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INTRODUCTION

Induction well logging is an established method for surveying the electrical conductivity
of rocks surrounding a borehole and proceeded from the early efforts of H. G. Doll (1949,
1952). In its simplest form, an induction well-logging device consists of two coils; one
is a transmitter and the other is a receiver. The transmitter coil is energized with an
alternating current at frequencies of twenty kilohertz and much higher, while the electro-
motive force, caused by a change of the magnetic field, is detected at the receiver coil.
In almost all cases with some important exceptions, the axes of the coils are coincident
with the axis of the borehole. The separation between the transmitter and receiver coils
is termed the probe length, and this parameter is commonly used to control the depth of
investigation of the logging device away from the borehole axis. The electromotive force,
which is detected at the receiver coil, is linearly dependent on the amount of the current
provided to the transmitter coil, as well as strengths of currents that are induced in the
surrounding medium. The actual distribution of these additional currents depends on the
electrical structure of the medium, and in particular, on the conductivity. For this reason,
by measuring the electromotive force in the receiver coil one can, in principle, determine
the conductivity of the formation opposite which the induction device is located.

In those cases, when the borehole axis is perpendicular to the boundaries between
formations, the current flow path in the medium forms a circle, located in a horizontal
plane and centered on the borehole axis. Correspondingly, induction logging is very
sensitive to thin conductive layers, but it has difficulty in detecting relatively thin and
resistive beds.

H. Doll also introduced the differential multi-coil probes, which became very efficient
logging tools and defined the path of development and application of induction logging
over almost forty years. The use of these differential measurements in induction logging
provides a result in which the effect of the borehole fluid, and in many cases also the
invasion zone, on measurements is greatly reduced. Such devices are described in detail
in this monograph.

H. Doll did not only invent induction probes, but also suggested a very useful though
approximate theory for the method, which helped immensely to develop principles of an
interpretation and to aid in the design parameters of focusing probes. For simplification
of the mathematical problem Doll has considered that the induction coils on the logging
tool are essentially magnetic dipoles, and for sufficiently low frequencies or a highly re-
sistive medium the skin effect can be neglected. In other words, an interaction between
the various induced currents is not strong enough to affect their magnitude appreciably.
Respectively, the currents everywhere in the medium are in phase with one another, this
phase being ninety degrees shifted with respect to the current in the transmitter coil.

With these approximations the magnitude of the current, induced in the formation at
any point, can be calculated by using quite simple formulae. This also allows the definition
of a straightforward geometrical factor, which characterizes the relationship between the



magnetic fields and the conductivity at an arbitrary point of a medium. According to this
approximate theory, the magnetic field, contributed by the induction currents, has only
the quadrature (out-of-phase) component, with the in-phase component of the magnetic
field being zero.

The concept of the geometric factor for an assembly of elementary rings with centers
located on the axis of the borehole plays an essential role in Doll’s theoretical approach.
By using such geometrical factors Doll was able to calculate the electromotive force, arising
in the receiver and caused by various parts of a medium, and to investigate the vertical
and radial responses of different induction probes.

The approach, developed by Doll, is so satisfactory that it remains virtually unchanged
in developing procedures of interpretation, if the so-called induction parameter is suf-
ficiently small. Of course, this theory is valid when the electric field is tangential to
boundaries and, correspondingly, surface charges are absent.

In almost sixty years, since the first development by H. Doll, research on various aspects
of induction well-logging has been carried out around the world, and there have been
some rather significant advances in theory, interpretation, probe design and equipment.
Moreover, completely new modifications of induction logging have been developed and
their principles are described in our monograph. As a result of the efforts of scientists and
engineers in the United States, former Soviet Union and other countries, induction well-
logging has become the most powerful tool for a determination of formation conductivity
in uncased wells.

Because much of the development of induction logging was done in proprietary research
by logging services and oil companies, the technical articles that appeared in journals
do not properly reflect the real volume of research that has been done on the method.
For this reason, it is probably impossible to attribute the proper respect to everyone
who has contributed in the development of induction well-logging in the western commu-
nity. Among those who carried through the work started by H. Doll, are J. H. Moran,
K.S. Kunetz, W. C. Duesterhoeff, J. L. Dumanoir, M. P. Tixier, M. Martin, A. J. deWitte,
and D. A. Lowitz. Later their activity was continued by S. Gianzero, J. Tabanou, B. An-
derson, T. Barber, G. Minerbo, B. Clark, S. Chang, V. Druskin, T. Habashy, and many
others.

In the USSR, parallel development of theory, interpretation and equipment of induction
logging, based on Doll’s concepts of the geometric factor and focusing probe, was started
at almost the same time. Also, during this research, new modifications of induction
logging were introduced and some of them became conventional and are now used over
the world.

Theoretical investigations performed by L. Alpin, S. Akselrod, A. Kaufman, Y. Ku-
dravchev, and V. Nikitina allowed us to understand the behavior of the quasistationary
electromagnetic fields, caused by the magnetic dipole in a medium with cylindrical as well
as horizontal interfaces. These studies helped to design equipment and focusing probes
with optimal radial and vertical characteristics (S. Akselrod, M. Plusnin).

Almost from the beginning, the frequency of the transmitter current was chosen much
higher than in the west, and it was done in order to improve the vertical responses of
probes (Kaufman, 1962). At the same time, it was demonstrated that the quadrature and
in-phase components of the secondary magnetic fields deliver a different depth of investi-



gation (Kaufman, 1959). For this reason, it is natural that the conventional equipment
of induction logging is able to measure both these components.

As was pointed out, the remarkable simplicity of Doll’s theory is related to the fact
that interaction of induced currents is neglected. In order to take into account this effect
and improve the quality of an interpretation of logging data, a new approach, also an ap-
proximate one. was suggested (Kaufman, 1962). This method allows us relatively quickly
to evaluate the field, subjected to an influence of the skin effect in a formation, when
there are both cylindrical and horizontal interfaces. Much later, this rather complicated
problem was solved by V. Dimitriev, L. Tabarovsky, V. Zakharov using the method of
integral equations.

At the beginning of the 1960’s there was the first attempt to develop induction log-
ging without the use of multi-coil focusing probes. By analogy with the lateral logging
soundings with lateral probes, widely used in the former Soviet Union, the induction lat-
eral soundings were suggested (Kaufman, 1962). The patent was applied, several papers
were published that described principles of an interpretation of the apparent conductivity
curves with two- and three-coil probes of a different length. Additionally, an influence of
the in-phase component of the magnetic field on the radial responses was studied, as well
as the use of different frequencies for probes of different lengths.

At that time, the logging industry was not ready to accept this approach and rejected
it. However, with time, attitude to multi-array systems was completely changed, and
during the last twenty years this type of induction logging has been widely used as the
conventional method. To a great extent its progress is related to the development of
the dielectric logging. At the beginning, borehole measurements of the dielectric con-
stant of formations were performed with a tool that is similar to the capacitor. Then, it
was suggested to measure this parameter inductively, that is, using the induction probe
(Kaufman, 1963). This approach was successfully developed by D. Daev, who introduced
a new approach, namely, measuring the ratio of amplitudes of the magnetic field and the
difference of phases with the three-coil probe. It turned out that measurements of these
parameters in induction logging also provide excellent radial and vertical responses, if
frequencies are properly chosen. For this reason, they are either measured or calculated
in the multi-array tool, as well as in the logging while drilling.

At the end of the 1960’s serious attention was paid to other modifications to induction
logging. One of them is based on the use of transient fields, when measurements are
performed in the absence of the primary magnetic field (Kaufman and Sokolov, 1972).
The study of the secondary fields, caused by induced currents in a medium with either
cylindrical or horizontal interfaces allowed one to describe the radial and vertical responses
of the two-coil probe and find the most optimal range of time for measurements.

Finally, theoretical investigations were performed which demonstrate that induction
probes with special orientations of coils allow us to evaluate an anisotropy of formations
(Kaufman and Kagansky, 1971). This study is also useful for application of induction
logging in horizontal wells.

In this monograph we describe the physical principles and theory of almost all possible
modifications of induction logging. At the same time, such topics as inverse problems are
out of the scope of this book.

A need for a fundamental understanding of principles on which induction logging is



based does not require any special justification. The first chapter of this monograph is
devoted to an explanation of the physical laws of classical electrodynamics and provides
this background.

In the last chapter of the book we consider the outstanding results obtained by
V. Druskin and L. Knizhnerman in 3D mathematical modeling of the response of in-
duction logging tools in complicated models of a medium.

We would like to note that the theory of induction logging presented in this volume can
be applied not only to logging after drilling but to logging while drilling as well.



Chapter 1

BASIC ELECTROMAGNETIC LAWS AND
MAXWELL'S EQUATIONS

This chapter describes the principal laws of electromagnetism, which are important in
electrical logging methods based on the use of direct and alternating fields. Although these
laws are treated in numerous excellent books, examples and models, usually given, are not
very appropriate for understanding the behavior of the fields in nonuniform conducting
media. The purpose of this chapter is to present the basic laws of electromagnetism
from a point of view that will facilitate the application of the theory to problems in
electromagnetic logging.

We will first consider the laws of Coulomb, Biot—Savart and Faraday, emphasizing their
experimental origin and the areas in which they can be applied. The relationship between
these laws and Maxwell’s equations will then be described to further explore their physical
meaning and especially the precise sources of electric and magnetic fields.

Special attention will be paid to the set of equations which describes the quasistation-
ary or quasistatic fields and provides an accurate model for induction logging, with the
exception of dielectric logging where very high frequencies are used.

We will finally consider the formulation of the Helmholtz equations for magnetic and
electric vector potentials, which are useful in solving boundary value problems in a con-
ducting medium.

1.1. Coulomb’s Law

As a starting point, we will assume that the reader accepts the concept that an electric
charge is the source of an electric field. As a consequence, the distribution of electric
charges is the main factor in controlling the field. In describing electric fields, we will
make use of such functional descriptions of charges as volume, surface and linear densities
of charge.

The volume density of charge, §, is defined by the equation:

de

0= Jm v

(1.1)
where de is the charge in an elementary volume dV. It is clear that as the element of
volume dV decreases, the charge in the elementary volume decreases as well. In the limit,
as the ratio of the total charge to the volume remains constant, we obtain a nonzero
charge density.



de =6hdS

Figure 1.1. Definition of an element of charge within a thin layer.
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Figure 1.2. Definition of linear charge density.

The volume density of charge is the most general way in which to describe a charge
distribution, but in some particular cases, we might also wish to define such functions as
a surface or a linear density of charge. Suppose that the volume density ¢ is invariant in
the direction perpendicular to the surface of the thin layer (see Fig. 1.1). The clementary
volume charge can then be written as:

de = 6hdS

where h is the thickness of the thin layer and dS is an elementary area of its surface.
Let the thickness h tend to zero while the charge density § increases without limit in
such a way that the product éh remains constant; we thereby obtain a definition for an
elementary surface density of charge:

de = ¥.dS (1.2)

where Y. is the surface density of charge.

Similarly, when charges are distributed in a rod-like volume of small cross-section, as
shown in Fig. 1.2, and we are only concerned with the field at distances which are far
greater than its dimensions dh; and dhs, it is often convenient to define a linear elementary



change de and a linear density A as follows:
de = Adl (1.3)

In doing so, we replace the volume within the rod by a line that carries the same amount
of charge.

On occasion, it is also convenient to define a point charge e by assuming that the whole
charge density under consideration is concentrated within an infinitesimal distance about
a single point in the medium.

Elementary volume, surface and linear charges have a common feature in that they
are situated within volumes of which at least one characteristic dimension is very small
with respect to the distance to the point at which the field is being observed. They differ
from each other in unit dimensions. The volume density for an elementary volume charge
always remains finite, while for elementary surface and linear charges, the volume density
must be assumed to increase without limit within the charged volume. Actually, in accord
with eq. 1.2 we have:

§=%/h ash—0

Inasmuch as X is finite, the volume density of surface charge becomes infinite as the
function 1/h becomes infinite.
For an elementary linear charge, we have:

§ = A/dhydhy

where dh; and dhsy are the linear dimensions of the cross-section (Fig. 1.2). As dh; and
dh, tend to zero, the volume density of linear charge increases without limit more rapidly
than was the case for a surface charge.

The dimensions for charge densities are also different for each type of distribution. The
proper units for volume charge density are Coulombs per cubic meter. For surface and
linear charge densities, the unit becomes Coulombs per square meter and Coulombs per
meter, respectively. These differences in units must be carefully looked after in problems
in which these approximations are used. As one might expect, these various degrees of
concentration of charge into linear or sheet-like volumes result in different behaviors of
the electric field near these charges. A point charge has the distribution characterized by
the maximum concentration of charges in a volume, with the volume density of charge
going to infinity as 1/h% (here h is taken to be the linear dimension of an elementary
volume around the point where the charge is suppose to concentrate).

Now let us discuss the main subject of this section, that is, Coulomb’s law. Experimen-
tal investigations carried out by Coulomb and other researchers have shown that the force
acting between an elementary charge de(q) situated at point g and another elementary
charge de(a) situated at point a, is described by an extremely simple expression:

_ 1 de(g)defu)

- L, 14
4reg L3, 7 (1.4)
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Figure 1.3. Definition of the sign of the force defined by Coulomb’s law.

where Lg, is the vector:
Ly, = L, L°
qa qa*qa

with Ly, being the distance between points ¢ and a, while Lga is a unit vector directed
along the line connecting points ¢ and a, and &, is a constant known as the dielectric
permeability of free space. In the practical system of units, this constant is:

1 _
Ep = 567_'(- X ].0 9 F/m
also:
L _9x10° /F
471'50 - m

Equation 1.4 can be rewritten as:

1 de(q)de(a)
Cdmey L2,

LY, (1.5)

The electric force of interaction between two elementary charges is directly proportional
to the charge strengths, inversely proportional to the square of the distance between them,
and has the same direction as the unit vector Lga when charges are of the same sign, or
the opposite one when charges are of opposite sign (see Fig. 1.3).

This expression is of course valid only as long as the distance between charges is far
greater than the dimensions of the volume wherein the charges are situated. In order to
define the electrical force of interaction between charges when one or both are contained in
volumes possessing dimensions comparable to the distance between the charges, one must
make use of the principle of superposition. According to this principle, each charge exerts
a force on every other charge such that the size of the force is independent of the presence
of additional charges. Using this principle, an arbitrary volume distribution of charges
can be represented as a sum of elementary volumes. For example, the force between an
elementary charge at point a, de(a),and a charge distributed in a volume V| as is shown
in Fig. 1.4, can be written as:

de(a) [ d(q)dV

— andvy 1.
dmeg Ly, (1.6)
14



Figure 1.4. Distribution of charge in a volume.

where ¢ indicates the position of any point within the volume V. The total electric force
F(q) is the vector sum of all individual forces contributed by the individual elementary
charges.

Extending this approach to a more general case in which all types of charges are present
(volume, surface, linear and point charges) and again applying the principle of superposi-
tion, we obtain the following expression for the electrical force of interaction between an
elementary charge de(a) and a completely arbitrary distribution of charges:

_de(a) | [ 8(q)aV /z(q> ds /A(q) dl Y eilq)
Fla) = Tree / 5 Lo+ I, Lo+ I, Lo+ 2:1 i, L (1.7)
\% S L =

where ddV, £dS, Adl and e; are the symbols representing elementary volume, surface,
linear and point charges, respectively.

At this point, we will define the strength of the electric field, E(a), as being the ratio
of the force of electrical interaction, F(a), to the size of the elementary charge de(a)
(considered to be a test charge) at point a:

F(a)

E) = %@

(1.8)

For convenience, the strength of the electric field is usually referred to merely by the term
electric field. Tt does not have the same dimension as a force, and has, in the practical
system of units, the dimension of volts per meter.

The electric field E can be thought of as the force field acting on a test charge de
inserted in the region of interest. If the electric field is known, it is a simple matter, using
eq. 1.8, to calculate the force of interaction F'. As follows from eq. 1.7, the expression for
the electric field can be written as:

N
E(a) = — /6(q) dVan+/E(Q) dSanJr//\(q)dquwL ei(q)an (1.9)
4meg L3,
A\ L

3 3 3
5 an an 3=1 an

If the distribution of charges is given, the function F only depends on the coordinates at
which the test point is located. Because it depends only on position, the function is termed
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Figure 1.5. A charge on a plane surface.

a field. When the electric field does not vary with time, it only depends on distribution of
charges in the medium, and its calculation using eq. 1.9 presents no fundamental difficulty.
Considering only the portion of the field contributed by charges, a change in the electric
field with time indicates that at some place in space there has been a simultaneous change
in charge density.

In order to have a complete description of the field behavior, it is necessary to investigate
a second source of the clectric field, a source which acts when a time-varying magnetic
field is present. But before considering this, let us further investigate the nature of the
electric field caused by charges only.

First of all, let us consider several examples of fields caused by specific distributions of
electric charges.

1.1.1. Example I: Normal Component of the Electric Field Caused by a
Planar Charge Distribution

Suppose that there is a surface charge distribution on a plane surface a shown in Fig. 1.5.
Let us introduce a vector dS:

dS =dSn

where n is the unit vector directed from the back side of the plane (1) toward the front side
(2). We need only consider the normal component of the field, that is, the component
which is perpendicular to the surface. In accord with Coulomb’s law, as expressed in
eq. 1.4, every elementary charge X(q) dS located at point g creates a field described by
the equation:

dB(a) = — 2045

= L 1.10
47['50 Lga E ( )
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Therefore, the normal component of this field is:

1 X(g)dS
dE,n =dE COS(LqG,)n) = FEO L?]a COS(L(]G.7 n) (1 11)
1 X a |
(q)dS Ly coS(Lyq, 1)

T dme, L,
where (Lgq,n) is the angle between directions L, and m. It is clear that the product:
dS Ly cos(Lg,, 1)
can be written as a scalar product as follows:
dS Lyacos(Lga,n) =dS - Ly, = —dS - L,

because Ly, = —Lg,.
Thus the normal component of the electric field can be written as:

1 dS- L,
i by :
Tree I, (q) (1.12)

dE, = —
because Lyg = Lgq.
As can be seen, the quantity dw,, defined as:

dS - Ly,

(1.13)
L3,

dw,q =

represents the solid angle subtending the element d.S from point a. In a similar manner,
the solid angle subtended by the entire surface S as viewed from point a is:

we = / dS - Lo, (1.14)
L3,
s

This expression allows us to find the solid angle when the surface S is of arbitrary shape.
For example, with an observation point inside a closed surface, the solid angle is 47. If
the observation point is situated outside a closed surface, the solid angle subtended by
the surface is zero. This can be derived from the fact that the closed surface could also
be represented as two open surfaces, as shown in Fig. 1.6, which are viewed from any
external point with the same solid angle by magnitude, but opposite in sign. In so doing,
we must remember that the sign for the solid angle is defined by the angle between the
direction of the vector L and the vector dS.

Returning again to the calculation of the normal component E, (Fig. 1.5), we can write
it as:

By = - /Edwqa (1.15)

47T€()
S




Figure 1.6. Representation of a closed surface by two open surfaces.

In particular, if the charge is distributed uniformly on the surface (£ = const) we have:

1

'47”3—0 (1.16)

n - Waq
where w, is the solid angle subtended by surface S when viewed from point a. It is obvious
(see Fig. 1.7) that the solid angle w, is either positive or negative depending on whether
the front side or the back side of the surface is viewed.

With increasing distance from the surface S, the solid angle decreases, and correspond-
ingly the normal component of the field becomes smaller. In the opposite case, when the
point a is considered to approach the surface, the solid angle increases and in the limit
becomes equal to —27 and +27 when observation point a is located either on the front
side {2) or the back side (1) of the surface, respectively.

Thus we have the following expressions for the normal component of the electric field
on either side of the plane surface:

EY = —¥/2¢,

1.17
EY =%/2, (117)

These two expressions indicate that the normal component of the electric field is discon-
tinuous across the surface S. Let us examine the normal component in some detail. The
normal component of the electric field can be written as the sum of two terms:

E,=EP+ES? (1.18)

where EP is the part of the normal component caused by the elementary charge ¥(p) dS lo-
cated in the immediate vicinity of point p, and E5~? is the normal component contributed
by all the other surface charges.

It is clear that:

1 1
ES?Pa)=-—% [ dwo=~ YW
n (a) 47!'60 / v 471'60 v (a)
S—p
where w5 P(a) is the solid angle subtended by the plane surface S minus the element
of surface dS(p) as viewed from point a. Letting point a approach the element of area
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Figure 1.7. Illustrating the fact that the angles subtended by a surface can be either
positive or negative depending on the view point.
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dS{p), the solid angle subtended by the rest of the surface tends to zero, and the normal
component is determined by the charge located on the elementary surface dS(p) only:

ESP 50 asa—p

During the same process, the solid angle subtended by the surface element dS(p), no
matter how small its area is, tends to £27 when viewed from an infinitesimally small
distance from point p:

wP— A28 asa—p

Therefore, the normal component of the field on either side of the surface is determined
exclusively by the elementary charge located in the immediate vicinity of the point p:

ED(p) = ~—%(p)

2o (1.19)
E@(p) = 52 2()

The difference in sign of the field on either side of the surface reflects the fundamental fact
that the electric field shows the direction along which an elementary positive charge will
move under the force of the field. Therefore, the discontinuity in the normal component
as a test point passes through the surface is caused by the elementary charge located near
the observation point only. For example if there is a hole in the surface, the component
on either side of the surface is ES~?, and therefore the field is continuous along a line
passing through the hole.

We can generalize these results to the case in which the surface carrying the charge
is not planar. Making use of the same approach based on the principle of superposition
and the definition of solid angles, we arrive at the following expressions for the normal
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Figure 1.8. Illustrating the fact that the normal component of electric field caused by
charges locate on the surface but outside the element dS is not necessarily zero at a point

D.

component on either side of the surface:

EW(p) = ~ZB) | poxs-p

. (1250 (1.20)
EP(p) = 20 + EPEP)

In contrast to the previous case, the normal component E3P(p) caused by the charges
located on the surface but outside the element dS(p) is not necessarily zero (sece Fig. 1.8).
However, we can readily recognize a very important feature of this part of the field.
Inasmuch as these changes are located at some distance from point p, their contribution
to the field is a continuous function when observation point a passes through element
dS(p), and therefore:

E(S=p) — EOXS-p) — pS-p (1.21)

Correspondingly, eq. 1.20 can be written as:

EO(p) = -2 | g5
€0 (1.22)
E@(p) = 22 4 g5
€0

This means that the discontinuity in the normal component is, as before:

EA ) — B ) = 2 (1.23)
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Figure 1.9. Under the action of an applied field, positive and negative charges residing
inside a closed conductor move in opposite directions.

and it is caused by charges located within the elementary surface area dS(p) only.

It should be emphasized that eq. 1.23 is a fundamental equation describing the elec-
tromagnetic field behavior and is valid for any rate of change of the field with time. We
might say in essence, even though we risk getting ahead of ourselves, that eq. 1.23 is the
surface analogy of the third Maxwell equation.

1.1.2. Example |l: Effect of a Conductor Situated within an Electric Field

We will now consider a second example which illustrates the electrostatic induction phe-
nomenon. First of all, let us suppose that a conductive body of arbitrary shape is situated
within the region of influence of an electric field Eg as shown in Fig. 1.9. Under the ac-
tion of the field, the positive and negative charges residing inside the conductor move
in opposite directions. As consequence of this movement, electric charges accumulate on
both sides of the conductor. In so doing, they create a secondary electric field, which
is directed in opposite direction to the primary field inside the conductor. The induced
surface charges distribute themselves in such a way that the total electric field inside the
conductor disappears, that is:

E;=0 (1.24)

where F; indicates the electric field strength within the conductor. This process is called
electrostatic induction. At this point it is appropriate to make several comments:

e In our description of this phenomenon, we have given a very approximate explana-
tion of the process in which only the electrostatic field is considered to be present.
In fact, the process of accumulation of charges involves other phenomena, as in par-
ticular the appearance of a time-varying magnetic field, which plays an important
role that will be examined later.

e The phenomenon of electrostatic induction is observed in any conductive body, re-
gardless of its electrical resistivity. For example, the conductive body could be
composed of metal, or of an electrolytic solution, of minerals or rocks. It is funda-
mental, however, that the charges that create the primary field are situated outside
the conductor. We will later see that the magnitude of the resistivity plays a role
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in determining the time which is required for the electric field to vanish inside the
conductor, but it does not change the final result of electrostatic induction, that is,
the internal electric field goes to zero.

e Considering this effect, we assumed that the conductor has finite dimensions. This
condition is not important and electrostatic induction would be observed in an
infinite medium as well. For example, suppose that an electric charge ¢ is placed in
a nonconducting borehole as is shown in Fig. 1.10. In this case, charges of opposite
sign than ey appear on the borehole surface and are distributed in such a way that
the total electric field of these charges within the borehole is not zero (though it does
not contain any information about the distribution of resistivity in the medium). As
it concerns induced charges having the same sign as the charge ep, they are moved
to infinity.

e An electric field which does not depend on time within a certain range can be created
by various ways. For instance, it can be generated inductively from a current in a
close loop, and whose intensity would increase linearly with time. At the same time,
electrostatic induction is usually observed when the sources of the primary field are
electric charges. Deviations from this rule have very extremal character.

Returning again to the electrostatic induction phenomenon (Fig. 1.9), it should be
obvious that the secondary electric field contributed by the surface charge can be defined
from the equation:

s 1 /2<q>ds
- ALY 1.25
E (a) dneg Lga q ( )

where ¥(g) is the surface density of charge. Correspondingly, condition 1.24 can be
rewritten as:

1 [X(q)dS

L, = 1.26

Eo(a) + 1 — / I3, =0 (1.26)
S

where Ey is the primary field contributed by external sources.
If, for instance, a single point charge e is situated outside the conductor, electric field
at any point inside the conductor is:

1 e

Fole) = ey 13,

(1.27)

where a is the point at which E is observed.

It results from this fact that the electric field caused by a given system of charges does
not depend on the properties of the medium. If the field changes, this means that new
charges develop.
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Figure 1.10. Ilustration of the electrostatic induction when an electric charge is located
within nonconducting borehole (p is the resistivity of the medium).

In our case, positive and negative charges arise at the surface of a conductor at the
same time, so that the total charge of the neutral conductor remains zero:

Yed=0 (1.28)

If a conductor has infinite dimensions (Fig. 1.10), charges of one sign appear at infinity
and condition 1.28 is still valid.

In conclusion, let us make one more remark. The distribution of charges caused by elec-
trostatic induction is not usually known before-hand, and their determination constitutes
one of the classical problems of the theory of electrical fields.

It is appropriate to notice that there are several very well-developed numerical tech-
niques allowing us to solve this problem, such as the method of integral equations, the
method of finite differences, and others.

At this point, we can describe some general problems involving the electric fields caused
by charges. It is obvious that when the charge distribution is unknown, we cannot make
use of Coulomb’s law to calculate the field. Unfortunately, in most cases of interest in
electric logging, the distribution of charges is unknown, and Coulomb’s law is of no help in
determining the field. This is why we must consider some general features of the electric
field caused by charges.

Proceeding from Coulomb’s law, we can obtain fundamental equations for this field.
First of all, let us introduce the concept of electric flux N through a given surface S as
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Figure 1.11. Representation of electric flux as being the surface integral of the scalar
product of the electric field and the surface.

being the surface integral of the scalar product of the field E to the unit vector n normal
to that surface, as illustrated in Fig. 1.11:

N=[E-dS (1.29)
/

where E -dS = EdScos (E,dS).

Suppose that an elementary charge, de, situated at point g, is the sole source of an
electric field. In accord with Coulomb’s law, the flux of the corresponding clectric field
through an arbitrary surface S is given by:

N = e /M (1.30)

47T€0 Lgp
S

where p is an arbitrary point on the surface S. Inasmuch as this integral represents the
solid angle w subtended by the surface S as seen from point g, we can write:

de
/E . dS = 471'60 wg(q)
S

In the particular case in which the surface is closed and the charge de is located inside
it, the solid angle ws(q) is 47 and we have:
de
fE-dSz—e (1.31)
€0
s
It should be clear that when the charge is located outside the surface S, the flux of the
electric field caused by the charge is zero.
Equation 1.31 has been obtained in the case of an elementary charge. Using the principle

of superposition, we can derive the following equation for an arbitrary distribution of
charges:

M
fE-dS:Ei /(5dV+/2dS+//\dl+Zei (1.32)
0 N
v s L =1
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where 4, 3, and A are volume, surface and linear charge densities, respectively, and e; is
a point charge, all of which are located inside the surface S. The flux caused by charges
outside the surface is zero.

The following comments should be made about eq. 1.32:

e A change in position of the charge within the volume V limited by surface S alters
the value of the field E at the surface, but does not affect the value of the flux
because it is a function of the total charge within the surface only.

e The surface S can have quite an arbitrary shape and position. In particular, it can
intersect portions of the medium characterized by different electrical properties, as
shown in Fig. 1.10:

Assuming a distribution of charge described by the volume density &, we have:

/E-dS:ev/so . (133)
N

where ey is the volume charge within the volume V:

€V:/6dv
v

Usually, the total charge ey is the sum of two types of charges, one being free charges,
which are free to move, and the other being polarization charges. The displacement of
charges will not be considered here, and therefore we will normally mean that the charge
ey is the free charge.

Equation 1.33, which was developed directly from Coulomb’s law, is in fact the third
of Maxwell’s equations, valid both for constant and time-varying fields. Omitting the
subscript V' on the charge e, we have:

fE -dS = e/s (1.34)
S

This equation shows the relationship between field values observed on various points of
the surface S and can be interpreted from two points of view. If the charge e is known,
eq. 1.34 can be considered to be an integral equation in an unknown variable: the normal
component of the field. In contrast, when the electric field is known, the use of the flux
allows us to determine the sources of the field. If we wish to find the relationship between
flux and source within an elementary volume, we can make use of Gauss’s theorem:

?{E-dsz/divEdv (1.35)
S v
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where S is a closed surface surrounding the volume V. Applying this equation to an
elementary volume where the function div E is nearly constant, we have:

fE-dS:divEdV
s

or, in the limit:

. 1
divE = d—\;j{E -dS (1.36)
s

Thus the divergence of the electric field characterizes the flux of the vector E through a
surface limiting an elementary volume. In accord with egs. 1.34-1.36 we have:

div E = §/e (1.37)

The divergence of the electric field along with the flux through an arbitrary closed surface
characterizes the distribution of charges. However, eq. 1.37 describes the volume density
of charges in the vicinity of any point, that is, it has a differential character, distinct from
that of eq. 1.34.

Both egs. 1.34 and 1.37 are valid for electromagnetic fields regardless of the rate of
change of the field with time. Equation 1.37 is the third Maxwell equation in differential
form. We must stress that there is a fundamental difference between the two forms
presented above for the third Maxwell equation. While the integral form can be applied
everywhere, it is necessary to be careful in the use of the differential form. This caution
must be exercised because the function div E might not be defined at certain points, lines
or surfaces. As a matter of fact, div E is expressed in terms of the first spatial derivatives
of the field components. In Cartesian coordinates for example, we have:

0E, OE, OE,
Oz Oy 0z

divE =

At points where one of the derivatives is not properly behaved, eq. 1.37 cannot be
applied. In other words, it does not permit us to describe the nature of sources at such
locations. A very important example from electrical logging where this equation cannot be
applied is provided by any model in which electrical charges are distributed at interfaces
representing a step-wise change in resistivity. As was shown in the first example of this
section, the normal component of the electric field is a discontinuous function of the spatial
variable through a surface charge and therefore the normal derivative 9E, /On does not
exist on the surface. Therefore, in order to characterize sources on such interface, one
must use the third Maxwell equation in integral form (eq. 1.34).

Applying it to an elementary cylindrical surface enclosing a small piece interface, as
shown in Fig. 1.12, we obtain a well-known relationship:

EP® — EW =7%/g, (1.38)



21

Figure 1.12. Definition of an elementary cylindrical surface that encloses a small piece of
an interface between two regions with different resistivity.

where X is the surface charge density, E" and E? are the normal components of the
electric field on either side of the surface, and n is a unit normal vector directed from the
reverse side to the front side of the surface. Equation 1.38 can be interpreted as being
the surface analogy of eq. 1.37, and is another form the third Maxwell equation as well.

Comparing eq. 1.38 and 1.23, we see that they exactly coincide. This follows directly
from the fact that the discontinuity of the normal component E,, is due to the presence
of surface charges. In particular, if the surface charge is absent at some point, the normal
component of the field is found to be continuous.

By starting with Coulomb’s law, we have obtained three useful forms of the third
Maxwell third equation:

}{E -dS=efey, divE=6/eg EP - EY =3%/g (1.39)
S

Each of them characterizes the distribution of charges, and one can say that they are the
same tool of analysis written in three different ways.

Another highly useful concept that illustrates some of the fundamental characteristics
of the electric field can be introduced as follows:

b
/E -dl (1.40)

The integral represents the voltage of the electric field between points ¢ and b, measured
along some given path L (Fig. 1.13). The scalar product E - dl can be written as:

E-dl = Edlcos(E,dl) = Edlcosa

where « is the angle between the electric field vector and the tangent to the path L at
every point. From the physical point of view, the product E - dl is an element of work
performed by the electrical field transporting a unit positive charge along the elementary
displacement di. This product has the dimension of a work per unit charge, and in the
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Figure 1.13. An arbitrary path along which the dot product of electric field and direction
is integrated.

practical system of units has the dimension of volts. Therefore, the integral in eq. 1.40
represents the work of voltage done in carrying a unit charge between points a and b along
the path L. In the general case of any function F, this integral depends on the particular
path of integration L which is chosen and on the terminal points a and b. Starting from
Coulomb’s law, it can be demonstrated that the voltage of the electric field caused only
by static charges is independent of the path followed and only depends on the terminal
points.

Assume that the source for the field is a single elementary charge de. In accord with
Coulomb’s law, the electric field is:

1 de(q)
47(5() Lgp w

E(p) - (1.41)

where L, is the vector directed from point ¢ to point p. If both terminal points a and
b are situated on the same radius vector Lg,, and the path of integration is along this
radius (Fig. 1.14), the voltage between these points is very easily calculated:

b

(g) / dl - Lg, B /
/ E-di= 47r50 47r5

inasmuch as:

Al - Lyy = dl Lgycos 0 = Ly, dl

Carrying out the integration as indicated above, we obtain:

_ de(g) (1 _L) (1.42)
477'80 an qu

Now assume that points a and b are situated on two different radius vectors Ly, and
L, as shown in Fig. 1.15. Let us choose the path L, as consisting of two parts. The first
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de(q)

Figure 1.14. lustration of a case in which the points a and b are on a common radius
vector issued from the position of the electric charge.

part is a simple arc ab’ and the second one is the segment b'b along the radius vector L.
In this case the voltage can be written as:

b

[ dela) / dl-Lqp+/dl-Lqp

ameg L3, L3,

arc ab’

Since the scalar product L, - dl on ab’ is zero, the integral along the arcal’ vanishes.
Thus the voltage between points @ and b is again equal to:

de(q) {1 1
V= - ,
dngg \Lga Ly (1.43)

If instead of the path L, we consider a more arbitrary path L, it is clear that this path
can be decomposed as a sum of elements of arcs and of radius vectors as illustrated in
Fig. 1.16. All contributions along simple arcs are zero, while the sum of integrals along
all the radius vectors is:

podelg) (11

o 47 o Lq,l qu
that is, it is equal to the voltage along the path L,.

We have established the second fundamental characteristic of an electric field, namely
that the voltage between two points does not depend on the particular path along which

integration is carried out, but is determined by the terminal points only. This fact can
be expressed formally as follows:

b b b
/E-dlZ/E'dlZ----Z/E-dl (1.44)
I Ly L

Making use of the principle of superposition, this result can be generalized to a field caused
by any distribution of charges. It must be stressed again that this result is valid only for
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de(q)

Figure 1.15. Example of a case in which the points a and b are situated on different radius
vectors.

L4

Figure 1.16. An arbitrary path that can be represented as the sum of radius vectors and
arcs.

c Lpgqg

Lacb

Figure 1.17. A path of integration along a closed contour L which can be broken down
into the summations of two open contours.
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electric fields caused by constant charges, and that it cannot be applied to time-varying
fields.

The independence of the voltage on the path can be written in another form: let us
consider a close contour L as shown in Fig. 1.17, which consists of two other contours L,
and L,g. In accord with eq. 1.44, we have:

/E-dl:/E-dl (1.45)

ach adb

In these integrals, the element dl is directed from a to b. Changing the direction of
integration in the right-hand side of eq. 1.45, we can write:

adb bda
/E-dlz—/E'dl, or
acb bda

/E~dl+/E-dl=0, or
bda

ach

]{E-dz =0 (1.46)

Thus the voltage along an arbitrary closed path is zero. Sometimes the quantity fL E-dl
is called the circulation of the electric field or the electromotive force (EMF).

The path L can have an arbitrary shape, and it can intersect media characterized
by various physical properties. In particular, it can be completely contained within a
conducting medium. Because of the fact that the electromotive force caused by electric
charges is zero, a Coulomb force field can cause an electric current by itself. This is the
reason why non-Coulomb forces must be considered in order to understand the creation
of current flow. Equation 1.46 is the first Maxwell equation for electric fields which do
not vary with time, given in its integral form, and relates the values of the field various
points in the medium. To obtain eq. 1.46 in differential form, we will make use of Stoke’s
theorem, according to which for any vector A having first spatial derivatives, the following
relationship holds:

-?{A~dl = /curlA -dS (1.47)
L s

In this expression, the orientations for dl and dS are obtained according to right-hand
rule convention illustrated in Fig. 1.18.

The function A is a vector expressed in terms of the spatial derivatives of the compo-
nents of A. As an example, in Cartesian coordinates, A expressed as follows:

_ [0A, 04y . 0A; O0A.\ |, 0A, O0A;
CurlA_(ay—E>z+(8z 8x>3+(3x 8y>k
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Figure 1.18. Use of the right-hand rule to define the direction of dl and dS.

Similar relationships can be written in other orthogonal systems of coordinates. We
can demonstrate that curl A characterizes the maximum change voltage in the vicinity of
a source point, in the direction perpendicular to the field. In accord with eqs. 1.46 and
1.47, we obtain a differential form of the first equation for the electric field:

cutl E =0 (1.48)

This equation, as well as eq. 1.46, reflects the fact that the voltage along a closed path
must be zero. It is appropriate to emphasize that both of them follow directly from
Coulomb’s law.

As has been previously mentioned, Stoke’s theorem (eq. 1.46) is valid only when the
first spatial derivative exist. Thus, this equation cannot be used at points where one of
the components is a discontinuous function of position. In order to obtain a differential
form of eq. 1.46 valid at such points, we will apply this equation along an elementary path
as shown in Fig. 1.19.

Considering that elements dl’' and dl” are separated by an arbitrarily small distance dh
which tends to zero, we have:

E-dl"+E-dl' + 2(E-dh) =0

and in the limit:

EPdr—EYar=o0

80 that finally:

E®_EY =0 (1.49)

Thus the tangential component of the field is a continuous function through a charged
surface.
We have now derived three forms of the first equation based on Coulomb’s law:

fE dl=0 cuwlE=0 E?-EY=0 (1.50)
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Figure 1.19. Application of Stoke’s theorem along an elementary path.

Each of them expresses the same fact, that is, the electromotive force caused by electric
charges is zero, or in other words, the voltage between two arbitrary points does not
depend on the path of integration.

We must make an important comment about eq. 1.50. The first two relationships are
not valid when the field is time-varying, since the second source for an electric field, that
is the change of the magnetic field intensity with time, is not taken into account. On the
other hand, the surface analog of these equations remains valid for any electromagnetic
field. This reflects the fact that this result was obtained assuming that the area surrounded
by the path of integration vanishes and, consequently, the flux of the magnetic induction
through this area is zero.

Let us note one further thing. Although the equations § E - dl = 0, curl E = 0 are
not valid for time-varying electromagnetic fields, this does not mean that Coulomb’s law
is inapplicable. In a further analysis, we will have the chance to demonstrate that in
many cases time-varying charges create electric fields which are practically described by
Coulomb’s law.

Returning to the first field equation, let us consider one more important feature of the
electric field caused only by charges. In fact, according to eq. 1.48, the field can be written
as:

E=—gradU (1.51)
inasmuch as:

curl gradU =0

is an identity relationship.

The scalar function U is called the potential of the electric field. In accord with eq. 1.51,
the direction of the field E coincides with the direction of maximum decrease of the
potential, and the projection of the field on any direction I can be expressed in terms of
the potential as follows:

ou
=—— 1.52
E=-2 (152

Equations 1.51 and 1.52 are useful in determining the field when the potential is known.
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At this point, we will write an expression for the voltage using the potential. For this
purpose, let us write the following equality for the differentiation of the potential:

oUu
dU = a dl=gradU -dl=—-FE-dl (1.53)
where dl = dl 19, ip is a unit vector.
Integrating the last of these terms along any path between two given points a and b,
and considering that the voltage does not depend on the path followed, we obtain:

b b
/E dl = —/dU =U(a) - U(b) (1.54)

Thus the voltage of the electric field between two points can be expressed as the difference
of potential between these points.

We can now use eq. 1.54 to define the potential caused by a distribution of charges.
From this equation, we have:

b
Ula) = U(b) + / E-dl (1.55)

It is obviously reasonable to assume that at great distances from the source the potential
will vanish. Then letting b equal infinity in eq. 1.55 and assuming that the potential at
that distance is zero, we have:

Ula) = /E - dl (1.56)

Suppose now that the source of the electric field is a single elementary charge, de,
situated at the point ¢q. Using egs. 1.41 and 1.56, we obtain:

1 de

V@) = e In

(1.57)

Making use of the principle of superposition for an arbitrary distribution of volume,
surface, linear and point charges, we arrive at the following expression for the potential:

1 s§dv EdS Adi N
- 1.58
) 4dmeg / Lyo + / — Loa ( )
\s S

Comparing this last expression with eq. 1.9, we see that the potential is related with
charges in a much simpler way than is the electric field. This simplicity is an important
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reason for making use of the potential. Having defined U as we have, the electric field is
very easily found by applying eq. 1.52.

In conclusion, we will derive equations reflecting the behavior of the potential. Substi-
tuting eq. 1.51 into eq. 1.37, we obtain:

div gradU = —é/gg (1.59)
or
ViU =AU = —§/e

where the operator V2 or A is the Laplacian operator. As an example, in Cartesian
coordinates, eq. 1.59 becomes:

U U U 6
922 + o + 57 = % (1.60)
that is, the simple sum of the partial second derivatives of the potential with respect to
each of the spatial derivatives is directly proportional to the volume density of charge
taken with the opposite sign. Equation 1.59 is most commonly called Poisson’s equation
for the potential and describes the behavior of the potential at points where the volume
density of charge is non-zero. In areas free of charge, it simplifies and becomes Laplace
equation for the potential:

02U n U + U (1.61)
ox2 Oyt 022 )

We will derive a general solution for Poisson’s equation when the source of the field, and
therefore of the potential, is a volume charge only. In accord with eq. 1.58, the potential
U caused by such charges is the volume integral:

Ula) = —— / 8g)dV (1.62)

- 47'('60 an

On the other hand, Poisson’s equation describes the potential everywhere, whether a
charge is present or not. Therefore, the right-hand side of eq. 1.62 satisfies this equation
and is a solution. It is obvious that Poisson’s along with Laplace equation describes the
potential only when the second spatial derivatives of this function exist, that is, when
the first spatial derivatives of the field do exist. Unfortunately, there are many cases
when this condition is not met and when consequently egs. 1.60-1.61 cannot be used.
Among these, the most important case is that of a surface distribution of charges. As has
been shown before, the tangential component of the electric field is continuous through
a charge-carrying surface, while its normal component is discontinuous. Therefore, the
derivative in the normal direction does not exist. For this reason, we will define another
equation to describe the behavior or the potential near surface charges.
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Ua") - Ua') = d["E-d_l

Figure 1.20. Calculations of the difference of potential when passing through a charged
surface.

In accord with eq. 1.56, the potential on either side of a surface is (Fig. 1.20):
U(a") :/OOE-dl U(a") :/OOE-dl
or ' )
Ul") —U(d) = 7E -dl (1.63)

Inasmuch as the field on both sides is finite and the distance between points a' and
a” is vanishingly small, the difference in potential between the two sides tends to zero.
Therefore, the potential of the electric field is a continuous function through any charge-

carrying surface:
Uy =0, (1.64)

This condition can be considered as the surface analogy of Poisson’s equation.

We have so far mostly considered electric fields caused by specified charges in free
space. We have also investigated the field of charges that accumulate at interfaces between
conductors, which along with other source charges create a static field. We will now show
that Coulomb’s law still manifests itself when there is a current flowing in a conducting
medium. In so doing, we will make use of Ohm’s law which relates current density to the
electric field as follows:

j=0E (1.65)

where j is current density, which is a vector directed along the current flow and with
magnitude equal to the amount of charge passing through a unit area oriented perpen-
dicular to the flow, during a unit time interval. It is clear that the total current I flowing
through a surface S is related to the current density as:

I:/j-dS (1.66)

S
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When the current is measured in amperes, the current density has the units of amperes
per square meter.

In Ohm’s law, the coefficient of proportionality indicated by the symbol o, and which
is usually determined experimentally, is defined as the conductivity of the medium. The
units of conductivity are siemens per meter, or mho per meter. In logging practice, the
reciprocal of conductivity, p = 1/0, is often used and is called resistivity. The units for
resistivity are ohm-meters.

In Ohm’s law, the electric field need not be a field created by charges only, and it can
be written as consisting of two parts:

E = E° + E°ther (1.67)

where E° is the field contributed by charges only and is governed by Coulomb’s law, while
E°™™7 is the electric field contributed by all other types of sources (electrochemical fields
caused by diffusion of ions in rocks, or electric fields induced by time-varying magnetic
fields for example). Physical phenomena such as piezoelectricity or thermoelectricity also
give rise to electric fields. Assuming that the field does not depend on time and that the
observation point is located well away from other sources, we can take the total electric
field in Ohm’s law as being the Coulomb field:

E =E° (1.68)

We will in addition make use of the principle of conservation of the electric charge,
reflecting the fact that the flux of direct current density through a closed surface is zero:

?{j-ds =0 (1.69)

N

This equation is amenable to a direct interpretation. The integral on the left-hand side
is the amount of charge passing through a closed surface per unit time, including those
charges which enter the volume as well as the ones which leave it. If the total of the
two contributions were not zero, we would observe a change in the total charge inside the
surface during any interval of time, and consequently the electric field would not remain
constant. This is the reason why eq. 1.69 is valid for direct currents.

Applying Gauss’s theorem, we obtain the principle of conservation of the charge in
differential form:

divj =0 (1.70)

In contrast to the case of eq. 1.69, this equation only applies at points where the first
spatial derivatives of current density exist. However, there are places such as interfaces
between media with different conductivities where the tangential component of current
density is a discontinuous function. According to eq. 1.49, we have (Fig. 1.21):

B # o By
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Figure 1.21. IHustration of the fact that the tangential component of the current density is
a discontinuous function through an interface between media with different conductivities.

The derivative of the tangential component of the vector j is not defined at such an
interface. To obtain a surface analogy of eq. 1.70, we will repeat the algebra carried out
in deriving eq. 1.38. In so doing, we obtain:

iV = 5P (1.71)

that is, the normal component of current density is a continuous function at interfaces.
We have now obtained three equations describing the conservation of the charge:

]{j-dszo divi=0 ;¥ =; (1.72)
S

It is remarkable that these equations remain valid for time-varying electromagnetic fields
so long as the time variation has a quasistationary character.

At this point, we are prepared to demonstrate that in a conducting medium, the current
field j is accompanied by the appearance of electric charges, these being the sole source of
the electric field at places where E°*" = 0. Let us first of all assume that the conductivity
of the medium varies continuously from place to place, and that discontinuous interfaces
are absent. In accord with egs. 1.65 and 1.70 we may write:

divj =diveE =0 (1.73)
Making use of the rules of derivation of the product of a scalar by a vector we obtain:

divoeE=0divE+ E-grado =0

and hence
divE = —Eerado (1.74)
o
Making use of eq. 1.37, we finally have:
6= _SOM (1.75)

a
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Figure 1.22. Tlustration of the behavior of the normal component of the electric field near
an interface.

Thus a volume distribution of charge appears in a conducting medium when it is nonuni-
form and when the electric field is not oriented perpendicularly to the direction of max-
imum change in conductivity. It is clear that in areas where the medium is uniform,
there are no charges and therefore the quantity div F is zero. In accord with eq. 1.75, a
motion of charges with zero net-charge density in the medium can be accompanied by the
formation of fixed charges. They are in fact the source of a field which in turn governs
the behavior of the current density field 3.

Now we assume that an interface characterized by different conductivities is present.
Let us show that surface charges can arise. We will proceed from the third form of eq. 1.72,
i.e. the continuity of the normal component of current density:

(1) . 5(2)

n ]n
or
0 EY = 0, E® (1.76)

As was shown earlier, the normal component of the electric field is discontinuous at the
interface. This discontinuity is caused by an electric charge with density X on the surface,
which generates a normal component having opposite sign on either side of the surface.
Making use of eq. 1.19 we can write eq. 1.76 as follows:

by >
oy (-2— +ES P+ E2> =0y (— +ESP + ES) (1.77)
£o 250

where +¥/2¢, is the normal component of the field caused by surface charges situated
near point p (Fig. 1.22); E57P is the normal component of the field caused by the rest of
the surface charges; ED is the normal component of the field caused by charges located
outside the surface.

It should be noted that components E5—P and EC are continuous at point p. Solving
eq. 1.77 we obtain:
01— 02

E® = 26,P2 " PL pao (1.78)

2 =2¢
%01 + 0n pzt+m
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where
E® =FE3P 4+ E? (1.79)

is the average value of the normal component of the electric field at point p.

A surface charge thus arises at every point of the interface where the normal component
of the field contributed by charges located outside this point is zero. It is appropriate to
notice that eq. 1.78 remains valid even when normal component E%’ has a non-Coulomb
character.

We might say that the surface and volume charges which develop within conducting
medium play a vital role in forming both the electric field and the current field. Without
the appearance of these charges, the normal component of the current density could not
be a continuous function of the spatial variables at interfaces, and we would observe an
accumulation of charges; correspondingly no constant current could occur.

It is evident that volume and surface charges which develop in a conducting medium
create an electric field which obeys Coulomb’s law. The actual use of Coulomb’s law
in calculating the electric field in a conducting medium however usually impracticable,
inasmuch as the manner of distribution of charges is unknown if the field is unknown.

In conclusion of this section, it is appropriate to notice the following:

The theory of induction logging is mainly based on the assumption that realistic models
of a medium and field possess axial symmetry around axis of the borehole. There are
however several important exceptions, such as:

e displacement of the transmitter with respect to the axis of the borehole
e presence of caverns
e cases of layers presenting a dip with respect to the axis of the borehole

e the source of the primary field is a transversal magnetic dipole (small coil) located
on the borehole axis.

In all these cases, electric charges arise at interfaces. Their field obeys Coulomb’s law.

1.2. Biot—Savart Law

In the preceding section it was shown that electric charges create an electric field which
behaves in a manner described by Coulomb’s law. The next step in our consideration of
the behavior of electromagnetic fields will be the analysis of the magnetic fields associated
with constant clectric currents.

It has been shown experimentally that the magnetic field generated by a direct {con-
stant) current can be described by the equation:

1 dl{p) x L,,
pa



35

Figure 1.23. Illustration of eq. 1.81.

which is generally known as the Biot—Savart law. In this expression, I is the total current
flowing in an element dl located at point p, as shown in Fig. 1.23, and L,, is the distance
from point p to point a. Considering the definition of the vector product, eq. 1.80 can be
written as:

Idl s,
dH(a) = ==
@)=,

sin (dl, Ly,) (1.81)

where sy is a unit vector perpendicular to the plane in which dl and L,, are located.
The magnetic field caused by an elementary linear current is directly proportional to this
current and to the sine of the angle between vectors dl and L,,. It can be seen that
there is no component of the field along the direction of current flow, dl, because of the
presence of the factor sin (dl, L,,).

By integrating eq. 1.81 along a path L, we obtain an expression for the magnetic field
caused by a linear current in a closed loop:

1 dl x L,
pa

Let us write the expression for current I as a product:
I=j5-dS

where j is the current density vector and d.§ is the cross-sectional area of an elementary
tube. One can then write:

I{dl x Lp,) = (5 -dS)dl x Ly,) = (dl - dS)(J X Lpa) = (J X Lye)dV
because:
dV =dS -dl

The magnetic field caused by currents distributed through a volume of conducting
medium can therefore be written as:

1 7 X Ly,
H(w)= / Lgap v (1.83)
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Figure 1.24. Illustration of surface currents flowing inside a relatively thin conducting
zone.

In the same way that we considered the distribution of charges on a surface rather
than in a volume, let us now assume that we have only surface currents that is, currents
flowing inside relatively thin conductive zones, Fig. 1.24. In this case, we replace the
product jdV by a surface element of current 7 dS where % is the surface current density,
and we obtain the following equation for the resulting magnetic field:

1 i X Ly,

H() = o kalal LRT (1.84)
S

Applying the principle of superposition, we obtain an expression for the magnetic field
due to the combined effects of linear, volume, and surface currents:

1 jXLa a XLa
H(a):E/ L-“;ap dv + / ”dS+Z /’ ? (1.85)

\ 4 S

In accord with this expression, we can state that the magnetic field is completely specified
by the distribution of currents analogously to the way in which the distribution of electric
charges defines the constant electric field.

We should remember that the experimental investigations of the magnetic field behavior
were carried out using closed loops of current and therefore eq. 1.80, which deals with
currents flowing only between end-points, is actually an assumption which happens to be
correct.

We should note again that eq. 1.85 was developed from experiments in which direct
currents were used. However, as will be shown later, the equation remains valid for
quasistationary fields which are of most interest in induction logging. In the practical
system of units, the magnetic field is expressed in amperes per meter.

Comparing eqs. 1.9 and 1.85, we can see that the calculation of the magnetic field
will usually be a more complicated procedure than the determination of the electric field
caused by charges because of the presence of the vector product in the integrand. In order
to simplify such calculation as well as to derive some useful relationships for the magnetic
field, we will introduce an auxiliary function for the magnetic field caused by constant
currents called vector potential. With this in mind, we will now show that the magnetic
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field can be represented as being the curl of some vector function. The following identities
will be used:

Ly, 1
= grad = —grad, — (1.86)
L3, " Lypa Lya

or, in operational notation:

L, 1 1
= V = — va
L3, "Ly Lpa

(1.87)

Inasmuch as the function L,, can vary as points p and a are changed, one can consider
the gradient of this function when either the point a or the point p is fixed. As an example,
in Cartesian coordinates, we have:

o L9191 01,
ad)— = ——i+——F+7——
B e 02y Lpa ' Oyp Lya® | 02y Ly

where %, j and k are unit vectors directed along the x, y, and z axes, and:

Ly, = [(za — xp)g + (Yo — ?Jp)2 + (24 — Zp)2]1/2

Carrying out the differentiation, we obtain the result of eq. 1.86. Substituting eq. 1.86
into eq. 1.83, we have:

1 1 1 1 .
Hw =g | (’ § v”L,,) Vg (V“L,,a g ’) v (1.88)
\4 v

because the vector product changes sign when the relative position of the two vectors is
changed.
We will now make use of the following identity:

(1.89)

which can be obtained using the vector identity:
Vx({UV)=UVXxV4+VUXxV

Applying eq. 1.89, we can write eq. 1.88 as:

H(a)zi/(vaxL ) V——/v 3 gy (1.90)
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The current density j is a function of the location of the point p and does not depend on
the location of the observation point a. The integrand of the second integral is therefore
zero and we have:

H(a) = ﬁ /curl j[ff) dv (1.91)

Because the integration and differentiation in eq. 1.91 are carried out with respect to the
two mutually independent points p and a, we can interchange the order of the operations
and finally obtain:

_ 1 (i) _
H(a) = curl, 47r/ L, dV | =curl, A (1.92)
where
_ ip)
A=— dv (1.93)
Lpa

Thus the magnetic field H caused by constant currents can be expressed in terms of the
vector potential A defined in eq. 1.93. The potential A is more simply related to the
distribution of currents than is the magnetic field.

We will now derive expressions for the vector potential directly from eq. 1.93 for both
surface and linear current flows. Making use of the obvious relationships:

jdV =4dSorjdV =1dl

we have:

Afa) = / gds and A(a) = iy{
Lpa 4
L

Applying the principle of superposition, we obtain the following expression for the
vector potential caused by volume, surface and linear currents:

wo- ([ [T 1

(1.94)

pa

The components of the vector potential can be derived directly from this last expression.
In Cartesian coordinates for example, they would be:

1 [jedV [i.dS f{
AI(G/) - E / Lpa / Z
\'
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1 3y AV 1, dS
)= | [22 / DX f (1.96)
Vv e S
1 j.dV  [i.dS dz
Aa) = — AT et
(4) = 4 /L,,a */ L. T2 szpa
v S v L

Similar expressions can be written for the vector potential components in other coordinate
systems.

It can be seen from eq. 1.96 that if current flows along a single straight line, the vector
potential has but a single component parallel to this line. When currents are situated in
a single plane, the vector potential is everywhere parallel to that plane as well.

We will later consider several examples illustrating the behavior of the vector A, but
at this point we will derive several useful relationships that characterize both the vector
potential and the magnetic field.

We will first determine the divergence of the vector potential A. In accord with eq. 1.93,
we have:

. o1 ip)dv
div, A(a) = div, i / 7

\4

pa

Because in this expression the differentiation and integration are performed at independent
points in space, we can change the order of operations so that we have:

. .

diva A() = - / div, ’(’2 v
m

1%

(1.97)

pa

The volume over which the integration is carried out includes all the currents that are
present and is therefore enclosed by a surface S outside of which there are no currents.
The normal component of current density on this surface must in consequence be zero:

jn=0 onS (1.98)
The integrand in eq. 1.97 can be written as:

] Vaoi . 1 : 1
J _ J Y-V, .
Lpa Lpa Lpa Lpa

because div, j(p) = 0. This last expression can also be written as:

. 1 . 1 J VpJ
Vo =—§ Vym— = -V
I v LPa 7 pLPa 8 (Lpa) i Lpa

J

= —div, — Lo lep 7

pa
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According to eq. 1.70, the total charge inside V must be conserved so that we have:
div,j =0

and therefore:

3V, = —div, — (1.99)
Thus eq. 1.97 can be written as:
div A L /d' J dv 1.100
VA= —— L .
4m Ve Ly, ( )
1%

Both the integration and differentiation operations carried out on the right-hand side of
eq. 1.100 arc performed with respect to the same point p, so that one can apply Gauss’s
theorem, which results in:

1 [j-dS 1 [j.dS

ar Ly
s

1 ]
divA = —— [ div,L-dv = — -
v an / L i P Ly
v S

Considering that the normal component of current density is zero on the surface S sur-
rounding the currents, we obtain:

divA=0 (1.101)

that is, the flux lines for the vector potential are closed.

In following chapters when we consider electromagnetic fields, several types of vector
potentials will be introduced, and in most cases their divergence will not be zero. In
the previous paragraph, it was shown that the potential for the electric field, U, satisfies
Poisson’s equation:

VZU = —(5/60

which has solutions of the form:

1 /5dv (1.102)

47TE() Lpa
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As follows from the comparison of eq. 1.96 and 1.102, the components of the vector
potential expressed in Cartesian coordinates also satisfy Poisson’s equation:



41

Figure 1.25. Calculation of the magnetic flux through an elementary cylindrical surface.

Multiplying each of these equations by the corresponding unit vectors, %, 7 and k, and
adding them together, we obtain an equation for the potential A:

VA = —j (1.104)

Equations 1.101 and 1.104 reflect the basic features of the vector potential A, and allow
one to derive equations for the behavior of the magnetic field. Now, making use of eq. 1.92,
we discover that the divergence of the magnetic field is also zero. In fact, we have the
following identity:

div H = divcurl A (1.105)

As is well known in vector algebra, the right-hand side of eq. 1.105 is identically zero,
therefore:

divH =0 (1.106)
This can be physically interpreted as the indication that magnetic charges do not exist

and that magnetic flux lines are closed. Applying Gauss’s theorem, we obtain the integral
form of this equation:

}{H .d§ =0 (1.107)
S

that is, the total flux of the magnetic field through a closed surface is zero.
Making use of eq. 1.107 in calculating the magnetic flux through an elementary cylin-
drical surface as shown in Fig. 1.25, we have:

H® = HY (1.108)

As indicated by eq. 1.108, the normal component of the magnetic field is always a
continuous function of the spatial variables at an interface between nonmagnetic media.



42

This behavior is in contrast to that of the normal component of the electric field as
specified in eq. 1.76. It is obvious that magnetic charges do not exist.

Thus, we have obtained three forms of the first equation describing the magnetic field
caused by constant currents:

n

divH =0 fH-dS:O H? = gD (1.109)
S

Each of them expresses the same fact, that is, that magnetic charges do not exist.
Equations 1.109 have been derived by algebraic manipulation of Biot—Savart law for direct
currents, but they actually remain valid for alternating electromagnetic fields, and are in
effect the fourth of Maxwell’s equations.

At this point, we will derive a second equation for the magnetic field. Making use of
the identity:

curl curl M = grad div M — VZM

from eq. 1.92, we have:

curl H = curl curl A = grad div A — V?A
Considering that div A = 0 we obtain:

curl H = —-V2A =3

Thus a second equation for the magnetic field is:

curl H =3 (1.110)
Physically, this equation expresses the fact that currents are the source of the magnetic

field. Making use of Stoke’s theorem, we can rewrite this equation in a second form, which
is Ampere’s law:

}{H-dl:}{curlH-dS:fj-dS=I
L 5 5

or

]{H-dl =1 (1.111)
L

where I is the current flowing through the surface S bounded by the path L (see Fig. 1.26).
It should be clear that the mutual orientation of the vectors dl and dS is not arbitrary,
but must be taken in accord with the right-hand rule, the circulation of the magnetic
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Figure 1.26. Definition of the surface S bounded by the path L used in eq. 1.111.

field is defined by the amount of current piercing through the surface surrounded by the
contour L as shown in Fig. 1.26, and it does not depend on currents located outside the
perimeter of this area.

It should be obvious that from the fact that the circulation is zero, it does necessarily
follow that the magnetic field is also zero at every point along contour L. It is appropriate
here to emphasize that the path L can intersect media with different electrical properties.
For example, applying eq. 1.111 along a path L enclosed an interface between two media
(see Fig. 1.27), we obtain:

?{H-dl =H?dl — HY dl + 2jdl dh
L

Letting dh tend to zero, we have:
Ht(z) _ Ht(l) =0 (1112)

We see that the tangential component of the magnetic field is a continuous function
of position. At this point, we have again derived three forms of the second equation for
the magnetic field caused by direct currents, showing that the circulation of the magnetic
field is defined by the current flux through any surface bounded by a path of integration.
These forms are:

curl H = j j[H-dlzf H® —HY =0 (1.113)
L

It is interesting to note that the last of these remains valid for any alternating field,
and it is usually taken as a boundary condition for the magnetic field. On occasion, it
is convenient to assume that there is a surface current density at an interface. Then,
repeating the operations carried out above, we find that the tangential component of the
magnetic field is discontinuous at such an interface:

HO g, (1.114)
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Figure 1.27. Path for the application of the boundary condition in eq. 1.111.

where ¢ and [l represent two mutually perpendicular directions tangent to the surface. Re-
ferring to egs. 1.49 and 1.112, we can see that the continuity of the tangential components
of the electric and magnetic fields follow directly from Coulomb’s and Biot-Savart law, re-
spectively. Although the first two equations of eq. 1.113 were derived from the expression
of the magnetic field caused by direct current flows, they remain valid for quasistationary
electromagnetic fields such as the ones in use in induction logging, i.e. Biot-Savart and
Ampere’s laws describe the behavior of quasistationary magnetic fields.

At this point, it may be fruitful to illustrate the use of these equations in terms of
several examples.

1.2.1. Example I: The Magnetic Field of a Straight Wire Line

Consider a current I flowing through a vertical line as shown in Fig. 1.28. We will define
the magnetic field at an arbitrary point, a, in a cylindrical system of coordinates, r, ¢, 2z
with the z-axis along the current-carrying line.

Starting with Biot—Savart law, we can say that the magnetic field has axial symmetry
and is represented by a single component Hy. From the principle of superposition, one
can say that the total field is the sum of a number of fields contributed by current elements
Idz. Then we have:

23

1 dz X Ly,
— | e 1.115
¢ 47T/ Lf‘m ( )

21

where Ly, = (r? + 22)1/2,
Let 3 be the angle between the current element dz and a vector that extends from this
element to the observation point. It should be clear that we have:

|dz X Lp| = dz Lygsin{dz, Ly,) = dz Lyesin 8 = dzLy, cosa

Thus:

22
1 dz
H¢—_— E EB—COS(I (1116)

pa
21
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P

Figure 1.28. Current flowing through a vertical line.

Inasmuch as z = rtan «, we have:
dz = rsec? ada Lfm =r?(1 +tan’a) = r¥sec’ a

Substituting these expressions into eq. 1.116, we obtain:

a2

I . :
/cosada: L—r;(smaz—smal) (1.117)

(231

Hy(a) = i

where oy and ay are the angles subtended by the radii from point a to the ends of the
line. It is readily seen that Ampere’s law cannot be applied here because the current flow
is not closed.

Let us suppose that the current-carrying line is infinitely long, so that two angles ay
and ay take the values 7/2 and —7/2, respectively. Then:

Hy=1/2nr (1.118)
In this case, one might think that the current is closed at infinity, and Ampere’s law

can instantly be applied. Considering a closed horizontal circuit and in view of the axial
symmetry, we can write:

%H-dl=H¢fdl=27rrH¢=I
and hence:
H¢ - I/27r'r
In the case of a long line which is only semi-infinite, i.e. &; = 0 and a3 = 7/2 one

cannot apply Ampere’s law, but using eq. 1.117 we obtain a field which is half that for
the case of an infinitely long current-carrying wire, that is:

Hy = I/4xr (1.119)
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Now suppose that @y = a and o3 = —a. Then in accord with eq. 1.117, we have:

{
Hy = ~—sina

2nr " 2mr (r2 4+ 12)1/2 (1:120)

where 2[ is the length of the current line. If [ is significantly larger than the distance
7 to the wire, the right-hand side of eq. 1.120 can be expanded in a power series of the
quantity (r/I)?. Then we obtain:

1
H:%mﬁ:%[1‘%(92*%(%)4*”']

We see that if the length of the current line, 2I, is four to five times larger than the
separation r, the resulting field is practically the same as that from an infinitely long,
current-carrying wire.

1.2.2. Example II: The Vector Potential and Magnetic Field of the
Current Flowing in a Circular Loop

Assume that the observation point is located on the axis of a loop with radius a as shown
in Fig. 1.29, then in accord with equation 1.94, we have:

1 [di(qg)
A@~Ef%q
L

Inasmuch as the distance L, is the same for all points on the loop we have:

I
Ap) = g

L

By definition, the sum of the elementary vectors dl along any closed path is zero. The
vector potential A is therefore zero on the axis of a current-carrying loop.

We will now calculate the magnetic field on the z-axis. From Fig. 1.29, it can be seen
that with a cylindrical system of coordinates, r, ¢, z, each current element I dl creates
two field components dH, and dH,. It is however always possible to find two current
elements which contribute the same horizontal component at a point of the z-axis, but of
opposite sign. The magnetic field therefore has but a vertical component on the axis. As
can be seen from Fig. 1.29, we have:

I dla Tadl
dH. = T30 = i

since:

|dl x L| = Ldl and L = (a® + 2%)"/?
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Figure 1.29. An observation point located on the axis of a current-carrying loop with a
radius a.

Having integrated along a closed path, we finally obtain:

_ Ia2ma _ Ia? B M
2 4r(a® + z2)3/2 - 2((12 +Z2)3/2 - 27r(a2 +22)3/2 (1,121)

where M = Iwa? = IS, with S being the plane area enclosed by the loop.

When the distance z is much greater than the radius of the loop @, we obtain an
expression for the magnetic field of a magnetic dipole located on the z-axis. Neglecting a
in comparison with z, we have:

M

2= 5 3
2123

We see that a relatively small current loop with a radius a creates the same magnetic
field as the magnetic dipole having the moment M = wa®l, oriented along the z-axis.

Let us notice that in most cases, the field created by currents in the coil of an induction
probe is equivalent to that of a magnetic dipole.

It can be seen from eq. 1.121 that when the distance z exceeds the radius at least three
times, the replacement of the loop by a magnetic dipole locate at its center contributes an
error less than 5% for the field. Making use of eq. 1.121, this behavior has been proven on
the z-axis only, but it remains in fact valid for any arbitrary position of the observation
point provided that distance from the loop is considerably greater than the radius of the
loop.

Making use of eq. 1.121, let us explore the influence of the radius of the loop on the mag-
netic field on the z-axis. This will be useful in understanding the concept of geometrical
factor widely used in the theory of induction logging.

As we see from eq. 1.121, for constant currents and for small values of the ratio a/z,
the field increases in proportion to a? and the current loop behaves as though it were
a magnetic dipole. In the case when a/z is much larger than unit, the magnetic field
decreases in inverse proportion to a. Therefore, at some critical distance z on the axis,
there is an optimum radius for the current loop that provides maximum magnetic field at
this point.

So far we have considered the vector potential and the magnetic field along the z-axis
only. We will now investigate a more general case by calculating the vector potential at
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Figure 1.30. An observation point having an arbitrary position with respect to the current-
carrying loop.

any point p (see Fig. 1.30). In view of the symmetry, the vector potential A, does not
depend on the angle ¢. For simplicity, we can therefore choose the point p in the xz plane
where ¢ = 0. As can be seen from Fig. 1.30, every pair of current-carrying elements I dl
equally distant from p and having coordinates ¢ and —¢ creates a vector potential dA
perpendicular to the zz plane. Inasmuch as the whole loop can be presented as the sum
of such pairs, we conclude that the vector potential caused by the entire loop has but one
component A,. Therefore, from eq. 1.94 follows that:

£ %zf/( acos ¢ dg (1.122)

A =
" 4] R 2 a? + 12 + 22 — 2ar cos ¢)}/?
0

where dly is the component of dl along the ¢ direction, and:
diy =acos¢gde R = (a® 4+ 72 + 2% — 2ar cos ¢)'/?

If the distance from the center of the current-carrying loop to the observation point is
considerably greater than the radius of the loop, then:

Ry= (12429 > a

and eq. 1.122 can be simplified into:

™

4 _Ia/ cos ¢ dop _ 1a ] cos P do
" 2 ) (R2—2arcos¢)/?  2nR, 2ar 1/2
0 0 (1 - ——2cos¢>
0
~ 271;?{0 (1+ %%cosqb) cos ¢ dep
0

Ia | Ia?r | )
= d

27 Ry / cosedot o TR / cos”™ ¢ d¢

0 0
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Figure 1.31. Illustration of the behavior of the field of a magnetic dipole.
The first integral in the last expression is zero, so that we obtain:
Ia?r
Ap = —=
®~ 4R3
or

Thus, at distances considerably greater than the loop radius, the vector potential and
the corresponding components of the magnetic field are the same as those for a magnetic
dipole located at the center of the loop with its moment directed perpendicularly to the
loop.

As was mentioned above, real coils in induction probes can very often be considered as
magnetic dipoles. For this reason, let us consider the behavior of the magnetic field of a
magnetic dipole in more detail. Suppose that a magnetic dipole is located at the origin of
a spherical system of coordinates, as shown in Fig. 1.31a, with its moment oriented along
the z-axis. Then, in accord with eq. 1.123, we have:

where R = (r?+ 2%)!/2. Thus, the vector lines of the function A, are closed circles located
in horizontal planes with centers on z-axis.
Making use of the eq. 1.92 in the spherical system of coordinates R, 8, ¢:

1R R].g R sin 91¢
L |2 & 9
" R?sin § |[OR 06 ¢

0 0 R sin 0A¢

H
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we have:
2M M =
Hp = WCOSO Hy = Py sin @ Hy=0 (1.125)

The magnetic field is therefore located in meridional planes and has two components Hp
and Hy. In particular, at points on the z-axis we have:

2M

Hr=H, =
R 423

Hy=0 (1.126)

i.e. the field has the direction of the dipole moment and decreases as 1/2® with increasing
z. At the same time, in the equatorial plane (§ = 7/2), its direction is opposed to that
of the moment:

M

="+ Hp=0 :
"= R (1.127)

The expression for the field in eq. 1.126 is used to evaluate the primary field magnitude
of an induction probe.

Let us now illustrate an interesting feature of the field behavior along an arbitrary
radius R (Fig. 1.31b). In accord with eq. 1.135, we have:
Hy 1 1
— = —tgd t = —tgd 1.128
H, 2 g or ga=5tg ( )
where 6 is the angle between the radius and the magnetic field vector. As follows from
eq. 1.128, the orientation of the magnetic field, unlike its magnitude, does not change
along radius R and is very simply related to the angle . It is also useful to consider the
magnetic field in a cylindrical system of coordinates. As is seen from Fig. 1.31c, we have:

H, = Hpcosf — Hysinf H,. = Hgsinf + Hgcosb

or

3M siné cos

1.12
4 R3 (1.129)

H,

M 2
=4WR3(3COS 6—1) H, =

Therefore, the component H, of the field changes sign along any profile parallel to the
z-axis. This takes place when:

1
cos@ozztg\/g (1.130)

le. 8y = 54.7° or 125.3°.

It is essential that the position of the points where the component of the field H, is
zero are defined by the angle 6, only.

This feature of the field is sometimes used in order to control the quality of an induction
probe consisting of coils and wires. In the case when the magnetic field is created by one
single coil, the points where the component H, vanishes are easily calculated.



51

b
a
j
(“»]
Hy
A
rA
%
B

Figure 1.32. Illustration of the behavior of the magnetic field in a conducting medium.

1.2.3. Example Ill: The Magnetic Field of a Grounded Electrode in a
Uniform Conducting Medium

Suppose that a current electrode is placed in a uniform conducting medium so that the
distribution of currents possesses the spherical symmetry (Fig. 1.32a). It is then a simple
matter to realize that the magnetic field is zero everywhere in the medium. This follows
directly from Biot—Savart law and the symmetry of the model. In other words, one can
always find two current elements which are located symmetrically with respect to the
observation point and of which the magnetic field differ by sign only. Let us notice that
Ampere’s law does not apply here because the current lines are not closed.

We will now suppose that two current electrodes connected by a wire are located on
the axis of a borehole (see Fig. 1.32b). In this case, we have a model characterized by the
cylindrical symmetry. Unlike in the previous model, the magnetic field is in general not
equal to zero but has one component H,;. However, the field is zero all along the z-axis.
In fact, applying Ampere’s law as shown in Fig. 1.32b we have:

r
iy, = 2rrHy or Hy = §jz

Correspondingly, with decreasing r the magnitude of the field decreases and in the limit
vanishes on the z-axis. For this reason, measuring the magnetic field on the borehole
axis, as the source is a grounded line along this axis, can only detect distortions of the
cylindrical symmetry, as for example the presence of caverns, nonhorizontal layers, as well
as a nonvertical position of the borehole.

In concluding this section it is appropriate to make the following comments:

e According to Biot-Savart law direct currents act as a source of constant magnetic
fields.



52

-
3|

Figure 1.33. Current density at an arbitrary point on an arbitrary closed surface S.

o Starting with Biot—Savart law and making use of the principle of conservation of the
charge, we were able to derive two equations describing constant magnetic fields,
and each of them can be presented in three forms:

}{H~dl:1 culH=3 HP-HY =0 (A)
L
}(H-dszo dvH=0 H®-HY=0 (B)
S

The equations of set (B) reflect the fact that magnetic charges do not exist. This set is
also valid for alternating fields.

Equations of set (A) are valid for constant fields, but there will be additional effects
to consider for alternating fields. In other words, when time-varying electromagnetic
fields are considered, there is another source for the magnetic field in addition to the
conduction currents. However, for the so-called quasistationary field, the influence of the
second source of the magnetic field (displacement currents) is negligible as this is the case
in induction logging, and equations of set (A) can be applied.

1.3. The Postulate of Conservation of Charge and the
Distribution of Charges in Conducting Media

This section will show under what conditions electric charges can exist in a conducting
medium. In order to investigate this problem, we will make use of the postulate of
conservation of the electric charge for time-varying fields:
Oe
j - dS = —— 1.131
]{ J 5 (1.131)
s
where j is the current density vector at any point of an arbitrary surface S as shown in
Fig. 1.33, e is the charge distributed within the volume bounded by S, and de/df is the
time-derivative of the charge. The scalar product:
Oe
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represents the amount of charge crossing an element of surface dS during a unit time
period. The integral:

j{j~d5=?{jnd5

S S

defines the flux of electric charges through the surface S during a unit time as well. In
general, at some points on the surface S, the vector j is directed outwards while at other
points, it is directed inwards. The current density flux given by eq. 1.131 is therefore the
algebraic sum of positive and negative fluxes through the surface S. For example, if the
flux:

fias

S

is positive, the physical meaning is that during the time interval, a certain amount of
charge leaves the volume V', and the derivative de/0t is negative, that is, the total charge
e inside the volume decreases. In the opposite case, when the total flux is negative, the
derivative Oe/dt is positive and the amount of charge contained inside V' increases with
time. Moreover, one can imagine a case when the positive and negative fluxes through a
closed surface are equal, and the total flux is zero. The derivative Je/d¢ vanishes so that
the amount of charge inside the volume does not change with time.

We will now write eq. 1.131 in various forms which will be used in further applications.
Making use of Gauss’s theorem, we obtain:

j(j-dSz/divjdV

S v

At points in the medium where the divergence of the vector j exists, we have:
Oe 0 0
j . = ivjdV=—-——=—-= [ 6dV =— | —dV
}{] ds /le] dv E e / ot
5 1% v v

where ¢ is the charge density. Thus we can write:

[ (avi+ Z) av—o
v

or

06
v =—— 1.132
div j En ( )

This last equation is the differential form of 1.131, and is valid at points where the current
density is a continuous function of the spatial variables. It has the same physical meaning
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Figure 1.34. Elementary cylindrical surface used to derive eq. 1.133.

Figure 1.35. A system of linecar or quasilinear currents.

as eq. 1.131, but unlike it, it describes the relationship between current flow and charges
in the immediate vicinity of a single point.

Assume now that some surface carries a charge with density 3. Defining the flux of
current density through an clementary cylindrical surface as shown in Fig. 1.34 we obtain
the surface analog to eq. 1.131:

T (1.133)

(2) _
In at

Jn

Thus, the difference between the normal component of the field on either side of the
surface is equal to the time rate of change of the surface charge density, taken with a
negative sign. In eq. 1.133, the normal vector n is oriented from side (1) to side (2).

Let us finally assume that we have a system of linear currents as shown in Fig. 1.35.
Making use of eq. 1.131, we have:

N N Je
fj-dSzZ%j-dSzZ[iz—a
=1

s =lg
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i.e.

XN:I-——% 1.134
Y (1.134)

i=1

where I; is the current in the ith current tube taken with the appropriate sign, and e is
the charge at the point where all the tubes intersect. We have now four forms for the
postulate of conservation of charge:

j[j-dsz-% divj = -2

bt ot
S
(1.135)
N
o _ o _ 98 21,:_%
n TJn o T

It should be emphasized that the first equation is the most general, being applicable
everywhere. The second one can be used when the current density is a continuous function
of space. The third one describes the behavior of the normal component of current density
at interfaces that carry a charge, and the fourth expression is appropriate for a system
of linear currents. The equations listed in eq. 1.135 are extremely useful in determining
under which conditions and with which density, charges arise in a conducting medium.

It is convenient to start our investigation of this problem with a simple case such
as a conductive medium in which the electromagnetic field does not depend on time,
and therefore all time derivatives are zero. Correspondingly, we will repeat some results
obtained in the first section.

Equations 1.135 take the form:

j{j-dszo divj =0

s

N (1.136)

©-i0=0 L=

i=1

because
oe_05_o% _
ot ot ot

Thus, for a constant field, the flux of current density through a closed surface is always
zero, that is, the amount of charge arriving in a volume during a given time period is
exactly equal to the amount of charge that leaves that volume in the same period. Let us
note that the last equation in set 1.136 is the well-known Kirchoff’s law for currents.

In order to determine the distribution of volume charges, we can use equations derived
previously:

divi =0 divE = é (1.137)
€o
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along with Ohm’s law:
j=oF

We will assume here that the electric field E is caused by charges only. In accord with
eq. 1.137, we have:

divj =divoE = E-grado +odivE =0

whence

E.
divE=——gjaﬂ

Comparing this result with the second equation in set 1.137, we have:

d v
LA —507" E (1.138)

Thus, when a current flows through a conducting medium, electric charges arise at places
where the medium is nonuniform, provided that the electric field has a nonzero component
along the direction of grado. The sign of the volume charge depends on the mutual
orientation of the electric field and the gradient of conductivity. Electric charges will not
appear at points where the medium is uniform in conductivity, and in this case we have:

divE =0 (1.139)

We will now derive expressions for the surface charge. Let us start from the two
equations:

@O0 =0  E® _EY =3/ (1.140)

where ¥ is the surface density of charge. Let us write the first equation in set 1.140 in
the form:

7EP —~ BV = - [(01 + 02)(ED — ED) + (02 — ) (EP + ED)] =0

DO —

Making use of the second equation in set 1.140, we have:

by
(o9 +01)— + {0 — 0 )EF =0

250
where ES¥ = (Eﬁ” + E,(f)) /2 is the average magnitude of the normal component of the
electric field on the surface. Thus, we have the following expression for the surface charge
density:

02 — 01

Y= —250

E% = —-2¢g Ko B 1.141
0_2+0_1 n 0 1240 ( )
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where
oy — 0 -
p= 2 _ A f (1.142)
09 + 01 p1+ p2
or
S = 9¢, 2P pav (1.143)

The quantities p; and py are the resistivities of the two media.
The normal component of the electric field on either side of the interface can be written
as:

EX(p) = EY(p) + E5 P(p) — %
: (1.144)
EQ(p) = E3(p) + ES7(p) + 22_(61(’)2

where E2(p) + E57P(p) is the normal component of the field at a point p, contributed by
all charges except the one at point p. It follows from eq. 1.144 that:

Ey* = Ep(p) + E;7"(p) (1.145)

where the normal component is directed from the reverse side (1) to the top side (2) of
the interface.

We see that the charge density which arise at the interface is directly proportional to
the normal component of the field E2¥, with the coefficient of proportionality represented
by the symbol Kj5. As has been shown, the coefficient K15 can vary within the range:

~1< Kip < +1 (1.146)

We should note that due to the presence of the surface electric charge, the normal
component of current density is a continuous function of the spatial variable, while the
normal component of the electric field is discontinuous. An example of distribution of
charges is shown in Fig. 1.36. In this case, charges arise on the electrode surface and at
the interface between borehole and formation. There is also a certain amount of charge
on the surface of the wire that delivers the current to electrode A.

Let us now consider a general case in which the electromagnetic field varies with time.
In determining the charge density, we will make use of egs. 1.132 and 1.37:

divj = —% divE = :—0 (1.147)

From these we have:

06

divj =divoE =0divE + E -grado = 5
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Figure 1.36. Charges arise at the surface of the electrode as well as at the interface
between borehole and formation.

or

o aé
6—06+E-grada— e

Finally, we obtain the following differential equation for the volume charge density:

0 1

— + —0=~—F - grado (1.148)
ot pep

where p is resistivity of a medium and gy is the dielectric permittivity of free space.
Assume now that the medium is uniform or that the electric field is perpendicular to the
gradient of conductivity, in either case, we have:

E -grado =0
and eq. 1.148 takes a simpler form:

174 1
9 s 1.149
at + PEo 0 ( )
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This particular equation has a well known solution:

§ = Gpe /e
or
§=6pe t™ (1.150)

where ¢y is the charge at the initial instant and:

To = pP&o (1.151)

The quantity 7 is a time constant whose value in a conducting medium is usually very
small. For example, if p = 100 ohm-m then 7y ~ 1079 s.

In accord with eq. 1.150, a charge placed in a conducting medium will disappear very
quickly. If we are concerned with charges which exist at times greater than 7y only, we
can assume that for all practical purposes, such charges will not exist. In addition, it is
appropriate to point out that with the kind of excitation used in electrical logging, there
is no initial volume charge in the medium, i.e. §y = 0. We can therefore conclude that at
points where the medium is uniform or where the condition:

E-Vo=0

is met, there are no electric charges, and so:

divE =0 (1.152)
A much different situation exists when the medium is nonuniform and:

E-Vo#0

In this case, the right-hand side of eq. 1.148 does not vanish, and we have a first-order
nonhomogeneous differential equation of the form:

dy 1
r + 7_07 = f(t) (1.153)

where v = 6(¢), f(t) = —FE -grado = —-E - Vo.
The general solution of eq. 1.153 is known to be of the form:

t

v =rge /™ e /et/T"f(t) dt (1.154)
0

where ~p is the value of the function ~y at the instant ¢t = 0.
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In accord with eq. 1.148, we have:
i
§=bpe /0 et/ /et/r" (E -grado)dt (1.155)
0

This last equation can also be written as follows:

t
§=bge /0 _gt/m / e™ E(t) dt (ep - Vo) (1.156)
0

where E(t) is the magnitude of the electric field and ey is a unit vector along the direction
of the field:

EZECO

In general, one can recognize two types of charges which behave quite differently with
time. As can be seen from eq. 1.151 or 1.156, the time rate of change of the first kind
of charge is independent of the uniformity of the medium, and is only determined by the
time constant 79. In contrast to the behavior of the first kind of charge, the second type
of charge occurs only as a consequence of the existence of an electromagnetic field in a
nonuniform medium.

Let us rewrite eq. 1.156 as:

0 =261+ 02 (1.157)
where:
(51 = (50 eft/m

t
52 = —€p - Vo e_t/m /et/”’ E(t) dt
0

(1.158)

Inasmuch as measurements are always performed at times significantly greater than
7o, and besides &y is frequently zero, we will only consider the second type of charge, ..
According to eq. 1.158, a volume charge density will arise in the neighborhood of any point
in a nonuniform medium provided that the primary field is not normal to the direction of
the gradient of resistivity. Assuming that the condition:

t <K 1 (1.159)

holds, we will expand the expression for 83 in a power series of the parameter 75. Consid-
ering the expression:

t

/ et/ E(t) dt (1.160)

0
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and in integrating it by parts, we obtain:

11
/ et/ E(t) dt = 10 { E(t)e¥™
0

t
t
—/E(t) et/ dt
0
0

+ t
- / E(t) et dt)
0
0

t
— TOE(t) et/ro — TOE(O) — T(?E(t) et/m + 7_02E'*(0) + Tg/E(t) et/-ro dt
0

¢
=18 E(t)et/™| — 75 | E(t)et/™

0

Taking into account that the electrical field is absent at ¢ = 0 the volume density d,
can be written as:

t
52(t) = —(ep - Vo) E(t) — 12 E(t) + 12 e™Y™ / E(t)et™ dt (1.161)
0

Continuing this process, it is possible to obtain higher-order terms of the series. Inas-
much as the time constant 7p is normally extremely small, and that condition 1.159 usually
applies, we can discard all of these terms but the first one and obtain:

52(t) = —(60 . VO') 70 E(t) (1162)

In this case, the charge density changes synchronously with the electric field, that is, it is
determined by the instantaneous value of the electric field at the same point.

Such a relationship between charge density and electric field at any point of a medium
is essential to the definition of the quasistationary behavior which is responsible for many
effects in induction logging.

One can conclude that time-varying charges develop in the quasistationary approxi-
mation in the same way as they do due to the presence of a constant field. In order to
illustrate these results, let us consider two examples.

1.3.1. Example |: Exponential Variation

Assume that an electric field varies exponentially with time as:
E =FEye e (1.163)

where 7 is the parameter characterizing the rate of decay of the field with time. Equation
1.158 then becomes:

t
5o(t) = —Epe ™ (ey - Vo) / (/- 1/7)t gy

0
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After carrying out the indicated integration, one obtains:

Toet/m™ —t( o1 /r
(L= e ] (e V)

bo(t) =

Further assuming that 70 <« 7 and t > 7, i.e. the rate of the field decay is considerably
small and only times that widely exceed the time constant 7y are considered, we have:

82(t) = =107V (eg - Vo) Ey (1.164)

The volume density of charge d5 decays exponentially with time at exactly the same rate
as the electric field, regardless of the conductivity of the medium.

1.3.2. Example II: Sinusoidal Variation
Assume now that the primary electromagnetic field varies with time as:

FE = Eysinwt ey

Substituting this expression into eq. 1.158, we have:
t
5y = —e Y™ Ey(e - Vo) / e!/™ sin wt dt
0

This integral is well known:

et/ 1
/et/m sinwtdt = ———— | — sinwt — wcoswt
/18 +w? |10

whence

t

1 1
/et/”’ sinwtdt = ——5—— |w+ /¢ —sinwt — coswt
1/76 + w? To
0

Therefore we have:

E, 1
()= ——2 _|we ¥ 4 —ginwt — wcoswt| (eg- Vo
2(t) sz[ - (€0 Vo)

In the quasistationary approximation when both the time of observation ¢ and the
period T = 27 /w of the excitation are much greater than the relaxation time 75, we have:

8(t) = — [Tosinwt — wrg cos wt] Eoleg - Vo)
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Neglecting the second-order term and assuming that the field is not zero, that is, wt is
not a multiple of 7, we finally obtain the expression for the volume charge density under

quasistationary harmonic conditions:

8:(t) = —mpFEpsinwt (eq - Vo) = —19 E(t) - grad o

(1.165)

We have so far only investigated the volume charge density. Let us next consider

time-varying surface charges. Combining the following equations:

3@ — 50 88—? and E® — EV EZ—O
we have:
02E® — 0BV = % (o2 +01) (B — ED) + (02 — 01) (ED — EMV)] = —%—f
or

‘“’E—X; + (09 —01)E’ = —aa—zt:

where 0% = (0] + 03)/2.

Thus the equation for surface density is a differential equation of the first order similar

to that for volume charge density:

0y 1
'a—t ’—E (0'1 — UQ)EZU

where 79, = £9/0® is the relaxation time for the surface charge.
In accord with eq. 1.154, the solution to eq. 1.166 can be written as:

t
%= e s et (g — ay) / E(t) et/™s dt

or
Z = 21 + 22
where:

21 20 € —t/70s

t

Yy = (0y — ap) et/ /E‘"’(t) et/Tos 4t

0

(1.166)

(1.167)

(1.168)
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Thus, two types of surface charges occur in this case. The first one, ;, corresponds
to the situation in which some charge with density Xy is placed on the interface. In
accord with eq. 1.168, such a charge decays exponentially with a time constant 7o, that
is controlled by the conductivity and dielectric constant of the medium. Inasmuch as the
relaxation time 7y, is usually very small with respect to measurement times, we will no
further consider this type of charge and concentrate on the second type.

As was the case for volume charges, surface charges of the second kind arise as the
consequence of the presence of an electromagnetic field only. Considering again that the
relaxation time is very small, it is appropriate to expand the expression of 3, in eq. 1.168
in a power series of 75s. Carrying out this expansion as indicated before, and discarding
all the terms but the leading one, we obtain:

Zo(t) = 1os(or — 02) EZ”(t) (1.169)

Replacing 7y, by its expression from eq. 1.166, it is readily seen that at any given time,
eq. 1.169 is identical to eq. 1.141 that described the surface distribution of charges due to
a constant field. It can therefore be concluded that in the quasistationary approximation,
the surface density of charges is locally controlled by the instantaneous value of the electric
field. It is clear that the corresponding expression of the surface charge density follows
directly from the differential eq. 1.166 provided that one neglects the term 9%L/dt in
comparison with the term ¥/79,. This is equivalent to the condition:

1)) 1
= -3 1.170
(9t < Tos ( )

In accord with eq. 1.141, E%¥(p) is the electric field contributed by all sources except
the charge located in the immediate neighborhood of the point p. For this reason, the
right-hand side of eq. 1.166 can be interpreted as the flux of the current density caused
by the field of external charges only, through a closed surface with unit cross-sectional
area as shown in Fig. 1.34.

The quantity ¥/7 can be written as:

1 o1+ 0y Y(p) 3(p)
— = = g, —L 7 1.171
7_OSE(p) 5o 3(p) = oy 2, + oy 2g ( )

As was shown before, the term X(p)/2eq indicates the magnitude of the normal com-
ponent of the electric field caused by the charge at the point p. The term /79, therefore
describes the flux of current density through the closed surface shown in Fig. 1.34 due
to the elementary charge ¥ dS only. Thus, in accord with eq. 1.166, the flux of current
density caused by external sources is compensated by two fluxes, namely:

e the change in surface charge density with time, 90X (p)/0¢

e the flux caused by the electric field from the charge X(p}, that is, 3(p)/7os.
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In the quasistationary approximation, when condition 1.170 applies, eq. 1.166 can be
rewritten as:

a1 (EP(p) + B (p)) = 02 ED (p) + Ex(p))

where

R (1.172)
EP =75/2, '

or

-7(11) — J}(Lz)

In the quasistationary approximation, the normal component of current density is a
continuous function of position at an interface between media with different conductivities
as was the case for direct currents. It is obvious that this result directly follows from
eq. 1.133 by neglecting the term 9%/3t. Our considerations should however make clear
that condition:

QE—»O as-TO—S—>O
ot t

does not necessarily mean the absence of surface charges, because in the quasistationary
approximation the derivative 0¥/t needs only be small with respect to the flux X/7y,.
The postulate of conservation of the charge has allowed us to investigate in detail
the distribution of charges in a conducting medium. It also serves as a basis for the
introduction of the concept of displacement currents which plays a vital role in propagating
electromagnetic fields.
Let us start from two equations, one of which is:

curl H = 3

which is derived from Biot-Savart law, and the other one being the postulate of conser-
vation of the charge written in differential form:

divyg = —%

It can be readily seen that these equations are contradictory inasmuch as:
diveurl H =divj =0

To solve this problem, it is necessary to add a term on the right-hand side of eq. 1.110,
s0 that we obtain:

curlH=3+X (1.173)
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where X is an undetermined quantity at this stage.
We can choose this quantity to satisfy eq. 1.132. Performing the divergence operation
on eq. 1.173, we have:

0=divX +divj
or
divX =6

As is well known:
divD =)
where

D=cF

is the electric displacement vector and & = ¢,£q, while § is the density of free charges.
Whence:

divX = 2divD =diva—D =divD
ot ot

One possible solution to the problem is the vector:

oD .
X_W D

Substituting X = D on the right-hand side of eq. 1.173, we obtain the second Maxwell
equation:

curl H = 7 + 88—? (1.174)

Numerous experiments have shown the appropriateness of selecting the vector X in this
form. This quantity was called a displacement current. As follows from the second
Maxwell equation, there are two sources for the magnetic field: conduction currents and
displacement currents. Applying Stoke’s theorem, we obtain the integral form of the
second Maxwell equation:

}{H-dlz/(jJrD)ds (1.175)
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Using an approach that was previously described, it is readily seen that displacement
currents make no difference in the surface analog of this equation as derived for con-
stant fields, that is, the tangential component of the magnetic field remains a continuous
function at an interface:

H® —HY =0 (1.176)

Thus in the general case, we have three forms for the second Maxwell equation:

Z{H-dlzs/(j+D)dS

D 1.177
cur1H=j+aa—t ( )

o2 —HY =0

1.4. Faraday’'s Law and the First Maxwell Equation

Early investigators of electric and magnetic fields observed that when the magnetic in-
duction vector B changes with time throughout a surface S bounded by a contour L, an
electromotive force & exists along that contour with an intensity:

o

(gz—a

(1.178)

where 1 is the magnetic flux through surface S bounded by contour L (Fig. 1.37):

v [B.ds
s

where B = pH, p = .14, and 9/0t denotes the time derivative. The contour L can
have any shape and need not be located solely within a conducting medium, it can in
particular intersect media with various properties, including insulating ones.

As is well known, the electromotive force can also be presented as:

&= fE ~dl (1.179)
L

where F is the electric field vector at each point along contour L. Equation 1.178 can
therefore be rewritten as:

__ov
%E'dl__ﬁ (1.180)
L
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Figure 1.37. The time rate of change of magnetic induction flux throughout a surface S
bounded by a contour L causes an electromotive force to exist along that contour.

This expression can be interpreted in a natural sense as follows: a change with time of
the magnetic flux, i, gives rise to an electric field. This phenomenon was first observed
and reported by Faraday and has been called electromagnetic induction. The relationship
between the electric field and the rate of change of the magnetic flux; as described by
eq. 1.180, is one of the most fundamental relationships in physics.

By convention, the electric field due to electromagnetic induction is called inductive
electric field and noted E™?, emphasizing the origin of this particular component. One
can rewrite eq. 1.180 in the following form:

; o
ind | [
fE dl = —=— (1.181)

L

It is a basic fact that a change in magnetic flux with time gives rise to a specific electro-
motive force. To determine the field however, additional information must be provided.

Up to this point, we have considered only one source for the electric field, namely
electric charges. In addition to charges, a change in magnetic field with time provides a
second mechanism for the development of an electric field. This fact is the fundamental
basis of electromagnetic induction. The electric field can generally be attributed to two
sources as well as the magnetic field. One can of course readily think of particular cases
in which one of these sources does not exist as for example:

e A static field, which is a constant field in time arises from the presence of electrical
charges only.

e An alternating electromagnetic field in which the current flow is tangential to inter-
faces between media of different conductivity so that the normal component of the
electric field is zero and that charges do not arise. This happens for example when
an induction probe is located on the axis of a borehole and the medium possesses
cylindrical symmetry: in this case, the electric field has a pure inductive character.

Both sources of electric field, however, play an essential role in general cases, and this
must be understood in order to solve significant interpretation problems which appear
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when charges arise on the borehole and other interfaces. In this respect, suppose that an
electric field arises from both types of sources, namely:

e electric charges which vary with time but create at each instant a field E° described
by Coulomb’s law

e a change in the flux of the magnetic field with time, 9vy/0¢.

The total electric field can in this case be presented as the sum:

E=E'+ E™ (1.182)
whence
E™-F — E° (1.183)

Combining eqgs. 1.181 and 1.183, we have:

TR L
}{E-dl—?fE dl = ——
L L

As was shown in the first section, the circulation of Coulomb’s electric field is zerc and
therefore:

fEi"d-dl:jz{E-dlz—a—w
ot
L

L

This result sometimes leads to a misunderstanding of the role played by charges in forming
the electromagnetic field. This consideration actually merely shows that the electromotive
force due to the Coulomb electric field is zero. But this conclusion cannot be extended
to the electric field itself. The Coulomb electric field influences the distribution of the
currents which in turn create an alternating magnetic field, therefore the inductive electric
field does in general depend on the distribution of charges.

We will now write Faraday’s law in various forms. Using first the definition of the
magnetic flux:

zp_—_/B'dS
S

we have:
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We will not consider here the electromotive force induced by moving the integration
path L, and thus the last equation can be rewritten as follows:

j{E-dlz—/%?dS:—/B-ds (1.184)
L S S

where B = 0B/6t.

This equation is an exact formulation of Faraday’s law and is also considered to be the
first Maxwell equation in integral form. In the left hand side, the vector dl indicates the
direction in which the integration is carried along contour L, while the vector dS in the
right hand side represents the direction normal to the surface S. A relationship has to be
given between the orientation d.S in order to keep its physical meaning to Faraday’s law.
This relationship is in fact the well known right-hand rule, that is, an observer looking
in the direction of dS sees that the contour L is given a counter-clockwise orientation
by dl. It is only when this is true that eq. 1.184 correctly describes the electromagnetic
induction phenomenon.

Next, making use of Stoke’s theorem, we obtain the differential form of the first Maxwell
equation:

%E-dl:/curlE-dSz—/%?-dS
L

s S
whence:
oB
1E = ——— 1.185
cur o ( )

where the functions E and B are considered in the near vicinity of the same point.

Equations 1.184 and 1.185 both describe the same physical law, but the second form
can be applied only at points where the electric field is a continuous function of the spatial
variable.

Considering that in many problems, we must examine electromagnetic fields in media
with discontinuous changes in properties, it is desirable to derive a surface analog of the
first Maxwell equation. At interfaces between media with different conductivity for ex-
ample, the normal component of the electric field is known to be a discontinuous function
of the spatial variable. For this reason we will further proceed with eq. 1.184, evaluating
it along the path shown in Fig. 1.38, so that we have:

E? ~EP =0

where t is an arbitrary direction tangent to the interface. In its general form, this equation
is:

nx (Ey—E;) =0 (1.186)
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31
~

Figure 1.38. Evaluation of Faraday’s law near an interface.

The right hand side is zero because the flux of the magnetic field goes to zero as the
area enclosed by path L vanishes.

In accord with eq. 1.186, one can say that the tangential component of the time varying
electric field is a continuous function of position as is the case for the electric field caused
by charges only.

Thus we have obtained three different forms of the first Maxwell equation:

]{E~dl=—/B-dS
L S

curl E = —88—? (1.187)

TLX(EQ—El):O

It should be emphasized that each of these equations describes the electromagnetic
induction phenomenon.

We will now examine a few examples that demonstrate some features of electromagnetic
induction when the field changes with time slowly enough. In that case, displacement
currents can be neglected.

1.4.1. Example I: The Vortex Electric Field of a Solenoid

Suppose that a magnetic field arises as the consequence of an alternating current flowing
in an infinitely long cylindrical solenoid as shown in Fig. 1.39. It is well known that the
magnetic field is uniform and nonzero inside the solenoid, and zero outside. Inasmuch as
both vectors B and 0B/0t are directed along the z-axis, an induction (vortex) electric
field develops in horizontal planes. Moreover, due to the axial symmetry, the vector lines
of the electric field are circles with centers located on the axis of the solenoid. The electric
field caused by the variation of the magnetic field has but one component E£y which is
a function of the radius r only. Making use of eq. 1.184 along any circle with radius r
located in a horizontal plane and centered on the z-axis, we have:

9¢

/E-dl:E'Qwr:—-a—t-
L
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______

Ey

Figure 1.39. Excitation of a magnetic field by an alternating current flowing in an infinitely
long cylindrical solenoid.

or

1 0¢

Ey=———
¢ 2nr Ot

(1.188)

where 9 /0t is the rate of change of the magnetic flux within the area bounded by the
circle of radius r. Suppose that the magnetic field varies with time as follows:

H = Ho f(t)
Then, in accord with eq. 1.188, the vortex field inside the solenoid (r < a) is:

, 2 B
Ei=-""Byf(t)= -2

’
< .
Sy 5 r f'(t) r<a (1.189)

That is, the electric field inside the solenoid increases linearly with the radius r.

Considering now horizontal circles located outside the solenoid, it is clear that the flux
and its time-derivative do not depend on the radius of the circles, and that at any given
time, we have:

¥ = Byma® f(t)

0

% = Bora® f'(t)

The voltage along any of these circles is therefore also independent of the radius and
according to eq. 1.188, we can write:

e BO 2
E¢ = —%ﬂ'a fl(t) = —

B0a2

5 () rza (1.190)
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Figure 1.40. A magnetic dipole at the origin of a spherical system of coordinates and with
its moment M(t) directed along the z-axis.

That is, the vortex electric field outside the solenoid decreases inversely proportional to
T

This example clearly demonstrates that a vortex electric field can exist at points where
the magnetic field is absent.

In the next several examples, we will also consider vortex electric fields caused by the
change of the magnetic field with time.

1.4.2. Example Il: The Vortex Electric Field of a Magnetic Dipole in a
Free Space

In this example, we will consider a magnetic dipole of moment M (t) directed along the
z-axis at the origin of a spherical system of coordinates (Fig. 1.40). We will neglect the
influence of displacement currents. Considering that in this approximation, the magnetic
field is defined by the instantaneous intensity of the current in the dipole, one can calculate
the field in the same manner as if it were a static magnetic field. In accord with eq. 1.135,
we have the following equation for the alternating magnetic field caused by a magnetic
dipole in free space:

2M(t) M)
= H, = 1.191
Py cosé Hy(t) YPyoE sin 6 »=0 (1.191)

Inasmuch as the vector representing the magnetic field lies in a longitudinal plane and
as a consequence of the axial symmetry, a vortex electric field, arising as a result of the
change of this magnetic field with time, has but one component E;. The vector lines of
the field are therefore circles centered on the z-axis.

Making use of eq. 1.184, we have:

Hpg(t) =

1 .
E,=—— 1.192
¢ 27rrw ( )

where 1) is the flux penetrating the area bounded by a circle with radius r (Fig.1.40).
Inasmuch as the vector normal to this area is parallel to the z-axis, we have the following
expressions for the flux ¢:

¢=/B~dS=/BZdS=/BZZ7err (1.193)
s 5

s
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where B, is the vertical component of the magnetic induction. As can be seen from
Fig. 1.40 we have:

B, = Brcosf — Bysinf

and considering eq. 1.191, we obtain:

_ pM 29 _
Bz—47rR3(3COS 6—1) (1.194)

Substituting this result into eq. 1.193 and integrating, we obtain:

v 1 M)
Y= _5? — 5/14 o r2 (1.195)

where R = (r% + 22)1/2. Therefore, we can write the expression for the inductive electric
field as:

Ey= —MM(t)

sin 6 (1.196)

It should be expected that the electric field is zero on the z-axis (8 = 0), since the
flux through a surface bounded by a circle of vanishing radius vanishes as well. With
increasing radius of the electric lines, there is always some critical radius r for which
the magnetic field lines start to intersect the surface S twice and in opposite direction.
For this reason, the magnetic flux and the corresponding vortex electric field gradually
decrease with a further increase in the radius of the circle.

Thus, neglecting displacement currents, the electromagnetic field of an alternating mag-
netic dipole in free space is described as follows:

M(t)
47 R2

2M(t)
Hp = =T cos

sin 6 Ey=—pn sin 8 (1.197)

It is an essential feature of the behavior of this field that along with a magnetic field at
each point of space, there also is an electric field. One might suspect that if the medium
has nonzero conductivity, this field will give rise to a current flow.

The field described by eq. 1.197 is caused by the currents flowing in the magnetic dipole
only, and for this reason it is referred to as the primary field. Several examples of primary
fields will be considered in this section.

Let us now briefly describe the electromagnetic field of a magnetic dipole when its
moment varies with time in some simple ways.

Case 1
Suppose that the current in the dipole changes sinusoidally, that is:

M = Mysinwt (1.198)



75

Figure 1.41. Variation of the magnetic moment with time as defined in eq. 1.200.

where My is the magnitude of the moment, w = 2xf = 27/T is the angular frequency
and T the period of oscillation. In accord with egs. 1.197-1.198, we have the following
expression for the magnetic field:

2
Hgp = 1 1\14%()3 cos @sinwt
T
(1.199)
Hy = 4—7r1%3 sin 6 sin wt

while the electric field can be written as:

_ MMy B .
0= L sin{wt — 7/2) sin g

and one can therefore say that the primary electric field exhibits a phase shift of 90°
with respect to the current in the dipole or the primary magnetic field as well. The last
equation plays a basic role in the theory of induction logging as developed by H. Doll.

Case 2

Consider a dipole whose moment varies with time as follows (see Fig. 1.41):

M, t<0
M={ My—at 0<t<t, (1.200)
0 t>t,

where a = My/t,.

This relationship describes a primary field which is constant at negative times, then
decreases linearly over the interval 0 < ¢t < ¢t,, and is exactly zero at times larger than
t.. A primary vortex electric field will exist only within the time interval over which the
magnetic field varies, and in view of the linear dependence of the magnetic field on time
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during that range, the electric field will assume a constant value. Thus, we have:

2M,
(47(1%030080 t<0
—J oM@
Hp = 47r1(%3)c050 0g<t<it,
L0 t=t,
M,
LMRBsmG t<0
i (1.201)
Hy = Lgsind 0<t<t,
0 t>t,
(0 t<0
- ua o uMy .
Es 47(R25m9—47rR2t,8m0 0<t<t,
0 t>t,

The curves given in Fig. 1.42 illustrate the behavior of all the components of the field
with time.

1.4.3. Example Ill: The Inductive Electric Field due to the Magnetic Field
of a Current Flowing in a Circular Loop

In induction logging, the receiver of an induction probe measures the field caused by the
currents induced in the surrounding medium. As will be shown later, these currents in
most cases flow along circles. This is why it is appropriate to explore some features of the
electromagnetic field caused by a sole current ring.

In this case, we will assume that the source of the electromagnetic field is an alternating
current I(t) flowing in a circular loop of radius a as shown in Fig. 1.43. As is well known,
the magnetic field of a constant current flowing in a loop can be expressed in terms of
elliptic integrals. Inasmuch as displacement currents are ignored, the magnetic field is
defined by the instantaneous value of the conduction current in the loop, that is:

wl(t) z a?+r?+ 22
B, = 7| Kt — w2
T rla+r)?+ 22" (a—r)2+2
It 2 _ 2 2
U : 12[1{+“ : ng} (1.202)
T Ja+r)2 422" (a—r)?+2
B¢=0

where K and F are the elliptic integrals of first and second kind, respectively, which are
described in most mathematical handbooks. Considering the axial symmetry as well as
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Figure 1.42. Variation with time of the components of the electromagnetic field caused
by a magnetic dipole of moment varying according to eq. 1.200.

the fact that the magnetic field lines lie in longitudinal planes, the electric field that arises
due to the variation of the magnetic field with time has but one component E; that is,
in a cylindrical system of coordinates (r, ¢, z):

E = (0,E,,0)

To describe the vortex electric field, one can in principle make use of the first Maxwell
equation in its integral form:

fE-dl:—/B-dS
L s

This approach, however, leads to the integration of elliptic functions, which is a some-
what cumbersome approach. Fortunately, there is a much more efficient way to derive an
expression for the electric field. Considering that the potential A (H = curl A) as well
as the magnetic field H are defined by the instantaneous value of current in the source
loop one can write:

_I®) [dis

" 4r I R
L
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Figure 1.43. Components of the electromagnetic field caused by an alternating current
flowing in a circular loop.

or, after some transformations, we have:
I(t) ra\V2 1
Az—(—) 1- kK -FE
7wk \r [( 2 )

where k? = dar/((a + )% + 2%).
From the first Maxwell equation:

B
curl E = _8_

ot

follows that:

curl E = —ug curl A = —pcurl %

ot ot
or
JA
curl (E + /15) =0
From this we have:
A
Ey = —H gradU (1.203)

where U is a scalar potential. In accord with this last equation, we have the following
expression for the component F,:
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o

Figure 1.44. Induction of currents in a thin conducting ring placed in an alternating field.

It should be noted at this point that the vector potential A, which we have used here, is
identical at any instant to the vector potential caused by a constant current flow.

Taking into account the axial symmetry, the second term in the last expression vanishes
so that we have:

DA,

This equation permits us to write down the expression for Fg, that is:

Ey= —p %(:) % (g)m {(1 _ %k2> K — E] (1.205)

In conclusion, it should be emphasized that the vector lines of the electric field are circles
lying in horizontal planes with centers located on the z-axis. It is an easy matter to show
that the electric field given in eq. 1.205 is practically identical to that of a magnetic dipole
(eq. 1.197) when the distance of the observation point to the source is significantly larger
than the radius of the loop.

1.4.4. Example IV: Induction of a Current in a Thin Conducting Ring
Situated within a Primary Alternating Field

The induction process can be described as follows (Fig. 1.44). With a change of the
primary magnetic field with time a primary vortex electric field arises. We will consider
for simplicity that this field has only one component Eg which is tangential to the plane
of the ring. According to Ohm'’s law, this field causes current to flow in the ring. This
current in turn generates a so-called secondary electromagnetic field, and it should then
be obvious that the density of the induced current is in fact determined by both primary
and secondary fields. In accord with Ohm’s law, we can write:

jo = o(Eg + E3) (1.206)

where jg, is the current density in the ring, and o is its conductivity. Eg is the primary
electric field; £ is the secondary one.
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We will now use Faraday’s law (eq. 1.178) to find the current in the ring:

o
& = % (1.207)
The flux 1 through a surface bounded by the ring can be written as the sum:
Y=o + s (1.208)

where g is the flux of the primary magnetic field and 1), is the one of the secondary field.
Thus eq. 1.207 can be rewritten as:

=2 (1.209)

In this equation, only the term O, /0t is known, while the electromotive force, &, and
the rate of change of the secondary magnetic flux, dt,/0t, are unknowns. Our objective
is to determine the current I flowing in the ring and we will therefore attempt to express
both unknowns in the last equation in terms of this function. First of all, making use of
Ohm’s law in integral form, we have:

& =RI (1.210)
where R is the resistance of the ring given by:

!
R=pg (1.211)

Here p is the resistivity of the ring, [ is its circumference, and S its cross-sectional area.
According to Biot—Savart law, it is clear that the magnetic flux 9, caused by the current
flow in the ring is directly proportional to I, and can therefore be written as:

Y = LI (1.212)

where L is a coefficient of proportionality known as the inductance of the ring. According
to eq. 1.212, one could say that the inductance of the ring is the ratio of the magnetic
flux through the ring to the current in the ring:

s
L"I

The inductance is controlled by the geometrical parameters of the ring. Its determi-
nation usually involves the solution of rather complex problems. In some special cases,
however, this task is relatively easy and in particular the expression for the inductance of
a thin ring in free space is known to be:

L=rug (ln §1 — 1.75) (1.213)
To
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Inductance is measured in henries per meter in the m.k.s. system of units; 7y is the
cross-section radius.

If instead of one ring we have a n-turn coil, the inductance increases as the square of
the number of turns:

8
L = rpugn? (m T—T - 1.75) (1.214)
0

The simple form of the conductive volume (a thin uniform circular ring), and the
assumption that the current density is uniform over the cross-section of the ring has
allowed us to find a simple expression for the coefficient of the proportionality between
the secondary magnetic flux and the secondary current intensity /. Substituting this result
into eq. 1.209 yields a differential equation from which the current I can be determined:

di 9o
LY L pr— 9%
ath ot

or

— 4+ =1=f(t) (1.215)

To = L/R

and

0
f)= -1 %2

Making use of results obtained earlier in this chapter (eq. 1.154), we have the following

solution for the induction current:

t

I = Ie V™ — e—‘/m% / et/ % dt (1.216)
0

We will now consider the behavior of the induced current in two specific cases.

Case 1

Let us assume that the primary magnetic field varies with time as shown in Fig. 1.42, so
that we have the following expression for 9t/ 0t:

0 t<0
Oy o
T _ 1 ¥ h<igy, 1.217
ot t (1.217)
0 t>t,
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where ¢, is called the ramp time. During the interval of the time over which the primary
magnetic flux does not change with time (¢ < 0), there are no induced currents in the
ring, that is:

It)=0 t<0

During the ramp time the primary flux changes with time, and the induced current is
determined by the rate of change of the flux time, as well as by parameters of the ring
(R and L). After the primary flux disappears, the behavior of the induced current is
controlled by parameters R and L only. In this case, eq. 1.215 is simplified and we have:

dI I
i 0 (1.218)
A solution of this equation is:

I=Ce¥™  t.>t (1.219)

The parameter 7y is commonly called time constant of the ring, inasmuch as it represents
the rate at which the current decays in the absence of external sources.

In order to express the constant C, we will investigate the behavior of the induced
current flow during the ramp time. In accord with eqs. 1.216 and 1.217, we have:

t

[(t) =1 e*t/m _{__eft/mt’d}_OL /et/ro dt = I eft/‘ro + :_0%9(1 o e—t/m) (1.220)

r T

where I represents the amplitude of the current at the instant ¢ = 0. Inasmuch as at this
instant there is no current in the ring, we have:

The constant C is readily found from egs. 1.219 and 1.220. We have in fact:

(1—e/™) (1.221)

](tr) — Ceftr/fo — _:_f%(l _ e—tr/'ro)

Thus:

_ T0%0 trm 1.222
C= Tl 1) (1.222)

Therefore, we obtain the following expression for the current induced in the ring:

0 t<0
T —t /7
1) = ﬁ%u—e t/m) 0<t<t, (1.223)

Towo tr/To —t/7
20t/ ] ot >t
t, L( Je -
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Figure 1.45. Behavior of induced currents as defined by eq. 1.223.

In accord with the last equations, the intensity of the induced current gradually in-
creases during the ramp time, reaching a maximum at the instant £ = {,, and then starts
to decrease exponentially.

Suppose that the ramp time ¢, is much less than the time constant 7. Expanding
then the exponential terms in eq. 1.223 in a power series and discarding all terms but the
leading ones, we obtain:

0 t<0
t

I(t) = E% 0<t<t, (1.224)
%e—t/fo t>t ift. <7

On the contrary, if ¢, > 79, the induced current increases linearly at first, and then
asymptotically approaches the following maximum value:

To %o
t. L

after which it decreases exponentially as before.

The behavior of induced currents in both situations is shown in Fig. 1.45.

We will now investigate the induction of current in the ring when the primary current
and magnetic flux change as a step function of time (Fig. 1.46). It is obvious that the
behavior of induced currents in this case is described by eq. 1.224 as £, approaches zero,
that is:

I(t) = %e‘f/fo (1.225)
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Thus the initial value of the induced current does not depend on the resistance R of
the ring, but on the primary flux and the inductance of the ring only.

Because there is always in practice a nonzero ramp time, the initial value of the current
should be interpreted as being its value at the instant ¢ = ¢, provided that ¢, is much
less than 7.

It is interesting to obtain the same result directly from eq. 1.215. Integrating both parts
yields:

fraer [la [

whence:

R [ 1d+ L{1(t) - 10)} = vu(0) — vo(t) (1.226)

Inasmuch as we have the following initial conditions:

¥o(0) = 1o I0)=0
and that at time ¢ = ¢, the primary flux is zero, eq. 1.226 can be rewritten as:

t,

R/Idt+L1(t,) = 1o (1.227)

]

The integrand I dt indicates the total quantity of charge passing through the ring during
the time dt. It is obvious that with decreasing ramp time, the quantity of charge tends
to zero and in the limit, when the magnetic field changes as a step function, we have:

LI(t,) = ast, — 0

that is, the initial current is:

1(0) = as t, — 0 (1.228)

o
L
This is exactly the same result as obtained with eq. 1.225.

The analysis carried out earlier shows that the error caused by discarding the integral
term decreases with decreasing ratio ¢,./7p, that is, eq. 1.228 becomes more precise with
increasing inductance or decreasing resistance of the ring.

Considering that for positive times, the current satisfies a homogeneous differential
equation, we obtain again:

I(t) = %9 e /™ (1.229)
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Figure 1.46. The variation of magnetic field with time for an ideal step function excitation.

Thus, at the initial instant, the current induced in the ring does not depend on the con-
ductivity but is defined by the primary flux and the inductance (geometrical parameter)
of the ring only.

The equality:

LI(0) = v (1.230)

is an essential feature of electromagnetic induction. The left-hand side in fact defines the
magnetic flux of induced current through the ring at instant £ = 0, when the primary
flux disappears. Thus an induced current I arises with such magnitude that at the first
instant its magnetic flux LI(0) is exactly equal to the primary flux 1. This result will
later be generalized to include more complicated models of conducting media.

Case 2

Suppose that the primary magnetic field varies sinusoidally as:
Hysinwt (1.231)

where Hj is the amplitude of the field, f is its frequency, w is its angular frequency and
T its period of oscillation. In contrast to the previous case, we consider here a steady
field which is assumed to have been established far before the time of observation, and
has been repeating itself periodically ever since. In order to find the current induced in
the ring, we will make use of eq. 1.216. Since the primary flux is simply expressed as
P sin wt, we have:

t

I{t) = Iye V™ — wTwO et/ /et/"’ cos wt dt (1.232)

0

Because:

ax

/ e* cosbrdr = iz [a@ cos bz + bsin bx]

a? +
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we obtain:

t
g=t/m /et/T" coswtdt =

0

1 1 ; 1 et/m
——— | —coswt+wsinwt| -~ ————
¢ +w? |7 70 1/7¢ + w?

where 70 = L/R.

Thus, the induced current is expressed as:

2
oty WoR Wil wipoR
0=l = e S

Inasmuch as we are interested in the induced current for an established sinusoidal process,
that is, for ¢ much larger than 7y, we have:

wibp

I(t) = —— %0
(t) R2+w2L2

[Rcoswt + wL sinwt] (1.233)

Let us introduce the following notations:

_ wipp R _ wipoL

a= R2 4+ 2] 2 and b= R? 4+ 22 (1-234)
Correspondingly we have:

I(t) = acoswt + bsinwt (1.235)

that is, the induced current can be presented as the sum of two separate oscillations. One
of them, bsinwt, which changes synchronously with the primary magnetic field, is called
the inphase component of the current and is expressed as follows:

Inl =bsinwt

The other one, acoswt, representing an oscillation shifted by 90° with respect to the
primary source, is called the gquadrature component of the current and is written:

QI =acoswt

Equation 1.235 suggests that it is desirable to treat the induced current as the sum of
an inphase and a quadrature component, the intensity of which is given by eq. 1.234.

It is important to note that in induction logging the quadrature component is usually
measured.

We can write the inphase and quadrature components as:

a=Asing b= Acos¢ (1.236)
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Figure 1.47. Sinusoidal variation of the primary field and of induced currents showing the
existence of a phase shift between them.

so that we obtain:

I = A[sin ¢ coswt + cos ¢ sinwt] = Asin(wt + ¢) (1.237)

Therefore, the induced current and the primary field are both sinusoidal functions, each
having the same frequency w, and being characterized in general by two parameters A
and ¢.

The parameter A is the amplitude of the secondary current, that is, this current os-
cillates and reaches a maximum value A each time when the argument wt + ¢ is an odd
multiple of 7/2.

The quantity ¢ indicates that there is a phase shift between the primary field and the
induced current, that is, they oscillate asynchronously as shown in Fig. 1.47. In accord
with egs. 1.234 and 1.236, we have:

2 _ wibo
A= @+ = s

(1.238)
and:

tan¢ = a/b

or

-t (2
¢ = tan (wL)

A representation of the induced current is shown in Fig. 1.48 in the form of inphase
and quadrature components as well as amplitude and phase.
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Figure 1.48. Curves representing the inphase and quadrature components of the induced
current, as well as its amplitude and phase.

In spite of the simplicity of the model of the thin circular ring, the frequency response
of the induced current contains some general features which are inherent to much more
complicated cases as will be demonstrated in later chapters.

We will consider here only briefly the low-frequency part of the spectrum. When the
frequency is sufficiently low it is possible to expand the expression in eq. 1.234 in a series
of w and discarding all terms but the leading ones, we obtain:

_wio _%l ,

a=-— and b= Y (1.239)
or

L
QI = _}_/1}%0_) coswt and Inl = —%uﬂ sin wt

From these expressions it is apparent that at low frequencies the quadrature component
of the induced current is dominant and is directly proportional to the conductivity of the
ring and to the frequency, while it does not depend on the inductance. This behavior can
readily be explained as follows: if we neglect the flux caused by the induced current the
total flux through the ring is the same as the primary one, that is ¥p. As it changes with
time, we have:

0 15}

a—zf = ’a%g = wifp coswt

and therefore in accord with Ohm'’s law, we have:
wihy

QI = —?coswt



39

Figure 1.49. Example of a finite but short ramp time from the termination of a constant
magnetic flux.

Thus at low frequencies the quadrature component is directly proportional to the pri-
mary field, frequency and conductivity. It is important to state that this behavior stands
when more complicated conductors are considered. It is also appropriate to notice that

eq. 1.239 for the quadrature component is very basic in the theory of induction logging
as developed by H. Doll.

1.4.5. Example V: Behavior of the Electromagnetic Field at the Early
Stage and High Frequencies in a Conducting Medium

Suppose that we have an arbitrarily oriented system of n conducting rings. The equation
determining the intensity of the current induced in the kth ring can be written as:

O Dok Ow

ot ot ot

Rply = — (1.240)

where Ry and I}, are the resistance and current in the kth ring, and ¢ are the magnetic
fluxes of the primary and secondary fields, respectively. It is clear that the magnetic flux
sk can be expressed as:

Yse = Mgy + Moglp + - -+ Ll + - - - + Mg I,

where L; is the inductance of the kth ring, M;; is the mutual inductance of the i-th and
k-th rings, that is, the ratio of the magnetic flux through the k-th ring, to the current I;
in the i-th ring, that is:

Yik = MiI;

Equation 1.240 can correspondingly be rewritten as:

oy o~ 0L, D
Ryl + Ly + Z M52 d’f’“ (1.241)
p#k

Assume now that the primary flux ¥ caused by external sources starts to change from
a value vy to zero at the instant ¢ = ¢y, and that this change takes place in a very short
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time ¢, (Fig. 1.49). Integrating eq. 1.241 with respect to time, we obtain:

to+tr t0+tra[ n to+tral
k p o
Ry / Ldt+ Ly / adHZMpk / S 4t = vok(to)
to to g;i to
since:

Yor(to +¢:) =0

Taking into account that induced currents are absent at the first instant (¢ = t;) and
that the interval ¢, is very short, this last equation can be approximated as follows:

Lilp(to +t,) + Z My Ip(to + tr) = Yor(to)

p=1
p#k

Introducing the notation:

to =ty tf =to+t,

we have:
Lele(td) + Y Mado(t) = toe(ty) (1.242)
=1
5¢k

On the left-hand side of this expression, we have a representation of the magnetic flux
through the kth ring caused by the currents induced in all the other rings just after
switching, while on the right-hand side is the expression for the primary flux ¥y before
switching. Thus we observe again a principal feature of electromagnetic induction when
the primary flux changes as a step function:

_Jto t< i
2/)OV{O t >t

In fact at the very first instant, the currents induced in all the rings have such a
magnitude that the magnetic flux they caused in any ring is exactly equal to the primary
flux.

Now we are prepared to describe the asymptotic behavior of the field in a conducting
medium. We will make no assumption on the uniformity of the medium or the locations
of the primary sources. Let us suppose that the primary flux is instantaneously switched
off at the instant ¢ = ¢y. At times smaller than ¢y, the magnetic field has been constant
so that no induced currents are present in the conductor before ¢y. Correspondingly, the
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circulation of the magnetic field inside the medium along any arbitrary path is zero during
that range of time:

L

provided that the path of integration does not enclosed a current line of the primary
sources.

A conducting medium can be presented as consisting of a system of current rings with
arbitrary shapes and in this way one can apply results that were obtained earlier. Inas-
much as the flux through any ring at the instant ¢ = ¢y remains the same as that for earlier
times the magnetic field at any point in the conducting medium does not change either.
This conclusion stems from the fact that for an arbitrary surface inside the conductor, we
have:

P(ty) = o
Thus immediately after disappearance of the primary flux ¥y we have:
H(t}) = Hy (1.244)

Let us emphasize that this relationship does not exist outside the conductor.

From eqs. 1.243 and 1.244 it follows that the circulation of the magnetic field for any
path inside a conductor is zero at the instant fy and therefore there are no induced
currents:

j=0and E=0 ift=t; (1.245)

There must, however, be some sources of the magnetic field which maintain the primary
field when the source is switched off. These sources are induced surface currents which
are situated close to the source of the primary field if this one is located outside the
conductor. If the source is located within the conductor, as in induction logging, induced
currents initially exist near the source only.

Induced currents, concentrated on the surface of a conductor or near the primary
sources, decay with time as the electromagnetic energy is converted into heat and ap-
pears at various points in the medium. It is obvious that the decay of the field takes place
more rapidly in a highly resistance medium, while it decreases slowly in a conductive
medium.

Let us note that in solving many boundary problems related to the calculation of
nonstationary fields, conditions 1.244 or 1.245 are extremely important and are usually
referred to as initial conditions. They are in essence a modification of Faraday’s law and
therefore must be satisfied by any nonstationary field in a conducting medium.

Suppose now that the primary field changes as a sinusoid with relatively high frequency
(Fig. 1.50a). Such a signal can be approximated qualitatively by a system of pulses of
alternating sign (Fig. 1.50b).
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Figure 1.50. Presentation of a high-frequency oscillation as a system of step functions.

Then each pulse can be presented as the difference of two step functions arising with
an interval of time of half the period of the oscillations.

It is clear that if the current changes in the primary source with relatively high fre-
quency, the induced currents essentially remain either on the surface of the conductor
or close to the source depending on whether the source is located outside or within the
conductor. This explains why the high-frequency asymptote coincides with that of the
early stage in transient electromagnetic fields.

1.5. Electromagnetic Field Equations

In previous sections, by making use of Gauss’s and Stoke’s theorems, we have developed
the basic laws for the electromagnetic fields in the form of equations. In accord with these
laws the electromagnetic field must satisfy the following set of equations:

]{E-dl:—%/ﬂds (1.246)

L
/H-dl /] dS+/— ds (1.247)
L

/D dS=e (1.248)
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Figure 1.51. Two surfaces 5;, and S;, bounded by a contour L.

/B-dSzO (1.249)
S

where E and H are electric and magnetic field vectors, B and D are magnetic and
electric induction vectors, e is a charge in a volume surrounded by a surface S, and j is
conduction current density. The various vectors are by a set of relationships known as
the constitutive equations:

D=¢FE B=puH j=0cFE

where ¢, u and o are the dielectric permeability, the magnetic permeability the electrical
conductivity of a medium, respectively. The paths of integration L, can be arbitrarily
situated, and in some cases they can cross the boundaries between media having different
properties. Equations 1.246 through 1.249 are called the Maxwell’s equations in integral
form, and each one of them describes a specific physical law. For this reason, any dis-
tribution of an electromagnetic field must satisfy these equations. They define the field
at any point in the medium, including points situated on interfaces. Maxwell’s equations
describe the field everywhere regardless of the nature of the change in electrical properties
from one region to another.

The first equation (eq. 1.246) is in essence Faraday’s law, while the second equation
(eq. 1.247) follows from a combination of Ampere’s law and the postulate of conservation of
charge. The third equation (eq. 1.248) is obtained from Coulomb’s law for a nonalternating
electric field. However, it remains valid regardless of how quickly the field may change. In
order to demonstrate this we will use the postulate of conservation of charge (egs. 1.131-
1.132):

f"? -dS=—-¢é or divy= _% (1.250)

Applying the second Maxwell equation (1.247), twice along contour L, once in one
direction, and then in the opposite direction, and considering two surfaces (S; and S3),
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bounded by the same contour L (Fig. 1.51), we have:

j{H-dlz/j-dS+/D-dS
L S1

S1
]{H-dl:/j-ds+/b-ds
L Sy Sa

Adding the two equations and considering that the surfaces S; and S, form a closed
surface, we obtain:

. oD
o_j{g-dSJrfE-ds
S S

and in accord with eq. 1.250:

oD .
stze
S

whence

%D-dS:e
5

By analogy, using the first Maxwell equation, we also have:

fB-dSzO
s

The fourth Maxwell equation (eq. 1.249) represents the fact that the magnetic flux
through an enclosed surface is zero. This consideration demonstrates that the field equa-
tions can also be written as other sets of equations:

?{E-dl:*g/B-dS
ot
L s

]{H-dl:/j-ds+§£/D-dS (1.251)
L S S

. Oe
S

inasmuch as eq. 1.248 and 1.249 can be derived from the system given in eq. 1.251.
However, we will use the basic system of equations (egs. 1.246-1.249). It must be obvious
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that in any actual situation, the electromagnetic field has a finite value everywhere in
space. However, in order to simplify the computation of fields, often some assumptions
are made about the sources for the primary field. For example, in place of an actual source
magnetic or electric dipoles may be considered. This type of approximation immediately
leads to the existence of infinitely large values for the field at infinitesimal distances from
such sources. Therefore, egs. 1.246-1.249 cannot be applied in the immediate vicinity
of such idealized sources. For this reason, some very small volume in which the source
is situated is conceptionally surrounded by a surface on which the field almost coincides
with that caused by the currents and charges of such a primary source. In other words,
near the source the total field has to approach the primary field. One can say that this
condition characterizes the type, intensity and location of a primary field source.

On the other hand, with an unlimited increase in distance from the source the field
must decrease in a proper way. This condition at infinity must be taken into account in
the full description of a field. Finally, there is one more condition which appears when a
transient field is being considered. For example if the current or charges representing the
source or the primary field change in the form of a step function at some moment ¢ = #,
eqs. 1.246 and 1.247 cannot be applied, since the derivatives with respect to time are not
well defined at this moment. Therefore, at this instant, Maxwell’s equations are replaced
by an initial condition as described in section 1.4.

Thus, a full description of the electromagnetic field includes not only Maxwell’s equa-
tions, as given by eq. 1.246-1.249, but also conditions that must be met near the primary
source and at infinity, along with an initial condition. Thus, the following series of steps
can be recognized in defining an electromagnetic field, making use of eqgs. 1.246-1.249:

1. Determination of a set of functions, satisfying the system of integral equations.
2. Choice among these functions of those which satisfy the condition at infinity.

3. Choice among the remaining functions of those which satisfy the condition near the
source.

4. Choice among the remaining functions of those which satisfy the initial condition,
if a transient field is being considered.

From the physical point of view, it is apparent that a solution found in this way repre-
sents the electromagnetic field generated by the given distribution of sources. However,
for the solution of a variety of problems, it is frequently preferable to apply differential
equations. For this reason, we will consider a differential form of Maxwell’s equations:

CurlE:—a—Bi divD =§
ot oD (1.252)
curlH =cE+ — divB=0

ot

here 4 is a free charge.
In contrast to the integral form, given in eq. 1.251, all the vectors that enter into each of
the equations in 1.252 are considered at a single point. The essential feature of Maxwell’s
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equations, written in the differential form, is that they describe the field only at points
where the first derivatives of the field exist, that is, where the divergence and curl have
meaning. Thus, unlike Maxwell’s equations in the integral form, the set of equations given
in egs. 1.252 can be applied for so-called well behaved points.

However, as is obvious, there can be points, lines, and surfaces where some components
of the electromagnetic field are discontinuous functions of the spatial variables. For ex-
ample, the normal component of the electric field is usually a discontinuous function of
the spatial variables at an interface separating two media with different resistivity. As a
consequence, we must make use of surface analogies of eqs. 1.252 at such interfaces. Ac-
cording to results obtained in previous sections these may be represented as a continuity
of tangential components of electric and magnetic fields, that is:

’nX(Eg—El):O nX(Hz—Hl):O (1253)

where n is a unit vector of the interface, F9 and FEi, and Hy and H, are electric and
magnetic fields on either side of such an interface.

Thus, in essence, egs. 1.253 are surface analogs to the corresponding Maxwell’s equa-
tions given in differential form in eq. 1.252. Therefore, starting from the system of dif-
ferential equations (eq. 1.252) the problem of defining the field consists of the following
steps:

1. Determination of a set of functions satisfying the differential equations in 1.252.
2. The choice among these functions of those satisfying the condition at infinity.

3. The choice among the remaining functions of those having the given behavior near
the source of the primary field.

4. A choice among still remaining functions of those that satisfy the boundary condi-
tions given in eq. 1.253.

5. A choice among the remaining functions, E and H, of those that satisfy the initial
conditions, if a nonstationary field is being considered.

Taking into account, that:
D=c¢cFE B=uH j=oF

the system of equations in 1.252 usually contains two unknowns, namely the electric and
magnetic field intensities. One can say that we have four differential equations in partial
derivatives of the first order with respect to two unknown vectors, but more accurately,
to six unknown components of the electromagnetic field.

Very frequently it is more convenient to derive equations in which the electric and
magnetic fields are separated, than to make use of the set of equations in 1.252. Let us
consider points in the medium where the parameters ¢, i and € do not change:

Ba_as_a_u_o

R
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and where dl is an arbitrarily oriented displacement. As has been shown previously
(section 1.3) electric charges are absent at such points, and therefore, Maxwell’s equations
take the form:

curl E = — divE =0
(1.254)
curleaE—i—E({iWE divH =0

From the first Maxwell equation, we have:

0
curlcurl B = —Hz curl H

In making use of the vector identity:
curlcurl E = grad div E — V2E

and of the second Maxwell equation we obtain:

graddivE = —V?E = —#g (UE + 6%_?)

Taking into account the third Maxwell equation div E = 0, we have:

—— WaE OE

where V2E = AE is known as the Laplacian of the electric field.
Similarly, using the second equation in 1.364, we have:

curl curl H = grad div H — V2H = o curl E + E% curl £

In making use of the first and fourth Maxwell equations, we obtain:

oH 0*H
2 - - _— =
V‘H —op . Ue 2 0 (1.256)

Thus, for points in the medium, where the electric and magnetic properties do not
vary spatially we have obtained equations involving only the electric or magnetic fields.
The two equations are of identically the same form, being the second order in partial
derivatives. They are sometimes known as telegraph equations for a conductive medium.

When these equations are used, the determination of the electromagnetic field can be
done in almost the same sequence of steps as before:

1. Definition of various functions that satisfy egs. 1.255 and 1.256.
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2. The choice among these functions of those that satisfy the conditions at infinity.

3. The choice among those whose behavior near the source corresponds that for the
primary field.

4. The choice among the remaining functions of those that satisfy surface conditions
given in eq. 1.255.

5. The choice among the still remaining functions of those that satisfy initial condition
if a nonstationary field is being considered.

Now let us consider some special cases.

Case 1

First of all, assume that an electromagnetic field does not change with time, that is, all
the derivatives with respect to time are zero, and that:

D =¢yF and B = pygH

Then with accord with egs. 1.252 and 1.253 we have the following equations for well
behaved points and for interfaces:

curl E =0 curl H = j

(1.257)
divE =6/¢y divH =0
and
’nX(EQ—El)ZO ’nX(Hg—Hl)ZO

(1.258)

E?D _EW =%/, H®-HY =0

where ¥ is the surface density of charge. In this case of a constant field (0/9t = 0), the
system is split into two parts as follows:

curlE=0 divE = §/¢g (#1)
and at interfaces:

nx(Ey,—E)=0 E®_-EV=x/¢

and

curlH=35 divH =0 (#2)
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and at interfaces:
nx (Hy—H)=0 H?P -HY =0

One part (#1) defines the electric field and clearly shows that the sole source of the
field is electric charge, which can exist at points where the conductivity changes, such as
at interfaces. It is clear that the electric field can be found without any knowledge of the
magnetic field, and that the electric field is governed only by Coulomb’s law. When the
electric field has been determined, current density can be calculated using Ohm’s law,
J = oFE, and by making use of the second part (#2), the magnetic field can be found as
well. It can also be calculated using the Biot—Savart law.

At this point we will consider a very important case, that of a quasistationary field,
which is often also called a quasistatic field.

Case 2

Suppose that in the second equation describing the field (eq. 1.252) we can ignore the
second term, which represents displacement current. Then, system 1.252 can be written
as:

H
curl E = —p?a—t curl H = 3 a )
.259

div E = §/eq divH =90
and at interfaces as:

nX(EQ—El):O ’nX(Hg—Hl):O
(1.260)
E®D —EMN =%/eg HP-HY =0

(the surface density of current i = 0).

From these expressions it can be seen that the electric field has two sources: the first
being volume and surface charges and the second being a change of the magnetic field
with time. Therefore, the electric field can be represented as a sum:

E=E'+E

where E° and E” are caused by charges and a change of magnetic field with time, respec-
tively. At the same time it is important to emphasize that there is a relation between
these fields, since distribution of induced currents and charges depend on each other.

In contrast to the behavior of the electric field, the quasistationary magnetic field has
but one source, conduction currents. Comparing the equations for the magnetic field
(eq. 1.259) with those for a constant magnetic field (eq. 1.257) we see that they are pre-
cisely the same. This means that the magnetic field at any point in the medium is defined
by the instantaneous values of current density throughout the conduction medium, and
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can be calculated using only the Biot—Savart law. One can say that the quasistationary
approximation means that we neglect propagation time for electromagnetic energy, that
is, it is assumed that the field travels instantaneously from the transmitter to the receiver.

In order to emphasize this, let us write down the field equations 1.255 and 1.256 for
this approximation. Discarding terms involving displacement currents, we have:

OF oOH

These equations are known as the diffusion equations, that is, they describe the pen-
etration of energy, but do not take into account wave propagation. They can be used
provided that the time at which the signal is recorded or the period of oscillations sig-
nificantly exceeds the travel time for the field from the source to the observation point.
It can be said that the quasistationary approximation is valid when conduction currents
dominate over displacement currents in a conducting medium, and the arrival time for a
signal in an insulator is much less than the time at which measurements are performed,
or the period of the oscillations being observed. This assumption is equivalent to stating
that the signal arrives instantly at all points where the field is to be measured.

It might be worth noting that even though the propagation effect is not considered in the
quasistationary field approach this field contains some essential features of propagation.

Case 3

At this point we will examine a special case in which the electromagnetic field varies as a
sinusoidal or cosinusoidal function of time. This leads to some important simplifications in
the presentation of Maxwell’s equations (through use of the so-called operator notation).
Suppose that we have a sinusoidal oscillation:

M = Mysin(wt + ¢) (1.262)

where M, is the amplitude of the oscillation, ¢ is its phase, and w is the angular frequency.
Making use of Euler’s formula:

e/ @) = cos(wt + @) + isin(wt + @)

we can writc eq. 1.262 as the imaginary part of an exponential term:

My sin(wt + ¢) = Im Me™! (1.263)
where M = M, e'®. Therefore, we have:

M et = My e et = M, elt+e)

Whence

Im(M e“t) = Im [M, '1+9)]
= Im [Mp {cos(wt + ¢) + isin(wt + ¢)}] = My sin(wt + ¢)
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Similarly, a cosinusoidal oscillation can be represented by the real part of a complex
function:

Mo cos(wt + ¢) = Re M e (1.264)

where M is equal again to M, e™?.

Let us emphasize that the complex amplitude, M , is defined by the real amplitude, Mo,
and the phase, ¢, of an oscillation.

Inasmuch as:

M et = My cos(wt + ¢) + 1 My sin(wt + ¢)

and since both terms on the right-hand side of this equality are solutions of Maxwell’s
equations, one can operate using only the function Me“t. After finding a function that
satisfies this system of equations one must then take either the imaginary or real part.
The representation of a solution by the form M e“* has remarkable feature. In fact, it
is actually the product of two functions, one being the complex amplitude, M, which is
a function of coordinates and the properties of the medium as well as of frequency, but
which does not depend on time. The second multiplier, €!, depends on time in a simple
manner and, as is readily seen, after differentiation still remains an exponential. This fact
permits us to write Maxwell’s equations in a form which does not contain the argument
t, and this essentially facilitates the solution. It is appropriate to note that the sinusoidal
function, which is being considered, has been in effect for such a long time that there is
no need to take into account an initial condition.
Thus, representing a field and charges in the form:

H=Hd E=Ed* §=bet (1.265)

and substituting them in Maxwell’s equations (eq. 1.252) we obtain:

curl E = —iwpH divE =6

N . . . (1.266)
curl H = oF + weFE divH =0
inasmuch as:
%ewt = iw elwt
Similarly, we have the following for the eqs. 1.255 and 1.256:
V2H ~ (iopw — wep) H =0

(o = wep) (1.267)

V2E — (iopw — w2ep)E =0
The quantity:

k? = iopw — wiep (1.268)
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is usually considered to be the square of a wave number, k. For quasistationary behavior
of the field in which displacement currents are neglected, the wave number can be written
as:

k = (iouw)'/? (1.269)
Alternate forms are:

(1+1)
h

k= (iopw)V? = (5'—‘;3)1/2 (1+i) = (1.270)

where h is the skin depth, defined as:

2 \'?  10% [10p\ '/
() - ()

Here p is the resistivity in ohm-meters, f is the frequency in Hertz, and p is the magnetic
permeability, normally taken to be the value for free space, which is 47 x 10~7 H/m.

Maxwell’s equations can be written as follows for a harmonic quasistationary field
behavior:

curl B = —iwuH divE =4d/e
: _ /e (1.272)
curlH =oF divB =10
The hat notation previously used to indicate a complex amplitude has been omitted for
simplicity.
By algebraic recombination of these four equations we have the Helmholtz equations:

V’H —icpwH =0  V?E — iopwE =0 (1.273)

The system of equations in 1.272 is particularly simplified in the case in which a medium
consists of parts within which conductivity is constant, that is, a piecewise uniform
medium. In this case, electric charges can arise only at interfaces and within the uni-
form pieces the volume density of charge is zero. Therefore, in place of eqs. 1.272 within
each volume we have:

curl E = —iwpH divE =0
curl H =oFE divH =0

The piecewise uniform medium is the most widely used model for a geoelectric sec-
tion and it is appropriate here to formulate again the steps to use in determining the
quasistationary harmonic field for this type of model.

The steps are:
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1. Determination of solution functions that satisfy the systems of equations:

curl B = —iwpH divE =0
curl H = oFE divB =0 (1.274)

or
V:H - kK*H =0 V?E - k*E =0

where k% = iopw.

2. A choice among those functions of those which satisfy the source condition for the
primary field.

3. The choice among the remaining functions of those which satisfy the condition at
infinity.

4. The selection among the still remaining functions of those satisfying boundary con-
ditions at each interface, that is, the continuity of tangential components of the
electromagnetic field.

As has been pointed out previously, inasmuch as the field under investigation must be
stationary, there is no initial condition to be met, and because of this the solution is made
such simpler. It might also be noted that a solution of eq. 1.273 will be in the form of a
set of complex amplitudes for the electric and magnetic fields. In accord with eq. 1.264
we obtain the amplitude My and phase of an oscillation ¢ in the basic form (eq. 1.262).

It should be apparent that when a solution has been obtained for harmonic fields a
solution can also be derived for any arbitrary time dependence through the use of the
Fourier transform. Most frequently the electric and magnetic field vectors cannot be
completely described by using only a single spatial component. For this reason a solution
can turn out to be very cumbersome. Some simplification can be obtained by making use
of various auxiliary functions. There are two ways in which such auxiliary functions can
be introduced. One approach follows from use of the third equation in the set 1.274:

divE =0 (1.275)
This is an approach which is commonly used when the field is energized using a non-
grounded loop, as for example, a magnetic dipole. In this case only inductive excitation
of the field takes place. In accord with eq. 1.275, the electric field can be defined as being

a spatial derivation of the vector potential, A*:

E = curl A* (1.276)
because the relationship:

diveurl A* =0
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always applies for any vector.

The function A* is called a vector potential of the magnetic type. It should be obvious
that the same electric field can be described by an infinite number of different functions
A*. For example, the gradient of any function can be added to some fixed potential A*
to provide the result:

curl(A* + grad ¢) = curl A* + curl grad ¢

Taking into account another vector identity:

curl grad¢ =0

we have:

curl{A* + grad ¢) = curl A* = F

This ambiguity in definition of A* can be used to our advantage in simplifying equations
when the vector potential is used, as well as to express both vectors of the field in terms
of this single function.

To obtain a solution we substitute eq. 1.276 into the second equation of 1.274 so that
we have:

curl H = o curl A* = curloc A*

since ¢ is considered to be a constant. This can all be written as:

curlH —0A*) =0

whence:

H —cA*=grad¢ (1.277)
where ¢ is some scalar function. Just as is the case with the vector potential this function
is ambiguous.

Substituting expressions for vector quantities E and H in terms of functions A* and
¢ in the first equation of 1.274 we obtain:

curl curl A* = —iwu(c A* + grad ¢)
Inasmuch as:

curlcurl A* = grad div A* — VZA*
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where V? is Laplacian, we have:
grad div A* — V?A* = —iopuwA* — iwp grad ¢ (1.278)

The expressions which have been obtained for the functions A* and ¢ are quite com-
plicated. In order to simplify this last equation, we now choose a pair of function 4* and
¢, that satisfy the condition:

div A* = —iwpe (1.279)

By using a gauge condition the differential equation becomes a Helmholtz equation for
the vector potential A*:

VZA* - K*A*=0 (1.280)

This is precisely the same equation for either the electric or the magnetic field. Making
use of the condition 1.279 both vectors, comprising an electromagnetic field, are expressed
in terms of a single vector potential quantity, A*. In accord with egs. 1.276, 1.277 and
1.279 we have the following representations for the two vector quantities:

E = curl A*
1
H =0A* — — grad div A* (1.281)
iwp

The behavior of the vector potential at interfaces follows from the required continuity for
tangential components on the electric and magnetic fields at those boundaries. It is not
particularly difficult to formulate conditions near the source of the primary field nor at
infinity.

Let us examine another way for introducing the vector potential. From the fourth
equation in system 1.274 we can represent the magnetic field as being:

H=curlA (1.282)
The function A is called a vector potential of the electrical type and this definition is
normally used when the electromagnetic field is energized through the use of a grounded

wire. Substituting this definition for the vector potential into the first equation of set
1.274 we have:

curl E = —iwp curl A
or

curl(E +iwpA) =0
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whence:

E +iwpA =gradU

or

E = —iwyA + gradU (1.283)
Substituting egs. 1.282 and 1.283 into the second equation of the set 1.274, we have:
curl curl A = —iopw A + o grad U

or

grad div A — V?A = —iopuwA + o grad U

Considering that there are an infinite number of functions A and U, that will satisfy
eqs. 1.282 and 1.283, we will seek a pair of them that simplifies the last equation. One
such choice is:

1
U=_divA (1.284)

With this gauge condition we again obtain a Helmholtz equation for the electric vector
potential:

VEA-KA=0 (1.285)

and both vectors, comprising the electromagnetic field, are expressed in terms of a single
vector potential functions, A:

H=curl A

1 (1.286)
E = —iwpA + —grad div A
o

As in the previous case the behavior of this vector potential near the source and at
infinity, as well as at interfaces, follows from the corresponding behavior of the electric
and magnetic fields under these conditions.

In conclusion, let us review some of the results which are contained here. If one of
the vector potentials is found, then the electric and magnetic fields can be determined
by taking corresponding derivatives in accord with either eq. 1.281 or eq. 1.286. When
an electromagnetic field is caused by both induced currents and charges it is necessary
in most cases to make use of both vector potentials to determine the field, but there
are some important exceptions. For example, the most important features of the theory
of induction logging can be derived, making use of the vector potential of the magnetic
type, A*. Just as is the case with harmonic fields solutions for vector potentials can be
extended to the case in which the functions depend arbitrarily on time.
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1.6. Relationships between Various Responses of the
Electromagnetic Field

In this section we will explore some general relationships between the various responses
of an electromagnetic field. First of all we will start from a relationship between the
quadrature and inphase components of the field. For example, representing the complex
amplitude of the electric field as being the sum of two components:

E=InhE+iQF
and substituting these into Helmholtz equation (1.273) we have:
VXInE +iQE) ~iocuw(InE+iQE) =0

or

V:InE =iocuw QE

V2QE =ouw n E (1.287)

Thus, there is a relationship between the inphase and quadrature components of the
spectrum. Let us examine this in more detail. We will make use of a solution in the
form M e!“!| where M is a complex amplitude of the spectrum. In obtaining an actual
sinusoidal solution one should take the imaginary part of this expression:

Mysin(wt + ¢) = Q M e

If the solution contains the complex amplitude term from the physical point of view this
means that there is a phase shift and thus the field can be represented as being the sum
of the quadrature (Q) and the inphase (In) components. We will have:

M=InM+iQM = Mycos¢+1iMysin ¢ (1.288)

where M, and ¢ are the amplitude and phase of an oscillation, respectively.
Using the conventional symbols for representing a complex variable we can write M as:

M(z) =U+iV (1.289)

where U and V are the real and imaginary parts of the function M(z) and z is an argument
defined as:

z=x+1y

where z and y are coordinates on the complex plane z. Usually the complex amplitude
M of an electromagnetic field is an analytic function of frequency, w. If this is the case,
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Figure 1.52. Path of integration consisting of a semi-circle with an infinitely large radius
and centered on the z-axis.

a necessary and sufficient condition for analyticity of a function M the Cauchy-Reimann
is:

ou oV ou oV (1.290
or Oy oy Oz -290)
The Cauchy-Reimann conditions express the relationship that exists between the real and
imaginary parts of an analytic function in the complex plane in differential form. In our
case the complex variable z is the frequency:

w=Rew+ilmw

and we will seek a relationship between the quadrature and the inphase components of
the field for real values of w, because the electromagnetic field is observed only at real
frequencies. For this purpose let us use the Cauchy formula which shows that if the
function M(z) is analytic within a contour C, as well as along this contour, and «a is any
point in the z-plane, then:

M) 1 ifaeC
- _Zadz =2miM(a){1/2 ifaisonC (1.291)
c 0 ifag¢C

The Cauchy formula permits us to evaluate M (a) at any point within the contour C, when
the values of M(z) are known along this contour. This relationship is a consequence of
the close connection which exists among all values of an analytic function on the complex
plane z.

Let us consider a path consisting of a semi-circle with an infinitely large radius, centered
on the r-axis. The internal area of the contour includes the upper half-plane as shown in
Fig. 1.52. We will attempt to find a quadrature component for the function M = U +iV
by assuming that the inphase component U is known along the z-axis or vice versa. Using
the Cauchy formula, we have:

M(£) = %P}{ i\/‘[f(?dz (1.292)
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The point € = £ + in lies along the path of integration and the symbol P indicates the
principle value of the integral that is to be used. Inasmuch as the path of integration
coincides with the z-axis (n = 0) we have:

o0
1 M(x,0
Me,0)= ~p [ M@0 4, (1.293)
i T —c
In developing eq. 1.293 it has been assumed that the value for the integral along the
semi-circular part of the path of integration vanishes as the radius increases without limit.
Because:

M(e,0) =Ul(e,0)+1V(e,0)
and
M(z,0) =U(z,0)+1V(z,0)

we obtain:

Ule,0) = ~p / Viz,0) 4,

™ r—£

-0

(1.294)

Ve, 0) = —%P / Ux(%’g)dx

—00

The integrands in these expressions are characterized by a singularity which can readily
be removed by making use of the identity:

(e o}

P/ z__, (1.295)

Tr—¢£

—00

Now we can rewrite eq. 1.294 in the form:

U(s,O):%/K@’(Q—:Z@dx (1.296)
V(e,()):—%/ﬂﬁoz%(&o)dx (1.297)

inasmuch as:

V(e,O)/OO dz =U(5,0)7 < _,

r—E r—¢€

-0
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It can readily be seen that the integrands in egs. 1.296 and 1.297 do not have singularities,
and these expressions establish the relationship between the real and imaginary parts of
some analytic function.

Let us return to consideration of the complex amplitude of the field:

Mw)=InMw)+iQM(w)

In accord with egs. 1.296 and 1.297 the relationship between the quadrature and inphase
components of the field are:

mewzi/QMﬁthwwm (1.298)
Qde=~%/hwm2:ngwm (1.299)

Thus, when the spectrum of one of the components is known, the other component. de-
scribing a field can be calculated by making use of either eq. 1.298 or 1.299.

It is now a simple matter to find the relationship between the amplitude and the phase
responses of a field components. Taking the logarithm of the complex amplitude M we
have:

InM = In M, + i¢ (1.300)

From this equation we see that the relationship between the amplitude and phase re-
sponses is the same as that for the quadrature and the inphase components. For example,
for the phase response we have:

(e}

1 / In My(w) — In Mg(wo)

P(wo) = - PR dw (1.301)

-0

For practical purposes it is preferable to express the right-hand side of eq. 1.301 in another
form. After some algebraic operations, we obtain:

o0

1 dL u
. h 1.302
é(wo) - / Tu ’lncoth 2’ du ( )

where:
L =1n M, u = In(w/wp)

It can be seen from eq. 1.302 that the phase response depends on the slope of the amplitude
response curve when plotted on a logarithmic frequency scale. Inasmuch as the integration
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Figure 1.53. The kernel function (weighting factor) for the transform given in eq. 1.302.

is carried out over the entire frequency range, the phase at any particular frequency wy
depends on the slope of the amplitude response curve over the entire frequency spectrum.
However, the relative importance of the slope over various portions of the spectrum is
controlled by a weighting factor |Incoth(u/2)| which can also be written as:

w + wyp
W — Wo

‘ln

The weighting factor is shown graphically in Fig. 1.53. It increases as the frequency is
close to wp, and becomes logarithmically infinite at that point. Therefore, the slope of
the amplitude response near the frequency for which the phase is to be calculated is
much more important than the slope of the amplitude response curve at more distant
frequencies.

It should be noted that calculation of the amplitude response from the phase can only
be done with an accuracy of some constant. Equations 1.301 and 1.302 lead us to the
following conclusions. First of all, measurement of the phase response does not provide
additional information on the geoelectric section when the amplitude response is already
known. However, it may well be that the shape of the phase response curve more clearly
reflects some diagnostic features of this section than does the amplitude response curve.

It is important to stress that while there is in essence a unique relationship between
the quadrature and the inphase responses, as well as between the amplitude and phase
responses, this does not mean that there is a point by point relationship between them.
In fact measuring both amplitude and phase at one or a few frequencies provides two
types of information characterizing the geoelectric section in a different manner. The
same conclusion can be derived for the quadrature and the inphase components.

We will now investigate the relationship between frequency domain and time domain
responses. In most cases considered in this section a transient electromagnetic field is
excited by a step function current in the source. Moreover the theory of the transient
induction logging described in this monograph will be developed for this type of excita-
tion. For this reason the relationship between frequency response and transient response
corresponding to this single type of excitation will be our principal concern. The infor-
mation we need is obtained through use of the Fourier transform which takes the well
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Figure 1.54. The path of integration for eq. 1.306.

known form:

F(t) = — / F*(w) e duy (1.303)

F(w) = / F(t)e dt

When the current in the source changes as a step function in time, the primary magnetic
field accompanying this current does likewise:

H() t<0
Hy(t) = Folt) = 1.304
o(t) = ot {0 'S (1.304)
According to eq. 1.303 the spectrum for the primary magnetic field is:
Hy(w) = F§(w) = Hp/iw (1.305)

The amplitude of this spectrum decreases inversely proportionally to frequency while the
phase remains constant.

Inasmuch as low frequencies prevail in the spectrum of the primary field when step
function excitation is used application of this excitation is often preferable in practice. In
accord with eq. 1.303 the primary magnetic field can be written as:

oo

H 1
Ho(t):z—;/ae_’“"dw (1306)
—00

where the path of integration is not permitted to pass through the point w = 0 (Fig. 1.54).
Let us write the right-hand integral as a sum:

T o—iwt I A et R —iwt
1 e v 1 e 1 e” 1 e”
dw = — dw + — dw+ —
2mi w 2mi w 2mi w 27

—00 —00 —£ +e

dw
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and integrate along a semi-circle around the origin whose radius tends to zero.
In calculating the middle integral we will introduce new variables, p and ¢:

w=pe?

Then, we have:

dw =ipe¥dyp
and
1 +e | . 2r . d 1
—iw 1 3 i
- dwz—./wz— if p— 0
27 w 27i pev 2
—£& k(s

Correspondingly, the second expression for the primary field when the variable of integra-
tion takes on only real values is:

H H x —iwt
Ho(t):70+2—7(:/ew dw (1.307)

—00

Now, making use of the principle of superposition, we obtain the following expression for
a nonstationary field:

Hty = Ho / —I%w)e’mdw (1.308)
H(t) = Ho | +o / H(®) -t g, (1.309)

where H(w) = In H(w)+1Q H(w) is the complex amplitude of the spectrum of the chosen
component of the magnetic field, which is assumed to be known.
Let us write eq. 1.309 in the form:

Hy
H(t) ——2-+ o

w
= (1.310)
i H(w)sinwt + In H(w) coswt
— 2LH0 / Q dw
w

Hy 7 QH(w)coswt — In H(w) sinwt do
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Inasmuch as

InH(w)=InH(—w)

QHw) =-QH(~w) (1.311)

the second integral in 1.310 is zero, and therefore:

H(t) =

(1.312)

2

Hy . E/OOQH(w)coswt —In H(w) sinwt dw
w w
0

For negative times, H(t) = Hy, and by substituting t = ~¢:

H():

2

@_}_ﬂ/QH(w)coswt—i-InH(w)sinwt dw
7 w
0

or

o0

%4_@/QH(w)coswt+InH(w)sinwt dw
7r

Let us take note that in these last two expressions time is taken as a positive quantity.
Combining egs. 1.312 and 1.313, we obtain:

H(t) = 2 HO/ QAwW) coswt dw
0

e w

and

o
H(t) = Hy — EHO/ I H(©) ot duw (1.314)
is w

0

Correspondingly for derivatives with respect to time of the magnetic induction, B, we
have:

B(t) = —% HO/QB(w) sinwt dw
0

0 (1.315)
B(t) = —EHO/InB(w) coswt dw
7
0
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Equations 1.312 and 1.315 permit us to calculate the transient response when either
the quadrature or the inphase component of the frequency spectrum is known. It is often

convenient to introduce new scale variables in these equations. Such a scale variable can
be defined as:

1 (a)2_a,ua2 L w

yzé—l;i h 87r2w_87r2a

where h is skin depth, a is a linear dimension, for example, a radius of the borehole, and
a=1/oua®
It should be obvious that:
N2 2
- (-0
v 2rh a y

where

ot 1/2 5
T=21| — and (= 1 (Z>
ou 8m2a \a

Using these variables:

B(t) = —167raH0/InB (87%ay) cos [(1/a)?y] dy
. (1.316)
B(t) = —167raHO/QB (87%ay) sin [(1/a)?y] dy

Usually, because of the complexity of the expressions for the frequency spectrum, the only
way to obtain numerical results from egs. 1.312 to 1.316 is by numerical integration.

Up to this point we have examined the relationship between frequency and transient
responses and have derived formulae for calculating the time-domain field for the case
in which the primary field changes as a step function of time. In so doing we have
assumed that the frequency spectrum for the field is known. However, in practice, the
use of this type of excitation meets with some practical difficulties. For example, due
to the inductance in a transmitter loop, the current cannot be terminated instantly, and
because of this, in place of a step current behavior there is a gradual decrease of current in
the transmitter. The time required for the current to vanish in the transmitter is usually
called the ramp time. In order to investigate the effect caused by such behavior of the
transmitter current, it is appropriate to use calculations of the transient field generated
by a step function excitation, rather than refer to frequency domain fields by applying
Fourier transform to the measurements. The further approach is based on the use of
Duhamel’s integral which is described below.
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Figure 1.55. Presentation of the primary field for determination of Duhamel’s integral.

Assume that a primary field varies with time like the function shown in Fig. 1.55. It
should be clear that this function can be thought of as being the sum of step functions
with the amplitude AHp(7), where 7 is the instant at which the excitation occurs. Also
let us assume that the transient field caused by the unit step function is known and is
described by the function A*(f — 7). It is clear that a step function with the amplitude
AHy(T) generates a transient field given by AHg(7)A*(t — 7).

Adding the actions of all such step functions occurring at various times we find the
expressions for the total transient response for any component of the magnetic field:

T=t
Hi(t) = Ho(0)AX(t) +ZAHO VAt —T)
t=0
Ho(0)A°(t) + Z BHO t—1)AT

As can be seen from Fig. 1.55, the approximation:

OHy(r)
or
becomes more accurate with a decrease of the interval Ar. In this expression Af(t—7) is
the response of the medium to the ith component of the magnetic field H;, when the unit
current step function occurs at the instant ¢ = 7. For instance for inductive excitation of

the field A;° is identically zero, and therefore we have:

AH()( ) ——AT

T= taHO()

Hi(t) = —5, At —T)Ar

7=0

In the limiting case as At approaches zero we obtain a convolution integral:

Hi(t)z/g%oT(—T)—AZ(t—T)dT (1.317)
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Figure 1.56. Time variation of the primary field described by eq. 1.319.

This integral is also called Duhamel’s integral and it permits us to find the transient
response for an arbitrary shape of a current excitation when the transient response of the
medium for a step function excitation is already known.

Integrating by parts the right-hand side of eq. 1.317, we obtain:

/ Ho(r 6A* oA(t—1)

= Hy(t)A;(0) — Ho(0 / Ho(r 8’4* at =) 47

/aHO(T Ai(t — 7)dr = Ho(T) Aj(t — 7)

(1.318)

This is known as the second form of Duhamel’s integral.

Similar expressions can be written for the electric field.

Let us now consider an example. Suppose that the behavior of the primary field de-
scribed by the linear function shown in Fig. 1.56, that is:

H, T<0
0 2T

where T is the ramp time.
Substituting eq. 1.319 into eq. 1.317 we obtain:

T
Hilt) = —%"/A;(t _fydr ift>T (1.320)
0

In the limit as T" approaches zero and applying the central limit theorem, we have:
H,(t) = — A (t)Ho = A H,

where A;! is the transient field caused by unit step function where the current is turned
off.
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Chapter 2

ELECTROMAGNETIC FIELD OF THE MAGNETIC
DIPOLE IN A UNIFORM CONDUCTING MEDIUM

We will start a development of the theory of induction logging assuming that an induction
probe is placed in a uniform conducting medium and consists of two coils, as shown in
Fig. 2.1. One coil is the source of the primary alternating field, while the other serves as
a receiver measuring an electromotive force and therefore the magnetic field. Considering
such a model we are not able to investigate an influence of a borehole, an invaded zone,
finite thickness of a layer, eccentricity, efficiency of many coil probes and many other
parameters, defining radial and vertical characteristics of the induction logging. All these
questions will be analyzed in detail in the next chapters. At the same time it is appropriate
to notice that very often signals, measured by an induction probe in real conditions, are
close to those, which would be measured in a uniform medium with a resistivity of a
formation.

Simplicity of this model allows us to investigate not only frequency responses of the
magnetic field, measured by a receiver, but also a distribution of currents in a conducting
medium. Such will help us to understand deeper physical principles of the induction
logging as well as some approximate methods of calculation of fields which are widely
used for interpretation.

In most cases dimensions of the transmitter coil are significantly smaller than a diameter
of a borehole and distances to interfaces between layers. For this reason one can replace
a coil with an alternating current by the magnetic dipole with the moment:

M = Mye (2.1)

where My = Snl, is the moment amplitude; I, is the current amplitude; w = 27 f is
angular frequency; f is the frequency; n is the number of turns; S is the area of one turn.

As was shown in the previous chapter the quasistationary electromagnetic field is de-
scribed by equations:

0B
curl £ = 5 (2.2)
curlH = oFE (2.3)
divE =0 (2.4)
divH =0 (2.5)

since a uniform medium is considered.

119
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Figure 2.1. Two-coil induction probe in a uniform conducting medium.

In accord with egs. 2.4 and 2.3 we have correspondingly:

E = curl A* (2.6)
H=0A*—gradU~ (2.7)

where A* and U* are vector and scalar potentials, respectively.
Substituting expressions 2.6 and 2.7 into the first Maxwell equation, 2.2, we obtain:

* *

curl curl A* =
Taking into account dependence on time, shown in eq. 2.1, and making use of the equality:
curl curl A* = grad div A* — V2 A*

we have:

grad div A* — V2A* = iopwA* ~ ipwgrad U* (2.8)

where A* and grad U* are complex amplitudes of potentials.
Assuming, that:

div A* = —iwp U” (2.9)
we obtain from 2.8 the equation for the vector potential A*:
VZA* +k*A* =0 (2.10)

where k% = iouw.
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Let us choose the spherical system of coordinates R, 8, ¢ and cylindrical system r, @,
with a common origin, where the dipole is placed and with axis z, (sin ¢ = 0), coinciding
with the direction of the dipole moment.

As was demonstrated in Chapter 1, the primary vortex electrical field, caused by a
change with time of the primary magnetic field has only the component Eg)) . Corre-
spondingly, one can expect that the secondary vortex electric field also has the same
component. Making such an assumption and using the relation: E = curl A* it is appro-
priate to derive expressions for the electromagnetic field with the help of one component
of the vector potential A}, that is in the cylindrical system of coordinates:

A* = (0,0, AY) (2.11)

Due to spherical symmetry one will look for a solution of the vector potential, A* as a
function depending on coordinate R only, that is:

Az = A:(R) (212)

Respectively, it is more convenient to consider eq. 2.10 in a spherical coordinate system.
As is well known, one can write eq. 2.10 in the form:
A 20A;

k2 T ROR

+ kAL =0
or

aQ(A;R) 2 * _
W + Kk (AZR) =0

Whence

eikR e—ikR
AT = D
:=Cx P73

(2.13)

Inasmuch as k? = iouw we have:

k= (opw/2)Y? (1 41)

and

ikR = (opw/2)Y* (i - 1)R (2.14)

For this reason, the second term of the right-hand side of eq. 2.13 increases with increasing
distance from the dipole.

Correspondingly, the vector potential can be described by only the first term of eq. 2.13
and we have:
ikR

e
Al =C
z R

(2.15)



122

where C' is an unknown coeflicient. Whence:

.. O0Ar elkR

div A* = % =C 7 (ikR — 1) cosb
since

0A;  0A; 0

o6 00

and therefore in accord with eq. 2.9 we obtain:

ikR
wpU*=C 7 (1 —ikR)cosd
Thus:
ikl

Making use of expressions for vector and scalar potentials one can define vectors of elec-
tric and magnetic fields by formulas 2.6 and 2.7. The electric field is located in planes
perpendicular to the dipole axis and it has only the component F;.

In accord with eq. 2.6:

. 1[0 . O0A%
Ey = curly, A* = I (8—R(RA0) ~ 50 > (2.17)

It is obvious that:
Ay = A} cosf Ay =—Alsind

Substituting these expressions into eq. 2.17 after simple transformations we obtain:

1 . .
Ey = Cﬁ c*® (1 —ikR)sin g (2.18)

In particular, for a nonconducting medium letting ¢ = 0 we have:

1
E¢ = Cﬁ sin 8

since k = 0.

It is obvious that this expression describes the primary vortex electrical field, caused
by a change of the primary magnetic field with time, that is:

E;O) = C”;_z sin @
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On the other hand, as follows from the previous chapter (section 1.4), we have:

£O _ iwpuM

) S sin @

Comparing these last two expressions we define the unknown constant C:

_iwpM
C= = (2.19)

The vector of the magnetic field has two components:

Hy =0Aj —grad, U”
Hp=0Ay —gradp U*

In accord with eq. 2.16 we have:

) 2i 2
grad, U™ = %e‘m (%; - % + %) cosd

dn

* M kR : :
grad, U™ = e (1 —ikR)sinf
Therefore:

_ M wr, o : .

H9—47TR3e (—k*R*+1—1kR)siné

2M yr :
HR_47rR3e (1 —ikR)cosb

Finally, we obtain the following expressions for complex amplitudes of the electromagnetic
field of the magnetic dipole:

o

E, = %e"”" (1 —ikR)sin 6 (2.20)
78
oM .

Hgp = ﬁ—se‘kR (1 —ikR)cos 6 (2.21)
78
M e : 2 P2y o

g = — — B

H, ey (1—ikR — k*R%)sinf (2.22)

Y[

Proceeding from these equations we will investigate the behavior of the electromotive
force induced in the receiver of the two coil induction probe as well as the main features
of the distribution of induced currents.

Suppose that a receiver coil is significantly smaller than the length of the induction
probe. In other words, it will be assumed that all turns of the coil have the same area
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and they are located at some distance from the transmitter coil. It is clear that similar
assumptions are applied to the transmitter coil since it is replaced by the magnetic dipole.
By definition the electromotive force in one turn of the receiver coil is defined as:

é”z%E-dl

Taking into account the axial symmetry the latter is significantly simplified and we have:
& = E‘f’fdld) = E¢ 27'(7'0

where 1g is the radius of the turn.
Making use of eq. 2.20 we obtain the following expression for the electromotive force in
the coil receiver having n turns:

iwp,MTMR eikR

& = Eyn2nrg =
Ty 27TR3

(1 —ikR) (2.23)
where My = nrSr is the transmitter moment; Mr = nrSr = ngr7ré is the receiver
moment; sin = ro/R, R = (L? + r?)V/2,

Inasmuch as ro < L, eq. 2.23 can be rewritten as:

iw,uMTMR eikL

513 (1—ikL) (2.24)

It is clear that the primary electromotive force induced in the receiver due to a change of
the primary magnetic field is:

iquTMR
& = 2.25
0 27 L3 (2.25)
Correspondingly, instead of eq. 2.24 we have:
& = &e*l (1 —ikL) (2.26)

Usually the primary electromotive force, which does not contain any information about
the conductivity of the medium, is dominant.

It is appropriate here to derive eq. 2.26 proceeding from the magnetic field. In accord
with Faraday’s law the electromotive force is equal to:

_W
ot

If the area of the receiver coil of the induction probe is small with respect to its length
(Fig. 2.1), one can assume that within this area the magnetic field is uniform, and it is
directed perpendicular to the horizontal plane, i.e.:

HR:HZ
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P = ﬂrgnRHz

and making use of eq. 2.21 as well as the relation:

&y
at

—iwp

we again obtain eq. 2.26:

& = &t (1 —ikL)

Before we will begin to consider the full expression for the electromotive force, eq. 2.26,
let us make some almost obvious comments concerning eq. 2.25:

The presence of multiplier i = v/~1 indicates that the primary electromotive force,
&y, is shifted in phase by 90° with respect to the transmitter current. It results
from the fact that the electromotive force is proportional to the derivative of the
primary magnetic field with time which changes as a cosinusoid when the current
in the transmitter is a sinusoidal oscillation.

The appearance of w on the right-hand side of eq. 2.25 is also caused by derivation
of the flux with time.

The term My /2wL? describes the vertical component of the primary magnetic field
within the receiver coil.

The presence of u results from the fact that the electromotive force is proportional
to the rate of a change of the flux of the vector of the magnetic induction B.
Practically, in all cases which will be considered, the magnetic permeability will be
taken to be equal to that of free space, i.e.:

p=po=4r x 1077 H/m

The multiplier My reflects the fact that the flux through the receiver is directly
proportional to its area and number of turns.

Now let us investigate the general case with the two-coil induction probe located in a
uniform conducting medium. At the point of the receiver the magnetic field in accord
with eq. 2.21 is described by an equation for its complex amplitude:

7z =

zﬂz—g (1 —ikL)e*" (2.27)
™

This field is caused by the current in the transmitter coil and induced currents in the
conducting medium. Of course, all currents change as sinusoidal functions, but in general
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Figure 2.2. Presentation of the magnetic field behavior at the receiver.

they are shifted from each other in phase. It means that the magnetic field, H,, can be
presented as:

H, = Asin(wt + ¢) (2.28)

Mr

orL3
where (Mr/2xL3)A is the amplitude, while ¢ is the phase of the sinusoid describing the
magnetic field.

It is essential that parameter ¢ characterizes the phase shift between the magnetic field
at the receiver and the current in the transmitter (Fig. 2.2).

It is clear that in those cases, where the influence of induced currents is negligible or
completely absent, the phase is equal to zero. In other words, the magnetic field, H., is
equal to the primary one which varies synchronously with the transmitter current.

In conventional induction logging instead of amplitude and phase, quantitics such as
magnitudes of quadrature and sometimes inphase components are measured.

Making use of eq. 2.28 we have:

Mr
H, = Acos¢sinwt + EPE Asin ¢ coswt

2w L3
Inasmuch as the primary field:

M
HO - T
z 2w L3
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is easily calculated, it is convenient to express the measured fields in units of the primary
one. Then we have

h, = HZ/HS)) = Acos ¢sinwt + Asin ¢ coswt
or

h, =Inh,sinwt + Qh, coswt (2.29)

In accord with eq. 2.29 the field h, is the sum of two oscillations: one of them syn-
chronously changes with the primary magnetic field, while the other is shifted in phase
by 90°. Correspondingly functions In A, and Q h, describe magnitudes of the inphase and
quadrature components of the field expressed in units of the primary field.

The inphase component of the field, as follows from Biot—Savart law, is caused by the
current in the transmitter and the inphase component of induced currents in a medium,
while the quadrature component of the magnetic field is generated by the quadrature
component of induced currents only. Therefore, one can write:

InH,=H® +InH: QH,=QH? (2.30)
or
Inh,=1+InkAS  Qh,=QAS (2.31)

The index * means the secondary field caused by induced currents.

It is proper to emphasize that this consideration is based on the condition that the
phase shift is defined with respect to the primary magnetic field. Let us make one more
comment. The inphase component of the secondary magnetic field either coincides with
the phase of the primary magnetic field or it is shifted by 180°.

An electric diagram illustrating these relations between the primary and secondary
fields is shown in Fig. 2.3a.

As concerns the electromotive force, a definition of its quadrature and inphase com-
ponents can be done in two ways. In fact, we can compare either a phase shift of the
electromotive force with the current in the transmitter or with the primary electromotive
force &. In the future, the latter approach will be used and correspondingly one can write
(Fig. 2.3b):

In& =& +mé  QE=QE (2.32)
or
mE=1+Iné& QE=QE° (2.33)

In accord with eq. 2.25 we have:

Ld/lMTMR

— (2.34)

|6o] =
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Figure 2.3. Electric diagram of the magnetic field and the electromotive force.

and & is the electromotive force expressed in units of the primary one, |&|.
Comparing egs. 2.26 and 2.27 we obtain:

Inh,=Iné& Qh, =Q& (2.35)

In other words, results of an analysis performed for the magnetic field, H,, are directly
applied for the electromotive force induced in a receiver coil as shown in Fig. 2.1 and vice
versa.

Before we will start to investigate frequency responses of the field it is appropriate to
notice the following. In accord with egs. 2.21, 2.22 and 2.26 we have:

2MT MT iquTMR
= —— = — h _— -
He 4nR3 " Hy anR3 "¢ ¢ or L3 z
where:
hp=e* (1 —ikR)  hg=e* (1 —ikR — K*R?)  h, =¥l (1 —ikL) (2.36)

Thus, equations for the field as well as for the electromotive force present themselves
as the product of two terms. One of them depends on the moment of the dipole, the
distance between the dipole and the receiver and in the case of the electromotive force,
on the frequency and the magnetic permeability. The second term is a function of only
one argument, namely kR, which can be presented as:

kR:%(1+i):p(l+i) (2.37)

where h = (2/0uw)'/? is the skin depth.
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Therefore, the electromagnetic field of the magnetic dipole expressed in the units of the
primary field or the normalized electromotive force is defined by the parameter p:

_R_ R 2.38
P H T 100007 (2:35)
In the case in which the field or the electromotive force is investigated in the receiver of
the two-coil induction probe the distance R is replaced by the length of the probe, L, that
is:

2w L

P = 0% 100/ )12

(2.39)

It is obvious that parameter p characterizes a distance, expressed in units of the skin depth,
and this fact vividly demonstrates that an influence of induced currents in a surrounding
medium is not defined by the value of frequency or resistivity and the distance between
the dipole and an observation point, but it depends on the ratio between this distance
and the skin depth only, that is the parameter p.

Furthermore, we will focus on the magnetic field and the electromotive force at the
receiver of the two-coil induction probe. Substituting eq. 2.37 into 2.27 the magnetic field
H, can be represented as a sum of two components, namely the quadrature component
which is shifted in phase by 90° with respect to the primary magnetic field, Hy, or the
current in the source, and the inphase component which is shifted in phase by 0° or 180°
with respect to the primary field, and we have:

QH,=HyQh, InH, = Hylnh, (2.40)
where:

Qh, =eP[(1+p)sinp— pcosp] (2.41)
Inh, =e?[(1+p)cosp+ psinp (2.42)

where p = L/h, i.e. the length of the induction probe measured in units of the skin depth.
Making use of eq. 2.35 we have for the electromotive force in the receiver:

It is appropriate to emphasize again that according to the Biot-Savart law the quadra-
ture component of the magnetic field arises from currents induced in a medium for which
the phase is shifted by +90° with respect to the current in the dipole source, while the
inphase component is the algebraic sum of the primary and secondary fields. The inphase
component of the secondary field is contributed by induction currents in the medium
shifted by 180° or 0° with respect to the source current.

The understanding of this relation between induced currents and the measured field
turns out to be extremely useful for explanation of the main features of field and electro-
motive force behavior.
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First, let us consider the behavior of the field over the range of a small parameter p
(rk1).

Expanding the exponential %

in the form of a power series:

and substituting this into eq. 2.27, after some simple algebra, we have:

oo

_ Z lk‘L =1+ Z— 2n/2 n 131'rn/4 (244)

n=0 ! n=0

It follows from this that for p <« 1:

9
Qh, ~p* —Zp°

3
or
2
Inh, ~1— =p°
n 3P
or
QH, ~ Mr |opwLl?® 2 (opwl? 32
F T o3 2 3 2
(2.45)
WH. ~ Mr 1—2 ouwL?\*?
B o3 3\ 2
Correspondingly, for both components of the electromotive force we have:
Q& ~ wuMprMg | opwl? 2 opwL? 8/2
T 2wlL? 2 3 2
(2.46)

MM 2 L2\%?
Iné”:%{l—g(”"‘; ) if p< 1

Table 2.1 gives some idea about values of parameter p for various conductivities and
resistivities for a probe length L of 1 m. As is seen from this table the parameter p is less
than unity in a relatively resistive medium (p > 5 ohm-m) even at higher frequencies.

In accord with eqgs. 2.45 and 2.46 one can make the following conclusions:
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TABLE 2.1
Values of parameter p; L =1 m
5, ol f, ke 1 10 20 50 100
100 0.0063 0.0200 0.028 0.045 0.063
50 0.0089 0.0282 0.039 0.063 0.089
10 0.0200 0.0630 0.089 0.140 0.200
5 0.0280 0.0890 0.125 0.198 0.279
0.0630 0.2001 0.280 0.450 0.630
0.1 0.2007 0.6304 0.890 1.401 2.002

1. At the range of very small parameter p the quadrature component of the field prevails
over the inphase component of the secondary field and we have:

M
QH, ~ —T~o,uw

4 L
or
QH, ~ Hyp* (2.47)
and
or
& ~ |&| p* (2.48)

Thus in this range the quadrature component of the magnetic field is directly proportional
to the conductivity and the frequency and inversely proportional to the probe length. As
will be shown later this dependence on frequency and conductivity remains valid also for
a nonuniform medium.

Equations 2.47-2.48 describe the field and the electromotive force with an error not
exceeding 10%, provided that the parameter p is smaller than 0.1. In this case the
quadrature component of the electromotive force, containing the information about the
conductivity, constitutes only 1% or less of the primary electromotive force. For this
reason cancellation of the latter in the induction probe is usually performed with a high
accuracy.

2. The inphase component of the secondary field is very small with respect to the
primary field:

Mr

InH? ~ 0w
: 67r\/5( pw)

3/2 (2.49)
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Figure 2.4. Frequency response of the quadrature component Q h,.

and

InH; < QH, < Hy (2.50)
as well as

Iné* < Q& < |&| (2.51)

For this reason measuring the inphase component of the secondary field or In & in the
range of small parameters is a difficult task. At the same time this part of the field is
more sensitive to a change of conductivity than the quadrature component. Also it is
interesting to notice that the leading term of the inphase component of the secondary
field does not depend on the probe length L. Later we will prove that all these features
are inherent for a field in a nonuniform medium. As follows from eqgs. 2.41 and 2.42, in
the opposite case, i.e. within a range of large parameters of p, both components of the
field H,, as well as the clectromotive force tend to zero, oscillating near this limit:

QH, = Hpe ™ (sinp — cosp) — 0

L (2.52)
InH, = Hye P (sinp + cosp) = 0 asp— o0

The latter means that at the range of very large parameters the inphase component of
the secondary field approaches in magnitude the primary field, that is:

InH, > —Hy, asp— x (2.53)

Frequency responses of both components are presented in Figs. 2.4 2.5 and correspond-
ing values of Q A, and In h, are given in Table 2.2. Also this table contains values of the
amplitude and the phase of the secondary field and function o,/¢ calculated in the fol-
lowing way:

h a 2
1/2 ¢ = arctan Qb g

Qh, (2.54)

_ §\2 2 =
A= [(Inhz) + (th) ] Inh, o ,uwaLZ
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Figure 2.5. Behavior of frequency response of the inphase component of the secondary
field In A,.

The reason for the introduction of the function o, /o will be explained in the next chapters.

As is seen from Figs. 2.4 2.5 and Table 2.2 with an increase of the parameter p the
quadrature component also increases. At the beginning it is directly proportional to p?,
then it grows slower, reaches a maximum (p = 1.6) and with further increase of p decreases
and oscillates as it approaches zero.

The behavior of the inphase component of the secondary field, In kS, has a completely
different character. First of all, at the beginning it increases in magnitude proportional
to p®. With further increase of parameter p the magnitude of In kS reaches the primary
field, then it becomes greater and at the range of large values of p it oscillates approaching
the primary field. Unlike the quadrature component the function Inh$ does not change
sign, but it remains always negative. In other words, for all values of the parameter p the
phase shift between the primary field and the inphase component of the secondary field
is 180°.

In conclusion of this description of frequency responses of the field let us notice that a
significant part of the ascending branch of the quadrature component is described by the
approximate expression 2.45.

The behavior of the field as the parameter p varies can be explained in terms of the
distribution of induced currents in the medium making use of eq. 2.20 and Ohm’s law in
its differential form:

J=0cF

We have the following expression for the current density at every point in a uniform
full-space:

iopw My

Jo = 4 R?

(1 — ikR) *® sin @ (2.55)
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TABLE 2.2
Values of components of the field and function ¢,/c
P Qh. Inhg A ¢ ogf0
0.01 0.9933x107%  0.6616x1076  0.9933x10™%  —0.1564x10! 0.9933
0.1403x107%  0.1111x1075  0.1403x1073 0.1562 0.9920
0.1981 0.1865 0.1981 0.1561 0.9905
0.2796 0.3131 0.2796 0.1559 0.9887
0.02 0.3946 0.5253 0.3947 0.1557 0.9866
0.5567 0.8810x107%  0.5567 0.1554 0.9841
0.7849x1073  0.1476x10~1  0.7850x 1073 0.1551 0.9811
0.1106x1072  0.2473 0.1106x10~2 0.1548 0.9775
0.04 0.1557 0.4140 0.1557 0.1545 0.9733
0.2191 0.6922x10-%  0.2192 0.1539 0.9683
0.3079 0.1156x10~%  0.3081 0.1533 0.9623
0.4322 0.1929 0.4327 0.1526 0.9551
0.08 0.6059 0.5212 0.6067 0.1517 0.9467
0.8477x1072  0.5341 0.8494x 1072 0.1507 0.9366
0.1183x107!  0.8859x1072%  0.1187x107! 0.1496 0.9247
0.1648 0.1465x1072  0.1654 0.1482 0.9106
0.16 0.2288 0.2416 0.2301 0.1465 0.8938
0.3164 0.3970 0.3189 0.1445 0.8739
0.4354 0.6491x10~2  0.4402 0.1422 0.8505
0.5958 0.1055x10~!  0.6051 0.1395 0.8229
0.32 0.8094x10~!  0.1704 0.8272x10! 0.1363 0.7904
0.1089 0.2730 0.1123 0.1325 0.7525
0.1451 0.4351 0.1514 0.1280 0.7085
0.1905 0.6788x10"'  0.2022 0.1228 0.6577
0.64 0.2457 0.1048 0.2671 0.1167 0.5999
0.3099 0.1590 0.3484 0.1096 0.5351
0.3799 0.2361 0.4473 0.1014x 10! 0.4638
0.4488 0.3412 0.5638 0.9207 0.3674
1.28 0.5052 0.4772 0.6950 0.8138 0.3083
0.5336 0.6414 0.8344 0.6939 0.2303
0.5169 0.8212 0.9704 0.6617 0.1577
0.4434 0.9923 0.1086x 10! 0.4202 0.9568x1071
2.56 0.3165 0.1121x10! 0.1165 0.2751 0.4830
0.1630 0.1177 0.1188 0.1373 0.1758x 1071
+0.2903x107"  0.1154 0.1154 —0.2514x 10! +0.2215x1072
—0.4275 0.1081 0.1082 +0.3950 —0.2306
5.12 —0.4570 0.1013x 10" 0.1014x10* 0.4506 —0.1743x10~2
—0.1665x10"!  0.9868 0.9870 0.1687x10~!  —0.4493x1072

+0.1843x10-2  0.9923 0.9920 —0.1857x10"2  —0.3516x10~4
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Figure 2.6. Definition of an elementary toroid in which induction current flows.

where R and 8 are spherical coordinates of an observation point where the current density
is calculated.

When the wave number is broken into its real and imaginary parts we can represent the
current density as the sum of two components: one component is shifted by 90° relative
to the current in the source dipole and is termed the quadrature component, and the
other component is shifted in phase by 180° with respect to the current in the source
and which is termed the inphase component. The expressions for the components of the
current density are:

opwrMr .
= — 1 .
Q Jy o B C [(1+ p)cosp + sinp] (2.56)
_ opwrMr _, —
InJ, = o mC (14 p)sinp — cosp] (2.57)

where /R = sin§ and p = R/h is the distance from the dipole to the observation point
expressed in units of the skin depth.

Equations 2.56 and 2.57 suggest that it is reasonable to imagine two components of the
current density at every point which are distributed in an entirely different manner. In
order to investigate their distribution let us first of all understand the physical meaning
of the term: (ouw/47)(rMr/R?) which is present in both expressions for the current
density components. It is obvious that the current flow in the medium can theoretically
be subdivided into currents flowing in a series of elemental toroids or within rings which
have a common axis with that of the dipole and which lie in planes perpendicular to this
axis as shown in Fig. 2.6.

Now let us define a current density induced in a very thin ring within a unit cross-section
due to the primary magnetic field, Hq (see Fig. 2.6).

The magnetic flux piercing a ring with a radius r is:

T

Yo = /,uHOZQ?rrdr (2.58)
0
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where Hj, is the z-component of the field due to current in the dipole source only.
The vertical component of the magnetic field caused by the vertical dipole in free space,
as follows from Chapter 1, can be presented as:

M;
Hy, = 20—
0: = (3cos®8 — 1) (2.59)

Substituting this expression for Hy, into eq. 2.58 and integrating we obtain the following
expression for the flux, 1y, of the primary magnetic field enclosed by the toroid:

1 MT’I'2
The magnetic flux ¥y and the EMF in the toroid are related through the formula:
—iwt 8 —iwt : —iwt
& = &e = —awoe = jwipe (2.61)

On the other hand, the electromotive force is equal to the integral of the electric field
along the closed path surrounding the magnetic flux:

&= fEO dl = 27T7"E0¢ (262)

because the field is characterized by axial symmetry. It follows from egs. 2.60-2.62 that
the electric field Ey along a toroidal ring is:

Eop = = = (2.63)

It is clear the Epy4 is the primary vortex electrical field caused by a change of the primary
magnetic field with time only.
From this we obtain the expression for the current density at any point of the toroid:

iopw rMp
4r RS

J()¢ = O'E0¢ = (264)
The physical meaning of this last expression should be obvious: it is the current density
induced by the primary magnetic field of the dipole source alone. As can be seen from
eq. 2.64 the current density Jy, is shifted by 90° in phase with respect to the current of the
source. If we could neglect any secondary effects caused by magnetic field accompanying
induced currents in the medium the character of the current distribution could be defined
precisely by eq. 2.64.

In this case the current density at any point in the medium depends on the distance
from the source, and on the angle 8, that is, on geometric parameters only and it is
directly proportional to the transmitter moment, conductivity, frequency and magnetic
permeability. One can say that the actual distribution of the current density in a conduct-
ing medium could be described by Jyg, if the effect of interaction between currents, that
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Figure 2.7. Curves showing the current density in planes perpendicular to the z-axis as a
function of the distance r.

is, the skin effect, were to be negligible. Graphs of function Jys in planes perpendicular
to the dipole axis are shown in Fig. 2.7. It can be seen that with increasing z the radius
of the ring with maximum current also increases.

Let us define the quantity:

opwMr

Jo = 47 R3

= [Jog|
and rewrite egs. 2.56 and 2.57 in the form:

Q Jp = Joe™® [(1+p)cosp+ sinp] (2.65)
InJy = —Jye ? [(1+ p)sinp — cosp] (2.66)

An analysis of these expressions permits us to explore how the actual current density J,
differs from Jy for various values of the parameter p and specifically for different distances
from the source. Curves for the quadrature and inphase components of the current density
normalized to Jy are shown in Figs 2.8 and 2.9. For small values of parameter, p, the
quadrature component of the current density is essentially the same as the current density
Jo; that is, the interaction between currents is negligible in this case. With an increase of
the parameter, p, the ratio Q J,/Jo decreases, passes through zero, and for larger values
of the parameter p approaches zero in an oscillating manner. Curves for the ratio of the
inphase component of the actual current density to Jy has a completely different character.
For small values of p, the ratio of In Js/Jy approaches zero, then increases to a maximum
when the value of the parameter p is about 1.5 and for larger values of p, tends to zero
again in an oscillating manner. Therefore, the actual distribution of Jy is determined
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Figure 2.8. Graph of the ratio Q Js/Jp as a function of the parameter p.

both by geometric factors and by interaction effect, known as skin effect. The last factor
is taken into account in the case of a uniform full space by the parameter p.

Comparing curves in Figs 2.8 and 2.9 we can see that for small values of p the quadrature
component of current density dominates, then for larger values of parameter p there is a
range over which the inphase component is significantly larger in value. And finally for
large values of p both components approach to zero in an oscillatory manner. The curve
in Fig. 2.8 as well as that in Fig. 2.9 can be viewed from two points.

If the conductivity and frequency are held constant the curve shows a change in the
quadrature component related to the current density Jy when the distance of the observa-
tion point from the dipole source is increased. On the other hand, the observation point
can be held fixed in the medium and the conductivity or the frequency can be varied over
a wide range. This permits us to explain the main features of the behavior of the quadra-
ture component of the magnetic field following fromn the distribution of the quadrature
component of the current density.

As can be seen from Fig. 2.8 for relatively small values of p the current density Q Jy
does not practically differ from J,. If the frequency is low enough and the medium possess
a relatively high resistivity, the range of distances over which the actual current density
is almost equal to Jy can be so large, that the magnetic field at an observation point is
entirely defined by currents in this area. In principle, according to Biot-Savart law all
induced currents define the magnetic field measured in the receiver. However, in practice
there is always a part of the medium where induced currents bring the main contribution
to this field but the influence of the other part is negligible, taking into account the
accuracy of measuring. It is natural that the size of this area and its position essentially
depend on frequency, conductivity, length of the probe, as well as the component of the
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Figure 2.9. Graph of the ratio In J;/Jy as a function of the parameter p.

field measured. It is clear that dimensions and a position of this zone, in fact, defines a
depth of investigation of the method. In the case as the quadrature component of the
magnetic field is measured, as follows from equation 2.65 and Fig. 2.8, this area is located
around the induction probe. In accord with eq. 2.64 the current density Q J, quickly
decreases with the distance from the dipole. The interaction between induced currents
only emphasizes this tendency (see Fig. 2.8).

Now we are prepared to describe the main features of both components of the magnetic
field, and therefore the electromotive force, as measured in the receiver.

As was pointed out for relatively low frequencies and high resistivities an area around
the induction probe where the quadrature component of the current density, Q J,, prac-
tically coincides with Jys, is sufliciently large. Because the current density is directly
proportional to frequency (eq. 2.64), within the area, the magnetic field caused by these
currents is also proportional to frequency. Over the range of the parameter p, when the
dimensions of the area in which the actual current density is close to the current density
Jo is still significantly larger than the distance from the source to the measurement site,
the quadrature component of the magnetic field would be also proportional to w. With
an increase in value of the parameter p (for example, as would be caused by an increase
in frequency), the area in which the currents are essentially equal to Jy becomes smaller,
and therefore the external part of the medium in which the actual currents are less than
Jo begins to have an effect, resulting in the observation that the rate of growth of the
magnetic field is reduced. With a further increase of frequency as a consequence of the
rapid decrease of the quadrature component of the current density, the growth of the
quadrature component of the magnetic field ceases and it begins to decrease.

By analogy the behavior of the inphase component of the magnetic field can also be
explained with the use of the inphase component of currents. Here it is appropriate to
notice the following. Unlike the previous case a zone of currents which gives the main
contribution to the inphase component of the magnetic field is present in a confined zone,
a position which essentially depends on conductivity and frequency. In particular, with a
decrease of frequency is shifted far away from the induction probe and when it is located at
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sufficiently large distances, the measured magnetic field, In HS, in accord with Biot—Savart
law, is practically independent on the probe length (see eq. 2.49). In other words, a part
of medium between the probe and this zone, as well as that part which is located outside
of this zone, has no noticeable influence on the field measured by a receiver. As follows
from Fig. 2.9, with a decrease of the parameter p (higher resistivity, lower frequency) the
depth of investigation in measuring the inphase component of the secondary magnetic
field increases.

In summary, let us enumerate some of the aspects of field behavior which are of practical
interest. First, the quadrature component of the magnetic field is determined principally
by currents flowing near the source and the observation site. With an increase in frequency
the effect of interaction of currents from relatively far distant parts of the medium becomes
less important. At the same time, this effect, i.e., attenuation or the skin effect, can
become significant if the radius of the zone in which the quadrature component of the
current density is practically the same as Jy, becomes less than the distance from the
transmitter to the receiver. It is important to emphasize here that in measuring the
quadrature component of the field there is always a frequency wy below which the depth
of investigation is practically defined by only the length of the induction probe (a uniform
medium). This conclusion remains also valid for a nonuniform medium, but in this general
case, the depth of investigation is subjected to the influence of all geoelectric parameters.

The inphase component of the field can be more sensitive to effects from distant parts
of the medium than the quadrature component. With decreasing frequency the depth
of investigation, when the inphasc component is being measured, gradually increases
regardless of the distance between the source and the observation point and, in the general
case, parameters of a geoelectric section. Here we observe the fundamental difference
from the point of an influence of the frequency on the depth of investigation, depending
on whether the quadrature and inphase components are measured at the range of small
parameters p.

Now let us make some comments. One concerns the role of the induction probe length.
With an increase in the distance between the source and the observation point, L, the
induction number p also increases, and, therefore, the skin effect manifests itself more
strongly. It is obvious that the position of the receiver of the induction probe does not
change the character of the current distribution in the conducting medium. This fact
can be explained as follows. When the separation between the source and the receiver
is small, the depth of investigation, for example, measuring the quadrature component,
is small as well, and the electromotive force, Q &, in the receiver is defined primarily by
currents which are approximately equal to Jp. In other words, the currents which reflect
the skin depth for given values of o and w are situated at distances that exceed the range
of investigation. As the separation between the source dipole and the observation point
increases the depth of investigation of the probe also becomes greater and correspond-
ingly the relative contribution on distance currents which have undergone the skin effect
becomes more significant.

In this connection it is appropriate to emphasize that the distribution of the quadrature
component of induced currents near the probe is not practically subjected to the skin
effect and only distant currents are subjected to the influence of their interaction. At the
same time, the inphase component of induced currents regardless of the distance from the
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dipole, is strongly influenced by the skin effect.

In conclusion, let us present eq. 2.54 in the explicit form, since some advantages of
measuring the amplitude and the phase in the induction logging will be considered in
detail. In accord with this equation we have:

E=6&Ae? (2.67)
here
A=e?[1+p)?+p°] Y2 (2.68)

¢=p—arctan1p
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Chapter 3

METHODS FOR THE SOLUTION OF DIRECT
PROBLEMS OF INDUCTION LOGGING

The main task of the theory of induction logging is to determine the dependence of the
quasistationary electromagnetic field, measured by a probe receiver, on the resistivity of
a medium. OQur investigations will naturally be based on Maxwell’s equations. As was
shown in Chapter 1 the problem of field determination can be formulated in the following
way. All space can be represented as a sum of areas with constant parameters p; and o,
where y; is the magnetic permeability and o; is the conductivity of area D;. Within every
area D; electric and magnetic fields satisfy Helmholtz equations:

VH'+ k?H'=0and V’E' + k2E' =0 (3.1)

where k? = i oy pw.

At interfaces of confined areas D;, Helmholtz equations are replaced by boundary con-
ditions which require continuity of tangential components of electric and magnetic fields.
Near a source and at infinity a field must satisfy corresponding conditions which depend
on the type of source and the parameters of the medium.

It is clear that we have formulated a boundary problem for harmonic fields which are
used in conventional induction logging. The transition to a nonstationary field can be
easily done applying Fourier integral.

In most cases which will be considered the electric field has only a component E,, which
is tangential to any interface. For simplicity we will assume that in a chosen curvilinear
system of coordinates «, 3, ¢, interfaces are characterized by coordinate «;.

Then from the first Maxwell equation:

curl E = iwpH

we have:
. 1 1 9(heFEy)

Hy = 3.2
B s hahy O (3:2)

where h, and hy are metric coefficients of the corresponding coordinate system.
Thus a solution of the direct problem of induction logging consists of determination of
a function E;, which satisfies the Helmholtz equation inside every area and the boundary

conditions:
10 10
E¢ E¢ and e aa(htb ¢) “ aa( ¢) (3.3)
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and which corresponds to the field behavior near a source and at infinity.

It is appropriate to notice that there will be cases when an electric field cannot be
described by component E, only. In such cases, for example, when there is a displacement
of an induction probe with respect to the well’s axis, a more general approach to the
solution of the boundary problem will be used.

In this chapter we will describe basic methods which have been mainly used in solving
boundary problems of induction logging.

3.1. The Method of Separation of Variables

The Helmholtz equation:
V2E;¢)o +E2E'p, =0

is presented in partial derivatives of the second order. Here ¢, is a unit vector tangential
to the coordinate line ¢. Let us assume that the electric field depends on coordinates «
and (8 only (a more general case will be considered in a special chapter).

We will look for a solution of E;,(a, () as a product of two functions, each of which
depends only on one coordinate:

Substituting this expression into Helmholtz equation and by separating variables we ob-
tain two normal differential equations of the second order. It is important to emphasize
here that the method of separation of variables is applicable only for some orthogonal
curvilinear coordinate systems.

Solutions of these two equations are functions of coordinates o and 3, respectively, as
well as of the wave number of the corresponding medium. Inasmuch as they are differential
equations of the second order they have two independent solutions:

Trln = A;mUm(k‘“ O£) + B;«nivm(kiv (1)

: , , (3.4)
Prln = C:m'(bm(kiw@) + Dmiwm(ki,ﬁ)

here m is a constant of separatiomn.
A general solution is presented by an integral (in some cases it can be a sum) with
respect to m:

E, = / (Al Unn(kiy @) + Bl Vin(ks, @)] (Caibn (ks B) + Dinithn (ki )]

Usually, functions 77, and P!, are complex functions which depend on complex arguments.
As will be shown later, in many cases a solution can be constructed with the help of only
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one function of coordinate (3, for instance, ¢,,(k;, 3). Then the general solution can be
written as:

E;S = / [AmiUm(ki7 a) =+ BmiVm(ki, O()] ¢m(ki7 ﬁ) dm (35)

The unknown coefficients A,,; and B,,; are defined by the boundary conditions and the
specific field behavior near the source and at infinity.

In accord with egs. 3.3 and 3.5 we have the following equations for coefficients A,, and
B,,:

/ vt Un (e, @) + BuagVin (ks @)] b (s 8)dm

/ AU (1, @) + BraVin(kty )] (ks B) dim if @ = g (3.6)

1 0
e / o [ AU (s @) + Boni Vit (b 0] o (i, B)

ula /h¢ [AmlU (k[,a)+Ble (kl, )] QSm(kl,ﬂ) dm ifo=ay (37)

where qy, is the value of coordinate ¢, characterizing the interface between media with
wave numbers k;, and kj, respectively.

In general, functions ¢(ki, 8) and ¢(k;, 3) are not orthogonal, inasmuch as they depend
on the wave number & of a corresponding area of the medium. For this reason, in order
to determine unknown coefficients A,, and B,,, it is necessary to present one of these as a
function of the other. For example, having substituted this expansion of function ¢,, (k;, 3)
by functions ¢, (kx, ) and making use of the orthogonality of functions ¢,,(kk, 3), we
obtain an infinite system of equations with an infinite number of unknowns.

In those cases in which function ¢, does not depend on the wave number k (this takes
place when an interface coincides with a spherical one, the surface of circular cylinder or a
plane), the determination of unknown coeflicients is simplified to a great extent. In fact,
instead of an infinite system we obtain for every harmonic, m, only two equations with
four unknowns:

ApiUp, (kk7 a) + Bmkvm(kkv a) = AmlUm(kl: a) + Blem(kh a)
1 0
— —hg [AmkUm ki, @) + Bk Vi (K, o))
i O
10

Mla

(3.8)
——hg [AmiUn(ki, &) + BV (ki, @) if o = ay
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Making use of conditions near a source and at infinity this system, applied for every
interface, completely defines the unknown coefficients A,, and B,,.

Thus the method of separation of variables in Helmholtz equation allows us in such
cases to present a solution in an explicit form. In problems with cylindrical interfaces,
as will be shown later, a solution can be written in the form of an improper integral
containing Bessel functions of complex argument. In media with horizontal interfaces a
field is also expressed through improper integrals, but in these cases the integrand is much
simpler.

Both cases, when either cylindrical or horizontal interfaces are present, are of great
practical interest in developing the theory of induction logging.

Solving problems with one and two cylindrical interfaces, or with one and two horizontal
interfaces, by the method of separation of variables we obtain expressions which are
convenient for analytical investigation as well as for programming.

However, with an increase of the number of interfaces expressions for the field become
cumbersome and it is practically impossible to perform their analytical investigation.
Significant difficulties also arise in programming these equations. It becomes specially
noticeable when, instead of a piecewise uniform medium, a continuous change of resis-
tivity is assumed. For example, such a behavior is observed in the invaded zone due to
penetration of mud water into the formation.

When solving problems with a complicated resistivity distribution, either in a horizontal
or vertical direction, it is often appropriate to apply the so-called method of shells. This
approach has two merits, namely:

e a uniform algorithm of calculations which does not depend on the number of layers
with different resistivity

o all formulae contain only functions with real arguments.

3.2. The Method of Shells

The idea of this method can be described in the following way. Let us imagine a set of
surfaces a; = const. In such a way a conducting medium can be presented as a system
of sufficiently thin layers. Then each layer can be replaced by an infinitesimally thin
shell located at the middle part of this layer, provided that the longitudinal conductance,
S, of the layer and that of the corresponding shell are the same. Here the longitudinal
conductance of the layer is a product of its conductivity and thickness.

Therefore, instead of a continuous conducting medium, we obtain a system of thin con-
ducting shells. In this case the exact boundary conditions can be replaced by approximate
ones which do not require information about the field inside the shell. Correspondingly,
we do not need to solve Helmholtz equation because outside and between the shells the
field obeys Laplace equation. Thus our problem is reduced to the determination of a
harmonic function satisfying approximate boundary conditions at the surface of shells.

However, determination of functions simultaneously satisfying boundary conditions at
all shells requires a solution of a system of 2n equations with 2n unknowns. For this
reason a method of reflections is suggested which can be used for the inductive excitation
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Figure 3.1. Illustration of the derivation of approximate boundary conditions.

of the field, and it allows us in a relatively simple manner to derive expressions for the
field in the presence of a shell system, if some characteristics of the field for every shell
are known.

3.2.1. Derivation of Approximate Boundary Conditions on a Shell Surface

Let us assume that in a curvilinear orthogonal system of coordinates «, 8 and ¢, a shell
surface coincides with one of the coordinate surfaces a. It is supposed that the electric
field has a component E, only. Applying Ampere’s law (the second Maxwell equation in
the integral form) to the path ‘abed’, shown in Fig. 3.1 we obtain:

Z{H-dl:Q/j-dQ

or
(H — Hp)dB = Jydl, - dig (3.9)

where: H is the magnetic field vector; dl is the vector tangential to coordinate line 3
equal by magnitude dlz; Hg and H};, are components of the magnetic field tangential to
the surface outside and inside of it, respectively; d@ is a vector surface element with a
magnitude equal to di,dlg (dl, and dlg are elementary displacements along coordinate
lines o and [, respectively). These displacements along coordinate lines are expressed
through coordinates as:

dla = ha da dlﬂ = hﬁ d,B dl¢ = h¢ d¢

where h,, hg, hy are metric coefficients.
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In problems considered here, the cylindrical system of coordinates is mainly used and
correspondingly h, = 1. Taking into account this fact and making use of Ohm’s law:
j=ocF
we present eq. 3.9 in the form:
H— Hy = oda Ey = SE, (3.10)

where S = o da is the longitudinal conductance of the shell.
From the first Maxwell equation in differential form we have:

1
H=—culFE
iwpe

As is well known the expression for curl in the orthogonal system of coordinates is written
as:
holo hglg hely
1 0 0 0

hohshs | da 88 8¢
hoEo hsEs hyE,

curl B =

where I, Ig, I, are unit vectors of coordinate system.
Inasmuch as E, = Eg = 0, we obtain:

11 (heEy)
 iwphghy 08
1 1 9(hyEy)
iwphohy  Oa

(3.11)

8=

Substituting eq. 3.11 in eq. 3.10 we derive the first approximate boundary condition for
the electric field at the shell surface:
O(hyEg)  O(hsEj)
— =ink, if a = 3.12

e e inky ifa=oap (3.12)
where n = wuShy.

The second boundary condition requires continuity of the tangential component of the
electric field:

E;=FE, ifa=oa (3.13)

For this reason we can use the right-hand side of eq. 3.12 for either EJ or E(},

The boundary conditions 3.12 and 3.13 sufficiently accurately describe the field near the
shell surface provided that the value of the skin depth, (2/ouw)!/?, within an elementary
layer is much greater than its thickness and the field slightly changes inside this layer
along its normal. Correspondingly, as the conducting medium is presented as a system of
elementary layers these conditions have to be met.
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3.2.2. Calculation of the Electromagnetic Field Caused by Induced
Currents in One Shell

As was mentioned above, the electric field has only one component Fj4, which satisfies
Laplace equation V2E = V2E,¢, = 0 and depends on two coordinates a and 3. Solving
Laplace equation by the method of separation of variables we find:

/ 0) + BVin(@)] 6a(8) dm (3.14)

where m is a separation constant. Functions U, () and V,,(a) are radial functions (m-
harmonic), while ¢,,(5) is an angular one (in spherical coordinates o = R, 8 = 6; in
cylindrical coordinates & = r, 8 = z ). One of the radial functions tends to zero with
an increase of «, but the other one increases. For this reason the secondary field outside
a shell is described by only one function, for example, A,,U,(a) which decreases as the
coordinate ¢ increases. In the internal area one of the radial functions has usually a finite
value, while the other one tends to infinity at some point or line. Correspondingly, the
solution within the internal area of the shell is also described by one radial function which,
for instance, has the form B,,V,,(a).

First we will assume that sources of the primary magnetic field are located outside the
shell and their vortex electric field Eg can be presented as the integral of a product of
radial and angular functions:

B = iwn [ CiVn(a)m(8) dm (3.15)
1}

where Cy, are known coefficients. We will look for a solution outside the shell as a sum
of the primary field Eg and the field caused by induced currents in the shell:

By = iwn [ (CoVin(0) + B Un(@)] 6 (60) i (3.16)
0
The field inside of the shell can be presented as:

E, = 1w,u/ Vin(0) P (B) dm (3.17)

Substituting eqs. 3.16 and 3.17 into boundary conditions 3.12 and 3.13 and making use
of the orthogonality of angular functions ¢,,(3), we obtain for the determination of coef-
ficients A, and Bg, two equations with two unknowns:

CE, (R Vi + h Vi) + B (WU + hUp,) — Al (hgVi + hoVy,) = in A5 Vi

(3.18)
Ce Vi + By, Up, = AL Vi, if o= ay
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Solving this system with respect to coefficients AZ, and BE,, we obtain:

U — tnV,
Ae _ Ce mUm mVm
m = O TV + Undon — bV (3.19)
in V2
Be — _Ce m
m "0 UnVin & Undon — tmiVin (3.20)
where
Let us introduce notations:
Ul — tyV,
Pem — . m>m mrm .
inUpVip + Ul — tmVin (3.21)
in V2
W = — " m (3.22)

inUpn Vi + Undm — tmVin

The amplitude of function P,,, alters with a change of n from zero to unity and charac-
terizes the attenuation of the m-harmonic of the primary field in passing the shell. At the
same time the structure of the field of a corresponding harmonic does not change. The
magnitude of function We,, changes with an increase of n from zero to the value V,,,/U,,
and characterizes the intensity of reflection of the m-harmonic of the primary field from
the shell for the external excitation. The physical meaning of coefficients P.,, and W, is
almost obvious, specially if a change of parameter n is caused by a change of frequency w.
Under low frequencies very small currents are induced in the shell, and correspondingly a
field within an internal area is close to the primary one, i.e. P, ~ 1, while the secondary
field outside is small, W,,, — 0. On the other hand, for high frequencies the intensity
of induced currents increases and correspondingly the secondary field outside increases,
while within the internal area it tends to zero (effect of full screening).

Now let us consider the case, when sources of the primary field are located inside the
shell (internal excitation). We will present expressions for the primary electric field in the
form:

By = iwn [ CLUn (@) () dm (3.23)
0

We will look for a solution inside and outside the shell in the following forms, respectively:

o0

EL = i / a) + A\ Vin(@)) 6 (8) dm (3.24)

0

Y = iwp / Upn(@)dm(8) dm (3.25)
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Substituting egs. 3.24 and 3.25 into the boundary conditions we obtain the system:

B (BUm + hoUy) + Cry (WyUn + hoUy,) — Al (RyVi + hoVin + hgVi,) = in BL Un,
CoUpn + A Vi = BoUn, (3.26)

Solving this system with respect to A%, and B!, we have:

4 AUy, =t .

B — mUm mVm i
™= U Vin t Ul — Vi (327)
. inU? ;

Al = 1 m o (3.28)

CinUnVi + Und — tmViy ™

Let us introduce notations:

B, = P,C:, A =W;,Ct (3.29)
where

in U2
Wi = 1 m (3.30)

inUn Vi + Undm — U

Comparing eqs. 3.21 and 3.27 we see that:

Pem = }Dim (331)

It is essential to know that for the internal excitation, as well as for the external one,
every harmonic of the primary field passing the shell is reduced but that its structure has
not been changed. Therefore, the shell, characterized by coordinate o = const, does not
distort the structure of any harmonic, regardless of the location of the primary source
with respect to the shell.

This feature takes place also for shells having a finite thickness. However, in the latter
determination the field is related to a solution of Helmholtz equation.

3.2.3. The Field in a Presence of Two Confocal Shelis

Let us consider some examples of the different location of field sources.

External excitation

We suppose that field sources are located outside both shells and, first of all, derive
formulae for a field caused by one harmonic of the primary field only:

E?n = inCfn Vm(a)d)m(:g) (332>
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For simplicity of transformations let iwpCe = 1. The process of forming the secondary
field due to the m-harmonic can be presented in the following way. The field ES, is partly
reflected by the shell with the reflection coefficient W,,:

WieUm(a)(bm(ﬂ) (333)

The other part of the primary field passes the first shell without a change of its structure
and it is equal to:

Plvm(a)¢m(18) (334)

sincePle:Pu:Pl.
Arriving at the internal shell it is partly reflected (coefficient of reflection W,):

Wae PrUn () (5) (3.35)

The remaining part passes through the internal shell, decreasing with a factor Ps:

PPV () pm () (3.36)
Let us return to that part which is reflected from the internal shell (eq. 3.35). It arrives

at the internal surface of the external shell and is partly reflected (the reflection coefficient

Wli)l

PIWQeWIiVm(a)¢m(ﬁ)

The other part goes through the external shell and is reduced with a factor P;:

PIQWQeUm(a)d)m(ﬂ)

This process continues until induced currents are established in both shells. Let us write
down sums which describe fields outside, between, and inside shells:

Outside shells

Vidm + WieUpn@m + PiWoeUp@m + PEWEW LU + PEWa, Wi U + - - -
Between shells

PiVim + PusWooUpdn + PiWo W13V + PIWE WU + PIWEWE Vi + -+« -
Inside shells

P1P2Vm¢m + P1P2W2eW1iVm¢)m + P1P2W225W12ivm¢m + -
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Figure 3.2. Illustration of formation of the field for external excitation.

For all these series summation is easy since they present geometric progression. For
example, outside the shells we have:

P2W,
Vm 'm W e — Ll Um m .
bm + ( et T erWu’) ¢ (3.37)
while inside shells we obtain:
PP
—_ V. 3.38
1 — WoeWy O (3.38)

The field-forming process when sources are located outside shells is illustrated in Fig. 3.2.

In accord with egs. 3.37 and 3.38 in the case of external excitation of the field, two shells
are equivalent to one shell which has the following expressions for coefficient of screening
and reflections, respectively:

PP
P, = 3.39
1 — Wy Wy, (3:39)
1 12” 2e
w., =W,.,+ ——= 3.40
em le 1 — W2eW1i ( )

Internal excitation

Now we will assume that sources of the primary field are located inside shells and as
before consider the case when the field is caused by the m-harmonic of the primary field:

letting iwpC? = 1.



154

Figure 3.3. Illustration of process of arising the secondary field; sources of the primary
field are located inside shells.

In this case the process of forming the secondary field caused by induced currents in both
shells, in essence, does not differ from the previous case, when sources of the primary field
were located outside. For this reason we will describe only the process of field formation
illustrated by Fig. 3.3 and write down the corresponding sums:

Outside shells

[PiPyUp, + PLPyW i WooUpy + PLPWEWE U + -] b

Between shells

[PolUn + PWyiVi + PaWiWaoUpy + PaWEWae Vi + PEWEWLU + -+ ] b
Inside shells

[Un + WaiVin + PEWZV,y 4+ PEWEWoeVi + PAW2 Vi + -] bm

Performing summation of these expressions we obtain the following equations outside
and inside shells:

P1P2
mUm(Q)(bm(ﬂ) (3.42)
2
Untom + (Wzi + %) V(86 (8) (3.43)

Thus for the internal excitation, the field caused by induced currents in both shells is
equivalent to that caused by currents in one shell with the screening coefficient:

PP,

Pim:Pem:—
1— WyWo
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and the reflection coefficient:

P22W11

Wim = Wy + ————
21+1_W1iW2e

(3.44)

In general, when we have a system of confocal shells calculation of the secondary field
caused by the m-harmonic of the primary field can be performed in the following way.
First of all, three characteristics — W,,, Wy, and P,, — of two shells, located closer to
the source of the primary field than others are calculated. Then they are replaced by
one shell, which is equivalent to them, and its characteristics are defined from egs. 3.39,
3.40 and 3.44. After this the screening and reflection coefficients of the third shell are
calculated and then the characteristics of the shell which is equivalent to all three shells
are defined. This process continues until all shells are replaced by one which is equivalent
to all of them. Calculations are made using eq. 3.39, 3.40 and 3.44, while characteristics of
every shell are defined from egs. 3.21, 3.22 and 3.30. As has been mentioned above these
coeflicients are expressed through well known functions with real arguments. The final
expression for the field will be obtained after summation of the secondary fields, caused
by all harmonics of the primary field. It is clear that components of the magnetic field
are defined from Maxwell’s equation:

H = ,LcurlE
iwp

From this consideration it follows that in presenting a conducting medium as a system of
confocal shells it is rather simple for us to calculate the field. Inasmuch as the conductivity,
o, is present only in parameter n (eq. 3.12) the calculation procedure does not depend
on the distribution of medium conductivity. In other words, the field is calculated by the
same formulae (egs. 3.21, 3.22, 3.30, 3.39, 3.40, and 3.44) for a uniform medium, for a
piecewise uniform medium, and for the general case of an arbitrary change of resistivity
in the direction of coordinate a.

As an example, let us examine the application of the method of shells for the calculation
of the field of a vertical magnetic dipole, located on the borehole axis when conductivity
o is a function of the distance from the axis only. In particular, we can imagine a medium
with several uniform parts such as a borehole, invaded zone, formation.

Applying a system of confocal cylindrical surfaces, r = const, we theoretically divide the
conducting medium in sufficiently thin cylindrical layers with a common axis coinciding
with the borehole axis. In general, the layer thickness is defined by conditions, formulated
at the beginning of this section, as well as by the character of the change of resistivity
within this elementary layer. Then every layer is replaced by an infinitely thin shell
located at the middle of the layer. The longitudinal conductance of the layer and the
corresponding shell is the same. Thus instead of a continuous medium we obtain a system
of thin coaxial cylindrical shells. As is well known, such replacement is possible, if induced
currents do not intersect cylindrical surfaces r = const. This requirement is met as the
source of the field is the vertical magnetic dipole, inasmuch as vector lines of the electric
field are circles located in horizontal planes with centers on the borehole axis.
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As in the case of a uniform medium the field can be described with the help of the
z-component of the vector potential (A?) only. This function satisfies Laplace equation
between shells, which in cylindrical coordinates can be written as:

OPA;  10A;  O*AL
a2 v ar * 022 =0 (3.45)

since the field is independent of coordinate ¢. After separation of variables in eq. 3.45 we
obtain two normal differential equations of the second order:

Z// + m2Z — 0 (346)
1

R+ ;R’ -m’R=0 (3.47)

where:

2 2
ZII_dZ RI_dR R”:ﬂ

dz? o dr dr?
Functions Z and R depend on coordinates z and r, respectively, and are related with
component A} as A} = R- Z; m is a separation variable.

Solutions of the first equation are harmonic functions sinmz and cosmz. The second
equation is the modified Bessel equation, solutions of which are functions Ip(mr) and
Ko(mr). Inasmuch as the field is an even function with respect to coordinate 2, it cannot
contain sinmz. For this reason, the general solution presents a combination of functions
such as Ko(mr) cosmz and Ip(mr) cosmz.

As follows from the previous chapter the vector potential of the magnetic dipole in a
free space is described by the function:

iwuM
4(r? + 22)1/2
which can be presented through elementary solutions:

iwuM g

A0 —
# A W

x>
/Ko(mr) cosmzdm (3.48)
o

The electric field is related with the z-component of the vector potential as:

G2 A*
Ey=-22%
¢ or?
Therefore:
w2 |
Eg)) = %ﬂ—— /mKI(mr)cos mzdm (3.49)
T
0
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since

gKo(mr) = —mK;(mr)

The primary excitation is presented as a sum (more precisely, the integral) of elementary
excitations such as mK;(mr)cosmz. The penetration of these harmonics in a direction
perpendicular to the borehole axis depends on the value of m. As follows from the
behavior of the function Kj(mr) with an increase of argument mr, for example due to m,
a harmonic decays more rapidly. For this reason excitation of the most removed parts of
a medium is realized by harmonics which are characterized by relatively small values of
m.

The method of reflections, described above, is applied for every harmonic. The total
electric field is expressed through the integral, and its integrand defines a reaction of a
medium due to action of corresponding harmonic of the primary field. For this reason for
electric field in the internal area we have the following expression:

_lwpM 2
T oAn o«

E4 /mWill(mT) cosmzdm (3.50)
0

where W; is the function, characterizing an interaction of all shells.

Now using results given at the beginning of this section we will replace functions U,,(«)
and Vy,(«) by functions mK;(mr) and mI;(mr), respectively. Taking into account that in
the cylindrical system of coordinates the metric coefficient b, = r, we obtain expressions
for reflection and screening coefficients, describing the field in the presence of one shell:

W = in If(mr)
1+ITL11K1
1
Py = 3.51
1+ inhL K, (3.51)
W, = i KEmr)
1 +17L11K1

where n = wuSr; s = oAr is the longitudinal conductance of the shell; r is its ra-
dius; Wy, is the reflection coeflicient of the shell for the external excitation by harmonic
mK;(mr) cosmz; Wy, is the reflection coeflicient of the shell for the internal excitation
by the same harmonic.

Coeflicient P, characterizes the decrease of the harmonic passing the shell. Interaction
of shells is calculated by formulae 3.39, 3.40 and 3.44. Function W, characterizes the
interaction of all shells and it is the kernel function of the expression for the electric field
in eq. 3.50.

As is known, the vertical component of the magnetic field is related with the electrical
field in the following way:

1 10(E)

H, = —
iwpr or
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Taking into account that:
1
;Erll(mr) = Iy(mr) + mrI{(mr)] = mIy(mr) and Iy(0) =1

we obtain:
37
h, = —/mZWi cosmzdm (3.52)
m
0

where h, is the magnetic field at the borehole axis in units of the field in a free space,
2M /4w L3; L is the length of the two-coil induction probe.

Let us consider some features of the behavior of function m2W; for a given value of m.
We will present function m?W,,; in the form:

minK?

[1+ n2(]1K,)2)"?

MW = exp [—i (g + arccoth nIlKl)]

The product [, K; does not exceed unity. Therefore, for small values of n the phase of
the secondary field slightly differs from 90°. In other words, induced currents in shells are
shifted in phase by 90° with respect of the magnetic dipole current. With a decrease of
a shell’s radius such behavior is observed at higher frequencies and for more conductive
shells. With an increase of a shell radius the argument, mr, increases, and a value of
function wpSrl(mr)K(mr) tends to the limit wpS/2m. If wuS/2 <« m, the phase of
induced currents in a shell is close to 90°.

However, harmonics with large values of m slightly penetrate into a medium. For this
reason excitation of currents in shells with a relatively large radius is realized by harmonics
having small values of m for which the inequality wuS/2 > m is valid and correspondingly
the phase of currents approaches to 180°.

This analysis is useful to define the role of various parts of the integrand in eq. 3.52 in
calculating quadrature and inphase components of the field.

Thickness of shells is chosen from calculations and it depends on both parameters,
wpSr and m. For example, with an increase of m the shell thickness must be smaller. It
is reasonable to choose a constant ratio between the shell thickness and its radius within
a certain interval of a change of radius r. Numerical analysis shows that in practice this
ratio changes from 0.02 to 0.05. The maximal radius of the shell, which is the most remote
from the borehole axis, essentially depends on m. For larger values of mr the reflection
coeflicient for the internal excitation, W,,;, decreases as e ?™". Therefore, it is sufficient
to satisfy the condition 7., < 10/m.

The minimal radius of the shell naturally coincides with the radius of nonconducting
part of the induction probe. In those cases, when the argument mr is small (mr < 1),
it is convenient to use approximate expressions for shell coefficients. For z > 0 functions
Ii{z) and K;(z) tend to z/2 and 1/z correspondingly and therefore instead of eq. 3.51
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we have:

inm?r?
Wine = ——————

" 4(1 +in/2)

1

P, =—— .
T +in/2) (3.53)

Wi = ————1— ifmr<1

m2r2(1 +in/2)

In conclusion let us notice that the method of shells can be considered as the algorithm
of the calculation of the integrand in eq. 3.52 describing the magnetic field in the borehole.

3.3. The Method of Integral Equations

The analysis of the electromagnetic field of a vertical magnetic dipole located either on
the axis of cylindrical interfaces (formations of an infinite thickness) or in a medium with
horizontal interfaces only allows us to investigate the influence of the borehole and the
invasion zone, as well as the effect caused by a finite thickness of the formation. For such
models application of the separation of variables method is the most natural approach
enabling us to present the field in a explicit form by known functions. It is a much more
complicated problem when the vertical magnetic dipole is located on the borehole axis
and the formation has a finite thickness. In this case the method of separation of variable
cannot be used, since both cylindrical and horizontal interfaces are present and it is more
appropriate to apply such numerical methods as integral equations or finite elements.

In fact, during the last 30 years the use of integral equations has allowed us to move
significantly forward in the theory and interpretation of induction logging. This is the
main reason why we will describe here only this numerical method. At the same time
it is reasonable to point out that both methods have been used, provided that a model
of the medium and a field have cylindrical symmetry with the common axis. Until now
this restriction has not permitted us to investigate a field behavior in the case when the
boundaries between a formation and a surrounding medium are not perpendicular to the
borehole axis.

Now let us suppose that a vertical magnetic dipole is located on the borehole axis and
the medium possesses axial symmetry (Fig. 3.4). In accord with the Biot-Savart law the
current of the magnetic dipole creates the primary magnetic field and its change with
time generates the primary vortex electric field. Due to the axial symmetry this electric
field does not intersect boundaries between media with different conductivities. Because
of this no electric charges develop and as a result of the existence of the vortex electric
field currents arise at every point, of the conductive medium with a density given by:

J¢ = U(E0¢ + Es¢) (354)
where Ey, is the primary vortex electric field strength; E4 is a secondary vortex electric

field caused by the magnetic field from induced currents in a conductive medium; o is the
conductivity at a given point.
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Figure 3.4. Models in induction logging with axial symmetry.

Inasmuch as electric charges are absent, the induced currents as well as the primary
vortex electric field Eyy, have only an azimuthal component J; in the cylindrical system
of coordinates r, ¢, z (Fig. 3.4). It is obvious that interaction between current filaments
does not change the direction of current flow in this case. Thus the total electric field is:

Ey = FEop+ Esg (3.55)

As was shown in Chapter 1 a circular current filament passing an elementary current
tube at the point g creates the vortex electric field at point p (Fig. 3.4¢) equal to:

iwuG(p, q)Js(q) dS

where dS is the cross-sectional arca of the tube and G(p, ¢) is a function, which depends
on geometric parameters and can be expressed through complete elliptical integrals, Js(q)

is the current density at the point g.
Now applying the principle of superposition the total electric field can be written as:

Ey(p) = Eos(p) + iwp / G(p.q) Jo(q)dS (3.56)
S
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where S is the half-plane described by equations:
r>0 —o0 <z <o
Making use of Ohm’s law:

Js(q) = o(q)Ey(q)

we obtain:

Ey(p) = Eoy(p) +iwp [ o(q)Gp,a)Eg(q) dS (3.57)

A

This is an integral equation of the Fredholm type of the second kind with respect to an
unknown total field, Es. Replacing the elementary surface dS by drdz we have:

Ey4(p) = Eoy(p) +iwpn

1
8\8

dz / o(0)C(p, ) Eo(q) dr (3.58)

Taking into account eq. 3.55 the integral equation with respect to the secondary field
has the following form:

Eus(p) = Fp) + iwps / dz / o()G(p, ) Esalq) dr (3.59)

where

F(p) = iwp / dz / o(2) Eoo(@)G(p, ) dr

(=]

is the known function.

One can conceptually replace the half-plane with a system of small cells within each of
which the electric field is practically constant. In doing so the integral equation 3.59 can
approximately be rewritten as:

N
Ew(p) = F(p) +iwp ) o(9)G(p, ) Ess(9)AS

Having written this equation for every cell, we obtain a system of N linear equations with
N unknown terms.
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However this equation is not used in practice since the infinite limit with respect to
distance r creates serious numerical problems for the determination of the electric field.
Also it does not allow us to derive relatively simple asymptotic formulae, except for one
special case corresponding to Doll’s approximation when the skin effect is completely
ignored.

In order to facilitate calculations of the field and obtain asymptotic formulae for the
field, we will derive an integral equation as the area of integration with respect to distance
r is limited.

First of all let us assume that the invasion zone is absent and proceeding from Green’s
formula we will obtain an integral equation for component E, in which integration is
performed over the cross-section of the borehole only. At the beginning, suppose that the
formation is uniform with conductivity oz (Fig. 3.4a).

It is well known that the electric field satisfies Helmholtz equation:

VEZE+KE=0 (3.60)

where k? = iouw.
Let us represent the electric field as a sum:

E=E,+ E, (3.61)

where E, is the field in the uniform medium with conductivity of the formation, o,
consisting of the field caused by the dipole current in a free space and the field of eddy
currents induced in the conducting medium. This field satisfies the following equation at
all points in the medium:

VQE() + k‘gEo =0 (362)

where kI = ioopw. The function E, is the field due to the presence of the borehole with
conductivity o; and radius a.
In accord with eqs. 3.60 and 3.61 the electric field E, is a solution of the equation:

V2E, = —k*E, — K*E, — V*E, (3.63)
Taking into account eq. 3.63 we have for the formation and the borehole, respectively:

V?E, = —kiE, ifr>a (3.64)
V2E, = —K2E, + (k — k})E, ifr<a (3.65)

where k? = iojuw and oy is the borehole conductivity.
It is obvious that:

Ey=EJd, E, =ElI, (3.66)

We will introduce a function G = G1I4, which is continuous with the first derivative over
all space and satisfies the equation

V3G + k3G =0 (3.67)
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except a point p at which the field E; is defined. At this point the function G = GI,4
has a logarithmic singularity.
Now we will consider the expression:

GV’E, - E\V’G

Inasmuch as:
VZE, = V?E Iy = E\V?I, + I,V*E,
and
VG = VG, = GV*I, + I,V3G
we have:

GV’E, — E\V*G = E\GV*I 4+ GV?E, — GE,V*I; — E\V*G 3.68
= GV*E, — E\V*G (3.68)

It is also appropriate to make the following comment. In practice the magnetic dipole
presents itself as a small horizontal loop with its center located on the borehole axis. In
approaching this loop the primary electric field tends to infinity as a logarithmic function,
while the electric field caused by induced currents does not have a singularity. Corre-
spondingly, the electric field E; is a continuous function everywhere in the borehole as
well as in the formation. Taking into account the two-dimensionality of the model we will
use a two-dimensional form of Green’s formula. Let us assume that point p is located
inside the borehole. Then for the borehole and the formation parts of the space we have:

/(GV2E1 E,V2G)dS = /( 28 g, ac) dl+/ (G@i E, 8G) dl (3.69)
1

on.y ony on
S
and
E oG

/ (GV2E, — E\V?@)dS = / 28 E=—)dl (3.70)

on_ on_
Se l
where ny =r, n_ = —r; [ is the straight line on the borehole surface which is parallel to

z-axis; ly is a contour around point p.
From eqgs. 3.64 to 3.67 we have for the formation:

GV?E, — E;ViG =0
and in the borehole:

GV2E, - E\V%G = (k¥ — K> )EoG + (kX — KD E\G
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Near the point p the field F; is bounded but the function G increases without limit as
In7, where r is the radius for the circumference ly. Therefore the value for the integral
along the contour Iy as r — 0 tends to the value —27F;(p). Combining egs. 3.69 and 3.70
and making use of the continuity of the tangential components of the electric and magnetic
fields the integrals along line ! vanish. Respectively, we obtain an integral equation, which
includes a surface integral only over a restricted area in the radial direction corresponding
to half the cross-section of the borehole:

k2 — k2 k2 — k2
Ei(p) = —1-2—77—2/Eo(q)(k2,p, g)dS+—21—2 o /El(q)G(kz,p, q)dS (3.71)
S; S;

The function G(k2, p, ¢) describes with accuracy of a constant the electric field in a uniform
medium with conductivity o3, generated by a circular current filament. As will be shown
in the next chapter it can be expressed through the proper integral from the elementary
function.

In addition we will remember that the electromotive force induced in the receiver coil
is defined as:

& = 2nrognk

where rg and n are radius and number of turns of this coil, respectively.
Now we will suppose that there is an invasion zone and the formation has an infinite
thickness (Fig. 3.4b). In this case Green's function satisfies equation:

V3G + kG =0 (3.72)

and it has a logarithmic singularity at point p.
In accord with eq. 3.65 we have for the field E;:

VIE, = —kal + (k§ - k?)EO O<r<a
V2E1 —kgEl + (kg - kg)EO a <1 <as (373)
V2E, = —kiE,

I

Applying Green’s formulas for borehole, invasion zone and formation we have, respec-
tively:

E
/ (GV?E, — E;V*G)dS = —27E,(p) + / (G% - E, ‘;G> dl (3.74)
S] ll
E oG
(GV2E, — E\V?*G)dS = / G%+Eldc dl+/ e — E,=— ) dl (3.75)
or or or
Sa 12
OF,
/ (GV?E; — E;V*G)dS = / ( o E1%G> dl (3.76)

S3
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where [; and [, are contours defining boundaries between the borehole and the invasion
zone and the latter with the formation, while Si, Ss and S;3 are their cross-sections,
respectively.

Now taking into account eqs. 3.72-3.73 and performing summation of eqs. 3.74-3.76 we
obtain the integral equation, which contains two surface integrals over areas corresponding
to cross-sections of the borehole and the invasion zone:

k‘2 . k,’2 k?2 _ k2
Blp) = "5 [ Ea@)Glhap0)ds + 25 [ E)Glh, pa)as
S1

2T

K2 (3.77)

2T

k2
+ 2

/EI(Q)G(kB:p» q)dS +

S1

Sz
5 [ BaGk ds
o / 1(@)G(ks, P, q)

Sa2
It is obvious that integral equations 3.71 and 3.77 coincide with each other, if k; = ky or
k‘g = k3.

We have illustrated derivation of the integral equation in two cases when the solution
of the boundary problems can be obtained in the explicit form, making use of the method
of separation of variables. In both cases the same Green’s function corresponding to a
uniform medium with the formation conductivity has been used.

Let us notice that unlike eq. 3.59 the integral equation 3.77 allows one to obtain directly
very simple and sufficiently accurate formulae for the field which will be described in the
next paragraph of this chapter. In order to derive the integral equation for the case when
the formation has a finite thickness (Fig. 3.4c), we will introduce a new Green’s function
which satisfies the following conditions:

o It is a solution of equations:
VG + k3G =0 VG + kG =0 (3.78)

in a horizontally layered medium when the formation and the surrounding medium
are characterized by wave numbers ko and ks, respectively.

e Function G = GI, and its first derivative with respect to coordinate z, 9G/0z,
are continuous functions at interfaces between the formation and the surrounding
medium.

From a physical point of view, the function G presents itself with accuracy of a mul-
tiplier of the electrical field of a circular filament passing through the point p in the
horizontally layered medium. As will be shown in the next chapters this function can be
expressed through the proper integral.

We will present the total electric field, E, as before in the form of the sum:

E=E,+E, (3.79)

where Ej is the electric field of the magnetic dipole in the horizontally layered medium,
ie.

V?E, = —kiE, (3.80)
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in the formation, and
V2E, = —k:E, (3.81)

in the surrounding medium provided that the borehole is absent.
It is clear that:

G:GI¢ EOZE[)Id, E1:E11¢

Taking into account eq. 3.63 as well as eqs. 3.80-3.81 we have in the surrounding
medium:

V?E, = —k:E, (3.82)
in the formation:

V2E, = —klE,; (3.83)
in the part of the borehole, located against the surrounding medium:

V2E, = (ki — kK*)E, — kiE, (3.84)
and finally in the part of the borehole located against the formation:

V2E, = (k} - K*)E, - k}E, (3.85)

Correspondingly, function GV2E| — E, V%G is equal to zero within the surrounding
medium and the formation while it is equal to:

(k3 — kD) BoG + (k3 — k) E\G
in the part of the borehole, located against the surrounding medium, and
(K5 — k) EoG + (K} — k) E\G
in the part of the borehole, located against the formation.
Now applying Green’s formula we obtain the integral equation with respect to the

electric field, Ei:

k2 k2
2

K — k3

[E@epis+ 220 [E@crpds (3.56)

Sa S1

Ey(p) = Fi(p) +
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k2 — k2

[ B@Gwads + 20 [ 6o ds (387)

S S1

is a known function.
It is clear that the half cross-section of the borehole S is equal to:

S=5+5

The integral equation 3.86 allows us to determine the electric field E)(p) and therefore
the total electric field:

E=Fy+ E
which creates the electromotive force in the receiver coil.

Generalizing this result in the case, when there is an invasion zone within the formation
(Fig. 3.4d), we have:

k3 — ki
Eip) = Fo+ S5 [ Ei(0)Glp,q) a5
S2
KB K- K (3.88)
5 /EI(Q)G(pv ¢)dS+ = /Eo(Q)G(p, g)ds
S1 S3
where S; is the half cross-section of the invasion zone and k? = ioyuw:
k?2 _ k2
=50 [ Baceads
S2
2 g Bk (3.89)
28 [ B@Geads + 2 [ B9 ds
7r 2m
S1 S3

Further simplification of numerical problems is related with derivation of integral equa-
tions with respect to tangential components of the electromagnetic field in which integra-
tion is performed along the line [, characterizing the borehole surface.

In order to eliminate the surface integral, we will choose Green function, which obeys
the following conditions:

e Inside the borehole function G satisfies Helmholtz equation:
VG, + kG, =0 (3.90)

and it has a logarithmic singularity at point p.
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o Outside the borehole we have for the formation and the surrounding medium, re-
spectively:

V3G, + k2Gy =0 VG, + k2Gy =0 (3.91)

Function G is continuous along with its first derivative with respect to coordinate
z at horizontal interfaces (Fig. 3.4c) and it does not have singularities.

It is clear that the total electric field E = EI 4 satisfies the following equations:

V2E + kE =0 in the borehole
V2E + k2E =0 in the formation (3.92)
V2E + k3E =0 in the surrounding medium

and it is a continuous function at interfaces of the medium.
From the first Maxwell equation FE = iwuH, we have:

e L) L (98 )

iwpr  Or iwp \ or

Inasmuch as both components H, and E, are continuous functions, the first derivative
OE,/Or is also continuous at the borehole surface and at interfaces between the formation
and the surrounding medium.

Applying Green’s formula outside the borehole and taking into account egs. 3.68 and
3.91 we obtain:

9, . OEY ,
/ (E—bT - 025> di=0 (3.93)

where [ is the straight line along the borehole surface.
Now we will apply Green’s formula for functions £ and G, inside the borehole. Then
we have:

8G, , OE 0G, OE oG, _ OE\ .
/(EW%;]E) dl+/(Ea—n—Gla—n) dl+/(Ea—n—GI%) dl=0
i 0 23
(3.94)

where [; is the contour, surrounding the observation point p, while I5 is the contour around
the current ring representing the source of the primary field. The value of integral around
point p is equal to —2xF(p), since function G; behaves as Inr near this point.

In approaching the source of the primary field, F tends to that caused by the primary
magnetic field only. Therefore:

iwpl

E=E}+E — Inr
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and

8E  OEY  iwpul
—— — = —

or or 2mr

Correspondingly, the integral around contour [, is equal to:

—Gl —dl Gl/—dl iwpl Gy

Since the electric field of the source in a uniform medium with conductivity o, is equal
to:
iwpl

Eo = 27 G

we have 21 Ey(p) for the integral along contour Is.
Correspondingly, instead of eq. 3.94 we obtain:

E
—2n(E — Ey) +/ (E%G—l - 01% ) dl =0
1
or
1 oG OF
E(p) = Eo(p) + g/ (Ea_rl -G 87") dl (3.95)

l

If point p is located on the contour [, it is an integral equation with two unknowns, F
and OE/0r. The latter is expressed through tangential component of the magnetic field,
H,.

Subtracting eq. 3.93 from 3.95 we obtain:

1 oG OF
- — [(EZ=—¢
E(p) = Eo(p) + 5 / ( e arq> d,
i

where G* = G; — Gy and 0/0r, means the derivative at point ¢g. The last operation
permits us to reduce the order of the singularity.
Taking the normal derivative at the point p we have:

08 0B | 1 [ (0G0 omY
or, Or, 2« Orp0rg  OR, Orp
!

(3.96)

Thus egs. 3.95 and 3.96 form a system of two integral equations in terms of the electric
field £ and its first derivative with respect to v, 0E/0r.

When these functions are found along the contour I, we can determine the electric field
inside the borehole by making use of the computational formula 3.95. This approach has
been used for the investigation of radial and vertical responses of induction probes when
the formation has a finite thickness.
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3.4. Approximate Methods of Field Calculation in Induction
Logging

In this section we will describe two methods of field calculation which have played an
essential role in developing such aspects of induction logging as:

e theory

e interpretation

e invention of principle of focusing of the induction probes

e choice of optimal parameters of multi-coil induction probes

e choice of field frequency and understanding of the influence of the skin effect on
radial responses of induction probes.

3.4.1. Doll's Theory of Induction Logging

In 1949 Henry Doll developed an approximate theory of induction logging. The basis of
this theory is the assumption that for a sufficiently resistive medium and at relatively
low frequencies one can neglect interaction of induced currents. For this reason the phase
of these currents is 90°, regardless of the distance from the transmitter coil, and the
measured signal is a sum of elementary signals created by currents in various parts of the
medium, which depend on the conductivity of the corresponding part of the medium only.

As follows from the analysis of the field of a magnetic dipole in a uniform medium
(Chapter 2), such behavior of the field and induced currents is closer to reality with
decreasing frequency as well as conductivity.

The range of frequencies and resistivities of a nonuniform medium and also geometric
parameters, when this theory remains valid will be established by comparison with results
of calculations, making use of the exact solution.

Application of Doll’s theory permits us to derive simple expressions for the quadrature
component of the magnetic field in a medium with horizontal and cylindrical interfaces,
and in many cases this theory allows us to evaluate with sufficient accuracy the influence
of currents, induced in the borehole and in the invasion zone as well as in other parts of
the medium. It is appropriate to consider formulae based on this theory as asymptotical
ones, which are valid for large values of the skin depth with respect to such parameters
as:

e borehole radius
e invasion zone radius

e formation thickness

distance from the magnetic dipole to the observation point.
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Figure 3.5. Position of an elementary ring with respect to the induction probe.

Let us consider a part of the medium formed by two horizontal planes and two coaxial
cylindrical surfaces having a common axis with the borehole (Fig. 3.5). This part presents
itself as a horizontal ring filled by a uniform medium. Its cross-section, dS, is almost
square and, one will assume that this area equals unity (dS = 1). It is essential that the
dimensions of the cross-section are small with respect to the ring’s radius. Doll called this
part of the medium an elementary unit ring.

Now we will find a signal at the receiver of a two-coil induction probe caused by an
induced current from this ring. As was shown in Chapter 2 the current induced in the
elementary unit ring is:

_lopwrMr
T o4r R

if dS =1 (3.97)

where o is the ring conductivity, and R; is the distance from the transmitter coil to the
ring (Fig. 3.6).

The current in the elementary ring with radius r generates the secondary magnetic field
which has only the vertical component at its axis:

172
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Figure 3.6. Illustration of eq. 3.97.

where R, is the distance from points of the ring to the receiver coil.
Respectively, the flux of the magnetic induction vector piercing the receiver is:

_oplr?

Y

Sany

where S5 and n, are area and number of turns of the receiver, respectively.
For the electromotive force in the receiver, arising due to a change of the magnetic field
with time, we have:

iwp Ir?

2

Substituting eq. 3.97 into 3.99 we finally obtain the expression for the electromotive
force in the receiver coil:

3

r
3.100
R3R3 ( )

&= —gf2u20105152n1n2

where Iy is the current in the transmitter coil; S} and n; are the area and number of turns
of the transmitter coil; f is the field frequency.
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Let us present this equation in the form:

&= Koo'g() (3101)
where

_ T2
Ky = —§f pS1S9mimy

is the probe coefficient, and

,’,,3

do R:Ii Rg (3102)
is the function depending on the radius and location of the ring as well as on the probe
length, L. Doll called this function by the geometric factor of the elementary ring or the
elementary geometric factor. Thus, the signal generated by the current in the elementary
ring of a medium, is directly proportional to its conductivity and geometric factor of the
ring. Now we will present the function go in cylindrical coordinates, r, » with the origin
at the middle of the induction probe. Inasmuch as:

Ry = [r* + (L/2+ 2)?] 1/2 Ry = [+ (L/2 - 2)7] 1/2

we have for the function go:

7"3

go = r2+(L/2+ 2)2]3/2 [r2 4+ (L/2 — 2)2]3/2 (3.103)

Instead of function gy, we introduce, following Doll, a new function ¢:

r3

[T2 + (L/2 + 2)2]3/2 [7’2 + (L/2 _ 2)2]3/2 (3104)

q:

L —_—
290—

2| b

At the same time the probe coefficient Kj is multiplied by 2/L. In this case, as will be
shown later, the geometric factor of all space is equal to unity.

Knowing the induced current in an elementary ring of a medium, one can calculate
a signal caused by currents in a whole space. In fact, making use of the principle of
superposition and neglecting interaction of induced currents the electromotive force is
equal to the sum of the signals from all elementary rings, i.e.:

£—K / 0qdS (3.105)
S

where K = (2/L)K, and dS is the cross-section of the elementary ring.
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Figure 3.7. Illustration of eq. 3.106.

In a general case conductivity can be a continuous function of coordinates of a point.
If a medium is uniform we have:

é”:Ka/quzKa/dr/dz

S

Inasmuch as radii of elementary rings change from 0 to oo but coordinate z varies from
—00 to 0o, we can write for a uniform medium:

@@:Ka/dr
0

For illustration we will consider a nonuniform medium with a conductivity distribution
as shown in Fig. 3.7. Then, taking into account axial symmetry, it is natural to denote
parts of the medium with various conductivity by capital letters A, B, C, D, E and so
on. Contribution of every uniform part of the medium to the total signal is proportional
to the product of the corresponding conductivity and geometric factor of this part. The
latter can be presented as a sum of geometric factors of elementary rings over the area of
the considered part of the medium.

For example, if conductivities of parts A, B, C, D, and E are equal to o4, 0, 0¢, 0p,
and og, respectively, the total electromotive force is:

=K O'A//qu+03//qd5+00//qu+0’D//qu+O'E//qu
A B c D E

qdz

é\g

(3.106)
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where [f,qdS, [f;qdS and so on are geometric factors of corresponding parts of the
medium.
Introducing notations:

GA://qu G’Bz//qu GC://qu and so on
A B c

we obtain the following expression for the magnitude of the electromotive force:

& = K(04Ga+05Gp +0cGe + opGp + 0eGE) (3.107)
Inasmuch as for whole space the geometric factor is equal to unity:

04Ga+05Gp+0cGe+0pGp +0pGr+---=1 (3.108)

the ratio &/K is equal to the conductivity of this medium. In the general case of a
nonuniform medium this ratio is called the apparent conductivity, o,. Therefore, we
have:

O'a:g:O'AGA+UBGB+UCGC+UDGD+0'EGE (3109)

From this equation it follows that to some extent the conductivity and the geometric
factor have a similar influence. For instance, a part of the medium with high conductivity
and with relatively small dimensions can contribute the same signal as an area with lower
conductivity but with greater dimensions.

Now we will investigate the behavior of the elementary geometric factor g in detail.
In accord with eq. 3.104 it is very simple to show that the geometric factor ¢ depends
on the angle under which both coils of the induction probe are seen from points of the
corresponding ring, and it is equal to:

sin® A
9= 575 (3.110)

In fact, as follows from Fig. 3.6:

sin4A sina . r sin A r
= sina = —

I T R R L RiR,

and therefore:

L7 _£sin3A_sin3A
T 2R}RZ 2 I3 2L2

q

In other words, for the given probe the elementary geometric factor is completely defined
by the angle under which the probe is seen from points of the elementary ring. Thus, all
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elementary rings have the same geometric factor, if the probe is seen under the same angle
from the ring’s points. Consequently, they contribute the same signal, provided that all
these rings have the same conductivity. From this consideration it is obvious that the
geometric configuration of a section of elementary rings with the same geometric factor in
a vertical plane are circles, passing through transmitter and receiver coils of the induction
probe (Fig. 3.6). Elementary rings for which sin A = 1 have maximal geometric factor,
equal 1/2L%. Cross-sections of these rings are located on the circle with radius equal to
L/2.

Making use of the concept of a elementary geometric factor it is not difficult to define
a signal caused by currents in various parts of the conducting medium. In particular,
if a medium is uniform, signals caused by its different parts depend on corresponding
geometric factors only. In developing the theory of induction logging in media with either
cylindrical or horizontal interfaces, Doll also introduced useful concepts of geometric fac-
tors of an elementary cylinder and an elementary horizontal layer which will be considered
later.

Finally, let us make the following comments:

e According to Doll’s theory induced currents arise due to the primary vortex electric

field only:
iwpuMrr
go _ lwuMr
] R.’]i

In other words, interaction between currents (skin effect) is neglected, and, respec-
tively, every element of a medium manifests itself independently, regardless of the
resistivity of neighboring parts of the medium. It also means that this theory does
not allow us to evaluate the inphase component of the secondary magnetic field.

e As was shown in Chapter 2, near the source the quadrature component of the current
is practically defined by the primary vortex electric field. Correspondingly, if the
area, where such behavior takes place, is greater than the depth of investigation of
the given probe, Doll’s theory describes the field behavior with a sufficient accuracy.

e From a mathematical point of view Doll’s theory can be considered as the first
approximation of the integral equation 3.56, when the thickness of the skin layer
tends to infinity.

Now we will describe also simple, but more accurate method of field calculation.

3.4.2. The Approximate Theory of Induction Logging, Taking into
Account the Skin Effect in the External Area

The analysis of the field of a magnetic dipole in a uniform conducting medium (Chapter 2)
has clearly demonstrated that with an increase of the distance from the source the quadra-
ture component of induced currents becomes smaller with respect to that corresponding
to Doll’s theory. Moreover, comparison of the vertical component of the magnetic field on
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the borehole axis, calculated from the exact solution and making use of Doll’s formulae,
confirms this conclusion about the distribution of the quadrature component of currents.
In fact, values of the actual turn out to be smaller than those calculated from Doll’s
theory.

Now we will describe a method which under certain conditions takes correctly into
account the skin effect, i.e. interaction of currents in a conducting medium. The idea of
this method is very simple. Let us present all current space around the induction probe
as a sum of two areas, namely:

e the internal area, where the induction probe is located
o the external area.

For simplicity we will suppose that the conductivity of the external area is constant. Later
this assumption will be omitted.

We will suppose that two conditions are valid:

e Induced currents in the internal area which contribute to a signal in the receiver
are shifted in phase by 90°, and their density depends on geometric parameters
and the conductivity at a given point. In other words, interaction between currents
induced within this area is practically absent, that is the primary vortex electric
field generates induced currents only.

e The density of vortex currents in the external area does not depend on the resistivity
distribution within the internal area, that is, interaction of two currents, located in
both areas, can be neglected.

The second condition emphasizes the fact that the skin effect manifests itself, first of all,
at relatively large distances from the source. Proceeding from these two assumptions we
will derive sufficiently simple expressions for the quadrature component of the magnetic
field.

This component of the magnetic field on the borehole axis can be presented as a sum
of two magnetic fields caused by currents in the internal and external areas:

QHZZQH;+QH§
or

Qh, = Qhi +Qh (3.111)

where Q h, is the vertical component of the magnetic field, related to the field in a free
0.
space, H,:

0 _ My
S o
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QR and Q h¢ are quadrature components of the magnetic field, caused by currents within
the internal and external areas, respectively.

Making use of results obtained in Chapter 2 and formulae of Doll’s theory, the first
condition allows us to present the magnetic field due to currents in the internal area as:

wuL?
2

Qh. = ol (3.112)
where p is the magnetic permeability of the free space equals to 47 x 1077 H/m; w is the
angular frequency; L is the length of a two coil induction probe.

In accord with eq. 3.109 the apparent conductivity o of the internal area, related with
an actual conductivity distribution as:

O’flIUAGA+UBGB+UCG0+"‘+UFGF (3113)

where G, Gg, G¢ and G are geometric factors of areas with conductivities o4, g, o¢
and op, respectively.

For instance let us suppose that the conductivities of an internal area and an external
area are equal to each other. In this case we have a uniform medium, and the field can
be presented in the form:

QA™ = QA + Qhr® (3.114)

inasmuch as the field of currents in the external area, in accord with the second condition,
does not depend on the conductivity distribution within the internal area. Here QA¥" is
the quadrature component of the magnetic field in a uniform medium with conductivity
of the external area o.. The function QA?, is the quadrature component of the magnetic
field due to currents in the internal area when it has conductivity o.. As follows from the
first condition this part of the field can be expressed through the geometric factor of the
internal area G;:

2
Qh, = %UEG,» (3.115)

Therefore, for the quadrature component of the magnetic field, caused by currents in the
external area we have:

wpL?

Qhs = QA" — Qh, = QhY" — 0.G; (3.116)

Correspondingly, for the total quadrature component of the field we obtain:

wpl?

wpl?
=—~—g¢
2

2 a

2
Qh cque = L G Qa1 )] (3.117)

Thus for a field determination on the borehole axis it is sufficient to know the geometric
factors of corresponding parts of the internal area and the field of the magnetic dipole in a
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uniform medium with conductivity of the external area o,.. In particular, the conductivity
of the internal area can vary as a continuous function. An expression of the field in a
uniform medium and its values are given in Chapter 2.

Calculation of geometrical factors, t.e. integrals of type fsq dS is a rather simple
numerical problem, and for the most important cases it is already performed in detail.

Let us notice that the first term in the right-hand side of eq. 3.117 is subjected to the
influence of the skin effect in the same manner, as it takes place in uniform medium with
conductivity oe.

Now we will show that with a decrease of parameter p = L/h (h is the skin depth),
eq. 3.117 approaches to that derived from Doll’s theory.

As was demonstrated in the previous chapter, the quadrature component of the mag-
netic field in a uniform medium can be expressed as:

QH"
HY

cwp L L . 1/2
:th:% ifE=L<05w> <1 (3.118)

Substituting eq. 3.118 into eq. 3.117 we obtain:

L2
th:wl; (Ue(l—Gi)+0AGA+UBGB+"‘+UFGF)
or
wpl?
Qh, = 5 (0eGe +04GA+05Gp+---+0rGF) (3.119)

where G, is the geometric factor of the external area.

This equation for Q k., coincides with that for the magnetic field in a uniform medium
derived by Doll.

Making use of the relation between the apparent conductivity and the field, introduced
by Doll, we have:

2 )
Og = _2th —_—Ugn'i"UZ—UeGi
wplL
or
un % un
%a _ Y +&_Gi:0-a +gﬂGA+U_BGB+...+O_FGF_Gi (3.120)
O¢ Oe Oe Oe Je¢ O¢ Oe

Values of function 0%" /o, are given in Chapter 2.

It is obvious that with a decrease of internal area dimensions and an increase of medium
resistivity this method of field calculation will be valid for higher frequencies.

Comparison with results of calculations using the exact solution will allow us later to
characterize boundaries of application of this method.

Now we will consider two more examples when the external medium is uniform.
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As follows from results obtained above, we have for the field on the borehole axis, pro-
vided that the formation has infinite thickness (two layered-medium with one cylindrical
interface):

2

Qh, = QR + (5~ 501G (w) (3.121)

and for the apparent conductivity:

o un

Ja _ % (ﬂ - 1) Gr(e) (3.122)
g2 02 02

where:

o1 is the borehole conductivity;

09 is the formation conductivity;

G1{«a) is the geometric factor of the borehole;

o is the ratio of the length, L, of the induction probe to the borehole radius, a,: @ = L/ay;
QA¥ and o¥" are the quadrature component of the magnetic field and the apparent
conductivity in a uniform medium with the formation resistivity, respectively.

As will be demonstrated in the next chapter the geometric factor of the borehole can
be expressed through the integral:

Gi(a) = __7?/% 2Ko(m)K,(m) — m (K} — K§)] cosmadm
0

where Ko(m), Ki(m) are modified Bessel functions of the second type. If the internal
area includes both the borehole and the invasion zone, expressions for the quadrature
component, Q h,, and the apparent conductivity, o,, have the form:

wpl? wpl?
Qhs = QA" (g5) + L (01 = 33)Gir (@) + 5 (0 ~ 03)Giae) (3.123)
and
To_%a 4 <5‘- - 1) Gi(a) + <9 - 1) Ga(a) (3.124)
o3 o3 o3 a3
where:
01,09 and o4 are conductivities of the borehole, the invasion zone and the formation,
respectively;

G1(«a) and Gs(a) are geometric factors of the borehole and the invasion zone:

Gala) = Gy (%) — Gi(a) B =as/ay
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ag and a; are radii of the invasion zone and the borehole, correspondingly.

Later we will demonstrate that this method of the field calculation permits us to obtain
with a sufficient accuracy values of the quadrature component of the field in most practical
cases where induction logging is applied.

Thus for the field calculation in media with cylindrical interfaces two functions should
be known, namely:

e the quadrature component of the magnetic field of the dipole in a uniform medium
with the formation conductivity

e the geometric factor of the cylinder, Gy ().

A similar approach can, in principle, be used in a medium with horizontal interfaces
when the formation has a finite thickness.

Until now we have assumed that the external area is a uniform one. This restriction
allows us to obtain very simple formulae for the field in a media with cylindrical interfaces.

However, in a medium with both cylindrical and horizontal interfaces, when the forma-
tion has a finite thickness, the external area is not uniform, anymore.

In order to derive formulae for such a case, let us present the field in a medium with
two horizontal interfaces, i.e. as the formation has the finite thickness and the borehole
is absent, Q hg, as a sum:

Qho = Qhy + Qhe (3.125)

where:

Q h; is the quadrature component of the magnetic field, caused by induced currents in
the vertical cylinder with the radius of the borehole;

Q k. is the quadrature component of the magnetic field, caused by induced currents outside
the borehole;

09 and o3 are conductivities of the formation and the surrounding medium, respectively.

Whence:
Qhe = Qho— Qhy (3.126)
The magnetic field Q h; can be expressed through geometric factors in the following way:

wpl?

Qhy =2

((J’QGi4 + UgGlB) (3127)

where G# is a geometric factor of the borehole part (A), located against the formation,
while G¥ is the geometric factor of the rest part of the borehole (B), that is:

Gt = /qu G? = /qu (3.128)

A B
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It is obvious that the geometric factor of the borehole, G;, can be presented as a sum:
Gi(a) =G+ GP (3.129)

Thus, the quadrature component of the magnetic field, caused by currents induced
outside the borehole, can be written as

2
Qhe = Qhy — 1L

(02G3 + 03GP) (3.130)

Taking into account the magnetic field caused by currents in the borehole with conduc-
tivity o; we obtain for the total quadrature component on the borehole axis the following
expression:

wul?

L2
Qh = Qho — “ (0,61 + 03GP) + 222 5.

L2

=Qho + ada (O'lGl — 0’2G/14 - 0'3G{;) (3131)

wpl?
L

=Qho +

03)G1 + (03 — 02)0114]

The magnetic field of the vertical magnetic dipole, hg, in a horizontal layered medium
is expressed in the explicit form. For example, if the induction probe is located symmet-
rically with respect to the formation boundary we have:

Cm2H1 + K12 coth mgL
1 — K% e 2m2H

oo
3
ho = h’z‘"(og) + Ls/%]{lg 0—2m2H1 dm if H] > L
2

and

3

m m20 H](mQ—mg)

(mgy + m3)2(1 — K%, e-2m2i)

ho = 2L3

0

where h¥*(g,) is the magnetic field of the magnetic dipole in a uniform medium with
conductivity of the formation:

me = (mg—kg)l/2 ms = (m2~k§)]/2 K9 = (my —mg3)/(my + my)

H, is the formation thickness; L is the probe length.
In the more complicated case, when there is an invasion into the formation, we have:

2

Qh = Qho + wpl [(0’2 - ('fg)C;’é4 + (0'4 - 0'3)G14 + (0'1 - U4)G1] (3132)

2
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where:

Q ho is the quadrature component of the magnetic field when the borehole and the invasion
zone are absent;

01, 09, 03 and o4 are conductivities of the borehole, the invasion zone, the formation and
the surrounding medium, respectively;

G4 is the geometric factor of the invasion zone;

G is the geometric factor of the borehole;

G4 is the geometric factor of the part of the borehole, located against the invasion zone.

Function G% is expressed through G in the same manner as the geometric factor of
the invasion zone. G5 is related with the geometric factor of the borehole (5.

Therefore, determination of the magnetic field on the borehole axis when the formation
has a finite thickness, consists of calculation of the field in a horizontally layered medium
and geometric factors of vertical cylinders with a finite height which are coaxial to the
borehole.

It is obvious that equations for the field corresponding a medium with one or two coaxial
cylindrical interfaces can be obtained, as particular cases, from eq. 3.132.

Let us notice that in the case of a medium with two coaxial cylindrical interfaces one
can derive a field equation, which is valid for higher frequencies and conductivities of the
borehole and the invasion zone. However, in this case the field on the borehole axis in a
medium with one cylindrical interface has to be known. From calculation of the field in
this medium we can obtain values of the field on the borehole axis as its radius is equal
to that of the invasion zone of the given model. Then, having replaced the central part
of the invasion zone by a medium with the borehole resistivity, we obtain a three-layered
medium, and correspondingly the quadrature component of the magnetic field is defined
from equation:

wul?

Qh=Qhy+ 5

(01— 02)G1(a) (3.133)

where:

Q hp is the quadrature component on the borehole axis, the radius of which is equal to
that of the invasion zone, as;

o, and o9 are conductivities of the borehole and the invasion zone;

a = L/ay; L is the probe length.

We have described different aspects of this method for calculation of the quadrature
component of the magnetic field in various models. In conclusion, it is appropriate to
make several comments.

1. Formulae, obtained in this section, directly follow from the integration equation
3.88. In fact, eq. 3.89 is its first approximation and, if both conditions about current
distribution are valid, leads to the same results as eq. 3.312.

2. This method was suggested almost 35 years ago, and it was very useful in developing

the interpretation of induction logging, the determination of frequencies and geoelectric
parameters of a section, where focusing induction probes are effective.
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3. Until now this method has been considered from a point of calculation of the quadra-
ture component of the magnetic field, which is mainly measured in induction logging. At
the same time it allows us to obtain some information about the inphase component of
the field also.

Inasmuch as it was assumed that the skin effect manifests itself in an external area only,
i.e. interaction between currents within the internal area is negligible, we can think that
the inphase component is caused by currents within the external area only. Proceeding
from this consideration we can rewrite some of eqs. 3.111-3.133 in a more general form.
Validity of this step also follows from analysis of the integral equation 3.88 and its first
approximation 3.89.

In the simplest case, when there is one cylindrical interface only, instead of eq. 3.121
we have:

iwpL?

h = hun(O'Q) + (0’1 - 0'2)G1(O{) (3134)
It is obvious that only the first term contains an inphase component of the magnetic field,
which coincides with that in a uniform medium with conductivity of the formation, os.
In other words, within a range of relatively small parameters L/h induced currents in the
borehole do not influence the inphase component. Similar results are obtained when an
invasion zone is present. In accord with eq. 3.123 we have:

iwpl? iwplL?

h= h0(0'3) + 2

(01— 03)Gi{a) +

(02 — 03)G2(a) (3.135)

Again the inphase component of the magnetic field in the borehole is not practically
subjected to the influence of induced currents in the borehole and in the invasion zone,
and it coincides with the inphase component in a uniform medium with the formation
conductivity, o3. In this approximation induced currents in the borehole and in the
invasion zone contribute to the quadrature component of the field. This consideration
clearly shows that the inphase component of the magnetic field has a different sensitivity
to geoelectric parameters of a medium than the quadrature component, and therefore
they are characterized by different depths of investigation. It is clear that the analysis
of the current distribution in a uniform medium, performed in Chapter 2, is in complete
agreement with these results.

Understanding this feature of field behavior is important for the further development of
the interpretation of induction logging. Moreover, some of the induction probes, currently
used in practice, are based on measuring both components of the magnetic field.

Let us consider one more case when the formation has a finite thickness. Then according
to eq. 3.132 we have:

onl?
h=h0+%[

(0’2 - U3)G2A + (04 - 0';3)G”14 + (0’1 — 04)G1] (3136)

Consequently the inphase component of the field is the same as that of horizontally layered
medium, i.e. it is defined by the conductivity and thickness of the formation as well as
the conductivity of the surrounding medium. Later it will be demonstrated that with a
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decrease of frequency the inphase component approaches that for a uniform medium with
conductivity o4, i.e. medium, surrounding the formation.

4. In the next chapters, considering models which are of practical interest for induction
logging, we will establish the conditions, when this method of field calculation can be
applied with sufficient accuracy.



This Page Intentionally Left Blank



Chapter 4

ELECTROMAGNETIC FIELD OF A VERTICAL
MAGNETIC DIPOLE ON THE AXIS OF A
BOREHOLE

In this chapter we will derive an expression for the vertical component of the magnetic
field on the axis of a borehole when the source of the primary field is a vertical magnetic
dipole and the formation has an infinite thickness. Special attention will be paid to
the analysis of frequency responses of quadrature and inphase components of the field,
including their asymptotic behavior. The influence of various parameters of a geoelectric
section will also be investigated. Such questions as the influence of finite dimensions of
coils, displacement of the induction probe with respect to the borehole axis, the role of
magnetic permeability and dielectric constant will be studied.

4.1. Formulation of the Boundary Problem
In formulating this boundary problem we will suppose that:
e All media surrounding the induction probe are uniform and isotropic.

e The electrical properties of the medium do not change in the direction parallel to
the borehole axis. Practically it means that the top and bottom of the bed, against
which the probe is located, are significantly distant from it.

e The space filled by the borehole mud has the shape of an infinitely long circular
cylinder.

e An intermediate medium located between the borehole and the bed presents itself as
a system of coaxial cylindrical layers, the axis of which coincides with the borehole
axis.

e The transmitter and receiver coils, forming the induction probe, are located on the
borehole axis, and they can be considered as dipoles because their dimensions are
usually small with respect to the induction probe length and the borehole radius.
At the same time the influence of the finite dimensions of these coils as well as the
eccentricity will be studied.

Thus, the boundary problem is formulated in the following way. The medium is sepa-
rated by a set of n — 1 coaxial cylindrical surfaces with radii a4, ag, as,...,a,_1 into n

187



188

parts filled with uniform and isotropic media having conductivity ¢,,. We will assume
that the magnetic permeability and the dielectric constant are constants and equal to
those in a free space, that is:

i, = fio = 47 x 1077 H/m 5m=50:—1—><10_9 F/m
36w
Later we will consider a more general case.

The vertical magnetic dipole is located on the borehole axis, and its moment is a
sinusoidal function of time. Due to a change of the primary magnetic field with time a
primary electrical field arises which has only an azimuthal component Eg)), as was shown
above. Correspondingly, induced currents arise in the conducting medium which also
have only the azimuthal component since interaction between currents does not change
their direction, and electrical charges do not arise at interfaces. Therefore, the sources
of the secondary field are induced currents located in horizontal planes which have only
components .J,, and their vector lines are circles with centers on the borehole axis. In
other words, we can say that the geometry of currents is the same as that for a uniform
medium (Chapter 2).

The system of Maxwell’s equations for the quasistationary field Ee“! and He™! is:

curl E = —iwpH (4.1)
curl H = oFE (4.2)
divE =0 (4.3)
divH =0 (4.4)

Unlike in Chapter 2 we will use here another dependence on time: ¢! instead of e **.

In accord with eq. 4.3 the complex amplitude of the electric field can he presented as:
E = —iwpcurl A* (4.5)
and substituting eq. 4.5 into eq. 4.1 we obtain:

H = curlcurl A* = graddiv A* — V*A* (4.6)
From eq. 4.2 we have:

curl H = —iouw curl A* = k* curl A*

or

H =k A* — gradU (4.7)

where A* is a vector potential while U is a scalar potential.
Applying the gauge condition:

U = —div A* (4.8)
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Figure 4.1. A model of a medium with cylindrical interfaces.

we obtain for the vector potential Helmholtz equation:
VEA* +k2A* =0 (4.9)
and the components of the electromagnetic field are only expressed through function A*:

E = —iwpcurl A*
H = k?A* + grad div A*

where k% = —iopw. The wave number k = (ouw/2)/?(1—i) = (L —i)/h; h = (2/opw)'/2.
Sometimes the following notations will be used: A = 27h and k? = —ix, ¥ = ouw,
where X is called the wavelength even if the effect of propagation is not observed in the
quasistationary approximation.

4.2. Derivation of the Formula for the Vertical Component of the
Magnetic Field

Let us choose the cylindrical system of coordinates (r, ¢, z) and the vertical magnetic
dipole is placed at the origin of this system (Fig. 4.1). The moment of the magnetic dipole
is oriented along the z-axis. We will look for a solution using only the z-component of
the vector-potential, A;. As follows from Maxwell’s equations the vector potential must
satisfy several conditions:

e Function A? is a solution of Helmholtz equation in every part of the medium:

VEAL+ KA =0 ifr?+22#0
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In the cylindrical system of coordinates this equation can be written in the form:

lé raA: N i82A; v 02A;
T Or or 72 O¢? 022

+ kAL =0 (4.10)

Near the origin of coordinates system the function A% tends to the vector potential
of the magnetic dipole in a uniform medium, that is:

Mehrt

AO —
2 4R

if R=(r’+ 252 -0
here M is the dipole moment.

In passing the interface r = a,,, tangential components of the electric and magnetic
field are continuous functions. The electrical field has only the component Ey, but
the magnetic field is characterized by two components: H, and H,, and they are
related with the vector potential as:

0Aza - 0?A; 0 A:
or " Ordz 022

Therefore, boundary conditions for the vector potential A} at the interface can be
written in the form:

H,=kA+ (4.11)

A m IA; mst
Hm gy = Fm el 5y (4.12)
2 * B2Az,m 2 * 82A;,m+1 .
kmAz,m + 522 = km+1Az,m+l + 022

With an increase of the distance from the magnetic dipole the function A} tends to
Zero.

Due to the axial symmetry of the field the vector potential and all components of
the field do not depend on the ¢ coordinate, that is A} = A%(r, 2).

The vector potential and all components of the field do not depend on the sign of
the z-coordinate due to the symmetry with respect to the plane passing through the
source and which is perpendicular to the z-axis, that is:

A:(T7 Z) = A;(Tv ‘Z)

We will look for a solution of Helmholtz equation as a product of two functions:

A7 =T(r)®(z)

Substituting this expression for A% into eq. 4.10 we obtain instead of Helmholtz equation
two normal differential equations of the second order:

d?®(z)

dz?

+ X2(2) =0
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d*T(y) | 1dT(y)
dz? y dy

-T(y)=0

where y = (A2 +ix)"/?r, A is the variable of separation.

Solutions of the first equation are functions cos Az and sin Az, while solutions of the
second equation are modified Bessel functions of zero order, Iy (ym) and Ky (¢ ), where
Ym = (A2 + ixm) Y27 = Ar, and A, = (A2 +ix)"/2. Taking into account the symmetry
of the field with respect to the plane z = 0, the expression for the vector potential within
the borehole can be written as:

o0
M [emE 9
Al = o 7T /Cllo(/\lr) cos Az dA (4.13)

0

since function Ky(Ar) tends to infinity as » — 0.
It is well known that the primary excitation, e *1# /R can be presented in the form:

—ik1 R

R

e

= 2/K’O()\lr) cos Az dA
b

Thus:

oo

M /[01[0()\17') + DlKo()\lT)] cos Az dA

Ar =
=17 92

0

where D = 1.
In a general case:

= 2£/ [ConIo(Am7) + D Ko(Amr)] cos Az dX (4.14)
0
where m=1, 2, ..., n.

The right-hand side of the expression for the vector potential contains 2n unknown
coefficients C,,, and D,,. The first boundary condition allows us to obtain n — 1 equations
for their determination. In accord with eq. 4.12 they have the following form:

ﬂm[)\mcmll(Amam) - /\mDmKl()\mam)] = ,um+1[)\m+lcm+1]1 ()‘m+1am)
- )‘m+1Dm+1K1()‘m+1am)]

From the second boundary condition we also obtain n — 1 equations as:

)‘2m[0m10()‘mam) + DmKO()‘mam)] = )‘3n+1[cm+110()‘m+lam) + DmKO()‘m-Ham)]
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Two additional equations which are necessary for a solution are obtained from the con-
dition near the source and at infinity. Inside the borehole where the dipole is located
the coeflicient D; is equal to unity, while in the external medium the field must decrease
with an increase of the distance r and therefore C, = 0 inasmuch as function Iy(A,r)
unlimitedly grows as r — oc.

Thus we have 2n — 2 unknown coefficients:

Cly C?a C3a C47 057 e Cn—l D17 D27 D37 D4a DS» ey Dn—l: Dn
for the determination of which the following system of 2n — 2 equations has to be solved:

N1/\111(/\1a1)01 - Hl/\lKl(/\lal) - M2/\2[1(>\2a1)02 + M2/\2K1()\201)D2 =0
NZ)\2II()\2CL2)C2 - H2A2K1(/\202)D2 - ll3)\311()\302)03 + st\sKl()\3a3)D3 =0

/an72)\n7211()\n—2anA2)Cn~2 - ,U'n72/\n72K1(/\n72anv2)Dn—2

— tn-12n-1T1(An_10n-1)Crq + A1 K1(Ano1@n-1)Dpoy =0
Pn-1An-1l1(An10n1)Ch1 = tin 1 An 1 Ki(An_1001)Dyy

+ tinAn K1 (Anan 1) D, =0

and

)\?10()\1&1)01 + /\%K[)(/\](ll) — )\310(/\2(1])02 — )\gKO(A2a1)D2 = 0
/\310()\2(12)02 + )\%Ko()\gag) - )\3]0()\3@2)03 - )\gKo()\;;GQ)Dg =0

/\721“210()%—20%*2)0"72 + /\i_QKO(/\nAﬂlnAQ)anQ - )‘721_110()\n—1an—2)cn—1
- )\721_1K0(/\n~lan72) =0

/\iwllo()\n~lanfl)cn—] + /\i_]KO()\n—lan—l)Dn—l - /\2K0(/\nan—1)Dn =0

Solving this system with respect to C'| we obtain:

Cl = Al/A

where A is determinant of the system:

A= ,ul/\lll (/\10,1)(51 — /\%Io()\lal)(SQ

(4.15)
Ay = i K (Aar)é — /\%KO(/\IGI)(SZ

Now let us consider a three-layered medium which consists of three parts, namely the
external one with the formation resistivity, ps, the internal one with resistivity p; (bore-
hole) and the intermediate part with resistivity p, (invasion zone). In this case we have
the following expressions for 61, d2, A and A, in egs. 4.15:

51 = —)\310()\2(11)[ﬂg)\g/\gKl(/\gag)Ko(/\gag) — ﬂBAgAgKO()\QQQ)KI()\gaQ)]
+ A3 Ko(A9a1)[—220 A3 1 (A2a2) Ko(Asa2) — pshs Ay lo(Aeas) Ki(As3az)]
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(52 = —,ug)\gll()\Qal)[/Lz)\z)\gKl(/\QGQ)Ko(Agag) — ﬂg)\3)\gK0()\2a2)K1()\3a2)]
— /J,g)\%Kl(/\2&1)[“Mg)\g)\gll()\gag)]{()(/\gaQ) — Mg)\g)\%]ﬂ(Ang)K](Ag&Q)]

A= [—M1>\1)\§Io()\2a1)11()\1a1) + Mz)\2/\§[0()\1@1)Il(/\za2)][ll2)\2)\§K1()\2(12)K0()\3a2)
- H3A3)\§K0()\202)K1(>\3Q2)] + [ﬂl)\l/\gll()\lal)KO(/\Qal)
+ A A o (Ma1) Ky (Ae@))][—p2da Ai L (Aaaz) Ko(Aqaz)
- /1'3/\3/\310()\2@2)](1()\3a2)]

A= [‘Ml)\l/\glo(/\Qal)Kl()\lal) - NZ/\Q/\?KO()\lal)11()\301)][/12)\2)\;%1(1(/\2&2)K0()\3a2)
— 13A3 A3 Ko(A2a1) K1 (A3a2)] + [t1 A1 A2 Ko (Azar) K1 (Arar)
— A A Ko (Aar) K1 (Aaar)][— e A A3 T (Maas ) Ko(Azaz)
- N3)\3/\§Io(/\2az)K1(/\3a2)]

Inasmuch as we will consider mainly a medium which has a uniform magnetic permeability,
I, it is convenient to present function C; in the form:

Cy = A/

All = [—/\210(/\2611>K1(/\1a1) — /\IKo()\lal)]l ()\2&1)][)\3K1()\2a2)K0()\30,2)
- /\QKQ()\ZGQ)KI()\;;CLQ)] + [/\QK()()\2CL1)K1()\](L1) - /\1Ko(/\1a1)K1 ()\2(1,1)] (416)
X [—)\3[1()\2&2)K0(A3a2) — )\2[0()\20,2)[(1()\30,2)]

A= [=A2lo(A2a1) 11 (Mar) + )\110()\1111)11(>\2al)][)\3K1()\202)[(0()\3&2)
— /\QKo(/\Qag)Kl()\gaq)] + [/\211(/\1(11)](0(/\2(11) + )\1[0()\1(11)](1(/\20,1)] v (417)
X [—)\311()\2112)[{0(/\3(12) — )\210()\2(12)](1(/\30,2)]

A=\ + i81X3)1/2 A= (N + 182X3)1/2 Az = (N + iX3)1/2

X3 = O3w

where:

o3 is the formation conductivity;

$1 = 01/03, 82 = 02/03;

a; and ay are the radii of the borehole and the invasion zone, respectively.

For Bessel functions the following equations are known:

zom:iﬁ(g)”“

k=0
CEDD k’(len (5™
Ko(x) = — (m% + c) Io(z) + {2 (k:l')2 (%)Qk % (4.18)



194

Kl(I)::lv (ln——l—C)h Z k—i—l <>2k+1[2%+2(1g1+1)

where C' is Euler’s constant equal to 0.57721566. . .
For large argument values, the calculation of Bessel functions can be performed by
asymptotical formulae:

e . (2k — )
fol) (2mx)/? b kz:; k—'(SE)T]
s = (2k — 3)N(2k + 1)
hi=) = (2mz)1/? ll - ; E!(8z)k ]
Kole)— e (V2 [ L S (CDH(2k - D1y (4.19)
ofz)=e <%> + ; H(82)F
e [ T\/2 X (—1)F(2k = 32k + )N
K@) = (5;) [1 - k; H(8o)F ]

Let po = pa % py and Ay = A3, then in accord with eq. 4.15 we have for a two-layered
medium:

ﬁ _ mAaKo(haa)) Ki(A1ar) — o Ko(Aay) K1 (Aga,)
A Hl/\gKo(/\ga])Il()\lal) +u2/\1[0()\1a1)K1()\2a1)

¢ = (4.20)

It is obvious that a similar equation will be obtained if p) = pg # pu3z and A} = Ay # A3.
According to eq. 4.11 the components of the electromagnetic field in the first medium
are:

2
Ey = Eop — li"ﬁﬂ MG I (A7) cos Az dA (4.21)
T
0
M2 [
Hz = Hoz — E;//\%CIIO()\IT) cos Az dA (422)
H,. = Hy, — 51\4 2 //\/\ CiI (A7) sin Az dA (4.23)
T

0
where Fyg, Hy,, Hor are components of the ficld in a uniform medium with conductivity

g1.
In particular, on the borehole axis, we have:

H =FE;=0
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and
M2 T
HZ=HOZ—4——/)\%C’1008/\zd/\
T
0

The primary magnetic field along the z-axis is equal to M/2xL3, and correspondingly
the expression for the vertical component of the magnetic field presented in units of the
primary field is:

h.

= L0 2
z

H. 7
= hO — / A2C) cos AL dA (4.24)
0

where the function A was described in detail in Chapter 2, and L is the length of a
two-coil induction probe.

Thus the magnetic field due to induced currents in a conducting medium can be ex-
pressed through the improper integral, while the integrand consists of a product of two
terms: the complex function A?C; and the oscillating multiplier cos AL.

Now let us investigate a behavior of function AC) for different values of argument A,
when p; = py = pz = 47 x 1077 H/m.

First we will consider a two-layered medium (the invasion zone is absent).

In accord with eq. 4.20:

)\%Cl _ A2/\2[(0()\2(1)}{1(/\1(1) — )\1K1 (Ala)Ko()\la)

U Kowa) i (Ma) + ME: (ea)To(Ma) (4.25)

where:

)\1 = (AZ + ixl)l/z
Ao = (A2 +ixe)Y?

X1 = 01w
X2 = 0w
and:

)‘1 — (A4 + X%)1/4 eiarctan(xl/)\z)/Q
Ay = ()\4 + X§)1/4 eiarctan(xz/)\z)/Z

In general, the magnitude of the argument changes from zero to infinity, and its phase
alters from —7n/4 for A = 0 to 0 as X tends to infinity.
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In two special cases, the expression for A\2C}, (eq. 4.20) is slightly simplified:

e The borehole is nonconductive, that is oy = 0. Then, A; = X\ and

A;)Ko(/\ga)Kl()\a) - /\Kl()\ga)Ko(/\a)
)\QK()(AZG)II(AG) + )\Kl(/\ga)lo()\(l)

MOy = N2 (4.26)

e The formation around the borehole is an insulator, that is o5 = 0. Then we have:

AKp(Aa) K\ (Ma) — M\ K (ha)Ko(Ma)

NGy = A2 4.27
T TAK () I (a) + MK (Ra) (M) 4.27)

Let A — 0, then in accord with eq. 4.25 we have:

A0, — in\/1X 2 Ko(Vixaa) Ki(Vixia) = Vixi Ki(Vixza) Ko(Vixaa) (4.28)

Vix2Ko( \/W‘l)fl (Vixia) + \/iX—lKl( ix2a)Io(Vixi1a)

where a = a;. Thus function A\2C, has a finite value for A = 0, provided parameters
x1 and Y2 are not equal to zero.

As follows from eq. 4.18 for small values of A, Bessel functions can be replaced by
approximate formulae:

Iy(Aa) — 1 I(Aa) — Aa/2 Ko(ha) — —(In(xa/2) + C) Ki(Aa) — 1/)Xa
Substituting these expressions into egs. 4.26 and 4.27 we obtain:

_ /\2\/6(—1(0 ix20)/Aa + MK, (V/ix2a) (In(Aa/2) + C)

NCy =
! VixaKo(Vixea)(Aa/2) + \K) (vVixea)
(4.29)
-2 'IXKO”iXa) i A= A
a /ix2 Ko(+/ixza)(a/2) + K1 (/ix2a) 1
and
\20, = ’A(ln()‘a/2)+C)K1( ixia) — M Ko(Vixia)/Aa
T TN (a/2) + O L (Vixaa) + Mo(vixia) /Aa
(4.30)
. Ko(vVixia) .
- fAg=A
X (Vixia) b

Now we will consider the behavior of function A;C; (eq. 4.25) for large values of A. As is
known for z — o0, we have:

IO(I)%\/%;E(1+O.?5> \/_(1 0375)

Kolz) ~ e"\/g (1 - O'f‘r’) \@f( 0. 375)
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Substituting these expressions into eq. 4.25, after simple algebra we obtain:

Coxg Az — A 0.750
MOy — mAZe /\z +)\1 (1 + T ) -0 (4.31)

Therefore, the real and imaginary parts of function A2C) decrease very rapidly when
Aa > 1. The latter allows us to evaluate an upper limit of integration.
Now we will investigate function A2C; in the case of a three-layered medium:
my = —Aodo(Aaa1) K1 (A1a1) — A Ko(May) 1 (Aaaq) (4.32)
ny = A3 K7 (Asa2)Ko(A3a2) — AaKo(Aeaz) Ki(Azaz) (4.33)
me = Ao Ko(Aea1)K1(Mar) — M Kp(Arar) K1 (Asar) (4.34)
ny = —A3l1(Meao) Ko(Azaz) — Aalp(Aaas) Ky (Asas) (4.35)
mg = —Aafo(Aear) 1 (Mar) + M lp(Arar )1 {deay) (4.36)
ng = A2l1(Ma1) Ko(A2a1) + M Ig(Mar) Ki(Aear) (4.37)
(

min; + man
AC = )@M 4.38)
msng -+ NaNz

If A2 = A3 # Ay, function ny = 0 and )\fCl = mg/n3, that is we obtain the formula for a
two-layered medium (the interface with radius r = a;). If A} = Ao # A3 we have:

my, = —/\2[.[0()\2(11)[(1()\2(11) + KQ()\zal)Il()\gal)] = —1/&1

m2=0 m3:O n3=1/a1

2)\3K1()\2a2)K0()\3a2) - )\QKO()\QGQ)Kl(/\gag)

2 )\3[1(A2042)K0()\3a2) + )\glo(Agag)Kl(Ag,ag)

that corresponds to a two-layered medium, as the interface radius is equal to as.

miny n
A2C) = A2 =22 =
TioTly No

For three special cases, expressions of A2C; are somewhat simplified.
Nonconducting borehole (o; =0, 2 #0, 03 0, Ay = A)

m; = —)\QIo(AQCZl)Kl(/\CLl) - )\KO()\al)]l()\gal)
mo = )\QKo()\gal)Kl()\al) - )\Ko()\a1)K1()\2&1)

4.39
m3 = —)\210()\2(11)[1()\&1) + )\IO(/\al)Il()\gal) ( )
Ny = Agll()\al)Ko()\gal) + )\Io()\al)Kl()\gal)

Nonconducting intermediate zone (62 =0, 01 #0, 3 # 0, Az = )

my = —/\Io()\al)Kl()\lal) - AlKo()\lal)Io(/\al)

ny = /\3K1 (/\(LQ)K()(/\;;(IQ) - AKo(ACLQ)Kl(A3a2)

MMy = )\KO(/\al)Kl()\lal) — /\IKO(/\lal)Kl(/\al) (4 40)

g = —)\3]1()\(12)[(0()\3a2) - /\Io()\ag)ll()\al)
mz = —>\Io()\a1)]1(/\1(ll) + /\110(/\1(11)11(/\611)
ng = )\Il()\lal)Ko()\al) + Alfo()\lal)Kl()\al)
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Nonconducting bed (o1 #0, 02 #0, 65 =0, A3 = A)

n = )\Kl(/\gag)K()()\ag) — /\gKo()\gag)Kl()\ag)
Nog = —)\Il(/\Qag)Ko(Aag) - )\2[0()\2(12)1(1()\0,2)

If the conductivities of all three media are not zero it is clear that function A\?C; tends
to the finite limit as A — 0. Now consider these three special cases:

Case 1

If 67 = 0 and A — 0 we have:

)\210(/\201)
_y eTUNTel)
)\al
)\2&1
2

A
m my — S\—g'Ko()\zéh)
a

)\20,1
2

m3z — )\ (— 10(/\20,1) + ]1(/\20,])) = —)\ IQ()\Q(I])

A Aza
= 3 (=2 Koo + KiGaar) ) = -5 Kaa)

Functions n; and n, also have finite values and therefore:

2 2(—/\210(/\2(1])711 + /\QK(]()\Q(I})”Q)//\(I] _ 2 (10(/\2&1)”1 -+ Ko()\Qal)ng)
A2y = A -
A/\2a1 (12()\2(11)711 + KQ(/\Q(LI)TLQ)/2 ay (—12()\2(11)TL1 + Kg(/\zal)ng)

Case 2

If o5 = 0 and X goes to zero we have:

A Aa
m; = -2 (Kl(/\lal) + ITGIK()(/\lal)> = -\ ! IKQ()\l(Il)

2
A A
n = /\—;Ko()\:;%) my = —;;TKO(/\lal)

A Aaa:
Mg = —/\ <%¢2K0(/\3(12) + Kl(/\;;(l,z)) = —/\ST(IZKQ(/\;;(LQ)

A Aa
ms = —-A ([1(/\1(11) — 12“1 ]0(/\](1])) = A 12 112(/\1(L1)
A
ng = )\—allfo(/\l(h)
Thus:
A2, = 2 (az/a1)Ko(Aa1) Ky (Asaz) — (a1/az) Ko(Azaz) Ka(May)
1v1 — A1

(a1/a2)Ko(Azaz)la(A1ar) — (az/ar)Io(Arar) Ka(Asas)



Case 3
If 03 = 0 and A — 0 then:

Az

1
n|, = ——Ko()\zaz) Tg = —a—IO()\QCLQ) /\101 — )\I‘Tn—
2

)\(12
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my

2

Now making use of the asymptotic behavior of Bessel functions, we will study the
behavior of function AC;, when the variable of integration increases unlimitedly (A — oo).
In accord with eq. 4.14 we have

e(a—A)ar elhe—23)az

mlz—m()\1+)\2) N9 :—m()\lJr)\z)
e—(M1+A2)az eAi+rz)ar

n = m(& - )\2) ms = m(& - )\2)

e—(Ai+h)a eA1—Az)ay
ma = —m()q—)\l) ng = m()\l—{-)\g)
Therefore, as A — oo

1

min, — 0 mang — 0 N9Ng — —a1a2

The product msn; also tends to zero, since as > a;. An unlimited increase of function
mg, as A — 00, should be taken into account when the corresponding computer program
code is prepared. Thus with increasing A, function A2C; decreases exponentially.

Now let us consider the integral on the right-hand side of eq. 4.24 from the following
point of view. It can be interpreted as an infinite sum of cylindrical harmonics with
complex amplitude A\2C;:

MOy cos AL

In this expression the variable of separation A plays the role of spatial frequency. It is
clear that with an increase in A, the corresponding harmonic changes rapidly. Now we will
investigate how various spatial harmonics are sensitive to different parts of the medium
provided that the electromagnetic frequency w, is the same.

As follows from egs. 4.32—4.37, function n; decreases more rapidly than others when
spatial frequency X increases. Correspondingly, we can neglect terms containing ny in
eq. 4.38 when X is sufliciently large. Therefore, instead of eq. 4.38 we have:

)\%Cl = )\%mQ/ng

i.e. the expression for a two-layered medium when the external layer has resistivity ps. In
other words, harmonics with higher spatial frequencies have smaller depths of penetration.
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After the analysis of the behavior of function A2C; we will describe a method to calculate
the integral on the right-hand side of eq. 4.24. As was pointed out above the integrand
contains an oscillating multiplier cos AL, which complicates the numerical integration,
specially for large ratios of L/a;. Application of Simpson’s well known method with
a uniform step consists of a replacement of the whole integrand A?C; cos AL with a
polynomial a; + aj A + as A%

The presence of the oscillating function cos AL implies that only for very small steps of
integration we can achieve a sufficient accuracy of calculations. For this reason integration
with a uniform step requires a large amount of computer time. It is much more efficient
to perform the integration with a nonuniform step which is a modification of Fillon’s
method. The idea of this is that the interval of integration is presented as a sum of
elements of different length. Inasmuch as with an increase of A the integrand decreases,
it is natural to increase also the length of these elements. Within each element [X; + A\;; ]
the non-oscillating part of the integrand A?C} is replaced by the polynomial:

(b()\) = )\%Cl =a; + al)\ + ag)\z

Therefore, the integral over this element is:

Ait2 Aig2
I, = / MOy cos AL dX = / (ap + a1 X + agA2) cos AL dX
A Ai
Xiv2 Aig2 Ait2
= ag / cos AL dX + ay / Acos AL dX + aq / A2 cos AL dA
Ai A X

Integrals on the right-hand side, as it is well known, can be expressed by elementary
functions:

s in Aol — sin AL
/ cos AL dA = Sl Aiyals 7 SINA
L
Ai
Xit2 AL Asin AL Aitz
AcosALdx = [ S8A%  Asn
L? L A
Ai
Aig2
2) At 2 Aivz
A cos AL d) = {— cos AL + (— — —) sin /\L}
/ L? L L2 N

Coeflicients ag, a; and ay are defined from the system:
Qg + al)\i + ag/\l2 = (p()\l)

ao + a1dip1 + a2Xl,; = d(Ait1)
aop + @i A1 + a2Alhs = d(Ait2)



201

The final result presents a sum of integrals I; over the whole integration interval. Numer-
ical analysis as well as eq. 4.31 show that the maximal value of A does not exceed 160 if
a; = 0.1 m.

The integration interval is usually divided in two parts, namely:

e the initial one: 1078 < A < 10!
¢ the remaining one: 107! < \ < 160.

From comparison of results of calculation within the external part the step of integration
is usually chosen in the following way: A;4; = ¥/2);, sometimes it is replaced by a smaller
step: Aiy1 = ¥/2);. The value of the ratio ai/A (M = 2why) is changed with the
step v/2 from 107 to 1, that allows us to obtain the total spectrum practically for all
geoelectric sections of interest. The ratio of the length, L, of a two-coil induction probe
to the borehole radius, a,, is altered from 2 to 30 with the uniform step:

2,4,6,8,10,...,28, 30

For a two-layered medium the following o2/07 ratios were considered:

Lol 1 1L 46 16 32

For a three-layered medium (the invaded zone is present) calculations were performed
for the following parameters:

as O3 1 1 1 1 111 P2
22924816 —“=-— — — — = - =1 £_423 16 32 64, 128
aq T [en] 128" 64" 32 16" 8 47 2 P1

Results of calculations are presented as a spectrum of four quantities, such as:
e the quadrature component of the magnetic field: Qh,
e the inphase component of the secondary field: Inh, — 1
e the amplitude of the secondary field: A = ((Inh, — 1)? + (Qh,)?)"/2.

e the function o,/01 = (2/01pwl?) Q h,, where o, is the apparent conductivity func-
tion introduced by H. Doll.

Before we investigate the spectra of these functions it is appropriate to investigate their
asymptotical behavior.

As follows from eq. 4.24 the field h,, expressed in units of the primary field, depends
on the following parameters (three-layered medium):

First of all, let us investigate the range of small parameters a;/h; and correspondingly
L/hy, where q; is a radius of any interface while k; is the skin depth in any part of the
medium.
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4.3. The Quadrature Component of the Magnetic Field at the
Range of Very Small Model Parameters

By definition the range of small parameters a;/h; and L/h; corresponds to conditions when
the skin depth in every uniform part of the medium is much greater than its geometric
parameters, such as the radius of the borehole and the invaded zone, the length of two-coil
probe, that is:

hi > L h; > a; h; > as

where 1 =1, 2, 3.
This relationship can take place due to either:

e the relatively low frequencies of the field, or
e the sufficiently resistive medium, or

e the probe length is relatively small, i.e. measurements are performed near the field
source.

There is one common feature in all these cases, namely the strong influence of the
primary electric field. In other words, in the limit we can neglect the interaction of induced
currents and consider that the current density at every point of a medium is defined by
the primary electric field only. In accord with the results described in Chapter 3 (Doll’s
theory), we have:

7, = O'E;O) _ ia4pw]\3/[r _ _kZM: _ _istr

™R 4R 4T R
and therefore the magnetic field measured in this approximation has to be proportional
to k? as follows from Biot Savart law. Correspondingly, in order to derive formulae for
this approximation it is necessary to expand the right-hand side of eq. 4.24 in a series and
discard all terms but the first one which is proportional to k2.

In accord with results obtained in Chapter 2 the first term, h , can be presented as:

: 2
h® ~ L@‘;“’—L if L/hy < 1 (4.41)

Now we have to find the lecading term of the expansion of the integral in eq. 4.24. Let
us start from the simplest case of a two-layered medium (the invasion zone is absent):

2/\2K0(/\2a1)K1(/\](1,1) — )\1K1 ()\Qal)Ko()\lal)

MOy = A 4.42
U TNKo(Asan) 1 (Arar) + M K1 (Aar) Io(May) (442)
It is obvious that:
k2 1 k2
— ()2 2y1/2 _ M -
A= (N4 kY )\<1+/\2> Aoy
(4.43)
A= (A2 4+ kD2 = ) 1+k_§ ~ Lkg
2 2 A2 2\
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and

1 k2a 1k2a; ,
Io()\al) =1 ()\ + 5 h\ 1) = [0()\(11) + 5 1)\1[0()\0,1)

where:

Iia) =)

Lva) =1, (/\al ;’“i‘“) — L)+ ;’“1‘“ I(\a)

Ko(\ay) = </\a1 %ﬁ‘“) = Ko(har) + ;kl;“ K!(Aa1)

Kiwa) = K, ( % Kia, ) = K;(\ay) + ;kfl K{(Ma1) .
Kolhay) = Ko ( % ) — Ko(ar) + ;’“2;“ K)(ar)

Ki(hoa1) = (Aal %k L ) Ki(Oar) + 2’“2’;1 ‘(\ay)

Substituting egs. 4.43 and 4.44 into eq. 4.42 and making use of the recurrence relations
of Bessel functions:

I\(z) = —I,(z) Ki(z) = —K;(z)
Ly (x) = Iya(z) = %[U(z)

Ky 1(2) = Ko (2) =~ Kof0)

I1(2) + Lo (z) = 20)(2)
Kya(x) + Ky (2) = —2K)(2)

After simple transformations we obtain:
Ay
)\ Cl = 1(X2 e Xl) 5 [QKO()\al)Kl()\al) — )\al(K2 Kg)] (446)

where a; is the borehole radius.
Thus the quadrature component of the magnetic field, expressed in units of the primary
fleld, is:

2 L3 7
Qh, = % + (51— / % [2KoK; — Aay(K? — K2)] cos AL dX (4.47)
0
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where s; = g3/0;.
Let us introduce notations:

m = la; a=L/a (4.48)

Then eq. 4.47 can be rewritten as:

I 2 [
Qh, = w/; o1+ (o3 — 01)_7? /% [2Ko(m)Ky(m) — m(K}] — K¢)] cosma dm
0
or
wul?
Qh: = ——(01G1 — 03Gy) (4.49)
where
2 x>
Go="" / 5 [2Ko(m)Ky(m) = m(K} - K2)] cosma dm (4.50)
0
and
Gi=1-G, (4.51)

Functions G and G are the geometric factors of the formation and the borehole, respec-
tively.

It is essential that G; and G; depend on only one parameter a = L/a;, characterizing
the length of the two-coil probe, and in accord with eq. 4.51 their sum is equal to unit

Gi+Gy=1 (4.52)

Applying the same approach for a three-layered medium (eq. 4.38) we obtain the fol-
lowing expression for the quadrature component:

2«
{01 + (02 — 01)—

T

wplL?

th:

[2Ko(m) K, (m) — m(K — K§)| cosma dm
(4.53)

+(03—02)% m [

0\8 0\8
SIE

2KoK, — m(K} — K3)] cos (%m) dm}

where a = L/ay, 8 = ax/a;.
Thus the latter can be written in the form:

B = pwlL?

(UlGl +O'QGQ +0’3G3) (454)
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where:
2 o0
Gi=1- —ﬂg/% [2K0K1 — m(Kf — Kg)] cosma dm
0

2 o0
Gy = 704/% [2KoK1 — m(K} — K¢)] cosma dm
ooo (4.55)
20 [m a
_ _7;/_2_ [2K0K1 - m(K?— Kg)] coS <—Ig—m) dm

i B

ﬁ 0/% 2K K, — m(KE — Kg)] cos (%m) dm

These functions, G1, G, and G are the geometric factors of the borehole, the invasion
zone and the formation, respectively.
Let us introduce the function:

_I/% 2KoKy — m(K} — K3)] cosmz dm (4.56)
0

™

which is naturally called the geometric factor of the external medium or formation with
resistivity ps, or the geometric factor of the bed. It is clear that other geometric factors
can be expressed through this function. Indeed in accord with eq. 4.55 we have:

Gi(la) =1-G(a)
Ga(a, B) = G(a) — G(a/B) (4.57)
Gs(a, 8) = G(a/B)

that is, the geometric factors of the borehole and invasion zone are related with function
G in a very simple manner.

As follows from eqs. 4.57 the sum of geometric factors, as in the case of two-layered
medium, is equal to unity:

G+ G+ Gs=1 (4.58)

Thus the geometric factor of each cylindrical layer can be described by the function G or
1 — G. The latter, that is 1 — G, is the geometric factor of the cylinder. If the radius of
the cylinder coincides with that of the borehole function, 1 — G is the geometric factor of
the borehole.

Therefore, due to the absence of interaction of induced currents in the range of small
parameters the quadrature component of the field in a medium with coaxial cylindrical
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interfaces can be described only with the help of function G or 1 — G. In a general case
of n-layered medium we have:

where G is the geometric factor of the borehole equal to:

Gl—l——/m [2KoK\ — m(K] — K§)] cosma dm

where a = L/a;

20[1, 1

/% 2KoK, — m(K} — K§)] cosma;_, dm

2
_ ?041/ 5 [2KoK) — m(KT — K§)] cosmay; dm

where a;_1 = L/a;_1, a; = L/a;; a;—1 and a; are the radii of the internal and external
interfaces of the i-th cylindrical layer.
Finally:

o0
/7‘; [QKOKl -m(K? - Kg)] cosma;_; dm

0

20

G=Gri=

is the geometric factor of the formation, that is the bed, and a;1 = L/a;_;.
It is clear that:

Gi=1 (4.60)

i=1

Inasmuch as all geometric factors of all cylindrical layers are expressed through either
function G or 1 — G, let us describe their behavior in detail.

Thus:
Gila)=1-G —1—?//4 cos(am) dm (4.61)
0
where
A(m) = % [2KoK; — m(K? — K2)] (4.62)
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We will consider the dependence of this function on m. For sufficiently large values of m
we have:

m [ T2 0.125
Ko(m) ~e ™ (5,) (“T)
o T2 0.375
Kifm) = e (5,0 (”7)

For this reason when m — oc:
3 —2m
A(m) — 17e -0

In the opposite case as m — 0:

Ky(m) — — (ln%—f-C’) Ky(m) - E

m
Substituting these values into eq. 4.62 we obtain:

m
A(m) — Ko(m) — — (ln B + C) asm — 0 (4.63)
that is, the integrand has a logarithmic singularity as m tends to zero.

In order to remove this singularity we will make use of the following equation:

oo

/ Ko(m) cosma dm
0

1 2
(1+a2)¥/2 7

Then the function G can be presented in the form:

o

o o]

2
/A(m)cosmadm—l 05 o) 1/2+E/ (m)] cos ma dm
0 0

2
Gl(a)zl—;

(4.64)

In accord with eq. 4.63 the integrand in eq. 4.64 does not have singularities, and its
calculation presents a relatively simple task. Values of function G are given in Table 4.1.
Corresponding values of the geometric factor G = 1 — G, are presented in Table 4.2.

Let us investigate the behavior of the integral at the right-hand side of eq. 4.64 when
parameter « increases. In this case due to oscillating character of the integrand the value
of the integral:

/ ®(m) cosma dm
0
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TABLE 4.1
Values of function G, («)

fe% Gi(o) a Gi(a) o Gi(a) a Gi(a) e Gi(a)

0.2 0.8829 3.6 0.08149 7.0 0.02158 10.4 0.009599 13.8 0.005390
0.4 0.7700 3.8 0.07348 7.2 0.02037 10.6 0.009232 14.0 0.005235
0.6 0.6650 4.0 0.06653 7.4 0.01926 10.8 0.008887 14.2 0.005085
0.8 0.5701 4.2 0.06047 7.6 0.01824 11.0 0.008559 14.4 0.004943
1.0 0.4866 44 0.05517 7.8 0.01729 11.2 0.008250 14.6 0.004806
1.2 0.4146 4.6 0.05051 8.0 0.01642 114 0.007957 14.8 0.004675
1.4 0.3534 4.8 0.04640 8.2 0.01561 11.6 0.007679 15.0 0.004549
1.6 0.3019 5.0 0.04276 8.4 0.01486 11.8 0.007416 15.2 0.004428

1.8 0.2588 5.2 0.03951 8.6 0.01416 12.0 0.007166 15.4 0.004312
2.0 0.2229 5.4 0.03661 8.8 0.01351 12.2 0.006929 15.6 0.004200
2.2 0.1929 5.6 0.03401 9.0 0.01290 124 0.006702 15.8 0.004003

2.4 0.1679 5.8 0.03167 9.2 0.01233 12.6 0.006487 16.0 0.003890
2.6 0.1469 6.0 0.02956 9.4 0.01180 12.8 0.006282 17.0 0.003530
2.8 0.1292 6.2 0.02765 9.6 0.01130 13.0 0.006087 18.0 0.003140
3.2 0.1143 6.4 0.02592 9.8 0.01084 13.2 0.005901 19.0 0.002820
3.2 0.1016 6.6 0.02434 10.0 0.01046 13.4 0.005722 20.0 0.002540
3.4 0.0907 6.8 0.02290 10.2 0.00998 13.6 0.005553

where

&(m) = Ko(m) — -’2? [2KoK, — m(K? — K2)]

is defined by the behavior of the function ®(m) and its derivatives near zero. In fact,
integrating by parts we obtain:

o0 o0
1
/@(m) cosma dm = E/ d(sin am)
0 0
o0 o
_ 1 1 1 ,
= —®Psinam| — — ysinam dm = —®dsinam + — [ ®'(m) d(cos ma)
« o « «
0
o0
1 e * 1
= —®sinam| + —®'(m)cosam| - —/fb"( ) cos ma dm
o 0o O o a2

0

(4.65)
For large values of m function ®(m) and its derivatives tend to zero and therefore instead
of eq. 4.65 we have:

oo

T 1 1 1

/(I)(m) cosmadm = = ®(0) + '(0) — — [ @"(m)cosmadm (4.66)
a a a

0
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TABLE 4.2

Values of function G = 1 — G4(a)

! G(o) el G(a) a G(a) o G(a) @ G(a)
0.2 0.1170 3.6 0.9185 7.0 0.9784 10.4 0.9904 13.8 0.9946
0.4 0.2299 3.8 0.9265 7.0 0.9796 10.6 0.9907 14.0 0.9947
0.6 0.3349 4.0 0.9334 7.4 0.9807 10.8 0.9911 14.2 0.9949
0.8 0.4298 4.2 0.9395 7.6 0.9817 11.0 0.9914 14.4 0.9950
1.0 0.5133 4.4 0.9448 7.8 0.9827 11.2 0.9817 14.6 0.9951
1.2 0.5853 4.6 0.9448 8.0 0.9835 11.4 0.9920 14.8 0.9953
14 0.6465 4.8 0.9535 8.2 0.9843 11.6 0.9923 15.0 0.9954
1.6 0.6980 5.0 0.9572 8.4 0.9851 11.8 0.9925 15.2 0.9955
1.8 0.7411 5.2 0.9604 8.6 0.9858 12.0 0.9928 15.4 0.9956
2.0 0.7770 5.4 0.9633 8.8 0.9864 12.2 0.9930 15.6 0.9957
2.2 0.8070 5.6 0.9659 9.0 0.9870 12.4 0.9932 15.8 0.9959
2.4 0.8320 5.8 0.9683 9.2 0.9876 12.6 0.9935 16.0 0.9961
2.6 0.8530 6.0 0.9704 9.4 0.9881 12.8 0.9937

2.8 0.8707 6.2 0.9723 9.6 0.9886 13.0 0.9939

3.0 0.8856 6.4 0.9740 9.8 0.9891 13.2 0.9940

3.2 0.8983 6.6 0.9756 10.0 0.9895 13.4 0.9942

3.4 0.9092 6.8 0.9770 10.2 0.9900 13.6 0.9944

For small values of m (m — 0) we have:

2 2
Ko(m):—lnm—%lnm+%—0+...
1 m
Kl(m)ra-}—%lnm—z-l—...

Substituting these expressions into ®(m) we obtain:

1 1
B(m) z§+zmzlnm
@’(m)zmlnm
2
" 1
fb(m)zélnm asm — 0
Thus
T 1 =«
d(m cosmadm——)—— lnmcosmadmN— KD (m)cosmadm — — —
202 2a

0
(4.67)



210

Substituting this expression for the integral into eq. 4.64 we obtain:

1

INE T .
(1+—2>
o

Therefore, for large values of a the geometric factor of the cylinder, in particular of the
borehole, decreases inversely proportional to o?, that is:

Gi(a) ~1 - if o> 1 (4.68)

2
G'l(oz):i—ﬂ

=1 dfaxl (4.69)
Let us notice that this behavior of the geometric factor of the borehole defines a radial
characteristics of the simplest focusing induction probe consisting of three coils.

Comparison with calculated results (Table 4.1) shows that eq. 4.69 describes with suf-
ficient accuracy the value of function G, if the ratio L/a; > 4 (a > 4). Using the same
approach for obtaining asymptotical expressions for function G;(a) we obtain the follow-
ing terms of an expansion. For example, a more accurate expression of the geometric
factor G («) for large values of  has the form:

1 3In2a —4.25

In the opposite case of small values of «, function G;(«) approaches to unity as:
Gi(a) =1 — 0.5862c (4.71)

In other words, for small values of parameter « the geometric factor of the borehole is close
to unity, and with an increase of «, this function, G(«), decreases inversely proportional
to a.

Behavior of the geometric factor G (a) is shown in Fig. 4.2.

It is appropriate to notice here that in the range of small parameters the interaction
of induced currents is negligible. We can obtain an expression for the geometric factor
of the borehole by integrating the geometric factor of an elementary ring over a cylinder.
Applying this approach H. Doll derived the following expression:

1

Gl =1~ gy

<E(k) + a2—2[E(k) - K(k)]) (4.72)

here E and K are elliptical integrals of the first and second kind and k = a(a? 4 4)1/2.
It is clear that function G or 1 — G allows us to investigate radial characteristics of a
two-coil induction probe in the range of small parameters L/h;, and a;/h;, in a medium
with cylindrical interfaces only, that is as we cannot take into account a finite thickness
of a formation.
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Figure 4.2. Geometric factor of the borehole, G;(a).

Before we study this subject it is appropriate to make three comments:

e The theory of induction logging developed by H. Doll is based on the concept of

geometric factors.

e In many cases the parameters of geoelectric section defining the field behavior are

very small. For example, if the length of the induction probe is 1 m, the frequency
of the field is 20 x 10° Hz and the resistivity of the medium is 5 ohm-m, we have
p= L/h = 0.12. In a more resistive medium, parameter p is even smaller for this
frequency. Correspondingly, for a relatively resistive medium this theory of induc-
tion logging provides sufficiently accurate information about radial characteristics
of this method.

o It is obvious that with increasing conductivity or frequency the influence of the

skin effect becomes more prominent, and this method of calculation of the field
becomes less accurate, and it is necessary to use either the exact solution or a
better approximation.

After these comments we will consider radial characteristics of induction logging pro-
ceeding from the geometric factor G;.

First of all we will introduce the concept of the apparent conductivity which, as well as
apparent resistivity, is widely used in all electrical methods.

Let us define the apparent conductivity in the following way:

TJa

o1

QH,

- Q H¥"(01)
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or

% _ QF
o1 Q&M (o)

where o0 is the conductivity of the borehole mud. Q H, and Q & are the magnetic field
and the electromotive force measured by the receiver coil on the borehole axis while Q H*®
and &**(o1) are the magnetic field and the electromotive force, measured by the receiver
coil when the induction probe is located in a uniform medium with conductivity o;.

In accord with eq. 4.73 the ratio 0,/0; shows how the field or the electromotive force,
measured on the borehole axis, differs from the same quantities in a uniform medium with
conductivity o;. In other words, this ratio characterizes the influence of the formation
surrounding the borehole.

It is appropriate to present equations 4.73 in another form, namely:

(4.73)

o1 01
o, = ————QH, and Opg= ——Q&E 4.74
Qo) Qo) e
or
0a=KyQH, and 0, =KsQ& (4.75)

where Ky and K¢ are coefficients of a two-coil induction probe measuring the magnetic
field and the electromotive force, respectively.
Inasmuch as the range of small parameters is considered:

wM: 2P MM,
QH™ (o) = “47rLT01 Qe = 'H#”l
Therefore, for coefficients of the probe we have:
AL 4L

Kn (4.76)

= Kp= —nt?
pwMr ¢ w2 My Mg

It is essential that coefficients of the probe do not depend on the conductivity, and they
are defined by parameters of the induction probe (length, moments of the coils) and the
frequency.

Making use of eq. 4.59 we have the following expression for the apparent conductivity:

N-1
Tgq = ZO}G, (476)
i=1

In particular, for a two-layered medium when the invasion zone is absent we have:

0o = 011Gy + 032Gy (4.77)
and for a three-layered medium:

0y = 01G1 + 062G + 03G4 (4.78)

These last three equations allow us to investigate the radial responses of a two-coil induc-
tion probe in detail, in other words, to evaluate the influence of the borehole, the invasion
zone and the formation as a function of the induction probe length, L, for various geo-
electric parameters.
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4.4. Radial Characteristics of a Two-coil Induction Probe at the
Range of Small Parameters

In order to analyze the depth of investigation of a two-coil induction probe let us con-
sider curves describing the dependence of the function o,/0; on the length of the probe
expressed in units of the borehole radius, L/a;. We will call these curves induction lat-
eral sounding curves (ILS-2). The number 2 means that two-coil induction probes are
considered. Such terminology can be explained in the following way. Suppose that mea-
surements are simultaneously performed along the borehole axis with induction probes of
different lengths. As follows from the behavior of the geometric factor G1(a) a relatively
short induction probe mainly provides information about the resistivity of the borehole
mud. A signal measured with a longer probe contains more information about the resis-
tivity of the invasion zone. In other words, the latter has a greater depth of investigation.
Performing measurements by even longer probes we obtain more information about the
invasion zone and the resistivity of the formation. In principle we can always apply such
a long induction probe that the measured signal will be a function of the formation con-
ductivity only, i.e. induced currents within the borehole and the invasion zone will not
practically affect the signal.

Thus, measurements with a system of induction probes of different lengths allow us in
principle to define parameters of a geoelectric section in the radial direction, that is to
perform the lateral soundings. Correspondingly, the curve of the apparent conductivity
for probes with various lengths presents the result of such soundings.

It is appropriate to distinguish three main cases. They are:

e the invasion zone is absent

e the resistivity of the invasion zone has an intermediate value between the resistivity
of the borehole and that of the formation, that is: o7 > 03 > 03

e the resistivity of the invasion zone exceeds both the borehole and the formation
resistivities, that is: o, > 09 < 03.

First of all let us consider a two-layered model (the invasion zone is absent). The
family of two-layered curves of apparent conductivity is shown in Fig. 4.3. Along the z-
and y-axes 0,/01 and L/a; are plotted, respectively. The curve index is the ratio o2/05.

As is seen from Fig. 4.3 every curve has two asymptotes, presented by straight lines,
which are parallel to the axis of abscissa. The one to the right corresponds to the con-
ductivity of the formation, o, while the one on the left is described by the equation:
o, = 01. The latter is a common asymptote for all curves since with a decrease of the
probe length the geometric factor of the borehole tends to unity and in the limit, regard-
less of conductivity of the formation, the quadrature component of the field is defined by
induced currents in the borehole only. With an increase of the ratio L/a; the apparent
conductivity, o,/0;, gradually changes and for large values of L/a; approaches to the
asymptote on the right: o, = o5. It is essential to emphasize that apparent conductivity
curves do not intersect their asymptote.
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Figure 4.3. Two-layered curves of ILS-2. Index of curves g;/0;.

Curves with index o3/07 > 1 relatively quickly approach to the asymptote on the right
and practically for L/a; 2 5 the value of the apparent conductivity is almost equal to the
conductivity of the formation, o3. With a decrease of the curve index, that is with an
increase of the resistivity of the formation or conductivity of the borehole, the approach
to the asymptote to the right takes place for greater values L/a;. In accord with egs. 4.60
and 4.69 we have the following presentation for apparent conductivity o, which is valid
for relatively large values of o = L/a;:

a 1 1 .
0_29<1——>+—2 if > 1 (4.79)
[0

[24] (23] o?
In particular if the inequality:

09 1

g1 a?
takes place within a certain range of lengths of the induction probe we have:

1
Oq = 01—
ol

that is the apparent conductivity changes inversely proportional to L.
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Now let us consider the second and third cases when there is an invasion zone between
the borehole and the formation. Corresponding apparent conductivity curves are pre-
sented in Figs. 4.4-4.11. As is seen from the curves in the second case (py < py < p3)
three-layered curves are similar to two-layered ones, but differ from them by a slower rate
of change with an increase of a = L/a;. If the penetration of the borehole solution into
the formation is relatively large the right-hand branch of a three-layered curve tends to
that of a two-layered one with index o3/0;, but the left-hand branch almost coincides
with the two-layered curve with index o3/07.

As it concerns the intermediate part of the curve, it is more lifted than a two-layered
curve with the same index. Since o, > g3 > 03, the presence of the invasion zone usually
causes a significant increase of the apparent conductivity with respect to a two-layered
model and therefore it requires the application of longer probes for the determination of
the conductivity of a formation, os.

In the third case (0 > 02 < 03) for a relatively small probe length the apparent
conductivity curves have a more gentle slope than that of two-layered curves, provided
the conductivity of the bed is significantly greater than the conductivity of the invasion
zone.

For relatively small values of 03/05, the curves have a minimum. It is obvious that the
influence of penetration of the borehole solution on the apparent conductivity increases
with an increase of the radius of the invasion zone and its conductivity with respect to
3.

It is appropriate to notice here that in logging methods based on application of direct
current the direction of current lines depends on the relation between resistivities of
borehole, invasion zone, and bed. At the same time in induction logging, when the
source of the field is a vertical magnetic dipole located on the borehole axis, current lines,
regardless of the distribution of resistivity in a radial direction, present themselves as
circles located in horizontal planes with their centers on the borehole axis, and they do
not intersect the cylindrical surface between media with different conductivity.

It is useful here to define the quadrature component of the magnetic field caused by
induced currents within a thin cylindrical shell. In accord with eq. 4.57 we have:

Qh, = ““;LQU [Gl (%) ~ G (%)] (4.80)

where 7; and 75 are the internal and external radii of the shell. With a decrease of
the shell’s thickness the difference in geometric factors in eq. 4.80 can be approximately
replaced by a product of the thickness, Ar, and the derivative of the geometric factor, G,
with respect to r. Then we have:

pw L2

h, ~
Q 2

Sq (4.81)

where S is the longitudinal conductance of the shell equal to cAr, and ¢ is the geometric
factor of the shell which is:

otr) =~ 56 (%)
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where r is the average radius of the shell.

Within a certain range of a change of conductivity, o, and thickness, Ar, of shells,
induced currents within them generate practically the same field if the longitudinal con-
ductance, S = ocAr, remains constant. With an increase of the radius r, that is moving
away from the borehole axis, this equivalence by S can be applied to shells with greater
thickness.

In the range of small parameters the principle of equivalence is only defined by geometric
factors related with the distribution of currents within the corresponding cylindrical layer.

Consideration of three-layered curves of ILS-2 allows us also to introduce a concept of
an approximate equivalence of right-hand and left-hand branches of three-layered curves
and two-layered curves with some specially chosen parameters.

Let us suppose that there is slight penetration of a borehole solution into a formation,
and we investigate the right-hand branch of a three-layered curve. If the probe length is
significantly greater than the radius of the borehole and that of the invasion zone, instead
of eq. 4.78 we can write:

G0 = % + % (82 — 1) + 065G (%) (4.82)
or

01[1+Z—?(ﬂ2—1) .
Oy = ,320(2 + 03G3 (B) (483)

where 3 = az/a;. Therefore the right-hand branch of a three-layered curve is equivalent
to that of a two-layered one with the following parameters:

o The radius of a fictitious borehole is equal to that of the invasion zone.

e The conductivity of a fictitious borehole solution is related with the parameters of
the three-layered model as:

_0’1+0’2(ﬂ2-1)
a g

Oa

(4.84)

e The conductivities of the bed in both cases are the same.

For deep penetration of the filtrate into the formation eq. 4.84 can be applied only for
relatively long induction probes. For this reason instead of eq. 4.82 we can write:

1
Of = % + 02 [Gl (%) - a5:| + 03G3 (%)

or

O, = O'QGI <%) + O'3G3 <%) if L/al >1 (485)



221

that is, we obtain the expression of g, for a two-layered medium with borehole radius as
and conductivity o,. With an increase of the radius of the invasion zone and the resistivity
of the borehole solution eq. 4.85 describes the right-hand branch of a three-layered curve
with higher accuracy.

When the length of the induction probe tends to zero one can use the approximate
expression of function G(a) as @ — 0. Then instead of eq. 4.85 we have:

0, = 01Ga(a) + 09G3(a) (4.86)

Therefore, the left-hand branch of a three-layered curve approximately corresponds to a
two-layered curve provided the radius of the invasion zone is sufficiently large.

Considering radial responses of two-coil induction probes in the range of small param-
eters it is natural to investigate cases when the resistivity within the intermediate zone
changes as a continuous function. In accord with eq. 4.59 we have:

L2
th = %—Ua
where
N 87
Oq = 0'1G1 (a) + Z 0iq; + (7363 (E) (487)

i=1

and 8 = aa/a1; g; is the geometric factor of a thin cylindrical layer with conductivity o;.
As will be shown in Chapter 6, the function ¢; can be presented in the form:

Function G(«) is tabulated and its values are presented in Table 4.6. If an intermediate
(invasion) zone is divided uniformly by a set of cylindrical shells, eq. 4.87 can be rewritten
in the form:

N

Oq = 0'1G1 (a) + & Z 0'1LC(OQ) + 03G3(aN) (488)
[

Examples of apparent conductivity curves for various change of resistivity within an in-

termediate zone are presented in Fig. 4.12.

The first pair of curves (A) corresponds to the condition: p; < pa < p3. In one case the
resistivity of the invasion zone is constant: ps = 8p;, while in the other case the resistivity
po gradually increases from that of the borehole to that of the formation.

The second pair of curves (B) corresponds to condition: p; < pa > p3. Again one curve
describes the behavior of the apparent conductivity as p; is constant, while in the second
case the resistivity of the invasion zone decreases.
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Figure 4.12. Apparent conductivity curves: (A) oo/0y = 1/8, 03/01 = 1/32, ay/a; =4 is
solid line, po = 0.31e!15* is dotted line; (B) a2/0y = 1/8, 03/01 = 1, az/a; = 4 is solid
line, ps = 16e708% is dotted line.

4.5. Influence of the Skin-effect in the Formation on the Radial
Characteristics of a Two-coil Induction Probe

The theory of small parameters developed by H. Doll does not take into account the skin
effect. For this reason values of the quadrature component of the field calculated by this
method are always greater than actual values of the field, Q H,, measured on the borehole
axis. It becomes specially noticeable when results of calculations based on Doll’s formulae
and the exact solution in beds with a finite thickness are compared with each other.

First we will assume that the skin effect manifests itself only in a bed. Then for the
quadrature component of the field and the apparent conductivity for two- and three-
layered media we have (see egs. 3.123-3.127):

L2
Qh: = QA"+ Z(01 — 02)C (0)

e, (4:89)
—a='-a——+<——1—-1>01(a)
g9 J9 T9
and:
L? L?
Qh, = Q™ + P2 (5 — 6)Gi(a) + “”; (02 — 03)Gala)
(4.90)

% _ %" | (ﬁ - 1) Gi(a) + (9 - 1) Ga(a)

g3 03 g3 03
where Q h*" is the quadrature component of the field in a uniform medium with conduc-
tivity o3, and:

un 2

%’ = IR QhR;" (4.91)
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Formulae 4.89-4.90 are valid if one can neglect the skin effect in the borehole and the
invasion zone while it displays in the same way as in a uniform medium with a resistivity
of the bed (formation).

Comparison with results of calculations based on the exact solution allows us to define
the limits of application of this approximate theory in models with cylindrical interfaces.
With errors not exceeding 10% we can use these formulae, provided:

a; Qg L
—,— ] <0. d — <15 91
max (hl, h2> 3 an T (4.91a)

It is important to emphasize that the analysis of calculations based on the exact solution
and this theory allows us to establish the character of distribution of induced currents
in a medium that is of great practical interest for the development and application of
multi-coil focusing induction probes.

In accord with eq. 4.77 for the apparent conductivity, o,, in the range of very small
parameters we have:

Ja _ 14 (ﬁ - 1) Gi(a) (4.92)

[2p] g2

The latter differs from the second equation of 4.89 by the fact that the first term of the
right-hand side is unity instead of function ¢2"/0s. As was shown in Chapter 2 this
function decreases from unity to zero as parameter (ouw/2)'/2L increases (Fig. 4.13).

It is clear that if the resistivity of the borehole mud is greater than that of the bed and
the probe length, L, exceeds several times the radius ¢;, the main signal is defined by
induced currents in the surrounding medium. For this reason the decrease of the signal
on the borehole axis due to the skin effect is almost the same as in a uniform medium
with conductivity os.
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In a more general case, when the conductivity of the borehole is greater than that of
the bed 0, > o, the influence of the skin effect often manifests itself in a lesser degree
than in the previous case. With an increase of the probe length, the effect caused by the
interaction of currents in the formation becomes more noticeable. It is related with two
factors. First of all, the influence of the currents in the borehole is reduced since function
G () decreases. Second, the relative contribution of the quadrature component of the
currents in removed parts of the medium (which are smaller than those in Doll’s theory)
increases.

The ratio:

0" )y + (01/03 — 1) Gy ()
1+ (o1/02 — 1) Gi(a)

characterizes the decrease of a signal in a two-layered medium due to the skin effect in a
bed.

Let us consider one example illustrating to some extent condition 4.91a.

Suppose that the borehole radius a; is equal to 0.1 m. Then it is a simple matter to
obtain maximal values of the product o, f, which corresponds to the condition 4.91a:

Frax < 5% 10°22

(4.93)
Frmaz < 5 x 10%p;

It is obvious that frequencies used in conventional induction logging (200 < f < 600 kHz)
satisfy these conditions.

Relations 4.93 are of great practical interest inasmuch as they define a range of resistiv-
ities and frequencies for which induced currents in the borehole, contributing to a signal,
are shifted in phase by 90°, and the skin effect in the bed manifests itself in the same
manner as in a uniform medium with conductivity .

When conditions 4.91a are valid an increase of the borehole radius and its conductivity
lead to a reduction of the influence of the internal skin effect and application of the theory
of small parameters (Doll’s theory) becomes more grounded.

However, with a further increase of the borehole radius or its conductivity, unequalities
4.91a become invalid, and for the calculation of the field it is necessary to apply the exact
solution.

In accord with egs. 3.78 and 4.90, expressions for the apparent conductivitics for three-
layered medium within the range of small parameters and in the case when the skin effect
manifests itself only in the bed are:

% gy (ﬂ _ %) Gra) + (”— _ 1) & (9> (4.94)
2k} g3 O3 03 /[3

9 _ % (01 _ 02 72 _ a
5-7;_ 03 +(0'3 03>Gl(a)+ <”3 1) Gl(ﬁ) 499
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where 8 = a;/as.

As in the case of the two-layered medium we have instead of unity in eq. 4.95 the term
o™ /ag, which takes into account the skin effect in the bed and allows us in every given
case to define the range where eq. 4.94 can be applied.

It is obvious that with an increase of the probe length the depth of investigation also
increases, that is, the probe becomes more sensitive to removed parts of a medium. For
this reason the skin effect display is more noticeable for longer probes regardless of the
character of the resistivity distribution within the borehole and the invasion zone.

With an increase of resistivity, ps, (p2 > p3) the contribution of induced currents within
the invasion zone in a measured signal decreases, and correspondingly the influence of the
skin effect in the bed becomes stronger.

In those cases when the resistivity of the invasion zone has an intermediate value: p; <
pe < ps, the relative contribution of currents in the bed decreases and correspondingly
eq. 4.94, derived from the assumption that the skin effect is absent, provides more accurate
results.

From a physical point of view it is clear that, with an increase of the radius, as, of the
invasion zone, the upper limit of frequencies and conductivities, when the approximate
theory taking into account the skin effect in the bed is valid, decreases.

Conditions 4.91a and numerous results of calculations based on the exact and approx-
imate solutions show that — if the radius of the invasion zone does not exceed 0.5-0.6 m
for the most typical values of resistivity of the borehole, the invasion zone and the bed
and frequencies used in conventional induction probes — we can apply eq. 4.95 for the
determination of the apparent conductivity, o,. The ratio:

;m o1 J9 Og (8

7 + (0_—3 - 0—3) Gl(a) + <0—3 - 1) Gy <ﬁ>
J1 g2 (ep) «

1+ (U—3 - 0_—3) G1(Ot) + (a — 1) Gy (5>

allows, as in the case of a two-layered medium, for given parameters of geoelectric section
to define errors related with the application of the theory of small parameters.

In accord with this theory suggested by H. Doll the influence of frequency is defined
from:

Q&  wpl?

Qé _ 4.96
& 2 e (4.96)

where Q & is the quadrature component of the electromotive force, induced by a magnetic
field of currents in a medium, & is the primary electromotive force, L is the probe length,
and o, is the apparent conductivity, which does not depend on frequency. For this reason
within a range of small parameters, an increase in the frequency results in an increase of
the relative contribution of the useful signal with respect to the primary field, but the
relation between signals caused by induced currents in different parts of a medium does
not change. In other words, the depth of investigation is not reduced.

Here it is appropriate to notice that in many cases the theory of small parameters
provides practically correct values of the quadrature component of the field in spite of the
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fact that the skin effect is not taken into account. From a physical point of view it means
that the considered induction probe is not sensitive to those parts of a medium where the
skin effect manifests itself.

With an increase in frequency the influence of the skin effect in parts of a medium
located relatively close to a borehole becomes stronger and correspondingly Doll’s theory
cannot be applied. An increasing frequency, first of all, leads to the fact that the signal
becomes more sensitive to the skin effect in an external area, i.e. in the bed. For this
reason, function o, is defined by the right-hand part of eq. 4.95 and therefore it depends
on the frequency. From the analysis of the field of the magnetic dipole in a uniform
medium {Chapter 2) follows, that with an increase in frequency the influence of relatively
remote parts of the medium decreases. If the conductivities of the borehole and invasion
zone essentially exceed that of the formation and the skin effect manifest itself practically
in the latter, it cannot affect the value of the apparent conductivity, o,. For this reason
the relative contribution of the secondary field increases with frequency almost in the
same manner as follows from Doll’s theory. If the internal areas (borehole and invasion
zone) are less conductive than the bed, the ratio of the secondary signal to the primary
one increases slower than the frequency does.

Tables of functions G1(«a) and 03" /a5 allow us to define for every given case the influence
of the frequency on the magnitude of the signal, provided the skin effect manifests itself
in the bed only.

Now let us consider several examples.

4.5.1. Example |: Two-layered Medium (Invasion Zone is Absent)

Case 1
The resistivity of a borehole is relatively high (0 <« ;). In accord with eq. 4.89:

Qe oot [o (1) s

éa() 2 (D) aq

When the probe length, L, exceeds several times the borehole radius, a;, function G(a)
is usually much smaller than 0**/0y. In fact, eq. 4.97 is valid when conditions 4.93 are
met. In this case function ¢%"/04 decreases from unity to 0.3 if the probe length, L, is
equal to 1 m. Correspondingly, function G1{«) does not exceed 0.01, if a; = 0.1 m. For
this reason we have:

2 un

QE owplion” o (4.98)
& 2 o3
As is seen from Table 2.2 an increase of conductivity of the bed, o3, or a frequency of
more than 100 times (change of parameter gopuw from 0.01 to 256 for L = 1 m) leads to
a decrease of the function ¢*"/oy almost of three times. For example if the frequency
equals 60 kHz a change of the parameter oouw from 0.01 to 0.64 corresponds to a change
of resistivity, pg, from 48 to 0.8 ohm-m, and the ratio Q &/&p increases almost 30 times.
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Case 2

The borehole is more conductive (o > o03). In this case we have:

& L2 un 2 un
QE _ oapw [Ua N (2 B 1) Gl(a)} o 2pL (O’L N 201(04))

éao 2 09 09 2 (2] 09

For instance, if a = L/a; = 10 and o1 /0, = 31 we have:

-4 4+0.3
(p]

Q&  opuwl?® (ai"
o . (4.99)

Calculations demonstrate that the influence of frequency and conductivity of a for-
mation on the magnitude of the ratio Q &/4&; is practically the same as in the previous
case. At the range of small values of parameter o5uw the relative contribution of currents
induced in the bed constitutes about 80% while for a value of oyuw = 0.64 the contri-
bution of the formation is equal to 70% but the ratio Q &/&, essentially increases. For
this reason with an increase of the frequency the depth of investigation of a two-layered
medium by a two-coil induction probe does not change until the signal from the formation
is greater or at least comparable with that caused by induced currents in the borehole.
Also the natural limitation of a further increase of frequency is related with a nonunique
interpretation, inasmuch as the spectrum of the quadrature component has a maximum.

There is another factor defining an upper limit of frequency. It is dictated by the
fact that the efficiency of focusing multi-coil induction probes takes place provided that
currents in the borehole have to be shifted in phase by 90°.

As was mentioned above, eqs. 4.89 are valid if:

e Induced currents in the borehole which make a contribution to the measured signal
are shifted in phase by 90° with respect to the current in the dipole.

e The skin effect in the bed manifests itself in the same manner as in a uniform
medium with the resistivity of the bed.

As follows from a comparison of the exact solution with conditions 4.91a, with an
increase of the probe length the accuracy of the calculations in egs. 4.89 decreases. It is
related with the fact that, first of all, the second condition of 4.91a becomes incorrect. It
means that induced currents in the bed begin to distribute in a different manner than in
a uniform medium. For shorter probes, as the influence of a more conductive borehole
is significant, the discrepancy between results of calculation based on approximate and
exact solutions become smaller. Therefore, one can think that the first condition (the
phase shift by 90° of currents in the borehole, which define the signal in a receiver) is
valid for larger values of parameter a;/hs and in particular, of frequency. For example,
if po/p1 = 16 and L/a; = 3, an error does not exceed 3%, if a;/h < 0.12. This fact has
a certain practical interest since the application of a short focusing probe using a high
frequency can be useful for the determination of the resistivity of an invasion zone when
the effect of induced currents in the borehole is compensated.
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4.5.2. Example lI: Three-Layered Medium (Invasion Zone is Present)

In accord with eq. 4.90 we have:

Q&  ooypwLl? [oim o1 09 o a
= (22 e (2-1)a(5)] (4:100)

where 8 = as/a;.

As has been shown above, the range of frequencies and conductivities, when this equa-
tion can be applied, becomes smaller with an increase of the radius of the invasion zone,
az. The influence of the frequency on the ratio Q /&, and the distribution character of
induced currents essentially depends on the resistivity and the radius of the invasion zone.
The deeper the penetration of the borehole filtrate and the smaller the resistivity p,, the
smaller the influence of the skin effect in the bed on the value of Q &/&,. However, the
relative contribution of currents in the bed also decreases.

With an increase of resistivity of the borehole solution and the invasion zone, provided
that radius a, is relatively small, an increase of the frequency also results in a decrease of
the relative contribution from the bed. However, in this case the signal from the formation
decreases slower in spite of the fact that the skin effect manifests itself stronger.

In the range of very small parameters (Doll’s approximation) in a uniform medium with
an increase of the probe length the ratio Q &/4&; also increases though the magnitude of
the secondary field decreases inversely proportional to the probe length. In a nonuniform
medium the relation between signal and probe length becomes more complicated. For
instance in a two-layered medium with a more conductive borehole the secondary field
can decrease more rapidly for relatively short probes than in a uniform medium but with
an increase of the probe length it starts to decrease as 1/L. It is obvious that a decrease of
the rate of change of the relative anomaly of the secondary field, Q & /&, with an increase
of the probe length begins when the induction probe starts to feel parts of a medium
where the influence of the skin effect is significant.

The area of application of the approximate theory, taking into account the skin effect
in an external medium, can be enlarged. Along with a consideration of the field in a
piecewise uniform medium (resistivity of the invasion zone is constant) it is possible to
consider a field in models, when the resistivity is a continuous function. For example, for
an arbitrary change of resistivity within the invasion zone expressions for the field and
the apparent conductivity are:

Qh, =Qhr¥" + w;;LQ(Ul — 03)G () + wuZLQ /[o(r) — o3)q(r) dr (4.101)

ay
az

where q(7) is the geometric factor of a thin cylindrical layer with radius r.
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4.6. Asymptotic Behavior of the Magnetic Field in the Borehole
in the Range of Small Parameters

In the previous sections we have investigated the behavior of the leading term of the
quadrature component of the magnetic field which is directly proportional to the frequency
w. In such an approximation it was assumed that the inphase component of the field is
equal to zero. Now we will consider this range of small parameters ((L/h)mez < 1 and
(a/h)maz < 1) in more detail. In other words, the next terms of the series describing the
quadrature and inphase components of the magnetic field will be derived. As was shown
in Chapter 2 the magnetic field, HY , on the axis of the vertical magnetic dipole in a
uniform medium can be presented as:

HO = ( i (kL) )

n=2

and discarding all terms except the two first ones we have:

M kL2 1
HO = " _[1 (kLY + ... .
! ms( + =5+ HikD)" + (4.103)

It is clear that the second term of this series is the leading term of the quadrature com-
ponent since k? = iouw, while the last term:

M 1
L33’

M
Mo (4.104)

(kL) = o

defines the leading term of the inphase component as well as the second term of a series
describing the quadrature component. It is essential that this term (eq. 4.104) does not
depend on coordinates of an observation point.

In order to obtain an expansion of the magnetic field on the borehole axis in the range
of small parameters, and in particular to derive a term proportional to k*, one will apply
several ways.

First of all, let us use of the expression of the field, H,, derived in section 4.2 {eq. 4.22):

— ———/)\%CI cos Az dA (4.105)
w

0

where H” is the field in a uniform medium with conductivity ¢y. Function C is given by
eqs. 4.16-4.17 and L is the two-coil induction probe length. Let us notice that according
to eq. 4.11:

P A
022

H, = K°A: +
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and the equality:

e—ikR 2 i
=== / Ko(Ai7) cos Ar dX (4.106)
0
we have:
M2 7
o = 22 / N Ko(Ayr) cos Ar dA (4.107)
0

where A = (A? — k%)% and R = (r® + 2°)'/2.
Now we will present the integral in the right-hand side of eq. 4.105 as a sum of two
integrals, such as:

oo Ao o0
/ MCicos Az dh = / MCycos Az dX + / X cos Az dA (4.108)
0 [} Ao

where Ag is very small arbitrary number Ag < 1.
First suppose that the invasion zone is absent. Then in accord with eq. 4.20 we have:

o A Ko(Aea1) K1 (Aar) — M Ko(Mar) Ki(Aqa;)
YT A Ko(Aean) (M ar) + M To(May) Ky (Aaas)

(4.109)

where a; is the borehole radius; A\; = (A2 — k2)1/2) Ay = (A2 — k2)1/2,

Function C; depends on both parameters A; and Ay. As soon as the value of \ is greater
than the magnitude of wave numbers these radicals can be expanded in series with respect
to ratio k2/\%. Correspondingly, function C| also can be presented as a series:

oo k 2n
Ci=) an <Tl> (4.110)
n=1

where a,, are coefficients which depend on geoelectric parameters of the medium and the
probe length.
Inasmuch as the external integral:

/ A2C)cos Az dA
Ao

does not contain point A = 0, we can replace function C; by the series (eq. 4.110), and
then we obtain:

//\%Cl cos Az d\ = Z by (k)%™ (4.111)
Ao

n=1
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Therefore, the series describing the external integral consists of only even powers of wave
number, k, that is whole powers of w. This fact allows us to conclude that odd powers of
k, in particular k®, can be derived only from expansion of the internal integral, provided

k—0 and A—0 (4.112)

In other words, information about terms of a series proportional to odd powers of k,
that is fractional powers of w, is contained in function A2C, corresponding to the initial
part of integration.

Taking into account the behavior of modified Bessel functions for small arguments:

1
Iz)~1 ILi(z)~ g Ko(z) ~—Inz Ky(z)~ .

function C] can be presented as:

~ )\QKO()\Qal)Kl()\lal) — )\1K0()\1(1,1)K1()\2(11)
)\1K1()\2a1)

¢

or

~ Az Kl()\lal)

C ~ S - 7
T K (a)

KD()\gal) - Ko(/\lal) (4113)
Replacing ratio K;(Aay)/K1(Aza;) by its asymptotic value we finally have:

)\2
Cl ~ A_EKO(AZG/I) —_ Ko()\lal)
1
and

)‘%Cl ~ )\%Ko()\gal) - )\%Ko()\lal) (4114)

Thus, the internal integral can be presented as:

Ao Ao Ao
/ ACcos Az dX ~ / M2 Ko(Aeay) cos Az dX — / A Ko(Aay) cos Az dX (4.115)
0 0 0

Comparing eqs. 4.114 with eq. 4.107 and keeping in mind that we are interested in odd
powers of k, we can write the following equality:

oo

/A%Cl cos Az d\ = —H?(koR) + H2(k\ R) (4.116)
0

M2
drmw

where H(kyR) and H,(kR) are the magnetic fields in a uniform medium with resistivity
of a bed and a borehole, respectively, at points with coordinates z and a, that is on the
borehole surface; R = (22 + a?)'/2.
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Substituting eq. 4.116 into eq. 4.105 we have:
H, = HY(k,2) + H?(k2R) — H(k,R) (4.117)

It is appropriate to emphasize again that the latter equality is valid only in the range
of small parameters for terms of a series proportional to odd powers of wave number, k.

Now in order to facilitate further algebra let us make use of eq. 4.11 to write a similar
equation for the vector potential A}. Then we have:

Az(z) = AP (kr2) + AP (kR) — Al(k\R)
or applying eq. 4.106 we finally obtain:
M <eik12 eisz eiklR)

- VR TR

Ae) =1

g (4.118)

where A} is the vector potential on the borehole axis.
Inasmuch as the magnetic field, H,, is related with the vector potential A% by the
equation:

02 A
0z2

and we are interested in the leading term of the inphase component, proportional to k3,

only, let us expand the right-hand part of eq. 4.118 in a series and collect terms which

give a contribution to this part of the field. Doing so we obtain for the second term of a

series describing the magnetic field on the borehole axis:

M

i—k3 4.119

S (4.119)
Comparing with eq. 4.104 we see that the leading term of the inphase component of

the field H, coincides with that in a uniform medium with conductivity of a formation:

H,=kA +

InH, - In H"(kyL) (4.120)

This result does not depend on the ratio of conductivities as well as the probe length. In
other words, in the range of small parameters, the borehole becomes transparent when
the inphase component of the secondary field is measured.

Now let us demonstrate that the same result is valid for a three-layered medium. We will
proceed from equations 4.32- 4.38 assuming that condition 4.112 is valid. Then functions
my, M1, Ma, Ny, and nz can be essentially simplified. Taking into account the behavior of
modified Bessel functions I, I,, and K for small arguments, we have:

A A 2
mi ~ AKi(Aar) = ”,\121 n ~ F;21{003@) ~ Yomn Ko(Xaz)
Ao A Ao
~ 2K — 2L Ko(A ~ 2
ma Aay 0()\3(12) Moty 0( 101) T2 Aatta
g o e A ng = M

2 2 Py
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Whence, for small values of A and k, we obtain:

ming +mMong  MYNy Mo
Cl ~ = + —=

TNaNg TioNg No
Inasmuch as:

A A3 A2

=_ = Ko(\ — K,
s Aza;1az i Araiag 0( 3a2) * A deaiag 0(/\2%)
mim /\§ /\3
. = )\—%Ko()\zéh) - /\—%Ko(Azaz)
m A2
n—2 = )\—gKo(/\gal) - Ko()\lal)
3 1

we have the following expression for function A\2CY:
/\%Cl ~ )\%Ko(/\gaz) — )\gKo()\gag) -+ )\%Kg()\gal) - )\%Ko()\lal) (4121)

Thus, the internal integral has the form:

Ao Ao Ao
/ MCicos Az d = / A Ko(Aza9) cos Az dX — / M Ko(Maas) cos Az dX
0 0 0

)\0 )\0
+/)\§KD(/\2a1) cos Az d)\—/)\fKo()\lal)cos/\z dr (4.122)
0 0

In accord with eq. 4.107 and taking into account that our purpose is to determine the
term proportional to k®, we can write the following expression for the field on the borehole
axis:

H,= HO(kyz) + HY(ksR;) — HY (ksRy) + HO (kyR,) — HO (K, R)) (4.123)

where R; = (22 + a?)V/2, Ry = (2% + a2)V/2, or for the vector-potential A* we obtain:

= — _

A*(z) B M eiklz N eik3R2 eiszg N eiszl eiklRl
# z RQ R2 Rg Rl

Repeating calculations performed for a two-layered medium we again derive the same
term proportional to k°, that is:

M
lgk’g (4.124)
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As in the previous case in the range of small parameters the inphase component of
the field tends to that corresponding to a uniform medium with the conductivity of the
formation, o3.

Now, taking into account the results derived in the previous section for the leading
term of the quadrature component, we have for the magnetic field on the borehole axis
the following approximation:

M1 2
H,~— |~ G + Sikd
Lo (L 1_}:1 K2G + i 3> (4.125)

where k? = io;uw and L is the probe length.
For the quadrature and inphase components of the field we have:

am\ L5 (4.126)
M2
In H; = —17;7(03;@)3/2

where o; and G;, are conductivity and geometric factor of the corresponding part of a
medium such as borehole, invasion zone and formation.

This result can be easily generalized and it can be applied, for instance, to the case in
which the resistivity of the invasion zone changes arbitrarily in the radial direction.

Let us remember that In A? is the secondary field which is shifted in phase by 180°
with respect to the primary field.

From eq. 4.126 it follows that the leading terms of the quadrature and inphase compo-
nents are related with parameters of a geoelectric section in a completely different manner
and therefore, in general, have a different depth of investigation. This question will be
considered later in detail.

It is appropriate to notice that formulae 4.126 can be derived in a much simpler way
proceeding from the approximate theory of induction logging described in the previous
section. According to eq. 4.90 we can write:

. 9 2
H,=HOh, = HO (hf;”(ag) 4 L 3 (o - 03)Gi) (4.127)
2 i=1
or
w 1uw
H, = L3 R (o Z (4.128)

where (M/27L3)h¥" is the vertical component of the magnetic field in a uniform medium
with conductivity o3.
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Expanding the right-hand side of eq. 4.128 in a series and discarding all terms but the
first ones we again obtain formulae 4.126:

M [ pw . V2 3/2
QH, = = <T;Uici - ?(Usﬂw) +...
M2

In Hz ~ —E?(JgﬂW)s/Q

Let us emphasize that the second approach of obtaining the leading terms of these
series will be also used for more complicated cases, in particular, when the bed has a
finite thickness.

As follows from eqs. 4.126 the second term of the quadrature component and the lead-
ing term of the inphase component of the magnetic field, H,, do not depend on the probe
length, nor on the geoelectrical parameters of the borehole and the invasion zone. There-
fore, regardless of the separation of the coils measuring these quantities we can essentially
increase the depth of investigation on the induction probe.

Now it is appropriate to notice the following. We have derived only two terms of the
series describing the quadrature component of the field and the leading term for the
inphase component. In order to obtain subsequent terms of both series it is necessary
to perform much more cumbersome transformations. There are at least two approaches
allowing us to solve this problem. The first one is based on expansion of the internal and
external integrals in eq. 4.100 into a series with respect to k. The second method uses
the integral equation with respect to the electric field described in Chapter 3. Expanding
the integrand in eq. 3.77 in a series with respect to k and making use of the method of
subsequent approximation we can obtain the following terms of a series in the range of
small parameters.

In general this series has the form:

o0 [ 9) o]
H,=HO <Z k™ + ) ag kT +Ink Y agnkn> (4.129)
n=1 n=1 n=1

In the next section we will give expressions for some of these coeflicients when the probe
length, L, is several times larger than the radius of the borehole or that of the invasion
zone.

At the same time it is important to define coefficients of terms containing odd powers
of k for arbitrary probe length, since as is well known, these terms are responsible for the
late stage of the transient field. Applying the first approach and using only the internal
integral of eq. 4.108 we have for field h,:

Two-layered medium

faki + fsk3 + frki + Lok Ink (4.130)
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where:
a’s%/? a’s 1-s
fs= 3 f5—f3<ﬁ— 5 >
a's?  a?s(l—-s) 5 s(1 — ) 77  Ins
- _ Sz _sl=s) (. T Ins (4.131)
fr f‘“’[zso 20 Tl 10 (C 602 )]
s
ly = —fy—(1 —
7 3 10(1 s)
where C is Euler’s constant, s = 03/0, and o = L/a;.
Three-layered medium
B3k + Dsk? (4.132)
where:
¢=1a353/2 $5 = a351“:9_1_g sy =a3/0 8o = 02/0
R D T TI0 2 R pomEe (4.133)

812‘—‘1—82-}-(82—81)52 [j:ag/a]

4.7. Behavior of the Field on the Borehole Axis in the Near and
Far Zones

In induction logging the length of the probe usually exceeds the borehole radius and
sometimes this ratio, L/a; reaches ten and more. Correspondingly, it is appropriate to
investigate the behavior of the field when the parameter o = L/a; is large. As will be
shown in this section, within this range of parameters:

Liay>1  Ljag> 1 (4.134)

the field possesses some features which can be used for increasing the depth of investiga-
tion. We will assume that conditions 4.134 define the range of parameters o characterizing
the behavior of the field in the far zone.

On the other hand, the near zone corresponds to conditions when the probe length, L,
is smaller than the borehole diameter, d, that is:

L<d (4.135)

Since this case is hardly a very practical one, the field behavior will be considered only
briefly for two extreme situations, namely when parameter a;/h; is either very large or
very small.

In both cases we will proceed from eq. 4.24. Introducing a new variable, m = Aa;, this
equation can be presented in the form:

3 oo
h, =h® — a—/mel cos ma dm (4.136)
™
0
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where:

m; = (m? — Icfaf)l/2 my = (m? — 2(11)1/2 ma = (m® — kia 2)1/2
R = e®1L(1 — ik, L)

a=L/a

As follows from eq. 4.126 in the range of small parameters we have:

Mpwal e ~ M2 3/2

Q. =~ 777 2 oy ()

(4.137)

since G, — 1, Go — 0.

Therefore with a decrease of the probe length, L, the quadrature component of the
magnetic field tends to that in a uniform medium with the conductivity of the borehole.
At the same time, regardless of how small the distance is between the transmitter and the
receiver, the inphase component of the secondary field coincides with that corresponding
to a uniform medium with the conductivity of the formation.

Now suppose that the small separation L is fixed and consider a field behavior at the
high-frequency spectrum as:

k — oo (4.138)

First assume that the formation is the ideal conductor, i.e., k; = oo. Then in accord with
eq. 4.136 we have:

W

o0
Ky (
h, =h® — a—/m cosma dm
™ [ (ml
0

or using the asymptotic formulae for Bessel functions:
h, = hgo) —a? / mye ™ cosmadm  if k; — oo

It is obvious that the latter integral is proportional to e?51%1, Therefore, with an increase

of frequency, induced currents concentrate near the source, and the field is defined by the
term, hY, which is proportional to %1% provided that:

L < 2a, (4.139)

Now let us explore the opposite case when the external medium is an insulator, that
ko = 0 and ms = m. Then for the integral of eq. 4.136 we obtain:

o0

a3/ 2 2m1mKO(m)_m1Kl(m

)
d
mje mEo(m) + my K (m) cosma dm

0
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As k1 — oo and o — 0 the magnitude of the fraction of the integrand is also close to unit,
and, respectively, the secondary field is proportional to e?#1%1 | as in the previous case. We
can show that this result remains valid in the general case of a finite conductivity of the
formation. Thus, in the near zone (L < 2a,) the field tends to that of a uniform medium
with the borehole resistivity when the parameter a;/h; increases.

For obtaining asymptotic formulae describing the field behavior in the far zone (o > 1)
we will take into account the distribution of the singularities of the integrand m2C; on
the complex plane of m.

In accord with eq. 4.136, the variable of integration, m, has only real values: 0 < m < oo
a relative probe length plays the role of multiplier of the argument of oscillating term:
cosma. For small values of parameter |ka|, function m?C) rapidly decreases with an
increase of m. Moreover, due to the presence of oscillating factor cos ma;, the contribution
of the integrand corresponding to large values of m becomes small. For this reason the
integral:

[o.e]
/ m3iC) cosma dm (4.140)
i

is defined by the behavior of integrand m2C) near m — 0. This consideration allowed
us to derive asymptotical formulae for geometric factors of borehole, invasion zone and
formation.

With an increase of wave number |k| the integrand m2C, begins to decrease slower
with increasing variable m: for m < |ka| it does not practically change. Correspondingly,
the fact that the amount of oscillations increase as a — oo does not imply that a value
of the integral is mainly defined by the integrand at the initial part of integration. For
this reason, in order to obtain asymptotical formulae for the far zone, it is necessary to
perform preliminary transformations of the expression for the field (eq. 4.136).

Inasmuch as the integrand of eq. 4.140 is an even function with respect to m the integral
can be written in the form:

oo o< oo
% od o od ‘ _
1= 5—/mel cosma dm = 5 /mele'm“ dm + 7 /me]e’"”“ dm
7r T s
0 0 0
4.141
a3 fo'e) A ( )
=5 / miCe™* dm
T
—00

We will make use of Cauchy’s theorem, according to which the integral value of an ana-
lytical function does not change under deformation of an integration contour if it does not
intersect singularities on the complex plane of variable m. It is clear that deforming the
contour of integration in the upper half-plane (Im m > 0) exponent ™ with an increase
of Imm tends to zero.

The integrand of eq. 4.140 in general use has two types of singularities namely branch
points and poles. First we will consider a two-layered medium when the invasion zone is
absent. Analysis of zeroes of a determinant of function Cj, as well as calculations shows
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Figure 4.14. Contour integration for derivation of eq. 4.149.

that poles are absent in upper half plane if A\ya; > 8, (p2 > p1). At the same time in
upper half-plane there are two branch points: ik; and ik;. Because of the presence of
radicals m; and ms let us consider the integrand of eq. 4.141 on four leaves of a surface
which are connected along cross-section lines. From condition Rem; > 0, which arises as
a result of a solution of the boundary problem, it follows that these cross-sections must
distinguish areas where the real part of radicals m, and my is positive. For this reason
equations of cross-section lines are:

Rem; =0 Remy; =10 (4.142)

Letting m = z + iy and k?a} = ix}, we obtain:

\/(:132 —y2)2+ (2zy + x3)2 + (2® — ¢P)

=0
2

This equality is valid provided:
y= —X§/21; and |y| > |z|

Thus the contour of integration along the real axis of m is replaced by that along both
sides of two cross-sections, where Rem; = 0 and Remy = 0, respectively, and within an
area surrounding the real axis of m and these contours singularities are absent (Fig. 4.14).

Therefore,

fme’leim“ dm=1
or

/ miCe™* dm = /melei"“’ dm + /m?Cleima dm (4.143)
—00 Dy Do
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inasmuch as the integral along of a semi-circle of infinitely long radius is equal to zero.
Integrating along the cross-section D;, where Rem; = 0 we can introduce new variable
of integration m; = it. Here ¢ is the parameter of the cross-section which alters from 0 to
oo on the right side of the cross-section and from —oo to 0 on its left side since passing
around the branch point the radical m; changes sign.
The variable of integration of m along contour D, can be presented as:

m = (m} —ix))V* = (= =) = i(t® + i)'
and correspondingly:

it dt .
dm= s M= 80 - X
1

Thus, for the integral along the cross-section D; we have the following expression:

/°°(_t2 [mzKo(mg)Kl(it) — itKo(—i)Ki(mg)  myKo(ma) K (it) + itKo(—it) K (my)
mgKg(mg)Il(it) + ltKl(mg)I()(lt) mQKo(mg)Il (lt) - ltKl (mQ)]o(—lt)

it o+ /2

e dt
T
(4.144)
Making use of relations:
L(=it) = =11 (it) K,(—it) = — K, (it) + ir I, (it) '
we will transform eq. 4.144.
Then the second term of parentheses of this equation can be rewritten as:
'—mQKD(mQ)[](lt) - lfK] (mg).[o(lf)
(4.146)

__ mgKo(mQ)Kl (lf) — 11‘K1(m2)K0(1f) _
n MQKo(mg)Il (lf) + lle(mz)]o(lt)

The first term in eq. 4.146 is equal to the first term in parentheses of eq. 4.144. For this
reason the integral along the cross-section D is equal to:

1/2

oo
t3€*a(t2+lxl
T dt
(& + ix?) 1/2
0

This integral being multiplied by «a/7 presents the field of the magnetic dipole, h,, in a
uniform medium with conductivity o;.
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In accord with eqs. 4.136 and 4.146 the field on the borehole axis is expressed only
through the integral along the cross-section Dy (Rems = 0). Making replacement of
variables my = it, we have:

it dt

. . 1/2 : 1/2
me =i+ DGV dm= sy m = [0 (] - )]

Correspondingly, the integral along path Dj can be written as:

7’ 2[itKo(it)Kl(ml)——leo(ml)Kl(it) itKo(—it)Kl(ml)+m1K0(m1)K1(—it)}
V1 itKo(it) I (my) + mido(my) Ko (it) =it Ko(—it) I (my) 4+ myIo(my) K, (—it)

iteva(tz +ix3)1/?

X s dt
@+ )7

(4.147)

Making use of relations 4.145 and presenting this integrand as one fraction we obtain for
the numerator of the square parentheses of eq. 4.147 the following expression:

Inasmuch as
L(x)Ko(z) + I(z)K1(z) = 1/x

the latter is equal to im.
Therefore, after corresponding transformations the field h, on the borehole axis is ex-
pressed through the integral along right-hand side of the cross-section Dj:

a® oom%t e—a(tP+ix)'/? dt
2 J GGt +ix3)1/?
)

Cl = 1tK0(1t)Il(m1) + m1K1(1t>10(m1)
Cg = —ltKo(—lt)]l(ml) + lel(—it)Io(ml)

h, =
(4.148)

The integrand can be presented as a product of two functions:

e—a(t2 +iX§)l/2

F Ot
(mh ) (t2+1X§)1/2
At the initial part of integration function F slightly depends on parameter ¢. The second
multiplier e~ +x3)"/? /(2 4 {y2)1/2 is the integrand of the Sommerfeld integral describing
the field in a uniform medium with the resistivity of the formation.
If the wave length in the formation is much greater than the borehole radius:

x2=8r%al/N <« 1
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then for sufficiently large values of o we can let ¢ = 0 in expression of F(my,t) and take
this function out of the integral. Thus we obtain the asymptotical equation for the field
in the far zone:

1 L ;
hy= ——————-e¢"F14 kL) if =>1and A > 1 (4.149)

T R/ —KD) a @

Making use of expansion of Bessel function Ip(z) in a series by z and discarding all terms
except the first two: Io(x) ~ 1 + z2/4 we have, instead of eq. 4.149:

h, =~ b9 (ko L) — Z(K? — k2)a,hi0 (ko L)

1
2
If the inphase component of the secondary field is small and therefore In h, ~ 1,we obtain:

(K} — k3)at

h, ~—
2

+hOkL)  fa>1 (4.150)
which for small parameters corresponding to Doll’s approximation coincides with eq. 4.89.

Expression 4.149 allows us to easily obtain the expansion at the range of small param-
eters k1L and k;L. In fact, expanding the right-hand part of this equation in the series
we have:

he = 1+ foki + fsk} + faki + fsk3 (4.151)
where:
1 adg3/?
f2="§[0¢23+(1—5)1 fz= 3
1[ o's? y D )
f“:Z{_ 5 +(1—s)s+§(1—S)J (4.152)
ols 1-—35 L Oy
ﬁ—ﬁfﬁ‘ 2) “Ta T

As follows from eq. 4.149 in the range of large parameters: |ka| > 1, for example at the
high frequency spectrum, the field, h,, tends to zero.

It means that induced currents concentrate near the source, and the secondary field is
almost equal by magnitude to the primary field but it has the opposite sign. However,
at the far zone unlike the near one the influence of the formation resistivity remains
regardless of the frequency.

Let us notice that eq. 4.149 is valid not only for a quasistationary field but also in a
more general case when the influence of displacement currents is significant. This fact is
of great practical interest for the realization of dielectric logging.

If resistivities of borehole and formation are essentially different from each other
eq. 4.149 can be replaced by an approximate equation:

1
© T B(kia)RY (ko)

for [ki| > |ke (4.153)
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Comparison of the results of calculation using exact formulae and the asymptotic
eq. 4.149 shows that, if the skin depth in the borehole is greater than its radius and
p2 > p1 the error in determination of the amplitude and the phase of the field h, by
eq. 4.149 does not exceed 5%, provided that parameter o satisfies the condition:

a=1L/a; >4 (4.154)
Let us present the complex amplitude of the field in the form:
h, = A(kay) e'¢*a) AO(f, L) e!¢(k2L) (4.155)

Therefore, the ratio of amplitudes as well as the difference of the phases of the magnetic
field measured by two probes do not depend on electrical properties and the borehole
radius (o > 1).

Now we will derive expressions for the vertical component of the field on the borehole
axis when there is an invasion zone and measurements are performed at the far zone.
Taking into account that the integrand in eq. 4.136 is an even function we will consider
integration along whole axis m and, applying Cauchy’s theorem, the contour of integration
then will be deformed in the upper part of the complex plane of m without intersection
of singularities on this plane.

Singularities of the integrand of function C] are in general poles and branch points.
Numerical analysis shows that for relatively large values of wavelength A = 27h poles are
absent in the upper half-plane where only three branch points are located, namely ik;,
ikg, and lklg

Because of the presence of radicals we will consider the integrand in eq. 4.136 on eight
leaves surface of radicals whose leaves are connected along the cross-section lines Rem; =
0(G=123).

Let us present the integrand in the form:

o lyny + Ihngy

- == 4.156
"I3ng + nang ( )

me’l =m

where:

Iy = —maly(mg)K1(my) — myiKo(my)I1(m2)

n1 = maKi(mz8)Ko(msf) — maKo(maB)K1(msf)

ly = myKo(mg) Ki(my) — miKo(ma) K1(ms)

ny = —mgl1(mefB)Ko(maB) — malo(meB) K1(msf3)

Is = —malo(ma)li(my) + mylo(ma)Ii(ma)

ns = mol; (my) Ko(ma) + myIy(mq) K1 (ms)

my = (m? + k¥a?)!/? mg = (m? + kZa?)'/? mg = (m? + k2a?)'/?

ﬁ:az/al
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Again letting m = z + iy and k2a1 1)(], we will obtain equation of the cross-section:
y = —x%/2x and |y| > |z|. Thus, instead of the real axis of m the contour of integration
consists of contours along sides of three cross-sections where Rem; = 0, and within the
area bounded by the real axis and this contour singularities are absent.

In the case of a two-layered medium the integral along the cross-section Rem;, turned
out to be equal to that describing the field of the magnetic dipole in a uniform medium
with resistivity p;. In the case of a medium with two and three cylindrical interfaces
corresponding transformations become much more cumbersome. However we can show
that for a medium with n — 1 interfaces, integrals along sides of cross-sections Rem; = 0
(j = 2,...,n— 1) are equal to zero, and therefore the integral remains along the cross-
section Rem; = 0 only. For this reason the expression for the field in a three-layered
medium has the form:

(4.157)

aB /oo m%t e—a(t2+k§af)1/2 dt
z - 2 l2n1 —+ TL]'I’LQ)_(ZQTH + n2n3)+ (t2 -+ k%a%)lﬂ
0

where radicals m; and ms, are expressed through the variable of the integration ¢ in the
following way:

my = [+ (k= k)ad] mg = (24 (6 - KD)ad]

and in expressions (lany — nyng)y Mg is equal to +it, respectively.
Let us distinguish within function 4.157 expression:

t3€~a(t2 +k§a§)1/2
@B

corresponding to the integrand of the Sommerfeld integral for a uniform medium with
the conductivity of the formation. The other multiplier F(m1,mg, m3) as a function of ¢
changes relatively slowly and therefore, for large values of a, letting ¢t = 0 in function F
we can take out the integral coeflicient F'(m;,mq,0). After integration we obtain:

hz = F(ml, mao, O)hgo)

where m, = (k¥ — m2)1/%a; and my = (k2 — k2)"/?q,.
Thus, the expression for the field in the far zone has the form:
h, = my — mg _e—ksL(l-f‘k;;'L) ‘ if£>>l
— mg [lo(m2B)m + Ko(m23)n2)? a
m = mgKo(mg)I1(my) + My Lo(my) K1 (my)
12 = malo(Maf) [y (Ma) — mylo(ma) 11 (M) (4.158)

If the conductivities of invasion zone and formation are the same then:

= (k] —k3)ai M2 =0
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and we will obtain the known expression for a two-layered medium at the far zone:

1

B (avE-R)

By analogy, when o1 = 09, My =3, 3 =0, ng = 1:

h RO (kyL)

1

B (aV/E-R)

i.e. the field in a two-layered medium as the borehole radius equals to as.

The asymptotical formula 4.158, as in the case of a two-layered medium, satisfactory
describes a field, h,, at the far zone provided that the minimal skin depth is greater than
the radius of the invasion zone.

Letting the maximal value of parameter |kas < 1| and performing the corresponding
expansion of function F we obtain the following expression for the field at the far zone:

h, RO (ksL)

1
h, = RO (ksL) (4.159)

1 (/R 18 15 (002 )

In accord with eqs. 4.158-4.159 the ratio of amplitudes and difference of phases of fields
measured by two coil probes of different length do not depend on parameters of the
borehole and the invasion zone at the far zone. This behavior of the field is used in
high-frequency induction logging.

In such the case soundings are based on measurements of the quadrature and inphase
components with probes of different lengths, while the ratio of amplitudes and phase
difference are calculated. However, there are some exceptions and the equipment measures
directly one or both of these last parameters.

4.8. Frequency Responses of the Magnetic Field of the Vertical
Magnetic Dipole on the Borehole Axis

Until now we have considered the behavior of the field in the range of small and large
parameters (low- and high-frequency parts of the spectrum) as well as in the near and
far zones. Now let us consider the main features of frequency responses of the vertical
component of the magnetic field on the borehole axis. Results of numerical modeling
presented in this section are based on calculations of the field, h,, by eq. 4.24 for models
of a medium with one and two cylindrical interfaces.

It is appropriate to describe the field behavior in the following order:

1. If the field excitation is realized by vertical magnetic dipole sources of the secondary
field are induced currents vector lines of which are located in horizontal planes and they
present themselves as circles with centers on the borehole axis.
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2. In cylindrical system of coordinates with the z-axis oriented along the borehole axis
and the dipole located in its origin the electric field has only one component E,, but the
magnetic field has two components, H, and H,. On the borehole axis the electrical field,
E,, and the component of the magnetic field, H,, are both equal to zero. In other words,
the magnetic field is directed along the borehole axis.

3. As is well known, the current density of induced currents, J,, at any point can be
presented as a sum of two components, namely the inphase and quadrature ones. The
inphase and quadrature components of induced currents are shifted in phase by 180° (or
0°) and 90° with respect to the dipole current. Distribution of these components, In J,
and Q Jy, is essentially different. The quadrature component of the current is dominant
near the source and rapidly decreases with an increase of the distance from the dipole.
With an increase of frequency and conductivity of the bed, dimensions of the area where
the quadrature component prevails become smaller.

4. In a wide range of frequencies and conductivities of borehole, invasion zone and bed,
the quadrature component prevails near an induction probe, and the skin effect in the

bed manifests itself in the same manner as in a uniform medium with the resistivity of
the bed.

5. Near the source the quadrature component of the current density is directly propor-
tional to the frequency, but with an increase of distance its behavior is strongly subjected
to an influence of the skin effect.

6. Near the dipole the inphase component of the current density is significantly less
than the quadrature one, and with an increase of the distance it increases, reaches a
maximum, and then rapidly approaches zero.

7. The quadrature and the inphase components of the magnetic field on the borehole
axis are defined by the distribution of the quadrature and the inphase components of
current density, respectively. It follows directly from Biot-Savart law.

Examples of a spectrum of the vertical component of the magnetic field, expressed
in units of the primary field, as well as frequency responses of apparent conductivity
curves, g,/03, are presented in Fig. 4.15-4.41. Function o,/03 is related with the field by
equation:

Ca 2

) 2
oy ouwl?

where Q h, is the quadrature component of the field expressed in units of the primary
field.

The ratio a;/A, is plotted along the abscissa, where A} = 27h, = 27(2/0uw)? (hy is
the thickness of the skin layer in the borehole). The index of the curves is p3/p;. In the
case of a two-layered medium py; = p3. For three-layered medium every set of curves has
index:

P2 92 and L
A1 ay ax

In accord with the definition of the apparent conductivity function o, in a uniform

medium is equal to its conductivity only in the case when Qh, = ocuwL?/2, ie. the
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interaction between currents, defining a signal in a measuring coil of an induction probe,
is negligible.

8. The quadrature component of the magnetic field, regardless of the resistivity of the
medium, firstly increases directly proportional to frequency, reaches a maximum, and then
tends to zero. The oscillating character of the behavior of Q h, at the right-oriented part
of the response (A;/a; — 0) is not shown since a logarithmical scale is used.

9. The left-hand asymptote of the frequency response of the quadrature component
presents a straight line with a slope equal to 63°30° with respect to the abscissa axis.
This part of the response corresponds to the case, when the signal is caused by induced
currents, the intensity of which is defined by only the primary magnetic flux and the
resistivity of a medium. As was mentioned above, the area of distribution of induced
currents, shifted in phase by 90° with respect to the dipole current and caused by only
the primary magnetic field, increases with a decrease of the frequency and an increase of
the resistivity of the medium, specially the resistivity of the bed. At the same time with
an increase of the probe length the depth of investigation increases and, correspondingly,
the influence of the part of the medium which is closer to the induction probe decreases.
For this reason the deviation of the frequency response of the quadrature component of
the field from its left-hand asymptote begins earlier for longer probes.

10. We will call that part of the frequency response of the quadrature component, Q &,
which practically coincides with its left-hand asymptote Doll’s range. Within this range
the quadrature component is significantly greater than the inphase one. In section 4.3
we described in detail the magnetic field and the apparent conductivity on the borehole
axis as functions of geometric factors and resistivity distribution corresponding to Doll’s
range.

With an increase of frequency or conductivity of a medium the frequency response of
Qh, is located lower its left-hand asymptote.

11. In a two-layered medium (the invasion zone is absent), when the resistivity of the
borehole exceeds that of the formation (p; > p2) departure from Doll’s range commences
practically for the same values of parameter L/a; as in a uniform medium with conduc-
tivity og.

12. If the conductivity of the borehole exceeds that of the formation, oy > o3, and the
skin depth in the borehole is significantly larger than its radius, the behavior of the field
corresponding to Doll’s range manifests itself for greater values of parameter L/h, than
in a uniform medium with resistivity p.. It is explained by the fact that induced currents
in the borehole and defining a signal are mainly shifted in phase by 90°, and they increase
directly proportional to frequency and conductivity.

13. Similar features are observed for a three-layered medium: with an increase of the
conductivity of the borehole and the invasion zone, as well as its radius as (within certain
limits) the behavior of the field corresponding to Doll’s range takes place for larger values
of L/hs than in a uniform medium with conductivity o3.

14. With an increase of parameter a;/)\; the frequency response of the quadrature
component Q h, departures from its left-hand asymptote and within a certain range of
parameter a;/\; the skin effect is practically absent in the borehole and in the invasion
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zone, but in the bed it manifests itself in the same manner as in a uniform medium with
the bed resistivity. From a practical point of view this is the most important range of the
frequency response for conventional tools of induction logging. The main features of the
field behavior within this range have been described in detail in section 4.5.

15. Frequency responses of the quadrature component, Q h,, for a two-layered medium
has one maximum which to some extent increases with an increase of resistivity of the
borehole. The position of the maximum is mainly defined by the resistivity of the for-
mation. For example, an increase of the borehole conductivity of more than 100 times
only slightly shifts the maximum to a range of lower frequencies. In some cases when the
invasion zones is relatively large we can observe two maxima.

16. With a further increase of frequency the influence of induced currents in the bed
becomes smaller, and the frequency responses in a three-layered medium almost coincide
with those for a two-layered medium when the resistivity outside the borehole is equal to
that of the invasion zone, ps.

17. At the right-hand part of the frequency response of the quadrature component
it relatively quickly decreases with frequency. Within Doll’s range the influence of the
borehole is defined by geometric factors and distribution of the medium’s resistivity. With
an increase of the frequency, the relative contribution of currents induced in the borehole
increases, inasmuch as the current density in the bed grows slower than in the borehole
(skin effect). At the range of very high frequencies, when the skin depth in the borehole
and its radius are comparable, the influence of the bed conductivity on the quadrature
component strongly increases (far zone). A similar effect takes place in the far zone as
there is the invasion zone.

18. In a wide range of frequencies the influence of a more resistive borehole is not
significant and the frequency response of the field, Q h,, practically coincides with that
corresponding to a uniform medium with the resistivity of the bed, if the skin depth A,
is several times larger than the borehole radius.

19. In measuring only the quadrature component of the field, Q h,, at one frequency
it is possible to perform nonunique interpretation since the frequency response of this
component has a maximum. This fact has to be taken into account choosing a frequency.

20. A choice of frequency or frequencies for induction logging cannot be done by using
the results of calculation of the ficld in a medium with only cylindrical interfaces. However,
these data allow us to investigate radial characteristics of two-coil induction probes, as
well as other types of probes, consisting of several coils. In particular, comparison of
calculations based on exact and approximate methods permits us to establish a range of
frequencies and resistivities of a medium where it is reasonable to apply so-called focusing
multi-coil probes.

21. The frequency responses of the inphase component of the secondary field, Inh.,
essentially differ from those for the quadrature one. At the range of small values of
parameter a;/A; (low frequencies, high resistivity) function Inh, tends to zero as W32,
and the ratio of the inphase component of the secondary field to the quadrature one
rapidly decreases. In this range of frequencies and resistivities the inphase component of
induced currents within the borehole and the invasion zone is usually very small. For this
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Figure 4.15. Function Q h,.

reason it is practically proportional to the conductivity of the formation only. This very
important feature of the inphase component, In#,, at the range of small parameters is
often used to increase the depth of investigation of induction logging.

With an increase of the ratio a;/A; the inphase component of the secondary magnetic
field increases and then becomes greater than the quadrature component, but when the
skin depth in the borehole is smaller than its radius, function Inh, approaches to —1,
that is, all induced currents concentrate near the dipole. Thus, at the right-hand part of
a frequency response of the secondary field the inphase component prevails.

22. In the far zone the influence of the borehole and the invasion zone does not depend
on the length of the induction probe. Such a behavior of the field presents a certain prac-
tical interest, inasmuch as it allows us to increase the depth of investigation significantly,
measuring the ratio of amplitudes and differences of phases by three-coil induction probes.

4.9. Influence of Finite Dimensions of Induction Probe Coils

As is well known, measurements of relatively small signals in induction logging require
application of coils, the dimensions of which are comparable with the borehole radius
and sometimes with the probe length. For this reason it is appropriate to investigate the
influence of the dimensions of transmitter and receiver coils of the induction probe on the
field behavior, and here we will describe the results of the calculations corresponding to
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[eF] (o]

oT

Figure 4.42a. Transmitter is the magnetic dipole, the receiver is the horizontal ring with
radius ry.

the following cases:

o The transmitter and receiver are both coils with one ring, placed on a nonconducting
base of the probe.

e The transmitter is a coil with one ring, the receiver is a single-layered coil or vice
versa. Radii of both the transmitter and the receiver are the same and equal to the
radius of a nonconducting base of the probe.

e The transmitter and receiver are both single-layered coils, the radius of which coin-
cides with that of the nonconducting base of the probe.

e One-coil induction probe.

Inasmuch as the influence of finite dimensions of coils is specially noticeable with rela-
tively short probes, as the skin effect manifests itself weaker, the main attention is paid
to the range of small parameters. As was shown above, in this case we can neglect the
interaction of currents in the borehole and in the invasion zone, while the skin effect in the
formation is displayed in the same manner as in a uniform medium with the formation’s
resistivity. Correspondingly, the field in the borehole can be expressed through a field in
a uniform medium and geometric factors. For this reason we will investigate mainly the
influence of dimensions of coils on geometric factors of the borehole and the bed.

Let us start from the simplest case when the field source is the vertical magnetic dipole
but the receiver is the ring with radius r; located in a horizontal plane (Fig. 4.42a). As
was shown in section two of this chapter the electrical field in the borehole can be written
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in the form:

2
E=Fy+ M;/)\QC'lll(/\lr)cos)\z dX (4.160)

[}

where Ej is the electrical field of the magnetic dipole in a uniform medium with conduc-
tivity o;:
iwpM ek R

Eo = 4 R2

(1 — ik, R)sin 6 (4.161)

ikiR

Expanding function e in a series:

KR

e~ 11k R— 5

we will find an expression for Ej in the range of small parameters:

iwuM 1 sin +
ir R? 47

Ep =~

where k? = iojpw. The first term defines the vortex electric field of the magnetic dipole
in free space while the second one describes the vortex electrical field of currents induced
in a medium.

Making use of the approach considered in detail in section 4.3, the secondary electrical
field in the borehole (two-layered medium) in the range of very small parameters can be
presented as:

cosma dm

MlS

2KOK1 - m(K? - Kg)] d (f;m)

M k2 M2, T
E = Mfﬂ ?1 lwfn (g9 — o1)iwp /
0

(4.162)

where a = L/a;, 8 =r1/a.
Since the medium is uniform, the secondary electrical field is:
iwpM iopw

E§ = 1 —2~sin0

an expression for the apparent conductivity can be written as:

& FE

Ta = - Mw?i?sin

In particular for a two-layered medium we have:

ji I
Ja 94 i (gz - 1) /% [2KoK, — m(K} — K{)] 1(7'?:”) cos ma dm (4.163)
0
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We will call the function:

Gia, B) =

I
! (fzm) cos ma dm (4.164)

7 sin @

/% [2KoK| — m(K? — K2)]
0

the geometric factor of a formation.
Let us notice that:
. r 1
sinf = : =

(r% + L2)1/2 [1 N (a/ﬁ)2]1/2

If the ring radius, 7, tends to zero, (8 — 0) then

and sind — é
o

L(Bm) B
N L F
m

Therefore, we have:

2 o0
G5 — = /% [2KoK1 — m(K} — K¢)] cosma dm = G,

7

0

i.e. it approaches value of the geometric factor, G5, for the infinitely small coils of the
induction probe.
In accord with eq. 4.163 we have:

4[1—}- a/ﬁ

T I
Gia,f)=1- /% 2KoK) — m(K? — K?)] 1(im) cos ma dm
0

(4.165)

where Gi(a, () is the geometric factor of the borehole when the receiver is the ring of
radius 7;.

As follows from eq. 4.165 for small values of variable m, the integrand tends to function
(8/2)Ko(m). For this reason applying methodics of calculation of the function G;(«) we
will rewrite eq. 4.165 in the form:

i 2 4 o212 B +a)? 4 1 L(p

G'(a,f)=1- ((ﬂ1+0212))1/2 +((1+52))1/2 '_[1+ a/B)" /2/<Z> m)
B (Bz+a2)1/2 4 1/2 7 1i(Bm)
=l v TR0t /[K o]

X cos mao dm (4.166)



266

TABLE 4.3
Values of function G

o B 0.025 0.050 0.1 0.2 0.3 0.4 0.5
1 0.4865 0.4860 0.4840 0.4763 0.4636 0.4463 0.4247
3 0.1142 0.1142 0.1139 0.1128 0.1109 0.1083 0.1051
5 0.0427 0.0427 0.0426 0.0442 0.0417 0.0408 0.0398
7 0.0215 0.0215 0.0215 0.2130 0.0210 0.0207 0.0202
9 0.0129 0.0128 0.0128 0.0127 0.0126 0.0123 0.0120
11 0.0086 0.0086 0.0085 0.0085 0.0084 0.0082 0.0080
13 0.0061 0.0061 0.0061 0.0060 0.0060 0.0058 0.0057
15 0.0045 0.0045 0.0045 0.0045 0.0044 0.0044 0.0043
17 0.0035 0.0035 0.0035 0.0035 0.0034 0.0034 0.0033
where

¢(m) = % [2KoK, — m(K} — K3)]

and the equality:

oo

1 2
1+ a?)i2 = ;/Ko(m)cosma dm
0
is used.

Unlike the previous case the integrand in eq. 4.166 does not have singularities, and
this expression is convenient for calculations. Some results of numerical integration are
presented in Table 4.3. As these data show, corrections are usually small and do not
exceed 10% even when the radius of the receiver ring is equal to half of the borehole
radius. With an increase of the radius the geometric factor, G, decreases, and it is
specially noticeable for relatively small probes. It is obvious that with an increase of the
probe the influence of the ring radius on the geometric factor G} decreases.

In order to investigate the cffect caused by finite dimensions of a transmitter coil let
us first derive formulac for the vector potential of the electrical type corresponding to
a current element. As is well known, complex amplitudes of the field are described by
Maxwell’s equations:

curl B = —iwpH (4.167)
curl H =cFE (4.168)
divE =0 (4.169)
divH =0 (4.170)

From eq. 4.170 we have:

H=curl A (4.171)
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where A is the vector potential of the electrical type. The equation for potential A is
found by substituting eq. 4.171 into eq. 4.168:

curlcurl A = graddiv A —~ V2A = oFE

On the other hand, from egs. 4.167 and 4.171 we have:
FE=—-iwpuA —gradU

or

graddivA — V?A = —iopwA — o gradU

The latter can be replaced by two equations:

VA +K*A=0 (4.172)
divA =oU (4.173)
where k? = —iopw.

Direct substitution shows that function (Idl/4nR)e!*® is a solution of eq. 4.172 when
the source is a current element di:
Idt
e—lkR
4rR

where [ is the current and R is the distance from the element dl to an observation point.

Now we can derive an expression for the vector potential of a current ring in a conducting
medium.

First of all we will present a vector potential at an arbitrary point P as a sum of vector
potentials caused by all elements of the current ring (Fig. 4.42b). The vector potential of
the current element, dI, at the point P is written as:

e—ikR(P,Pl)Idl
dA = I R(P.Py) (4.174)

If the current ring with radius, 71, is located in a horizontal plane, the vector potential
of the ring has only component As. As can be easily seen from Fig. 4.42b, the radial
component, A,, is equal to zero.

Component d4, at point P is:

e * R Jcosadl ﬂeikR
R 4r  4rm R

dAy = cos o dov (4.175)

We will make use of the known integral presentation of function e *%/R:

7= 2 / Ko [(A® +1ix)"/2d] cos Az dX (4.176)
T
0

e—ikR
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Figure 4.42b. Current ring in a conducting medium.

where x = opw, R = (22 + d?)V/2.
Substituting eq. 4.176 into eq. 4.175 and integrating along the ring we obtain an ex-
pression for A,:
o0 2m
A,=1n2 AzdX [ Ko[(\? +ix)"*d)cosa d
s = —— [ coshz ol(A° +ix)"*d] cos a de (4.177)
0 0

In accord with the addition theorem of modified Bessel functions we have:

Ko(rv)Iy(riv) + 2 Z Ko (rv) Ly (r1v) cos ma ifr=nr
Ko(dv) = msl (4.178)
Ko(riv)Ip(rv) + 2 Z Ko (rmv) Ly (rv) cosma ifr<n

m=1

Replacing function Ko(dv) in eq. 4.177 by the right-hand side of equality 4.178 and ap-
plying orthogonality of trigonometric functions:

27

/ {0 ifm#£ 1
cosmacos o da =

T fm=1
0

we obtain the integral presentation for the vector potential of the electrical type when the
source is the current loop:

/Il(rlv)KI(rv) cos Azd\ ifr>=nr (4.179)

0

_ 417‘1
T 4x

Ay
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or

alry [
= 4;1 /Kl(rlv)ll(rv)cos AzdA ifr<nr (4.180)

0

Ay

where v = (X2 + iy)"/2.

Inasmuch as the vector potential has only component A, which does not depend on ¢,
div A = 0 and, according to eq. 4.174, the scalar potential U is zero. For this reason the
electrical field of the current ring in a uniform medium can be written in the form:

e o]

E, = —%417’1 /Il(rlv)Kl(rv) cos Az dA ifr=nr (4.181)
0

or
o0

iwp .
Ey = —4—4Ir1 / Ki(r1v)1(rv) cos Az dX ifr<n (4.182)
T

0

Now we are prepared to consider the field of a current ring in a nonuniform medium.

4.10. Electrical Field of a Current Ring in a Medium with
Cylindrical Interfaces

The total current electrical field can be presented as a sum of two terms. The first one
is the field in a uniform medium with the conductivity of the borehole, while the second
one is caused by the nonuniformity of the medium, that is:

Ey = —l‘:—p41r1 /Il(rlv)Kl('r’v)cos)\z dx — /Cl(A)Il(rlv)KI(rv) cos Az dA
7r
0 0
ifr < (4.183)

Taking into account the axial symmetry for determination of the electromotive force in
a measuring ring, it is sufficient to multiply the electric field E; by the ring length:

& = 2nrky,
Function C(A) in eq. 4.183 is defined from boundary conditions, and it does not depend

on the type of source of the vortex electrical field provided that the axial symmetry is
held.



270

For this reason we make use of results derived in the third section of this chapter, and
then we have:

Ci(A) = (x2 — Xl)ﬁ [ZKO()\al)Kl()\al) Aai (K7 — Kg)]
(4.184)

+ (x3 — 2Ko(ha2) K1 (Aap) — Aaa (K7 — K7)|

g |
where x1 = 1w, X2 = O2uw, X3 = O3uw; 01, 0z and o3 are conductivities of internal,
middle and external parts of the medium, respectively; a; and ay are radii of cylindrical
interfaces.

Let us suppose that transmitter and receiver rings of the introduction probe are placed
on the nonconducting base of the probe with radius a;, that is r{ = a; and oy = 0. Then
expressions for components of the electrical field in media with one cylindrical interface
(r =ay) and two interfaces (r = a; and r = ay) can be written, respectively:

E, = —%urm /1"21 [2Ko(Ar ) Ky (A1) = Ary (K2 — K2)] IX(Ary) cos Az dX (4.185)
0
a .
E;=FE; — %4]7‘1()(3 - X2) / ﬁ [QK()()\GQ)KI (az) — Aag(K? — Kg)] IF(\ry) cos Az dA

0]

(4.186)

Both equations describe the electrical field on the surface of the nonconducting base of
the induction probe.
Now we will introduce the apparent conductivity from the equation:

Oq E. 3

Jo _ 28 4.187
0 & (4.187)

which shows how the field E3 in a medium with cylindrical interface r = a, differs from
field Fy on the surface of the probe base surrounded by a uniform medium with conduc-
tivity o9.

Thus, the expression for the apparent conductivity when the invasion zone is absent
can be presented in the form:

o0

/% [2Ko(Aaz) K1 (Aaz) — Aaa(K? — K3)] I (Ar1) cos Az dA

0o = 09 + (03 — 03) 0 (4.188)

/ 2 [2Ko(Aa))K1(Aay) — Aai (K7 — K§)| IT(Ary) cos Az dA

0

We will introduce in the integrals of the latter, new variables m = Aap and m = Aay,
respectively, and notations

1
= — = — a2:— a]:— V= —=—
a ™1 a2 ay az 8
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L is the probe length. Then we have:

/qﬁ cos mag dm
00 = 0y + (03 — 03) L (4.189)

/¢>

Let us call the function:

1'2
/ o(m cos may dm

/ o(m
0
the geometric factor of the formation, G3(a, 3), where:

¢(m) = (m/2) [2Ko(m) Ky (m) — m(K} — K{)]

First of all assume that the radius of the ring r; along with that of a nonconducting
base of the probe tend to zero. Then the following conditions take place:

cos may dm

(4.190)

cos maoy dm

1
v=——=0 0= — — 0
[£3) a

From the first condition it follows that instead of I(vm)/m? we can write v?/4 and
correspondingly the numerator of eq. 4.190 takes the form:

BTUZ/zb(m) cosmay dm
0

As follows from the second condition, the integral of the denominator in eq. 4.190 is
defined by the behavior of function ¢(m)IZ(m)/m? for small values of m. Inasmuch as
¢(m) — Ko(m) when m — 0 we have:

T IE(m
0/ o(m)

1
cosmay dm — 1 / Ky(m) cosma; dm

T 1 T
= o T o
8(1+a)1/2 8y

if ¢ — o0

For the geometric factor of the formation, G4(«, 3), we obtain:

o0

/(b(m) cosmag dm = %/Mm) cos(agm) dm
s
0

0

26’[}2(11

Gi(a, B) =
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which coincides with function Gs(e) corresponding to the case when the coils of the
induction probe are infinitely small.

Making use of eq. 4.189 we obtain again a known relation between the geometric factors
of a formation and a borehole:

Gi(a, 8) =1 - G3(a, B)

In accord with eq. 4.190, the calculation of geometric factor G3(«, 3) is defined by nu-
merical integration. The integrand in the numerator:

I-—/aﬁ(m

has a singularity as m — 0, since:

cos(agm) dm

om) o?
Tz g Rolm)

¢(m)

For this reason let us present the integral in the form:

= U—/ ) cos mag dm +/ (d)(m)%@ - U~K()(m)> cos may dm
4 m 4
0
v T
:?(l—koﬂ 1/2+ F(m) cosmag dm
0
where
12 2
Fim) = ¢(m) 2 _ Y g am)

m? 4

Function F(m) does not have a singularity as m — 0.

Similar transformations have been performed with the integral of the denominator in
eq. 4.190.

Examples of values of geometrical factor Gi(a, 8) are given in Table 4.4 for various
values of parameters « and 3.

Analysis of these data shows that a change of function G7i(«,3), caused by a change
of parameter 3, is mainly related with a change of diameter of the nonconducting base
of the probe if its length exceeds the borehole diameter. For this reason the value of the
geometric factor of the borehole Gi(a, 3) can be derived with a sufficient accuracy from
relation:

Gila, B) = G*(a) — G1(Ba)
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TABLE 4.4
Values of function Gi(a, 3)
o SRR V2 2/v2 2 4 8 16

1 0 0.10479 0.19174 0.26179 0.31723 0.43796 0.47424 0.48259
V2 0 0.07889 0.14350 0.19516 0.23547 0.31875 0.34800 0.34754
2 0 0.05373 0.09579 0.13037 0.15563 0.20560 0.21364 0.22189
2v2 0 0.03316 0.05843 0.07756 0.09159 0.11806 0.12483 0.12640
4 0 0.01843 0.03206 0.04211 0.04919 0.06224 0.06548 0.06630
42 0 0.00957 0.01654 0.02154 0.02492 0.03133 0.03288 0.03314
8 0 0.00490 0.00820 0.01058 0.01238 0.01544 0.01621 0.01643
82 0 0.00231 0.00407 0.00530 0.00616 0.00765 0.00789 0.00810

where function G7(a) and G;(f«) correspond to infinitely small coils. For shorter probes
the relation between the radius of the borehole and the induction probe begins to play a
more essential role.

The influence of the radius of the transmitter and the receiver loops, as well as the
presence of a nonconducting base, on the geometric factor of the formation Gj(a, 3) is
very small. As was demonstrated above, for large values of the probe length (a > 1),
integrals in eq. 4.190 are mainly defined by the behavior of the integrand for small values
of m. It is easily seen that the singularity of these functions near zero (m — 0) has the
same character as in the case of infinitely small coils. Therefore, with an increase of the
probe length, the geometric factor of the borehole, regardless of the ratio r;/a;, decreases
inversely proportional to o?.

In accord with eq. 4.187, values of geometric factor Gi(a, 3) allow us to define the
ratio F3/F,. For the determination of the electrical field in a nonuniform medium F£;
it is necessary to calculate the field, E3, corresponding to a uniform medium with the
conductivity of the borehole. Expression for this field can be written in the form:

o
Ey, = ——4]7"101;@ / d(m COS maoy dm (4.191)
0

Usually, the induction probe length is significantly greater than the diameter of the
nonconducting base, that is & > 1, and as was established above:

Correspondingly, for the electromotive force we have:

0'1/,L2a)2 MTMR

4.192
4 L ( )

léa2| = 27T7”1|E2’ =

where My = 7r?l and Mg = nr? are moments of the probe coils.
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Equation 4.192 can be presented in the known form:

&  oyptuil?
)
where & is the electromotive force in a free space.
Asymptotic presentation of field Fy and, respectively, the electromotive force & can be

used with sufficient accuracy if L/ry > 4.
Now let us consider a more complicated case.

4.10.1. Electrical Field of a Single-layer Coil in a Medium with Cylindrical
Interfaces

Suppose that n turns correspond to a unit of length of a transmitter coil and consider a
uniform medium first. Then in accord with egs. 4.179 and 4.180, the vector potential of
the coil with height dzp can be presented as:

AIngridzy | L(rv)K(rv)cos A(z — zo)dN ifr 2 m
dAy =

AIngridzy | Li(rv)Ki(riv)cosA(z — zp) dA  ifr <y

0\80\8

Here I is the current; r; is the coil radius; z is the distance from middle of the coil to
the measuring ring; 2, is the distance from the coil middle to the center of the ring with
thickness dzg; v = (A2 +ix)"/?, x = opw.

The vector potential gencrated by the current in the whole coil is obtained by integration
with respect to zg:

1/2

Alngr, |
ZTTI /Il(rlv)Kl (rv) dA / cos Az —z9)dzy ifr =
s
0 ~1/2
Ay= . o (4.193)
4IZTT1 /Il(rv)Kl (ryv) dA / cos A(z — z9)dzy ifr<n
s
0 —1/2

where [ is the coil length.
Integral by z is equal to 2 cos Azsin(Al/2), and therefore we have:

4

o0
i 2
SIZTTI /Il(rlv)iwf(l(”’) cosAzdA ifr>n
T
N / (4.194)
in(Al/2
8Inypry /Kl(rlv)gr—l(—/)ll(”)) cosdzdXr ifr<n
0
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With a decrease of the coil length, I, ratio ({/2))/\ can be in limit replaced by coefficient
[/2 and we obtain the expression for the vector potential due to the current ring derived
above (Iny = 1). As is known, the electrical field is related with the vector potential by
the relation: Ey = —iwuAy, and therefore we have:

iwusIngr: [ in(A\l/2
—%/Il(rlv)sm(/\#lﬁ(rv) coshzdh ifr>n
Ey= Co (4.195)

lwu8l si 2
—%/Kl(rlv)?j&/\l/—)]l(rv)cos)\z dx ifr<n

Now we consider a medium with cylindrical interfaces. In accord with eq. 4.195 and
making use of results derived in previous sections the electric field can be written in the
form:

_ iwu8Inyry
( 47

/Kl(rlv)wh(rv)cos)\z dA — /Cl()\)ll(rlv)wh(rv) cos Az d\
(4.196)

ifa, 2r<nr.

Expression of function Ci(A) for the range of small parameters was derived above. We
will suppose that the single-layered transmitter coil and the measuring ring are placed on
a nonconducting base, and they have the same radius. Then for the component of the
electrical field E; when the surrounding medium has resistivity p; and field E,, as there
is also an interface between media with resistivities p; and p,, we obtain, respectively:

[e o}

! in(Al/2
E = lw/‘S nrry lwpdlngry, / ;—;\ 2K0K1 - )\Tl(Kf — Kg)] Sln(%lf()\h)cos AzdA (4.197)
0

and

iwu8Inrr
E,=E - %(X? -x1)

i i 4.198)

AL/2 (
x [ g5 [2KaKs — dalK? — K] SION2) 2073 cos Az
0

Both equations take into account that the central part of the borehole is occupied by a
nonconducting base of the probe. At the same time in all formulae, the finite length of this
base is not considered. From a physical point of view we can assume that the influence
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of a magnetic field caused by induced currents within the central part of the borehole,
being a continuation of the probe base, should be very small. A further evaluation of the
contribution of currents in these parts of the borehole will be done for infinitely smali
coils.

Making use of the relation:

o E2

o1 E,

we obtain the following expression for the apparent conductivity as the transmitter is a
single-layered coil and the receiver is the ring:

sin(msy) I (vm)

p(m)

5 cosmay dm
m m
2

Oa =01+ (02 —01)B (4.199)

p(mySlms) Tiom) o dm

m m2

0\8 0\8

where:

o1 and o9 are conductivities of the borehole and the formation, respectively;

8 = ay/r1, a1 is the borehole radius;

ry is the radius of the coil and the nonconducting base;

v = r1/a; is the coil radius expressed in units of the borehole radius;

82 = 1/2a; and s; = 1/2r; are ratios of the coil length to the borehole and coil diameters,
respectively;

as = L/ay, oy = L/ry; L is the probe length.

If the coil length tends to zero (s; — 0, s; — 0) then instead of eq. 4.199 we will obtain
an expression for the apparent conductivity when both the transmitter and the receiver
are rings. In fact, replacing sin(ms)/m by s we have:

/gf)(m) 112;:;71) cos mag dm
- _ o2 20
04 =0, + (03 — 1) 5 o)
/¢(m) ! o~ cosmay dm
m
0
oo

2
/¢(m) Ii (112m) cos ma dm
m

/gb(m) fi(m) cosmay dm
m

2
0
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Let us call the function:

/¢5(m)sm S2m (U;n) cos may dm
m m
0

,62

[e o] . 12

/ o(m) ST ey dm
m m

0

the geometric factor of the formation, G}, when the transmitter is an one-layered coil and
the receiver is the ring or vice versa. As follows from eq. 4.199, the geometric factors of
the formation and the borehole are related as:

Gi=1-G}

It is obvious that the geometric factor of the invasion zone is related with function G% in
the same manner as it takes place for very small coils.

The geometric factor of the borehole depends on three parameters az, 8, and s,, since
ay = Pay and s1 = (sy. Results of calculation of function G illustrating its behavior are
presented in Table 4.5. As is seen from this table and follows from physical consideration
with an increase of the probe diameter the influence of the borehole decreases, and this
effect in some cases can be significant.

A change of the geometric factor G} for probes, the length of which exceeds the borehole
diameter, is mainly related to a change of diameter of the nonconducting base. For this
reason a value of the geometric factor of the borehole, G (a, 3, s5), with sufficient accuracy
can be obtained from equation:

Gi(a, B, 52) = Gi{a, 82) — Gi(af, 59)

where on the right-hand side functions Gi{«, s3) and G5(af, s3) correspond to geometric
factors of the borehole when coils are very thin (1/8 — 0).

4.10.2. Both Transmitter and Receiver of the Induction Probe are
Single-layer Coils

If the amount of turns of the measuring coil with radius r,, per unit length is equal to n,,
then for electromotive force in the coil with length dz (as follows from eq. 4.195) we have:

o0

4e = T—” My, d / {L(TT_@%&’/_?) Ki(rmv)cosAzdh (1 > 77)
m
0

4 = _1quTm dz/ Kl(rTv);m()\l/Q) L(rmv)cos Az dX  (rm < 77)
™
0

My, = 16nInyng,rmrr
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TABLE 4.5
Values of function G3
§g = 0.2
N h 1 V2 2/V2 2 4 8 16
1 0 0.10565 0.23377 0.31990 0.44305 0.48076 0.49063
V2 0 0.07939 0.19679 0.23753 0.32224 0.34593 0.35180
2 0 0.05415 0.13124 0.15688 0.20743 0.22060 0.22405
2V2 0 0.03325 0.08802 0.09218 0.11884 0.12560 0.12703
4 0 0.01853 0.04222 0.04937 0.06249 0.06575 0.06648
42 0 0.00965 0.02150 0.02501 0.03136 0.03290 0.03324
8 0 0.00482 0.01067 0.01239 0.01547 0.01620 0.01360
82 0 0.00239 0.00527 0.00611 0.00761 0.00795 0.00804
16 0 0.00118 0.00261 0.00301 0.00373 0.00390 0.00393
82 = 0.4
N u 1 V2 2/2 2 4 8 16

1 0 0.10783 0.26969 0.32674 0.45882 0.50000 0.51242
V2 0 0.08101 0.20147 0.24362 0.33270 0.35820 0.36462
2 0 0.05512 0.13404 0.16047 0.21298 0.22688 0.23035
2v2 0 0.03370 0.07928 0.09376 0.12108 0.12803 0.12975
4 0 0.01872 0.04266 0.04991 0.06322 0.06661 0.06762
42 0 0.00969 0.02164 0.02517 0.03156 0.03303 0.03327
8 0 0.00487 0.01071 0.01243 0.01552 0.01621 0.01630
82 0 0.00240 0.00528 0.00612 0.00761 0.00793 0.00802
16 0 0.00119 0.00261 0.00301 0.00373 0.00389 0.00393
The total electromotive force in the measuring coil is defined from equations:

00 z20+b/2

iw Ii(rrv) sin(Al/2
&= ——'uMTm I—(M]Q (Tm?) / cos Az dAdz
a7 A
0 Z0=b/2 (4.200)

o0

iw I {(rrv) sin(Al/2
:__MQMTM/ 1(rr )/\ (Al/2)

sin(Al/2)

s

oo gy, [t
0

where:

A

b is the length of the measuring coil;
2o is the distance between the centers of the transmitter and receiver coils.

K (rmv)sin(Ab/2) cos Azg dA

ifrm ZTT

I (rpv) sin(Ab/2) cos Azg dA ifr,, <rr
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TABLE 4.5

(Continued)

89 = 0.8

o § 1 V2 V2 2/V2 2
1 0 0.11650 0.21265 0.29147 0.35608
V2 0 0.08767 0.16073 0.22029 0.26815
2 0 0.05918 0.10741 0.14570 0.17544
2\/5 0 0.03564 0.06345 0.08459 0.10036
4 0 0.01944 0.03391 0.04449 0.05214
4\/5 0 0.01992 0.01707 0.02218 0.02580
8 0 0.00491 0.00839 0.01086 0.01261
89 = 1.6
U 1 ¥ Ve 2/ 42 2

1 0 0.12476 0.22674 0.31144 0.38257
V2 0 0.11113 0.20307 0.28044 0.34637
2 0 0.07742 0.14293 0.19758 0.24281
2\/2— 0 0.04457 0.08081 0.10958 0.13193
4 0 0.02272 0.04003 0.05295 0.06242
4\/5 0 0.01090 0.01880 0.02448 0.02853
8 0 0.00516 0.00883 0.01143 0.01327

If linear dimensions of probe coils coincide (I = b, ry, = r7 = r1) then:

o

2 2
&= _34wufnTnmr?/ hire) s/ )Kl(rlv) cos Azg dA (4.201)

0

Equations 4.200 and 4.201 are derived provided that the coils are located in a uniform
medium. Now assume that single-layered coils are placed on a nonconducting base of
the probe which is located on the borehole axis. Then expressions for the apparent
conductivity and geometric factors are derived in a similar manner as they were obtained
in the previous case. For example, when the invasion zone is absent we have:

sin? (msz) I (vm)

d(m) =~ 5 COSMoy dm

0o =01 + (03 — )3 %5 (4.202)
0

sin? (ms;) I (vm)
2 )

cos ma, dm

where:

ﬂ:al/rl ’U:l/ﬂ
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TABLE 4.5

(Continued)

s2=2.0

0 1 2 Vi 2/42 2
1 0 0.11919 0.21739 0.29917 0.36793
V2 0 0.11361 0.20782 0.28715 0.35473
2 0 0.09190 0.16959 0.23582 0.29273
2v2 0 0.05257 0.09653 0.13249 0.16136
4 0 0.02562 0.04551 0.06061 0.07185
42 0 0.01172 0.02028 0.02647 0.03090
8 0 0.00537 0.00920 0.01192 0.01385
Sz = 4.0
~ 1 V2 va 2/92 2

1 0 0.09239 0.17057 0.23725 0.29457
V) 0 0.09282 0.17144 0.23856 0.29628
2 0 0.09338 0.17272 0.24060 0.29910
22 0 0.09252 0.17175 0.24002 0.29977
4 0 0.06963 0.13046 0.18398 0.23139
42 0 0.02294 0.04121 0.05540 0.06620
8 0 0.00764 0.01318 0.01716 0.02000

83 =1/2a, sy =1/2r
02=L/a1 alzL/T'1

L = z; is the probe length.
Thus the geometric factor of the borehole can be presented in this case as:

sin®(ms,) It (vm)
2 m2

¢(m)

cos mag dm

Gi=1-0° (4.203)
C 2 2
sin®(msy) I (vm) cos ma d

m? m?2

and it depends on three paramecters: as, 8 and s;. Some values of the function G} are
given in Table 4.6.

Taking into account the behavior of the integrands in eq. 4.203 it is easy to demonstrate
that with an increase of the probe length, function G decreases inversely proportional to
o2, regardless of the coil dimensions.

It is natural that with an increase of the diameter of the nonconducting base of the
probe, the geometric factor G; decreases and that it is more noticeable for shorter induc-
tion probes.
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TABLE 4.6
Values of function G}
8g = 0.2

o o o V2 2/V2 2 4 8 16
1 0 0.10636 0.19448 0.26574 0.36225 0.44817 0.48753 0.49797
V2 0 0.07993 0.14569 0.19835 0.23957 0.32574 0.35000 0.35673
2 0 0.05447 0.09812 0.01322 0.15808 0.20928 0.22274 0.22612
2v/2 0 0.03339 0.05911 0.07844 0.09271 0.11952 0.12643 0.12817
4 0 0.01856 0.03235 0.04235 0.04955 0.05273 0.06603 0.06670
4v2 0 0.00966 0.01660 0.02156 0.02507 0.03141 0.03296 0.03325
8 0 0.00484 0.00827 0.01069 0.01240 0.01548 0.01840 0.01635
8v2 0 0.00239 0.00409 0.00528 0.00612 0.00751 0.00794 0.00803
16 0 0.00118 0.00202 0.00260 0.00301 0.00373 0.00389 0.00395
so =04

o SRR L) V2 2/V2 2 4 8 16
1 0 0.11078 0.20250 0.27718 0.33748 0.47926 0.53231 0.54937
V2 0 0.08324 0.15216 0.20782 0.25194 0.34766 0.37657 0.38413
2 0 0.05648 0.10208 0.13793 0.16548 0.22090 0.23580 0.23956
2v/2 0 0.03435 0.06095 0.08105 0.09600 0.12424 0.13148 0.13331
4 0 0.01896 0.03301 0.04326 0.05060 0.06420 0.06760 0.06843
42 0 0.00977 0.01681 0.02182 0.02540 0.03185 0.33500 0.03399
8 0 0.00487 0.00832 0.10760 0.01250 0.01561 0.01633 0.01637
82 0 0.00240 0.00410 0.00529 0.00613 0.00762 0.00789 0.00789
16 0 0.00119 0.00202 0.00260 0.00302 0.00372 0.00386 0.00389

With an increase of the probe length the correction due to the presence of a noncon-
ducting base tends to a constant which does not depend on the probe length, and it is
equal to the square of the probe diameter/borehole diameter ratio:

Gl(ay&ﬁ) ~ 1 _ i
Gila,s,00) 32

For example, if the probe diameter is equal to the borehole radius this correction factor
exceeds 25%.

As is seen from data in Table 4.6, the geometric factor of the borehole G7 also increases
with an increase of the coil length. If its length does not exceed the borehole diameter its
influence is not significant, and it is measured in several percentages. Only for very short
probes, the length of which is comparable with the borehole diameter (I ~ 2a; + 4a4),
coil size can have an essential influence.

Therefore, the main factors defining the value of the geometric factor of the borehole
for conventional induction probes are length and diameter of the nonconducting base.



282

TABLE 4.6

(Continued)

s2 =0.8

~ 1 2 V2 2/ 2
1 0 0.12094 0.22005 0.30183 0.36982
V2 0 0.09644 0.17684 0.24355 0.29890
2 0 0.06530 0.11947 0.16349 0.19870
2v2 0 0.38600 0.06921 0.09290 0.11086
4 0 0.02053 0.03593 0.04728 0.05553
42 0 0.01024 0.01765 0.02294 0.02971
8 0 0.00499 0.00854 0.11047 0.01282
8v/2 0 0.00244 0.00416 0.00538 0.00624
16 0 0.00120 0.00204 0.00264 0.00306
so = 4.0
N P 1 V2 V2 2/V2 2

1 0 0.08821 0.16355 0.22839 0.28458
V2 0 0.08626 0.16006 0.22366 0.27886
2 0 0.08318 0.15457 0.21629 0.27002
22 0 0.07839 0.14608 0.20494 0.25619
4 0 0.07056 0.13216 0.18632 0.23425
4v2 0 0.05528 0.10449 0.14862 0.18846
8 0 0.02055 0.03815 0.05311 0.06578

In this section it is also appropriate to consider an induction probe which consists of
only one coil. Such a probe can have a certain interest in measuring resistivity on the
invasion zone.

First let us assume that the induction probe is located in a uniform medium and consists
of one ring. Then, according to eq. 4.181 or eq. 4.182, the electromotive force induced in
this ring is defined in the following way:

& =21\ Ey = —%’ﬁsmf / L (rw) Ky (o) dA (4.204)
T
0
The integral in this equation diverges. In fact, for A — oo parameter v = (A2 +ix)/? also

tends to infinity as A. For this reason, making use of asymptotic presentation of Bessel
functions:

e* e /7
ILi(z) — Ki(z) —
1( ) \/ﬁl‘— l( ) \/-2‘1"
we have:

1
2/\7‘1

I (r0) Ky (rv) 222 L(r A\ Ky(r)) —
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When the probe length, L, is not equal to zero (two-coil probe) the integrand contains
the oscillating multiplier cos AL which provides convergence of integrals in eqs. 4.181 and
4.182.

The electromotive force induced in one ring probe is caused by a change with time of
the magnetic field of the current in the ring located in a free space as well as by the
magnetic field of currents induced in a conducting medium. Thus:

E =6+ &

where:

& = —%Sm«f / LMK (rA) dX (4.205)
0

is the electromotive force in a free space, and

oo
(5’1 = —%87{[7‘2/ Il 1”11) K1 7'1’1)) Il(Tl)\)Kl('f'l/\)] dA (4206)

0

The right-hand side of eq. 4.205 is equal to infinity. It results from the fact that the ring
is assumed to be infinitely thin and correspondingly the current density and the magnetic
field near its surface are infinitely large. Therefore:

_ 0g O
Go=—> = 8t/B0 ds
N

also tends to infinity.
The inductance of the ring is related with electromotive force by relation:

oI
&=—Lz

whence
Lo = QT%/L/Il(/\Tl)Kl(/\Tl) dA — oo
0

As is well known, the inductance, Ly, is defined from equation:

8
Lo=rp <ln % - 1.76) (4.207)
0

where 1 is the ring radius and rg is the radius of its cross-section.
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In accord with eq. 4.207, the self-inductance Ly tends to infinity as rg — 0. Of course,
under real conditions the cross-section radius, rp, is not zero and correspondingly the
self-inductance, Lg, has a finite value.

As is seen from eq. 4.206 the integrand does not have singularities and rapidly decreases
when A increases. In fact, for A — 0o we have:

1 1 ix
2(/\2 =+ IX)1/2 1 2/\7’1 - 4)\37'1

Il(Tl'(})Kl(Tl’U) — Il(Tl)\)Kl(Tl Ao

In a general case the resistance, introduced by currents in a medium into the ring, is a
complex one, that is, it has inphase and quadrature components. In accord with eq. 4.206
we have:

[o o]

Z= ? = in2T%/[Il(TIU)K1(TIU) = Ii(rA) Ky (riA)} dA (4.208)

As in the case of the dipole excitation the quadrature component of the current density
prevails near the ring, that is in its vicinity induced currents are mainly shifted in phase
by 90°. For this reason, the electromotive force induced by these currents in the ring is in
phase with the source current. Therefore, parts of the medium which are close to the ring
mainly introduce the active resistance. At the same time with an increase of the distance
from the source the inphase component of currents increases, and correspondingly, these
parts of the medium begin to contribute the reactive resistance.

If the frequency of the field and the conductivity of the medium are sufficiently low
the active resistance introduced by induced currents prevails and its expression can be
obtained in the following manner.

Let us present the integrand in eq. 4.208:

Li(ro) K (rv) — Ii(mA) K (rA)

in a series by power of parameter iy and discard all terms except the first one. It is
obvious that:

]](rl \/m)[{] (7'1 \/Xz_——{——l)() ~ Il(Tl/\)K] (Tl/\)
% (I (r N K (rA) + L (r A) K (r A)]

Therefore we have:

DR K (r M) + L(mA) K (rA)] dA

R = —wu2riy 5

0\8

We will introduce a new variable: m = r A, then:

R = w?plo2r? (I (N K () + L{(r AN K (rA)] dA (4.209)

0\8
[\]
|-



285

Making use of the recurrence formulae for modified Bessel’s functions:
/ 1 ) 1
I(m) = Io(m) — %Il(m) Ki(m) = Ko(m) — EKl(m)

we obtain a final expression for the active resistance introduced by induced currents at
the range of small parameters:

R = w*u?o2r3 / ﬁ (Io(m)Kl(m) — Li(m)Ko(m) — %Il(m)Kl(m)) dm (4.210)

0
The integrand of the latter has singularity, as m — 0. In fact we have for m — 0:

m 1

Iy(m) — 1 L(m) — D) Ki(m) — — Ko(m) —» —Inm
and
(1m0 — 1omatm) — 2yt ) g (&= acsomy - 1) 1

- _ZKO(m) — 00

For this reason it is appropriate to present eq. 4.210 in the form:

T(1 1 2
R = —w2,u2027"? / —Ko(m) - IoKl — IlKo — —IlKl dm
4 2m m
0
1 ]
- —/Ko(m) dm]
4
) T 1 2 x
(2 ,ua2r1 KO m)—— IOKI_IIKO__]IKI dm — —
2m m 8
0

since

Now we will suppose that the ring is placed on the nonconducting base of the induction
probe located in a medium with conductivity 1. In accord with eq. 4.183 the electromo-
tive force introduced into this ring is:

[e o] o0

&= —%&d@ / Li(r) Ky (ri)) d) — / CLNT2(ra\) dX (4.211)

] 0
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The second term defines the electromotive force caused by currents induced in a conduct-
ing medium, and correspendingly, at the range of small parameters, expressions for the
electromotive force and the active resistance can be written as:

2
2Ko Ky — m(K? — K2)] II,S;L) dm

& = —21r1a1uwxl/%

(4.212)
11 (m)

0
m 2 2
Rl = —27’10,1,UWX1 / 5 2KOK1 — m(K KO)] dm
0

Suppose there is a second cylindrical interface between two media with conductivities
o, and oy. Then, in accord with eq. 4.186, we have:

I? (mv)

& =& —2Irfaipw(xs — Xx1) [2KoK, —m(K} — K§)] =

—g
SIE

m E(mu
R =Ry — 2riajpw(xs — x1) 2 [2KoK: — m(K} - K7)] lfn? : dm

o\g o

For an evaluation of the influence of a formation it is reasonable to introduce the apparent
conductivity as:

Oa é O R
01 - éal (21 R]

It is obvious that:

m
/ ™ [aKoK — m(K} — )] L5 dm

where G, is the geometrical factor of the formation given by eq. 4.190, as a = 0.

Finally, we will consider the last case where a single-layered coil presenting the induction
probe is placed on the nonconducting base. Making use of results obtained above we have
the following expressions for the electromotive force and active resistance introduced into
a coil by induced currents in a medium with conductivity o;:

I3(m) sin® ms,

m
& = —8Irin’uox, / 5 QKOKQ - m(K? — Kg)]

m? m? dm
o(()> (4.213)
m I}(m) sin®ms,
R, = —81"171 HwX1 / ) 2K0K2 - m(K12 - Kg)] 1m2 m2 dm
0
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If the probe is located on the borehole axis we have:

IZ(vm) sin® ms, d

& =& —8Irin*adpwixe — x1) [2KoK1 — m(K} - K3)]

~—g
| 3

m2 m?2

IZ(ym) sin® ms,

S~ g o
| 3

R= R, —8rinaduo(e — x1) | 5 [2KaKs —m(K} - K§)] 52 =22 dm
(4.214)
and finally:
7@ [QK K, — (K2 —KZ)] If(vm) md
os o ¥ 9 ol —miny 0 m2 2 m
0_1:1+<a_1>ﬁ [m IZ(m) sin® ms
/—2— [2Ko K1 — m(K} — K3)] 1m2 Tl dm (4.215)
0

where G, is the geometrical factor of the probe having a single-layered coil; 7, is the coil
radius; a; is the borehole radius; [ is the coil length; 8 = a1/r1, v = 1/8, 83 = [/2ay,
81 =1/2r.

For illustration, let us consider an induction probe which consists of two single-layered
coils of different length and the same radius connected with each other in opposite direc-
tions and placed one inside the other (Fig. 4.43).

Then, for the electromotive force and active resistance in such the probe caused by
inducted currents we have:

& = —8Irwux1[nil, — n3ly)
(4.216)
Ry = —=87%wux1[nl, — nil,)

o0

m I2(m) sin® ms;
.[1 = / ? [2KOK1 - ’I?'L(}{l2 - Kg):l 1m2 T dm
0
Tm 9 o1 T2(m) sin® ms)
12 = /5 [QK()KI — m(K2 - KO)] m? T dm
0

where:

o1 is the conductivity of a surrounding medium;

ny and no are number of turns per unit of every coil length;
sy =1/2r; and s} = b/2r;.
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Figure 4.43. An induction probe with two transmitter-receiver coils.

In a medium with a cylindrical interface between the borehole and the formation we
have:

& = & — 8Ir¥dwn(xs — x1) [0} — n2Ly]

(4.217)
R =R, — 8riajwp(x2 — x1) [ni1; — njLy)
where:
m 2 o1 J1(vm) sin® ms,
Ii:/E[QKoKI—m(KI —KO)] 2 2 dm
0
m 9 vy I2(um) sin® ms)
L= / 3 [2KoK) —m(K} — K§)] == = dm
0
59 = 1/2a, sy = b/2a,
Correspondingly, the expression for the apparent conductivity is:
I (n2>2 L1
O, o n2ll — n2r I_— ;‘ 'I_I_
1 1 v 1-(2) 2 (4.218)
] 11
o2 Gl —t°G3,
M (01 ) 1—1¢?

where G7, and G%, are geometric factors of formation for every coil. The latter can be
written in the form:

o, = 01G] + 02G;
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TABLE 4.7

Values of function G

a/ry =2.0 a/r1 =4.0 a/r1 = 8.0

1/2a; Gt 1/2a, b 1/2a4 G} I

0.2 0.5274 0.10 0.7665 0.050 0.8836 0.03979
0.3 0.5114 0.15 0.7591 0.075 0.8796 0.08663
0.4 0.5010 0.20 0.7509 0.100 0.8755 0.1489
0.5 0.4877 0.25 0.7424 0.125 0.8711 0.2242
0.6 0.4749 0.30 0.7339 0.150 0.8665 0.3115
0.7 0.4628 0.35 0.7253 0.175 0.8619 0.4095
0.8 0.4513 0.40 0.7169 0.200 0.8752 0.5169
0.9 0.4406 0.45 0.7086 0.225 0.8516 0.6330
1.0 0.4306 0.50 0.7003 0.250 0.8480 0.7569
1.1 0.4212 0.55 0.6926 0.275 0.8434 0.8879
1.2 0.4124 0.60 0.6849 0.300 0.8389 1.026
1.3 0.4043 0.65 0.6775 0.326 0.8345 1.170
1.4 0.3968 0.70 0.6702 0.350 0.8301 1.319
1.5 0.3895 0.75 0.6632 0.375 0.8257 1.474
1.6 0.3827 0.80 0.6565 0.400 0.8215 1.634
1.7 0.3764 0.85 0.6500 0.425 0.8173 1.797
1.8 0.3074 0.90 0.6436 0.450 0.8131 1.968
1.9 0.3468 0.95 0.6375 0.475 0.8091 2.141
2.0 0.3595 1.02 0.6316 0.500 0.8051 2.319
2.1 0.3545 1.05 0.6259 0.525 0.8011 2.500

where geometric factors of the borehole and formation are:

* _tQG* * t2G*
* 12 22 « _ I 21
Gi=l-——m o G=Tioa
and:
* ){2 B t2G§2
2 1—¢t2

‘e % é 1/2
N n Il

Results of calculation of the geometric factor of the borehole, G}, as well as integrals of
types I1, I, I, I}, (I) are presented in Table 4.7.

In conclusion of this section let us notice that applying the approximate theory, taking
into account the skin effect in the formation, these results can be used beyond the range
of small parameters.
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Figure 4.44. The vertical magnetic dipole displaced from the borehole axis.

4.11. Radial Responses of Two-coil iInduction Probes Displaced
with Respect to the Borehole Axis

Until now we have considered radial and frequency responses of two-coil induction probes
located on the borehole axis. However, under real conditions if special centering devices
are not used induction probes are usually displaced with respect to the axis, and for
this reason it is essential to investigate the influence of this displacement on the radial
responses of induction probes.

Let us introduce a Cartesian and cylindrical system of coordinates with common origin
located at the borehole axis which coincides with the z-axis (Fig. 4.44). The radius of the
borehole is a. Let us assume that the vertical magnetic dipole with moment M = Mye“*
is placed on the z-axis at distance ry from the origin. Unlike the previous model, when the
vertical dipole is located on the borehole axis, in this case the primary vortex electrical field
intersects a surface between the borehole and the formation. Correspondingly, electrical
changes arise at this interface, and they provide continuity of the normal component of the
current density. Therefore, current lines do not have a circular shape, located in horizontal
planes, and possess a much more complicated form. For this reason, the quasistationary
electromagnetic field in a cylindrical system of coordinates has all components: E,., Eg,
E., H,, H;, H, which are related by Maxwell’s equations:

curl F = —iwpuH divE =0

4.219
curl H = oF divH=0 ( )
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Let us present the electromagnetic field outside and inside the borehole as a sum of two
terms:
E=EWV + E®@ H=HY+ H®

and each of them can be described with the help of the vertical component of the vector
potential of, respectively, the magnetic and electrical type only:

EW = —iypcurl A*  H® =curlA (4.220)
where A = (0,0, A"}, A = (0,0, A). Then, in accord with eq. 4.219, we have:
HWY = k2A* — grad U*

) ) (4.221)
E® = —jwpA — gradU k* =iouw
Choosing gauge conditions:
Ur=—div A" and oU =—-divA (4.222)

we obtain equations for both potentials:
VPA*+kK°A*=0 and V’A+K'A=0

Taking into account eqs. 4.220-4.221 we will derive the following expressions for field
components of magnetic and electrical type in a cylindrical system of coordinates:

10A* O A*
1) — _ hd n_ =z
Ey lw‘ur 130 H; oroz
. 0A* a _ 1 5% A*
Ey) = —iwp o Hy' = T 9007 (4.223)
G A*
1) — H(l) — L2 A*
E; 0 ; kA" + 5.2
1 3%A 10A
@_1 g 194
E; o Ordz T r O¢
»_ 1 0°A @ _ 04 4.224
By = or 00z Hy = or (4224)
2
E(2)=l k2A+% H? —q
# o 022 z

As follows from these equations vertical components of electrical and magnetic fields
are absent in oscillations of magnetic and electrical types, respectively:
EM =0

HY =0 (4.225)
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In accord with egs. 4.223 and 4.224, electrical and magnetic fields at any point are related
with potentials A* and A by formulae:

B o= —iw 194" + 1 O%A
TS T 8¢ o 0rdz
B i 18A*+i62A
¢ = M“r ar or 0¢0z
1/, A
E, = . (k A+ 5;—)
(4.226)
0’A* 194
B = 565: T rar
14 o4
L 0pdz  Or
9 A*
Hz — k2 *
A+ 022

From continuity of tangential components of the field at boundary r = a we will obtain
conditions for vector-potentials A* and A:

1 2 2
- (k’f’Al +9 Al) -1 (k§A2+ 9 AQ)
01 o] 2z

022 0z*
L4 )L (104 2
71 \a 090z Vo 02 \adgo: 2 or (4.227)
kA + 20 kg O

12A%  ,0A; 18247 ,04,

adpdz Y or  addd: ' or

where 01, A}, A; and 02, A}, A, are conductivities and potentials of the borehole and the
formation, respectively.

As was shown in Chapter 3, the electromagnetic field of the vertical magnetic dipole
in a uniform medium can be described with the aid of the vertical component of the
potential of the magnetic type only:

M 2 —ik‘] Rl
A= 28
dr 7 R]

= ~1\12/1{0(/\11%) cos Az dA (4.228)
dmw
0

where Ry = |R—1o|, 7o = (r0,0,0), \; = (A2 +k?)/2 R = (r?+7r% —2rrgcos $)V/%; R and
(r, ¢) are radius vector and cylindrical coordinates of an observation point, respectively.
Let us present the primary potential Af as a sum of angular harmonics. Making use of
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the addition theorem:

K()(/\lR) = Io()\lT'o)Ko(/\lT) +2 Z In()\l'ro)Kn(AlT) COs n¢

n=1

= 2Zl L, (Aro) Kn(Ai7) cosng ifr>mng

we have:

0o % o©
' M ’
= E A* = — E cosn(b/ln()\lro)Kn(/\l'r) cos Az dA (4.229)
n=0 n=0 0

where superscript “’” means that the null harmonic is multiplied by coefficient 1/2.

Every angular harmonic A, of the primary field generates a corresponding harmonic
A, describing the secondary field of the magnetic type. Taking into account the condition
at infinity expressions for potentials A} and A} inside and outside the borehole are:

Al = Ao + %2 Z/ cos nd)/cnln(/\lr)Kn()\lr) dA
m n=0 0

M (4.230)

o0 x>
=3 Z nqb)/dnKn(/\gr) cos Az dA
n=0

0
A=NHED2 = (V4K

In a uniform medium the magnetic dipole potential of the electrical type, Ag, is equal
to zero. For this reason for the determination of this potential, A, we will make use of
boundary conditions 4.227.

It is not difficult to see that if potentials of electrical type are presented in the form:

[o 0]

M
A = F; sin(ng) /anIn (A7) sin Az dA
0oo (4.231)
% /ann()\y") sin Az dA
2

0

The unknown coefficients a,, b,, ¢,, and d, are defined from a linear system of four
equations:

ﬂa,n[n(A16L) = &ann()\QCL)
01 09

A ki ) ki )
—na I, (Ma) + =ML, (Mro) K, (Aa) — = Aiend;, (Ma)
o1a a1 o1 (4.232)

A k3 ,
= —nann(Aga) + —)\zdnKn()\ga)
g9a (o]
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A2 [Li(Mro) Kn(na) + cnln(Ma)] = A2dp Kn(Aoa)
, A A
anri 1, (Ma) — Encnln()\la) — Enln(/\lro)Kn(Ala) = by Ao K, (Aaa) — 2ndnKn()\ga)

The electromotive force induced in a measuring coil of the probe is defined by the vertical
component of magnetic field, H,, which in accord with eq. 4.226 is expressed through the
potential of the magnetic type, A, only. At the point with cylindrical coordinates r = r,
¢ = 0 and z = L for the magnetic field we have:

M
H,=H,, - = nzzo M, I ( M) cos Az dz (4.233a)
or
_ 2 3 =7 2 To
h, = hg, — —o Z /mlcnln (mlz) cos ma dm (4.233b)
n=0 0
where:

h,=H,/Hy,  Hyp,=M/2nL3  hg, = e *(1 +ikL)
a=L/a m= \a cn = AJA

B = { =1 = sy tihnz g | T Hal)] o))

In(m) mo Kn(mg)

m
1
m;

S (o, 2)

(4.234)

k2a?
A=(1-g)222"
(- sy

2 2 Li(m)  mi K(mo)| [Kp(mi)  ma Kj(mo)
e Il

- Kn(ml) - ma Kn(m2)

In(m) ~ "ty K (mg) ] (4.235)

S = 0'2/01

Let us notice that current lines corresponding to oscillations of the magnetic type are
located in horizontal planes perpendicular to the borehole axis. Current lines of zero
harmonic of the secondary field are circles with centers located on the borehole axis, and
therefore they do not intersect the boundary between the borehole and the formation.
Current lines of oscillations of the electrical type have a much more complicated form
but their distribution has such a character that the field component H. @ i equal to zero
everywhere.

Thus, in accord with eq. 4.233a field H, consists of two terms, namely, field Hy, in a
uniform medium with conductivity of the borehole, and the secondary field presented by
the sum of angular harmonics, each of which is expressed through an improper integral.
It is reasonable to notice that the integrand of zero harmonic differs from a corresponding
function when the vertical magnetic dipole is located on the borehole axis by multiplier
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TABLE 4.8
Values of function G
Qh, x 102
a/h1
c 0.125 0.025 0.05 0.1 0.2 0.4 0.8 1.6
0 0.111 0.435 1.68 6.19 20.7 52.4 41.8 —4.19
0.2 0.110 0.433 1.67 6.15 20.5 52.0 42.2 —4.66
0.5 0.107 0.421 1.62 5.95 19.8 49.8 44.2 —6.43
Inh? x 10*
a/h1
c 0.125 0.025 0.05 0.1 0.2 0.4 0.8 1.6
0 -0.200 —1.57 —12.2 —915 636 3680 —12110 —9510
0.2 —0.200 —1.57 —12.2 -913 633 3650 —12000 —9560
0.5 —0.200 —1.57 —12.1 —902 619 3500 ~11400 —9900

In(mrp/a). In the case as the induction probe is not displaced with respect to the borehole
axis (ro = 0) amplitudes of angular harmonics in eq. 4.233 are equal to zero for n > 0,
and we obtain the known expression for the vertical component of the magnetic field.

For illustration values of quadrature and inphase components of h, for various displace-
ments € = rg/a, as the two-coil induction probe is located parallel to the borehole axis
are given in Table 4.8. The ratio of conductivities oa/07 = 1/16.

As follows from numerical analysis, in this case five angular harmonics describe the
field with high accuracy for all considered values of a/h; where h; is the skin depth in
the borehole. It is appropriate to notice that the influence of displacement on inphase
and quadrature component of the field increases with an increase of frequency. At the
same time within this range of frequencies the inphase component is less sensitive to
displacement than is the quadrature component. For example, even if a/h; = 1.6 we
have: Inhé(s = 0.5)/Inhé(c = 0) = 1.04, while Qh,(e = 0.5)/Qh,(e = 0) = 1.51. It
is explained by the fact that within a wide range of frequencies the density of charges
arising at the interface between the borehole and the formation is shifted in phase by 90°
with respect to the current in the transmitter. Correspondingly, we can expect that the
quadrature component of the field for a two-coil probe will be mainly subjected to the
influence of eccentricity.

Now let us investigate in detail the low-frequency part of the spectrum when the skin
depth in a more conductive medium is much greater than the length, L, of the two-coil
induction probe:

kL] <« 1 Lja>1 (4.236)

Expanding integrand ¢, in eq. 4.233b in a series by powers of kZa%/m? and discarding all
terms except the first one we obtain:

k‘2 2
o= —(1—3) 7: I,(me)

2



(L—s)n® , m? 2 2 2(n—1)
AT AN e — = - — 2
x { Pn(m) n(m) 2 Kn l(m) Kn( )+ m KnKn*1 nKn(m):l}
(4.237)
where
_ | Im)  Ki(m)
Pt = m |20 =5
Substituting eq. 4.237 into eq. 4.234 we have:
L? L2
Qh, = "1“’2“ Cilaye,s) + "2“’2“ Gl e, s) (4.238)
where:
G*——Q—ai,A (m) cosmad 4.239
2= 2 n(m adm (4.239)
_fd=s)n_, [m? ) s 2(n—-1)
An(m) = { Pn(m) Kn ) Kn-l Kn + TKnKn—l In(me) (4240)
and
Gi(a, €, 8) + Gya,e,8) =1 (4.241)

Inasmuch as functions G7 and G depend on geometric parameters and as well as on the
ratio of conductivities g, and o, they are not in essence geometric factors. Function G7
for various values of «, € and s is given in Table 4.9. As is seen from this table the
eccentricity, €, and ratio of conductivities, s, make an influence on function G7 regardless
of the length of the two-coil induction probe. This influence is specially essential for
relatively short probes and small conductivity of the formation. The length of the probe
is usually several times larger than the borehole radius, a, and for this reason analysis of
the behavior of function G7 for such probes is of great practical interest.

As was illustrated above the value of integrals f0°° A, (m)cosma dm, as o — o0, is
defined by behavior of functions A, (m) within the initial part of integration (m — 0). In
accord with eq. 4.240 for the zero-harmonic we have:

Ao(m) = - [2Ko(m)Ki(m) — m(K} — K3)] I3(me)

Inasmuch as:

2

Io(m)21+—7%—

2 2
Ko(m):—lnm—mflnm—kn%
Kim) ~ ~ 4 Pam— 0

m)~—+ —lnm— — as m —
' m 2 4



TABLE 4.9

Values of function Gf(a, ¢, s)x 102

s=1/128 s=1/2 s=4

N © 0 0.2 0.5 0.75 0.2 0.5 0.75 0.2 0.5 0.75
1 487 47.0 374 20.4 475 411 30.3 482 45.9 436
2 22.3 21.2 15.3 6.75 21.7 18.4 13.8 22.4 23.0 24.6
4 6.65 6.32 4.60 2.18 6.50 5.72 4.60 6.88 8.04 9.75
6 2.96 2.82 2.14 1.15 2.90 2.60 2.15 3.09 3.78 4.78
8 1.64 1.57 1.21 0.687 1.61 1.45 1.22 1.72 2.13 2.73
10 1.04 0.998 0.776 0.488 1.02 0.924 0.778 1.09 1.35 1.74
12 0.717 0.688 0.537 0.315 0.704 0.637 0.540 0.751 0.932 1.20
14 0.523 0.502 0.393 0.232 0.514 0.466 0.396 0.549 0.680 0.875
16 0.389 0.383 0.300 0.180 0.392 0.355 0.304 0.418 0.517 0.665
18 0.314 0.302 0.236 0.141 0.309 0.280 0.238 0.329 0.406 0.522
20 0.254 0.244 0.191 0.114 0.249 0.226 0.193 0.266 0.327 0.420

162
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then
Ag(m) = Ko(m) ~ ¢o(m) (4.242)

where
2

do(m) = » [1+2(T—°)2] Zolm

T2 a

By analogy, for the first harmonic we obtain, as m — 0:

1 /ro\2 2 24 35— s?
A ~ - | —= - 2
1(m) ~ 1 <a) (1 s (4 9) m°In m) (4.243)

Making use of the Sommerfeld integral:

™ s 1 .
/Ko(m)cosmadmzmzﬁ(l—ﬁ) lfa>>1
0

and integrating by parts fooo A(m) cos ma dm, we will obtain an asymptotic presentation
for functions G}, and G}, corresponding to zero and the first harmonics as o — oo:

. ro\2| 1
Gty = [1 + (;") } ~ (4.244)
and

. (To\2(2+3s—s%) 1
¢ =-(3) TR a2 (4.245)

We can show that functions A, (m) for higher order of harmonics (n > 1) at the initial
part of the integration have the form T, + M,,m?, where T,, and M,, are constants. Cor-
respondingly, functions Gj,(a, ¢, s) with an increase of the probe length decrease more
rapidly than 1/a?. Thus, adding eqs. 4.244 and 4.245 we obtain the leading term of the
asymptotical expression of G7:

2(s—-D2s+1)] 1

Grr | @ (4.246)

G* (e, €,8) =~ lil + (@>

a
Comparison with results of calculations of function Gj(«, ¢, s), given in Table 4.9, shows
that the error of determination of this function by eq. 4.246 does not exceed 5% if the
probe length is at least six times greater than the borehole radius even for ¢ = 0.75.
When the two-coil induction probe is located on the borehole axis, current lines do not
intersect the surface of the borehole and they have a circular form. Correspondingly, we
obtain the known expression for function G:

1
G(a):; ifa>»landrg=0
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If the borehole is more conductive than the formation, electrical charges arising at the
boundary r = a create a field which decreases the effect caused by the primary vortex
electrical field. Respectively, in accord with eq. 4.246 function G7 turns out to be smaller
than G;. In the limited case, as s = 03/01 — 0 we have for function Gj(a, €, s):

Gilae) ~ %(1 e (4.247)

In the case where the formation is more conductive than the borehole at those points of
the interface where the primary electrical field is directed into external or internal areas,
negative or positive charges arise correspondingly, and their electrical field results in an
increase of the current density within the borehole. For this reason function G(a, ¢, s)
becomes greater than G(«). In particular if s > 1 we have:

* 1 2
G~ —(1+22%) (4.248)

For intermediate values of s: 0 < s < oo the coefficient in front of €2 gradually increases
from —1 to 2, and it is equal to zero when s = 1 (a uniform medium). In real conditions
the maximal value of £ does not exceed 0.70-0.75 when the induction probe touches the
borehole surface. In accord with eq. 4.246 the second term characterizing the influence
of the probe displacement, is directly proportional to £? and, in particular, for a more
conductive borehole function Gi(«, ¢, s) can decrease almost two times (@ > 1). This
consideration also shows that relatively small displacements of the probe leads to an
insignificant change of the geometric factor.

Within a certain range of frequencies and resistivities we can neglect the interaction
between currents in the borehole, while in the formation the skin effect manifests itself
in the same manner as in a uniform medium but the current density in the borehole and
surface charges are directly proportional to frequency. For these conditions the field can
be presented in the form:

k2L?
2

h, ~ (1—35)G*(,¢,8) + hoz(koL) (4.249)
Calculations based on data given in Table 4.8 demonstrate the validity of this relation.
Therefore, the inphase component of the field as well as the term of the quadrature compo-
nent proportional to w?? are in this range of frequencies defined only by the conductivity
of the formation and, correspondingly, do not depend on the position of the induction
probe with respect to the borehole axis regardless of its length.

4.12. The Influence of Magnetic Permeability and Dielectric
Constant in Induction Logging

In principal the quasistationary electromagnetic fields applied in induction logging de-
pend on conductivity and magnetic permeability. For this reason an investigation of the
influence of the magnetic permeability can be of great practical interest, specially for two
cases:
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e A borehole solution contains magnetic elements which are used to increase the weight
of this solution.

e The formation has a higher magnetic permeability. For example, such conditions
arise when induction logging is applied in mining geophysics.

Results of analysis of the influence of the magnetic permeability described in this section
are based on results of calculations of the magnetic field on the borehole, when an invasion
zone is absent,.

Let us first consider some features of the influence of 4 in a uniform medium.

As was shown in Chapter 2 the electromagnetic field of the magnetic dipole can be
presented as:

iwpM | . .
E, = #e'm(l — ikR)sind

oM .
= 7 - 4.250
Hp T (1 —ikR)cosf ( )

M ke . 2 2y o
ngme (1 —ikR — k*R*)sinf

where R and @ are spherical coordinates of a point; k is wave number:
k= (opw/2)2(1+1)
In a nonconducting magnetic medium instead of eq. 4.250 we have:

iwpuM

M
06 = TZ?RE sin § Hyp cosf Hye

2

M
"~ 47 R3

Thus in a uniform non-conducting medium the magnetic field does not depend on u
while the electric field related with the electromotive force as

é’z%Edl

is directly proportional to the magnetic permeability.

If a medium is conductive, magnetic permeability, 4, makes an influence on the magnetic
field inasmuch as intensity of the skin effect is characterized by parameter p = (ouw)'/2.
With an increase of the magnetic permeability, the interaction between currents in accord
with Faraday’s law increases and curves of distribution of induced currents, shown in
Figs. 2.4-2.5 for both quadrature and inphase components, are shifted to the range of
lower frequencies.

In accord with eq. 4.250, when the parameter p is small we have for components of the
magnetic field:

o puwL?
2

2 2
InH,=(1- ng)HOZ = Hy, — §p3HOZ (4.253)

Q Hz = p2H02 = HOZ (4252)
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and for vertical component of vector of the magnetic induction B (B = uH ), we obtain:

2 L2 2
TR Hy,  InB,= By, — —pB, (4.254)

B, =
Q 2 3

where L is the probe length. Functions Hy, and By, are vertical components of the
magnetic field and magnetic induction in a nonconducting medium. For this reason the
electromotive force generated by the quadrature component of induced currents is directly
proportional to the square of magnetic permeability while the inphase component of the
electromotive force changes as a linear function of u. For very small values of p we can
neglect the second term in eq. 4.253 and therefore In B, = By, = uHy,. In other words,
in this approximation the inphase component of the electromotive force is a function of
w1 only, and it does not practically depend on conductivity.

It is obvious that for given frequency, conductivity, and magnetic permeability this
behavior takes place for shorter probes with higher accuracy. Correspondingly, in order
to reduce the influence of conductivity, it is appropriate to apply relatively short induction
probes, in particular, single-coil arrays. However, in this case we can expect an increase of
the influence of borehole radius, caverns, and eccentricity. As is well known, the relation
between magnetic permeability and susceptibility in Gauss system is:

p=1+x0  Xxo=4mx10°

Let us assume that the magnetic susceptibility of a formation is small and xo <« 1. Then,
substituting expression for y into eq. 4.254 we obtain:

ocwl?
QBz >~ (1 -+ 2X0)H0z
2 wo(1+ xo)L2]Y?
In Bz fae HOz + XOHOZ - § (1 + XO)HOZ [‘—(‘2—&:'
2 5 w 3/2
~ Ho, + xoHo: — 3 (1 + 5)(0) Hy. (%LQ)

The primary field, Hy,, is usually compensated, and correspondingly the secondary in-
phase component:

2 (owLl?\*?
xoHo, — 5 ( ) Hy,

3 2

is measured.

From comparison of eqs. 4.252-4.254 it is seen that the quadrature component of the
electromotive force is less influenced by the magnetic susceptibility than the inphase
component. For this reason at the range of very small parameters, when the susceptibility
is relatively small, the conductivity of a formation is defined by the quadrature component
of the electromotive force while measurements of the inphase component allow us to
determine the magnetic susceptibility. If parameter p = (ouw/2)Y? is not small and
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the value of ), is comparable with unity, determination of conductivity and magnetic
permeability is usually a sufficiently complicated procedure inasmuch as both quadrature
and inphase components of the electromotive force are influenced by ¢ and pu. It is clear
that in measuring the amplitude of the secondary field the influence of the magnetic
permeability increases.

Now let us consider the case when a two-coil induction probe is located on the borehole
axis.

As was shown in section 4.3, the expression for the vertical component of the magnetic
field on the axis of the borehole has the form:

A
h, = hg, — ?/,\fcl cos AL dA (4.255)
0

where h, is the magnetic field expressed in units of the primary field; hg, is the magnetic
field in a uniform medium with conductivity and magnetic permeability of the borehole.
Function C}, defined from boundary conditions at interface r = a, is:

L= /Ll)\gKo()\ga)Kl(/\la) — ,tl,g/\lKo(/\]a)Kl()Qa)
[Ll)\zKo(/\Qa)Il(/\la) + HQ/\llo(/\la)Kl(/\za)

(4.256)

where 1y and ps are magnetic permeability of the borehole and the formation; a is the
borehole radius; L is the probe length and:

A= (02 d = (Alixe)'?
X1 = o1 X2 = O2fiawW
Methodics of calculation of this integral was described above.
We will consider the range of small parameters when the quadrature component of the
field is directly proportional to frequency. Then we can write:
u2wL2
2

Qh, = [01G1(a, 8) + 02G2(a, $)] (4.257)

Functions G;(, 5} and G»(a, s) depend on both geometric factor & = L/a; and the ratio
of magnetic permeabilities, s = pa/pu;.

Unlike a medium which has a uniform magnetic permeability, in this case redistribution
of the primary magnetic flux is a function of u, and at the range of small parameters a den-
sity of induced currents is directly proportional to the flux of this field and a conductivity
at a given point.

Analytical expressions for functions G;(a, s} and Ga(, s} can be obtained in the same
manner as those for geometric factors G1(«) and G:(«), namely expanding the right-
hand side of eq. 4.255 in a series by powers of w and defining a coeflicient which is directly
proportional to frequency. Results of calculations of these functions are presented in
Table 4.10 and Fig. 4.45.
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TABLE 4.10
Values of functions G1{q, s), Go2(c, s)
Gi(a, s)

o § 0.99 0.90 0.80 0.70 0.60 0.50
3.0 0.1160 0.1340 0.1610 0.1990 0.2500 0.0326
4.0 0.0675 0.0805 0.0099 0.1260 0.1670 0.2280
5.0 0.0436 0.0525 0.0662 0.0860 0.1160 0.1640
6.0 0.0302 0.0366 0.0466 0.0615 0.0837 0.1210
7.0 0.0220 0.0270 0.0345 0.0454 0.0627 0.0916
8.0 0.0168 0.0204 0.0262 0.0350 0.0484 0.0710
9.0 0.0131 0.0161 0.0206 0.0275 0.0382 0.0568
10.0 0.0106 0.0129 0.0168 0.0222 0.0307 0.0455
GQ(av S)

o § 0.99 0.90 0.80 0.70 0.60 0.50
3.0 0.870 0.973 1.098 1.259 1.476 1.777
4.0 0.930 1.023 1.160 1.337 1.574 1.910
5.0 0.944 1.045 1.186 1.370 1.619 1.972
6.0 0.950 1.054 1.197 1.383 1.632 1.996
7.0 0.955 1.071 1.200 1.386 1.639 2.000
8.0 0.956 1.068 1.200 1.384 1.636 1.000
9.0 0.954 1.056 1.197 1.379 1.629 1.986
10.0 0.953 1.056 1.192 1.374 1.621 1.973
TABLE 4.11
Values of function F(a, s)

o 8 0.90 0.90 0.80 0.70 0.60 0.50 0.10
3.0 0.986 1.107 1.259 1.458 1.726 2.103 0.985
4.0 0.998 1.104 1.260 1.463 1.741 2.138 0.982
5.0 0.988 1.098 1.252 1.456 1.735 2.136 0.976
6.0 0.980 1.091 1.244 1.445 1.716 2.116 0.972
7.0 0.977 1.098 1.234 1.431 1.702 2.092 0.966
8.0 0.973 1.088 1.226 1.419 1.684 2.071 0.962
9.0 0.967 1.072 1.218 1.407 1.667 2.043 0.958

10.0 0.964 1.069 1.209 1.396 1.652 1.019 0.952
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Figure 4.45. (a) Curves of functions G1(a, s), G2(e, s); (b) curves of functions G (a, s},
Ga(a, s).
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TABLE 4.12
Values of function G7(a, s)

o 5 0.99 0.90 0.80 0.70 0.60 0.50
3.0 0.1180 0.1210 0.1280 0.1370 0.1450 0.1550
4.0 0.0680 0.0728 0.0790 0.0862 0.0960 0.1070
5.0 0.0442 0.0478 0.0529 0.0590 0.0668 0.0768
6.0 0.0308 0.0335 0.0375 0.0426 0.0488 0.0572
7.0 0.0225 0.0246 0.0280 0.0318 0.0368 0.0438
8.0 0.0172 0.0187 0.0214 0.0247 0.0287 0.0342
9.0 0.0135 0.0151 0.0169 0.0195 0.0228 0.0278
10.0 0.0110 0.0121 0.0139 0.0159 0.0186 0.0224

It is appropriate to notice that a sum of these functions is not generally equal to unity,
since the magnetic permeabilities of borehole and formation are not equal to each other.
As an example, function:

F(a,s) = Gi(a, s) + Ga(a, s)

is presented in Table 4.11, and it does not practically depend on the probe length, and it
turns out to be in essence of a function of the ratio of magnetic permeabilities, s, only.
In accord with eq. 4.257 in a medium which has a uniform conductivity we have:

L2
Qho, = ,u2u21 oo F (4.258)

Inasmuch as function F is not equal to unit it is reasonable to normalize functions G (a;, $)
and G(a, s) in such a way that their sum would be equal to unit. For this purpose we
will divide these functions by F. Then we obtain:

L*F
Qh, = P [01GY + 0563 (4.259)
where:
1=G./F 2 =Gu/F (4.260)

Values of normalized functions G}{a, s} and G%(«, s) are given in Tables 4.12 and 4.13.
As follows from this table, as well as from physical point of view, with an increase of
magnetic permeability of the borehole the magnetic field within the borehole as well as
function G increase.
It is important to notice that in the case when magnetic permeabilities of the borehole
and the formation are different function G7(«, s) for large values of « behaves in the same
manner as geometrical factor Gy («), namely:

G™(a,8) — k(s)/a®  ifa>1 (4.261)
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TABLE 4.13
Values of function G3(a, s)

NG 0.99 0.90 0.80 0.70 0.60 0.50
3.00 0.882 0.879 0.872 0.863 0.855 0.845
4.0 0.932 0.927 0.921 0.914 0.904 0.893
5.0 0.956 0.952 0.947 0.941 0.933 0.923
6.0 0.969 0.966 0.962 0.957 0.951 0.943
7.0 0.977 0.975 0.972 0.968 0.963 0.956
8.0 0.983 0.981 0.979 0.975 0.971 0.966
9.0 0.986 0.985 0.983 0.980 0.970 0.972
10.0 0.989 0.988 0.986 0.984 0.981 0.978
TABLE 4.14
Values of function k(s)

s 1 0.9 0.8 0.7 0.6 0.5
k(s) 1.0 1.2 1.4 1.6 1.85 2.24

Values of k(s) are given in Table 4.14.

Calculations show that asymptotical behavior of function G} commences practically
from the same values of o regardless of the ratio of magnetic permeabilities s.

With an increase of the probe length the influence of magnetic permeability on function

" increases until a certain limit. Values of n, = G7(s,a)/G}1(0.99,a) are given in
Table 4.15.

In Chapter 7 we will consider in detail multi-coil induction probes which essentially allow
a decrease on influence on induced currents in the borehole as well as in the invasion zone.
At that time questions related to magnetic permeability will not be investigated more.
For this reason let us here briefly demonstrate that multi-coil probes can be applied in
order to reduce the influence of induced currents in a conductive and magnetic medium
of the borehole (Fig. 4.46). As the first example we will consider a three-coil induction
probe consisting of one generator and two measuring coils (Fig. 4.46a). The distance
between the later is significantly less than that between the transmitter and receiver coils.
Moments of receiver coils are chosen in such a way that the electromotive force in a free
space, éao(o), is equal to zero.

In a uniform medium with conductivity o3, according to eq. 4.258, for a two-coil probe
we have:

L2
& = 52“;#50(?)1?(3) (4.262)

where é”o(? ) is the electromotive force in the receiver when the probe is located in a uniform
nonconducting medium with magnetic permeability g;; F(s) is the sum of functions G
and GQ.



307

a b
0 Re ¥ R
.T1

Y Ry ‘

L2 L1 LZ
b _L R
EAS!
y vl —T

Figure 4.46. Three- and four-coil induction probes.

TABLE 4.15
Values of function n, = G}(s, )/G7(0.99, @)

" ¢ 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

3

70.9 1.02 1.07 1.08 1.09 1.09 1.09 1.12 1.10
0.8 1.08 1.16 1.20 1.22 1.24 1.24 1.25 1.26
No.7 1.16 1.27 1.33 1.38 1.42 1.43 1.44 1.45
0.6 1.23 1.41 1.51 1.59 1.64 1.67 1.69 1.69
To.s 1.31 1.57 1.73 1.86 1.95 1.99 2.06 2.04

Therefore, for the electromotive force induced in two receivers of a three-coil probe we
obtain:

_ H2Wéao(?)
2

LIF
(L:F) — LyFy) 03 = L‘(S)é‘{)(f)(l — %oy (4.263)

o 5

where t = Ly/L; and F(s) = Fi(s) = Fy(s). Correspondingly, at the borehole axis the
electromotive force is:

_ paw LIF (s)
2

& (V) — 26 (4.264)

where o8V and ¢’ are apparent conductivities for a two-coil induction probe with lengths
L, and L, respectively. For this reason an expression for apparent conductivity defined

with the three-coil probe can be written as:

o1 (o o
[op) n 1-—¢2 J9 ! 03 2
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TABLE 4.16
Values of function In Aj
@ 0.9 0.8 0.7 0.6 0.5

ns
3.0 0.0728 0.159 0.263 0.391 0.550
4.0 0.100 0.222 0.374 0.568 0.822
5.0 0.114 0.255 0.435 0.671 0.991
6.0 0.120 0.271 0.466 0.726 1.088
7.0 0.122 0.278 0.480 0.753 1.139
8.0 0.123 0.280 0.485 0.765 1.164
9.0 0.123 0.280 0.485 0.768 1.173
10.0 0.122 0.279 0.484 0.766 1.172
or
% _ _1 {(N =1) [G} (o, 5) — G}z, 8)] + (1 — )} (4.265)

02_1—t2

where N = o1/05.

If lengths of probes, L, and Lo, are significantly greater than the borehole radius
(o > 1) function G7(a) tends to k(s)/a* and the first term at the right-hand side of
eq. 4.265:

(N — 1) [GHe, $) — t°GT {0z, s)]

defining the signal caused by currents in a borehole, tends to zero.

Calculations of the quadrature component of the field and correspondingly function
0,./02, based on the exact solution, confirm that this type of induction probe can be
efficiently used at the range of small parameters (L/hs < 0.2 +0.3).

In accord with eq. 4.263, a coeflicient of the three-coil probe is a function of parameter
s, in particular, of magnetic permeability of the borehole. For this reason in order to
calculate the apparent conductivity, o,, it is necessary to define parameter s. It can
be done by measuring the inphase component of the field, since within a wide range of
frequencies and conductivities this component practically depends on parameter s only.
Values of the inphase component of the magnetic field expressed in units of the primary
field in a free space for a two-coil induction probe with various lengths, are given in
Table 4.16.

We assume that, for most cases which are of great practical interest in induction logging,
data presented in this table coincide with the magnetic field of a direct current. Therefore,
by measuring the inphase component with a three-coil induction probe or with a probe of
two coils, parameter s and, respectively, coefficient of the probe are defined. This enables
us to calculate, the apparent conductivity by making use of quadrature component data.

As a second example of a probe which simultaneously measures conductivity and mag-
netic permeability and reduces the influence of induced currents in the borehole, we will
consider a four-coil symmetrical probe (Fig. 4.46b). In accord with eq. 4.262 electromo-
tive force induced in receivers of this probe, when it is located in a uniformly conductive
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medium, can be written as:

WNZUQL% (0) 2c c?
&= —"—6& 1—— F
0 2 01 P + 1-2p (s)

where p = Lg/L; and c is the ratio of coil turns of the basic probe with length L, to those
for the probe with length L.
Correspondingly, on the borehole axis we have:

,U,Q(TQL2 0 2c 02
&o = Tlgo(l) (Uc(ll) - ;0((12) +t1o QPUL(IS) F(s)

where U((ll) , 0512), m(,s) are apparent conductivities for two coil probes with lengths L, and
Ly and (Ly — L3)/2, respectively.

For this reason an expression for the apparent conductivity of the four-coil induction
probe is:

Ta _ 1 T1 () | ~(4)
e : 5 N 2 (02 G+ Gy {4.266)
p 1-2p
Here:
(4) n 2c " 62 n
G’ =Gl(a) - ;Gl (pa) + 1_—2pG1 (1 —2p)a]
(4.267)
@ _ om 2\, .
Gy’ = G2(a) - ;Gz (pa) + ﬁGz[(l - 2p)a]

a = Li/a;. G} and G% are functions given in Table 4.13.
The parameters of the probe (a, p and ¢) which allow us to reduce the influence of the
borehole are defined from condition:

G(a,p,c) =0 (4.268)
For the inphase component of electromotive force, expressed in units of that in a noncon-
ducting medium with magnetic permeability u, we have:

2

In& C
1—-2p

o1

=Inh,(a) — %In h.(pa) + Inh,[(1 — 2p)a] (4.269)

Unlike the three-coil induction probe (Fig. 4.46a), simultaneous measuring of ¢ and g,
with the four-coil probe has two shortcomings:

e A four-coil probe includes relatively short two-coil probes, (L;/2 — Ly/2) which are
usually subjected more strongly to the influence of a borehole radius, and its change
can lead to significant errors in the determination of s.
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e With a change of position, 2, the magnetic permeability of the borehole can change,
and correspondingly, the condition of compensation of currents in the borehole
(eq. 4.268) becomes invalid. For large values of o,/0; it can result in significant
errors in the determination of the formation conductivity.

Finally, it is appropriate to make the following comment. In accordance with equations
4.258-4.259 and the analysis of functions G;(a, s), Ga(a, s), the influence of the mag-
netic permeability on the quadrature component measured by the induction probe can be
practically neglected if y < 10°.

In conclusion of this section we will briefly consider the influence of dielectric constant,
€. In accord with Maxwell’s equation:

oD
curl H =cFE + o (4.270)
the magnetic field is defined by current of conductivity (¢ E( and displacement currents
(0D/dt).
For a harmonic field: Ee !, He ™! instead of eq. 4.270 we have:
curl H = oFE — iweE (4.271)
since D = ¢FE.

The theory of induction logging is based on the assumption that displacement currents
are much smaller than conductive ones, and correspondingly we can neglect the term ewE
in eq. 4.271. In other words, it is assumed that:

a= % <1 (4.272)

Let us consider one numerical example. Let f = 3x10° Hz, p = 200 ohm-m, and ¢ = 20 &
Then we have o ~ 0.007. Thus, even in a relatively resistive medium and making use of
a sufficiently high frequency, parameter « is still very small.

Now let us suppose that the two-coil probe is located in a uniform medium and product
kL is less than unity. Then, making use of results obtained in Chapter 2 we have for the
vertical component, h,:

272 373
hy~ 1+ k2L + lk; (4.273)
where k? = iouw(1 — ia). Whence:
2 2 1 ;
Qh, ~ pool Inhj ~ —%(/LUJU)S/?LB + §%€L2w2 (4.274)

i.e. with a decrease of frequency at the range of small parameters both components of
the field tend to those corresponding to the quasistationary field.

For evaluation of the influence of the dielectric constant when the probe is located on
the borehole axis we can make use of the approximate method taking into account the
skin effect in the formation. Then, by analogy with the quasistationary case we have:

k2 — k2
h, ~ Hy,(k2L) + 1—2—2L2G1(a) (4.275)

i.e. the influence of dielectric constant is practically the same as in a uniform medium.



Chapter 5

QUASISTATIONARY MAGNETIC FIELD OF A
VERTICAL MAGNETIC DIPOLE IN A FORMATION
WITH A FINITE THICKNESS

In this chapter we will consider vertical responses of two-coil induction probes located
arbitrarily with respect to interfaces between a bed and a surrounding medium. Special
attention will be paid to the influence of frequency, ratio of conductivities and geometric
factors such as formation thickness probe length and probe position. It is appropriate
to notice that analyses performed in this chapter are used for investigation of vertical
responses of multi-coil induction probes.

5.1. Derivation of Formulae for the Vertical Component of the
Magnetic Field of a Vertical Magnetic Dipole

Suppose that there are two parallel interfaces which divide a space into three parts as
shown in Fig. 5.1. The vertical magnetic dipole is placed at the origin of the cylindrical
system of coordinates and its moment is oriented along the z-axis.
Let us assume that the magnetic permeability of the medium is equal to 47 x 10~7 H/m.
As is well known, the quasistationary field is described by Maxwell’s equations:

0B .
curl F = o divE =0 (5.1)

curl H =oF divH =0

The current in the dipole changes with time as function e, and therefore electrical
and magnetic fields change in the same manner. For this reason Maxwell’s equations for
complex amplitudes of the field can be presented in the form:

curl E =iwpH divE=0

. (5.2)
cutl H =oF divH =0

As follows from the third Maxwell equation: div E = 0, the electrical field can be ex-
pressed through a vector potential of the electrical type A™:

FE = iwu curl A* (5.3)

311
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Figure 5.1. Various positions of the magnetic dipole with respect to interfaces.

Applying the same approach as in Chapter 4 we find:

H = k*A* + grad div A* (5.4)
and
VIA* + K2A* =0 (5.5)

where k? = iouw.

Taking into account the axial symmetry and correspondingly the absence of surface
electrical charges we will look for a solution with the help of the vertical component of
the vector potential A} only:

A*=(0,0,4}) (5.6)
It is clear that function A} in this case depends on two coordinates, r and z :

A= Alrz) r= (@)

Making use of egs. 5.3-5.4 we obtain the following expressions for the ficld components:

2 A% 2 Ax
,:aAZ Hz:k2A;+8Az H;=0
Ordz 022 (5.7)
0A: ’
= E = - —] z
E. , =0 E, iwp o

Due to the continuity of tangential components of the field, boundary conditions for
the vector potential at interfaces are:

04;, 04;,

Aiz = Akz 9z 9z

if 2 = hy (5.8)
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Near the origin of the coordinate system the field tends to that of a magnetic dipole in a
uniform medium, and therefore for the vector potential we have:

A M eikR

7 W R as R —0

where M is the dipole moment and R = (r? + 22)'/2,
At infinity (R — oo) the field and correspondingly the vector potential vanish.
Thus, in order to find the field it is necessary to solve equations:

VALK AL, = 0
V245, +k3AL, =0 (5.9)
V2A; +k3 A3, =0
and provide conditions 5.8 as well as a corresponding behavior of the field near the source

and at infinity. Here k;, ko, and k3 are wave numbers of every part of the medium.
First, let us consider particular solutions of equation:

VAL + kKA =0
If the vector potential, A} depends on distance R only, the latter has the form:

AL 104
8R? ' ROR

or

+k°Ar =0

O*(RAY)
OR?

Whence

+ k*(RAL) =0

RA; = A 4 Bem*R

We will assume in this chapter that the wave number k has a positive imaginary part, i.e.
Reik < 0, here Re is the real part of the complex number, ik. Function A} tends to zero
as R — oo, letting B = 0 and A = M /4, for this reason we obtain the known expression
for the vector potential of a magnetic dipole in a uniform medium:

. M eikR
A= (5.10)

Now, let us find a solution of eq. 5.5 in cylindrical coordinates (r, z), since the field does
not depend on coordinate ¢. Correspondingly, eq. 5.5 can be written in the form:

OPAr  10A% A
= =Z 4

2 A%
or? r Or 022 tRA =0
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Letting A = U(r)V(2) and applying the method of separation of variables we obtain two
normal differential equations:

0*U 10U

or? tr ror + AU =
o°U
E{—(V—k?)\/:o

where A is the separation constant.

The first equation is called the Bessel equation and its solutions are Bessel functions of
the first and second kind: Jy(Ar) and Yp(Ar):

U(r) = Ado(Ar) + BYp(Ar)

Function Y,(Ar) tends to infinity as r — 0, and therefore it cannot describe a field.
The second equation has a solution:

U(Z) _ Ce_(’\2 —k2)1/2 1 De (A2—k?)1/2

Correspondingly, the general solution of eq. 5.5 can be presented in the form:

x

A:(rr7 Z):/[N (A2—k?)1/22 +N *(/\2,k2)1/22] Jo()\T) dx (511)
0

We will choose the sign of radical: (A2 — k?)/2 in such a way that its real part is positive,
i.e:

Re(\? — k%)Y2 > 0 (5.12)
We will present the field in a medium where the dipole is located as a sum:

ikR
. M et

1

where A{fz is the vector potential of the secondary field.

As is known, the vector potential of the magnetic dipole can be expressed by a Som-
merfeld integral:
MR M de—(V—K)/2)
——=— | 55— Jo(Ar)dA 5.14
4r R 47r/ (\2 — k2)1/? o(Ar) (5-14)
0

Now we are prepared to derive formulae for the vector potential for various positions
of the dipole with respect to the interfaces.

Let us introduce the following notations for different parts of a medium:

(1) stands for the medium where the dipole is placed;

(2) stands for the medium occupied by the bed;

(3) stands for the medium located at the opposite side of the bed.
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5.1.1. The Field of the Magnetic Dipole Located outside the Bed

In accord with eq. 5.11 and taking into account the condition at infinity, expressions for
the vector potential in every part of the medium can be written in the form (Fig. 5.1a):

M A
A = E/ [A—eh'zl + Dle*‘zJ Jo(Arydr  ifz<hy (5.15)
o 1
M o0
A= / [Dae** + Dye*] Jo(Ar)dX  if hy < 2 < hy (5.16)
0
oo
* M -1z .
A3, = 7= [ Dae™ R () dXif 2 <hy (5.17)
0

where h; is the distance from the dipole to the nearest interface; hy = hy + H; H is the
bed thickness; A\; = (A2 — k2)1/2 Ay = (A2 — k2)V/2.

In accord with boundary conditions 5.8 we obtain a system of linear equations with
respect to Dy, Dy, D3, and Dy:

A
)\_e—)\xhl 4 Dlehhl — DQe)\Zhl + Dge—)\zhl
1
—AeTMM 4 A DieMM = AyDye?M — Ay Dge MM (5.18)
Dge)Qh1 + D'_‘3,(37)‘2h2 = D4ehh2
AoDye 2Pz _ Ny Dgem?2hz — _\ Dyje b2

Solving this system we have:

)\K12e2>\1h1 (1 _ e—?AQH)

D, = 5.19
! A (1 — KZe~2eH) (5.19)
2)\K —(A1t+A2)h1 p—2X2H
D, = 12 e (5.20)
(AL + A2) (1 — Kipe2%H)
92 Ae—A1—A2dn
Dy = 5.21
2T Dat ) (1= Kool (5:21)
—(A1—A2)H
D, = iz (5.22)

(M + A2)? (1 — Kem2h )

Substituting these expressions for the coeflicients into eqgs. 5.15-5.17 we have:

=

e

* by A Arlz| K12(1 _ e—2)\2H)e—)\1(2hl_z)
Alz = ’/T/—/q |:e el — 1— K122@72)\2H Jo()\'r) d\ (523)
0
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M [ e hgmh2lemh) (1 4 KjpePe(e=mi=H)
A =
7 4 / (1 + M) (1 — Koe2%aH) Jo(Ar) dX (5.24)
0
M N A0\ (Az—A1)H -2
—(A2—A1 —-A1z
A = 2€ e
% 4r / (M4 22)2(1 - K122e—2)\2H) Jo(Ar) dA (5.25)
0

Parameter z in egs. 5.14-5.25 is the length of the two-coil induction probe.

Usually in induction logging the vertical component of the magnetic field is measured
on the borehole axis (r = 0). In accord with egs. 5.23-5.25 we obtain equations for this
component expressed in units of the primary field:

B = po _ 1 m? Kip(1 — e 2mae)e-m(33-1)
2z z 2 ma 1— K122€_2m2a
0

dm B> 1 (5.26)

X 4 —m1B,—m2(1-8) 1+ K e2m2(lfﬁva))

@_ [™€ € ( 12 .

R / (my +my) (1 — Kfe-2me) dm ifl>2f>1-a (5.27)
0
) 2m3m2e—(m2—m1)ae—m1 .

h® = T dm A< (5.28)

(my +mg)? (1 — Kie=2m2)
where m = Az, h, = H,/(2M/4n2%), m; = (m? — k222)V2, m, = (m? — k22%)1/2,

Kis = (my —my)/(mg + my), « = Hf/z, § = hy/z; H is the bed thickness; A is
the vertical component of the magnetic field of the magnetic dipole in a uniform medium
with conductivity o;.

The latter equation (eq. 5.28) corresponds to the case when the layer is located between
the dipole and the observation point and, as it follows from this formula, the field does
not depend on the position of the layer with respect to the probe coils.

5.1.2. The Field of the Magnetic Dipole Located within the Bed

Unlike the previous case the dipole is located within the bed (Fig. 5.1b), and for this
reason expressions for the vector potential can be written in the form:

oo
M
Al = Z;/Dle)‘lzJo(/\T) dA if z< hy (5.29)
o
* M i A —Aziz| A2z — A2z :
Aj, = o e 22+ Dye™?® 4 Dge™ 2% | Jo(Ar) dA ifhy<z<Mhy (5.30)
a 2

AL, = ._4M / Dye ™M Jo(Arydh  ifz > hy (5.31)
™
0
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where h; is the distance from the dipole to the upper interface of the bed, hy = H — hy;
H is the bed thickness.

By making use of the boundary conditions to determine the unknown coefficients we
have the following system:

Dle—)\lhz _ %ef,\zhz +D2e—A2h2 + Dge’\2h2

MDie™™m = Ne Mh2 4\, Djem 22 )\, Dyetehe

D4e—>\1h1 — _)\%e—)th +D2€"\2h1 +D3e_’\2h1 (5'32)
— M Dge MM = e P2 4 )\ Dyetht Ny Dge M

In this case we will only consider the field inside the bed inasmuch as expressions for the
field outside the bed can be derived from eq. 5.27.
Solving the system 5.32 we find:

AK]QQ#Z)‘zhl (1 + K126*2A2h2)

Dy = .33

2 Az (1 — Kfpe=2H) (5:33)
)\K e—2)\2h2 1 + K e-2)\2h1
Dy="2 ( Al ) (5.34)
Az (1 — Kfje=2%f)

Substituting these expressions into eq. 5.30 we obtain:
oM TA | Moo [0 e 0D 4 90 cosh Aac]
SRR PV Az (1 — Kfyem2heH) (5.35)

0

x Jo(Ar) dA

In accord with egs. 5.7 and 5.35, the expression for the vertical component of the magnetic
field on the dipole axis related to the primary field is:

hy = B0+

m3 Ky, [e —(14+26)m2 4 o=(20=28-Dmz 4 5[ 6720M2 coshm,
/ 12 12 2] 4om (5.36)

mg (1 — KZe2omz)

where @ = H/z, 3 = hy/z.
If coils of the probe are located symmetrically with respect to interfaces, that is, 20 =
a — 1, the latter equation can be presented as:

(5.37)

h, ho m3K126'2°‘"‘2 e®2 4+ K19 cosh my
N 1— KZe2am2
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5.1.3. The Field of the Vertical Magnetic Dipole in the Presence of a Thin
Conducting Plane

If the probe length is significantly greater than the bed thickness (Fig. 5.1c¢) and its
conductivity essentially exceeds that of a surrounding medium and, finally, the skin depth
inside the bed is much greater than its thickness, the bed can be replaced by a thin
conducting plane with conductance S, equal to product of conductivity and thickness of
the bed. Instead of the exact boundary conditions we can make use of two approximate
conditions which do not require any information about the field inside the bed. The first
boundary condition is continuity of the tangential component of the electrical field:

E1p = Eg (5.38)

Circulation of the magnetic field along contour abed is equal to the current piercing this
contour (Fig. 5.1¢). For this reason:

}{Hdl:ledr—ngdr=adrdhE¢ as dh — 0
or
Hy, — Hy, = SE, (5.39)

where S is the conductance of the thin layer.
In accord with egs. 5.7, 5.38 and 5.39, the boundary conditions for the vector potential
have the form:
0A;, 0A;,
0z 0z

For function A} outside of the conducting surface we have:

Al, = A, = —iwpSA;, asz=—h (5.40)

Al = M [ie*l'” + Die ™| Jo(ar)dr  ifz< Iy
47( )\1
0

o (5.41)
* M —Az2z :
Aj, = yp. Dye %2 Jo(Ar) dA if 2 2 hy
0

Substituting these expressions into egs. 5.40 we obtain the system for determination of
D, and Ds:

— Dye*h 4 DyeMM = ie_’\"“
Aq

A DM (0 - icu,u.S’)Dge_)“h1 = Je MM
Solving this system we have:

AKZe=2Mh1 22

D=3 D=0
PN - K2) 272N — K2

(5.42)
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here k2 = iwusS.

Therefore:
M A AKZe= 2l
A A ekl
47r [Ale * nen kg Pt dA
. M 22 Az
A, = = K?e Jo(Ar) dA

Correspondingly, for the vertical component of the magnetic dipole along its axis we have:

o0
3 1+2
B — p© 1T _mient)
2 my(2my — ny)
0

- (5.43)
3. m1
hg) = /L dm
0

2mq — ny

where m = Az, m; = (m? — k222)Y/2 « = hy /2, n, = iwuSz.

Formulae derived in this section have allowed us to investigate the vertical characteris-
tics of two-coil induction probes for various frequencies and conductivities of medium as
well as to describe curves of profiling.

First let us consider the range of small parameters when skin depth in every medium
is greater than probe length and bed thickness.

5.2. The Vertical Responses of the Two-coil Induction Probe in
the Range of Small Parameters

Suppose that the frequency and the conductivity of a medium are so low that both
parameters n; = o pwz? and ny = oyuwz? are much less than unity. In this case the
theory of induction logging in a medium with horizontal interfaces can be easily developed.
There are at least two approaches for the solution of this problem. One of them is based
on obtaining asymptotic formulae proceeding from the exact solution developed in the
first section. The second approach makes use of the concept of geometric factor of thin
layer suggested by H. Doll. We will describe here the theory of the two-coil induction
probe applying geometrical factor presentation.

5.2.1. Geometric Factor of an Elementary Layer

In accord with H. Doll a layer with a thickness which is much less than the probe length
and is equal to unity, will be called the elementary layer. The geometric factor of such
an elementary layer can be found by performing a summation of geometric factors of all
elementary rings located at the same height z with respect to the origin and forming this
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layer. The radius of the elementary rings changes from zero to infinity. For this reason
an expression of the geometric factor of the elementary layer, GG,, has the form:

G.= /qdr (5.44)
0

where ¢ is the geometric factor of the elementary ring.
Making use of eq. 3.104 we have:

oo

6t rdr
T3 vz - 9

where L is the probe length.
Introducing notations: L/2+ z =m, L/2 — z = n, and r® = z, we obtain:

_ / rdzx
2J (22 + (m? + n2)z + m2n2*?

or (5.45)

/ zdzx
(x? + bz + ¢)3/?

where m? +n? = b, m?n? =c.
The integral in eq. 5.45 is tabulated and it is equal to:

Lc B Lb
(4c — b2)c/2 2(4c — b?)

or

L
2(m +n)?

z

There are two possible cases such as:

em>0 n>0

em<0 n<0.

In the first case the elementary layer is located between the coils of the probe (L/2 > z
and z > —L/2). Then its geometric factor, G, is:

G.=1/2L (5.46)
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Figure 5.2. Geometric factor of the elementary layer GG, as a function of z.

In the second case the layer is located outside the probe (z > L/2, z < —L/2). Then we
have:

G, = L/8* (5.47)

As follows from egs. 5.46-5.47 the geometric factor of the whole space is equal to unity.
In fact we obtain:

L fd: L L fdz L2 1 L2
=2 Z, 242 222,242 4
¢ 8/z2+2L+8/z2 sL 27 %L (5.48)
L2 L/2

According to egs. 5.46-5.47 the geometric factors of elementary layers located outside the
probe decrease inversely proportional to z? while geometric factors of elementary layers
located inside the interval between coils of the probe are equal to each other regardless of
z. A curve illustrating the behavior of geometric factor G, as a function of z is shown in
Fig. 5.2.

Values of geometric factor of elementary layers and the distance, z, between them and
the middle of a two-coil induction probe are plotted along horizontal and vertical axis,
respectively.

Inasmuch as this dependence of function G, on z reflects sensitivity of the probe to
induced currents in elementary layers, H. Doll called this function G, the vertical response
of a two-coil induction probe.
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Figure 5.3. Position of the probe with respect to the bed.

5.2.2. Geometric Factor of a Layer with a Finite Thickness

Proceeding from the expression for the geometric factor of an elementary layer it is not
difficult to find geometric factors of a layer with a finite thickness. For this purpose it
is necessary to present the layer as a sum of elementary ones and perform summation
of their geometric factors. Let us consider several positions of the two-coil probe with
respect to the bed.

The probe is located outside the bed of finite thickness

In order to derive the geometric factor of this bed (Fig. 5.3a) we have to integrate function
q = L/82% by 2 within the interval from z; to 2, where 2; and z, are coordinates of the
bed boundaries. Then we have:

gL [d_1L <l - l) (5.49)

8 22 8 21 Z9
z1

Assuming that the coordinate origin is placed at the middle of the bed and taking into
account that z; = zo — L/2 and 25 = 29 + L/2, instead of eq. 5.49 we have:

LH 1

2 gy o

Gy =

where H is the bed thickness; zg is the distance from the middle of the bed to the center
of a two-coil probe.

This equation is applied if the upper coil of the probe does not intersect the low bound-
ary of the bed, i.e. it is valid if 2y 2 L/2 or zp > L/2 + H/2.
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Figure 5.4. Position of the probe with respect to the bed.

One coil of the probe is located inside the bed while the other is outside of it

For deriving the geometric factor of the bed with thickness H for such a position of the
probe (Fig. 5.36) we have to add geometric factors of parts of the bed located outside and
inside the probe. In accord with eq. 5.47 the first of them, G, is:

e L1 __ v N_1_ __ H
"T8\L/2 m+H/2) 4 8(z+ H/2)

The geometric factor of that part of the bed which is located inside the probe and has
thickness h; is calculated as:

1 1 /L H
GQ:E’“‘E(E"Z”?)

since hy = L/2 — (z — H/2). Therefore, for the geometric factor of the bed we have:

1 1 L
Gb=G1+G2—*"‘—(Z0—‘H/2)—m

= o (5.51)

This formula is applied until the upper receiver of the probe is located within the bed if
its thickness is smaller than the probe length, H < L, i.e. when zo > L/20or L/2—H/2 <
20 < L/2+ H/2. In the case, when the bed thickness is greater than the probe length
(H > L) this formula can be used until the lower coil does not intersect the lower boundary
of the bed, i.e. when z; > ~L/2or 20 > H/2— L/2.

The probe is located against the bed
There are two possible variants (Fig. 5.4):
e The probe length exceeds the bed thickness (H < L).

e The thickness of the bed is greater than the length of the probe (H > L).
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It is obvious that for the first variant we have:
Gy,=H/2L (5.52)
At the same time for the second variant we have:
oL L(1 1 L 1

7oL " 8\L/2 zm+H/2) 8\L/2 H2-2z

1 1 L 1 L LH

=2 I 8 H2) Ta 8 HR) T S (H2)

(5.53)

These equations can be applied provided that:
0<z<L/2—-H/2 ifH<L

and

0< < H/2-L/2 iftH>1L

Formulae derived for geometric factors allow us to determine the apparent conductivity
for a two-coil induction probe located in a medium with two horizontal interfaces. As was
shown in Chapter 4 we have:

T = 0'1G1 -+ O'QGQ (554)

induction probe in a medium with one interface. where o, and o, are the conductivities
of the bed and the surrounding medium while G; and G, are their geometric factors. By
definition the sum of these factors is equal to unity, i.e:

G,=1-G,

Before we will investigate the apparent conductivity in the presence of a bed having a
finite thickness let us consider the influence of one horizontal interface.

If the probe is located in a medium with conductivity o, (Fig. 5.5a) then in accord with
eq. 5.49 the geometric factors of both half-spaces are:

L L 1 1 L 11
Glz— G_' < )+§‘Z+_

8z ° 8\L/2 = 8L/2
and
L
Oa =03 — (02 — 01)8_2:0

This formula is applied provided zy > L/2, i.e. the coil of the probe does not intersect
the interface.
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Figure 5.5. The two-coil induction probe in a medium with one interface.

In the case when coils of the induction probe are located in different parts of the medium
(Fig. 5.5b) the geometric factors are:

g1l  1/L \_1
YTRL/2 T 2b\2 ") 2
GQ—E(§+ZO)+_——§+_

Correspondingly, for the function o, we have:

1 z
O = 5(0’1 —+ 0‘2) + (01 - Uz)i

In that case when the probe center is in a medium with conductivity o3, i.e. 25 < 0,
formulae derived above remain valid provided that conductivities ¢, for various and o4
are changed by roles, namely:

20

aazi(ol +Ug)+(01—02)i —L/2<2<0
L

oa:Ul_(Ul_U2)_— _m<20<_L/2
820

Apparent conductivity curves for various positions of the probe with respect to the inter-
face are shown in Fig. 5.6.

Let us notice that the value of the apparent conductivity is equal to the mean value of
both conductivities when the probe center is located at the interface.

Now we will investigate apparent conductivity curves in the presence of a bed. Inasmuch
as function o, is symmetrical with respect to the middle of the bed we will restrict
ourselves to considering this function when zj is positive.

In deriving formulae for apparent conductivity for various positions of the probe we will
make use of the equations of geometric factors of a bed with finite thickness.
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Figure 5.6. Curves of the apparent conductivity for various positions of the probe with
respect to the interface.

The probe is located outside the bed

The expression for the apparent conductivity is:
0, = 01G1 + 02Go

The geometric factor of bed, Gy, for a given position with respect to the probe is:

LH
© =8z = e

The geometric factor of the surrounding medium is presented as a sum:
G2 = Gia + Gay

where G5 is the geometric factor of that part of the surrounding medium which is located
above the bed, and Gy is the geometric factor of the surrounding medium located beneath
the bed. Correspondingly:

L L

G2 = B+ H/2) B(m—H/2) © !
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Substituting expressions derived for geometric factors we have:

LH
0y =02+ (03 — 01)8 (5.55)

[26 — (H/2)]

This formula is applied if the upper coil does not intersect the low boundary of the bed,
le. if zp 2 H/2+ L/2.

One of the coils is located within the bed

In this case we have:

0o = 02(G12 + Go2) + 061Gy

here:
o _1_m-H2 L
T2 2L 8(z0 + H/2)
L 1 1 /L H
Grog= —— oo =24 = [Z _a
127 8z + H/2) 22 4+2L(2+Z 2)
and
1 zp— HJ2 L . L 1 zp— HJ2
a - — — oy | ————— -+ ———
Ga= 115 oL 8o+ H/2)| " 72 |8(z + H/2) " 2 2L
or
01+0'2 09 — 01 (0’2—-0'1)L
- — HJ2) + 20U~ 5.56
Oa R YA G AT peray ) (5:56)

This formula is applied if:

L H L H
Lol <2+ HH<LL
;g Swsyty  HH
and

H L

The bed is located between the probe coils or the probe is located within the
interval of the bed

If the bed is located between the probe coils (H < L) we have:

Oq = UlGl + 0‘2G2



where:
G, = H/2L
Go= G2+ Gy

1 1 |L H 1 1 (L H
Gu=g ﬁ[TZO‘ﬂ G z*z[fzo 5]
and

2| i

_L Z+§ — +( _ )E_
2L\ Ty )| T T\ Ty

This equation is applied if 0 < 29 < L/2— h/2,as H < L.
If the probe is located within the interval of the bed (H > L) we have:

H 1
Ua:01i+0'2 1+i 20 —

O, = 0'202 + (71G1

and
Gy =G24+ G
where:
L L

G = AR AN Go = TH N

8(204'3) 8(-5—20)

LH
Gi=1+ e
2 _ [ =
8 [zo (2) }

and

This formula is applied for 0 < 2y < H/2 — L/2.
Now let us introduce new variables:

0. = 01+ (01 — 03)

zo =1L H=¢L

Then the formulae have the form:

'3
(W) o =02+ (o0 = o) g )

(5.57)

(5.58)
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Figure 5.7. Curves of function ¢,/ for various H/L (H/L > 1). Curve index o0, /0.

ifn>0.5+§

1 1 09 — 01 3 03 — 01
@ oe= ot gt 2% (1= 5) 4

ifn<0.5+§ as H> L, ie £<1and for

7720.5——2— as H>L; £>1, n2=

- 0.5

DNy

(3a) aa:az+(al_02)_§-; £<1
if0<n<0.5—§

01— 02 4

8 P (§/2)7
if§>1,0<n<§~0.5

(3b) g, = 01 +

Curves showing the dependence of function o,/0; on the ratio of bed thickness to probe
length, if H/L > 1, are presented in Fig. 5.7. The center of two-coil probe coincides with
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Figure 5.8. Curves of ratio o,/0; as a function of H/L (H/L < 1). Curve index o;/0s.

the middle of the bed. Calculations have been made using the equation:

Oa o2 i
__1+<0—1 1) - (5.59)

As is seen from these curves with an increase of the conductivity of the surrounding
medium and a decrease of the bed thickness the influence of the surrounding medium
becomes greater. If the resistivity of the bed is significantly greater than that of the
surrounding medium (0; < o3}, the apparent conductivity approaches the conductivity
of the bed provided that its thickness is many times larger than the probe length (H > L).
In other words, in such cases the vertical characteristic of the two-coil induction probe is
essentially worse than the corresponding response of the normal probe.

If the bed conductivity is greater than that of the surrounding medium for most typi-
cal values of o1/05 the influence of the surrounding medium becomes insignificant when
H/L > 4.

Curves of function o,/07, when the bed thickness is smaller than the probe length, are
given in Fig. 5.8.
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Formulae for calculation have the form:

Oq [} (o] H

Je 22 122} 2

=t ( Ul) o (5.60)
or

Oa g1 H

Ja _ 1) 2= )

% -1y <02 ) I (5.61)

In accord with eq. 5.61 if the bed resistivity is higher than that of the surrounding medium
and its thickness is less than 0.2L such a bed cannot be practically noticed on curves of
induction logging. This fact can be interpreted as an advantage of induction logging
with respect to electrical logging where screening often makes interpretation sufficiently
complicated.

In contrary, thin low resistive layers have essential influence on curves of induction
logging. In fact with an increase of ratio /g5 the value of the apparent conductivity, o,,
tends to a constant equal to S1/2L (5] is the longitudinal conductance of the bed: a1 H),
and it can turn out to be much greater than o,. This fact is well seen from curves with
index 01/02 > 1 (Fig. 5.8). Let us assume that the probe is located against a system of
thin layers. Then an expression for apparent conductivity, o,, can be obviously presented
as:

"L hy "\ hy H o H
0’a=0'2<1—22—L>+012ﬁ202(1—i)+ oL (562)
i=1 i=1

where h; is the thickness of i-layer; n is number of layers, and H = )" | h;.

Thus, in the range of small parameters a group of thin beds located against the probe
is equivalent to one bed having the same conductivity and with a thickness equal to the
sum of thicknesses of all beds. This principle of equivalence by S can be easily generalized
for the more common case when conductivities and thicknesses of layers are different.

5.3. The Theory of the Two-coil Induction Probe in Beds with a
Finite Thickness

In the previous section we have considered vertical responses of the two-coil induction
probe in the range of small parameters as the skin effect could be neglected. Now, a more
general case will be investigated proceeding from the results of calculation by the exact
formulae derived in the first section.

We will assume that the two-coil probe is located symmetrically with respect to the
boundary interfaces. Then, according to egs. 5.28-5.37, the vertical component of the
magnetic field on the z-axis, expressed in units of the primary field, is defined by three
parameters:

e ratio of the probe length, L, to the thickness of skin depth, hq, in the bed: L/hy



332

e ratio of conductivities of the bed and the surrounding medium: o;/c,

o ratio of the bed thickness, H, to the probe length: H/L.

We will investigate frequency responses of quadrature and inphase components of the
field measured by the receiver coil of the induction probe. Examples of the responses are
presented in Figs. 5.9-5.22. Analysis of results of calculations allows us to outline the
main features of field behavior, such as:

1. For small values of parameter L/h; (low frequency, high resistivity) the inphase
component of the secondary field is much smaller than the quadrature component: Inh, <
Qh,. With an increase of parameter L/h; the inphase component, In k¢, increases and
oscillating approaches unity.

Comparing responses of quadrature and inphase components we can see that in the
range of small parameters induced currents in the surrounding medium have an influence
on the inphase component, In k%, which is much stronger than that on the quadrature
component, Qh,. In the limit, as parameter L/h; tends to zero, the inphase component
of the magnetic field approaches to that of a uniform medium with the conductivity of
surrounding medium, o:

Inh, - InhS(0y) as L/hy — 0

It is essential that this result does not depend on ratio of the bed thickness to the probe
length, H/L, as well as the ratio of conductivities. In other words, with a decrease of
parameters L/h; the bed becomes transparent for the inphase component regardless of
how the probe length is small. It means that within this range of parameters L/h;, the
vertical response of the inphase component is much worse than that of the quadrature
one.

2. In the range of small parameters the quadrature component of the field is directly
proportional to frequency and conductivity. Such behavior of the quadrature component is
inherent to Doll’s domain, which therefore represents the left-hand asymptote of frequency
response of function: Qh,(L/h;). With an increase of parameter L/h; the quadrature
component increases, reaches a maximum and then oscillating goes to zero. Thus at
the left part of the frequency response of the secondary field the quadrature component
prevails while at the right part the inphase component In A is dominant.

It is appropriate to notice that the left-hand part of the frequency response of h,(L/h)
is of a great practical interest because for frequencies used in conventional induction
logging and the most typical geoelectrical sections parameter L/h; is usually less than
unity.

In accord with eq. 5.37 the expression for vertical component of the magnetic field along
the dipole axis is:

o0
3 -2
b — RO +/m Kiqe™o™m2 eo™M2 4 K1y cosh my
z T Yz _ 2 ,—2
J mo 1 K128 amz
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where hY is the field in a uniform medium with a bed conductivity expressed in units of
the primary field:

ma = (m?—ina)"?  my=(my—in)? Ky = (mg—my)/(ma+my)

n = oy pwl? ng = oouwl? = Nn)N = g5/0; a=H/L.

Let us consider an integral at the right-hand part of the formula for h, as a function of
n; and find its approximate value when n; — 0. Expanding the integrand in a series by
small parameters n; and considering only the first term we obtain for the integrand:

1
_Z(N — e @™

Correspondingly, the integral becomes equal to:

i
—E(N — DoguwL?

Thus, the field at the range of small parameter n; is:

hy =

ioy pw L2 i (01
g2

1 fo 2
5 1 1) oopuwl

Making use of relation between the quadrature component of field h, and the apparent
conductivity:

2
04 — ‘u,—wi—i Q hz (563)
we obtain an expression for g,, as the two-coil induction probe is located symmetrically
within the bed boundaries and L < H:

o, =01+ —1——(02 —01) faxzl (5.64)
200
The latter completely coincides with eq. 5.59.

Therefore, Doll’s theory is in fact the theory of very small parameters, which character-
ize the linear dimensions of a model, expressed in units of the skin depth. For example,
with a decrease of the probe length parameter L/h; decreases also. From a physical point
of view this means that the influence of induced currents near the dipole, which are shifted
in phase by 90° and do not interact with each other, increases.

Within Doll’s domain there is a simple relation between the field, Q h,, or 0,4, and the
parameters of a medium. For example when the probe is located symmetrically within
the bed (eq. 5.64) the value of o,/0; depends on two parameters: oz/0; and H/L only,
and it does not depend on absolute values of conductivity and frequency. For this reason
the interpretation of induction logging within Doll’s domain is in essence the same as in
resistivity logging based on direct currents.
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Figure 5.9. Frequency responses of Inhs.
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