting medium when it is nonuni-
form and when the electric field is not oriented perpendicularly to the direction of max-
imum change in conductivity. It is clear that in areas where the medium is uniform, 
there are no charges and therefore the quantity d i v ^ is zero. In accord with eq. 1.75, a 
motion of charges with zero net-charge density in the medium can be accompanied by the 
formation of fixed charges. They are in fact the source of a field which in turn governs 
the behavior of the current density field j . 

Now we assume that an interface characterized by different conductivities is present. 
Let us show that surface charges can arise. We will proceed from the third form of eq. 1.72, 
i.e. the continuity of the normal component of current density: 

7(1) = 7(2) 

or 

a,E^^ = a,E^^^ (1.76) 

As was shown earlier, the normal component of the electric field is discontinuous at the 
interface. This discontinuity is caused by an electric charge with density E on the surface, 
which generates a normal component having opposite sign on either side of the surface. 
Making use of eq. 1.19 we can write eq. 1.76 as follows: 

^ 1 M ; + ̂ .^"+'^) = <"(^ + "̂"' + ̂ ) <'•"' 

where ±I]/2£o is the normal component of the field caused by surface charges situated 
near point p (Fig. 1.22); E^~'P is the normal component of the field caused by the rest of 
the surface charges; E^ is the normal component of the field caused by charges located 
outside the surface. 

It should be noted that components E^~^ and E^ are continuous at point p. Solving 
eq. 1.77 we obtain: 

E = 2^0^^'" '" '^"^ = 2 ^ 0 ^ ^ — ^ ^ r (1-78) 
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where 

E': = Et'' + El (1.79) 

is the average value of the normal component of the electric field at point p. 
A surface charge thus arises at every point of the interface where the normal component 

of the field contributed by charges located outside this point is zero. It is appropriate to 
notice that eq. 1.78 remains valid even when normal component E^ has a non-Coulomb 
character. 

We might say that the surface and volume charges which develop within conducting 
medium play a vital role in forming both the electric field and the current field. Without 
the appearance of these charges, the normal component of the current density could not 
be a continuous function of the spatial variables at interfaces, and we would observe an 
accumulation of charges; correspondingly no constant current could occur. 

It is evident tha t volume and surface charges which develop in a conducting medium 
create an electric field which obeys Coulomb's law. The actual use of Coulomb's law 
in calculating the electric field in a conducting medium however usually impracticable, 
inasmuch as the manner of distribution of charges is unknown if the field is unknown. 

In conclusion of this section, it is appropriate to notice the following: 
The theory of induction logging is mainly based on the assumption tha t reahstic models 

of a medium and field possess axial symmetry around axis of the borehole. There are 
however several important exceptions, such as: 

• displacement of the transmitter with respect to the axis of the borehole 

• presence of caverns 

• cases of layers presenting a dip with respect to the axis of the borehole 

• the source of the primary field is a transversal magnetic dipole (small coil) located 
on the borehole axis. 

In all these cases, electric charges arise at interfaces. Their field obeys Coulomb's law. 

1.2. Biot-Savart Law 

In the preceding section it was shown that electric charges create an electric field which 
behaves in a manner described by Coulomb's law. The next step in our consideration of 
the behavior of electromagnetic fields will be the analysis of the magnetic fields associated 
with constant electric currents. 

It has been shown experimentally that the magnetic field generated by a direct (con-
stant) current can be described by the equation: 
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Figure 1.23. Illustration of eq. 1.81. 

which is generally known as the Biot-Savart law. In this expression, / is the total current 
flowing in an element dl located at point p, as shown in Fig. 1.23, and Lpa is the distance 
from point p to point a. Considering the definition of the vector product, eq. 1.80 can be 
written as: 

d i f (a) = ^ - ^ sin (dZ, Lpa) (1.81) 

where SQ is a unit vector perpendicular to the plane in which dl and Lpa are located. 
The magnetic field caused by an elementary linear current is directly proportional to this 
current and to the sine of the angle between vectors dl and Lpa. It can be seen that 
there is no component of the field along the direction of current flow, dZ, because of the 
presence of the factor sin (dZ, Lpa). 

By integrating eq. 1.81 along a path L, we obtain an expression for the magnetic field 
caused by a linear current in a closed loop: 

L 

Let us write the expression for current / as a product: 

I = j'dS 

where j is the current density vector and dS is the cross-sectional area of an elementary 
tube. One can then write: 

/ (dZ X Lpa) = {j • dS){dl X Lpa) = {dl . dS){j X Lpa) = {j X Lpa) dV 

because: 

dV = dS- dl 

The magnetic field caused by currents distributed through a volume of conducting 
medium can therefore be written as: 

V 
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Figure 1.24. Illustration of surface currents flowing inside a relatively thin conducting 
zone. 

In the same way that we considered the distribution of charges on a surface rather 
than in a volume, let us now assume that we have only surface currents that is, currents 
flowing inside relatively thin conductive zones. Fig. 1.24. In this case, we replace the 
product j dV by a surface element of current i dS where i is the surface current density, 
and we obtain the following equation for the resulting magnetic field: 

Hia) -f- i X L. pa 

^la 
dS (1.84) 

Applying the principle of superposition, we obtain an expression for the magnetic field 
due to the combined effects of linear, volume, and surface currents: 

H(«) - S 
V S ' L i 

3 X L. pa 

^la 
(1.85) 

In accord with this expression, we can state that the magnetic field is completely specified 
by the distribution of currents analogously to the way in which the distribution of electric 
charges defines the constant electric field. 

We should remember that the experimental investigations of the magnetic field behavior 
were carried out using closed loops of current and therefore eq. 1.80, which deals with 
currents flowing only between end-points, is actually an assumption which happens to be 
correct. 

We should note again that eq. 1.85 was developed from experiments in which direct 
currents were used. However, as will be shown later, the equation remains valid for 
quasistationary fields which are of most interest in induction logging. In the practical 
system of units, the magnetic field is expressed in amperes per meter. 

Comparing eqs. 1.9 and 1.85, we can see that the calculation of the magnetic field 
will usually be a more complicated procedure than the determination of the electric field 
caused by charges because of the presence of the vector product in the integrand. In order 
to simplify such calculation as well as to derive some useful relationships for the magnetic 
field, we will introduce an auxiliary function for the magnetic field caused by constant 
currents called vector potential. With this in mind, we will now show that the magnetic 



37 

field can be represented as being the curl of some vector function. The following identities 
will be used: 

-f- = gradp - ^ = - grad„ - ^ (1.86) 
^pa ^pa ^pa 

or, in operational notation: 

# = V p - L = - V „ - i - (1.87) 
•^pa ^pa ^pa 

Inasmuch as the function Lpa can vary as points p and a are changed, one can consider 
the gradient of this function when either the point a or the point p is fixed. As an example, 
in Cartesian coordinates, we have: 

J _ _ _ 9 l__. _ 9 _ _ 1 _ . _9 l_ 
J-^pa OXp L/pa ^Up ^pa ^^p J-'pc 

where i, j and k are unit vectors directed along the x, y, and z axes, and: 

Lpa = [{Xa - Xpf -f iVa - Vpf + {Za - Zpfff'^ 

Carrying out the differentiation, we obtain the result of eq. 1.86. Substituting eq. 1.86 
into eq. 1.83, we have: 

m.) ^IJij. V,±^) dV = i ; / ( V . ^ X .•) ,V (1.88) 
V V 

because the vector product changes sign when the relative position of the two vectors is 
changed. 

We will now make use of the following identity: 

V„ X - i - = V „ - ^ X j + ^ ^ (1.89) 
-^pa ^pa ^pa 

which can be obtained using the vector identity: 

V X {UV) = UV xV -^VU xV 

Applying eq. 1.89, we can write eq. 1.88 as: 
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The current density j is a function of the location of the point p and does not depend on 
the location of the observation point a. The integrand of the second integral is therefore 
zero and we have: 

H{a) = ^ [ curl ^ dV (1.91) 

V 

Because the integration and differentiation in eq. 1.91 are carried out with respect to the 
two mutually independent points p and a, we can interchange the order of the operations 
and finally obtain: 

H{a) = curl, I ^ / ^ ^ ^ ^ I = ^̂ ^̂ ^ ̂  (1-92) 

where 

A^^ f^dV (1.93) 

V 

Thus the magnetic field H caused by constant currents can be expressed in terms of the 
vector potential A defined in eq. 1.93. The potential A is more simply related to the 
distribution of currents than is the magnetic field. 

We will now derive expressions for the vector potential directly from eq. 1.93 for both 
surface and linear current flows. Making use of the obvious relationships: 

jdV = idS or jdV = Ml 

we have: 

S L 

Applying the principle of superposition, we obtain the following expression for the 
vector potential caused by volume, surface and linear currents: 

\V S ^ Li I 

The components of the vector potential can be derived directly from this last expression. 
In Cartesian coordinates for example, they would be: 

\V^ S ^ Li I 
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\V S ^ Li / 

1 ( fJzdV f 

\v s 
M 

Similar expressions can be written for the vector potential components in other coordinate 
systems. 

It can be seen from eq. 1.96 that if current flows along a single straight line, the vector 
potential has but a single component parallel to this line. When currents are situated in 
a single plane, the vector potential is everywhere parallel to that plane as well. 

We will later consider several examples illustrating the behavior of the vector A, but 
at this point we will derive several useful relationships that characterize both the vector 
potential and the magnetic field. 

We will first determine the divergence of the vector potential A. In accord with eq. 1.93, 
we have: 

diVa A{a) = div« -— / 
J{p)dV 

•'-'pa 

Because in this expression the differentiation and integration are performed at independent 
points in space, we can change the order of operations so that we have: 

div, A{a) = ^ f div, ^ M ^ (1.97) 
47r J Lpa 

V 

The volume over which the integration is carried out includes all the currents that are 
present and is therefore enclosed by a surface S outside of which there are no currents. 
The normal component of current density on this surface must in consequence be zero: 

j ^ = 0 on 5 (1.98) 

The integrand in eq. 1.97 can be written as: 

Va-j— = -J + J ' ^aj— ^ 3 • ^a-j-~ 
^pa ^pa ^pa J-^pa 

because div^ j(p) = 0. This last expression can also be written as: 

•L/pa ^pa \^pa / ^pa 

= - divp -j— + Y~ ^̂ P̂-̂ * 
^pa J-'pa 
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According to eq. 1.70, the total charge inside V must be conserved so tha t we have: 

divp j = 0 

and therefore: 

J - V a - ^ - - d i V p - ^ (1.99) 

Thus eq. 1.97 can be written as: 

V 

Both the integration and differentiation operations carried out on the right-hand side of 
eq. 1.100 are performed with respect to the same point p, so that one can apply Gauss's 
theorem, which results in: 

47r J "̂  Lpa 47r / L^a 47r / L^a 
V S S 

Considering tha t the normal component of current density is zero on the surface S sur-
rounding the currents, we obtain: 

d i v A = 0 (1.101) 

that is, the flux lines for the vector potential are closed. 
In following chapters when we consider electromagnetic fields, several types of vector 

potentials will be introduced, and in most cases their divergence will not be zero. In 
the previous paragraph, it was shown that the potential for the electric field, [/, satisfies 
Poisson's equation: 

V^t/ - -51 So 

which has solutions of the form: 

U = - ^ f ^ (1.102) 
ATTSO J Lpa 

As follows from the comparison of eq. 1.96 and 1.102, the components of the vector 
potential expressed in Cartesian coordinates also satisfy Poisson's equation: 

V'A, = -J, V'Ay = -jy V A , = -j, (1.103) 
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Figure 1.25. Calculation of the magnetic flux through an elementary cylindrical surface. 

Multiplying each of these equations by the corresponding unit vectors, i, j and k, and 
adding them together, we obtain an equation for the potential A: 

V U = -3 (1.104) 

Equations 1.101 and 1.104 reflect the basic features of the vector potential A, and allow 
one to derive equations for the behavior of the magnetic field. Now, making use of eq. 1.92, 
we discover that the divergence of the magnetic field is also zero. In fact, we have the 
following identity: 

div H = div curl A (1.105) 

As is well known in vector algebra, the right-hand side of eq. 1.105 is identically zero, 
therefore: 

div i f = 0 (1.106) 

This can be physically interpreted as the indication that magnetic charges do not exist 
and that magnetic flux lines are closed. Applying Gauss's theorem, we obtain the integral 
form of this equation: 

/ 
H-dS=0 (1.107) 

that is, the total flux of the magnetic field through a closed surface is zero. 
Making use of eq. 1.107 in calculating the magnetic flux through an elementary cylin-

drical surface as shown in Fig. 1.25, we have: 

Hi'^ = ifl^) (1.108) 

As indicated by eq. 1.108, the normal component of the magnetic fleld is always a 
continuous function of the spatial variables at an interface between nonmagnetic media. 
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This behavior is in contrast to that of the normal component of the electric field as 
specified in eq. 1.76. It is obvious that magnetic charges do not exist. 

Thus, we have obtained three forms of the first equation describing the magnetic field 
caused by constant currents: 

div H = 0 iH'dS = 0 H^^^ = Hi'^ (1.109) 

Each of them expresses the same fact, that is, that magnetic charges do not exist. 
Equations 1.109 have been derived by algebraic manipulation of Biot-Savart law for direct 
currents, but they actually remain valid for alternating electromagnetic fields, and are in 
effect the fourth of Maxwell's equations. 

At this point, we will derive a second equation for the magnetic field. Making use of 
the identity: 

curl curl M = grad div M -V^M 

from eq. 1.92, we have: 

curl H = curl curl A = grad div A — \/^A 

Considering that div A = 0 we obtain: 

curlif = - V ^ A = J 

Thus a second equation for the magnetic field is: 

curl i f = i (1.110) 

Physically, this equation expresses the fact that currents are the source of the magnetic 
field. Making use of Stoke's theorem, we can rewrite this equation in a second form, which 
is Ampere's law: 

(fH'dl= (fcm\H-dS= i j - dS = I 

or 

(j>H'dl = I (1.111) 

L 

where / is the current flowing through the surface S bounded by the path L (see Fig. 1.26). 
It should be clear that the mutual orientation of the vectors dl and dS is not arbitrary, 
but must be taken in accord with the right-hand rule, the circulation of the magnetic 
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Figure 1.26. Definition of the surface S bounded by the path L used in eq. 1.111. 

field is defined by the amount of current piercing through the surface surrounded by the 
contour L as shown in Fig. 1.26, and it does not depend on currents located outside the 
perimeter of this area. 

It should be obvious that from the fact that the circulation is zero, it does necessarily 
follow that the magnetic field is also zero at every point along contour L. It is appropriate 
here to emphasize that the path L can intersect media with different electrical properties. 
For example, applying eq. 1.111 along a path L enclosed an interface between two media 
(see Fig. 1.27), we obtain: 

(f H'dl = i/f ^ dl - iff ^ dl + 2jdldh 
L 

Letting dh tend to zero, we have: 

i jf) - H^^^ = 0 (1.112) 

We see that the tangential component of the magnetic field is a continuous function 
of position. At this point, we have again derived three forms of the second equation for 
the magnetic field caused by direct currents, showing that the circulation of the magnetic 
field is defined by the current flux through any surface bounded by a path of integration. 
These forms are: 

/ • 

r(2) rr(l) cmlH = j (bH-dl = I Hl'^-Hi'^=0 (1.113) 

It is interesting to note that the last of these remains vahd for any alternating field, 
and it is usually taken as a boundary condition for the magnetic field. On occasion, it 
is convenient to assume that there is a surface current density at an interface. Then, 
repeating the operations carried out above, we find that the tangential component of the 
magnetic field is discontinuous at such an interface: 

H f - F< )̂ = i, (1.114) 
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n H2 

(2) 

Figure 1.27. Path for the apphcation of the boundary condition in eq. 1.111. 

where t and I represent two mutually perpendicular directions tangent to the surface. Re-
ferring to eqs. 1.49 and 1.112, we can see that the continuity of the tangential components 
of the electric and magnetic fields follow directly from Coulomb's and Biot-Savart law, re-
spectively. Although the first two equations of eq. 1.113 were derived from the expression 
of the magnetic field caused by direct current flows, they remain valid for quasistationary 
electromagnetic fields such as the ones in use in induction logging, i.e. Biot-Savart and 
Ampere's laws describe the behavior of quasistationary magnetic fields. 

At this point, it may be fruitful to illustrate the use of these equations in terms of 
several examples. 

1.2.1. Example I: The Magnetic Field of a Straight Wire Line 

Consider a current / flowing through a vertical line as shown in Fig. 1.28. We will define 
the magnetic field at an arbitrary point, a, in a cyhndrical system of coordinates, r, 0, 2: 
with the z-axis along the current-carrying line. 

Starting with Biot-Savart law, we can say that the magnetic field has axial symmetry 
and is represented by a single component iif^. From the principle of superposition, one 
can say that the total field is the sum of a number of fields contributed by current elements 
I dz. Then we have: 

(1.115) 

Let P be the angle between the current element dz and a vector that extends from this 
element to the observation point. It should be clear that we have: 

\dz X Lpa\ = dz Lpa sin(dz, Lpa) = dz Lpa sin /3 = dzLpa cos a 

Thus: 

H^ = ^ f^cosa (1.116) 

Hff, -

z\ 

where Lpa = 

dz X Lpa 

(r^ -h z^) 
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Figure 1.28. Current flowing through a vertical Hue. 

Inasmuch as 2: == rtance, we have: 

dz — r sec^ a da L^^ = r^(l + tan^ a) = r^ sec^ a 

Substituting these expressions into eq. 1.116, we obtain: 

I f I 
Hcb(a) = -— / cos a da = -—(sin 0̂ 2 — sin^i) (1.117) 

Awr J 47rr ^ 

where ai and a2 are the angles subtended by the radii from point a to the ends of the 
line. It is readily seen that Ampere's law cannot be applied here because the current flow 
is not closed. 

Let us suppose that the current-carrying line is infinitely long, so that two angles ai 
and ^2 take the values n/2 and —7r/2, respectively. Then: 

H^ = I/27rr (1.118) 

In this case, one might think that the current is closed at infinity, and Ampere's law 
can instantly be applied. Considering a closed horizontal circuit and in view of the axial 
symmetry, we can write: 

(j>H'dl = H^ldl^ 2nrH^ = / 

and hence: 

H^ = I/27rr 

In the case of a long line which is only semi-infinite, i.e. ai = 0 and 0̂2 = n/2 one 
cannot apply Ampere's law, but using eq. 1.117 we obtain a field which is half that for 
the case of an infinitely long current-carrying wire, that is: 

H^ = I/47rr (1.119) 
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Now suppose that a2 = ot and ai = —a. Then in accord with eq. 1.117, we have: 

^^=2^"""^2^(r^+W/^ (1.120) 

where 21 is the length of the current hue. If / is significantly larger than the distance 
r to the wire, the right-hand side of eq. 1.120 can be expanded in a power series of the 
quantity (r//)^. Then we obtain: 

H ' 
l / r \ 2 3 / r \ 4 

1 - ^ V + ^ V + • • 27rr (l + rV/2)i/2 27rr [ 2V/ 

We see that if the length of the current line, 2/, is four to five times larger than the 
separation r, the resulting field is practically the same as that from an infinitely long, 
current-carrying wire. 

1.2.2. Example II: The Vector Potential and Magnetic Field of the 
Current Flowing in a Circular Loop 

Assume that the observation point is located on the axis of a loop with radius a as shown 
in Fig. 1.29, then in accord with equation 1.94, we have: 

A(rt = i ^ / <U(q) 

Inasmuch as the distance Lpq is the same for all points on the loop we have: 

''^'^ = ̂ J dl 
pq J 

L 

By definition, the sum of the elementary vectors dl along any closed path is zero. The 
vector potential A is therefore zero on the axis of a current-carrying loop. 

We will now calculate the magnetic field on the z-axis. From Fig. 1.29, it can be seen 
that with a cylindrical system of coordinates, r, 0, 2;, each current element I dl creates 
two field components dHr and dHz- It is however always possible to find two current 
elements which contribute the same horizontal component at a point of the z-axis, but of 
opposite sign. The magnetic field therefore has but a vertical component on the axis. As 
can be seen from Fig. 1.29, we have: 

dH,= 

since: 

I dl a ladl 
' 47rL3 

\dl X L| = Ld/ and L - {a' + z') 2U/2 
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Figure 1.29. An observation point located on the axis of a current-carrying loop with a 
radius a. 

Having integrated along a closed path, we finally obtain: 

_ Ia27ra _ la^ _ M 
' ~ 47r(a2 + z2)3/2 - 2(a2 + ^2)3/2 " 27r(a2 + ^2)3/2 (1-121) 

where M = Ina^ = IS, with S being the plane area enclosed by the loop. 
When the distance z is much greater than the radius of the loop a, we obtain an 

expression for the magnetic field of a magnetic dipole located on the 2:-axis. Neglecting a 
in comparison with 2:, we have: 

H. " 
27rz3 

We see that a relatively small current loop with a radius a creates the same magnetic 
field as the magnetic dipole having the moment M = TTO^I, oriented along the z-axis. 

Let us notice that in most cases, the field created by currents in the coil of an induction 
probe is equivalent to that of a magnetic dipole. 

It can be seen from eq. 1.121 that when the distance z exceeds the radius at least three 
times, the replacement of the loop by a magnetic dipole locate at its center contributes an 
error less than 5% for the field. Making use of eq. 1.121, this behavior has been proven on 
the z-axis only, but it remains in fact valid for any arbitrary position of the observation 
point provided that distance from the loop is considerably greater than the radius of the 
loop. 

Making use of eq. 1.121, let us explore the influence of the radius of the loop on the mag-
netic field on the z-axis. This will be useful in understanding the concept of geometrical 
factor widely used in the theory of induction logging. 

As we see from eq. 1.121, for constant currents and for small values of the ratio a/z, 
the field increases in proportion to a^ and the current loop behaves as though it were 
a magnetic dipole. In the case when a/z is much larger than unit, the magnetic field 
decreases in inverse proportion to a. Therefore, at some critical distance z on the axis, 
there is an optimum radius for the current loop that provides maximum magnetic field at 
this point. 

So far we have considered the vector potential and the magnetic field along the z-axis 
only. We will now investigate a more general case by calculating the vector potential at 
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Figure 1.30. An observation point having an arbitrary position with respect to the current-
carrying loop. 

any point p (see Fig. 1.30). In view of the symmetry, the vector potential A , does not 
depend on the angle 0. For simplicity, we can therefore choose the point p in the xz plane 
where 0 = 0. As can be seen from Fig. 1.30, every pair of current-carrying elements I dl 
equally distant from p and having coordinates (j) and —0 creates a vector potential d A 
perpendicular to the xz plane. Inasmuch as the whole loop can be presented as the sum 
of such pairs, we conclude that the vector potential caused by the entire loop has but one 
component A^. Therefore, from eq. 1.94 follows that: 

a cos (j) dcf) 

-{- r^ -\- z^ — 2ar cos 0)^2 
(1.122) 

where dl^ is the component of dZ along the 0 direction, and: 

d/^ = acos(/)d0 R= {a^ -\-r'^ -\- z'^ — 2arcos0)^/^ 

If the distance from the center of the current-carrying loop to the observation point is 
considerably greater than the radius of the loop, then: 

and eq. 1.122 can be simplified into: 

c o s 0 d 0 la f cos0d(/) 
^, 

_ la r c 
2ar cos 0)1/2 27r RQ 

•K 

I 2ar 

RQ 
cost 

1/2 

la 

2'KRQ 

la 

2nR^ 

ar 
l + - 2 C O S ( 

KQ 
COS (f) dcj) 

I COS 0 d0 -f-
la^ 
2T^RI 

TV 

.d0 
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A^ 

Figure 1.31. Illustration of the behavior of the field of a magnetic dipole. 

The first integral in the last expression is zero, so that we obtain: 

iRl 

AA = 
M 

ATTRI smc (1.123) 

Thus, at distances considerably greater than the loop radius, the vector potential and 
the corresponding components of the magnetic field are the same as those for a magnetic 
dipole located at the center of the loop with its moment directed perpendicularly to the 
loop. 

As was mentioned above, real coils in induction probes can very often be considered as 
magnetic dipoles. For this reason, let us consider the behavior of the magnetic field of a 
magnetic dipole in more detail. Suppose that a magnetic dipole is located at the origin of 
a spherical system of coordinates, as shown in Fig. 1.31a, with its moment oriented along 
the z-axis. Then, in accord with eq. 1.123, we have: 

M 
4nR^ sm( (1.124) 

where R = (r^ + z^)^/^. Thus, the vector lines of the function A^f, are closed circles located 
in horizontal planes with centers on z-axis. 

Making use of the eq. 1.92 in the spherical system of coordinates R, 6, 0: 

H = 
1 

R^ sin e 

1R Rle R sin 01^ 
_9_ ^ d_ 
OR dO dcj) 
0 0 RsmOA^ 
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we have: 

2M M 

The magnetic field is therefore located in meridional planes and has two components HR 
and HQ. In particular, at points on the z-axis we have: 

^R = H^ = -^z ^0 = 0 (1.126) 

i.e. the field has the direction of the dipole moment and decreases as 1/z^ with increasing 
z. At the same time, in the equatorial plane {9 = 7r/2), its direction is opposed to that 
of the moment: 

The expression for the field in eq. 1.126 is used to evaluate the primary field magnitude 
of an induction probe. 

Let us now illustrate an interesting feature of the field behavior along an arbitrary 
radius R (Fig. 1.31b). In accord with eq. 1.135, we have: 

^ = ltgO or t g a ^ ^ t g ^ (1.128) 
HR Z Z 

where 0 is the angle between the radius and the magnetic field vector. As follows from 
eq. 1.128, the orientation of the magnetic field, unlike its magnitude, does not change 
along radius R and is very simply related to the angle 0. It is also useful to consider the 
magnetic field in a cylindrical system of coordinates. As is seen from Fig. 1.31c, we have: 

Hz — HR COS 0 — He sin 0 Hr = HR sin 9 + HQ COS 9 

or 

M , 9^ X rr 3Msin6>cos6^ /. ..^^N 
^^ = i ^ ( 3 c o s ^ ^ - l ) H. = ^^^3 (1.129) 

Therefore, the component Hz of the field changes sign along any profile parallel to the 
z-axis. This takes place when: 

cos9o = ±\V3 (1.130) 

i.e. 9o - 54.7° or 125.3°. 
It is essential that the position of the points where the component of the field Hz is 

zero are defined by the angle ô only. 
This feature of the field is sometimes used in order to control the quality of an induction 

probe consisting of coils and wires. In the case when the magnetic field is created by one 
single coil, the points where the component Hz vanishes are easily calculated. 
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I 

Figure 1.32. Illustration of the behavior of the magnetic field in a conducting medium. 

1.2.3. Example III: The Magnetic Field of a Grounded Electrode 
Uniform Conducting Medium 

in a 

Suppose that a current electrode is placed in a uniform conducting medium so that the 
distribution of currents possesses the spherical symmetry (Fig. 1.32a). It is then a simple 
matter to realize that the magnetic field is zero everywhere in the medium. This follows 
directly from Biot-Savart law and the symmetry of the model. In other words, one can 
always find two current elements which are located symmetrically with respect to the 
observation point and of which the magnetic field differ by sign only. Let us notice that 
Ampere's law does not apply here because the current lines are not closed. 

We will now suppose that two current electrodes connected by a wire are located on 
the axis of a borehole (see Fig. 1.32b). In this case, we have a model characterized by the 
cylindrical symmetry. Unlike in the previous model, the magnetic field is in general not 
equal to zero but has one component i/^. However, the field is zero all along the z-axis. 
In fact, applying Ampere's law as shown in Fig. 1.32b we have: 

T 

nr'^jz = 27rrH^ or H^ = - j ^ 

Correspondingly, with decreasing r the magnitude of the field decreases and in the limit 
vanishes on the 2;-axis. For this reason, measuring the magnetic field on the borehole 
axis, as the source is a grounded line along this axis, can only detect distortions of the 
cylindrical symmetry, as for example the presence of caverns, nonhorizontal layers, as well 
as a nonvertical position of the borehole. 

In concluding this section it is appropriate to make the following comments: 

• According to Biot-Savart law direct currents act as a source of constant magnetic 
fields. 
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Figure 1.33. Current density at an arbitrary point on an arbitrary closed surface S. 

• Starting with Biot-Savart law and making use of the principle of conservation of the 
charge, we were able to derive two equations describing constant magnetic fields, 
and each of them can be presented in three forms: 

/ 
L 

Hdl = I curlH=j Hf^-H'l^^ = Q (A) 

/ 
f f . d S = 0 d i v i f - 0 H^^^-Hi^^=0 (B) 

s 

The equations of set (B) reflect the fact that magnetic charges do not exist. This set is 
also valid for alternating fields. 

Equations of set (A) are valid for constant fields, but there will be additional effects 
to consider for alternating fields. In other words, when time-varying electromagnetic 
fields are considered, there is another source for the magnetic field in addition to the 
conduction currents. However, for the so-called quasistationary field, the influence of the 
second source of the magnetic field (displacement currents) is negligible as this is the case 
in induction logging, and equations of set (A) can be applied. 

1.3. The Postulate of Conservation of Charge and the 
Distribution of Charges in Conducting Media 

This section will show under what conditions electric charges can exist in a conducting 
medium. In order to investigate this problem, we will make use of the postulate of 
conservation of the electric charge for time-varying fields: 

i - d S = - | (1,13.) 
s 

where j is the current density vector at any point of an arbitrary surface S as shown in 
Fig. 1.33, e is the charge distributed within the volume bounded by 5, and de/dt is the 
time-derivative of the charge. The scalar product: 

•' dt 

/ 
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represents the amount of charge crossing an element of surface dS during a unit time 
period. The integral: 

ij'dS= ijndS 

defines the flux of electric charges through the surface S during a unit time as well. In 
general, at some points on the surface 5, the vector j is directed outwards while at other 
points, it is directed inwards. The current density flux given by eq. 1.131 is therefore the 
algebraic sum of positive and negative fluxes through the surface S. For example, if the 
flux: 

/ 
j'dS 

is positive, the physical meaning is that during the time interval, a certain amount of 
charge leaves the volume V, and the derivative de/dt is negative, that is, the total charge 
e inside the volume decreases. In the opposite case, when the total flux is negative, the 
derivative de/dt is positive and the amount of charge contained inside V increases with 
time. Moreover, one can imagine a case when the positive and negative fluxes through a 
closed surface are equal, and the total flux is zero. The derivative de/dt vanishes so that 
the amount of charge inside the volume does not change with time. 

We will now write eq. 1.131 in various forms which will be used in further applications. 
Making use of Gauss's theorem, we obtain: 

/ i . d S = / div j dV 

At points in the medium where the divergence of the vector j exists, we have: 

S V V V 

where 6 is the charge density. Thus we can write: 

/ ( 

or 

div j + ^ ) d y = 0 

divi = - ^ (1.132) 

This last equation is the differential form of 1.131, and is valid at points where the current 
density is a continuous function of the spatial variables. It has the same physical meaning 
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Figure 1.34. Elementary cylindrical surface used to derive eq. 1.133. 

Figure 1.35. A system of linear or quasilinear currents. 

as eq. 1.131, but unlike it, it describes the relationship between current flow and charges 
in the immediate vicinity of a single point. 

Assume now that some surface carries a charge with density E. Defining the flux of 
current density through an elementary cylindrical surface as shown in Fig. 1.34 we obtain 
the surface analog to eq. 1.131: 

i(2) 
•3n 

(1) = as 
dt 

(1.133) 

Thus, the difference between the normal component of the field on either side of the 
surface is equal to the time rate of change of the surface charge density, taken with a 
negative sign. In eq. 1.133, the normal vector n is oriented from side (1) to side (2). 

Let us finally assume that we have a system of linear currents as shown in Fig. 1.35. 
Making use of eq. 1.131, we have: 

s '=^ Si ^=1 
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Ê ^ = 

55 

de 
-^ (1.134) 

j>3'dS = 
s 

A2) _ •(!) _ 
Jn Jn 

de 
dt 

dt 

div j = 

N 

i=\ 

85 
dt 

de 
dt 

where Ii is the current in the zth current tube taken with the appropriate sign, and e is 
the charge at the point where all the tubes intersect. We have now four forms for the 
postulate of conservation of charge: 

(1.135) 

It should be emphasized that the first equation is the most general, being applicable 
everywhere. The second one can be used when the current density is a continuous function 
of space. The third one describes the behavior of the normal component of current density 
at interfaces that carry a charge, and the fourth expression is appropriate for a system 
of linear currents. The equations listed in eq. 1.135 are extremely useful in determining 
under which conditions and with which density, charges arise in a conducting medium. 

It is convenient to start our investigation of this problem with a simple case such 
as a conductive medium in which the electromagnetic field does not depend on time, 
and therefore all time derivatives are zero. Correspondingly, we will repeat some results 
obtained in the first section. 

Equations 1.135 take the form: 

j - d 5 = 0 divj = 0 

' ^ (1-136) 

because 

dt~ dt~ dt ~ 

Thus, for a constant field, the flux of current density through a closed surface is always 
zero, that is, the amount of charge arriving in a volume during a given time period is 
exactly equal to the amount of charge that leaves that volume in the same period. Let us 
note that the last equation in set 1.136 is the well-known Kirchoff's law for currents. 

In order to determine the distribution of volume charges, we can use equations derived 
previously: 

d i v j = 0 divE=— (1.137) 
£o 
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along with Ohm's law: 

3=(yE 

We will assume here that the electric field E is caused by charges only. In accord with 
eq. 1.137, we have: 

div jf = div (JE — E • grad a -\- a div -E = 0 

whence 

.. ^ -E-grader 
d i v ^ = 

(J 

Comparing this result with the second equation in set 1.137, we have: 

_ grader Vcr _ 
5 = -SoE ' = -So E 1.138 

(J a 

Thus, when a current flows through a conducting medium, electric charges arise at places 
where the medium is nonuniform, provided that the electric field has a nonzero component 
along the direction of grada. The sign of the volume charge depends on the mutual 
orientation of the electric field and the gradient of conductivity. Electric charges will not 
appear at points where the medium is uniform in conductivity, and in this case we have: 

d i v ^ = 0 (1.139) 

We will now derive expressions for the surface charge. Let us start from the two 
equations: 

i ( 2 ) - i « = 0 £ f - £ ( i ) = E / £ o (1.140) 

where E is the surface density of charge. Let us write the first equation in set 1.140 in 
the form: 

a,E(^^ - a^Ei'^ = i [(<,, + a.^E^:^ - E^) + (a, - a,){E^^ + E^)] = 0 

Making use of the second equation in set 1.140, we have: 

(cT2 + a i ) ; ^ + ( a 2 - a i ) ^ r = 0 

where E^^ = {En -f En )/2 is the average magnitude of the normal component of the 
electric field on the surface. Thus, we have the following expression for the surface charge 
density: 
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where 

K,, = ^ ^ = ^ ^ (1.142) 

or 

E = 2 ^ o ^ ^ — ^ ^ r (1.143) 

The quantities pi and p2 are the resistivities of the two media. 
The normal component of the electric field on either side of the interface can be written 

as: 

yf\ (1-144) 
E^:\p) = E°{p) + Et'ip) + ^ 

where E^{p) + E^~^{p) is the normal component of the field at a point p, contributed by 
all charges except the one at point p. It follows from eq. 1.144 that: 

El^ = EPM + Et'{p) (1.145) 

where the normal component is directed from the reverse side (1) to the top side (2) of 
the interface. 

We see that the charge density which arise at the interface is directly proportional to 
the normal component of the field E^, with the coefficient of proportionality represented 
by the symbol K12. As has been shown, the coefficient K12 can vary within the range: 

- 1 ^ K12 ^ +1 (1.146) 

We should note that due to the presence of the surface electric charge, the normal 
component of current density is a continuous function of the spatial variable, while the 
normal component of the electric field is discontinuous. An example of distribution of 
charges is shown in Fig. 1.36. In this case, charges arise on the electrode surface and at 
the interface between borehole and formation. There is also a certain amount of charge 
on the surface of the wire that delivers the current to electrode A. 

Let us now consider a general case in which the electromagnetic field varies with time. 
In determining the charge density, we will make use of eqs. 1.132 and 1.37: 

^i^^' = - ^ diYE = — (1.147) 

From these we have: 

div j = div (TE = a div E -\- E - grad a = —-— 

ot 
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\A 

+0+ 
p^>p, 

Figure 1.36. Charges arise at the surface of the electrode as well as at the interface 
between borehole and formation. 

or 

a —6 + E-gTaida = - — 
£o at 

Finally, we obtain the following differential equation for the volume charge density: 

(1.148) 
95 I , 
—̂ H 0 = —E • grad a 
ot pso 
where p is resistivity of a medium and ô is the dielectric permittivity of free space. 
Assume now that the medium is uniform or that the electric field is perpendicular to the 
gradient of conductivity, in either case, we have: 

E • grad a = 0 

and eq. 1.148 takes a simpler form: 

— + — 6 = 0 
ot pso 

(1.149) 
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This particular equation has a well known solution: 

or 

6 = Soe-'^^' (1.150) 

where ^o is the charge at the initial instant and: 

To^pSo (1.151) 

The quantity TQ is a time constant whose value in a conducting medium is usually very 
small. For example, if p = 100 ohm-m then TQ ^ 10~^ s. 

In accord with eq. 1.150, a charge placed in a conducting medium will disappear very 
quickly. If we are concerned with charges which exist at times greater than TQ only, we 
can assume that for all practical purposes, such charges will not exist. In addition, it is 
appropriate to point out that with the kind of excitation used in electrical logging, there 
is no initial volume charge in the medium, i.e. (5o = 0. We can therefore conclude tha t at 
points where the medium is uniform or where the condition: 

E-V(T = 0 

is met, there are no electric charges, and so: 

d i v £ ; - 0 (1.152) 

A much different situation exists when the medium is nonuniform and: 

E-Va^O 

In this case, the right-hand side of eq. 1.148 does not vanish, and we have a first-order 
nonhomogeneous differential equation of the form: 

^ + - l = f{t) (1-153) 
dt To 

where 7 - S{t), f{t) = -E • g r a d a = -E • V a . 
The general solution of eq. 1.153 is known to be of the form: 

7 =: 70 e-*/^° + e-*/^° f e'^^'f{t)dt (1.154) 

0 

where 70 is the value of the function 7 at the instant t — 0. 
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In accord with eq. 1.148, we have: 

t 

S = So e-*/^« - e-*/^« / e*/̂ « [E • grad a) dt (1.155) 

0 

This last equation can also be written as follows: 

t 

S = So e-*/^« - e-*/^° / ê /̂ « E{t) dt (CQ • V a ) (1.156) 

0 

where E{t) is the magnitude of the electric field and SQ is a unit vector along the direction 
of the field: 

E = Eeo 

In general, one can recognize two types of charges which behave quite differently with 
time. As can be seen from eq. 1.151 or 1.156, the time rate of change of the first kind 
of charge is independent of the uniformity of the medium, and is only determined by the 
time constant TQ. In contrast to the behavior of the first kind of charge, the second type 
of charge occurs only as a consequence of the existence of an electromagnetic field in a 
nonuniform medium. 

Let us rewrite eq. 1.156 as: 

S = 61 + 62 (1.157) 

where: 

6i = 6oe-'/^^ 

(1.158) 
6^ = -eo • Vae- ' /^« f e'^^' E(t) dt 

Inasmuch as measurements are always performed at times significantly greater than 
To, and besides 6Q is frequently zero, we will only consider the second type of charge, ^2-
According to eq. 1.158, a volume charge density will arise in the neighborhood of any point 
in a nonuniform medium provided that the primary field is not normal to the direction of 
the gradient of resistivity. Assuming that the condition: 

t < r o (1.159) 

holds, we will expand the expression for 62 in a power series of the parameter TQ. Consid-
ering the expression: 

t 

fe'^'''E{t)dt (1.160) 

0 
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and in integrating it by parts, we obtain: 

f e*/̂ ° E{t) dt = To< E{t) 6*/̂ ° - I E{t) e*/̂ ° dt 

= To I E{t) e'/"" - To I E{t) e*/™ I - / E{t) e*/"° dt 

= r^E{t) ê /̂ « - ro£;(0) - TlE(t) ê /̂ « + TO'£;(0) + r^ f E{t) e*/̂ « dt 

0 

Taking into account that the electrical field is absent at t = 0 the volume density $2 
can be written as: 

S2{t) = ~{eo- Va) I roE{t) - T^E{t) + r^ e'^/^^ / E{t) e*/̂ ° dt I (1.161) 

Continuing this process, it is possible to obtain higher-order terms of the series. Inas-
much as the time constant TQ is normally extremely small, and that condition 1.159 usually 
applies, we can discard all of these terms but the first one and obtain: 

52{t) = -{eo'S/(j)ToE{t) (1.162) 

In this case, the charge density changes synchronously with the electric field, that is, it is 
determined by the instantaneous value of the electric field at the same point. 

Such a relationship between charge density and electric field at any point of a medium 
is essential to the definition of the quasistationary behavior which is responsible for many 
effects in induction logging. 

One can conclude that time-varying charges develop in the quasistationary approxi-
mation in the same way as they do due to the presence of a constant field. In order to 
illustrate these results, let us consider two examples. 

1.3.1. Example I: Exponential Variation 

Assume that an electric field varies exponentially with time as: 

E = Eoe-'^^eo (1.163) 

where r is the parameter characterizing the rate of decay of the field with time. Equation 
1.158 then becomes: 

62{t) = -£:oe-*/"''(eo • Va) j e^^'^^^^'^^'dt 
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After carrying out the indicated integration, one obtains: 

S2{t) = - Toe 
1 - TO/T 

Eo{[l-^ - t ( l / ro- l / r ) ] ( e o - V a ) } 

Further assuming that TQ <C r and t : ^ TQ, i.e. the rate of the field decay is considerably 
small and only times that widely exceed the time constant TQ are considered, we have: 

S2{t) = -Toe~'/^eo'Va)Eo (1.164) 

The volume density of charge 62 decays exponentially with time at exactly the same rate 
as the electric field, regardless of the conductivity of the medium. 

1.3.2. Example II: Sinusoidal Variation 

Assume now that the primary electromagnetic field varies with time as: 

E — EQ sin ujt Co 

Substituting this expression into eq. 1.158, we have: 

t 

62 = -e- ' /^« Eo{e • Vcr) / e ' / ^^ sincc;^ d^ 

This integral is well known: 

/ 
e^^^'^sinujtdt 

l/T^+UJ^ To 
sin ujt — u) cos ujt 

whence 

I e*l''°smujtdt 
l / r 2 + a ; 2 

sin ijjt — cos uit 

Therefore we have: 

62{t) = 
l/ri+oj^ [ 

uj e ^^^^ H smujt — uj cos ut 
^0 

(eo • Va ) 

In the quasistationary approximation when both the time of observation i and the 
period T — 2T:/UJ of the excitation are much greater than the relaxation time TQ, we have: 

^2{t) = — [rosina;t — UJTQ cosujt\ Eo{eo • Vcr) 
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Neglecting the second-order term and assuming that the field is not zero, that is, out is 
not a multiple of TT, we finally obtain the expression for the volume charge density under 
quasistationary harmonic conditions: 

(52(t) = -ToEosmcut (eo • Va) = -ToE{t) • grada (1.165) 

We have so far only investigated the volume charge density. Let us next consider 
time-varying surface charges. Combining the following equations: 

.•(2) _ .(1) _ _ ^ and E^^^ - E^^^ - -

we have: 

a ^ E f - aiEW = I [{a, + a,) ( S f - E « ) + (a, - a,) ( S f - E^^)] = - ^ 

or 

where a"^ = (ai -h cr2)/2. 
Thus the equation for surface density is a differential equation of the first order similar 

to that for volume charge density: 

^ + — E = (ai - a2 )Er (1.166) 

where TQS = So/a^'" is the relaxation time for the surface charge. 
In accord with eq. 1.154, the solution to eq. 1.166 can be written as: 

t 

E = Eo e-*/̂ °^ + e-*/"°^ (ai - ^2) / E^\t) e*/"«̂  dt (1.167) 

or 

E = El -h E2 

where: 

El = Eo e-*/̂ «̂  

} , (1.168) 
E2 - (ai - ^2) e-*/̂ °^ / E'^^t) e*/"°̂  dt 
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Thus, two types of surface charges occur in this case. The first one, E i , corresponds 
to the situation in which some charge with density EQ is placed on the interface. In 
accord with eq. 1.168, such a charge decays exponentially with a time constant TQS that 
is controlled by the conductivity and dielectric constant of the medium. Inasmuch as the 
relaxation time TQS is usually very small with respect to measurement times, we will no 
further consider this type of charge and concentrate on the second type. 

As was the case for volume charges, surface charges of the second kind arise as the 
consequence of the presence of an electromagnetic field only. Considering again that the 
relaxation time is very small, it is appropriate to expand the expression of E2 in eq. 1.168 
in a power series of TQS. Carrying out this expansion as indicated before, and discarding 
all the terms but the leading one, we obtain: 

^2{t)^Tos{(T,-a2)E^^{t) (1.169) 

Replacing TQS by its expression from eq. 1.166, it is readily seen that at any given time, 
eq. 1.169 is identical to eq. 1.141 that described the surface distribution of charges due to 
a constant field. It can therefore be concluded that in the quasistationary approximation, 
the surface density of charges is locally controlled by the instantaneous value of the electric 
field. It is clear tha t the corresponding expression of the surface charge density follows 
directly from the differential eq. 1.166 provided that one neglects the term dJl/dt in 
comparison with the term E/TOS- This is equivalent to the condition: 

§ « - ^ E (1.170) 
at Tos 

In accord with eq. 1.141, E^{p) is the electric field contributed by all sources except 
the charge located in the immediate neighborhood of the point p. For this reason, the 
right-hand side of eq. 1.166 can be interpreted as the flux of the current density caused 
by the field of external charges only, through a closed surface with unit cross-sectional 
area as shown in Fig. 1.34. 

The quantity E /TQ can be written as: 

TQS Z£O Z£O ZSQ 

As was shown before, the term E(p)/2£o indicates the magnitude of the normal com-
ponent of the electric field caused by the charge at the point p. The term E/TQS therefore 
describes the fiux of current density through the closed surface shown in Fig. 1.34 due 
to the elementary charge E d 5 only. Thus, in accord with eq. 1.166, the flux of current 
density caused by external sources is compensated by two fluxes, namely: 

• the change in surface charge density with time, dT,{p)/dt 

• the flux caused by the electric field from the charge E(p), that is, E (P ) /TOS. 
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In the quasistationary approximation, when condition 1.170 appUes, eq. 1.166 can be 
rewritten as: 

MEW{P) + ET{p)) = a^{E^:\p) + Er(p)) 

where: 

(1.172) 
E^:' 

E^' 

or 

j ( i ) , 
Jn 

= -S/2£o 

= S/2eo 

= ,-(2) 
Jn 

In the quasistationary approximation, the normal component of current density is a 
continuous function of position at an interface between media with different conductivities 
as was the case for direct currents. It is obvious that this result directly follows from 
eq. 1.133 by neglecting the term dT>/dt. Our considerations should however make clear 
that condition: 

does not necessarily mean the absence of surface charges, because in the quasistationary 
approximation the derivative 9E/9t needs only be small with respect to the flux E/ros. 

The postulate of conservation of the charge has allowed us to investigate in detail 
the distribution of charges in a conducting medium. It also serves as a basis for the 
introduction of the concept of displacement currents which plays a vital role in propagating 
electromagnetic fields. 

Let us start from two equations, one of which is: 

curl H = j 

which is derived from Biot-Savart law, and the other one being the postulate of conser-
vation of the charge written in differential form: 

It can be readily seen that these equations are contradictory inasmuch as: 

div curl H = div j — 0 

To solve this problem, it is necessary to add a term on the right-hand side of eq. 1.110, 
so that we obtain: 

cmlH = j + X (1.173) 
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where X is an undetermined quantity at this stage. 
We can choose this quantity to satisfy eq. 1.132. Performing the divergence operation 

on eq. 1.173, we have: 

0 = div X + div j 

or 

divX = 6 

As is well known: 

diYD = S 

where 

is the electric displacement vector and £ = SrCo^ while S is the density of free charges. 
Whence: 

div X = -— div D = div —-- = div D 
dt dt 

One possible solution to the problem is the vector: 

dD 

Substituting X = -D on the right-hand side of eq. 1.173, we obtain the second Maxwell 
equation: 

cur l i f = i + — (1.174) 

Numerous experiments have shown the appropriateness of selecting the vector X in this 
form. This quantity was called a displacement current. As follows from the second 
Maxwell equation, there are two sources for the magnetic field: conduction currents and 
displacement currents. Applying Stoke's theorem, we obtain the integral form of the 
second Maxwell equation: 

/ i f - d Z - f{j + D)dS (1.175) 

L S 
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Using an approach that was previously described, it is readily seen that displacement 
currents make no difference in the surface analog of this equation as derived for con-
stant fields, that is, the tangential component of the magnetic field remains a continuous 
function at an interface: 

H^^^ -H^'^ = 0 (1.176) 

Thus in the general case, we have three forms for the second Maxwell equation: 

(j>H'dl^ f{j + b)dS 

\ ^ .[dD (1.177) 
curl H = J + — -

1.4. Faraday's Law and the First Maxwell Equation 

Early investigators of electric and magnetic fields observed that when the magnetic in-
duction vector B changes with time throughout a surface S bounded by a contour L, an 
electromotive force S' exists along that contour with an intensity: 

- - f ,u™, 

where ip is the magnetic flux through surface S bounded by contour L (Fig. 1.37): 

^= f B-dS 
s 

where B = iiH, ii = /irMo, and d/dt denotes the time derivative. The contour L can 
have any shape and need not be located solely within a conducting medium, it can in 
particular intersect media with various properties, including insulating ones. 

As is well known, the electromotive force can also be presented as: 

^= (^E'dl (1.179) 

L 

where E is the electric field vector at each point along contour L. Equation 1.178 can 
therefore be rewritten as: 

/ 
E-dl = - ^ (1.180) 

at 
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Figure 1.37. The time rate of change of magnetic induction flux throughout a surface S 
bounded by a contour L causes an electromotive force to exist along that contour. 

This expression can be interpreted in a natural sense as follows: a change with time of 
the magnetic flux, ip, gives rise to an electric field. This phenomenon was first observed 
and reported by Faraday and has been called electromagnetic induction. The relationship 
between the electric field and the rate of change of the magnetic flux, as described by 
eq. 1.180, is one of the most fundamental relationships in physics. 

By convention, the electric field due to electromagnetic induction is called inductive 
electric field and noted E^^^, emphasizing the origin of this particular component. One 
can rewrite eq. 1.180 in the following form: 

/ 

:.ind . , dip 
E'^^.^l = - ^ (1.181) 

It is a basic fact that a change in magnetic flux with time gives rise to a specific electro-
motive force. To determine the field however, additional information must be provided. 

Up to this point, we have considered only one source for the electric field, namely 
electric charges. In addition to charges, a change in magnetic field with time provides a 
second mechanism for the development of an electric field. This fact is the fundamental 
basis of electromagnetic induction. The electric field can generally be attributed to two 
sources as well as the magnetic field. One can of course readily think of particular cases 
in which one of these sources does not exist as for example: 

• A static field, which is a constant field in time arises from the presence of electrical 
charges only. 

• An alternating electromagnetic field in which the current flow is tangential to inter-
faces between media of diff"erent conductivity so that the normal component of the 
electric field is zero and that charges do not arise. This happens for example when 
an induction probe is located on the axis of a borehole and the medium possesses 
cylindrical symmetry: in this case, the electric field has a pure inductive character. 

Both sources of electric field, however, play an essential role in general cases, and this 
must be understood in order to solve significant interpretation problems which appear 



69 

when charges arise on the borehole and other interfaces. In this respect, suppose that an 
electric field arises from both types of sources, namely: 

• electric charges which vary with time but create at each instant a field E^ described 
by Coulomb's law 

• a change in the flux of the magnetic field with time, dijj/dt. 

The total electric field can in this case be presented as the sum: 

E = E'' + E''''^ (1.182) 

whence 

E^rid^jQ_-^c (1.183) 

Combining eqs. 1.181 and 1.183, we have: 

(j>E'dl- (i>E''dl = - ^ 

L L 

As was shown in the first section, the circulation of Coulomb's electric field is zero and 
therefore: 

L L 
— f 

This result sometimes leads to a misunderstanding of the role played by charges in forming 
the electromagnetic field. This consideration actually merely shows that the electromotive 
force due to the Coulomb electric field is zero. But this conclusion cannot be extended 
to the electric field itself. The Coulomb electric field influences the distribution of the 
currents which in turn create an alternating magnetic field, therefore the inductive electric 
field does in general depend on the distribution of charges. 

We will now write Faraday's law in various forms. Using first the definition of the 
magnetic flux: 

^ - fB'dS 

we have: 

L S 



70 

We will not consider here the electromotive force induced by moving the integration 
path L, and thus the last equation can be rewritten as follows: 

<j>E'dl = - I ^'dS^- I B'dS (1.184) 
L S S 

where B = dB/dt. 
This equation is an exact formulation of Faraday's law and is also considered to be the 

first Maxwell equation in integral form. In the left hand side, the vector dZ indicates the 
direction in which the integration is carried along contour L, while the vector dS in the 
right hand side represents the direction normal to the surface S. A relationship has to be 
given between the orientation dS in order to keep its physical meaning to Faraday's law. 
This relationship is in fact the well known right-hand rule, that is, an observer looking 
in the direction of dS sees that the contour L is given a counter-clockwise orientation 
by dZ. It is only when this is true that eq. 1.184 correctly describes the electromagnetic 
induction phenomenon. 

Next, making use of Stoke's theorem, we obtain the differential form of the first Maxwell 
equation: 

(j)E'dl= fcm\E-dS = - f^-^S 

whence: 

BT3 
cm\E = — — (1.185) 

dt ^ ^ 

where the functions E and B are considered in the near vicinity of the same point. 
Equations 1.184 and 1.185 both describe the same physical law, but the second form 

can be applied only at points where the electric field is a continuous function of the spatial 
variable. 

Considering that in many problems, we must examine electromagnetic fields in media 
with discontinuous changes in properties, it is desirable to derive a surface analog of the 
first Maxwell equation. At interfaces between media with different conductivity for ex-
ample, the normal component of the electric field is known to be a discontinuous function 
of the spatial variable. For this reason we will further proceed with eq. 1.184, evaluating 
it along the path shown in Fig. 1.38, so that we have: 

where t is an arbitrary direction tangent to the interface. In its general form, this equation 
is: 

nx{E2- El) = 0 (1.186) 
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Figure 1.38. Evaluation of Faraday's law near an interface. 

The right hand side is zero because the flux of the magnetic field goes to zero as the 
area enclosed by path L vanishes. 

In accord with eq. 1.186, one can say that the tangential component of the time varying 
electric field is a continuous function of position as is the case for the electric field caused 
by charges only. 

Thus we have obtained three different forms of the first Maxwell equation: 

(j>E'dl = - fB'dS 

L S 

dB 
c u r l ^ = — — (1.187) 

nx{E2- El) = 0 

It should be emphasized that each of these equations describes the electromagnetic 
induction phenomenon. 

We will now examine a few examples that demonstrate some features of electromagnetic 
induction when the field changes with time slowly enough. In that case, displacement 
currents can be neglected. 

1.4.1. Example I: The Vortex Electric Field of a Solenoid 

Suppose that a magnetic field arises as the consequence of an alternating current flowing 
in an infinitely long cylindrical solenoid as shown in Fig. 1.39. It is well known that the 
magnetic field is uniform and nonzero inside the solenoid, and zero outside. Inasmuch as 
both vectors B and dB/dt are directed along the z-axis, an induction (vortex) electric 
field develops in horizontal planes. Moreover, due to the axial symmetry, the vector lines 
of the electric field are circles with centers located on the axis of the solenoid. The electric 
field caused by the variation of the magnetic field has but one component £̂<̂  which is 
a function of the radius r only. Making use of eq. 1.184 along any circle with radius r 
located in a horizontal plane and centered on the x-axis, we have: 

/ 
E-dl = E-2Trr = ~ 

dt 
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4i 
Hr 

H^ = 0 

Figure 1.39. Excitation of a magnetic field by an alternating current flowing in an infinitely 
long cylindrical solenoid. 

or 

^ 27rr dt 
(1.188) 

where dip/dt is the rate of change of the magnetic flux within the area bounded by the 
circle of radius r. Suppose that the magnetic field varies with time as follows: 

H = Hof{t) 

Then, in accord with eq. 1.188, the vortex field inside the solenoid (r < a) is: 

Bo 
El 7rr 

27rr 
Bo fit) -rfit) r ^ a (1.189) 

That is, the electric field inside the solenoid increases linearly with the radius r. 
Considering now horizontal circles located outside the solenoid, it is clear that the flux 

and its time-derivative do not depend on the radius of the circles, and that at any given 
time, we have: 

i; = Bo7ra^f{t) 

= Bo7ra'f{t) 

The voltage along any of these circles is therefore also independent of the radius and 
according to eq. 1.188, we can write: 

'^^-^".V'W-f^/W r > a (1.190) 
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Figure 1.40. A magnetic dipole at the origin of a spherical system of coordinates and with 
its moment M{t) directed along the z-axis. 

That is, the vortex electric field outside the solenoid decreases inversely proportional to 
r. 

This example clearly demonstrates that a vortex electric field can exist at points where 
the magnetic field is absent. 

In the next several examples, we will also consider vortex electric fields caused by the 
change of the magnetic field with time. 

1.4.2. Example II: The Vortex Electric Field of a Magnetic Dipole in a 
Free Space 

In this example, we will consider a magnetic dipole of moment M{t) directed along the 
z-axis at the origin of a spherical system of coordinates (Fig. 1.40). We will neglect the 
influence of displacement currents. Considering that in this approximation, the magnetic 
field is defined by the instantaneous intensity of the current in the dipole, one can calculate 
the field in the same manner as if it were a static magnetic field. In accord with eq. 1.135, 
we have the following equation for the alternating magnetic field caused by a magnetic 
dipole in free space: 

Hait) = ^^cos0 He{t) = ^ s m 0 H^ = 0 (1.191) 

Inasmuch as the vector representing the magnetic field lies in a longitudinal plane and 
as a consequence of the axial symmetry, a vortex electric field, arising as a result of the 
change of this magnetic field with time, has but one component £̂ 0. The vector lines of 
the field are therefore circles centered on the z-axis. 

Making use of eq. 1.184, we have: 

E, = - ^ ^ (1.192) 

where ^ is the flux penetrating the area bounded by a circle with radius r (Fig. 1.40). 
Inasmuch as the vector normal to this area is parallel to the z-axis, we have the following 
expressions for the flux tp: 

ij = I BdS= f B,dS= f B,2Trrdr (1.193) 
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where Bz is the vertical component of the magnetic induction. As can be seen from 
Fig. 1.40 we have: 

Bz — BR COS 6 — Be sin 0 

and considering eq. 1.191, we obtain: 

B. = ^,{3cos'0-l) (1.194) 

Substituting this result into eq. 1.193 and integrating, we obtain: 

di/j _ 1 M{t) 

where R = {r'^ -^ z^)^/^. Therefore, we can write the expression for the inductive electric 
field as: 

E^ = -fi^smO (1.196) 

It should be expected that the electric field is zero on the z-axis {6 = 0), since the 
flux through a surface bounded by a circle of vanishing radius vanishes as well. With 
increasing radius of the electric lines, there is always some critical radius r for which 
the magnetic field lines start to intersect the surface S twice and in opposite direction. 
For this reason, the magnetic flux and the corresponding vortex electric field gradually 
decrease with a further increase in the radius of the circle. 

Thus, neglecting displacement currents, the electromagnetic field of an alternating mag-
netic dipole in free space is described as follows: 

- - l ^ » ^ " - s ^ - ^ '^--"Sg-^ <'•-) 
It is an essential feature of the behavior of this field that along with a magnetic field at 

each point of space, there also is an electric field. One might suspect that if the medium 
has nonzero conductivity, this field will give rise to a current flow. 

The field described by eq. 1.197 is caused by the currents flowing in the magnetic dipole 
only, and for this reason it is referred to as the primary field. Several examples of primary 
fields will be considered in this section. 

Let us now briefly describe the electromagnetic field of a magnetic dipole when its 
moment varies with time in some simple ways. 

Case 1 

Suppose that the current in the dipole changes sinusoidally, that is: 

M = Mosmujt (1.198) 
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Figure 1.41. Variation of the magnetic moment with time as defined in eq. 1.200. 

where MQ is the magnitude of the moment, LJ = 27r/ = 27r/T is the angular frequency 
and T the period of oscillation. In accord with eqs. 1.197-1.198, we have the following 
expression for the magnetic field: 

J^R = -—;r77 COS & sm cut 

Ha 
MQ 

47ri?3 

(1.199) 

sin 9 sin ut 

while the electric field can be written as: 

E^ = sm{ujt - 7r/2) sm l9 

and one can therefore say that the primary electric field exhibits a phase shift of 90° 
with respect to the current in the dipole or the primary magnetic field as well. The last 
equation plays a basic role in the theory of induction logging as developed by H. Doll. 

Case 2 

Consider a dipole whose moment varies with time as follows (see Fig. 1.41): 

M= { 

Mo t^O 

Mo-at O^t^tr 

0 t>tr 

(1.200) 

where a = Mo/tr-
This relationship describes a primary field which is constant at negative times, then 

decreases linearly over the interval 0 ^ t ^ t^, and is exactly zero at times larger than 
tr- A primary vortex electric field will exist only within the time interval over which the 
magnetic field varies, and in view of the linear dependence of the magnetic field on time 
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during that range, the electric field will assume a constant value. Thus, we have: 

2Mo 

HR={ 2M{t) 

0 

cos 6> t ^ 0 

cos 6 0 ^ t ^tr 

' i ^ - ^ *^o 

He = { 

Efk 

M{t) 

0 

0 

0 

sin^ 

sin^ 

O^t^t 

t ^ tr 

/iMo 
= s 

AnRHr 

(1.201) 

t^O 

sin 6 0 ^t ^tr 

The curves given in Fig. 1.42 illustrate the behavior of all the components of the field 
with time. 

1.4.3. Example III: The Inductive Electric Field due to the Magnetic Field 
of a Current Flowing in a Circular Loop 

In induction logging, the receiver of an induction probe measures the field caused by the 
currents induced in the surrounding medium. As will be shown later, these currents in 
most cases flow along circles. This is why it is appropriate to explore some features of the 
electromagnetic field caused by a sole current ring. 

In this case, we will assume that the source of the electromagnetic field is an alternating 
current I{t) fiowing in a circular loop of radius a as shown in Fig. 1.43. As is well known, 
the magnetic field of a constant current flowing in a loop can be expressed in terms of 
elliptic integrals. Inasmuch as displacement currents are ignored, the magnetic field is 
defined by the instantaneous value of the conduction current in the loop, that is: 

Br 
fil{t) 

fll{t) Z 

-K-h 
a'^ -\-r^ -\- z^ 

(a-

TT [a + r)2 + z2]i/2 [ ( a - r ) 2 + z2 
K + 

ry -f z-
^2 

E 

E (1.202) 

5^ = 0 

where K and E are the elliptic integrals of first and second kind, respectively, which are 
described in most mathematical handbooks. Considering the axial symmetry as well as 
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t E^ 

Figure 1.42. Variation with time of the components of the electromagnetic field caused 
by a magnetic dipole of moment varying according to eq. 1.200. 

the fact that the magnetic field lines lie in longitudinal planes, the electric field that arises 
due to the variation of the magnetic field with time has but one component E^ that is, 
in a cyUndrical system of coordinates (r, (/>, z): 

To describe the vortex electric field, one can in principle make use of the first Maxwell 
equation in its integral form: 

I""'-! B'dS 

This approach, however, leads to the integration of elliptic functions, which is a some-
what cumbersome approach. Fortunately, there is a much more efficient way to derive an 
expression for the electric field. Considering that the potential A {H = curl A) as well 
as the magnetic field H are defined by the instantaneous value of current in the source 
loop one can write: 

L 
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Figure 1.43. Components of the electromagnetic field caused by an alternating current 
flowing in a circular loop. 

or, after some transformations, we have: 

I{t) / a \ i / 2 
il-^k')K-E 

where k'^ = 4ar/{{a + r)^ + z^). 
From the first Maxwell equation: 

curl E = 
dB 

' dt 

follows that : 

5 1 . .dA 
curl E = — ZiTT- curl A = —a curl —— 

at at 

or 

curl ( E + / i — I = 0 

From this we have: 

Ecf, = -/^-^ -gmdU (1.203) 

where f/ is a scalar potential. In accord with this last equation, we have the following 
expression for the component E(j,: 

Es -fi-
dt 

ldU_ 

r d(j) 
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Figure 1.44. Induction of currents in a thin conducting ring placed in an alternating field. 

It should be noted at this point that the vector potential A, which we have used here, is 
identical at any instant to the vector potential caused by a constant current flow. 

Taking into account the axial symmetry, the second term in the last expression vanishes 
so that we have: 

E^ = - M ^ (1-204) 

This equation permits us to write down the expression for EM^ that is: 

dlit) 1 / a \ i /2 \f 1 A r. ^ 
(1.205) 

In conclusion, it should be emphasized that the vector lines of the electric field are circles 
lying in horizontal planes with centers located on the z-axis. It is an easy matter to show 
that the electric field given in eq. 1.205 is practically identical to that of a magnetic dipole 
(eq. 1.197) when the distance of the observation point to the source is significantly larger 
than the radius of the loop. 

1.4.4. Example IV: Induction of a Current in a Thin Conducting Ring 
Situated within a Primary Alternating Field 

The induction process can be described as follows (Fig. 1.44). With a change of the 
primary magnetic field with time a primary vortex electric field arises. We will consider 
for simplicity that this field has only one component E^ which is tangential to the plane 
of the ring. According to Ohm's law, this field causes current to flow in the ring. This 
current in turn generates a so-called secondary electromagnetic field, and it should then 
be obvious that the density of the induced current is in fact determined by both primary 
and secondary fields. In accord with Ohm's law, we can write: 

3^ = a{EP^ + El) (1.206) 

where j ^ , is the current density in the ring, and a is its conductivity. E^ is the primary 
electric field; E^ is the secondary one. 
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We will now use Faraday's law (eq. 1.178) to find the current in the ring: 

<̂  = - f (1.207) 

The flux t/j through a surface bounded by the ring can be written as the sum: 

'0 = '0o + '0s (1.208) 

where ipo is the flux of the primary magnetic field and ^ps is the one of the secondary field. 
Thus eq. 1.207 can be rewritten as: 

In this equation, only the term dipQJdt is known, while the electromotive force, ^ , and 
the rate of change of the secondary magnetic flux, dil^s/dt, are unknowns. Our objective 
is to determine the current / flowing in the ring and we will therefore attempt to express 
both unknowns in the last equation in terms of this function. First of all, making use of 
Ohm's law in integral form, we have: 

S = RI (1.210) 

where R is the resistance of the ring given by: 

Here p is the resistivity of the ring, / is its circumference, and S its cross-sectional area. 
According to Biot-Savart law, it is clear that the magnetic flux ijjs caused by the current 
flow in the ring is directly proportional to / , and can therefore be written as: 

^l^s = LI (1.212) 

where L is a coefficient of proportionality known as the inductance of the ring. According 
to eq. 1.212, one could say that the inductance of the ring is the ratio of the magnetic 
flux through the ring to the current in the ring: 

The inductance is controlled by the geometrical parameters of the ring. Its determi-
nation usually involves the solution of rather complex problems. In some special cases, 
however, this task is relatively easy and in particular the expression for the inductance of 
a thin ring in free space is known to be: 

L ^ r / i o ^ l n — - 1 . 7 5 " ) (1.213) 
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Inductance is measured in henries per meter in the m.k.s. system of units; TQ is the 
cross-section radius. 

If instead of one ring we have a n-turn coil, the inductance increases as the square of 
the number of turns: 

L = rfion^ H n — - 1.75 j (1.214) 

The simple form of the conductive volume (a thin uniform circular ring), and the 
assumption that the current density is uniform over the cross-section of the ring has 
allowed us to find a simple expression for the coefficient of the proportionality between 
the secondary magnetic flux and the secondary current intensity I. Substituting this result 
into eq. 1.209 yields a differential equation from which the current / can be determined: 

or 

dt To 

where 

To = L/R 

and 

dtpo 
dt 

- f i t ) 

«"-it 

(1.215) 

Making use of results obtained earlier in this chapter (eq. 1.154), we have the following 
solution for the induction current: 

t 

j ^ / ^ e - ^ / r o _e-Vro 1 / " e V r o ^ d t (1.216) 
L J dt 

0 

We will now consider the behavior of the induced current in two specific cases. 

Case 1 

Let us assume that the primary magnetic field varies with time as shown in Fig. 1.42, so 
that we have the following expression for di/jo/dt: 

dt ^ 

0 t^O 

- ^ O^t^tr (1.217) 

0 t^tr 
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where U is called the ramp time. During the interval of the time over which the primary 
magnetic flux does not change with time {t < 0), there are no induced currents in the 
ring, that is: 

I{t) = 0 t<0 

During the ramp time the primary flux changes with time, and the induced current is 
determined by the rate of change of the flux time, as well as by parameters of the ring 
{R and L). After the primary flux disappears, the behavior of the induced current is 
controlled by parameters R and L only. In this case, eq. 1.215 is simplified and we have: 

dt To 

A solution of this equation is: 

(1.218) 

(1.219) 

The parameter TQ is commonly called time constant of the ring, inasmuch as it represents 
the rate at which the current decays in the absence of external sources. 

In order to express the constant C, we will investigate the behavior of the induced 
current flow during the ramp time. In accord with eqs. 1.216 and 1.217, we have: 

t 

m = /oe-'/-" + e- ' /^»^ /e'/^° At = he-"^- + ^ ^ ( 1 
LfLjJ by Ju 

-t/'ro\ (1.220) 

where /Q represents the amplitude of the current at the instant t = 0. Inasmuch as at this 
instant there is no current in the ring, we have: 

'(')-??(' -t/TO (1.221) 

The constant C is readily found from eqs. 1.219 and 1.220. We have in fact: 

Thus: 

(1.222) 

Therefore, we obtain the following expression for the current induced in the ring: 

/(*) = { 

[o 

1 Zo 

— 

ff 
f<«" 

— e" 

7ro 

- * / T O \ 

- l ) e - -t/ro 

t ^ 0 

0 ^ t ^ ^ 

t>tr 

(1.223) 
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Figure 1.45. Behavior of induced currents as defined by eq. 1.223. 

In accord with the last equations, the intensity of the induced current gradually in-
creases during the ramp time, reaching a maximum at the instant t = tr, and then starts 
to decrease exponentially. 

Suppose that the ramp time tr is much less than the time constant TQ. Expanding 
then the exponential terms in eq. 1.223 in a power series and discarding all terms but the 
leading ones, we obtain: 

(0 

lit) = { 

t^o 

if LJ 
- - ^ {)^t^tr (1.224) 

V̂o -t/ro t ^ tr if tr ^ To 

On the contrary, if tr ^ TQ, the induced current increases linearly at first, and then 
asymptotically approaches the following maximum value: 

To;0o 
tr -L/ 

after which it decreases exponentially as before. 
The behavior of induced currents in both situations is shown in Fig. 1.45. 
We will now investigate the induction of current in the ring when the primary current 

and magnetic flux change as a step function of time (Fig. 1.46). It is obvious that the 
behavior of induced currents in this case is described by eq. 1.224 as tr approaches zero, 
that is: 

m = fe ^0_- t / ro (1.225) 
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Thus the initial value of the induced current does not depend on the resistance R of 
the ring, but on the primary flux and the inductance of the ring only. 

Because there is always in practice a nonzero ramp time, the initial value of the current 
should be interpreted as being its value at the instant t = tr^ provided that U is much 
less than TQ. 

It is interesting to obtain the same result directly from eq. 1.215. Integrating both parts 
yields: 

0 0 0 

whence: 

tr 

R f Idt -i-L{I{tr) - /(O)} = M^) - Mtr) (1.226) 
0 

Inasmuch as we have the following initial conditions: 

^o(O) = V̂o 1(0) - 0 

and that at time t = U the primary flux is zero, eq. 1.226 can be rewritten as: 

tr 

R f Idt-\~LI{tr) =i^o (1.227) 

0 

The integrand / dt indicates the total quantity of charge passing through the ring during 
the time dt. It is obvious that with decreasing ramp time, the quantity of charge tends 
to zero and in the limit, when the magnetic field changes as a step function, we have: 

LI{tr) = ipo a,s tr -^ 0 

that is, the initial current is: 

/(O) - ^ as ^, ^ 0 (1.228) 

This is exactly the same result as obtained with eq. 1.225. 
The analysis carried out earlier shows that the error caused by discarding the integral 

term decreases with decreasing ratio tr/ro, that is, eq. 1.228 becomes more precise with 
increasing inductance or decreasing resistance of the ring. 

Considering that for positive times, the current satisfies a homogeneous differential 
equation, we obtain again: 

/ ( ^ ) ^ ^ e - * / ^ ° (1.229) 
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Figure 1.46. The variation of magnetic field with time for an ideal step function excitation. 

Thus, at the initial instant, the current induced in the ring does not depend on the con-
ductivity but is defined by the primary flux and the inductance (geometrical parameter) 
of the ring only. 

The equality: 

LI{0) = tAo (1.230) 

is an essential feature of electromagnetic induction. The left-hand side in fact defines the 
magnetic flux of induced current through the ring at instant t = 0, when the primary 
flux disappears. Thus an induced current / arises with such magnitude that at the first 
instant its magnetic flux L/(0) is exactly equal to the primary flux '0o- This result will 
later be generalized to include more complicated models of conducting media. 

Case 2 

Suppose that the primary magnetic field varies sinusoidally as: 

HQ sin ujt (1.231) 

where HQ is the amplitude of the field, / is its frequency, uj is its angular frequency and 
T its period of oscillation. In contrast to the previous case, we consider here a steady 
field which is assumed to have been established far before the time of observation, and 
has been repeating itself periodically ever since. In order to find the current induced in 
the ring, we will make use of eq. 1.216. Since the primary flux is simply expressed as 
tjjQ sin ut, we have: 

7 ( t )= /oe- ' / - ° 
LJil^o 7 Q-t/ro / e*/^«cosa;tdt (1.232) 

Because: 

/ 
e^^ cos bx dx 

a2 + 62 
[a cos bx -\- b sin bx] 
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we obtain: 

t 

Q-t/ro f t/ro cosutdt = —-^^ 

J l/rS + ^' 
0 

1 
— cos ujt -\- uj sin Lut 
^0 

1 e-*/^o 

where TQ = L/R. 
Thus, the induced current is expressed as: 

r/.^ r -fire. (JO^PQR . UJ^IpoL . UJltoR f/^ 

R"^ + uj'^L'^ R^ + u^L^ R^ H- uj^L^ 

Inasmuch as we are interested in the induced current for an estabhshed sinusoidal process, 
tha t is, for t much larger than TQ, we have: 

^W = - 09 <y T9 \RCQSuji + UJL sin a;t] (1.233) 

Let us introduce the following notations: 

^ ^ ^ ^ ^ - P 2 , , .2r2 (1-234) i?2 + ^2/;^2 ^ 2 _̂  ^ 2 ^ 2 

Correspondingly we have: 

I{t) = a cos cut + bsiuLut (1.235) 

that is, the induced current can be presented as the sum of two separate oscillations. One 
of them, fesino;^, which changes synchronously with the primary magnetic field, is called 
the inphase component of the current and is expressed as follows: 

In / = 6 sin cut 

The other one, acoscL;^, representing an oscillation shifted by 90° with respect to the 
primary source, is called the quadrature component of the current and is written: 

QI = a cos cut 

Equation 1.235 suggests that it is desirable to treat the induced current as the sum of 
an inphase and a quadrature component, the intensity of which is given by eq. 1.234. 

It is important to note that in induction logging the quadrature component is usually 
measured. 

We can write the inphase and quadrature components as: 

a = ^ s i n 0 b = Acos(l) (1.236) 
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Figure 1.47. Sinusoidal variation of the primary field and of induced currents showing the 
existence of a phase shift between them. 

so that we obtain: 

I — A [sin (j) cos ujt + cos 0 sin ujt\ — A ^m{ujt -\- 0) (1.237) 

Therefore, the induced current and the primary field are both sinusoidal functions, each 
having the same frequency cj, and being characterized in general by two parameters A 
and (j). 

The parameter A is the amplitude of the secondary current, that is, this current os-
cillates and reaches a maximum value A each time when the argument ujt -\- (j) is an odd 
multiple of 7r/2. 

The quantity (j) indicates that there is a phase shift between the primary field and the 
induced current, that is, they oscillate asynchronously as shown in Fig. 1.47. In accord 
with eqs. 1.234 and 1.236, we have: 

(1.238) A={a^^ b^/^ = 

and: 

tan 0 = a/b 

'~ (i?2+t^2^2)l/2 

tan 
R 

A representation of the induced current is shown in Fig. 1.48 in the form of inphase 
and quadrature components as well as amplitude and phase. 
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Figure 1.48. Curves representing the inphase and quadrature components of the induced 
current, as well as its amplitude and phase. 

In spite of the simplicity of the model of the thin circular ring, the frequency response 
of the induced current contains some general features which are inherent to much more 
complicated cases as will be demonstrated in later chapters. 

We will consider here only briefly the low-frequency part of the spectrum. When the 
frequency is sufficiently low it is possible to expand the expression in eq. 1.234 in a series 
of uj and discarding all terms but the leading ones, we obtain: 

' R 
and 

i^oL 2 
U) 

R^ 
(1.239) 

or 

Q / = COSujt and I n / = —-r-o; sma;r 
R R"^ 

From these expressions it is apparent that at low frequencies the quadrature component 
of the induced current is dominant and is directly proportional to the conductivity of the 
ring and to the frequency, while it does not depend on the inductance. This behavior can 
readily be explained as follows: if we neglect the flux caused by the induced current the 
total flux through the ring is the same as the primary one, that is ipQ. As it changes with 
time, we have: 

dip d^Q 
—- = — - =UjijQCOSUJt 

at at 

and therefore in accord with Ohm's law, we have: 

Q / -
^ ^ 0 

' R 
cos cut 
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to tr 

Figure 1.49. Example of a finite but short ramp time from the termination of a constant 
magnetic flux. 

Thus at low frequencies the quadrature component is directly proportional to the pri-
mary field, frequency and conductivity. It is important to state that this behavior stands 
when more complicated conductors are considered. It is also appropriate to notice that 
eq. 1.239 for the quadrature component is very basic in the theory of induction logging 
as developed by H. Doll. 

1.4.5. Example V: Behavior of the Electromagnetic Field at the Early 
Stage and High Frequencies in a Conducting Medium 

Suppose that we have an arbitrarily oriented system of n conducting rings. The equation 
determining the intensity of the current induced in the A;th ring can be written as: 

RJ, - — ^ - — ^ - - ^ (1.240) 

where Rk and Ik are the resistance and current in the /cth ring, and ijjsk are the magnetic 
fluxes of the primary and secondary fields, respectively. It is clear that the magnetic flux 
"ijjsk can be expressed as: 

i^sk = Mikh + M2kh + • • • -h Lkh + • • • -h Mnkin 

where L^ is the inductance of the A:th ring, Mik is the mutual inductance of the z-th and 
A:-th rings, that is, the ratio of the magnetic flux through the A:-th ring, to the current Ii 
in the z-th ring, that is: 

i^ik = Mikh 

Equation 1.240 can correspondingly be rewritten as: 

p^k 

Assume now that the primary flux IJJQ caused by external sources starts to change from 
a value I/JQ to zero at the instant t = to, and that this change takes place in a very short 
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time tr (Fig. 1.49). Integrating eq. 1.241 with respect to time, we obtain: 

Ru J hdt + Lk J ^dt + ^Mpk J ^dt^^okito) 
to to P~l to 

smce: 

'^Okito -{-tr) =0 

Taking into account that induced currents are absent at the first instant {t — to) and 
that the interval tr is very short, this last equation can be approximated as follows: 

n 

Lkh{to + ^r) + ^ MpkIp{to + tr) = ^Ofc(^o) 

Introducing the notation: 

0̂ ~ 0̂ 0̂ ~ 0̂ + tr 

we have: 

n 

Lklk{4) + Yl ^v^h^^t) - "Pokito) (1.242) 

On the left-hand side of this expression, we have a representation of the magnetic flux 
through the A:th ring caused by the currents induced in all the other rings just after 
switching, while on the right-hand side is the expression for the primary flux ipo before 
switching. Thus we observe again a principal feature of electromagnetic induction when 
the primary flux changes as a step function: 

^ 0 

In fact at the very first instant, the currents induced in all the rings have such a 
magnitude that the magnetic flux they caused in any ring is exactly equal to the primary 
flux. 

Now we are prepared to describe the asymptotic behavior of the field in a conducting 
medium. We will make no assumption on the uniformity of the medium or the locations 
of the primary sources. Let us suppose that the primary flux is instantaneously switched 
off at the instant t = to- At times smaller than to, the magnetic field has been constant 
so that no induced currents are present in the conductor before to. Correspondingly, the 
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circulation of the magnetic field inside the medium along any arbitrary path is zero during 
that range of time: 

/ 
Ho-dl = 0 t<to (1.243) 

provided that the path of integration does not enclosed a current line of the primary 
sources. 

A conducting medium can be presented as consisting of a system of current rings with 
arbitrary shapes and in this way one can apply results that were obtained earlier. Inas-
much as the flux through any ring at the instant t — to remains the same as that for earlier 
times the magnetic field at any point in the conducting medium does not change either. 
This conclusion stems from the fact that for an arbitrary surface inside the conductor, we 
have: 

i^{4) = ^0 

Thus immediately after disappearance of the primary flux ipQ we have: 

H{4) = Ho (1.244) 

Let us emphasize that this relationship does not exist outside the conductor. 
From eqs. 1.243 and 1.244 it follows that the circulation of the magnetic field for any 

path inside a conductor is zero at the instant to and therefore there are no induced 
currents: 

J = 0 and J5; - 0 if t = t+ (1.245) 

There must, however, be some sources of the magnetic field which maintain the primary 
field when the source is switched off. These sources are induced surface currents which 
are situated close to the source of the primary field if this one is located outside the 
conductor. If the source is located within the conductor, as in induction logging, induced 
currents initially exist near the source only. 

Induced currents, concentrated on the surface of a conductor or near the primary 
sources, decay with time as the electromagnetic energy is converted into heat and ap-
pears at various points in the medium. It is obvious that the decay of the field takes place 
more rapidly in a highly resistance medium, while it decreases slowly in a conductive 
medium. 

Let us note that in solving many boundary problems related to the calculation of 
nonstationary fields, conditions 1.244 or 1.245 are extremely important and are usually 
referred to as initial conditions. They are in essence a modification of Faraday's law and 
therefore must be satisfied by any nonstationary field in a conducting medium. 

Suppose now that the primary field changes as a sinusoid with relatively high frequency 
(Fig. 1.50a). Such a signal can be approximated qualitatively by a system of pulses of 
alternating sign (Fig. 1.50b). 
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Figure 1.50. Presentation of a high-frequency oscillation as a system of step functions. 

Then each pulse can be presented as the difference of two step functions arising with 
an interval of time of half the period of the oscillations. 

It is clear that if the current changes in the primary source with relatively high fre-
quency, the induced currents essentially remain either on the surface of the conductor 
or close to the source depending on whether the source is located outside or within the 
conductor. This explains why the high-frequency asymptote coincides with that of the 
early stage in transient electromagnetic fields. 

1.5. Electromagnetic Field Equations 

In previous sections, by making use of Gauss's and Stoke's theorems, we have developed 
the basic laws for the electromagnetic fields in the form of equations. In accord with these 
laws the electromagnetic field must satisfy the following set of equations: 

/ 
E-dl I-l'^"* 

L S S 

dS 

I D dS = 

(1.246) 

(1.247) 

(1.248) 



93 

Figure 1.51. Two surfaces ^ i , and £'2, bounded by a contour L. 

B'dS = 0 (1.249) 
/ 

where E and H are electric and magnetic field vectors, B and D are magnetic and 
electric induction vectors, e is a charge in a volume surrounded by a surface S, and j is 
conduction current density. The various vectors are by a set of relationships known as 
the constitutive equations: 

D = eE B = iiH j = (TE 

where e, /i and a are the dielectric permeability, the magnetic permeability the electrical 
conductivity of a medium, respectively. The paths of integration L, can be arbitrarily 
situated, and in some cases they can cross the boundaries between media having different 
properties. Equations 1.246 through 1.249 are called the Maxwell's equations in integral 
form, and each one of them describes a specific physical law. For this reason, any dis-
tribution of an electromagnetic field must satisfy these equations. They define the field 
at any point in the medium, including points situated on interfaces. Maxwell's equations 
describe the field everywhere regardless of the nature of the change in electrical properties 
from one region to another. 

The first equation (eq. 1.246) is in essence Faraday's law, while the second equation 
(eq. 1.247) follows from a combination of Ampere's law and the postulate of conservation of 
charge. The third equation (eq. 1.248) is obtained from Coulomb's law for a nonalternating 
electric field. However, it remains valid regardless of how quickly the field may change. In 
order to demonstrate this we will use the postulate of conservation of charge (eqs. 1.131-
1.132): 

/ 
j 'dS = -e or div j = - — (1.250) 

Applying the second Maxwell equation (1.247), twice along contour L, once in one 
direction, and then in the opposite direction, and considering two surfaces {Si and 5*2), 
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bounded by the same contour L (Fig. 1.51), we have: 

(j>H'dl= f j'dS^ fDdS 

L Si Si 

(j)H'dl= f jdS+ I b'dS 
52 52 

Adding the two equations and considering that the surfaces Si and ^2 form a closed 
surface, we obtain: 

jj'dS^ i-0 - cbi'dS^ "^^'^^ 
s s 

and in accord with eq. 1.250: 

5 

whence 

D'dS = e 
/ 
s 

By analogy, using the first Maxwell equation, we also have: 

/ 
B-dS = {) 

s 

The fourth Maxwell equation (eq. 1.249) represents the fact that the magnetic flux 
through an enclosed surface is zero. This consideration demonstrates that the field equa-
tions can also be written as other sets of equations: 

L S 

<j)H-dl= f j'dS-\-^ fD'dS (1.251) 

L 

-«-S 
inasmuch as eq. 1.248 and 1.249 can be derived from the system given in eq. 1.251. 
However, we will use the basic system of equations (eqs. 1.246-1.249). It must be obvious 
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that in any actual situation, the electromagnetic field has a finite value everywhere in 
space. However, in order to simplify the computation of fields, often some assumptions 
are made about the sources for the primary field. For example, in place of an actual source 
magnetic or electric dipoles may be considered. This type of approximation immediately 
leads to the existence of infinitely large values for the field at infinitesimal distances from 
such sources. Therefore, eqs. 1.246-1.249 cannot be applied in the immediate vicinity 
of such idealized sources. For this reason, some very small volume in which the source 
is situated is conceptionally surrounded by a surface on which the field almost coincides 
with that caused by the currents and charges of such a primary source. In other words, 
near the source the total field has to approach the primary field. One can say tha t this 
condition characterizes the type, intensity and location of a primary field source. 

On the other hand, with an unlimited increase in distance from the source the field 
must decrease in a proper way. This condition at infinity must be taken into account in 
the full description of a field. Finally, there is one more condition which appears when a 
transient field is being considered. For example if the current or charges representing the 
source or the primary field change in the form of a step function at some moment t = to, 
eqs. 1.246 and 1.247 cannot be applied, since the derivatives with respect to time are not 
well defined at this moment. Therefore, at this instant, Maxwell's equations are replaced 
by an initial condition as described in section 1.4. 

Thus, a full description of the electromagnetic field includes not only Maxwell's equa-
tions, as given by eq. 1.246-1.249, but also conditions that must be met near the primary 
source and at infinity, along with an initial condition. Thus, the following series of steps 
can be recognized in defining an electromagnetic field, making use of eqs. 1.246-1.249: 

1. Determination of a set of functions, satisfying the system of integral equations. 

2. Choice among these functions of those which satisfy the condition at infinity. 

3. Choice among the remaining functions of those which satisfy the condition near the 
source. 

4. Choice among the remaining functions of those which satisfy the initial condition, 
if a transient field is being considered. 

From the physical point of view, it is apparent that a solution found in this way repre-
sents the electromagnetic field generated by the given distribution of sources. However, 
for the solution of a variety of problems, it is frequently preferable to apply diflPerential 
equations. For this reason, we will consider a differential form of Maxwell's equations: 

f)J3 
curlJ5; = ——- divD = 6 

^ , ^ (1-252) 
c u r l l f = aE^^— div B = 0 

at 

here J is a free charge. 
In contrast to the integral form, given in eq. 1.251, all the vectors tha t enter into each of 

the equations in 1.252 are considered at a single point. The essential feature of Maxwell's 
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equations, written in the differential form, is that they describe the field only at points 
where the first derivatives of the field exist, that is, where the divergence and curl have 
meaning. Thus, unlike Maxwell's equations in the integral form, the set of equations given 
in eqs. 1.252 can be apphed for so-called well behaved points. 

However, as is obvious, there can be points, lines, and surfaces where some components 
of the electromagnetic field are discontinuous functions of the spatial variables. For ex-
ample, the normal component of the electric field is usually a discontinuous function of 
the spatial variables at an interface separating two media with different resistivity. As a 
consequence, we must make use of surface analogies of eqs. 1.252 at such interfaces. Ac-
cording to results obtained in previous sections these may be represented as a continuity 
of tangential components of electric and magnetic fields, that is: 

nx{E2-Ei) = 0 nx (if 2 -Hi) = 0 (1.253) 

where n is a unit vector of the interface, E2 and Ei, and H2 and Hi are electric and 
magnetic fields on either side of such an interface. 

Thus, in essence, eqs. 1.253 are surface analogs to the corresponding Maxwell's equa-
tions given in differential form in eq. 1.252. Therefore, starting from the system of dif-
ferential equations (eq. 1.252) the problem of defining the field consists of the following 
steps: 

1. Determination of a set of functions satisfying the differential equations in 1.252. 

2. The choice among these functions of those satisfying the condition at infinity. 

3. The choice among the remaining functions of those having the given behavior near 
the source of the primary field. 

4. A choice among still remaining functions of those that satisfy the boundary condi-
tions given in eq. 1.253. 

5. A choice among the remaining functions, E and H, of those that satisfy the initial 
conditions, if a nonstationary field is being considered. 

Taking into account, that: 

D = eE B = fiH j = (TE 

the system of equations in 1.252 usually contains two unknowns, namely the electric and 
magnetic field intensities. One can say that we have four differential equations in partial 
derivatives of the first order with respect to two unknown vectors, but more accurately, 
to six unknown components of the electromagnetic field. 

Very frequently it is more convenient to derive equations in which the electric and 
magnetic fields are separated, than to make use of the set of equations in 1.252. Let us 
consider points in the medium where the parameters cr, /i and s do not change: 

da de dfi 
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and where d̂  is an arbitrarily oriented displacement. As has been shown previously 
(section 1.3) electric charges are absent at such points, and therefore, Maxwell's equations 
take the form: 

curl E = —/x—— div E = 0 

^ OE (1-254) 
curl H = aE^ e-^— div i f - 0 

ot 

From the first Maxwell equation, we have: 

curl curl E = —fi~ curl H 

In making use of the vector identity: 

curl curl E = grad div E -V'^E 

and of the second Maxwell equation we obtain: 

f) / BE 
grad div £; = - V ^ ^ - -/x— i aE-\-s^-

ot \ at 

Taking into account the third Maxwell equation d i v ^ = 0, we have: 

. ^ dE d^E 
V^E - / i d — - ^le-^ = 0 (1.255) 

where V'^E = AE is known as the Laplacian of the electric field. 
Similarly, using the second equation in 1.364, we have: 

d 
curl curl H == grad div i f - V^lf = cr curl E -\- e^- curl E 

at 

In making use of the first and fourth Maxwell equations, we obtain: 

V 2 i f - a / x ^ - M e ^ = 0 (1.256) 

Thus, for points in the medium, where the electric and magnetic properties do not 
vary spatially we have obtained equations involving only the electric or magnetic fields. 
The two equations are of identically the same form, being the second order in partial 
derivatives. They are sometimes known as telegraph equations for a conductive medium. 

When these equations are used, the determination of the electromagnetic field can be 
done in almost the same sequence of steps as before: 

1. Definition of various functions that satisfy eqs. 1.255 and 1.256. 



2. The choice among these functions of those that satisfy the conditions at infinity. 

3. The choice among those whose behavior near the source corresponds that for the 
primary field. 

4. The choice among the remaining functions of those that satisfy surface conditions 
given in eq. 1.255. 

5. The choice among the still remaining functions of those that satisfy initial condition 
if a nonstationary field is being considered. 

Now let us consider some special cases. 

Case 1 

First of all, assume that an electromagnetic field does not change with time, that is, all 
the derivatives with respect to time are zero, and that: 

D = SQE and B = ^QH 

Then with accord with eqs. 1.252 and 1.253 we have the following equations for well 
behaved points and for interfaces: 

curl ^ = 0 curl H = j 
(1.257) 

dWE = 6/£o d i v / f - 0 

and 

n X (^2 - ^ i ) = 0 n X {H2 - Hi) = 0 
(1.258) 

£ ; f - ^ ^ ) =. E / . o H^'^ - / f (̂ ) = 0 

where D is the surface density of charge. In this case of a constant field {d/dt = 0), the 
system is split into two parts as follows: 

c u r l ^ = 0 d i v ^ = V^o (#1) 

and at interfaces: 

n x ( £ ; 2 - ^ i ) = 0 E!^^-Ei'^ = E/eo 

and 

curl i f = j d i v i f = 0 (#2) 
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and at interfaces: 

n X (i/2 - H,) = 0 H^^^ - H^'^ = 0 

One part (#1) defines the electric field and clearly shows that the sole source of the 
field is electric charge, which can exist at points where the conductivity changes, such as 
at interfaces. It is clear that the electric field can be found without any knowledge of the 
magnetic field, and that the electric field is governed only by Coulomb's law. When the 
electric field has been determined, current density can be calculated using Ohm's law, 
J = GE, and by making use of the second part (#2), the magnetic field can be found as 
well. It can also be calculated using the Biot-Savart law. 

At this point we will consider a very important case, that of a quasistationary field, 
which is often also called a quasistatic field. 

Case 2 

Suppose that in the second equation describing the field (eq. 1.252) we can ignore the 
second term, which represents displacement current. Then, system 1.252 can be written 
as: 

dH 
curl E = —a——- curl H = j 

dt (1.259) 
div E = 5/8^ div i f = 0 

and at interfaces as: 

n X (JE2 - ^ i ) = 0 n X ( i f 2 - i f 1) =- 0 
(1.260) 

(the surface density of current z ̂  0). 
From these expressions it can be seen that the electric field has two sources: the first 

being volume and surface charges and the second being a change of the magnetic field 
with time. Therefore, the electric field can be represented as a sum: 

E-^E^'^E'' 

where E^ and E'" are caused by charges and a change of magnetic field with time, respec-
tively. At the same time it is important to emphasize that there is a relation between 
these fields, since distribution of induced currents and charges depend on each other. 

In contrast to the behavior of the electric field, the quasistationary magnetic field has 
but one source, conduction currents. Comparing the equations for the magnetic field 
(eq. 1.259) with those for a constant magnetic field (eq. 1.257) we see that they are pre-
cisely the same. This means that the magnetic field at any point in the medium is defined 
by the instantaneous values of current density throughout the conduction medium, and 
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can be calculated using only the Biot-Savart law. One can say that the quasistationary 
approximation means that we neglect propagation time for electromagnetic energy, that 
is, it is assumed that the field travels instantaneously from the transmitter to the receiver. 

In order to emphasize this, let us write down the field equations 1.255 and 1.256 for 
this approximation. Discarding terms involving displacement currents, we have: 

A ^ = a / i — A H = afi— (1.261) 

These equations are known as the diffusion equations, that is, they describe the pen-
etration of energy, but do not take into account wave propagation. They can be used 
provided that the time at which the signal is recorded or the period of oscillations sig-
nificantly exceeds the travel time for the field from the source to the observation point. 
It can be said that the quasistationary approximation is valid when conduction currents 
dominate over displacement currents in a conducting medium, and the arrival time for a 
signal in an insulator is much less than the time at which measurements are performed, 
or the period of the oscillations being observed. This assumption is equivalent to stating 
that the signal arrives instantly at all points where the field is to be measured. 

It might be worth noting that even though the propagation effect is not considered in the 
quasistationary field approach this field contains some essential features of propagation. 

Case 3 

At this point we will examine a special case in which the electromagnetic field varies as a 
sinusoidal or cosinusoidal function of time. This leads to some important simplifications in 
the presentation of Maxwell's equations (through use of the so-called operator notation). 
Suppose that we have a sinusoidal oscillation: 

M = Mosin(cj^-h0) (1.262) 

where MQ is the amplitude of the oscillation, 0 is its phase, and u is the angular frequency. 
Making use of Euler's formula: 

giM+0) _ cos(a;^ + 0) + i sm{ujt -f (p) 

we can write eq. 1.262 as the imaginary part of an exponential term: 

Mo sm{ujt -h 0) - Im Me*"̂  (1.263) 

where M = Moe^^. Therefore, we have: 

Me*^* - Moê ê̂ '̂ ^ - Moe*̂ *̂+̂ ^ 

Whence 

Im(Me^^*)-Im[Moe^^^*+^^] 

== Im [Mo {cos{ujt + 0) + i sm{ujt -f- 0)}] = MQ sin(cc;t -h 0) 
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Similarly, a cosinusoidal oscillation can be represented by the real part of a complex 
function: 

Mo cos {out -\-(j)) = ReM ê *̂ (1.264) 

where M is equal again to M^e^^. 
Let us emphasize tha t the complex amplitude, M , is defined by the real amplitude, MQ, 

and the phase, 0, of an oscillation. 
Inasmuch as: 

M e'^* = Mo cos{(jjt + (/)) + i Mo sin(a;t + 0) 

and since both terms on the right-hand side of this equality are solutions of Maxwell's 
equations, one can operate using only the function Me^^^ After finding a function that 
satisfies this system of equations one must then take either the imaginary or real part . 
The representation of a solution by the form Me^^* has remarkable feature. In fact, it 
is actually the product of two functions, one being the complex amplitude, M , which is 
a function of coordinates and the properties of the medium as well as of frequency, but 
which does not depend on time. The second multiplier, ê *̂, depends on time in a simple 
manner and, as is readily seen, after differentiation still remains an exponential. This fact 
permits us to write Maxwell's equations in a form which does not contain the argument 
t, and this essentially facilitates the solution. It is appropriate to note tha t the sinusoidal 
function, which is being considered, has been in effect for such a long time tha t there is 
no need to take into account an initial condition. 

Thus, representing a field and charges in the form: 

H = H ê *̂ E = E e'"^' 6 = 6 e'""' (1.265) 

and substituting them in Maxwell's equations (eq. 1.252) we obtain: 

(1.266) 
cuvlE = —luJiiH 

curl H = (JE + lujsE 

inasmuch as: 

^e^^*-ia;e^^* 
dt 

dwE 

d i v ^ 

= 6 

= 0 

Similarly, we have the following for the eqs. 1.255 and 1.256: 

V^H - (iGLiuj - uj'^efi)H = 0 , , 
. (1.267) 

V'^E - {ia/j^uj - uj^efM)E = 0 

The quantity: 

k'^ = la^uj - uj'^e^i (1.268) 
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is usually considered to be the square of a wave number, k. For quasistationary behavior 
of the field in which displacement currents are neglected, the wave number can be written 
as: 

k = (ia/ia;)^/2 (1.269) 

Alternate forms are: 

k = iia,.)y^={^y\l+i) = i ^ (1.270) 

where h is the skin depth, defined as: 

GjlUJ ^ = ( — j =^\-f^ (1-2^1) 

Here p is the resistivity in ohm-meters, / is the frequency in Hertz, and // is the magnetic 
permeability, normally taken to be the value for free space, which is 47r x 10"'^ H/m. 

Maxwell's equations can be written as follows for a harmonic quasistationary field 
behavior: 

curl E = —lujiiH div E = 6/eo 
' (1.272) 

QMYXH^GE d ivJ3 = 0 ^ ^ 

The hat notation previously used to indicate a complex amplitude has been omitted for 
simplicity. 

By algebraic recombination of these four equations we have the Helmholtz equations: 

V^ii^ - icr/icjif - 0 V^£; - ia/ /c^^ = 0 (1.273) 

The system of equations in 1.272 is particularly simplified in the case in which a medium 
consists of parts within which conductivity is constant, that is, a piecewise uniform 
medium. In this case, electric charges can arise only at interfaces and within the uni-
form pieces the volume density of charge is zero. Therefore, in place of eqs. 1.272 within 
each volume we have: 

curl E = -\ujpH div ̂  == 0 

cur l f / = cr^ div i f - 0 

The piecewise uniform medium is the most widely used model for a geoelectric sec-
tion and it is appropriate here to formulate again the steps to use in determining the 
quasistationary harmonic field for this type of model. 

The steps are: 
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1. Determination of solution functions that satisfy the systems of equations: 

curl E = —iujfiH div ^ := 0 

cm\H = aE div B = 0 ^^'^^^^ 

or 

V^H - k^H = 0 V^JE; -k'^E = {) 

where k'^ = iaficj. 

2. A choice among those functions of those which satisfy the source condition for the 
primary field. 

3. The choice among the remaining functions of those which satisfy the condition at 
infinity. 

4. The selection among the still remaining functions of those satisfying boundary con-
ditions at each interface, that is, the continuity of tangential components of the 
electromagnetic field. 

As has been pointed out previously, inasmuch as the field under investigation must be 
stationary, there is no initial condition to be met, and because of this the solution is made 
such simpler. It might also be noted that a solution of eq. 1.273 will be in the form of a 
set of complex amplitudes for the electric and magnetic fields. In accord with eq. 1.264 
we obtain the amplitude MQ and phase of an oscillation 0o in the basic form (eq. 1.262). 

It should be apparent that when a solution has been obtained for harmonic fields a 
solution can also be derived for any arbitrary time dependence through the use of the 
Fourier transform. Most frequently the electric and magnetic field vectors cannot be 
completely described by using only a single spatial component. For this reason a solution 
can turn out to be very cumbersome. Some simplification can be obtained by making use 
of various auxiliary functions. There are two ways in which such auxiliary functions can 
be introduced. One approach follows from use of the third equation in the set 1.274: 

divE^O (1.275) 

This is an approach which is commonly used when the field is energized using a non-
grounded loop, as for example, a magnetic dipole. In this case only inductive excitation 
of the field takes place. In accord with eq. 1.275, the electric field can be defined as being 
a spatial derivation of the vector potential, A*: 

E = cmlA* (1.276) 

because the relationship: 

div curl A* = 0 
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always applies for any vector. 
The function A* is called a vector potential of the magnetic type. It should be obvious 

that the same electric field can be described by an infinite number of different functions 
A*. For example, the gradient of any function can be added to some fixed potential A* 
to provide the result: 

curl( A* + grad 0) = curl A* + curl grad 0 

Taking into account another vector identity: 

curl grad 0 = 0 

we have: 

curl( A* + grad (p) = curl A* = E 

This ambiguity in definition of A* can be used to our advantage in simplifying equations 
when the vector potential is used, as well as to express both vectors of the field in terms 
of this single function. 

To obtain a solution we substitute eq. 1.276 into the second equation of 1.274 so that 
we have: 

curl H = a curl A* — curl aA"^ 

since a is considered to be a constant. This can all be written as: 

curl(if - a A*) = 0 

whence: 

i f - a A * = grad0 (1.277) 

where (p is some scalar function. Just as is the case with the vector potential this function 
is ambiguous. 

Substituting expressions for vector quantities E and H in terms of functions A* and 
(f) in the first equation of 1.274 we obtain: 

curl curl A* = —iujfi{aA* + grad0) 

Inasmuch as: 

curl curl A* = grad div A* — V^ A* 
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where V^ is Laplacian, we have: 

graddiv A* - V^A* = -ia/iLuA* - ia;/igrad0 (1.278) 

The expressions which have been obtained for the functions A* and 0 are quite com-
pUcated. In order to simphfy this last equation, we now choose a pair of function A* and 
0, that satisfy the condition: 

divA* = -ia;/i0 (1.279) 

By using a gauge condition the differential equation becomes a Helmholtz equation for 
the vector potential A*: 

V^A* - k'^A* = 0 (1.280) 

This is precisely the same equation for either the electric or the magnetic field. Making 
use of the condition 1.279 both vectors, comprising an electromagnetic field, are expressed 
in terms of a single vector potential quantity, A*. In accord with eqs. 1.276, 1.277 and 
1.279 we have the following representations for the two vector quantities: 

E = curl A* 

H = a A* grad div A* (1.281) 
i ( j / i 

The behavior of the vector potential at interfaces follows from the required continuity for 
tangential components on the electric and magnetic fields at those boundaries. It is not 
particularly difficult to formulate conditions near the source of the primary field nor at 
infinity. 

Let us examine another way for introducing the vector potential. From the fourth 
equation in system 1.274 we can represent the magnetic field as being: 

11 = curl A (1.282) 

The function A is called a vector potential of the electrical type and this definition is 
normally used when the electromagnetic field is energized through the use of a grounded 
wire. Substituting this definition for the vector potential into the first equation of set 
1.274 we have: 

curl E = — icj/i curl A 

curl(£^ + iufiA) = 0 
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whence: 

E + iuj/iA = grad U 

or 

E = -lujiiA + grad U (1.283) 

Substituting eqs. 1.282 and 1.283 into the second equation of the set 1.274, we have: 

curl curl A = —lajiujA + a grad U 

or 

grad div A — V^ A = —laiiujA + a grad U 

Considering that there are an infinite number of functions A and [/, tha t will satisfy 
eqs. 1.282 and 1.283, we will seek a pair of them that simplifies the last equation. One 
such choice is: 

U=-d\YA (1.284) 
(J 

With this gauge condition we again obtain a Helmholtz equation for the electric vector 
potential: 

V^A - P A = 0 (1.285) 

and both vectors, comprising the electromagnetic field, are expressed in terms of a single 
vector potential functions. A: 

i f = curl A 
1 (1.286) 

E — —iujfiA H— grad div A 
a 

As in the previous case the behavior of this vector potential near the source and at 
infinity, as well as at interfaces, follows from the corresponding behavior of the electric 
and magnetic fields under these conditions. 

In conclusion, let us review some of the results which are contained here. If one of 
the vector potentials is found, then the electric and magnetic fields can be determined 
by taking corresponding derivatives in accord with either eq. 1.281 or eq. 1.286. When 
an electromagnetic field is caused by both induced currents and charges it is necessary 
in most cases to make use of both vector potentials to determine the field, but there 
are some important exceptions. For example, the most important features of the theory 
of induction logging can be derived, making use of the vector potential of the magnetic 
type. A*. Just as is the case with harmonic fields solutions for vector potentials can be 
extended to the case in which the functions depend arbitrarily on time. 
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1.6. Relationships between Various Responses of the 
Electromagnetic Field 

In this section we will explore some general relationships between the various responses 
of an electromagnetic field. First of all we will start from a relationship between the 
quadrature and inphase components of the field. For example, representing the complex 
amplitude of the electric field as being the sum of two components: 

E = lnE-\-iQE 

and substituting these into Helmholtz equation (1.273) we have: 

V'^{lnE-\-iQE)-iafiuj{lnE + iQE) - 0 

or 

V^ In ^ = icr/io; Q ^ 

Thus, there is a relationship between the inphase and quadrature components of the 
spectrum. Let us examine this in more detail. We will make use of a solution in the 
form Me^^*, where M is a complex amplitude of the spectrum. In obtaining an actual 
sinusoidal solution one should take the imaginary part of this expression: 

Mosin(cjt + (/))-QMe^^* 

If the solution contains the complex amplitude term from the physical point of view this 
means that there is a phase shift and thus the field can be represented as being the sum 
of the quadrature (Q) and the inphase (In) components. We will have: 

M - I n M + i Q M = MoCos0 + iMosin0 (1.288) 

where MQ and (p are the amplitude and phase of an oscillation, respectively. 
Using the conventional symbols for representing a complex variable we can write M as: 

M{z) = U-\-iV (1.289) 

where U and V are the real and imaginary parts of the function M{z) and z is an argument 
defined as: 

z = X -\- iy 

where x and y are coordinates on the complex plane z. Usually the complex amplitude 
M of an electromagnetic field is an analytic function of frequency, uj. If this is the case, 
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Figure 1.52. Path of integration consisting of a semi-circle with an infinitely large radius 
and centered on the x-axis. 

a necessary and sufficient condition for analyticity of a function M the Cauchy-Reimann 
is: 

dll_dV_ dU__ dV 
dx dy dy dx 

(1.290) 

The Cauchy-Reimann conditions express the relationship that exists between the real and 
imaginary parts of an analytic function in the complex plane in differential form. In our 
case the complex variable z is the frequency: 

uj = Reuj -\-ilm(jj 

and we will seek a relationship between the quadrature and the inphase components of 
the field for real values of u, because the electromagnetic field is observed only at real 
frequencies. For this purpose let us use the Cauchy formula which shows that if the 
function M{z) is analytic within a contour C, as well as along this contour, and a is any 
point in the z-plane, then: 

/ 

M{z) 
dz = 2niM{a) < 

1 if a G C 

1/2 if a is on C 

0 if a ^ C 

(1.291) 

The Cauchy formula permits us to evaluate M{a) at any point within the contour C, when 
the values of M{z) are known along this contour. This relationship is a consequence of 
the close connection which exists among all values of an analytic function on the complex 
plane z. 

Let us consider a path consisting of a semi-circle with an infinitely large radius, centered 
on the X-axis. The internal area of the contour includes the upper half-plane as shown in 
Fig. 1.52. We will attempt to find a quadrature component for the function M = U -\-iV 
by assuming that the inphase component U is known along the 2;-axis or vice versa. Using 
the Cauchy formula, we have: 

M{0 = -P 
ITT / 

M{z) 
dz (1.292) 
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The point ^ = e -\-ir] lies along the path of integration and the symbol P indicates the 
principle value of the integral that is to be used. Inasmuch as the path of integration 
coincides with the j:-axis {rj = 0) we have: 

oo 

M{e,0) = ^P f^^^^^dx (1.293) 
in J X — s 

— CXD 

In developing eq. 1.293 it has been assumed that the value for the integral along the 
semi-circular part of the path of integration vanishes as the radius increases without limit. 

Because: 

M{e,0) = U{e,0)^iV{e,0) 

and 

M ( x , 0 ) - / 7 ( x , 0 ) + i y ( x , 0 ) 

we obtain: 

oo 

Uie,0)='-P f^^^d. 
TT J X — e 

(1.294) 

TT J X - . 

Ui.,0)_^^ 
• e 

—oo 

The integrands in these expressions are characterized by a singularity which can readily 
be removed by making use of the identity: 

P 

—oo 

/ - ^ = 0 (1.295) 
J X-E 
-oo 

Now we can rewrite eq. 1.294 in the form: 

oo 

^(e,Q) = l / ^ ( - ' " ^ - ^ ( ^ ' » ) d . (1.296) 
TT J X - £ 

—oo 
oo 

TT J X-E 
—oo 

inasmuch as: 

oo oo 

J x-e J x-e 
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It can readily be seen that the integrands in eqs. 1.296 and 1.297 do not have singularities, 
and these expressions establish the relationship between the real and imaginary parts of 
some analytic function. 

Let us return to consideration of the complex amplitude of the field: 

M{uj) - In M{uj) + i Q M{uj) 

In accord with eqs. 1.296 and 1.297 the relationship between the quadrature and inphase 
components of the field are: 

CXD 

lnM{uJo) = - / -—^——-—^-^dcj 1.298 
TT J (jJ -(jjQ 

—oo 

oo 
^ , , , , If lnM{uj) - InMicJo) ^ 
QM(uJo) = — / -^ ^—^duj (1.299) 

TT J (jJ -UJo 
—oo 

Thus, when the spectrum of one of the components is known, the other component de-
scribing a field can be calculated by making use of either eq. 1.298 or 1.299. 

It is now a simple matter to find the relationship between the amplitude and the phase 
responses of a field components. Taking the logarithm of the complex amplitude M we 
have: 

lnM = lnMo-hi0 (1.300) 

From this equation we see that the relationship between the amplitude and phase re-
sponses is the same as that for the quadrature and the inphase components. For example, 
for the phase response we have: 

oo 

^ _ 1 r l n M o ( a ; ) - l n M o M ^ ^ ^̂  3^^^ 
TT J iJ -UJo 

—oo 

For practical purposes it is preferable to express the right-hand side of eq. 1.301 in another 
form. After some algebraic operations, we obtain: 

du (1.302) 

—oo 

1 ^ 

In coth -
2 

where: 

L = In Mo li = \n{uj/uJo) 

It can be seen from eq. 1.302 that the phase response depends on the slope of the amplitude 
response curve when plotted on a logarithmic frequency scale. Inasmuch as the integration 
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Figure 1.53. The kernel function (weighting factor) for the transform given in eq. 1.302. 

is carried out over the entire frequency range, the phase at any particular frequency UJQ 
depends on the slope of the amplitude response curve over the entire frequency spectrum. 
However, the relative importance of the slope over various portions of the spectrum is 
controlled by a weighting factor | lncoth(ii/2)| which can also be written as: 

In 
ou -\-(jJo 

CJo 

The weighting factor is shown graphically in Fig. 1.53. It increases as the frequency is 
close to (Jo, and becomes logarithmically infinite at that point. Therefore, the slope of 
the amplitude response near the frequency for which the phase is to be calculated is 
much more important than the slope of the amplitude response curve at more distant 
frequencies. 

It should be noted that calculation of the amplitude response from the phase can only 
be done with an accuracy of some constant. Equations 1.301 and 1.302 lead us to the 
following conclusions. First of all, measurement of the phase response does not provide 
additional information on the geoelectric section when the amplitude response is already 
known. However, it may well be that the shape of the phase response curve more clearly 
reflects some diagnostic features of this section than does the amplitude response curve. 

It is important to stress that while there is in essence a unique relationship between 
the quadrature and the inphase responses, as well as between the amplitude and phase 
responses, this does not mean that there is a point by point relationship between them. 
In fact measuring both amplitude and phase at one or a few frequencies provides two 
types of information characterizing the geoelectric section in a different manner. The 
same conclusion can be derived for the quadrature and the inphase components. 

We will now investigate the relationship between frequency domain and time domain 
responses. In most cases considered in this section a transient electromagnetic field is 
excited by a step function current in the source. Moreover the theory of the transient 
induction logging described in this monograph will be developed for this type of excita-
tion. For this reason the relationship between frequency response and transient response 
corresponding to this single type of excitation will be our principal concern. The infor-
mation we need is obtained through use of the Fourier transform which takes the well 
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Figure 1.54. The path of integration for eq. 1.306. 

known form: 
oo 

Fit) = ^ l F*{uj)e-'^'duj 

— OO 

OO 

F%co)= J F{t)i 

(1.303) 

)e^^Mt 

When the current in the source changes as a step function in time, the primary magnetic 
field accompanying this current does hkewise: 

Ho{t) = Fo{t) 
iHo t 
\o t 

<0 
^ 0 

According to eq. 1.303 the spectrum for the primary magnetic field is: 

Ho{uj) = F*{uj) = Ho/iuj 

(1.304) 

(1.305) 

The amphtude of this spectrum decreases inversely proportionally to frequency while the 
phase remains constant. 

Inasmuch as low frequencies prevail in the spectrum of the primary field when step 
function excitation is used application of this excitation is often preferable in practice. In 
accord with eq. 1.303 the primary magnetic field can be written as: 

OO 

ZTT J liU 
(1.306) 

where the path of integration is not permitted to pass through the point cu = 0 (Fig. 1.54). 
Let us write the right-hand integral as a sum: 

OO 

27ri J 
duj 

-£ + e OO 

- / da; + - ^ / c l a ; + - ^ / 
TTl J UJ ZTTl J UJ ZTTl J 

da; + 
UJ ZTTl J UJ 

-e +£ 

dct; 
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and integrate along a semi-circle around the origin whose radius tends to zero. 
In calculating the middle integral we will introduce new variables, p and Lp\ 

uj = pe'^ 

Then, we have: 

duj = ip ê*̂  dip 

and 

+ e 27r 
-iivt 

27ri7 uj 2m J p&^ 2 ^ 

Correspondingly, the second expression for the primary field when the variable of integra-
tion takes on only real values is: 

oo 

— OO 

Now, making use of the principle of superposition, we obtain the following expression for 
a nonstationary field: 

Hit) 

OO 

= El / ^ M e - i - d u ; (1.308) 
27ri J UJ 

OO 

H{t) = ^ + El [ B ^ e-'-* du (1.309) 

— O O 

where H{uj) = In H{uj)-\-iQ H{LJ) is the complex amplitude of the spectrum of the chosen 
component of the magnetic field, which is assumed to be known. 

Let us write eq. 1.309 in the form: 

OO 

Ho Ho f Q H{(jj) cosLot— In H{uj) sinujt 

^^*^^T^2^J Z "̂̂  
T (1-310) 

i /* Qi^(a;) sina;t + Ini7(6(;)cosa;t 
ZTT J UJ 



114 

Inasmuch as 

In H{uj) = In H{-uj) 

QH{uj) =-QH{-u;) 

the second integral in 1.310 is zero, and therefore: 

(1.311) 

OO 

Hit) = ^ + ^ f QH{u^)cosut-lnH{uj)smujt ^^ 
2 IT J UJ 

0 

For negative times, H{t) = HQ, and by substituting t = —t: 

CO 

HQ HQ f Q H{UJ) COS cut-\-In H{UJ) sin cut 
Ho = -r- -\ / do; 

2 TT J LJ 

0 

OO 

_ _ ^ Ho^ f Q ^ ( ^ ) cos out + lnH{uj) sinut fl 313^ 
~ 2 TT J UJ ^ V • J 

Let us take note tha t in these last two expressions time is taken as a positive quantity. 
Combining eqs. 1.312 and 1.313, we obtain: 

H{t) = -Ho f^^^^cosLJtduj 
UJ 

0 

and 

OO 

H{t) = Ho--Ho f^-^^-^^sinutdu (1.314) 
TT J UJ 

0 

Correspondingly for derivatives with respect to time of the magnetic induction, B, we 
have: 

OO 

B{t) = Ho / QB{uj)sinujtduj 

(1-315) 

B{t) = Ho / In B{uj) cosujtduj 
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Equations 1.312 and 1.315 permit us to calculate the transient response when either 
the quadrature or the inphase component of the frequency spectrum is known. It is often 
convenient to introduce new scale variables in these equations. Such a scale variable can 
be defined as: 

in^ \h) 

where h is skin depth, a is a linear dimension, for example, a radius of the borehole, and 

It should be obvious that: 

2 / T - \ 2 

where 

T = 27r( — and t= -—— - ] 

Using these variables: 

oo 

B{t) - -167rai7o I hiB (Sn'^ay) cos [{r/afy] dy 

0 
oo 

B{t) = -WnaHo f QB{S7r'^ay) sin [{r/afy] dy 

(1.316) 

Usually, because of the complexity of the expressions for the frequency spectrum, the only 
way to obtain numerical results from eqs. 1.312 to 1.316 is by numerical integration. 

Up to this point we have examined the relationship between frequency and transient 
responses and have derived formulae for calculating the time-domain field for the case 
in which the primary field changes as a step function of time. In so doing we have 
assumed that the frequency spectrum for the field is known. However, in practice, the 
use of this type of excitation meets with some practical difficulties. For example, due 
to the inductance in a transmitter loop, the current cannot be terminated instantly, and 
because of this, in place of a step current behavior there is a gradual decrease of current in 
the transmitter. The time required for the current to vanish in the transmitter is usually 
called the ramp time. In order to investigate the effect caused by such behavior of the 
transmitter current, it is appropriate to use calculations of the transient field generated 
by a step function excitation, rather than refer to frequency domain fields by applying 
Fourier transform to the measurements. The further approach is based on the use of 
Duhamel's integral which is described below. 
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Figure 1.55. Presentation of the primary field for determination of Duhamel's integral. 

Assume that a primary field varies with time like the function shown in Fig. 1.55. It 
should be clear that this function can be thought of as being the sum of step functions 
with the amplitude AHO{T), where r is the instant at which the excitation occurs. Also 
let us assume that the transient field caused by the unit step function is known and is 
described by the function A*{t — r) . It is clear that a step function with the amplitude 
AHO{T) generates a transient field given by AHo{T)A*{t - r) . 

Adding the actions of all such step functions occurring at various times we find the 
expressions for the total transient response for any component of the magnetic field: 

Hiit) = Ho{0)A*°{t) + ^ AHo{T)A:{t 

Ho{0)A*°it)+ }2 
^ dHo{T) 

dT 
AUt-r)AT 

As can be seen from Fig. 1.55, the approximation: 

becomes more accurate with a decrease of the interval Ar. In this expression A*{t — r) is 
the response of the medium to the ith component of the magnetic field Hi, when the unit 
current step function occurs at the instant t = r. For instance for inductive excitation of 
the field A*^ is identically zero, and therefore we have: 

Hi{t) = J2 'J^m-r)Ar 

In the limiting case as Ar approaches zero we obtain a convolution integral: 

H, ^"°nA:{t-r)dr 
dT 

(1.317) 
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Figure 1.56. Time variation of the primary field described by eq. 1.319. 

This integral is also called Duhamel's integral and it permits us to find the transient 
response for an arbitrary shape of a current excitation when the transient response of the 
medium for a step function excitation is already known. 

Integrating by parts the right-hand side of eq. 1.317, we obtain: 

I dHoir) ^, 
dT 

A*{t-T)dT = HoiT)A*{t~T ) - / HO{T) 
10 4 

dA*{t-T) 
dT 

dr 

t 

= Ho{t)Am - Ho{0)Am ~ j H o ( r ) ^ ^ ^ i t l ) dr 

(1.318) 

This is known as the second form of Duhamel's integral. 
Similar expressions can be written for the electric field. 
Let us now consider an example. Suppose that the behavior of the primary field de-

scribed by the linear function shown in Fig. 1.56, that is: 

^o(r) = { 
Ho r < 0 

HO{1-T/T) O^T^T 

0 T^T 

(1.319) 

where T is the ramp time. 
Substituting eq. 1.319 into eq. 1.317 we obtain: 

1 

(1.320) 

In the limit as T approaches zero and applying the central hmit theorem, we have: 

Hiit) = -A*{t)Ho = Ar'Ho 

where A^ ^ is the transient field caused by unit step function where the current is turned 
off. 
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Chapter 2 

ELECTROMAGNETIC FIELD OF THE MAGNETIC 
DIPOLE IN A UNIFORM CONDUCTING MEDIUM 

We will s tar t a development of the theory of induction logging assuming tha t an induction 
probe is placed in a uniform conducting medium and consists of two coils, as shown in 
Fig. 2.1. One coil is the source of the primary alternating field, while the other serves as 
a receiver measuring an electromotive force and therefore the magnetic field. Considering 
such a model we are not able to investigate an influence of a borehole, an invaded zone, 
finite thickness of a layer, eccentricity, efficiency of many coil probes and many other 
parameters, defining radial and vertical characteristics of the induction logging. All these 
questions will be analyzed in detail in the next chapters. At the same time it is appropriate 
to notice tha t very often signals, measured by an induction probe in real conditions, are 
close to those, which would be measured in a uniform medium with a resistivity of a 
formation. 

Simplicity of this model allows us to investigate not only frequency responses of the 
magnetic field, measured by a receiver, but also a distribution of currents in a conducting 
medium. Such will help us to understand deeper physical principles of the induction 
logging as well as some approximate methods of calculation of fields which are widely 
used for interpretation. 

In most cases dimensions of the transmitter coil are significantly smaller than a diameter 
of a borehole and distances to interfaces between layers. For this reason one can replace 
a coil with an alternating current by the magnetic dipole with the moment: 

M = Moe-^^' (2.1) 

where MQ = SUIQ is the moment amplitude; /Q is the current amplitude; uj = 27rf is 
angular frequency; / is the frequency; n is the number of turns; S is the area of one turn. 

As was shown in the previous chapter the quasistationary electromagnetic field is de-
scribed by equations: 

cm\E = - — (2.2) 

cmlH = aE (2.3) 

d iv£ ; = 0 (2.4) 

d i v H = 0 (2.5) 

since a uniform medium is considered. 
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Figure 2.1. Two-coil induction probe in a uniform conducting medium. 

In accord with eqs. 2.4 and 2.3 we have correspondingly: 

E = cmlA* (2.6) 

i f = crA* - grad [/* (2.7) 

where A* and U* are vector and scalar potentials, respectively. 
Substituting expressions 2.6 and 2.7 into the first Maxwell equation, 2.2, we obtain: 

1 1 ^* 9 A* ^dU* 
curl curl A = —GLI —- h a grad ^—-

at at 

Taking into account dependence on time, shown in eq. 2.1, and making use of the equality: 

curl curl A* = graddiv A* — V^A* 

we have: 

grad div A* - V^ A* = ia/io; A* - i/icj grad f/* (2.8) 

where A* and grad U* are complex amplitudes of potentials. 
Assuming, that: 

div A* =- ia ; / i C/* (2.9) 

we obtain from 2.8 the equation for the vector potential A*: 

V 2 A * + A:2A* = 0 (2.10) 

where k'^ = ia/itu. 



121 

Let us choose the spherical system of coordinates i?, 0^ (j) and cyhndrical system r, 0, 
with a common origin, where the dipole is placed and with axis z, {smcf) = 0), coinciding 
with the direction of the dipole moment. 

As was demonstrated in Chapter 1, the primary vortex electrical field, caused by a 
change with time of the primary magnetic field has only the component E\ ^. Corre-
spondingly, one can expect that the secondary vortex electric field also has the same 
component. Making such an assumption and using the relation: E = curl A* it is appro-
priate to derive expressions for the electromagnetic field with the help of one component 
of the vector potential ^*, that is in the cylindrical system of coordinates: 

A* = (0, 0, Al) (2.11) 

Due to spherical symmetry one will look for a solution of the vector potential. A* as a 
function depending on coordinate R only, that is: 

A: = AliR) (2.12) 

Respectively, it is more convenient to consider eq. 2.10 in a spherical coordinate system. 
As is well known, one can write eq. 2.10 in the form: 

d'^Al 2dAl , 2 , , , 

or 

Whence 

pi/ci? p—ifci? 

A : = C — + D - ^ (2.13) 

Inasmuch as k'^ — ia/xo; we have: 

A: = ((7/ia;/2)^/^(l-hi) 

and 

\kR={(j^iujl2f'^(i-l)R (2.14) 

For this reason, the second term of the right-hand side of eq. 2.13 increases with increasing 
distance from the dipole. 

Correspondingly, the vector potential can be described by only the first term of eq. 2.13 
and we have: 

AkR 
K = C-^ (2.15) 
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where C is an unknown coefficient. Whence: 

^ / l * JikR 

div A* - — ^ = C - - {ikR - 1) cos^ 
oz R^ 

since 

dAl _dAl _ 
d(l) ~ dO ~ 

and therefore in accord with eq. 2.9 we obtain: 

AkR 

i(j/i [/* = C - — (1 - \kR) cos 0 

Thus: 
AkR 

W = C -. — (1 - ikR) cos e (2.16) 
ILU/J.R'^ 

Making use of expressions for vector and scalar potentials one can define vectors of elec-
tric and magnetic fields by formulas 2.6 and 2.7. The electric field is located in planes 
perpendicular to the dipole axis and it has only the component E^p. 

In accord with eq. 2.6: 

^ , = curl,A* = - ( - ( i . ^ ; ) - ^ ) (2.17) 

It is obvious that: 

A*ji = AlcosO A ; = -Alsine 

Substituting these expressions into eq. 2.17 after simple transformations we obtain: 

E^ = C-^ ê ^̂  (1 - ikR) sin 0 (2.18) 
R 

In particular, for a nonconducting medium letting a = 0 we have: 

E^ = C^sme 

since /c = 0. 
It is obvious that this expression describes the primary vortex electrical field, caused 

by a change of the primary magnetic field with time, that is: 

£ ; r = c i , sin ̂  
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On the other hand, as follows from the previous chapter (section 1.4), we have: 

(0) iujfiM . 

Comparing these last two expressions we define the unknown constant C: 

^ = ^ (2-19) 

The vector of the magnetic field has two components: 

He = aAl - grad^ U* 

In accord with eq. 2.16 we have: 

grad^t/* = -e^'^ + cos^ 
47r V^^ R^ R 

grad^ U* = - T ^ ê ^̂  (1 - ikR) sin 6 

Therefore: 

M 

2M 

He = - ^ ê ^̂  ( -Pi?2 + 1 - ikR) sin 0 

Hn=-^^^''{l-ikR)cose 

Finally, we obtain the following expressions for complex amplitudes of the electromagnetic 
field of the magnetic dipole: 

£ ; ^ = | j ^ e " = « ( l - i f c i ? ) s i n 0 (2.20) 

HR=^^e''"'{l-ikR)cose (2.21) 

He = - ^ e ' * ^ { I - i k R - k'^R^)sin6 (2.22) 

Proceeding from these equations we will investigate the behavior of the electromotive 
force induced in the receiver of the two coil induction probe as well as the main features 
of the distribution of induced currents. 

Suppose that a receiver coil is significantly smaller than the length of the induction 
probe. In other words, it will be assumed that all turns of the coil have the same area 
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and they are located at some distance from the transmitter coil. It is clear that similar 
assumptions are applied to the transmitter coil since it is replaced by the magnetic dipole. 

By definition the electromotive force in one turn of the receiver coil is defined as: 

^ = i E-dl 

Taking into account the axial symmetry the latter is significantly simplified and we have: 

^ = E^ idl^ = E^27rro 

where TQ is the radius of the turn. 
Making use of eq. 2.20 we obtain the following expression for the electromotive force in 

the coil receiver having n turns: 

^ = E,n27rro = '^^^^^^ e^"^ (1 - ikR) (2.23) 

where Mr = UTST is the transmitter moment; MR = TIRSR = nuTrrl is the receiver 
moment; sin6> = VQ/R, R = {L'^ + r^)^/^ 

Inasmuch as ro <^ L, eq. 2.23 can be rewritten as: 

^ ^ ^ ' " ^ . ^ ^ f ^ ' ^ ^ d - i f c L ) (2.24) 

It is clear that the primary electromotive force induced in the receiver due to a change of 
the primary magnetic field is: 

Correspondingly, instead of eq. 2.24 we have: 

c^ = ^oe'^^{l-ikL) (2.26) 

Usually the primary electromotive force, which does not contain any information about 
the conductivity of the medium, is dominant. 

It is appropriate here to derive eq. 2.26 proceeding from the magnetic field. In accord 
with Faraday's law the electromotive force is equal to: 

If the area of the receiver coil of the induction probe is small with respect to its length 
(Fig. 2.1), one can assume that within this area the magnetic field is uniform, and it is 
directed perpendicular to the horizontal plane, i.e.: 

Hvi = Hz 



125 

Then 

i) = nrlnuH^ 

and making use of eq. 2.21 as well as the relation: 

av . , 
- = -^c.i^ 

we again obtain eq. 2.26: 

^ = 4 e ^ ^ ^ ( l - i A : L ) 

Before we will begin to consider the full expression for the electromotive force, eq. 2.26, 
let us make some almost obvious comments concerning eq. 2.25: 

• The presence of multiplier i — \ / ^ indicates that the primary electromotive force, 
^0, is shifted in phase by 90° with respect to the transmitter current. It results 
from the fact that the electromotive force is proportional to the derivative of the 
primary magnetic field with time which changes as a cosinusoid when the current 
in the transmitter is a sinusoidal oscillation. 

• The appearance of u on the right-hand side of eq. 2.25 is also caused by derivation 
of the flux with time. 

• The term MT/^TTL^ describes the vertical component of the primary magnetic field 
within the receiver coil. 

• The presence of /J, results from the fact tha t the electromotive force is proportional 
to the rate of a change of the flux of the vector of the magnetic induction B. 
Practically, in all cases which will be considered, the magnetic permeability will be 
taken to be equal to that of free space, i.e.: 

^ = lj^Q=z 47r X 10"'' H / m 

• The multiplier Mji reflects the fact tha t the flux through the receiver is directly 
proportional to its area and number of turns. 

Now let us investigate the general case with the two-coil induction probe located in a 
uniform conducting medium. At the point of the receiver the magnetic field in accord 
with eq. 2.21 is described by an equation for its complex amplitude: 

ffz = ^ ( l - i f c L ) e " = ^ (2.27) 

This field is caused by the current in the transmitter coil and induced currents in the 
conducting medium. Of course, all currents change as sinusoidal functions, but in general 
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Figure 2.2. Presentation of the magnetic field behavior at the receiver. 

they are shifted from each other in phase. It means that the magnetic field, Hz, can be 
presented as: 

Hz 
MT 

27rL3 
^sin(cc;^ -h </>) (2.28) 

where {MT/27rL^)A is the amphtude, while 0 is the phase of the sinusoid describing the 
magnetic field. 

It is essential that parameter 0 characterizes the phase shift between the magnetic field 
at the receiver and the current in the transmitter (Fig. 2.2). 

It is clear that in those cases, where the influence of induced currents is negligible or 
completely absent, the phase is equal to zero. In other words, the magnetic field, H^, is 
equal to the primary one which varies synchronously with the transmitter current. 

In conventional induction logging instead of amphtude and phase, quantities such as 
magnitudes of quadrature and sometimes inphase components are measured. 

Making use of eq. 2.28 we have: 

MT MT 
Hz — ^ A cos 6 sin ujt + ::—rr A sin 0 cos (jjt I'KU' 27rL3 

Inasmuch as the primary field: 

if(o) 
MT 

27rL3 
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is easily calculated, it is convenient to express the measured fields in units of the primary 
one. Then we have 

hz = Hz/Hf"^ = A cos (j) sin ujt-\- A sin 0 cos ujt 

hz = In hz sin ujt-\-Q hz cos cut (2.29) 

In accord with eq. 2.29 the field hz is the sum of two oscillations: one of them syn-
chronously changes with the primary magnetic field, while the other is shifted in phase 
by 90°. Correspondingly functions In hz and Q hz describe magnitudes of the inphase and 
quadrature components of the field expressed in units of the primary field. 

The inphase component of the field, as follows from Biot-Savart law, is caused by the 
current in the transmitter and the inphase component of induced currents in a medium, 
while the quadrature component of the magnetic field is generated by the quadrature 
component of induced currents only. Therefore, one can write: 

In Hz = Hf^ + In HI QHz = Q HI (2.30) 

or 

lnhz = l + lnhl Qhz = Qhl (2-31) 

The index ^ means the secondary field caused by induced currents. 
It is proper to emphasize that this consideration is based on the condition that the 

phase shift is defined with respect to the primary magnetic field. Let us make one more 
comment. The inphase component of the secondary magnetic field either coincides with 
the phase of the primary magnetic field or it is shifted by 180°. 

An electric diagram illustrating these relations between the primary and secondary 
fields is shown in Fig. 2.3a. 

As concerns the electromotive force, a definition of its quadrature and inphase com-
ponents can be done in two ways. In fact, we can compare either a phase shift of the 
electromotive force with the current in the transmitter or with the primary electromotive 
force S'Q. In the future, the latter approach will be used and correspondingly one can write 
(Fig. 2.3b): 

In<f = |^o| + I n ^ ' Q ^ = Q^^ (2.32) 

or 

lnS' = l^lnS" Q^ = QS'' (2.33) 

In accord with eq. 2.25 we have: 

141 = ^^^^ (2.34) 
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Figure 2.3. Electric diagram of the magnetic field and the electromotive force. 

and S' is the electromotive force expressed in units of the primary one, |^o|-
Comparing eqs. 2.26 and 2.27 we obtain: 

In/i^ = I n ^ Q/i^ = Q ^ (2.35) 

In other words, results of an analysis performed for the magnetic field, Hz, are directly 
applied for the electromotive force induced in a receiver coil as shown in Fig. 2.1 and vice 
versa. 

Before we will start to investigate frequency responses of the field it is appropriate to 
notice the following. In accord with eqs. 2.21, 2.22 and 2.26 we have: 

^ 2MT , rj ^T . ^ IUJ^MTMR 

where: 

h. JkR t 1 - ikR) he = e'^"" (1 - ikR - k'W) h^ = ê ^̂  (1 - ikL) (2.36) 

Thus, equations for the field as well as for the electromotive force present themselves 
as the product of two terms. One of them depends on the moment of the dipole, the 
distance between the dipole and the receiver and in the case of the electromotive force, 
on the frequency and the magnetic permeability. The second term is a function of only 
one argument, namely kR, which can be presented as: 

kR=^il-hi)=p{l-^i) 
h 

where h — (2/(j/iu;)^/^ is the skin depth. 

(2.37) 
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Therefore, the electromagnetic field of the magnetic dipole expressed in the units of the 
primary field or the normalized electromotive force is defined by the parameter p: 

_ R _ 27rR 
^~~h~ 103(10p//)V2 (2-^^) 

In the case in which the field or the electromotive force is investigated in the receiver of 
the two-coil induction probe the distance R is replaced by the length of the probe, L, that 
is: 

27rL 
^ ~ 103(10p//)V2 (2-^^^ 

It is obvious that parameter p characterizes a distance, expressed in units of the skin depth, 
and this fact vividly demonstrates that an influence of induced currents in a surrounding 
medium is not defined by the value of frequency or resistivity and the distance between 
the dipole and an observation point, but it depends on the ratio between this distance 
and the skin depth only, that is the parameter p. 

Furthermore, we will focus on the magnetic field and the electromotive force at the 
receiver of the two-coil induction probe. Substituting eq. 2.37 into 2.27 the magnetic field 
Hz can be represented as a sum of two components, namely the quadrature component 
which is shifted in phase by 90° with respect to the primary magnetic field, HQ, or the 
current in the source, and the inphase component which is shifted in phase by 0° or 180° 
with respect to the primary field, and we have: 

QHz ^HoQhz InHz = Holnh^ (2.40) 

where: 

Qhz^ e~^ [(1 + p ) s i n p - p c o s p ] (2.41) 

Inhz = e~P [{l+p)cosp-\-psmp] (2.42) 

where p = L/h/i.e. the length of the induction probe measured in units of the skin depth. 
Making use of eq. 2.35 we have for the electromotive force in the receiver: 

Q^ = \(^o\Qhz In ^ = I Al In /iz (2.43) 

It is appropriate to emphasize again that according to the Biot-Savart law the quadra-
ture component of the magnetic field arises from currents induced in a medium for which 
the phase is shifted by ±90° with respect to the current in the dipole source, while the 
inphase component is the algebraic sum of the primary and secondary fields. The inphase 
component of the secondary field is contributed by induction currents in the medium 
shifted by 180° or 0° with respect to the source current. 

The understanding of this relation between induced currents and the measured field 
turns out to be extremely useful for explanation of the main features of field and electro-
motive force behavior. 
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First, let us consider the behavior of the field over the range of a small parameter p 

( P « l ) -
Expanding the exponential e^^^ in the form of a power series: 

AkL = E (iA:L)^ 

n=0 n! 

and substituting this into eq. 2.27, after some simple algebra, we have: 

^ -̂̂  n! ^ ^ ^ ^ n! 
n=0 n=0 

(2.44) 

It follows from this that for p ^ 1: 

Q / i , ^ p 2 _ - p 3 

or 

Inft, ~ l - - p ^ 

or 

MT 

27rL3 

27rL3 

afiuiL^ 2 fafiujL 
2 \ 3 / 2 -

2 /o^wL^V '̂' 
3 V 2 

(2.45) 

Correspondingly, for both components of the electromotive force we have: 

I n ^ 

27rL3 

UJIMTMR 

27rL3 

2 3 V 2~ 

1 
2 / a ^ 2 y / 2 

3 V 2 

(2.46) 

i f p < 1 

Table 2.1 gives some idea about values of parameter p for various conductivities and 
resistivities for a probe length L of 1 m. As is seen from this table the parameter p is less 
than unity in a relatively resistive medium (p > 5 ohm-m) even at higher frequencies. 

In accord with eqs. 2.45 and 2.46 one can make the following conclusions: 
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TABLE 2.1 
Values of parameter p] L — 1 ui 

p, ohm-m 

100 

50 

10 

5 

1 

0.1 

/ , kHz 
1 

0.0063 

0.0089 

0.0200 

0.0280 

0.0630 

0.2007 

10 

0.0200 

0.0282 

0.0630 

0.0890 

0.2001 

0.6304 

20 

0.028 

0.039 

0.089 

0.125 

0.280 

0.890 

50 

0.045 

0.063 

0.140 

0.198 

0.450 

1.401 

100 

0.063 

0.089 

0.200 

0.279 

0.630 

2.002 

1. At the range of very small parameter p the quadrature component of the field prevails 
over the inphase component of the secondary field and we have: 

QHz ^ ——- a/iuj 
ATTL 

or 

QH^c^Hop' (2.47) 

and 

MTMR 2 2 

or 

^ ^ 1 4 1 / (2.48) 

Thus in this range the quadrature component of the magnetic field is directly proportional 
to the conductivity and the frequency and inversely proportional to the probe length. As 
will be shown later this dependence on frequency and conductivity remains valid also for 
a nonuniform medium. 

Equations 2.47-2.48 describe the field and the electromotive force with an error not 
exceeding 10%, provided that the parameter p is smaller than 0.1. In this case the 
quadrature component of the electromotive force, containing the information about the 
conductivity, constitutes only 1% or less of the primary electromotive force. For this 
reason cancellation of the latter in the induction probe is usually performed with a high 
accuracy. 

2. The inphase component of the secondary field is very small with respect to the 
primary field: 

lnHt:.-^{af.u.r' (2.49) 
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Figure 2.4. Frequency response of the quadrature component Q hz-

and 

lnHI<^QHz<^Ho (2.50) 

as well as 

I n ( f ^ < Q ^ < c K o | (2.51) 

For this reason mcctsuring the inphase component of the secondary field or In ^* in the 
range of small parameters is a difficult task. At the same time this part of the field is 
more sensitive to a change of conductivity than the quadrature component. Also it is 
interesting to notice that the leading term of the inphase component of the secondary 
field does not depend on the probe length L. Later we will prove that all these features 
are inherent for a field in a nonuniform medium. As follows from eqs. 2.41 and 2.42, in 
the opposite case, i.e. within a range of large parameters of p, both components of the 
field Hz, as well as the electromotive force tend to zero, oscillating near this limit: 

QHz = Hoe'P {sinp - cosp) ^ 0 

In Hz = Ho e~^ {sinp + cosp) —> 0 as p ̂  oo 

The latter means that at the range of very large parameters the inphase component of 
the secondary field approaches in magnitude the primary field, that is: 

In Hz -^ —HQZ as P ^ OO (2.53) 

Frequency responses of both components are presented in Figs. 2.4-2.5 and correspond-
ing values of Q hz and In hz are given in Table 2.2. Also this table contains values of the 
amplitude and the phase of the secondary field and function (Ta/cr calculated in the fol-
lowing way: 

A=Ulnhiy + {Qh,)Y' <A = a r c t a n ^ ^ = ^ - ^ Q / i ^ (2.54) 
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Figure 2.5. Behavior of frequency response of the inphase component of the secondary 
field In/ir. 

The reason for the introduction of the function Oal^ will be explained in the next chapters. 
As is seen from Figs. 2.4-2.5 and Table 2.2 with an increase of the parameter p the 

quadrature component also increases. At the beginning it is directly proportional to p^, 
then it grows slower, reaches a maximum {ip = 1.6) and with further increase of p decreases 
and oscillates as it approaches zero. 

The behavior of the inphase component of the secondary field, In/iJ, has a completely 
different character. First of all, at the beginning it increases in magnitude proportional 
to p^. With further increase of parameter p the magnitude of In hi reaches the primary 
field, then it becomes greater and at the range of large values of p it oscillates approaching 
the primary field. Unlike the quadrature component the function In h^ does not change 
sign, but it remains always negative. In other words, for all values of the parameter p the 
phase shift between the primary field and the inphase component of the secondary field 
is 180°. 

In conclusion of this description of frequency responses of the field let us notice tha t a 
significant part of the ascending branch of the quadrature component is described by the 
approximate expression 2.45. 

The behavior of the field as the parameter p varies can be explained in terms of the 
distribution of induced currents in the medium making use of eq. 2.20 and Ohm's law in 
its differential form: 

J = aE 

We have the following expression for the current density at every point in a uniform 
full-space: 

J , = ^ ^ ^ ( l - i f c / ? ) e " = ^ s i n ^ (2.55) 
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TABLE 2.2 
Values of components of the field and function a^/cr 

p Qhz Inhl A (j) (jajo 
~aoi 

0.02 

0.04 

0.08 

0.16 

0.32 

0.64 

1.28 

2.56 

5.12 

0.9933 X 

0.1403X 

0.1981 

0.2796 

0.3946 

0.5567 

0.7849 X 

0.1106X 

0.1557 

0.2191 

0.3079 

0.4322 

0.6059 

0.8477X 

0.1183X 

0.1648 

0.2288 

0.3164 

0.4354 

0.5958 

0.8094 X 

0.1089 

0.1451 

0.1905 

0.2457 

0.3099 

0.3799 

0.4488 

0.5052 

0.5336 

0.5169 

0.4434 

0.3165 

0.1630 

+0.2903 X 

-0.4275 

-0.4570 

-0.1665X 

+0.1843X 

10-4 

10-3 

10-3 

10-2 

10-2 

10-1 

10-1 

10-1 

10-1 

10-2 

0.6616X 

O . l l l l x 

0.1865 

0.3131 

0.5253 

0.8810X 

0.1476X 

0.2473 

0.4140 

0.6922X 

0.1156X 

0.1929 

0.5212 

0.5341 

0.8859X 

0.1465X 

0.2416 

0.3970 

0.6491 X 

0.1055X 

0.1704 

0.2730 

0.4351 

0.6788X 

0.1048 

0.1590 

0.2361 

0.3412 

0.4772 

0.6414 

0.8212 

0.9923 

0.1121X 

0.1177 

0.1154 

0.1081 

0.1013X 

0.9868 

0.9923 

10-^ 

10-^ 

10-^ 

10-4 

10-4 

10-3 

10-3 

10-2 

;10-2 

:10-i 

;10-i 

lOi 

lOi 

0.9933X 

0.1403X 

0.1981 

0.2796 

0.3947 

0.5567 

0.7850X 

0.1106X 

0.1557 

0.2192 

0.3081 

0.4327 

0.6067 

0.8494X 

0.1187X 

0.1654 

0.2301 

0.3189 

0.4402 

0.6051 

0.8272 X 

0.1123 

0.1514 

0.2022 

0.2671 

0.3484 

0.4473 

0.5638 

0.6950 

0.8344 

0.9704 

0.1086X 

0.1165 

0.1188 

0.1154 

0.1082 

0.1014X 

0.9870 

0.9920 

10-4 

10-3 

10-3 

10-2 

10-2 

10-1 

:10-i 

lOi 

lOi 

-0.1564X 

0.1562 

0.1561 

0.1559 

0.1557 

0.1554 

0.1551 

0.1548 

0.1545 

0.1539 

0.1533 

0.1526 

0.1517 

0.1507 

0.1496 

0.1482 

0.1465 

0.1445 

0.1422 

0.1395 

0.1363 

0.1325 

0.1280 

0.1228 

0.1167 

0.1096 

0.1014X 

0.9207 

0.8138 

0.6939 

0.6617 

0.4202 

0.2751 

0.1373 

-0.2514X 

+0.3950 

0.4506 

0.1687X 

-0.1857X 

lOi 

lOi 

lOi 

10-1 
10-2 

0.9933 

0.9920 

0.9905 

0.9887 

0.9866 

0.9841 

0.9811 

0.9775 

0.9733 

0.9683 

0.9623 

0.9551 

0.9467 

0.9366 

0.9247 

0.9106 

0.8938 

0.8739 

0.8505 

0.8229 

0.7904 

0.7525 

0.7085 

0.6577 

0.5999 

0.5351 

0.4638 

0.3674 

0.3083 

0.2303 

0.1577 

0.9568x10-1 

0.4830 

0.1758x10-1 

+0.2215x10-2 

-0.2306 
-0.1743x10-2 

-0.4493x10-3 

-0.3516x10-4 
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Figure 2.6. Definition of an elementary toroid in which induction current flows. 

where R and 0 are spherical coordinates of an observation point where the current density 
is calculated. 

When the wave number is broken into its real and imaginary parts we can represent the 
current density as the sum of two components: one component is shifted by 90° relative 
to the current in the source dipole and is termed the quadrature component, and the 
other component is shifted in phase by 180° with respect to the current in the source 
and which is termed the inphase component. The expressions for the components of the 
current density are: 

Q Jc^ = ^ ' ^ e - P [ ( l+p)cosp + sinp] (2.56) 

In J^ = ~ ^ ^ ^'"^ K̂  + ^) ^'"^P ~ ^^^^] (̂ •̂ '̂ ) 

where r/R = sin 9 and p = R/h is the distance from the dipole to the observation point 
expressed in units of the skin depth. 

Equations 2.56 and 2.57 suggest that it is reasonable to imagine two components of the 
current density at every point which are distributed in an entirely different manner. In 
order to investigate their distribution let us first of all understand the physical meaning 
of the term: (cr/ic<;/47r)(rMr/i?^) which is present in both expressions for the current 
density components. It is obvious that the current flow in the medium can theoretically 
be subdivided into currents flowing in a series of elemental toroids or within rings which 
have a common axis with that of the dipole and which lie in planes perpendicular to this 
axis as shown in Fig. 2.6. 

Now let us define a current density induced in a very thin ring within a unit cross-section 
due to the primary magnetic field, HQ (see Fig. 2.6). 

The magnetic flux piercing a ring with a radius r is: 

^i 

r 

'0= f fJ,Ho,2wrdr (2.58) 
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where HQZ is the z-component of the field due to current in the dipole source only. 
The vertical component of the magnetic field caused by the vertical dipole in free space, 

as follows from Chapter 1, can be presented as: 

Ho, = ^^{3cos^e-1) (2.59) 

Substituting this expression for HQZ into eq. 2.58 and integrating we obtain the following 
expression for the flux, ipo, of the primary magnetic field enclosed by the toroid: 

V ^ o - 2 ^ ^ (2-60) 

The magnetic flux V'o and the EMF in the toroid are related through the formula: 

<? = ^0 e-"^* = - ^ V'o e-'"* = liuiJo e ' ' " ' (2.61) 

On the other hand, the electromotive force is equal to the integral of the electric field 
along the closed path surrounding the magnetic flux: 

^ - (j) Eodl = 27rrEo^ (2.62) 

because the field is characterized by axial symmetry. It follows from eqs. 2.60-2.62 that 
the electric field E^j) along a toroidal ring is: 

iuj^o icx;// TMT . . 

It is clear the EQ^ is the primary vortex electrical field caused by a change of the primary 
magnetic field with time only. 

From this we obtain the expression for the current density at any point of the toroid: 

iafiuj rMr . . 
Jo0 = CTEO^ = - ^ - ^ ^^'^^^ 

The physical meaning of this last expression should be obvious: it is the current density 
induced by the primary magnetic field of the dipole source alone. As can be seen from 
eq. 2.64 the current density JQ^ is shifted by 90° in phase with respect to the current of the 
source. If we could neglect any secondary eff'ects caused by magnetic field accompanying 
induced currents in the medium the character of the current distribution could be defined 
precisely by eq. 2.64. 

In this case the current density at any point in the medium depends on the distance 
from the source, and on the angle 0, tha t is, on geometric parameters only and it is 
directly proportional to the transmitter moment, conductivity, frequency and magnetic 
permeability. One can say that the actual distribution of the current density in a conduct-
ing medium could be described by JQ^, if the effect of interaction between currents, that 



137 

Figure 2.7. Curves showing the current density in planes perpendicular to the z-axis as a 
function of the distance r. 

is, the skin effect, were to be negligible. Graphs of function JQ,̂  in planes perpendicular 
to the dipole axis are shown in Fig. 2.7. It can be seen that with increasing z the radius 
of the ring with maximum current also increases. 

Let us define the quantity: 

GjiLxjMr 
^0 — '~r~^^^r~ — \^0(f)\ 

and rewrite eqs. 2.56 and 2.57 in the form: 

Q Jcp = Jo e-P [(1 + p) cosp + sinp] (2.65) 

In J^ = —Jo e~^ [(1 + p) smp — cosp] (2.66) 

An analysis of these expressions permits us to explore how the actual current density J^ 
differs from Jo for various values of the parameter p and specifically for different distances 
from the source. Curves for the quadrature and inphase components of the current density 
normalized to Jo are shown in Figs 2.8 and 2.9. For small values of parameter, p, the 
quadrature component of the current density is essentially the same as the current density 
Jo; that is, the interaction between currents is negligible in this case. With an increase of 
the parameter, p, the ratio Q J,^/Jo decreases, passes through zero, and for larger values 
of the parameter p approaches zero in an oscillating manner. Curves for the ratio of the 
inphase component of the actual current density to Jo has a completely different character. 
For small values of p, the ratio of In J<^/Jo approaches zero, then increases to a maximum 
when the value of the parameter p is about 1.5 and for larger values of p, tends to zero 
again in an oscillating manner. Therefore, the actual distribution of Jo is determined 
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Figure 2.8. Graph of the ratio Q J^/Jo as a function of the parameter p. 

both by geometric factors and by interaction effect, known as skin effect. The last factor 
is taken into account in the case of a uniform full space by the parameter p. 

Comparing curves in Figs 2.8 and 2.9 we can see that for small values of p the quadrature 
component of current density dominates, then for larger values of parameter p there is a 
range over which the inphase component is significantly larger in value. And finally for 
large values of p both components approach to zero in an oscillatory manner. The curve 
in Fig. 2.8 as well as that in Fig. 2.9 can be viewed from two points. 

If the conductivity and frequency are held constant the curve shows a change in the 
quadrature component related to the current density JQ when the distance of the observa-
tion point from the dipole source is increased. On the other hand, the observation point 
can be held fixed in the medium and the conductivity or the frequency can be varied over 
a wide range. This permits us to explain the main features of the behavior of the quadra-
ture component of the magnetic field following from the distribution of the quadrature 
component of the current density. 

As can be seen from Fig. 2.8 for relatively small values of p the current density Q J^ 
does not practically differ from JQ. If the frequency is low enough and the medium possess 
a relatively high resistivity, the range of distances over which the actual current density 
is almost equal to JQ can be so large, tha t the magnetic field at an observation point is 
entirely defined by currents in this area. In principle, according to Biot-Savart law all 
induced currents define the magnetic field measured in the receiver. However, in practice 
there is always a part of the medium where induced currents bring the main contribution 
to this field but the influence of the other part is negligible, taking into account the 
accuracy of measuring. It is natural tha t the size of this area and its position essentially 
depend on frequency, conductivity, length of the probe, as well as the component of the 
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0.5 2 4 6 p 

Figure 2.9. Graph of the ratio In J^/Jo as a function of the parameter p. 

field measured. It is clear that dimensions and a position of this zone, in fact, defines a 
depth of investigation of the method. In the case as the quadrature component of the 
magnetic field is measured, as follows from equation 2.65 and Fig. 2.8, this area is located 
around the induction probe. In accord with eq. 2.64 the current density Q JQ quickly 
decreases with the distance from the dipole. The interaction between induced currents 
only emphasizes this tendency (see Fig. 2.8). 

Now we are prepared to describe the main features of both components of the magnetic 
field, and therefore the electromotive force, as measured in the receiver. 

As was pointed out for relatively low frequencies and high resistivities an area around 
the induction probe where the quadrature component of the current density, Q J^, prac-
tically coincides with JQ^̂ , is sufficiently large. Because the current density is directly 
proportional to frequency (eq. 2.64), within the area, the magnetic field caused by these 
currents is also proportional to frequency. Over the range of the parameter p, when the 
dimensions of the area in which the actual current density is close to the current density 
Jo is still significantly larger than the distance from the source to the measurement site, 
the quadrature component of the magnetic field would be also proportional to uj. With 
an increase in value of the parameter p (for example, as would be caused by an increase 
in frequency), the area in which the currents are essentially equal to Jo becomes smaller, 
and therefore the external part of the medium in which the actual currents are less than 
Jo begins to have an effect, resulting in the observation that the rate of growth of the 
magnetic field is reduced. With a further increase of frequency as a consequence of the 
rapid decrease of the quadrature component of the current density, the growth of the 
quadrature component of the magnetic field ceases and it begins to decrease. 

By analogy the behavior of the inphase component of the magnetic field can also be 
explained with the use of the inphase component of currents. Here it is appropriate to 
notice the following. Unlike the previous case a zone of currents which gives the main 
contribution to the inphase component of the magnetic field is present in a confined zone, 
a position which essentially depends on conductivity and frequency. In particular, with a 
decrease of frequency is shifted far away from the induction probe and when it is located at 
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sufficiently large distances, the measured magnetic field, I n i ^ l , in accord with Biot-Savart 
law, is practically independent on the probe length (see eq. 2.49). In other words, a part 
of medium between the probe and this zone, as well as that part which is located outside 
of this zone, has no noticeable influence on the field measured by a receiver. As follows 
from Fig. 2.9, with a decrease of the parameter p (higher resistivity, lower frequency) the 
depth of investigation in measuring the inphase component of the secondary magnetic 
field increases. 

In summary, let us enumerate some of the aspects of field behavior which are of practical 
interest. First, the quadrature component of the magnetic field is determined principally 
by currents flowing near the source and the observation site. With an increase in frequency 
the effect of interaction of currents from relatively far distant parts of the medium becomes 
less important. At the same time, this effect, i.e., attenuation or the skin effect, can 
become significant if the radius of the zone in which the quadrature component of the 
current density is practically the same as JQ,/, becomes less than the distance from the 
transmitter to the receiver. It is important to emphasize here tha t in measuring the 
quadrature component of the field there is always a frequency UJQ below which the depth 
of investigation is practically defined by only the length of the induction probe (a uniform 
medium). This conclusion remains also valid for a nonuniform medium, but in this general 
case, the depth of investigation is subjected to the influence of all geoelectric parameters. 

The inphase component of the field can be more sensitive to effects from distant parts 
of the medium than the quadrature component. With decreasing frequency the depth 
of investigation, when the inphase component is being measured, gradually increases 
regardless of the distance between the source and the observation point and, in the general 
case, parameters of a geoelectric section. Here we observe the fundamental difference 
from the point of an influence of the frequency on the depth of investigation, depending 
on whether the quadrature and inphase components are measured at the range of small 
parameters p. 

Now let us make some comments. One concerns the role of the induction probe length. 
With an increase in the distance between the source and the observation point, L, the 
induction number p also increases, and, therefore, the skin effect manifests itself more 
strongly. It is obvious that the position of the receiver of the induction probe does not 
change the character of the current distribution in the conducting medium. This fact 
can be explained as follows. When the separation between the source and the receiver 
is small, the depth of investigation, for example, measuring the quadrature component, 
is small as well, and the electromotive force, Q <f, in the receiver is deflned primarily by 
currents which are approximately equal to JQ. In other words, the currents which reflect 
the skin depth for given values of a and uj are situated at distances that exceed the range 
of investigation. As the separation between the source dipole and the observation point 
increases the depth of investigation of the probe also becomes greater and correspond-
ingly the relative contribution on distance currents which have undergone the skin effect 
becomes more significant. 

In this connection it is appropriate to emphasize that the distribution of the quadrature 
component of induced currents near the probe is not practically subjected to the skin 
effect and only distant currents are subjected to the influence of their interaction. At the 
same time, the inphase component of induced currents regardless of the distance from the 
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dipole, is strongly influenced by the skin effect. 
In conclusion, let us present eq. 2.54 in the explicit form, since some advantages of 

measuring the amplitude and the phase in the induction logging will be considered in 
detail. In accord with this equation we have: 

5 = (^QAe''^ (2.67) 

here 

A - e - ^ [ ( l + p ) 2 + p 2 ] ' / ' (2.68) 

6 — p — arctan (2.69) 
l+p ^ 
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Chapter 3 

METHODS FOR THE SOLUTION OF DIRECT 
PROBLEMS OF INDUCTION LOGGING 

The main task of the theory of induction logging is to determine the dependence of the 
quasistationary electromagnetic field, measured by a probe receiver, on the resistivity of 
a medium. Our investigations will naturally be based on Maxwell's equations. As was 
shown in Chapter 1 the problem of field determination can be formulated in the following 
way. All space can be represented as a sum of areas with constant parameters /î  and cr̂ , 
where /î  is the magnetic permeability and ai is the conductivity of area Di. Within every 
area Di electric and magnetic fields satisfy Helmholtz equations: 

V^W + kfH' = 0 and V^E' + kJE' = 0 (3.1) 

where A:̂  = iai/iiUj. 
At interfaces of confined areas Di, Helmholtz equations are replaced by boundary con-

ditions which require continuity of tangential components of electric and magnetic fields. 
Near a source and at infinity a field must satisfy corresponding conditions which depend 
on the type of source and the parameters of the medium. 

It is clear that we have formulated a boundary problem for harmonic fields which are 
used in conventional induction logging. The transition to a nonstationary field can be 
easily done applying Fourier integral. 

In most cases which will be considered the electric field has only a component E^^ which 
is tangential to any interface. For simplicity we will assume that in a chosen curvilinear 
system of coordinates a, /?, 0, interfaces are characterized by coordinate a^. 

Then from the first Maxwell equation: 

curl E — \ujfiH 

we have: 

^ luofii haficf) oa 

where ha and /i<̂  are metric coefl&cients of the corresponding coordinate system. 
Thus a solution of the direct problem of induction logging consists of determination of 

a function E\^ which satisfies the Helmholtz equation inside every area and the boundary 
conditions: 

143 
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and which corresponds to the field behavior near a source and at infinity. 
It is appropriate to notice that there will be cases when an electric field cannot be 

described by component E^i, only. In such cases, for example, when there is a displacement 
of an induction probe with respect to the well's axis, a more general approach to the 
solution of the boundary problem will be used. 

In this chapter we will describe basic methods which have been mainly used in solving 
boundary problems of induction logging. 

3.1. The Method of Separation of Variables 

The Helmholtz equation: 

is presented in partial derivatives of the second order. Here (/)Q is a unit vector tangential 
to the coordinate line 0. Let us assume that the electric field depends on coordinates a 
and /3 only (a more general case will be considered in a special chapter). 

We will look for a solution of E^^{a,P) as a product of two functions, each of which 
depends only on one coordinate: 

4 = r,(a)P,(/?) 

Substituting this expression into Helmholtz equation and by separating variables we ob-
tain two normal differential equations of the second order. It is important to emphasize 
here that the method of separation of variables is applicable only for some orthogonal 
curvilinear coordinate systems. 

Solutions of these two equations are functions of coordinates a and /?, respectively, as 
well as of the wave number of the corresponding medium. Inasmuch as they are differential 
equations of the second order they have two independent solutions: 

TL = A'^iUmiki, a) + B'^,Vm{ki, a) 

PL = CUi<Pm{ku/3) + DL^m(fci, P) 

here 7?2 is a constant of separation. 
A general solution is presented by an integral (in some cases it can be a sum) with 

respect to m: 

oo 

E;= J [^'rmUmiki. a) + B^^^Vm{k,^ a)] [C^0^(/c,, /?) + D'^,ijm{h. /?)] dm 

Usually, functions T^ and P^ are complex functions which depend on complex arguments. 
As will be shown later, in many cases a solution can be constructed with the help of only 
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one function of coordinate /?, for instance, (j)m{ki,(3). Then the general solution can be 
written as: 

oo 

E\= [AmdJm{ki, a) + BmiVmiK, a)] 4)m{ku P) dm (3.5) 
—oo 

The unknown coefficients Ami and Bmi are defined by the boundary conditions and the 
specific field behavior near the source and at infinity. 

In accord with eqs. 3.3 and 3.5 we have the following equations for coefficients Am and 

oo 

/ [AmkUmih^c^) + BmkVm{h:(^)](l>m{h^ P)dm 

-oo 

oo 

= / [AmiUm{ki^o^) +BmiVm{ki,a)](l)m{ki,P)dm iia = aki (3.6) 

—oo 
oo 

^^~ / h^[^mkUm{kk^cx) +Bmkymk{kk,Oi)](l>m{kk^P)dm 
likoa J 

oo 
oo 

= — ^ - h^[AmiUm{ki,a)-\-BmiVm{ki,a)](l)m{ki,p)dm ii a = aki (3.7) 
/i/ oa J 

—oo 

where aik is the value of coordinate a, characterizing the interface between media with 
wave numbers /ĉ , and /c ,̂ respectively. 

In general, functions (l){kk^ P) and (/)(A;̂ , /?) are not orthogonal, inasmuch as they depend 
on the wave number /c of a corresponding area of the medium. For this reason, in order 
to determine unknown coefficients Am and Bm^ it is necessary to present one of these as a 
function of the other. For example, having substituted this expansion of function 0m (^/, P) 
by functions (l)m{kk^P) and making use of the orthogonality of functions (j)m{kk,P), we 
obtain an infinite system of equations with an infinite number of unknowns. 

In those cases in which function 0^ does not depend on the wave number k (this takes 
place when an interface coincides with a spherical one, the surface of circular cylinder or a 
plane), the determination of unknown coefficients is simplified to a great extent. In fact, 
instead of an infinite system we obtain for every harmonic, m, only two equations with 
four unknowns: 

AmkUm{kk, Oi) + BmkVm{kk, Oi) = AmlUmih, a) + BmlVmih, OL) 
1 f^ 

^ - / l ^ [AmkUm{kk, a) + BmkVmikk, « ) ] 

^'^^^ ^ Q (3.8) 
= —-^K [^miUm{ku a) + BmiVm{ku o)] \i a = aki 

fii oa 
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Making use of conditions near a source and at infinity this system, applied for every 
interface, completely defines the unknown coefficients Am and Bm-

Thus the method of separation of variables in Helmholtz equation allows us in such 
cases to present a solution in an explicit form. In problems with cylindrical interfaces, 
as will be shown later, a solution can be written in the form of an improper integral 
containing Bessel functions of complex argument. In media with horizontal interfaces a 
field is also expressed through improper integrals, but in these cases the integrand is much 
simpler. 

Both cases, when either cylindrical or horizontal interfaces are present, are of great 
practical interest in developing the theory of induction logging. 

Solving problems with one and two cylindrical interfaces, or with one and two horizontal 
interfaces, by the method of separation of variables we obtain expressions which are 
convenient for analytical investigation as well as for programming. 

However, with an increase of the number of interfaces expressions for the field become 
cumbersome and it is practically impossible to perform their analytical investigation. 
Significant difficulties also arise in programming these equations. It becomes specially 
noticeable when, instead of a piecewise uniform medium, a continuous change of resis-
tivity is assumed. For example, such a behavior is observed in the invaded zone due to 
penetration of mud water into the formation. 

When solving problems with a complicated resistivity distribution, either in a horizontal 
or vertical direction, it is often appropriate to apply the so-called method of shells. This 
approach has two merits, namely: 

• a uniform algorithm of calculations which does not depend on the number of layers 
with different resistivity 

• all formulae contain only functions with real arguments. 

3.2. The Method of Shells 
The idea of this method can be described in the following way. Let us imagine a set of 
surfaces â  = const. In such a way a conducting medium can be presented as a system 
of suflBciently thin layers. Then each layer can be replaced by an infinitesimally thin 
shell located at the middle part of this layer, provided that the longitudinal conductance, 
5, of the layer and that of the corresponding shell are the same. Here the longitudinal 
conductance of the layer is a product of its conductivity and thickness. 

Therefore, instead of a continuous conducting medium, we obtain a system of thin con-
ducting shells. In this case the exact boundary conditions can be replaced by approximate 
ones which do not require information about the field inside the shell. Correspondingly, 
we do not need to solve Helmholtz equation because outside and between the shells the 
field obeys Laplace equation. Thus our problem is reduced to the determination of a 
harmonic function satisfying approximate boundary conditions at the surface of shells. 

However, determination of functions simultaneously satisfying boundary conditions at 
all shells requires a solution of a system of 2n equations with 2n unknowns. For this 
reason a method of reflections is suggested which can be used for the inductive excitation 



147 

Figure 3.1. Illustration of the derivation of approximate boundary conditions. 

of the field, and it allows us in a relatively simple manner to derive expressions for the 
field in the presence of a shell system, if some characteristics of the field for every shell 
are known. 

3 .2 .1 . Derivation of Approximate Boundary Conditions on a Shell Surface 

Let us assume that in a curvilinear orthogonal system of coordinates a, /3 and </>, a shell 
surface coincides with one of the coordinate surfaces a. It is supposed that the electric 
field has a component E^f, only. Applying Ampere's law (the second Maxwell equation in 
the integral form) to the path ^abcd\ shown in Fig. 3.1 we obtain: 

f""-I' dQ 

or 

{H'^-W^)dp = J^dla-dl0 (3.9) 

where: H is the magnetic field vector; dl is the vector tangential to coordinate line P 
equal by magnitude d/^; i J | and iJ^, are components of the magnetic field tangential to 
the surface outside and inside of it, respectively; dQ is a vector surface element with a 
magnitude equal to d/c^d/^ {dla and d/̂ j are elementary displacements along coordinate 
fines a and /3, respectively). These displacements along coordinate lines are expressed 
through coordinates as: 

dla = ha da dip = hj3 d/3 d/^ = /i^ dc/) 

where /ZQ,, hp^ hff, are metric coefl&cients. 
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In problems considered here, the cyhndrical system of coordinates is mainly used and 
correspondingly h^ = l. Taking into account this fact and making use of Ohm's law: 

we present eq. 3.9 in the form: 

Hl-Hl = udaE^ = SE^ (3.10) 

where 5 = a d a is the longitudinal conductance of the shell. 
From the first Maxwell equation in differential form we have: 

H •cmlE 
\UJI1 

As is well known the expression for curl in the orthogonal system of coordinates is written 
as: 

curl E = 
1 

hah(ih(j) 

h(xla hj3l(3 hfplfj) 
d_ d_ d_ 

da dp d(t) 
haEa hfsEp h(^E(j^ 

where I a-, //?, I(j> are unit vectors of coordinate system. 
Inasmuch as E'^ = E"̂  = 0, we obtain: 

lojjji hah^ da 

(3.11) 

Substituting eq. 3.11 in eq. 3.10 we derive the first approximate boundary condition for 
the electric field at the shell surface: 

d{h^El) d{h^E\) 

da da 
inE^ ii a = ao (3.12) 

where n = ujjiShf^. 
The second boundary condition requires continuity of the tangential component of the 

electric field: 

El = Ei if a = ao (3.13) 

For this reason we can use the right-hand side of eq. 3.12 for either E^ or E'J,. 
The boundary conditions 3.12 and 3.13 sufficiently accurately describe the field near the 

shell surface provided that the value of the skin depth, (2/cr/iCc;)^/^, within an elementary 
layer is much greater than its thickness and the field slightly changes inside this layer 
along its normal. Correspondingly, as the conducting medium is presented as a system of 
elementary layers these conditions have to be met. 
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3.2.2. Calculation of the Electromagnetic Field Caused by Induced 
Currents in One Shell 

As was mentioned above, the electric field has only one component £"0, which satisfies 
Laplace equation V'^E = V'^E^^c/yQ = 0 and depends on two coordinates a and f3. Solving 
Laplace equation by the method of separation of variables we find: 

00 

E<^= I [AmUm{(^) + BmVmia)] (^rn{P) dm (3.14) 

0 

where m is a separation constant. Functions Um{c^) and V^(Q^) are radial functions (m-
harmonic), while (t>m{P) is an angular one (in spherical coordinates a = R, (3 = 0\ m 
cylindrical coordinates a = r^ (5 = z ) . One of the radial functions tends to zero with 
an increase of a, but the other one increases. For this reason the secondary field outside 
a shell is described by only one function, for example, AmUjn{oL) which decreases as the 
coordinate a increases. In the internal area one of the radial functions has usually a finite 
value, while the other one tends to infinity at some point or line. Correspondingly, the 
solution within the internal area of the shell is also described by one radial function which, 
for instance, has the form BmVm{a). 

First we will assume that sources of the primary magnetic field are located outside the 
shell and their vortex electric field E^ can be presented as the integral of a product of 
radial and angular functions: 

oo 

El = iwfiJc'^Vm{a)MP)dm (3.15) 

0 

where C^ are known coefficients. We will look for a solution outside the shell as a sum 
of the primary field £'9 and the field caused by induced currents in the shell: 

oo 

E; = iwM J [C:,VUa) + B'^Umia)] MP) dm (3.16) 

0 

The field inside of the shell can be presented as: 

oo 

4 = iLjfijAl,Vm{a)c^m{f3)dm (3.17) 

0 

Substituting eqs. 3.16 and 3.17 into boundary conditions 3.12 and 3.13 and making use 
of the orthogonality of angular functions (t)m{P)^ we obtain for the determination of coef-
ficients A^ and B^ two equations with two unknowns: 

ci (h'^Vm + /i^K.) + Bi {h'^Um + h^u'^) - A^ (ft;y„ + /i^y;) = m Aiy^n 
Ciym + BIJJ^ = AlXra if a = ao 
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Solving this system with respect to coefficients A^ and B^, we obtain: 

^ ~ "^inU V +U d -t V ^ ^ ^ 

^ ^ ^ ~^^mU V +u'^d -t V ^'^'^^^ 
Lit KJrn *^m î  ^m^m ^m * m 

where 

Let us introduce notations: 

p ^m^m ^m*^m /^ ^ ^ \ 

"^ ~ TT 1 / 4- TJ rl ITT T/~ (O.Zij 
177/ (7^92 l/j72 I ^m^m ^m ^m 

^ - = - • TT T/ ^uZ - i V (3.22) 

The amphtude of function Pem alters with a change of n from zero to unity and charac-
terizes the attenuation of the m-harmonic of the primary field in passing the shell. At the 
same time the structure of the field of a corresponding harmonic does not change. The 
magnitude of function Wem changes with an increase of n from zero to the value Vm/Um 
and characterizes the intensity of reflection of the m-harmonic of the primary field from 
the shell for the external excitation. The physical meaning of coefficients Pem and Wem is 
almost obvious, specially if a change of parameter n is caused by a change of frequency LU. 
Under low frequencies very small currents are induced in the shell, and correspondingly a 
field within an internal area is close to the primary one, i.e. Pem — 1? while the secondary 
field outside is small, Wem -^ 0- On the other hand, for high frequencies the intensity 
of induced currents increases and correspondingly the secondary field outside increases, 
while within the internal area it tends to zero (effect of full screening). 

Now let us consider the case, when sources of the primary field are located inside the 
shell (internal excitation). We will present expressions for the primary electric field in the 
form: 

oo 

El = iojfifclUUa)4>m{P)<im (3.23) 

0 

We will look for a solution inside and outside the shell in the following forms, respectively: 

oo 

E; = icjfi J (ClU^ia) + AlVUa)) MP) dm (3.24) 

0 
oo 

E; = iuj^i J Bi„Umia)4>m{l3) dm (3.25) 
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Substituting eqs. 3.24 and 3.25 into the boundary conditions we obtain the system: 

Bin (K^m + hU'J, + Cl {h'^U^ + h^U'^) - < (/i;Kn + ^V^ + /i^K») = in BiJJ^ 

&JJm + ^„ym = BlUm (3.26) 

Solving this system with respect to Al^ and Bl^ we have: 

p i _ d^m^m ~ tmym ^i /r> r)j\ 

ITl UjYi VfYi -J- UfYiUfYi f^m ^m 

in U'^ 
"̂ ^ ^ ~mU V +uli ~t V ^^ ^̂ '̂ ^̂  

Let US introduce notations: 

^m — PimC^ A^ = WimC^ (3.29) 

where 

\n IP 
^ - = - • n v ^u'^, _ , n (3.30) 

Comparing eqs. 3.21 and 3.27 we see that: 

-^em ^^ -Mm ( o . o l j 

It is essential to know that for the internal excitation, as well as for the external one, 
every harmonic of the primary field passing the shell is reduced but that its structure has 
not been changed. Therefore, the shell, characterized by coordinate a = const, does not 
distort the structure of any harmonic, regardless of the location of the primary source 
with respect to the shell. 

This feature takes place also for shells having a finite thickness. However, in the latter 
determination the field is related to a solution of Helmholtz equation. 

3.2.3. The Field in a Presence of Two Confocal Shells 

Let us consider some examples of the different location of field sources. 

External excitation 

We suppose that field sources are located outside both shells and, first of all, derive 
formulae for a field caused by one harmonic of the primary field only: 
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For simplicity of transformations let iuj/j^C^ = 1. The process of forming the secondary 
field due to the m-harmonic can be presented in the following way. The field E^ is partly 
reflected by the shell with the reflection coefficient W ĝ-

WieUm{a)(l)m{P) (3.33) 

The other part of the primary field passes the first shell without a change of its structure 
and it is equal to: 

PiVm{a)MP) (3.34) 

since Pie = Pu = Pi. 
Arriving at the internal shell it is partly reflected (coefficient of reflection VF2e)-

W2ePlUm{a)(l>m{f^) (3.35) 

The remaining part passes through the internal shell, decreasing with a factor P2: 

PiP2Vm{a)^m{P) (3-36) 

Let us return to that part which is reflected from the internal shell (eq. 3.35). It arrives 
at the internal surface of the external shell and is partly reflected (the reflection coefficient 
Wu): 

The other part goes through the external shell and is reduced with a factor Pi: 

P^W2eUm{a)<t>m{P) 

This process continues until induced currents are established in both shells. Let us write 
down sums which describe fields outside, between, and inside shells: 

Outside shells 

VmCt^m + WieUm^m + Pi ' l^2ef/m0m + PfWlWuUmCl^m + P^WlWlUmC^m + '" 

Between shells 

PlVmK + PlW^eUmK + PlW2eWuVm(t>m + ^1 W^le^H^^m^m + A V F | , l ^ f , K n 0 ^ + • • • 

Inside shells 

PlP2Vm4>m + PlP2W2eWuVm<t>,n + PlP2WlWlV^4>m + • " " 
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Figure 3.2. Illustration of formation of the field for external excitation. 

For all these series summation is easy since they present geometric progression. For 
example, outside the shells we have: 

VmCl^m + VFie -h 
P^W, 2e 

1 - W2eWu 
Urr, (3.37) 

while inside shells we obtain: 

P1P2 

1 - W2eWu 
VmCprt (3.38) 

The field-forming process when sources are located outside shells is illustrated in Fig. 3.2. 
In accord with eqs. 3.37 and 3.38 in the case of external excitation of the field, two shells 

are equivalent to one shell which has the following expressions for coefficient of screening 
and reflections, respectively: 

P = 
-* p.m. 

W„ 

P1P2 

1 - W2eWu 
PiW2, 

WieWu 

(3.39) 

(3.40) 

Internal excitation 

Now we will assume that sources of the primary field are located inside shells and as 
before consider the case when the field is caused by the m-harmonic of the primary field: 

E^ = Umia)^miP) (3.41) 

letting [uj/iC^ = 1. 
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Figure 3.3. Illustration of process of arising the secondary field; sources of the primary 
field are located inside shells. 

In this case the process of forming the secondary field caused by induced currents in both 
shells, in essence, does not differ from the previous case, when sources of the primary field 
were located outside. For this reason we will describe only the process of field formation 
illustrated by Fig. 3.3 and write down the corresponding sums: 

Outside shells 

[PlP2Um + PlP2WuW2eUm + Pi^2H^i',W/|,f/^ + ' "] (pm 

Between shells 

[P2Um + P2WuVm + P2WuW2eUm + AH^i',H^2eKn + ^ I ^ H ^ I e ^ m + ' ' ' ] 0m 

Inside shells 

[Um + W2iVm + P^W^iVm + P^W^iW2eVm + P^WlV^ + • • •] <i>m 

Performing summation of these expressions we obtain the following equations outside 
and inside shells: 

P1P2 

1 - W^iW2e 
Um{a)cl>m{0) 

Um<t>m +[W2i + 
1 - WuW2e 

VmW)'PmiP) 

(3.42) 

(3.43) 

Thus for the internal excitation, the field caused by induced currents in both shells is 
equivalent to that caused by currents in one shell with the screening coeflficient: 

P — P = 
-* im -* 6771 

PIP2 

1 - WuW2e 
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and the reflection coefficient: 

^ - = ^ - + r r T y ^ (3-44) 

In general, when we have a system of confocal shells calculation of the secondary field 
caused by the m-harmonic of the primary field can be performed in the following way. 
First of all, three characteristics — Wem^ Wim and Pm — of two shells, located closer to 
the source of the primary field than others are calculated. Then they are replaced by 
one shell, which is equivalent to them, and its characteristics are defined from eqs. 3.39, 
3.40 and 3.44. After this the screening and reflection coefficients of the third shell are 
calculated and then the characteristics of the shell which is equivalent to all three shells 
are defined. This process continues until all shells are replaced by one which is equivalent 
to all of them. Calculations are made using eq. 3.39, 3.40 and 3.44, while characteristics of 
every shell are defined from eqs. 3.21, 3.22 and 3.30. As has been mentioned above these 
coefficients are expressed through well known functions with real arguments. The final 
expression for the field will be obtained after summation of the secondary fields, caused 
by all harmonics of the primary field. It is clear that components of the magnetic field 
are defined from Maxwell's equation: 

H = — c u r l ^ 

From this consideration it follows that in presenting a conducting medium as a system of 
confocal shells it is rather simple for us to calculate the field. Inasmuch as the conductivity, 
(J, is present only in parameter n (eq. 3.12) the calculation procedure does not depend 
on the distribution of medium conductivity. In other words, the field is calculated by the 
same formulae (eqs. 3.21, 3.22, 3.30, 3.39, 3.40, and 3.44) for a uniform medium, for a 
piecewise uniform medium, and for the general case of an arbitrary change of resistivity 
in the direction of coordinate a. 

As an example, let us examine the application of the method of shells for the calculation 
of the field of a vertical magnetic dipole, located on the borehole axis when conductivity 
a is a function of the distance from the axis only. In particular, we can imagine a medium 
with several uniform parts such as a borehole, invaded zone, formation. 

Applying a system of confocal cylindrical surfaces, r — const, we theoretically divide the 
conducting medium in sufficiently thin cylindrical layers with a common axis coinciding 
with the borehole axis. In general, the layer thickness is defined by conditions, formulated 
at the beginning of this section, as well as by the character of the change of resistivity 
within this elementary layer. Then every layer is replaced by an infinitely thin shell 
located at the middle of the layer. The longitudinal conductance of the layer and the 
corresponding shell is the same. Thus instead of a continuous medium we obtain a system 
of thin coaxial cylindrical shells. As is well known, such replacement is possible, if induced 
currents do not intersect cylindrical surfaces r = const. This requirement is met as the 
source of the field is the vertical magnetic dipole, inasmuch as vector lines of the electric 
field are circles located in horizontal planes with centers on the borehole axis. 
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As in the case of a uniform medium the field can be described with the help of the 
^-component of the vector potential (A*) only. This function satisfies Laplace equation 
between shells, which in cylindrical coordinates can be written as: 

d'^Al IdAl d^Al 

since the field is independent of coordinate (f). After separation of variables in eq. 3.45 we 
obtain two normal differential equations of the second order: 

Z" + m^Z = 0 (3.46) 

i?" + -R' - m^R = 0 (3.47) 
r 

where: 

Z" = ^ R ' = ^ R" = ^ 
dz^ dr dr^ 

Functions Z and R depend on coordinates z and r, respectively, and are related with 
component A* as ^4* == i? • Z; m is a separation variable. 

Solutions of the first equation are harmonic functions sin?7iz and cosmz. The second 
equation is the modified Bessel equation, solutions of which are functions /o(mr) and 
Ko{mr). Inasmuch as the field is an even function with respect to coordinate z, it cannot 
contain sin m2;. For this reason, the general solution presents a combination of functions 
such as Ko{mr) cos mz and /o(mr) cosmz. 

As follows from the previous chapter the vector potential of the magnetic dipole in a 
free space is described by the function: 

47r(r2 + z2)i/2 

which can be presented through elementary solutions: 

oo 

WO) _ K ^ ^ 2 f j ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ (3,48) 
4n TT J 

0 

The electric field is related with the z-component of the vector potential as: 

d^AZ 
Es = —- Qj^2 

Therefore: 

(0) ic j /xM 2 

47r 
0 

— mKi{mr) cos mz dm (3.49) 
TT J 
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since 

-;—Ko(mr) = —mKiimr) 
or 

The primary excitation is presented as a sum (more precisely, the integral) of elementary 
excitations such as mKi{mr) cosmz. The penetration of these harmonics in a direction 
perpendicular to the borehole axis depends on the value of m. As follows from the 
behavior of the function Ki{mr) with an increase of argument mr, for example due to TTI, 
a harmonic decays more rapidly. For this reason excitation of the most removed parts of 
a medium is realized by harmonics which are characterized by relatively small values of 
m. 

The method of reflections, described above, is applied for every harmonic. The total 
electric field is expressed through the integral, and its integrand defines a reaction of a 
medium due to action of corresponding harmonic of the primary field. For this reason for 
electric field in the internal area we have the following expression: 

CXD 

EA = — / mWiIi{mr) COS mz dm (3.50) 
47r 7T J 

0 

where Wi is the function, characterizing an interaction of all shells. 
Now using results given at the beginning of this section we will replace functions Um{(^) 

and Vm{(^) by functions m.Ki{mr) and m / i ( m r ) , respectively. Taking into account tha t in 
the cylindrical system of coordinates the metric coefficient /i^ — r, we obtain expressions 
for reflection and screening coefficients, describing the field in the presence of one shell: 

_ mll{mr) 
me 1 I • r rx 

^ - = i ^ . \ ^ (3-51) 
1 -h inliKi 

_ inKfimr) 

1 + inliKi 
where n = uj/iSr; s = aAr is the longitudinal conductance of the shell; r is its ra-
dius; Wme is the reflection coefficient of the shell for the external excitation by harmonic 
mKi {m.r) cos mz; Wmi is the reflection coefficient of the shell for the internal excitation 
by the same harmonic. 

Coefficient Pm characterizes the decrease of the harmonic passing the shell. Interaction 
of shells is calculated by formulae 3.39, 3.40 and 3.44. Function Wi characterizes the 
interaction of all shells and it is the kernel function of the expression for the electric field 
in eq. 3.50. 

As is known, the vertical component of the magnetic field is related with the electrical 
field in the following way: 

„ 1 ld{rE^ 
riz = —: ^ 

luj^ r or 
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Taking into account that : 

- — r / i ( m r ) = - [/i(mr) + mrl[{mr)] == mIo{mr) and /o(0) = 1 

we obtain: 

hz — — m Wi cos mz dm (3.52) 

0 

where hz is the magnetic field at the borehole axis in units of the field in a free space, 
2M/47rL^; L is the length of the two-coil induction probe. 

Let us consider some features of the behavior of function m^Wi for a given value of m. 
We will present function m^Wmi in the form: 

m'Wmi = 7777 exp —1 —(- arccoth n i 1A1 

The product IiKi does not exceed unity. Therefore, for small values of n the phase of 
the secondary field slightly differs from 90°. In other words, induced currents in shells are 
shifted in phase by 90° with respect of the magnetic dipole current. With a decrease of 
a shell's radius such behavior is observed at higher frequencies and for more conductive 
shells. With an increase of a shell radius the argument, mr^ increases, and a value of 
function uj/j.SrIi{mr)Ki{mr) tends to the hmit ijjfiS/2m. If uJiiS/2 <C m, the phase of 
induced currents in a shell is close to 90°. 

However, harmonics with large values of m slightly penetrate into a medium. For this 
reason excitation of currents in shells with a relatively large radius is realized by harmonics 
having small values of m for which the inequality uJiiS/2 ^ m is valid and correspondingly 
the phase of currents approaches to 180°. 

This analysis is useful to define the role of various parts of the integrand in eq. 3.52 in 
calculating quadrature and inphase components of the field. 

Thickness of shells is chosen from calculations and it depends on both parameters, 
(jjfiSr and m. For example, with an increase of m the shell thickness must be smaller. It 
is reasonable to choose a constant ratio between the shell thickness and its radius within 
a certain interval of a change of radius r. Numerical analysis shows that in practice this 
ratio changes from 0.02 to 0.05. The maximal radius of the shell, which is the most remote 
from the borehole axis, essentially depends on m. For larger values of mr the reflection 
coeflBcient for the internal excitation, Wmi^ decreases as e~^^^. Therefore, it is sufficient 
to satisfy the condition Vmax ̂  10/m. 

The minimal radius of the shell naturally coincides with the radius of nonconducting 
part of the induction probe. In those cases, when the argument mr is small {m.r <C 1), 
it is convenient to use approximate expressions for shell coefl&cients. For x > 0 functions 
Ii{x) and Ki{x) tend to x/2 and 1/x correspondingly and therefore instead of eq. 3.51 
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we have: 

in m?r'^ 
"^^ ^ " 4 ( l + m / 2 ) 

^"^ ^ (l + m/2) ^ -̂̂ ^^ 

m^r^(l + m/2) 

In conclusion let us notice that the method of shells can be considered as the algorithm 
of the calculation of the integrand in eq. 3.52 describing the magnetic field in the borehole. 

3.3. The Method of Integral Equations 

The analysis of the electromagnetic field of a vertical magnetic dipole located either on 
the axis of cylindrical interfaces (formations of an infinite thickness) or in a medium with 
horizontal interfaces only allows us to investigate the influence of the borehole and the 
invasion zone, as well as the effect caused by a finite thickness of the formation. For such 
models application of the separation of variables method is the most natural approach 
enabling us to present the field in a explicit form by known functions. It is a much more 
complicated problem when the vertical magnetic dipole is located on the borehole axis 
and the formation has a finite thickness. In this case the method of separation of variable 
cannot be used, since both cylindrical and horizontal interfaces are present and it is more 
appropriate to apply such numerical methods as integral equations or finite elements. 

In fact, during the last 30 years the use of integral equations has allowed us to move 
significantly forward in the theory and interpretation of induction logging. This is the 
main reason why we will describe here only this numerical method. At the same time 
it is reasonable to point out that both methods have been used, provided that a model 
of the medium and a field have cylindrical symmetry with the common axis. Until now 
this restriction has not permitted us to investigate a field behavior in the case when the 
boundaries between a formation and a surrounding medium are not perpendicular to the 
borehole axis. 

Now let us suppose that a vertical magnetic dipole is located on the borehole axis and 
the medium possesses axial symmetry (Fig. 3.4). In accord with the Biot-Savart law the 
current of the magnetic dipole creates the primary magnetic field and its change with 
time generates the primary vortex electric field. Due to the axial symmetry this electric 
field does not intersect boundaries between media with different conductivities. Because 
of this no electric charges develop and as a result of the existence of the vortex electric 
field currents arise at every point, of the conductive medium with a density given by: 

J^ = (j{Eoci> + Esc^) (3.54) 

where E'o<̂  is the primary vortex electric field strength; Es^/j is a secondary vortex electric 
field caused by the magnetic field from induced currents in a conductive medium; a is the 
conductivity at a given point. 
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Figure 3.4. Models in induction logging with axial symmetry. 

Inasmuch as electric charges are absent, the induced currents as well as the primary 
vortex electric field £"00, have only an azimuthal component J^ in the cylindrical system 
of coordinates r, (/>, z (Fig. 3.4). It is obvious that interaction between current filaments 
does not change the direction of current flow in this case. Thus the total electric field is: 

Es Eo(p + Eg, (3.55) 

As was shown in Chapter 1 a circular current filament passing an elementary current 
tube at the point q creates the vortex electric field at point p (Fig. 3.4c) equal to: 

i(jj/2G{p,q)J^{q)dS 

where d 5 is the cross-sectional area of the tube and G{p, q) is a function, which depends 
on geometric parameters and can be expressed through complete elliptical integrals, J(j){q) 
is the current density at the point q. 

Now applying the principle of superposition the total electric field can be written as: 

E^{p) = Eo^{p) + iuj/j. / G{p, q) J^q) dS (3.56) 
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where S is the half-plane described by equations: 

r > 0 — oo < z < CO 

Making use of Ohm's law: 

MQ) "= cr{q)E^{q) 

we obtain: 

E^{p) = Eo^p) ^iujfi J a{q)G^p,q)E^{q)dS (3.57) 

s 

This is an integral equation of the Fredholm type of the second kind with respect to an 
unknown total field, E^. Replacing the elementary surface dS by drdz we have: 

c» oo 

E^{p) = Eo^p) + iujfi I dz fa{q)G{p, q)E^{q) dr (3.58) 

- o o 0 

Taking into account eq. 3.55 the integral equation with respect to the secondary field 
has the following form: 

oo oo 

Es^{p) = F^p) + iuii j dz j a{q)G{p, q)EsM ^^ (3-59) 

where 

oo oo 

F{p) = iuj/i / dz / a{q)Eoci>{q)G{p,q)dr 

- o o 0 

is the known function. 
One can conceptually replace the half-plane with a system of small cells within each of 

which the electric field is practically constant. In doing so the integral equation 3.59 can 
approximately be rewritten as: 

Es^ip) c^ F{p) + iujfi ^ a{q)G{p, q)EsMAS 
n - l 

Having written this equation for every cell, we obtain a system of Â  linear equations with 
N unknown terms. 



162 

However this equation is not used in practice since the infinite hmit with respect to 
distance r creates serious numerical problems for the determination of the electric field. 
Also it does not allow us to derive relatively simple asymptotic formulae, except for one 
special case corresponding to Doll's approximation when the skin effect is completely 
ignored. 

In order to facilitate calculations of the field and obtain asymptotic formulae for the 
field, we will derive an integral equation as the area of integration with respect to distance 
r is limited. 

First of all let us assume that the invasion zone is absent and proceeding from Green's 
formula we will obtain an integral equation for component E^ in which integration is 
performed over the cross-section of the borehole only. At the beginning, suppose that the 
formation is uniform with conductivity a2 (Fig. 3.4a). 

It is well known that the electric field satisfies Helmholtz equation: 

V^E + k'^E = 0 (3.60) 

where k'^ = lajiuj. 
Let us represent the electric field as a sum: 

E = EQ + EI (3.61) 

where ^o is the field in the uniform medium with conductivity of the formation, cr2, 
consisting of the field caused by the dipole current in a free space and the field of eddy 
currents induced in the conducting medium. This field satisfies the following equation at 
all points in the medium: 

V'^EQ + klEQ = 0 (3.62) 

where kj = ia2/jiiJ. The function Ei is the field due to the presence of the borehole with 
conductivity (Ji and radius a. 

In accord with eqs. 3.60 and 3.61 the electric field Ei is a solution of the equation: 

V^Ei = -eEi - k^Eo - V^Eo (3.63) 

Taking into account eq. 3.63 we have for the formation and the borehole, respectively: 

V^Ei = -klEi i f r > a (3.64) 

V^Ei = -kJEi + {kl - kj)Eo if r < a (3.65) 

where kf = iaifiuj and ai is the borehole conductivity. 
It is obvious that: 

Eo = Eol^ E, = EJ^ (3.66) 

We will introduce a function G = CI^, which is continuous with the first derivative over 
all space and satisfies the equation 

V ' G + klG = 0 (3.67) 
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except a point p at which the field Ei is defined. At this point the function G = GI^ 
has a logarithmic singularity. 

Now we will consider the expression: 

GW^Ei - EiV^G 

Inasmuch as: 

and 

we have: 

GV'^Ei - EiW^G = EiGV^I^ + GV '^ i - GE^V'"!^ - E^V^G 

= GV'E, - E,V'G ^^'^^^ 

It is also appropriate to make the following comment. In practice the magnetic dipole 
presents itself as a small horizontal loop with its center located on the borehole axis. In 
approaching this loop the primary electric field tends to infinity as a logarithmic function, 
while the electric field caused by induced currents does not have a singularity. Corre-
spondingly, the electric field Ei is a continuous function everywhere in the borehole as 
well as in the formation. Taking into account the two-dimensionality of the model we will 
use a two-dimensional form of Green's formula. Let us assume that point p is located 
inside the borehole. Then for the borehole and the formation parts of the space we have: 

/ ( G V ' E , - E , V ' 0 ) d . = / ( 0 g - £ . £ ) <„ + / ( G | ^ - E , | L ) a, (3.69, 

Si lo I 

and 

[{GV'Ei - E^V^G) dS= f ( G ^ - E i ^ \ dl (3.70) 

Se I 

where n+ = r, n_ = — r; / is the straight line on the borehole surface which is parallel to 
z-axis; IQ is a contour around point p. 

From eqs. 3.64 to 3.67 we have for the formation: 

GV^Ei - EiV^G - 0 

and in the borehole: 

GV^Ei - EiV^G = {kl - kl)EoG + {kl - kl)EiG 
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Near the point p the field Ei is bounded but the function G increases without limit as 
Inr, where r is the radius for the circumference IQ. Therefore the value for the integral 
along the contour /Q as r ^> 0 tends to the value —27TEI{P). Combining eqs. 3.69 and 3.70 
and making use of the continuity of the tangential components of the electric and magnetic 
fields the integrals along line / vanish. Respectively, we obtain an integral equation, which 
includes a surface integral only over a restricted area in the radial direction corresponding 
to half the cross-section of the borehole: 

Ei{p) = ^ ^ JEoiq){k,,p,q)dS+^^^ JE^{q)G{k2,p,q)dS (3.71) 
Si Si 

The function G{k2,p,q) describes with accuracy of a constant the electric field in a uniform 
medium with conductivity cr2, generated by a circular current filament. As will be shown 
in the next chapter it can be expressed through the proper integral from the elementary 
function. 

In addition we will remember that the electromotive force induced in the receiver coil 
is defined as: 

(^ = 27rronE 

where VQ and n are radius and number of turns of this coil, respectively. 
Now we will suppose that there is an invasion zone and the formation has an infinite 

thickness (Fig. 3.4b). In this case Green's function satisfies equation: 

V^G + klG = 0 (3.72) 

and it has a logarithmic singularity at point p. 
In accord with eq. 3.65 we have for the field Ei: 

V'^Ei - -klEi + [kl - kl)EQ 0 < r < ai 

V^^i - -klEi + (A:̂  - kl)Eo a^ < r < a2 (3.73) 

V^^i - -klEi 

Applying Green's formulas for borehole, invasion zone and formation we have, respec-
tively: 

[{GV^Ei - ErV^G)dS = -2nE,{p) + / ( G ^ - ^ i ^ ) d/ (3.74) 

Si /i 

/(GV^^.-^.V^G)d5 = / ( - G f l + E . f ) d/ + / ( G f ^ - ^ . f ) d/ (3.75) 
^2 h h 

[{GV'E, - E^V^G) dS= f ( - G ^ + E,^) dl (3.76) 

53 h 

Si 

S2 



165 

where /i and I2 are contours defining boundaries between the borehole and the invasion 
zone and the latter with the formation, while Si, 5'2 and S3 are their cross-sections, 
respectively. 

Now taking into account eqs. 3.72-3.73 and performing summation of eqs. 3.74-3.76 we 
obtain the integral equation, which contains two surface integrals over areas corresponding 
to cross-sections of the borehole and the invasion zone: 

Ei{p)=^^^ J Eo{q)G{h,p,q)dS+^^^ 

^' ^' (3.77) 

Si S2 

+ 

It is obvious that integral equations 3.71 and 3.77 coincide with each other, if ki = /c2 or 

We have illustrated derivation of the integral equation in two cases when the solution 
of the boundary problems can be obtained in the explicit form, making use of the method 
of separation of variables. In both cases the same Green's function corresponding to a 
uniform medium with the formation conductivity has been used. 

Let us notice that unlike eq. 3.59 the integral equation 3.77 allows one to obtain directly 
very simple and sufficiently accurate formulae for the field which will be described in the 
next paragraph of thisi chapter. In order to derive the integral equation for the case when 
the formation has a finite thickness (Fig. 3.4c), we will introduce a new Green's function 
which satisfies the following conditions: 

• It is a solution of equations: 

V ' G + klG = 0 V ' G + klG = 0 (3.78) 

in a horizontally layered medium when the formation and the surrounding medium 
are characterized by wave numbers k2 and /ca, respectively. 

• Function G = GI^ and its first derivative with respect to coordinate 2:, dC/dz^ 
are continuous functions at interfaces between the formation and the surrounding 
medium. 

From a physical point of view, the function G presents itself with accuracy of a mul-
tiplier of the electrical field of a circular filament passing through the point p in the 
horizontally layered medium. As will be shown in the next chapters this function can be 
expressed through the proper integral. 

We will present the total electric field, E, as before in the form of the sum: 

E = Eo-^Ei (3.79) 

where £̂ 0 is the electric field of the magnetic dipole in the horizontally layered medium. 
I.e.: 

V^Eo = -klEo (3.80) 
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in the formation, and 

V^^o = -kJEo (3.81) 

in the surrounding medium provided that the borehole is absent. 
It is clear that: 

G — Glfj) EQ — EQI^I) El = Eil(j) 

Taking into account eq. 3.63 as well as eqs. 3.80-3.81 we have in the surrounding 
medium: 

V^Ei = -kJEi (3.82) 

in the formation: 

V^Ei = -klEi (3.83) 

in the part of the borehole, located against the surrounding medium: 

V^^i = [kj - kl)Eo - klE, (3.84) 

and finally in the part of the borehole located against the formation: 

Sj'^Ei = {kl - kl)Eo - klEi (3.85) 

Correspondingly, function GV^E\ — EiV^G is equal to zero within the surrounding 
medium and the formation while it is equal to: 

{kl-kl)EoG+{kl-kl)E,G 

in the part of the borehole, located against the surrounding medium, and 

{kl-kl)E^G+{kl-e,)E,G 

in the part of the borehole, located against the formation. 
Now applying Green's formula we obtain the integral equation with respect to the 

electric field, Ei: 

Ei{p) = F,{p) + M-_M J E,{q)G{p, q) AS + ^ ^ ^ j E,{q)Gip, q) dS (3.86) 
S2 Si 



167 

where 

Flip) = ^ ^ I Eo{q)G{p, q) dS + M _ M j Eoiq)Gip, q) dS (3.87) 
52 Si 

is a known function. 
It is clear that the half cross-section of the borehole S is equal to: 

The integral equation 3.86 allows us to determine the electric field Ei{p) and therefore 
the total electric field: 

E = Eo + Ei 

which creates the electromotive force in the receiver coil. 
Generalizing this result in the case, when there is an invasion zone within the formation 

(Fig. 3.4d), we have: 

Ei{p) -F,^ M__M j E,{q)G{p, q) dS 

S2 

J EMG{p. q) d5 + ^ i ^ j Eo{q)G{p, q) dS 
(3.88) 

2n 
Si S3 

where Ss is the half cross-section of the invasion zone and k^ = ia^/jiuj: 

2 ^ 2 h^ — h^ 
^3 ^1 / z . / . ^ ^ . . . ) d 5 •jEo{q)G{p^q)i 

+ 

27r 
^ 2 

t M I Eo{q)G{p, q) dS + ^ i ^ j Eo{q)G{p^ q) dS 
Si S3 

(3.89) 

Further simplification of numerical problems is related with derivation of integral equa-
tions with respect to tangential components of the electromagnetic field in which integra-
tion is performed along the line /, characterizing the borehole surface. 

In order to eliminate the surface integral, we will choose Green function, which obeys 
the following conditions: 

• Inside the borehole function G satisfies Helmholtz equation: 

V^Gi + kid = 0 (3.90) 

and it has a logarithmic singularity at point p. 
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• Outside the borehole we have for the formation and the surrounding medium, re-
spectively: 

V'Gs + klG2 = 0 V'G2 + klG2 - 0 (3.91) 

Function G2 is continuous along with its first derivative with respect to coordinate 
z at horizontal interfaces (Fig. 3.4c) and it does not have singularities. 

It is clear that the total electric field E = EI^p satisfies the following equations: 

V ^ ^ + klE = 0 in the borehole 

W^E + k^E - 0 in the formation (3.92) 

V ^ ^ + klE = 0 in the surrounding medium 

and it is a continuous function at interfaces of the medium. 
From the first Maxwell equation E — icjfiH, we have: 

lujjir or lujji \ or r 

Inasmuch as both components Hz and E^^ are continuous functions, the first derivative 
dE(p/dr is also continuous at the borehole surface and at interfaces between the formation 
and the surrounding medium. 

Applying Green's formula outside the borehole and taking into account eqs. 3.68 and 
3.91 we obtain: 

where I is the straight line along the borehole surface. 
Now we will apply Green's formula for functions E and Gi inside the borehole. Then 

we have: 

(3.94) 

where /i is the contour, surrounding the observation point p, while I2 is the contour around 
the current ring representing the source of the primary field. The value of integral around 
point p is equal to —2nE{p), since function Gi behaves as Inr near this point. 

In approaching the source of the primary field, E tends to that caused by the primary 
magnetic field only. Therefore: 
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and 

dE_ dEl iujfil 
dr dr 27rr 

Correspondingly, the integral around contour I2 is equal to: 

Since the electric field of the source in a uniform medium with conductivity ai is equal 
to: 

we have 27rEo{p) for the integral along contour I2. 
Correspondingly, instead of eq. 3.94 we obtain: 

- 2 . ( E - E o ) + / ( E f l - G , f l d ^ = 0 

I 

or 

dr J 

E{p) = E,{p) + ^ j [E^-^ - G , ^ ) dl (3.95) 

If point p is located on the contour /, it is an integral equation with two unknowns, E 
and dE/dr. The latter is expressed through tangential component of the magnetic field. 

Subtracting eq. 3.93 from 3.95 we obtain: 

I 

where G* — Gi — G2 and d/drq means the derivative at point q. The last operation 
permits us to reduce the order of the singularity. 

Taking the normal derivative at the point p we have: 

'p drp 27r J \ dvpdrq dRpdvp) 

Thus eqs. 3.95 and 3.96 form a system of two integral equations in terms of the electric 
field E and its first derivative with respect to r, dE/dr. 

When these functions are found along the contour /, we can determine the electric field 
inside the borehole by making use of the computational formula 3.95. This approach has 
been used for the investigation of radial and vertical responses of induction probes when 
the formation has a finite thickness. 
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3.4. Approximate Methods of Field Calculation in Induction 
Logging 

In this section we will describe two methods of field calculation which have played an 
essential role in developing such aspects of induction logging as: 

• theory 

• interpretation 

• invention of principle of focusing of the induction probes 

• choice of optimal parameters of multi-coil induction probes 

• choice of field frequency and understanding of the influence of the skin effect on 
radial responses of induction probes. 

3.4.1. DoH's Theory of Induction Logging 

In 1949 Henry Doll developed an approximate theory of induction logging. The basis of 
this theory is the assumption that for a sufficiently resistive medium and at relatively 
low frequencies one can neglect interaction of induced currents. For this reason the phase 
of these currents is 90°, regardless of the distance from the transmitter coil, and the 
measured signal is a sum of elementary signals created by currents in various parts of the 
medium, which depend on the conductivity of the corresponding part of the medium only. 

As follows from the analysis of the field of a magnetic dipole in a uniform medium 
(Chapter 2), such behavior of the field and induced currents is closer to reality with 
decreasing frequency as well as conductivity. 

The range of frequencies and resistivities of a nonuniform medium and also geometric 
parameters, when this theory remains valid will be established by comparison with results 
of calculations, making use of the exact solution. 

Application of Doll's theory permits us to derive simple expressions for the quadrature 
component of the magnetic field in a medium with horizontal and cylindrical interfaces, 
and in many cases this theory allows us to evaluate with sufficient accuracy the influence 
of currents, induced in the borehole and in the invasion zone as well as in other parts of 
the medium. It is appropriate to consider formulae based on this theory as asymptotical 
ones, which are valid for large values of the skin depth with respect to such parameters 

• borehole radius 

• invasion zone radius 

• formation thickness 

• distance from the magnetic dipole to the observation point. 
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Figure 3.5. Position of an elementary ring with respect to the induction probe. 

Let us consider a part of the medium formed by two horizontal planes and two coaxial 
cylindrical surfaces having a common axis with the borehole (Fig. 3.5). This part presents 
itself as a horizontal ring filled by a uniform medium. Its cross-section, dS, is almost 
square and, one will assume that this area equals unity {dS = 1). It is essential that the 
dimensions of the cross-section are small with respect to the ring's radius. Doll called this 
part of the medium an elementary unit ring. 

Now we will find a signal at the receiver of a two-coil induction probe caused by an 
induced current from this ring. As was shown in Chapter 2 the current induced in the 
elementary unit ring is: 

/ = 47r Rl 
if dS = 1 (3.97) 

where a is the ring conductivity, and Ri is the distance from the transmitter coil to the 
ring (Fig. 3.6). 

The current in the elementary ring with radius r generates the secondary magnetic field 
which has only the vertical component at its axis: 

H.=^ 
2Rl 

(3.98) 



Figure 3.6. Illustration of eq. 3.97. 

where R2 is the distance from points of the ring to the receiver coil. 
Respectively, the flux of the magnetic induction vector piercing the receiver is: 

2 ^ 
S2n2 

where ^2 and 77-2 are area and number of turns of the receiver, respectively. 
For the electromotive force in the receiver, arising due to a change of the magnetic field 

with time, we have: 

(3.99) 

Substituting eq. 3.97 into 3.99 we finally obtain the expression for the electromotive 
force in the receiver coil: 

TT T 
(3.100) 

where /Q is the current in the transmitter coil; Si and rii are the area and number of turns 
of the transmitter coil; / is the field frequency. 
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Let us present this equation in the form: 

S' = Ko(Tgo (3.101) 

where 

Ko = - | / V 5 i 5 2 n i n 2 

is the probe coefficient, and 

^0 = ^ (3.102) 

is the function depending on the radius and location of the ring as well as on the probe 
length, L. Doll called this function by the geometric factor of the elementary ring or the 
elementary geometric factor. Thus, the signal generated by the current in the elementary 
ring of a medium, is directly proportional to its conductivity and geometric factor of the 
ring. Now we will present the function go in cylindrical coordinates, r, z with the origin 
at the middle of the induction probe. Inasmuch as: 

R^ = [r2 + (L/2 + zf] ^'^ R, = [r' + {L/2 - zf]'" 

we have for t h e funct ion ^o-

QQ = 7̂5 ^ (3.103) 

[H + (L/2 -f zff^ [r2 + (L/2 - z)''f^ ^ 

Instead of function ^o, we introduce, following Doll, a new function q: 

L L r^ 
^ == 2 ^" = 2 [r.2 + (L/2 + zYf" ^ + ( i / 2 - zYf" ^^'^^^^ 

At the same time the probe coefficient KQ is multiplied by 2/L. In this case, as will be 
shown later, the geometric factor of all space is equal to unity. 

Knowing the induced current in an elementary ring of a medium, one can calculate 
a signal caused by currents in a whole space. In fact, making use of the principle of 
superposition and neglecting interaction of induced currents the electromotive force is 
equal to the sum of the signals from all elementary rings, i.e.: 

S' = K jaqdS (3.105) 

5 

where K = {2/L)KQ and d5 is the cross-section of the elementary ring. 
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Figure 3.7. Illustration of eq. 3.106. 

In a general case conductivity can be a continuous function of coordinates of a point. 
If a medium is uniform we have: 

(^ ^Ka f qdS = Ka f dr f dz 

Inasmuch as radii of elementary rings change from 0 to oo but coordinate z varies from 
-cxD to cxD, we can write for a uniform medium: 

= Ka 

oo oo 

qdz 

For illustration we will consider a nonuniform medium with a conductivity distribution 
as shown in Fig. 3.7. Then, taking into account axial symmetry, it is natural to denote 
parts of the medium with various conductivity by capital letters A, B^ C, D, E and so 
on. Contribution of every uniform part of the medium to the total signal is proportional 
to the product of the corresponding conductivity and geometric factor of this part. The 
latter can be presented as a sum of geometric factors of elementary rings over the area of 
the considered part of the medium. 

For example, if conductivities of parts A, B, C, D, and E are equal to a A, CFB, CFC) ^ D , 
and GE, respectively, the total electromotive force is: 

(^ = K\aA [jqdS^GB ffqdS + ac ff qdS + ao ffqdS + aE ffqdS 
A B C D E } 

(3.106) 
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where JJ^ q dS, fj^ q dS and so on are geometric factors of corresponding parts of the 
medium. 

Introducing notations: 

GA=ffqdS GB^jjqdS Gc=^ffqdS and so on 
A B C 

we obtain the following expression for the magnitude of the electromotive force: 

S' = K {(JAGA + (TBGB + (JcGc + ODGD + (TEGE) (3.107) 

Inasmuch as for whole space the geometric factor is equal to unity: 

(JAGA + (^BGB + (^cGc + (TDGD + (JEGE + • • • - 1 (3.108) 

the ratio S/K is equal to the conductivity of this medium. In the general case of a 
nonuniform medium this ratio is called the apparent conductivity, a a- Therefore, we 
have: 

^a^j^ = (^AGA + (TBGB + (TcGc + (TDGD + (TEGE (3.109) 

From this equation it follows that to some extent the conductivity and the geometric 
factor have a similar influence. For instance, a part of the medium with high conductivity 
and with relatively small dimensions can contribute the same signal as an area with lower 
conductivity but with greater dimensions. 

Now we will investigate the behavior of the elementary geometric factor g in detail. 
In accord with eq. 3.104 it is very simple to show that the geometric factor q depends 
on the angle under which both coils of the induction probe are seen from points of the 
corresponding ring, and it is equal to: 

^^" '^ (3.110) 
^ - 2L2 

In fact, as follows from Fig. 3.6: 

sin A sin a . r sin A 

L i?2 ^ 1 L 

and therefore: 

L r^ Lsm^A sm^ A 

^ ~ ^R^m ~ ~2 L3 ~ 2L2 

r 

R1R2 

In other words, for the given probe the elementary geometric factor is completely defined 
by the angle under which the probe is seen from points of the elementary ring. Thus, all 
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elementary rings have the same geometric factor, if the probe is seen under the same angle 
from the ring's points. Consequently, they contribute the same signal, provided that all 
these rings have the same conductivity. From this consideration it is obvious that the 
geometric configuration of a section of elementary rings with the same geometric factor in 
a vertical plane are circles, passing through transmitter and receiver coils of the induction 
probe (Fig. 3.6). Elementary rings for which sinA = 1 have maximal geometric factor, 
equal 1/2L^. Cross-sections of these rings are located on the circle with radius equal to 
L/2. 

Making use of the concept of a elementary geometric factor it is not difficult to define 
a signal caused by currents in various parts of the conducting medium. In particular, 
if a medium is uniform, signals caused by its different parts depend on corresponding 
geometric factors only In developing the theory of induction logging in media with either 
cylindrical or horizontal interfaces, Doll also introduced useful concepts of geometric fac-
tors of an elementary cylinder and an elementary horizontal layer which will be considered 
later. 

Finally, let us make the following comments: 

• According to Doll's theory induced currents arise due to the primary vortex electric 
field only: 

In other words, interaction between currents (skin effect) is neglected, and, respec-
tively, every element of a medium manifests itself independently, regardless of the 
resistivity of neighboring parts of the medium. It also means that this theory does 
not allow us to evaluate the inphase component of the secondary magnetic field. 

• As was shown in Chapter 2, near the source the quadrature component of the current 
is practically defined by the primary vortex electric field. Correspondingly, if the 
area, where such behavior takes place, is greater than the depth of investigation of 
the given probe, Doll's theory describes the field behavior with a sufficient accuracy. 

• From a mathematical point of view Doll's theory can be considered as the first 
approximation of the integral equation 3.56, when the thickness of the skin layer 
tends to infinity. 

Now we will describe also simple, but more accurate method of field calculation. 

3.4.2. The Approximate Theory of Induction Logging, Taking into 
Account the Skin Effect in the External Area 

The analysis of the field of a magnetic dipole in a uniform conducting medium (Chapter 2) 
has clearly demonstrated that with an increase of the distance from the source the quadra-
ture component of induced currents becomes smaller with respect to that corresponding 
to Doll's theory. Moreover, comparison of the vertical component of the magnetic field on 



177 

the borehole axis, calculated from the exact solution and making use of Doll's formulae, 
confirms this conclusion about the distribution of the quadrature component of currents. 
In fact, values of the actual turn out to be smaller than those calculated from Doll's 
theory. 

Now we will describe a method which under certain conditions takes correctly into 
account the skin effect, i.e. interaction of currents in a conducting medium. The idea of 
this method is very simple. Let us present all current space around the induction probe 
as a sum of two areas, namely: 

• the internal area, where the induction probe is located 

• the external area. 

For simplicity we will suppose that the conductivity of the external area is constant. Later 
this assumption will be omitted. 

We will suppose that two conditions are valid: 

• Induced currents in the internal area which contribute to a signal in the receiver 
are shifted in phase by 90°, and their density depends on geometric parameters 
and the conductivity at a given point. In other words, interaction between currents 
induced within this area is practically absent, that is the primary vortex electric 
field generates induced currents only. 

• The density of vortex currents in the external area does not depend on the resistivity 
distribution within the internal area, that is, interaction of two currents, located in 
both areas, can be neglected. 

The second condition emphasizes the fact that the skin effect manifests itself, first of all, 
at relatively large distances from the source. Proceeding from these two assumptions we 
will derive sufficiently simple expressions for the quadrature component of the magnetic 
field. 

This component of the magnetic field on the borehole axis can be presented as a sum 
of two magnetic fields caused by currents in the internal and external areas: 

QH, = QHi + QHt 

Qh, = qh\ + Qthl (3.111) 

where Q hz is the vertical component of the magnetic field, related to the field in a free 
space, i/°: 

' 27rL3 
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Q hi and Q /i | are quadrature components of the magnetic field, caused by currents within 
the internal and external areas, respectively. 

Making use of results obtained in Chapter 2 and formulae of Doll's theory, the first 
condition allows us to present the magnetic field due to currents in the internal area as: 

QK = ^ < (3.112) 

where // is the magnetic permeability of the free space equals to Aw x 10"'' H/m; uj is the 
angular frequency; L is the length of a two coil induction probe. 

In accord with eq. 3.109 the apparent conductivity al^ of the internal area, related with 
an actual conductivity distribution as: 

< = (JAGA + (JBGB + (JcGc + • • • + (JFGF (3.113) 

where GA, GB-, GC and Gp are geometric factors of areas with conductivities a^, (TB-, <̂ C 
and Gp^ respectively. 

For instance let us suppose that the conductivities of an internal area and an external 
area are equal to each other. In this case we have a uniform medium, and the field can 
be presented in the form: 

Q/ir==Q/^L + Q^z (3.114) 

inasmuch as the field of currents in the external area, in accord with the second condition, 
does not depend on the conductivity distribution within the internal area. Here Q h^^ is 
the quadrature component of the magnetic field in a uniform medium with conductivity 
of the external area CTg. The function Q/i!.e is the quadrature component of the magnetic 
field due to currents in the internal area when it has conductivity (jg. As follows from the 
first condition this part of the field can be expressed through the geometric factor of the 
internal area Go 

Qh*,e = ~^^eGi (3.115) 

Therefore, for the quadrature component of the magnetic field, caused by currents in the 
external area we have: 

Qhi = qhT -QKe = QhT- ^^(^eGi (3.116) 

Correspondingly, for the total quadrature component of the field we obtain: 

Q /^. = ^ ^ i + Q / ^ r - ^ ^ e G , = Q / , r + ^ K - ^eG,] (3.117) 

Thus for a field determination on the borehole axis it is sufficient to know the geometric 
factors of corresponding parts of the internal area and the field of the magnetic dipole in a 
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uniform medium with conductivity of the external area ae. In particular, the conductivity 
of the internal area can vary as a continuous function. An expression of the field in a 
uniform medium and its values are given in Chapter 2. 

Calculation of geometrical factors, i.e. integrals of type J^ ^ d^ is a rather simple 
numerical problem, and for the most important cases it is already performed in detail. 

Let us notice that the first term in the right-hand side of eq. 3.117 is subjected to the 
influence of the skin effect in the same manner, as it takes place in uniform medium with 
conductivity CTg. 

Now we will show that with a decrease of parameter p = L/h {h is the skin depth), 
eq. 3.117 approaches to that derived from Doll's theory. 

As was demonstrated in the previous chapter, the quadrature component of the mag-
netic field in a uniform medium can be expressed as: 

2 | ! = Q * . . f ^ . f = . ( ^ ) " % < . ,3.18) 

Substituting eq. 3.118 into eq. 3.117 we obtain: 

T 2 

Qhz = —-— (cre(l — Gi) -\- (JAGA + CTBGB H h CFFGF) 

Qh, = ^ ^ {cTeGe + (JAGA + (TBGB + ' ' ' + (TpGr) (3.119) 

where Ge is the geometric factor of the external area. 
This equation for Q /i^, coincides with that for the magnetic field in a uniform medium 

derived by Doll. 
Making use of the relation between the apparent conductivity and the field, introduced 

by Doll, we have: 

(^n 

CTe 

^a 

Ge 

. ^ 
+ -(y^ 

ujjJbLP' 

or 

G, = ^ + ^ G ^ + ^ G B + --- + ^ G ^ - G , (3.120) 

Values of function a'^ jo^ are given in Chapter 2. 
It is obvious that with a decrease of internal area dimensions and an increase of medium 

resistivity this method of field calculation will be valid for higher frequencies. 
Comparison with results of calculations using the exact solution will allow us later to 

characterize boundaries of application of this method. 
Now we will consider two more examples when the external medium is uniform. 
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As follows from results obtained above, we have for the field on the borehole axis, pro-
vided that the formation has infinite thickness (two layered-medium with one cylindrical 
interface): 

Qh, = QhT+~^{<T,-a2)G^{a) (3.121) 

and for the apparent conductivity: 

^ ^ < ! + f ^ _ l ) G i ( a ) (3.122) 

where: 
ai is the borehole conductivity; 
<J2 is the formation conductivity; 
Gi{a) is the geometric factor of the borehole; 
a is the ratio of the length, L, of the induction probe to the borehole radius, ai: a — L/ai; 
Q/î "^ and cr̂ ^ are the quadrature component of the magnetic field and the apparent 
conductivity in a uniform medium with the formation resistivity, respectively. 

As will be demonstrated in the next chapter the geometric factor of the borehole can 
be expressed through the integral: 

CX) 

Gi(a) = 1 / - [2Ko(m)K^{m) - m (Kf - K^)] cos ma dm 

0 

where Ko{m)^ Ki{m) are modified Bessel functions of the second type. If the internal 
area includes both the borehole and the invasion zone, expressions for the quadrature 
component, Q/iz, and the apparent conductivity, aa, have the form: 

Q/i, = Q/ir(^3) + ^ ( ^ 1 - cTs)Gi{a) + ^ ( ^ 2 - as)G2{a) (3.123) 

and 

^^<l+(^^l)G,{a)+(^- l) G,{a) (3.124) 

where: 

ai,(j2 and as are conductivities of the borehole, the invasion zone and the formation, 
respectively; 
Gi{a) and ^2(0^) are geometric factors of the borehole and the invasion zone: 

G2{a) = Gi(^]-G,{a) P = a2/a. 



181 

^2 and ai are radii of the invasion zone and the borehole, correspondingly. 

Later we will demonstrate that this method of the field calculation permits us to obtain 
with a sufficient accuracy values of the quadrature component of the field in most practical 
cases where induction logging is applied. 

Thus for the field calculation in media with cylindrical interfaces two functions should 
be known, namely: 

• the quadrature component of the magnetic field of the dipole in a uniform medium 
with the formation conductivity 

• the geometric factor of the cylinder, Gi{a). 

A similar approach can, in principle, be used in a medium with horizontal interfaces 
when the formation has a finite thickness. 

Until now we have assumed that the external area is a uniform one. This restriction 
allows us to obtain very simple formulae for the field in a media with cylindrical interfaces. 

However, in a medium with both cylindrical and horizontal interfaces, when the forma-
tion has a finite thickness, the external area is not uniform, anymore. 

In order to derive formulae for such a case, let us present the field in a medium with 
two horizontal interfaces, i.e. as the formation has the finite thickness and the borehole 
is absent, Q/io, as a sum: 

Q7io = Q/ii + Q/ie (3.125) 

where: 
Q hi is the quadrature component of the magnetic field, caused by induced currents in 
the vertical cylinder with the radius of the borehole; 
Q he is the quadrature component of the magnetic field, caused by induced currents outside 
the borehole; 
^2 and (73 are conductivities of the formation and the surrounding medium, respectively. 

Whence: 

Qhe = Qho-Qhi (3.126) 

The magnetic field Q hi can be expressed through geometric factors in the following way: 

Q/,, = ^ ( a 2 G f + cT3Gf) (3.127) 

where Gf is a geometric factor of the borehole part (A), located against the formation, 
while Gf is the geometric factor of the rest part of the borehole (B), that is: 

Gf= [ qdS Gf = f qdS (3.128) 

A B 
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It is obvious that the geometric factor of the borehole, Gi, can be presented as a sum: 

Gi(a) = G f + Gf (3.129) 

Thus, the quadrature component of the magnetic field, caused by currents induced 
outside the borehole, can be written as 

Qhe = Qho- ^ ^ {cj2Gt + asGf) (3.130) 

Taking into account the magnetic field caused by currents in the borehole with conduc-
tivity (Ji we obtain for the total quadrature component on the borehole axis the following 
expression: 

Qh = Q h o - ^ {a,Gt + asGf) + '^a,G, 

= Qho + ' ^ ( a i d - a^Gf - asGf) (3.131) 

= Qho + ^ [{a, - a3)Gi + (<T3 - <T2)Gt] 

The magnetic field of the vertical magnetic dipole, /IQ, in a horizontal layered medium 
is expressed in the explicit form. For example, if the induction probe is located symmet-
rically with respect to the formation boundary we have: 

oo 

and 

oo 

ho = 2L^ / 7 ^ - - 2 ^ -77T d m li H^ ^ L 

0 

where h^^{a2) is the magnetic field of the magnetic dipole in a uniform medium with 
conductivity of the formation: 

7712 = {m^ - klY^'^ rns = (m^ - klY^'^ Ku = (m2 - m^)/{m2 + m^) 

Hi is the formation thickness; L is the probe length. 
In the more complicated case, when there is an invasion into the formation, we have: 

Q/i = Q/io + ^ [{02 - <73)G^ + {a, - a3)Gf + {a^ - a,)Gi] (3.132) 
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where: 
Q ho is the quadrature component of the magnetic field when the borehole and the invasion 
zone are absent; 
ĉ i5 ^2, ^3 and 0-4 are conductivities of the borehole, the invasion zone, the formation and 
the surrounding medium, respectively; 
G2 is the geometric factor of the invasion zone; 
Gi is the geometric factor of the borehole; 
of is the geometric factor of the part of the borehole, located against the invasion zone. 

Function G^ is expressed through Gf in the same manner as the geometric factor of 
the invasion zone. G2 is related with the geometric factor of the borehole Gi. 

Therefore, determination of the magnetic field on the borehole axis when the formation 
has a finite thickness, consists of calculation of the field in a horizontally layered medium 
and geometric factors of vertical cylinders with a finite height which are coaxial to the 
borehole. 

It is obvious that equations for the field corresponding a medium with one or two coaxial 
cylindrical interfaces can be obtained, as particular cases, from eq. 3.132. 

Let us notice that in the case of a medium with two coaxial cylindrical interfaces one 
can derive a field equation, which is valid for higher frequencies and conductivities of the 
borehole and the invasion zone. However, in this case the field on the borehole axis in a 
medium with one cylindrical interface has to be known. From calculation of the field in 
this medium we can obtain values of the field on the borehole axis as its radius is equal 
to that of the invasion zone of the given model. Then, having replaced the central part 
of the invasion zone by a medium with the borehole resistivity, we obtain a three-layered 
medium, and correspondingly the quadrature component of the magnetic field is defined 
from equation: 

Qh = Qho + ^^{(Ti - (72)G,{a) (3.133) 

where: 
Q ho is the quadrature component on the borehole axis, the radius of which is equal to 
that of the invasion zone, a2; 
o"! and (J2 are conductivities of the borehole and the invasion zone; 
a = L/ai] L is the probe length. 

We have described different aspects of this method for calculation of the quadrature 
component of the magnetic field in various models. In conclusion, it is appropriate to 
make several comments. 

1. Formulae, obtained in this section, directly follow from the integration equation 
3.88. In fact, eq. 3.89 is its first approximation and, if both conditions about current 
distribution are valid, leads to the same results as eq. 3.312. 

2. This method was suggested almost 35 years ago, and it was very useful in developing 
the interpretation of induction logging, the determination of frequencies and geoelectric 
parameters of a section, where focusing induction probes are effective. 
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3. Until now this method has been considered from a point of calculation of the quadra-
ture component of the magnetic field, which is mainly measured in induction logging. At 
the same time it allows us to obtain some information about the inphase component of 
the field also. 

Inasmuch as it was assumed that the skin effect manifests itself in an external area only, 
i.e. interaction between currents within the internal area is neghgible, we can think that 
the inphase component is caused by currents within the external area only. Proceeding 
from this consideration we can rewrite some of eqs. 3.111-3.133 in a more general form. 
Validity of this step also follows from analysis of the integral equation 3.88 and its first 
approximation 3.89. 

In the simplest case, when there is one cylindrical interface only, instead of eq. 3.121 
we have: 

h^K^-{a^) + '^^{a,-a2)G,{a) (3.134) 

It is obvious that only the first term contains an inphase component of the magnetic field, 
which coincides with that in a uniform medium with conductivity of the formation, 0-2 • 
In other words, within a range of relatively small parameters L/h induced currents in the 
borehole do not influence the inphase component. Similar results are obtained when an 
invasion zone is present. In accord with eq. 3.123 we have: 

h = hoias) + ^ ^ ( ( T i - a3)Gi(Q) + ^ ^ ( ^ 2 - as)G2{a) (3.135) 

Again the inphase component of the magnetic field in the borehole is not practically 
subjected to the influence of induced currents in the borehole and in the invasion zone, 
and it coincides with the inphase component in a uniform medium with the formation 
conductivity, (73. In this approximation induced currents in the borehole and in the 
invasion zone contribute to the quadrature component of the field. This consideration 
clearly shows that the inphase component of the magnetic field has a different sensitivity 
to geoelectric parameters of a medium than the quadrature component, and therefore 
they are characterized by different depths of investigation. It is clear that the analysis 
of the current distribution in a uniform medium, performed in Chapter 2, is in complete 
agreement with these results. 

Understanding this feature of field behavior is important for the further development of 
the interpretation of induction logging. Moreover, some of the induction probes, currently 
used in practice, are based on measuring both components of the magnetic field. 

Let us consider one more case when the formation has a finite thickness. Then according 
to eq. 3.132 we have: 

h = ho + ^ ^ [((72 - cJs)G^ + {a, - as)Gt + (^i - ^4)^1] (3.136) 

Consequently the inphase component of the field is the same as that of horizontally layered 
medium, i.e. it is defined by the conductivity and thickness of the formation as well as 
the conductivity of the surrounding medium. Later it will be demonstrated that with a 
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decrease of frequency the inphase component approaches that for a uniform medium with 
conductivity (J4, i.e. medium, surrounding the formation. 

4. In the next chapters, considering models which are of practical interest for induction 
logging, we will establish the conditions, when this method of field calculation can be 
applied with sufficient accuracy. 
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Chapter 4 

ELECTROMAGNETIC FIELD OF A VERTICAL 
MAGNETIC DIPOLE ON THE AXIS OF A 
BOREHOLE 

In this chapter we will derive an expression for the vertical component of the magnetic 
field on the axis of a borehole when the source of the primary field is a vertical magnetic 
dipole and the formation has an infinite thickness. Special attention will be paid to 
the analysis of frequency responses of quadrature and inphase components of the field, 
including their asymptotic behavior. The influence of various parameters of a geoelectric 
section will also be investigated. Such questions as the influence of finite dimensions of 
coils, displacement of the induction probe with respect to the borehole axis, the role of 
magnetic permeability and dielectric constant will be studied. 

4.1 . Formulation of the Boundary Problem 

In formulating this boundary problem we will suppose that: 

• All media surrounding the induction probe are uniform and isotropic. 

• The electrical properties of the medium do not change in the direction parallel to 
the borehole axis. Practically it means that the top and bottom of the bed, against 
which the probe is located, are significantly distant from it. 

• The space filled by the borehole mud has the shape of an infinitely long circular 
cyhnder. 

• An intermediate medium located between the borehole and the bed presents itself as 
a system of coaxial cylindrical layers, the axis of which coincides with the borehole 
axis. 

• The transmitter and receiver coils, forming the induction probe, are located on the 
borehole axis, and they can be considered as dipoles because their dimensions are 
usually small with respect to the induction probe length and the borehole radius. 
At the same time the influence of the finite dimensions of these coils as well as the 
eccentricity will be studied. 

Thus, the boundary problem is formulated in the following way. The medium is sepa-
rated by a set of n — 1 coaxial cylindrical surfaces with radii ai, a2, aa , . . . , a^_i into n 
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parts filled with uniform and isotropic media having conductivity am- We will assume 
that the magnetic permeability and the dielectric constant are constants and equal to 
those in a free space, tha t is: 

î m = Mo = 47r X 10"'^ H / m s^ = SQ = -—- x 10"^ F / m 
oDTr 

Later we will consider a more general case. 
The vertical magnetic dipole is located on the borehole axis, and its moment is a 

sinusoidal function of time. Due to a change of the primary magnetic field with time a 
primary electrical field arises which has only an azimuthal component E\ \ as was shown 
above. Correspondingly, induced currents arise in the conducting medium which also 
have only the azimuthal component since interaction between currents does not change 
their direction, and electrical charges do not arise at interfaces. Therefore, the sources 
of the secondary field are induced currents located in horizontal planes which have only 
components Ĵ ,̂ and their vector lines are circles with centers on the borehole axis. In 
other words, we can say that the geometry of currents is the same as that for a uniform 
medium (Chapter 2). 

The system of Maxwell's equations for the quasistationary field Ee^^^ and H&^^ is: 

cm\E = -iuj/j^H (4.1) 

cm\H = aE (4.2) 

div E = 0 (4.3) 

d i v i f - 0 (4.4) 

Unlike in Chapter 2 we will use here another dependence on time: e'"̂ * instead of e~^^^. 
In accord with eq. 4.3 the complex amplitude of the electric field can he presented as: 

E = -iLUficmlA* (4.5) 

and substituting eq. 4.5 into eq. 4.1 we obtain: 

H = curl curl A* - grad div A* - V^ A* (4.6) 

From eq. 4.2 we have: 

curl H = —ia/Liuj curl A* = k^ curl A* 

H ^k'^A*-gYd.dU (4.7) 

where A* is a vector potential while U is a, scalar potential. 
Applying the gauge condition: 

U=-diYA* (4.8) 
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> r 

Figure 4.1. A model of a medium with cylindrical interfaces. 

we obtain for the vector potential Helmholtz equation: 

V^A* + k^A* = 0 (4.9) 

and the components of the electromagnetic field are only expressed through function A*: 

E — —\ijj\x curl A* 

flr = P A * + graddivA* 

where k^ = —ia/xo;. The wave number k = ((j/ia;/2)^/^(l — i) = (1 — i)/h; h = (2/cr/ia;)^/^. 
Sometimes the following notations will be used: A = 27rh and fe^ — —1%, X — cr/io;, 
where A is called the wavelength even if the effect of propagation is not observed in the 
quasistationary approximation. 

4.2. Derivation of the Formula for the Vertical Component of the 
Magnetic Field 

Let us choose the cyhndrical system of coordinates (r, <̂ , z) and the vertical magnetic 
dipole is placed at the origin of this system (Fig. 4.1). The moment of the magnetic dipole 
is oriented along the z-axis. We will look for a solution using only the ^-component of 
the vector-potential, A*. As follows from MaxwelFs equations the vector potential must 
satisfy several conditions: 

• Function A* is a solution of Helmholtz equation in every part of the medium: 

V^Al + k^Al = 0 if r̂  + z V 0 
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In the cylindrical system of coordinates this equation can be written in the form: 

I d f dAl\ 1 SM* d'^A 
r dr \ dr ) r^ dc^? dz^ ^ ^ ' + a - ^ + ^157? + ^"K = 0 (4-10) 

• Near the origin of coordinates system the function Al tends to the vector potential 
of the magnetic dipole in a uniform medium, that is: 

4 0 ) ^ ^^^^ if ^ ^ (^2 ^ ^2)1/2 ^ Q 

here M is the dipole moment. 

• In passing the interface r — am, tangential components of the electric and magnetic 
field are continuous functions. The electrical field has only the component E<̂ , but 
the magnetic field is characterized by two components: Hr and Hz, and they are 
related with the vector potential as: 

E^ = — M - ^ f^r = ^ ^ Hz = k^Al + ^ (4.11) 

Therefore, boundary conditions for the vector potential A*^ at the interface can be 
written in the form: 

^"^ dr ~ ^"^^^ dr 
C^2A* pjiA* (4-12) 

• With an increase of the distance from the magnetic dipole the function Al tends to 

• Due to the axial symmetry of the field the vector potential and all components of 
the field do not depend on the 0 coordinate, that is Al = Al(r, z). 

• The vector potential and all components of the field do not depend on the sign of 
the z-coordinate due to the symmetry with respect to the plane passing through the 
source and which is perpendicular to the z-axis, that is: 

Al{r, z)=Al{r, -z) 

We will look for a solution of Helmholtz equation as a product of two functions: 

A: = T{rMz) 

Substituting this expression for Al into eq. 4.10 we obtain instead of Helmholtz equation 
two normal differential equations of the second order: 
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az'^ y ay 

where y = (A^ + 1%)̂ /̂  r, A is the variable of separation. 
Solutions of the first equation are functions cos \z and sin Az, while solutions of the 

second equation are modified Bessel functions of zero order, /Q {ym) and KQ (ym), where 
Vm = (A^ + iXmY^'^r = Xmr, and A.̂  = (A^ + ixY^^- Taking into account the symmetry 
of the field with respect to the plane 2; = 0, the expression for the vector potential within 
the borehole can be written as: 

M /e~^'^i^ 2 f \ 
At = — — ^ + - / Ci/o(Air)cosA^dA (4.13) 

since function KQ{Xr) tends to infinity as r —> 0. 
It is well known that the primary excitation, e~'^^^/R, can be presented in the form: 

00 

R 

Thus: 

I cos Xz dX 

00 

A:, 1 = ^ y"[Ci/o(Air) + D^KoiXir)] cos Xz d\ 

where Di = 1. 
In a general case: 

M f 
Al^ = ^ J [CmloiXmr) + DmKoiXmT)] COS Xz dX (4.14) 

0 

where m = 1, 2, . . . , n. 
The right-hand side of the expression for the vector potential contains 2n unknown 

coefficients Cm and Dm- The first boundary condition allows us to obtain n — 1 equations 
for their determination. In accord with eq. 4.12 they have the following form: 

fJ^mi^mCmliy^m^^m) ~ A m ^ m ^ l ( A m ^ m ) j = fJ^m-\-l[Xm-{-lCm+lJ^l{Xm+l^m) 

— ArM+l-Om+l^l(Am+l^m)J 

From the second boundary condition we also obtain n — 1 equations as: 

A^[Cm/o(Am<^m) + DmKo{XmCim)] = ^m-\-l[^m-\-lIo{^m-\-lCim) + DmKo^Xm+lO'm)] 
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Two additional equations which are necessary for a solution are obtained from the con-
dition near the source and at infinity. Inside the borehole where the dipole is located 
the coefficient Di is equal to unity, while in the external medium the field must decrease 
with an increase of the distance r and therefore Cn = 0 inasmuch as function Io{Xnr) 
unlimitedly grows as r —> oo. 

Thus we have 2n — 2 unknown coefficients: 

Ci, (^2, C3, C^j C5, . . . , Cn-i Di^ D2^ D^^ D4, D5, . . . , Dn-i, D^ 

for the determination of which the following system of 2n — 2 equations has to be solved: 

/ i iAi/ i (Aiai)Ci - /iiAi/Ci(Aiai) - ii2>^2h{X2ai)C2 + /i2A2A'i(A201)^2 = 0 

/i2A2/l(A2a2)C2 - /i2A2^l(A2a2)D2 - /^3A3/l(A3a2)C3 -h //3A3Ki(A3a3)D3 = 0 

Mn-2An-2A(An-2<^n-2)C'n-2 " /^n-2An-2^1 ( A n - 2 t t n - 2 ) ^ n - 2 

•~ / ^ n - l A n - l A ( A n - l f l n - l ) C ' n - l + / in-1 A n - 1 ^ 1 (An-lttyj-i 

-h llnKKi{\nan-\)Dn = 0 

and 

A2/o(Aiai)Ci + A?i^o(Aiai) - A^/o(A2ai)C2 - \lK^{X2a,)D2 = 0 

A^/o(A2a2)C2 + A^i^o(A2a2) - A^/o(A3a2)C3 - XlKo{X3a2)Ds = 0 

An-2^o(An-2^n-2)C'n-2 + A^_2i^o(An-2ttn-2 — A^_i/o(A„_ian-2 )Cn-l 

- A ^ _ i X o ( A n _ i a n - 2 ) = 0 

X^_lI{){Xn-lCLn-\)Cn-\ + A^_iKo(An-l<^n-l ) ^ n - l — A A^o(An0^n-l 

Solving this system with respect to C\ we obtain: 

C, = A i / A 

where A is determinant of the system: 

A = /i iAi/i(Aiai)^i - X\lQ{Xiai)62 

Ai = ^jLiXiKi{Xiai)5i - X\KQ{Xiai)82 
(4.15) 

Now let us consider a three-layered medium which consists of three parts, namely the 
external one with the formation resistivity, p3, the internal one with resistivity pi (bore-
hole) and the intermediate part with resistivity p2 (invasion zone). In this case we have 
the following expressions for 5i, 82, A and Ai in eqs. 4.15: 

^1 = -A2/o(A2ai)[/i2A2A3A'i(A2a2)A'o(A3a2) - M3A3A2A'o(A2a2)^i(A3a2)] 

+ A2A'o(A2ai)[-/^2A2A3/i(A2a2)Ko(A3a2) - M3A3A2/o(A2a2)A'i(A3a2)] 
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^2 = -/^2A2/i(A2ai)[/X2A2A3i^i(A2a2)/^o(A3a2) - /^3A3A2i^o(A2a2)^i(A3a2)] 

- /i2A2i^i(A2ai)[-//2A2A3/i(A2a2)^o(A3a2) - /^3A3A2/o(A2a2)^i(A3a2)] 

A = [-/iiAiA2/o(A2ai)/i(Aiai) + /X2A2Ai/o(Aiai)7i(A2a2)][/i2A2A3i^i(A2a2)/iro(A3a2) 

- /i3A3A2A^o(A2a2)A^i(A3a2)] + [/iiAiA2/i(Aiai)i^o(A2ai) 

H-A^2A2Ai/o(Aiai)A:i(A2ai)][-/i2A2A3/i(A2a2)A'o(A2a2) 

- /^3A3A2/o(A2a2)i^i(A3a2)] 

Ai = [-fj,iXiXllo{X2ai)Ki(Xiai) - fi2X2XlKo{Xiai)Ii{X3ai)][/j.2X2XlKi{X2a2)Ko{Xsa2) 

- fJ^3X3XlKo{X2ai)Ki{Xsa2)] + [^iAiA2/Co(A2ai)i^i(Aiai) 

-M2A2A?iCo(Aiai)i^i(A2ai)][-/i2A2A3/i(A2a2)i^o(A3a2) 

- /X3A3A2/o(A2a2)^i(A3a2)] 

Inasmuch as we will consider mainly a medium which has a uniform magnetic permeability, 
/i, it is convenient to present function Ci in the form: 

Ci = A ; / A ' 

A ; = [-A2/o(A2ai)iri(Aiai) - Aii^o(Aiai)/i(A2ai)][A3i^i(A2a2)Xo(A3a2) 

- A2i^o(A2a2)i^i(A3a2)] + [A2i^o(A2ai)i^i(Aiai) - Aii^o(Aiai)i^i(A2ai)] (4.16) 

X [-A3/i(A2a2)Ko(A3a2) - A2/o(A2a2)i^i(A3a2)] 

A' - [~A2/o(A2ai)/i(Aiai) + Ai/o(Aiai)/i(A2ai)][A3i^i(A2a2)i^o(A3a2) 

- A2i^o(A2a2)i^i(A3a2)] + [A2/i(Aiai)i^o(A2ai) + XiIo{Xiai)Ki{X2ai)] (4.17) 

X [-A3/i(A2a2)Ko(A3a2) - A2/o(A2a2)i^i(A3a2)] 

Ai = (A^ + is.xsY^' X2 = (A^ + is2X3)^/^ As = (A^ + ixsY^' 

Xs = (J^^uj 

where: 
(J3 is the formation conductivity; 
Si = cri/cr3, S2 = cr2/cr3; 
ai and a2 are the radii of the borehole and the invasion zone, respectively. 

For Bessel functions the following equations are known: 

2k 

r X \ ^ 1 /x\2fc A 1 (4-18) 

if.(x,=-(i„|+c)/,w+i:^i^(l) i : i m = l 
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where C is Euler's constant equal to 0.57721566... 
For large argument values, the calculation of Bessel functions can be performed by 

asymptotical formulae: 

Io{x) 

h{x) 

(27ra:)i/2 

(27ra;)i/2 1-E 

(2A;-1)!! 

k\{SxY 

(2A;-3)!!(2A;+1)!! 

^ " ^ ^ k\{^xY 

k=\ 

•K \ l / 2 

1 + E 

A:!(8a:)* 

( - l )*{ (2 fc - l ) ! ! }2 

k=l 
k\{ixY 

(4.19) 

1/2 

1-E 
(-1)^(2A:-3)!!(2A: + 1)!! 

A ; = l 
A:!(8x)^ 

Let /i2 = M3 7̂  Ml and A2 = A3, then in accord with eq. 4.15 we have for a two-layered 
medium: 

^ Ai ^ /iiA2Xo(A2ai)i^i(AiQi) - /i2AiA^o(AiQi)/(^i(A2ai) 

A /iiA2A'o(A2tti)/i(Aiai) + /X2Ai/o(Aiai)A^i(A2ai) 
(4.20) 

It is obvious tha t a similar equation will be obtained if /J>i = fi2 ¥" Ma and Ai = A2 7̂  A3. 
According to eq. 4.11 the components of the electromagnetic field in the first medium 

are: 

iujLL 2M f 
E^^E^s-- / AiCi/ i (Air)cosAzdA 

47r TT J 
•^(j) — -C/0(^ 

00 

H, = Hoz-^- f XlCiIo{Xir)cosXzdX 
Air TT J 

0 
00 

Hr = Hor / AAiCi/i(Air) sin AzdA 
ATTTT J 

(4.21) 

(4.22) 

(4.23) 

where £'o</,, HQZ, Hor are components of the field in a uniform medium with conductivity 

In particular, on the borehole axis, we have: 

Hr = E(k = 0 
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and 

oo 

H, = Hoz-—- f A?CicosXzdX 
ATTTT J 

The primary magnetic field along the z-axis is equal to M/27rL^, and correspondingly 
the expression for the vertical component of the magnetic field presented in units of the 
primary field is: 

oo 

h^=^J^ = h^p-^f XlCi cos XL dX (4.24) 

where the function hi was described in detail in Chapter 2, and L is the length of a 
two-coil induction probe. 

Thus the magnetic field due to induced currents in a conducting medium can be ex-
pressed through the improper integral, while the integrand consists of a product of two 
terms: the complex function XfCi and the oscillating multiplier cos XL. 

Now let us investigate a behavior of function XfCi for different values of argument A, 
when //i = /i2 = Â3 = 47r X 10~^ H/m. 

First we will consider a two-layered medium (the invasion zone is absent). 

In accord with eq. 4.20: 

2 ^ ^ 2^2^o(A2a)-^i(Aia) - XiKi{Xia)Ko{Xia) 

^'^' ' X2Ko{X2a)h{X^a) + X^K,{X,a)Io{X^a) ^ ' ^' 

where: 

Ai = (A^ + iXi)^/^ 

A2 = (A^ + iX2)^/^ 

X2 = Cr2/iCJ 

and: 

Ai = (A^ -f- ^2Nl /4^iarc tan(x i /A2) /2 

A2 = (A^-fX2)'^'e^'"*'"^^'^^'^^' 

In general, the magnitude of the argument changes from zero to infinity, and its phase 
alters from —7r/4 for A = 0 to 0 as A tends to infinity. 
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In two special cases, the expression for AjCi, (eq. 4.20) is slightly simplified: 

• The borehole is nonconductive, tha t is a i = 0. Then, Ai = A and 

X^C - ;^2^2/^o(A2a)i^i(Aa) - XKi{X2a)KoiXa) 
(4.26) 

X2Ko{X2a)Ii{Xa) -f AA^i(A2a)/o(Aa) 

The formation around the borehole is an insulator, that is (72 = 0. Then we have: 

. 2 ^ ^ 2Ai^o(Aa)/^i(Aia) - X,K,{Xa)Ko{X,a) 

^ ^ ^ XKo{Xa)Ii{Xia)-\-XiKi{Xa)Io{Xia) 

Let A —> 0, then in accord with eq. 4.25 we have: 

/iX2Ko{y/iX2Ci)Ki{y/i)aa) - i / iXi^i( \ / iX2«)^o(V^Xi^) 
A f C i ^ i X i -

/iX2Ko{ViX2Ci)Ii{y/iXia) + yAxiKi{^^a)Io{y/iXi(^) 

(4.27) 

(4.28) 

where a = ai. Thus function XfCi has a finite value for A = 0, provided parameters 
Xi and X2 ^^^ not equal to zero. 

As follows from eq. 4.18 for small values of A, Bessel functions can be replaced by 
approximate formulae: 

Io{Xa) -^ 1 Ii{Xa) -> Aa/2 KoiXa) -^ - ( ln (Aa /2) + C) K^{Xa) -^ \/Xa 

Substituting these expressions into eqs. 4.26 and 4.27 we obtain: 

X^C = ^2y/^2K^{y/^2a)/Xa + XK,{^/^2a) (ln(Aa/2) + C) 

/iX2A'o(\/iX2a)(Aa/2) -f XKi{y/i)C2a) 

v/iX2^o(\/iX2a) 
(4.29) 

a ViX2^o(v/iX2«)(«/2) + /^i(\/iX2a) 
if Ai = A 

and 

X\C, = ixi-

-iXi 

-A(ln(Aa/2) + C)K,{^/i^,a) ~ A i / ^ o ( v ^ a ) / A a 

-A(ln(Aa/2) + C ) / i ( v ^ a ) -f XMyAxJa)/Xa 

Ko(y/i)aa) 
(4.30) 

if Ao = A 

Now we will consider the behavior of function AiCi (eq. 4.25) for large values of A. As is 
known for x ^ oo, we have: 

Koix) 

'2'KX 
1 + 

0.125 

1 -
0.125 

27rx 
1 

0.375 

X 

ZL (] Q'375 
2x \ X 
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Substituting these expressions into eq. 4.25, after simple algebra we obtain: 

Therefore, the real and imaginary parts of function XfCi decrease very rapidly when 
Xa ':^ 1. The latter allows us to evaluate an upper limit of integration. 

Now we will investigate function X^Ci in the case of a three-layered medium: 

mi = -A2/o(A2ai)ii:i(Aiai) - AiA'o(Aiai)/i(A2ai) (4.32) 

rii = X3Ki{X2a2)Ko{Xsa2) - X2Ko{X2a2)Kr{Xsa2) (4.33) 
m2 = X2Ko{X2ai)Ki{Xiai) - AiA'o(Aiai)/^i(A2ai) (4.34) 

^2 ^ -A3/i{A2a2)i^o(A3a2) - A2/o(A2a2)i^i(A3a2) (4.35) 
ma - -A2/o(A2ai)Ji(Aiai) + Ai/o(Aiai)/i(A2ai) (4.36) 

ns = X2li{Xiai)Ko{X2ai) + Ai/o(Aiai)/^i(A2ai) (4.37) 

XlC ^ A^^"^ '^"^"^ (4.38) 

If A2 = A3 7!̂  Ai, function rii = 0 and XfCi = m2/ns, that is we obtain the formula for a 
two-layered medium (the interface with radius r = ai). If Ai = A2 7̂  A3 we have: 

mi = -A2[/o(A2ai)A^i(A2ai) -f A^o(A2ai)/i(A2ai)] = - 1 / a i 

777-2 = 0 77̂3 = 0 77,3 = l/tti 

A^r -= >2^i^i _ _ A 2 ^ ^ 2A3- î(A2Q2)^o(A3Q2) - A2î o(A2a2)i< î(A3a2) 
^ ^ ^712^3 7̂7-2 ^ A3/i(A2a2)i^o(A3a2) H-A2/o(A2a2)A î(A3a2) 

that corresponds to a two-layered medium, as the interface radius is equal to a2. 

For three special cases, expressions of A^Ci are somewhat simplified. 

Nonconducting borehole (cri = 0, 0-2 7̂  0, os / 0, Ai = A) 

mi = -A2/o(A2ai)Ki(Aai) - AKo(Aai)/i(A2ai) 

77Z2 -- A2Xo(A2ai)Ki(Aai) - Ai^o(Aai)Ki(A2ai) 

m3 =̂  -A2/o(A2tti)/i(Aai) -}- A/o(Aai)/i(A2ai) 

7̂3 = X2li{Xai)Ko{X2ai) -j- XIo{Xai)Ki{X2ai) 

Nonconducting intermediate zone {0-2 = 0, cri ^ 0, os ^ 0, A2 = A) 

mi = -XIo{Xai)Ki{Xiai) - Aii^o(Aiai)/o(Aai) 

ui -= XsKi{Xa2)Ko{X3a2) - XKo{Xa2)Ki{X3a2) 

777.2 = AA^o(Aai)i^i{Aiai) - Aii^o(Aiai)i^i(Aai) 

^2 = -A3/i(Aa2)Ko(A3a2) - A/o(Aa2)/i(Aai) 

777.3 = -A/o(Aai)/i(Aiai) -h Ai/o(Aiai)/i(Aai) 

77,3 = A/i(Aiai)Ko(Aai) + Ai/o(Aiai)Xi(Aai) 
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Nonconducting bed (cri ^̂^ 0, 0-2 / 0, as = 0, A3 = A) 

ni = A/fi(A2a2)A^o(Aa2) - A2i^o(A2tt2)^i(Aa2) 

77,2 = -A/i(A2a2)A'o(Aa2) - A2/o(A2a2)Ari(Aa2) 

If the conductivities of all three media are not zero it is clear that function XfCi tends 
to the finite limit as A ^ 0. Now consider these three special cases: 

Case 1 

If cTi = 0 and A ^ 0 we have: 

A2/o(A2ai) ^2 r^ /x N 
mi -^ 1712 -^ T—Ko(A2ai) 

Aai Aa\ 

ms^ Xl | ^ / o ( A 2 a i ) + /i(A2ai) j = - A ^ ^ / 2 ( A 2 a i ) 

na - A (-^Ko{X2ai) + K.iX^a,)) = -X^K^iX^a,) 

Functions rii and n2 also have finite values and therefore: 

A?Ci = Â  
2/^ _ .2\-^2h{><2Cii)ni -\- X2Ko{X2ai)n2)/Xai _ 2 (/o(A2ai)ni + Ko{X2ai)n2) 

AA2ai(/2(A2ai)ni + K2{X2ai)n2)/2 a\ (- /2(A2ai)ni + K2{X2ai)n2) 

Case 2 

If cr2 = 0 and A goes to zero we have: 

mi = -X (K,{X,a,) + ^K,{X,a,)\ = -X^K2{X,a,) 

m = ^Ko{Xsa2) 7712 = --r^KoiXiai) 
Xa2 Aai 

^2 = - ' ^ ( -^Ko{X^a2) + A'i(A3a2) j = -X^-^K2[X^a2) 

ms - - A f / i (Aia i ) ^ / o ( A i a i ) j = A - ^ / 2 ( A i a i ) 

^3 = T—h{Xiai) 
Aai 

Thus: 

.2^ _ .2i^2/cii)Ko{Xiai)K2{X3a2) - {ai/a2)Ko{Xsa2)K2{Xiai) 

^ ^ ^ {ai/a2)Ko{Xsa2)l2{Xiai) - (a2/ai)/o(Aiai)i^2(A3a2) 
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Case 3 
If cTs = 0 a n d A ^ 0 t h e n : 

rii = -^Ko{\2a2) 712 = 
Aa2 

/o(A2a2) 
^2 

AiCi —> Ai — 
1712 

Now making use of the asymptotic behavior of Bessel functions, we will s tudy the 
behavior of function A^Ci, when the variable of integration increases unlimitedly (A —> oo). 

In accord with eq. 4.14 we have 

g(A2-Ai)ai g(A2-A3)a2 

^ 1 = -7. 7Y=r (-̂ 1 + -̂ 2) n2 = 7T-Y=(AI + A2) 
2aivAiA2 2a2vAiA2 

g-(Ai+A2)a2 g(Ai+A2)ai 

^1 = 7 T = T " ( ^ 3 - A2) 7713 = 7 Y = ^ ( A 3 " A2) 

za2V^2^3 z a i v ^ 2 ^ 3 

g-(Ai+A2)ai g(Ai-A2)ai 

^ 2 - - • 7T=Y-(A2 - Ai) 713 = 7Y=T=(^1 + ^2) 

2aivAiA2 2(2ivAiA2 

Therefore, as A ^^ oo 

mini -^ 0 m2n3 -^ 0 n2ns -^ 
aia2 

The product 7713/11 also tends to zero, since a2 > ai. An unlimited increase of function 
7773, as A ^ cxD, should be taken into account when the corresponding computer program 
code is prepared. Thus with increasing A, function X^Ci decreases exponentially. 

Now let us consider the integral on the right-hand side of eq. 4.24 from the following 
point of view. It can be interpreted as an infinite sum of cylindrical harmonics with 
complex amplitude AfCii 

XlCi cos XL 

In this expression the variable of separation A plays the role of spatial frequency. It is 
clear tha t with an increase in A, the corresponding harmonic changes rapidly. Now we will 
investigate how various spatial harmonics are sensitive to different parts of the medium 
provided tha t the electromagnetic frequency CJ, is the same. 

As follows from eqs. 4.32-4.37, function rii decreases more rapidly than others when 
spatial frequency A increases. Correspondingly, we can neglect terms containing rii in 
eq. 4.38 when A is sufficiently large. Therefore, instead of eq. 4.38 we have: 

XJCi = X\m2ln^ 

i. e. the expression for a two-layered medium when the external layer has resistivity p2- In 
other words, harmonics with higher spatial frequencies have smaller depths of penetration. 
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After the analysis of the behavior of function XfCi we will describe a method to calculate 
the integral on the right-hand side of eq. 4.24. As was pointed out above the integrand 
contains an oscillating multiplier cosAL, which complicates the numerical integration, 
specially for large ratios of L/ai. Application of Simpson's well known method with 
a uniform step consists of a replacement of the whole integrand XfCi cos XL with a 
polynomial ai-\- aiX-\- a2X^. 

The presence of the oscillating function cos XL implies that only for very small steps of 
integration we can achieve a sufficient accuracy of calculations. For this reason integration 
with a uniform step requires a large amount of computer time. It is much more efficient 
to perform the integration with a nonuniform step which is a modification of Fillon's 
method. The idea of this is that the interval of integration is presented as a sum of 
elements of different length. Inasmuch as with an increase of A the integrand decreases, 
it is natural to increase also the length of these elements. Within each element [Â  ^ Ai+2] 
the non-oscillating part of the integrand X^Ci is replaced by the polynomial: 

0(A) = AfCi = ai -f aiA + aaA^ 

Therefore, the integral over this element is: 

Ai+2 Ai+2 

li = X^Ci cosALdA^ / (ao-h aiA-h ^2^2) cosALdA 

AH Ai+2 ><i + 2 ^i + 2 

= ao cos AL dA -f- ai / A cos XL dA -f- 02 / Â  cos XL dX 

Ai Ai Ai 

Integrals on the right-hand side, as it is well known, can be expressed by elementary 
functions: 

Ai+ 

COS XL dA = 
sin Ai+2^ — sin AjL 

z / 
Ai 

Ai+; 

/ 
Ai 

Ai+2 

/
(2X {}? 2 

Â  cos AL dA = < — cos XL^r [—— y^ 

X r 1X / cos XL X sm XL 
X cos AL dA = I —— 1 

L^ L 

j sin AL > 

Coefficients ao, Oi\ and 02 are defined from the system: 

ao + aiA^ -h a2A^ = 0(Ai) 

ao -h aiA^+i + (i2>\j^\ ^ 0(Ai+i) 

ao -h aiAj+i -h a2A,̂ +2 = ^{\^2) 
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The final result presents a sum of integrals li over the whole integration interval. Numer-
ical analysis as well as eq. 4.31 show that the maximal value of A does not exceed 160 if 
ai = 0.1 m. 

The integration interval is usually divided in two parts, namely: 

• the initial one: 10"^ ^ A ^ 10"^ 

• the remaining one: 10"^ < A < 160. 

From comparison of results of calculation within the external part the step of integration 
is usually chosen in the following way: A +̂i = V^Xi, sometimes it is replaced by a smaller 
step: A +̂i = v^Ai. The value of the ratio ai/Ai (Ai = 27r/ii) is changed with the 
step y/2 from 10~^ to 1, that allows us to obtain the total spectrum practically for all 
geoelectric sections of interest. The ratio of the length, L, of a two-coil induction probe 
to the borehole radius, ai, is altered from 2 to 30 with the uniform step: 

2,4, 6, 8, 10 , . . . , 28, 30 

For a two-layered medium the following 0-2/(71 ratios were considered: 

^ 1 1 1 i i i 2 4 6 16 32 
128' 64' 32' 16' 8' 4 ' 2' ' ' ' ' 

For a three-layered medium (the invaded zone is present) calculations were performed 
for the following parameters: 

^ = 2, 4, 8, 16 ^ = — , -^, ^ , i - , i ^ i , 1 ^= 4, 8, 16, 32, 64, 128 
ai ' ' ' 0-1 128' 64' 32' 16' 8 4' 2' pi ' ' ' ' ' 

Results of calculations are presented as a spectrum of four quantities, such as: 

• the quadrature component of the magnetic field: Q hz 

• the inphase component of the secondary field: In hz — I 

• the amplitude of the secondary field: A = {{Inhz — 1)^ + (Q^;^)^)^^^ • 

• the function aa/(Ji — {2/aiiJ,ujL^) Qhz, where Oa is the apparent conductivity func-
tion introduced by H. Doll. 

Before we investigate the spectra of these functions it is appropriate to investigate their 
asymptotical behavior. 

As follows from eq. 4.24 the field hz, expressed in units of the primary field, depends 
on the following parameters (three-layered medium): 

O^ ^ 02 P2 P3 
hi' fli' a i ' p i ' pi 

First of all, let us investigate the range of small parameters ai/hi and correspondingly 
L//ii, where â  is a radius of any interface while hi is the skin depth in any part of the 
medium. 
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4.3. The Quadrature Component of the Magnetic Field at the 
Range of Very Small Model Parameters 

By definition the range of small parameters ai/hi and L/hi corresponds to conditions when 
the skin depth in every uniform part of the medium is much greater than its geometric 
parameters, such as the radius of the borehole and the invaded zone, the length of two-coil 
probe, that is: 

/li > L /li > â  /li > a2 

where z = 1, 2, 3 . 

This relationship can take place due to either: 

• the relatively low frequencies of the field, or 

• the sufficiently resistive medium, or 

• the probe length is relatively small, i.e. measurements are performed near the field 
source. 

There is one common feature in all these cases, namely the strong influence of the 
primary electric field. In other words, in the limit we can neglect the interaction of induced 
currents and consider that the current density at every point of a medium is defined by 
the primary electric field only. In accord with the results described in Chapter 3 (Doll's 
theory), we have: 

_ jT-Co) _ i^M^-^^ _ k'^Mr _ ixMr 

and therefore the magnetic field measured in this approximation has to be proportional 
to Iz^ as follows from Biot Savart law. Correspondingly, in order to derive formulae for 
this approximation it is necessary to expand the right-hand side of eq. 4.24 in a series and 
discard all terms but the first one which is proportional to /c .̂ 

In accord with results obtained in Chapter 2 the first term, hz , can be presented as: 

^ ( O ) ^ i a ^ i f L / / M « l (4.41) 

Now we have to find the leading term of the expansion of the integral in eq. 4.24. Let 
us start from the simplest case of a two-layered medium (the invasion zone is absent): 

. 2 ^ ^ .2^2i^o(A2ai)A^i(Aiai) - AiA^i(A2ai)Ko(Aiai) 
' ' - ^ Ai^o(A2ai)/i(Aiai) + Aii^i(A2ai)/o(Aiai) ^' ^ 

It is obvious that: 

A, = (Â  + fc?r/^ = A(l + M ) « A + iM 

(4.43) 
l/cl 

A2 = (A2 + A;2Y/' = A ( I + | ) « A + 
2 A 
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and 

/o(Aai) = /o (^Xa + ^ ^ ^ = Io{\a,) + \^Io{^a,) 

where: 

(4.44) 

/i(Aiai) = h (Xa, + i ^ ) = h{Xa,) + \^I[iXa^) 

Ko{X^a,) = Ko (xa^ + ^ ^ ) = Ko{Xa^) + ^^K',{Xa^) 

/^i(Aiai) = K, (̂ Aai + \ ^ ^ = K,{Xa,) + ^thlK[{Xa,) 

KoiX,a^) = Ko (^Xa, + i ^ ) = Ko{Xa,) + ]3^K'o{Xa,) 

K,{X,a,) = K, {Xa, + \ ^ ^ = K,{Xa,) + ]J^K[{Xa,) 

Substituting eqs. 4.43 and 4.44 into eq. 4.42 and making use of the recurrence relations 
of Bessel functions: 

I'oix) = -h{x) K'oix) = -K,{x) 
2v 

Iv-l{x) - Iv-\-\{x) = —Iv{x) 
X 

2v 
X 

4_i ( : r )H-4+i (x ) -2 / ; (x ) 

After simple transformations we obtain: 

A?Ci = i(x2 - Xi)^ [2Ko{Xa^)K^iXa^) - Xa^iKf - K^^)] (4-46) 

where ai is the borehole radius. 
Thus the quadrature component of the magnetic field, expressed in units of the primary 

field, is: 

oo 

QK = ^ i ^ + - ( s i - l)xi / ^ [2KoK^ - Xa.iKl - K',)] cos XL dX (4.47) 
Z TT J Z 
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where Si = 02l(J\. 

Let us introduce notations: 

m = \a\ OL = Ljax (4.48) 

Then eq. 4.47 can be rewritten as: 

Q/iz - ^ ^ ^ ^1 + (^2 - ^ i ) ^ / y [2^-0(^)7^1 (m) - m(A'i2 - Kl)\ cos m a dm 

or 

Q / i , = ^ ^ ^ ( ^ i d - ^2^2) (4.49) 

where 

oo 

G2 = — — \2Ko{m)Ki{m) - m{K^ - K^)] cos m a dm (4.50) 
TT J 2 ' 

0 

and 

Gi = l-G2 (4.51) 

Functions G2 and Gi are the geometric factors of the formation and the borehole, respec-
tively. 

It is essential that G2 and Gi depend on only one parameter a = L/ai, characterizing 
the length of the two-coil probe, and in accord with eq. 4.51 their sum is equal to unit 

Ci -f (^2 = 1 (4.52) 

Applying the same approach for a three-layered medium (eq. 4.38) we obtain the fol-
lowing expression for the quadrature component: 

^ , ujLiL^ ( , X 2a /* m r^ _̂  , ^ ^̂  , . . ̂  _2 T^1\^ i 
Qhz = —-— s CTi -\- {cr2 — CTi) — / -— [2Ko{m)Ki (m) — m(/v ^ — KQ )J COS ma dm 

0 
00 

+ (^3 - ^ 2 ) | ^ y f [2KoK, - m{Kl - KD] COS ( ^ m ) d m j 

(4.53) 

where a = L/ai, f3 = a2/ai. 
Thus the latter can be written in the form: 

h^ = ^{<TiG^ + <T2G2 + asGs) (4.54) 
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where: 

oo 

Gi = l / — [2KoKi - m{Kl - KD] COS ma dm 

0 
oo 

G2 = ^ / ^ [2K0K1 - m{Kl - K^)] cos ma dm 

(4.55) 

- ^ / f [2KoK, - m(K! - K',)] cos (^^m) dm 

0 
00 

G3 = 1 ^ y" ^ [2i^oi^i - miKf - K',)] cos (^^m) dm 
0 

These functions, Gi, G2, and G3 are the geometric factors of the borehole, the invasion 
zone and the formation, respectively. 

Let us introduce the function: 

00 

G{x) = — — [2KoKi - m{K^ - K^)] cosmx dm (4.56) 

0 

which is naturally called the geometric factor of the external medium or formation with 
resistivity pa, or the geometric factor of the bed. It is clear that other geometric factors 
can be expressed through this function. Indeed in accord with eq. 4.55 we have: 

Gi(a) = 1 - G ( a ) 

G2(a, /?) = G{a) - G{a/P) (4.57) 

Gs{a, p) = Gia/P) 

that is, the geometric factors of the borehole and invasion zone are related with function 
G in a very simple manner. 

As follows from eqs. 4.57 the sum of geometric factors, as in the case of two-layered 
medium, is equal to unity: 

Gi + G2 + G3 = 1 (4.58) 

Thus the geometric factor of each cylindrical layer can be described by the function G or 
1 — G. The latter, that is 1 — G, is the geometric factor of the cylinder. If the radius of 
the cylinder coincides with that of the borehole function, 1 — G is the geometric factor of 
the borehole. 

Therefore, due to the absence of interaction of induced currents in the range of small 
parameters the quadrature component of the field in a medium with coaxial cylindrical 
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interfaces can be described only with the help of function G or 1 — G. In a general case 
of n-layered medium we have: 

Qh, = '^J2^i(^i (4.59) 

where Gi is the geometric factor of the borehole equal to: 

oo 

Gi - 1 / - \2KoK, - m{Kl - Kl)] cos ma dm 
TT J 2 •-

0 

where a — L/ai 

oo 

Gi = ^ ^ ^ / ^ \2KoKi - m{Kl - Kh] cosma^- i dm 
TT J 2 '-

0 
oo 

i / — \2KQKX — m{K^ — KQ)] cosmai dm 
TT J 2 ' 

0 

where a^_i = L /a j - i , a^ = L/af, aj_i and â  are the radii of the internal and external 
interfaces of the z-th cylindrical layer. 

Finally: 

oo 

G = GN-1 = ^ ^ ^ / — \2KoKi - m{Kl - Kl)] cosma^ . i dm 
TT J 2 ^ 

0 

is the geometric factor of the formation, that is the bed, and a^_i = L/ai^i. 
It is clear that : 

N-l 

5^ G, = 1 (4.60) 
i=\ 

Inasmuch as all geometric factors of all cylindrical layers are expressed through either 
function G or 1 — G, let us describe their behavior in detail. 

Thus: 

oo 

2a f 
Gi{a) = 1 - G = 1 / A{m) cos(am) dm, (4.61) 

0 

where 

TYl 

A{m) = - [2KoK^ - m{Kf - X^)] (4.62) 
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We will consider the dependence of this function on m. For sufficiently large values of m 
we have: 

„ . . _ ^ / TT \ i / 2 / 0.125 

r^ , ^ -m( T^ V^ {. 0-375 

For this reason when m ^ oo: 

Aim) -^ ?7re-2^ -^ 0 
4 

In the opposite case as m ^ 0: 

X o ( m ) ^ - ( l n ^ + c ) i^i(m) 

Substituting these values into eq. 4.62 we obtain: 

A{m) -^ Ko{m) ^ - (in y + c") as m -> 0 (4.63) 

that is, the integrand has a logarithmic singularity as m tends to zero. 
In order to remove this singularity we will make use of the following equation: 

CO 

1 2 / • . _ . 
idm 

1 
m 

^JKoim)^ 
(1 + a2)V2 

0 

Then the function Gi can be presented in the form: 

oo oo 

Gi(a) = 1 / A(m) cos ma dm = 1 — — :—rjr -\— / [Ko(m) — A{m.)] cos ma dm 

0 0 

(4.64) 

In accord with eq. 4.63 the integrand in eq. 4.64 does not have singularities, and its 
calculation presents a relatively simple task. Values of function Gi are given in Table 4.1. 
Corresponding values of the geometric factor G = 1 — Gi are presented in Table 4.2. 

Let us investigate the behavior of the integral at the right-hand side of eq. 4.64 when 
parameter a increases. In this case due to oscillating character of the integrand the value 
of the integral: 

oo 

cos ma dm 

0 
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TABLE 4.1 
Values of function Gi (a) 

a 

0.2 

0.4 

0.6 

0.8 
1.0 

1.2 

1.4 

1.6 

1.8 

2.0 
2.2 

2.4 

2.6 
2.8 

3.2 
3.2 

3.4 

Gi{a) 

0.8829 

0.7700 

0.6650 

0.5701 

0.4866 

0.4146 

0.3534 

0.3019 

0.2588 

0.2229 

0.1929 

0.1679 

0.1469 

0.1292 

0.1143 

0.1016 

0.0907 

a 

3.6 

3.8 

4.0 

4.2 
4.4 

4.6 

4.8 

5.0 
5.2 

5.4 

5.6 

5.8 

6.0 
6.2 

6.4 

6.6 

6.8 

Gi{a) 

0.08149 

0.07348 

0.06653 

0.06047 

0.05517 

0.05051 

0.04640 

0.04276 

0.03951 

0.03661 

0.03401 

0.03167 

0.02956 

0.02765 

0.02592 

0.02434 

0.02290 

a 

7̂ 0 
7.2 

7.4 

7.6 

7.8 

8.0 
8.2 

8.4 

8.6 

8.8 
9.0 
9.2 

9.4 

9.6 

9.8 

10.0 

10.2 

Gi{a) 

0.02158 

0.02037 

0.01926 

0.01824 

0.01729 

0.01642 

0.01561 

0.01486 

0.01416 

0.01351 

0.01290 

0.01233 

0.01180 

0.01130 

0.01084 

0.01046 

0.00998 

a 

10.4 

10.6 

10.8 

11.0 

11.2 

11.4 

11.6 

11.8 

12.0 

12.2 

UA 
12.6 

12.8 

13.0 

13.2 

13.4 

13.6 

G,{a) 

0.009599 

0.009232 

0.008887 

0.008559 

0.008250 

0.007957 

0.007679 

0.007416 

0.007166 

0.006929 

0.006702 

0.006487 

0.006282 

0.006087 

0.005901 

0.005722 

0.005553 

a 

13.8 

14.0 

14.2 

14.4 

14.6 

14.8 

15.0 

15.2 

15.4 

15.6 

15.8 

16.0 

17.0 

18.0 

19.0 

20.0 

Gi{a) 

0.005390 

0.005235 

0.005085 

0.004943 

0.004806 

0.004675 

0.004549 

0.004428 

0.004312 

0.004200 

0.004003 

0.003890 

0.003530 

0.003140 

0.002820 

0.002540 

where 

m ^(m) ^ Ko{m) - - [2KoK, - m{Kl - KD] 

is defined by the behavior of the function ^(m) and its derivatives near zero. In fact, 
integrating by parts we obtain: 

cos ma dm — — / ^(m) d(si 

0 0 
oo 

r 1 r 
- - ^' 

lo ^ J 
= —^sinaTTi 

a 

= —<l>sinQ;m 
a 

m) sin am dm = —^ sin am 
a 

H -^'(m) cos am 
a^ 

oo 
oo ^ . 

H—- / ^'{m) d(cos ma) 

m) cos ma dm 

(4.65) 

For large values of m function $(m) and its derivatives tend to zero and therefore instead 
of eq. 4.65 we have: 

oo oo 

/
$(m) cos ma dm = — ^(0) H—^^'(0) $''(m) cos ma dm 

a a^ a"^ J 
(4.66) 
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TABLE 4.2 
Values of function G = I — Gi{a) 

a 

02 

0.4 

0.6 

0.8 
1.0 
1.2 
1.4 

1.6 

1.8 

2.0 
2.2 

2.4 

2.6 

2.8 
3.0 
3.2 

3.4 

G{a) 

0.1170 

0.2299 

0.3349 

0.4298 

0.5133 

0.5853 

0.6465 

0.6980 

0.7411 

0.7770 

0.8070 

0.8320 

0.8530 

0.8707 

0.8856 

0.8983 

0.9092 

a 

3̂6 

3.8 

4.0 
4.2 
4.4 

4.6 
4.8 

5.0 
5.2 

5.4 

5.6 

5.8 

6.0 
6.2 
6.4 

6.6 

6.8 

G{a) 

0.9185 

0.9265 

0.9334 

0.9395 

0.9448 

0.9448 

0.9535 

0.9572 

0.9604 

0.9633 

0.9659 

0.9683 

0.9704 

0.9723 

0.9740 

0.9756 

0.9770 

a 

7̂ 0 

7.0 
7.4 

7.6 
7.8 

8.0 
8.2 

8.4 

8.6 

8.8 

9.0 

9.2 

9.4 

9.6 

9.8 

10.0 

10.2 

G{a) 

0.9784 

0.9796 

0.9807 

0.9817 

0.9827 

0.9835 

0.9843 

0.9851 

0.9858 

0.9864 

0.9870 

0.9876 

0.9881 

0.9886 

0.9891 

0.9895 

0.9900 

a 

ioi 
10.6 

10.8 

11.0 

11.2 

11.4 

11.6 

11.8 

12.0 

12.2 

12.4 

12.6 

12.8 

13.0 

13.2 

13.4 

13.6 

G{a) 

0.9904 

0.9907 

0.9911 

0.9914 

0.9817 

0.9920 

0.9923 

0.9925 

0.9928 

0.9930 

0.9932 

0.9935 

0.9937 

0.9939 

0.9940 

0.9942 

0.9944 

a 

13^8 

14.0 

14.2 

UA 

14.6 

14.8 

15.0 

15.2 

15.4 

15.6 

15.8 

16.0 

G(a) 

0.9946 

0.9947 

0.9949 

0.9950 

0.9951 

0.9953 

0.9954 

0.9955 

0.9956 

0.9957 

0.9959 

0.9961 

For small values of m (m —> 0) we have: 

Koim) ^ —mm — InmH—— 
^ 4 4 

Ki(m) ^ — -j- —mm -\- • • 
m 2 4 

Substituting these expressions into $(m) we obtain: 

1 1 
$(m) ?̂  ^ + ^rn^ In m 

^'{m) m In 771 

<l>''(m) ^ -Inm as m ^ 0 

Thus: 

oo 

f^m) cos ma dm 

oo 

m cos m a dm : 
oo 

m) cos TTia d m —> —-̂  —-
2a^ 2a 

(4.67) 
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Substituting this expression for the integral into eq. 4.64 we obtain: 

G^(a)cl-^^ L ^ + 1 = J _ i f ^ » i (4.68) 

1 + 4^ 

Therefore, for large values of a the geometric factor of the cylinder, in particular of the 
borehole, decreases inversely proportional to o;^, tha t is: 

1 a^ 
G i ( a ) ĉ  — = - ^ if a > 1 (4.69) 

Let us notice that this behavior of the geometric factor of the borehole defines a radial 
characteristics of the simplest focusing induction probe consisting of three coils. 

Comparison with calculated results (Table 4.1) shows that eq. 4.69 describes with suf-
ficient accuracy the value of function Gi if the ratio L/ai > 4 (ô  > 4). Using the same 
approach for obtaining asymptotical expressions for function Gi(a) we obtain the follow-
ing terms of an expansion. For example, a more accurate expression of the geometric 
factor Gi{a) for large values of a has the form: 

1 31n2Q;-4 .25 

a"^ or 

In the opposite case of small values of a, function G\{oi) approaches to unity as: 

G i ( a ) = l - 0 . 5 8 6 2 a (4.71) 

In other words, for small values of parameter a the geometric factor of the borehole is close 
to unity, and with an increase of a, this function, G i ( a ) , decreases inversely proportional 
to a. 

Behavior of the geometric factor G i ( a ) is shown in Fig. 4.2. 

It is appropriate to notice here that in the range of small parameters the interaction 
of induced currents is negligible. We can obtain an expression for the geometric factor 
of the borehole by integrating the geometric factor of an elementary ring over a cylinder. 
Applying this approach H. Doll derived the following expression: 

here E and K are elliptical integrals of the first and second kind and k = a{a^ + 4)^/^. 
It is clear that function Gi or 1 — Gi allows us to investigate radial characteristics of a 
two-coil induction probe in the range of small parameters L/Zi^, and a^/Zii, in a medium 
with cylindrical interfaces only, that is as we cannot take into account a finite thickness 
of a formation. 
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Figure 4.2. Geometric factor of the borehole, G i ( a ) 

Before we study this subject it is appropriate to make three comments: 

• The theory of induction logging developed by H. Doll is based on the concept of 
geometric factors. 

• In many cases the parameters of geoelectric section defining the field behavior are 
very small. For example, if the length of the induction probe is 1 m, the frequency 
of the field is 20 x 10^ Hz and the resistivity of the medium is 5 ohm-m, we have 
p =• L/h ^ 0.12. In a more resistive medium, parameter p is even smaller for this 
frequency. Correspondingly, for a relatively resistive medium this theory of induc-
tion logging provides sufficiently accurate information about radial characteristics 
of this method. 

• It is obvious that with increasing conductivity or frequency the influence of the 
skin effect becomes more prominent, and this method of calculation of the field 
becomes less accurate, and it is necessary to use either the exact solution or a 
bet ter approximation. 

After these comments we will consider radial characteristics of induction logging pro-
ceeding from the geometric factor Gi. 

First of all we will introduce the concept of the apparent conductivity which, as well as 
apparent resistivity, is widely used in all electrical methods. 

Let us define the apparent conductivity in the following way: 

a i Q i / r ( ^ i ) 
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or 

where ai is the conductivity of the borehole mud. Q Hz and Q (o are the magnetic field 
and the electromotive force measured by the receiver coil on the borehole axis while Q H^^ 
and S"^'^{(Ti) are the magnetic field and the electromotive force, measured by the receiver 
coil when the induction probe is located in a uniform medium with conductivity CTI. 

In accord with eq. 4.73 the ratio aa/(Ji shows how the field or the electromotive force, 
measured on the borehole axis, differs from the same quantities in a uniform medium with 
conductivity ai. In other words, this ratio characterizes the influence of the formation 
surrounding the borehole. 

It is appropriate to present equations 4.73 in another form, namely: 

or 

(Ta = KHQHz and aa = K^QS' (4.75) 

where KH and K^ are coefficients of a two-coil induction probe measuring the magnetic 
field and the electromotive force, respectively. 

Inasmuch as the range of small parameters is considered: 

ATTL ATTL 

Therefore, for coeflScients of the probe we have: 

_ ATTL _ AnL 

It is essential that coefficients of the probe do not depend on the conductivity, and they 
are defined by parameters of the induction probe (length, moments of the coils) and the 
frequency. 

Making use of eq. 4.59 we have the following expression for the apparent conductivity: 

= Yl ^̂ ^̂  (4.76) 
N-l 

i=l 

In particular, for a two-layered medium when the invasion zone is absent we have: 

(Ja = (TiGi-^ a2G2 (4.77) 

and for a three-layered medium: 

(Ta = cnGi + ^2^2 + (T3G3 (4.78) 

These last three equations allow us to investigate the radial responses of a two-coil induc-
tion probe in detail, in other words, to evaluate the influence of the borehole, the invasion 
zone and the formation as a function of the induction probe length, L, for various geo-
electric parameters. 
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4.4. Radial Characteristics of a Two-coil Induction Probe at the 
Range of Small Parameters 

In order to analyze the depth of investigation of a two-coil induction probe let us con-
sider curves describing the dependence of the function Oajox on the length of the probe 
expressed in units of the borehole radius, L/ai . We will call these curves induction lat-
eral sounding curves (ILS-2). The number 2 means that two-coil induction probes are 
considered. Such terminology can be explained in the following way. Suppose that mea-
surements are simultaneously performed along the borehole axis with induction probes of 
different lengths. As follows from the behavior of the geometric factor Gi(a) a relatively 
short induction probe mainly provides information about the resistivity of the borehole 
mud. A signal measured with a longer probe contains more information about the resis-
tivity of the invasion zone. In other words, the latter has a greater depth of investigation. 
Performing measurements by even longer probes we obtain more information about the 
invasion zone and the resistivity of the formation. In principle we can always apply such 
a long induction probe that the measured signal will be a function of the formation con-
ductivity only, i.e. induced currents within the borehole and the invasion zone will not 
practically affect the signal. 

Thus, measurements with a system of induction probes of different lengths allow us in 
principle to define parameters of a geoelectric section in the radial direction, that is to 
perform the lateral soundings. Correspondingly, the curve of the apparent conductivity 
for probes with various lengths presents the result of stich soundings. 

It is appropriate to distinguish three main cases. They are: 

• the invasion zone is absent 

• 

• 

the resistivity of the invasion zone has an intermediate value between the resistivity 
of the borehole and that of the formation, that is: a\ > 02> oz 

the resistivity of the invasion zone exceeds both the borehole and the formation 
resistivities, that is: a\> a2< ĉ s. 

First of all let us consider a two-layered model (the invasion zone is absent). The 
family of two-layered curves of apparent conductivity is shown in Fig. 4.3. Along the x-
and ^-axes Oajox and hja\ are plotted, respectively. The curve index is the ratio 0-2/^1. 

As is seen from Fig. 4.3 every curve has two asymptotes, presented by straight lines, 
which are parallel to the axis of abscissa. The one to the right corresponds to the con-
ductivity of the formation, 02^ while the one on the left is described by the equation: 
a a — (Ti. The latter is a common asymptote for all curves since with a decrease of the 
probe length the geometric factor of the borehole tends to unity and in the limit, regard-
less of conductivity of the formation, the quadrature component of the field is defined by 
induced currents in the borehole only. With an increase of the ratio L/ai the apparent 
conductivity, Oajox, gradually changes and for large values of Ljax approaches to the 
asymptote on the right: cr̂  = cr2. It is essential to emphasize that apparent conductivity 
curves do not intersect their asymptote. 
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Figure 4.3. Two-layered curves of ILS-2. Index of curves ^2/0-1. 

Curves with index cr2/cri > 1 relatively quickly approach to the asymptote on the right 
and practically for L/ai ^ 5 the value of the apparent conductivity is almost equal to the 
conductivity of the formation, (J2- With a decrease of the curve index, that is with an 
increase of the resistivity of the formation or conductivity of the borehole, the approach 
to the asymptote to the right takes place for greater values L/ai. In accord with eqs. 4.60 
and 4.69 we have the following presentation for apparent conductivity a a which is vahd 
for relatively large values of a = L/a\: 

— : ^ — 1 ^ + ^ i f Q ^ > l 

In particular if the inequality: 

(T2 1 

takes place within a certain range of lengths of the induction probe we have: 

1 

(4.79) 

tha t is the apparent conductivity changes inversely proportional to LP" 
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Now let us consider the second and third cases when there is an invasion zone between 
the borehole and the formation. Corresponding apparent conductivity curves are pre-
sented in Figs. 4.4-4.11. As is seen from the curves in the second case (pi < P2 < Ps) 
three-layered curves are similar to two-layered ones, but differ from them by a slower rate 
of change with an increase of a = L/ai. If the penetration of the borehole solution into 
the formation is relatively large the right-hand branch of a three-layered curve tends to 
that of a two-layered one with index (73/^2, but the left-hand branch almost coincides 
with the two-layered curve with index 0-2/0-1. 

As it concerns the intermediate part of the curve, it is more lifted than a two-layered 
curve with the same index. Since oi > 02 > 03, the presence of the invasion zone usually 
causes a significant increase of the apparent conductivity with respect to a two-layered 
model and therefore it requires the application of longer probes for the determination of 
the conductivity of a formation, 03. 

In the third case (ai > 02 < os) for a relatively small probe length the apparent 
conductivity curves have a more gentle slope than that of two-layered curves, provided 
the conductivity of the bed is significantly greater than the conductivity of the invasion 
zone. 

For relatively small values of os/02^ the curves have a minimum. It is obvious tha t the 
influence of penetration of the borehole solution on the apparent conductivity increases 
with an increase of the radius of the invasion zone and its conductivity with respect to 

It is appropriate to notice here that in logging methods based on application of direct 
current the direction of current lines depends on the relation between resistivities of 
borehole, invasion zone, and bed. At the same time in induction logging, when the 
source of the field is a vertical magnetic dipole located on the borehole axis, current lines, 
regardless of the distribution of resistivity in a radial direction, present themselves as 
circles located in horizontal planes with their centers on the borehole axis, and they do 
not intersect the cylindrical surface between media with different conductivity. 

It is useful here to define the quadrature component of the magnetic field caused by 
induced currents within a thin cylindrical shell. In accord with eq. 4.57 we have: 

Qhz = — - — o 
r2j \ri 

(4.80) 

where r i and r2 are the internal and external radii of the shell. Wi th a decrease of 
the shell's thickness the difference in geometric factors in eq. 4.80 can be approximately 
replaced by a product of the thickness, Ar , and the derivative of the geometric factor, Gi 
with respect to r. Then we have: 

Q / . , ^ ^ 5 , (4.81) 

where S is the longitudinal conductance of the shell equal to crAr, and q is the geometric 
factor of the shell which is: 

r^ \r 
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where r is the average radius of the shell. 
Within a certain range of a change of conductivity, a, and thickness, Ar, of shells, 

induced currents within them generate practically the same field if the longitudinal con-
ductance, 5' = crAr, remains constant. With an increase of the radius r, that is moving 
away from the borehole axis, this equivalence by S can be applied to shells with greater 
thickness. 

In the range of small parameters the principle of equivalence is only defined by geometric 
factors related with the distribution of currents within the corresponding cylindrical layer. 

Consideration of three-layered curves of ILS-2 allows us also to introduce a concept of 
an approximate equivalence of right-hand and left-hand branches of three-layered curves 
and two-layered curves with some specially chosen parameters. 

Let us suppose that there is slight penetration of a borehole solution into a formation, 
and we investigate the right-hand branch of a three-layered curve. If the probe length is 
significantly greater than the radius of the borehole and that of the invasion zone, instead 
of eq. 4.78 we can write: 

+ § ( / 3 ^ - l ) + . 3 G 3 ( ^ ) (4.82) 

^1 

(Ta = 

l + ^ ( / ? ^ - l ) 

P^a^ '^ "\P 
+ ^3G3 ( ^ ) (4.83) 

where /? = a2/ai. Therefore the right-hand branch of a three-layered curve is equivalent 
to that of a two-layered one with the following parameters: 

• The radius of a fictitious borehole is equal to that of the invasion zone. 

• The conductivity of a fictitious borehole solution is related with the parameters of 
the three-layered model as: 

. „ = " ' ^ ' ^ - ^ ^ ^ - ^ ^ (4.84) 

• The conductivities of the bed in both cases are the same. 

For deep penetration of the filtrate into the formation eq. 4.84 can be applied only for 
relatively long induction probes. For this reason instead of eq. 4.82 we can write: 

^1 . c^f ' + (^sGs ( ^ 

c7a - <T2Gi ( ^ j + a^Gs (j ) if L/a, » 1 (4.85) 
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that is, we obtain the expression of a a for a two-layered medium with borehole radius a2 
and conductivity a2. Wi th an increase of the radius of the invasion zone and the resistivity 
of the borehole solution eq. 4.85 describes the right-hand branch of a three-layered curve 
with higher accuracy. 

When the length of the induction probe tends to zero one can use the approximate 
expression of function G{a) as a ^ 0. Then instead of eq. 4.85 we have: 

cTa = o-iG2{a) + a2G3{a) (4.86) 

Therefore, the left-hand branch of a three-layered curve approximately corresponds to a 
two-layered curve provided the radius of the invasion zone is sufficiently large. 

Considering radial responses of two-coil induction probes in the range of small param-
eters it is natural to investigate cases when the resistivity within the intermediate zone 
changes as a continuous function. In accord with eq. 4.59 we have: 

where 

cTa = (TiGi{a) + ^ a ^ g ^ + a^Gs i^j (4.87) 

and P = a2/ai] qi is the geometric factor of a thin cylindrical layer with conductivity CTJ. 
As will be shown in Chapter 6, the function qi can be presented in the form: 

q{a) = -G{a) 
r Q;̂  

Function G{a) is tabulated and its values are presented in Table 4.6. If an intermediate 
(invasion) zone is divided uniformly by a set of cylindrical shells, eq. 4.87 can be rewritten 
in the form: 

A ^ 1 
aa = (JiGi{a) + — Y.ai—C{ai) -h asG^iaN) (4.88) 

Examples of apparent conductivity curves for various change of resistivity within an in-
termediate zone are presented in Fig. 4.12. 

The first pair of curves (A) corresponds to the condition: pi < p2 < ps- In one case the 
resistivity of the invasion zone is constant: p2 = 8pi, while in the other case the resistivity 
P2 gradually increases from that of the borehole to that of the formation. 

The second pair of curves (B) corresponds to condition: Pi < P2 > Ps- Again one curve 
describes the behavior of the apparent conductivity as p2 is constant, while in the second 
case the resistivity of the invasion zone decreases. 
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Figure 4.12. Apparent conductivity curves: (A) o^jox = 1/8, CTS/CTI = 1/32, a2/ai = 4 is 
solid line, p2 = 0.31e^-^^" is dotted line; (B) G2I01 — 1/8, (73/cri = 1, 02/01 = 4 is solid 
line, p2 = 16e-°-^^" is dotted line. 

4.5. Influence of the Skin-effect in the Formation on the Radial 
Characteristics of a Two-coil Induction Probe 

The theory of small parameters developed by H. Doll does not take into account the skin 
effect. For this reason values of the quadrature component of the field calculated by this 
method are always greater than actual values of the field, Q i/^, measured on the borehole 
axis. It becomes specially noticeable when results of calculations based on Doll's formulae 
and the exact solution in beds with a finite thickness are compared with each other. 

First we will assume that the skin effect manifests itself only in a bed. Then for the 
quadrature component of the field and the apparent conductivity for two- and three-
layered media we have (see eqs. 3.123-3.127): 

Q/i, = Q / i r + ^ ^ ( ^ 1 - 02)GM) 

02 + ^ 2 

(4.89) 

1 Gi(«) 

and: 

<73 era \G2, J \(Jz J 

where Q h^^ is the quadrature component of the field in a uniform medium with conduc-
tivity (J3, and: 

(4.90) 

IJLUJL^ 
QK (4.91) 



223 

b" 

10" 

10" 

u 

1 

-1 

-2 

10" 10" 10-' 
L/h2 

10 

Figure 4.13. Behavior of function cr^"/cr2. 

Formulae 4.89-4.90 are valid if one can neglect the skin effect in the borehole and the 
invasion zone while it displays in the same way as in a uniform medium with a resistivity 
of the bed (formation). 

Comparison with results of calculations based on the exact solution allows us to define 
the limits of application of this approximate theory in models with cylindrical interfaces. 
With errors not exceeding 10% we can use these formulae, provided: 

max fl,f^l<0.3 
All fl2, 

and 
h, 

< 1.5 (4.91a) 

It is important to emphasize that the analysis of calculations based on the exact solution 
and this theory allows us to establish the character of distribution of induced currents 
in a medium that is of great practical interest for the development and application of 
multi-coil focusing induction probes. 

In accord with eq. 4.77 for the apparent conductivity, CTa, in the range of very smah 
parameters we have: 

^ = l + p - l ) G i ( a ) (4.92) 

The latter differs from the second equation of 4.89 by the fact that the first term of the 
right-hand side is unity instead of function a^^/a2. As was shown in Chapter 2 this 
function decreases from unity to zero as parameter (a//a;/2)^/^L increases (Fig. 4.13). 

It is clear that if the resistivity of the borehole mud is greater than that of the bed and 
the probe length, L, exceeds several times the radius ai, the main signal is defined by 
induced currents in the surrounding medium. For this reason the decrease of the signal 
on the borehole axis due to the skin effect is almost the same as in a uniform medium 
with conductivity a2. 
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In a more general case, when the conductivity of the borehole is greater than that of 
the bed CTI > a2 the influence of the skin effect often manifests itself in a lesser degree 
than in the previous case. With an increase of the probe length, the effect caused by the 
interaction of currents in the formation becomes more noticeable. It is related with two 
factors. First of all, the influence of the currents in the borehole is reduced since function 
G i ( a ) decreases. Second, the relative contribution of the quadrature component of the 
currents in removed parts of the medium (which are smaller than those in Doll's theory) 
increases. 

The ratio: 

cjTl^2^{(yi/(J2-l)Gi{a) 

characterizes the decrease of a signal in a two-layered medium due to the skin effect in a 
bed. 

Let us consider one example illustrating to some extent condition 4.91a. 
Suppose that the borehole radius ai is equal to 0.1 m. Then it is a simple matter to 

obtain maximal values of the product (12/, which corresponds to the condition 4.91a: 

fma. < 5 X l O ^ g ^^ ^^^ 

fmax < 5 X lOVl 

It is obvious that frequencies used in conventional induction logging (200 < / < 600 kHz) 
satisfy these conditions. 

Relations 4.93 are of great practical interest inasmuch as they define a range of resistiv-
ities and frequencies for which induced currents in the borehole, contributing to a signal, 
are shifted in phase by 90°, and the skin effect in the bed manifests itself in the same 
manner as in a uniform medium with conductivity ai. 

When conditions 4.91a are valid an increase of the borehole radius and its conductivity 
lead to a reduction of the influence of the internal skin effect and apphcation of the theory 
of small parameters (Doll's theory) becomes more grounded. 

However, with a further increase of the borehole radius or its conductivity, unequalities 
4.91a become invalid, and for the calculation of the field it is necessary to apply the exact 
solution. 

In accord with eqs. 3.78 and 4.90, expressions for the apparent conductivities for three-
layered medium within the range of small parameters and in the case when the skin effect 
manifests itself only in the bed are: 

^ = l + ( ^ - ^ ) G . ( a ) + ( ^ - l ) G . ( | ) (4.94) 

and 

^ = ^ + ( ^ - ^ ) G . ( . ) + ( ^ - I ) G . ( | ) (4.95) 
^3 ^3 V^3 era/ \(J2, J \(3 J 
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where P = ai/a2. 
As in the case of the two-layered medium we have instead of unity in eq. 4.95 the term 

a'^'^/as, which takes into account the skin effect in the bed and allows us in every given 
case to define the range where eq. 4.94 can be applied. 

It is obvious that with an increase of the probe length the depth of investigation also 
increases, that is, the probe becomes more sensitive to removed parts of a medium. For 
this reason the skin effect display is more noticeable for longer probes regardless of the 
character of the resistivity distribution within the borehole and the invasion zone. 

With an increase of resistivity, p2, (P2 > Ps) the contribution of induced currents within 
the invasion zone in a measured signal decreases, and correspondingly the influence of the 
skin effect in the bed becomes stronger. 

In those cases when the resistivity of the invasion zone has an intermediate value: pi < 
P2 < P3, the relative contribution of currents in the bed decreases and correspondingly 
eq. 4.94, derived from the assumption that the skin effect is absent, provides more accurate 
results. 

From a physical point of view it is clear that, with an increase of the radius, a2, of the 
invasion zone, the upper limit of frequencies and conductivities, when the approximate 
theory taking into account the skin effect in the bed is valid, decreases. 

Conditions 4.91a and numerous results of calculations based on the exact and approx-
imate solutions show that — if the radius of the invasion zone does not exceed 0.5-0.6 m 
for the most typical values of resistivity of the borehole, the invasion zone and the bed 
and frequencies used in conventional induction probes — we can apply eq. 4.95 for the 
determination of the apparent conductivity, da. The ratio: 

- | ^ ^ < ^ • < " ' H ^ - 0 ° • ( ? 
allows, as in the case of a two-layered medium, for given parameters of geoelectric section 
to define errors related with the application of the theory of small parameters. 

In accord with this theory suggested by H. Doll the influence of frequency is defined 
from: 

< ^ = ^ . . (4.96) 

where Q ̂  is the quadrature component of the electromotive force, induced by a magnetic 
field of currents in a medium, ^o is the primary electromotive force, L is the probe length, 
and cTfl is the apparent conductivity, which does not depend on frequency. For this reason 
within a range of small parameters, an increase in the frequency results in an increase of 
the relative contribution of the useful signal with respect to the primary field, but the 
relation between signals caused by induced currents in different parts of a medium does 
not change. In other words, the depth of investigation is not reduced. 

Here it is appropriate to notice that in many cases the theory of small parameters 
provides practically correct values of the quadrature component of the field in spite of the 
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fact that the skin effect is not taken into account. From a physical point of view it means 
that the considered induction probe is not sensitive to those parts of a medium where the 
skin effect manifests itself. 

With an increase in frequency the influence of the skin effect in parts of a medium 
located relatively close to a borehole becomes stronger and correspondingly Doll's theory 
cannot be applied. An increasing frequency, first of all, leads to the fact that the signal 
becomes more sensitive to the skin effect in an external area, i.e. in the bed. For this 
reason, function a a is defined by the right-hand part of eq. 4.95 and therefore it depends 
on the frequency. From the analysis of the field of the magnetic dipole in a uniform 
medium (Chapter 2) follows, that with an increase in frequency the influence of relatively 
remote parts of the medium decreases. If the conductivities of the borehole and invasion 
zone essentially exceed that of the formation and the skin effect manifest itself practically 
in the latter, it cannot affect the value of the apparent conductivity, a a- For this reason 
the relative contribution of the secondary field increases with frequency almost in the 
same manner as follows from Doll's theory. If the internal areas (borehole and invasion 
zone) are less conductive than the bed, the ratio of the secondary signal to the primary 
one increases slower than the frequency does. 

Tables of functions G\{a) and o'^ jo^, allow us to define for every given case the influence 
of the frequency on the magnitude of the signal, provided the skin effect manifests itself 
in the bed only. 

Now let us consider several examples. 

4.5.1. Example I: Two-layered Medium (Invasion Zone is Absent) 

Case 1 

The resistivity of a borehole is relatively high {o\ <C 0̂ 2). In accord with eq. 4.89: 

^ = ^ ^ | ^ - G , ( ^ ) | (4.97) 
0 ^2 V^l 

When the probe length, L, exceeds several times the borehole radius, ai, function G\[pL) 
is usually much smaller than o'^IG2- In fact, eq. 4.97 is valid when conditions 4.93 are 
met. In this case function 0^^/02 decreases from unity to 0.3 if the probe length, L, is 
equal to 1 m. Correspondingly, function Gi{a) does not exceed 0.01, if ai = 0.1 m. For 
this reason we have: 

q<^ a2u;/jiL^a^ 

£0 2 (72 
if 0-1 < (72 (4.98) 

As is seen from Table 2.2 an increase of conductivity of the bed, (72, or a frequency of 
more than 100 times (change of parameter (72JJ^UJ from 0.01 to 256 for L = 1 m) leads to 
a decrease of the function cr^^/(72 almost of three times. For example if the frequency 
equals 60 kHz a change of the parameter a2fiuJ from 0.01 to 0.64 corresponds to a change 
of resistivity, p2, from 48 to 0.8 ohm-m, and the ratio Q< /̂«^o increases almost 30 times. 
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Case 2 

The borehole is more conductive (CTI > ^2). In this case we have: 

Q ^ _ a2/iujL'^ 

S'Q 2 ^2 \(y2 

a2fiujL^ fcr^'^ ai 
^ + - G i ( a ) 

2 \ cr2 ^2 

For instance, if a = L/ai = 10 and <7i/(J2 = 31 we have 

(^ 2 y (J2 
+ 0.3 (4.99) 

Calculations demonstrate that the influence of frequency and conductivity of a for-
mation on the magnitude of the ratio Q S/(^Q is practically the same as in the previous 
case. At the range of small values of parameter 0-2/xcj the relative contribution of currents 
induced in the bed constitutes about 80% while for a value of 021^00 = 0.64 the contri-
bution of the formation is equal to 70% but the ratio Q (0/(00 essentially increases. For 
this reason with an increase of the frequency the depth of investigation of a two-layered 
medium by a two-coil induction probe does not change until the signal from the formation 
is greater or at least comparable with that caused by induced currents in the borehole. 
Also the natural limitation of a further increase of frequency is related with a nonunique 
interpretation, inasmuch as the spectrum of the quadrature component has a maximum. 

There is another factor defining an upper limit of frequency. It is dictated by the 
fact that the efficiency of focusing multi-coil induction probes takes place provided tha t 
currents in the borehole have to be shifted in phase by 90°. 

As was mentioned above, eqs. 4.89 are valid if: 

• 

• 

Induced currents in the borehole which make a contribution to the measured signal 
are shifted in phase by 90° with respect to the current in the dipole. 

The skin effect in the bed manifests itself in the same manner as in a uniform 
medium with the resistivity of the bed. 

As follows from a comparison of the exact solution with conditions 4.91a, with an 
increase of the probe length the accuracy of the calculations in eqs. 4.89 decreases. It is 
related with the fact that , first of all, the second condition of 4.91a becomes incorrect. It 
means that induced currents in the bed begin to distribute in a different manner than in 
a uniform medium. For shorter probes, as the influence of a more conductive borehole 
is significant, the discrepancy between results of calculation based on approximate and 
exact solutions become smaller. Therefore, one can think tha t the first condition (the 
phase shift by 90° of currents in the borehole, which define the signal in a receiver) is 
valid for larger values of parameter ai//i2 and in particular, of frequency. For example, 
if P2/P1 = 16 and L/ai = 3, an error does not exceed 3%, if ai/h < 0.12. This fact has 
a certain practical interest since the application of a short focusing probe using a high 
frequency can be useful for the determination of the resistivity of an invasion zone when 
the effect of induced currents in the borehole is compensated. 
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4.5.2. Example II: Three-Layered Medium (Invasion Zone is Present) 

In accord with eq. 4,90 we have: 

(OQ 2 ^2 Vers (7s J \as J \f3 
(4.100) 

where P = a2/ai. 
As has been shown above, the range of frequencies and conductivities, when this equa-

tion can be apphed, becomes smaller with an increase of the radius of the invasion zone, 
a2. The influence of the frequency on the ratio QS'/S'o and the distribution character of 
induced currents essentially depends on the resistivity and the radius of the invasion zone. 
The deeper the penetration of the borehole filtrate and the smaller the resistivity p2, the 
smaller the influence of the skin effect in the bed on the value of Q^/<^o- However, the 
relative contribution of currents in the bed also decreases. 

With an increase of resistivity of the borehole solution and the invasion zone, provided 
that radius a2 is relatively small, an increase of the frequency also results in a decrease of 
the relative contribution from the bed. However, in this case the signal from the formation 
decreases slower in spite of the fact that the skin effect manifests itself stronger. 

In the range of very small parameters (Doll's approximation) in a uniform medium with 
an increase of the probe length the ratio Q ^ /^o also increases though the magnitude of 
the secondary field decreases inversely proportional to the probe length. In a nonuniform 
medium the relation between signal and probe length becomes more complicated. For 
instance in a two-layered medium with a more conductive borehole the secondary field 
can decrease more rapidly for relatively short probes than in a uniform medium but with 
an increase of the probe length it starts to decrease as l/L. It is obvious that a decrease of 
the rate of change of the relative anomaly of the secondary field, Q CO/COQ with an increase 
of the probe length begins when the induction probe starts to feel parts of a medium 
where the influence of the skin effect is significant. 

The area of application of the approximate theory, taking into account the skin effect 
in an external medium, can be enlarged. Along with a consideration of the field in a 
piecewise uniform medium (resistivity of the invasion zone is constant) it is possible to 
consider a field in models, when the resistivity is a continuous function. For example, for 
an arbitrary change of resistivity within the invasion zone expressions for the field and 
the apparent conductivity are: 

Q /i, = Q / i r + ^ ( ^ 1 - ^3)Gi (a) + ^ JHr) - as]q{r) dr (4.101) 
a I 

^ = ^ + f ̂  _ l) G,{a) + K'-^-l) qir) dr (4.102) 
ai 

where q{r) is the geometric factor of a thin cylindrical layer with radius r. 
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4.6. Asymptotic Behavior of the Magnetic Field in the Borehole 
in the Range of Small Parameters 

In the previous sections we have investigated the behavior of the leading term of the 
quadrature component of the magnetic field which is directly proportional to the frequency 
u). In such an approximation it was assumed that the inphase component of the field is 
equal to zero. Now we will consider this range of small parameters {{L/h)max < 1 and 
{a/h)max < 1) in more detail. In other words, the next terms of the series describing the 
quadrature and inphase components of the magnetic field will be derived. As was shown 
in Chapter 2 the magnetic field, Hz \ on the axis of the vertical magnetic dipole in a 
uniform medium can be presented as: 

and discarding all terms except the two first ones we have: 

"i°'-2S5(' + ̂  + ^'('«' + - ) <"•»=') 

It is clear that the second term of this series is the leading term of the quadrature com-
ponent since /ĉ  = icr/io;, while the last term: 

^ ]i{kLf = "fie (4.104) 
27rL3 3 ' ' GTT 

defines the leading term of the inphase component as well as the second term of a series 
describing the quadrature component. It is essential that this term (eq. 4.104) does not 
depend on coordinates of an observation point. 

In order to obtain an expansion of the magnetic field on the borehole axis in the range 
of small parameters, and in particular to derive a term proportional to A;̂ , one will apply 
several ways. 

First of all, let us use of the expression of the field, Hz, derived in section 4.2 (eq. 4.22): 

CO 

H, = Hi°^-^~ f X\Cicos\zd\ (4.105) 
47r TT J 

0 

where Hz is the field in a uniform medium with conductivity cii. Function Ci is given by 
eqs. 4.16-4.17 and L is the two-coil induction probe length. Let us notice that according 
to eq. 4.11: 
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and the equality: 

oo 

— ^ = - Ko{Xir) cos Xr dX (4.106) 

0 

we have: 

CXD 

jj{o)^_M2 fxlKo{Xir)cosXrdX (4.107) 
4:71 7T J 

0 

where Ai = (A^ - k^/^ and R = {r^ + z^fl^. 
Now we will present the integral in the right-hand side of eq. 4.105 as a sum of two 

integrals, such as: 

oo Ao oo 

/ X\Cx cos Az dA = / A?Ci cos Az dA + / A?Ci cos Xz dA (4.108) 

0 0 Ao 

where AQ is very small arbitrary number AQ <C 1. 
First suppose that the invasion zone is absent. Then in accord with eq. 4.20 we have: 

^ ^ A2/^o(A2Qi)/^i(Aiai) - Ai/^o(Aiai)A^i(A2Qi) {A\m\ 
'~ A2i^o(A2ai)/i(Aiai) + Ai/o(Aiai)/^i(A2ai) ^' ^ 

where ai is the borehole radius; Ai = (A^ — /cj)^/^, A2 = (A^ - k^Y^'^. 
Function Ci depends on both parameters Ai and A2. As soon as the value of A is greater 

than the magnitude of wave numbers these radicals can be expanded in series with respect 
to ratio k^/X^. Correspondingly, function Ci also can be presented as a series: 

00 / 1 \2n 

^i = E « " T (4.110) 
n=l ^ / 

where a^ are coefficients which depend on geoelectric parameters of the medium and the 
probe length. 

Inasmuch as the external integral: 

00 

/ X\Ci cos Xz dA 

Ao 

does not contain point A = 0, we can replace function Ci by the series (eq. 4.110), and 
then we obtain: 

00 

/ X\Ci cos Az dA - ^ hnikf"" (4.111) 

Ao 
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Therefore, the series describing the external integral consists of only even powers of wave 
number, k, that is whole powers of a;. This fact allows us to conclude that odd powers of 
/c, in particular /c ,̂ can be derived only from expansion of the internal integral, provided 

A:-^0 and A-^ 0 (4.112) 

In other words, information about terms of a series proportional to odd powers of k, 
that is fractional powers of a;, is contained in function XfCi corresponding to the initial 
part of integration. 

Taking into account the behavior of modified Bessel functions for small arguments: 

X 1 

Io{x)^l Ii{x) ^ - Ko{x) r Inx Ki{x) r^-

function Ci can be presented as: 

_ A2i^o(A2ai)i^i(Aiai) - Aii<^o(Aiai)i^i(A2ai) 
Aii^i(A2ai) 

or 

Ci ~ ^ | # ^ ^ o ( A 2 a i ) - KoiX^a,) (4.113) 

Replacing ratio Xi(Aiai)/i^i(A2ai) by its asymptotic value we finally have: 

Ci ^ ^Ko{X2ai) - KoiXia,) 

and 

XlCi c^ XlKo{X2ai) - XlKoiXiai) (4.114) 

Thus, the internal integral can be presented as: 

Ao Ao Ao 

XlCicosXzdXc^ XlKo{X2ai) cos Xz dX - XlKo{Xiai) cos Xz dX (4.115) 

0 0 0 

Comparing eqs. 4.114 with eq. 4.107 and keeping in mind that we are interested in odd 
powers of /c, we can write the following equality: 

M 2 
47r 

CXD 

- / XlCi cos Xz dX = -Hl{k2R) + H^,{kiR) (4.116) 

where H^{k2R) and Hz{kiR) are the magnetic fields in a uniform medium with resistivity 
of a bed and a borehole, respectively, at points with coordinates z and a, that is on the 
borehole surface; R^ [z'^ + a^)^/^. 
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Substituting eq. 4.116 into eq. 4.105 we have: 

H, = H^,{hz) + Hlik^R) - Hlik^R) (4.117) 

It is appropriate to emphasize again that the latter equahty is vahd only in the range 
of small parameters for terms of a series proportional to odd powers of wave number, k. 

Now in order to facihtate further algebra let us make use of eq. 4.11 to write a similar 
equation for the vector potential A*. Then we have: 

Aliz) = Af\k,z) + Af\k,R) - A°{k,R) 

or applying eq. 4.106 we finally obtain: 

where A^ is the vector potential on the borehole axis. 
Inasmuch as the magnetic field, Hz, is related with the vector potential A* by the 

equation: 

and we are interested in the leading term of the inphase component, proportional to /c^, 
only, let us expand the right-hand part of eq. 4.118 in a series and collect terms which 
give a contribution to this part of the field. Doing so we obtain for the second term of a 
series describing the magnetic field on the borehole axis: 

i—kl (4.119) 

Comparing with eq. 4.104 we see that the leading term of the inphase component of 
the field Hz coincides with that in a uniform medium with conductivity of a formation: 

In Hz -^ lnH^''{k2L) (4.120) 

This result does not depend on the ratio of conductivities as well as the probe length. In 
other words, in the range of small parameters, the borehole becomes transparent when 
the inphase component of the secondary field is measured. 

Now let us demonstrate that the same result is valid for a three-layered medium. We will 
proceed from equations 4.32 4.38 assuming that condition 4.112 is valid. Then functions 
mi, Til, 1712, ^2, and n^ can be essentially simplified. Taking into account the behavior of 
modified Bessel functions /Q, / i , and KQ for small arguments, we have: 

A A 2 
mi :^ A2i^i(Aiai) = - — - ^ Ui ~ v ^ ^ o ( A 3 a 2 ) - T Ko{X2a2) 

Aifli A2(i2 X3CL2 

1712 - T Ko{Xsa2) - Ko{Xiai) 712 ^ --
Aiai \2ai \^a2 

AiA2ai AiA2ai Ai 
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Whence, for small values of A and /c, we obtain: 

miTli -h 1712122 miTli 7712 
d ~ = 1 

772773 772773 772 

Inasmuch as: 

A A Â  
^2^3 = - T — ^ — miui = - - — ^ i r o ( A 3 a 2 ) -f ̂ —^ ^0(^2^2) 

A3aia2 \1a1a2 \1X2a1a2 

miTli AH ^ ,^ , -̂ 2 r^ /x X 
- — = TIi^o(A3a2) - T^Ko{X2a2) 

\2 
— = ^KoiX2al) - /^o(Aiai) 
773 A^ 

we have the following expression for function A^Ci: 

XJCi ^ XlKo{Xsa2) - \lM\2a2) + A^i^o(A2ai) - A?Xo(Aiai) (4.121) 

Thus, the internal integral has the form: 

Ao Ao Ao 

/ X\Ci COS A2; dA = / A3i^o(A2a2) cos A2; dA — / A2i^o(A2tt2) cos Xz dA 

0 0 0 
Ao Ao 

+ XlKo{X2ai) COS Xz dX - XlKo{Xiai) cos Xz dX (4.122) 

In accord with eq. 4.107 and taking into account that our purpose is to determine the 
term proportional to A:̂ , we can write the following expression for the field on the borehole 
axis: 

H, = Hi°\hz) + Hi°\hR2) - Hf\hR2) + Hf\k2R,) - Hf\k,R,) (4.123) 

where Ri = (z^ + Q̂f )^^^, R2 = {z^ + ^^D^^^J <̂^ ^̂ ^ ^^^ vector-potential A* we obtain: 

^ /Q^kiz Qik3R2 Qik2R2 ^1^2^?! Q^k\Ri 

47r V '̂  R2 R2 R2 Ri 

Repeating calculations performed for a two-layered medium we again derive the same 
term proportional to A:̂ , that is: 

i^kl (4.124) 
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As in the previous case in the range of small parameters the inphase component of 
the field tends to that corresponding to a uniform medium with the conductivity of the 
formation, a^. 

Now, taking into account the results derived in the previous section for the leading 
term of the quadrature component, we have for the magnetic field on the borehole axis 
the following approximation: 

3 
2ri 1 ^w.3 M / 1 ^ . o ^ 2 

^ ^ ^ ^ U 2 - . ^ ' G ^ + 3i^3l (4.125) 

where k'f = icr̂ /icj and L is the probe length. 
For the quadrature and inphase components of the field we have: 

/ (4.126) 

-" - -s^C"" '"" 
where ai and Gj, are conductivity and geometric factor of the corresponding part of a 
medium such as borehole, invasion zone and formation. 

This result can be easily generalized and it can be applied, for instance, to the case in 
which the resistivity of the invasion zone changes arbitrarily in the radial direction. 

Let us remember that I n / / | is the secondary field which is shifted in phase by 180° 
with respect to the primary field. 

From eq. 4.126 it follows that the leading terms of the quadrature and inphase compo-
nents are related with parameters of a geoelectric section in a completely different manner 
and therefore, in general, have a different depth of investigation. This question will be 
considered later in detail. 

It is appropriate to notice that formulae 4.126 can be derived in a much simpler way 
proceeding from the approximate theory of induction logging described in the previous 
section. According to eq. 4.90 we can write: 

/ / , = i / f / i , = / / f (hTia,) + ^ ^ ( a , - as)G) (4.127) 

or 

^ uun^^ ^ , i ^ ^ ^ 
2 

//.= ^ / ^ r M + ̂ E ( - - - 3 ) G . (4.128) 
27rL3 ' ' "̂  47rL 

i=l 

where {M/27rL^)h'^^ is the vertical component of the magnetic field in a uniform medium 
with conductivity (J3. 
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Expanding the right-hand side of eq. 4.128 in a series and discarding all terms but the 
first ones we again obtain formulae 4.126: 

- ^ ( ^ 3 / . ^ ^ + . . . ) 

47r 3 

Let us emphasize that the second approach of obtaining the leading terms of these 
series will be also used for more complicated cases, in particular, when the bed has a 
finite thickness. 

As follows from eqs. 4.126 the second term of the quadrature component and the lead-
ing term of the inphase component of the magnetic field, Hz, do not depend on the probe 
length, nor on the geoelectrical parameters of the borehole and the invasion zone. There-
fore, regardless of the separation of the coils measuring these quantities we can essentially 
increase the depth of investigation on the induction probe. 

Now it is appropriate to notice the following. We have derived only two terms of the 
series describing the quadrature component of the field and the leading term for the 
inphase component. In order to obtain subsequent terms of both series it is necessary 
to perform much more cumbersome transformations. There are at least two approaches 
allowing us to solve this problem. The first one is based on expansion of the internal and 
external integrals in eq. 4.100 into a series with respect to k. The second method uses 
the integral equation with respect to the electric field described in Chapter 3. Expanding 
the integrand in eq. 3.77 in a series with respect to k and making use of the method of 
subsequent approximation we can obtain the following terms of a series in the range of 
small parameters. 

In general this series has the form: 

( oo oo oo \ 

^ ai„fc2» + ^ a2„A:2"+i + In fc ̂  a3„fc" (4.129) 
n = l n = l n = l / 

In the next section we will give expressions for some of these coeflficients when the probe 
length, L, is several times larger than the radius of the borehole or tha t of the invasion 
zone. 

At the same time it is important to define coefficients of terms containing odd powers 
of k for arbitrary probe length, since as is well known, these terms are responsible for the 
late stage of the transient field. Applying the first approach and using only the internal 
integral of eq. 4.108 we have for field hzi 

Two-layered medium 

fskl + hkl + fjkl + hkllnk (4.130) 
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where: 

/ 3 = 

^3^3 /2 

/ s — /s 

/? = h 

3 "^ "'̂  V 10 

a'^s^ a^5(l — s) 

280 20 + 32 
( i _ , ) 2 _ ^ a - ^ ) 

10 

^ 77 In s 

^ - 6 0 + ^ 

l7=-fzY^{l-s) 

where C is Euler's constant, s ~ a2/(Ti, and a = L/ai. 

Three-layered medium 

^skl + ^,kl 

where: 

^3 = ^ahl^' ^5 = ^3 

Si2 = l-S2 + (52 - Si)p^ 

a^Si Sl2^ 

10 ~ TJ 
P = Ci2/ai 

Sl = CTs/cTi 52 = 0-2/0-1 

(4.131) 

(4.132) 

(4.133) 

4.7. Behavior of the Field on the Borehole Axis in the Near and 
Far Zones 

In induction logging the length of the probe usually exceeds the borehole radius and 
sometimes this ratio, L/ai reaches ten and more. Correspondingly, it is appropriate to 
investigate the behavior of the field when the parameter a = L/ai is large. As will be 
shown in this section, within this range of parameters: 

L/ai > 1 L/a2 > 1 (4.134) 

the field possesses some features which can be used for increasing the depth of investiga-
tion. We will assume that conditions 4.134 define the range of parameters a characterizing 
the behavior of the field in the far zone. 

On the other hand, the near zone corresponds to conditions when the probe length, L, 
is smaller than the borehole diameter, d, that is: 

L < di (4.135) 

Since this case is hardly a very practical one, the field behavior will be considered only 
briefly for two extreme situations, namely when parameter ai/hi is either very large or 
very small. 

In both cases we will proceed from eq. 4.24. Introducing a new variable, m — Aai, this 
equation can be presented in the form: 

h. = h?^ 
00 

«' f 2 Ci cos ma dm (4.136) 



237 

where: 

mi = (m^ - klalY^^ m^ = (m^ - k^alY^^ rm = (m^ - kjal)'^^ 

a = L/ai 

As follows from eq. 4.126 in the range of small parameters we have: 

since Gi —> 1, G2 —> 0. 
Therefore with a decrease of the probe length, L, the quadrature component of the 

magnetic field tends to that in a uniform medium with the conductivity of the borehole. 
At the same time, regardless of how small the distance is between the transmitter and the 
receiver, the inphase component of the secondary field coincides with that corresponding 
to a uniform medium with the conductivity of the formation. 

Now suppose that the small separation L is fixed and consider a field behavior at the 
high-frequency spectrum as: 

k-^00 (4.138) 

First assume that the formation is the ideal conductor, i. e., k2 = 00. Then in accord with 
eq. 4.136 we have: 

00 

hz = h^y^ / m? —— cos ma dm 
% J h{mi) 

0 

or using the asymptotic formulae for Bessel functions: 

00 

kz = /î °̂  — a^ / mie"^""^ cos ma dm if /ci ^ 00 

0 

It is obvious that the latter integral is proportional to e^^ î̂ i. Therefore, with an increase 
of frequency, induced currents concentrate near the source, and the field is defined by the 
term, hi\ which is proportional to ê ^̂ ,̂ provided that: 

L < 2ai (4.139) 

Now let us explore the opposite case when the external medium is an insulator, that 
k2 = 0 and m.2 = m. Then for the integral of eq. 4.136 we obtain: 

3 f 2 2m^'^^o{m)-miKi{m) , 
a"^ / mfe^"^^—,, ) [ _ ) [ cosmadm 7"'' mKo{m) -f miKi{m) 

0 
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As /ci —> oo and a ^ 0 the magnitude of the fraction of the integrand is also close to unit, 
and, respectively, the secondary field is proportional to ê ^̂ ^̂ ,̂ as in the previous case. We 
can show that this result remains valid in the general case of a finite conductivity of the 
formation. Thus, in the near zone (L < 2ai) the field tends to that of a uniform medium 
with the borehole resistivity when the parameter ai/hi increases. 

For obtaining asymptotic formulae describing the field behavior in the far zone (a ;» 1) 
we will take into account the distribution of the singularities of the integrand m^Ci on 
the complex plane of m. 

In accord with eq. 4.136, the variable of integration, m, has only real values: 0 ^ m ^ oo 
a relative probe length plays the role of multiplier of the argument of oscillating term: 
cos mo;. For small values of parameter \ka\, function m^Ci rapidly decreases with an 
increase of m. Moreover, due to the presence of oscillating factor cos ma, the contribution 
of the integrand corresponding to large values of m becomes small. For this reason the 
integral: 

oo 

/ 
mlCiCosmadm (4.140) 

is defined by the behavior of integrand m^Ci near m —> 0. This consideration allowed 
us to derive asymptotical formulae for geometric factors of borehole, invasion zone and 
formation. 

With an increase of wave number |A:| the integrand m^Ci begins to decrease slower 
with increasing variable m: for m < |A:a| it does not practically change. Correspondingly, 
the fact that the amount of oscillations increase as a ^ cx) does not imply that a value 
of the integral is mainly defined by the integrand at the initial part of integration. For 
this reason, in order to obtain asymptotical formulae for the far zone, it is necessary to 
perform preliminary transformations of the expression for the field (eq. 4.136). 

Inasmuch as the integrand of eq. 4.140 is an even function with respect to m the integral 
can be written in the form: 

oo oo oo 
3 /* 3 /• 3 /• 

I=— mjCi cos ma dm - — / m^Cie'^^ dm + ^ / m.?Cie-^^^ dm 
27r J 2TT J 2n J 

0 
oo 

« ' / 2 

(4.141) 
v3 

-?Cie^^^ dm 

We will make use of Cauchy's theorem, according to which the integral value of an ana-
lytical function does not change under deformation of an integration contour if it does not 
intersect singularities on the complex plane of variable m. It is clear that deforming the 
contour of integration in the upper half-plane (Im m > 0) exponent e*"̂ " with an increase 
of Im m tends to zero. 

The integrand of eq. 4.140 in general use has two types of singularities namely branch 
points and poles. First we will consider a two-layered medium when the invasion zone is 
absent. Analysis of zeroes of a determinant of function Ci, as well as calculations shows 
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Figure 4.14. Contour integration for derivation of eq. 4.149. 

that poles are absent in upper half plane if AiÔ i > 8, (p2 > Pi)- At the same time in 
upper half-plane there are two branch points: iki and ik2. Because of the presence of 
radicals rrii and 77i2 let us consider the integrand of eq. 4.141 on four leaves of a surface 
which are connected along cross-section lines. From condition Rerrij > 0, which arises as 
a result of a solution of the boundary problem, it follows that these cross-sect ions must 
distinguish areas where the real part of radicals mi and m2 is positive. For this reason 
equations of cross-section lines are: 

Re mi — 0 Re m2 = 0 

Letting m = x -\-iy and k'^al = iXj, we obtain: 

(4.142) 

^{x^-y'y^{2xy + x'jY + {x' - v') 
= 0 

This equality is valid provided: 

y = - x | / 2 x and \y\ > \x\ 

Thus the contour of integration along the real axis of m is replaced by that along both 
sides of two cross-sect ions, where Re mi = 0 and Re m2 = 0, respectively, and within an 
area surrounding the real axis of m and these contours singularities are absent (Fig. 4.14). 

Therefore, 

/ 
m?Cie^^^ dm = 1 

or 

oo 

/ / 
miCie"^ dm = / mf Cie""" dm + / m^Cie""" dm 

/ • 
(4.143) 

D2 
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inasmuch as the integral along of a semi-circle of infinitely long radius is equal to zero. 
Integrating along the cross-section Di, where Re mi = 0 we can introduce new variable 

of integration mi = it. Here t is the parameter of the cross-section which alters from 0 to 
cx) on the right side of the cross-section and from — CXD to 0 on its left side since passing 
around the branch point the radical mi changes sign. 

The variable of integration of m along contour Di can be presented as: 

m = K - ix?)'/^ = i-t' - ixiy^' = i{t' + ix?)V2 

and correspondingly: 

Thus, for the integral along the cross-section Di we have the following expression: 

oo 

m2Ko{m2)Ki{it) - itKo{-it)K 1(1712) 1712K0(1712)Ki(it) -h itKo(-it)Ki(7n2) 

0 
m2Ko(m2)I\(it) + itKi(m2)Io(it) 1712X0(1712)11 (it) - itKi(m2)Io(-it) J 

(4.144) 

Making use of relations: 

lo(-it) = Io(it) Ko(-it) = Koiit) + i^Ioiit) 
j^(-it) =-I,(it) K,(-it) = -K,(it)+i7rh(it) ^' ^ 

we will transform eq. 4.144. 
Then the second term of parentheses of this equation can be rewritten as: 

m2Ko(m2)[-Ki(it) + i7rli(it)] -h itKi(m2)[Ko(it) -h i7rIo(it)] 
-m2Ko(m2)I\(it) - itK^(7172)I0(it) 

(4.146) 
m2Ko(m2)Ki(it) - itK^(m2)Ko(it) . 
M2Ko(m2)Ii(it) + itK,(m2)Io(it) 

The first term in eq. 4.146 is equal to the first term in parentheses of eq. 4.144. For this 
reason the integral along the cross-section Di is equal to: 

0 0 ^3 -a(t2+ixf)V2 
dt 

(t2 + ix?)V2 
0 

This integral being multiphed by a/n presents the field of the magnetic dipole, hz, in a 
uniform medium with conductivity ai. 
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In accord with eqs. 4.136 and 4.146 the field on the borehole axis is expressed only 
through the integral along the cross-section D2 (Rem2 = 0). Making replacement of 
variables 777-2 = ^t^ we have: 

ma = Kt' + -^XIY" dm = J ^ , ^ ^ , rn, = [-t^ + i (x? - xl)]'" 

Correspondingly, the integral along path D2 can be written as: 

0 0 

\tKo{it)Ki{mi) - miKo{7ni)Ki{it) itKo{-it)Ki{mi) -\- miKo{mi)Ki{-it) 
^ I itKo{it)Ii{mi) + miIo{mi)Ki{it) -itKo{-it)Ii{mi) + miIo{mi)Ki{-it)\ 

0 
j^g-a(t2+ixi)i/2 

^ (̂ 2 + ixi)V2 ^^ 
(4.147) 

Making use of relations 4.145 and presenting this integrand as one fraction we obtain for 
the numerator of the square parentheses of eq. 4.147 the following expression: 

m{it[Io{mi)K,{mi) + h{mi)Ko{mi)][Ko{-it)Ki{it) + Koiit)Ki{-it)] 

Inasmuch as 

h{x)Ko{x)^Io{x)K^{x)^l/x 

the latter is equal to ITT. 
Therefore, after corresponding transformations the field hz on the borehole axis is ex-

pressed through the integral along right-hand side of the cross-section D2: 

' at a^ f m 

0 (4.148) 
Ci = itKQ{it)Ii{mi) + miKi(i^)/o(mi) 

C2 = -itKo{-it)Ii{mi) + miKi{-it)Io{mi) 

The integrand can be presented as a product of two functions: 

F{mut)t^ 
(t2 + ixi)V2 

At the initial part of integration function F slightly depends on parameter t. The second 
multiplier e~^^^^'^^^^'>^^^/{t^ -\-ixlY^'^ is the integrand of the Sommerfeld integral describing 
the field in a uniform medium with the resistivity of the formation. 

If the wave length in the formation is much greater than the borehole radius: 

X H 87r2a?/A^« 1 
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then for sufficiently large values of a we can let t = 0 in expression of F(mi, t) and take 
this function out of the integral. Thus we obtain the asymptotical equation for the field 
in the far zone: 

h, = — i = = ^ e - ' = ^ ^ ( l + fc2L) i f - » l a n d ^ > l (4.149) 

Making use of expansion of Bessel function Io{x) in a series by x and discarding all terms 
except the first two: /o(a;) ci; 1 + x^/4 we have, instead of eq. 4.149: 

h, ^ hf\k2L) - ~{ki - kl)a,hf\k2L) 

If the inphase component of the secondary field is small and therefore Inhz — 1, we obtain: 

^^ ^ _{k\-kl)a\ ^ ^(o)(^^^) if ^ > 1 (4^5Q) 

which for small parameters corresponding to Doll's approximation coincides with eq. 4.89. 
Expression 4.149 allows us to easily obtain the expansion at the range of small param-

eters kiL and /C2L. In fact, expanding the right-hand part of this equation in the series 
we have: 

/̂ z - 1 + f2kl + hk\ + Uk\ + hk\ (4.151) 

where: 

1 o a^s^/^ 

" - \ 
+ {l-sfs + l{l-sf (4.152) 

^ 10 2 / ai a\ 

As follows from eq. 4.149 in the range of large parameters: \ka\ ^ 1, for example at the 
high frequency spectrum, the field, hz, tends to zero. 

It means that induced currents concentrate near the source, and the secondary field is 
almost equal by magnitude to the primary field but it has the opposite sign. However, 
at the far zone unlike the near one the influence of the formation resistivity remains 
regardless of the frequency. 

Let us notice that eq. 4.149 is vahd not only for a quasistationary field but also in a 
more general case when the influence of displacement currents is significant. This fact is 
of great practical interest for the realization of dielectric logging. 

If resistivities of borehole and formation are essentially different from each other 
eq. 4.149 can be replaced by an approximate equation: 

^ ^ " T ^ T T - ^ W T T f o r | A : i | » N (4.153) 
I^{kiai)hy[k2L) 
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Comparison of the results of calculation using exact formulae and the asymptotic 
eq. 4.149 shows that , if the skin depth in the borehole is greater than its radius and 
p2 > pi the error in determination of the amplitude and the phase of the field hz by 
eq. 4.149 does not exceed 5%, provided tha t parameter a satisfies the condition: 

a = L/ai>4 (4.154) 

Let us present the complex amplitude of the field in the form: 

hz = A{kai) e^'^(^^iM^(A:2^) ê ^̂ ^̂ ^̂  (4.155) 

Therefore, the ratio of amphtudes as well as the difference of the phases of the magnetic 
field measured by two probes do not depend on electrical properties and the borehole 
radius {a ^ 1). 

Now we will derive expressions for the vertical component of the field on the borehole 
axis when there is an invasion zone and measurements are performed at the far zone. 
Taking into account that the integrand in eq. 4.136 is an even function we will consider 
integration along whole axis m and, applying Cauchy's theorem, the contour of integration 
then will be deformed in the upper part of the complex plane of m without intersection 
of singularities on this plane. 

Singularities of the integrand of function Ci are in general poles and branch points. 
Numerical analysis shows that for relatively large values of wavelength A = 27rh poles are 
absent in the upper half-plane where only three branch points are located, namely i/ci, 
iA:2, and iks. 

Because of the presence of radicals we will consider the integrand in eq. 4.136 on eight 
leaves surface of radicals whose leaves are connected along the cross-section lines Re rrij — 
0 (j = 1, 2, 3). 

Let us present the integrand in the form: 

mICi = ml- (4.156) 
hni + n2ns 

where: 

h = -m2h{m2)Ki{mi) - 7711X0(^1)^(^2) 

ni = msKi{m2p)Ko{msP) - 1712K0{1122f3)Ki{msf3) 

I2 = m2Ko(m2)Ki{mi) - ruiK0(mi)K 1(1712) 

n2 = -msIi{m2P)Ko{msp) - m2h{m2(3)Ki{m^(3) 

h = -m2lo{rn2)Ii{mi) -\-miIo{mi)Ii(m2) 

Us = m2li{mi)Ko{m2) + miIo{mi)K 1(1712) 

m, = (m' + klal)'/' m2 = (m' + klaj)'^' rus = (m' + kjal)'^' 

p = a2/ai 
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Again letting m = x -\-iy and k'jof = iXj, we will obtain equation of the cross-section: 
y = —Xj/2x and \y\ > \x\. Thus, instead of the real axis of m the contour of integration 
consists of contours along sides of three cross-sections where Rerrij = 0, and within the 
area bounded by the real axis and this contour singularities are absent. 

In the case of a two-layered medium the integral along the cross-section Re mi, turned 
out to be equal to that describing the field of the magnetic dipole in a uniform medium 
with resistivity pi. In the case of a medium with two and three cylindrical interfaces 
corresponding transformations become much more cumbersome. However we can show 
that for a medium with n — 1 interfaces, integrals along sides of cross-sections Re rrij = 0 
{j = 2 , . . . , n — 1) are equal to zero, and therefore the integral remains along the cross-
section Rem^ = 0 only. For this reason the expression for the field in a three-layered 
medium has the form: 

g^ 7 m^te-"(^'+^3M)^/^ d̂  
'~ 2 J ihni + nin2)-(/2ni + 712713)+ (t^ + ^2^2)1/2 (4-157) 

0 

where radicals mi and m2 are expressed through the variable of the integration t in the 
following way: 

mi = [~t^ + {kl - kl)a^^ "^ 7X12 = [-t^ + {kl - kl)a^;\ '^' 

and in expressions (̂ 2̂ 2 — ^i^2)± ^ 3 is equal to ±.\t, respectively. 
Let us distinguish within function 4.157 expression: 

^3g-a(t2+fc|a2)i/2 

(̂ 2 + A:|a?)V2 

corresponding to the integrand of the Sommerfeld integral for a uniform medium with 
the conductivity of the formation. The other multiplier F(mi, m2, ma) as a function of t 
changes relatively slowly and therefore, for large values of a, letting t — 0 in function F 
we can take out the integral coefficient F(mi,m2,0). After integration we obtain: 

h, = F{mi,m2,0)hf 

where mi = {kf — m\y^'^ai and m2 = [k^ — A:|)^/^ai. 
Thus, the expression for the field in the far zone has the form: 

^ ^ mi - m3 e-'3L (̂  ^ j ^ ^ ^ if ^ > 1 

1712-1713 [Io{fh2P)r]i + Ko{fh2p)r]2? CL 

r]i == fh2Ko{fh2)Ii{mi) -i-rhiIo{fhi)K 1(1712) 

rj2 = fh2lo{rn2p)h{rh2) - fhiIo{fh2)Ii{fhi) (4.158) 

If the conductivities of invasion zone and formation are the same then: 

fhi = {kl — k\)a\ 7712 = 0 
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and we will obtain the known expression for a two-layered medium at the far zone: 

hz = —, ] .hf(k^L) 

By analogy, when ai = a2, fhi = fhs, I3 = 0, ris =" I: 

K = —, ] .hf\k3L) 

i.e. the field in a two-layered medium as the borehole radius equals to a2. 
The asymptotical formula 4.158, as in the case of a two-layered medium, satisfactory 

describes a field, /i^, at the far zone provided that the minimal skin depth is greater than 
the radius of the invasion zone. 

Letting the maximal value of parameter \ka2 < 1| and performing the corresponding 
expansion of function F we obtain the following expression for the field at the far zone: 

hz = —, -r^—7 rhfihL) (4.159) 

In accord with eqs. 4.158-4.159 the ratio of amplitudes and difference of phases of fields 
measured by two coil probes of different length do not depend on parameters of the 
borehole and the invasion zone at the far zone. This behavior of the field is used in 
high-frequency induction logging. 

In such the case soundings are based on measurements of the quadrature and inphase 
components with probes of different lengths, while the ratio of amplitudes and phase 
difference are calculated. However, there are some exceptions and the equipment measures 
directly one or both of these last parameters. 

4.8. Frequency Responses of the Magnetic Field of the Vertical 
Magnetic Dipole on the Borehole Axis 

Until now we have considered the behavior of the field in the range of small and large 
parameters (low- and high-frequency parts of the spectrum) as well as in the near and 
far zones. Now let us consider the main features of frequency responses of the vertical 
component of the magnetic field on the borehole axis. Results of numerical modeling 
presented in this section are based on calculations of the field, /i^, by eq. 4.24 for models 
of a medium with one and two cylindrical interfaces. 

It is appropriate to describe the field behavior in the following order: 

1. If the field excitation is realized by vertical magnetic dipole sources of the secondary 
field are induced currents vector lines of which are located in horizontal planes and they 
present themselves as circles with centers on the borehole axis. 



246 

2. In cylindrical system of coordinates with the 2:-axis oriented along the borehole axis 
and the dipole located in its origin the electric field has only one component Efj,, but the 
magnetic field has two components, Hr and Hz. On the borehole axis the electrical field, 
E(i,, and the component of the magnetic field, Hr, are both equal to zero. In other words, 
the magnetic field is directed along the borehole axis. 

3. As is well known, the current density of induced currents, J^, at any point can be 
presented as a sum of two components, namely the inphase and quadrature ones. The 
inphase and quadrature components of induced currents are shifted in phase by 180° (or 
0°) and 90° with respect to the dipole current. Distribution of these components. In J^ 
and Q J^, is essentially different. The quadrature component of the current is dominant 
near the source and rapidly decreases with an increase of the distance from the dipole. 
With an increase of frequency and conductivity of the bed, dimensions of the area where 
the quadrature component prevails become smaller. 

4. In a wide range of frequencies and conductivities of borehole, invasion zone and bed, 
the quadrature component prevails near an induction probe, and the skin effect in the 
bed manifests itself in the same manner as in a uniform medium with the resistivity of 
the bed. 

5. Near the source the quadrature component of the current density is directly propor-
tional to the frequency, but with an increase of distance its behavior is strongly subjected 
to an influence of the skin effect. 

6. Near the dipole the inphase component of the current density is significantly less 
than the quadrature one, and with an increase of the distance it increases, reaches a 
maximum, and then rapidly approaches zero. 

7. The quadrature and the inphase components of the magnetic field on the borehole 
axis are defined by the distribution of the quadrature and the inphase components of 
current density, respectively. It follows directly from Biot Savart law. 

Examples of a spectrum of the vertical component of the magnetic field, expressed 
in units of the primary field, as well as frequency responses of apparent conductivity 
curves, (Ja/os^ are presented in Fig. 4.15-4.41. Function (Ja/cr^ is related with the field by 
equation: 

— = 7^ Q hz 
(J3 a/iujL'^ 

where Q hz is the quadrature component of the field expressed in units of the primary 
field. 

The ratio ai/Xi is plotted along the abscissa, where Ai = 27r/ii = 27r(2/cri/iCc;)^/^ (/ii is 
the thickness of the skin layer in the borehole). The index of the curves is ps/pi. In the 
case of a two-layered medium p2 = Ps- For three-layered medium every set of curves has 
index: 

P2 0,2 , L 
—, — and — 
P i CLi ai 

In accord with the definition of the apparent conductivity function a^ in a uniform 
medium is equal to its conductivity only in the case when Qhz = apujL'^/2, i.e. the 
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interaction between currents, defining a signal in a measuring coil of an induction probe, 
is negligible. 

8. The quadrature component of the magnetic field, regardless of the resistivity of the 
medium, firstly increases directly proportional to frequency, reaches a maximum, and then 
tends to zero. The oscillating character of the behavior of Q hz at the right-oriented part 
of the response (Ai/ai -^ 0) is not shown since a logarithmical scale is used. 

9. The left-hand asymptote of the frequency response of the quadrature component 
presents a straight line with a slope equal to 63°30' with respect to the abscissa axis. 
This part of the response corresponds to the case, when the signal is caused by induced 
currents, the intensity of which is defined by only the primary magnetic flux and the 
resistivity of a medium. As was mentioned above, the area of distribution of induced 
currents, shifted in phase by 90° with respect to the dipole current and caused by only 
the primary magnetic field, increases with a decrease of the frequency and an increase of 
the resistivity of the medium, specially the resistivity of the bed. At the same time with 
an increase of the probe length the depth of investigation increases and, correspondingly, 
the influence of the part of the medium which is closer to the induction probe decreases. 
For this reason the deviation of the frequency response of the quadrature component of 
the field from its left-hand asymptote begins earlier for longer probes. 

10. We will call that part of the frequency response of the quadrature component, Q hz, 
which practically coincides with its left-hand asymptote DolVs range. Within this range 
the quadrature component is significantly greater than the inphase one. In section 4.3 
we described in detail the magnetic field and the apparent conductivity on the borehole 
axis as functions of geometric factors and resistivity distribution corresponding to DolVs 
range. 

With an increase of frequency or conductivity of a medium the frequency response of 
Q hz is located lower its left-hand asymptote. 

11. In a two-layered medium (the invasion zone is absent), when the resistivity of the 
borehole exceeds that of the formation (pi > P2) departure from DolVs range commences 
practically for the same values of parameter L/ai as in a uniform medium with conduc-
tivity (72-

12. If the conductivity of the borehole exceeds that of the formation, cri > 0-2, and the 
skin depth in the borehole is significantly larger than its radius, the behavior of the field 
corresponding to DolVs range manifests itself for greater values of parameter L//i2 than 
in a uniform medium with resistivity p2. It is explained by the fact that induced currents 
in the borehole and defining a signal are mainly shifted in phase by 90°, and they increase 
directly proportional to frequency and conductivity. 

13. Similar features are observed for a three-layered medium: with an increase of the 
conductivity of the borehole and the invasion zone, as well as its radius a2 (within certain 
limits) the behavior of the field corresponding to DolVs range takes place for larger values 
of I///i3 than in a uniform medium with conductivity a^. 

14. With an increase of parameter ai/Ai the frequency response of the quadrature 
component Q hz departures from its left-hand asymptote and within a certain range of 
parameter ai/Ai the skin effect is practically absent in the borehole and in the invasion 
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zone, but in the bed it manifests itself in the same manner as in a uniform medium with 
the bed resistivity. From a practical point of view this is the most important range of the 
frequency response for conventional tools of induction logging. The main features of the 
field behavior within this range have been described in detail in section 4.5. 

15. Frequency responses of the quadrature component, Q /i^, for a two-layered medium 
has one maximum which to some extent increases with an increase of resistivity of the 
borehole. The position of the maximum is mainly defined by the resistivity of the for-
mation. For example, an increase of the borehole conductivity of more than 100 times 
only slightly shifts the maximum to a range of lower frequencies. In some cases when the 
invasion zones is relatively large we can observe two maxima. 

16. With a further increase of frequency the influence of induced currents in the bed 
becomes smaller, and the frequency responses in a three-layered medium almost coincide 
with those for a two-layered medium when the resistivity outside the borehole is equal to 
that of the invasion zone, p2-

17. At the right-hand part of the frequency response of the quadrature component 
it relatively quickly decreases with frequency. Within DolVs range the influence of the 
borehole is defined by geometric factors and distribution of the medium's resistivity. With 
an increase of the frequency, the relative contribution of currents induced in the borehole 
increases, inasmuch as the current density in the bed grows slower than in the borehole 
(skin effect). At the range of very high frequencies, when the skin depth in the borehole 
and its radius are comparable, the influence of the bed conductivity on the quadrature 
component strongly increases (far zone). A similar effect takes place in the far zone as 
there is the invasion zone. 

18. In a wide range of frequencies the influence of a more resistive borehole is not 
significant and the frequency response of the field, Q/i^, practically coincides with that 
corresponding to a uniform medium with the resistivity of the bed, if the skin depth hi 
is several times larger than the borehole radius. 

19. In measuring only the quadrature component of the field, Q/i^, at one frequency 
it is possible to perform nonunique interpretation since the frequency response of this 
component has a maximum. This fact has to be taken into account choosing a frequency. 

20. A choice of frequency or frequencies for induction logging cannot be done by using 
the results of calculation of the field in a medium with only cyhndrical interfaces. However, 
these data allow us to investigate radial characteristics of two-coil induction probes, as 
well as other types of probes, consisting of several coils. In particular, comparison of 
calculations based on exact and approximate methods permits us to establish a range of 
frequencies and resistivities of a medium where it is reasonable to apply so-called focusing 
multi-coil probes. 

21. The frequency responses of the inphase component of the secondary field, Inhz^ 
essentially differ from those for the quadrature one. At the range of small values of 
parameter ai/Ai (low frequencies, high resistivity) function In/i^ tends to zero as cc;̂ /̂ , 
and the ratio of the inphase component of the secondary field to the quadrature one 
rapidly decreases. In this range of frequencies and resistivities the inphase component of 
induced currents within the borehole and the invasion zone is usually very small. For this 
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Figure 4.15. Function Q/i^ 

reason it is practically proportional to the conductivity of the formation only. This very 
important feature of the inphase component, In/i;^, at the range of small parameters is 
often used to increase the depth of investigation of induction logging. 

With an increase of the ratio ai/Ai the inphase component of the secondary magnetic 
field increases and then becomes greater than the quadrature component, but when the 
skin depth in the borehole is smaller than its radius, function Inhz approaches to —1, 
that is, all induced currents concentrate near the dipole. Thus, at the right-hand part of 
a frequency response of the secondary field the inphase component prevails. 

22. In the far zone the influence of the borehole and the invasion zone does not depend 
on the length of the induction probe. Such a behavior of the field presents a certain prac-
tical interest, inasmuch as it allows us to increase the depth of investigation significantly, 
measuring the ratio of amplitudes and differences of phases by three-coil induction probes. 

4.9. Influence of Finite Dimensions of Induction Probe Coils 

As is well known, measurements of relatively small signals in induction logging require 
application of coils, the dimensions of which are comparable with the borehole radius 
and sometimes with the probe length. For this reason it is appropriate to investigate the 
influence of the dimensions of transmitter and receiver coils of the induction probe on the 
field behavior, and here we will describe the results of the calculations corresponding to 
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Figure 4.42a. Transmitter is the magnetic dipole, the receiver is the horizontal ring with 
radius ri. 

the following cases: 

• The transmitter and receiver are both coils with one ring, placed on a nonconducting 
base of the probe. 

• The transmitter is a coil with one ring, the receiver is a single-layered coil or vice 
versa. Radii of both the transmitter and the receiver are the same and equal to the 
radius of a nonconducting base of the probe. 

• The transmitter and receiver are both single-layered coils, the radius of which coin-
cides with that of the nonconducting base of the probe. 

• One-coil induction probe. 

Inasmuch as the influence of finite dimensions of coils is specially noticeable with rela-
tively short probes, as the skin effect manifests itself weaker, the main attention is paid 
to the range of small parameters. As was shown above, in this case we can neglect the 
interaction of currents in the borehole and in the invasion zone, while the skin effect in the 
formation is displayed in the same manner as in a uniform medium with the formation's 
resistivity. Correspondingly, the field in the borehole can be expressed through a field in 
a uniform medium and geometric factors. For this reason we will investigate mainly the 
influence of dimensions of coils on geometric factors of the borehole and the bed. 

Let us start from the simplest case when the field source is the vertical magnetic dipole 
but the receiver is the ring with radius ri located in a horizontal plane (Fig. 4.42a). As 
was shown in section two of this chapter the electrical field in the borehole can be written 
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in the form: 

oo 

^ = £0 + ^ - [XlCih{Xir)cos\zdX (4.160) 
47r TT J 

0 

where EQ is the electrical field of the magnetic dipole in a uniform medium with conduc-
tivity (Ji: 

Eo = ^ ^ ( l - i / c i i i ! ) s i n ^ (4.161) 

Expanding function e^^^^ in a series: 

we will find an expression for EQ in the range of small parameters: 

iu/iM 1 . iuj/iMkj . 
47r i?2 47J- 2 

where /ĉ  == iai^uj. The first term defines the vortex electric field of the magnetic dipole 
in free space while the second one describes the vortex electrical field of currents induced 
in a medium. 

Making use of the approach considered in detail in section 4.3, the secondary electrical 
field in the borehole (two-layered medium) in the range of very small parameters can be 
presented as: 

00 

^ ^ i o ^ fc? ^ k ^ ^ 2 _ f rn _ _ I^iPn^ ^^^^^ ^^ 

47r 2 47r TT J 2 ^ ^ m 
0 

(4.162) 

where a — L/ai^ (3 = ri/ai. 
Since the medium is uniform, the secondary electrical field is: 

^ 0 - —^ 2 ~ 

an expression for the apparent conductivity can be written as: 

STTE 

^''~ ~ Mo; V sin l9 

In particular for a two-layered medium we have: 

o-i 

00 

1 + ^ - ( ^ - 1 ] f - \2KoK, - m{K? - K^)] ^-^^^ cos m a d m (4.163) 
TTsinp \ai J J 2 '- -' m 



265 

We will call the function: 

oo 

G2(a, P) = - ^ I ? [2KoK, - m{Kl - Kl)] ^-^^^^ cos ma dm (4.164) 
TV o l l i yy J ^ TTXi 

the geometric factor of a formation. 
Let us notice that: 

. . n 1 
irl + L^Y" [l + (a//3)Y'' 

If the ring radius, ri , tends to zero, (/? -^ 0) then 

A(/?m) /? , . , /3 
^ — and sm t/ ^ — 

m 2 a 
Therefore, we have: 

oo 

C; ^ — / - [2i^oi^i - rn{Kl - Kl)] cos ma dm = ^2 
TT y 2 •-

0 

i.e. it approaches value of the geometric factor, G2, for the infinitely small coils of the 
induction probe. 

In accord with eq. 4.163 we have: 

G^(a,p) = 1 ^̂  — / — \2KQKI — m[K^ — KQ)\ —^ ^ cos mo; dm 

0 

(4.165) 

where Gl{a^P) is the geometric factor of the borehole when the receiver is the ring of 
radius ri. 

As follows from eq. 4.165 for small values of variable m, the integrand tends to function 
{P/2)KQ{m). For this reason applying methodics of calculation of the function Gi{a) we 
will rewrite eq. 4.165 in the form: 

.Iiipm) 
(pirn) dm 

m 

00 

(/?2 + a2)V2 , 4 r , , , /«^2ii/2 / r / ? ^ , , ,, Jiifirn) 
=1 - (i+c.̂ )V2 + ^ [1+(-//^) ] y [2^°(^) - ' ^ ( ' " ) ^ ^ 

0 

X COS mce dm (4.166) 
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TAB LE4.3 
Values of function Gl 

a 

1 

3 

5 

7 
9 

11 

13 

15 

17 

0 0.025 

0.4865 

0.1142 

0.0427 

0.0215 

0.0129 

0.0086 

0.0061 

0.0045 

0.0035 

0.050 

0.4860 

0.1142 

0.0427 

0.0215 

0.0128 

0.0086 

0.0061 

0.0045 

0.0035 

0.1 

0.4840 

0.1139 

0.0426 

0.0215 

0.0128 

0.0085 

0.0061 

0.0045 

0.0035 

0.2 

0.4763 

0.1128 

0.0442 

0.2130 

0.0127 

0.0085 

0.0060 

0.0045 

0.0035 

0.3 

0.4636 

0.1109 

0.0417 

0.0210 

0.0126 

0.0084 

0.0060 

0.0044 

0.0034 

0.4 

0.4463 

0.1083 

0.0408 

0.0207 

0.0123 

0.0082 

0.0058 

0.0044 

0.0034 

0.5 

0.4247 

0.1051 

0.0398 

0.0202 

0.0120 

0.0080 

0.0057 

0.0043 

0.0033 

where 

4>im) = J [2KoK, - m{Kl - KD] 

and the equahty: 

CXD 

1 2 [ 
^vfT^ = - / Ko{m) cos ma dm 

is used. 
Unhke the previous case the integrand in eq. 4.166 does not have singularities, and 

this expression is convenient for calculations. Some results of numerical integration are 
presented in Table 4.3. As these data show, corrections are usually small and do not 
exceed 10% even when the radius of the receiver ring is equal to half of the borehole 
radius. With an increase of the radius the geometric factor, G*, decreases, and it is 
specially noticeable for relatively small probes. It is obvious that with an increase of the 
probe the influence of the ring radius on the geometric factor G* decreases. 

In order to investigate the effect caused by finite dimensions of a transmitter coil let 
us first derive formulae for the vector potential of the electrical type corresponding to 
a current element. As is well known, complex amplitudes of the field are described by 
Maxwell's equations: 

cmlE = -iujiiH (4.167) 

c u r l i f ^ c r ^ (4.168) 

d i v £ ; - 0 (4.169) 

d i v i f = 0 (4.170) 

From eq. 4.170 we have: 

/ f - c u r l A (4.171) 
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where A is the vector potential of the electrical type. The equation for potential A is 
found by substituting eq. 4.171 into eq. 4.168: 

curl curl A = grad div A — \/^A = aE 

On the other hand, from eqs. 4.167 and 4.171 we have: 

E = —[(jjfiA — grad U 

or 

grad div A — \/^A = —ia/iujA — a grad U 

The latter can be replaced by two equations: 

V'^A + k'^A = 0 (4.172) 

div A = all (4.173) 

where k^ = —lafiuj. 
Direct substitution shows that function {Idl/A7rR)&^^ is a solution of eq. 4.172 when 

the source is a current element d/: 

ATTR 

where / is the current and R is the distance from the element dZ to an observation point. 
Now we can derive an expression for the vector potential of a current ring in a conducting 

medium. 
First of all we will present a vector potential at an arbitrary point P as a sum of vector 

potentials caused by all elements of the current ring (Fig. 4.42b). The vector potential of 
the current element, dZ, at the point P is written as: 

d A ^ V - — — i ^ (4.174) 

If the current ring with radius, ri, is located in a horizontal plane, the vector potential 
of the ring has only component A^. As can be easily seen from Fig. 4.42b, the radial 
component, A^, is equal to zero. 

Component dA(j) at point P is: 

e~'^^/cosad/ / r i ê ^̂  , / . .^^x 

We will make use of the known integral presentation of function e~^^^/R: 

oo 

= - f Ko [(A^ + ixY^^d] cos \z dX (4.176) 
g-ifci? 
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y 

Figure 4.42b. Current ring in a conducting medium. 

where x = (^fi^, R = {z'^ -\- cpy^'^. 
Substituting eq. 4.176 into eq. 4.175 and integrating along the ring we obtain an ex-

pression for A(k: 

oo Zn 

A^ = — - /cosAzdA jKo[{\^^\xY^^d]cosada (4.177) 

0 0 

In accord with the addition theorem of modified Bessel functions we have: 

K^{dv) = { 
Ko{rv)Io{riv) -}- 2 ^ Km{rv)Im{riv) cos ma if r ^ ri 

oo 

Ko{riv)Io{rv) + 2 ^ Km{r\v)Im{ri)) cos ma if r < rj 
(4.178) 

Replacing function KQ{dv) in eq. 4.177 by the right-hand side of equality 4.178 and ap-
plying orthogonality of trigonometric functions: 

ZTT 

/ 
COS ma cos ada = 

I 0 if m 7̂  1 

I TT if m = 1 

we obtain the integral presentation for the vector potential of the electrical type when the 
source is the current loop: 

4/ri 
An 

oo 

rv) cos AzdA if r ^ ri (4.179) 
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oo 

A^ = —— / Ki{riv)Ii{rv) cos AzdA if r < n (4.180) 

0 

where f = (A^ + ix)^^^-
Inasmuch as the vector potential has only component A^ which does not depend on 0, 

div A = 0 and, according to eq. 4.174, the scalar potential U is zero. For this reason the 
electrical field of the current ring in a uniform medium can be written in the form: 

oo 

E^ = -^^Un / /i(ri^)A:i(r7;)cosAzdA if r ^ n (4.181) 

or 

oo 

E^ = - ^ 4 / r i / Ki{riv)Ii{rv) cos Az dA if r ^ n (4.182) 

0 

Now we are prepared to consider the field of a current ring in a nonuniform medium. 

4.10. Electrical Field of a Current Ring in a Medium with 
Cylindrical Interfaces 

The total current electrical field can be presented as a sum of two terms. The first one 
is the field in a uniform medium with the conductivity of the borehole, while the second 
one is caused by the nonuniformity of the medium, that is: 

f 7 7 ^ 
E^^-^^AIn Ii{riv)Ki{rv)cosXzdX- j Ci{X)h{riv)Ki{rv)cos\zd\ 

\ o 0 J 
i f r ^ r i (4.183) 

Taking into account the axial symmetry for determination of the electromotive force in 
a measuring ring, it is sufficient to multiply the electric field E^ by the ring length: 

S' = 27TrE^ 

Function Ci(A) in eq. 4.183 is defined from boundary conditions, and it does not depend 
on the type of source of the vortex electrical field provided that the axial symmetry is 
held. 
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For this reason we make use of results derived in the third section of this chapter, and 
then we have: 

Ci(A) = (X2 - Xi)^ [2Koi\a,)K,{Xa,) - Xa^{K', - K^^)] 

(4.184) 

+ (X3 - X 2 ) ^ [2KoiXa2)Ki{Xa2) - Xa2iK', - K^o)] 

where Xi = cri/icj, X2 = cr2//a;, Xs = cr3/xa;; CTI, (72 and a^ are conductivities of internal, 
middle and external parts of the medium, respectively; ai and a2 are radii of cylindrical 
interfaces. 

Let us suppose that transmitter and receiver rings of the introduction probe are placed 
on the nonconducting base of the probe with radius a i , that is r i = ai and ai = 0. Then 
expressions for components of the electrical field in media with one cylindrical interface 
{r = ai) and two interfaces (r = ai and r = a2) can be written, respectively: 

CO 

E2 = - ^ 4 / r i X 2 j ^ [2Ko{Xr,)K,{Xn) - An(Xf - X^)] P,{Xn) cosXz dX (4.185) 

0 
oo 

Es = E2- ^ 4 / r i ( x 3 -X2)J^ [2Ko{Xa2)K,{a2) - Xa2iKf - K^)] l',(Xr,)cosXz dX 

0 

(4.186) 

Both equations describe the electrical field on the surface of the nonconducting base of 
the induction probe. 

Now we will introduce the apparent conductivity from the equation: 

^ = ^ (4.187) 
(72 E2 

which shows how the field Es in a medium with cylindrical interface r = a2 differs from 
field E2 on the surface of the probe base surrounded by a uniform medium with conduc-
tivity (72. 

Thus, the expression for the apparent conductivity when the invasion zone is absent 
can be presented in the form: 

00 

/ 
tt2 

^2Ko{Xa2)Ki{Xa2) - Xa2{K^ - K^)] I^(Xri) cos Xz dX 
LA 

(Ta = <72 + ( a s - <T2) ^ 3 (4-188) 

/ 
0 

^ [2/^o(Aai)A'i(Aai) - Xa^{K\ - Kl)\ / f (Ar i )cosA^dA 
AA 

We will introduce in the integrals of the latter, new variables m = Xa2 and m = Aai, 
respectively, and notations 

(22 a2 ^ ^ a i 1 
/ ? = — = — 0L2 = — a i = — ^ = — = 7̂  

«! r\ a2 ai a2 p 
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L is the probe length. Then we have: 

oo 

/ 
Jl{vm) 

(p[m) — cos ma2 dm 

^a -= ^2 -f (era - (J2) ^ (4.189) 
If{vm) 

/ < 
m^ 

(m) — cos mai dm 
0 

Let us call the function: 

00 

/ 
.If{vm) 

(p\m) — cos771^2 dm 

P^6 (4.190) 
[ Jf{vm) 
/ 0(m) —cosmaidm 

J m2 
0 

the geometric factor of the formation, 6̂ 2(0̂ , /^), where: 

0(m) = (m/2) [2Ko{m)Ki{m) - m{Kl - K^)] 

First of all assume that the radius of the ring ri along with that of a nonconducting 
base of the probe tend to zero. Then the following conditions take place: 

V = > 0 ai = >oc 
a2 ai 

From the first condition it follows that instead of If{vm)/m'^ we can write v'^/i and 
correspondingly the numerator of eq. 4.190 takes the form: 

00 

/ 0(m) cosma2 dTTT, 

0 

As follows from the second condition, the integral of the denominator in eq. 4.190 is 
defined by the behavior of function (j){m)ll{m)lm?' for small values of m. Inasmuch as 
(j)(m) -^ Ko{m) when m -^ 0 we have: 

/
0(m) ^ ^ cosmai dm -^ - Kolm) cosmai dm 

m^ 4 7 
0 

TT 1 
if a ^ cxD 

8 ( l + af)V2 8ai 

For the geometric factor of the formation, 02(^5/^)5 we obtain: 

00 00 

G%{ot, P) = / (/>(m) cosma2 dm = — - / 0(m) COS(Q;2^) dm 
TT J TT J 
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which coincides with function ^2(0^) corresponding to the case when the coils of the 
induction probe are infinitely small. 

Making use of eq. 4.189 we obtain again a known relation between the geometric factors 
of a formation and a borehole: 

Gt(a , /? ) = 1 - G ; ( a , / ? ) 

In accord with eq. 4.190, the calculation of geometric factor Gl{a,P) is defined by nu-
merical integration. The integrand in the numerator: 

00 

0 

1=1 (t){rn)——-— COS(Q;2^) dm 
m^ 

has a singularity as m ^ 0, since: 

If{vm) v^ 

m? 4 
(/)(m) ^— = —KQ{m) 

For this reason let us present the integral in the form: 

00 00 

I — — / K^{m) cosma2 dm + / ( (\){m)—— Ko{m) 1 cosma2 dm 
4 7 7 \ m^ 4 / 

0 0 
00 

" T ^ (1 + 12)1/2 + / P(^) COS ma2 dm 
0 

where 

F{m) = 0 m ) ^ ^ - -Koim.) 
772^ 4 

Function F{m) does not have a singularity as m -^ 0. 
Similar transformations have been performed with the integral of the denominator in 

eq. 4.190. 
Examples of values of geometrical factor Gl{a, P) are given in Table 4.4 for various 

values of parameters a and p. 
Analysis of these data shows that a change of function Gl{a,P), caused by a change 

of parameter /?, is mainly related with a change of diameter of the nonconducting base 
of the probe if its length exceeds the borehole diameter. For this reason the value of the 
geometric factor of the borehole Gl{a,P) can be derived with a suflftcient accuracy from 
relation: 
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TABLE 4.4 
Values of function Gi(a, 

a 

1 

v/2 

2 

2V2 
4 

4V^ 

8 
8^/2 

/5 1 

0 

0 

0 
0 

0 
0 

0 

0 

</2 

0.10479 

0.07889 

0.05373 

0.03316 

0.01843 

0.00957 

0.00490 

0.00231 

P) 
72 

0.19174 

0.14350 

0.09579 

0.05843 

0.03206 

0.01654 

0.00820 

0.00407 

2/</2 

0.26179 

0.19516 

0.13037 

0.07756 

0.04211 

0.02154 

0.01058 

0.00530 

2 

0.31723 

0.23547 

0.15563 

0.09159 

0.04919 

0.02492 

0.01238 

0.00616 

4 

0.43796 

0.31875 

0.20560 

0.11806 

0.06224 

0.03133 

0.01544 

0.00765 

8 

0.47424 

0.34800 

0.21364 

0.12483 

0.06548 

0.03288 

0.01621 

0.00789 

16 

0.48259 

0.34754 

0.22189 

0.12640 

0.06630 

0.03314 

0.01643 

0.00810 

where function G\{a) and G\{l3a) correspond to infinitely small coils. For shorter probes 
the relation between the radius of the borehole and the induction probe begins to play a 
more essential role. 

The influence of the radius of the transmitter and the receiver loops, as well as the 
presence of a nonconducting base, on the geometric factor of the formation 6^2(0^,/^) is 
very small. As was demonstrated above, for large values of the probe length {a ^ 1), 
integrals in eq. 4.190 are mainly defined by the behavior of the integrand for small values 
of m. It is easily seen that the singularity of these functions near zero (m -^ 0) has the 
same character as in the case of infinitely small coils. Therefore, with an increase of the 
probe length, the geometric factor of the borehole, regardless of the ratio r i / a i , decreases 
inversely proportional to a^. 

In accord with eq. 4.187, values of geometric factor Gl{a,f3) allow us to define the 
ratio E^/E2- For the determination of the electrical field in a nonuniform medium E^ 
it is necessary to calculate the field, £^2, corresponding to a uniform medium with the 
conductivity of the borehole. Expression for this field can be written in the form: 

00 

^ iujii, ^ f I, ^h(^^) 1 
E2 = Alridiiiuj / (j){m) c o s m a i d m 

47r J m 
(4.191) 

Usually, the induction probe length is significantly greater than the diameter of the 
nonconducting base, that is a ; » 1, and as was estabhshed above: 

\Eo 
Giji^uj'^ Inrl 

47r 2L 

Correspondingly, for the electromotive force we have: 

where MT = T^rjl and MR = nrf are moments of the probe coils. 

(4.192) 
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Equation 4.192 can be presented in the known form: 

0Q 2 

where S'Q is the electromotive force in a free space. 
Asymptotic presentation of field E2 and, respectively, the electromotive force (02 can be 

used with sufficient accuracy if L/ri ^ 4. 
Now let us consider a more complicated case. 

4.10.1. Electrical Field of a Single-layer Coil in a Medium with Cylindrical 
Interfaces 

Suppose that n turns correspond to a unit of length of a transmitter coil and consider a 
uniform medium first. Then in accord with eqs. 4.179 and 4.180, the vector potential of 
the coil with height dzo can be presented as: 

dAs = < 

00 

AlnrVi dzo / Ii{riv)Ki{rv) cos A(z — ZQ) dX if r ^ r i 
0 

00 

Alnrri dzo / Ii{rv)Ki{riv) cosX{z — ZQ) dX if r ^ r i 

Here / is the current; Vi is the coil radius; z is the distance from middle of the coil to 
the measuring ring; ZQ is the distance from the coil middle to the center of the ring with 
thickness dzo; v = {X'^ -\-ixY^'^, X = ^M< -̂

The vector potential generated by the current in the whole coil is obtained by integration 
with respect to ZQ: 

As= < 

00 1/2 

ATT 
0 -1/2 

1/2 
AlriTTi 

I I\{riv)K\{rv)dX j co^X{z — ZQ) dz^ ii r ^ r^ 

0 -1/2 
00 1/2 

Ii{rv)K-[{riv)dX / cos A(2; - ZQ) d2;o if r ^ ri 

(4.193) 

ATT 
0 -1/2 

where / is the coil length. 
Integral by ZQ is equal to 2cos A2:sin(A//2), and therefore we have: 

As= < 

SIJITVI f sin(A//2) x ^ \ -^ ^ 
/ A(^i'^) ^̂  Ai(r?;)cosA2: dA it r ^ r i 

An J X 
0 

S / n r n f sin(A//2) \ A \ f ^ 
/ Ki [riv) — 11 [rv) cos Xz dX if r ^ r i 

(4.194) 

An 
0 
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With a decrease of the coil length, /, ratio (//2A)/A can be in Hmit replaced by coefficient 
1/2 and we obtain the expression for the vector potential due to the current ring derived 
above {IUT — !)• As is known, the electrical field is related with the vector potential by 
the relation: E^j, = —iufiA^, and therefore we have: 

r oo 
iujfiSIriTri f sin(A//2) x ^x -r ^ 

/ h{riV) Ai(r^') cosA2:dA it r ^ r i 
47r J A 

°oo (4.195) 
i ^ / i S / n m / sin(A//2) ^ A \ f ^ 

/ Ki[riv) i i ( r f ) cos A2: dA 11 r ^ r i 
An J A 

0 

Now we consider a medium with cylindrical interfaces. In accord with eq. 4.195 and 
making use of results derived in previous sections the electric field can be writ ten in the 
form: 

iuJIiSIriTri 

^ 47r 

f K,{nvf^^^^^h{rv) cos XzdX- f C^{\)h[nv) ^^^^^^/^) /^^rv) cos \z dA 

\Q 0 J 

(4.196) 

if ai > r ^ r i . 
Expression of function Ci(A) for the range of small parameters was derived above. We 

will suppose tha t the single-layered transmitter coil and the measuring ring are placed on 
a nonconducting base, and they have the same radius. Then for the component of the 
electrical field Ei when the surrounding medium has resistivity pi and field E2, as there 
is also an interface between media with resistivities pi and p2^ we obtain, respectively: 

00 

E, = - i ^ ^ ^ ^ ^ ^ , j 1 1 [2K,K, _ Xr.iKl - Kl)] '^&^l!iXn) cos A. dA (4.197) 

and 

iLupSIriTri 
E2 = Ei — (X2 - Xi) 

sin(A//2) - (4-19^) 
X j g [2K,K, - \a{Kl - K',)] '-^W^.j^^Xn) cos Xz dA 

0 

Both equations take into account tha t the central part of the borehole is occupied by a 
nonconducting base of the probe. At the same time in all formulae, the finite length of this 
base is not considered. From a physical point of view we can assume tha t the influence 
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of a magnetic field caused by induced currents within the central part of the borehole, 
being a continuation of the probe base, should be very small. A further evaluation of the 
contribution of currents in these parts of the borehole will be done for infinitely small 
coils. 

Making use of the relation: 

<̂ a _ E2 

we obtain the following expression for the apparent conductivity as the transmitter is a 
single-layered coil and the receiver is the ring: 

0 0 

^, . sm(ms2)/?(frM) . 
(pirn) — cos 7710:2 dm 

m m^ 

^a = ^1 + (^2 - (yi)P^ ^ (4.199) 
sm{msi)If{vm) 

(p[m) — c o s m a i dm 
J rn 
0 

where: 
cTi and (72 are conductivities of the borehole and the formation, respectively; 
P = a i / r i , ai is the borehole radius; 
Ti is the radius of the coil and the nonconducting base; 
V = ri/ai is the coil radius expressed in units of the borehole radius; 
52 = l/2ai and Si = l/2ri are ratios of the coil length to the borehole and coil diameters, 
respectively; 
a2 = L/ai, ai = L/ri; L is the probe length. 

If the coil length tends to zero (s2 -^ 0, si —> 0) then instead of eq. 4.199 we will obtain 
an expression for the apparent conductivity when both the transmitter and the receiver 
are rings. In fact, replacing sin(7?is)/m by s we have: 

02 ^2 0 

0(m) ^ ^'^^ cos ma2 dm 

.J. 
(ya = '^\ + (0-2 - (^\)I3 " ' Aim) JHm)- COS mai d m 

00 

/ 
(j){m) ——-— cos ma2 dm 

I (p[m) r— COS mai am 
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Let us call the function: 

0-

OO 

/ 
2 0 

,. .sms2mll{vm) 
(pim) — cos ma2 dm 

I 
0 

sin Sim If (m) 
(pim) r— cosmai dm 

m m^ 

the geometric factor of the formation, G2, when the transmitter is an one-layered coil and 
the receiver is the ring or vice versa. As follows from eq. 4.199, the geometric factors of 
the formation and the borehole are related as: 

GI = I-G; 

It is obvious that the geometric factor of the invasion zone is related with function G^ in 
the same manner as it takes place for very small coils. 

The geometric factor of the borehole depends on three parameters a2, /?, and S2, since 
ai = (3a2 and Si = I3s2- Results of calculation of function G\ illustrating its behavior are 
presented in Table 4.5. As is seen from this table and follows from physical consideration 
with an increase of the probe diameter the influence of the borehole decreases, and this 
effect in some cases can be significant. 

A change of the geometric factor G\ for probes, the length of which exceeds the borehole 
diameter, is mainly related to a change of diameter of the nonconducting base. For this 
reason a value of the geometric factor of the borehole, G\{a, (3, S2), with sufficient accuracy 
can be obtained from equation: 

G\{a,(3,S2) = G\{a,S2)-G\{aP,S2) 

where on the right-hand side functions G\{a^ S2) and G\{af3^ S2) correspond to geometric 
factors of the borehole when coils are very thin (1//^ -^ 0). 

4.10.2. Both Transmitter and Receiver of the Induction Probe are 
Single-layer Coils 

If the amount of turns of the measuring coil with radius r^ per unit length is equal to n^ 
then for electromotive force in the coil with length dz (as follows from eq. 4.195) we have: 

00 

^TT J A 
0 

00 

dc^ = -^MT^ d^ / '^ ^ ^^ ^ ^ ^hirmv) cosXz dX (r^ < r r ) 
0 

MT,^ = IQirlnTUmrmrT 
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TABLE 4.5 

Values of function Gl 

S2 = 0.2 

1 

V2 
2 

2^2 

4 

4^/2 

8 

8^2 

16 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^ 

0.10565 

0.07939 

0.05415 

0.03325 

0.01853 

0.00965 

0.00482 

0.00239 

0.00118 

2 / ^ 

0.23377 

0.19679 

0.13124 

0.08802 

0.04222 

0.02150 

0.01067 

0.00527 

0.00261 

2 

0.31990 

0.23753 

0.15688 

0.09218 

0.04937 

0.02501 

0.01239 

0.00611 

0.00301 

4 

0.44305 

0.32224 

0.20743 

0.11884 

0.06249 

0.03136 

0.01547 

0.00761 

0.00373 

8 

0.48076 

0.34593 

0.22060 

0.12560 

0.06575 

0.03290 

0.01620 

0.00795 

0.00390 

16 

0.49063 

0.35180 

0.22405 

0.12703 

0.06648 

0.03324 

0.01360 

0.00804 

0.00393 

S2 = 0.4 

1 

V2 
2 

2V2 
4 

4v/2 

8 

8\/2 

16 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^ 

0.10783 

0.08101 

0.05512 

0.03370 

0.01872 

0.00969 

0.00487 

0.00240 

0.00119 

2/</2 

0.26969 

0.20147 

0.13404 

0.07928 

0.04266 

0.02164 

0.01071 

0.00528 

0.00261 

2 

0.32674 

0.24362 

0.16047 

0.09376 

0.04991 

0.02517 

0.01243 

0.00612 

0.00301 

4 

0.45882 

0.33270 

0.21298 

0.12108 

0.06322 

0.03156 

0.01552 

0.00761 

0.00373 

8 

0.50000 

0.35820 

0.22688 

0.12803 

0.06661 

0.03303 

0.01621 

0.00793 

0.00389 

16 

0.51242 

0.36462 

0.23035 

0.12975 

0.06762 

0.03327 

0.01630 

0.00802 

0.00393 

The total electromotive force in the measuring coil is defined from equations: 

' ^ ^ ^ - / A 

zo+b/2 

Ki(rmv) I cosXzdXdz 

zo-h/2 

00 

/ 
0 

47r ./ A 

S=- - ^ 2 M T ^ / \ ^Ii{rmv)sm{Xb/2)cosXzodX 

(4.200) 

if rm ^ TT 

if rm ^ TT 

where: 

b is the length of the measuring coil; 

ZQ is the distance between the centers of the transmitter and receiver coils. 
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TABLE 4.5 
(Continued) 
S2 = 0.8 

1 

72 
2 

2v/2 

4 

4^2 
8 

1 

0 

0 

0 

0 

0 

0 

0 

n 
0.11650 

0.08767 

0.05918 

0.03564 

0.01944 

0.01992 

0.00491 

72 

0.21265 

0.16073 

0.10741 

0.06345 

0.03391 

0.01707 

0.00839 

2/72 

0.29147 

0.22029 

0.14570 

0.08459 

0.04449 

0.02218 

0.01086 

2 

0.35608 

0.26815 

0.17544 

0.10036 

0.05214 

0.02580 

0.01261 

S2 = 1.6 

1 

72 
2 

2^2 

4 

4^2 

8 

1 

0 

0 
0 

0 

0 

0 

0 

72 

0.12476 

0.11113 

0.07742 

0.04457 

0.02272 

0.01090 

0.00516 

72 

0.22674 

0.20307 

0.14293 

0.08081 

0.04003 

0.01880 

0.00883 

2/72 

0.31144 

0.28044 

0.19758 

0.10958 

0.05295 

0.02448 

0.01143 

2 

0.38257 

0.34637 

0.24281 

0.13193 

0.06242 

0.02853 

0.01327 

If linear dimensions of probe coils coincide (/ = &, r^ = r^ = ri) then: 

oo 

'I 32iu;u, 2 /*/i(rii;)sin^(A//2) ^̂  , , , , , 

An A2 
(4.201) 

Equations 4.200 and 4.201 are derived provided that the coils are located in a uniform 
medium. Now assume that single-layered coils are placed on a nonconducting base of 
the probe which is located on the borehole axis. Then expressions for the apparent 
conductivity and geometric factors are derived in a similar manner as they were obtained 
in the previous case. For example, when the invasion zone is absent we have: 

CTa = CTi + (a-2 - ai)(]' 

oo 

/ 
3 0 

sm'^{ms2)If{vm) 
(p[m) — cos ma2 dm 

m^ 

I (j){m) 
sin^ (msi) If{vm) 

(4.202) 

m^ 
cos mai dm 

where: 

P = a i / n V = 1/P 
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TABLE 4.5 
(Continued) 
52 = 2.0 

1 

V2 
2 

2\/2 

4 

4v/2 

8 

1 

0 
0 

0 
0 
0 

0 

0 

^ 

0.11919 

0.11361 

0.09190 

0.05257 

0.02562 

0.01172 

0.00537 

/̂2 

0.21739 

0.20782 

0.16959 

0.09653 

0.04551 

0.02028 

0.00920 

2/</2 

0.29917 

0.28715 

0.23582 

0.13249 

0.06061 

0.02647 

0.01192 

2 

0.36793 

0.35473 

0.29273 

0.16136 

0.07185 

0.03090 

0.01385 

S2 = 4.0 

1 

V2 
2 
2v/2 

4 

4v^ 

8 

1 

0 
0 

0 

0 
0 

0 

0 

</2 

0.09239 

0.09282 

0.09338 

0.09252 

0.06963 

0.02294 

0.00764 

v^ 

0.17057 

0.17144 

0.17272 

0.17175 

0.13046 

0.04121 

0.01318 

2 / ^ 

0.23725 

0.23856 

0.24060 

0.24002 

0.18398 

0.05540 

0.01716 

2 

0.29457 

0.29628 

0.29910 

0.29977 

0.23139 

0.06620 

0.02000 

52 = l/2ai 5i = l/2r 

a2 = L/ai ai = L/ri 

L = ZQ is the probe length. 
Thus the geometric factor of the borehole can be presented in this case as: 

CI = 1 - /?• 

OO 

/ 
.3 0 

sin^(m52)/?(t;m) 
0(m) — cos ma2 dm 

m^ m^ 

I s\v?{msi)Il{vm) 
(t)[m) — —-— cos mai dm 

(4.203) 

and it depends on three parameters: ^2, P and 52- Some values of the function G^ are 
given in Table 4.6. 

Taking into account the behavior of the integrands in eq. 4.203 it is easy to demonstrate 
that with an increase of the probe length, function Gl decreases inversely proportional to 
al, regardless of the coil dimensions. 

It is natural that with an increase of the diameter of the nonconducting base of the 
probe, the geometric factor Gi decreases and that it is more noticeable for shorter induc-
tion probes. 
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TABLE 4.6 
Values of function G* 
52 = 0.2 

1 
v/2 

2 

2V2 
4 
Ay/2 

8 
8̂ /2 

16 

1 

0 

0 

0 
0 

0 

0 

0 

0 
0 

</2 

0.10636 

0.07993 

0.05447 

0.03339 

0.01856 

0.00966 

0.00484 

0.00239 

0.00118 

V2 

0.19448 

0.14569 

0.09812 

0.05911 

0.03235 

0.01660 

0.00827 

0.00409 

0.00202 

2 / ^ 

0.26574 

0.19835 

0.01322 

0.07844 

0.04235 

0.02156 

0.01069 

0.00528 

0.00260 

2 

0.36225 

0.23957 

0.15808 

0.09271 

0.04955 

0.02507 

0.01240 

0.00612 

0.00301 

4 

0.44817 

0.32574 

0.20928 

0.11952 

0.05273 

0.03141 

0.01548 

0.00751 

0.00373 

8 

0.48753 

0.35000 

0.22274 

0.12643 

0.06603 

0.03296 

0.01840 

0.00794 

0.00389 

16 

0.49797 

0.35673 

0.22612 

0.12817 

0.06670 

0.03325 

0.01635 

0.00803 

0.00395 

S2 = 0.4 

1 

V^ 
2 

2^2 

4 
4^2 

8 

8>/2 

16 

1 

0 

0 
0 

0 
0 

0 

0 

0 

0 

^ 

0.11078 

0.08324 

0.05648 

0.03435 

0.01896 

0.00977 

0.00487 

0.00240 

0.00119 

V^ 

0.20250 

0.15216 

0.10208 

0.06095 

0.03301 

0.01681 

0.00832 

0.00410 

0.00202 

2 / ^ 

0.27718 

0.20782 

0.13793 

0.08105 

0.04326 

0.02182 

0.10760 

0.00529 

0.00260 

2 

0.33748 

0.25194 

0.16548 

0.09600 

0.05060 

0.02540 

0.01250 

0.00613 

0.00302 

4 

0.47926 

0.34766 

0.22090 

0.12424 

0.06420 

0.03185 

0.01561 

0.00762 

0.00372 

8 

0.53231 

0.37657 

0.23580 

0.13148 

0.06760 

0.33500 

0.01633 

0.00789 

0.00386 

16 

0.54937 

0.38413 

0.23956 

0.13331 

0.06843 

0.03399 

0.01637 

0.00789 

0.00389 

With an increase of the probe length the correction due to the presence of a noncon-
ducting base tends to a constant which does not depend on the probe length, and it is 
equal to the square of the probe diameter/borehole diameter ratio: 

G i ( a , 5 , CXD) 

1 

For example, if the probe diameter is equal to the borehole radius this correction factor 
exceeds 25%. 

As is seen from data in Table 4.6, the geometric factor of the borehole G\ also increases 
with an increase of the coil length. If its length does not exceed the borehole diameter its 
influence is not significant, and it is measured in several percentages. Only for very short 
probes, the length of which is comparable with the borehole diameter (L ~ 2ai ^ 4ai), 
coil size can have an essential influence. 

Therefore, the main factors defining the value of the geometric factor of the borehole 
for conventional induction probes are length and diameter of the nonconducting base. 
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TABLE 4.6 
(Continued) 
S2 = 0.8 

1 

V2 
2 

2^2 

4 

Ay/2 

8 
8\/2 

16 

1 

0 

0 

0 

0 

0 

0 

0 

0 
0 

^ 
0.12094 

0.09644 

0.06530 

0.38600 

0.02053 

0.01024 

0.00499 

0.00244 

0.00120 

V2 

0.22005 

0.17684 

0.11947 

0.06921 

0.03593 

0.01765 

0.00854 

0.00416 

0.00204 

2 / ^ 

0.30183 

0.24355 

0.16349 

0.09290 

0.04728 

0.02294 

0.11047 

0.00538 

0.00264 

2 

0.36982 

0.29890 

0.19870 

0.11086 

0.05553 

0.02971 

0.01282 

0.00624 

0.00306 

S2 = 4.0 

1 

72 
2 

2\/2 

4 

4v/2 

8 

1 

0 

0 

0 

0 

0 

0 

0 

</2 

0.08821 

0.08626 

0.08318 

0.07839 

0.07056 

0.05528 

0.02055 

^ 

0.16355 

0.16006 

0.15457 

0.14608 

0.13216 

0.10449 

0.03815 

2/</2 

0.22839 

0.22366 

0.21629 

0.20494 

0.18632 

0.14862 

0.05311 

2 

0.28458 

0.27886 

0.27002 

0.25619 

0.23425 

0.18846 

0.06578 

In this section it is also appropriate to consider an induction probe which consists of 
only one coil. Such a probe can have a certain interest in measuring resistivity on the 
invasion zone. 

First let us assume that the induction probe is located in a uniform medium and consists 
of one ring. Then, according to eq. 4.181 or eq. 4.182, the electromotive force induced in 
this ring is defined in the following way: 

S - 2^nE^ = 
47r 

oo 

Sirlr] / h{nv)Ki{riv)d\ (4.204) 

The integral in this equation diverges. In fact, for A ^ CXD parameter v = (A^ + ix)̂ "̂ ^ also 
tends to infinity as A. For this reason, making use of asymptotic presentation of Bessel 
functions: 

h{x) 

have: 

h{riv)Ki{riv) 

Ki{x) 
e-^V^ 

2x 

A—>CXD h(nX)Kr{r,X) 
2Ari 
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When the probe length, L, is not equal to zero (two-coil probe) the integrand contains 
the oscillating multiplier cos AL which provides convergence of integrals in eqs. 4.181 and 
4.182. 

The electromotive force induced in one ring probe is caused by a change with time of 
the magnetic field of the current in the ring located in a free space as well as by the 
magnetic field of currents induced in a conducting medium. Thus: 

where: 

oo 

^0 = -'^Sirlrl I h{riX)Ki{ri\) dA (4.205) 

0 

is the electromotive force in a free space, and 

CO 

^1 _ _ ^ 8 ^ j ^ 2 f[i^f^riv)Ki{nv) - h{nX)Ki{riX)] dA (4.206) 
47r J 

0 

The right-hand side of eq. 4.205 is equal to infinity. It results from the fact that the ring 
is assumed to be infinitely thin and correspondingly the current density and the magnetic 
field near its surface are infinitely large. Therefore: 

s 

also tends to infinity. 
The inductance of the ring is related with electromotive force by relation: 

whence 

oo 

As is well known, the inductance, LQ, is defined from equation: 

Lo = riM (in — - I.TG") (4.207) 

where ri is the ring radius and TQ is the radius of its cross-section. 
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In accord with eq. 4.207, the self-inductance LQ tends to infinity as VQ -^ 0. Of course, 
under real conditions the cross-section radius, TQ, is not zero and correspondingly the 
self-inductance, LQ, has a finite value. 

As is seen from eq. 4.206 the integrand does not have singularities and rapidly decreases 
when A increases. In fact, for A —> (X) we have: 

2(A2-hix)i/2^i 2Ari 4A3ri 

In a general case the resistance, introduced by currents in a medium into the ring, is a 
complex one, that is, it has inphase and quadrature components. In accord with eq. 4.206 
we have: 

CO 

Z = Y = i^/^2r? f[h{nv)Ki{riv) - /i(riA)Ki(riA)] dA (4.208) 

0 

As in the case of the dipole excitation the quadrature component of the current density 
prevails near the ring, that is in its vicinity induced currents are mainly shifted in phase 
by 90°. For this reason, the electromotive force induced by these currents in the ring is in 
phase with the source current. Therefore, parts of the medium which are close to the ring 
mainly introduce the active resistance. At the same time with an increase of the distance 
from the source the inphase component of currents increases, and correspondingly, these 
parts of the medium begin to contribute the reactive resistance. 

If the frequency of the field and the conductivity of the medium are sufficiently low 
the active resistance introduced by induced currents prevails and its expression can be 
obtained in the following manner. 

Let us present the integrand in eq. 4.208: 

h{nv)Kr{r,v)-h{r,X)K,{r,X) 

in a series by power of parameter ix and discard all terms except the first one. It is 
obvious that: 

/i(riVA2 + ix)/^i(r,\/A2 + ix) - hiri\)K,inX) 

+ ^ [I[{nX)K,{nX) + Il{r^\)K[{n\)] 

Therefore we have: 

oo 

R = -ujti2rlxjj^ [/;(nA)K,(nA) + h{r,\)K[{r,X)] dA 

0 

We will introduce a new variable: m = riA, then: 

oo 

R = wV'^2r? J ^ [/((riA)i^i(riA) + /i(riA)A';(riA)] dA (4.209) 



285 

Making use of the recurrence formulae for modified Bessel's functions: 

I[{m) = Io{m) - —/ i (m) K[{m) - Ko{m) - —Ki{m) 

we obtain a final expression for the active resistance introduced by induced currents at 
the range of small parameters: 

oo 

R = ijj'^^^a2rl / 7^ ih{m)Ki{m) - Ii{m)Ko{m) h{m)Ki{m)\ dm (4.210) 

0 

The integrand of the latter has singularity, as m ^^ 0. In fact we have for m -^ 0: 

TTi 1 

/ o ( ^ ) -^ 1 A ( ^ ) -^ — Ki{m) —> — Ko{m) —> — I n m 

and 

Io(m)K,im) - h{m)Koim) - -h{m)K,{m)) ^ ^ ( - - ^ / ^ o M - - ) ; ^ 
m / 2m \m. 2 m J 2m. 1 

Ko{m) -^ oo 

For this reason it is appropriate to present eq. 4.210 in the form: 

R = -a;VV2rJ 
CX3 

l \ J l\Ko{m) - ^ (loK, - hKo - -hK^ ] \ dm 
2m m •)} 

0 
oo 

V V 2 n [ / [\Koim) - ± (l,K, - I,K, - | / , K , ) } dm - I 

Since 

oo 

j Mm) dm 

Now we will suppose that the ring is placed on the nonconducting base of the induction 
probe located in a medium with conductivity a i . In accord with eq. 4.183 the electromo-
tive force introduced into this ring is: 

^ . 
47r 

/ oo oo ) 

87r/r2 { jh{r,)K,{n\) dA - jC^{\)ll{rx\) dA (4.211) 
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The second term defines the electromotive force caused by currents induced in a conduct-
ing medium, and correspondingly, at the range of small parameters, expressions for the 
electromotive force and the active resistance can be written as: 

oo 

^1 = ~2Irla^fxcoxi J ^ [2KoK^ - m{Kf - K^)] ^-^ dm 

OO 

J 2 ^ •• m"^ 

(4.212) 

Suppose there is a second cylindrical interface between two media with conductivities 
(Ji and (72. Then, in accord with eq. 4.186, we have: 

oo 

<f = <?! - 2Irla,MX3 - Xi) / f [2KoK, - m{Kl - KD] ^-^^ dm 

0 
oo 

0 

For an evaluation of the influence of a formation it is reasonable to introduce the apparent 
conductivity as: 

(Ja _ (^ (Ja _ R 

(Jl S'l G\ R\ 

It is obvious that : 

oo 

Il{mv) j ^ [2KoK, - miK^ - K^^)] ^ ^ dm 
3 

oo 

f^[2KoK,-m{K',-K',)]^-^dm 
J 2 ^ m^ 

" « - i + ( ^ - i /3̂ ^̂ 3 = i + r ^ ) G , 
^1 \^l J Cry. T'^(rr.\ V ̂ 1 

where G2 is the geometrical factor of the formation given by eq. 4.190, as Of = 0. 
Finally, we will consider the last case where a single-layered coil presenting the induction 

probe is placed on the nonconducting base. Making use of results obtained above we have 
the following expressions for the electromotive force and active resistance introduced into 
a coil by induced currents in a medium with conductivity a\: 

. ^ 9 f ^ r^.. .. /x^9 T̂ 9xn ^? (^ ) sin msi , 
^1 = -Slr^fiaJXi / - [2K0K2 - m K? - K^)] - ^ ^ dm 

R, = -SrWiMOXi [ ? [2KoK, - m{Kf - K^,)] % 1 ? ^ ^ dm 
J 2 "• m^ m^ 
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If the probe is located on the borehole axis we have: 

oo 

S = S,- 8IrWalMX2 - Xi) / ? [2KoK, - miKf - K',)] ^-^^ ? H ^ dm 
J 2 "- -^ m"^ m'^ 
0 
oo 

R = R,^ 8rWalMX2 " Xi) / ? [2KoK, - m{Kl - KD] ^-^ ^ H ^ dm 
J 2 ^ ^ m^ m^ 

(4.214) 

and finally: 

' ^ ' ' = l + ^ _ l U 3 < L 

oo 

- [2KoK, - m{Kf - K^)] ^ ^ ^ dm 
2 "- ^ m^^ m^ 

^ 1 V ^ l / r rr, n(rr.\ c i r . 2 

/ ^ [2/̂ oifi - m{Kl - KD] % 1 ^ H L ^ dm (̂ -̂ l̂ ) 
J 2 •- -• m^ m^ 

where G2 is the geometrical factor of the probe having a single-layered coil; Vi is the coil 
radius; ai is the borehole radius; / is the coil length; p = ai/ri, v = 1//3, S2 = //2ai, 
si = //2ri. 

For illustration, let us consider an induction probe which consists of two single-layered 
coils of different length and the same radius connected with each other in opposite direc-
tions and placed one inside the other (Fig. 4.43). 

Then, for the electromotive force and active resistance in such the probe caused by 
inducted currents we have: 

^1 = -Slrlojfixiinlh - nlh] 

Ri = -Srluj/ixilnlh - nlh] 
(4.216) 

/" ^ r^.^ T. /7-̂ 9 r^9xi / ? ( m ) s i n ms i , 
J 2 •• -^ m"^ m"^ 
0 

f f^ r ^ . ^ x ^ / : r ^ 9 r ^ 9 N l / ^ ( m ) S l U m s ' i , 

J2 = y - [2i^oXi - m{K', - Xo')] '^2 ^2 dm 

where: 
cTi is the conductivity of a surrounding medium; 
rii and 77,2 are number of turns per unit of every coil length; 
si = l/2ri and s[ = b/2ri. 
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Figure 4.43. An induction probe with two transmitter-receiver coils. 

In a medium with a cyhndrical interface between the borehole and the formation we 
have: 

^ - ^1 - 8/r?a?a;/i(x2 - Xi) [nll[ - 40,] 

R = Ri- SrlalLjfi{x2 - Xi) [nll[ - np!,] 

where: 

(4.217) 

2.-, Ii{vm) sin^77152 
dm 

Il{vm) sin^ 77152 
d7n 

I[ = j'^[2K,K,-m{Kl-Kl)\ 
0 
oo 

r, = j^[2K.K.-miKl-Kl)] ^^ ^^ 
0 

52 = l/2ai s'2 = b/2ai 

Correspondingly, the expression for the apparent conductivity is: 

/( (n2Vl2l'2 

(Ji \ai J nili-np2 f^A II 

\nij h 
(4.218) 

= l + ( ^ - l 1 -^2 

where G\2 ^^^ ^22 ^^^ geometric factors of formation for every coil. The latter can be 
written in the form: 

a a = (JiG\^- (J2G2 
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TABLE 4.7 
Values of function Gl 

a/n = 2.0 

l/2ai 

02 

0.3 
0.4 

0.5 

0.6 
0.7 

0.8 
0.9 

1.0 
1.1 

1.2 

1.3 
1.4 

1.5 

1.6 

1.7 
1.8 

1.9 

2.0 
2.1 

^ 1 

0.5274 

0.5114 

0.5010 

0.4877 

0.4749 

0.4628 

0.4513 

0.4406 

0.4306 

0.4212 

0.4124 

0.4043 

0.3968 

0.3895 

0.3827 

0.3764 

0.3074 

0.3468 

0.3595 

0.3545 

a/n = 4.0 

l/2ai 

OlO 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.02 

1.05 

Gl 
0.7665 

0.7591 

0.7509 

0.7424 

0.7339 

0.7253 

0.7169 

0.7086 

0.7003 

0.6926 

0.6849 

0.6775 

0.6702 

0.6632 

0.6565 

0.6500 

0.6436 

0.6375 

0.6316 

0.6259 

a/n = 8.0 

l/2ai 

0.050 

0.075 

0.100 

0.125 

0.150 

0.175 

0.200 

0.225 

0.250 

0.275 

0.300 

0.326 

0.350 

0.375 

0.400 

0.425 

0.450 

0.475 

0.500 

0.525 

Gl 

0.8836 

0.8796 

0.8755 

0.8711 

0.8665 

0.8619 

0.8752 

0.8516 

0.8480 

0.8434 

0.8389 

0.8345 

0.8301 

0.8257 

0.8215 

0.8173 

0.8131 

0.8091 

0.8051 

0.8011 

/ 
0.03979 

0.08663 

0.1489 

0.2242 

0.3115 

0.4095 

0.5169 

0.6330 

0.7569 

0.8879 

1.026 

1.170 

1.319 

1.474 

1.634 

1.797 

1.968 

2.141 

2.319 

2.500 

where geometric factors of the borehole and formation are: 

G* - / .2/^* / ^ * 4.2/^* 

Gl = 1 - ^_^2 or G, - i _ ^ 2 

and: 

G* 4-2/^* 
y^i^ _ 12 ^ ^ 2 2 

^2 

/ r \ 1/2 

rii \Ii 

Results of calculation of the geometric factor of the borehole, G^, as well as integrals of 
types / i , /2, /( , I2, {I) are presented in Table 4.7. 

In conclusion of this section let us notice that applying the approximate theory, taking 
into account the skin effect in the formation, these results can be used beyond the range 
of small parameters. 
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1 ^ 

M 

^0^ 

Figure 4.44. The vertical magnetic dipole displaced from the borehole axis. 

4.11. Radial Responses of Two-coil Induction Probes Displaced 
with Respect to the Borehole Axis 

Until now we have considered radial and frequency responses of two-coil induction probes 
located on the borehole axis. However, under real conditions if special centering devices 
are not used induction probes are usually displaced with respect to the axis, and for 
this reason it is essential to investigate the influence of this displacement on the radial 
responses of induction probes. 

Let us introduce a Cartesian and cylindrical system of coordinates with common origin 
located at the borehole axis which coincides with the z-axis (Fig. 4.44). The radius of the 
borehole is a. Let us assume that the vertical magnetic dipole with moment M = Moĉ *̂ 
is placed on the x-axis at distance ro from the origin. Unlike the previous model, when the 
vertical dipole is located on the borehole axis, in this case the primary vortex electrical field 
intersects a surface between the borehole and the formation. Correspondingly, electrical 
changes arise at this interface, and they provide continuity of the normal component of the 
current density. Therefore, current lines do not have a circular shape, located in horizontal 
planes, and possess a much more complicated form. For this reason, the quasistationary 
electromagnetic field in a cylindrical system of coordinates has all components: E^-^ E^f,, 
Ez, Hr, H(f)^ Hz which are related by Maxwell's equations: 

c u r l ^ = —luJfiH 

curl H = GE 

div JE = 0 

d i v i / = 0 
(4.219) 
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Let us present the electromagnetic field outside and inside the borehole as a sum of two 
terms: 

E = £;(!) + £;(2) jj ^ jjw ^ jji2) 

and each of them can be described with the help of the vertical component of the vector 
potential of, respectively, the magnetic and electrical type only: 

^(^^ = -iujfi curl A* H'^^^ = curl A (4.220) 

where A* = (0,0,^*), A = (0,0,^). Then, in accord with eq. 4.219, we have: 

iiT^̂ ) = A;2 A * - g r a d t / * 

^(2) ^ -icjinA - grad U k'^ = \GIIUJ 
(4.221) 

Choosing gauge conditions: 

W = - div A* and aU = - div A (4.222) 

we obtain equations for both potentials: 

V'A* + P A * = 0 and V ' A + A:'A = 0 

Taking into account eqs. 4.220-4.221 we will derive the following expressions for field 
components of magnetic and electrical type in a cylindrical system of coordinates: 

r d(j) ^ drdz 

Ml) = 0 F(i) = k^A* + "̂  
dz"^ 

^ f = - ^ < = - 1 ^ (4-224) 
^ ar d(f)dz ^ or 

As follows from these equations vertical components of electrical and magnetic fields 
are absent in oscillations of magnetic and electrical types, respectively: 

^(1) = 0 Hf^ = 0 (4.225) 
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In accord with eqs. 4.223 and 4.224, electrical and magnetic fields at any point are related 
with potentials A* and A by formulae: 

. IdA' I d^A 
hr = —lUJ/jL--—- -\ r dc/) a drdz 

. IdA* 1 9 M 
r dr ar dcjydz 

(4.226) 

1 d^A* dA 
r d(j)dz dr 

1 / 2 . d'^A 

d(t)dz r dr 

Hs = 

H, = k'A* + 
dz'^ 

From continuity of tangential components of the field at boundary r = a we will obtain 
conditions for vector-potentials A* and A: 

CTi \ad(f)dz ^ dr J a^ \ad(pdz ^ dr / ('4 2271 

1 2 A* 1 I 2 yl* 2 

l ^ ^ " a ^ " 2 2 + ^ g ^ 
Id^Al _ ^dA^ _ 1 5 M | _ ^dA2 
ad4>dz ^ dr ad(f)dz ^ dr 

where cri, AJ, Ai and cr2, ^2 ' ^2 are conductivities and potentials of the borehole and the 
formation, respectively. 

As was shown in Chapter 3, the electromagnetic field of the vertical magnetic dipole 
in a uniform medium can be described with the aid of the vertical component of the 
potential of the magnetic type only: 

M 2 e-^^1^1 

47r TT R^ 

00 

= ^ - [Ko{XiR)cosXzdX (4.228) 
An TT J 

where Ri = \R-ro\, ro = (ro,0,0), Ai = {X^-\-k^y^'^, R = (r^-hr2-2rrocos0)^/2. i i and 
(r, (j)) are radius vector and cylindrical coordinates of an observation point, respectively. 

Let us present the primary potential AQ as a sum of angular harmonics. Making use of 
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the addition theorem: 
CXD 

KoiXiR) = Io{Xiro)Ko{Xir) + 2 ̂  4(Airo)i^n(Air) cos ncf) 

oo 

= 2 2 ^ In{Xiro)Kn{Xir) COSncp if r > TQ 

we 

A* 

have: 

oo 

-E' 
n=0 

A* 

n= 

= 

-0 

M 
oo 

E' 
c 

COS ncj) 1 

0 

(Airo)/Cn(Air) cos Xz dX (4.229) 

where superscript ' " " means that the null harmonic is multiplied by coefficient 1/2. 
Every angular harmonic AQ^ of the primary field generates a corresponding harmonic 

v4*, describing the secondary field of the magnetic type. Taking into account the condition 
at infinity expressions for potentials A^ and A2 inside and outside the borehole are: 

00 ^ 

Al = Ao-\- — 2_j cos710 / CnIn{Xir)Kn{Xir) dX 

M ^ / 7 (4-230) 
Al= —ry COs(n0) / dnKn{X2r) COS Xz dX 

^ n J 
n=0 0 

In a uniform medium the magnetic dipole potential of the electrical type, ^o, is equal 
to zero. For this reason for the determination of this potential, A, we will make use of 
boundary conditions 4.227. 

It is not difficult to see that if potentials of electrical type are presented in the form: 

00 00 

Ax — —^y^ sin(n(/)) / anIn{Xir) sin Xz dX 
n=0 Q 

00 °° 

^2 = ^2^ sin(n(/)) / 6n/^n(A2r)sinAzdA 

(4.231) 

The unknown coefficients a^, 6 ,̂ c^, and dn are defined from a linear system of four 
equations: 

—anIn{Xia) = —bnKn{X2a) 
Gi G2 

Ai A:̂  k'^ 
naJn{Xia) + —Ai4(Airo)A^^(Aia) -XiCnIn{Xia) 

oxa di ^ ai ^^232) 
= nbnKn{X2a) + — X2dnK!^{X2a) 

CF2Ci O2 
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A? [In{Xiro)Kn{Xia) + Cnlni^ld)] = \ldnKn{\20) 

anXJniMa) nCn/n(Aia) nIn{Xiro)KniXia) = bn\2K'^{X2o) ndnKn{\2o) 

The electromotive force induced in a measuring coil of the probe is defined by the vertical 
component of magnetic field, Hz, which in accord with eq. 4.226 is expressed through the 
potential of the magnetic type, A\, only. At the point with cyhndrical coordinates r = ro, 
0 = 0 and z = L for the magnetic field we have: 

M 
Hz = Hoz - ^ AiCn/n(Airo) cos Xz dz (4.233a) 

n=0 

or 

9 oo 7 
hz = hoz a^ y . / ^ i^n^n ( ^ 1 — ) cos ma dm 

^ n=0 i 
(4.233b) 

where: 

hz = Hz/Hoz 

a = L/a m 

H^z - M/2ITL^ hoz = e-'^^{l + ikL) 

= Xa Cn = Ac /A 

Ac -{- (1 
\ 2 ' ^ l " l 2 2 

• s) — : ^ m n m 

In{mi) 

m i 
In{m) m2Kn{m2) 

- (^^?) 
[Kn{mi) m2Kn{m2) ] 

(4.234) 

A = ( l - ^ ) 

S = G2/(Tl 

2 ^ 1 ^ 

TTlo 
-m.^n^ -\- TTii 

/ ; ( m ) mi /C;(m2) 
— 5 

4 ( m ) m2Kn{m2) 
-^n(^l) ^ 1 K ( ^ 2 ) 
Kn{mi) m2Kn{m2) 

(4.235) 

Let us notice that current lines corresponding to oscillations of the magnetic type are 
located in horizontal planes perpendicular to the borehole axis. Current lines of zero 
harmonic of the secondary field are circles with centers located on the borehole axis, and 
therefore they do not intersect the boundary between the borehole and the formation. 
Current lines of oscillations of the electrical type have a much more complicated form 

(2) 

but their distribution has such a character that the field component Hz is equal to zero 
everywhere. 

Thus, in accord with eq. 4.233a field Hz consists of two terms, namely, field HQZ in a 
uniform medium with conductivity of the borehole, and the secondary field presented by 
the sum of angular harmonics, each of which is expressed through an improper integral. 
It is reasonable to notice that the integrand of zero harmonic differs from a corresponding 
function when the vertical magnetic dipole is located on the borehole axis by multiplier 
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TABLE 4.8 
Values of function Gl 

Qh^x 10^ 

0 

0.2 

0.5 

0.125 

0.111 

0.110 

0.107 

0.025 

0.435 

0.433 

0.421 

0.05 

1.68 

1.67 

1.62 

0.1 

6.19 

6.15 

5.95 

0.2 

20.7 

20.5 

19.8 

0.4 

52.4 

52.0 

49.8 

0.8 

41.8 

42.2 

44.2 

1.6 

-4.19 

-4.66 

-6.43 

In hi X 10^ 

0 

0.2 

0.5 

0.125 

-0.200 

-0.200 

-0.200 

0.025 

-1.57 

-1.57 

-1.57 

0.05 

-12.2 

-12.2 

-12.1 

0.1 

-915 

-913 

-902 

0.2 

636 

633 

619 

0.4 

3680 

3650 

3500 

0.8 

-12110 

-12000 

-11400 

1.6 

-9510 

-9560 

-9900 

Io{mro/a). In the case as the induction probe is not displaced with respect to the borehole 
axis (ro = 0) amplitudes of angular harmonics in eq. 4.233 are equal to zero for n > 0, 
and we obtain the known expression for the vertical component of the magnetic field. 

For illustration values of quadrature and inphase components of hz for various displace-
ments € = To/a, as the two-coil induction probe is located parallel to the borehole axis 
are given in Table 4.8. The ratio of conductivities (J2/(Ji = 1/16. 

As follows from numerical analysis, in this case five angular harmonics describe the 
field with high accuracy for all considered values of a/hi where hi is the skin depth in 
the borehole. It is appropriate to notice that the infiuence of displacement on inphase 
and quadrature component of the field increases with an increase of frequency. At the 
same time within this range of frequencies the inphase component is less sensitive to 
displacement than is the quadrature component. For example, even if a/hi = 1.6 we 
have: lnhl{e = 0.5)/In/i|(£ = 0) - 1.04, while Qh^ie = 0.5)/Q/i^(& = 0) = 1.51. It 
is explained by the fact that within a wide range of frequencies the density of charges 
arising at the interface between the borehole and the formation is shifted in phase by 90° 
with respect to the current in the transmitter. Correspondingly, we can expect that the 
quadrature component of the field for a two-coil probe will be mainly subjected to the 
influence of eccentricity. 

Now let us investigate in detail the low-frequency part of the spectrum when the skin 
depth in a more conductive medium is much greater than the length, L, of the two-coil 
induction probe: 

\kL\ <Cl L/a>l (4.236) 

Expanding integrand c„ in eq. 4.233b in a series by powers of klo?/m? and discarding all 
terms except the first one we obtain: 

Cn = - ( 1 - s)^-^In{ms) 
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{l-sW^, 
Pn{m) Kim) - ^ (KIM) - Kirn) + ^±-JlK^Kr,_, ) - nKl{m) i)-ni^^(m)]| 

(4.237) 

where 

Pnim) = m 
/ ;(m)_^i^;(m) 
Inim) Knim)] 

Substituting eq. 4.237 into eq. 4.234 we have: 

Q hz = Gi(a, e, s) + G;(a, e, s) 

where: 

G2 = — / An{m) COS ma dm 

and 

Glia, €, s) + G2ia, s,s) = 1 

j Inime) [ 

(4.238) 

(4.239) 

(4.240) 

(4.241) 

Inasmuch as functions Gj and G^ depend on geometric parameters and as well as on the 
ratio of conductivities (J2 and ai they are not in essence geometric factors. Function Gl 
for various values of a, £ and s is given in Table 4.9. As is seen from this table the 
eccentricity, e, and ratio of conductivities, s, make an influence on function Gl regardless 
of the length of the two-coil induction probe. This influence is specially essential for 
relatively short probes and small conductivity of the formation. The length of the probe 
is usually several times larger than the borehole radius, a, and for this reason analysis of 
the behavior of function G\ for such probes is of great practical interest. 

As was illustrated above the value of integrals J^ Anim) cosm.a dm, as a -^ cxo, is 
defined by behavior of functions A^im.) within the initial part of integration (m —> 0). In 
accord with eq. 4.240 for the zero-harmonic we have: 

777-

Ao{m) = - [2Ko{m)K,{m) - m{Kl - KD] I^{me) 

Inasmuch as: 
Io{m) 1 + 

2 2 

Kr)im.) c^ — m771 m771 H—— 
4 4 

_ _ . . 1 m. m^ as 777 
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then 

Ao{m) :^ Ko{m) - 00(m) 

where 

(4.242) 

00 (m) 1 + 2 
& • 

——mm 
4 

By analogy, for the first harmonic we obtain, as m 

2 2 + 35 - 5^ 

0: 

•^•<™>-i(?r(r + s (1 + 5)2 

Making use of the Sommerfeld integral 

m ^ l n m (4.243) 

oo 

/ 
Ko{m) cos ma dm n 1 

2(l + c . 2 ) i / 2 " ^ ( , l - ^ J ^ f ^ » l 

and integrating by parts f^ A{m) cos m a dm, we will obtain an asymptotic presentation 
for functions GJQ and Gl^ corresponding to zero and the first harmonics as a ^ oo: 

and 

^ro\2 (2 + 3 5 - ^ 2 ) 1 '—©• ( 1 + 5 ) 2 

(4.244) 

(4.245) 

We can show that functions An{m.) for higher order of harmonics (n > 1) at the initial 
part of the integration have the form Tn + M^m^, where Tn and M^ are constants. Cor-
respondingly, functions Gl^{a^e^ s) with an increase of the probe length decrease more 
rapidly than 1/^2. Thus, adding eqs. 4.244 and 4.245 we obtain the leading term of the 
asymptotical expression of Gl: 

G*{a,e, s) 1 + 
rp^^s - l){2s + I) 

(5 + 1)2 (?) (4.246) 

Comparison with results of calculations of function Gl{a^ e^ 5), given in Table 4.9, shows 
that the error of determination of this function by eq. 4.246 does not exceed 5% if the 
probe length is at least six times greater than the borehole radius even for e = 0.75. 
When the two-coil induction probe is located on the borehole axis, current lines do not 
intersect the surface of the borehole and they have a circular form. Correspondingly, we 
obtain the known expression for function G: 

G{a) \i a ^ 1 and ro = 0 
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If the borehole is more conductive than the formation, electrical charges arising at the 
boundary r = a create a field which decreases the effect caused by the primary vortex 
electrical field. Respectively, in accord with eq. 4.246 function Gl turns out to be smaller 
than Gl. In the limited case, as 5 = cr2/(7i ^ ' 0 we have for function Gl{a, e, s): 

Gl{a,e)^^{l-s') (4.247) 

In the case where the formation is more conductive than the borehole at those points of 
the interface where the primary electrical field is directed into external or internal areas, 
negative or positive charges arise correspondingly, and their electrical field results in an 
increase of the current density within the borehole. For this reason function Gl{a,e,s) 
becomes greater than Gi{a). In particular if 5 ̂  1 we have: 

G ^ - ^ ( 1 + 2^2) (4.248) 

For intermediate values of s: 0 < s < oc the coeflScient in front of e'^ gradually increases 
from —1 to 2, and it is equal to zero when s == 1 (a uniform medium). In real conditions 
the maximal value of £ does not exceed 0.70-0.75 when the induction probe touches the 
borehole surface. In accord with eq. 4.246 the second term characterizing the influence 
of the probe displacement, is directly proportional to e'^ and, in particular, for a more 
conductive borehole function Gl{a,e,s) can decrease almost two times (a ^ 1). This 
consideration also shows that relatively small displacements of the probe leads to an 
insignificant change of the geometric factor. 

Within a certain range of frequencies and resistivities we can neglect the interaction 
between currents in the borehole, while in the formation the skin effect manifests itself 
in the same manner as in a uniform medium but the current density in the borehole and 
surface charges are directly proportional to frequency. For these conditions the field can 
be presented in the form: 

h, ^ ^ ( 1 - s)G%a,e,s) + ho,{k2L) (4.249) 

Calculations based on data given in Table 4.8 demonstrate the validity of this relation. 
Therefore, the inphase component of the field as well as the term of the quadrature compo-
nent proportional to uj^^^ are in this range of frequencies defined only by the conductivity 
of the formation and, correspondingly, do not depend on the position of the induction 
probe with respect to the borehole axis regardless of its length. 

4.12. The Influence of Magnetic Permeability and Dielectric 
Constant in Induction Logging 

In principal the quasistationary electromagnetic fields applied in induction logging de-
pend on conductivity and magnetic permeability. For this reason an investigation of the 
influence of the magnetic permeability can be of great practical interest, specially for two 
cases: 
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• A borehole solution contains magnetic elements which are used to increase the weight 
of this solution. 

• The formation has a higher magnetic permeability. For example, such conditions 
arise when induction logging is applied in mining geophysics. 

Results of analysis of the influence of the magnetic permeabihty described in this section 
are based on results of calculations of the magnetic field on the borehole, when an invasion 
zone is absent. 

Let us first consider some features of the influence of /x in a uniform medium. 
As was shown in Chapter 2 the electromagnetic field of the magnetic dipole can be 

presented as: 

£ , = | f ^ e ' * « ( l - i f c f i ) s i n ^ 

Hfi = ^ ^ e ' * ^ ( l - ikR) cos 0 (4.250) 

He = - ^ e ' * ^ ( l - ikR - k'^R^) sinO 
47r it'' 

where R and 6 are spherical coordinates of a point; k is wave number: 

k = (CTMa'/2)i/2(i + i) 

In a nonconducting magnetic medium instead of eq. 4.250 we have: 

^ ° ^ = 4 ^ ' ' " ^ ^ ° ' * = 4 W ? ^ ' ° ' ^ ^ " ^ = 4 ^ ' ' " ^ (^-2^^) 

Thus in a uniform non-conducting medium the magnetic field does not depend on /i 
while the electric field related with the electromotive force as 

(^ = i Edl = / 

is directly proportional to the magnetic permeability. 
If a medium is conductive, magnetic permeabihty, ^, makes an influence on the magnetic 

field inasmuch as intensity of the skin eff'ect is characterized by parameter p = {GJIUJY^'^. 

With an increase of the magnetic permeability, the interaction between currents in accord 
with Faraday's law increases and curves of distribution of induced currents, shown in 
Figs. 2.4-2.5 for both quadrature and inphase components, are shifted to the range of 
lower frequencies. 

In accord with eq. 4.250, when the parameter p is small we have for components of the 
magnetic field: 

2 ~ 
2 .̂ „ „ 2 

QH,= p'Ho, = ^ ^ i ^ o . (4.252) 

In H, = {1- ^p^)Ho, = Ho, - -p'Ho, (4.253) 



301 

and for vertical component of vector of the magnetic induction B {B — fJ^H), we obtain: 

QB, = - ^ Hoz In B, = B^, - -p^Bo, (4.254) 

where L is the probe length. Functions HQZ and BQZ are vertical components of the 
magnetic field and magnetic induction in a nonconducting medium. For this reason the 
electromotive force generated by the quadrature component of induced currents is directly 
proportional to the square of magnetic permeability while the inphase component of the 
electromotive force changes as a linear function of fi. For very small values of p we can 
neglect the second term in eq. 4.253 and therefore InBz = BQZ = I^HQZ- In other words, 
in this approximation the inphase component of the electromotive force is a function of 
/JL only, and it does not practically depend on conductivity. 

It is obvious tha t for given frequency, conductivity, and magnetic permeability this 
behavior takes place for shorter probes with higher accuracy. Correspondingly, in order 
to reduce the influence of conductivity, it is appropriate to apply relatively short induction 
probes, in particular, single-coil arrays. However, in this case we can expect an increase of 
the influence of borehole radius, caverns, and eccentricity. As is well known, the relation 
between magnetic permeability and susceptibility in Gauss system is: 

M = 1 + Xo Xo = 47r X 10-^x 

Let us assume tha t the magnetic susceptibility of a formation is small and Xo <C 1 • Then, 
substituting expression for ^ into eq. 4.254 we obtain: 

r 2 

2 
In Bz - Hoz + XoHoz " 3 ( 1 + Xo)Hoz 

'cja{l-\-Xo)L'^ 
3/2 

H.. + XoHo.-l{l + lxo)Ho.{^Lf' 

The primary field, HQZ^ is usually compensated, and correspondingly the secondary in-
phase component: 

XoHoz - - -^— Hoz 

is measured. 
From comparison of eqs. 4.252-4.254 it is seen that the quadrature component of the 

electromotive force is less influenced by the magnetic susceptibility than the inphase 
component. For this reason at the range of very small parameters, when the susceptibility 
is relatively small, the conductivity of a formation is defined by the quadrature component 
of the electromotive force while measurements of the inphase component allow us to 
determine the magnetic susceptibility. If parameter p — ((j/ic<;/2)^/^ is not small and 
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the value of Xo is comparable with unity, determination of conductivity and magnetic 
permeability is usually a sufficiently complicated procedure inasmuch as both quadrature 
and inphase components of the electromotive force are influenced by a and /i. It is clear 
that in measuring the amplitude of the secondary field the influence of the magnetic 
permeability increases. 

Now let us consider the case when a two-coil induction probe is located on the borehole 
axis. 

As was shown in section 4.3, the expression for the vertical component of the magnetic 
field on the axis of the borehole has the form: 

hz = hoz 
L f 
— / XlCiCosXLdX (4.255) 

0 

where hz is the magnetic field expressed in units of the primary field; /IQZ is the magnetic 
field in a uniform medium with conductivity and magnetic permeability of the borehole. 

Function Ci, defined from boundary conditions at interface r = a, is: 

^ ^ /xiA2i^o(A2a)/^i(AiQ) - fi2XiKo{Xia)Ki{X2a) 
/jiiX2Ko{X2a)Ii{Xia) + ^2Ai/o(Aia)Ki(A2a) 

where fii and /I2 are magnetic permeability of the borehole and the formation; a is the 
borehole radius; L is the probe length and: 

Ai = (A^iXi)^/' X2 = {XliX2y^' 
Xl = (TifliUJ X2 = Cr2/i2^ 

Methodics of calculation of this integral was described above. 
We will consider the range of small parameters when the quadrature component of the 

field is directly proportional to frequency. Then we can write: 

2 r 2 

Qhz = ^^^[a,G,{a,s) + c72G2{a,s)] (4.257) 

Functions Gi(a, s) and G2(a, s) depend on both geometric factor a = L/a\ and the ratio 
of magnetic permeabilities, s = 112/^^1-

Unlike a medium which has a uniform magnetic permeabihty, in this case redistribution 
of the primary magnetic flux is a function of /i, and at the range of small parameters a den-
sity of induced currents is directly proportional to the flux of this field and a conductivity 
at a given point. 

Analytical expressions for functions Gi{a^ s) and (^2(0;, s) can be obtained in the same 
manner as those for geometric factors Gi{a) and G2{ot), namely expanding the right-
hand side of eq. 4.255 in a series by powers of uj and defining a coeflicient which is directly 
proportional to frequency. Results of calculations of these functions are presented in 
Table 4.10 and Fig. 4.45. 
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TABLE 4.10 
Values of func t ions Gi{a, 5), G2{a,s) 

Gi{a,s) 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

0.99 

0.1160 

0.0675 

0.0436 

0.0302 

0.0220 

0.0168 

0.0131 

0.0106 

0.90 

0.1340 

0.0805 

0.0525 

0.0366 

0.0270 

0.0204 

0.0161 

0.0129 

0.80 

0.1610 

0.0099 

0.0662 

0.0466 

0.0345 

0.0262 

0.0206 

0.0168 

0.70 

0.1990 

0.1260 

0.0860 

0.0615 

0.0454 

0.0350 

0.0275 

0.0222 

0.60 

0.2500 

0.1670 

0.1160 

0.0837 

0.0627 

0.0484 

0.0382 

0.0307 

0.50 

0.0326 

0.2280 

0.1640 

0.1210 

0.0916 

0.0710 

0.0568 

0.0455 

G2{a,s) 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

0.99 

0.870 

0.930 

0.944 

0.950 

0.955 

0.956 

0.954 

0.953 

0.90 

0.973 

1.023 

1.045 

1.054 

1.071 

1.068 

1.056 

1.056 

0.80 

1.098 

1.160 

1.186 

1.197 

1.200 

1.200 

1.197 

1.192 

0.70 

1.259 

1.337 

1.370 

1.383 

1.386 

1.384 

1.379 

1.374 

0.60 

1.476 

1.574 

1.619 

1.632 

1.639 

1.636 

1.629 

1.621 

0.50 

1.777 

1.910 

1.972 

1.996 

2.000 

1.000 

1.986 

1.973 

TABLE 4.11 
Values of func t ion F{a, 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

0.90 

0.986 

0.998 

0.988 

0.980 

0.977 

0.973 

0.967 

0.964 

s) 

0.90 

1.107 

1.104 

1.098 

1.091 

1.098 

1.088 

1.072 

1.069 

0.80 

1.259 

1.260 

1.252 

1.244 

1.234 

1.226 

1.218 

1.209 

0.70 

1.458 

1.463 

1.456 

1.445 

1.431 

1.419 

1.407 

1.396 

0.60 

1.726 

1.741 

1.735 

1.716 

1.702 

1.684 

1.667 

1.652 

0.50 

2.103 

2.138 

2.136 

2.116 

2.092 

2.071 

2.043 

1.019 

0.10 

0.985 

0.982 

0.976 

0.972 

0.966 

0.962 

0.958 

0.952 
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Figure 4.45. (a) Curves of functions G\(OL,S), G^iot.s); (b) curves of functions G'i(a, s), 
G2(pi,s). 
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TABLE 4.12 
Values of function G^(a, s) 

3.0 
4.0 

5.0 
6.0 

7.0 
8.0 

9.0 

10.0 

0.99 

0.1180 

0.0680 

0.0442 

0.0308 

0.0225 

0.0172 

0.0135 

0.0110 

0.90 

0.1210 

0.0728 

0.0478 

0.0335 

0.0246 

0.0187 

0.0151 

0.0121 

0.80 

0.1280 

0.0790 

0.0529 

0.0375 

0.0280 

0.0214 

0.0169 

0.0139 

0.70 

0.1370 

0.0862 

0.0590 

0.0426 

0.0318 

0.0247 

0.0195 

0.0159 

0.60 

0.1450 

0.0960 

0.0668 

0.0488 

0.0368 

0.0287 

0.0228 

0.0186 

0.50 

0.1550 

0.1070 

0.0768 

0.0572 

0.0438 

0.0342 

0.0278 

0.0224 

It is appropriate to notice that a sum of these functions is not generally equal to unity, 
since the magnetic permeabilities of borehole and formation are not equal to each other. 
As an example, function: 

F(a , s) = Gi{a, s) + G2(a, s) 

is presented in Table 4.11, and it does not practically depend on the probe length, and it 
turns out to be in essence of a function of the ratio of magnetic permeabilities, s, only. 

In accord with eq. 4.257 in a medium which has a uniform conductivity we have: 

Q/io. = ^ a . F (4.258) 

Inasmuch as function F is not equal to unit it is reasonable to normalize functions Gi(a, s) 
and G2{c^, s) in such a way that their sum would be equal to unit. For this purpose we 
will divide these functions by F. Then we obtain: 

Qh^= M 2 ^ j^^^n ^ ^^^„j (4 259) 

where: 

G^ = GJF Gl = GJF (4.260) 

Values of normalized functions G^{a, s) and GJ(a, s) are given in Tables 4.12 and 4.13. 
As follows from this table, as well as from physical point of view, with an increase of 

magnetic permeability of the borehole the magnetic field within the borehole as well as 
function G^ increase. 

It is important to notice that in the case when magnetic permeabilities of the borehole 
and the formation are different function Gi{a, s) for large values of a behaves in the same 
manner as geometrical factor Gi(a), namely: 

G5^(a, s) -^ k{s)/a^ if ĉ  > 1 (4.261) 
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TABLE 4.13 
Values of function C^io:, s) 
^ ^ \ ^ s 

3.00 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

TABLE 4.14 

0.99 

0.882 

0.932 

0.956 

0.969 

0.977 

0.983 

0.986 

0.989 

Values of function k{s) 

s 

k{s) 

1 

LO 

0.90 

0.879 

0.927 

0.952 

0.966 

0.975 

0.981 

0.985 

0.988 

0.9 

1.2 

0.80 

0.872 

0.921 

0.947 

0.962 

0.972 

0.979 

0.983 

0.986 

0.8 

1.4 

0.70 

0.863 

0.914 

0.941 

0.957 

0.968 

0.975 

0.980 

0.984 

0.7 

1.6 

0.60 

0.855 

0.904 

0.933 

0.951 

0.963 

0.971 

0.970 

0.981 

0.6 

1.85 

0.50 

0.845 

0.893 

0.923 

0.943 

0.956 

0.966 

0.972 

0.978 

0.5 

2.24 

Values of A:(s) are given in Table 4.14. 
Calculations show that asymptotical behavior of function G^ commences practically 

from the same values of a regardless of the ratio of magnetic permeabilities s. 
With an increase of the probe length the influence of magnetic permeability on function 

Gi increases until a certain hmit. Values of rjs = G^{s,a)/Gi{0.99,a) are given in 
Table 4.15. 

In Chapter 7 we will consider in detail multi-coil induction probes which essentially allow 
a decrease on influence on induced currents in the borehole as well as in the invasion zone. 
At that time questions related to magnetic permeabihty will not be investigated more. 
For this reason let us here briefly demonstrate that multi-coil probes can be apphed in 
order to reduce the influence of induced currents in a conductive and magnetic medium 
of the borehole (Fig. 4.46). As the first example we will consider a three-coil induction 
probe consisting of one generator and two measuring coils (Fig. 4.46a). The distance 
between the later is significantly less than that between the transmitter and receiver coils. 
Moments of receiver coils are chosen in such a way that the electromotive force in a free 
space, (OQ , is equal to zero. 

In a uniform medium with conductivity (72, according to eq. 4.258, for a two-coil probe 
we have: 

Cr2/i2<^^ 
2 

^0 = ^ 4iF{s) (4.262) 

where <̂ oi is the electromotive force in the receiver when the probe is located in a uniform 
nonconducting medium with magnetic permeability /ii; F{s) is the sum of functions Gi 
and G2-
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Figure 4.46. Three- and four-coil induction probes. 

TABLE 4.15 
Values of function r]s 

^0.9 

^0.8 

^0.7 

^0.6 

^0.5 

3.0 

1.02 

1.08 

1.16 

1.23 

1.31 

= Gy(^, 

4.0 

1.07 

1.16 

1.27 

1.41 

1.57 

a)/G?(0. 
5.0 

1.08 

1.20 

1.33 

1.51 

1.73 

99, a) 

6.0 

1.09 

1.22 

1.38 

1.59 

1.86 

7.0 

1.09 

1.24 

1.42 

1.64 

1.95 

8.0 

1.09 

1.24 

1.43 

1.67 

1.99 

9.0 

1.12 

1.25 

1.44 

1.69 

2.06 

10.0 

1.10 

1.26 

1.45 

1.69 

2.04 

Therefore, for the electromotive force induced in two receivers of a three-coil probe we 
obtain: 

S'o M2'^<^01 (L?Fi - LIF2) ^2 -
u^2L\F{s) 

m ^oY^(i-n^2 (4.263) 

where t = L2/L1 and F{s) = Fi{s) = ^2(5). Correspondingly, at the borehole axis the 
electromotive force is: 

^ 
li2(jjL\F{s) 

W^^-^M^O (4.264) 

where Ga and Ga are apparent conductivities for a two-coil induction probe with lengths 
Li and L2, respectively. For this reason an expression for apparent conductivity defined 
with the three-coil probe can be written as: 

CTl 1 .(1) 

(T2 l-f^ \ CF2 <T2 
U-e'^L, 
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TABLE 4.16 
Values of function In ht 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

0.9 

0.0728 

0.100 

0.114 

0.120 

0.122 

0.123 

0.123 

0.122 

0.8 

0.159 

0.222 

0.255 

0.271 

0.278 

0.280 

0.280 

0.279 

0.7 

0.263 

0.374 

0.435 

0.466 

0.480 

0.485 

0.485 

0.484 

0.6 

0.391 

0.568 

0.671 

0.726 

0.753 

0.765 

0.768 

0.766 

0.5 

0.550 

0.822 

0.991 

1.088 

1.139 

1.164 

1.173 

1.172 

or 

CTa 1 

CT2 1 - ^ 2 
{(N-l) [G?(ai, 5) - t'G^a,, s)] + (1 - t')} (4.265) 

where Â  — ai/(72. 
If lengths of probes, Li and L2, are significantly greater than the borehole radius 

{a > 1) function Gi{a) tends to k{s)/a^ and the first term at the right-hand side of 
eq. 4.265: 

defining the signal caused by currents in a borehole, tends to zero. 
Calculations of the quadrature component of the field and correspondingly function 

(^a 1(^2, based on the exact solution, confirm that this type of induction probe can be 
efl^ciently used at the range of small parameters {L/h2 < 0.2 -^ 0.3). 

In accord with eq. 4.263, a coefficient of the three-coil probe is a function of parameter 
s, in particular, of magnetic permeability of the borehole. For this reason in order to 
calculate the apparent conductivity, a a, it is necessary to define parameter s. It can 
be done by measuring the inphase component of the field, since within a wide range of 
frequencies and conductivities this component practically depends on parameter s only. 
Values of the inphase component of the magnetic field expressed in units of the primary 
field in a free space for a two-coil induction probe with various lengths, are given in 
Table 4.16. 

We assume that, for most cases which are of great practical interest in induction logging, 
data presented in this table coincide with the magnetic field of a direct current. Therefore, 
by measuring the inphase component with a three-coil induction probe or with a probe of 
two coils, parameter s and, respectively, coefficient of the probe are defined. This enables 
us to calculate, the apparent conductivity by making use of quadrature component data. 

As a second example of a probe which simultaneously measures conductivity and mag-
netic permeability and reduces the influence of induced currents in the borehole, we will 
consider a four-coil symmetrical probe (Fig. 4.46b). In accord with eq. 4.262 electromo-
tive force induced in receivers of this probe, when it is located in a uniformly conductive 
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medium, can be written as; 

where p — L2/L1 and c is the ratio of coil turns of the basic probe with length Li to those 
for the probe with length L2. 

Correspondingly, on the borehole axis we have: 

^0 = ^ < ) (^^a) _ ^ . ( . ) + _ ^ , ( 3 ) ) ^ ( , ) 

where (Ja\cFa\(Ja are apparent conductivities for two coil probes with lengths Li and 
L2 and (Li — L2)/2, respectively. 

For this reason an expression for the apparent conductivity of the four-coil induction 
probe is: 

p l-2p 

Here: 

Gî ) = GUa) - ^GUpa) + Y Z ^ G ? [ ( 1 - 2p)a] 

(4.267) 

G W = G",{a) - -G-,{pa) + ^ ^ G J [ ( 1 - 2p)a] 

a = Li/ai. Gi and G2 are functions given in Table 4.13. 
The parameters of the probe (a, p and c) which allow us to reduce the influence of the 

borehole are defined from condition: 

Gf)(a,p,c) = 0 (4.268) 

For the inphase component of electromotive force, expressed in units of that in a noncon-
ducting medium with magnetic permeability JJ, we have: 

Tn ^ 2r r^ 
— - = In /i,(a) - - In Kipa) + - — — In /i,[(l - 2p)a] (4.269) 
^m P I — Zp 

Unlike the three-coil induction probe (Fig. 4.46a), simultaneous measuring of a and //, 
with the four-coil probe has two shortcomings: 

• A four-coil probe includes relatively short two-coil probes, {Li/2 — L2/2) which are 
usually subjected more strongly to the influence of a borehole radius, and its change 
can lead to significant errors in the determination of s. 
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• With a change of position, z, the magnetic permeabiUty of the borehole can change, 
and correspondingly, the condition of compensation of currents in the borehole 
(eq. 4.268) becomes invalid. For large values of G\IG2 it can result in significant 
errors in the determination of the formation conductivity. 

Finally, it is appropriate to make the following comment. In accordance with equations 
4.258-4.259 and the analysis of functions G\(pi,s), ^2(0;, 5), the influence of the mag-
netic permeability on the quadrature component measured by the induction probe can be 
practically neglected if x < 10^-

In conclusion of this section we will briefly consider the influence of dielectric constant, 
e. In accord with Maxwell's equation: 

dD 
cmlH = aE-\--—- (4.270) 

the magnetic field is defined by current of conductivity {(TE{ and displacement currents 
{dD/dt). 

For a harmonic field: Ee~^^^, He~^^\ instead of eq. 4.270 we have: 

curl H = GE- IUJEE (4.271) 

since D = sE. 
The theory of induction logging is based on the assumption that displacement currents 

are much smaller than conductive ones, and correspondingly we can neglect the term eujE 
in eq. 4.271. In other words, it is assumed that : 

a - — < 1 (4.272) 
a 

Let us consider one numerical example. Let / = 3 x 10^ Hz, p = 200 ohm-m, and e = 20 ^o-
Then we have a ~ 0.007. Thus, even in a relatively resistive medium and making use of 
a sufficiently high frequency, parameter a is still very small. 

Now let us suppose that the two-coil probe is located in a uniform medium and product 
kL is less than unity. Then, making use of results obtained in Chapter 2 we have for the 
vertical component, hz'-

/I, ~ 1 + ̂ - + - ^ (4.273) 

where fc^ = \aiiko(\ — ia) . Whence: 

Q/^. - ^ In / . : - -%i^of"L' + ^ f ^ V (4.274) 

i.e. with a decrease of frequency at the range of small parameters both components of 
the field tend to those corresponding to the quasistationary field. 

For evaluation of the influence of the dielectric constant when the probe is located on 
the borehole axis we can make use of the approximate method taking into account the 
skin effect in the formation. Then, by analogy with the quasistationary case we have: 

h,^Ho.{k2L)+^^^^L^G,{a) (4.275) 

i.e. the influence of dielectric constant is practically the same as in a uniform medium. 



Chapter 5 

QUASISTATIONARY MAGNETIC FIELD OF A 
VERTICAL MAGNETIC DIPOLE IN A FORMATION 
WITH A FINITE THICKNESS 

In this chapter we will consider vertical responses of two-coil induction probes located 
arbitrarily with respect to interfaces between a bed and a surrounding medium. Special 
attention will be paid to the influence of frequency, ratio of conductivities and geometric 
factors such as formation thickness probe length and probe position. It is appropriate 
to notice that analyses performed in this chapter are used for investigation of vertical 
responses of multi-coil induction probes. 

5.1. Derivation of Formulae for the Vertical Component of the 
Magnetic Field of a Vertical Magnetic Dipole 

Suppose that there are two parallel interfaces which divide a space into three parts as 
shown in Fig. 5.1. The vertical magnetic dipole is placed at the origin of the cylindrical 
system of coordinates and its moment is oriented along the 2:-axis. 

Let us assume that the magnetic permeability of the medium is equal to An x 10~^ H/m. 
As is well known, the quasistationary field is described by Maxwell's equations: 

dB 
dt (5.1) 

curl if = crJ5; d iv l f = 0 

The current in the dipole changes with time as function e~̂ '̂ *, and therefore electrical 
and magnetic fields change in the same manner. For this reason Maxwell's equations for 
complex amplitudes of the field can be presented in the form: 

curl E = iujuH div £? == 0 , , 
(5.2) 

As follows from the third Maxwell equation: div£^ = 0, the electrical field can be ex-
pressed through a vector potential of the electrical type A*\ 

E = \ujii cmlA^ (5.3) 
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Figure 5.1. Various positions of the magnetic dipole with respect to interfaces. 

Applying the same approach as in Chapter 4 we find: 

i f = A:2A*-hgraddivA* 

and 

v^ A* -f P A * = 0 

(5.4) 

(5.5) 

where /ĉ  = iafiuj. 
Taking into account the axial symmetry and correspondingly the absence of surface 

electrical charges we will look for a solution with the help of the vertical component of 
the vector potential A* only: 

A* = (0,0, A : ) (5.6) 

It is clear that function A* in this case depends on two coordinates, r and z : 

A: = Alir,z) r={x' + yy/' 

Making use of eqs. 5.3-5.4 we obtain the following expressions for the field components: 

Hr ^ 
drdz 

H, = k^A* + 
5M! 

dA* 

H. = 0 
(5.7) 

Due to the continuity of tangential components of the field, boundary conditions for 
the vector potential at interfaces are: 

A* A* ^ iZ kz '( U 

Ai, = ^fc. - ^ = -g^ iiz = hi ik (5.8) 
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Near the origin of the coordinate system the field tends to that of a magnetic dipole in a 
uniform medium, and therefore for the vector potential we have: 

Al-^- — a s i ^ ^ O 
^ An R 

where M is the dipole moment and i? = (r^ + z'^Y^^. 
At infinity {R -^ oo) the field and correspondingly the vector potential vanish. 
Thus, in order to find the field it is necessary to solve equations: 

V'Al+kfAl = 0 

VM*,+fc2^L = 0 (5.9) 

V'Al,+klAl = 0 

and provide conditions 5.8 as well as a corresponding behavior of the field near the source 
and at infinity. Here A:i, k2^ and k^ are wave numbers of every part of the medium. 

First, let us consider particular solutions of equation: 

V ^ : + k'^Al = 0 

If the vector potential, A*^ depends on distance R only, the latter has the form: 

or 

Whence 

RA"^ = Ae'^^ + Be-'^^ 
We will assume in this chapter that the wave number k has a positive imaginary part, i.e. 
Re i/c < 0, here Re is the real part of the complex number, iA;. Function A\ tends to zero 
as /^ ^ oc, letting ^ = 0 and A = M/47r, for this reason we obtain the known expression 
for the vector potential of a magnetic dipole in a uniform medium: 

Now, let us find a solution of eq. 5.5 in cylindrical coordinates (r, z), since the field does 
not depend on coordinate 0. Correspondingly, eq. 5.5 can be written in the form: 

d'^Al IdAl d^Al . . * n 
or^ r or oz"^ 
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Letting A^ = U{r)V{z) and applying the method of separation of variables we obtain two 
normal differential equations: 

d^U IdU . , , ^ 
or"^ r or 

where A is the separation constant. 
The first equation is called the Bessel equation and its solutions are Bessel functions of 

the first and second kind: Jo(Ar) and yo(Ar): 

U{r)=AM\r) + BY^{\T) 

Function yo(Ar) tends to infinity as r ^ 0, and therefore it cannot describe a field. 
The second equation has a solution: 

Correspondingly, the general solution of eq. 5.5 can be presented in the form: 

X 

Alir, z) = j [N.e^^^'-"'^"'' + N^e-^>^'-''^"'^] MXr) dX (5.11) 

0 

We will choose the sign of radical: (A^ — /c^)^/^ in such a way that its real part is positive, 
i.e: 

Re(A2-A:2)i/2>0 (5.12) 

We will present the field in a medium where the dipole is located as a sum: 

where AH is the vector potential of the secondary field. 
As is known, the vector potential of the magnetic dipole can be expressed by a Som-

merfeld integral: 

0 

Now we are prepared to derive formulae for the vector potential for various positions 
of the dipole with respect to the interfaces. 

Let us introduce the following notations for different parts of a medium: 
(1) stands for the medium where the dipole is placed; 
(2) stands for the medium occupied by the bed; 
(3) stands for the medium located at the opposite side of the bed. 
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5.1.1. The Field of the Magnetic Dipole Located outside the Bed 

In accord with eq. 5.11 and taking into account the condition at infinity, expressions for 
the vector potential in every part of the medium can be written in the form (Fig. 5.1a): 

oo 

^l = ^f f^e^'''' + ^i«^ '̂'l M^'') dA iiz^ hi (5.15) 
0 
oo 

^lz = ^ I [D2e^"" + ^36^^"] Jo(Ar) dA ii h^ ^ z ^ /12 (5.16) 

0 

^lz = ^ f Ae-^^Vo(Ar) dA if z ^ /i2 (5.17) 

0 

where hi is the distance from the dipole to the nearest interface; h2 = hi -\- H; H is the 
bed thickness; Ai - (A^ - kfy/^, A2 - (A^ - A:i)V2. 

In accord with boundary conditions 5.8 we obtain a system of linear equations with 
respect to Di , D2, Ds, and D4: 

Ai 

~ Ae-^^^i + XiDie^'^' = A2L>2e '̂̂ ^ - \2D^e-^^^' 

X2D2e-^'^^ - X2Dse-^'^' = -XiD^e'^'^' 

(5.18) 

Solving this system we have: 

XKi2e^^'''' (1 - e-2^=«) , , 

^' - (A: + A,) (1 - Xf ,e -A.H) (5-20) 

2Ae~ '̂̂ ^~'̂ 2^ î 

^' = (Ai + A,) (1 - /^2^e-2A.H) (5-21) 

_ 4AiA2e-(^'-^^)^ 

^ ^ - (Ai + A^)^ (1 - /ff,e-2Ai^) (^-22) 

Substituting these expressions for the coefficients into eqs. 5.15-5.17 we have: 

^ 1 2 ( 1 - e-2^^^)e-^i(2ft i-z) 

^ " 47r y Ai [ 1 - Kf^e-^^^" 
Jo(Ar) dA (5.23) 
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oo 

0 

CXD 

4* 

Parameter 2: in eqs. 5.14-5.25 is the length of the two-coil induction probe. 
Usually in induction logging the vertical component of the magnetic field is measured 

on the borehole axis {r = 0). In accord with eqs. 5.23-5.25 we obtain equations for this 
component expressed in units of the primary field: 

00 

0 

/if = / 7 TTT 7 7 0 ^ ^ ^ dm if 1 ^ /? ^ 1 - a 5.27) 
J (mi + m2) (1 - K^^e-^"^^^) ^ "^ ^ ^ ^ 
0 
oo 

/
9«To3,y^ ^—(m2-mi )Q„-mi 

r ' I . . rJ . ^ dm if /? ^ 1 (5.28) 
(mi -h m2)2 (1 - X22e-2m2) ^ ^ ^ ^ 

0 

where m = Xz, h, = i / , / (2M/47rz^) , mi = (m^ - A:2z2)i/2^ ^^ = (m^ - A:2^2)i/2^ 
^12 — (m-i — mi ) / (m2 + mi ) , a = -^/'S:, /3 = hi/z; H is the bed thickness; hz is 
the vertical component of the magnetic field of the magnetic dipole in a uniform medium 
with conductivity (J\. 

The latter equation (eq. 5.28) corresponds to the case when the layer is located between 
the dipole and the observation point and, as it follows from this formula, the field does 
not depend on the position of the layer with respect to the probe coils. 

5.1.2. The Field of the Magnetic Dipole Located within the Bed 

Unlike the previous case the dipole is located within the bed (Fig. 5.1b), and for this 
reason expressions for the vector potential can be written in the form: 

oo 

Al^ = ^ f Die^^ Vo(Ar) dA if z ^ /12 (5.29) 
47r J 

0 
00 

A;^ = ^ f (^e-^^l^ l + D2e^'' + Dse-^A Jo(Ar) dA if h2 ^ z ^ hi (5.30) 

0 
00 

Al, = — f D4e-^> Vo(Ar) dA if 2 > hi (5.31) 
4TT J 
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where hi is the distance from the dipole to the upper interface of the bed, h2 = H — hi; 
H is the bed thickness. 

By making use of the boundary conditions to determine the unknown coefficients we 
have the following system: 

XiDie-^^^^ = Ae-^2^2 + X2D2e-^^^^ - \2D^e^^^^ 
X (5.32) 

M 
- XiD^e-^^^' = -Xe-^-"^' + X2D2e^^^' - X2Dse-^^^' 

In this case we will only consider the field inside the bed inasmuch as expressions for the 
field outside the bed can be derived from eq. 5.27. 

Solving the system 5.32 we find: 

_ AXi2e-2^2/M (1 _̂  Ki2e-^^^^^) 

^' ~ X2{l-K!,e-^^2^) ^^'^^^ 

XKue-^^^^^ (1 + A^i2e-2A2/ii) 

^' ^ X2{l-K!,e-^^^^) ^^'^^^ 

Substituting these expressions into eq. 5.30 we obtain: 

00 

/ 

A _;,^|^, AA'12 [e-^2(2/ii-z) _̂  ^-X2{2h2+z) _̂  2Ki2e-^^^ cosh Asz] 

A2 A 2 ( l - X i V - ^ ^ ^ ^ ) 

X Jo(Ar) dA 

(5.35) 

In accord with eqs. 5.7 and 5.35, the expression for the vertical component of the magnetic 
field on the dipole axis related to the primary field is: 

^ 1 7 m^Ki2 re-(i+2/5)^2 _̂  g-(2a-2/3-i)m2 ^ 2X12^''^'^'^'' cosh 7x12] 
hz = K + - / r. V7^—o ^ d ^ (5.36) 

0 

where a = H/z, /? = h2/z. 

If coils of the probe are located symmetrically with respect to interfaces, tha t is, 2/3 = 
a — 1, the latter equation can be presented as: 

oo 

, , 0 ^ f m'Kue-^-^- e^^- + i^i2Coshm2 ^ ._ _ . 
hz = K-\- / ; —5 dm (5.37) 
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5.1.3. The Field of the Vertical Magnetic Dipole in the Presence of a Thin 
Conducting Plane 

If the probe length is significantly greater than the bed thickness (Fig. 5.1c) and its 
conductivity essentially exceeds tha t of a surrounding medium and, finally, the skin depth 
inside the bed is much greater than its thickness, the bed can be replaced by a thin 
conducting plane with conductance 5 , equal to product of conductivity and thickness of 
the bed. Instead of the exact boundary conditions we can make use of two approximate 
conditions which do not require any information about the field inside the bed. The first 
boundary condition is continuity of the tangential component of the electrical field: 

Eifj) = E2^ (5.38) 

Circulation of the magnetic field along contour abed is equal to the current piercing this 
contour (Fig. 5.1c). For this reason: 

/ 
H dl — Hir dr — H2r dr = a dr dh Eff, as d/i ^ 0 

or 

Hir — H2r = SEfj) (5.39) 

where S is the conductance of the thin layer. 
In accord with eqs. 5.7, 5.38 and 5.39, the boundary conditions for the vector potential 

have the form: 

Au = Al, ^ - - ^ = - i a ; / i 5 ^ L BS z =-h, (5.40) 

For function A^ outside of the conducting surface we have: 

Jo{Xr) dX if z ^ hi 

0 
oo 

A*, = ^ f Dae"^^ Vo(Ar) dA if z ^ /ij 
47r J 

(5.41) 

0 

Substituting these expressions into eqs. 5.40 we obtain the system for determination of 

Dl and D2: 

- Die^'^' + D2e-^'^' = —e'^'^' 
Xi 

XiDie^'^' + (Ai - iujfiS)D2e-^'^' = Xe'^'^' 

Solving this system we have: 
\l(^2 -2Xihi o \ 

Z)i = - ^ ^ D2 = (5.42) 



319 

here /cf — iujfiS. 
Therefore: 

oo 

0 
oo 

M ^ 2A 

+ 

e^' 

Ai(2Ai 

-2Aifti -

Vo(Ar) dA 

Jo(Ar) dA 

Correspondingly, for the vertical component of the magnetic dipole along its axis we have: 

oo 

/j(i) = /i(0) , ! ^ / " ' ^ d m 
''^ ''^ + 2 7 m i ( 2 m i - n , ) ^ ' " 

(5.43) 
^ ^ ^ ^ n 3 e - _ ^ ^ 

J 2mi - Us 
0 

where m = Xz, m\ — {m? — k\z\Y^'^, a = hi/z^ Ug = icofiSz. 
Formulae derived in this section have allowed us to investigate the vertical characteris-

tics of two-coil induction probes for various frequencies and conductivities of medium as 
well as to describe curves of profiling. 

First let us consider the range of small parameters when skin depth in every medium 
is greater than probe length and bed thickness. 

5.2. The Vertical Responses of the Two-coil Induction Probe in 
the Range of Small Parameters 

Suppose that the frequency and the conductivity of a medium are so low that both 
parameters rii — aiiiuoz^ and n2 = (J2M^^^ are much less than unity. In this case the 
theory of induction logging in a medium with horizontal interfaces can be easily developed. 
There are at least two approaches for the solution of this problem. One of them is based 
on obtaining asymptotic formulae proceeding from the exact solution developed in the 
first section. The second approach makes use of the concept of geometric factor of thin 
layer suggested by H. Doll. We will describe here the theory of the two-coil induction 
probe applying geometrical factor presentation. 

5 . 2 . 1 . Geometric Factor of an Elementary Layer 

In accord with H. Doll a layer with a thickness which is much less than the probe length 
and is equal to unity, will be called the elementary layer. The geometric factor of such 
an elementary layer can be found by performing a summation of geometric factors of all 
elementary rings located at the same height z with respect to the origin and forming this 
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layer. The radius of the elementary rings changes from zero to infinity. For this reason 
an expression of the geometric factor of the elementary layer, Gz^ has the form: 

G. 

OO 

I qdr (5.44) 

where q is the geometric factor of the elementary ring. 
Making use of eq. 3.104 we have: 

OO 
^3 ^ ^ 

[r2 + (L/2 + z)2]^/2 [r2 + (L/2 - z^f^ 

where L is the probe length. 
Introducing notations: L/2 -i- z = m, L/2 — z = n, and r^ = x, we obtain: 

^ I X dx 

G 
0 ^ 

[x2 + (m2 + n2)x + m2n2]^/^ 

or (5.45) 
OO 

xdx G J {x' 2 J (x2 -h 6X + c)3/2 
0 

where m2 4- n^ = 6, m^n2 = c. 
The integral in eq. 5.45 is tabulated and it is equal to: 

Lc Lb 
(4c - 62)cV2 2(4c - 62) 

or 

L 
Gz = 

2(m-f n)2 

There are two possible cases such as: 

• m > 0 n > 0 

• m < 0 n < 0. 

In the first case the elementary layer is located between the coils of the probe (L/2 > z 
and z > —L/2). Then its geometric factor, G^, is: 

G, - 1/2L (5.46) 
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Figure 5.2. Geometric factor of the elementary layer Gz as a function of z. 

In the second case the layer is located outside the probe {z > L/2, z < —L/2), Then we 
have: 

L/Sz^ (5.47) 

As follows from eqs. 5.46-5.47 the geometric factor of the whole space is equal to unity. 
In fact we obtain: 

G 
oo 

L/2 

dz L L 
CO 

f dz _ L2 1 L2 _ 
(5.48) 

L/2 

According to eqs. 5.46-5.47 the geometric factors of elementary layers located outside the 
probe decrease inversely proportional to z^ while geometric factors of elementary layers 
located inside the interval between coils of the probe are equal to each other regardless of 
z. A curve illustrating the behavior of geometric factor Gz as a function of z is shown in 
Fig. 5.2. 

Values of geometric factor of elementary layers and the distance, z, between them and 
the middle of a two-coil induction probe are plotted along horizontal and vertical axis, 
respectively. 

Inasmuch as this dependence of function Gz on z reflects sensitivity of the probe to 
induced currents in elementary layers, H. Doll called this function Gz the vertical response 
of a two-coil induction probe. 
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Figure 5.3. Position of the probe with respect to the bed. 

5.2.2. Geometric Factor of a Layer with a Finite Thickness 

Proceeding from the expression for the geometric factor of an elementary layer it is not 
difficult to find geometric factors of a layer with a finite thickness. For this purpose it 
is necessary to present the layer as a sum of elementary ones and perform summation 
of their geometric factors. Let us consider several positions of the two-coil probe with 
respect to the bed. 

The probe is located outside the bed of finite thickness 

In order to derive the geometric factor of this bed (Fig. 5.3a) we have to integrate function 
q = L/Sz'^ by z within the interval from Zi to Z2 where Zi and 22 are coordinates of the 
bed boundaries. Then we have: 

L ? d z ^ L / ^ _ ^ \ 
"̂ ^ Sj z^ 8 Ui ^2) 

(5.49) 

Assuming that the coordinate origin is placed at the middle of the bed and taking into 
account that Zi = ZQ — L/2 and 2̂ = 2̂:0 + L/2, instead of eq. 5.49 we have: 

Gt = 
LH 1 

2 zl-iH/2y 
(5.50) 

where H is the bed thickness; ZQ is the distance from the middle of the bed to the center 
of a two-coil probe. 

This equation is applied if the upper coil of the probe does not intersect the low bound-
ary of the bed, i.e. it is valid if Zi ^ L/2 or ZQ ^ L/2 + H/2. 
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Figure 5.4. Position of the probe with respect to the bed. 

One coil of the probe is located inside the bed while the other is outside of it 

For deriving the geometric factor of the bed with thickness H for such a position of the 
probe (Fig. 5.36) we have to add geometric factors of parts of the bed located outside and 
inside the probe. In accord with eq. 5.47 the first of them, Gi, is: 

Gi 
1 H 

S\L/2 Zo-\-H/2j 4 S{zo + H/2) 

The geometric factor of that part of the bed which is located inside the probe and has 
thickness hi is calculated as: 

-̂i'̂^ 1 
2L 

zo-\-
H 

since h\ = L/2 — {ZQ — H/2). Therefore, for the geometric factor of the bed we have: 

L 

^̂  = ^̂  + ̂ ^ = ^ i ( ^ ° - ^ / 2 ) - 8 ( . o + i?/2) (5.51) 

This formula is applied until the upper receiver of the probe is located within the bed if 
its thickness is smaller than the probe length, H < L, i.e. when Z2 > L/2 or L/2 — H/2 < 
ZQ ̂  L/2 -\- H/2. In the case, when the bed thickness is greater than the probe length 
{H > L) this formula can be used until the lower coil does not intersect the lower boundary 
of the bed, i.e. when Zi ^ —L/2 or ZQ ^ H/2 — L/2. 

The probe is located against the bed 

There are two possible variants (Fig. 5.4): 

• The probe length exceeds the bed thickness {H < L). 

• The thickness of the bed is greater than the length of the probe {H > L). 
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It is obvious that for the first variant we have: 

Gi, = H/2L (5.52) 

At the same time for the second variant we have: 

G. = :̂  + 4 r i - ^ ^ V ^ ^ ^ - ' 2L 8 \L/2 Z0 + H/2J S\L/2 H/2-zo 
1 1 L I L LH 

= :̂  + - r - 7T7 777:^7 + T + 7̂ 7 7777:7 = 1 + 

(5.53) 

2 4 S{zo + H/2) 4 S{zo + H/2) S[zo-{H/2y] 

These equations can be apphed provided that: 

0 ^ 0̂ < i^/2 - H/2 liH <L 

and 

0 ^ zo < i^/2 - L/2 \iH> L 

Formulae derived for geometric factors allow us to determine the apparent conductivity 
for a two-coil induction probe located in a medium with two horizontal interfaces. As was 
shown in Chapter 4 we have: 

(Ja = ^iGi + a2G2 (5.54) 

induction probe in a medium with one interface, where (Ji and (72 are the conductivities 
of the bed and the surrounding medium while Gi and G2 are their geometric factors. By 
definition the sum of these factors is equal to unity, i.e: 

G2 = 1 - Gi 

Before we will investigate the apparent conductivity in the presence of a bed having a 
finite thickness let us consider the influence of one horizontal interface. 

If the probe is located in a medium with conductivity (J2 (Fig. 5.5a) then in accord with 
eq. 5.49 the geometric factors of both half-spaces are: 

' 8zo ^ S\L/2 zoj 2L 8L/2 

and 

oZo 

This formula is apphed provided ZQ ̂  L/2, i.e. the coil of the probe does not intersect 
the interface. 
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^^ 

02 

Figure 5.5. The two-coil induction probe in a medium with one interface. 

In the case when coils of the induction probe are located in different parts of the medium 
(Fig. 5.5b) the geometric factors are: 

G = ^ ^ + ^ 
^ 8 L/2 2L V 2 

1 

ZQ 
Zo_ 

2L 

Correspondingly, for the function o^ we have: 

^a = -^{px + as) + (ai - ^ 2 ) ^ 

In that case when the probe center is in a medium with conductivity <72, i.e. ZQ < 0, 
formulae derived above remain valid provided that conductivities a\ for various and 02 
are changed by roles, namely: 

i- / \ / \ '2'0 

aa = (Jl- (cTi - 0-2) 
8^0 

-L/2 < Zo<0 

- o c < 2:0 < -L/2 

Apparent conductivity curves for various positions of the probe with respect to the inter-
face are shown in Fig. 5.6. 

Let us notice that the value of the apparent conductivity is equal to the mean value of 
both conductivities when the probe center is located at the interface. 

Now we will investigate apparent conductivity curves in the presence of a bed. Inasmuch 
as function aa is symmetrical with respect to the middle of the bed we will restrict 
ourselves to considering this function when ZQ is positive. 

In deriving formulae for apparent conductivity for various positions of the probe we will 
make use of the equations of geometric factors of a bed with finite thickness. 
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Figure 5.6. Curves of the apparent conductivity for various positions of the probe with 
respect to the interface. 

The probe is located outside the bed 

The expression for the apparent conductivity is: 

Ga = CTiGi H- G2G2 

The geometric factor of bed, G\, for a given position with respect to the probe is: 

G,= 
LH 

The geometric factor of the surrounding medium is presented as a sum: 

G2 = G12 + G22 

where G12 is the geometric factor of that part of the surrounding medium which is located 
above the bed, and G22 is the geometric factor of the surrounding medium located beneath 
the bed. Correspondingly: 

G2 = 
8(zo + H/2) 8(zo - H/2) 

+ 1 
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Substituting expressions derived for geometric factors we have: 

LH 
^a = ^2 + (^2 - CTi) 

^zl-{Hl2Y] 
(5.55) 

This formula is apphed if the upper coil does not intersect the low boundary of the bed, 
i.e. if ZQ ^ iJ/2 + L/2. 

One of the coils is located within the bed 

In this case we have: 

Ĉa — (^2{Gi2 + G22) + (^iGi 

here: 

^ l Z0-HI2 L 
^ 2 2L 8(zo + i5f/2) 

T. 

G\2 = 
8(20 + H/2) 

_ 1 1 / L H 

and 

C^a = ^ 1 
1 zo - i / /2 
2 " 2L 8(zo + ^ / 2 ) 

+ cr2 

CTi H-O-2 0-2 - CTi 

This formula is applied if: 

8(zo + H/2) 2 

((72 - Cri)L 

1 zo - i^/2 
2L 

8(^0 + ^ / 2 ) 

L i7 L H 
iiH ^L 

and 

H L 
''^J-2 iiH^L 

(5.56) 

The bed is located between the probe coils or the probe is located within the 
interval of the bed 

If the bed is located between the probe coils {H < L) we have: 
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where: 

Gi = H/2L 

G2 = G\2 ~l~ G22 

G12 = 7 + 

and 

1 
2L 

L H L H 

H 1 / i / \ 1 / i / 
= aa + [<Ti - aa) — (5.57) 

This equation is apphed if 0 ^ 2:0 < L/2 — /i/2, as H < L. 
If the probe is located within the interval of the bed (if > L) we have: 

(^a = CF2G2 + CTid 

and 

G2 = G12 + G22 

where: 

c - ^ 
8(.o + y j 

C - 1 1 ^" U l — 1 1 

8 h-(f)1 

G22 — 
H 

and 

^a = ^1 + (0^1 - ^2) 
L/f 

This formula is applied for 0 < ZQ ^ H/2 — L/2. 
Now let us introduce new variables: 

ZQ = rjL H = ^L 

Then the formulae have the form: 

( 1 ) CTo = 0-2 + (O-I - CT2) 
8[ry2-(^/2)2] 

(5.58) 
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Figure 5.7. Curves of function (Ja/cJi for various H/L {H/L > 1). Curve index GX/GI-

if r? ̂  0.5 4- ^ 

if 77 < 0.5 H- I a>s H > L, i.e. ^ < 1 and for 

7/ ^ 0.5 - - as i7 > L; ^ > 1, 77 ^ I - 0.5 

(3a) aa = (72 + {(Ji - 0-2)-; ^ < 1 

i f 0 < 7 7 < 0 . 5 - | 

(3b) aa = ori + 
(Jl — 02 

8 r?2 - (^/2)2 

i f e > l , 0 < 7 ? < | - 0 . 5 

Curves showing the dependence of function CTO/CTI on the ratio of bed thickness to probe 
length, if HjL > 1, are presented in Fig. 5.7. The center of two-coil probe coincides with 
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100 

b̂  

Figure 5.8. Curves of ratio Oal^x as a function of HjL {H/L ^ 1). Curve index cri/cr2. 

the middle of the bed. Calculations have been made using the equation: 

(5.59) 

As is seen from these curves with an increase of the conductivity of the surrounding 
medium and a decrease of the bed thickness the influence of the surrounding medium 
becomes greater. If the resistivity of the bed is significantly greater than that of the 
surrounding medium [GI <^ 0-2), the apparent conductivity approaches the conductivity 
of the bed provided that its thickness is many times larger than the probe length [H ^ L). 
In other words, in such cases the vertical characteristic of the two-coil induction probe is 
essentially worse than the corresponding response of the normal probe. 

If the bed conductivity is greater than that of the surrounding medium for most typi-
cal values of ai/a2 the influence of the surrounding medium becomes insignificant when 
H/L > 4. 

Curves of function cTa/cri, when the bed thickness is smaller than the probe length, are 
given in Fig. 5.8. 
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Formulae for calculation have the form: 

- - - + 1 - - — 5.60) 

or 

^ = l + ( ^ - l ) ^ (5.61) 
G2 \G2 J 2L 

In accord with eq. 5.61 if the bed resistivity is higher than that of the surrounding medium 
and its thickness is less than 0.2L such a bed cannot be practically noticed on curves of 
induction logging. This fact can be interpreted as an advantage of induction logging 
with respect to electrical logging where screening often makes interpretation sufficiently 
complicated. 

In contrary, thin low resistive layers have essential influence on curves of induction 
logging. In fact with an increase of ratio cri/cr2 the value of the apparent conductivity, a a, 
tends to a constant equal to S\j2L {S\ is the longitudinal conductance of the bed: criH)^ 
and it can turn out to be much greater than a2. This fact is well seen from curves with 
index Oxjo^ > 1 (Fig. 5.8). Let us assume that the probe is located against a system of 
thin layers. Then an expression for apparent conductivity, (Ja, can be obviously presented 
as: 

where hi is the thickness of z-layer; n is number of layers, and H = XlILi *̂-
Thus, in the range of small parameters a group of thin beds located against the probe 

is equivalent to one bed having the same conductivity and with a thickness equal to the 
sum of thicknesses of all beds. This principle of equivalence by S can be easily generalized 
for the more common case when conductivities and thicknesses of layers are different. 

5.3. The Theory of the Two-coil Induction Probe in Beds with a 
Finite Thickness 

In the previous section we have considered vertical responses of the two-coil induction 
probe in the range of small parameters as the skin effect could be neglected. Now, a more 
general case will be investigated proceeding from the results of calculation by the exact 
formulae derived in the first section. 

We will assume that the two-coil probe is located symmetrically with respect to the 
boundary interfaces. Then, according to eqs. 5.28-5.37, the vertical component of the 
magnetic field on the 2:-axis, expressed in units of the primary field, is defined by three 
parameters: 

• ratio of the probe length, L, to the thickness of skin depth, hi, in the bed: L/hi 
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• ratio of conductivities of the bed and the surrounding medium: cri/(j2 

• ratio of the bed thickness, H, to the probe length: H/L. 

We will investigate frequency responses of quadrature and inphase components of the 
field measured by the receiver coil of the induction probe. Examples of the responses are 
presented in Figs. 5.9-5.22. Analysis of results of calculations allows us to outline the 
main features of field behavior, such as: 

1. For small values of parameter L/hi (low frequency, high resistivity) the inphase 
component of the secondary field is much smaller than the quadrature component: In hz <C 
Qhz- With an increase of parameter L/hi the inphase component, In/i^, increases and 
oscillating approaches unity. 

Comparing responses of quadrature and inphase components we can see that in the 
range of small parameters induced currents in the surrounding medium have an influence 
on the inphase component, In/iJ, which is much stronger than that on the quadrature 
component, Q/i;^. In the limit, as parameter L/hi tends to zero, the inphase component 
of the magnetic field approaches to that of a uniform medium with the conductivity of 
surrounding medium, G2'-

In hz -^ In hl[G2) as L/hi -^ 0 

It is essential that this result does not depend on ratio of the bed thickness to the probe 
length, H/L^ as well as the ratio of conductivities. In other words, with a decrease of 
parameters L/hi the bed becomes transparent for the inphase component regardless of 
how the probe length is small. It means that within this range of parameters I///ii, the 
vertical response of the inphase component is much worse than that of the quadrature 
one. 

2. In the range of small parameters the quadrature component of the field is directly 
proportional to frequency and conductivity. Such behavior of the quadrature component is 
inherent to DolVs domain, which therefore represents the left-hand asymptote of frequency 
response of function: Qhz{L/hi). With an increase of parameter L/hi the quadrature 
component increases, reaches a maximum and then oscillating goes to zero. Thus at 
the left part of the frequency response of the secondary field the quadrature component 
prevails while at the right part the inphase component In hi is dominant. 

It is appropriate to notice that the left-hand part of the frequency response of hz{L/hi) 
is of a great practical interest because for frequencies used in conventional induction 
logging and the most typical geoelectrical sections parameter L/hi is usually less than 
unity. 

In accord with eq. 5.37 the expression for vertical component of the magnetic field along 
the dipole axis is: 

oo 
, n f m^i^i2e-2«^2 ^am2 ^ j ^ ^ ^ ^osh m2 , 

hz = K-^ / z 775—n dm 
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where /i^ is the field in a uniform medium with a bed conductivity expressed in units of 
the primary field: 

7712 ==̂  {rn^ - 1̂ 2)̂ ^̂  rni = (7712 - irii)^/^ Ku = {m2 - mi)/{m2 + mi) 
rii = GijJLUjL^ 712 — cr2^ujL'^ = NriiN = a2/cri a = H/L. 

Let us consider an integral at the right-hand part of the formula for hz as a function of 
77,1 and find its approximate value when rii -> 0. Expanding the integrand in a series by 
small parameters rii and considering only the first term we obtain for the integrand: 

- i (A^ - l )n i e -^ " ' ^ 

Correspondingly, the integral becomes equal to: 

-^{N-l)a2^ujL' 

Thus, the field at the range of small parameter rii is: 

Making use of relation between the quadrature component of field hz and the apparent 
conductivity: 

Clhz (5.63) 

we obtain an expression for a^, as the two-coil induction probe is located symmetrically 
within the bed boundaries and L < H: 

^a = cri-h--(0-2-0-1) ifa^l (5.64) 
2a 

The latter completely coincides with eq. 5.59. 
Therefore, Doll's theory is in fact the theory of very small parameters, which character-

ize the linear dimensions of a model, expressed in units of the skin depth. For example, 
with a decrease of the probe length parameter L/hi decreases also. From a physical point 
of view this means that the infiuence of induced currents near the dipole, which are shifted 
in phase by 90° and do not interact with each other, increases. 

Within DoWs domain there is a simple relation between the field, Q/i^;, or (Ja, and the 
parameters of a medium. For example when the probe is located symmetrically within 
the bed (eq. 5.64) the value of Gal^\ depends on two parameters: a2/(J\ and H/L only, 
and it does not depend on absolute values of conductivity and frequency. For this reason 
the interpretation of induction logging within DolVs domain is in essence the same as in 
resistivity logging based on direct currents. 
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^ "î l^r 

L f 1̂
 

i 
^

^ 
^ 1̂

 
X

 c>» 

^ V
 ^ < ^4 

m
 

•'^^i< 1̂ z,..^ 

^ -*̂
 

•
'

^ 

b
 

^ 

in 
CM

 
in 

CM
 

o 
in 

CM
 

CM
 csi -«-

O
 

fyui 

^ ^ o
 0 

b 

E
 

b
 



336 

00 
II 
-J 

5 1̂" 
hi N

 

Q
:

^ 

/ ( 

1 

4 
1 

3: 

^ 

"
v

,^ 

i 
'--^ ̂

 
>

w
 

^ %
i N
 ^ i M

 
c^ 

o
 

o
 

o 
in 

CNj 
in

 
CNJ 

CM
 

c
y 

I 

o
 

|t/u
i 

a; 
-a 
•S

 

o
 o
 a; 

cr 

^ 
b

 

II 
-J 

5 1
^ 

1 
>J 

6^ 
^

^ t 
1 

3: 

^ 

K
 

K
 

K
 

( V
 ^^ •V

 
•

^ 
*>

fc
. 

^ > 
s ̂  
^ \ ^ 
1 ^

^ V 1 ^ 1 a -^ 

o
 

o
 

^ 
:S

 

O
 

lO
 

o
 

csi 
o 

in 
cNi 

in 
CM

 

s
^

u
i 

7 
in

 
cNjcNi 

lo
 

cN
jco'̂

 
o

 
o

 
o

 

X
 

o
 

0
) 

;-! 
C

M
 

;:i 
b

 

£ 
b 



337 

CM
 

1 1̂
1 

II 

n $ 1 

H
 1

^ 
<

^
— r^ I—

 

H
\ 

R
 K

 

y^ 
©

^
^

-^
^

L
—

-J 

F%
^ 

]X
 ^

^
^

 

^
: 

^
S^

i 
:̂

$$k: 
^

 r^M
^ ^—

 

/̂/H
 

—
 

IhH
 

^
A

 
I

I 

o
 

o
 

a; 

O
 

1
- 

!/2 

o 
in 

o 
CM

 O
 

in 
CM

 
in 

CM
 

^
f/D

 

~ 
in 

cM
CNi 

in 
cM

cp'*-
o 

o 
o 

o
 

a; 
5

-1 
C

M
 

^ 
b

 

C
O

 

II 

Q
: 

1 
N1 
s| 

1 
•i^^ 

•
^ 

( :i: 

^ 

I K
 

K
 

K
 

K
 

5, 

^
^ 

—̂
 

%
. o

 
o

 

o 
in 

CM
 

C
M

 
CNI O

 
in

 
C

M
 C

O
 o
 

in
 

CM
 "̂

 
"̂

 
o

 

I'/U
I 

X
 

a; 

0 

-^ 
a 0 o a; 

0 
b 

E
 

b 



338 

\l 

Q
: i 

3: 

-i 
S

t* 

O
 

io 

^
t/D

 

o
 

^ a
 o

 

C
D

 

^
^ 

.C
M

 

;:3 
b

 

E
 

b 

in 
d II 

5 N
 

o
:| f 

» 

3: 

^
 

^
 '^

^
^

 
h ^

 •^x 1 $ ^
 

1̂ 
Is 
$5 V

 ?^
 

^
 

N
« 

!^
 

^
 

o
 

o
 

^ 
5 

7 o
 

X
! 

C
D

 

O
 

a o
 

CD
 

O
 

lo
 

CM
 

O
 

LO
 

CM
 

in 
in 

CM
 

^W
D

 
^ 

b
 

fo
 

b
 



3
3

9 

II •4^ 

i4-N N
 

3: 

^
 

K
 

K
 

1 y \ 
N

 X
 \^

 N
 ^

 
^

 s. 

^
^

^
 

1 ^
^

 o o 

O
 

io 
C

N
 

O
 

1
0 

CM
 

'«- 
1

0 
CM

 
7 

in 
CM

 7 
10 

CM
 

7 
o 

o ^ 

X
 

C
D

 

i-i 
:^ 

O
 

-c2 

O
 

o 

^f/D
 

C
M

 

II 
-J 

i4-
IN

 N
 

o
:| * 

* 

^ 

K
 

K
 

IS
 ^ 

^ 1 ^ ^ 

^ 
^ ^ 

^^m
 o o ^ 

^ 
^ 

8 ^
 

CM
 

O
 

1
0 

CM
 

in 
CM

 

^
^

D
 

in 
CM

 7 
in 

CM
 

7 
" 

o 7 o 

X
 

a o CD
 

C
D

 

bJO
^ 

fo 
b 



340 

O
 

u
 

C
O

 

II 

IN
 

1 N
 

a
:| 

0 
< « 

» 
3

: 

^ 

N
 

'̂
 - 

u
 ,̂ X

 

Tv. 
K

 
K

 

•> 
c s < 

u
 '5 

C
 

< ^R
^ ̂ 

1 T
 

c 
*9t/J 

3 
O

 ^ 
^ 

(y P
I 

o
 

o a; 

C
M

 
C

M
 

^^D
 

0
0 
II 

-J 

a \i 1 

\i 

:^ 

:i: 

^ 

s. \ 

•fc 
IH

 
F

 

\ 

^
X

 \ 
N

 S
w

 
^ 

^ 
SK

 
L

^ *Jh
 -

m
 

o
 

o
 

^ 
^ 

O
 

lO
 

C
N

 
in 

cvi 
CM

 
7 O

 
lO

 
CNJ 

"
^

 

^«/D
 

X
 

CD
 

.s (D
 

o
 

CD
 

a; 

C
M

 

<D
 

^ 
b

 

E
 

b 



341 

As was demonstrated in the previous section eq. 5.64 was derived from Doll's theory, 
based on the concept of the geometric factor, and strictly speaking it is valid only if 
all currents, regardless of the distance from the dipole, are shifted in phase by 90°, i.e. 
interaction between them is absent. 

Inasmuch as this equation for the apparent conductivity, da, has also been obtained 
from the exact solution, provided parameter L/h\ is small, physical principles of Doll's 
theory can be interpreted in the following manner. The signal measured in the receiver 
coil of the induction probe is mainly defined by currents induced in the area within which 
the probe is located. For this reason eq. 5.64 is valid if currents within this area are 
shifted in phase by 90° and are proportional to frequency and conductivity regardless of 
the behavior of currents induced outside of this area. 

Analysis of the field behavior in a uniform medium as well as in a medium with coaxially 
cylindrical interfaces demonstrated that: 

• Near the dipole induced currents, which are proportional to frequency and shifted 
in phase by 90°, prevail. 

• With an increase of the distance from the dipole the influence of the inphase com-
ponent increases. 

• The depth of investigation of the probe becomes greater with an increase of the 
probe length. 

Therefore, we can expect that with increases of the bed thickness, the probe length and 
the ratio of conductivities of the surrounding medium and the bed (cr2/cri), application 
of formulae of Doll's theory will lead to greater errors. 

Now let us consider frequency responses of apparent conductivity when the two-coil 
probe is located symmetrically with respect to the bed boundaries (Figs. 5.23-5.31). 
Along the axes values L/hi and function (Ja/cFi are plotted, respectively. Index of curves 
is (7i/(72. 

As is well known, for electromagnetic fields apparent conductivity can be introduced in 
different ways. In accord with eq. 5.63 apparent conductivity is equal to conductivity in 
the uniform medium only within Doll's domain while outside this range they differ from 
each other. Such a way of introducing the apparent conductivity is justified by the fact 
that very often in the practice of conventional induction logging a field behavior either 
corresponds to that for DolVs domain or is sufficiently close to it. 

As is seen from Figs. 5.23-5.31, all curves of the apparent conductivity at the left-hand 
part, i.e. within the range of small parameters, are parallel to the axis of abscissa that 
corresponds to DolVs domain but with an increase of (T2l(Ji the influence of the skin effect 
manifests earlier. This behavior is in complete agreement with our understanding of the 
distribution of quadrature component of induced currents in a conducting medium. In 
fact, with an increase of the distance from the dipole this component becomes smaller 
than that according to Doll's theory, and since with an increase of conductivity of the 
surrounding medium the role of this part of the medium also increases, deviation between 
results of calculation by exact and approximate solutions also increases. Practically this 
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Figure 5.31. Apparent conductivity function. Curve index cri/cr2. 

TABLE 5.1 
Maximal values of parameter 

1/128 

1.0 

128 

1.0 

0.0085 

0.15 

0.67 

L/h, 

V2 

0.0065 

0.15 

0.55 

2.0 

0.0048 

0.15 

0.44 

2 v ^ 

0.0034 

0.15 

0.36 

4.0 

0.0027 

0.15 

0.28 

8.0 

0.0020 

0.15 

0.15 

means that the influence of the surrounding medium on the value of Ga with an increase 
of its conductivity becomes less than what follows from Doll's theory. 

With an increase of the bed thickness, deviation from the left-hand asymptote is also 
observed at smaller frequencies specially as the ratio of conductivities Oxja^ decreases. 
For illustration the maximal values of parameter L/hi, when the left-hand asymptote of 
curves (Ja/(^i is still practically observed, are given in Table 5.1. 

It is convenient to relate values of this parameter with resistivity and frequency. As 
an example Table 5.2 contains some values of parameter L/hi for various frequencies and 
resistivities within the range 1 100 ohm-m for a two-coil induction probe with length 1 m. 

In conventional induction logging the equipment is based on the use of frequencies 
within the range of 20-60 kHz. From comparison of curves of apparent conductivity 
(Figs. 5.26-5.31) and data given in Table 5.2 it is seen that for a frequency of 20 kHz 
and CTi > cr2 corrections due to the internal skin effect are small and only for a relatively 
large bed thickness {a > 8) and its low resistivity (pi :^ 1 ohm-m) these corrections reach 
10-20%. If the conductivity of the bed is smaller than that of the surrounding medium 
the influence of the skin effect can be significant. 

For instance, if / = 20 kHz, pi = 20 ohm-m, p2 = 2.5 ohm-m, L = 1 m and H = 2 m, 
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TABLE 5.2 
Values of parameter L/hi 

p, ohm-m 

1 

5 

10 

20 

40 

60 

100 

/ , H z 
2 x 10^ 

0.280 

0.125 

0.089 

0.063 

0.045 

0.036 

0.028 

4 x 10^ 

0.396 

0.177 

0.125 

0.089 

0.064 

0.051 

0.040 

6 x 10^ 

0.485 

0.216 

0.154 

0.109 

0.078 

0.062 

0.049 

8 X 10^ 

0.560 

0.250 

0.178 

0.126 

0.090 

0.072 

0.056 

1 X 10^ 

0.625 

0.280 

0.198 

0.141 

0.101 

0.081 

0.063 

2 X 10^ 

0.885 

0.396 

0.280 

0.200 

0.142 

0.114 

0.089 

TABLE 5.3 
Values of parameter L/hi 

a 

L/hi 

V2 
2.00 

2 

1.20 

2x/2 

0.70 

4.0 

0.40 

8.0 

0.10 

16.0 

0.04 

the value of apparent conductivity, (Ja/cri is equal to 2.0 instead of 2.8 as it follows from 
eq. 5.64. 

This influence of the internal skin effect manifests itself to a greater extent when higher 
frequencies are used, for example 60 kHz. Also, comparison of curves in Figs. 5.26-5.31 
with the same index shows that with an increase of the probe length the influence of 
the skin effect becomes stronger. This is related to the fact that with an increase of 
the separation between coils, the sensitivity to more remote parts of the medium also 
increases. 

These examples, as well as a more detailed analysis, demonstrate that calculations 
based on the exact solution which takes into account the skin effect are necessary in order 
to investigate the vertical responses of the introduction probe. 

Consideration of the field on the borehole axis in a medium with cylindrical interfaces 
(borehole, invasion zone, formation) also shows that the skin effect has to be taken into 
account. However, as a rule, its influence on the radial responses is less than that on 
vertical ones. 

Due to the internal skin effect with an increase of frequency induced currents concen-
trate more near the source, and correspondingly the influence of the surrounding medium 
decreases. It is vividly seen from curves of the apparent conductivity as the bed thickness 
exceeds the probe length (Figs. 5.26-5.31). Therefore, we can select such high frequency 
for which the influence of induced currents in the surrounding medium will already be 
practically negligible. 

For illustration, values of parameter L/hi for which apparent conductivity curves, pre-
sented in Figs. 5.26-5.31, merge in one curve corresponding to a uniform medium with 
conductivity ai (cr2 < ISOai) are given in Table 5.3. 

An increase of frequency is specially desirable when beds have relatively small thickness, 
(L ~ i /) , and higher resistivity than that of the surrounding medium, <JI <C (T2. However, 
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in such cases it is necessary to use very high frequencies, sometimes reaching dozens of 
MHz in order to ehminate the influence of the surrounding medium. 

Significant technical difficulties related with measuring field components a t such high 
frequencies, deterioration of radial response of the induction probe specially when invasion 
zone has intermediate resistivity (pi < p2 < ps), increase of the influence of currents in 
the borehole, they all essentially reduce principal possibilities to use frequencies in order 
to eliminate completely the effect of induced currents in the surrounding medium. 

At the same time it is appropriate to emphasize that an increase of frequency within 
certain limits, when the radial response does not practically change, can essentially im-
prove the vertical response of the probe. Curves of the apparent conductivity shown in 
Figs. 5.32-5.36 vividly demonstrate this tendency. In fact with an increase of parameter 
L/hi the influence of a more conductive surrounding medium becomes smaller and it is 
specially noticeable when the bed thickness increases. 

Now let us consider the main features of behavior of function Oajox in those cases when 
the bed thickness is smaller than the probe length, and the bed is located between probe 
coils (Figs. 5.23-5.24). 

As was shown above, in this case the field does not depend on the position of the bed 
inside the probe, and it can be presented in the form: 

oo 

0 

m^mse-^'^^-mOQg-mi 
dm if a < 1 

(mi + m 2 ) 2 ( l - ^ ? 2 e - ^ ' ' ' " ^ ) 

where mi = (m^ - /c^L^)^/^, m2 = {vn? — k'^L'^y^'^, and K^ = (m2 - mi ) / (m2 -h mi ) . 
Comparing the curves of apparent conductivity for both cases {a > I and a < 1) we can 
see that in the latter case the asymptote on the left usually takes place for larger values 
of parameter L/hi. Asymptotic presentation for function cJa/cri, as L/hi -^ 0, can be 
derived in the same manner as eq. 5.64 was obtained. Omitting intermediate operations 
we have: 

This formula coincides with expressions derived with the help of the geometric factor in 
the previous section and with a reasonable accuracy describes the apparent conductivity 
(Ja/cTi for thin layers. 

At the same time it is possible to derive a simple expression for the apparent con-
ductivity which is valid for larger values of parameter L/hi proceeding from the method 
which takes into account the skin effect in the external area (Chapter 3). Having assumed 
that within the bed induced currents are shifted in phase by 90° and interaction between 
currents in the bed and the surrounding medium is absent we obtain: 

^ ^ <: _ f̂  _ 1V (5.66) 
cTi (Ji V^i / 2 

where cr^^ is apparent conductivity in a uniform medium with conductivity cr2. It is 
obvious tha t within Dollys domain this value coincides with (72. 
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H/L 

Figure 5.38. Dependence of apparent conductivity upon parameter a. Curve index cri/a2. 

Equation 5.66 is valid for larger values of parameter L/hi than eq. 5.65, and this fact 
becomes more noticeable for relatively resistive beds. 

Analysis of curves of apparent conductivity, (Ja/cri, (Figs. 5.37-5.38) shows that: 

• Thin beds with resistivity greater than that of the surrounding medium are hardly 
noticeable at the range of small parameter L/hi. For example, if o; ^ 0.3 and 
C'"i/cr2 ^ 1/8 the influence of the bed does not exceed 5-10%. 

• Thin conducting layers are sufficiently clearly distinguished by induction logging. 
For example, for small values of L/hi, when a c^ 0.3 and (Ji/a2 = 8 the influence of 
the bed reaches 50%. 

5.4. Curves of Profiling with a Two-coil Induction Probe in a 
Medium with Two Horizontal Interfaces (a Bed with Finite 
Thickness) 

As was shown in the first section the signal and the apparent conductivity depend on the 
following parameters: 

• Ratio between the probe length, L, and the skin depth in a medium, for example, 
in a surrounding one: L//i2-

• Ratio of the bed thickness to the probe length, H/L. 
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• Ratio of conductivities of the bed and the surrounding medium, ai/(j2. 

• Position of the probe with respect to the bed, which can be characterized by the 
distance between the middle of the bed and the probe center, expressed in units of 
the probe length. 

Of course, the electromotive force also depends on the moments of transmitter and 
receiver as well as on probe length and frequency. 

Considering curves of profihng it is reasonable to distinguish four of the most typical 
positions of the probe with respect to interfaces of the bed. Formulae for field calculation 
are different from each other: 

The probe is located outside the bed 

oo 

0 

One of the probe coils is located within the bed 

r \ 
dm if /? ^ 1 

(mi + ma) (1 - Kf^e-'^'^^'') 
0 

The probe is located within the bed 

h. = hi\a.)^-J m.il-K!,e-^m.^ ^ ^ 
0 

HH > L 

The bed is located between probe coils 

oo m^m2e-(^2-mi)a^-mi 
dm It H < L (mi -h m2)2 (1 - Kf^e-^'^^'') 

0 

As before we will use the following relation between the quadrature component of the 
field and the apparent conductivity: 

— = ^ Q hz 

Let us consider the influence of the main factors pointed out above on the shape of the 
profiling curves (Figs. 5.39-5.56). Curves in every figure correspond to certain values of 
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ĈM

 

1
^ 

cz> 

C
O

 

C
D

 

in 
d

 

3
: 

in
 

in 
C

) 
in 
d

 
in 

o
 

cvi 

b
 

X
 

0 

o
 

o
 

C
O

 

d
 

CNJ 

o
 

%
 

M
 

^ a bJC
 

0 O
 

d
 

C
O

 

lO
 

a; 

bJO
 

b"* 
b

" 



357 

h
 00 

CM
 

3: 
lO

 
O

 
lO

 

d 
d 

lO
 

b"* 

=1 

X
 

0 
O

 o bJO 

o
 

C
O 

L
6 

0 

3
: 

o
 

in
 

cvj 
o

 
o

 
lO

 
o

 lO
 

in 
C

N 
in 
CNJ 

o in 
d 

in 
o

 
o

 
in 
CsJ 

o in 
o

 
T-

1
^ 

o
 

C
O

 

o
 

in
 

o
 

^ o
 

C
O

 

o
 

C
M

 

o
 

T
-

o
 

:3
. 

b
 

X
 

C
D

 

-a (V
 

> 
5-4 
izs 

C
J 

a; 
> 
0 o

 
bJO

 

rt 
ca 
o

 
P

LH
 

lO
 

^ lO
 

o; 
i-i 

^ bJO 

b"" 



358 

=1 

o
 

"
* 

II 

II 
^

c. 

$ 
i5" 

b
 

h lO
 

X
 

O
 

a: 
o

 
o

 b"* 

.3 o
 

0
0 

bJO
 

b
 

o
 

C
M

 

CO
 

C
D

 

C
N

 

C
M

 

b
 

X! 
C

D
 

-a 

;3 

bJO
 

.S
 

O
 

3
: 

1N
 

in 
d 

in 
d 

in 

b"* 
bJO

 



359 

CM
 

O
 

II 
II 

C
M

 

:c b
 

C
M

 

d
 

1 
1 

o
 

n—
1

 
lO

 O
 

lO
 

d
 

d
 

b"* ii 
b"-

o
 

o
 

0
0 

a; 

0 
O

 

.S
 

O
 

O
 

C3 

G
O

 

C
O

 

C
M

 

"P̂
 in 

L
O

 
C

sl 
o

 
o

 
in 
1^ 

T
- 

T
- 

O
 

o
 

in 

d
 

m
 

C
N

I 

in 
C

M
 

d
 

o
 

in 
in 

o
 

o
 

in 
C

M
 

o in 
o

 
-«-

b
" 

b"* 

=1 

.S
 

> 

O
 5

-1 

U
 

bJO
 

.3 O
 

O
i 

^ 



3
6
0
 

b'' 

CNJ 

d
 

3
: 

1^ 
o

 
cvi 

o
 

lo
o

m
 

cvi 
d
 

d
 

o
 

cvi 
o

 
cvi 

^\€ 

X
 

a; 

i o
 bJO

 

o
 

-^ 
o

 
O

H
 

csi 

(-( :̂! 
bJO

 

in 
d II 

C
D 

II ID
" 

CM
 

(N
 

b
 

X
 

C
D

 

•S
 

i 

3
: 

1N5 
o

 
cvi 

lo
o

in
 

d 
d 

o eg 

T
zr 

tT
f^

^
 

bJO
 

o
 

lO
 

CD
 

bJO
 



361 

o
 

o
 

lO
 

C
M

 

O
 II 

5 II b" 

£ 
b

 

CO
 

C
M

 

^ 
b

 
—

 
O

; 

h 
"* 

CM
 

3
: 

"?5 

1 

o
 

1 
1 

1 

o
 

o
 

b"- n
 

1 

o
 

b"' 

0 bJO
 

O
 

0 bJO
 

o
 II 

TM
 

o
 C

O
 

o
 

—
1 

1 
1 

1 
1 

1
—

1
—

 

o
o

in
in

o
o

 
C

M
T

-"o
d

'r^
C

M
 

b^ i 

—
1

—
 

O
 

1 
—

 

o
 

C
O

 

b"* 

b
 Q

 
b

 

CO
 

o
 CM

 
o

 .̂ 
o

 

•̂
 :̂
 

:i 
CM

 

b
 

X
 

Q
; 

n
3 

.s ^ > 
::i 

O
 ^ ;H
 

^ a bO
 

a 
q=! 
O

 
;-i 

Q
L

, 

CO
 

L
O

 

L
O

 

C
P

 

;-( 3̂ 
blD

 



362 

CO
 

o
 

o
 ^ CO

 
o

 

lO
 

^ 
O

 
II 

II 
^

c 

,__—
 

b
'' 

C
O

 

C
N

 

o
 

o
 

b'̂lb^ 
b"* 

.3 i a 

.s o
 

C
O

 

bJO
 

o
 

C
D

 

O
 

II 
II 

^ 

i 
b̂

 
~ 

^̂
^ 

^^ 
CO

 

o
 

C
M

 

b
 

3: 
C

Vi 

,C
M

 
L

^ 
tp

g 

b
 

O
b

 

X! 
a; 

-a 

bJO
 

.S
 

O
 



363 

cri/cr2, HIL, while the index of every curve is the parameter 77,2 == cf2lJiU)L'^. Along the 
horizontal and vertical axes values of apparent conductivity and distance from the bed 
middle to the probe center, expressed in units of bed thickness, are plotted, respectively. 

We will consider separately four cases, namely: 

• The conductivity of the bed is greater than that of the surrounding medium and its 
thickness exceeds the probe length {ai > a2, H > L). 

• The bed is more resistive than the surrounding medium and its thickness is greater 
than the probe length {ai < G2^ H > L). 

• The bed is more conductive than the surrounding medium but its thickness is smaller 
than the probe length (ai > (J2^ H ^ L). 

• The bed thickness is smaller than the probe length and its resistivity is greater than 
that of the surrounding medium {di < a2-> H < L). 

5.4.1. Thick conductive bed 

All curves are symmetrical with respect to the bed middle (Figs. 5.39-5.46). With an 
increase of parameter 77-2, for example due to an increase of the frequency, the width of an 
intermediate zone where apparent conductivity, a a, differs from that corresponding to a 
uniform medium with conductivity 02 becomes narrower. At the same time differentiation 
of curves to some extent decreases, i.e. the ratio of Oajox at the bed middle to that within 
the surrounding medium becomes smaller. For instance if HjL = 4 and cri/a2 = 4, the 
ratio Oajox calculated by Doll's theory is equal to 3.6 while for parameter 712 = 0.32 it 
is equal to 2.8. In another case when ajL = 4 and (Ji/a2 = 16, values of this ratio are 
equal to 11.9 and 9.5, correspondingly. 

With an increase of parameter n the vertical response of the induction probe becomes 
better, i.e. apparent conductivity Ua approaches closer to the apparent conductivity in a 
medium with conductivity ai. 

For example, if HIL = 2 and cri/o-2 = 4, the value of (Ja/(yi as calculated by Doll's 
formula, is equal to 0.82 but for n2 = 0.32 we have a^ = <^a(^i)- For smaller thicknesses 
of the bed, improvement of the vertical response is also observed. If H/L — 1, (Ti/a2 = 4 
we have for the same condition da/cri is equal to 0.63 and 0.88, respectively. 

Let us consider some simple ways to determine the bed thickness by using a two-coil 
induction probe. In accord with Doll's theory the ratio of Oajox corresponding to the bed 
interface and its middle is: 

77 = — a = H/L ^ 1 
' 2 1 - 1/2Q; ^ 

As is seen from this relation that only for relatively large ratios of H/L parameter rj is 
close to 0.5. For example ii a = 4, rj = 0.54, while if a = 10, 77 = 0.51. 

If determination of the bed thickness is based on the use of points of the profiling curve 
corresponding to half of the maximal value, an error does not exceed 2.5% if a = 4.0 
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and 10% for a = 2.0, but it reaches 60% when the bed thickness is equal to the probe 
length. Analysis of profiling curves shows that parameter 712 (n2 < 1.3) and ratio of 
conductivities, cri/cr2, do not practically influence the value of 2 for a given thickness of 
the bed. 

5.4.2. Thick resistive bed 

With an increase of parameter 712 the width of the intermediate zone decreases (Figs. 5.46-
5.49). Unlike the previous case, with an increase of 712, the ratio of conductivities, (Ja/(Ji^ 
in the surrounding medium and at the middle of the bed somewhat increases. For instance 
if Gi/(T2 = 16 and H/L — 4 this ratio, derived from Doll's theory, is equal to 5.25 while 
for the curve (Ja/(J\ with 712 — 0.64 it is equal to 10.0. Thus, in this case with an increase 
of frequency more resistive layers can be better detected. This fact can be explained 
in the following way. Let us consider a signal measured in the probe receiver as a sum 
of signals from a medium directly surrounding the probe and from the rest of the more 
remote part of the medium. Due to the internal skin effect an increase of a frequency 
results in a relative decrease of the quadrature component of the current in the removed 
part of the medium, and therefore the value of Oajoi also decreases. In the case when 
the probe is located within the bed it is directly surrounded by more resistive medium 
and a change of the quadrature component of induced currents in removed parts of the 
medium is more noticeable if the probe would be located within the surrounding medium, 
[02 > cTi)- For this reason with an increase of frequency up to a certain limit ratio of 
Oajox in the surrounding medium to that when the probe is against the bed increases. 
Also with growing frequency the vertical response of the probe improves. For instance, 
if G\I(J2 = 1/4 and H/L = A the value of Ga/(^\ for extremely low frequencies is equal to 
1.35 but for parameter 712 = 0.16 it is equal to 1.02. In the case where G\/a2 = 1/16 and 
H/L = 4 values of da/cFi are equal to 1.9 and 1.1, respectively. 

5.4.3. Thin conductive bed 

Curves of profiling corresponding to this case are presented in Figs. 5.50-5.53. With 
an increase of parameter 712, as in the first case, curves become less differentiated. De-
termination of bed thickness by making use of points where the value of the apparent 
conductivity is half of the maximal value of the profiling curve is not applicable because 
of large errors. 

5.4.4. Thin resistive bed 

Examples of these curves are presented in Figs. 5.54-5.56. The main features of profiling 
curves such as differentiation, width of the intermediate zone, are similar to those in 
the second case. Although the vertical response of the probe becomes better with an 
increase of a frequency, a value of apparent conductivity essentially differs from that 
corresponding to a medium with conductivity ai even for large values of ri2. For example, 
if ai/a2 = 1/16, H/L = 0.5 and 712 = 0.16 ratio aa/cTi = 2.5. Determination of thickness 
of such beds is also difficult. If H < l/AL and ai/a2 ^ 1/8, distinguishing such a bed is 
practically impossible with a two coil induction probe. 



Chapter 6 

THE TWO-COIL INDUCTION PROBE ON THE 
BOREHOLE AXIS, WHEN THE BED HAS A FINITE 
THICKNESS 

In this chapter we will consider radial and vertical responses of a two-coil induction probe 
located on the borehole axis as the bed has a finite thickness. The presence of the invasion 
zone will also be taken into account. The main attention is paid to the analysis of the 
influence of such factors as: 

• the probe length 

• the bed thickness 

• the bed resistivity 

• the resistivity of the surrounding medium 

• the resistivity and radius of the borehole 

• the frequency of the field. 

This investigation will allow us to better understand the influence of a formation thick-
ness on radial and vertical responses of a two-coil induction probe. 

In a similar manner as before the different character of the influence of induced currents 
in the borehole and in the formation on the quadrature and the inphase components will 
be emphasized. 

In order to perform this analysis we will describe three approaches which permit us 
to obtain a vast volume of data characterizing a behavior of the magnetic field on the 
borehole axis. They are: 

• Doll's theory. 

• The theory taking into account the skin effect in the formation and in the surround-
ing medium. 

• The method of integral equations with respect to tangential components of the 
electric and magnetic fields. 

It is appropriate to notice that results of this investigation are directly used in devel-
oping the theory and interpretation of multi-coil induction probes. 

365 
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Figure 6.1. The induction probe on the borehole axis. 

6.1. Doll's Theory of the Two-coil Induction Probe located on the 
Borehole Axis when a Formation has a Finite Thickness 

Assuming that interaction between induced currents can be neglected we will use results 
obtained in Chapter 3. Then for the quadrature and inphase components of the magnetic 
field we have: 

Qh,= 
ujfiL'^ 

/ ^(^jGi lnh, = 0 (6.1) 

where L is the probe length and cr̂  and Gi are conductivity and geometric factor of the 
2-th part of the medium; h^ is the vertical component of the magnetic field expressed in 
units of the primary field. 

An arbitrary position of the probe on the borehole axis is shown in Fig. 6.1. It is 
obvious that the geometric factor of the formation in presence of the borehole, G2, can 
be written as: 

G2 — G2 — G12 (6.2) 

where G2 is the geometric factor of the bed when the borehole is absent, and its expression 
has been derived in this previous chapter; Gu is the geometric factor of the borehole 
located against the formation. It is clear that this part of the medium has the shape of a 
cylinder with radius of the borehole and height equal to the bed thickness, H. 

By analogy the geometric factor of a medium with resistivity ps can be written as: 

Gl — Gs — Gis (6.3) 

where Gs is the geometric factor of the surrounding medium as the borehole is absent; 
Gis is the geometric factor of that part of the borehole which is located against the 
surrounding medium. 
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It is easily seen that the sum of geometric factors Gu and G13 is equal to: 

G; = G2- G12 (6.4) 

where Gi is the geometric factor of the borehole which was investigated in detail in 
Chapter 4. 

Taking into account eqs. 6.2-6.4, instead of eq. 6.1 we obtain: 

Qhz = ——WiGi -h (J2G2 + cTsGl] 

T 2 

[OlGi + (J2{G2 - G12) + Cr3(G3 - Gis ) ] 
2 

ujliL 
2 

(6.5) 
[cTiGi + G2G2 + CTsGs — Cr2Gi2 — Cr3(Gi — G12) ] 

[(cTi — cr2)Gi + (cr3 — cr2)Gi2 + cr2G2 + cr3G3] 

Thus the quadrature component, Q/i^, is expressed through known geometric factors, 
Gi, G2 and G3, where G2 + G3 = 1 and the geometric factor of the cylinder, G12, which 
can be presented as (Chapter 3): 

22 

S a z\ 

Coordinates r, 2:1, Z2 and distances Ri and R2 are shown in Fig. 6.2. 
Since the apparent conductivity, Ga^ is related with the quadrature component as: 

we have: 

<̂ a = {cfi - cr3)Gi H- (0-3 - cr2)Gi2 + cr2G2 + cr3G3 (6.7) 

It is clear that eq. 6.5 and 6.7 describe the field and apparent conductivity regardless of 
the position of the two-coil induction probe with respect to formation boundaries. 

Here it is appropriate to make the following comments: 

• The first term of eq. 6.7 does not depend on a probe position, since it describes 
a signal caused by induction currents in the borehole with conductivity equal to 
(Ji — (J2-

• The last two terms of this equation: 

(^2G2 + CF^G^ 

characterize a field caused by induced currents in the formation and in the surround-
ing medium when the borehole is absent. 
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Figure 6.2. Illustration of eq. 6.6. 

• Equation 6.7 can be written as: 

Oa = (CTI - Cr3)Gi + (^3 - (J2)Gu + d^a^ 

where a i is the apparent conductivity corresponding to a horizontally layered 
medium. 

• Equations 6.5 and 6.7 can be easily generalized for the case when the invasion zone 
is present (Chapter 3). 

As an example, suppose that the two-coil induction probe is symmetrically located 
with respect to formation boundaries. For this case the values of geometric factor Gu 
are given in Table 6.1 and corresponding curves describing the dependence of Gu on 
parameter H/2L are presented in Fig. 6.3 (here L and H are probe length and bed 
thickness, respectively). The curve index is the ratio a /L , where a is the cylinder radius. 
For the case considered the geometric factor of the cylinder is defined by two parameters, 
namely its radius, a, and its height, / / , expressed in units of the probe length. 

As is seen from Table 6.1 and curves in Fig. 6.3 with an increase of parameter /3 = H/2L 
function G12 relatively rapidly approaches its asymptotic value which corresponds to that 
of the geometric factor of the borehole. With an increase of the probe length, L, with 
respect to the radius, a, curves of Gu approach this asymptote for smaller values of 
H/2L. If the probe length, L, exceeds the cylinder diameter, the geometric factor of such 
a cylinder practically coincides with that of an infinitely long cylinder '\i H > 1.2L. In 
other words, the main contribution to a signal is brought by currents within a cyhnder 
with a height which is slightly greater than the probe length. 

Correspondingly, the remaining part of the cylinder, in particular the borehole, does 
not in essence affect the signal. With an increase of the borehole radius or a decrease 
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TABLE 6.1 
Values of function Gu x 10^; /3 H/2L, a = a/L 

0.05 0.05v/2 0.1 O.lv/2 0.2 0.4 0.8 1.6 

0.1 

0=2 
0.4 

0.8 

1.6 
3.2 

0.102 

0.2.34 

1.25 

25.2 

25.2 

25.2 

0.399 

0,912 

4.58 

51.0 

51.1 

51.1 

1.53 

3-48 

15.8 

103 
104 

104 

5.68 

12.7 

49.8 

210 
211 

211 

19.6 

43,2 

142 

422 

427 

427 

155 

323 
775 
1520 

1570 

1570 

519 

1050 

2170 

3690 

3970 

3980 

830 

1660 

3340 

5630 

6410 

6520 

CM 

Figure 6.3. Behavior of function Gu- Curve index a/L. 
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Figure 6.4. Behavior of function G^. Curve index h/L. 

of the probe length an approach to the asymptotic value takes place for large values of 
H/2L. This fact permits us to explain some features of radial responses of multi-coil 
focusing probes in cases when a radius of the invasion zone is comparable or greater than 
a length of some of two-coil probes forming this system. 

We will consider the geometric factor Gu as the sum of the geometric factors of two 
cylinders having a common base z — 0. It is obvious that the geometric factor of such a 
cylinder is equal to G12/2. Now it is a simple matter to obtain a value of the geometric 
factor of a cylinder with coordinates of its bases: Zi and 22, respectively. In fact the 
geometric factor of the cylinder, located nonsymmetrically with respect to the probe, is 
defined from the relation: 

^•4ri-d-\MU)-^AU)] (6.8) 

where Z2 > Zi. 
By analogy the geometric factor of the cylindrical layer with coordinates 2:1, 2:2, ^1 and 

a2 can be presented as: 

(6.9) 

This relation is useful for investigating radial responses of induction probes in the presence 
of an invasion zone as well as for evaluation of the influence of caverns. 

As was demonstrated above, function 6*12 characterizes a signal caused by induced 
currents in an infinitely long cylinder. At the same time it is useful to observe the 
influence of different parts of this cylinder. With this purpose curves of function G\2 are 
presented in Fig. 6.4. They demonstrate the influence of relatively thin cylinders with 
various position with respect to the induction probe. If the probe length exceeds the 
cyhnder radius, the part of the borehole which directly surrounds the probe provides the 
main contribution to the signal caused by induced currents in the borehole. 
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Figure 6.5. Illustration to derivation of eq. 6.10. 

Equation 6.5 has been derived assuming that the invasion zone is absent. Now let us 
consider a more general case when there is penetration of the borehole solution into the 
formation (Fig. 6.5). 

By analogy with a more simple case (eq. 6.8) we have the following expression for the 
quadrature component of the magnetic field: 

r 2 
Qh^ = —17-^404 + (cTi - ^4)^12 + asGs + (ai - ^3)^12 -h (̂ 2 - (73)02] 

2 (6.10) 
[(TsGs + (74^4 H- {ai - (T4)Gi -f {cr^ - ai)Gi2 + {(J2 - ^3)62] 

where ai, Gi; a2, G2] cr3, G3; (74, G4 are conductivities and geometric factors of the 
borehole, the invasion zone, the formation and the surrounding medium, respectively; 
G12 is the geometric factor of that part of the borehole which is located against the 
invasion zone. 

Correspondingly, for the apparent conductivity we obtain: 

^a = (^sGs + Cr4G4 + ( a i — Cr4)Gi + ((J4 — (Ti)Gi2 + {(72 " (7s)G2 (6.11) 

In conclusion let us make the following comment. Doll's theory does not take into 
account the skin effect. For this reason we can expect that both vertical and radial 
responses, specially the first one, derived from eq. 6.8-6.10 will be in many cases different 
from actual responses. Correspondingly in the next section we will consider responses 
of two-coil induction probes, assuming that the skin effect in the formation and in the 
surrounding medium is not subjected to the presence of borehole and invasion zone. 

6.2. The Theory of a Two-coil Induction Probe, Taking into 
Account the Skin Effect in an External Medium 

Let us assume that currents induced in the borehole and in the invasion zone are defined 
by only the primary vortex electric field. In other words, we can neglect the skin effect 



372 

within these two parts of the medium. Also we will suppose that outside the borehole and 
the invasion zone the skin effect manifests itself in the same manner as in a horizontally 
layered medium. It is easy to understand that as these conditions are met we can ignore 
the effect caused by interaction between induced currents in the borehole and in the 
invasion zone on one hand and currents induced in the formation and in the surrounding 
medium on the other hand. 

First, following results obtained in Chapter 3 we will present a field in a medium with 
two horizontal interfaces, /IQ, as a sum of two fields: 

ho = hi + he (6.12) 

where hi, is the vertical component of the magnetic field expressed in units of the primary 
field and caused by induced currents in the borehole; he is the vertical component of the 
magnetic field of currents arising outside the borehole. 

The field hi can be expressed through geometric factors as: 

hi = '-^{a2G,2 + <T^Grs) (6.13) 

where Gu and G13 are geometric factors of borehole parts located against the formation 
and the surrounding medium, respectively. It is obvious that: 

Gu = JqdS Gis = JqdS 

Si 52 

where 

L r^ 
and G12 + Gis = G\ ^ 2 R\Rl 

Thus, the magnetic field of currents induced in the formation and in the surrounding 
medium when the borehole is not conducting can be presented in the form: 

/j = / i o - ^ ^ ( a 2 G i 2 + a3Gi3) (6.14) 

Correspondingly, for the magnetic field on the axis of the borehole with conductivity Oi 

we have: 

h = ho —[(T2CT12 + CTsGiaJ H — c r i G i 

= ho+ '-^[a.G, - a^Gu - ^sG.s] (6.15) 

= ^0 + 7, [(^3 - CF2)Gi2 + (CTI - as)Gi] 
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As was shown in the previous chapter the magnetic field of the vertical magnetic dipole, 
/lo, in a horizontally layered medium is expressed through known functions. For example, 
when the probe is located symmetrically with respect to the layer boundaries, we have: 

oo 

J 1712 1 - ^ 1 2 e-2w2/i 
u 

and 

0 

m^m2e-^(^2-mi)(j^ 

( m i + 1712^ (1 - ml2 e-2"^2H) 
ho=2L'I,__••:[:z,^ .... .:::i„. HH^L 

where /i^^ is the magnetic field on the z-axis in a uniform medium with resistivity of 
the formation; H is the formation thickness; L is the probe length; m2 = (m^ — k^Y^'^^ 
nil = {m^ - ^i)^^^, ^12 = (^2 - mi)/(mi + 1712). 

Let us remember that function /i^^ as well as ho is the magnetic field normalized by 
the primary field, and it presents the complex amplitude of the field. 

In a more general case, when there is an invasion zone within the formation, the field 
on the borehole axis can be written as: 

h = ho+ '^^^[{(T2 - (T3)G23 + (^4 " ^3)<^12 + (^1 - ^4)^1] (6.16) 

where ho is the field in a horizontally layered medium when the borehole and the invasion 
zone are absent; CTI, cr2, 0-3, and a^ are conductivities of the borehole, the invasion zone, 
the formation and the surrounding medium, respectively; Gi and G2 are geometric factors 
of the borehole and its part located against the formation; Gu is the geometric factor of 
the invasion zone and, as was shown in Section 6.1, it can be expressed through function 
Gi2' 

Thus, calculation of the field on the borehole axis consists of determination of the field 
in the horizontally layered medium when the borehole and the invasion zone are absent 
and calculation of geometric factors of vertical cylinders of a finite height the axis of which 
coincides with the borehole one (Table 6.1). 

In accord with eq. 6.15 we have the following expressions for the quadrature and inphase 
components of the field: 

Q /i - Q /lo + "^^^[{crs - (J2)Gi2 + {(Ji - a3)Gi] ,^ ^^. 

In /i = In ho 

Correspondingly, in the case when there is an invasion zone we have: 

T 2 

Q /l = Q /lo + 5~[ (^2 - ^3)^23 -h (0-4 - (Tz)Gi2 + (cTi - (74)Gi] .g ^g. 

In /i = In ho 
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Therefore, in both cases induced currents in the borehole as well as in the invasion zone 
do not have an influence on the inphase component of the secondary field, and it coincides 
with that corresponding to a horizontally layered medium. 

As was pointed out before, this fact demonstrates the greater depth of investigation in 
the radial direction when the inphase component is measured. 

Here it is appropriate to notice that this method of field calculation allows us to establish 
frequencies, geoelectric parameters of a medium, and probe lengths when the focussing of 
multi-coil probes provide essential reduction of the influence currents in the borehole and 
in the invasion zone. 

Comparison with calculations based on a solution of the system of integral equations has 
permitted us to establish boundaries of application of this approximate method, i.e. the 
range of parameters when induced currents in the borehole and invasion zone arise due to 
only the primary electric field and the skin effect in the formation and in the surrounding 
medium manifests in the same manner as in the horizontally layered medium. With error 
which does not exceed 10% this range of parameters is defined as: 

ai 
<0.3 

L 1.5 

l + ( ^ - l ) ( l - G 2 ) 
-,1/2 

(6.19) 

or 

ax 
<20 

L 
> 4 1 + ^ - 1 ) ( 1 - G 2 ) 

^ 2 

1/2 

(6.20) 

where L is the probe length; ai is the borehole radius; G2 is the geometric factor of the 
formation; hi and /i2 are the skin depth in the borehole and in the formation, respectively, 
and: 

Ai = 27r/ii A2 == 27r/i2 

In particular, for symmetric position of the probe we have: 

G2 = 1 - L/2H \iH> L 

In this case conditions 6.19-6.20 can be written as: 

hi 

L 

<0.3 

1.5 

' - | ^ 0 ^ 
1/2 

(6.21) 

(6.22) 

^ > 2 0 (6.23) 



-^1 . 
-^ > 4 
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V^2 
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1/2 

(6.24) 

Correspondingly, with an increase of ratio H/L we obtain conditions for a medium with 
only the cylindrical interface: 

^ < 0.3 ^ < 1.5 (6.25) 
All Il2 

or in a more general model when there is an invasion zone we have: 

max f ^ , ^ I < 0.3 -^ < 1.5 (6.26) 

where h^ is the skin depth in the formation; a2 is the invasion zone radius. 
As follows from the second equation of 6.20 if the probe is located in the surrounding 

medium and far away from the formation we have: 

^ > 4 (6.27) 

since the geometric factor G2 tends to zero. 
Now let us consider two numerical examples. 

Example 1 

Suppose that pi = 1.0 ohm-m, p2 = 2.0 ohm-m, p^ = 20.0 ohm-m, i7 == 3 m, ai = 0.1 m 
and L = 1.5 m. Then in accord with eq. 6.21-6.22 we have: 

hi > - m and /i2 > 1 m 

Therefore, frequencies have to satisfy the following conditions: 

/ < 2 X 10^ Hz and / < 10^ Hz 

i.e. 

fmax < 1 0 ' Hz 

Example 2 

Assume that pi = I ohm-m, p2 = 20.0 ohm-m, ps = 2 ohm-m, ai = 0.1 m, iJ = 3 m 
L = 1.5 m. Then the maximal frequency is defined from relations: 

hi > - m and /12 > 2.4 m 
o 

Whence fmax < 2 x 10^ Hz. 
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Apparent conductivity curves, 0^1 o^, defined from equation: 

^ Q/i 
\XUJL?' 

where Q/i is given in eq. 6.15 are presented in Figs. 6.6-6.9. 
The difference between o^ and its value in a uniform medium with conductivity of 

the formation is defined by the influence of the borehole, the surrounding medium and 
the parameter L//i2- With an increase of the resistivity of the surrounding medium, the 
formation thickness and parameter L//i2, the relative role of the borehole increases. This 
becomes especially noticeable if pa > p2-

By analogy we can calculate apparent conductivity, a a, in the presence of the invasion 
zone provided tha t conditions 6.26 are met. 

6.3. Influence of the Finite Thickness of the Formation on the 
Magnetic Field Behavior 

In this section we will consider again the influence of induced currents on the behavior of 
the quadrature component of the magnetic field on the borehole axis when the formation 
has a finite thickness. However, unlike the previous sections we will proceed from the 
results of calculations based on a solution of integral equations with respect to tangential 
components of the field. This method of the solution of the value of the boundary problem 
has been described in detail in Chapter 3. This analysis is mainly based on numerical 
modeling performed by L. Tabarovsky and V. Dimitriev. 

First of all we will study the influence of a finite thickness of the formation on frequency 
responses of the quadrature component of the field hz when the probe is symmetrically 
located with respect to the formation interfaces. With this purpose we will introduce 
parameter, defined by the relation: 

where Q hz and Q hzoo are quadrature components of the field on the borehole axis when 
the formation has finite and infinite thickness, respectively. 

Frequency responses of parameter x are presented in Figs. 6.10-6.17 for various values 
of ratios: H/L, L/ai and (JI/G^. 

First let us notice the following. Behavior of frequency responses of the function es-
sentially depends on ratio 02/o^^ In the case when (J2 > era a value of x differs from 
unity by less than 10%, if the formation thickness exceeds the probe length {H > L). In 
another case when the formation is more resistive than the surrounding medium a2 < (73 
the different dependence of function x from geoelectric parameters is observed. 

As is seen from the curves with an increase of the formation resistivity the influence 
of its finite thickness manifests itself more strongly when Xi/ai > 16. It is also obvious 
that this effect becomes less with an increase of frequency. For instance, if H/L = 2v^ , 
L/ai = Ay/2 and ps/pi = 2, we have (Figs. 6.15-6.17): 

z= 1 9 f / ^^^^^ ^ ^^ ^^^ ^'^^^^ ^ ^^ X i.z lor <^ ^^^^^ ^ 25 and P2/P1 = 32 
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With an increase of resistivity of the surrounding medium (pa) the influence of the finite 
thickness of the formation decreases (Ai/ai > 16), and this effect becomes more significant 
with an increase of the frequency. 

It is appropriate to notice also that with an increase of the probe length, L, and 
assuming that other parameters are not changed the deviation of function from unit 
increases. 

Simultaneously increasing the probe length and the frequency we can keep the influence 
of the surrounding medium the same. 
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Chapter 7 

MULTI-COIL DIFFERENTIAL INDUCTION PROBES 

Analysis of the field in media with horizontal as well as cylindrical interfaces, performed 
in previous chapters, has shown that a two-coil induction probe does not possess notice-
able advantages with respect to electric logging probes. Of course, such conditions as a 
nonconducting borehole surrounded by a relatively conductive medium with thin highly 
resistive layers can be considered as an exception. 

The influence of currents induced in a borehole and in an invasion zone is usually 
suflficiently great, and for this reason, in order to determine a formation resistivity, it 
is necessary to apply two-coil induction probes with practically the same length as in 
electric logging. Let us notice that at the range of frequencies and resistivities, where the 
skin effect manifests itself relatively weakly the influence of the surrounding medium is 
even greater than in electric logging. But with an increase of frequency, the conductivity 
of a medium, as well as formation thickness, absorption of the electromagnetic energy 
essentially improves the vertical response of the probe. This brief comparison with normal 
or lateral electric probes shows that application of two-coil induction probes is hardly 
reasonable. Moreover, it requires the use of more complicated equipment. 

For all these reasons H. Doll suggested, in 1946, multi-coil differential probes and also 
developed an approach allowing us to determine parameters of these systems. 

At the beginning we will consider multi-coil induction probes, proceeding from the 
theory of small parameters, when we can neglect the interaction between currents. In 
other words, currents in any part of the medium, regardless of how far from the probe 
it is located, create a signal which is only defined by the conductivity and the geometric 
factor of this part. 

It is obvious that the role of various parts of the medium in forming a signal essentially 
depends on the probe length. For instance, with an increase of the probe length the influ-
ence of more remote parts of the medium increases, and consequently, the contribution of 
currents induced near the probe becomes smaller. Applying probes of various lengths with 
different numbers of turns in coils, connected in series in the same or opposite directions, 
we can significantly reduce the signal caused by currents in any element of the medium 
independently of the distance to a probe. However, for improving the characteristics of a 
two-coil probe it is not sufficient to decrease a signal from some element of the medium. 

For improvement of the radial response of a two-coil probe in order to determine a 
formation resistivity it is necessary to decrease the contribution of currents induced in 
the borehole and in the invasion zone with respect to a signal caused by currents in the 
formation. In other words, it is essential to decrease the influence of parts of the medium 
located relatively close to the probe. At the same time the signal generated by currents 
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in remote parts of the medium should not be very smah, otherwise serious measuring 
problems would arise. 

For improving the vertical response of a two-coil induction probe it is necessary to 
decrease the relative contribution from the surrounding medium with respect to the signal 
caused by currents in the formation against which a two-coil induction probe is located. 
In other words, in this case the influence of more remote parts of the medium has to be 
reduced providing a significant signal from currents induced in that part of the medium 
which is located relatively close to the probe. Thus, improvement of radial and vertical 
responses of a two-coil induction probe is related to the development of multi-coil probes 
which have to satisfy opposite requirements. 

As will be shown later, under certain conditions we can improve both responses simul-
taneously. However, in a general case improvement of one response with respect to that 
of a two-coil induction probe is related with deterioration of another and vice versa. 

Arbitrarily, a multi-coil induction probe can be presented as a sum of two-coil induction 
probes. Currently, there are known symmetrical and non-symmetrical multi-coil induction 
probes, and their characteristics will be considered in detail in the next sections. As a rule 
in induction logging using one frequency the electromotive force, caused by the current 
in the transmitter coil or coils, is significantly greater than that generated by induced 
currents in the medium. For this reason an additional compensating coil to increase 
the accuracy of measurement is installed. Due to this the electromotive force caused by 
the primary field is practically equal to zero. It is also appropriate to notice that some 
differential probes do not require a compensation coil. 

7.1. Methods of Determination of Probe Parameters 

Methods of choosing probe parameters are based on the use of differential and integral 
responses of two-coil induction probes. The differential radial response defines a signal 
from a thin cyhndrical shell, expressed in units of the signal, caused by currents in a 
uniform conducting medium. In accord with Doll's theory, described above, we have: 

oo 

Gr=drfqdz (7.1) 

— OO 

where q dr dz is the geometric factor of the ring with cross section equal to dr dz and 
q = {Ll2){r^/R\Rl)- R, = [r^ + {z - L/2f]''^, R2 = [r̂  -f (z + L/2)2]V'; r and z are 
cylindrical coordinates of a point, and the origin of coordinates system coincides with the 
probe middle; L is the probe length. 

Making use of results developed in Chapter 3 let us consider in detail the behavior 
of function Gr- As was shown in this chapter the magnetic field on the borehole axis, 
generated by currents in a thin cylindrical shell and expressed in units of the primary 
field, can be presented in the form: 

0 0 

m\^Kl{\r) 
+ mh{\r)Ki{\r 

•cosALdA (7.2) 



387 

where r is the shell radius; n = uj/iarAr; uj is the frequency; ji is the magnetic permeability 
equal to An x 10~^ H/m; a and Ar are conductivity and thickness of the shell; / i (Ar) and 
Ki{\r) are modified Bessel functions. As is well known, we have: 

A ( A r ) ^ ^ Ki{\r)^^ as Ar ^ 0 
Z AT 

and 

hiXr) -^ , i^i(Ar) -^ A/TT as Ar ^^ OO 

Let us notice tha t the product / i(Ar)i^i(Ar) does not exceed 0.5 when A varies from zero 
to infinity. For this reason at the range of small parameters we have: 

oo 

r3 r 
Qh,c^ in— / X^KliXr) cos XL dX (7.3) 

0 

Taking into account the relation between the quadrature component of the field, Q/i^, 
and the apparent conductivity: 

2 
^a = p^ Q hz 

jiujL'^ 

we obtain: 

err A r 2a^ 

where: 

Q.3 /-

— / rn?Kl{m) cos ma dm C -̂̂ ) 
TT J 

a = L/r or Oa = c^Gr (7.5) 
oo 

r A r 2 a ^ f o^.o. . . A r 1 

and 

m'^K?(m) cos ma dm =^ 7;C(a) (7.6) 
TT J r a"^ 

oo 

C(Q;) = / m^i^^(m) COS a m dm 
TT J 

0 

It is obvious that : 

a/ia;L2 A r 1 
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and correspondingly, for the electromotive force in the receiver of a two-coil induction 
probe we have: 

afiuL^ Ar 1 MrMRLOfi ^I^UJ'^MTMRI 

Now we will consider the behavior of C(a) for large and small values of a. 
Suppose that a ^ oc. Introducing the notation 0(m) = im?Kl{m) and applying 

integration by parts we obtain an asymptotic presentation: 

OO CO 

f 1 l°° 1 \^ I f 
I 0(m) cosma dm = — (/)(77i) sinam H—r0'(m)cosma i (/)" {m) cos ma dm 

J a \Q a^ lo Q:̂  J 
0 0 

Taking into account that 0(0) = 1 and that the function along with its derivatives is 
zero as m. tends to infinity, we have: 

OO OO 

/
(/)(m) cos ma dm = o^'W o / ^"{'^) cos am dm 

a^ a^ J 
0 0 

If m -^ 0 we have: 

KAm) :^ h — m m 
m 2 

Therefore: 

(j)(rn) = m'^K^{m) ĉ  1 -h m^ In m 

(/)'(m) ~ 2mlnm 

0''(m) ĉ  21nm ̂  -2Ko{m) 

Whence: 

OO OO 

/
dim) cos ma dm ^ - / /^o(^) cos ma dm c::̂  - ^ 

TTj a^ 
0 0 

smce 

(1 -h a2)i/2 
0 

Thus, we have: 

OO 

m) cos am dm 

2a^^7 r 
TT a^ 2 

C(a) ^ -;;^—-- = 2 if a ^ OO 
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TABLE 7.1 
Values of function C{a) 

a 

0.1 
0.2 

0.3 
0.4 

0.5 

0.6 

0.7 

0.8 
0.9 

1.0 

C{a) 

0.58620x10-3 

0.46248x10-2 

0.15254x10-^ 

0.35029x10-^ 

0.65736x10"^ 

0.10830 

0.16280 

0.22858 

0.30437 

0.38845 

a 

2 

3 
4 

5 
6 

7 

8 

9 

10 
11 

C{a) 

1.3110 

1.8546 

2.0724 

2.1473 

2.1551 

2.1634 

2.1530 

2.1404 

2.1278 

2.1161 

a 

12 

13 
14 

15 

16 

17 

18 

19 

20 

C{a) 

2.1056 

2.0962 

2.0879 

2.0806 

2.0740 

2.0683 

2.0632 

2.0586 

2.0545 

In the opposite case, as a -^ 0, C{a) decreases directly proportional to a^, inasmuch 
as integral f^ m'^Kf{m) cos ma dm tends to the constant when a goes to zero. Values of 
this function are given in Table 7.1. As follows from this table C{a) can be presented as: 

C{a) c^ 0.586 a^ if a < 1 

The differential radial response, G^, depends on two parameters, namely: the ratio of 
the probe length to the shell radius, L/r, and the ratio of its thickness to the radius, 
Ar / r . 

First, we will assume that for all shells Ar / r = const. In this case let us present Gr in 
the form: 

Ar 

if r -> 0, a -^ oo and C{a) -^ 2. Thus: 

n 2Ar 2 
Gr -^ r 

In the opposite case, when r -^ oo, a -^ 0 and C{a) -^ ka^ {k = 0.586), we have: 

Ar 1 
Gr -^ k—L-

r r 

Therefore, the geometric factor of cylindrical shells, the thickness of which is directly 
proportional to their radius, changes in the following way. For small values of r the 
geometric factor is also small, then it increases directly proportional to the square of the 
radius, reaches a maximum and with further increase of the radius it decreases inversely 
proportional to r (Fig. 7.1a). 
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0.02-

0 
1 
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— 1 — 

3 

Ar/r=0.1 

1 1 1 1 

4 5 6 r/ 

Ar/L = 0.1 

Figure 7.1. Function Gr-

Now we will present the medium as a system of coaxial cylindrical layers with the same 
thickness: Ar = const, and correspondingly we can write Gr in the form: 

Gr 
Ar 1 

C{a) 
L a 

If r -^ 0 we have: 

Ar 2 
(jr^ 

L L 

while for large values of radius we obtain: 

KJr kArL 
1 

Therefore, at the beginning Gr increases directly proportional to r, then it grows slower, 
reaching a maximum and for large values of r it decreases inversely proportionally to r^ 
(Fig. 7.1b). Correspondingly, the maxima of the geometric factor Gr for uniform and 
nonuniform presentation of the medium by shells are shifted from each other. 

First, we will consider the graphical method of determination of the parameters of the 
multi-coil differential probe. Let us notice that this was the main approach applied in de-
veloping the first induction probes. Making use of transparent paper and simultaneously 
putting on several differential responses of various two-coil induction probes, the parame-
ters of the multi-coil probe are chosen so to reduce the influence of the shells surrounding 
the probe as much as possible. Correspondingly the depth of investigation of a multi-coil 
probe increases. If the differential response of the multi-coil induction probe within some 
interval is equal to zero, the geometric factor of any thin cylindrical shell of this interval 
is also equal to zero. In other words, the magnetic field of induced currents in such a shell 
creates a positive electromotive force in one group of receivers while in other groups of 
coils it generates the same signal by magnitude and different by sign. 

It is obvious that the radial differential response of the multi-coil induction probe does 
not depend on the distribution of conductivity in the radial direction if within every 
cylindrical layer the resistivity remains constant. 
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In the determination of the differential response there is an element of uncertainty, 
inasmuch as the dimensions of a shell are not defined. For this reason it is appropriate 
to find out the maximal thickness of the shell, when its geometric factor with sufficient 
accuracy is described by Gr- It is obvious that the geometric factor of the shell with 
thickness Ar can be presented as a difference of geometric factors of two cylinders with 
external and internal radius Ve and r ,̂ respectively. For a sufficiently thin shell, in accord 
with eq. 7.6 we have: 

Gr{a) = ~\c{a) = Gi(ae) - Gi(a,) 
r a^ 

(7.8) 

where ae = L/r, ai = L/ri, a = L/r, r = {ri-\- re)/2 (re = r ^ Ar/2, Vi = r — Ar/2) and 
L is the probe length. 

It is clear that: 

a a 
1 + Ar/2r 1 - Ar/2r 

Let us consider two limited cases. 

Case 1 

If r ^> 0, a ^ cxD, C{a) -^ 2, Gi[a) —^ Xjo? and therefore: 

GrKOi) = 
r a^ 

It means that if the external radius of the shell is many times smaller than the probe 
length, the geometric factor of such a thin shell is practically equal to that of the infinitely 
thin one. 

Case 2 

If r ^ (X), a —> 0, Gi{a) ^^ 1 — ka, C{a) -^ ka^. Therefore: 

Ar 
— k a = k{ai — a^) 

or 

Ar 
-a 1 - (Ar/2r)2j 

0 

This relation becomes more accurate with a decrease of Ar / r . Calculations show that if 
Ar / r < 0.2, eq. 7.8 is valid practically for all values of a, i.e. the geometric factor of the 
shell is described by Gr-

The second radial response of the two-coil induction probe is its integral response (direct 
and inverse ones). The direct integral radial response defines the signal caused by currents 
in the cylinder referred to that from currents in a uniform medium as a function of 
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10 

0.1 

0.01 

0.001 

1--Gi(a) 

G^{a) 

0.01 0.1 1 10 100 
a 

Figure 7.2. Direct and inverse integral responses. 

the distance from the axis where the probe is located. As is well known the geometric 
factor of the borehole is defined by Gi(a), where a = L/a. If instead of the borehole 
radius a we introduce radius r and the probe length L is considered to be constant, then 
G\{r/L) represents the direct integral radial response of a two-coil induction probe. If 
r ^ 0, Q; ̂  cxD then G\{a) -^ Xjo? — r^jl?', i.e. the geometric factor of the cylinder 
at the beginning increases directly proportional to the square of its radius and inversely 
proportional to l?. For large values of r, a tends to zero, G\[OL) -^ \ — ka— 1 — kL/r, and 
correspondingly the response magnitude approaches to unity. It is obvious that coefficient 
k is equal to 0.586. 

The inverse integral radial response characterizes a contribution caused by currents in 
a medium outside the cylinder with radius r, and it is related with Gi{a) as: 

G'^'^l-Giia) 

Direct and inverse integral responses are presented in Fig. 7.2. Applying the graphical 
method we can choose corresponding characteristics of multi-coil induction probes. 

From the point of the depth of investigation the direct integral response of a multi-coil 
induction probe has to satisfy two conditions: 

• Its value near a probe has to be minimal. 

• It should approach relatively slowly to its asymptote, which is equal to unity for all 
induction probes. 

It is appropriate to notice that the graphical method of obtaining the radial responses 
of multi-coil induction probes has some shortcomings. They are: 
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• The process of choosing probe parameters is sufficiently cumbersome. 

• The accuracy of determination of small values of the geometric factor at the initial 
part of the response is usually very low. It becomes specially noticeable in the case 
of a nonuniform medium, for example, when the borehole is much more conductive 
than the formation. For these conditions the focusing abilities of a probe, chosen by 
the graphical method, can be insufficient in order to eliminate the influence of the 
borehole or the invasion zone especially, if the latter is more conductive than the 
formation. For this reason focusing features of a multi-coil induction probe, chosen 
by the graphical method, manifests themselves as a rule only for relatively small 
ratios P2/Pi-

rn With an increase in the number of probe coils this process becomes more and more 
complicated. 

• Making use of the graphical method it is practically impossible to chose optimal 
parameters of the probe, when simultaneously with a decrease of the signal from 
the borehole and the invasion zone we can provide a maximal signal from more 
remote parts of the formation. 

• This method of superposition of radial responses of two-coil induction probes does 
not practically allow us to find parameters of probes which are sensitive only to 
certain parts of medium, similar to special probes in electrical logging as micrologs. 

In order to overcome these difficulties let us consider an analytical method of determina-
tion of probe parameters. As is well known the quadrature component of the electromotive 
force arising at the receiver of a two-coil induction probe due to induced currents in a 
medium is: 

Q ^ - Q/i, • 4 = ^ ^ a • 4 (7.9) 

where 

^0 = -Tr~7T~^l^ ^^ Q^ = ;; y^a (7.10) 

Here cr̂  = ^^=1 (^iGi and Gi and ai are the conductivity and the geometric factor of the 
i-th part of a medium. 

Suppose that the induction probe consists of s transmitter and t receiver coils. Then 
it can be presented as a system of st two-coil induction probes, and the quadrature 
component of the electromotive force induced in measuring coils of this probe can be 
written as: 

s t 

^ = EE^"/5 (7.11) 
a^l 13=1 
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{a is transmitter coil, f3 is receiver one). 
In accord with eqs. 7.10 and 7.11 we have: 

2 2 ^ * 

a = l 3=1 La^ ,=1 
(7.12) 

Thus, the procedure of choosing parameters of multi-coil induction probes allowing us to 
eliminate the influence of k arbitrary parts of the medium is reduced to a solution of a 
system of k equations: 

±±±'^G.iL.,) = 0 (7.13) 

Let us remember that unknown parameters of the multi-coil differential probe are lengths 
of the two-coil probes and moments of coils. 

It is obvious that the number of equations can be taken either equal to the unknown 
parameters or greater. In the latter the least squares method can be apphed if the system 
is linear or in a more general case gradient methods can be used. Function Gi{La(3) can 
be either the geometric factor or a very thin cylindrical shell (the differential response) or 
that of a relatively thin cylindrical layer. In such a case this function is expressed through 
the integral response of a two-coil induction probe G\{La(3). 

The analytical approach is also convenient to analyze radial responses of known differ-
ential probes, specially when the probe consists of only one transmitter coil, while others 
are receiver ones or vice versa. 

Unlike the graphical approach this method allows in principle to solve several problems 
such as: 

• Choice of optimal parameters of a differential probe which provides a certain depth 
of investigation or a sensitivity to specific parts of a medium as well as a maximal 
signal from these parts of the medium. 

• Development of interpretation of soundings based on use of two- or three-coil induc-
tion probes with different lengths. 

Let us notice that if Gi{Laf3) in eq. 7.13 represents the differential radial response, the 
equation can be rewritten in the form: 

ttt^^CM^O (7.4) 

where values of C{ai) are given in Table 7.1. 
In accord with the definition of the integral radial response its expression for multi-coil 

probes has the following form: 

G = ^=^^=^ (7.15) 

1.1. 1 3=1 ^"/^ 
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where Gi{La(3/p) is the geometric factor of the cyhnder with radius r for a two-coil 
induction probe with length L /̂?. The denominator in eq. 7.15 is proportional to the 
electromotive force in a multi-coil probe caused by currents in a uniform medium. 

It is appropriate to notice that eq. 7.15 can be used for calculation of radial responses 
of differential probes in a medium which is not uniform with respect to magnetic perme-
ability. 

Later in this chapter we will perform analyses of radial responses of several multi-coil 
probes which will illustrate the efficiency of this approach. 

7.2. Physical Principles of Multi-coil Differential Probes 

Until now it was assumed that interaction between currents is absent, i.e. all currents 
induced in a conducting nonuniform medium, regardless of the distance from the source, 
are shifted in phase by 90°. For this reason electromotive forces induced in measuring 
coils of a probe are in phase with each other, and they are added and subtracted in the 
same way as scalars. If only one component of the electromotive force, for instance the 
quadrature component, is measured it is subjected to the same operations as scalars, 
regardless of whether currents are shifted in phase by 90°, or the internal skin effect 
manifests itself and due to it at every point of a medium there are both quadrature and 
inphase components of the induced current. 

However, in the latter the magnitude of current density does not depend on the primary 
magnetic flux only but also on the intensity of currents in the neighboring parts, i.e. 
in essence on the distribution of conductivity in a medium. Correspondingly, a value 
of geometric factor becomes different from that which follows from the theory of small 
parameters when the skin effect is neglected. For this reason focusing features of the 
probe, the parameters of which were calculated assuming the absence of the skin effect, 
can be seriously deteriorated under real conditions. The character of the influence of 
the skin effect essentially depends on frequency, distribution of conductivities, and length 
of probes. In order to take into account the influence of the skin effect on the radial 
responses of the probe it is necessary to solve the direct problem for a given distribution 
of conductivities. It is obvious that the practical value of such multi-coil probes, where 
parameters are chosen proceeding from knowledge of a geoelectrical section, is negligible. 

For this reason we can say that a necessary condition for the application of differential 
probes is the absence of interaction between currents in those parts of a medium the 
influence of which should be significantly reduced. In other words, those parts of the 
medium have to correspond to DolVs area where the current density is defined by the 
primary magnetic flux and the conductivity at a given point. It is natural that in choosing 
parameters of probes in order to increase the depth of investigation in the radial direction, 
it is important to eliminate the influence of parts of the medium located relatively close 
to the source. As calculations show, this condition usually takes place even for sufficiently 
high frequencies. 

However, absence of the skin effect in the area, the influence of which it is necessary to 
reduce, is not sufficient for the efficiency of multi-coil induction probes. Let us present 
a signal measured by the probe as a sum of two signals, namely, one which is caused 
by currents in the area where there is not practically interaction between currents and a 
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second one caused by currents in the external area, for example in a formation. 
As was shown in previous chapters with an increase of the distance from the source the 

skin effect is more strongly manifested, and in a general case the distribution of currents 
in the external area (the formation) depends on the magnitude of currents in the first 
area, which is closer to the probe. 

For this reason even in those cases when it is possible to eliminate the signal from 
currents in the parts of a medium, the influence of which has to be reduced, their effect 
can be noticed indirectly, changing the distribution of currents in the formation. In this 
case the signal from the formation is not only a function of its conductivity, but it depends 
also on the conductivity and dimensions of the internal area, in particular on the borehole 
and the invasion zone. 

Therefore, the second requirement, in order to provide an efficient working of the multi-
coil induction probe, is the absence of the influence of currents in the near area on the 
distribution of currents in the formation. In other words, the skin effect in the formation 
has to manifest itself in the same manner as in a uniform medium with the resistivity of 
the formation. 

Inasmuch as the relation between the signal and the conductivity of a uniform medium 
is known, the correction of function a a due to the skin effect is often performed directly 
during calibration of the probe either with the help of conducting rings, the parameters 
of which are calculated taking into account the skin effect, or in measuring in models of 
a medium when its resistivity corresponds to tha t under real conditions. 

Thus, for efficiency of differential induction probes designed to measure a formation 
conductivity, two conditions have to be met, namely: 

• The range of a medium which includes the borehole and an invasion zone must 
correspond to DolVs area, i.e. currents induced in this area are shifted in phase 
by 90°, and they are defined by a change of the primary magnetic flux and the 
conductivity at a given point. 

• Outside of this range, for example in a formation, the skin effect has to manifest 
itself as in a uniform medium with the resistivity of the formation, i.e. interaction 
between currents in these two regions has to be negligible. 

Both conditions formulated above coincide with conditions of application of the ap-
proximate theory, described in Chapter 3, and therefore we can expect that the focusing 
features of probes will be preserved even at higher frequencies than as follows from Doll's 
theory. As will be shown later, analysis of radial responses of some multi-coil probes 
confirms this fact. Also, a comparison of results of calculations, making use of the ex-
act and this approximate solution, allows us to establish maximal frequencies for a given 
distribution of conductivities when both of these conditions are met. 

Analysis of physical principles of differential probes permits us to discuss one aspect 
related to obtaining radial responses of these probes. 

As is well known, physical modeling or the use of conducting rings permits us to define 
a signal in a probe located on the cylinder axis as a function of its radius for a given 
frequency and conductivity of a medium. At the same time, a space surrounded by the 
cylinder has an infinitely high resistivity. Results of measurements are usually presented 
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in the following form: the ratio of the cylinder radius to the probe length is plotted along 
the abscissa, while the ratio of the electromotive force induced by currents in the cylinder 
with radius r to that caused by currents in uniform space with the same resistivity is 
plotted along the ordinate axis. 

It is natural that the following question arises whether this characteristic allows us to 
obtain information on the focusing features of the probe in a medium when the resistivity 
changes in a radial direction. It is obvious that until the signal from cylindrical conductor 
does not depend on currents induced in the external medium, regardless of their resistivity, 
this function can be used for evaluating the efficiency of a differential probe in a uniform 
as well as in a nonuniform medium. 

The lower the frequency and the higher the resistivity, the greater the cylinder radius 
for which the radial response describes with sufficient accuracy the behavior of the field 
in a nonuniform medium. However, if the frequency and conductivity of the cylinder 
are relatively great and the distribution of currents in the cylinder is subjected to the 
skin effect then such response does not reflect the actual behavior of the field under real 
conditions. Correspondingly we can say that the radial response obtained by physical or 
numerical modeling can be used for understanding the focusing features of the probe if 
the skin effect is absent within the cylinder, and we can neglect the interaction between 
currents induced in internal (cylinder) and external areas. 

As an example, direct integral radial responses of a two-coil induction probe are pre-
sented in Fig. 7.3. The curve index is the product a/jtuj. As is seen from this figure the 
higher the frequency and the lower the resistivity of a medium the stronger the influence 
of an area relatively closer located to the probe. It is easy to explain, inasmuch as with an 
increase of this product, that the influence of the skin effect becomes stronger, and cor-
respondingly, that the signal caused by currents outside the cylinder increases relatively 
slower than that generated by currents inside of it. For this reason a deviation from the 
radial response calculated with the help of geometric factor is observed, regardless of the 
cylinder radius. 

This consideration shows that the application of direct radial responses obtained from 
either physical modeling or making use of the exact solution is hardly useful for the 
determination of parameters of differential probes. 

7.3. Radial and Vertical Responses of the Differential Probe 
l .L-1.2 

As is well known, coil induction probes used in induction logging have various arrange-
ments of coils. It is appropriate to distinguish in every differential probe the basic (main) 
two-coil probe having a maximal product of transmitter (T) and receiver (R) coil mo-
ments. Other coils are considered to be focusing coils and, they form several additional 
coil probes which provide focusing features of the induction tool. 

From the point of view of the location of the focusing coils with respect to the center of 
the basic probe, the multi-coil probes can be divided in symmetrical and nonsymmetrical 
ones. In symmetrical probes focusing coils are located in such a way that for every pair: 
transmitter-receiver coils, displayed with respect to the center, there is another pair with 
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Figure 7.3. Direct integral responses of a two-coil induction probe. Curve index a/j.uj; 
L=lm. 

the same product of moments displayed at the same distance on the opposite side. Signals 
measured by symmetrical pairs have the same sign. 

It is also obvious that symmetrical probes have symmetrical profiling curves with respect 
to the formation center provided that the resistivity of the medium from both sides of 
the formation is the same. From the point of view of the position of focusing coils with 
respect to basic ones multi-coil probes are classified as probes with internal, external and 
mixed focusing. 

For internal focusing additional coils are placed between basic ones; for external focusing 
they are located outside the main probe, and finally for mixed focusing additional coils 
are placed inside as well as outside the basic probe. The configuration of symmetric 
diflPerential probes is shown in Fig. 7.4. 

In addition it is appropriate to notice that in symmetrical multi-coil probes moments 
of transmitter and receiver coils of corresponding pairs for example, basic probe, are the 
same, i.e. Mr = MR, MT^ = MRJ,. 

We will consider several diflPerential probes and will start with a symmetrical four-coil 
probe with additional internal coils. This type of probe is defined by three parameters, 
namely: the distance between basic coils, L, the ratio of the length oi focusing probe RTp 
to that of the basic probe, which is denoted by p, and the ratio of moments of focusing 
coils to the moment of basic ones (parameter c). 

Let us consider a symmetrical four-coil probe with internal focusing l.L-1.2 (Fig. 7.4a) 
(p = 0.4, c = 0.05, L = 1.2 m) 

Comparison with the results of calculation with coils having finite dimensions has shown 
that we can neglect their length and diameter in calculating radial and vertical responses. 
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Figure 7.4. Symmetrical differential probes: (a) internal focusing; (b) external focusing; 
(c) mixed focusing. 

For this reason a signal in symmetrical four-coil probe can be written in the form: 

S' = STR — 2STRF + ^TFRF 

IJ.'^UJ^MTMR f v - ^ r , , 2 c ^ , , ĉ  ^ .. . 1 1 (7.16) 

47rL - {H^i l^ii^) - ^G,{pa) + YZ-^^^[(^ - 2 )̂̂ ]] } 

where L is the length of the basic probe, TR; pL is the length of probe, Rp T; and 
(1 — 2p)L is the length of probe, Rp Tp. 

In a uniform medium we have: 

^^ 
II^U'^MTMR 

a 1 
2c c^ 

p ^ l-2p 

inasmuch as geometric factors of the whole medium for a two-coil induction probe: Gi{a), 
Gi{ap) and Gi[{l — 2p)a] are equal to unity {a is the ratio of the length of the basic probe 
to the cylinder radius on the axis of which the probe is located). Therefore, the coefficient 
of the probe is: 

K.= 
ATTL 

uj^fimTMn 1 - - + . „ 
' p 1 -2p 

(7.17) 

and the geometric factor of the whole space is equal to unity as is the case for two-coil 
probes. For this reason the expression for the apparent conductivity a^ has the form: 

where 

G* = 

Gi{a) - -Giipa) + rr^Gi[{l - 2p)a] 
P L — Zp 

1 
2c c' 
" p " ^ 1 - 2p 

(7.18) 

(7.19) 
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This function is the geometric factor of the cyhnder for a four-coil induction probe with 
internal focusing and parameters p and c, i.e. it is the integral radial response. Let us 
notice tha t normalization of geometric factor allows us to compare radial responses of 
various probes. 

Now we will consider the behavior of function G* as a function of the cylinder radius r 
(a = L/r). If r ^ 0, (a —> oc) we have: 

G^{a)-^\ G,{pa)^-^ Gi[{l - 2p)a ^ 

Substituting these values into eq. 7.19 we have: 

, 2c c2 

2c c' ^ - ^ ^ ^ ^^-^^^ 

p ^ l-2p 

where 

, 2c c2 
1 - ^ + p« ( l - 2 p ) 3 

p l - 2 p 

Therefore, the smaller the value of coefficient Ki the lesser the value of the geometric 
factor of the area directly surrounding the probe. 

On the other hand, the electromotive force due to the primary field induced in receivers 
of the probe by currents in the transmitter coils is: 

_ ^IWMTMR 
1 - ^ + p3 (1 - 2p)3 

(7.21) 

Thus the rate of compensation of the electromotive force of the primary field defines a 
value of coefficient Ki. For a probe with parameters p = 0.4 and c = 0.05, coefficient Ki 
is 0.32. 

Introducing a fifth compensating coil, coefficient Ki becomes equal to zero, and corre-
spondingly the radial response somewhat improves at its initial part . From this consider-
ation follows tha t with an increase of the length of two-coil induction probes, forming a 
differential four-coil probe, the cylinder radius, characterized by small values of geometric 
factor, increases, provided that the primary electromotive force is compensated. 

In the opposite case, as r —> oo (a ^ 0) we have: 

Gi ( r ) -^1-Ka Gi{pa) = 1 - Kpa 

and 

Gi[ ( l - 2p)a] ^ l - K { l - 2p)a 
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Figure 7.5. The integral radial response of a four-coil probe with parameters p • 
c = 0.05. 

0.4 and 

where K c^ 0.586. 
Substituting these expressions into eq. 7.19 we obtain: 

Gl-^l-K-
l-2c + c^ 

2c __i 

~^~^ l-2p 

= 1 - KK2a (7.22) 

where 

Ko = 
1 - 2c + ĉ  

p ~^ l-2p 

(7.23) 

Coefficient K2 exceeds unity, and therefore the radial response approaches its asymptote 
slower than that of a two-coil probe, i.e. the four-coil induction probe possesses a greater 
depth of investigations with respect to a two-coil induction probe of the same length. 

Figure 7.5 presents the integral radial response of a four-coil probe with parameters 
p = OA and c = 0.05. Unlike the radial response of a two-coil induction probe, in this 
case function G\(r/L) at the beginning has small but negative values, near r/L = 0.27 it 
changes sign and monotonically approaches unity. 
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Now let us consider the difTerential radial response of this probe. In accord with eq. 7.13 
the electromotive force in receivers, caused by currents in a thin cylindrical shell, can be 
written in the form: 

^ = ^ ^ ^ V ^ ^ l^^(^) _ ?£ ^^(^^) ^ _ ^ ^^((^ _ 2p).]} (7.24) 

where Gr = (Ar/r)( l /a^)C(a) . Values of C{a) are given in Table 7.1. We will present 
eq. 7.24 as 

where 

Gr{a) - - Gripa) + - ^ ^ [ ( 1 - 2p)a] 

G: = \ 2c ^ (^-2^) 

p ^ l-2p 

G* is the differential response of a four-coil induction probe and defines the ratio of signals 
from a thin cylindrical shell to that from a uniform medium. 

From eq. 7.25 we have: 

2c C^ oP' r 

^ ~ 7 "̂  1 - 2p 

Assuming that a medium is presented as a system of shells with the same thickness Ar 
it is convenient to write down G* as: 

^ ^ C ( . ) - g ^ C ( . a ) . ^ q ( l - 2 , H 

As has been shown, if o; —> 0 then C(a) -^ K^, and for a —̂  CXD C{a) —> 2. For this 
reason, if r ^ 0 (a ^ CXD), we have: 

2Ar 1 
G* ^ ^ K -

LQ a 

i.e. again compensation of the electromotive force of the primary field provides minimum 
of geometric factor of cylindrical layers located close to the probe. 
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Figure 7.6. Differential response of a four-coil probe with parameters p = 0.4 and c = 0.05. 

In the opposite case, when r ^ oc (a —̂  0) we have: 

Gl -^ ^KK^a^ (7.28) 

A differential response of a four-coil probe with p == 0.4 and c — 0.05 is presented in 
Fig. 7.6, provided that the shell thickness is constant. 

In accord with eq. 7.18 the expression for the apparent conductivity in a three-layered 
medium (borehole, invasion zone, formation) has the form: 

(7.29) ^a --= aiGl H- cr2Gl 

where: 

Gl 

G*2 

G*s 

G,{a) -

G2{a) -

G,{a) -

2c 

V 

2c 

P 

2c 

P 

It is obvious that: 

G* + G; + G* = 1 

+ C7SG; 

Giipa) + — 

P 1 

G2ipa) + Y: 

p 1 

Gaipa) + — 

1 - - + 1 
P 1 

^ = ' « ' 
C2 

-2p 

- ^ ^ ^ t ^ ^ -
C2 

- 2 p 

^ ' ' • K ' 
c2 

- 2 p 

- 2p)a] 

2p)a] 

- 2p)a] 
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TABLE 7.2 
Values of function a, 
^ " ^ ^ ^ - ^ ^ ^ ^ 0-2/0-1 

Probes ^ ^ ^ ^ - ^ ^ ^ 

Two-coil probe 

Four-coil probe l.L-1.2 

2/cri 

0.500 

0.505 

0.498 

0.250 

0.258 

0.246 

0.125 

0.133 

0.121 

0.0625 

0.0724 

0.0580 

0.0313 

0.0414 

0.0268 

0.0156 

0.0259 

0.0111 

and 

here /3 is the ratio of radius of the invasion zone to that of the borehole {P = a2/ai). 
Proceeding from equations derived above we will consider a behavior of the apparent 

conductivity in a medium with cylindrical interfaces. First, let us assume that the invasion 
zone is absent. It is simple to show that for the four-coil probe with internal focusing and 
L — 1.2 m we have: 

Gl 2=̂  -0.0045 Gl = 1.0045 

Table 7.2 contains values of (Ja/ai for both two- and four-coil induction probes. 
For small values of P2/P1 (P2/P1 < 1) the difference between the radial responses of 

differential and two-coil probes is insignificant. If the conductivity of the borehole does 
not exceed more than 30 times the formation conductivity, the probe l.L-1.2 ehminates 
the influence of the borehole almost completely. Focusing features of this probe in the 
presence of the invasion zone are illustrated by values of apparent conductivity, CTa/cri, 
given in Table 7.3. Regardless of the resistivity of the invasion zone (4 ^ P2/P1 ^ 64), if 
Ps/pi ^ 30 the influence of induced currents in the borehole and the invasion zone on the 
signal, measured by the probe, is small (Table 7.3). The influence of the invasion zone 
on the two-coil probe with length L = 1.2 m is also insignificant if ps/pi ^ 10. For this 
reason when penetration of the borehole filtrate is not deep and ps/pi is relatively small 
the value of apparent conductivity, aa, measured by a two-coil induction probe L = 1.2 m, 
is close to the formation conductivity, and correspondingly in such conditions the role of 
focusing features of the probe, regardless of its type, is insignificant. With an increase of 
the radius of the invasion zone focusing features of the probe manifest themselves stronger. 
Practically, values of cr̂  are close to as if the ratio of conductivities (as/ai) is not less 
than 1/20. At the same time the character of the penetration P3/P2 > 1 or P3/P2 < 1 
does not have a strong effect on the value of the apparent conductivity, aa-

For deep penetration of the borehole filtrate {a2/ai ^ 8) the focusing features of this 
probe do not allow us to obtain the formation conductivity even in such cases when the 
borehole and the invasion zone have greater resistivity than the formation. It is explained 
by the fact that the geometric factor of the formation is about 0.7 (a2/ai = 8) and for 
this reason, even if the conductivity of the borehole and the invasion zone is equal to zero, 
the apparent conductivity differs from that of the formation by 30%. 
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TABLE 7.3 
Values of function a 

Probe type 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

Probe type 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

Probe type 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

2-coil 

4-coil 

^2/cri 

1/4 

1/4 

1/8 

1/8 

1/16 

1/16 

1/32 

1/32 

1/64 

1/64 

CT2/(Tl 

1/4 

1/4 

1/8 

1/8 

1/32 

1/32 

1/64 

1/64 

CT2lcri 

1/4 

1/4 

1/8 

1/8 

1/16 

1/16 

1/32 

1/32 

1/64 

1/64 

2/cri 

(^3/^1 

1 

0.975 

1.003 

0.980 

1.004 

0.980 

1.004 

1.000 

1.004 

1.000 

1.004 

1.00 

0.900 

0.955 

0.986 

0.947 

0.986 

0.943 

0.986 

0.940 

1.000 

0.700 

0.764 

0.650 

0.726 

0.620 

0.707 

0.600 

0.697 

0.600 

0.692 

0.500 

0.500 

0.499 

0.500 

0.499 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.480 

0.483 

0.475 

0.476 

0.440 

0.471 

0.440 

0.468 

0.500 

0.405 

0.418 

0.360 

0.380 

0.318 

0.361 

0.320 

0.351 

0.320 

0.346 

0.250 

a2/ai = 2 

0.255 

0.247 

0.250 

0.247 

0.250 

0.247 

0.250 

0.248 

0.250 

0.248 

0.250 

02/^1 = 4 

0.250 

0.248 

0.240 

0.239 

0.230 

0.235 

0.220 

0.232 

0.250 

02/^1 = 8 

0.260 

0.248 

0.205 

0.207 

0.180 

0.188 

0.170 

0.178 

0.168 

0.173 

0.125 

0.140 

0.121 

0.132 

0.121 

0.130 

0.121 

0.129 

0.122 

0.129 

0.122 

0.125 

0.150 

0.128 

0.135 

0.121 

0.125 

0.117 

0.120 

0.114 

0.125 

0.172 

0.158 

0.135 

0.120 

0.110 

0.101 

0.0960 

0.0915 

0.0920 

0.0868 

0.0625 

0.0800 

0.0575 

0.0750 

0.0580 

0.0720 

0.583 

0.0710 

0.584 

0.0710 

0.585 

0.625 

0.1000 

0.6960 

0.0830 

0.0621 

0.0730 

0.0583 

0.0650 

0.0554 

0.0625 

0.1500 

0.1150 

0.0750 

0.0767 

0.0720 

0.0580 

0.0600 

0.0482 

0.0550 

0.0435 

0.0313 

0.0500 

0.0260 

0.0450 

0.0265 

0.0430 

0.0268 

0.0420 

0.0269 

0.0420 

0.0270 

0.3130 

0.0750 

0.0401 

0.0570 

0.0326 

0.0485 

0.0288 

0.4000 

0.0259 

0.3130 

0.1280 

0.0931 

0.0800 

0.0551 

0.0530 

0.0361 

0.0420 

0.0266 

0.0360 

0.0219 

0.0156 

0.0330 

0.0102 

0.0300 

0.0107 

0.0280 

0.0110 

0.0265 

0.0111 

0.0260 

0.0112 

0.0156 

0.0640 

0.0253 

0.0430 

0.0178 

0.0330 

0.0140 

0.0250 

0.0112 

0.0156 

0.120 

0.0283 

0.0650 

0.0443 

0.0450 

0.0253 

0.0322 

0.0158 

0.0250 

0.0111 
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Until now it has been assumed that at all points of a medium induced currents are 
shifted in phase by 90°, i.e. the skin effect is absent. Now we will investigate radial 
responses of the probe, making use of results of the exact solutions in a medium with two 
cylindrical interfaces when the four-coil induction probe is located on the borehole axis. 

The electromotive force in receivers of the four-coil symmetrical probe with internal 
focusing can be presented as: 

On the other hand: ^ = ^ohz, here hz is the quadrature component of the magnetic field 
expressed in units of the primary field and obtained from the exact solution. Therefore: 

S (On (1) 
'(2) z.(3) • 

/ i ( l ) _2 / i ( 2 ) ! fO_ , ^ ( 3 ) ^ 

0O (Of) 

where: 

(2) 
) 
(1) 

(JJ/IMTMRF I (JJ^IMTMR 

^TRF 

(3) 
) 
(1) 

^TFRF 

L^ 

UJIIMTF^RF I ^IIMTMYI 

(7.30) 

L3 ( l - 2 p ) 3 

The electromotive force measured in receiver coils of the probe referred to that in a free 
space for two-coil basic probe is defined as: 

/,, = 4 , = h^) - ?£/̂ (̂ ) + '' 
Sn (1) (1 - 2p) 

/il^' 

and correspondingly the expression for the apparent conductivity, aa, is: 

1 

1 
2c C 

1) 

P CTl 1 

. (3) 

2p ax 
(7.31) 

2p 

where Ga /CTI, CTQ, /cf\, cri /<7i are functions corresponding to the basic two-coil probe 
(T, R), the differential one (T, Rp) and another differential probe (T/r, RF), respectively. 

It is appropriate to consider simultaneously field, electromotive force and apparent 
conductivity, calculated from the approximate theory assuming that in the borehole and 
the invasion zone, regardless of their conductivity and dimensions, currents are shifted in 
phase by 90° but in the formation the skin effect manifests itself as in a uniform medium 
with the resistivity of the formation. Then, according to results derived in Chapter 3 we 
have: 

CJa = (^1 - CTs)Gl + (^2 - CTS)G; + a f 
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or 

^=(,_^)GI+(^)G; + ^ ^ (7.32) 

Results of calculation of function Oajoi by exact equation, Oal^x-, and the approximate 
formula 7.31, CF^/CFI, are given in Table 7.4. 

For illustration, values of cr^^/as are presented in Table 7.5 (A 3̂ = a^iiijja\). Comparison 
with results of calculations for very small parameters shows that the influence of the skin 
effect in a relatively conductive medium can significantly change the value of CTa/ai. For 
instance, for P2/P1 = 32, ps/pi = 16 and a2/a i = 4, the value of (Ta/cJi calculated by 
Doll's formula is 0.0564. If the frequency of the field is 60 kHz and pa = 1.1 ohm-m, the 
factual value Oajox is 0.0298, i.e. it is almost two times smaller. 

A decrease of the quadrature component of the field and correspondingly the apparent 
conductivity is mainly the result of the skin effect in the formation for geoelectric pa-
rameters considered here. It follows from the coincidence of the calculated results based 
on exact and approximate solutions, because one of the main assumptions of the latter 
is tha t the skin effect is absent within the borehole and the intermediate zone. In this 
case the skin effect does not change the focusing features of the probe since the change 
of apparent conductivity, a^, is the same as in a uniform medium with the resistivity 
of the formation. Numerical data show tha t within the borehole and the invasion zone 
conditions of small parameters are preserved for a sufficiently large range of resistivities 
and dimensions. 

This fact allows us to choose properly a frequency for a given probe. As is well known, 
with an increase of frequency the vertical response of the probe becomes better, and we 
can measure higher resistivities of a formation. However, if the frequency is chosen too 
high at least two problems arise, namely nonuniqueness in determination of resistivity by 
measuring the quadrature component of the field, and the radial response can be signif-
icantly worse than tha t calculated with the assumption that the skin effect is negligible. 
Comparison of calculated results, based on exact and approximate solutions, defines the 
maximal frequency for which the skin effect is still absent in the borehole and the invasion 
zone but in the formation it manifests itself in the same manner as in a uniform medium 
with the same resistivity. 

We can think tha t the maximal frequency for this probe, derived from this comparison 
and taking into account its radial response, is defined from the relation: 

/ ^ (2.0 - 2.2)p^inl0^ Hz (7.33) 

For example, if the minimal resistivity of a medium is about 1 ohm-m, the frequency can 
be increased up to 200-220 kHz. 

This analysis of the focusing features of the probe l .L-1.2 with p — 0.4 and c = 0.05 in 
media with cylindrical interfaces allows us to establish the range of frequencies as well as 
parameters of borehole and invasion zone when induced currents within them do not have 
an influence on the measured signal. If the resistivity of the invasion zone exceeds tha t 
of the formation, P2 > Ps, and a2/ai ^ 4, the apparent conductivity practically coincides 
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TABLE 7.4 
Values of functions (Ja/cri and o^jox 

asfiujal X 10^ 

1 

2 

4 

8 

16 

32 

64 

1 

2 

4 

8 

16 

32 

64 

1 

2 

4 

8 

16 
32 

64 

1 
2 

4 

8 

16 

32 

64 

1 

2 
4 

8 

16 
32 

64 

Ps/pi = 

^a/^l 

0.940 

0.924 

0.892 

0.848 

0.785 

0.700 

0.585 

0.950 

0.924 

0.892 

0.847 

0.786 

0.700 

0.585 

0.947 

0.924 

0.893 

0.847 

0.785 

0.700 

0.583 

0.947 

0.925 

0.892 

0.847 

0.785 

0.700 

0.583 

0.890 

0.865 

0.834 

0.788 

0.728 

0.643 

0.538 

: 1 

</^i 

0.949 

0.924 

0.894 

0.849 

0.785 

0.698 

0.583 

0.950 

0.925 

0.893 

0.848 

0.788 

0.701 

0.586 

0.947 

0.924 

0.894 

0.848 

0.785 

0.702 

0.585 

0.949 

0.924 

0.894 

0.849 

0.785 

0.698 

0.583 

0.891 

0.866 

0.836 

0.791 

0.727 

0.640 

0.535 

Ps/Pi = 

(y a 1(^1 

aijax 

0.233 

0.228 

0.219 

0.208 

0.192 

0.171 

0.141 

a2/ai = 

0.233 

0.227 

0.220 

0.208 

0.192 

0.171 

0.142 

a2/ai --

0.234 

0.228 

0.220 

0.209 

0.193 

0.171 

0.142 

^2/^1 = 

0.234 

0.228 

0.219 

0.209 

0.193 

0.171 

0.142 

a2/ai -• 

0.225 

0.219 

0.211 

0.200 

0.184 

0.163 

0.135 

= 4 

</^i 

= 2 P2/P1 = 

0.233 

0.227 

0.220 

0.208 

0.193 

0.171 

0.142 

- 2 P2/P1 = 

0.234 

0.228 

0.221 

0.209 

0.193 

0.172 

0.143 

= 2 /92/pi --

0.235 

0.229 

0.221 

0.210 

0.194 

0.172 

0.143 

= 2 /92/pi •-

0.234 

0.229 

0.220 

0.210 

0.194 

0.172 

0.143 

= 4 p2lp\ 

0.226 

0.220 

0.213 

0.202 

0.185 

0.164 

0.137 

PZIP\ = 

^a/^1 

"̂8 

0.0545 

0.0532 

0.0510 

0.0483 

0.0441 

0.0383 

0.0304 

= 16 

0.0549 

0.0533 

0.0514 

0.0483 

0.0445 

0.0387 

0.0309 

-32 

0.0550 

0.0536 

0.0515 

0.0485 

0.0446 

0.0388 

0.0312 

= 64 

0.0550 

0.0537 

0.0514 

0.0485 

0.0446 

0.0390 

0.0313 

= 8 

0.0589 

0.0572 

0.0552 

0.0522 

0.0482 

0.0422 

0.0340 

16 

</o-i 

0.0546 

0.0533 

0.0510 

0.0484 

0.0442 

0.0385 

0.0307 

0.0550 

0.0534 

0.0515 

0.0484 

0.0446 

0.0388 

0.0310 

0.0552 

0.0536 

0.0516 

0.0486 

0.0446 

0.0389 

0.0313 

0.0551 

0.0537 

0.0515 

0.0486 

0.0447 

0.0394 

0.0318 

0.0590 

0.0574 

0.0555 

0.0524 

0.0483 

0.0429 

0.0358 

P3/P1 = 

0-a/(Ti 

0.0247 

0.0240 

0.0229 

0.0215 

0.0194 

0.0164 

0.0119 

0.0250 

0.0243 

0.0233 

0.0218 

0.0197 

0.0167 

0.0125 

0.0251 

0.0244 

0.0234 

0.0219 

0.0199 

0.0169 

0.0127 

0.0252 

0.0245 

0.0234 

0.0220 

0.0199 

0.0170 

0.0128 

0.0311 

0.0303 

0.0292 

0.0277 

0.0256 

0.0219 

0.0164 

32 

</^i 

0.0248 

0.0240 

0.0230 

0.0216 

0.0196 

0.0169 

0.0133 

0.0250 

0.0244 

0.0234 

0.0219 

0.0200 

0.0168 

0.0126 

0.0252 

0.0244 

0.0235 

0.0220 

0.0200 

0.0170 

0.0130 

0.0253 

0.0245 

0.0235 

0.0221 

0.0201 

0.0174 

0.0138 

0.0310 

0.0302 

0.0292 

0.0278 

0.0258 

0.0231 

0.0195 
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TABLE 7.4 
(Continued) 

as/jLual X 10^ 

1 

2 
4 

8 
16 

32 
64 

1 

2 

4 

8 

16 
32 

64 

Ps/Pi = 

CTa/cri 

0.886 

0.860 

0.830 

0.785 

0.722 

0.640 

0.532 

0.882 

0.860 

0.827 

0.782 

0.722 

0.635 

0.528 

-- 1 

</^i 

0.887 

0.860 

0.831 

0.787 

0.725 

0.643 

0.534 

0.882 

0.862 

0.829 

0.784 

0.725 

0.637 

0.520 

Ps/pi = 

CTa/f^l 

a^jax = 

0.221 

0.215 

0.207 

0.196 

0.180 

0.158 

0.131 

0.219 

0.213 

0.205 

0.194 

0.179 

0.157 

0.130 

= 4 

</^i 

-- 4 P2/P1 

0.223 

0.217 

0.210 

0.198 

0.182 

0.160 

0.132 

•• 4 P2/P1 

0.220 

0.215 

0.200 

0.195 

0.180 

0.158 

0.132 

Ps/pi = 

CTa/ô l 

= 16 

0.0548 

0.0525 

0.0514 

0.0481 

0.0445 

0.0388 

0.0309 

- 3 2 

0.0524 

0.0510 

0.0493 

0.0465 

0.0425 

0.0371 

0.0294 

16 

</^i 

0.0549 

0.0525 

0.0515 

0.0483 

0.0446 

0.0390 

0.0312 

0.0526 

0.0510 

0.0496 

0.0466 

0.0427 

0.0375 

0.0298 

PZIPI = 

(^a/cri 

0.0272 

0.0264 

0.0253 

0.0239 

0.0217 

0.0187 

0.0141 

0.0251 

0.0244 

0.0234 

0.0219 

0.0198 

0.0169 

0.0127 

32 

</^i 

0.0273 

0.0265 

0.0255 

0.0240 

0.0220 

0.0193 

0.0157 

0.0252 

0.0246 

0.0236 

0.0221 

0.0200 

0.0173 

0.0137 

TABLE 7.5 
Values of function a"^ jo-^', a 10,L = 1 m 

i^3 X 10^ 
Ps/pi 

1 16 32 64 128 

1 

2 

4 

8 

16 

32 

64 

0.945 

0.473 

0.236 

0.118 

0.0590 

0.0295 

0.0148 

0.921 

0.461 

0.230 

0.115 

0.0575 

0.0287 

0.0143 

0.891 

0.446 

0.233 

0.111 

0.0557 

0.0278 

0.0139 

0.844 

0.422 

0.211 

0.106 

0.0528 

0.0264 

0.0132 

0.781 

0.391 

0.195 

0.976 

0.0488 

0.0244 

0.0122 

0.695 

0.348 

0.174 

0.869 

0.0434 

0.0217 

0.0108 

0.576 

0.288 

0.144 

0.0720 

0.0360 

0.0180 

0.0090 

0.432 

0.216 

0.108 

0.054 

0.027 

0.013 

0.006 

with that of the formation provided that pa/pi < 20. However, if the resistivity of the 
invasion zone becomes smaller than pa the depth of investigation of this probe decreases. 

Thus, for certain conditions the value of the apparent conductivity, cr̂ , in a formation 
with a very large thickness coincides with the apparent conductivity in a uniform medium 
having the formation conductivity. 

However, in more complicated cases, when measured electromotive forces are subjected 
to the influence of parameters of the borehole and the invasion zone, interpretation cannot 
be performed without additional information. 

Now let us consider vertical responses of the four-coil induction probe l.L-1.2. Calcula-
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tions of apparent conductivity, a a, in formations with finite thickness have been performed 
proceeding from equation: 

^a 

- 3 i _ 

1 

2c c2 

' p ^ l-2p 
02 P (72 1 - 2p 0-2 

where a i 70-2 and a i 7^2 are values of Oalo2 for two-coil probes located symmetrically 
with respect to the formation boundaries while a a I02 is the value of Gal(y2 for the probe 
displaced with respect to the formation center. 

Curves of apparent conductivity Oajcf^ for the probe l.L-1.2 are presented in Figs. 7.7-
7.10. Values of a^l^ujl? and ratio cra/^2 are plotted along axes of abscissa and ordinate, 
respectively. The curve index is Oxjo^ [ox and a^ are conductivities of the formation and 
the surrounding medium). Every set of curves is characterized by the ratio / / / L , here L 
is the length of the basic-two coil probe. 

For given frequency and probe length the abscissa represents the conductivity of the 
surrounding medium. For example, i f L = 1.2 m, f = 6 x 10^ Hz, then a2/xa;L^ ĉ  0.7cr2 
or ^2 = 1.44(<j2/iCL;L^). Thus the conductivity of the surrounding medium varies along the 
abscissa in these figures from thousand parts of m~^ up to several units. 

Every set of curves consists of two families, separated by curve corresponding to a 
uniform medium {ai/a2 ==1). If the formation is more conductive than the surrounding 
medium curves are located above that calculated for a uniform medium; in the opposite 
case when the formation is more resistive they are located below the curve: ai = a2. 

Values of (Ja/cr2 for various parameters of the medium are given in Tables 7.6-7.10 
provided that / = 6 x 10"* Hz and L = 1.2 m. 

If the formation is more conductive than the surrounding medium and its thickness is 
at least two times greater than the probe length, the value of apparent conductivity prac-
tically coincides with function aa in a uniform medium having the formation conductivity. 
In particular a change of resistivity p2 from 1 to 16 ohm-m does not practically influence 
the vertical response of the probe. 

If the formation is more resistive, i.e. pi > p2, and its resistivity does not exceed 
10 ohm-m the influence of the surrounding medium becomes negligible for the given probe 
when the formation thickness exceeds 3.0 3.5 times the probe length. In cases when the 
difference of the conductivities is relatively small, equality cr̂  = cr^^ takes place even for 
sufficiently thin layers. 

Wi th an increase of the formation resistivity the influence of currents in the surrounding 
medium becomes more significant. A comparison with corresponding curves for a two-
coil induction probe shows that the influence of the surrounding medium on the four-coil 
induction probe is somewhat greater than that on a two-coil probe of the same length 
when the thickness of the formation is equal to or greater than the probe length. However 
this difference does not exceed 10-15%. 

Here it is appropriate to make the following comment. Results of calculations, presented 
in Figs. 7.7-7.10, have been performed in a medium with only horizontal interfaces. Cer-
tainly, such an assumption would lead to significant errors if a two-coil induction probe 
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TABLE 7.6 
Values of function Oajoi', P2 = ^ ohm-m 

H/L 

1 

V2 
2 

2\/2 

4 

4 ^ 2 

8 

8^/2 

16 

^l /c r2 

TABLE 7.7 
Values of function 

H/L 

1 

72 
2 

2V2 
4 

Ay/2 

8 

8^/2 

16 

cri/cr2 

TABLE 7.8 
Values of function 

H/L 

1 

s/2 

2 

2V^ 

4 

4v/2 

8 

8^2 

16 

<Tl/o-2 

1 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

0.56 

(^a/(^2\ P2 

2 

099 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

(^alcf2, P2 

4 

L80 

2.10 

2.20 

2.30 

2.25 

2.20 

2.20 

2.20 

2.20 

1/2 

0.42 

0.38 

0.35 

0.34 

0.34 

0.34 

0.34 

0.34 

0.34 

1/4 

0.34 

0.28 

0.23 

0.20 

0.18 

0.18 

0.18 

0.18 

0.18 

= 2 ohm-m 

1 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

= 4 ohm-m 

2 

1.18 

1.25 

1.35 

1.40 

1.40 

1.40 

1.40 

1.40 

1.40 

1/8 

0 3 1 

0.22 

0.16 

0.12 

0.110 

0.105 

0.105 

0.105 

0.105 

1/2 

0.51 

0.45 

0.41 

0.40 

0.39 

0.39 

0.39 

0.39 

0.39 

1 

0.77 

0.77 

0.77 

0.77 

0.77 

0.77 

0.77 

0.77 

0.77 

1/16 

-
0.21 

0.13 

0.085 

0.065 

0.056 

0.054 

0.053 

0.053 

1/4 

0.42 

0.33 

0.27 

0.23 

0.22 

0.21 

0.21 

0.21 

0.21 

1/2 

058 

0.50 

0.46 

0.44 

0.42 

0.41 

0.41 

0.41 

0.41 

1/32 

-
0.20 

0.12 

0.070 

0.042 

0.032 

0.029 

0.028 

0.028 

1/8 

037 

0.27 

0.19 

0.15 

0.13 

0.12 

0.11 

0.11 

0.11 

1/4 

048 

0.31 

0.31 

0.27 

0.24 

0.22 

0.22 

0.22 

0.22 

1/128 

0.270 

0.170 

0.094 

0.049 

0.026 

-
-
-
-

1/16 

-
0.25 

0.17 

0.11 

0.080 

0.065 

0.058 

0.057 

0.057 

1/8 

0.420 

0.220 

0.230 

0.180 

0.145 

0.125 

0.120 

0.115 

0.115 
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TABLE 7.9 
Values of function (Jalo2\ p2 = 8 ohm-m 

1 

72 
2 

2\/2 

4 

4v^ 
8 

8\/2 

16 

16 

3.40 

4.10 

4.50 

4.50 

4.50 

4.50 

4.50 

4.50 

4.50 

8 

2.00 

2.40 

2.60 

2.80 

2.80 

2.80 

2.80 

2.80 

2.80 

4 

1.25 

1.40 

1.50 

1.50 

1.55 

1.55 

1.55 

1.55 

1.55 

2 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

0.85 

1 

0.63 

0.56 

0.51 

0.48 

0.46 

0.46 

0.45 

0.44 

0.44 

1/2 

0.55 

0.42 

0.34 

0.30 

0.27 

0.24 

0.23 

0.23 

0.22 

TABLE 7.10 
Values of function a a/02', P2 = 16 ohm-m 

cri/a2 
H/L 1/2 1/4 

1 
V2 
2 
2^2 
4 
4v/2 
8 
8v/2 
16 

6.6 

8.2 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

9.0 

3.8 

4.6 

5.2 

5.5 

5.5 

5.5 

5.5 

5.5 

5.5 

2.3 

2.6 

2.9 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

1.3 

1.5 

1.6 

1.6 

1.7 

1.7 

1.7 

1.7 

1.7 

0.90 

0.90 

0.90 

0.90 

0.90 

0.90 

0.90 

0.90 

0.90 

0.68 

0.60 

0.55 

0.50 

0.48 

0.47 

0.46 

0.46 

0.46 

is considered. However, for a differential probe the effect, caused by the influence of the 
borehole is usually very small. 

In fact, it is known that the probe, within a certain range of change of pi and p2, 
eliminates the influence of the borehole and the invasion zone. Analysis of geometric 
factors of cylinders of finite thickness shows that as soon as the height of the cyhnder 
exceeds the probe length its geometric factor is almost equal to that of an infinitely 
long cyhnder, provided that the probe and the cyhnder are symmetrically located. For 
this reason if the formation thickness is equal to or exceeds the probe length then the 
electromotive force is not subjected to the influence of that part of the borehole which is 
located against the surrounding medium. Moreover, the geometric factor of the part of 
the borehole located against the formation practically coincides with the geometric factor 
of the borehole, and due to focusing this part of the borehole as well as the rest of it do not 
affect the signal measured by the probe. Analogous behavior is observed for the invasion 
zone. With an increase of the formation thickness and resistivity of the surrounding 
medium errors in the determination of the apparent conductivity, a^, decrease. 
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TABLE 7.11 
The position and parameters of coils 

Two-coil probes 

T - R 

T F I - R 

T - R F I 

T F I - Rpi 

T F 2 - R 

T - R F 2 

T F 2 - R F 2 

T F I - R F 2 

T F 2 - R F I 

T - R 

T F 2 - R 

T F 3 - R 

T - R 

T F 2 ~ R 

T F 3 - R 

Length, m 

1.00 

0.75 

0.75 

0.50 

0.50 

0.50 

2.00 

0.75 

0.75 

1.00 

0.586 

0.320 

1.100 

0.586 

0.352 

MiMj/MrMR 

Probe 6F1M 

1.0000 

0.2900 

0.2900 

0.0841 

0.0200 

0.0200 

0.0004 

0.0058 

0.0058 

Probe 4F1 

1.000 

0.350 

0.025 

Probe 4F1.1 

1.000 

0.350 

0.025 

Sign of Signal 

— 
-
-
+ 
-
-
+ 
+ 
H-

+ 
-
+ 

+ 
-
+ 

7.4. Radial and Vertical Responses of Probes 6F1M, 4F1 and 
4F1.1 

The probe 6F1M has six coils with symmetrical internal and external differential probes 
(mixed focusing) based on the use of frequency 50 kHz. Probe 4F1 is a four-coil non-
symmetrical system with an internal differential probe and frequency of the current is 
70 kHz. Finally, probe 4F1.1 is a four-coil nonsymmetrical probe with internal focusing 
and frequency 1 MHz. Table 7.11 describes the position and parameters of coils of these 
probes. Let us notice that all considered probes are systems where the electromotive 
force caused by currents in the transmitter coils, i.e. the primary electromotive force is 
compensated. In other words, the moments of coils satisfy the condition: 

This fact turns out to be very essential in the investigation of the radial responses of 
multi-coil probes located on the borehole axis. 

Calibration curves of probes 6F1M, 4F1 and 4F1.1 are presented in Figs. 7.11-7.13. 
Ratio of Q S jS^"^^ and resistivity of the medium are plotted along axes of ordinate and 
abscissa, respectively. Here S^ — UOIIMTMR/2TTL^ is the primary electromotive force 
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of the basic probe. For illustration let us assume that the minimal value of the ratio 
Q^/4^^^ measured is 5 x 10^ Then the range of resistivities defined by these probes is: 

6F1M 0.4-12 ohm-m 
4F1 0.5-25 ohm-m 
4F1.1 10-400 ohm-m 

Due to the relatively high frequency applied in probe 4F1.1 the range of resistivities is 
shifted to larger values than those for probes 6F1M and 4F1. It is appropriate to notice 
that with an increase of the degree of compensation of the primary electromotive force the 
upper boundary of resistivities is shifted to larger values. In accord with the calibration 
curve for the probe 4F1.1 we have: pmax — 400 ohm-m. However, the determination of 
function p of such resistive layers can be complicated due to the radial response of the 
probe, if the borehole resistivity is sufficiently small (pi 2:̂  1 ohm-m). 

If the electromotive force is measured with an accuracy of about 5%, maximal errors 
in determination of resistivity near the low boundary of the range do not exceed 10-15% 
for these probes. 

Calibration curves for basic two-coil induction probes are also shown in Figs. 7.11-7.13. 
From comparison with calibration curves of corresponding differential probes it follows 
that a decrease of the signal with respect to that of the basic probe within the range of 
measured resistivities in average constitutes: 

3.1-3.4 times for 6F1M 
2.2-3.0 times for 4F1 
2.3-2.8 times for 4F1.1 

Radial responses of these probes are shown in Figs. 7.14-7.16. The initial part of these 
responses are presented on a larger scale. The cylinder diameter is plotted along the axis 
of the abscissa. 

Comparing the integral radial responses we can see that in a two-layered medium when 
the borehole radius changes from 0.1 to 0.15 m probe 6F1M provides more accurate values 
of the formation over a wider range of (J2/CF1 than probe 4F1. However, in the presence 
of an invasion zone (0.4 0.8 m) we can expect that the measurements by probes 4F1 and 
6F1M are closer to each other. Concerning probe 4F1.1, we can notice the following: 
in sections where the geoelectric parameters correspond to the range of resistivities for 
probes 6F1M and 4F1, results of measuring with probe 4F1.1 are almost the same since 
their radial responses practically coincide. 

For a more accurate evaluation of parameters of a medium, when probes 6F1M, 4F1 
and 4F1.1 allow us to determine the formation resistivity, it is necessary to calculate the 
apparent conductivity for these probes in media with cylindrical interfaces. Results of 
such analysis are described below. Let us notice that calculations have been performed 
proceeding from the approximate theory which takes into account the skin effect in the 
external area. 

First, consider the influence of the borehole (the invasion zone is absent) on the apparent 
conductivity, Ga. Curves of (Jal(J2 as a function of the borehole resistivity, pi are shown 
in Figs. 7.17-7.22. The curve index is formation resistivity, p2- For every probe there are 
two groups of curves, corresponding to different values of the borehole radius, ai = 0.10 m 
and ai — 0.15 m. An analysis of these curves allows us to make the following conclusions: 
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Figure 7.13. Calibration curves: (1) two-coil probe, L — 1.1 m; (2) probe 4F1.1. 

• For a given value of the borehole resistivity the difference between Oa and (72 in-
creases also with an increase of formation resistivity. It is explained by the fact that 
with a decrease of G2 currents induced in a formation decrease, and the contribution 
of the electromotive force caused by the magnetic field of currents within the bore-
hole becomes more essential. Let us notice that radial responses of probes within 
considered borehole radii are not equal to zero, and therefore the influence of the 
borehole cannot generally be ignored. 

• With a decrease of the borehole resistivity for a given value of the formation re-
sistivity, the deviation of the apparent conductivity, Ga, from G2 becomes stronger 
since the density of currents induced in the borehole increases. 

• With an increase of the borehole radius the difference between Oa and GI increases 
also, inasmuch as radial responses of all considered probes are worse for a == 0.15 m 
than for the case when the borehole radius is equal to 0.1 m. 

If a = 0.1 m the difference between a a and G2 does not exceed 5% for the probe 6F1M 
when the borehole resistivity changes from 0.05 to 1 ohm-m. It permits us to perform 
measurements with probe 6F1M in boreholes with strongly minerahzed solutions. For 
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Figure 7.16. Radial response of probe 4F1.1. 

example, if pi = 1 ohm-m and a^ = 0 . 1 m, the ratio aa/cr2 is equal to unity with an 
accuracy of 1% as 0.5 < p2 < 50 ohm-m. 

The probe 4F1 is more sensitive to currents induced in a relatively conductive borehole. 
However, for pi = I ohm-m and ai = 0.1 m the apparent conductivity aa with an accuracy 
of 5% coincides with cr2 within the whole range of formation resistivities measured by the 
probe. 

Curves of the aa/cr2 for the probe 4F1.1 given in Figs. 7.21-7.22 correspond to larger 
values of the borehole resistivity with respect to those for probes 6F1M and 4F1. It is 
related to the fact that, due to the high frequency used in this probe, the condition of 
focusing {ai/hi < 0.3) is not vahd anymore in boreholes with high mineralization. For 
instance, if borehole radii are 0.1 m and 0.15 m we have for the minimal resistivity, pi 
satisfying this inequahty, 0.5 ohm-m and 1 ohm-m, respectively. If pi = 1 ohm-m and 
ai = 0.1 m the difference between a'^{02 and cra/a2 does not exceed 2% provided that 
0.6 < P2< 100 ohm-m. 

Now let us consider the influence of parameters of a three-layered medium (an invasion 
zone is present) on the apparent conductivity measured by probes 6F1M, 4F1 and 4F1.1. 
Values of (Ja/(^^ for various parameters of a three-layered medium along with data for 
a two-coil induction probe are given in Tables 7.12-7.22. The borehole resistivity is 
assumed to be 0.5 ohm-m. The behavior of (Ja/cT^ depends to a certain extent on the sign 
of geometric factor of G\{r) for r = ai and r — a2. 

Let us introduce notations for specific points of the radial responses; namely Tmin is the 
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Figure 7.17. Apparent conductivity curves for probe 6F1M (/ = 50 kHz). Curve index 
P2. 
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Figure 7.18. Apparent conductivity curves for probe 6F1M (/ = 50 kHz). Curve index 
P2. 
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Figure 7.19. Apparent conductivity curves for probe 4F1 (/ = 70 kHz). Curve index p2-
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Figure 7.20. Apparent conductivity curves for probe 4F1 (/ = 70 kHz). Curve index p2-
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Figure 7.21. Apparent conductivity curves for probe 4F1.1 (/ = 10^ kHz). Curve index 
P2. 
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Figure 7.22. Apparent conductivity curves for probe 4F1.1 (/ = 10^ kHz). Curve index 
P2-
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point where Gl{r) reaches a minimum; TQ is the point when Gl{r) is equal to zero. Values 
of Tmin and To for probes considered here are: 

Probes Rmin, m ro, m 

6F1M 022 0.28 

4F1 0.28 0.39 

4F1.1 0.31 0.43 

We will notice the following features in the behavior of apparent conductivity for various 
parameters of a medium. 

Case 1 

Consider the case when ps/pi > 1. 
An increase of the radius of the invasion zone results in an increase of (Ta/(Ji if a2 < Vmin^ 

and in a decrease of this function if (I2 >• TYuin-
For example, for probe 6F1M when 

P2 = 16 ohm-m, ps = S ohm-m and ai = 0 . 1 m. 
a2, ni 

(Ta/(T3 

0.28 

0.998 

0.40 

0.986 

0.56 

0.948 

0.80 

0.977 

An increase of resistivity p2 leads to an increase of (Ja/crs, if 0̂2 < '̂ o, and to a decrease 
of aa/os when 02 > TQ. For instance, for probe 4F1 we have following values of (Ja/cTz 
(p3 = 1 ohm-m, a\ = 0.1 m): 

a2, m 

0.28 

0.56 

p2, o h m m 
2 

1.014 

0.929 

4 

1.021 

0.893 

8 

1.025 

0.876 

16 

1.027 

0.867 

In the case when 02 > TQ with an increase of formation resistivity, p3, (Ja/crs increases 
also. However, if a2 < ^0 an increase of ps leads to a decrease of aa/crs- For instance, for 
probe 4F1.1 we have following values of (Ja/crs (p2 = 128 ohm-m, ai = 0 . 1 m): 

a2, m 

0.28 

0.56 

p25 o h m m 
8 

1.035 

0.867 

16 

1.019 

0.911 

32 

1.006 

0.933 

64 

0.991 

0.948 

Case 2 

Let us consider the case when P3/P2 > 1. 
If a2 < Vmin the apparent conductivity decreases with growing a2 becomes greater with 

an increase of 02, if 0̂2 > rmin- For instance, for probe 6F1M, when p2 = 2 ohm-m, 
Ps = 16 ohm-m and ai = 0.1 m we have: 

a2, m 0.28 0.40 0.56 0.80 
aa/(J3 0.999 1.156 1.666 2.616 
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TABLE 7.12 
Values of function (Jal<^?,\ ai = 0.1 m, p2 = 4 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

/03, ohm-

0.5 

0.999 

0.893 

1.036 

0.881 

-

0.960 

0.788 

0.994 

0.764 

-
-

• m 

1 

0.999 

0.937 

1.021 

0.932 

-

0.974 

0.860 

0.996 

0.850 

-
-

2 

0.999 

0.993 

1.010 

0.992 

-

0.985 

0.947 

0.996 

0.945 

-
-

4 

a^jax = 

0.999 

1.085 

0.996 

1.088 

0.995 

1.157 

a2/ai 

0.999 

1.085 

0.996 

1.088 

-
-

8 

2 ^ 2 

0.998 

1.256 

0.974 

1.262 

0.952 

1.359 

= 4 

1.022 

1.338 

0.996 

1.345 

-
-

16 

0.998 

1.588 

0.932 

1.596 

0.904 

1.690 

1.065 

1.823 

0.994 

1.835 

-
-

32 

0.996 

2.238 

0.852 

2.250 

0.822 

3.297 

1.147 

2.774 

0.992 

2.792 

-
-

64 

0.992 

3.523 

0.695 

3.541 

0.671 

3.454 

1.309 

4.654 

0.996 

4.680 

-
-

128 

-
-
-
-
0.380 

5.696 

-
-
-
-
-
-

TABLE 7.13 
Values of function 0-̂ /(73; ai -= 0.1 m, P2 = 4 ohm-m 

Probe type ps, ohm-m 

0.5 1 2 4 8 16 32 64 128 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

0.833 

0.632 

0.824 

0.590 

-

0.596 

0.440 

0.517 

0.376 

-
-

0.892 

0.747 

0.893 

0.728 

-

0.738 

0.605 

0.709 

0.578 

-
-

0.939 

0.879 

0.941 

0.873 

-

0.853 

0.795 

0.842 

0.785 

-
-

a2/a i = 

0.999 

1.086 

0.996 

1.088 

-

0 2 / ^ 1 •• 

0.999 

1.085 

0.996 

1.088 

-
-

4V2 
1.099 

1.459 

1.084 

1.469 

-

= 8 

1.241 

1.607 

1.244 

1.620 

-
-

1.284 

2.174 

1.245 

2.191 

-

1.691 

2.605 

1.696 

2.628 

-
-

1.640 

3.574 

1.553 

3.600 

-

2.558 

4.557 

2.564 

4.593 

-
-

2.341 

6.348 

2.155 

6.380 

-

4.263 

8.415 

4.264 

8.467 

-
-
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TABLE 7.14 
Values of function (Ja/cy?,', ai = 0.1 m, p2 = 16 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

ps, ohm-

0.5 

0.999 

0.882 

1.040 

0.881 

-

0.956 

0.766 

0.994 

0.739 

-
-

m 

1 

0.999 

0.917 

1.027 

0.922 

-

0.968 

0.822 

0.995 

0.809 

-
-

2 

0.999 

0.958 

1.019 

0.956 

-

0.974 

0.878 

0.995 

0.872 

~ 

4 

a2/ai = 

0.999 

1.020 

1.012 

1.021 

-

a^jax 

0.980 

0.956 

0.994 

0.955 

-
-

8 

2v/2 

0.998 

1.133 

1.002 

1.135 

1.017 

1.184 

- 4 

0.986 

1.092 

0.991 

1.094 

1.005 

1.125 

16 

0.996 

1.143 

0.986 

1.353 

0.993 

1.406 

0.996 

1.348 

0.986 

1.353 

0.993 

1.406 

32 

0.994 

1.769 

0.956 

1.778 

0.965 

1.802 

1.015 

1.846 

0.976 

1.855 

0.978 

1.887 

64 

0.988 

2.602 

0.896 

2.613 

0.918 

2.551 

1.051 

2.828 

0.995 

2.841 

0.951 

2.782 

128 

-
-
-
-
0.832 

4.000 

-
-
-
-
0.902 

4.505 

TABLE 7.15 
Values of function CTO/CTS; a\ = 0 . 1 m, p2 = 16 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

/93, ohm-

0.5 

0.815 

0.593 

0.805 

0.546 

-

0.553 

0.380 

0.517 

0.376 

-
-

m 

1 

0.865 

0.680 

0.867 

0.656 

-

0.673 

0.505 

0.709 

0.578 

-
-

2 

0.894 

0.758 

0.898 

0.747 

0.743 

0.612 

0.842 

0.758 

-
-

4 

a2/ai = 

0.918 

0.861 

0.921 

0.857 

a^lai 

0.803 

0.744 

0.996 

1.088 

-
-

8 

= 2^2 

0.948 

1.032 

0.947 

1.032 

0.927 

1.031 

= 8 

0.877 

0.958 

1.244 

1.620 

-
-

16 

0.996 

1.348 

0.986 

1.353 

0.993 

1.406 

0.996 

1.348 

1.696 

2.628 

-
-

32 

1.086 

1.960 

1.056 

1.970 

1.064 

2.019 

1.217 

2.100 

2.564 

4.593 

-
-

64 

1.257 

3.166 

1.188 

3.181 

1.176 

3.143 

1.642 

3.580 

4.264 

8.467 

-
-

128 

-
-
-
-
1.380 

5.380 

-
-
-
-
-
-
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TABLE 7.16 
Values of function (Ja/cJ^', ai = 0.1 m, p2 = 64 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

P3, ohm-

0.5 

0.999 

0.879 

1.042 

0.865 

-

0.955 

0.760 

0.994 

0.773 

-
-

m 

1 

0.999 

0.912 

1.028 

0.906 

-

0.966 

0.812 

0.995 

0.799 

-
-

2 

0.999 

0.949 

1.021 

0.947 

-

0.972 

0.860 

0.995 

0.854 

-
-

4 

a2/ai = 

0.998 

1.004 

1.016 

1.000 

-

a2/ai 

0.975 

0.924 

0.993 

0.922 

-
-

8 

:2V2 
0.998 

1.102 

1.010 

1.104 

1.103 

1.140 

= 4 

0.977 

1.031 

0.990 

1.031 

1.013 

1.036 

16 

0.996 

1.288 

0.999 

1.292 

1.015 

1.336 

0.979 

1.229 

0.984 

1.232 

1.000 

1.263 

32 

0.993 

1.562 

0.981 

1.660 

1.000 

1.679 

0.982 

1.614 

0.971 

1.620 

0.994 

1.637 

64 

0.986 

2.372 

0.947 

2.381 

0.980 

2.325 

0.986 

2.372 

0.947 

2.381 

0.980 

2.325 

128 

-
-
-
-
0.945 

3.574 

-
-
-
-
0.955 

3.646 

TABLE 7.17 
Values of function cJa/crs; di = 0.1 m, p2 — 64 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

p3, ohm-

0.5 

0.810 

0.760 

0.800 

0.535 

-

0.542 

0.365 

0.452 

0.293 

-
-

m 

1 

0.858 

0.812 

0.860 

0.638 

-

0.657 

0.479 

0.618 

0.441 

-
-

2 

0.882 

0.860 

0.888 

0.715 

-

0.716 

0.566 

0.695 

0.545 

-
-

4 

a2/ai = 

0.898 

0.924 

0.903 

0.799 

-

a2/ai 

0.754 

0.659 

0.740 

0.648 

-
-

8 

• 2^/2 

0.910 

1.031 

0.913 

0.924 

0.876 

0.873 

= 8 

0.785 

0.795 

0.773 

0.791 

0.586 

0.660 

16 

0.925 

1.229 

0.992 

1.144 

0.923 

1.149 

0.823 

1.034 

0.809 

1.034 

0.753 

1.002 

32 

0.947 

1.614 

0.932 

1.563 

0.951 

1.571 

0.881 

1.487 

0.859 

1.492 

0.861 

1.485 

64 

0.986 

2.372 

0.947 

2.381 

0.980 

2.325 

0.986 

2.372 

0.947 

2.381 

0.980 

2.325 

128 

-
-
-
-
1.023 

3.760 

-
-
-
-
1.167 

3.906 
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TABLE 7.18 
Values of function Oalo'^', ai = 0.1 m, p2 = 4 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

p3, ohm-

0.5 

0.945 

0.785 

0.967 

0.760 

-

0.799 

0.621 

0.772 

0.577 

-
-

m 

1 

0.963 

0.877 

0.973 

0.868 

-

0.868 

0.757 

0.855 

0.739 

-
-

2 4 

^2/^1 = 2\f2 

0.977 

0.996 

0.971 

0.996 

-

0.924 

0.925 

0.908 

0.921 

-
-

0.993 

1.196 

0.963 

1.202 

-

^2/^1 = 4 

0.993 

1.200 

0.963 

1.202 

-
-

8 

1.020 

1.566 

0.944 

1.578 

-

1.108 

1.693 

1.045 

1.708 

-
-

16 

1.069 

2.281 

0.905 

2.300 

-

1.320 

2.650 

1.193 

2.674 

-
-

32 

1.163 

3.687 

0.829 

3.714 

-

' 

1.730 

4.527 

1.473 

4.563 

-
-

64 

1.348 

6.468 

0.678 

6.506 

-

' 

2.534 

8.240 

2.021 

8.292 

-
-

TABLE 7.19 
Values of function a^^ 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

p3, ohm 

0.5 

0.939 

0.762 

0.964 

0.735 

-

0.777 

0.580 

0.748 

0.532 

-
-

iM; «! 

•m 

1 

0.954 

0.838 

0.968 

0.826 

0.836 

0.688 

0.821 

0.665 

-
-

= 0.15 m̂  

2 

0.962 

0.926 

0.963 

0.922 

0.869 

0.800 

0.852 

0.791 

-
~ 

, P2 — 16 o h m - m 

4 

02/01 = 

0.967 

1.065 

0.949 

1.067 

02/01 

0.896 

0.965 

0.866 

0.963 

-
~ 

8 

:2v/2 

0.970 

1.316 

0.918 

1.323 

0.886 

1.435 

= 4 

0.926 

1.253 

0.868 

1.258 

0.793 

1.336 

16 

1.069 

2.281 

0.905 

2.300 

0.840 

1.932 

0.974 

1.798 

0.857 

1.810 

0.840 

1.932 

32 

1.163 

3.687 

0.829 

3.714 

0.740 

2.822 

1.061 

2.863 

0.829 

2.882 

0.843 

2.962 

64 

1.348 

6.468 

0.678 

6.506 

0.546 

4.507 

1.228 

4.964 

0.768 

4.993 

0.813 

4.890 

128 

-
-
-
-
0.169 

7.767 

-
-
-
-
0.737 

8.608 
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TABLE 7.20 
Values of function (Ta/cj'i] ai — 0.15 m, p^ — 16 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

P3, ohm-

0.5 

0.500 

0.364 

0.388 

0.292 

-

0.161 

0.151 

0.027 

0.054 

-
-

m 

1 

0.632 

0.510 

0.577 

0.475 

-

0.385 

0.335 

0.295 

0.286 

-
-

2 4 

fl2/ai = 2 v ^ 

0.709 

0.652 

0.688 

0.635 

-

0.516 

0.504 

0.455 

0.481 

-
-

0.773 

0.846 

0.728 

0.841 

-

«2/ai = 8 

0.625 

0.728 

0.568 

0.720 

-
-

8 

0.850 

1.117 

0.783 

1.181 

-

0.759 

1.103 

0.686 

1.105 

-
-

16 

0.974 

1.798 

0.857 

1.810 

-

0.974 

1.798 

0.857 

1.810 

-
-

32 

1.201 

3.005 

0.982 

3.026 

-

1.370 

3.146 

1.158 

3.168 

-
-

64 

1.637 

5.386 

1.213 

5.416 
-

2.131 

5.802 

1.729 

5.836 

-
-

TABLE 7.21 
Values of function (Jal^'i] <̂ i = 0-15 m, p2 = 64 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

P3, ohm-

0.5 

0.938 

0.756 

0.963 

0.728 

-

0.772 

0.570 

0.741 

0.521 

-
-

m 

1 

0.952 

0.828 

0.967 

0.815 

-

0.828 

0.671 

0.812 

0.647 

-
-

2 

0.958 

0.908 

0.961 

0.904 

-

0.855 

0.769 

0.838 

0.758 

-
-

4 

a2/a i = 

0.960 

1.032 

0.945 

1.033 

-

a2/ai 

0.871 

0.907 

0.841 

0.904 

-
-

8 

2 ^ 2 

0.958 

1.254 

0.912 

1.259 

0.885 

1.345 

= 4 

0.881 

1.143 

0.823 

1.146 

0.722 

1.171 

16 

0.951 

1.678 

0.846 

1.688 

0.838 

1.785 

0.888 

1.586 

0.774 

1.594 

0.743 

1.664 

32 

0.935 

2.507 

0.714 

2.522 

0.739 

2.566 

0.894 

2.447 

0.668 

2.462 

0.688 

2.500 

64 

0.901 

4.146 

0.454 

4.168 

0.544 

4.040 

0.901 

4.146 

0.454 

4.168 

0.544 

4.039 

128 

-
-
-
-
0.165 

6.886 

-
-
-
-
0.246 

7.006 
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TABLE 7.22 
Values of function (Ta/(J2,] cti — 0-15 m, p2 = 64 ohm-m 

Probe type 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

6F1M 

Two-coil 

4F1 

Two-coil 

4F1.1 

Two-coil 

p3, ohm-

0.5 

0.486 

0.349 

0.373 

0.274 

-

0.141 

0.130 

0.052 

0.031 

-
-

m 

1 

0.613 

0.484 

0.556 

0.447 

-

0.355 

0.300 

0.260 

0.250 

-
-

2 

0.678 

0.605 

0.634 

0.586 

-

0.464 

0.442 

0.400 

0.415 

-
-

4 

a2/ai = 

0.718 

0.758 

0.669 

0.751 

-

aijai 

0.532 

0.612 

0.469 

0.599 

-
-

8 

2\/2 

0.748 

1.010 

0.676 

1.011 

0.410 

1.954 

= 8 

0.587 

0.880 

0.505 

0.878 

0.020 

0.729 

16 

0.779 

1.476 

0.654 

1.483 

0.560 

1.513 

0.647 

1.368 

0.516 

1.373 

0.330 

1.357 

32 

0.824 

2.380 

0.592 

2.390 

0.590 

2.408 

0.740 

2.305 

0.503 

2.318 

0.468 

2.317 

64 

0.901 

4.146 

0.454 

4.168 

0.544 

4.039 

0.901 

4.146 

0.454 

4.168 

0.544 

4.040 

128 

-
-
-
-
0.400 

7.157 

-
-
-
-
0.594 

7.313 

With an increase of p2 ^al^^z increases if a^ < TQ. In the opposite case i.e. as a2 > TQ 
with growing resistivity of the invasion zone (Ta/crs decreases. For example, for probe 4F1, 
when p3 = 32 ohm-m and ai = 0.1 m we have following values of Oajo-^'. 

^2, m 
0.28 

0.56 

p2, ohmrQ 
2 

0.714 

2.215 

4 

0.852 

1.553 

8 

0.921 

1.221 

16 

0.956 

1.056 

If a2 < To then (Ja/(^?, decreases with an increase of formation resistivity. On the contrary 
when a2 > ro, CFal^z increases when p3 increases. For instance, for probe 4F1.1, when 
/92 = 16 ohm-m and ai = 0.1 m we have following values of Oajo-^'. 

a2, m 
0.28 

0.56 

P2, ohm-m 
32 

0.965 

1.064 

64 

0.918 

1.176 

128 

0.832 

1.380 

An increase of the borehole radius from 0.1 m to 0.15 m results in a decrease of Oaloz-, 
when p\lp2 < 1. 

In conclusion in Table 7.23 ranges of the change of formation resistivity are presented 
for which aa/cTs differs from unity less than 10%. 

Now we will investigate vertical response of these differential probes. As has been shown 
differential probes allow us to reduce significantly the influence of the borehole and the 
invasion zone, that is areas of a medium, directly surrounding the probe. On the other 
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hand, in order to provide satisfactory vertical response in layers with a finite thickness it 
is necessary that the main part of a measured signal is defined by currents in areas which 
are relatively close to the probe. Therefore as was pointed out earher, requirements for 
improvement of radial and vertical responses of a probe in essence contradict each other. 
Correspondingly, it is natural to expect that since multi-coil induction probes have better 
radial responses than the basic two-coil probe, they are more sensitive to the surrounding 
medium at least in those cases when the formation thickness exceeds the distance between 
the most remote coils of the probe. 

However, with help of external focusing when some coils are located outside the for-
mation, we can improve the vertical response due to the fact that for such position a 
differential probe permits us to reduce the signal from the surrounding medium to a 
greater extent than from the formation. 

Proceeding from Doll's theory let us first consider vertical responses of the internal 
differential probes. Suppose the probe is located against the formation, and we will 
introduce notations: Gl and G2, which are the geometric factors of the formation and 
the surrounding medium (shoulders), respectively, while d and G2 are corresponding 
geometric factors for the basic two coil probe. Values of criGl/a2G2 and aiGi/(72G2 
characterize a relation between signals caused by currents in a formation and in the 
surrounding medium for differential and two-coil induction probes, respectively. 

Let us show that in this case the following inequality takes place: 

a,Gl ^ aiGl 

0-2 G2 ^ 2 ^ 2 

or 

l < l <"^' 
In accord with this relation we can consider a uniform medium in order to demonstrate 

that a multi-coil probe with internal focusing has higher sensitivity to the surrounding 
medium than the basic two-coil probe when the formation thickness exceeds the probe 
length. 

As was mentioned above every multi-coil induction probe can be considered as a sum 
of two-coil probes namely the basic induction probe and additional coil probes which 
provide improvement of the radial response. Electromotive forces induced in these probes 
can have the opposite sign to that in the basic probe as well as the same sign. However, 
the probes where the electromotive force has opposite sign play the most essential role 
and correspondingly, only they will be taken into consideration here. 

In accord with Doll's theory, described in detail in Chapter 3, it is appropriate to 
emphasize two main features of the geometric factors: 

• The geometric factor of the whole medium for every probe is equal to unity. 

• The part of the medium against which the two-coil probe is located has a geometric 
factor of 0.5. 
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TABLE 7.23 
Ranges of the change of formation resistivity; pi = 0.5 ohm-m, ai = 0.1 m 

p2, ohm-m a2/ai Probe type 

2V2 

0.5-20 

0.5-8 

-

0.5-20 

0.5-16 

8-16 

0.5-20 

0.5-40 

8-32 

0.5-20 

0.5-40 

8-64 

0.5-20 

0.5-40 

8-128 

0.5-20 

0.5-40 

8-128 

0.5-20 

0.5-40 

8-128 

4 

0.5-8 

0.5-40 

-

0.5-16 

0.5-40 

8-32 

0.5-32 

0.5-40 

8-64 

0.5-64 

0.5-40 

8-128 

0.5-64 

0.5-40 

8-64 

0.5-64 

0.5-40 

8-128 

0.5-64 

0.5-40 

8-128 

4V2 

Ti 
1-4 

-

1-8 

1-8 

-

2-16 

2-16 

8-16 

2-32 

2-40 

8-32 

4-64 

4-40 

4-40 

8-64 

4-40 

16 128 

4-64 

4-40 

16-128 

6F1M 

4F1 

4F1.1 

6F1M 

4F1 

4F1.1 

6F1M 

4F1 

4F1.1 

6F1M 

4F1 

4F1.1 

6F1M 

4F1 

4F1.1 

6F1M 

4F1 

4F1.1 

6F1M 

4F1 

4F1.1 

16 

32 

64 

128 

From these two facts we can conclude that the differential two-coil probe reduces the 
signal from the formation to a greater extent than that from the surrounding medium, 
and therefore inequahty 7.35 is valid. 

Now we will briefly discuss vertical responses of probes with external focusing coils. It 
is obvious that in the case when the whole probe is located against the formation the 
influence of currents induced in the surrounding medium is stronger than that for the 
basic two-cofl probe (Fig. 7.23a). 

If additional probes, as shown in Fig. 7.23b, are mainly outside of the formation, the 
eff"ect caused by currents induced in shoulders will be reduced stronger than that in the 
formation, and correspondingly some improvement of the vertical response of the basic 
two-coil probe will be observed. 

In conclusion of this analysis of vertical responses of multi-coil probes with internal and 
external focusing it is appropriate to notice the following: 

• Focusing probes located against the formation possess higher sensitivity to the sur-
rounding medium than the basic two-coil probe. 
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Figure 7.23. Various positions of probes with respect to formation boundaries. 

• Application of probes with external focusing results in some improvement of the 
vertical response within the interval of formation thicknesses: 

L<H <L + 2l 

where L and / are length of the basic and additional probe, respectively. 

However, the influence of shoulders for such thicknesses as pi > p2 is so large that the 
apparent conductivity, aa, essentially differs from <7i for probes with internal as well as 
external focusing. 

In the case when pi/p2 and H > L probes with both types oi focusing have practically 
the same vertical responses. 

As was demonstrated in Chapter 5, evaluation of vertical responses of induction probes, 
based on the theory of small parameters, very often has a qualitative character. For this 
reason let us consider the results of calculations based on the exact solution. 

Curves of aa/cri for various parameters of geoelectric section when differential probes 
6F1M, 4F1 and 4F1.1 are located symmetrically against the formation are presented in 
Figs. 7.24-7.29. 

As is seen from these curves: 

• With an increase of frequency the influence of shoulders (surrounding medium) 
becomes smaller. This effect is more noticeable when Pi/p2 and the formation 
thickness is greater. For example, if pi = 32 ohm-m, p2 = 2 ohm-m, if = 2.5 m 
for probes 4F1 (/ = 70 kHz) and 4F1.1 ( / = 1 MHz) we have cfa/cri = 2.5 and 
(^a/(^i = 1-05, respectively. 

• An increase of shoulder conductivity deteriorates the vertical response of the probe, 
and it manifests itself stronger the lower the frequency and the smaller the thickness 
of the formation. 
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• The probe with external focusing 6F1M is characterized by smaller values of aa/(Ji 
than the probe with the internal focusing 4F1, if 1.5 < H < 2.5 m and pi > p2- For 
instance both probes provide the same value of cTa/cri, equal to 1.75 when H = 2.5 m, 
Pi — 8 ohm-m and p2 = 0.5 ohm-m. However, ii H = 1.75 m values of da/cri for 
probes 4F1 and 6F1M are equal to 2.5 and 1.8, respectively. Within this interval of 
thicknesses and P2 == 2 ohm-m values of apparent conductivity for both probes are 
practically the same. 

Thus, the advantage of the external focusing manifest itself only for large values of pi/p2 
when values of apparent conductivity essentially differ from the formation conductivity. 

7.5. The Influence of Finite Height of the Invasion Zone on 
Radial Responses of Probes 6F1M, 4F1 and 4F1.1 

As is known, parameters of the multi-coil induction probe are chosen with the assumption 
that the invasion zone has an infinite extension along the borehole axis. In real conditions 
penetration of borehole filtrate into a formation and surrounding medium occurs in a 
different manner due to the difference of their physical properties. For this reason it is 
appropriate to consider focusing features of multi-coil induction probes when the invasion 
zone has limited dimension along the borehole axis. 

We will investigate the case where the borehole filtrate penetrates into the formation 
only (Fig. 7.30). Calculations of the magnetic field on the borehole axis in such model is 
performed on the base of the approximate theory which takes into account the skin effect 
in the external area. 

As was demonstrated in Chapter 3 for the quadrature component of the magnetic field 
of a two-coil induction probe we have: 

Q H , = Q F O + ^ [ ( a i - a4)Gi(a) + {a, - a3)Gf\a) + {a^ - ^ 3 ) 0 ^ (a)] (7.36) 

where Q H^ is the quadrature component of the magnetic field in a horizontally layered 
medium when the borehole and invasion zone are absent; G\ (a) and G2 (ô ) are geo-
metric factors of the part of the borehole located against the formation and the invasion 
zone, respectively. 

It is obvious that an influence of finite height of the invasion zone is defined by difference 
between geometric factors G^ {a) and G2 {a) and those corresponding to infinitely long 
cylinders. First of all we consider this question for a two-coil induction probe. We will 
assume that the probe is completely located within the cylinder interval (iJ/2, — iJ/2), 
and L is the probe length, but e is coordinate of the transmitter coil (Fig. 7.31). Then 
the expression for geometric factor of the cylinder in accord with eq. 3.104 can be written 
in the form: 

0 - if/2 
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Figure 7.30. The model of the invasion zone with finite height. 
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Figure 7.31. Two-coil induction probe within the cyhnder with finite thickness, H. 
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where: 

Ri = x/r2 + (z - ey R2 = V[L - {z - e)]^ + r^ 

It is obvious that: 

0 - 00 0 H/2 

Integrals on the right-hand side of eq. 7.38 describe a difference between geometric factors 
of a cyhnder of finite height and that of an infinitely long one. Let us investigate these 
integrals. After a change of variables a sum of them, S, can be presented as: 

1 
a H/2-£ 

S=-^ r'dr [ *^^ (7.39) 

" H/2-e 

It is clear that H/2 — e = /+ and H/2 + e = /^ are distances from the transmitter coil to 
upper and lower boundaries of the cylinder, respectively. 

Suppose that a/l^ <C 1 and a/l^ <C 1. Then we can assume that the second multiplier 
in the denominator of eq. 7.39 is equal to unity, and in this case the integral with respect 
to r is taken in the explicit form. Correspondingly we have: 

Suppose also that: 

1 - L//J > a//J 1 + L/IQ > a/l^ 

or 

/+ = /^ - L > a /~ = ZQ" + L > a 

where /+ and /~ are distances from the receiver to upper and lower boundaries, respec-
tively. 

Taking into account these inequalities, radicals in the integrand of eq. 7.40 can be 
expanded in series. Then the integral can be presented as: 
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fix) 

\ 

0.2 0.4 0.6 

Figure 7.32. Behavior of function f{x). 

After relatively simple transformations we have: 

^4 

s = -

where 

a /iSV/f!; 
^0-

f{x) = {x' - 1) 
6x - (1 - x'^) 

2x2 
6 Inx 

(7.42) 

(7.43) 

Asymptotical expansion 7.42 is valid when the distance from coils to the upper and lower 
boundaries exceeds the cylinder radius. A graph of f{x) is shown in Fig. 7.32. 

If L/lo tends to zero expansion of eq. 7.42 results in the following: 

5 = -
1 

+ (U)̂  (lori 
(7.44) 

Equations 7.42-7.44 show that the value of S has high order with respect to small 
parameter a/L or a//J, CL/IQ, and therefore the geometric factor of a cylinder of finite 
length for a two-coil induction probe {H > L) slightly differs from that of an infinitely 
long one, i.e. Gi. In the case of symmetric location of the probe {e = 0) this fact was 
demonstrated in Chapter 5. 
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Thus, we can assume that the influence of finite dimensions of the invasion zone along 
the borehole axis on focusing features of the multi-coil probe will be usually small. 

Calculations confirm this assumption. Values of EMF expressed in units of electromo-
tive force in a horizontally layered medium are presented in Tables 7.24-7.26. These data 
show that probes 6F1M, 4F1 and 4F1.1 preserve focusing features even when the invasion 
zone has finite dimensions along the 2;-axis. 

7.6. Three-coil Differential Probe 

Now we will investigate the simplest differential system, namely the three-coil probe which 
consists of two transmitter and one receiver coil or one transmitter and two receiver coils. 
The distance between the pair of transmitter or receiver coils is significantly smaller 
than that to the remote coil. Let us suppose that the probe is located on the borehole 
axis, and it consists of one receiver coil with moment A î, and two transmitter coils with 
moments Mi, and M2. The latter are characterized by opposite direction of turns. Then, 
for electromotive force induced in the receiver by currents in the borehole and in the 
formation at the range of small parameters we have: 

^ — 011 — 0\2 — ;; 
47r 

, Ml M2 
cTi ( - — G i ( a i ) - - ^ G i ( a 2 ) 

L\ L2 

+ ^2 ( ^—G'2 (Q; I ) - -j—G2[a2^ 
Li L2 

(7.45) 

where Li and L2 are lengths of two-coil induction probes forming the differential probe 
( i i > L2). 

Suppose that the electromotive force of the primary field is compensated, i.e. we have 
Mi/Ll = M2/LI. Then we obtain: 

where t 

G*i = 

G; = 

G, 

9l 

4ITLI 

= L2/L1 < 

{a,)-t^G 
l - i 2 

i{ai)-t'G 

\"i 

1 and: 

1(^2) 

2(0^2) 

(7.47) 

Let us assume that the lengths of both two-coil probes are much greater than the borehole 
radius, i.e. ĉ i > 1 and a2 > 1. Then, making use of the asymptotic expression for 
function Gi: 

1 3 In a - 4.25 
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TABLE 7.24 
Values of EMF for probe 6F1M; pi = 1 ohm-m, P4 = 4 ohm-m 

H/L 

1 

V2 
2 

2\/2 

4 

4 A / 2 

A a2/ai 

P2 = 8 ohm-m, p^ — 32 ohm-m 

6 

p2 = 32 ohm-m, ps = S ohm-m 

6 

1.015 

1.025 

1.007 

0.995 

0.994 

0.993 

0.992 

1.041 

1.073 

1.047 

1.035 

1.044 

1.053 

1.059 

1.096 

1.169 

1.169 

1.184 

1.232 

1.277 

1.309 

0.997 

0.996 

0.999 

1.000 

1.000 

1.000 

1.000 

0.978 

0.967 

0.978 

0.983 

0.982 

0.981 

0.981 

0.938 

0.909 

0.915 

0.916 

0.912 

0.910 

0.909 

TABLE 7.25 
Values of EMF for probe 4F1; pi = I ohm-m, P4 = 4 ohm-m 

H/L 

1 

V2 
2 

2v/2 

4 

4 ^ 2 

a2/ai 

P2 = S ohm-m, p3 = 32 ohm-m P2 = 32 ohm-m, p3 = 8 ohm-m 

0.973 

0.984 

0.980 

0.973 

0.996 

0.960 

0.956 

0.957 

0.986 

0.995 

0.996 

0.996 

0.995 

0.995 

0.995 

1.062 

1.118 

1.171 

1.220 

1.260 

1.286 

1.007 

1.005 

1.005 

1.005 

1.005 

1.005 

1.005 

1.020 

1.003 

0.997 

0.995 

0.995 

0.994 

0.994 

0.989 

0.952 

0.929 

0.918 

0.913 

0.911 

0.911 

TABLE 7.26 
Values of EMF for probe 4F1.1; pi 1 ohm-m, P4 = 4 ohm-m 

H/L 
a2/ai 

1 

2 

4 

4V2 

P2 — S ohm-m, ps = 32 ohm-m P2 = 32 ohm-m, p3 = 8 ohm-m 

0.929 

0.969 

0.965 

0.957 

0.958 

0.959 

0.862 

0.938 

0.959 

0.959 

0.960 

0.961 

0.917 

1.077 

1.284 

1.306 

1.301 

. 1.295 

1.021 

1.017 

1.014 

1.014 

1.014 

1.014 

1.087 

1.041 

1.014 

1.013 

1.013 

1.013 

1.033 

0.934 

0.862 

0.861 

0.862 

0.862 
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4.0 d, m 

Figure 7.33. Radial responses of a three-coil probe (L = 1.4 m). Curve index L2/L1. 

we have for the geometric factor of a three-coil probe, G^, the following expression: 

Gl 
1 

2 . 1 7 - ^ - 3 1 n . , 
1 — r̂  

(7.48) 

Thus due to the compensation of the electromotive force of the primary field the value 
of the geometric factor Gl turns out to be much smaller than the values of the geometric 
factor for two-coil probes, Gi(ai) and Gi(a2). 

Radial responses of three-coil probes characterizing focusing features of these systems 
are presented in Figs. 7.33-7.35. 

At the initial part of the radial response, G^ has negative values which, due to com-
pensation of the electromotive force of the primary field, are much smaller than those of 
two-coil induction probes. Near point QQ when 

3 In 
ao 

2 . 1 7 -
3lnt 

geometric factor G^ is equal to zero and then monotonically increases, approaching asymp-
totically to unity. Combination of two factors, such as the compensation of the electro-
motive force of the primary field and the behavior of the function Gi{a) as 1/a^, provide 
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4.0 d, m 

Figure 7.34. Radial responses of a three-coil probe (L = 1.8 m). Curve index L2/L1. 

4.0 d, m 

Figure 7.35. Radial responses of a three-coil probe (L = 2 m). Curve index L2/L1. 
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a significant reduction of the influence of currents induced in the borehole, as the probe 
length Li is several times greater than the radius a, and with an increase of the probe 
length the effect of focusing manifests itself stronger. 

This behavior of the radial response of a three-coil differential probe is of great practical 
interest for solution of various problems, in particular for the determination of a relatively 
high resistive formation when the borehole is filled by a strongly mineralized solution {s = 
(^2/0'! < 0.001). Inasmuch as for obtaining reliable measured signals created by currents in 
a slightly conductive medium it is necessary to apply relatively high frequencies, when the 
skin effect in the mineralized solution of the borehole can be noticeable, it is appropriate 
to use results of calculations by exact formulae. 

As an example Table 7.27 contains values of ratio of quadrature component of elec-
tromotive force when the probe is located on the borehole axis to that corresponding to 
a uniform medium with conductivity of the formation {t = 0.8). As is seen from the 
table the skin effect does not practically affect the radial responses of the three-coil probe 
provided that the thickness of the skin effect, /ii, is related with the borehole radius as: 

hi > 2V2ai (7.49) 

Values of apparent conductivity, Oajox-^ for a three-coil probe [L\ = 1.2 m, t = 0.833) 
demonstrating its focusing features are presented in Tables 7.28-7.31. Let us notice that 
calculations have been performed making use of the exact solution provided that ai = 
0.1 m. As is seen from these tables, if penetration of borehole solution is not very strong 
(a2/ai < 4) the value of CFa/cfi does not practically differ from that corresponding to a 
uniform medium with the formation resistivity when parameter a^jiLxjai < 0.64 x 10"^. 
In this considered range of parameters the borehole and the invasion zone do not have 
an influence on the apparent conductivity which is defined by the formation conductivity 
only. With an increase of the invasion zone radius the difference between Oa and a^ 
becomes more noticeable. 

Comparison of (Ja/cr2 for a three-coil probe located symmetrically with respect to the 
formation boundaries with the same function for a two-coil probe shows that if the for-
mation thickness exceeds the probe length the influence of the surrounding medium on 
the three-coil probe is somewhat greater than that on the two-coil induction probe of the 
same length (Figs. 7.36-7.38). In this case ai and 02 are conductivities of the formation 
and the surrounding medium. Also the curve of profiling for a three-coil induction probe 
is shown in Fig. 7.39 which demonstrates only slight asymmetrical behavior with respect 
to the center of the formation. 

Now let us consider the calibration curve for a three-coil probe (Fig. 7.40). For com-
parison values of quadrature components for both two- and three-coil probes are given in 
Table 7.32. 

It is clear that the range of resistivities measured by a three-coil probe is narrower than 
that for a two-coil probe. 

As was shown before, the better the focusing of a multi-coil induction probe the narrower 
the range of measured resistivities, and correspondingly the same effect is observed for 
other differential probes. We will characterize the range of measured resistivities by the 
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TABLE 7.27 
Values of function Oal^^x 

ai/hi 

I/V2 
1/2 

I /2V2 

1/4 

I /4V2 

1/8 

1/V^ 
1/2 

I /2V2 

1/4 

l/4v/2 

1/8 

a 

TABLE 7.28 

10 

0.550 

0.730 

0.796 

0.821 

0.832 

0.837 

0.231 

0.294 

0.329 

0.349 

0.362 

0.369 

Values of function cTa/ai 

CTl/LtU; 

0.01 

0.02 

0.04 

0.08 

0.16 

0.32 

0.64 

Pz/pi 

14 

(J2/CJ1 = 2 X 1 0 - 3 

0.580 

0.809 

0.888 

0.916 

0.926 

0.931 

cF2lcr\ = 5 X lO""^ 

02 /^1 = 

1 

0.910 

0.877 

0.826 

0.770 

0.686 

0.574 

0.433 

4 

0.225 

0.220 

0.209 

0.193 

0.172 

0.144 

0.108 

0.522 

0.652 

0.702 

0.722 

0.732 

0.738 

4, P2IP1 = 8 

16 

0.0587 

0.0563 

0.0536 

0.0496 

0.0440 

0.0356 

0.0260 

18 

0.550 

0.826 

0.919 

0.950 

0.962 

0.966 

0.614 

0.782 

0.842 

0.864 

0.872 

0.876 

32 

0.0298 

0.0283 

0.0272 

0.0258 

0.0216 

0.0182 

0.0120 

10 

cr2/o-i 

0.459 

0.589 

0.641 

0.664 

0.675 

0.681 

^^2/^1 

-0.252 

-0.301 

-0.291 

-0.275 

-0.261 

-0.252 

0-2/0.1 = 4 

1 4 

0.905 0.228 

0.875 0.219 

0.830 0.207 

0.768 0.193 

0.687 0.171 

0.570 0.143 

0.433 0.107 

14 

= 1 X 10-3 

0.586 

0.765 

0.828 

0.852 

0.861 

0.866 

= 2.5 X 10-4 

0.345 

0.413 

0.447 

0.465 

0.475 

0.482 

i, P2/P1 = 16 

16 

0.0572 

0.0556 

0.0524 

0.0490 

0.0427 

0.0362 

0.0260 

18 

0.609 

0.824 

0.897 

0.923 

0.932 

0.936 

0.554 

0.679 

0.726 

0.744 

0.752 

0.657 

32 

0.0296 

0.0282 

0.0266 

0.0250 

0.0214 

0.0180 

0.0123 

TABLE 7.29 
Values of function aa/cri 

a2/ai = 4, P2/P1 = 32 a2/ai = 4, P2/P1 = 64 

Ps/Pi 
(Jipuo 

1 16 32 1 16 32 

0.01 

0.02 

0.04 

0.08 

0.16 

0.32 

0.64 

0.910 

0.882 

0.830 

0.772 

0.684 

0.570 

0.440 

0.226 

0.220 

0.208 

0.192 

0.172 

0.143 

0.107 

0.0570 

0.0545 

0.0520 

0.0481 

0.0428 

0.0353 

0.0260 

0.0298 

0.0275 

0.0260 

0.0242 

0.0214 

0.0174 

0.0124 

0.907 

0.874 

0.830 

0.768 

0.682 

0.590 

0.428 

0.226 

0.218 

0.208 

0.191 

0.170 

0.142 

0.107 

0.0569 

0.0550 

0.0520 

0.0478 

0.0427 

0.0357 

0.0255 

0.028 

0.027 

0.025 

0.024 

0.021 

0.017 

0.012 
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TABLE 7.30 
Values of function (Jajox 

aifiLU 

0.01 

0.02 

0.04 

0.08 

0.16 

0.32 

0.64 

Ps/Pi 1 

0.780 

0.748 

0.706 

0.643 

0.564 

0.460 

0.342 

a2/ai = 4, P2/P1 = 8 

4 

0.207 

0.203 

0.189 

0.176 

0.155 

0.128 

0.095 

16 

0.0670 

0.0661 

0.0628 

0.0528 

0.0530 

0.0440 

0.0310 

32 

0.0439 

0.0429 

0.0413 

0.0390 

0.0350 

0.0280 

0.0157 

1 

0.769 

0.738 

0.694 

0.634 

0.554 

0.453 

0.335 

a2/ai = 4, 

4 

0.200 

0.192 

0.181 

0.166 

0.145 

0.119 

0.088 

P2/P1 = 16 

16 

0.0574 

0.0055 

0.0527 

0.0488 

0.0433 

0.0358 

0.0260 

32 

0.033 

0.032 

0.031 

0.029 

0.026 

0.021 

0.014 

TABLE 7.31 
Values of function (Ja/cri 

aifiiJ 

0.01 

0.02 

0.04 

0.08 

0.16 

0.32 

0.64 

Ps/pi 1 

0.764 

0.732 

0.690 

0.630 

0.550 

0.448 

0.328 

a2/ai = 4, 

4 

0.195 

0.186 

0.176 

0.161 

0.141 

0.115 

0.085 

P2/P1 = 8 

16 

0.0523 

0.0504 

0.0476 

0.0438 

0.0385 

0.0315 

0.0230 

32 

0.0286 

0.0276 

0.0262 

0.0242 

0.0214 

0.0175 

0.0143 

1 

0.762 

0.730 

0.686 

0.627 

0.547 

0.447 

0.330 

a2/ai = 4, 

4 

0.192 

0.185 

0.173 

0.158 

0.138 

0.113 

0.083 

P2/P1 = 16 

16 

0.0498 

0.0478 

0.0452 

0.0412 

0.0361 

0.0296 

0.0213 

32 

0.02 

0.02 

0.02 

0.02 

0.01 

0.01 

0.01 

TABLE 7.32 
Values of quadrature components (xlO^) 

cr/iCjL^ 

Two-coil probe 

Three-coil probe 

0.01 

0.474 

0.169 

0.02 

0.929 

0.328 

0.04 

1.80 

0.63 

0.08 

3.45 

1.17 

0.16 

6.48 

2.17 

0.32 

11.8 

3.77 

0.64 

20.4 

6.10 

1.28 

32.7 

8.48 

2.56 

46.4 

8.89 

5.12 

53.2 

3.87 
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10' 

10' 

^ 10° 

10" 

10 ,-2 

64^ 

16 1 

8- 1 

4 

2 

1 
1/2 

1/4 

1/8 • 
1/16 _ 
1/32 

1 /128—-

H/L = 8 

10" 10~ 10" 
(72 jucoL^ 

10" 

Figure 7.38. Vertical responses of a three-coil probe {t = 0.833). Curve index cri/a2. 

ratio: 

A . = 
Pmin 

(7.50) 

where Pmax and pmin are upper and lower boundary of this range, respectively. 
If we assume that Pmin — 0.07 and Pmax = 1.4 (P = tijK) then for a two-coil induction 

probe Ap :^ 400. For multi-coil induction probes Ap depends on parameters of the probe. 
For example, we have: 

A . = 
30 6F1M 
50 for 4F1 
40 4F1.1 

Assuming that for three-coil induction probe Pmin = 0.13 and Pmax = 0.8 we obtain 
Ap = 40, i.e. it has a relatively broad range of measured resistivities. Of course, in 
practice this range is essentially wider. 

In conclusion, it is appropriate to notice that three-coil differential probes due to their 
simplicity can be used for lateral soundings. Examples of sounding curves, calculated for 
the range of small parameters, are given in Figs. 7.41-7.44. They demonstrate that such 
soundings can be performed with relatively short probes. 
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-^lisssIJ*"* • • 

L2/H = 0.333 
Li/H = 0.400 

(J2lCT'\ - 8 

R zlH 

Figure 7.39. Profiling curves of induction probes: (la) three-coil probe S^L\ = (^2^\\ 
(lb) three-coil probe ^^ = S'^] (2) two-coil probe; (3) four-coil probe p = 0.4, c =^ 0.08. 

f=0.8 

Figure 7.40. Calibration curve for three-coil probes. Curve index t. 
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7.7. The Influence of Eccentricity on Focusing Features of 
Multi-coil Induction Probes 

In Chapter 4 we investigated an influence of displacement, ro, from the borehole axis on 
the radial responses of a two-coil induction probe. These results allow us to consider the 
dependence of radial responses of multi-coil probes on the value of displacement ro-

By analogy with the case when a probe is located on the borehole axis the geometric 
factor of the probe, shifted from the axis, is defined in the following way: 

Gl{ai,e,s) = 
cti 

MjNj 
(7.51) 

where £ = rg /a i , s = o^jox. 
If we suppose that all two-coil induction probes forming a multi-coil system are suffi-

ciently long and that we can use the asymptotic expression for geometric factor G\, then 
instead of eq. 7.51 we have: 

G i ( a i , £ , s ) :^ 

1 + 
( 8 - l ) ( 2 g - H ) 

i=l 3=1 
Lij 

i=l 3=1 4 (7.52) 

Inasmuch as in all considered probes moments of coils and distances between them are 
chosen in such a manner than the electromotive force of the primary field is compensated, 
the right part of eq. 7.52 turns out to be zero. Therefore, if the differential probe does 
not contain relatively short two-coil probes we can expect tha t such a probe preserves 
focusing features even when it is shifted from the borehole axis within a wide range of 
parameter 02lo\. 

For illustration radial responses of probes 6F1M, 4F1 and 4F1.1, calculated for three 
values of borehole radius (ax = 0.1, 0.125, 0.15 m) and two values of parameter s {s — 
1/32, 1/2), are presented in Figs. 7.45-7.48 as a function of the displacement e — r^/a. As 
is seen from the curves the radial response of probe 6F1M does not practically depend on 
s and £, if a i = 0.1 m. It is related with the fact tha t the shortest two-coil probe forming 
6F1M has in this case the relative length a = 5.0. If ai — 0.125 m and a\ — 0.15 m, 
due to a decrease of the relative length of probes, specially the shortest one, dependence 
of geometric factor G\ on parameters s and e begins to manifest itself. This behavior 
occurs sufficiently favorable: the geometric factor of probe 6F1M decreases by absolute 
value with an increase of £ for s = 1/32, as well as for s = 1/2. For example li s — 1/32 
and a\ — 0.125 m function G\ has at initial part negative values then changes sign and 
begins to increase. 
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TABLE 7.33 
Values of function Gl{s) x 

1.2 

1.4 

1.6 

1.8 

2.0 

0 

-1 .95 

-1 .26 

-0.842 

-0.582 

-0.413 

10^ 

0.1 

-1.92 

-1 .25 

-0.836 

-0.578 

-0.411 

0.2 

-1 .85 

-1 .21 

-0.818 

-0.568 

-0.405 

0.3 

-1.74 

-1 .16 

-0.789 

-0.552 

-0.396 

0.4 

-1 .58 

-1 .08 

-0.748 

-0.529 

-0.382 

0.5 

-1.39 

-9.86 

-0.696 

-0.497 

-0.367 

The dependence of the geometric factor G^ of probes 4F1 and 4F1.1 on parameters ai, 
s and s is displaced in more complicated manner. For instance if ai = 0.1 m and s = 1/32 
as well as s = 1/2, radial responses of both probes increase by absolute value with an 
increase of £, while for ai = 0.125 m and ai = 0.15 m as s = 1/32 they decrease. At the 
same time Gl for probes 4F1 and 4F1.1 does not practically depend on £, if s = 1/32 and 
tti = 0.125 m, or ai = 0.15 m. 

In accord with results obtained in Chapter 4, the geometric factor of a two-coil probe, 
displaced from the borehole axis, behaves practically as: 

^ i f a » l 

Taking into account that the electromotive force of the primary field is compensated in 
a three-coil probe we can expect that the displacement of this probe with respect to 
the borehole axis produces a relatively small efi'ect on the radial response. This fact is 
illustrated by values of geometric factor G*i{e) for s = 1/2, ai = 0.1 m, t = 0.8, presented 
in Table 7.33. 

7.8. Choice of a Frequency for Differential Probes 

Considering the field of the magnetic dipole as well as induced currents in a uniform 
conducting medium it was established that with an increase of frequency the role of those 
parts of the medium which arc relatively close to the probe increases. For this reason the 
vertical response of a two-coil induction probe significantly improves, but simultaneously 
the influence of currents induced in the formation, with respect to those in the borehole 
and in the invasion zone, becomes lesser. Unlike of a two-coil induction probe the influence 
of the medium directly surrounding the multi-coil probe is very small, and an increase of 
frequency up to a certain limit does not practically change its radial response. 

Besides, improvement of the vertical response of a multi-coil induction probe due to 
measurements at higher frequencies allows us to apply induction logging in a more resistive 
medium, inasmuch as the ratio between the quadrature component of the electromotive 
force and that of the primary field increases. 

In order to define the upper limit of frequencies several factors have to be taken into 
account. First of all comparison of results of calculations based on the exact solution 
and the approximate theory, described in Chapter 3, permits us to establish the maximal 
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frequency when the radial response is not yet distorted. In fact two main assumptions 
form this theory, namely: 

• The skin effect is absent in the borehole and in the invasion zone. 

• In the formation the skin effect manifests itself in the same manner as in a uniform 
medium with conductivity a^. 

For this reason, coincidence of results of calculations by both methods establishes maxi-
mal frequencies for which, first of all, geometric factors of the borehole and of the invasion 
zone correctly describe the influence of these parts of the medium, and secondly, the elec-
tromotive force induced by the magnetic field of currents in the formation does not depend 
on currents induced in the borehole and in the formation. 

Also, a choice of a frequency is defined by focusing features of the probe. For example, 
for multi-coil probes having a greater depth of investigation in a relatively conductive 
medium the frequency should be smaller. In particular, it was established that for probe 
l.L-1.2 and three-coil probe of the same length the maximal frequency is defined from 
the relation: 

fma. ^ (2.0 - 2.2) X lOV. ^^min 

If we assume that Pmin = 1 ohm-m, the maximal frequency can be increased from 60 
kHz to 220 kHz. An increase of frequency of almost four times results in a significant 
improvement of the vertical response of the probe, specially in a low-resistive medium, 
and it also allows us to perform reliable measurements in a more resistive medium. 

An additional limitation on the choice of the maximal frequency is related with the fact 
that the quadrature component of the electromotive force as a function of the formation 
conductivity has a maximum, and in order to avoid nonuniqueness it is necessary that 
the range of conductivities should correspond to the ascending branch of this response of 
EMF. 

Finally, it is appropriate to notice that the upper limit of measured resistivities is defined 
by instrumental problems as well as the possible influence of the dielectric constant. 

7.9. Determination of the Coefficient of Differential Probes 

First, let us assume that a two-coil induction probe, which has coil dimensions that are 
much smaller than its length, is located in a uniform medium and the skin depth is much 
greater than the separation between coils. Then, as was shown in Chapter 2, for the 
quadrature component of the electromotive force we have: 

S = — - - — a (7.53) 
ATTL 

i.e. the EMF depends on conductivity, frequency, the probe length and coil moments, M 
and N. 
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For this reason in two probes characterized by various lengths or coil moments or both 
of them, different electromotive forces will be induced in the same medium. 

It is natural to eliminate the influence of these factors, depending on probe parameters, 
and introduce apparent conductivity which in a uniform medium coincides with its con-
ductivity when parameter Ljh is sufficiently small. In fact this approach has been used 
widely in several chapters of this monograph. In particular, in accord with eq. 7.53 we 
have: 

"" li'^uj'^MN 

where 

47rL 

K is the probe coefficient and unlike corresponding coefficients of electric logging it de-
pends not only on the probe length but also on coil moments. 

Equation 7.54 can be written as: 

where <̂o is the electromotive force of the primary field. 
As was shown above, in a nonuniform medium apparent conductivity, a a, depends on 

the distribution of resistivity and the probe length. For interpretation it is appropriate 
to present results of a solution of the forward problem as well as experimental data 
as a function of apparent conductivity, the probe length and parameters of a medium. 
Knowing the probe length and the electromotive force of the primary field, it is a simple 
matter to calculate the probe coefficient and transform the quadrature component of the 
electromotive force into the apparent conductivity. In accord with eq. 7.12 the coefficient 
of the coil probe can be written as: 

47r 
K = ^^^^^^^ (7-56) 

and it depends on distance between coils and values of their moments. 
Let us present the probe coefficient through the electromotive force of the primary field 

of one of two coil probes, for example, L n . Then, instead of eq. 7.56 we have: 

K = ^ (7.57) 

where S'Q^ is the electromotive force of the primary field of a two-coil probe with length 
Liu Pij is the ratio of length, L^j, of a two-coil probe to L n ; Q and Cj are ratios of coil 
moments to the moment of one of the coils of the probe with length L n . 



459 

In accord with eq. 7.57 for determination of the probe coefficient it is necessary to 
measure the EMF of the primary field of one of the two-coil probes that requires switching 
oflF two coils of the system. Since this is impractical, calculation of the coefficient of multi-
coil probes can be performed by using eq. 7.56 only. 

In deriving the formula for the probe coefficient it was assumed that the radius and 
height of coils are many times smaller than the corresponding length of the two-coil probe. 
In other words, the EMF induced by currents in a medium depends on the distance 
between coil centers and their moments only. Under certain conditions the influence of 
finite dimensions of coils on the probe coefficient is insignificant, and it can be neglected. 
But in general, coil sizes have to be taken into account in calculating the probe coefficient 
and therefore the apparent conductivity. Let us consider this question in more detail. 

We will assume that coils of a two-coil probe present themselves as layered ones placed 
on a nonconducting base. Then, in accord with results obtained in Chapter 4 for the 
quadrature component of the electromotive force at the range of small parameters we 
have: 

0 

sin(A//2)sin(A6/2) ..^ . ^^ ^^ 
X —^— \n ——^Hi^^) COS ALo dA 

A"̂  

where rir and TIR are the number of turns per unit of length of transmitter and receiver 
coils; / is current; I and h are coil lengths; LQ is the distance between coil centers; r is the 
coil radius. 

Let us introduce the following notations: Ar = m, riTTrr^I and riRTrr'^ are moments of 
transmitter and receiver coils per unit of the length, M^, M^, respectively; l/2r = Si, 
b/2r = S2, Lo/r = a. 

After simple transformations we have: 

oo 

^ ^ Suj'^a'^ ,.n,^n /" // ,sin5imsin52771/?(m) , /^ ro\ 
QS' = a ^rM^M?. / (^(m) ^ ^ cos ma dm (7.58) 

TT̂  J m m m^ 
0 

Whence, for the coefficient of the probe having single layered coils we have: 

K = 
o 9 9 7»̂ 0]i#o f j.r Nsmsimsms2m/i2(m) 
Suj^LL^rM^lMVf / 6(m) -̂̂ -̂ ^ cos ma dm 

J m m m^ 

where 

4>{m) = ^ [2Ka{m)KM) - m{Kl - K^)] 
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The expression for coefficient K, when coils are infinitely small, can be obtained as-
suming that the linear dimensions of the coils are much smaller than the probe length. 
In this case a — Lo/r -^ oo, and the integral in eq. 7.58 is defined by the behavior of the 
integrand for small values of m. 

If m —> 0 then: 

sinsim sins2m If{m) 1 . ,. ^ r̂  / x 
> si > 52 :: > - and 0(m) -^ Ko{m) 

m m m^ 4 

Therefore we have: 

00 oo 

f sin Sim sin S2mlf{m) siS2 f j . ^ . . 
1 (pirn) r—cos ma dm ^ -̂-— / ivo(^) cos ma dm 

J m m m^ A J 
0 0 

As is well known: 

1 2 f 
— / Ko(^) cos ma dm 
TT J 

( l + a2)i/2 
0 

Whence: 

oo 

/ 

.̂ . sin5imsin52m/?(m) ^ SiS2 7rsiS2 
(bim) —̂ cos ma dm = —, 2± 
v̂v ; _ _ _2 8 / r T ^ 8a 

Substituting this value of the integral into eq. 7.58 we obtain the known expression K for 
point sensors: 

UO'^^'^MTMRL 

where Mr = M^ /, MR = M^ h. 
If the height of both coils is the same, then S\ = S2 = s, and we have: 

K = , , —^ ^ (7.59) 

Suj^fi^rM^M^ 10(m) ^^^^^^ ^ ^ ^ cos ma dm 
J m^ m^ 
0 

For a multi-coil probe located in a uniform medium with conductivity a, the quadrature 
component of the electromotive force in measuring coils is defined from relation: 

Q^ = ^ Q 4 , = ^ ^ a = a5^-i 
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where Q Sji and K^ are electromotive forces and coefficients of n two-coil probes forming 
the differential system. 

Therefore, the coefficient of the multi-coil induction probe can be presented in the form: 

and 

where Q(^ is the electromotive force, induced in receiver coils of a focusing probe. 
As follows from eq. 7.58 determination of the probe coefficient, X, is related with 

calculation of the integral in the denominator of this equation. 
For the case when coil lengths are the same, values of the integral: 

oo 

/ 
., .sin^ ms I?(m) . . . 

0(m) r—cos ma dm (7.61) m^ 

and its asymptotic values are given in Table 7.34. 
With an increase of the probe length the value of the integral approaches its asymptote 

and, within certain limits, the influence of coil length is negligible. In known probes 
finite dimensions of coils do not practically influence the value of the probe coefficient. 
For example, if ai = 0.1 m, the four-coil differential probe l.L-1.2 has the following 
parameters: ai = 24, 0̂2 = 9.6, as = 4.8, Smax = 1, p = 0.4 and c = 0.05. Taking into 
account the ratio between turns of coils we can see that the probe coefficient is the same 
as that for the probe with infinitely small coils. This is true to an even greater extent 
for three-coil differential probes with length exceeding, by at least four-five times, the 
borehole radius. 

If the probe length is sufficiently small and the dimension of coils has to be taken into 
account, the determination of coefficient K is defined by eq. 7.58. 

In conclusion of this chapter let us make several comments. 

• The use of differential multi-coil probes is the most conventional approach in appli-
cation of induction logging. 

• Due to the use of these probes induction logging in most cases has the greatest 
depth of investigation among other logging tools. 

• Any multi-coil induction probe, regardless of the amount of transmitter and receiver 
coils, by no means performs focusing of the field as it takes place, for example, in 
optics. In effect, every induction probe, except a two-coil one, is a differential system 
measuring such a difference of signals in receivers that the influence of induced 
currents in the borehole and in the invasion zone is significantly reduced. 
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TABLE 7.34 
Values of integral (7.61) 

a 

1 

v/2 

2 

2^2 

4 

4 ^ 2 

8.0 

8v/2 

16.0 

16V^ 

32 

s = 0.2 

Accurate 

0.811x10-2 

0.711 

0.594 

0.472 

0.359 

0.265 

0.192 

0.137 

0.976x10-3 

0.692 

0.490 

Approx. 

0.157x10-1 

0.111 

0.782x10-2 

0.556 

0.391 

0.278 

0.196 

0.139 

0.978x10-3 

0.700 

0.489 

s = 0.4 

Accurate 

0.325x10-2 

0.285 

0.239 

0.190 

0.144 

0.106 

0.768x10-2 

0.549 

0.391 

0.279 

0.196 

Approx. 

0.626x10-1 

0.444 

0.314 

0.222 

0.156 

0.111 

0.782x10-2 

0.560 

0.391 

0.280 

0.196 

s = 0.8 

Accurate 

0.130 

0.116 

0.974x10-1 

0.773 

0.585 

0.429 

0.309 

0.220 

0.156 

0.111 
0.784x10-2 

Approx. 

0.250 

0.177 

0.125 

0.885x10-1 

0.624 

0.443 

0.312 

0.221 

0.156 

0.111 
0.780x10-2 

a 

1 

V2 
2 

2V^ 

4 

Ay/2 

8.0 

8^2 

16.0 

16\/2 

32 

s = 1.6 

Accurate 

0.483 

0.454 

0.404 

0.330 

0.247 

0.177 

0.126 

0.890x10-^ 

0.629 

0.444 

0.314 

Approx. 

1.000 

0.710 

0.500 

0.355 

0.250 

0.177 

0.125 

0.890 

0.625x10-1 

0.445 

0.313 

s = 2.0 

Accurate 

0.718 

0.684 

0.625 

0.530 

0.403 

0.285 

0.200 

0.140 

0.980x10-1 

0.695 

0.491 

Approx. 

1.570 

1.110 

0.783 

0.556 

0.392 

0.278 

0.196 

0.139 

0.986x10-1 

0.695 

0.490 

5 = 4.0 

Accurate 

2.27 

2.23 

2.14 

2.00 

1.76 

1.40 

0.933 

0.602 

0.408 

0.283 

0.198 

Approx. 

6.28 

4.44 

3.14 

2.22 

1.57 

1.11 

0.784 

0.560 

0.392 

0.280 

0.196 

• Interpretation of induction logging data measured by such differential probes is 
mainly based on measuring the quadrature component of the electromotive force, 
shifted by 90° with respect to the primary electromotive force. 

• In such cases when the depth of investigation of the multi-coil probe is not sufficient 
in the radial direction, and correspondingly the apparent conductivity differs from 
the formation conductivity, in order to perform interpretation it is necessary to 
have additional information derived from either other induction probes or applying 
different logging methods. It is obvious that similar types of problems arise when 
the influence of the surrounding medium becomes essential. 



Chapter 8 

INDUCTION LOGGING BASED ON MEASURING 
THE INPHASE COMPONENT OF THE 
SECONDARY FIELD OR THE QUADRATURE 
COMPONENT DIFFERENCE OF TYPE 
Q Hziu^i) — u;i/u;2 Q i /z (^2) 

As is well known with the help of multi-coil differential probes we can reduce significantly 
the influence of the borehole and, often, the invasion zone, if the conductivity and the 
radius of the latter are not large enough. In other words, the depth of investigation of 
such probes in the radial direction essentially depends on the geoelectric parameters of 
the medium. Also, in calculating coil moments and their position for these probes it is 
assumed that the resistivity of the medium is only a function of the distance from the 
borehole axis, i.e. it changes only in the radial direction. 

In fact, the integral response, as well as the differential one, defining a signal in receiver 
coils due to induced currents in an arbitrary cylindrical layer with a constant resistivity, 
present the basic element of these calculations. However, the presence of caverns, deviation 
from radial distribution of resistivity because of nonuniform penetration of a borehole 
filtrate into a formation, its finite thickness are factors which can influence the focusing 
features of multi-coil induction probes. In order to eliminate the influence of these factors 
and to increase the depth of investigation, regardless of the geoelectric section, we will 
consider in this chapter another approach, based on the use of a two-coil probe and a 
simultaneous measurement at two or more frequencies if the quadrature component is 
measured. 

Analysis of the electromagnetic field in a uniform medium as well as in media with 
cylindrical and horizontal interfaces, performed in previous chapters, has shown that a 
conducting medium can always be divided in two ranges, namely, the internal area which 
is directly adjacent to the probe, and the external area. Within the internal area (near 
zone) induced currents are shifted in phase by 90°, and their density is only defined by the 
primary magnetic flux and it is directly proportional to the frequency. Correspondingly, 
the skin effect is negligible in this area. In general the resistivity within the internal area 
alters from point to point. In the external area there is an interaction between currents, 
but the influence of currents within the internal area on the distribution of currents in 
the external area is small. With a decrease of frequency and medium conductivity the 
dimensions of the internal area increase and there is a frequency for which those parts 
of the borehole and the invasion zone, which define a signal measured by the probe, fall 
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into the internal area. At the same time the boundary with the external area is located 
within the formation where the skin effect manifests itself as in a uniform medium with 
the conductivity of the formation. 

For example, at the range of small parameters in accord with eq. 3.135 the field H^ on 
the borehole axis in media with two coaxial cylindrical interfaces can be presented in the 
form: 

QH.= ^ 
27rL^ 

QhTihL) + ^ ( a i - as)G,{a) + ^ { a , - as)G2{a) (8.1) 

M 
InH, - ^ ^ I n / i f (/C3L) if \ksL\ < 1 (8.2) 

where h^^{k^L) is the vertical component of the magnetic field in a uniform medium with 
conductivity of the formation, normalized by the primary field. 

Thus, in this case, the borehole and the invasion zone fall into the internal area where 
induced currents generate only the quadrature component of the magnetic field which is 
directly proportional to the frequency, while the inphase component of the secondary field 
is caused only by currents induced in the formation. 

Let us assume here that parameter |A:3L| < 1. It is appropriate to notice that this 
condition usually takes place in the practice of induction logging. Then in accord with 
results obtained in Chapter 2 we can write: 

' ' ^ (8-3) 

This analysis along with eqs. 8.1-^8.3 shows that there are at least two ways of elimi-
nating the influence of the internal area with the help of a two-coil probe, regardless of 
its length. First of all, as follows from eq. 8.2, in measuring the inphase component of the 
secondary field Hz^ the borehole and the invasion zone become transparent. Correspond-
ingly, this component, / / | , turns out to be a function of the formation conductivity or, in 
general, of the conductivity of the external area which can include both conductivities of 
the formation and that of the surrounding medium. 

Thus, the induction probe measuring the inphase component of the secondary field 
possesses depth of investigation in the radial direction, which can be much greater than 
that when the quadrature component is measured, provided that the frequency is properly 
chosen. 

Moreover, in the range of small parameters this component of the field is more sensitive 
to a change of the formation conductivity than in the case of the quadrature component: 

T rrs 3/2 (8-4) 
In HI ~ CF2; 

However, it is reasonable here to notice the following. Inasmuch as the inphase component 
of the secondary field is much smaller than the primary field, H^, measurements of this 
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component are related with very serious technical problems, even the field H^ is usually 
compensated with relatively high accuracy. For this reason let us investigate the second 
approach, which also eliminates the influence of induced currents within the internal area. 
Unlike the first one it is based on measuring the quadrature component of the field which 
is shifted in phase by 90° with respect to the primary field, which to a certain extent 
facilitates measurements. 

We will suppose that two frequencies are chosen in such a way tha t the boundary with 
the external area passes through a formation. Then, expressions for the field, Q/i^, in a 
two-coil probe can be written as: 

Qh,{uJ^) = ' ^ ^ a i + f{io^,as,L) (8.5) 

Q h,ioJ2) = " ^ ^ + f{w2, as, L) (8.6) 

where L is the probe length, and cr* is a function which does not depend on frequency, and 
it presents itself as the apparent conductivity of the medium of the internal area when 
the resistivity of the external area is equal to infinity. Function /(cj^as^L) depends on 
frequency, formation conductivity and probe length only. 

Correspondingly, for the electromotive force we have: 

Q<?(a;i) = 

Q<^(c^2) = 

M^MnI{uJi) 

IIM^MRI{UJ2) 

27rL3 —7, f^a + W2 /(W2, 0-3, L) 

U) 

where Q(o(uJi) and Q^((x;2) are quadratic components of the electromotive force in the 
receiver at frequencies ĉ i and cjg, respectively; I{LU) is the current in the t ransmit ter coil; 
M^ is the transmitter coil moment, when the magnitude of the current is unity. 

Therefore, in accord with eqs. 8.5-8.7 we can choose such frequencies cc;i and UJ2 tha t 
function: 

QHM) _ Q g z ( ^ i ) ^g_g^ 

u>2lioj2) wi/(a;i) 

does not depend on parameters of the internal area. Function: 

Q^{uj2) Q<?(cc;i) 

w|/(a;2) i^JHoJi) 
(8.9) 

also has the same feature. 
The following two functions also do not depend on distribution of conductivities within 

the internal area: 

Q^{uj2) - r ^ ] Q^(c^i) if I{uJi) = I{uj2) (8.10) 
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and 

AQ(^ = Q(^{uj2)-QS'{uJi) if U;II{UJ^)=UJII{UJ2) (8.11) 

In the case when frequencies uji and UJ2 are chosen in such a way that both borehole 
and invasion zone are located within the internal area, functions 8.8-8.11 depend only on 
the formation conductivity and coincide with the corresponding functions for a uniform 
medium. 

Thus, the second approach of eliminating the influence of the borehole and the invasion 
zone can be realized by using simultaneously currents in the transmitter coil at two 
frequencies and measuring in the receiver coil either 

Q^{LJ2) - ( ^ ) Q^(^l) if I{UJ1) = I{UJ2) 

or the difference of electromotive forces: 

Q ^(cJs ) - Q ^{cOi) if UJ^JioJi) - UJ^J{UJ2) 

It is not difficult to understand that if the internal area has caverns of current lines these 
functions still depend on the formation conductivity only. In fact, such inhomogeneities 
cause the appearance of electrical charges within the internal area, the density of which 
is directly proportional to the primary electrical field, i.e. frequency. Respectively, the 
secondary electric field, currents and finally the magnetic field, which are due to these 
charges, are directly proportional to the frequency also, and therefore functions given by 
equations 8.8-8.11 are not subjected to the influence caused by the presence of inhomo-
geneities. 

In previous chapters we have investigated the distribution of induced currents in a 
conducting medium and demonstrated a different sensitivity of quadrature and inphase 
components of the magnetic fleld to internal and external parts of the medium. Let us 
show that all these results are confirmed by the analysis of the low-frequency part of the 
spectrum. 

First of all, we wiU consider the vertical component of the magnetic field on the dipole 
axis in a uniform medium (Chapter 3): 

Expanding the exponent in a series, we have: 

MT 
H.= 

27rL3 '-E=l^c'«" m! 
m=2 

(8.12) 

and for sufficiently small values of \kL\ we obtain the following asymptotic formulae: 
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47rL 67r\/2 607rV2 ^ ^ 

The leading terms in eqs. 8.13 and 8.14 describe the primary field of the magnetic dipole 
in a free space and the secondary field of induced currents when the skin eflPect can be 
neglected. The first term for the quadrature component is larger when an observation 
point is closer to the dipole. It means that the quadrature component of the current, which 
is proportional to frequency, is generated by the primary field only, and it is concentrated 
mainly near the dipole, i.e. within the internal area. 

However, the second terms of series 8.13 and 8.14 do not depend on the probe length, 
L, which can be explained by the fact that sources of this part of the field are located at 
distances much greater than the probe length, i.e. in the external area. For this reason 
measuring the inphase component of the secondary field, or the second term of the series 
describing the low-frequency spectrum of the quadrature component, provide the great 
depth of investigation in the radial direction. As is well known, the behavior of the low-
frequency spectrum of the field in a nonuniform medium is similar to that in a uniform 
one. In fact, as was demonstrated in Chapter 4, for the magnetic borehole axis we have: 

In if, 2. - ^ ( 1 + b,uj'/' + huj' + hu'/' + . . . ) 

QH,c^ 1^^^^^^ + «i^^^^ + ^2^^/^ + • • •) 

where coeflBcients ao, ^2, 2̂ and 63 are functions of parameters of borehole, invasion zone 
and formation, while ai and 61 depend only on the formation conductivity, they are equal 
to each other and coincide with corresponding coeflBcients for a uniform medium. 

Thus, this method of increasing the depth of investigation of induction logging can be 
considered as the method of measuring the second term of the series, describing the low-
frequency spectrum of the quadrature component, when we can neglect in the expansion 
terms containing uj of larger power than o;^/^. 

In principle, as was pointed out above, measuring the inphase component at one fre-
quency corresponding to the low-frequency spectrum provides the same depth of investi-
gation. At the same time, it is reasonable to notice tha t inasmuch as first terms of series 
for the inphase component decrease slower than those of series for the quadrature one, 
in measuring the inphase component it is necessary to use lower frequencies in order to 
provide the same depth of investigation. 

Now making use of results of calculation of the field on the borehole axis let us determine 
parameters of a medium and frequencies when this method allows us to eliminate the 
influence of the borehole and the invasion zone. 

In accord with equality: 

and eqs. 8.5 and 8.6 the difference: 
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does not depend on the conductivity of the internal area, if the boundary with the external 
area passes through the formation. 

For illustration of the efficiency of this method values of function A(cra/cri) for various 
parameters of a medium are presented in Tables 8.1-8.18, when uj2 = ^^i-

Proceeding from these data let us briefly discuss three cases. 

Case 1 

For a relatively small penetration of the borehole filtrate into a formation (a2 = 2ai) we 
can ehminate the influence of the borehole and the invasion zone with a sufficiently short 
two-coil probe, if asfiUJ2Cii < 3.2 x 10"'̂  or / < 4 x lO^ps as ai =0 .1 m, regardless of the 
character of penetration: p2 > Ps or P2 < Ps-

Case 2 

With an increase of the width of the invasion zone (a2 = 4ai) the upper boundary of 
frequencies, when the method is still efficient, is shifted to lower frequencies. For example, 
if the formation resistivity does not exceed the borehole resistivity by more than ten times 
this boundary is defined from the same condition as in the first case. For larger values of 
the formation resistivity, parameter azpua\ becomes smaller, but it does not in essence 
decrease the value of the maximal frequency. In fact, let / = 1.2 x 10^ Hz, ps/pi = 32, 
P\ = 0.5 ohm-m. Then we have asujfial — 6.0 x 10""̂ . 

Case 3 

In the case when the radius of the invasion zone is eight times greater than the borehole 
radius (a2 = 8ai) the upper boundary frequency becomes essentially smaller. Correspond-
ingly, the vertical response of the probe deteriorates. At the same time with a decrease 
of frequency the depth of investigation in the radial direction increases, and it becomes 
possible to determine the formation resistivity with the small probe even when the radius 
of the invasion zone exceeds by more than ten times the borehole radius. 

It is also appropriate to notice that in general the upper boundary of frequencies, when 
this method allows us to eliminate the influence of the borehole and the invasion zone, 
coincides with that for the approximate theory of induction logging described in Chapter 3. 

In order to illustrate frequency responses in this method let us introduce the apparent 
conductivity in the following way: 

<7„ = K/hT 

where /i* = Qhz{uJ2) — {^2/(^1) Qhz{^i) and Qh'^^{as) is the quadrature component of 
the field in a uniform medium with the conductivity of the formation, normalized by the 
primary field. 

Results of calculation of apparent conductivity curves as a function of parameter 
Ai/ai = (10^/ai)(10pi//i)^/^ are presented in Figs. 8.1-8.5. These data permit us to 
evaluate maximal frequencies for which it is still possible to eliminate the influence of 
the borehole and the intermediate zone. For example, when there is a deep penetration 
of the filtrate into the formation (02/ai ^ 1 6 ) and (72 < os the value of the apparent 
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TABLE 8.1 
A(aa/ai) X 10^; pa/pi - 1, a^ja^ = 2 

TABLE 8.2 
A(aa/ai) X 10^; ps/pi = 2, as/ai - 2 

P2/P1 

4 
128 

4 
128 

4 
128 

asij,ujal 

1 

1.88 
1.88 

3.75 
3.75 

5.60 
5.60 

X 10^ 

2 

a = 4 

2.66 
2.66 

a = 8 
5.28 
5.27 

a = 12 

7.84 
7.85 

4 

3.74 
3.74 

7.40 
7.38 

10.9 
10.9 

8 

5.26 
5.24 

10.3 
10.3 

14.9 
14.9 

P2/P1 

4 
128 

4 
128 

4 
128 

as/jLLJOi 

1 

9.42 
9.44 

1.88 
1.88 

2.80 
2.80 

X 10^ 

2 

a = 4 

1.35 
1.33 

a = S 

2.63 
2.64 

a = 12 

3.93 
3.92 

4 

1.88 
1.87 

3.71 
3.70 

5.64 
5.45 

8 

2.64 
2.63 

5.16 
5.15 

7.47 
7.45 

TABLE 8.3 
A(cra/ai) X 10^; ps/pi = 4, as/ai == 2 

TABLE 8.4 
A(aa/cri) X 10^; ps/pi = 8, as/ai = 2 

P2/P1 

4 
128 

4 
128 

4 
128 

1 

0.471 
0.471 

0.940 
0.938 

1.40 
1.40 

TABLE 8.5 

P2/P1 

4 
128 

4 
128 

4 
128 

1 

0.471 
0.471 

0.940 
0.938 

1.40 
1.40 

X 10^ 

2 

a = 4 
0.666 
0.653 

a = 8 
1.32 
1.34 

a = 12 
1.97 
1.97 

Ps /P i = 

X 10^ 

2 

a = 4 
0.666 
0.653 

a = S 
1.32 
1,34 

a = 12 
1.97 
1.97 

4 

0.943 
0.938 

1.86 
1.86 

2.74 
2.73 

16, a2/ai 

4 

0.943 
0.938 

1.86 
1.86 

2.74 
2.73 

8 

1.33 
1.33 

2.60 
2.56 

3.76 
3.77 

= 2 

8 

1.33 
1.33 

2.60 
2.56 

3.76 
3.77 

P2/P1 

4 
128 

4 
128 

4 
128 

1 

0.236 
0.236 

0.471 
0.470 

0.702 
0.702 

TABLE 8.6 
A K / a i ) x 1 0 2 ; ^ 

P2/P1 

4 
128 

4 
128 

1 

0.119 
0.120 

0.177 
0.178 

X 10^ 

2 

a = 4 
0.355 
0.334 

a = 8 
0.665 
0.663 

a = 12 
1.09 
1.08 

P s / p i = 

x lO^ 

2 

a = 8 
0.169 
0.172 

Qf = 1 2 

0.250 
0.244 

4 

0.476 
0.472 

0.939 
0.932 

1.38 
1.37 

32, a2/ai 

4 

0.241 
0.250 

0.352 
0.363 

8 

0.680 
0.688 

1.32 
1.30 

1.91 
1.89 

= 2 

8 

0.348 
0.376 

0.498 
0.527 
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TABLE 8.7 
A ( ( 7 a / a i ) 

P2/P1 

4 
128 

4 
128 

4 
128 

X 10^; Ps/pi ^ 

cTsfiLuai X 10^ 

1 

1.88 
1.88 

3.75 
3.75 

5.60 
5.60 

TABLE 8.9 
A(a«/cri) 

P2/P1 

4 
128 

4 
128 

4 
128 

X 10^; 

2 

a = 4 

2.66 
2.66 

a = 8 

53.0 
52.9 

a = 12 

7.84 
7.83 

Ps/pi = 

asfXLjaf X 10"̂  

1 

0.471 
0.469 

0.940 
0.935 

1.40 
1.40 

TABLE 8.11 
H^a/(Tl) 

P2/P\ 

4 
16 
128 

4 
16 
128 

4 
16 
128 

X 10^; 

asfiLua 

1 

0.120 
0.118 
0.118 

0.240 
0.237 
0.235 

0.357 
0.353 
0.350 

2 

a = 4 

0.667 
0.660 

a = S 

1.32 
1.31 

a = 12 

1.97 
1.95 

P3/P1 = 

? x l 0 4 

2 

a = 4 

0.178 
0.170 
0.167 

a = 8 

0.348 
0.340 
0.331 

Q; = 12 

0.511 
0.510 
0.792 

1, aa/ai : 

4 

3.74 
3.74 

74.0 
73.6 

10.9 
10.8 

4 , a2/ai •• 

4 

0.943 
0.925 

1.86 
1.83 

2.74 
2.69 

16, ^2 /01 

4 

0.263 
0.240 
0.236 

0.507 
0.473 
0.465 

0.787 
0.694 
0.684 

= 4 

8 

5.26 
5.23 

10.3 
10.3 

15.0 
14.8 

= 4 

8 

1.33 
1.29 

2.60 
2.52 

3.76 
3.65 

= 4 

8 

0.417 
0.346 
0.333 

0.771 
0.669 
0.648 

1.080 
0.964 
0.938 

TABLE 8.8 
A(a«/ai) 

P2/P1 

4 
128 

4 
128 

4 
128 

X 10^; Pa/Pi = 

asi^ujaf X lO'* 

1 

0.940 
0.937 

1.87 
1.87 

2.80 
2.79 

TABLE 8.10 
A(a«/ai) 

P2/P1 

4 
128 

4 
16 
128 

X 10^; 

(Jsfiuja 

1 

0.237 
0.235 

0.473 
0.470 
0.468 

TABLE 8.12 
A(a, /a i ) 

P2/p\ 

4 
16 
128 

4 
16 
128 

4 
16 
128 

X 10^; 

(j^yLud 

1 

0.740 
0.059 
0.059 

0.125 
0.120 
0.118 

0.185 
0.177 
0.176 

2 

a = A 

1.32 
1.32 

2.63 
2.62 

Q; = 12 

3.91 
2.90 

P a / p i = 

\ X 10^ 

2 

a = 8 

0.338 
0.331 

a - 12 

0.671 
0.660 
0.658 

Ps /P i = 

\x 10^ 

2 

a = 4 

0.100 
0.087 
0.085 

a = 8 

0.188 
0.171 
0.167 

a = 12 

0.272 
0.252 
0.249 

2, a2/ai = 

4 

1.87 
1.87 

3.68 
3.65 

5.42 
5.38 

8, a2/ai = 

4 

0.485 
0.465 

0.855 
0.827 
0.819 

32, a2/ai 

4 

0.173 
0.128 
0.121 

0.302 
0.247 
0.247 

0.420 
0.361 
0.348 

= 4 

8 

2.60 
2.56 

5.09 
5.02 

7.38 
7.28 

= 4 

8 

0.706 
0.651 

1.37 
1.29 
1.27 

= 4 

8 

0.357 
0.200 
0.180 

0.547 
0.366 
0.339 

0.685 
0.519 
0.487 
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TABLE 8.13 
A ( a a / a i ) 

P2/P1 

4 
128 

4 
128 

4 
128 

X 10^: ; ^ 3 / p i == 

(Tsiiujai X 10^ 

1 

1.85 
1.85 

3.70 
3.68 

5.62 
5.50 

2 

a = 4 

2.58 
2.56 

a = 8 
5.14 
5.10 

a = 12 

7.64 
7.58 

1, a 2 / a i 

4 

23.55 
3.50 

7.04 
6.93 

10.4 
10.2 

= 8 

8 

4.77 
4.64 

9.37 
9.12 

13.7 
13.3 

TABLE 8.14 
A{aa/ai) 

P2/P1 

4 
128 

4 
128 

4 
128 

X 10^; P a / p i ==2, 

asfiujal X 10^ 

1 

0.932 
0.924 

1.86 
1.84 

2.78 
2.75 

2 

a = 4 

1.31 
1.28 

a = 8 

2.60 
2.55 

a = 12 

3.85 
3.79 

a2/ai = 

4 

1.81 
1.75 

3.57 
3.47 

5.28 
5.12 

= 8 

8 

2.47 
3.22 

4.84 
4.57 

7.64 
6.67 

TABLE 8.15 
A(cr«/ai) X 10^; ps/pi = 4, as/ai 

TABLE 8.16 
A(<7a/o-i) X 10^; ps/pi = 8, as/ai = 8 

P2/P1 

4 
16 
128 

4 
16 
128 

4 
16 
128 

G^liuja\ 

1 

0.471 
0.464 
0.463 

0.940 
0.926 
0.922 

1.40 
1.38 
1.38 

X 10^ 

2 

a = 4 

0.667 
0.648 
0.642 

a = 8 

1.32 
1.29 
1.28 

a = 12 

1.97 
1.91 
1.90 

4 

0.942 
0.891 
0.878 

1.86 
1.79 
1.64 

2.74 
2.61 
2.57 

8 

1.33 
1.20 
1.17 

2.60 
2.36 
2.30 

3.76 
3.43 
3.35 

P2IP1 

4 
16 
128 

4 
16 
128 

4 
16 
128 

as^Ljal 

1 

0.242 
0.236 
0.232 

0.481 
0.470 
0.462 

0.716 
0.702 
0.689 

X 10^ 

2 

a = 4 

0.341 
0.334 
0.322 

a = 8 

0.695 
0.664 
0.640 

a = 12 

1.03 
0.985 
0.952 

4 

0.522 
0.456 
0.442 

1.02 
0.900 
0.875 

1.49 
1.33 
1.29 

8 

0.812 
0.625 
0.591 

1.62 
1.22 
1.16 

2.20 
1.78 
1.69 
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TABLE 8.17 
A(a«/ai) X 10^; pa/pi = 16, aa/ai = 8 

TABLE 8.18 
A(cra/ai) X 10^ ps/Pi = 32, a^jax 

P2IP1 

4 
16 
128 

4 
16 
128 

4 
16 
128 

cr^^iujal 

1 

0.130 
0.118 
0.116 

0.256 
0.236 
0.232 

0.380 
0.351 
0.346 

X 10^ 

2 

a = 4 
0.204 
0.168 
0.162 

a = 8 

0.397 
0.334 
0.328 

a - 12 

0.597 
0.595 
0.580 

4 

0.942 
0.891 
0.878 

1.86 
1.79 
1.64 

0.935 
0.694 
0.660 

8 

1.33 
1.20 
1.17 

2.60 
2.36 
2.30 

1.65 
1.06 
0.86 

P2I P\ 

4 
8 
16 
128 

4 
8 
16 
128 

4 
8 
16 
128 

asfiual 

1 

0.834 
0.0661 
0.0615 
0.0588 

0.158 
0.130 
0.122 
0.117 

0.226 
0.191 
0.180 
0.171 

X 10^ 

2 

a = 4 

0.167 
0.105 
0.0904 
0.0828 

a = S 

0.301 
0.202 
0.177 
0.164 

a = 12 

0.409 
0.293 
0.262 
0.243 

4 

0.409 
0.266 
0.139 
0.116 

0.868 
0.518 
0.266 
0.228 

0.865 
0.753 
0.386 
0.334 

8 

1.15 
0.411 
0.232 
0.164 

1.78 
0.176 
0.421 
0.313 

2.06 
1.11 
0.696 
0.457 

1.6 

1.5 

1.4 
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Figure 8.1. Apparent conductivity curves (a^jax = 1). Curve index L/ai. 
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Figure 8.2. Apparent conductivity curves. Curve index (TI/(J2' 
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Figure 8.3. Apparent conductivity curves. Curve index oxja^' 
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Figure 8.4. Apparent conductivity curves. Curve index (JI/(J2. 
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Figure 8.5. Apparent conductivity curves. Curve index G\J(J2' 
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conductivity is almost equal to the formation conductivity, if pi > 1 ohm-m, ai ^ 0 . 1 m, 
Ps/pi ^ 3 and frequency / does not exceed 16 kHz (/2 = 4/i). 

As has been mentioned above, due to measuring the magnetic field created by currents 
in the external area the vertical response of the probe becomes worse. The influence 
of the formation and surrounding medium, when the leading term of the low-frequency 
spectrum of the quadrature component is measured, as is well known, is defined by the 
distribution of conductivities and geometric factors. In this method this part of the field 
is eliminated, and for this reason the vertical response is mainly defined by the skin eff"ect. 
Calculations show that induced currents in the surrounding medium do not practically 
affect the apparent conductivity value, provided that: 

^<6 or l0^f^y'<QH (8.16) 

if P3/P2 < 32 and H/L > 2. 
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Chapter 9 

TRANSIENT INDUCTION LOGGING 

As is well known, an increase of the depth of investigation in induction logging is usually 
reahzed with the help of multi-coil differential probes that in many cases permit us to 
eliminate the influence of currents in the borehole and in the invasion zone. 

However, the theory and numerous experiences show that for a given length of the basic 
probe, L, the depth of investigation in the radial direction does not exceed (0.5 ^ 0.6)L, 
and with an increase of the conductivity of the borehole and the invasion zone it becomes 
less. 

For this reason, only under favorable geoelectric conditions, in particular when p2 > Ps, 
we can obtain a correct presentation of the formation resistivity with currently applied 
probes if the radius of the invasion zone is not greater than 5-6 radii of the borehole. 
In the case when the conductivity of the invasion zone exceeds that of the formation the 
depth of investigation becomes smaller, and only an increase of the probe length allows us 
in principle to improve the radial response of the differential probe. But at the same time 
with an increase of the probe length the influence of the surrounding medium becomes 
stronger and the conditions providing compensation of the electromotive force, caused 
by the magnetic field of currents within the invasion zone, can be invalid. Also it is 
appropriate to mention here that the efficiency of focusing is based on the assumption 
that caverns are absent and the probe is located on the borehole axis. 

All these factors, which restrict to a certain degree the application of induction logging 
with differential probes, impel us to investigate the possibilities of the transient method, 
which is successfully applied in other areas of exploration geophysics. 

As is well known, if the moment of the transmitter coil changes as a step function with 
time, induced currents appear in the surrounding medium. At the beginning they are 
concentrated in the borehole, but with an increase of time their intensity increases at 
larger distances from the coil, and always there is such moment when they are practically 
located in the formation and their magnitude is defined by the conductivity of the external 
area, i.e. the formation. For this reason the magnetic field measured on the borehole axis, 
starting from this moment, does not practically differ from that in a uniform medium with 
the formation conductivity. 

A similar situation occurs in the presence of the invasion zone even when its conductivity 
is greater than that of the formation. Inasmuch as at the late stage of the transient 
response, induced currents are practically absent in the borehole and in the invasion zone 
the magnetic field, measured by a receiver, is not dependent of the position of the probe 
with respect to the borehole axis and caverns, as well as of the distance between the coils 
of the probe. At relatively large times induced currents are located far away from the 
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borehole, and a change of the distance between coils, in certain limits, does not affect 
the value of the measured field. For this reason the transient method can provide a large 
depth of investigation with very short two-coil induction probes. In fact the same result 
can be obtained in principle, with a one-coil probe. 

A decrease of the probe length can be desirable since with an increase of time the 
influence of the surrounding medium becomes stronger, and correspondingly the verti-
cal response of the probe deteriorates. The greater the conductivity of the surrounding 
medium the earlier the influence of currents induced therein begins to manifest itself. 

Therefore, with an increase of time the depth of investigation increases, which results 
in simultaneously improving the radial response of the probe, and in an increase of the 
influence of the surrounding medium. 

In this chapter we will consider the theory of the transient method of induction logging 
in a uniform conducting medium, as well as in media with cylindrical and horizontal 
interfaces. Also one section will be devoted to transient responses of the electric dipole. 

9.1 . The Transient Field of the Magnetic Dipole in a Uniform 
Medium 

The analysis of the main feature of a nonstationary field in a conducting medium we will 
start from the simplest case, when the magnetic dipole is located in a uniform medium, 
and its moment changes as a step function: 

= | : 

Applying Laplacian transformation to the vector potential in the frequency domain (Chap-
ter 2): 

k ^ M f e ^ (9.2) 

where k'^ = iaf.iLO -h uj'^e/.i, we obtain an expression for the vector potential for the nonsta-
tionary field: 

'0 t^To 

'ATTR 
e - - ^ ( ^ - r o ) + , r o e - ' ^ ' i M ^ ^ ^ | p 

(9.3) 
t > To 

where /i is the magnetic permeabihty: /i = //* x 47r x 10 '̂  H/m; s is the dielectric 
permeability: e = £*(l/367r) x 10~^ F/m; a is the conductivity. Here: 

q=l-^ T,= {enfl'R (9.4) 
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R is the distance from the dipole to the observation point; M is the dipole moment, equal 
to InS\ n is the number of turns; S is the turn area; Ii[{i^ — r^Y^'^] is the modified Bessel 
function of the first order; 8{t — TQ) is the Dirac function, defined from the relation: 

//KM<".(.-.')d.'J(-'«'-W "<-<' (9.5, 
J 10 X < a, X > 0 
a ^ 

t is time, counted from the moment when the transmitter current is turned on. 
In accord with eq. 9.3 the field arises in any point of the medium at the moment: 

t = To = {efiY^'^R 

i.e. with an increase of the distance from the source, the signal traveling with velocity: 

1 C 8 / 
^ = 7 TTT^ = 7 TTT^ C = 3 X 10 m / s 

appears later. 
The electric field, E^p, is related with the vector potential of magnetic type A*, as: 

Omitting intermediate transformations, we have: 

where: 

4 ' ^ = - ^ [ ( 1 + (l^o)S{t - To) + To5'{t - To)] e-'-o sine 

(2) _ JiM_, , hiq^t^ - TJ) 

and 

E^ = 0 if t < To 

From the first Maxwell equation, c u r l ^ = — JB, we obtain: 

^ « ' = ^ [ ( 1 + 1^o)Sit - To) + ToS'it - To)] e-«-° COS e 

. (2) _ jxiw^ 2 3 -.Mgyt'-Tj) 

(9.6) 

(9.7) 
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and 

BR = 0 if t < TO 

From the initial condition it follows that the magnetic field tends to that of direct 
current, as t —> 0, i.e.: 

BR 
fiM 

cosO Bo 
liM 

sin^ 

For this reason, integrating the right-hand part of eq. 9.7 we obtain: 

BR =Q i f i < r o 

B'^ = 
JJM_ 

2TTB? 
(1 + qTo)5{t - To) + ro(5(i - TQ)] e""^" cos 61 

(2) _ _M__ 
^ ~27ri?3 <l\ 

h{qV^^^) 
dx 

(9.8) 

COS 6 \it>TQ 

By analogy, we have: 

Bo 0 if ^ < To 

M'̂  = 
HM sin 6 

4TrR^ 
[(1 + 97-0 + q^T^Mt - To) + ro(l + 2qTo)5{t - To) + T^S'it - TQ)] e"""" 

(2) _ nMsine 

v^^^ 

m 

{«/ 
=h [q^x^ - r^\ - 2/2 (q^x^ - T^\ dx\ ii t > r. 

(9.9) 

y/x 

In a general case, the electromagnetic field for the given moment of the dipole depends 
on the distance from the source (/?), velocity of propagation {v = l/(&//)^/^), parameter 
q = (1/2)(cr/^), which has dimension t~^ and characterizes a degree of decay of the field 
in a conducting medium and, finally, it is defined of course by measuring moment t. 

We will present the magnetic field in units of the static field of the magnetic dipole: 

B 
2M 

bfi cos 6 
47rR^ 
M 

At the beginning we will consider the field in a nonconducting medium. In accord with 
eqs. 9.8-9.9 we have: 

bnit) = h{t - To) + TQS{t - To) 

he{t) = h{t - To) + To6{t - To) + T^S\t - To) 

eci>{t) = -S{t - To) - ToS\t - To) 

(9.10) 
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M{t) 

MO 

kzQ - ^ 
TQ T + TQ t 

Figure 9.1. a. Illustration of Duhamel's integral, b. Example 1. 

where h{t — TQ) is the step function: 

h{t ~ To) = 
iO t^To 

11 t>To 

Thus, the magnetic field in an insulator, as well as the dipole moment, presents itself as 
the step function {t ^ TQ), and it is natural here to distinguish three successive stages. 
Until moment t = TQ = Rjv the field is absent at the point with coordinates {R,9). Due 
to the instant change of the dipole moment the signal front is described by the 5-function 
and its derivative. Only at this moment the electric field is not equal to zero. After arrival 
of the signal {t > TQ) the magnetic field instantly becomes constant in the same way as 
the dipole moment while the electric field vanishes. 

Let us notice that the step function can be presented as a sum of rectangular impulses 
of the same magnitude which follow each other in time. In this case the electrical fields 
of neighbor impulses are compensated, except for moment t = TQ. 

Proceeding from results obtained for the step function we will consider to what extent 
type of excitation M(t) and moment of measuring t define conditions for which a field 
can be considered with sufficient accuracy as a quasistationary one, i.e. when it changes 
synchronously with the dipole moment in free space. 

As was shown in Chapter 2, an arbitrary change of moment M{t) with time can be 
presented with the help of a Duhamel's integral as a sum of successively turning on step 
functions h(t — r) with magnitude M'{r) (Fig. 9.1a): 

Mit) = M(0) + / —hit - r) dr 
J dr 
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Applying the principle of superposition and taking into account that the electromagnetic 
field {AE and AH)^ generated by one step function, is known, we obtain expressions of 
the field for arbitrary excitation M{t): 

t 

H{t) = M{<d)AH{t) + j ^Anit - r) dr 
0 

t 

E{t) = M{0)AE{t) + j —AEH - r) Ar 

(9.11) 

In particular, for radial component hn, in accord with eq. 9.10, we have: 

t 

bR{t) = f -^[h{t -ro-r) + ToS{t - TQ - r)] d r 

0 

since it is assumed that M(0) = 0. 
Inasmuch as the step function is equal to unity only for positive arguments 0 < r < t—TQ, 

then: 

bR{t) = M{t - To) + ToM'{t - To) 

By analogy: 

be{t) = M{t - To) -f ToM'{t - To) + TlM"{t - To) 

e^{t) = -M'{t - To) - ToM"{t - To) 

Now, let us consider several examples. 

Example 1 

(9.12) 

M(t) = { 
0 ^ < 0 

kt 0 <t<T here k = 1/T 

1 t>T 

Applying eq. 8.12 we have: 

0 t <To 

bnit) = {kt To < t < T -h To 

1 t > T -h To 

(9.13) 

For a linear change of the dipole moment the radial component of the field is also a linear 
function of time (Fig. 9.1b). 
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MO 
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Figure O.l.c.d.e. Illustration of moment and field behavior in examples (2) and (3). 

Example 2 

0 t < 0 

M{t) = {kf 0<t<T here k = 1/T" 

1 t>T 

After differentiation we obtain (Fig. 9.1c): 

bnit) 
0 t<To 

k{t - To)" + nkToit - To)"-i To < i < T + To 

1 t > T + To 

(9.14) 

The field at an arbitrary moment, t, can be presented as a sum of fields, generated by step 
functions, arising at moments t = 0, A^,. . . and so on with magnitude M'{r) dr, which, 
in particular, for the first example within the interval 0 < t < T is the same. 
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If the dipole current changes instantly at the moment t = r, then the field arising at 
an arbitrary observation point iov t > r -\- TQ becomes constant. For this reason we can 
think of the field at moment t as consisting of two parts. The first part changes in the 
same manner as the magnetic moment of the dipole, and its electric field is absent. The 
second part arises due to a change of the dipole current at moment t — r and has all 
components of the electromagnetic field. As is well known, the magnetic components of 
the quasistationary field satisfy the system of equations of the magnetic field, caused by 
the direct current, and for its determination we can apply the Biot-Savart law. This 
means tha t we can neglect the change of the dipole moment during time TQ, which is 
smaller, when the observation point is closer to the dipole and with a higher velocity of 
signal propagation. 

Thus, condition of quasistationarity can be written as: 

H{t) - H{t - To) 

H{t) 
< 1 

If function M{t) monotonically grows within interval 0 < t < T, as it takes place in previ-
ous examples, then with an increase of time the field becomes greater and correspondingly 
the first part of the field begins to prevail. At the same time a relative change of the field, 
since the delay is neglected, also becomes sufficiently small. 

Example 3 

Now consider the case when the dipole moment is not a monotonic function of time 
(Fig. 9.1d): 

M{t) = { 

0 

0 
T 

t < 0 

0<t<2T 

t > 2T 

After differentiation of eq. 9.12 we obtain: 

bR(t) l - ( ^ - l 

0 

2TO ft - TQ 

T 

t < To 

1 ) To<t<To + 2T 

t>To + 2T 

(9.15) 

Until moment T -\- TQ function bfi{t) increases and its first derivative becomes smaller. 
For this reason, in the same way as in previous examples, with an increase of time the 
quasistationary character of the field manifests itself stronger, {t < 2T). However, with 
a further increase of time the relation between both parts of the field changes essentially 
and, in particular, when t -h 2T, they are practically equal to each other and proportional 

to TQ. 
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Example 4 

Finally, consider the last example (Fig. 9.1e): 

M{t) 
0 ^ < 0 

sinujt 0 <t < B 

0 t> B 

Correspondingly, for the field we have: 

bR{t) 

0 t<ro 

smLj(t — To) -\-u;ToCosuj{t — TQ) TO < t < TO-\- B (9.16) 

0 t>To-\~B 

In this case the condition of quasistationarity iov t < B has the form: 

t^ TQ and UJTQ <C 1 

and it is applied to the amphtude of oscillations but not to the instant value of function 
hR. In particular, regardless of value (JTQ, when a;(f — TQ) == A;7r only the second part of the 
field exists, which is caused by the rate of change of function M{t) at the moment t — TQ. 

Now we will again investigate the field in the more general case of a conducting medium. 
As before, the field travels with velocity v — cl{e\i)^l'^^ and until moment t — T^ magnitude 
of the field at any point is equal to zero. The intensity of the signal at moment t = TQ is 
defined by parameter g'To, which can be presented as: 

gro = \j[^le)^I^R = b^R - R/Xo - m (9.17) 

where XQ = l/^oo is the characteristic length depending on the parameters of the medium; 
boo coincides with the limit value of the imaginary part of the wave number, A;, when the 
frequency unlimitedly increases. 

Graphs of functions b]^\m) and bg ^(m) are given in Fig. 9.2. With an increase of the 
distance from the source and conductivity of a medium, due to transformation of the 
electromagnetic energy into heat, the field magnitude, corresponding to the moment of 
the first arrival, rapidly decreases. 

When the distance from the source exceeds the characteristic length XQ, the magnetic 
field is mainly defined by component be^ and the electromagnetic field at the arrival 
moment corresponds to the wave zone: components of the field are perpendicular to the 
direction of the Poynting vector, and the ratio of components of electric and magnetic 
field, {E^/H(f)), does not depend on the distance to the dipole. 

In the insulator the magnetic field, due to step function excitation, does not alter after 
the arrival of the signal and coincides with the constant field, but the electric field is 
absent. Unlike it in a conducting medium a certain time is required for the field to 
become established, because of the appearance of conduction currents. 
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Now we will investigate the electric field as a function of time and the parameters of a 
medium. It is convenient to present field E\ in the form: 

0 27ri?4 «* 
(9.18) 

where 

e<2) = m^e-""" 
hi'my/n'^ — 1) 

n 2 - l 
(9.19) 

and 

n = — ^ 1 
^0 
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TABLE 9.1 
Values of parameter m 

e 

9 

16 

25 

36 

-^ ._p , ohm-m 
1 

63.0 

47.0 

38.0 

31.0 

10 

6.3 

4.7 

3.8 

3.1 

30 

2.1 

1.6 

1.3 

1.0 

100 

0.63 

0.47 

0.38 

0.31 

Applying expansion of function Iii^z) in a series by z^ we obtain: 

e ( 2 ) = l Sg-™ i f i = ro (9.20) 

Function e'V has a maximum, when m = h^R = 5. For this reason if the distance, r, 
from the source does not exceed 5Xo, then with an increase of conductivity the field also 
increases. The same behavior is observed with an increase of the distance, if i^ < SXQ. 

For illustration Table 9.1 contains some values of parameter ?n as a function of resistivity 
p and dielectric constant e, if r = 1 m. 

With a further increase of conductivity or the distance from the source, the magnitude 
of the field of the first arrival becomes smaller. 

Replacing function hiz) by its asymptotical expression: 

(27rz)V2 

we have: 

1 / m 

V2^ W n ^ - l 

5/2 

ei^) ^ _ ^ f --JIL^ ] ^miV^^i-n) (9 21) 

Formula 9.2 is value when the distance between the dipole and an observation point is 
significantly greater than the characteristic length XQ, or measurements are performed at 
times exceeding ro(n > 1). In the latter case eq. 9.21 can be presented as: 

J2) = 1 ("Rf ^-ml^n if ^ >> 1 (9.22) 

and it corresponds to the quasistationary field. 
Curves of function S^ {n) are presented in Fig. 9.3. The curve index is parameter 

m = R/XQ. 

If the distance from the source does not exceed 5Xo, then the electric field monotonically 
decreases with time. 

At the same time with an increase of parameter m (an increase of conductivity, the 
(2) 

distance or a decrease of dielectric constant) the maximum appears on curves of e^ , 
which is shifted to larger times. 
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r(2) ;. We will present field E^^ ' in the form: 

Mp {qtf (2) _ E 

where 

27r {vt) 
-FEsinO 

xe ^—^ X 
vt 

Graphs illustrating a distribution of the electric field in a medium at an arbitrary moment 
are shown in Fig. 9.4. Index of curves is parameter qt. As is seen from curves for small 
values of qt a maximum of the electric field corresponds to the first arrival, and with 
approaching to the source the field linearly decreases. But with an increase of parameter 
qt the different behavior is observed, namely, intensity of the first arrival becomes much 
smaller for points located closer to the dipole. 
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Therefore, in observing a field in a conducting medium we can distinguish the following 
stages: 

1. The field is equal to zero until moment TQ = R/v. If measurements are performed at 
distances from the source, equal approximately to 1 m, the time which is necessary 
for arriving the signal, TQ, is about dozens of nanoseconds. 

2. Magnitude of the first arrival is a function of the distance from the source and 
electric parameters of a medium. 

3. In a conducting medium, after the signal passes through an observation point it 
does not disappear instantly, and here we can distinguish, in turn, two parts. At 
the beginning, when the moment of measuring is close to TQ, sources of the magnetic 
field are both conduction currents and displacement currents, i.e. a rate of a change 
of the electric field with time. The greater the resistivity of a medium, the wider 
the time interval where displacement currents play an essential role. 
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4. The last stage corresponds to the quasistationary field when the influence of dis-
placement currents is absent. This feature of the alternating field is inherent for 
a conducting medium, regardless of how small its conductivity, but the moment of 
transition to the quasistationary field starts earlier with an increase of conductivity. 

Now we will consider the quasistationary field. Assuming that {\/2)at/e ^ 1 and 
t/ro ^ 1 expression for the vector potential A* has the form: 

A: = ^ ^ ! f e - v 2 
4:7rV27TRt 

(9.23) 

where u = {afi/2ty/'^R = 27ri?/r, r = {27rpt x 10^)^/2. 

After relatively simple transformations we obtain: 

2 M . 2 M 
^R = T~E^ hnCOsO = -—-r 

ATTR^ ATTR^ 

2M 2M 

ATTR^ 47TR^ 

1/2 

1 - 0 ( ^ ) + ( - ) ue -u2/2 

1 - Hu) + 
1/2 

^ ( l + ^ 2 ) ^ - . V 2 sin^ (9.24) 

^6 = 7^:7 ^6 s m 6 = — -——7 , 

1/2 

- u^E-^/^ sine 

where 0(IA) = (2/7r)^/^ lo ^~^ ^̂  ^^ ^̂  ^^^ probabihty integral. 
Equations 9.23-9.24 are valid when displacement currents are negligible with respect 

to conduction currents, and the field is measured at times significantly exceeding time TQ, 
which is required for the signal to arrive at the observation point. 

Table 9.2 contains values of function HR, ho and e^, depending on parameter u. Graphs 
of functions HR, he and e^, provided that the dipole current is turned on at the moment 
t = 0, are given in Fig. 9.5. For this reason, with an increase of time the magnetic field 
tends to that of the direct current while the electric field vanishes, i.e. as 

h —> ho 0 as ^ —> (X) 

In accord with the electromagnetic induction law at the first moment the field is absent 
in a conducting medium. Such behavior takes place due to the fact that induced currents 
arise near the source, which compensate the primary field of the dipole current. 

Let us notice that from eq. 9.3, which is vahd in a general case, it also follows that at 
the initial moment the field is absent in all parts of a medium. However, in accord with 
equations for the quasistationary field, when ^ < TQ, it has a finite value, while it is, in 
fact, equal to zero. 

Applying expansion of integral 0(w) in a series by small parameters u (relatively large 
times, small distances from the source to the observation point, sufficiently small conduc-
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TABLE 9.2 
Values of functions HR, he and ee 

u 

0.0500 

0.0595 

0.0707 

0.0841 

0.100 

0.119 

0.141 

0.168 

0.200 

0.238 

0.283 

0.336 

0.400 

0.476 

0.566 

0.673 

0.800 

0.951 

1.130 

1.350 

1.600 

1.900 

2.263 

2.691 

3.200 

3.805 

4.525 

5.382 

6.400 

7.611 

9.051 

R/T 

0.796x10-2 

0.946 

0.113x10-^ 

0.134 

0.159 

0.189 

0.225 

0.268 

0.318 

0.379 

0.450 

0.535 

0.637 

0.757 

0.900 

0.107x10° 

0.127 

0.1514 

0.1801 

0.2141 

0.2546 

0.3028 

0.3601 

0.4283 

0.5093 

0.6057 

0.7203 

0.8565 

0.1019x10^ 

0.1211 

0.1441 

l-hR 

0.3300 X 

0.5561 

0.9364 

0.1575X 

0.2649 

0.4452 

0.7476 

0.1254X 

0.2102 

0.3518 

0.5876 

0.9785 

0.1623X 

0.2676 

0.4378 

0.7081 

0.1128X 

0.1758 

0.2661 

0.3873 

0.5355 

0.6945 

0.8368 

0.9354 

0.9834 

0.9977 

0.9999 

0.9999 

1.0000 

1.0000 

1.0000 

10-^ 

10-4 

10-2 

10-1 

10° 

I-he 

-0.6661 X 

-0.1118 X 

-0.1878 

-0.3152 

-0.5290 

-0.8873 

-0.1487 X 

-0.1058 X 

-0.4154 

-0.6917 

-0.1147 X 

-0.1891 

-0.3091 

-0.4993 

-0.7930 

-0.1229 X 

-0.1839 

-0.2612 

-0.3432 

-0.3988 

-0.3732 

-0.2048 

0.1222 

0.5192 

0.8271 

0.9662 

0.9972 

0.9999 

1.0000 

1.0000 

1.0000 

10-4 

10-3 

10-2 

10-3 

10-1 

10° 

60 

0.2490x10-^ 

0.5920 

0.1407x10-^ 

0.3343 

0.7939 
0.1884x10-4 

0.4469 

0.9987 

0.2503 

0.5903 
0.1388x10-2 

0.3246 

0.7542 

0.1735x10-1 

0.3938 

0.8767 

0.1899x10° 

0.3955 

0.7799 

0.1423x101 

0.2326 

0.3256 

0.3659 

0.3014 

0.1600 

0.4564 

0.5409x10-1 
0.1851x10-2 

0.1093x10-4 

0.5378x10-^ 

0.7883x10-13 

hR 

1.0000 

0.9999 

0.9999 

0.9998 

0.9997 

0.9996 

0.9993 

1.002 

0.9979 

0.9965 

0.9941 

0.9902 

0.9838 

0.9732 

0.9562 

0.9292 

0.8872 

0.8242 

0.7339 

0.6127 

0.4645 

0.3055 

0.1632 

0.0646 

0.0166 
0.232x10-2 

0.135x10-3 

0.229x10-^ 

0.673x10-^ 

0.160x10-11 

0.117x10-1^ 

he 

1.000 

1.000 

1.000 

1.000 

1.001 

1.001 

1.001 

1.004 

1.007 

1.001 

1.019 

1.031 

1.050 

1.080 

1.123 

1.184 

1.261 

1.343 

1.399 

1.373 

1.205 

0.878 

0.481 

0.173 

0.338x10-1 

0.278x10-2 

0.662x10-4 

0.273x10-^ 

0.944x10-1° 

0.974x10-1^ 

tivity) we obtain approximate formulas for components of the secondary field: 

47rfi3 \TrJ ^ 10 

He^-^, (-) '^' u'il- lu') sin 0 (9.25) 

ex-4nR^ \7rJ \ 2 
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and, restricting ourselves by first terms we have: 

Hfi 

He ~ 

E^ 

3/2^3/2 M fi'/^a 

si 

- COS 0 

RsmO 

(9.26) 

These formulas describe a field with a suflBcient accuracy if parameter u < 0.2. 
Thus, at the late stage of the transient response the magnetic field does not depend on 

the distance from the source, and it is related with conductivity of a medium more closely 
than that in a frequency domain when the quadrature component or an amplitude of the 
magnetic field are measured. 
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TABLE 9.3 
Values of parameter u 

p, o h m - r r i ^ ^ 

0.1 

0.5 

1.0 

5.0 

10.0 

/Lisec 
1 

2.50 

1.11 

0.80 

0.35 

0.25 

4 

1.25 

0.56 

0.40 

0.18 

0.125 

9 

0.84 

0.37 

0.27 

0.12 

0.084 

16 

0.63 

0.28 

0.20 

0.088 

0.063 

25 

0.50 

0.22 

0.16 

0.071 

0.050 

36 

0.42 

0.19 

0.13 

0.059 

0.042 

49 

0.36 

0.16 

0.11 

0.051 

0.036 

64 

0.31 

0.14 

0.10 

0.044 

0.031 

81 

0.28 

0.12 

0.00 

0.039 

0.028 

100 

0.25 

0.11 

0.081 

0.035 

0.025 

For illustration some values of parameter ti as a function of resistivity p and time t^ if 
R = 1 m, are given in Table 9.3. 

The fact that the distance from the source does not have an influence on the field at the 
late stage suggests that in this case sources of the field are located from an observation 
point at distances which are essentially greater than the probe length {R). 

In accord with eq. 9.24 current density in a medium is: 

j _ _ ^ — ( 1 ) ^5^-V2 (9.27) 

Graphs of function (l/i?^)ii^e~^^/^ are presented in Fig. 9.6. With an increase of time 
a maximum of curves is shifted to the side of greater distances. For this reason the 
magnetic field and EMF measured on the axis of the dipole become more sensitive to 
removed parts of the medium. Let us confirm this assumption by a following calculation. 
We will mentally present whole uniform space as a system of concentric spherical shells. 
At every moment a measured magnetic field is defined by distribution of currents in shells. 

Omitting intermediate transformations related with the calculation of the magnetic field 
and making use of the Biot-Savart law we obtain for a ratio of EMF caused by currents 
in shells, the radius of which exceeds R2 to EMF in a measuring coil, located in a uniform 
medium at distance R from the dipole, the following expression: 

G(«i,a)=(l-i«?)e-"?("^-^)/2 

where a = R2/R1', u = 27ri?i/r. 
Curves of function G{ui,a) are presented in Fig. 9.7. For small times currents are 

mainly concentrated near the dipole, and a field measured at point Ri does not practically 
depend on induced currents located in relatively removed parts of a medium {ui -^ 00, 
G —> 0). In contrary, for large times {ui -^ 0), the field is mainly defined by currents 
induced in an external area {R > R2) and G{ui, a) -^ \. 

Correspondingly, the later measurements are performed with a greater depth of inves-
tigation. 

If parameter {1/2)U\{Q^ - 1) < O-l̂  then function G{ui,a), characterizing a relative 
contribution of EMF caused by currents induced in area R> R2, is equal to: 

G{ui,a):^l--ul 
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Figure 9.7. Graphs of function G{u, a). Curve index a. 

TABLE 9.4 
Values of EMF, fiV; MTMR = 0.1 A^ • m^ L = 1 m 

p, ohm-m 
t , /Lisec 

9 16 25 

0.1 

0.5 

1.0 

5.0 

10.0 

0.543x10^ 

0.600 xlO'* 

0.290x10"^ 

0.334x10^ 

0.122x10^ 

0.179x10^ 

0.300x10^ 

0.115x10^ 

0.109x102 

0.390x10^ 

0.365 xlO^ 

0.431 xlO^ 

0.158x10^ 

0.145x10^ 

0.515x10^ 

0.101x10^ 

0.106x10^ 

0.381 xlO^ 

0.346x10^ 

0.122x10° 

0.355x102 

0.351 xlO^ 

0.126x10^ 

0.113x10° 

0.402x10-^ 

It is obvious that along with an increase of the depth of investigation in the radial direc-
tion, the sensitivity of the probe in a vertical direction also increases, while due to the 
transformation of electromagnetic energy into heat the signal rapidly decreases. 

Table 9.4 contains some values of the electromotive force induced in the receiver of a 
two-coil probe for various resistivities of a medium. 

Calculations of electromotive force, e, have been performed by equation: 

(9.28) 

where L is the probe length; MT and MR are moments of transmitter and receiver coils, 
respectively; u = 27rL/r and e^ = (2/7r) /̂̂ ix^e""'" /^. 
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9.2. Transient Field of the Vertical Magnet ic Dipole on the 

Borehole Axis at the Late Stage 

For determining transient responses in a medium with cylindrical interfaces we will use, 
as in the case of a uniform medium, Fourier transform. Assuming that the field excitation 
is a step function: 

, , , , f l t<0 

we have: 
oo 

1 f e'"^^ 
Z7T J —lU) 

and 

hz{t)=^-^ j K^ujy'^'duj (9.30) 
27r J 

—oo 

where — l/icj is the spectrum of excitation where the low-frequency part essentially pre-
vails; hz{ijj) is the magnetic field on the borehole axis expressed in units of the magnetic 
field in a free space (displacement currents are neglected). 

As was shown in Chapter 4: 

oo 

h,{uj) = /î (̂A:, L) / m?Ci cos ma dm (9.31) 

0 

where h^^{k, L) is the field in a uniform medium with conductivity of the borehole; a = 
L/ai and L and ai are the probe length and the borehole radius, respectively. 

Function Ci is given by eq. 4.38 and it is equal to: 

2 ^ _ 2 ^1^1 + ^2^2 mf Ci = m'^ 

where: 

h = -m2lo{m2)Ki{mi) - miKo{mi)Ii{m2) 

rii = msKi{m2P)Ko{m3f3) - m2Ko{m2P)Ki{m3/3) 

I2 = m2Ko{m2)Ki{mi) - mi/Co (^1)^1(^2) 
712 = -msIi{m2f^)Ko{m3P) - m2lo{m2P)Ki{m3P) 

Is = -m2lo{m2)Ii{mi) + mi/o(mi)/i(m2) 

Us = m2li{mi)Ko{m2) -f miIo{mi)K 1(1712) 
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and 

First of all we will investigate the late stage of the transient response. Taking into 
account the known features of real and imaginary parts of the complex amplitude hz{uj): 

lnhz{uj) = lnhz{—uj) Qhz{uj) = —Qhz{—uj) 

instead of eq. 9.31 we have: 

oo 

hz{t) = — Q hz{cj) sinujtdou 
TT J 

0 

or (9.32) 
oo 

hz{t) = / In hz{Lv) COS out duj 
TT J 

0 

Integrating the first integral of eq. 9.32 by parts we find an expression for the late stage 
as a series by powers of 1/t: 

7- / X 2 ,. I 01 (cj) (f)Uuj) sin cut 1 , „ , . 1 /*,/„/ X , 1 
hz{t) :^ - lim I ^ ^ - ^^^^ -0'/(a;) - - J ^i^) cosuut dcj \ (9.33) 

where (l)i{uj) = Q hz{uj) 
A similar relation can be derived from the second integral of eq. 9.32. Therefore, 

derivation of asymptotic formulae for the late stage of the transient responses consists of 
two steps, namely: 

1. The presentation of the low-frequency spectrum in a series with respect to uj. 

2. The determination of coefficients of the asymptotic series by powers of 1/t. 

In accord with eq. 9.31 the vertical component of the magnetic field on the borehole 
axis is presented as a sum of cyhndrical harmonics, characterized by spatial frequency 
m. The greater m, the more rapidly a corresponding harmonic of the field alters, and 
therefore a sufficiently uniform field is formed by low-frequency spatial harmonics, which 
are located within the initial part of integration. 

On the other hand, at great times currents induced in a medium due to the step 
function excitation are located relatively far away from the dipole, and for this reason a 
field measured relatively close to the dipole is almost uniform. It means that the main 
information about the late stage of a transient response is contained in the integrand 
77i^Ci(mi, 7712, ^3) when the variable of integration m is small. 
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This conclusion can be derived in a different way. In fact, as is well known, the late stage 
of the transient response is defined by only those terms of the low-frequency spectrum 
which contain odd powers of wave number, k, and logarithmic terms. 

Let us present integral J^ m\Ci cos ma dm as a sum: 

oo mo oo 

/ m\Ci cos ma dm = / m\Ci cos ma dm + / m^Ci cos ma dm 

0 0 mo 

where mo is an arbitrary small value (mo < 1). 
Within the external interval (m > mo) radicals mi, m.2 and m3 can be expanded in a se-

ries by powers k'^/m? and it allows us to present the external integral J^ m\Ci cos mo;dm 
as a converging series containing only even powers of wave number A:: 

oo 

/ 
m^Ci cos ma dm = 2_\ A ( — ) 

21 

Thus, we see again that the low-frequency part of the spectrum, containing odd powers 
of uj as well as logarithmic terms, can be obtained from integrand m^Ci, when m -^ 0. 
First we will find the low-frequency part of the spectrum, which defines the late stage of 
the transient field on the borehole axis, when an invasion zone is absent. 

Let us present functions /Co(mi) and K\(m\) as a series: 

/^o(mi) = - (in ^ + C) /o(mi) + Eo(mi) 

K,{mi) = — + (in ^ + C) /i(mi) + Si(mi) 
mi \ z / 

where C is Euler's constant. Collecting in the numerator of function Ci terms, containing 
ln(mi/2) + C we can see that the coefficient of ln(?Tii/2) + C is equal to denominator of 
C\. For this reason function C\ can be written in the form: 

m2A'o(mi) T.i{mi) 
mi 

mi/^i(m2)i;o(mi) 

m2Ko{m2)Ii{mi) -h miKi{m2)Io{mi) 

m?Ci=m?(ln^ + c) + ^1 , ^^ , mlKo{m2) 
2L- / ^ ^h{mi) mlKo{m2) h miKi{m2)Io{mi) 

m\ 
mlmiKo{m2)T>i{mi) + mim2/^i(m2)Ilo(^i) 

(9.34) 

.2r^ / _ ^ ^ l ( ^ l ) m2Ko{m2) h m2Ki{m2)h{mi) 
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The first term of eq. 9.34 presents itself as the value of the integrand of the Sommerfeld 
integral at the initial part of integration, defining a field in a uniform medium with 
conductivity o. For this reason this term together with the first term of eq. 9.31, h^^{k, L), 
do not have an influence on the late stage of transient response. The denominator of the 
second and third terms of eq. 9.34 can be written in the form: 1 + 0(7711,777,2), and it 
is not difficult to show that the first term of this expansion in a series by power of vrii 
corresponds to a uniform medium with the formation resistivity, while the other terms 
take into account the influence of the borehole. 

Derivation of the low-frequency spectrum in this case is a much more cumbersome 
operation than in the case of horizontally layered medium. With the expansion of function 
777-̂ Ci in a series, two types of integrals arise which have to be presented in the form of a 
series with powers of k\ 

mo mo 

I^= I mf'm^^^ In7712 dm h = f m^^^m"^^ In^ 7772 dm (9.35) 

0 0 

Integration by parts I\ allows us to express this integral as: 

h - coth-̂  (^ J2 ^^nklkt' (9.36) 

where |A:iai| -^ 0, |A;2ai| ^ 0, TV = 2(77i + 7̂ 2) + 1. 

For complex values oi z = x -\-\y and \z\ —> 00 we have for coth~^ z: 
0 0 

coth- i z = I sign X - ^ C„z-(2n+i) 
n=0 

Inasmuch as 1777,0/A: | -^ cx̂ ? then a series containing odd powers of k is obtained replacing 
coth~^(777o/A:) by 7r/2. 

We will consider integral /2. Since m^^^ and rm?^'^ present themselves as polynomials 
with respect to m?, then: 

mo 

h= l ^ dnm^'^ \v? ml dm 

0 "" 

Integrating every term by parts, we have: 

mo 

/2 = -4yx:«"^^^- 5— d777 

mi 

This series can be expressed through the sum of integrals of type / i , and the integral 
/J^°(In 7772)77772 d777,. The upper limit in the latter can be replaced by oc, inasmuch as only 
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terms with even powers of A; arise in the external part of integration. After integration 
we obtain: 

CXD 

/ 

In mo , 7rln(2A:2) 
-^dm= e—— 

Performing all transformations related with the expansion in a series with powers of /c, 
we derive the following expression for the low-frequency parts of the spectrum without 
even powers of k: 

hk\ + hk\ + hkl + hkl\uh 

where: 

a3.3/2 (aH l - s \ 

j6 2 '^'^ '^^\lO 2 ) 

/? = /a 
'a^s^ a^sil - s) 5 , ,9 

280 20 32^ ^ • ^ ( -

77 I n s V 

' 6 0 " ^ ^ ; 

(9.37) 

(9.38) 

^ 7 = - / 3 Y ^ ( l - ^ ) S = G^/CJI 

Some of these coefficients have been derived in Chapter 4. 
Now consider function m\C\ for a three-layer medium and transform it in a way which 

is convenient for obtaining the low-frequency asymptote. 
Substituting in formulae for li and I2, functions KQ{m) and K\{m), presented by series, 

we obtain: 

I2 = ns (in ^ + C') + hi 

hi = -m2lo{m2) ^i{mi) 
[mi 

I21 = 7722/^0(^2) 
m i 

El (mi) 

- m i / i (m2) I lo (^ i ) 

-miKi{m2)T.o{mi) 

For this reason function Ci can be written as: 

Ci=\n-— + C+ 
2 IsTli -h 712^3 

I n ^ + C + Cii (9.39) 

As in the case of a two-layer medium the integral from the first term at the initial part 
of integration along with field h^^{k, L) do not contain odd powers of k. 

Making use again of an expansion of functions of K^ and Ki we have: 

i 2 1 = i l l ( l n ^ + C ) + / 2 2 
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2̂2 = m2Eo(m2) 
mi 

Ei (mi ) miEo(mi) 
m2 

El (7712) 

Performing similar transformations for rii we have: 

ni -77,2 ( In — h C ) + ni l 

ni l = msKo{msf3) 
1 

Ei(m2/?) - m2Ki{msf5)T,o{m2P) 
[m2P 

As a result function Cn can be written in the form: 

/linn + 2̂2̂ 2 - /iin2ln/? 
Cii = 

^3^1 + ^2^3 

Multiplying the numerator and denominator of C n by ma/^/mi, we notice tha t in product 
/ l i n n there is a term —mlKo{msP), but other terms in the numerator have a higher order 
of 771. At the same time denominator (m3/?/mi)(n2n3 + /3ni) can be presented in the form: 
— 1 -h 0(mi,77i2,ni3). Thus, after expansion of denominator C n in a series the leading 
term of the expansion of TTIICI for small values of TTII, 7712 and 7773 presents the integrand of 
the Sommerfeld integral for the field in uniform medium with resistivity of the formation, 
i.e. mlKo{ms/3), and the other terms take into account the influence of the borehole and 
the invasion zone. 

Omitting intermediate transformations, let us write down two main terms of the low-
frequency spectrum, containing only odd powers of k: 

hkl + (p5kl (9.40) 

(9.41) 

In applying methods, allowing us to derive formulae corresponding to the late stage of 
transient field, when the low-frequency spectrum is known, we have: 

A ^ 3 3/2 
^3 = 3 '^^1 

^ 3 
Sl = — S2 

CTi 

05 = 

- ^ 
CTl 

521 = 1 -

S\2 

2 

- S 2 - f 

dt 2nL^a\ y-K) 

105 / STT̂  
+ -

1/2 27r 

Ti/ai 
s 3/3 - — / s 

STT^ 

( r i /a i )2 

Ti /ai 

2 r 
n / . - | ( c + ln4 + | - 176+i ln^^3^3 

(9.42) 

if an invasion zone is absent. 
By analogy for a three-layered medium we have: 

dB, 
dt 

Mp, (2V" ( 27r y / 
-̂ ^̂ ẑ fU; vv^J \'^'' 

15 87r2 

" 2 ' ^ ' ( n / a i ) 2 
(9.43) 
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For sufficiently large times the main role in asymptotic formulae is played by the first 
term, and as follows from a physical point of view it does not depend on parameters of 
the borehole and the invasion zone and coincides with the leading term of expansion at 
the late stage in a uniform medium with the formation resistivity. Thus, regardless of the 
probe length there is always a moment, starting from which the measured field, as well as 
the electromotive force, are not practically subjected to the influence of induced currents 
in the borehole and in the invasion zone. 

Comparison with results of calculations by the exact solution shows tha t the asymptotic 
formula 9.42 satisfactorily describes the field in a medium with one cylindrical interface, 
if Ti /a i > 20. 

In conclusion let us notice that asymptotic formulae allow us, on one hand, to under-
stand better the physical principles of the method, while on the other hand, they permit 
us to avoid the calculation of Fourier integral at large times. The latter operation due to 
the oscillation nature of the integrand is related with great numerical difficulties. 

9.3. Apparent Resistivity Curves of the Transient Method in a 
Medium with Cylindrical Interfaces 

We will present results of calculations of the field, dBz/dt, on the borehole axis through 
apparent resistivity It can be introduced in several ways, some of which have advantages 
within a certain range of time. We will use the following approach: 

Pi 

1 2/3 

(9.44) 

• Is 

where p^ and pi are apparent resistivity and the borehole resistivity, respectively; Bz (pi) 
is the derivative of function Bz{p\) with respect to time at the late stage in a uniform 
medium with the borehole resistivity; Bz is a measured function on the borehole axis, 
dBz/dt. 

In accord with eq. 9.24: 

where Ui = 27ra / ( r i / a i ) . Whence: 

(9.46) 
Pi ~ rf 

o - ^ i 
"^ - Awt \ 

(^ 

^HMT'' 

V tB, , 

^ (MTPA 

2/3 

) 
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Figure 9.8. Apparent resistivity curves. Curve index a. 

One of the features of the method of introducing the apparent resistivity is the inde-
pendence of the probe coefficient from the resistivity of a medium. 

Examples of apparent resistivity curves are given in Figs. 9.8-9.22. Two-layer curves, 
when the invasion zone is absent, are given in Figs. 9.8-9.11. The index of the set of 
curves is the ratio P2/P1, while every curve is characterized by parameter a = L/ai. The 
set of curves for a three-layer medium, Figs. 9.12-9.22, has as index: 

P2 

Pi 

02 

ai 

P3 

Pi 
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Figure 9.9. Apparent resistivity curves. Curve index a. 

The parameter of every curve is again the ratio of the probe length, L, to the borehole 
radius, a = L/ai. The ratio T\/ai is plotted along the axis of the abscissa. 

All calculations are performed for probes with lengths exceeding the borehole diameter 
(a > 2). For this reason, at the early stage the field does not tend to that in a uniform 
medium with resistivity of the borehole. With a decrease of time the value of Pr unlimit-
edly increases, i.e. the field in the borehole in the early stage is significantly smaller than 
that calculated by formula of the late stage. 

The shape of apparent resistivity curves, p^, essentially depends on the probe length 
and conductivity of the medium. With an increase of time there is a minimum which 
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Figure 9.10. Apparent resistivity curves. Curve index a. 

becomes deeper with a decrease of the probe length and an increase of the formation 
resistivity. Then the apparent resistivity, p^, rapidly increases, approaching the right-
hand asymptote equal to the formation resistivity. With an approach this asymptote of the 
transient response the influence of the probe length decreases, and this feature manifests 
itself at earlier times with an increase of the formation resistivity and a decrease of the 
probe length. This means that within this range of time the main influence is caused by 
currents outside of the borehole, sufficiently removed from the dipole and the observation 
point, but their density still depends on the borehole resistivity when the invasion zone 
is absent. The smaller the conductivity of the external area, the more rapidly a transient 
field decays, and correspondingly, induced currents near the source, too. For this reason 
the influence of the probe length becomes practically negligible at earlier times. The 
second term in eq. 9.41 has the form: 

/s — fs 
1-s 

10 

For a sufficiently large resistivity of the formation and a relatively short probe when 
conditions a'^s < 1 and s <C 1 are met, the second term of the asymptotic expansion of 
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Figure 9.11. Apparent resistivity curves. Curve index a. 

eq. 9.42 does not depend on the formation resistivity, as well as the probe length, but it 
is defined by the resistivity of the borehole. 

Thus, if the parameters of the borehole are known we can correct the value of pr, 
measured at times when the field on the borehole axis differs from that in a uniform 
medium with resistivity p2-

In accord with eqs. 9.42 and 9.44 we have: 

Pi Pi 3 
(9.47) 

as ?/i ^ 0 and Ui = 27rai/ri. It is clear that the second term of eq. 9.47, defining the 
correction of Pr, for large times, is directly proportional to the borehole conductance: 

A graph of function Pr/p2 = 1 - (5/3)7ii is presented in Fig. 9.23. As is seen from 
comparison with the exact solution, eq. 9.47 provides a sufficient accuracy in the deter-
mination of pr for a relatively resistive formation (P2/P1 > 10), if a < 4 and Ti/ai > 15. 
In this case the correction factor depends only on the borehole conductance. With an 
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increase of the probe length, as well as for formation conductivity, the minimum on curves 
of pr becomes smaller and finally completely vanishes. In the latter case the value of ap-
parent resistivity p^ at the right-hand part of the curve monotonically decreases with an 
increase of time, approaching to its asymptote p2- For relatively resistive formations with 
an increase of the probe length at the beginning the depth of investigation in the radial 
direction increases, when Ti/ai > 10. 

At every moment of time when parameter Ti/ai ;:$> 1 we can present the distribution 
of currents in the following way. Near the borehole axis the current density is small, 
then with removal from the axis, it increases, reaches a maximum and afterwards it 
rapidly decreases. The position of the maximum of the current density at the given 
moment depends on the conductivity of the medium: the more conductive the borehole 
the greater the distance from the axis where the range of maximal values of current density 
is observed. In the near zone, where current maximum can be located, the field and the 
current density are described by asymptotical formulae 9.42, but at greater distances 
their behavior is different, and in particular, the current density essentially depends on 
the borehole conductivity. 

For sufficiently large formation resistivity there is a time when a significant area around 
the dipole corresponds to the late stage. For this reason with an increase of the probe 
length, the geometric factor defining a signal from the borehole decreases, while the role 
of currents depending mainly on the formation conductivity increases. Wi th a further 
increase of the probe length the depth of investigation becomes smaller, since the influence 
of currents depending on both the conductivity of the formation and tha t of the borehole 
begins to grow. 

A comparison of the exact solution and asymptotic formulae shows tha t the field in a 
two-layered medium becomes practically the same as in a uniform medium with formation 
resistivity, if: 

Ti/ai > 30 or t> 90al/27rpi L̂xsec (9.48) 

In particular, if pi = 1 ohm-m, ai = 0 . 1 m then at times exceeding 100 /xsec, currents in 
the borehole practically do not have any influence. 

In accord with eq. 9.47 electromotive force induced in the measuring coil of the probe 
in a uniform medium is: 

where u = 27rL/r2. 
As an example, values of electromotive force e for two probe lengths are given in Ta-

ble 9.5, when Ti/ai > 30. 
Let us notice that if the borehole resistivity is 1 ohm-m and borehole radius is 0.1 m, 

parameter Ti/ai = 90 corresponds to 1.3 //sec. 
The apparent resistivity curves on the borehole axis, when the invasion zone is present, 

are given in Figs. 9.12-9.22. If resistivity of the invasion zone is less than tha t of the 
formation, the shape of curves p^ is the same as that for a two-layered curve, but an 
approach to the right asymptote takes place at later times. 
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TABLE 9.5 
Values of EMF, fiV; MTMR = 10" 

P2, ohm-m 

5 

10 

20 

5 

10 

20 

Ti/ai 
30 

0.45x10^ 

0.16x10^ 

0.57x10^ 

0.30x10^ 

0.13x10^ 
0.51 xlO^ 

45 

L = 0.2 m 

0.60x10^ 

0.21x10^ 

0.75x102 

L = 1.0 m 

0.50x10^ 

0.19x10^ 

0.72 xlO^ 

60 

0.14x10^ 

0.51 xlO^ 

0.18x10^ 

0.13x10^ 

0.48 xlO^ 

0.17x10^ 

90 

0.19x102 

0.67x10^ 

0.24x10^ 

0.18x102 

0.65x101 

0.23x10^ 

In the case when the invasion zone has a higher resistivity than that of the formation 
the shape of apparent resistivity curve changes, specially for relatively short probes and 
large radii of the invasion zone. At the early stage with an increase of time p^ becomes 
greater with an increase of the resistivity of the invasion zone, p2- With a further increase 
of time currents are mainly located in the formation which has higher conductivity, and 
correspondingly the apparent resistivity decreases asymptotically approaching to its right-
hand asymptote, p^. 

9.4. The Transient Responses of a Vertical Magnetic Dipole in a 
Formation with a Finite Thickness 

Investigation of a nonstationary field of a vertical magnetic dipole in formations with 
finite thickness allows us to study the vertical responses of a two-coil induction probe 
making use of the transient method. It is obvious that with an increase of time the 
influence of the surrounding medium becomes stronger due to diffusion of currents, and 
this effect is greater with a decrease of the formation thickness and the resistivity of the 
surrounding medium. For this reason it is essential to establish the maximum times when 
measurements with a two-coil probe located against the formation do not yet depend on 
the conductivity of the surrounding medium. 

As was shown in Chapter 5 the expression for the quasistationary field of the magnetic 
dipole along its axis in the frequency domain is: 

oo 

Bi'^ = BT{K z) + ^ f —m,2e-^'^-'^^^' dz if a ^ 1 
All J nil 

oo 

5(2) = / f ^ / 2 m ^_^m,z^-(l-a)m,z ^^ if Q < « < 1 
47r 7 m i + m2 

(9.49) 
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Figure 9.12. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.13. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.14. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.15. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.16. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.17. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.18. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.19. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.20. Apparent resistivity curves in a three-layered medium. Curve index a. 
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Figure 9.21. Apparent resistivity curves in a three-layered medium. Curve index a. 

where /ci and A;2 are wave numbers of the first and second medium, respectively, and: 

mi = (m^ - k\)^l^ 7712 = ^rn^_kiyn mu mi — 1712 
ni] -\- 7X12 a 

L is the distance from the dipole to the interface; z is the distance from the dipole to the 
observation point. 

If the behavior of the current in the dipole is described by the step function: 

/ = 1/ ^<0 
0 ^ > 0 

we have for the transient field: 

B.= -IS Q Bz sin ujt duj 

Taking into account the relative simplicity of eqs. 9.49 it is not difficult to derive asymp-
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TABLE 9.6 
Minimal values of parameter T\Iz 

(2a - 1)25 

s 

(2a ~ 1) 

T\IZ 

if a > 1 and s > 1 

if a < 1 

if s < 1 

2 

15 

4 

25 

8 

40 

16 

60 

32 

90 

45 

110 

64 

130 

90 

150 

128 

170 

180 

210 

256 

250 

totic formulae for the late stage. Omitting intermediate steps we have: 

dt nz^ \ 7 r / (5 — 1) 

( 2 ^ - 1 ) 2 ( 4 5 ^ / 2 - 7 5 ^ / 2 + 3 ) , ^ . , ^ ^ 2 

Ui 

+ ^ '-^— + a{a - l ) ( s - l)w^ + . . 
14 

5 \7T J 4 

if a > 1 

dB, Mpi /^2y/^ S /̂2 - 1 T̂T V/2 {2a - 1){S + 1){S - 1)2 

dt TTZ^ \^ J ("̂  ~ 1) ©' Ui + 

0 < a ^ 1 T1/2 > 1 (9-50) 

where s = cr2/cri, Ui = 2'JTZ/TI, T\ = {27rpit x 10^)^/2. 
Minimal values of parameter TI/Z, when the difference between results of calculations 

by exact and asymptotic formulae do not exceed 5%, are given in Table 9.6. 
Curves of function Pr/pi are presented in Fig. 9.24. Apparent resistivity is related with 

function dBz/dt as: 

(
• \ 2/3 

f ) ''•̂ " 
where B^"" = (Mpi/27r^^^)(2/7r)^/2txfe'^'/2 is the field {B,) of the magnetic dipole in a 
uniform medium with resistivity pi. 

Let us consider the main features of curves pr/Pi- For small times ( T I / Z -^ 0) the 
left-hand branches of curves have a common asymptote for a > 1, since, at first, currents 
concentrate near the source, and a field is practically the same as in a uniform medium 
with resistivity pi. With an increase of time the influence of the second medium becomes 
stronger, and it manifests itself earlier with an increase of its conductivity. 

The right-hand branches of these curves correspond to the late stage (eq. 9.50), valid for 
relatively great times. In a general case the transient field at the late stage is defined by 
both conductivities of a medium, but with an increase of resistivity pi or p2 the influence 
of the more resistive part becomes smaller. For sufficiently large values of TI/Z field Bz 
does not depend on the distance from the probe to the interface. It is explained by the fact 
that induced currents are located far away from the receiver with respect to distance L. 

At the range of times close to the early stage there is an extremum on curves of apparent 
resistivity (maximum, when P2/pi < 1 and a minimum if P2/P1 > 1)- Appearance of this 
extremum can be explained in the following way: at the initial moment induced currents 
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Figure 9.24. Apparent resistivity curves PrjP\ in the presence of one interface. Curve 
index (J^jox. 

are mainly located near the dipole but a change of their magnetic field with time creates, 
in its own turn, currents in various points of the medium, and if conductivity at some 
distance from the source is noticeably different we can expect the influence of this part of 
the medium at relatively small times. 

Also it is useful to notice one interesting feature of curves Pr/pi in the case when the 
transmitter and receiver of the probe are located from both sides of the interface. Left 
asymptotes of curves tend to infinity if P2IP\ < 1 and to zero if the second medium 
is more resistive. This means that at the early stage, as well as at the high frequency 
spectrum, the field measured at the second medium (when the source is located in the 
first one) depends on the resistivity of this part of the medium, and it is defined not only 
by currents concentrated near the source but also by currents near the measuring point. 

Now we will consider the behavior of transient responses in the presence of a formation 
with finite thickness. Let us assume that a two-coil induction probe is located within 
the formation symmetrically with respect to its boundaries and the surrounding medium. 
The latter has the same resistivity from both sides of the formation. 

In this case an expression for the vertical component of the field in the frequency domain 
expressed in units of the primary field: H^ = 2M/47rL^, in accord with eq. 5.37 has the 
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form: 

oo 

0 

where a = H/L; H and L are thickness of the formation and the probe length, respectively, 
and: 

mi = (m^ - klY^^ 1712 = {m^ - ^lY^^ ^12 == (^1 - ^ 2 ) / ( ^ i + ^2) 

For the determination of the transient responses, as before, Fourier integral is applied: 

at 

00 
2 f 

= / QBzSm{ujt) duj 

Presentation of the field in the frequency domain as a sum of two terms (9.52) is 
convenient for the field calculation at the early stage of the transient response, when the 
field is practically the same as that in a uniform medium with the formation resistivity, 
i.e. it is mainly defined by the first term of eq. 9.52. At larger times currents either 
are distributed uniformly along the z-axis (nonconducting surrounding medium) or are 
mainly located there when the surrounding medium is conductive. 

In both cases the transient field essentially differs from that in a uniform medium with 
resistivity pi. For this reason it is necessary to increase the accuracy of calculation of the 
integral in eq. 9.52, specially when the surrounding medium has a higher resistivity than 
the formation, and the final result is obtained as a difference of relatively large numbers 
which are close to each other. 

In order to partly avoid this numerical problem it is reasonable to subtract from the 
low-frequency spectrum terms proportional to uj and cj^/^. It is not diflficult to show that 
in the expression: 

00 00 

h, = hl-^ / [F + dm + / dm (9.53) 
" J \ 2m2 2mi y J \ 2m2 2mi 7 ^ ^ 

0 0 

an expansion of the second term in powers of uj begins with a term, proportional to o;̂  
(F is the integrand in eq. 9.52). Calculating the late stage of transient response from 
the last term of eq. 9.53 an asymptotic expression is used, which provides a sufficient 
accuracy of numerical results. In the case when the surrounding medium is an insulator 
it is reasonable to present spectrum hz{uj) as: 

mo 00 00 
r frn^Q-'^ \ f f m^e~^^ 

hJuj) = I h F d m + Fdm-^ / dm if mo < 1 
J \ 2mi J J J 2mi 
0 mo mo 

The last term is expressed through elementary functions. 
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Taking into account known numerical problems in calculating the late stage of the 
transient field, asymptotic formulae have been derived. Applying the approach described 
in previous chapters, the low-frequency spectrum can be presented as: 

B, - Cikl + C2kl + C^kt In 2k2 + C^kf + CgA;̂  

C2 = ls' .3/2 c. 
as{s — 1) 

a 
1 

~15 

S = Pl/p2 

5a' I ^^/^ ^3/2 ^ - ^ 1 / 2 _ - ^ 3 / 2 ,,5/2 

(9.54) 

(9.55) 

Coefficients Ci and C4 are not given since they do not contribute to the late stage of the 
transient response. 

Correspondingly, for the field at the late stage we have: 

OB, 

dt '27rL^ 
.(£)"!.{,. _(E)-.„„.,_, )s 

5a' .5/2 Z^3/2 ^ 3^1/2 
4 4 

o3/2 . o5/2 

(9.56) 

where Ui = 27rL/ri, TI = {27rpit x 10^)^/^. This equation is valid for large times when the 
surrounding medium has a finite resistivity. 

In the limit case of nonconducting surrounding medium we have: 

t - l ^ " ' * - » < • " " - * » ? > (9.57) 

Thus, for sufficiently large times the field becomes the same as in a uniform medium 
with resistivity of the surrounding medium p2 j ^ 00^ and it does not depend on the probe 
length. At the same time at the late stage induced currents are distributed uniformly 
within the formation along z axis, if the surrounding medium is not conductive, and the 
field Bz is directly proportional to the cube of the longitudinal conductance: {H/pi^. 

Results of calculations based on exact solutions presented in the form of apparent 
resistivity curves Pr /p i , as a function of parameter r i / L are given in Figs. 9.25-9.28. 
Index of curves is P2IPx- In the same manner as in the case of one horizontal interface, 
the apparent resistivity is related with the field as: 

Pi 

-2/3 

Considering these curves we can make the following conclusions. 

• At the early stage of the transient response currents are concentrated near the 
dipole, and the field depends only on the formation resistivity. For this reason the 
left-hand asymptote of curves Pr/pi is equal to unity (a > 1). 
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TABLE 9.7 
Maximum values of time f^^^, fisec 

pi, ohm-m 

1 

2 

4 

8 

16 

H, m 
2 

2.3 

1.15 

0.58 

0.29 

0.14 

4 

9.2 

4.6 

2.3 

1.15 

0.58 

6 

20.6 

15.3 

7.6 

3.8 

1.9 

8 

36.8 

18.4 

9.2 

7.4 

2.3 

10 

58 

29 

14 

12 

3.5 

14 

112 

56 

28 

24 

7 

• For large values of parameter r i /L, when currents practically vanish in the forma-
tion, curves of Pr/Pi approach to their right-hand asymptotes, equal to P2IP\^ if 

• If P2IPi > 10 ^ 30, curves of Pr/Pi have one more intermediate asymptote corre-
sponding to a nonconducting surrounding medium. In other words, there is such 
a time interval when intensity of currents is still negligible in more resistive sur-
rounding medium, but within the formation they are distributed uniformly along 
the z-axis. 

• Curves of apparent resistivity are characterized by a maximum at relatively small 
times, when the surrounding medium has greater conductivity (<7i/cr2 < 1). 

• With an increase of time currents are mainly located far away from the source, and 
the field does not practically depend on the probe length. 

Calculations show that for a given value of P2Ip\ a function pr/Pi with sufficient 
accuracy is defined by parameter T\/H, if TI/H > 8 (Fig. 9.29). 

• The apparent resistivity, pr, differs from the formation resistivity less than 10% if 
the following conditions are met: 

TT2 

-^ < 6 or Cse? < 0-6— if a ^ 2 and 32 ^ P2/P1 > 1/32 (9.58) 
H ^ Pi 

This relation defines maximal times when regardless of the probe length (L < H/2) 
we can think that a measured signal is function of the formation resistivity only. 

As an illustration Table 9.7 contains maximal values of time in //sec, for some parameters 
of a medium, satisfying condition 9.58. 

9.5. About a Nonstationary Field of the Electric Dipole 

Investigation of the nonstationary field of the magnetic dipole in a medium with cyhndrical 
interfaces demonstrates that for providing a sufficient radial response, allowing us to define 
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the formation resistivity in the presence of a deep penetration (a2/ai :̂ :̂  8), it is necessary 
to perform measurements at times satisfying condition: 

- ) (9.59) 

if ps/pi ^ 30 and Ljax ^ 10. 
On the other hand, with an increase of time the influence of induced currents in the 

surrounding medium increases, and as was estabhshed in the previous section the field 
measured within the formation of finite thickness does not practically differ from that in 
a uniform medium with the formation resistivity, if: 

^ < 6 (9.60) 

provided that UjL > 2 and pi/p2 < 16. This condition, as well as rapid decrease of the 
signal, does not allow us to perform measurements at larger times. 

For instance, if the formation resistivity and its thickness are 100 ohm-m and 6 m, 
respectively, then the maximal time when the influence of the surrounding medium is still 
negligible can not exceed 2 /isec {pi/p2 < 16). Taking into account that at such times 
currents induced in a moderately conductive medium create relatively weak signals we 
can expect serious technical problems of measuring in inductive sensors due to intrinsic 
processes. For this reason it is appropriate to consider some features in a behavior of the 
nonstationary field of the electric dipole. 

As is well known, the electric field of the alternating electric dipole with moment: 

M,e-'"^ = ^e-'^' (9.61) 

is defined in the following way: 

M ^'-''^ 
Ee = ^ e ' ^ ^ ( l - ikR - kR") sin^ 

where d/ is the distance between electrodes; / is the current; e^pl is the magnitude of the 
charge on the electrode surface; SQ = (l/367r) x 10~^ F/m, k = {a/j,uj/2y^'^{l + i). 

Applying Fourier transform to eq. 9.62, we obtain an expression for the transient electric 
field on the axis of the electric dipole when excitation of the dipole is the step function: 

^. = ^ (l - Hu) + [I) '''ue--'A (9.63) 

where L is the probe length; 0(ii) is the probability integral, u = 27rL/r. 
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TABLE 9.8 
Values of electric field Ez, fiV/m; I dl/An = 10~^A • m 

^^ r i / a i 
P2, ohm-m 

30 45 60 90 

5 

10 

20 

5 

10 

20 

0.65 xlO^ 

0.46 xlO"^ 

0.33x10^ 

0.51x10^ 

0.41x10^ 

0.31 xlO"^ 

L = 

L = 

0.2 m 

0.19x10^ 

0.14x10^ 

0.97x10^ 

1.0 m 

0.17x10^ 

0.13x10^ 

0.94x10^ 

In particular, for relatively large times when parameter u 

E.^4^('-X''u^(l-luA (9.64) 

0.82x10^ 

0.58x10^ 

0.41 xlO^ 

0.77x10^ 

0.56x10^ 

0.40x10^ 

^ 0, we have : 

0.24x10^ 

0.17x10^ 
0.12x10^ 

0.24x10^ 

0.17x10^ 

0.12x10^ 

3 L \7rJ V 10 

Therefore, at the late stage the transient electric field does not depend on the distance 
from the dipole, and correspondingly, the depth of investigation is the same as for the 
inductive excitation. At the same time, as it follows from values of the electric field, given 
in Table 9.8, in the case of the electric dipole we can provide signals of greater magnitude 
for the same current, and perhaps to reduce in a significant degree intrinsic nonstationary 
processes in the transmitter and in the receiver. 

Now we will very briefly consider the electric field of the electric dipole located on the 
borehole axis. As is well known from the theory of an electric logging, the expression for 
the field is: 

Ez - y ^ I er(/c, L)-— I m\Di cos(am) dm j (9.65) 

where: 

_ m2KQ{m2)Ki{mi) - smiKo{mi)Ki(m2) ^ , 
m2Ko{m2)Ii{mi)-\-smiIo{mi)Ki{m2) 

Taking into account the purpose of this consideration, let us pay attention only to the 
far zone. Applying methodics described in detail in Chapter 4 we can show that the 
expression in brackets of eq. 9.65 is: 

^ ' ^ -er(fc2i) 
P^Iim-kjf'ai 
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Thus, for the electric field we obtain: 

P2ldl 1 
E. 

2^ '̂ Ii[{kl-kff\i 
e^^^ (̂l - ik2L) if a > 1 and Ai/ai > 1 (9.66) 

where Ai = 27r(2/(cri/iCc;))^/^; ai and a2 are conductivities of the borehole and the forma-
tion. 

Unlike the inductive excitation with horizontal coils electrical charges arise at the bore-
hole surface. However, in accord with eq. 9.66 at the low-frequency part of the spectrum, 
the term proportional to k^ depends on the formation conductivity only. 

For this reason, at the late stage of the transient response the electric field on the 
borehole axis at the far zone possesses the same depth of investigation as the magnetic 
field when the inductive excitation is applied. From a physical point of view it is clear 
that the same conclusion remains valid in measuring the electric field near the dipole. 



Chapter 10 

PRINCIPLES OF INDUCTION LOGGING W I T H 
TRANSVERSAL INDUCTION COILS 

In previous chapters we have considered various aspects of induction logging when the 
source of the field is the vertical magnetic dipole, i.e. it is a relatively small coil with hor-
izontally located turns. In this case current lines present themselves as concentric circles 
located in horizontal planes with centers on the borehole axis. For this reason thin and re-
sistive layers, as well as caverns and fractures, stretched in directions perpendicular to the 
borehole axis, do not practically manifest themselves in conventional induction logging. 
Finally, in this method only a longitudinal conductivity defines a signal in an anisotropic 
medium. In order to increase sensitivity of induction logging to thin resistive layers, to 
improve, when possible, the vertical response of the probe, and to define the coefficient of 
anisotropy we will investigate modification of induction logging with horizontally oriented 
coils (Fig. 10.1). 

10.1. Electromagnetic Field of the Magnetic Dipole in a Uniform 
Isotropic Medium 

Analyses of the electromagnetic field will be started from the simplest case of a uniform 
conducting and isotropic medium. As is known, expressions for complex amplitudes of the 
field caused by the magnetic dipole, oriented along the z-axis, have the form (Chapter 2): 

Hn = l ^ e ^ ' " " ! ! - ikR)smO (10.1) 

Hg = - ^ e^^^(l - ikR - k^R^) sinO 

where M = InS is the dipole moment; a is conductivity; fi is the magnetic permeability 
equal to 47r x 10~^ H/m; uj is angular frequency; k is the wave number, A; = (1 -h i)/h; h 
is the thickness of skin layer. 

As is well known, sources of the secondary field are induced currents, the distribution of 
which is defined by the frequency and the conductivity of the medium. Current lines are 
circles located in planes perpendicular to 2:-axis. In conventional induction logging, when 
the direction of the dipole moment coincides with the borehole axis, the main attention 
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Q - M R 

6 ^ Mr 

Figure 10.1. The induction probe with horizontal coils. 

was paid to component i//?, as ^ = 0. Under excitation of the field by the horizontal 
magnetic dipole component of the field, He, as ^ = 7r/2, is measured. In accord with 
eq. 10.1 we have: 

He = if (^)e^^^(l - ikL - k^L') (10.2) 

where L is the probe length. 

//(°) = M/ATTL^ (10.3) 

is the field of the magnetic dipole in a free space, directed opposite to the dipole moment. 
Let us introduce function he, equal: 

he = ^=e^'^il-ikL-k'L-') (10.4) 

Having substituted into eq. 10.4 value A: = (1 + i)//i, we will present the field as a sum of 
two components, namely, the inphase and quadrature components: 

In he = [(1 + p) cosp + p(l + 2p) sinp] e~^ 

Qhe = [(1 + p) sinp — p(l -^ 2p) cosp] e~^ 

where p is a parameter, defining the field he and equal to the distance from the dipole, 
expressed in units of the skin depth: p = L/h. 

In accord with eq. 10.5 we have for the magnitude and the phase of the field, he: 

</. = p - co th -V( l + 2p)/(l + p)] 
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First, consider the field in the near zone, when parameter p is small. 
Expanding exponent ê ^̂  in a series and substituting it into eq. 9.4, after elementary 

transformations we obtain: 

n=0 ^ ^ 

Restricting ourselves by first two terms, we have: 

lnhe-l + -p" Qheo^ - / + ^P^ (10.8) 

Thus, at the range of small parameters when interaction between currents is negligible 
the quadrature component prevails, which is directly proportional to frequency and con-
ductivity, and it is equal in magnitude to the quadrature component of the field measured 
at the same distance along the axis of the vertical magnetic dipole (Chapter 2). 

In the wave zone at distances significantly exceeding the skin depth component HQ is 
greater than HR {0 ̂  0) and at an equatorial plane: 

Ee = -^k^e'^"- if \kL\ > 1 (10.9) 
47rL 

As follows from eq. 10.1 in the wave zone the ratio of the electric field to the magnetic field 
does not depend on the distance, and it is equal to the impedance in a uniform medium: 

t = - ^ = - f ^ ) ' ' % - ( ' / ^ ' (10.10) 
He k \ a / 

Values of magnitude, phase and field components are given in Table 10.1. For comparison 
values of function hz for the vertical dipoles are also shown. Graphs of quadrature and 
inphase components of field hx as well as amplitude of the secondary field l/i;̂  — 1| and its 
phase are given in Figs. 10.2-10.3, respectively. 

10.2. Boundary Problem for the Horizontal Magnetic Dipole on 
the Borehole Axis 

Let us assume that a horizontal magnetic dipole is located on the borehole axis. The radius 
and conductivity of the borehole are a and (Ji, respectively. The formation conductivity 
is (72- Magnetic permeabilities of both media coincide with that in free space. 

We will introduce a cylindrical system of coordinates, and the magnetic dipole with 
moment M = MQ&^^ is placed in its origin, and it is directed along the a:-axis (Fig. 10.4). 

As is well known the system of equations for the quasistationary field has the form: 

curl E = luojiH div ^ === 0 

cm\H = (jE div i f = 0 ^ ' ^ 
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In^ 

Figure 10.2. Quadrature and inphase components h^, 6 — 7r/2. 

Figure 10.3. Amplitude and phase of the secondary field. 
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Figure 10.4. The horizontal magnetic dipole on the borehole axis. 

Under excitation of the field by a horizontal dipole the primary vortex electric field, 
unlike that of a vertical dipole, intersects the boundary between media with different 
conductivity. For this reason electric charges arise on the borehole surface, the density of 
which changes synchronously with the electric field at a given point, and it depends on the 
conductivity of both parts of the medium and on the coordinates of the point. Thus, in 
this case sources of the field are currents and charges and, correspondingly, it is impossible 
to express components of the electromagnetic field only through one component of the 
vector potential of the magnetic type. Solution of the boundary problem with help of all 
three components of potential A* (A*, A^^Al) leads to a system of differential equations 
in partial derivatives of the second order. For this reason let us present a solution as a 
sum of two fields and correspondingly introduce two potentials, namely, a magnetic and 
an electric type: 

E^^^ = icjfi curl A* ff(2) = curl A 

Then, from eq. 10.11 it follows that: 

i f (̂ ) = A;̂ A* - grad t/* E^'^^ = iujfxA - grad U 

where /ĉ  = icrfiuj. 

Introducing gauge conditions: 

f/* = - div A* aU=- div A 

potentials become a solution of the wave equation: 

V ' A + A;2A - 0 V^A* + A;'A* - 0 

(10.12) 

(10.13) 

(10.14) 

(10.15) 
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We will look for a field with the help of vertical components of the vector potentials, i.e.: 

A* = (0,0, AD A = (0,0, A,) (10.16) 

where the z-axis coincides with the borehole axis. 
In such a case, in accord with eq. 10.12, vertical components of the electric and magnetic 

fields are absent in oscillations of magnetic and electric types, respectively, i.e. 

Ei^^ - 0 Hi^^ = 0 (10.17) 

It is obvious that the field of the magnetic dipole in a uniform isotropic medium is of 
the magnetic type, while as it has all features of the electric type, when the source is the 
electric dipole. 

According to eqs. 10.12-10.13 oscillations of the magnetic type are expressed through 
potential ^*. In fact we have: 

^ . IDA* , , aM* 

r 90 drdz 

£;, = - i c . / i ^ H,= - ^ (10.18) 
or r ocpoz 

d'^A* 

and the vector potential satisfies the equation: 

By analogy for oscillations of the electric type we have: 

G drdz ^ r d(\) 

£, = ±|A ;,,._|1 , ,10.20, 
ar ocpoz or 

^•'\{^^^^) "'-" 
and 

d'^A i a 4 l_dM. a M ^ 2 ^ _ Q ^Q21) 
grp2 J. Qj. j>2 g^2 g^2 

It is easily seen that unlike, for example, the boundary problem for a sphere, in this 
case it is impossible to provide continuity of tangential components of the field of one 
type of oscillations with the help of only magnetic or electric vector potentials. This fact 



541 

makes the derivation of formulae for components of the electromagnetic field in media 
with several cylindrical interfaces much more complicated. 

Thus, equality of tangential components of the field, consisting of oscillations of electric 
and magnetic types on the borehole surface (r = a), results in the following system of 
boundary conditions for potentials A and A*: 

cTi \ad(t)dz ^ dr J (J2 \ad(t)dz ^ dr 

^lA+ Q^2 -f^2^2+ g^2 

dAi l&^Al __dA^ 1(9M* 
dr a d(\)dz dr a d(t)dz 

where /ci, Ai, A\ and A;2, A2, A2 are wave numbers and potentials in the borehole and 
in the formation, respectively. Thus, components of the vector potentials satisfy wave 
equations 10.19 and 10.21 and boundary conditions 10.22. 

Now, knowing the behavior of the field near the source, let us find expressions for po-
tential AQ and ^Q in a uniform medium with conductivity ai, which allow us to formulate 
conditions of excitation for Ai and A\^ which are necessary for a solution of the problem. 
As was mentioned above, the field of the dipole in a uniform isotropic medium can be 
described with the help of one component of potential of the magnetic type: 

A* = (A:,O,O) 
00 

Me^^i^ M f 
^^ ^ 'i^~W~ ^2^ J ^o(Air)cosAzdA (10.23) 

0 

where Ai = (A^ - A;2)i/2 and 

E = ia;/icurl A* H = k'^A* + graddiv A* (10.24) 

Therefore, for vertical components of the field we obtain: 

00 

E^ = lujfi—-smcj) / AiXi(Air)cosAzdA 
2n^ J 

(10-25) 

H^^=^cos(t) f XXiKiiXir) sin XzdX 

0 

where cos0 = x/r and r = {x'^ H- y^Y^'^. 
On the other hand, from eqs. 10.18 and 10.20 we have: 

' ^klA, + ? # ) F . = kfAl + ^ (10.26) 
<Tl V 9^2 / ' ^ ' dz^ 
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It is not difficult to see that potentials: 

oo 

AQ = —kl—^sincp / -- i^i(Air)cosA2:dA 
ZTT J Ai 

0 
oo 

^0 = - 7 r ^ c o s 0 / --A:i(Air)sinAzdA (10.27) 
ZTT^ J A i 

0 

correspond to the field in a uniform medium. 
From a mathematical point of view eq. 10.27 present the field through a sum of oscil-

lations of electric and magnetic types, in spite of the fact that in a uniform medium only 
one type of oscillation is present. However, it is obvious that between potentials AQ and 
AI there is a relation: 

which explains this apparent contradiction. 
Therefore, while approaching the dipole, potentials Ai and A^ tend to AQ and AQ, 

respectively. Taking into account the behavior of the field near the source and at infinity, 
we will present the potentials in the form: 

A^ = Ao-\-k'f—-z sin (/) / —C/i(Air) cos Az dA 
J Ai ^27r2 

Al = AQ-\- — - ^ C O S 0 / —D/i(Air)sinA2:dA 
27r̂  J Ai 

(10.28) 

A2 = -k'^—;7sin(/) / -—Ei^i(A2r)cosA2;dA 
271^ J A2 

0 
00 

Al = -cos(l) / --Gi^i(A2r)sinA2:dA 
27r̂  J A2 

0 

From boundary conditions 10.22 we will obtain a system of equations for coefficients 
C, D, E, and G: 

Ki{\ia) - h{\ia)C = ^Ki{X2a)E 
Ai 

- ^ [K,{X,a) - h{Xia)C] + [K[{X,a) - I[{X,a)D] = -^K,{X2a)E + i^;(A2a)G 
Xia A2(i 

Ki{Xia) - Ii{Xia)D = ^Ki(X2a)G (10.29) 
-̂ 1 
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kl [K[{Xia) - I[{Xia)C] + - ^ [Ki{X,a) - Ii{Xia)D] = klK[{X,a)E + ~K,{X2a)G 
Aia X2a 

Solving this system we find: 

A A 
mi Ki{mi) - Ii{mi)C mi Ki{mi) - Ii{mi)D 

1712 Ki{m2) 1712 Ki{m2) 

A , = Io{m,)Ko{m,) + / i ( m i ) i ^ i ( m i ) P i - / i (mi) i^o(mi)F2 - s ^ ? ? 7 ' \ ^^^'^^^ 
m2Ai(m2) 

A , = /o(mi)i^o(mi) + / i ( m i ) i ^ i ( m i ) P i - / i (mi ) i ro (mi)P2 - ^^"^'^ , 
m2Ai(m2) 

A = - /o ' (mi ) + / i ' (mi)Pi + /o (mi) / i (mi )P2 

where: 
^ 2 m ^ - m r _ i^o(m2) _ m | K^{m2) 

'~ ml ^ '^K,{m2) mfKf{m2) 

2rv? -m\^^ mi ^ ^ o ( m 2 ) 

m2mi m2 Ki(m2) 

m = Xa rrii = Xia m2 = X2a s = cr2/(Ji 

(10.31) 

The magnetic field on the borehole axis has only component Hx^ which is parallel to 
the dipole moment. Making use of eqs. 10.18 and 10.20 we obtain: 

oo 

H, = Hi°^ + ^ 1 J (^D + ^ c ) cosma dm (10.32) 

0 

here 

"" 47TL^ 

is the field in a uniform medium; L is the probe length. 
Let us present field H^ on the borehole axis in units of the field in a free space 

{-M/ATTL^). Then we have: 

oo 

/i^ = - ^ = (1 - ifciL - klL^y^^ -— {m'^D + kla^C) cos am dm (10.33) 

0 

Results of calculations of amplitude, phase and apparent conductivity are presented in 
Figs. 10.5-10.14: (Ta/cyi = A/AQ, where A and AQ are amplitudes of the secondary field 
on the borehole axis and in a uniform medium with conductivity a i . 

First of all, let us consider the field behavior when the skin depth is greater than the 
probe length. 
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10.3. Magnetic Field on the Borehole Axis in the Near Zone 
(Range of Small Parameters) 

At the range of small parameters p = L/h, the field Hx can be presented in the following 
way. A change of the magnetic field, only caused by currents in the dipole, generates a 
vortex electrical field, vector lines of which are located in vertical planes, perpendicular 
to the dipole moment. 

Under action of this primary field which is directly proportional to frequency, current 
arises and, unlike the case of the vertical magnetic dipole, current lines intersect the 
boundary of media with different conductivities. For this reason electric charges arise on 
the borehole surface, which in the same manner as current density are directly proportional 
to the square of the wave number: k'^ = iafiuj, inasmuch as interaction between currents 
is assumed to be very small, and therefore not taken into account. 

At the range of small parameters, a field of these charges, in accord with Coulomb's law, 
changes magnitude and direction of current density j , but at the same time the phase of 
the current remains constant and equal to 7r/2 with respect to the dipole current. Thus, 
the magnetic field of currents, arising under action of the primary vortex electric field E^ 
and the secondary field of charges, is proportional to A:̂ . The secondary vortex electric 
field caused by a change of the secondary magnetic field with time is significantly smaller 
than tha t of charges, and therefore it is not taken into account in the approximate theory 
of small parameters. 

For obtaining an asymptotic expression of the magnetic field let us present integrand 
eq. 10.33 in the form of series by powers of k'^a^, and restricting ourselves by the first 
term, we obtain: 

oo 

0 

where: 

A(0) = ( l - . ) 4 ^ 
m K i ( m ) 

1 \ , , . . , .Ko(m) „ JAm) 
Ae(0) = - — -

mKi (m) 
/o(m) + sli{m)^ - (1 - 5 ) -

a) I Ki[m) m J 

\T( M^( ^(^^ 2 ^ , h{m)K,{m) , h{m)K,{m) 
\Ii[m)Ko{m) 1 + ^ + \ 

I \ m^ J m m 
+ 

Ioim)K§{m) Kojm) 

Ki{m) 

^Arf(O) 

dmo 
( 1 - s ) 

- ( 1 -

2 
2 + 

Ko{m) 

mKi (TO) 

TO) 

1 , . Kjim) 
TO mK^{m) 

(10.35) 

1 + Kf{m)\ 
Kl{m) 

h{m)Ko{m) 

h[m)Ki(m) ^ 1 

m m mKf{m) 

h?^ = klL^ 
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Thus, for the quadrature component of the field we have: 

Qh, = -[-)G^{a,s) 
h, 

G2{a,s) (10.36) 

where hi = (2/(Ji/iCc;)^/^, /12 = (2/cr2/ia;)^/^; a i and a2 are conductivities of medium of the 
borehole and the formation. 

00 

Gi{a,s) = l^~J\AM 
mdAd{0) 

2 drrii 

G. ̂ ^^a,s) = - ^ j 
2a f m dAd{0) cos ma 

y dm2 A(0) 
dm 

cos m a dm 

(10.37) 

In accord with eq. 10.35 in a uniform medium: 

G i ( a , l ) + G 2 ( a , l ) - 1 (10.38) 

As has been shown in Chapter 4 we can obtain a more accurate presentation for the 
low-frequency part of the spectrum. For instance, taking into account both terms of 
expansion, we have: 

Inhx = - \ -r-
3 \h2 

^'^"-^^l^) ^t{i 
(10.39) 

where coefficient ai is defined from expression 10.34: ai = Gi + SG2. 
Therefore, at the range of small parameters, as in the case of the vertical magnetic 

dipole, the inphase component of the secondary field, as well as the second term of the 
quadrature component in eq. 10.39, do not depend on conductivity of the borehole. Taking 
into account the known relation between the low-frequency part of the spectrum and the 
late stage of transient field, we can claim tha t a field measured at sufficiently large times 
after current is turned off is also a function of the formation resistivity only. 

Let us consider now the behavior of functions Gi and G25 defining a behavior of the 
field at the range of small parameter L/h for various a. If the probe length decreases, 
a —> 0, then G2(<^, s) -^ 0, and Gi (a , s) ^^ 1, and the field approaches to tha t in a uniform 
medium with conductivity a i . For large values of parameter a due to rapid oscillations 
of the function COSTTIQ;, the value of the integral in eq. 10.37 is defined by the integrand 
near m. = 0. For small values of m we have: 

A(0) ^ -

9Arf(0) _ 

dm I 

l + s 
Ae(0) = (1 - s)Ko{m) 

gA^(O) ., ,Ko{m) 
— 5 = (1 - s) 

OTn-) m 

(10.40) 
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Making use of asymptotic presentation of Sommerfeld integral: 

oo 

/
Ko(m) cos ma dm = — , - -^ — li a ^ oo 

0 

we obtain: 

. . I - S 2s (72 
G i ( a , s) = 1 - - — - = — — = — 

i + 5 1 + 5 day i f c , > l (10.41) 
G2[a, s) = --—— = • = -Ki2 

1 + S (72 + (Ji 

where aav is the average value of conductivity; K^ is the contrast coefficient characterizing 
the density of surface charges. 

Correspondingly, for the quadrature component of the field, we have: 

Q/i:r = - ( 7 - l i f a > l (10.42) 

Thus, at the low-frequency part of the spectrum with an increase of the probe length 
the field on the borehole axis tends to that in a uniform medium with the formation 
conductivity. In a general case, both functions Gi and G2, regardless of the probe length, 
depend on the resistivity of a medium. 

Now let us introduce functions Gl{a^s) and Gl{a,s), which as geometric factors in 
conventional induction logging tend to 0 and 1, respectively, when a ^ 0: 

1 + / (10.43) 
G*ia,s) = G*,ia,s) + —-

1 I <5 

Then, instead of eq. 10.36 we can write: 

Q/ix = - ( ^ ) [G^{a,s) + sG2{a,s)] (10.44) 

First of all, consider asymptotic behavior of function G*{a, s) for large values of a. Pre-
hminary it is convenient to distinguish singularity of the integrand in eq. 10.37 for small 
values of m. For this purpose we will present G*{a, s) in the form: 

oo 

G > , . ) = ^ + - y 1 ^ ^ A . ( 0 ) - - - ^ J + ^ / ^ o ( m ) | c o s m a d m 

0 
oo oo 

2al-s f ^^ , ^ ^ l - s f^ a \ 2a f ^. ^ 
/ K()(m)cosma dm = 1 , H / © ( m j c o s m a d m 

TTl + sJ "̂  ^ 1 + 5 V VTT^J ^J 
0 0 

(10.45) 
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where 

(j){m) 
A ( 0 ) L 

Ac(0) 
mdAdiO) 
2 drui 

+ i-p^iCoM 

Integrating eq. 10.45 by parts we have: 

oo oo 

/
(pirn) cos ma dm = ^^'(O) ^ / (j)"(m) cos m.a dm 

a^ a^ J 
0 0 

inasmuch as function (j){m) and its derivatives tend to zero, when m. -^ oo. 
Making use of known expansions for Bessel functions: 

oo ^ 2 r "̂  1 

KAz) = h{z) m I - E ^;^^^, (f)"" E \ + ^( ; ;^ - c 
m=0 ^ ^ \_k=l ^ ' 

m=0 ^ ^ 

m=0 

we obtain: 

25m2 ^, - Z6"m- __p. . 3 + 35 + 2S^ 2 T̂  / \ 

/)'(m) - 0 

45 3 - 2 l 5 + 25^ 

Thus: 

/fo(m) 

CX) 

/ 0(7?i) COS m a d m 

oo oo 
4s /" r^2/ X J 3 - 2 1 5 + 25 r ^ , , 

—• / Ao(m)cosmadmH — —— / i lo (^)cosma dm 
\-VsYJ 2(1 + 5̂ ) J 

Inasmuch as: 

oo 

/ K'^{m) cos ma dm. ĉ  In 2a if a ;:^ 1 
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then 

^^^"'^^ = - a ^ ( l + s)2 {ssln2a+^-^^^±^^ if a » 1 (10.46) 

Similar transformations show that: 

G*(a, 5) = 1 + (1 + 55 - 225^ + I6s^ In 2a) (10.47) 

If the formation resistivity is significantly greater than that of the borehole, then instead 
of eqs. 10.46-10.47 we have: 

Gl{a,s) ^ - \ - ^{S\na - 12.5) 

and correspondingly for the magnetic field we obtain: 

« ^ ^ / L ^ \ / l - 8 1 n 2 - 1 3 \ .^2 

(10.48) 

Q '^^=U;" U JI—a^—) ''i^^' "̂'"""' ^''-''^ 
By analogy, if cr2 ^ <7i, then: 

G ; ( < . , » ) - ~ 

and for this reason: 

3 / a V f L^\ / 8 1 n 2 - 1 1 \ .̂  ^2 

(10.50) 

Table 10.2 contains values of functions Gl{a,s), 6*2(0;, 5) and G^ -\- sG^ for various values 
of s and a. 

Suppose that the formation resistivity exceeds that of the borehole (s < 1). Then 
the function Gl{a,s) + sG2{(y,s) and, respectively, the quadrature component changes 
twice its sign. It is related with the fact that electric charges arising on the borehole 
surface create an electric field which reduces the primary vortex electric field. Near the 
source, {L/a < 1), the influence of the charges is small, and the field coincides with 
that in a uniform medium with the borehole conductivity cr̂ : Qhx o:^ —(L//ii)^. At the 
range of large distances, L/a ^ 1, more precisely, when L/a ^ (0^1/̂ 2)^^ ,̂ as follows 
from eq. 10.49, the effect caused by the charges is also small and Qhx — — (L//i2)^. For 
intermediate values of probe lengths, the field caused by the charges is comparable with 
the vortex one, and has opposite direction. Such a field behavior implies that for certain 
values of a and s the quadrature component becomes equal to zero. 
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TABLE 10.2 
Values of functions G^, G2, Gl-\- sG\ 

a 

2 

4 

6 

8 

10 

12 

16 

20 

2 

4 

6 

8 

10 

12 

16 

20 

2 

4 

6 

8 

10 

12 

16 

20 

2 

4 

6 

8 

10 

12 

16 

20 

Gl 

-0.1350 

-0.7001 X 

-0.3020 

-0.1672 

-0.1074X 

~0.7528x 

-0.4310 

-0.2798 

-0.1370 

-0.7469 X 

-0.3432 

-0.1982 

-0.1311X 

-0.9394X 

-0.5559 

-0.3629 

-0.1440 

-0.8936X 

-0.4746 

-0.2979 

-0.2076 

-0.1542X 

-0.9591 X 

0.6600 

-0.1630 

-0.1144 

-0.7119X 

-0.4820 

-0.3495 

-0.2660 

-0.1704 

-0.1194 

lOi 

10-1 
10-2 

10-1 

10-1 

10-2 

10-1 

10-1 

10-2 

10-1 

G*2 

s = 1/128 

1.204 

1.037 

1.014 

1.007 

1.005 

1.003 

1.002 

1.001 

s = 1/32 

1.204 

1.040 

1.015 

1.008 

1.005 

1.004 

1.002 

1.001 

s = l / 8 

1.201 

1.049 

1.021 

1.012 

1.008 

1.016 

1.003 

1.002 

s = l / l 

1.190 

1.086 

1.048 

1.031 

1.022 

1.016 

1.010 

1.007 

Gl + sG*2 

-0.1256 

-0 .6191x10-1 

-0 .2228x10-1 
-0.8851x10-2 

-0.2896x10-2 

0.3104x10-^ 
0.3518x10-2 

0.5024 

-0 .9942x10-1 

-0 .4220x10-1 

-0.2600x10-2 

0.1169x10-1 

0.1830 

0.2197 

0.2576 

0.2759 

0.6155x10-2 

0.4185 

0.8013 

0.9669x10-1 

0.1052 

0.1103 

0.1158 

0.1187 

0.4322 

0.4285 

0.4526 

0.4672 

0.4759 

0.4815 

0.4880 

0.4916 

a 

2 

4 

6 

8 

10 

12 

16 

20 

2 

4 

6 

8 

10 

12 

16 

20 

2 

4 

6 

8 

10 

12 

16 

20 

2 

4 

6 

8 

10 

12 

16 

20 

_Gl 

s = 1/64 

-0.1357 

-0 .7163x10-1 

-0.3162 

-0.1778 

-0 .1156x10-1 
-0.8169x10-2 

-0.4739 

-0.3176 

s = 1/16 

-0.1395 

-0 .8034x10-1 

-0.3924 

-0.2354 

-0.1596 

-0 .1164x10-1 
-0.7062x10-2 

0.4781 

s = l / 4 

-0.1516 

-0.1019 

-0 .5910x10-1 

-0.3874 

-0.2674 

-0.2085 

-0 .1322x10-1 
-0.9202x10-2 

s = 2 

-0.1944 

-0.1177 

-0 .7506x10-1 

-0.5133 

-0.3723 

-0.2827 

-0.1799 

-0.1252 

G*2 

1.204 

1.038 

1.014 

1.008 

1.005 

1.003 

1.002 

1.001 

1.203 

1.043 

1.017 

1.009 

1.006 

1.004 

1.002 

1.002 

1.198 

1.063 

1.030 

1.018 

1.012 

1.009 

1.005 

1.004 

1.162 

1.160 

1.115 

1.083 

1.062 

1.048 

1.031 

1.022 

Gl + sG^ 

-0.1169 

-0 .5540x10-1 

-0 .1577x10-1 
-0 .2039x10-2 

0.4144x10-2 

0.7511x10-2 

0.1092x10-1 

0.1254 

-0 .6433x10-1 

-0 .1504x10-1 

0.2431x10-1 

0.3954 

0.4692 

0.5512 

0.5559 

0.5782 

0.1479 

0.1637 

0.1983 

0.2157 

0.2254 

0.2313 

0.2381 

0.2417 

0.2129x101 

0.2203 

0.2155 

0.2155 

0.2087 

0.2068 

0.2044 

0.2032 
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TABLE 10.2 
(Continued) 

a 

2 

4 

6 

8 

10 

12 

16 

20 

Gl 

-0.2194 

-0.1020 

-0.5858x101 

-0.3758 

-0.2606 

-0.1904 

-0 .1163x10-1 

-0 .7854x10-2 

Gl 

1.134 

1.220 

1.176 

1.133 

1.102 

1.080 

1.052 

1.037 

G\ + sGl 

0.8955x101 

0.9656 

0.9350 

0.9026 

0.8787 

0.8619 

0.8409 

0.8291 

a 

2 

4 

6 

8 

10 

12 

16 

20 

G\ 

-0.2259 

-0.9664x101 

-0.5267 

-0.3256 

-0.2157 

-0 .1579x10-1 
-0.9305x10-2 

-0.6156 

Gl 

1.127 

1.235 

1.192 

1.146 

1.120 

1.088 

1.058 

1.041 

G\ + sGl 

0.1780x10^ 

0.1966 

0.1902 

0.1831 

0.1778 

0.1740 

0.1693 

0.1666 

TABLE 10.3 
Intervals within which the quadrature component vanishes 

s 

a 

1/128 

1-2; 11-12 

1/64 

1-2;^ 

1/32 

1-2; 6-7 

1/16 

1-2; 4-5 

1/8 

1-3 

At the vicinity of these values, conditions of the small parameter are met only for very 
small frequencies, allowing us to neglect terms in an expansion of the spectrum, smaller 
than A:̂ . Table 10.3 shows intervals within which the quadrature component vanishes. 

When cr2 > (Ji function G\ + sGl does not change sign. 
Returning to the expression for the quadrature component (eq. 10.39), we can notice 

one feature of its behavior. Inasmuch as value a\ = G\-\- sGl is an alternating function of 
a and s, i.e. at the range where ai > 0, the magnetic field with an increase of frequency 
grows more rapidly than the frequency. Under excitation of the field by the vertical 
magnetic dipole and measuring a field along its axis this feature is not observed 

Equations 10.49 and 10.51 present the magnetic field as a sum of terms, each of which 
depends on the conductivity of the borehole or that of the formation only. This fact 
allows us to apply differential probes described in previous chapters, which significantly 
decrease the effect of the borehole. The simplest differential probe, investigated in detail 
above is three-coil probe providing compensation of the primary field (Fig. 10.15). 

In fact, since the part of the field Q h^, which is proportional to a\, does not depend on 
the probe length, Li, a signal measured in a three-coil probe does not depend on borehole 
parameters provided that the primary fields in every coil probe forming this system are 
equal to each other. 

Table 10.4 presents the results of calculation of function A/i .̂ — Qhx{Li) — Q/^a;(^2), 
proportional to the electromotive force in three-coil probe by exact and approximate 
formulae 10.33 and 10.49. As follows from the table, the EMF in the receiver coil of 
the probe does not practically depend on the resistivity of the borehole even beyond the 
range of small parameters. It means that, as in the case of the vertical magnetic dipole, 
there are conditions when induced currents in the borehole and surface charges do not 
influence the character of the skin effect in the formation, which manifest itself in the 
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Figure 10.15. Three-coil differential probe. 

TABLE 10.4 

Values of function Ah^ = Qhx{L — 1) • Q/i^(L2); Li/a = 10, L2/a = 8 

a/hi Ahr X 10^ (^1 - A2) X 102 

1/32 

1/16 

1/8 

1/4 

1/2 

1/32 

1/16 

1/8 

1/4 

1/2 

1/32 

1/16 

1/8 

1/4 

1/2 

1/32 

1/16 

1/8 

1/4 

1/2 

P2 = 2.5 ohm-m 

0.10x10° 

0.71x10-1 

0.50x10-1 

0.35x10-1 

0.25x10-1 

P2 = 5 ohm-m 

0.71x10-1 

0.51x10-1 

0.35x10-1 

0.25x10-1 

0.18x10-1 

p2 = 10 ohm-m 

0.51x10-1 

0.35x10-1 

0.25x10-1 

0.18x10-1 

0.12x10-1 

p2 = 20 ohm-m 

0.35x10-1 

0.25x10-1 

0.18x10-1 

0.12x10-1 

0.88x10-2 

A/i«P^ ~ -0 .88 X 10-2 

-0 .73 

-0 .73 

-0 .73 

-0 .74 

-0 .75 

^f^apr ^ _Q 44 X iQ-2 

-0 .41 

-0 .41 

-0 .41 

-0 .42 

-0 .43 

^f^apr ^ _ o 22 X 10-2 

-0.22 

-0.22 

-0.22 

-0.23 

-0.23 

A/i«P^ - -0 .12 X 10-2 

-0 .12 

-0 .12 

-0 .12 

-0 .12 

-0 .12 

0.76 

0.77 

0.77 

0.79 

0.80 

0.42 

0.43 

0.43 

0.43 

0.44 

0.23 

0.23 

0.23 

0.23 

0.24 

0.12 

0.12 

0.12 

0.12 

0.12 
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TABLE 10.5 
Maximal values of parameter a/hi 

^ ^ ^ ^ 1/128 1/64 

4 0.6 0.7 

8 0.15 0.2 

1/32 

0.8 

0.2 

1/16 

0.9 

0.2 

1/8 

0.2 

0.13 

1/2 

0.2 

0.13 

8 

0.1 

0.05 

same manner as in a uniform medium with resistivity of the formation. For this reason, 
for the quadrature component of the field, /i^, we have: 

Gr (a ,5 ) + Q / i r ( ^ ) (10.52) QK = -[j\ G\{a,s)-

where 

G r ( a , s ) = G ; ( Q , s ) - l 

(a' 
(10.53) 

This expression for Q hx is valid for arbitrary values of a and s. Maximal values of 
parameter a//ii, for which results of calculations by exact and approximate formulas 
(eq. 10.52) do not differ more than 5%, are given in Table 10.5. 

10.4. The Magnetic Field on the Borehole Axis in the Far Zone 

Now we will obtain asymptotic formulae for the field H^ in the far zone (a <C 1). In 
deriving a formula we will deform the contour of integration in eq. 10.33 on the complex 
plane of variable m. However, such a procedure requires either the proof of absence 
of poles of the integrand or evaluation of their contribution to the integral value. The 
problem of determination of poles is extremely difficult because of the complexity of the 
integrand. At the same time sufficient agreement of results of calculations by asymptotic 
and exact formulae allows us to think that if there are poles in the upper half-plane of 
m, their contribution in a considered part of the spectrum is suflficiently small. Let us 
present integral in eq. 10.33 in the form: 

— / {m^D + kla^C) cos madm^— f {m^D + kyc) e'""^ dm (10.54) 

0 0 

We will assume that in the upper half-plane of complex variable m there are no singular-
ities except the branch points m = kia and m = k2a. 

Choosing cross-cuts along lines Re mi = 0 and Rem2 = 0, it is supposed that the real 
parts of radicals {m? - klo?Y^'^ and [m? — A;|a^)^/^ are positive on the complex plane of 
m. As follows from the asymptotic behavior of Bessel functions the integrand in eq. 10.54 
can increase with m ^ oo, at least, not quicker than ê '̂ L̂ For this reason convergence 
of the integral in eq. 10.54 in the upper half-plane for a > 2 is provided by multipher 
giam regardless of the sign of the real part of radicals mi and m2. We will draw cross-cuts 
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Figure 10.16. Contour integration in complex plane. 

from branch points kia and k2a parallel to the imaginary axis (Fig. 10.16) and deform 
the contour of integration in F. 

The integral along arcs with an infinite radius due to the presence of term ê *̂ "̂  vanishes 
since Imm > 0, a > 2. For this reason, the integral along the real axis (eq. 10.54) is 
equal to the sum of integrals along sides of cross-cuts Fi and F2. First, let us evaluate 
the integral along cross-cut Fi. In passing from the left side of the cross-cut to the right 
side the value of m changes sign. Thus, the integral along cross-cut Fi, is equal to: 

— / {m^[D{mi) - D{-mi)] + kla^[C{mi) - C(-mi)]} e^^^ dm (10.55) 

Making use of properties of Bessel functions: 

h[-z) = loiz) Ko{-z) = Ko{z) + i7r7o(^) 
h{-z) = -h{z) K^i-z) = K^{z) + inhiz) 

it is not difficult to show that for functions D and C are valid following relations: 

D{—mi) = D{mi) — 'm C{—mi) = C{mi) — 'm 

Thus, integral in eq. 10.55 has the form: 

(10.56) 

(10.57) 

y i /(m2 + A:?a')e^""^dm 

Letting m = it -\- kia we obtain: 

00 

y / ( t ' - 2itkia - 2ky) e-^* dt 

(10.58) 

^ikiL (1 - ikiL - kfL') e""'^ == /^r ( 7-
L 

where h^^{L/hi) is the x-component of the magnetic field in a uniform medium with the 
borehole resistivity. For this reason and in accord with eq. 10.33 the magnetic field is 
expressed, as in the case of the vertical magnetic dipole, only through the integral along 
cross-cut F2: 

h^ = - ^ f [m^D + kla^C) e^"^ dm 

r2 

(10.59) 
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For transformation of the integrand in eq. 10.59 we will make use of relations following 
from eq. 10.56: 

Ko{z) ^ Ko{-z) iir 

K,{z) K,{-z) zK,{z)K,{-z) 

ITT Kjiz) Kl{-z) 

Kl{z) ^ Kl{-z) zK,{z)K,{-z) 

Ki{z)Ko{-z) , Ki{-z)Ko{z) _ 

+ 

Kojz) Koi-z^ 

K,{z) K^{-z)\ 

m Koiz)Ko{-z) 

Kl{z)K^{-z) KU-z)Ko{z) zKi{z)K,{-z) K,{z)K,{-z) 

For difference between values of function C in both sides of the cross-cut, after relatively 
simple transformations, we have: 

ITT 

'{l-sf ^ 2 ^ + s / o ' ( m i ) 
\ ' ' m\ ml 

7o(mi) 
/?(mO 

(1 

sm. 

m\ 
n2 I 7.2^2 r2 / 

m^-\-kja^ m?-\-klo? 
S 5 I 5 

^ 2 V^ ^) 
m% 

Io{mi 
/ i ( m i ) 

m i 

Ko{m2) Ko{-m) 

7712/^1(777,2) 7772/^1 ( -7772) 
+ S ( l - h 2 s ) / i ( 7 7 7 i ) 7 7 7 f 

2 Ko{m2)Ko{-m2) 

777pi (7772 ) / ^ l ( -7712) 
(10.60) 

where 

A ( ± 7 7 7 2 ) = - / o ( m i ) + /i2(777i) 

Ko'(±m2) 

777̂  + kja'^ Ko{±m2) 
-{1-s) 

±7772^0 ( ± ^ 2 ) 

— sml- + / o ( ^ i 
, A ( ^ l ) 777^ + /Cofl^ 

7779 7772/^1 (±7772) ' ^ " 777i 

Inasmuch as function D can be presented in the form: 

7712/11(7772)7712 

then for discontinuity of function D we have: 

^(7772) - i : > ( - 7 n 2 ) = C{m2) - C ( - 7 7 7 2 ) + ^(7772) 

here 

( 1 - 5 ) - 1 + 5777^ 
Ko{±m2) 

m2Ko{±m2)\ 



^^^^ mlKi{m2)Ki{-m2)A{m2)A{-m2) 

561 

i7r(s — 1) 

m 2 ) A ( - m 2 ) 

Ko{m2)Ko{~m2) 
/ o ( m i ) - ^ '- 2-i—(1 - s) - 7 o ( ^ i ) - 5m?/i2(mi) 

mlKi{m2)Ki{-m2), 
(10.61) 

Thus, instead of eq. 10.59, we have: 

hx = - ^ f (m2 + A ; y ) [C(m2) - (7( -m2) + m2^(m2)] e'"™ dm (10.62) 

k2a 

We will introduce a new variable letting m — it + A:2a. Along the cross-cut, variable 
t changes from zero to infinity and mi = {—t^ -h 2\k2at + (A;| — k\)o?Y^'^ and 7722 = 
(—t̂  -h 2ik2atY^'^. Correspondingly, the expression for the magnetic field has the form: 

00 

h^ = e-i^2L / {(m" + ky) [C{m2) - C{-m2) + m^A{m2)] } e"^* dt (10.63) 

0 

In spite of the cumbersome character of the integrand, presentation 10.63 turns out to 
be useful for field calculation for long probes {a ^ 1), since the integral in eq. 10.63 
does not contain the oscillating function cos m a , unlike eq. 10.33. Moreover, in the wave 
zone {\k2L\ > 1) the value of the field is exponentially small, but in eq. 10.63 multiplier 
ê '̂ ^̂  stands in front of the integral, i.e. it has a relatively large magnitude. It essentially 
facilitates calculations, inasmuch as the main problem of numerical integration of eq. 10.33 
for large parameters a is to obtain very small exponential result from integration of 
function, value of which within the main interval is many orders greater than tha t of the 
integral. 

Now proceeding from eq. 10.63 we will obtain the asymptotic formula describing the 
field in the far zone {a ':^ 1). In this case the value of the integral is defined by the 
range t ^ l/a < 1. Generally the integrand in eq. 10.63 depends in a rather complicated 
manner on m i , but if conditions: 

^ < | A : V | i.e. | A : i L | > l 
a^ 

and s < 1 are met, we can approximately assume tha t mi ĉ  {k^a^ — k\o?Y^'^, and think 
tha t the value of mi , as well as functions of m, does not depend on the variable of 
integration t. 

For radical m2 we have: 

7712^ 5 + 2 l 

i.e. |m2| <. 1. 



562 

For this reason, keeping the terms of orders s/m\, slm\, l /m2 , shi{m2)lm^ and omit-
ting the terms s/m\, 1 , . . . , we can approximately present the expression 10.60 in the 
form: 

C{m2) - C ( - m 2 ) = 
m^Ari(m2)Ki (-777,2) A ( m 2 ) A ( - m 2 ) 

(1 ^S) -^ ?5 

By analogy we have: 

TTlo 
2sll{mi) ^ 0 ( ^ 2 ) (10.64) 

m: ; i ^ i (m2) i^ i ( -m2)A(m2)A(-m2) :^ - | / o ( m i ) ^ ^ 
I mi 

+ i^o(m2) 

(mi) im? + /cifl^ 

r2/ x^^ + ^2^^/-, N r / , / i ( m i ) 3 m ^ - /c?a2 
/ ? ( m i ) - ^ ( l - . ) - / o ( m i ) ^ ^ (10.65) 

The last term in eq. 10.65 does not contain m\ in the denominator. However, it is possible 
to show tha t for 5 = 0 this term has the same order as other terms. 

Substituting expression 10.65 into eq. 10.64 and after simple algebra we obtain: 

C{m2) - C ( - m 2 ) = - ITT 1 

/o(mi) m? + klo? 

X Im^ -}- kia^ - 2s m\ -f- 2mi 
/ i (m i ) 

/o(m) J 
777,2^0(^^2) — 2mi 

^m\-2sm? 2 ^ ( ^ i ) '^m? — k\o? 
TTln m'^-\-kja'^ / i ( m i ) m i 2{m?-\-k\o? 

For function A{m2) we have: 

A{m2) 
m{s — 1) 

m2i^ i (m2) i^ i ( -m2)A(m2)A(-m2) 
/o(mi) 

h{mi) 

/o(mi) 

(m^ + kla^)KQ{m2) \ (10.66) 

2^2 

/ i (mi ) m? -h kia 

mi 

ĉ  —i7r(5 — 1) mi m% 
/ o (mi ) / i (mi ) m?-\-kla^ 

(10.67) 

2mi 
h{mi) 

/o(mi) 
m^ -h A:fa2 h{mi) Zm? - kja'^ 

rrin m i / i ( m i ) 

mlKo{m2) \ 

w? + k\a^ J 

Substituting expressions 10.66 and 10.67 into eq. 10.63 and discarding terms, which 
after integration give values of order 1/a^, we obtain: 

Ak2L 
hx ^ 

Il{m,) 

I 00 

m2 + 2m/^("^^) 
/o(mi) 

f mlKo{m2)e-°'*dt 

(10.68) 
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where w? = -f + 2ik2at -h k^a^ m2 = {-t^ + 2ik2aty/^, and mi - {k^a^ - kfa^y/^. 
The first integral is expressed by elementary functions: 

oo 

Let us present the second integral in the form: 

00 oo 

1 m^Ko{m2)e~"^ dt c:i - f e ^ " * d i ~ - / m^liiTOze-^'d^ 

OO 

1 / ^2 ^ \ P 

1 / ^ 
2 Vaa2 

00 

2iA:2a-- j / [\n{-t) + ln(t - 2ik2a)] e"^* d̂  

It is obvious that: 

/ ln( -^)e-"* dt = - - ( I n a + C) + - ^ - — 
J a a a 
0 

The second integral in eq. 10.69 is expressed by the integral exponential function: 

00 

f ln(t - 21/020) e""* dt = - [ln(-2iA;2a) - e'^'*^^ Ei(2ifc2l')] 

Correspondingly, for the magnetic field we have: 

. =.J_^/,-^^^ '' ik2L 

Il{mi) \h2j loimi) V h{mi)J 
(10.70) 

where h'^^{L/h2) is the field in a uniform medium with the formation resistivity, and: 

X a^ f d^ ^., d\f Ina \n(-2ik2a) e'^'^'^ ^ ,^.^ , , 
P{k2a, a) = --(—^ + 2ik2a— + ^ ^ Ei 2iA:2L 

4 \oa^ da) \ a a a 

If \k2L\ <C 1, Ei(2i/C2L) c^ ln(-2iA;2L) = Ina + ln(-2iA;2a) and P{k2a,a) - - I n a . 
Therefore, eq. 10.70 has the form: 

K = 
mm,) 

1 -
2s lna / 2 , o A ( m i ) \ 

(10.71) 
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If the skin depth in the borehole is greater than its radius, Bessel's functions /o(mi) 
and /i(mi) can be expanded in a series, and instead of eq. 10.71 we obtain: 

hx = l I — I - 2sm^ In a 

Inasmuch as m\ ĉ  —/c^L^/a^, for the quadrature component of the field we have: 

1 { LV (. 81na\ ( L^^ 
Q / i , ^ — - - 1 -

OL^ \hij \ Q^ J \h 

which with accuracy of term until s/a^ coincides with eq. 10.49, derived for the range of 
small parameters. 

In the wave zone, when |/c2l/| > 1, making use of the asymptotic value of the integral 
exponential function: 

p2ifc2L 

we obtain: 

, a V 52 ^., d \ ( Ina ln(-2ifc2a)\ ifcj/̂  „ , ,, „ 

Table 10.6 contains data of calculations of field magnitude A= \hx\ by exact and asymp-
totic formulas 10.33 and 10.70, illustrating the area of application of eq. 10.70. It is 
natural to distinguish three ranges of frequency responses of the amphtude spectrum 
(Figs. 10.5-10.8): the range of small parameters, the intermediate zone and the wave 
zone. 

As follows from Table 10.6, the field is sufficiently accurately described by the asymp-
totic expression 10.70 in wide range of frequencies. However, if the value of parameter 
a/hi exceeds unit the accuracy of calculation by this equation rapidly decreases, that, 
perhaps, is related with an influence of poles that has not been taken into account in 
deriving eq. 10.70. 

One of the practical conclusions of this analysis is the fact that measuring the ratio of 
amplitudes or difference of phases by two probes we can eliminate the influence of the 
borehole. In fact, at the far zone [a^ \) eq. 10.70 has the form: 

mmi) \h2 

where mi = {kja^ - kla^Y^^. 
For this reason, the ratio of field amplitudes and the difference of phases measured 

by two-coil probes, having lengths Li and L2, do not depend on the radius and the 
conductivity of the borehole, and they are defined by the formation conductivity only. 
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TABLE 10.6 
Values of field magnitude A = \hx 

a/hi 

O l 

0.2 

0.4 

0.8 

a 

4 

10 

12 

20 

24 

30 

4 

10 

12 

20 

24 

30 

4 

10 

12 

20 

24 

30 

4 

10 

12 

20 

24 

30 

s -

A 

Too 
1.00 

1.00 

1.01 

1.03 

1.05 

1.00 

1.01 

1.03 

1.09 

1.14 

1.21 

1.00 

1.09 

1.13 

1.31 

1.38 

1.43 

0.99 

1.23 

1.29 

1.30 

1.21 

0.91 

= 1/64 

j^apr 

Too 
1.00 

1.00 

1.01 

1.03 

1.05 

1.00 

1.01 

1.02 

1.09 

1.13 

1.21 

1.00 

1.07 

1.12 

1.30 

1.37 

1.43 

0.97 

1.21 

1.28 

1.31 

1.22 

1.01 

s -

A 

Too 
1.02 

1.03 

1.09 

1.12 

1.21 

1.00 

1.09 

1.13 

1.32 

1.39 

1.44 

1.05 

1.30 

1.36 

1.37 

1.26 

1.03 

1.13 

1.22 

1.11 

0.56 

0.35 

0.16 

= 1/16 

J^apr 

LOO 

1.01 

1.02 

1.09 

1.13 

1.21 

1.00 

1.08 

1.12 

1.31 

1.28 

1.44 

1.02 

1.27 

1.34 

1.38 

1.27 

1.04 

1.05 

1.26 

1.18 

0.60 

0.38 

0.18 

s -

A 

i 
10.9 

1.13 

1.32 

1.39 

1.44 

1.05 

1.38 

1.38 

1.39 

1.28 

1.05 

1.21 

1.34 

1.23 

0.62 

0.39 

0.18 

1.25 

0.51 

0.32 

0.033 

0.0094 

0.0013 

- 1 / 4 

j\^apr 

_ 
10.8 

1.12 

1.31 

1.39 

1.44 

1.03 

1.28 

1.36 

1.39 

1.27 

1.05 

1.12 

1.34 

1.24 

0.65 

0.41 

0.19 

1.17 

0.61 

0.39 

0.043 

0.012 

0.0017 



566 

10.5. The Magnetic Field in a Medium with Two Cylindrical 
Interfaces 

Consider the determination of the field of the transversal magnetic dipole in a medium 
with two cylindrical interfaces. Analysis of the solution permits us to investigate the 
influence of the resistivity and the radius of the invasion zone on the radial response of 
probes with transversal induction coils. 

Making use of results, derived in the second section, in a general case with N interfaces 
potentials can be written in the form: 

oo 

Ai = y^k'f sincj) — [aiKi{Xir) + biIi{Xir)] cos Az dA 

(10.72) 

A* = — cos 0 / — [CiKi{Xir) + dJiiXir)] sinXz dA 

where z = l , 2 . . . , A ^ + l ; A : j i s the wave number of z-layer and Aj = (A^ — kfY^'^. 
From condition of excitation it follows that a\ = Ci = —1, but a field behavior at 

infinity requires equality 6iv+i = d^+i = 0. Other 4N coefficients are found from system 
of 4A^ linear algebraic equations which are derived as a result of continuity of tangential 
components of field E and H at interfaces. 

The expression for the magnetic field on the borehole axis has the form: 

oo 

h^ = {l- ikiL - klL'y^'^ -— I [kla% + m^d,] cos(L/ai) dm (10.73) 

0 

where ai is the borehole radius. 
Even in the case of two cylindrical interfaces the determination of unknown coefficients 

in eq. 10.72 is related to the solution of the system of eight equations. In spite of the 
fact tha t the solution of this system is not difficult, expressions for potentials have a 
sufficiently cumbersome form. For this reason potentials are not written in explicit form. 

Curves of apparent conductivity, a a, related with the field: 

Gi | / i r - i | 

are shown in Figs. 10.17-10.24. 
At the low-frequency part of the spectrum with an increase of the probe length the 

field asymptotically tends to that in a uniform medium with the formation resistivity. 
Minimum of curves of apparent conductivity, Oajox, is related with the fact that quadra-
ture component of the field becomes equal to zero. For relatively shallow penetration of 
borehole filtrate into the formation (a2/ai :^ 2) for o; > 16 the influence of the invasion 
zone on the signal value for a two-coil probe does not exceed 25%. 
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0.09 

b̂  0.06 

0.03 

cF^lcj^ = 1/32; a2/ai = 2; a^lh^= 0.025 

A 1 
1/512 1/128 1/32 1/8 1/2 

16 
L/a-i 

24 

Figure 10.17. Apparent conductivity curves. Curve index a^jcFx. 
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1 /512^ -
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A / /1/8/ 

/ / ^ I 2 

16 
L/a-, 

24 

Figure 10.18. Apparent conductivity curves. Curve index G^jox. 
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0.4 

0.3 

b'' 0.2 

0.1 
1 

^ 3 / 

/ ^ 

cr, = 1/8; a2/a 

1/512 1/32 1/8 

1 = 2; ai/A7i=( 

1/2 

3.025 

16 24 

Figure 10.19. Apparent conductivity curves. Curve index cr2/cri. 

0.4 
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b"" 0.2 

0.1 
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a^ = 1/8; 02/6 
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/^^ i/g_ 

y/^l 

\y = 2; a^\h\=-

^''^-'^^m^^ 

0.1 

^ ^ ^ = = ^ 

16 
L/a-, 

24 

Figure 10.20. Apparent conductivity curves. Curve index G^ICFX-
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0.9 

0.6 

b̂  

0.3 

Og/cr̂  = 1/2; a2la^ = 2; a^lh^- 0.025 

16 
Lla^ 

24 

Figure 10.21. Apparent conductivity curves. Curve index G2lo\. 
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Figure 10.22. Apparent conductivity curves. Curve index (J2/(Ji-
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b« 

u.» 

0.6 

0.3 

n 

o-g/tT̂  = 1/32; a2/ai = 4; a^/h^= 0.025 
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...^^^v^2^^..^ 

^^""1732 ^ 

^^/8 

^"^^2^^^ 

^^ 

16 
/./ai 

24 

Figure 10.23. Apparent conductivity curves. Curve index o^joi. 
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Figure 10.24. Apparent conductivity curves. Curve index crg/cri. 
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TABLE 10.7 
Values of function Ai — A2; (TS/CTI = 32, 02/^1 = 4, a/hi = 0.025, Li/ai = 14, L2/ai = 12 

cr2/cri 

Ai -A2 

1/512 

0.12x10-2 

1/128 

0.11x10-2 

1/32 

0.90x10-3 

1/8 

0.70x10-3 

The depth of investigation can be significantly increased in applying a three-coil dif-
ferential probe. In this case the minimal length of a two-coil probe forming a differential 
array should correspond to the ascending branches of curves 0-2/0-1. For illustration, values 
of amplitude difference of the secondary field expressed in units of the primary field at the 
range of small parameters, calculated for a three-coil probe, are given in Table 10.7. As 
is seen from the table the influence of the invasion zone with the considered parameters 
results in a change of the amplitude difference of not more than 30% while the influence 
of the invasion zone in the case of a two-coil induction probe is more significant. 

10.6. Cylindrical Surface with Transversal Resistance T 

Let us assume that due to penetration of the borehole filtrate a relatively thin but resistive 
invasion zone is formed. In this case we can obtain a sufficiently simple expression for 
the field. We will suppose that the conductivity of the borehole and the formation are 
equal. It is appropriate to notice tha t the generalization, when both media have different 
conductivities, does not require special efforts. 

Thus, our problem is formulated in the following way. In a uniform medium with 
conductivity oi there is a thin cylindrical layer with radius a and thickness /i, having 
conductivity cr2.These parameters satisfy conditions: h/a <C 1, 01/02 ^ 1. Electric 
properties of the layer are characterized by the transversal resistance T — h/a2. At the 
surface r = a, tangential components of the magnetic field are continuous: 

Hu = H2, Hi^ = H2^ (10.75) 

where Hi and H2 are fields in the borehole and the formation, respectively. 
Tangential components of the electric field due to the presence of the double layer are 

discontinuous, and, as is well known, we have: 

E2Z = Eiz + Toi 
dEir 

Substituting expressions for field components through potentials in a two-layered medium 
(eq. 10.28) into eqs. 10.75-10.76 we obtain: 

Kiimi) - Ii{mi)D = Kiimi)G 

mi '^ " - . -, . . _ , ^ ^ 
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Ki{mi) - h{rm)C - T 
777/ 777- 771 

-^Ii{mi)D + -^Ko{mi) + -^I[{mi)C 
m 77lt 

= Ki{mi)E - Ko{mi) - ^^^^C - I[{m^)D - r 
777,1 

h{mi) 

mi 
D + Koimi)-\-I[{mi)C 

Ki{mi) 

nil 
E-^K[{mi)G (10.77) 

where 777,1 = (^^ — kjcLiY^^, and r = Tai/a = T/TQ. By analogy we will call To the 
transversal resistance of the borehole. 

Solving system 10.77 we have: 

C = 
Tm^Ko{mi)K[{mi) 

"Kui 1 - T ( ^^ / i (mi )A: i (mi ) + m?I[{mi)K[{m^) 
TTl-i 

D 
T^Koim^)K[{m,) 

nil 

1 - r 
2^2 kfa •Ii{mi)Ki{mi) + ni^I[{nii)K[{mi] 

For the magnetic field on the z-axis of the borehole we have: 

(10.78) 

h =. /i^^ + ra^e ?̂/ m Kl{nii) co^ma dm 

0 l-r(^h{m,)Ki{mi)+m^I[{mi)K[[mi) 

For r -^ 0 we obtain h^ -^ /i^^, while in the opposite case, as r ^ CXD: 

00 

m?'Kl{mi) cos ma dm 

0 — 2 " ^ 1 ( ^ 1 ) ^ 1 (77li)+7772/{(mi)/^;(777i) 

(10.79) 

(10.80) 

Calculations show that eq. 10.80 describes field hx with sufficient accuracy when r > 10. 
Curves of the amplitude of the secondary field as a function of parameter L/a are 

presented in Fig. 10.25. The curve index is parameter a/hi. At the range of small 
parameter for the quadrature component of the magnetic field we have: 

Qhx = 

where 

hi 
(1 + Gr) 

2ra f m^KQ{m) cos ma dm 
(m)K[im) 

__2Ta fm'Klim)' 
n J 1 — Tm?I[ 
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Figure 10.25. The amplitude of the secondary field (r —^ cx)). Curve index ajh. 

If the probe length is many times greater than the borehole radius (a ^ 1), then in 
applying the approach described in section 3 of this chapter, we obtain: 

Gr^ 
2T a 

l + r/2 
— / m^KQ{m)cosmadm ĉ  — 
TT J 1 

4r In a 
+ r / 2 a2 

Thus: 

Q/irr 1 + 
4r In a 

l + r /2 ^2 

and for large values of r we have: 

In a 
Qhx 1 + 1 

a^ 
(10.81) 

Now we will derive an asymptotic expression for the field in the far zone (a :$> 1) for 
arbitrary parameter L/hi. For simplicity it is assumed that parameter r is much greater 
than unity: r ;» 1. The integrand in eq. 10.80 has a branch point on the complex plane 
of variable of integration m, when m = aki along the imaginary axis, and deforming the 
contour of integration along the cross-cut and expanding the integrand by powers of mi 
we obtain: 

ioo-\-aki 

h^ = /i^" + a'^k'i — I m [Kl{m^) ~ K^{-mi)] e'"" dm 

aki 
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Inasmuch as: 

K^{mi) - Ko{-mi) = -2i7rKo{mi)Io{mi) + 7r^/o(mi) = -2i7rKo(mi) 

for I mi I <C 1, then: 

ioo+afci 

/i^ =/i™ - 2ia2fc2a3 f m'^Koimi)e'°'"'dm 

aki 

Letting m — it + aki, 0 ^t < oo, we have: 

h^ = / i ^ + 2a^kle'^^'a^ f {it + akif Ko{mi)e-''' dt (10.82) 

0 

where rui = (-t^ + 2itaA:i)^/2. 
For Q; ;::̂  1 the integral in eq. 10.82 is expressed through the integral exponential 

function: 

[{it + ak,fKo{m,) ê "̂  dt = ^ (-^ + ^^""^ i^ ~ ""'^i ' 
0 

oo 

Aln(- t ) + Ht - 2iak,)] e-^' dt = ^ (-^ + 2iaA:i^ - a'kA (^ '̂̂ ^^ X 

0 

X 
\na ln(-2ia/ci) e'^'^^^ ^.,^., , / 

+ —̂  Ei(2iA:iL) 
a a a 

If |A:iL| < 1, then Ei(2i/ciL) ~ ln(-2iA:iL), and eq. 10.83 has the form: 

a 
\9Q;^ 9a ^ J \ a J a^ 

Therefore, for the magnetic field we have: 

2 \ a^ / 

This expression coincides with eq. 10.81, which is valid at the range of small parameters. 
In the opposite case, when /ciL » 1 we can write: 

J2ikiL 

Ei(2ifciL) ~ -
2ikiL 
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and instead of eq. 10.83 we obtain: 

^ f ^' + 9 i . t ^ n^kA ( Ing ln(-2iafci)\ _ klPXna-\n\k,a\ 

2 ^ 9 ^ + ^'"''''^ ~" ''V V ^ ^ y " "^ ^ ^ — 

Whence: 

h^ = h^^ + kla^klL^e'^'^{Ina - In |A:ia|) (10.84) 

Inasmuch as at the range of large parameters: |A:iL| ^ 1, we have: 

Equation 10.48 can be presented in the form: 

h^ = hT (l - k\L^ '^^^^^M\ (10.85) 

10.7. The Magnetic Field in a Medium with One Horizontal 
Interface 

Let us place the dipole at the origin of coordinates and direct the dipole moment along 
the X-axis: 

M = Moe-^"*Xo (10.86) 

where MQ = InS. 
As is well known, the field equations have the form: 

curl E = iujfiH div H = aE 

curl£; = 0 div i f = 0 
(10.87) 

We will let 

E = iu;/icm\A (10.88) 

and, substituting eq. 10.88 into 10.87 we obtain: 

H = k^A - grad U 

Letting u = — div A we will obtain equation for the potential: 

V^A -^k^A^O (10.89) 

where k'^ = icr/icj. 
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The relation between the potentials and the field is defined by: 

E = lujfi curl A H = k'^A + grad div A (10.90) 

We will look for a solution, assuming that component Ey = 0. 
In accord with eq. 10.90 we have: 

dA, . fdA, dAA . dA, 

and 

H^ = ^A^ + -I- div A Hy = -^ div A H, = k^A, + ^ div A (10.91) 
ox oy oz 

For continuity of tangential components of the field at the interface z = /i it is sufficient 
to provide continuity of values A^, dA^/dz, k'^Az and div A. 

Thus, for components of the vector potential we obtain two groups of conditions, such 
as: 

fcMi. = fc2%x ^ = ^ (10.92) 

and 

Aiz = A2z div Ai = div A2 (10.93) 

The primary field of the dipole in a uniform medium has only one component: 

^'^ ~ A-K R 

or 

00 

in J nil 

where mi = (m^ — kfY^'^. 
For this reason we will present component A^ in the form: 

00 

^ix = ^ / (^e-™^^ + Ame'^A Mmr) dm 

0 ' (10.94) 

A2. = ^ / "s„e-"^Vo(mr) dm 

0 
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where m2 = {m? — A:|)^/^. 
From boundary conditions at z = /i we have: 

nil 

Whence: 

_ m smi-m2 2m,h 
m i 5 m i +1712 

_ 2m -(mi-m2)h 

srrii + 7712 

where 5 = 0^2/^1, and 
00 

47r J mi smi + m2 
0 

00 

^2x = — / ^̂^̂^ e-^^^-^^)'^-^^Vo(mr) dm 
ATT J smi + m2 

From continuity of div A follows: 

Inasmuch as: 

dAr dA^ dr 
dx dr dx 

00 

= cos(j) I F(m)e^^i Vi(mr) dm 

(10.95) 

(10.96) 

it is appropriate to present the solution for Az^ in order to provide continuity of A, in the 
form: 

M f 
Aiz = -—COS0 / (7^e'"^^Ji(mr) dm 

47r J 
0 
00 

M f _ 
A2Z = -—coscj) I Dme "^2^Ji(mr)dm 

ATT J 
0 

In accord with eq. 10.93 we have: 

(10 97) 
(5 - l)m5^e--^'^ = m2D^e--^^ + miC^e-^'^ 
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Solving this system we obtain: 

_ (g - l )m^rn^- (mi+m2) / i 
^m — , *= 

m i +1712 

_ (s- l)mBm 
(10.98) 

mi + m 2 

Thus: 

^ 1 ^ = ^ COS0 / i ^ ^ l i l ! ! ^ e - ( - ^ + - ^ ) ^ + - ^ V i ( m r ) dm 
47r J mi + m2 

0 

M , f [s- l)mB, 
A2z = -r- cos -̂  ' 

(10.99) 

An 

f {s - l )m^^ _ 
/ e ^ Jiimr) dm 

J mi + m2 

Magnetic field on the z-axis has only component Hx for which in accord with eqs. 10.91 
and 10.99 we obtain: 

oo 

hix = ho- L / 0i(m)e'^^^ dm 

(10.100) 

h2x = -L / ' 0 2 ( m ) e - ^ 2 ^ d m 

0 

where h^ is the magnetic field expressed in units of the field in a free space: 

hx = -pr HQ = — Ho ^ ATTL^ 

ho = e'^'^il - kiL - k^L^) 

^ . 2 rn^L^\ m sm, - m2 _2m,H , ^ 2 . 2 m'{s - l)e-'^^^ (10.101) 
_ ,... " - e -^-^^ + m^L ^ 

2 J nil nil -\-1712 mi{smi + 777,2)(mi + 777,2) 

\ 2 777i + 7772 / Smi + 7712 

L is the probe length. 
We will consider the behavior of the field at the low-frequency part of the spectrum 

when the skin depth in both media exceeds the distance from the dipole to the interface 
and the probe length. In deriving asymptotic formulae we will use the approach described 
in chapter four, namely the interval of integration is presented as a sum of two parts, the 
internal part where 0 < 777L < moL < 1, and the external one as 777 > 7710- Within the 
external interval radicals TTII and m2 can be expanded in a series by powers of k\/ni? and 
kl/m^. For this reason the integral at the external interval is presented as a series of 
terms having even powers of A:. Within the internal interval exponents can be expanded 
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in series {mL <C 1), and the integral at this interval can be reduced to the sum of tabular 
integrals, which can easily be presented as a series with respect to wave number k. UnUke 
the integral at the external interval these series contain odd powers of k and logarithmic 
terms. For example, in a medium, where the dipole is located, for the low-frequency part 
of the spectrum hx we have: 

QK =bi 

where: 

+ ai 

(10.102) 

a i 
5 2 - 1 

PV~S{V~S - 1) - ls{V~s - 1) + ^{s'^s - 1) 

:ln 
Vs-\-l-l y/sTJ^y^ 

2 ^ 5 + 1^ ' ' V\/5 + l + l Vs-\-l- Vs 

l ( 5 + 5 ) ( s - l ) L 

(10.103) 

^^^~^~4 (5 + 1) 2h-L 

hi = {2/aiiiujy^^ h2 = {2/a2fiujy^^ 

L/hi < 1 L/h2 <Cl s = (72/ai 

If the interface is located sufficiently far from the source and the observation point 
{L/h <C 1), coefficient bi, tends to —1, corresponding to a uniform medium. At the 
same time coefficient ai does not depend on the position of the probe with respect to the 
boundary, and it is a function of the resistivities of both media. 

The second terms in eq. 10.102 are proportional to cj^/^, and the depth of investigation, 
measuring these terms, is the same as tha t at the late stage of the transient field. It is 
obvious tha t as s ^ 1 coefficients ai and hi correspond to a uniform medium: 

ai 6 1 ^ - 1 

Now let us consider the high-frequency part of the spectrum and for obtaining asymptotic 
formulae let us make use of the following relation: 

00 

In= j y" e V ^ ^ + ^ dA ^ a,(ibiL)(-+^)/2 e"'^^^ (10.104) 

where \kiL\ ^ 1 and a^ is a function of number n. In particular, for the first three values 
of n it is equal to 1, \ /7r/2 and 2, respectively. 

Let us notice that integrals of type 10.104 for odd values of n are reduced to elemen-
tary functions, but for even values they are expressed through modified Bessel functions 
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Kn{kiL). After elementary transformations, which allow us to present an expression for 
the field through integrals of type /„, we obtain: 

hi = ho — kfL 

a = h/L > 1 

\kiL\ > 1 

2 r 2 \ / ^ - l e 
,ifeiL(2a-l) 

v/s + 1 2a-1 
ho (10.105) 

It is natural that due to the skin effect the field becomes the same as in a uniform 
medium with conductivity ai. However, if the dipole or the observation point are located 
at the surface, then regardless of the frequency, the field is the function of conductivities 
of both media. In accord with eq. 10.105 we have: 

' ^/i+1 
(10.106) 

In conclusion of this section let us notice one specific feature of the current distribution, 
when the conductivity of the medium where the dipole is located is equal to zero {s -^ oo). 
In this case, as is seen from eq. 10.96, the potential component A2x is equal to zero. 

For this reason in a conducting part of the medium the electrical field and induced 
currents do not have a vertical component and the distribution of currents is symmetrical 
with respect to plane yz^ which is not intersected by current lines. 

10,8. The Magnetic Field of the Horizontal Dipole in the 
Formation with Finite Thickness 

Suppose that the magnetic dipole is located within the formation. Then, according to 
results obtained in the previous section, expressions for the vector potential have the form 
(Figs. 10.4, 10.26b): 

oo 

Aix = — /Die^^Vo(mr) dm 
47T J 

M f 
Axz = —COS0 / Eie'^^''JAmr) dm 

47r J 

if 2: < —/i2 

oo 

A2:, = — I ( —e-^^l"" + D2e^2^ _̂  D^^e-"^^'] Jo(mr) dm 
47r J \m2 J 

0 
oo 

A2Z = ^cos(P f (F2e-^^ + Fae—^^) Ji(mr) dm 

if — h2 < z < hi 

(10.107) 
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Figure 10.26. Two coil probe in a medium with two horizontal interfaces. 

(X) 

^ 3 . = ^ f D^e-^^'Joimr) dm 

0 
oo 

^ 3 ^ = f F^e-'^''Ji{mr)dm 

> if 2: < /ii 

From the system of equations, following from boundary conditions sX z = hi and z = 
—/12, we find coefficients: Di, D2, D3, 1̂ 4, Fi, F2, F3, and F4. In particular, for the 
horizontal component of the magnetic field on the z-axis, when the two-coil probe is 
located symmetrically with respect to the formation boundaries, we obtain: 

K = h. (2) 
Ox 

00 

/ I ( f - klz') 2ffi2(l - 312 coshm2 e-"™^) 

(1 — s)(l — gi2)m'^m2r, , ^̂  , , (10.108) 

2 a m 2 l \ ^ ? : ? _ g - a m 2 ^ ^ if a = EjL ^ 1 

where (ii = 1 - ^126"^"^ '̂', <ii = 1 - ^^^2^"^'^^^' 1̂2 = (-^^i - 7712)/[smi + 777,2), 5 ^ cri/cr2, 
X^2 = {mi —1712)/{mi -\-1712)] (Ji and 02 are conductivities of the formation and shoulders; 
U is the formation thickness and L is probe length. 

By analogy we obtain an expression for the field when the probe length exceeds the 
formation thickness and the transmitter and receiver coils are located on both sides of the 
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formation. It has the form: 

m'^m^ /̂ c _ 1^2 

h.- I i'-f'-^l^'^2{m, + m,y d. 
1 i f _ _ J ^ n _p-2am2\ \ 

0 ' V X 2y 2 / (10.109) 

(smi + m2ydi 

Because of the symmetrical position of the probe coils with respect to the formation 
boundaries the field is defined by three parameters: 

p = L/h s = G\IG2 OL = H/L 

Prior to the consideration of frequency responses of the field, let us investigate the 
behavior of the field at the low-frequency part of the spectrum, when parameter p ^ 0, 
and the probe is located within the formation. Proceeding from the approach described 
in the previous section we obtain the following expressions for the quadrature and inphase 
components of the field: 

Inhx = - \ -r-
3 \h2 

f LV \ ^ ^^fl-pe-'^'^cosham^ l - s 

^2 2as I 3 \h 

(10.110) 

where p = {s - l)/{s-\- 1). 
It is essential that the inphase component of the field at the low-frequency spectrum 

coincides with the inphase component of the field in a uniform medium with conductivity 
cr2. A similar result is obtained when the source is the vertical magnetic dipole. It means 
that surface charges, arising at interfaces between the formation and the surrounding 
medium at the low-frequency spectrum, influence the quadrature component of the mag-
netic field only. Respectively, at the late stage of the transient response in the same way 
as in a medium with cylindrical interfaces, the field hx does not depend on the orientation 
of the magnetic dipole. 

Let us present the quadrature component Q hx as the sum of two terms: 

Qhx = Qh^^^+Qh^^^ 

where: 

LV A 1 \ /"LV 1 

(10.111) 
« ' ' i " - l d i ' - S J - ( v 2 a 
Q.? = (^)%m a) 
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oo 

^ /^ X ^ f I — 0e~^'^ cosh am , 
nP,a) = (}J —£-^^-^--—dm (10.112) 

0 

With accuracy of the sign field Q hx coincides with the vertical component Qhz, of the 
vertical magnetic dipole at the range of small parameters, and it consists of two terms, 
each of which depends on the conductivity of one medium. Correspondingly, for this term 
we can introduce a geometric factor. In accord with eq. 10.111 we can define: 

G^{a) = 1 - ^ G2{a) = ̂  G^{a) + G^ia) = 1 
za la 

and 

Q ^i'^ - - ^ ^ K G i ( a ) + a2G2(a)] (10.113) 

The expression for the geometric factors is the same as in the case of excitation of the 
field by a vertical magnetic dipole. 

The second term IfVx includes function F{l3,a), which depends on ratio of conductiv-
ities, more precisely, from parameter /3. The appearance of this part of the field can be 
explained in the following way. Under action of the primary electric field of the dipole 
surface charges arise in a medium with density: 

where E^^ is the magnitude of the normal component of the field, created by vortex field 
of currents and all charges, except one, located at point a. In this approximation the field 
of electric charges, as well as the primary field, is directly proportional to frequency. 

Let us present eq. 10.110 as: 

Qh^^^ = -^[a^Gl{a,s) + a2G;{a,s)] (10.115) 

where Gl{a, 5) = 1 - l/2a - 2F{f3, a). 
If the formation resistivity exceeds that of shoulders (s < 1), then electric charges 

increase the field within the formation, and function G^ becomes larger. In a more 
conductive formation the electric field of the charges reduces the primary field, and under 
certain conditions, G^ is equal to zero and changes sign. Table 10.8 contains values of 
functions Gl -h {l/s)G2 and F{f3^a). We can show that function F[(5^a) is expressed 
through hypergeometric series 2^1 (a, h, c, z)\ 

i ^ ( / ^ , c . ) : = ^ < ^ — l n - - ^ - - ^ 2 F i l , l + - - , 2 + — , / ? ^ 
2\[3a l-P 2a + l \ 2a 2a , nmi8^ 
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TABLE 10.8 
Values of functions F(/?, a) and Gj + G^s 

F{P,a) Gl + Gi/s F{l3,a) -Gi/s 

1/128 

1/32 

1/8 
1/2 

2 

8 
32 

128 

1/128 

1/32 

1/8 
1/2 

2 

8 
32 

128 

-2.030 

-1.420 

-0.763 

-0.205 

0.142 

0.277 

0.314 

0.324 

a 

-5.0200 

-0.3510 

-0.1880 

-0.0507 

0.0359 

0.0718 

0.0825 

0.0854 

36.80 

11.60 

4.280 

1.660 

0.591 

0.288 

0.129 

0.105 

= 8 

9.980 

3.640 

1.810 

1.160 

0.897 

0.802 

0.774 

0.767 

a = 4 

-1.0300 

-0.7030 

-0.3770 

-0.1020 

0.0717 

0.1420 

0.1640 

0.1690 

a 

-0.2600 

-0.1750 

-0.0940 

-0.0253 

0.0180 

0.0359 

0.0414 

0.0428 

18.90 

6.280 

2.630 

1.330 

0.794 

0.606 

0.552 

0.538 

= 16 

5.490 

2.320 

4.140 

1.080 

0.948 

0.901 

0.887 

0.883 

In the particular case, when the length of the probe is equal to the formation thickness 
(a = 1), F{P,a) is expressed by the elementary function: 

F ( / ? , a ) ^ 
1 Ins 

(10.117) 

and for the quadrature component we have: 

Qh. = -{-^^ 
1 21n5 

•- + ^ 7 2 \hi 
(10.118) 

For large values of a, function F{P, a) decreases inversely proportional to a: 

F{P,a) ^-In ^ 
a 5 + 1 

(10.119) 

.(2) 

and the value of function Gl{a^ s) remains positive for all values of s. 

It is easy to show that for 5 -^ 0 (formation resistivity increases) field Q hx""^ tends to 
zero. 

The asymptotic presentation for the field, when the formation is located within the 



585 

probe, is derived in a similar manner and we obtain: 

Inhx = - \ -r-
3\h2 

2 I . ^ -m. I / r x 3 (10.120) 

« - - ( ^ ) U F / T ^ p2^-2am 2 f 2 \h 

Let us notice that the integral in this expression can be presented through a hyperbolic 
function. 

Now we will consider the opposite case, when \kiz\ ^ 1 and \k2z\ ^ 1. In essence, 
deriving asymptotic formulae is similar to that performed in section 6. In this case the 
presence of the term 1 — Ki2e~'^^^'^ in the denominator of the integrand does not make 
this procedure more complicated, since this term is exponentially small. For example, if 
a = 1, we have: 

2 
.2^2Akiz 

A / 5 + 1 
kiz'e'^ 

We will investigate vertical responses of a two-coil probe at the range of small parameters 
(Figs. 10.27-10.28). It is natural that the influence of the surrounding medium increases 
with an increase of its conductivity and a decrease of the formation thickness. For com-
parison curves of apparent conductivity, when the source is the vertical magnetic dipole, 
are given in Fig. 10.18. Here apparent conductivity is introduced as: aa/(Ji = Qhz/ Qh^^, 
where Q hz is the quadrature component of the vertical component of the field. 

As is seen from these curves the influence of a more conductive surrounding medium in 
measuring with vertical and horizontal dipoles is practically the same. If the formation is 
more conductive, the vertical response of the two-coil probe with horizontal coils is worse 
and it is mainly caused by the influence of electrical charges. 

With an increase of frequency due to the skin effect the influence of the surrounding 
medium is significantly reduced, and it manifests itself earlier with an increase of the 
formation thickness and conductivity of the surrounding medium (Figs. 10.29-10.32). 

Now let us briefly consider frequency responses of the field (Figs. 10.33-10.40). The de-
pendence of amplitude and phase of the field at the low-frequency spectrum as functions 
of the surrounding medium conductivity is of certain interest when a > 2. If the for-
mation resistivity is considered to be constant, then with an increase of resistivity of the 
surrounding medium the field decreases at the beginning, reaches a minimum when the 
formation is more conductive, and then again it begins to grow, approaching an asymp-
totic value corresponding to the nonconducting surrounding medium. This feature in a 
field behavior is in agreement with eq. 10.115, which indicates that for certain values of 
parameter s the quadrature component of the field changes sign. For this reason the 
left-hand asymptote of phase curves can be correspondingly —7r/2, 0, IT/2 (Fig. 10.28). 

With an increase of the formation thickness the influence of charges decreases, and 
behavior of amplitude and phase curves approach to that corresponding to curves when 
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Figure 10.27. Apparent conductivity curves. Curve index Oxjai-
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Figure 10.28. Apparent conductivity curves. Curve index (TI/(J2-
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Figure 10.29. Apparent conductivity curves. Curve index (Ji/a2. 
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Figure 10.30. Apparent conductivity curves. Curve index Oxja^-
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Figure 10.31. Apparent conductivity curves. Curve index GXIG^-
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the source is the vertical magnetic dipole. In conclusion, curves of apparent conductiv-
ity illustrating the influence of the resistivity of the surrounding medium are shown in 
Figs. 10.41-10.43. 

Now let us consider the influence of relatively thin layers {a < 1). At the low-frequency 
part of the spectrum we will present a field as a sum of two terms: a field in a uniform 
medium with conductivity of the surrounding medium, and that part of the field which 
takes into account the influence of the formation, i.e.: 

Q / i . - Q / ^ r 

where 

+ G2{a,s) (10.121) 

G2{a,s) = -
4s 

{1-sy 

oo 
' dm 

/32e -2am + 
a{s- 1) 

+ 1 

Equation 10.121 coincides with eq. 10.120 at the range of small (L//i2 < 1) parameters, 
and for certain relations between values of a and s it is valid in wider range of parameter 
L/h2. 

Table 10.9 contains maximal values of parameter L/h2 for which the diflPerence of the 
quadrature components of the field obtained from exact solution and the approximate for-
mula 10.121 does not exceed 5%. As is seen from Table 10.9 with a decrease of parameter 
a, the maximal value of parameter L/h2 increases. If a thin layer has a relatively large 
resistivity or conductivity, the range of application of eq. 10.121 is restricted by small 
values of parameter L//i2. With the parameter s approaching the unity the maximal 
value of parameter L/h2 increases. This relation between parameters of a medium and 
boundary values of parameter, characterizing the skin effect, can easily be studied at the 
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TABLE 10.9 
Values of parameter L/h2 

1/16 

1/8 

* 1/128 

0.05 

0.03 

1/64 

0.10 

0.07 

1/32 

0.15 

0.10 

1/16 

0.3 

0.2 

1/4 

0.4 

0.4 

1/2 

0.6 

0.6 

2 

0.8 

0.8 

8 

0.3 

0.2 

16 

0.2 

0.1 

32 

0.2 

0.1 

64 

0.15 

0.07 

low-frequency spectrum when the formation thickness is sufficiently small. Expanding the 
denominator of the integrand in eq. 10.121 by powers of a we obtain: 

oo 

dm 
^^^- \hj (i + syj i-p^i 2am) 

LVais-l) (10.122) 
\h2j 2 

where: 

2s 
t a{s-iy 

oo 

e~^ dx Ei{-t) = -e-' I 
0 

is the integral exponential function. As is well known: 

limEi(~t) =\iit 

Ei(- t) '2± -e-\llt - l/t^) iit-^oo 

Let us consider two extremal cases: s > 1 and s ^ 1, corresponding to either a very 
conducting or a very resistive thin layer. 

Case 1: Very conductive thin layer (s ^ 1) 

If parameter 5 > 1, then t •= 2/as, and making use of the asymptotic value of function 
Ei(- t ) for t < 1, provided that s > 2/a, instead of eq. 10.122 we obtain: 

L\ I as a 2 , 2 \ a f L\ .^ as 
qh,= [ - ^ \ [ ^ - ^ In— W^ — if — < 1 (10.123) 

V ^ 2 / V 2 2 as as) 2 \hij 2 

But if K s < 2/a then 
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TABLE 10.10 
Values of function Gi(a, s) 

1/16 

1/8 
1/4 

0.8 

1/16 

1/8 
1/4 

0.8 

1/128 

0.623 

0.695 

0.711 

0.518 

2 

0.0448 

0.0865 

0.1640 

0.4700 

1/64 

0.491 

0.582 

0.621 

0.462 

4 

0.150 

0.283 

0.523 

1.440 

1/32 

0.348 

0.443 

0.499 

0.376 

8 

0.351 

0.647 

1.180 

3.250 

1/16 

0.214 

0.294 

0.350 

0.254 

16 

0.712 

1.290 

2.340 

6.630 

1/8 

0.1050 

0.1550 

0.1920 

0.0899 

32 

1.350 

2.440 

4.490 

13.20 

1/4 

0.0329 

0.0485 

0.0540 

-0.0556 

64 

2.490 

4.580 

8.620 

26.00 

1/2 

-0.00207 

-0.00724 

-0.0232 

-0.133 

128 

4.620 

8.690 

16.70 

51.70 

It is obvious that in this case the field can be presented as a sum of the field in a uniform 
medium with conductivity cr2, and the field due to the presence of a thin conducting layer: 

L\ fL-' 
Q/i, = Q / i r ( ^ ^ j + a ( ^ - j (10.125) 

Case 2: Very resistive thin layer (s <^ 1) 

For parameter t we have: t = 2s/a. li s < a/2, then i <C 1 and correspondingly: 

In the opposite case {s :^ a/2) we have: 

Generalizing this expression for higher frequencies, we obtain: 

L\ a f L^ 

Thus, the smaller parameters s and cr/s, that correspond to more conductive or resistive 
thin layers, for higher frequencies eq. 10.121 is applied. Values of function Gi{a,s), 
which together with the field in a uniform medium, allow us to evaluate the influence 
of thin layers at the range of small parameters are presented in Table 10.10. Curves of 
apparent conductivity (Jal(J2 at the range of small parameter {a2fiujL'^ -^ 0) are given in 
Figs. 10.44-10.45. 
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10.9. Curves of Profiling with a Two-coil Induction Probe in a 

Medium with Horizontal Interfaces 

Considering the curves of profiling, it is appropriate to distinguish four specific positions 
of the probe with respect to interfaces (Fig. 10.26). 

Case 1: The probe is located outside the formation 

In accord with results obtained in previous section we have (Fig. 10.26a): 

oo 

0 

777-1 di 

Fi ^ - F (1 - e-2"^^) (1 - 912^12 e-2^^2) e'^^^^ 

2(1 - 5)m2 
F = 

(mi + m2)(5mi + m2)did2 

K,, = ! ! ^ 1 ^ ^ (10.129) 
mi + m2 

smi — m2 
Qu = ^ 

smi + m2 

a = H/L P = h2/L(3 ^ 1 

0 ^ a < oc (3^1 

Case 2: Coils of the probe are located from both sides of one interface 

In this case (Fig. 10.26c) we have: 

oo 

K = - j [ (klL^ - ^ ) D. e - + = F , e - } Am 
0 

(mi-m2)/3 
D, = 5 — ^ - ^ (1 - gi2)(l - qu e-^(--^)-) (10.130) 

m2 di 
P — p Q(3{mi-m2) 

X {iKi2 - gi2)e-2("-/')-^ (e-2/3™^ - 1) + (1 - /^i2gi2e-2""^) (e-^t"-^'"^ - l )} 
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Case 3: Probe is located within the formation 

We have for this probe location (Fig. 10.26b): 

h = h'^'' I 

dm 

m2 di ^ ' 

1712 di 

F2 = F e-2(-/^)-^ {{Ku - qu) e'^^^' + 1 - i^i2 Qu e'^'^^'} 

Fs = -Fe-'^^' {{Ku - qu) e''^^'^^^^ + 1 - /^x2 qu e"'""^^} 

In the case of a symmetrical position of the probe with respect to the boundaries P = 
{a - l ) / 2 and eq. 10.131 coincides with eq. 10.108. 

Case 4: The formation is located between probe coils 

We have in this case (Fig. 10.16d): 

CXD 

h. = -Ji UlL' - ^ ) D, e-™̂  - ^ F 4 e-^ | dm (10.132) 

0 

where: 

_ 4 s m m 2 a(m,-m,) 

J-^4 — ( \9 e 
mim2 e " ( ^ i - ^ 2 ) ( l _ e-2am2) 

F4 = 2F(1 - s) 
( m i + 7712) (smi + 1712) 

The field does not depend on the position of the formation between coils of the probe. 
Making use of eqs. 10.129-10.132 values of apparent conductivity Oajox were calculated 

(Figs. 10.46-10.48). This function is introduced as: 

^ \h.. 

Wun 
\ X 

(^'\ 
— UJ - 1 

It is obvious that the field at every point depends on the probe position with respect to 
the formation and parameters: I///i2, a — H/L and s = (JI/G2- For every case curves 
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Figure 10.46. Curves of profiling: (a) H/L = 4, ai/a2 = 16; (b) H/L = 4, ^1/^2 = 4. 
Curve index L/h2. 

are plotted for certain values of L//i2- The value of aa/(Ti is plotted along the horizontal 
axis, while along the vertical axis the distance from the formation center to the measuring 
point (the probe middle) expressed in units of the formation thickness, is plotted. 

Considering the influence of a medium it is convenient to distinguish four cases. 

Case 1 

Let the formation conductivity exceed that of the surrounding medium and its thickness 
be greater than the probe length (Fig. 10.46a,b). In this case parts of the curves, corre-
sponding to the position of the probe against the formation, have a rather complicated 
character. In approaching the receiver or transmitter coils to the formation boundary a 
rapid change of the field, due to surface charges, is observed. When the probe is within 
the surrounding medium, with an increase of the distance from the formation value of 
aa/cTi asymptotically approaches to the hmit, equal to: 

CTa, 

^1 

IhT X 

ll^un 
X 

{ f'\ 
— WJ 

f ^'\ 
— UJ 

- 1 

- 1 
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Figure 10.47. Curves of profiling: (a) H/L 
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1/8, ai/a2 = 4; (b) /f/L = 4, ai/a2 = 1/4. 

which at the range of small parameter, {L/h < 1), is equal to (J2/CFI-

Distance d between limited splashes on the curves of profiling is related with the for-
mation thickness as d =^ H -\- L. 

Case 2 

If the formation conductivity is smaller than that of the shoulders {ai < (J2, H ^ L)y 
the curves have also a complicated character, as in the first case (Fig. 10.47b). With 
an increase of parameter L/h limited minima become slightly smaller and closer to each 
other. At the same time the value of (la/cri also decreases within the formation center as 
well as in the surrounding medium. 

Case 3 

Consider a thin conducting layer (ai > a2, H ^ L). Such a layer has a significant influence 
on the field, and it manifests itself clearly on the curves of the apparent conductivity 
(Fig. 10.47a). Distance d between splashes on curves oiaa/(Ji is related with the formation 
thickness a>s d = 2L + H, and the distance between the closest fractures of curves is equal 
to the formation thickness. 
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Figure 10.48. Curves of profiling: (a) / / /L - 1/8, oijo^ = 1/16; (b) i7/L = 1/8, 
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Case 4 

Let the formation thickness be smaller than the probe length and its resistivity exceed 
that of the shoulders [a] < a2, H ^ L). For a relatively small formation resistivity its 
influence is insignificant and practically displays itself as the appearance of two small 
splashes with distance between them 2H + L (Fig. 10.48). 

With a decrease of the formation conductivity value of aa/(Ji begins to differ noticeably 
from unit at the center of the formation and within the surrounding medium. 

At the range of smah parameters an influence of thin resistive layer becomes very small. 
It is obvious that the presence of the borehole makes curves of apparent conductivity more 
smoothed. 

In conclusion let us notice that at the range of small parameters it is not diflScult to 
find a relation between a value of an angle between tangents at breakpoints of curves 
of apparent conductivity and parameters of the medium. In fact, for a change of the 
derivative we have: 

( 2 ) ^ 

dz 
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On the other hand: 

dz dx ^ 

Inasmuch as values of Ey and dH^/dx are continuous at the interface, we obtain: 

and, finally: 

\j^un 
X 

Cy 

f T'\ 
— UJ - 1 

where 

M 
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Chapter 11 

THE INFLUENCE OF ANISOTROPY ON THE 
FIELD OF THE MAGNETIC DIPOLE IN A 
CONDUCTING MEDIUM 

In this chapter we will consider the electromagnetic field of the magnetic dipole in a 
uniform anisotropic medium as well as in an anisotropic medium with horizontal interfaces. 

11.1. Anisotropy of a Layered Medium 

First suppose tha t a medium presents itself as an alteration of isotropic layers of two 
types: one has conductivity CTI and dielectric constant Si while the other has conductivity 
and dielectric constant (72 and ^2, respectively (Fig. 11.1). 

Let us assume that in an arbitrary layer, which is denoted by index (1), a uniform 
electric field Ei = Ee~^^^ is given, and it is located at the xz plane. The current density 
in this layer is j \ = o-iEi. 

Thicknesses of the skin layers hi and /i2 are assumed to be sufficiently large so that 
they exceed in many times the thickness of an elementary layer. Correspondingly, we can 
neglect the skin effect within these layers. Now we will express E and j in every layer 
through current j \ . 

Maxwell's equations result in the following conditions on the interface of the first and 
second layer: 

E2x = Eix S2E2Z — £iEiz = E (11-1) 

where E is surface density of charges. From surface analogy of equation of continuity of 
current density we have: 

J2Z - Jiz ^ i'^E (11-2) 

Ehminating the value of E from eqs. 11.1 and 11.2 and making use of Ohm's law, we 
obtain for the current and the field in layer (2) the following expressions: 

J2X = —Jx J2z — : -,—Jz (11-3) 
(J I 1 — iuje2/cf2 

^^^^Jj^^J. £2, = ^ = ^ ~ '""''I''' ^ (11.4) 
CT2 (Jl (T2 1 — 1^)82/02 02 
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Figure 11.1. Model of anisotropic medium. 

By analogy, from conditions on the surface between the second and third layer, we have: 

J: 
CTs 

J2: 
1 - \ijJE2IO2 

J2z 
02 1 - icc^^a/^a 

Inasmuch as cr3 = a i , £3 = e\ then instead of 11.5 we have: 

J 3 — J\ E3 = El 

(11.5) 

(11.6) 

Thus, in the formation consisting of alternating thin layers of both types, field and current 
density have paired values: ^ 1 , J i , and E2, J2^ corresponding to the first and second 
layers. Let us take an arbitrary layer with thickness D {D > h), in which the relative 
contribution of layers with conductivity 02 is equal to n. Then, for average values of 
current and the field we have: 

(Jx) = ( 1 - n + n— J Jo: 

^ 1 

^ l-iuj£2/cr2j 

(E,) = 1 - n + n — : — 
V (T2 I - \ijJe2 02 ) (T\ 

(11.7) 

Defining the longitudinal and transversal conductivities from relation: 

we obtain: 

(Ez) 

at = CTi 1 — n -f n 
^ 2 

C T l -

^ 1 . 

l-n[l-p{uj)] (11.8) 

1 - n 1 
^ 2 ' 

P(^) 
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Figure 11.2. Dependence of anisotropy coefficient on ratio (72/cri {coe/a -> 0). Curve 
index n. 

where 

1 — iujei/ai 
p{uj) = — i ^ 11.9 

Thus, in the quasistationary approximation for the considered model of a medium, 
the dependence of conductivity on frequency is absent, and consequently, expressions for 
transversal conductivity and coefficient of anisotropy have the form: 

^n =- : — ^ ^ - o T (11-10) 

A -

1 — n + n-
(^2 

1 — n + n— 1 — n + n 
CTl/ V 0-2 

1/2 

(11.11) 

Graphs illustrating the relation of coefficient of anisotropy, A, with parameters (J2/(Ji and 
n, are shown in Fig. 11.2. 

In a general case, when the influence of displacement currents is essential, the transversal 
resistivity depends on frequency. It is explained by the fact tha t surface charges are a 
function of dielectric constant and frequency. 

We can assume that if the electric field is not uniform and changes along the layer, the 
longitudinal conductance is also a function of a frequency. Curves, presented in Fig. 11.3 
characterize the influence of displacement currents on coefficient on anisotropy. 

If n remains constant within interval D and the dimensions of the measuring array (the 
probe length) are much greater than the layer thickness, this part of a medium can be 
considered as a uniform anisotropic layer with coefficient of anisotropy A. 
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Figure 11.3. Dependence of real and imaginary part of A on ratio uje2/(J2' 

11.2. Electromagnetic Field of the Magnet ic Dipole in a Uniform 
Anisotropic Medium 

Let us consider a uniform anisotropic medium with the tensor of conductivity: 

/ ^ t 0 0 \ 

(Jik=\^ ot 0 (11.12) 
\ 0 0 On) 

An arbitrary oriented magnetic dipole can be presented as a sum of two dipoles, namely, 
a vertical and a horizontal one. In excitation of the field by a vertical magnetic dipole, 
induced currents are located in horizontal planes and do not depend on the transversal 
conductivity a^. 

Features of the field, caused by the vertical dipole, were investigated in detail in Chap-
ter 2. 

We will explore the case when the moment of the dipole is located in the horizontal 
plane. Under such type of field excitation volume charges arise in the medium. In fact, 
having presented the equation of current continuity of the quasistationary field div j — 0 
in the form: 

at d i v E + {an- ^ O " ^ = 0 

and making use of equation d i v ^ = ^/^o, we obtain an expression for volume density of 
charges at an arbitrary point in a medium: 

(11.13) 

1 \ dE, 

^ = ''^^-X^I dz 
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We will write the Maxwell equation system in the form: 

curl E — luj^H div E = S/EQ 

curia; H = atEx 
(11.14) 

curl̂ y H = atEy div H = 0 

cuvlz H = GnEz 

Inasmuch as volume density 8 is different from zero, it is impossible to introduce vector 
potential of the magnetic type: E = curl A*. For this reason, let: 

i f = curl A (11.15) 

Then from eq. 11.14 it follows that: 

E = iuj/iA - gradf/ (11.16) 

Thus, we have for potential A the following equations: 

— div A - V^ Aa: = (Tt{ luJiiAx - -^ 

d_ 

dy 
div A - V'^Ay - Gt {luj^Ay - —- j 

— div A - V^Az - Gn lujfiAz - -^-
oz \ oz 

Choosing the gauge condition in the form: 

div A = —GtU 

we have: 

V Ax ~T kf ^x • 

V y^y "T l^f Ay • 

= 0 

- 0 

V^A, + klA, = ( 1 - — 1 —div A 

(11.17) 

f\\\r A 
X^ dz 

where k^ — iGtliuJ, k'^ = iGnfJ^uj, Â  = crt/(^n-
Since the behavior of the vector potential of electrical type A near the magnetic dipole 

is not known beforehand, it is appropriate to present the magnetic dipole as a sum of 
two vertical and two horizontal electric dipoles (Fig. 11.4) and find a solution for each of 
them. 
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Figure 11.4. Presentation of the magnetic dipole through electric dipoles. 

Vector potential of the vertical electric dipole will be described through only one com-
ponent, Al, since due to axial symmetry the magnetic field has only component if< .̂ In 
accord with eq. 11.17 equation for component A^ has the form: 

dx'^ dy^ A2 dz^ 
(11.18) 

After replacing variable zhy Zi = Xz, eq. 11.18 coincides with that for a uniform isotropic 
medium and therefore: 

cAknT^ 

Al = C-
R* 

(11.19) 

where 

For determination of constant C we will make use of the known expression for the 
potential of the direct current / of the electrode in a uniform anisotropic medium: 

AnR^y^atCTn 
(11.20) 

Letting dimensions of the electrode very small and diflFerentiating eq. 11.20 by z, we obtain 
an expression for the potential of the vertical electric dipole, when the distance between 
the electrodes is equal to a: 

_ a 0 la X^z 
dz 47Ty/at(Tn Rl 

On the other hand, taking into account the gauge condition: 

1 dA, 

(11.21) 

U 
at dz 
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we have: 

Comparing eqs. 11.21 and 11.22 we obtain the following expression for constant C: 

^ la Fo^ la ^ ^ ^ 
^ = ^ \ — = ^^ 11-23 

Any an ^TT ^ ^ 

Now, we will consider the field of a horizontal electric dipole, with the moment directed 
along the y-axis. We will look for a solution of eqs. 11.17, letting A^ = 0. Then, for 
components Ay and A^ we have: 

V ^ 4 + k'^A^ = 0 

g2^h Q2j^h I Q2JSK / ^ X Q2jsh (11.24) 

+ -rri- + T ^ ^ r ^ + ^l^. = 1 ^ 

Let: 

A'^ = C i ^ = Ci / — e-""l^l Jo(mr) dm (11.25) 

0 

where m^ = (m^ — A:̂ )̂ /̂ . 
It is convenient to present component A^ as: 

oo oo 

^^ = - [ Fm{z)Ji{mr)dm = —^ / ^ ^ ^ Jo(mr) dm (11.26) 
r J dy J m 

0 0 

The choice of expression for A^ is defined by the conditions of excitation and relation 
between scalar and vector potentials. Substituting eqs. 11.25 and 11.26 into eq. 11.24 we 
obtain an equation for function Fm{z): 

^ - X'mlF^ = sign(^)Ci(A2 - l)m^e-"''^'^ (11.27) 

The solution of this equation has the form: 

Fm = sign(z)Ci (e-^-'"l - e~^*l̂ l) (11.28) 

For z = 0 function F{m) is continuous together with its first derivative. Thus: 

oo 

A", ^ Ci sign(2)^ f (e-""l^l - e"™'!̂ !) Ji(mr) dm (11.29) 
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or 

^^ = C i ^ f-|e"='« - ^e"="«-^ (11.30) 

Constant Ci is found, as earlier, from the gauge condition and the behavior of the direct 
current field and we have: 

la 

^ ' - ^ 

Thus, for a horizontal electric dipole we have: 

A'' = (o,^,^^^) 

47rr2 Vi^ î * 

Now, we can find an expression for components Ay and Az of the magnetic dipole, which 
present themselves as the result of summation of corresponding component of electric 
dipoles: 

A,^ Jim (4.. + 4»l + .4«> + <l) = - M £ ( ! ; ^ ) 

lim ( 4 i ) + 4 2 ) + 4 3 ) ^ y l W ) ^^^32^ 
na'^I-^M 

M,d / e ' * ' « \ M^^___,^, y d {z ,,,^^ Xz ,,^^, 
= 4-.%[-W)-4'.''^''^^^7^d-z[R'' -R-f 

In accord with eqs. 11.15 and 11.32 we have along the z-axis: 

1 - iktL - klL 

Hy = Hz=0 

H. A . . , 2 .2 l + A^^.,..L (11-33) 

where HQX = -M/AnL^. 
At the near zone, when \kL\ <C 1, we have: 

and: 

lnK^l+[- + - ^^^ 
1 1\ /L"^^ 

LV f 1 1\ fL^'^ 
Q'^^^-fx MA^n 

(11.34) 
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where ht = {2/at/J'Ujy^'^ and hn = {2/anfiujy^^. 
Thus, at the range of small parameters, L/h, the quadrature component of the field is 

directly proportional to the transversal conductivity <T„. For this reason measuring the 
ratio of quadrature components of the vertical and horizontal dipoles at the low-frequency 
part of the spectrum allows us to define the coefficient of anisotropy: 

Qh^. 
^y a s a ; ^ 0 (11.35) 

Inasmuch as A ^ 1, the inphase component in anisotropic medium, in accord with 
eq. 11.34, is smaller than that in the isotropic medium with conductivity at. 

For large values of the anisotropy coefficient both components of the field become the 
same at the range of small parameters: 

ifL^' 

In the wave zone the influence of anisotropy decreases with an increase of A. 
Values of Qhx^ In/z ;̂ — 1, |/ia; — 1| and cj) are given in Table 11.1, and corresponding 

graphs are presented in Fig. 11.5. 
Applying Fourier transform to eq. 11.33 we will find transient response of field hx, when 

current in the dipole is turned off: 

h. = m - (-\'" (l + ^ " l ue--'f' (11.37) 

where 

0 

is the probability integral, and u — (/icr^/2t)^/^. 
Table 11.2 contains values of h^ as a function of A and \/u. In the limited cases t ^ 0 

and t -^ oc we obtain correspondingly: 

hx ^ {-)''' {\ + - ^ ) u\--'l- (^ ^ oo, t - . 0) 

^ ^ ^ , r ^ (11-38) 

hx^-[-\ b + :TT? W' (̂  ̂  0, t ̂  oc) 
TT/ \% 2A2 

Therefore, at the late stage of the transient response for relatively small values of 
anisotropy coefficient the field is inversely proportional to A .̂ 
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TABLE 11.1 
Values of functions L/hi, Inhx — I, Qhx, \hj. — \\ and 

L/h^ 

0.1 

0.2 

0.4 

0.8 

1.6 

3.2 

6.4 

0.1 

0.2 

0.4 

0.8 

1.6 

3.2 

6.4 

0.1 

0.2 

0.4 

0.8 

1.6 

3.2 

6.4 

In /la; — 1 

0.5112x10-^ 
0.1366x10-2 

0.3557 
0.8908 
0.2099x10-^ 
0.4472 

0.7922 

0.8991 
-0.4664x10-1 

-0.5225 
0.1209x10^ 
0.1331 

-0.9766 

0.3418x10-^ 

0.9070 

0.2377x10-2 
0.5753 
0.1316x10-1 
0.2645 
0.4054 

0.1984 
-0.1435 

0.5994 

0.1204x10^ 

0.1291 
-0.9781 

0.3104x10-^ 

0.8820 
0.2111x10-2 

0.5169 
0.1171x10-1 

0.2307 

0.3337 
0.6866x10-2 

-0.1614 

0.6137 

01203x101 

0.1283 
-0.9784 

Q/ix 

A" 

-0.1919X 

0.3365 

0.5415 
0.7240 
0.4994 

+0.1360X 

0.7931 

0.2473 
0.5530 

0.8366 
0.6411 
0.1826X 

-0.9362 X 

A 

-0.2312X 

0.1420 
+0.6034 X 

0.3615X 
0.1353X 

0.4237 
0.1169 
0.2803 
0.5502 
0.7729 

0.5630 
-0.5901 X 

0.8095 X 

A 

0.8135X 

0.4548 X 

0.1717X 

0.5626 
0.1696X 

0.4770 

0.1238 
0.2864 

0.3496 
0.7611 

0.5485 
-0.7332X 

0.7860X 

= 2 

10-2 

10-1 

10-2 

10-1 

= 4 

10-3 

10-3 
10-2 

10-1 

10-2 

10-1 

= 6 

10-^ 
10-3 
10-2 

10-1 

10-2 

10-1 

\K-i\ 

0.1986x10-2 

0.3631 

0.6478 
0.1148x10-1 
0.2157 
0.4674 

0.1121 

0.2632 
0.5550 
0.9864 

0.1368x101 
0.1332 

0.9811 

0.4127x10-3 

0.9180 
0.2414x10-2 

0.6795 
0.1877x10-1 
0.4995 

0.1237 
0.2810 
0.5686 
0.9781 
0.1329x101 

0.1291 

0.9815 

0.3209x10-3 

0.9395 
0.2822x10-2 

0.7640 
0.2061x10-1 

0.5298 
0.1282 

0.2865 

0.5729 
0.9777 

0.1323x101 
0.1283 

0.9815 

0 

-0.1310x101 
-0.1185 

-0.9896 
-0.6825 
-0.2336 
+0.2952 

0.7860 

0.1222x101 
0.1654 

0.2129 
0.2654 

0.3140 
-0.3046x101 

-0.5948 

0.1552 

+0.2527 
0.5611 
0.7992 
0.1013x101 

0.1237 
0.1500 
0.1826 
0.2230 
0.2704 

-0.3137 
0.3059 

0.2563 
0.5054 

0.6831 
0.8277 
0.9665 
0.1120x101 

0.1307 
0.1547 

0.1856 
0.2249 
0.2714 

-0.3136x101 

0.3061 
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TABLE 11.1 
(Continued) 

L/hi 

0.1 

0.2 

0.4 

0.8 

1.6 

3.2 

6.4 

0.1 

0.2 

0.4 

0.8 

1.6 

3.2 

6.4 

In /la; — 1 

0.2994x10-^ 
0.7923 
0.2032x10-2 

0.4964 

0.1120x10^ 
0.2188 
0.3087 
0.2324 

-0 .1674x10-1 

-0.6186 
0.1203x10^ 

0.1281 
-0.9785 

0.2944x10-3 
0.7786 
0.1995x10-2 

0.4870 
0.1096x10-1 
0.2133 

0.2971 

0.2224x10-3 

-0.1706 

0.6209 

0.1203x10^ 

0.1279 

-0.9785 

Q/ix 

A = 8 

0.1908x10-3 

0.6638 
0.2108x10-2 

0.6329 

0.1816x10-1 
0.4996 
0.1263 

0.2886 
0.5495 
0.7569 
0.5434 

-0.7833x10-2 

0.9362x10-1 

A = 10 

0.2414x10-3 

0.7604 
0.2288x10-2 

0.6650 
0.1971x10-1 
0.5042 

0.1274 

0.2895 
0.5494 

0.7750 

0.5410 
-0.8067x10-2 

-0 .7740x10-1 

\K-l\ 

0.3550x10-3 
0.1033x10-2 

0.2928 
0.8044 

0.2133x10-1 
0.5418 
0.1300 

0.2886 
0.5745 
0.9776 
0.1320x101 

0.1280 
0.9815 

0.3807x10-3 
0.1088x10-2 

0.3036 

0.8246 
0.2169x10-1 
0.5475 
0.1308 
0.2895 
0.5752 

0.9775 

0.1319x101 

0.1279 
0.9815 

0 

0.5672 

0.6973 
0.8037 
0.9057 

0.1018x101 
0.1155 
0.1331 

0.1563 
0.1867 
0.2256 
0.2717 

-0.3135x101 
0.3062 

0.6869 
0.7736 
0.8537 

0.9391 
0.1041x101 
0.1170 
0.1341 

0.1570 
0.1872 

0.2259 

0.2719 

-0.3135x101 
0.3062 
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Figure 11.5. Amplitude of the secondary field in an anisotropic medium. Curve index A. 
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TABLE 11.2 
Values of field h^ 

^ ^ i " 1.0 
U ^ ^ ^ ^ 

0.1 

0.2 

0.4 

0.8 

1.6 

3.2 

-1.000 

-1.000 

-1.000 

-0.927 
-0.364 
-0.232 

-0.247 
-0.613 

-0.528 
0.875 
0.808 

0.649 
0.487 

0.355 

1.2 

-1.000 

-1.000 

-1.000 

-0.937 

-0.448 
+0.908 X 
+0.138X 
+0.433 X 

-0.773X 

0.953 
0.844 
0.662 

0.492 

0.356 

10-^ 
10-1 
10-1 
10-1 

1.4 

-1.000 

-1.000 

-1.000 

-0.943 

-0.498 
+0.572x10-2 

+0.725x10-1 
-0 .300x10-1 
-0 .920x10-1 
-0 .101 

-0 .865x10-1 
0.669 
0.495 

0.357 

1.6 

-1.000 

-1.000 

-1.000 
-0.472 

-0 .531 
-0 .495x10-1 

+0.298x10-1 
-0 .523x10-1 
-0.102 
-0.105 

0.879x10-1 
-0 .674x10-1 

0.496 

0.358 

1.8 

-1.000 

-1.000 

-1.000 

-0.950 
-0.554 

-0 .874x10-1 

+0.563x10"^ 
-0 .678x10-1 
-0.108 
-0 .107 
-0 .884x10-1 

-0.678 
0.498 

0.358 

2.0 

-1.000 

-1.000 

-1.000 
-0.952 

-0.570 
-0.115 

-0 .204x10-1 
0.785 

-0 .113 
0.109 

-0 .895x10-1 

0.680 
0.499 

0.359 

11,3. Magnetic Field in an Anisotropic Medium with Two 
Horizontal Interfaces (A Formation of Finite Thickness) 

Making use of results obtained in the previous section we will define the magnetic field 
in a formation with finite thickness, when the medium is anisotropic. The main axes of 
the tensor of conductivity in all three media coincide with coordinate lines. Equation of 
interfaces: z = hi and z — —h2 (Fig. 11.6). 

All quantities characterizing the formation and the surrounding medium are denoted 
by index (2) and (1) or (3), respectively. We will assume that a]^ = a^^. In medium 
(2) the magnetic dipole is located at the origin of coordinates, and its moment is oriented 
along the x-axis. In accord with eq. 11.32 near the source the electromagnetic field 
can be described with the help of the vector potential of electric type A^^\ having two 
components: Ay ^ and Az : 

where: 

oo 

Air r J \ m2„ J 
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Figure 11.6. Model of anisotropic medium with two horizontal interfaces. 

here: 

kit = i^2t^/i kl^ = \(J2n^l^ rnl^ = [rv? - kl^f^ 

Potentials Jvy' and A^z ' satisfy the equations: 

1 \ 5Mr 
(v̂  + fcL)4°' = (i - x|) dzdy 

here 

^2 a^ 1 52 
Qrj.2 Qy2 ^ 2 Q^2 

For this reason potentials in a layered medium can be presented as: 

00 

^iy = ^ f DiMmr) e"̂ *̂" dm 
47r J 

0 
00 

A^y = 4 ° ) + ^ f{D2 e^-^' + Ds e--^*^) Jo(mr) dm 

0 
00 

M f 
A^y = -- D4e-^^*Vo(mr) dm 

0 

and 

(11.40) 

(11.41) 

(V' + 4 ) A y = 0 z = 1,2,3 



619 

and 

oo 

V M C 
^ i z ^ ^ ^ y F^{z)J^{mr)dm 

0 

r 47r 
A2z = A '̂̂  + - ^ f F2{z)J,{mr) dm (11.42) 

0 
oo 

2/ M 
^3z = - ^ / ^3(2:) J i ( m r ) dm 

0 

Making use of eqs. 11.40-11.42 we will obtain equations for the determination of function 
Fiiz): 

^ ^ - XlmlF,{z) = -mmuiXl - 1 ) A e™"^ 

d^2 
- A X n ^ 2 ( ^ ) = -mm2,(A^ - l ) ( D 2 e " - ^ - Z^se-"^'^) (11.43) 

^ ^3{z) - 2 ^ 2 F„Cr^ ^ r r , ^ . . a 2 _ n n . c - m i t « 
dz2 

'^i"^in-^3(^) = mmit{Xi - l)£>4e 

The solution of equations 11.43, taking into account the behavior of the field at infinity, 
is: 

Fi(z) = Ai e^^"^"" + -^Di e™"^ 
m 

F2iz) = A2 e^^™ "̂" + B2 e"^^™^"^ + — ( D 2 e™ '̂̂  - Z?3 e"™^'^) (11.44) 

F3(z) = Bse"^^"^"" - — D 4 e - ™ " ^ 

TO 

Substituting eq. 11.44 into eq. 11.42 we have: 

00 

A^,^ — y-[ (AI e^i^^-^ + — D i e^i*^) J i ( m r ) dm 
An r J \ m J 

0 
00 

^2^ = 4 0 ) + ^ ^ / (^2 e^^"^^-" + J52 e-^^^^-^ + — (i^2 e^^*" - D^ e"^^*^)) J i ( m r ) dm 
An r J \ m / 

0 

(11.45) 
00 

A3, = ^ - [ f ^ s e - ^ i ^ i - ^ - ^ D 4 e - ^ ^ * ^ ) J i ( m r ) dm 
An r J \ m / 

0 

For the determination of the unknown coefficients D i , D25 -^3 and D4, Ai , ^42, -B2 and 
Bs we will make use of the boundary conditions ai z = hi and z = —/i2- Continuity of 
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tangential components of electric and magnetic fields results in the following relations for 
Ay-. 

^ly = ^2y 

dAiy _ dA2y 

dz dz 

\i z = —h2 

My = My 
dA2y dAsy 

dz dz 

li z = hi 

(11.46) 

and more complicated relations for Az'. 

Alz = A2z A2z - A^z 

— d i v A i = — d i v A 2 — d i v A 2 = — d i v A a (^^ A ^ \ 
(^it (^2t cr2t OTst U^-^^'J 

if 2: = —/i2 ii z = hi 

Substituting eq. 11.41 into eq. 11.46 we obtain a system of equations for coefficients A : 

Di e'"^'*^^ = -m e-^2t/i2 _̂  j ^ ^ ^-m2th2 _^ ̂ ^ ^m2th2 

m i t ^ i e-^^*^2 = -mm2te~^2*''2 +m2tZ^2e"'^'*^' - D^e"^^'^^ 

mitZ)4 e-^^*'^^ - mm2t e'"^''^' - m2tD2 e"^^'^' + D3 e'^^t^i 

Solving the system, we find: 

1 _L / , „ (^-2m2th2 
2m2thi ^ ^ ^ 1 2 ^ 

-2m2tH 

(11.49) 

D2 = -mli2 e -, 7 9^ w 
1 - /i2e-2m2t// 

where l^ = (mu - m2t)/{mu + m2t). 
Now we will define coeflScients Ai and B;. Inasmuch as at 2 = —/i2 component Ay is 

continuous and correspondingly dAiy/dy = dA2y/dy, condition 11.47 can be written as: 

^ iz = A 2z 

^dAiz dA2z .^ ^.dA2y , (11.50) 

dz oz oy 

where St = 021!ou. 
By analogy, at 2: = /ii we have: 

A2z = Asz 

dz dz dy 
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Substituting eq. 13.45 in eqs. 13.50 and 13.51, we obtain the system of equations for 
coefficients Ai, A2, B2 and ^3 : 

m m2n 

m 

2 

m 
= - m ( l - 5 t ) A e - ' " " ' ' ' 

m m2n 

m 

2 

- X2m2nA2e^''^^-^' + X2m2nB2e-^''^'-^' - ^(D2e^2*'^^ + ^36"^^*^^ 
m 

= - m ( l - St)D^e-'^''^' (11.52) 

Making use of relations 11.48, establishing connections between coefficients Di, D25 ^3 
and D4, it is not difficult to reduce system 11.52 to the form: 

^-\iminh2 A _ ^X2m2nh2j^ _ g - A 2 m 2 n ^ 2 ^ _ ^2 t^2n ^-X2m2nh2 

m2n 

S X ^ ^ ^ Q-Ximinh2j^ _ ^ ^ 2 n ^ - A 2 m 2 n ^ 2 ^ _f_ ^ 2 ^ 2 n ^-A2m2n^2 ^ _ ^ g-A2m2n/i2 

m m m m 
- A i m i n / i i ^ _ g - A 2 m 2 n / i i ^ _Q-X2m2nhi-Q — ^2 t^2n ^-A2m2n/ti 

^ 2 n 

5 ' ;^ ^ ^ ^ g-Aim2n/ii J5^ _^ A 2 ^ ^ gA2m2n/ii^2 _ ^ 2 ? ^ 2 n ^-X2m2nhi -^^ =, _ h i g-A2m2n/ii 

m m m m 
(11.53) 

From this system we find: 

i^^.K p-2A2m2n/ii 
4 _ ^ ^ ^ ^ 2 ^ r _ _ r (^ _ /"^-2Aim2n/l2\ 

^ 2 - 'i_/-2e-2A2m2nif V̂  ê ; 
(11.54) 

k^^Jc^ p-2A2m2n^2 
p _ ^2 t^2n F e . 7- -2A2m2n/ii\ 

where 1 = {StXimin - X2m2n)/{StXimin + A2m2n). 
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TABLE 11.3 
Values of amplitude of the secondary magnetic field; L//i2t = 0.1, H/L = 

^ " " " 7 ^ - . ^ ^'^ 1.2 2.0 

1/8 0.233x10-1 0.158x10-1 
1/2 0.103x10-1 0.516x10-2 

= 2 

4.0 

0.126x10-1 
0.265x10-2 

Expression for horizontal component of magnetic field Hx on 2;-axis within the formation 
has the form: 

^ ^ dA, dAy 
dy dz 

0 

(11.55) 

if —/12 ^ z ^ hi. 
Results of calculations based on this equation are presented in Figs. 11.7-11.10. They 

are performed for various values of coefficient of anisotropy and parameters S = 02tlcF\t-, 
a = H/L for symmetrical position of the probe with respect to the formation boundaries. 

Let us consider a field when the surrounding medium is isotropic (Ai = 1). Consider 
again frequency responses of the amplitude of the secondary field in a uniform isotropic 
medium (Fig. 11.5). 

As is seen from the curves, the infiuence of the coefficient of anisotropy on the ampli-
tude responses is significant at the range of relatively low frequencies L/ht < 0.5, when 
parameter A does not exceed two. The expression for the quadrature component permits 
us to find an approximate relation between maximal values of L/ht and A, when it is still 
possible to differentiate curves by A, and it has the form: 

1 IL_ ^ . ^ 
A 2 ^ 3 / i , "" ' / i , ^ A2 

First consider the behavior of the field when the formation is more resistive than the 
surrounding medium (Figs. 11.7-11.8). In measuring the field in a relatively resistive 
formation of a small thickness the influence of a change in the conductivity of the sur-
rounding medium exceeds the influence due to a change of anisotropy coefficient of the 
formation. 

It is natural that with an increase of the formation thickness the influence of parameter 
A2 becomes stronger, specially it is noticeable within the intermediate part of the frequency 
response, the low boundary of which corresponds to the frequency, when due to the skin 
effect the inffuence of the surrounding medium is small. It is obvious that in measuring 
the anisotropy coeflScient in formations of a small thickness, it is reasonable to increase 
significantly the frequency. 

With an increase of the resistivity of the surrounding medium the influence of anisotropy 
increases, and it becomes possible measuring A2 even in formations with relatively small 
thickness. 
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For illustration values of amplitude of the secondary field for various (J2t/(^i and A2 for 
fixed values of L/h2t and H/L are given in Table 11.3. 

In conducting formations {(J2t/(^it > 10) the magnetic field coincides with that of a 
uniform anisotropic medium, if H/L > 2. 
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Chapter 12 

MATHEMATICAL MODELING OF THE RESPONSE 
OF INDUCTION LOGGING TOOLS IN 3D 
GEOMETRIES 

The rapid expansion of horizontal drilhng has accelerated the development of numerical 
methods to calculate the responses of 3D induction logging models that include anisotropic 
bedding and deviated boreholes with invasion. Indeed, in deviated well with noncylindrical 
invasion caused by gravity segregation, it is practically impossible to interpret induction 
responses without 3D modeling. 

The most common numerical methods used in 3D induction logging modeling are 
method of integral equations and finite element and finite difference schemes. During 
the last years the most successful use of the finite difference method in resistivity logging 
has been 3D modeling of induction response, using the spectral Lancsoz decomposition 
method of V. L. Druskin and L. A. Knizhnerman. Their outstanding results make it fea-
sible to routinely use 3D modeling for model-based interpretation, a breakthrough in 
induction logging. 

The text of this chapter is based on numerous papers of the above mentioned authors 
and their colleagues. 

Let us consider the frequency-domain problem for Maxwell's equations: 

cmlE-\-iuJi^H -=0 (12.1) 

cuT\H-aE = -J (12.2) 

Here, E and H are electric field vector and magnetic field vector, respectively. Vector 
J is the external current source vector. The symbols a = a{x^y^z) and ji stand for 
conductivity function and magnetic permeability constant, respectively; /i is assumed to 
be constant (// = 1). For simplicity only electric sources are considered and displacement 
currents are assumed to be negligible. 

Applying the operator curl to both sides of eq. 12.1 and substituting eq. 12.2 to eq. 12.1, 
we obtain the equation for the electric field E: 

a~^ curl curl E -h iujE = lujcj) (12.3) 

The operator A and the source function 0 are defined in a following manner: 

^ = a~^ curl curl (12.4) 
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(l) = a-^J (12.5) 

Then eq. 12.3 becomes 

{A -h iu;I)E = ia;0 (12.6) 

Here / is a unit matrix. The solution of eq. 12.6 is in the form of the matrix equation: 

E = {A-\- iuiyHcuct) (12.7) 

It should be mentioned that operator A in eq. 12.4 is the finite-difference approximation 
of a~^ curl curl. Otherwise A would be unbounded and its Krylov subspace may even not 
exist in regular functional spaces. 

In reality an unbounded problem is considered with electromagnetic field vanishing in 
infinity, but for computational purposes the bounded domain Q is assumed: 

^t. = \\X^ y^ Z) : XjYiin ^ ^ ^ Xmaxi ymin ^ V ^ Vmax') ̂ min ^ ^ ^ ^maxj yiZ.o) 

At the domain boundary the following boundary condition is imposed: 

E X n\dn -= 0 (12.9) 

where n is a unit normal vector directed outwards from the domain surface. 
The great success in solving boundary value problem of eqs. 12.7 and 12.9 was obtained 

by using the spectral Lanczos decomposition method (SLDM). SLDM was first introduced 
by Druskin and Knizhnerman to solve Maxwell's equations in both frequency and time 
domain (Druskin and Knizhnerman, 1988, 1994). 

The SLDM algorithm can be summarized as follows. The numerical approximation 
of eq. 12.7 is performed by applying the Lanczos method generating the eigenvectors of 
matrix A. Then the solution is represented as a projection into the Krylov subspace 
/^-(A0): 

K'^iA, (f)) = span{0, A 0 , . . . , A^" V } (12.10) 

The Gram-Schmidt orthogonalization of the frequency independent vectors 0, A(f) pro-
duces the orthonormal basis {qi,- • • ,qm} by the Lanczos process so that 

K - ( A 0 ) - s p a n t e , . . . , g ^ } (12.11) 

If we denote 

Q = ( 9 i , . . . , U (12.12) 

the Lanczos process can be summarized by 

AQ = QT (12.13) 
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where T is the tridiagonal matrix. It is appropriate to note that the Gram-Schmidt 
orthogonahzation in the Lanczos method is performed with only three-term recursion, 
i.e., the cost is Unear with respect to m (otherwise it would be quadratic). 

As a result the approximate solution for the electric field E at the nodal points is then 
obtained by solving the system: 

E = \\(f>\\Q{T + iujI)-huje, (12.14) 

where ei = (1, 0 , . . . , 0)^. 
It should be underlined that SLDM calculates a basis in K^ just once and then utilizes 

it to produce solutions for all values of frequency uj using the same projection principle. To 
say it in other words, SLDM can compute solutions for a multiple number of frequencies 
at almost the computational cost of a single frequency. 

One comment should be made. The Lanczos method was suggested by Lanczos in 
1950's. About 20 years this approach was kept in the background because of its well-
known instability. In the 1970's Paige obtained important results clarifying behavior of 
the simple Lanczos process in computer arithmetic. In 1990's Druskin and Knizhnerman 
managed to obtain for computer arithmetic the following important result: the Lanczos 
process is unstable by itself, but error bounds remain stable with respect to round-off. 

The practical implementation of the algorithm shows that the convergence of SLDM de-
pends on the conductivity contrast and frequency: the convergence slows at high contrasts 
and low frequency. To clarify this feature one can consider the eq. 12.7. The function 
{A -f- [(JJI)"^ can be formally written as 

oo 

{A -h iujl)-^ = ^(- l)^(ia;)-(^+^M^ (12.15) 
fc=0 

It can be seen that the convergence of the truncated series depends on the value of LO: 
the convergence rate is slower when frequency LO is smaller. To overcome this problem 
the authors of SLDM proposed a new approach for solutions to Maxwell's equations — a 
preconditioned modification of SLDM for low frequencies. This new method is based on 
the standard SLDM but with Krylov subspaces generated from the inverse powers of the 
Maxwell operator. In Druskin et al. (1999) this method is referred to as spectral Lanczos 
decomposition method using inverse powers, or SLDMINV. 

To clarify the essence of SLDMINV one can consider the function {A-\-i(jjI)~^ in eq. 12.7. 
It can be rewritten as: 

{A -h iLuI)-^ = -iuj-\A-^ - iuj-^iy^A-'^ (12.16) 

From the formal point of view: 

oo 

{A-^ - iuj-'l)-^ = ^ ( - l ) ^ ( i c j ) ^+ i^ -^ (12.17) 
fc=0 

Comparing eqs. 12.16 and 12.17 one can conclude that the truncated series in eq. 12.17 
should converge faster than that of eq. 12.15 when the frequency UJ is small. This formal 
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fact suggests that a faster convergence rate can be obtained for small values of uo if we 
use SLDMINV, or SLDM with Krylov subspace i ^ ^ ( A - \ 0 ) : 

K'^{A-\ (j)) = span{0, ^ " V , • • •, ^"^"^"'V} (12.18) 

In this case the solution of eq. 12.5 can be written in a following manner: 

E = {A-^ - i c j -^ / ) -M-V (12.19) 

This new approach is particularly effective in lower frequency ranges. SLDMINV has a 
significantly faster convergence rate than that of standard SLDM yet retains the advan-
tages of SLDM, such as the ability to solve for multiple frequencies in a single simulation 
run, matrix operations in real arithmetic, and the ability to eliminate numerical spurious 
modes. The new solution technique is applied to model induction logging, giving rise to 
almost two orders of magnitude convergence improvement over the conventional Krylov 
subspace approach. 

Some comments should be made. 

1. The staggered grid modehng approach (Yee, 1966) has been successfully applied to 
solve problems of calculating electromagnetic field in arbitrary 3D isotropic media. The 
using of staggered grid is very attractive in the mathematical modeling of electromagnetic 
fields, since these grids naturally preserve the solenoidal nature of magnetic field vector B 
and current density vector j and, in the case of direct current, the irrotationality of vector 
E. However, developing this approach for practically important 3D anisotropic models 
with arbitrary tensors of electrical conductivity, magnetic and dielectric permeability hap-
pens to be very complicated. Yee's algorithm is based on calculation of different electric 
field components at different space points, but the electrical conductivity tensor relates 
these components taken at the same point. 

To avoid this difl&culty, another staggered grid was used by the authors of SLDM. It is 
based on a general approach, suggested by Lebedev (Lebedev, 1964). This grid locates 
all components of the electrical field at the same points, however vectors of magnetic and 
electric fields are at different points. Similar to Yee's grid, in this approach differential 
analogs of the operators divcurl and curlgrad become identically equal to zero on the 
grid, by analogy with their continuum counterparts. It is an important feature for a good 
field approximation if every discrete Maxwell's equation has all conservation properties of 
its continuous counterpart (Davydycheva and Druskin, 1995; Moskow et al., 1999). 

It should be noted that SLDM is related to other Krylov methods (Greenbaum, 1997) 
such as BiConjugate Gradient (BCG) method (or its modifications such as QMR), also 
used in induction logging simulations. But compared to the latter it (SLDM) is in real 
arithmetic and computes for multiple frequencies at no cost. 

2. Mathematical modeling of electromagnetic fields in 3D environment include prob-
lems when the medium contains sharp discontinuities, e. g., thin layers with high contrasts, 
earth formations with cross-bedding structures, etc. Sharp discontinuities can often in-
troduce errors within the standard finite-difference approach, unless the interfaces are 
gridded in details which may require grids of unrealistically large sizes. Traditionally such 
problems are circumvented with finite difference methods with conformal grids. In 3D 
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anisotropic medium with anisotropy tensor arbitrarily oriented in space, such approaches 
become difficult to implement. 

An averaging formula used in SLDMINV (called the nodal averaging formula) is based 
on discrete energy conservation principle. Authors used an equivalent medium approach 
that allows homogenization of the medium enclosed inside a grid cell. This averaging 
allows for the change in conductivity to be in any direction with respect to the grid. 

It should be emphasized that averaging technique does not require the grid to be small 
compared to the layering. These results can be considered as an outgrowth of the integro-
interpolation finite-difference schemes. This term first appeared in the Russian literature 
in the papers of Tikhonov and Samarsky in the 1960's (in Western literature the closest re-
lated technique is called the external approximation). However, only conformal variations 
of conductivity were treated in the classical integro-interpolation method. 

3. In the mathematical modeling of the induction logging problems, it is assumed very 
often that the sources and receivers are located at the borehole axis. Generally speaking 
one needs to compute tool's readings only along this line and is not interested in accurate 
solutions elsewhere. It is evident that the grid should be refined toward the source-receiver 
locations, but until recently it was not known how to optimize such refinements. 

It was shown some years ago (Druskin and Knizhnerman, 1999) that a proper grid 
refinement (so-called optimal grids) can make second order finite difference schemes ex-
ponentially convergent. They use only asymptotical spectral properties of the Green 
functions and in many cases it can be done a priory independently of the conductivity 
model. This can be achieved by using the asymptotically-optimal grids outside the region 
where the transmitters and receivers are situated. 

To say it in other words, without loosing accuracy of the finite difference scheme, the 
number of nodes of the optimal grid along each direction can be reduced to just a few 
ones, if the steps are arranged in a specific way. It can be considered as an extension of 
the concept of the Gaussian quadrature rule for the numerical integration to the finite 
differences. 

The authors of SLDMINV performed numerical experiments to model the response of 
AIT, Schlumberger's array induction tool, which operates at three frequencies (26 kHz, 
52 kHz, and 105 kHz). AIT tools use specially designed processing methods to combine 
several measurements in such a way as to create a log focused at a designated region 
of the formation. A total of five logs are generated. These logs have median depth of 
investigation of 10, 20, 30, 60, and 90 inches. 

It was demonstrated that the convergence of SLDMINV is two orders of magnitude 
faster than the standard SLDM. Therefore it is possible to simulate multi-frequency in-
duction log at about 20 sec per log point for complex 3D environment on a SGI workstation 
with a MIPS RIOOOO processor. 

Now let us consider the results of 3D mathematical modeling obtained with SLDM 
code. These data were published in Anderson et al. (1999). In this paper the authors 
investigate actual 3D logging situations for the AIT family of tools: 

• invaded dipping-bed formations 

• invasion in a horizontal well 
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Figure 12.1. AIT logs in the horizontal well with shallow invasion {di = 24 in.) at a series 
of positions above and below a sand-shale interface. 

• noncircular invasion fronts 

• buoyancy-influenced invasion shapes 

• vertical fractures with heavy oil-base mud 

• invasion in horizontal wells drilled into anisotropic formations. 

In all the cases the borehole environment is not modeled. The reason for excluding 
borehole effect is to compute logs that are borehole-corrected like the AIT field logs. 

Case 1: Invasion in a Horizontal Well 

Consider a set of two-layered models with one horizontal interface (Figs. 12.1, 12.2). These 
models simulate shallow and deep invasion, respectively, in an oil bearing permeable sand 



633 

1 

0) o c 

s 
(O 

CO 
• D 
C 
D 
O 

X3 

o 

i 

Resistivity, ohmm 

10 100 
-16 

-12 H 

- 8 H 

- 4 

0 

4 

8 

12 H 

16 H 

20 H 

24 

28 H 

32 

_j I I I I I 11 _j I I I I I I 

Bed boundary 

im 48 in. 
t Distance varied 

3)-
Invasion 

invasion 
with Interface 

interface only 
AF10 
AF20 
AF30 
AF60 
AF90 

Invasion 
only 

Figure 12.2. AIT logs in the horizontal well with deep invasion {di = 48 in.) at a series 
of positions above and below a sand-shale interface. 

bed below a cap shale interface. The geometry is shown at the top of Figs. 12.1, 12.2. 
Circular invasion front is assumed and the invasion exists only in the permeable sand bed 
and not in the impermeable shale. To study the effect of invasion the tool is positioned 
parallel to the bed boundary and the distance between the tool's axis and sand-shale 
interface is varied. It's evident that as the tool crosses the interface, the invaded zone is 
truncated. 

In addition to the SLDM solution limiting analytical solutions for two cases are also 
shown in Figs. 12.1, 12.2: (a) tool crossing the boundary with no invasion (interface only); 
(b) invasion takes place at the infinite distance from the boundary (invasion only). 

From these curves some conclusions can be made. 

Shallow invasion: 

• In the case of shallow invasion, the deeper 60 and 90-in. AIT curves track ID limit 
(interface only) while the shallower 10, 20 and 39-in. curves are shifted in sequence 
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toward R^o-

• The curves tend to values of ID limit (invasion only) at +32 ft. 

Deep invasion: 

• In the permeable bed the AIT curve with the depth of investigation of 10 inches 
(10-in. curve) reads practically the resistivity of the invasion zone, Rxo-

• The 90-in. curve tracks the curve corresponding to the first limiting case (interface 
only) and at a considerable distance below the boundary (over 20 feet) tends to the 
value of the bed resistivity, Rt. 

• The 20, 30 and 60-in. curves fall in between 10 and 90-in. curves. 

These results show that the deepest curve can be used to evaluate Rt, while the 10-in. 
curve indicated Rxo (shallow invasion). The separation between intermediate curves can 
be used with caution to estimate the depth of invasion if the distance below the boundary 
is greater than 14 feet. 

In highly deviated wells the readings of conventional induction tools depend on resis-
tivity anisotropy, which was undetectable in vertical wells. To perform the interpretation 
of logs in horizontal wells it is therefore important to have a modeling code making it 
possible to take anisotropy into account. 

The Schlumberger version of SLDM code (called MAXANIS) was developed to model 
the diffusion problem at the time and frequency domains. MAXANIS uses staggered 
Lebedev grid and can calculate electromagnetic field in 3D anisotropic models containing 
blocks inclined in arbitrary directions. The code includes zero frequency solution as a 
limiting case. 

Let us consider the example of how anisotropy further complicates the already compli-
cated interpretation of invasion in a horizontal well. Fig. 12.3 shows the same configuration 
as Fig. 12.2, but with the lower bed considered as an anisotropic one. The invaded zone 
is isotropic. 

One can see that the behavior of the five AIT curves in Fig. 12.3 is similar to Fig. 12.2: 
10-in. curve reads Rxo, the deepest (90-in.) curve tends to the response in the layered 
medium and three other curves are separated between them. However, limiting values 
of responses (interface only) are now an average of R^ and Ry. Imaging mentally that 
vertical lines indicating R^, and Ry were removed. Then it would be difficult to determine 
tha t anisotropy was present. In such a case the behavior of resistivity curves alone gives 
no chance to distinguish between isotropic and anisotropic models. Additional knowledge 
is needed. 

Case 2: Resistive Fracture 

The AIT tool was introduced in 1992 and soon after that several previously unreported 
phenomena were encountered. One of the strangest was the curve separation in shale 
zones around well drilled with very heavy oil-based mud (OBM). Several examples exist 
when the logs separated in the shales and came together in the sands. Since many of these 
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Figure 12.3. AIT logs in the horizontal well with deep invasion into lower anisotropic bed. 
Well configuration is of Figure 12.2. 

phenomena were from the Gulf of Mexico, where formations are usually soft, suspicion 
fell on the possibility of hydraulic fracturing by the heavy (> 2.25g/cm^) mud. Although 
arguments could be made about the fractures filled with OBM and therefore breaking up 
the current density near the borehole, no quantitative evidence was available for induction 
tools. 

In order to evaluate possible effect of fractures parallel to the borehole axis on the AIT 
logs, the SLDM code was implemented to model a simple fracture geometry. A bilateral 
fracture along the borehole axis (Fig. 12.4) was modeled at several symmetric fracture 
depths. Fig. 12.5 shows the AIT logs in the case of very heavy oil-based mud. A fracture 
thickness of 1 in. was used to conform grid requirements of the code. Although this value 
is much greater than that of the fracture revealed while drilling, it is a good worst-case 
model for a resistive barrier. The main effect is to break the current lines around the 
wellbore. It should be noted that there is a confirmation that the effect of heavy muds 
will be to generate fractures that run radially from the borehole when wellbore pressure 
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Figure 12.4. Geometry and formation parameters used to model a hydraulic fracture 
caused by very heavy oil-based mud. 

greatly exceeds formation strength (Aadnoy and Bell, 1998; Bratton et al., 1999). 
Modehng results shown in Fig. 12.5 agree quahtatively with those seen on field logs. 

Separation of the 60 and 90-in. logs has even been seen on some field logs. This indicates 
resistive fractures with considerable fracture depth. 

Fig. 12.6 shows AIT response for the case of salty mud. A fracture thickness of 1 in. was 
also used for this case. One can conclude that there is very little separation between the 
curves for the conductive fractures of the same size. The cited above references concluded 
that: 

• Under the same stress conditions, the fracture mechanism should be the same 
whether the mud is oil-based mud or water-based mud. 

• The fracture pattern is extremely dependent on existing tectonic stresses. 

Although separation of field AIT curves has been observed in conductive heavy mud, 
from Fig. 12.6 we see that the most likely scenario is a network of connected fractures 
which lowers the total resistivity near the wellbore. The case where the AIT logs showed a 
conductive invasion pattern in shales was in a formation that was under extreme tectonic 
stress. 
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