

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 Raffaele Garofalo.

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of O’Reilly Media, Inc.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 LSI 6 5 4 3 2 1

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com. Visit our website at microsoftpress.oreilly.com. Send
comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious, and no association with any real company, organization, prod-
uct, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor their
respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly
or indirectly by such information.

Acquisitions and Development Editor: Russell Jones
Production Editor: Kristen Borg
Production Services: Octal Publishing, Inc.
Technical Reviewer: David Hill
Indexing: Fred Brown
Cover: Karen Montgomery
Illustrator: Robert Romano

978-0-735-65092-3

	 	 v

Contents at a Glance
1	 Introduction to Model View ViewModel and Line of Business

Applications . 1
2	 Design Patterns . 25
3	 The Domain Model . 61
4	 The Data Access Layer . . 91
5	 The Business Layer . 123
6	 The UI Layer with MVVM . 149
7	 MVVM Frameworks and Toolkits . 179

	 	 vii

Table of Contents
Introduction . xi

Conventions and Features in This Book . . xv

Acknowledgments . xviii

Errata and Book Support . xix

1	 Introduction to Model View ViewModel and Line of Business
Applications . 1

The Model View ViewModel Pattern . . 1
Line of Business Applications . 2
Choosing the Right Technology . 3

Silverlight or WPF? . 4
Microsoft’s UI-Building Tools . . 5

Composition of a LOB User Interface . 9
The Menubar . 11
The Toolbar . 12
The Tooltip (and Its Abuse) . 12
Notifications and Alerts . 13
The Ribbon Bar . 15
General Style and Control Considerations . 16

Separation of Concerns . 17
Layers, Tiers, and Services . 19

Summary . 23

2	 Design Patterns . 25
An Overview of Design Patterns . . 25

Classifying Design Patterns . 26
UI Design Patterns . 29

The MVC Pattern . . 30
The MVP Pattern . . 34
The PM Pattern and MVVM . 39

Advanced Design Patterns and Techniques . 43
The Inversion of Control Pattern . 44
DSLs: Writing Fluent Code . . 53
Introduction to TDD . 57

Summary . 60

viii	 Table of Contents

3	 The Domain Model . 61
Introduction to Domain-Driven Design . 61

DDD Terminology . 62
Analyzing the CRM Domain . 63

Domain Entity and Data Transfer Object . 64
The POCO Object and the O/RM . 66
Development Approaches of a Domain . 67

Transaction Script . 68
Database-Driven Approach . 69
Domain-Driven Approach . 70

How To Create an Object In DDD . 71
Factory Patterns . 72

Domain Entities Validation . 75
Classic Validation . 75
Validation Using Attributes and Data Annotations 77
Available Validation Frameworks . 79

Unit Test the Domain Model . 80
Sample Code: The CRM Domain Model . 81

The Person Context . 81
The Order Domain . 87

Summary . 89

4	 The Data Access Layer . . 91
Introduction . 91
The Database and Stored Procedures . 92
Choosing an O/RM . 93

Microsoft Entity Framework . 95
NHibernate . 98
Other O/RMs for .NET . 100

The Unit of Work . . 101
Lifecycle of a UoW . 102
Identify a Business Transaction . . 102

The Repository Pattern . 104
Test-Driven Development: The Data Layer . 106
Building a Distributed Data Layer with RIA and WCF . 108

	 Table of Contents	 ix

Sample Code: The CRM Data Access Layer . 112
A Flexible IUnitOfWork Interface . 112
Mapping the Domain Model Using Entity Framework 113

Mapping the Domain Using NHibernate . 117
Getting the Tools . 118
The UnitOfWork and the ISession . 119

Summary . 121

5	 The Business Layer . . 123
Introduction . 123
A Business Rule Is Not a Validation Rule . 124
Business Rules by Service . . 127

The Facade Pattern . . 128
Business Rules by Workflow with WF 4.0 . 129

Different Ways of Running a Workflow . 130
Third-Party Toolkits . 133

Technologies for the Data Validation . 134
Rule Engine and Business Rule Engine . 136

Business Layer Considerations . 137
When Do I Need to Create a Business Layer? . 137
Bad BLL Habits . 138

Sample Code: The Business Service Layer . . 139
Data Validation with the Enterprise Library 5.0 . 139
A Generic Workflow Engine . 141
Service for Business Transactions . 143

Summary . 147

6	 The UI Layer with MVVM . 149
Introduction to the MVVM Pattern . 150
The View . 151

Blendability: A Dummy ViewModel . . 152
The Model . 155
The Command in WPF and Silverlight . 157

A Workaround: An MVVM Command . 158
Re-evaluate ICommand Execution . . 160

The ViewModel . 161
The INotifyPropertyChanged Interface . 162
The IDataErrorInfo Interface . 164

xi

Introduction
The W ndows Presentat on Framework (WPF), S ver ght, and W ndows Phone 7 are the atest tech-
no og es for bu d ng flex b e user nterfaces (UI) for app cat ons bu t w th M crosoft techno ogy
A three re y on the XAML markup anguage to descr be UI e ements and ayout, and you can pro-
gram app cat ons for a three p atforms w th the most common of M crosoft NET Framework an-
guages V sua C# or V sua Bas c NET If you are a NET deve oper p ann ng to create a new L ne of
Bus ness (LOB) app cat on us ng the NET Framework, you shou d cons der adopt ng one of these
techno og es as your UI techno ogy At the same t me, as you start p ann ng to bu d an app ca-
t on based on one of these techno og es, you shou d a so ser ous y cons der earn ng and app y ng
the Mode V ew V ewMode (MVVM) presentat on pattern, a des gn pattern created spec fica y for
these techno og es

And that’s what th s book s about You m ght be wonder ng, “Why another book on WPF?” Or,
f you have a ready ooked at the Tab e of Contents, you m ght be th nk ng, “Why another book
about ayer ng and des gn patterns?”

To answer those quest ons, et me start by say ng that over the years, I have not ced that
what deve opers ask for the most s not the “B b e of patterns” or the “B b e of how to ayer
an app cat on;” nstead, they want a s mp e, stra ghtforward book that gu des them through the
deve opment cr ter a for a rea -wor d, yet s mp e, app cat on that uses and explains patterns—but
that s a so reusab e n future projects as a “temp ate” for other app cat ons

WPF and S ver ght are young techno og es, and the percentage of deve opers mov ng to th s new
way of des gn ng the UI s st sma There are severa reasons for th s F rst, the earn ng curve s
re at ve y h gh If you’re used to W ndows Forms, Java Sw ng, or De ph , the way you des gn and
structure an app cat on us ng XAML and WPF s s gn ficant y d fferent— n fact, I wou d ca t
“revo ut onary”

In the past, I have used we -known patterns to bu d app cat ons, nc ud ng the Mode V ew Pre-
senter pattern w th W ndows Forms app cat ons, and the Mode V ew Contro er pattern w th ASP
NET app cat ons But w th WPF, these two approaches are now obso ete, because they can’t take
advantage of the powerfu eng ne prov ded by XAML Of course, you can st take advantage of
the b nd ng eng ne of WPF us ng the Mode V ew Presenter pattern, but the effort requ red s usu-
a y too arge Fortunate y, MVVM prov des an a ternat ve

M crosoft, n co aborat on w th some arch tects, has rev sed the or g na Presentat on Mode that
was proposed years ago by Mart n Fow er Th s rev s on (named the Mode V ew V ewMode pat-
tern) s the perfect approach for WPF and S ver ght because, we , t was des gned spec fica y
for them! Unfortunate y, ke XAML, MVVM s a re at ve y new techno ogy, so at the moment,
there sn’t a ot of nformat on about mp ement ng t There are a few b oggers try ng the MVVM
approach and b ogg ng about t; others are nvo ved n bu d ng MVVM-spec fic too k ts But near y
everyth ng s st exper menta , and there are few tru y concrete examp es

xii	 ﻿

There n es the rat ona e for a book about bu d ng a LOB app cat on us ng MVVM As you pro-
ceed through th s book, you w see examp es that show how to bu d a stra ghtforward Customer
Re at onsh p Management (CRM) program w th WPF 4, S ver ght 4, and the MVVM pattern The
book gu des you through the ent re arch tectura process, ustrat ng the correct approach to us ng
MVVM You’ a so use some other new techno og es de vered w th M crosoft NET 4, such as Man-
aged Extens ons, W ndows Workflow Foundat on 4, and of course, the Ent ty Framework

F rst, you are ntroduced to the too s Next, you move ahead to bu d the CRM, start ng w th the
doma n mode , app y ng a s mp e techn que to pers st the data n a re at ona database by us ng
two of the most popu ar Object-Re at ona Mapper (O/RM) systems ava ab e for NET the Ent ty
Framework and NH bernate Then, see how to make everyth ng more flex b e us ng the MEF
framework

Fo ow ng that, you earn to app y bus ness og c and data va dat on to th s mode n a way that
fu fi s the requ rements of the MVVM pattern In th s phase, you a so ook at W ndows Work-
flow Foundat on (WF) 4 0, the powerfu , new workflow eng ne by M crosoft, and study the steps
requ red to bu d a s mp e workflow eng ne

The rema n ng chapters a focus on MVVM There are four major concepts that you must earn to
use MVVM correct y commanding, the template, the binding engine, and how to orchestrate every-
th ng together At the end of th s process, you w have v s ted a the ayers requ red to comp ete a
c ass c LOB app cat on, but more mportant y, you w be ab e to recyc e the parts descr bed here
as a temp ate for bu d ng future app cat ons Of course, there are some d fferences between WPF
and S ver ght, so th s book w try to cover those gaps where poss b e

F na y, you w take a br ef tour of the MVVM too k ts that are a ready ava ab e, such as PRISM, a
compos te app cat on framework for WPF and S ver ght Th s w he p you to determ ne when and
how you shou d use each as part of the process of bu d ng a sma and flex b e MVVM framework

Overa , the key goa of th s book s to prov de a comp ete step-by-step gu de for us ng WPF/S ver-
ght n conjunct on w th MVVM for creat ng gener c code that you w be ab e to use and reuse n

the future

Building Enterprise Applications with Windows Presentation Foundation and the Model View View-
Model Pattern prov des not on y a so d ana ys s of how the MVVM pattern works and how to app y
t w th WPF and S ver ght, but t a so offers an exhaust ve gu de to bu d ng ayered app cat ons
by us ng the most common and accepted techn ques Th s book ntent ona y doesn’t show all
the re ated code for any g ven project; nstead, t focuses more on the pr nc p es and patterns that
deve opers shou d app y to create we -structured and easy-to-ma nta n LOB app cat ons

The book ana yzes each ayer that composes a LOB app cat on, start ng w th the Doma n Mode
(a so known as the Bus ness Layer), mov ng to the Data Layer (nc ud ng an overv ew of Ent ty
Framework and NH bernate), and end ng w th a chapter ded cated to Bus ness Ru es and W ndows
Workflow Foundat on Of course, you w a so find a chapter ded cated to the MVVM pattern

xiii

In add t on to the patterns and pract ces exp a ned n the book, Chapter 7 conta ns a usefu st of
open source frameworks and p ug- ns used by others n the NET commun ty to bu d app cat ons
that mp ement the MVVM pattern w th WPF or S ver ght

Who Should Read this Book
Th s book s for any NET deve oper or software arch tect who wants to earn how to bu d LOB
app cat ons us ng we -known enterpr se arch tecture patterns, nc ud ng the MVVM pattern Read-
ers shou d a ready have a so d genera know edge of programm ng, be fam ar w th the overa
purpose and app cat on of patterns, and of course, know WPF, S ver ght, or W ndows Phone 7
Wh e the book touches a these top cs, t doesn’t attempt to teach bas c programm ng or pattern
app cat on pr nc p es Instead, t’s a med at deve opers and arch tects who have a ready bu t NET
app cat ons and are now mov ng toward des gn ng and bu d ng enterpr se app cat ons w th NET

Spec fica y, th s book targets WPF or S ver ght deve opers who a ready have exper ence w th one
or both of these techno og es, but who don’t yet know how to mp ement the MVVM pattern—or
deve opers who have some exposure to MVVM and want to master the techn ques to app y the
MVVM pattern effect ve y To do that, you must have some bas c know edge of WPF and S ver ght;
f you don’t, I suggest you fam ar ze yourse f w th the top cs of routed commands, data b nd ng,
data temp ates, and sty ng—before read ng th s book

Assumptions
W th a heavy focus on des gn patterns, software arch tectures, and ag e techn ques and methodo -
og es, th s book assumes that you have a bas c understand ng of how to create a WPF or S ver ght
app cat on w th NET Framework and V sua Stud o It further assumes that you have a ready deve -
oped an app cat on that connects to a database, nc ud ng a UI that nteracts w th users

A the samp e code prov ded n the book was created us ng the V sua C# anguage prov ded w th
NET Framework 4 You need a so d understand ng of C# to fo ow and use the code The book
works w th both WPF and S ver ght extens ve y, so you shou d have at east a bas c know edge of
these two techno og es (and a firm ground ng n the XAML markup anguage as we —the book
uses some XAML samp e code)

Organization of This Book
Th s book has been deve oped n such a way that each chapter focuses on a spec fic top c The first
chapter, “Introduct on to Mode V ew V ewMode App cat ons,” s a genera ntroduct on to LOB
app cat ons, the r components, and the r structure Chapter 2, “Des gn Patterns,” shows a comp ete
overv ew of a the we -known des gn patterns and arch tectura patterns used to deve op enter-
pr se app cat ons, and more genera y, to deve op oose y-coup ed components Chapter 3, “The
Doma n Mode ,” s an ntroduct on to the doma n mode and Doma n-Dr ven Des gn (DDD) It us-
trates how to ach eve DDD des gn goa s, and how to avo d common m stakes that typ ca y occur

	﻿ 	 xv

Conventions and Features in
This Book

Th s book presents nformat on us ng convent ons des gned to make the nformat on readab e and
easy to fo ow

In most cases, the book nc udes separate exerc ses for V sua Bas c programmers and V sua C#
programmers You can sk p the exerc ses that do not app y to your se ected anguage

n	 Boxed e ements w th abe s such as “Note” prov de add t ona nformat on or a ternat ve
methods for comp et ng a step successfu y

n	 Text that you shou d type (apart from code b ocks) appears n bo d

n	 A p us s gn (+) between two key names means that you must press those keys at the same
t me For examp e, “Press A t+Tab” means that you ho d down the A t key wh e you press the
Tab key

n	 A vert ca bar between two or more menu tems (for examp e, F e C ose), means that you
shou d se ect the first menu or menu tem, then the next, and so on

System Requirements
You w need the fo ow ng hardware and software to work w th the code and examp es n th s
book

n	 Any of the fo ow ng operat ng systems W ndows XP w th Serv ce Pack 3 (except Starter Ed -
t on), W ndows V sta w th Serv ce Pack 2 (except Starter Ed t on), W ndows 7, W ndows Server
2003 w th Serv ce Pack 2, W ndows Server 2003 R2, W ndows Server 2008 w th Serv ce Pack
2, or W ndows Server 2008 R2

n	 V sua Stud o 2010, any ed t on (mu t p e down oads m ght be requ red f us ng Express Ed -
t on products)

n	 SQL Server 2008 Express Ed t on or h gher (2008 or R2 re ease), w th SQL Server Management
Stud o 2008 Express or h gher (nc uded w th V sua Stud o, Express Ed t ons requ re separate
down oad)

n	 1 6 GHz or faster processor (2 GHz recommended)

n	 1 GB (32-B t) or 2 GB (64-B t) RAM (Add 512 MB f runn ng n a v rtua mach ne or SQL Server
Express Ed t ons; more for advanced SQL Server ed t ons)

n	 3 5 GB of ava ab e hard d sk space

xvi	 ﻿

n	 5400 RPM hard d sk dr ve

n	 D rectX 9 capab e v deo card runn ng at 1024 × 768 or h gher reso ut on d sp ay

n	 DVD-ROM dr ve (f nsta ng V sua Stud o from DVD)

n	 Internet connect on to down oad software or chapter examp es

Depend ng on your W ndows configurat on, you m ght requ re Loca Adm n strator r ghts to nsta
or configure V sua Stud o 2010 and SQL Server 2008 products

Code Samples
Most of the chapters n th s book nc ude exerc ses that et you nteract ve y try out new mater a
earned n the ma n text A samp e projects, n both the r pre-exerc se and post-exerc se formats,
are ava ab e for down oad from th s book’s page on the webs te for M crosoft’s pub sh ng partner,
O’Re y Med a

http://oreilly.com/catalog/9780735650923/

C ck the Examp es nk on that page When a st of fi es appears, ocate and down oad the Mvvm-
Crm z p fi e

Note  In add t on to the code samp es, your system shou d have V sua Stud o 2010 and SQL
Server 2008 nsta ed The nstruct ons be ow use SQL Server Management Stud o 2008 to set
up the samp e database that s used w th the pract ce examp es If ava ab e, nsta the atest
serv ce packs for each product

Installing the Code Samples
To nsta the code samp es on your computer

	 1.	 Unz p the MvvmCrm z p fi e that you down oaded from http://oreilly.com/
catalog/9780735650923/

	 2.	 If prompted, rev ew the d sp ayed end user cense agreement If you accept the terms, se ect
the accept opt on, and then c ck Next

Note  If the license agreement doesn’t appear, you can access it from the same
web page from which you downloaded the MvvmCrm z p file.

	﻿ 	 xvii

Using the Code Samples
The structure of the V sua Stud o so ut on prov ded w th the book s d v ded nto s x d fferent proj-
ects, n wh ch each project composes the fu source code of the re ated chapter n the book The
ent re app cat on then composes the CRM program, deve oped n WPF

xviii	 ﻿

Acknowledgments
When you are the so e author of a book, you are nde b y assoc ated w th that book’s mer ts;
n fact, th s s one of the reasons many peop e want to wr te a book But even as a so e author,
you aren’t the on y person respons b e for a book becom ng a rea ty I want to thank a the
peop e who have he ped me to wr te and pub sh th s book, because w thout them, t wou d have
rema ned just an dea

Th s s my first book Wr t ng t has been an amaz ng adventure for me, and I hope th s s just the
beg nn ng of someth ng new; someth ng I fee s my natura bent I wou dn’t have been ab e to
wr te th s book w thout the mmense he p of my wonderfu w fe, Deborah Wr t ng a book requ res
t me, and I work fu t me for an nsurance company, so the few rema n ng hours of the days spent
wr t ng the book and ook ng for documentat on (wh ch took a fu s x months) were taken out of
my t me w th her W thout such a tremendous and understand ng w fe, I probab y wou dn’t have
been ab e to take that t me Many t mes, when I was c ose to qu tt ng w thout fin sh ng the book—
due to ts comp ex ty and the sheer vo ume of nformat on—she steadfast y pushed me to com-
p ete the job, just as a perfect project manager shou d do! Thanks, Debb e!

I a so want to thank Russe Jones, my ed tor and pr mary pub sh ng contact for th s book He s
the on y person who be eved n me from the beg nn ng, and he put h mse f on the ne to get th s
project approved by M crosoft Press I w a ways be thankfu to h m for that He a so d d a won-
derfu job n he p ng me to comp ete the job on t me and to organ ze the who e project

F na y, I want to thank Dav d H , who s both th s book’s techn ca rev ewer and my mentor Dav d
s a techn ca ead at M crosoft n the patterns & pract ces team Hav ng h s nva uab e ns ght wh e
wr t ng th s book he ped a great dea to refine and mprove my understand ng of presentat on pat-
terns n genera as we as the r ght way to arch tect a L ne of Bus ness app cat on Dav d s both
flex b e and modest I am extreme y fortunate to have had the opportun ty to work w th h m, and
fervent y hope to work w th h m aga n n the future

Thanks, guys!

	﻿ 	 xix

Errata and Book Support
We’ve made every effort to ensure the accuracy of th s book and ts compan on content If you do
find an error, p ease report t on our M crosoft Press s te at ore y com

	 1.	 Go to http://microsoftpress.oreilly.com

	 2.	 In the Search box, enter the book’s ISBN or t t e

	 3.	 Se ect your book from the search resu ts

	 4.	 On your book’s cata og page, under the cover mage, you’ see a st of nks

	 5.	 C ck V ew/Subm t Errata

You’ find add t ona nformat on and serv ces for your book on ts cata og page If you need add -
t ona support, p ease e-ma M crosoft Press Book Support at mspinput@microsoft.com

P ease note that product support for M crosoft software s not offered through the addresses
above

We Want to Hear from You
At M crosoft Press, your sat sfact on s our top pr or ty, and your feedback s our most va uab e
asset P ease te us what you th nk of th s book at

http://www.microsoft.com/learning/booksurvey

The survey s short, and we read every one of your comments and deas Thanks n advance for
your nput!

Stay in Touch
Let’s keep the conversat on go ng! We’re on Tw tter at http://twitter.com/MicrosoftPress

	 	 1

Chapter 1

Introduction to Model View
ViewModel and Line of Business
Applications

After completing this chapter, you will be able to:

n	 Identify a Line of Business application.

n	 Decide which is the right technology for you to develop a Line of Business application.

The Model View ViewModel Pattern
The Model View ViewModel (MVVM) pattern was introduced by John Gossman (Software
Architect at Microsoft for Windows Presentation Foundation and Silverlight technologies) in
2005 on his blog. MVVM is a specialization of the Presentation Model (PM) pattern that was
introduced in 2004 by Martin Fowler.

One of the main goals of the PM pattern is to separate and abstract the View—the visible
user interface (UI)—from the presentation logic to make the UI testable. Additional goals
might include making the presentation logic reusable for different UIs and different UI tech-
nologies, reducing the coupling between the UI and other code, and allowing UI Designers
to work in a more independent manner. MVVM is a specialized interpretation of the PM pat-
tern designed to satisfy the requirements of Windows Presentation Foundation (WPF) and
Silverlight.

Structurally, an MVVM application consists primarily of three major components: the Model,
the View, and the ViewModel.

n	 The Model is the entity that represents the business concept; it can be anything from a
simple customer entity to a complex stock trade entity.

n	 The View is the graphical control or set of controls responsible for rendering the Model
data on screen. A View can be a WPF window, a Silverlight page, or just an XAML data
template control.

n	 The ViewModel is the magic behind everything. The ViewModel contains the UI logic,
the commands, the events, and a reference to the Model. In MVVM, the ViewModel
is not in charge of updating the data displayed in the UI—thanks to the powerful

2	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

data-binding engine provided by WPF and Silverlight, the ViewModel doesn’t need to
do that. This is because the View is an observer of the ViewModel, so as soon as the
ViewModel changes, the UI updates itself. For that to happen, the ViewModel must
implement the INotifyPropertyChanged interface and fire the PropertyChanged event.

Initially, only WPF was powerful enough to satisfy the MVVM pattern’s requirements. In
Silverlight 2, you had the option of implementing MVVM, but it was harder than implement-
ing MVVM with WPF. Now, with Silverlight version 4, you can apply MVVM to both WPF and
Silverlight in the same way, using the power of data-binding, commanding, behaviors, and
data templates.

When you apply the MVVM pattern, you must take special care with the ViewModel. Because
it has so many responsibilities, it’s easy to create messy solutions in which you find yourself
writing the same code again and again. However, when using a proper approach, the MVVM
pattern can save time and helps to make your UI testable and easy to maintain. Of course, to
use MVVM properly, it’s mandatory that you master XAML and its UI structure. You also need
to know how the binding engine of XAML works and how command objects and command
behaviors (ICommand) and data templates are structured. Finally, to use MVVM effectively
with both WPF and Silverlight, you need to know about the differences between WPF and
Silverlight.

This book analyzes each component of the MVVM pattern in depth. At the end, you will create
a simple MVVM Line of Business application that can be used as a template for any future
MVVM application. At the same time, you’ll build a small utility MVVM framework that func-
tions as a “plug-and-play” component that you can use in your WPF or Silverlight applica-
tions to simplify writing MVVM applications. For example, the framework will provide a basic
ViewModel class, a sample Message Broker, and other features required in a typical MVVM
application.

Line of Business Applications
In my experience, the best way to learn a technology is by doing—building an application
step by step. A Line of Business (LOB) application makes the best example for several reasons:
it’s suitable for the flexible UI technology found in both WPF and Silverlight; it’s amenable to
the MVVM pattern; and it’s a common application type, so you can reuse the examples later,
for real business purposes.

Note  LOB app cat ons are those that are v ta to runn ng an enterpr se, such as account ng,
supp y cha n management, or resource p ann ng LOB app cat ons are usua y arge programs
that conta n a number of ntegrated capab t es, and t e nto other app cat ons and database
management systems They are a so common y referred to as ”enterpr se” app cat ons

	 Choosing the Right Technology	 3

A LOB application can be any business-critical application: the CRM used in the office, the
account software used by the financial department to prepare the payroll, or any other type
of business application that follows specific guidelines and that has a specific common UI
style. If you think about it, such applications fit perfectly into the concept of a “template.”

LOB applications are both the most requested by customers and the easiest to develop. But
at the same time, they are the most difficult to develop. This is because while their structure
is usually pretty simple and redundant, their requirements often change during the develop-
ment process as well as during their lifetime.

Increasingly, LOB applications are gaining web interfaces, making them easy to access via
browsers, easier to deploy and update, and because they enable some business scenarios
that require both business partners and customers to access the same features. They’re also
acquiring personal application features, such as e-mail and address books.

A LOB application follows an incremental design, especially during the development pro-
cess. A Scrum project management book that I read a while ago (thanks to my CTO, who
has an addiction to agile techniques) mentioned that the greatest expenditures of IT depart-
ments and software houses is for maintenance of existing software. Usually, people involved
in a software project of any type believe that the most expensive part is the development
phase leading to the initial release, but it’s only after the release that the real pain starts. For
example, suppose that you create and sell an accounting application that was not originally
designed to include HR payrolls. After a while, customers will ask you for this new “feature.”
If your design is not flexible enough to accommodate new requests and changes, you will
probably lose customers and the application will fail.

A LOB application is the best fit for WPF/Silverlight and the MVVM pattern because it focuses
on all the common problems that a small, medium, or large team will encounter during the
various phases of the development process, and that you can solve by using these flexible
technologies. Unfortunately, a book can’t teach you everything, so in this book, you will not
learn how to build an industrial-strength CRM application, or how to apply Scrum in your
team—but you will learn how to build a LOB application that implements a small CRM using
the latest Microsoft technologies.

Choosing the Right Technology
Because you can build a LOB application with either WPF or Silverlight, you’ll need to ana-
lyze the project’s requirements to determine which technology is most appropriate for that
particular application and which tools you might want to use to build it. To answer these
questions, you’ll first explore how to choose between Silverlight and WPF, and then explore
the tools that Microsoft currently offers for UI design and mockup. Finally, you’ll move on to
analyze the common graphical layout of a LOB application, and what users expect from it.

	 Choosing the Right Technology	 5

Note W nte ect, n co aborat on w th M crosoft, has re eased a wh tepaper at http://
wpfslguidance.codeplex.com that fu y exp a ns the d fferences between these two techno og es
The wh tepaper s approx mate y 69 pages ong As you m ght expect, th s book can’t cover a of
the d fferences; therefore, t on y h gh ghts the most s gn ficant among them

The first gap is with technologies crucial to the implementation of MVVM. Silverlight doesn’t
implement routed commands, triggers, or the data template in the same way as WPF.
Therefore, to get the same (or similar) behavior, you need to implement some custom func-
tionality in Silverlight. But first, a word of caution regarding the use of triggers in WPF and
Silverlight when you implement the MVVM pattern: they should not be heavily used because
they can easily incorporate presentation logic that can’t be tested. The logic is not available
in the ViewModel but it is exposed in the View with the trigger.

Silverlight 4 ships with a rich set of controls, styles, and templates, one of which is a nice
LOB ASP.NET Model View Contoller (MVC) website template. In contrast, WPF ships with a
smaller and lighter control toolbox.

So, which should you use—Silverlight or WPF? The answer is: make your choice based on
the type of application you’re building and the most common target of your application. For
example, if you’re going to develop a LOB application for a financial department that will
not be used outside the customer’s company, WPF is the right technology for you. On the
other hand, if you need to develop a CRM application that will be used by customers and
managers who might have different devices, then it makes sense to host the application in a
browser; thus, Silverlight is the right technology.

You can easily build two UI layers if you use the MVVM pattern correctly: one layer for WPF,
and one layer for Silverlight. Right now, many developers follow this two-UI–layer approach.

The final target and purposes of your application are the keys that should determine your
choice of which technology to use. Don’t worry about differences in the control set or the UI
at this point; Microsoft has released a set of designer tools (Microsoft Expression Studio) that
can handle all the design process needs for both WPF and Silverlight.

Microsoft’s UI-Building Tools
The biggest problem for developers who want to move to WPF or Silverlight is the learning
curve. These two technologies use a new UI language specification called XAML, which is
nothing more than a declarative markup language like HTML or XML. Of course, it’s not easy
to use this language to build graphical layouts when you don’t know how the XAML render-
ing engine works. Similarly, it’s not easy to implement full designer support for a WYSIWYG
approach. XAML is a very flexible markup language with few limitations. For example, you
can place a DataGrid into a Button—even though that might make no sense in terms of
usability. Such flexibility can drive graphical engines crazy.

6	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

To help solve such problems, Microsoft has released a package of graphical tools called
Expression Studio. The latest version is Expression Studio 4, which must be bought separately
(you can also buy each individual tool available in the Expression package separately). This
full “Office application set for WPF/Silverlight designers” covers the entire design process of
an XAML application, from initial UI mockup to all the design elements included in the final
product. Some of the tools in Expression Studio, such as Expression Web, are specifically for
web designers. Expression Blend, aimed at user interface designers, separates not only the
procedural code from the markup, but also separates design tasks from development tasks,
letting developers focus on writing business code while leaving designers free to design
functional UI without having to know C#, or Visual Basic, or any other .NET Language. MVVM
is key to this design/development collaboration process. In fact, Expression Blend ships with
a specific namespace that developers can use to create a mockup ViewModel for the design-
ers. Designers can then bind the View to this mirror of the final ViewModel and continue
developing the UI layer.

You can download Expression Studio from http://www.microsoft.com/expression/ in a 60-day
trial version, purchase it online, or get it through an MSDN subscription.

Expression Blend
For a WPF/Silverlight designer, Expression Blend is the primary Expression Suite product. Its
project files are completely compatible with Microsoft Visual Studio. You (or a designer) can
work on a project in Expression Blend, and then later open the project in Visual Studio, and
vice versa. This bi-directional compatibility makes it easy to use Expression Blend to design
the template and the controls of your LOB application, and then move to Visual Studio to
write your .NET code. Despite this convenience, moving back and forth between Expression
Blend and Visual Studio is not mandatory, because Expression Blend can render XAML and
build C# and Visual Basic solutions just like Visual Studio.

Using Expression Blend, you can design an XAML user interface, create a control library for
Silverlight, or WPF, or simply design and apply custom styles to your XAML application. One
truly powerful Expression Blend feature is its ability to create a design-time data template.
This capability means that a graphic designer doesn’t need a “real” database or data files
to represent a realistic result in the designer; Expression Blend lets you easily set up a data
template, or you can ask Expression Blend to generate one. The final result appears in the
Integrated Development Environment (IDE) and looks just like the results you would get
using real data.

Expression Blend 4, the latest version, has full design-time support for WPF and Silverlight,
and makes the designer’s job much easier. In addition, Expression Blend also has a specific
Behaviors SDK that adds design-time support for the MVVM pattern. This feature makes
Expression Blend the UI designer’s tool of choice for applications involving MVVM.

	 Choosing the Right Technology	 7

Finally, just to mention a couple more new features in the latest version of Expression Blend,
you can easily build and emulate applications for the new mobile Windows Phone 7 plat-
form; create cool transitions and animations for your Silverlight or WPF applications; or cre-
ate, animate, and deploy dynamic user interface mockups.

Figure 1-2 shows a populated data template in Expression Blend.

Figure 1-2 M crosoft Express on B end data temp ate.

Figure 1-2 uses a simple data template to display the state of the ViewModel and its data
template at design time. The code to do that is pretty simple. It uses data binding to map the
values between the UI and the ViewModel, as shown in the following:

 <Grid x:Name="LayoutRoot" d:DataContext="{d:DesignData/SampleData/
ContactsViewModelSampleData.xaml}">
 <!--
 omitted code
 -->
 <data:DataGridTextColumn Binding="{Binding Name}" Header="NAME" Width="0.25*"/>
 <data:DataGridTextColumn Binding="{Binding Email}" Header="EMAIL" Width="0.35*"/>
 <!--
 omitted code
 -->
 <i:InvokeCommandAction Command="{Binding AddContactCommand}"/>
 </Grid>

8	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

Microsoft Sketchflow
Microsoft SketchFlow is a UI mockup feature that ships with Expression Blend. SketchFlow
lets you quickly design a mockup of the user interface and add some minimal interaction
between the sketches.

One critical step in delivering a new application is to get feedback from the customer as soon
as possible—even before the UI development process starts. Using Sketchflow, you can pro-
vide a quick mockup of your application, and even give it to end users so they can see and
provide feedback for modifications. You can publish SketchFlow mockups to a Silverlight or
WPF player where users can interact with them, adding notes and drawings to capture feed-
back. By using SketchFlow to support early user testing, you don’t need to design a full user
interface before getting feedback from the customer.

Sketchflow is fully integrated with Expression Blend. It ships with a custom set of controls that
are really nothing more than classic XAML controls with a custom theme. Figure 1-3 displays
the main Microsoft Sketchflow window.

Figure 1-3  The M crosoft Sketchflow start page.

	 Composition of a LOB User Interface	 9

Using Sketchflow in collaboration with Expression Blend, you can bind mockup data to a
dummy ViewModel so that when you apply the MVVM pattern in this process the UI design
can evolve independently from the business logic (for example, using SketchFlow to tweak
the UI design). Later, you can switch out the dummy ViewModel.

Figure 1-4 displays the final result of a mockup built using Sketchflow.

Figure 1-4  A fina mockup us ng Sketchflow.

Composition of a LOB User Interface
In large development shops, by using the Expression Suite and Visual Studio products, you
can easily divide your application among two different teams without affecting productivity;
one team will use the Expression tools to mockup and develop the user interface, while the
other team will focus on implementing core features and activating the UI. MVVM makes this
clean separation possible because it gives you the power to make the UI only loosely coupled
to the UI business logic contained in the ViewModel. Of course, this concept doesn’t mean
that you must divide your team into Designers versus Developers if you plan to adopt the
MVVM pattern.

One fundamental concept that you need to understand to build a successful LOB application
or any other application that involves user interfaces is that users see only UI. End users don’t
know (and don’t care) that your application uses the latest version of SQL Server, or that

	 Composition of a LOB User Interface	 11

At the top of the application you’ll see both a Toolbar (area 3) and a Menubar (area 4). The
Menubar resides at the top of the application and should provide access to all the available
commands. The toolbar is a graphical shortcut to the most-used commands. The Toolbar
should be context-sensitive; for example, it should enable the Save button only when the
current View has changes and needs to be saved.

Note Menus shou d be context-sens t ve as we , but because menu sub- tems are not v s b e as
users work w th n the UI, menu context sens t v ty s ess apparent than that of too bars

Note  In many modern app cat ons, such as Office 2010, the too bar and menu bar are be ng
rep aced by a comb nat on of the two, ca ed a R bbon You’ see more about the R bbon ater n
th s chapter

The current view (areas 5 and 6) displays data that the user is currently working with in the
application. In this case Dynamics uses a Multiple Document Interface (MDI) approach, where
each open View has a separate window. Another possible approach is to use tabs for each
View; this is the default style adopted by Visual Studio, for example.

The following section provides a more detailed explanation of each major area, and discusses
some best practices for building useful LOB application UIs.

The Menubar
The Menubar is the menu at the top of any application. It is the topmost container, and it
should contain all the available commands in the application, divided into related sections.
The Menubar should also include such common sections, such as File, Edit, and Help.

The Menubar is a critical LOB application component, so your Menubars should adhere to
some specific design policies; otherwise, they will lose their potential.

Some common Menubar rules are as follows:

n	 Whenever possible, include an underline () character in each item’s text. In .NET,
the underline defines that item’s access key. Adding the underlines lets users browse
through the menus using the Alt key in conjunction with the access key.

n	 Respect common shortcut key combinations. For example, in Windows the Save com-
mand is typically represented by the shortcut Ctrl+S.

n	 Add an icon that represents each command’s context. The image should be clear and
understandable, and the size of the image must be 16 × 16 pixels. Figure 1-6 shows an
example of a menu with icon images.

12	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

Figure 1-6  A samp e Menubar that reflects the standard gu de nes.

The Toolbar
The Toolbar is a graphical control that is typically positioned immediately below the Menubar.
The common characteristic of a Toolbar (as opposed to a Menubar), is that it provides users
with visual controls rather than simple labels. Usually the Toolbar contains a set of buttons
(and sometimes other controls) each of which has a clear and distinguishable image that sug-
gests what that button’s function is. The normal size for a Toolbar icon is 22 × 22 pixels or, at
most, 24 × 24 pixels. You might also consider using classic 16-pixel images, but in my opinion
they are too small for a normal Toolbar.

You can include text labels on your Toolbar buttons, but try to avoid this when possible.
Usually, users have only the image to indicate the function of a Toolbar button, so the clearer
and more self-explanatory your images are, the more useful the Toolbar will be.

Because the Toolbar supports the same (or fewer) commands that are already available
in the Menubar, using the MVVM approach, you might wish to use the same ViewModel
for both controls or to provide a collection of commands for each ViewModel and build a
DataTemplate to render them. You’ll see more about how to do that in the next chapters. You
could theoretically accomplish this with the Ribbon control provided for WPF and Silverlight,
but the complexity of the UI and the logic behind it will require a specific PM dedicated to
the Ribbon control.

The Tooltip (and Its Abuse)
Despite the best design intentions, sometimes circumstances force you to position too many
controls in one area, or to place images and controls such that even the most expert user can
easily become lost. When the user interface is not completely clear, you should provide users
with dynamic feedback from the UI to help them make the best decisions.

	 Composition of a LOB User Interface	 13

One way to provide such feedback is through the Tooltip control. This is a little window that
appears when users hover their mouse over a specific control. The purpose of the Tooltip
is to provide an immediate description of the selected control. That’s it, nothing more, and
nothing less. So, for example, if a user hovers the mouse over a Toolbar button with an image
of a floppy disk, common sense suggests that the Tooltip text for that image should read
something like: “Save. Save the current record.” This is a clear and immediate description, but
it is not too complex.

While Tooltips can be helpful, there is one problem I often see when working with WPF/
Silverlight developers; because XAML has few limits, it’s easy to add a Tooltip to a Datagrid or
any other control. But overusing Tooltips defeats their purpose. The key is to remember that
the goal of a Tooltip is simply to provide temporary and transient help by means of a brief
description of the current control. If you need to extend the behavior of that control, con-
sider adopting a different solution. For example, WPF has a nice tag called Popup, where you
can store any control and use it to show more information using the pop-up concept.

Because of its powerful render template, Tooltips can be easily misunderstood and used
improperly. When you plan to write a tooltip for a specific control (textbox, button, label, and
so forth), remember that the Tooltip will stay on the screen for just a few seconds. Therefore,
it should contain only a few words that describe its associated control. If you determine that
your Tooltip needs more than few words to describe the control, it means that there are two
problems:

n	 The control that needs the Tooltip is placed in the wrong View or might not be clear at
all; consider using a label to identify this control to simplify (or eliminate) the Tooltip.

n	 The operation done by that control is too complex to describe easily. In such cases, you
might need a more detailed help solution, or you might consider splitting the operation
into different controls, using a Wizard or a validation icon to identify potential errors
caused by the operation.

n	 As with the Toolbar and the Menubar, a good approach to creating uniform Tooltips
is to create a specific DataTemplate stored in a common dictionary. By using this
approach, every control in your application that uses a Tooltip can use the same style. I
want to stress here that a Tooltip is just a UI artifact that a designer can choose to sup-
port or not support; it doesn’t define any UI logic, so it doesn’t need to be represented
in the ViewModel.

Notifications and Alerts
Communication with users is paramount in UI construction. One common need for com-
munication is when you want to notify users that entered or selected data is invalid, or that
they’re attempting to perform an invalid operation. At the same time, you want to make your
user interface minimally invasive and reduce frustration as much as possible. As an example,

14	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

if every time a user clicks the Save button your UI asks for confirmation—such as the all-too-
familiar prompt “Are you sure you want to save?”—after only a few hours using the applica-
tion, the user will be really frustrated.

But you also need to be sure that users don’t execute invalid or inappropriate commands, or
enter invalid data. Typically, you do this by adding some validation logic to the user interface.

Remember though, that in almost every case, it’s far more useful to disable invalid actions in
advance. As an example (and as you’ll see later), when using the MVVM approach it’s better
to set the CanExecute context of a button to false, rather than letting users click it, and then
showing them a frustrating MessageBox notification.

WPF and Silverlight offer various ways to communicate with the user. Historically, develop-
ers have used modal dialog boxes, which pop up and capture all application input until dis-
missed. It is called a “dialog box” because it establishes a dialog between the UI and the user.
Dialogs can be unidirectional (notifying users about an error, for example), or bidirectional
(users are asked to confirm or cancel an operation).

The dialog approach is easy to implement but very invasive for users. Displaying a dialog
forces users to click a button—such as “Yes” or “No.” Because dialogs capture all application
input, until the user responds, the entire UI simply freezes. Dialogs are appropriate when you
need a confirmation, such as when a user tries to delete a record, but in most other cases you
should use a different approach.

The MVVM pattern makes it more difficult to implement the dialog approach because the
ViewModel doesn’t know anything about the View, so it doesn’t know how to interact with it.
An easy solution to this problem is the mediator pattern. You’ll analyze this pattern in more
depth in Chapter 6, “The UI Layer with MVVM.”

Note  The Med ator s a behav ora des gn pattern that prov des a centra hub to gu de nter-
act ons between many objects When you ana yze the compos te UI framework bu t by the
M crosoft patterns & pract ces team n Chapter 7, “MVVM Frameworks and Too k ts,” you w see
that there are a so better ways to accomp sh th s task

Another interesting approach that fits well into the MVVM pattern is using validators and the
IDataErrorInfo interface applied to the ViewModel. For example, when you require a specific
data format in a control, you can use a validation notification, which in WPF and Silverlight is
both easy and clean. If a user has entered incorrect data into a control, you can easily high-
light that control and display an error message. Unlike dialogs, such messages do not require
confirmation and do not freeze the UI. When validation errors occur, users can continue to
work with the UI, but they won’t be able to submit the data until it’s fixed. Figure 1-7 shows
an example of a Silverlight LOB application that validates data before sending it to the server.

	 Composition of a LOB User Interface	 15

Figure 1-7  Custom data va dat on us ng S ver ght 4.

The key point here is that you need to choose appropriate methods for handling errors and
confirmations for which you want to force users to respond, as opposed to those that provide
advice or other information, for which you don’t need to force users to respond. For the lat-
ter, you can consider a less invasive approach.

The Ribbon Bar
Since the Microsoft Office 2007 products were introduced a few years ago, Windows users
have begun to get comfortable with a new custom control known as the “Ribbon.” The
Ribbon is a set of tools that includes the functionality of both a Menubar and a Toolbar,
wrapped into a more modern approach. The Ribbon got its name as the result of a meeting
of the Outlook 2003 team, at which they decided to implement this new control for the first
time. The idea was to implement something similar to a medieval scroll, where a long strip of
paper can be scrolled using one of the two spindles. Using this concept, the team introduced
the concept of Tabs and Groups in the existing Ribbon control.

The purpose of the Ribbon is to reduce the number of menus floating around your applica-
tion. In fact if you plan to introduce a Ribbon bar in your application, you will no longer need
a Toolbar or Menubar, because the Ribbon subsumes those functions. Ribbons have some
very restrictive design constraints, so if you plan to use one, you should follow the design
policies suggested by Microsoft, which are available here: http://msdn.microsoft.com/en-us/
library/cc872782.aspx.

Note  Dur ng the wr t ng of th s book, M crosoft re eased the fina vers on of the R bbon contro
for WPF 4, comp ed n NET 3 5 SP1, w th fu support for the MVVM pattern

The Ribbon control has been released in beta for WPF 3.5 (and works with WPF 4) but it’s not
available for Silverlight. You might want to consider a third-party solution if you plan to use a
Ribbon in a Silverlight application.

	 Separation of Concerns	 17

Consider the concept of a font, which includes the font family, font face, font size, colors,
and more. In most LOB applications, you should strive to minimize font use—in fact, it’s best
to use only one font face. Within that single font face, you can adjust the weight, size, and
decorations, so one font is flexible and can meet many needs. You should avoid mixing many
different fonts in the same application.

Second, and very important for most customers, is the color scheme. For this aspect of your
application you need to consider two things. First, are you developing an application for a
specific customer? If so, you should try to apply the company’s colors to your application—
or at least you should try to keep the same colors and styles as their previous application,
if there was one. Such continuity helps users avoid becoming lost within the new interface.
Second, are you developing the application as a software suite? Emulating existing suite
applications can be a good idea. For example, the Office package uses a successful combina-
tion of colors. Emulating Office styles in XAML is possible, and it makes your application look
professional, while also making it familiar and easy to understand, because most customers
have already worked with Office. That familiarity can transfer to your new UI.

Finally, remember that one aspect of being effective in XAML is based on DataTemplates and
styles. Don’t waste your time creating dictionaries and styles for each view by doing mas-
sive copy and paste operations. Remember that you can use a dictionary from a different
assembly and load styles on the fly. Working in this way, you can easily build an application
with custom themes and deploy a specific theme for a specific customer without the need to
change the entire application code. Also remember to be careful not to duplicate style and
layout in multiple places; if you centralize these aspects using data templates and styles, you
can guarantee more consistency in your application UI.

Note M crosoft has re eased a ser es of n ce temp ates that custom ze the common contro s
for WPF The S ver ght team has a so re eased a n ce set of temp ates for the S ver ght Bus ness
app cat on You can get the WPF and S ver ght Contro themes from http://wpfthemes.codeplex.
com If you p an to use the S ver ght 4 LOB app cat on temp ate, you can get some themes from
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e9da0eb8-f31b-4490-85b8-
92c2f807df9e&displaylang=en

Separation of Concerns
In informatics, the term Separation of Concerns (SoC) refers to the process of separating
pieces of code so that they overlap in functionality as little as possible. The main concept
here is that you want to make an application composed of layers.

SoC is a key software engineering principle that states that a given problem involves different
kinds of concerns, which should be identified and separated to cope with complexity and to
achieve required engineering quality factors such as robustness, adaptability, maintainability,
and reusability.

18	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

You can apply the principle in various ways. The most common way of separating concerns is
to divide the layers by functionality. Typically, a LOB application will have a UI layer, the layer
that composes the graphic interface; a Domain Layer, the layer that represents business enti-
ties (such as a Customer, an Order, and so on); a Business Layer, which is in charge of encap-
sulating all the business logic of the application; and a Data Access Layer, the layer in charge
of persisting and retrieving data.

All programming paradigms aid developers in the process of improving SoC. For example,
object-oriented programming languages such as Delphi, C++, Java, and C# separate concerns
into objects; a design pattern such as MVC can separate content from presentation, and
data-processing (model) from content. Service-oriented design can separate concerns into
services. Procedural programming languages such as C and Pascal can separate concerns into
procedures. Aspect-oriented programming languages can separate concerns into aspects
and objects.

SoC is an important design principle in many other areas, as well, such as urban planning,
architecture, and information design. The goal is to design systems so that functions can be
optimized independently of other functions, such that failure of one function does not cause
other functions to fail, and in general to make it easier to understand, design, and manage
complex interdependent systems. Common examples include using corridors to connect
rooms rather than having rooms open directly into each other, and keeping the stove on
one circuit, and the lights on another.

A Little Taste of History
In 1974, Edsger W. Dijkstra, a Dutch computer scientist, wrote a paper called “On the
role of scientific thought,” which was the first paper that discussed the concept of SoC.
In his paper, Mr. Dijkstra mentioned that:

…the separation of concerns, [is] the only available technique for effective ordering of
one’s thoughts, that I know of.

In 1989, Chris Reade wrote the book Elements of Functional Programming, in which he
also mentions SoC:

The programmer has to do several things at the same time, namely, 1. Describe
what is to be computed; 2. Organize the computation sequencing into small steps; 3.
Organize memory management during the computation.

Moving forward, in the years 1990–2000 (I am not going to bother you with dates…),
Martin Fowler and Eric Evans started to talk about design patterns related to contextual
design, leading directly to the modern concept of SoC.

20	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

In a common three-tier application such as an MVVM application (UI, business logic, and
database), you usually have two/three layers per tier and two tiers. The tiers are the client
application and the remote database (physically separated), and the layers for the client tier
might be the UI and the Presentation, while for the Business tier, they might be the Business
Layer and the Data Access Layer.

When the application starts to be more complex or its distribution starts to increase, you
should consider using the service-oriented application (SOA) approach. For example, in
Silverlight you can’t recycle the binaries of the Domain Layer or the data layer because
they are not usually compiled for the Silverlight CLR. The solution in this case is to use SOA
through WCF RIA Services. These services are proxies built into WCF, with which you can
share the code exposed in a class library such as the domain layer, compiled for the normal
NET CLR, with the Silverlight CLR. Of course, if you plan to move to SOA, you should keep in
mind other problems that you might encounter, such as concurrency, transactions, service
availability, and more.

History of the Service Layer
The term “Service Layer” was coined by Martin Fowler, one of the most famous soft-
ware architects, who said:

A Service Layer defines an application’s boundary [Alistair Cockburn’s application
boundary pattern—also known as Cockburn PloP] and its set of available operations
from the perspective of interfacing client layers. It encapsulates the application’s
business logic, controlling transactions and coordinating responses in the
implementation of its operations.

If you plan to move to a Service Layer and to SOA architecture, you need to keep a lot of
other architectural considerations in mind. For example, when using the Entity Framework
and RIA Services, the effort required to move to an SOA solution is not large, but SOA forces
you to think through some additional considerations.

SOA is complex. Microsoft technologies such as WCF and the RIA services for Silverlight can
help, but unfortunately when you actually start to use SOA, you’ll need to consider additional
possible problems such as concurrency, transactions, and availability. You’ll need to tackle
each of these carefully.

Note  The Data Transfer Object w be covered n the Chapter 3, “The Doma n Mode ”

The Business Layer contains the “business logic” of your application. For now it’s enough to
know that the business logic must reside there; you’ll see later how complex this layer can

22	 Chapter 1  Introduction to Model View ViewModel and Line of Business Applications

letting developers move forward on the ViewModel assembly. If instead, the Views and the
ViewModels were stored in the same assembly (the same Visual Studio Project), accomplish-
ing this task would be difficult.

The Business Layer is a more complex concept. If you follow the Domain-Driven Design
approach used in this book, you should represent the “business” in the form of classes. For
example, you would have a Customer class that has a collection of classes such as Address,
and so on. The end result is a class structure called a Graph or Model.

At this point, you might be thinking, “Where can I write the C# code that will allow me to add
an order for a specific user?” This is a common and pretty simple “business rule,” typical of
a Business Layer. Usually, you’d include all such rules in a separated layer that we will call the
“Service” Layer (or better, “Business Service” Layer) that should not be confused with the SOA
approach.

Using this technique lets you take advantage of a third-party framework, such as Windows
Workflow, to execute business rules against the domain. Of course, you can dispatch such
rules using the SOA approach, but at this point the architectural considerations become more
complex.

Finally, the Data Layer, which typically is not the repository itself, but the component in
charge of exchanging the data between the domain and the repository. For example, if you
want to create a collection of Customer classes using the Customer table in the database as a
source, you would use the Data Layer to do that.

Of course, this task can be the most expensive in terms of resources, because you need to
map each entity against the corresponding data in the database. You will also need to pro-
vide the mappings for commands, such as Save, Update, and so on. You will also need to
maintain a blueprint of the mapping process; otherwise, when changes occur in the database,
your Data Layer won’t reflect this change.

Doing all this is far easier if you use an O/RM. In this book, you’ll see what an O/RM is and
how you can use it to map a domain entity against a database.

	 Summary	 23

Summary
The MVVM pattern was introduced by Microsoft a couple of years ago to satisfy the demand
for a Separated Presentation pattern specifically intended for use with WPF and Silverlight.
The MVVM pattern is the best presentation pattern available for WPF and Silverlight because
it’s able to take advantage of specific built-in features of Silverlight and WPF, such as data
binding, commands, behaviors, and so on.

LOB applications, often called “enterprise” applications, are those that have been identified as
critical to the business. If you plan to write a robust and maintainable LOB application using
WPF or Silverlight, it’s mandatory that you implement the MVVM pattern, and it’s also man-
datory that you follow some UI guidelines specific to LOB applications.

The term Separation of Concerns refers to the process of separating code so that overlaps
in functionality with other code occur as little as possible. The main concept here is that
you want to make an application composed of modules, also known as layers. Using this
approach, you can create testable and flexible applications that different teams can develop
in parallel.

	 	 25

Chapter 2

Design Patterns
After completing this chapter, you will be able to:

n	 Apply the appropriate design pattern for a specific problem.

n	 Distinguish between the three major presentation patterns.

n	 Apply Inversion of Control and DSL.

An Overview of Design Patterns
Writing a computer application is a complex task—writing one that is flexible and that can
be efficiently maintained is even more complex. If you are a senior developer or a software
architect, you might already know that arguably the most difficult task is figuring out how to
write the code only once, recycling it as much as you can to save time and make your appli-
cations easier to maintain.

As the Pirelli Company famously said about its tires, “Power is nothing without control,” and in
this case, control is very important. When writing code, you first need to consider the likeli-
hood that you will not be the only person working on that project or application. Second, the
application might require maintenance and modification in the future. And finally—again—
it’s preferable to write code only once.

If you are a senior developer or a software architect, you have probably already experienced
many problems during your career. In fact, you might have a common solution for a com-
mon problem that you recycle in every application when you encounter that specific prob-
lem. This type of solution—using similar code to solve similar problems—is called a pattern,
or typically, a design pattern. A design pattern is a common solution for a common problem
that has already been identified and tested. From the outset, let me say that this definition
doesn’t mean that every design pattern is the same; instead, the pattern is a tested approach
to solving a common problem. In other words, it’s a guideline that must be adjusted depend-
ing on the context, not used in a single, non-changing syntax.

This book uses a number of design patterns, some of which you might be familiar with, oth-
ers might be completely new. For example, the Model View ViewModel (MVVM) is a user
interface (UI) design pattern. Of course, design patterns are used for more than just building
UIs; there are design patterns for the domain, for the UI, and for typical common problems.
You won’t explore each design pattern in depth in this book, because that’s not the main
purpose; however, it’s worth looking at some of the common available design patterns to see
how they might apply to the sample Line of Business (LOB) application.

26	 Chapter 2  Design Patterns

A Little Taste of History
Design patterns were originally introduced by Christopher Alexander in 1977 as a com-
mon solution for a common problem in the field of construction architecture. Later, at
the end of the 1980s, Kent Beck and Ward Cunningham began to apply patterns in the
field of the computer science.

The first important book on design patterns for developers was Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995; ISBN: 0-20163-
361-2). This well-known work was written by four software architects—the “Gang of
Four” (GOF)—Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. I highly
recommend it as a fundamental book for any developer.

In 2002, Martin Fowler wrote a more advanced version of this book, Patterns of
Enterprise Application Architecture (Addison-Wesley Professional, 2002; ISBN: 0-32112-
742-0. Commonly known as “PoEAA,” this book discussed architectural problems not
originally covered by the GOF. In my opinion, this is another milestone of computer sci-
ence literature, and again, I heartily recommend it.

Note  To ana yze the top c of des gn patterns n more depth, go to http://msdn.microsoft.com/
en-us/practices/default.aspx Th s page was created by M crosoft’s patterns & pract ces team,
wh ch ana yzes the arch tectura aspects of M crosoft techno og es

Classifying Design Patterns
The basic design patterns implemented in 1977 are divided into three major categories: cre-
ational, structural, and behavioral, each of which has a specific role. In addition, you can find
patterns specific to UI, and advanced patterns for architectural problems. These patterns are
members of a new classification, also known as the architectural design patterns classification.

The creational patterns are specific to solving problems related to object creation. The struc-
tural patterns deal with the composition of classes or objects, and the behavioral patterns are
concerned with designing the way objects communicate or interact. These are also collec-
tively known as Gang of Four patterns, because they were introduced in the aforementioned
GOF book.

Creational Patterns
The following table presents patterns that were designed to solve problems related to the
creational process of objects and classes.

	 UI Design Patterns 	 29

that you will create during the course of this book. You’ll also see why you should choose a
specific pattern for a specific problem. Of course, you won’t use them all here, because some
are solutions to problems that you will not encounter in a normal MVVM application. Still,
it’s worth having the list, and I suggest that you study and experiment with these patterns,
because the only way to master all of these different approaches is to understand them in
the context of experience.

As developers start to learn the GOF patterns, they typically try to apply the same pattern to
every solution—but that approach is incorrect. For example, if you were building a Windows
Service, it would probably be over-engineered if you were to apply the MVVM pattern to it.

UI Design Patterns
A full branch of design patterns is dedicated to building UIs. The best-known UI design
patterns are the Model View Controller (MVC), the Model View Presenter (MVP), and the
Presentation Model (PM) patterns that you encountered in the book’s introduction as fore-
bears of the MVVM. Other UI patterns exist as well. These are subpatterns of the MVC and
MVP patterns, but they are rarely implemented any more with the .NET Framework.

The UI is probably the most volatile part of an application, because it’s subject to frequent
changes over time. Inexperienced developers tend to bind the UI and the Model together,
putting business logic related to the Model into UI code, which leads to unmaintainable
applications. Another common problem is that inexperienced developers tend to mix in the
UI part of the presentation logic with some business logic and some UI logic. By doing this,
the testable surface of your application becomes smaller and smaller, and it becomes difficult
to test and maintain the application Separation of Concerns (SoC).

Before starting to talk about the available design patterns and into which types of technol-
ogy they best fit, let me clarify when you should use a design pattern for the UI, and when
you should not. The main purpose of these patterns is to separate the business logic from the
UI, to make the UI more testable and maintainable, and to preclude the need to write busi-
ness logic in the UI, which is something that you should always avoid.

Many developers misunderstand this fundamental concept and try to make the UI totally
agnostic—they try to separate the Model from the UI completely. But that approach is wrong
because the UI, usually defined as a View, has some dependencies on the Model; the View is
designed to display the information provided by a specific Model or by a set of Models. This
information is then manipulated by an intermediary object, which is the ViewModel in the
MVVM pattern.

Creating a generic View is a pretty cool accomplishment, but it’s not the purpose of a UI
design pattern. However, the inverse of this is not true: it’s important to keep the Model
agnostic and unaware of the View because you might want to recycle the Model to use it
with additional Views or in other applications. For now, remember that building an agnostic

30	 Chapter 2  Design Patterns

View is not a requirement of a UI pattern. I’ll also mention here that the Model will contain
business logic related to the business operation that it can execute. In any case, this busi-
ness logic should never include any presentation or UI logic, because as discussed earlier, the
Model is View-independent.

You should also keep in mind that the UI patterns you’ll analyze in the next sections are sug-
gestions and guidelines to make the UI testable and maintainable—but they are not con-
straints. Especially with a flexible pattern like MVVM, you might need to design some hybrid
solutions to satisfy specific problems that do not fit in the basic structure of the pattern.

A Little Taste of History
The father of all the UI design patterns is the MVC pattern, first described in 1979 by
Trygve Reenskaug, a software developer working for Smalltalk at Xerox. In the original
MVC pattern, the View was in charge of managing the graphical controls displayed on
the screen, the Controller was in charge of interpreting the keyboard and mouse inputs,
and the Model was the object in charge of managing the data and the behaviors of the
application domain.

Over the years, MVC has split into two branches: passive MVC, where the Controller
is in charge of controlling the View and the Model, and active MVC, where the View
actively interacts with the Model and listens to its changes.

In the early 1990s, developers at Taligent Corporation began to adopt an alternative
interpretation of the MVC, the MVP pattern, which removed the Controller and intro-
duced the Presenter. This approach is significantly different because the Presenter is
aware of the Views, and each View knows its Presenter. This pattern has been widely
adopted in both web and client applications.

In 2004, Martin Fowler introduced his set of enterprise design patterns, which includ-
ed the father of the MVVM pattern, the PM pattern. Unfortunately, due to its strict
requirements, the PM pattern was never as successful as the MVC or the MVP pat-
terns, largely because it was designed for a technology like Windows Presentation
Foundation (WPF), which wasn’t yet released.

In 2005, Microsoft applied the PM pattern to WPF, introducing a PM-derived pattern
specifically tailored for WPF, the MVVM pattern, which fully exploits the binding engine
power of WPF and Silverlight.

The MVC Pattern
The MVC pattern comprises three objects, each one in charge of a specific function in the UI
context. You can apply the MVC pattern in a web application (which is a stateless application

	 UI Design Patterns 	 31

by design) where the Controller is in charge of processing user inputs and coordinating
server-side calls until the View is rendered (as with ASP.NET MVC); however, you can also
apply this pattern to a stateful Client UI technology such as Windows Forms or WPF.

In MVC:

n	 The Model represents the data in the application in a logical way; it is in charge of carry-
ing the data and making other objects aware of data changes.

n	 The View is the graphical representation of the Model; it is responsible for displaying the
Model data in suitable form.

n	 The Controller is the orchestrator of this pattern; it is in charge of intercepting user input
(mouse and keyboard) and interacting with the Model and/or the View.

Figure 2-1 shows the structure of a basic MVC design. This design is also called the Passive
MVC pattern, and it’s the default implementation.

Controller

Model

View

Figure 2-1  A Pass ve MVC pattern.

The most important point of this implementation is that the Model is aware of neither the
View nor the Controller. The Model remains agnostic, so you can develop and test it in a
separate context. However, the View and the Controller are both aware of the Model: the
View because it’s in charge of displaying the Model’s data, and the Controller because it’s the
bridge between user input and the Model’s changes. Finally, the View and the Controller are
aware of each other; in the default passive implementation the Controller knows its Views,
but Views are unaware of their Controller.

32	 Chapter 2  Design Patterns

Listing 2-1 is a theoretical implementation of an MVC pattern in C#. This example uses the
framework ASP.NET MVC.

Listing 2-1 MVC pattern us ng ASP.NET MVC V2 and C#

 /// <summary>
 /// Simple Model that represents an Employee entity
 /// </summary>
 public class Employee
 {
 /// <summary>
 /// The First Name
 /// </summary>
 public string FirstName { get; set; }

 /// <summary>
 /// The Last Name
 /// </summary>
 public string LastName { get; set; }
 /// <summary>
 /// The Company name
 /// </summary>
 public string Company { get; set; }
 }

 ///<summary>
 /// The Controller in charge of displaying the Views
 ///</summary>
 public class HomeController : Controller
 {
 /// <summary>
 /// An action that renders the Index View
 /// </summary>
 public ActionResult DisplayEmployee()
 {
 var model = new Employee
 {
 FirstName = "John",
 LastName = "Smith",
 Company = "Microsoft"
 };
 return View(model);
 }
 }

 <h2>DisplayEmployee</h2>
 <fieldset>
 <legend>Fields</legend>
 <div class="display-label">FirstName</div>
 <div class="display-field"><%: Model.FirstName %></div>
 <div class="display-label">LastName</div>
 <div class="display-field"><%: Model.LastName %></div>
 <div class="display-label">Company</div>
 <div class="display-field"><%: Model.Company %></div>
 </fieldset>

	 UI Design Patterns 	 33

The implementation of the MVC pattern in Listing 2-1 uses a simple Model: an employee
that represents a business object. The Controller is in charge of creating the Model based on
a “new employee” request made by a user. When the user makes a new employee request,
the Controller creates a new instance of a specific View and injects the Model into that View.
Finally, the View renders the Model by using some HTML tags and the MVC Framework bind-
ing syntax.

Of course, in a real application you would have a service or a Data Layer that retrieves the
Model from the database and sends it to the Controller. Figure 2-2 shows the process flow of
this implementation.

Controller

Request Employee

Model

Service

View

Get

Update

Figure 2-2  An MVC request flow.

Figure 2-3 shows the final result as it might appear in a browser.

Figure 2-3  The fina resu t of an MVC app cat on us ng ASP.NET MVC.

34	 Chapter 2  Design Patterns

Pros and Cons of the MVC Pattern
The MVC pattern fits web applications best. Its strengths are its capacity to display the same
Model in different Views and the ability to change the way the View renders without affect-
ing the Model (which is unaware of the Views). Another strength is its testability. Because the
View is also unaware of the Model, the Controller can simply use a mockup Model for testing
purposes. That makes MVC a good fit for a Test-Driven Development (TDD) approach.

That said, the MVC pattern can be also used in client applications that are not stateless (such
as web applications). In fact, there are popular MVC frameworks specifically for client tech-
nologies such as Windows Form or Java.

On the other hand, MVC is a complex pattern, and it is event-driven; the Controller reacts to
changes made by users, about which it notifies the Model and the View. In addition, updating
MVC can can consume a considerable amount of resources, because the View must be alert-
ed and updated through the Controller for every update. Some of the modern frameworks
such as ASP.NET MVC do not apply the MVC pattern in its original form—another reason
why this pattern a good fit for both client and web applications.

In addition, the original MVC pattern, as it was conceived, would not be a good fit for new
UI technologies such as WPF and Silverlight. With that said. I would also like to specify that
there are many modern UI design patterns today that are wrongly identified with the name
“MVC pattern,” but these are not the original MVC pattern; they’re substitutes for the original
pattern.

The MVP Pattern
The MVP pattern is categorized either as an evolution of the MVC pattern or a differ-
ent interpretation of it. The main difference is that in the MVP pattern, the View and the
Presenter are connected using a different approach. In MVC, the View is totally independent;
in MVP the View is passive and delegates any action to the corresponding Presenter. Another
important difference is that in MVP, the Presenter interacts with the View using a binding
engine or a custom implementation of a binding engine if the UI technology doesn’t provide
one. The View and Model are not connected in MVP, while in MVC, the View is totally or par-
tially aware of its corresponding Model.

Like the MVC, the MVP has three components, but with some differences:

n	 The Model is the same as in MVC. It represents any business entity with associated data
and business logic.

	 UI Design Patterns 	 35

n	 The View is the graphical interface in charge of rendering the data. It directly references
the Presenter so that it can delegate to it the interpretation of all user interactions.

n	 The Presenter drives the UI logic; it knows both the View (through an interface) and the
Model. It updates the View based on change notifications from the Model and updates
the Model based on change notifications from the View. This is the object that encapsu-
lates the presentation logic, and it usually sets property values and calls methods on the
View rather than using a binding engine.

The MVP pattern has been implemented in both client and web applications. You might
read that the MVP pattern fits best with web applications, but in my personal experience,
because its design is so dependent upon the Presenter, it’s a better fit for a client application,
although it is flexible enough to be used for a web application. Figure 2-4 shows the passive
implementation of the MVP pattern.

Presenter Model

View

Figure 2-4  An MVP pass ve mp ementat on.

Listing 2-2 shows a simple Windows Form example that illustrates how to implement the
MVP passive view pattern in a simple client application.

36	 Chapter 2  Design Patterns

Listing 2-2 MVP mp ementat on us ng W ndows Form and C#

 /// <summary>
 /// The Employee View contract
 /// </summary>
 public interface IEmployeeView
 {
 /// <summary>
 /// The Firstname
 /// </summary>
 string FirstName { get; set; }

 /// <summary>
 /// The Lastname
 /// </summary>
 string LastName { get; set; }

 /// <summary>
 /// The Company name
 /// </summary>
 string Company { get; set; }
 }

 /// <summary>
 /// The Employee presenter in charge of
 /// driving the UI logic
 /// </summary>
 public sealed class EmployeePresenter
 {
 /// <summary>
 /// The current view
 /// </summary>
 private IEmployeeView view;

 /// <summary>
 /// Initializes a new instance of the <see cref="EmployeePresenter"/> class.
 /// </summary>
 /// <param name="view">The view.</param>
 public EmployeePresenter(IEmployeeView view)
 {
 this.view = view;
 }

 /// <summary>
 /// Initializes this instance.
 /// </summary>
 public void Initialize()
 {
 var model = new Employee
 {
 FirstName = "John",
 LastName = "Smith",
 Company = "Microsoft"
 };

	 UI Design Patterns 	 37

 //Bind the Model to the View
 UpdateViewFromModel(model);
 }

 /// <summary>
 /// Updates the view from model.
 /// </summary>
 /// <param name="model">The model.</param>
 private void UpdateViewFromModel(Employee model)
 {
 this.view.FirstName = model.FirstName;
 this.view.LastName = model.LastName;
 this.view.Company = model.Company;
 }
 }

 /// <summary>
 /// Concrete View.
 /// </summary>
 public partial class EmployeeView : Form, IEmployeeView
 {
 /// <summary>
 /// The corresponding presenter
 /// </summary>
 private EmployeePresenter presenter;

 /// <summary>
 /// Initializes a new instance of the <see cref="EmployeeView"/> class.
 /// </summary>
 public EmployeeView()
 {
 InitializeComponent();
 this.presenter = new EmployeePresenter(this);
 this.presenter.Initialize();
 }

 /// <summary>
 /// The Firstname
 /// </summary>
 /// <value></value>
 public string FirstName
 {
 get { return txtFirstname.Text; }
 set { txtFirstname.Text = value; }
 }
 /// omitted
 }

This example still uses the model Employee you saw in Listing 2-1. As you might have
noticed, the most significant difference from the MVC pattern is that the MVP View is totally
unaware of the Model it is rendering because the data is bound into the View controls by the

38	 Chapter 2  Design Patterns

Presenter. Whereas the View is totally dependent on the Presenter, it must have a reference
to it, because the View doesn’t know how to react to user input. Figure 2-5 shows the final
result.

Figure 2-5  The MVP Pass ve V ew fina resu t.

Pros and Cons of the MVP Pattern
What distinguishes the MVP pattern from other UI patterns are its roles and responsibilities.
In the MVP pattern, the Presenter drives all logic; the View can only make notifications about
user interactions to the Presenter, which can then call methods and change data on the View
and/or on the Model.

Another problem lies in the round trip that occurs each time a user interacts with the View;
the View must call a Presenter method, and then the Presenter must update the View.

MVP isn’t appropriate for WPF or Silverlight because its passive implementation doesn’t
use the power of XAML’s binding engine, and it’s not able to cleanly separate the XAML
code that constructs the UI from the procedural C# needed in the View for it to know its
corresponding Presenter. I would discourage you from using the MVP pattern in WPF and
Silverlight applications. If you are planning on using it, you might find that you don’t need
either of these technologies, and that classic Windows Forms technology might be better.

The big downside of MVP is that all presentation logic and every binding process must go
through the Presenter, so if you plan to adopt a Supervising Presenter pattern (more on this
in the next section) in WPF or in Silverlight, you will wind up with a View that has the Model
as its DataContext, plus a separate reference to the Presenter.

Alternative Approaches to MVP
Another approach is the MVP Supervising Presenter. In this variant, the View is not passive; it
knows the Model it is rendering, and requires a data binding engine to react to changes in
the Model. The Presenter’s role diminishes such that it’s in charge only of intercepting user
input that isn’t to be handled by the Presenter. You might think that this approach would
be interesting if applied to WPF or Silverlight—and it probably is when you need to work
with a View/Model combination in which the interaction between them is very complex. On

	 UI Design Patterns 	 39

the other hand, the View has multiple references to maintain, which is difficult to test and
requires more interfaces to maintain loose coupling. Finally, it’s also complex because you
must write code in the UI to manage the interaction with the Presenter. Figure 2-6 shows the
MVP Supervising Controller structure.

Presenter Model

View

Figure 2-6  The MVP Superv s ng Contro er.

The PM Pattern and MVVM
This section covers both the PM and the MVVM patterns because they are closely related
to each other. The PM pattern appeared when technologies such as WPF and Silverlight
were not yet available. When they did appear, Microsoft applied the PM pattern to WPF and
Silverlight using the MVVM pattern.

The guiding principles of the PM are to maintain a loosely-coupled relationship between
the PM and the View by making the View an observer of the PM, and using data binding
to accomplish that. The PM knows the Model, but it doesn’t specifically need to know
the corresponding View. The View knows its PM only and exclusively through the bind-
ing engine. The power and flexibility of WPF/Silverlight data binding make this a suitable
pattern for use in WPF/Silverlight applications.

The MVVM pattern is an evolution of the PM pattern that has the three usual principal com-
ponents: a Model that represents the business entity (like the Employee class example), a
View that is the XAML UI, and the PM or View Model, which contains all the UI logic and the
reference to the Model, so it acts as the Model for the View.

	 UI Design Patterns 	 41

 Listing 2-3 MVVM mp ementat on us ng WPF 4

 /// <summary>
 /// ViewModel for the Employee view
 /// </summary>
 public sealed class EmployeeViewModel : INotifyPropertyChanged
 {
 public EmployeeViewModel()
 {
 var employee = new Employee
 {
 FirstName = "John",
 LastName = "Smith",
 Company = "Microsoft"
 };

 //Bind the model to the viewmodel
 this.Firstname = employee.FirstName;
 this.Lastname = employee.LastName;
 this.Company = employee.Company;
 }

 #region INotifyPropertyChanged
 /// <summary>
 /// Occurs when a property value changes.
 /// </summary>
 public event PropertyChangedEventHandler PropertyChanged;

 /// <summary>
 /// Called when [property changed].
 /// </summary>
 /// <param name="name">The name.</param>
 public void OnPropertyChanged(string name)
 {
 var handler = PropertyChanged;
 if (handler != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(name));
 }
 }
 #endregion

 /// <summary>
 /// Private accessor for the Firstname
 /// </summary>
 private string firstname;

 /// <summary>
 /// Gets or sets the firstname.
 /// </summary>
 /// <value>The firstname.</value>

42	 Chapter 2  Design Patterns

 public string Firstname {
 get
 {
 return firstname;
 }
 set
 {
 if (firstname != value)
 {
 firstname = value;
 OnPropertyChanged("Firstname");
 }
 }
 }
// omitted
}
 <Window.DataContext>
 <vm:EmployeeViewModel />
 </Window.DataContext>
 <StackPanel Orientation="Vertical">
 <TextBlock>FirstName :</TextBlock>
 <TextBox
 Text="{Binding Path=Firstname,
 Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}" />
 <TextBlock>Lastname :</TextBlock>
 <TextBox
 Text="{Binding Path=Lastname,
 Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}" />
 <TextBlock>Company :</TextBlock>
 <TextBox
 Text="{Binding Path=Company,
 Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}" />
 </StackPanel>

Again, this example uses the Employee concept from Listing 2-1. In it, you can see a simple
ViewModel, which is nothing more than a class that implements the INotifyPropertyChanged
interface and exposes the Model properties that you want to render in the UI. The View is
an XAML window that uses the ViewModel instance as the data source, and that binds each
property of the ViewModel to a specific control.

Because Microsoft Visual Studio 2010 has full support for the WPF and Silverlight binding
engine, and because you are binding the Employee in the ViewModel constructor, you don’t
even need to run the application to view the final result—the View is functional even in
design mode in the Visual Studio IDE, as illustrated in Figure 2-8.

	 Advanced Design Patterns and Techniques	 43

Figure 2-8  A funct ona MVVM app cat on n the V sua Stud o 2010 des gner.

MVVM Pros and Cons
First, in the pro column, the MVVM pattern is designed for use with WPF or Silverlight, but
it’s not completely restricted to those technologies; you can implement MVVM in Windows
Forms or with another UI technology as well. However, the power and flexibility of WPF or
Silverlight (including features such as data binding, XAML, data templates, behaviors, and so
on), make MVVM much easier to implement on WPF/Silverlight.

The ViewModel is the core of an MVVM application, so you must consider all the appropriate
precautions, or you might easily end up with an unstable and messy application. Follow the
guidelines carefully, and experiment with different solutions.

Don’t try to fit your ViewModel into a strange architecture simply because you don’t know
how to write a specific behavior or DataTemplate in WPF or Silverlight. The pattern is
designed for these technologies, so you should master them before mastering the MVVM
pattern itself.

Finally, one key advantage of adopting the MVVM pattern is that the View is an observer of
the ViewModel, which makes it easier to build the UI separately, and it lets you replace the
View later or even at runtime, without the need to touch the presentation logic at all.

Advanced Design Patterns and Techniques
The design patterns available in the GOF patterns were created and adopted to solve some
common problems related to object-oriented programming, such as how to create an object
or how to open a dialog between two different objects. The UI patterns were designed and
adopted to separate the business logic from the user interface, and to make the UI testable
and flexible. As architecture advanced, these basic techniques were unable to satisfy larger
architectural requirements. The solution gave rise to common solutions now called enterprise
patterns or patterns for enterprise applications.

44	 Chapter 2  Design Patterns

This book does not cover all the available enterprise patterns and techniques, but it will pro-
vide an overview of the common enterprise patterns and show in detail those that are
fundamental to adopting MVVM.

More Information  Read Pattern of Enterprise Application Architecture by Mart n Fow er, and
Domain Driven Design by Er c Evans, the founders of the Enterpr se Arch tecture patterns These
two books are mandatory read ng, n my op n on, for any sen or deve oper or software arch tect,
espec a y those who p an to bu d comp ex LOB MVVM app cat ons

Martin Fowler has exhaustively covered all of these patterns and divided them into in 10 dif-
ferent categories, each specific to a particular context. The first category is the domain logic
pattern, which you’ll analyze in the next chapter. There are three categories related to the
Data Layer, which you’ll cover in depth in Chapter 4, “The Data Access Layer.” There are two
patterns for concurrency and session state that are not used in this book. In the next sec-
tion, you’ll cover two particular patterns/approaches that are mandatory for an MVVM pat-
tern or, in general, for any LOB application: the Dependency Injection pattern, also known
as Inversion of Control, and the Domain Specific Language (DSL) pattern. You’ll also get an
introduction to the TDD approach, an agile technique for testing an application during its
development phase.

The Inversion of Control Pattern
The term Inversion of Control (IoC) is a computer programming technique wherein the
flow of the control of an application is inverted. Rather than a caller deciding how to use an
object, in this technique the object called decides when and how to answer the caller, so the
caller is not in charge of controlling the main flow of the application.

This approach makes your code flexible enough to be decoupled. It can be unaware of what
is going on in the call stack because the called object doesn’t need to make any assumptions
about what the caller is doing.

The Dependency Injection pattern is simply a concrete implementation of the IoC.
Unfortunately, as Martin Fowler specifies in his book, there is a lot of confusion about these
terms, because the common IoC containers available for languages such as Java or .NET are
typically identified as IoC containers, but the techniques implemented in your code when you
use these frameworks is the Dependency Injection pattern, which is just one of the avail-
able concrete implementations for IoC. For example, if you plan to work with a modularized
WPF/Silverlight application using a well-known framework such as Prism, you might imple-
ment IoC using the Service Locator pattern and not Dependency Injection because you need
a global IoC container available for all the modules.

	 Advanced Design Patterns and Techniques	 45

Imagine that you have a simple LogWriter concept that is used to write a log message either
to a specific database table or to a specified file. You might depict this as shown in Figure 2-9.

Figure 2-9  Bas c structure of a mu t targeted og system.

The UML diagram in Figure 2-9 is pretty clear; there’s an abstract BaseLogger class that
exposes a WriteLog message, and two concrete classes that inherit from BaseLogger. These
expose the method in two ways: one writes a log message to a database, the other to the
file system. The following code shows the wrong way to use one of these concrete loggers—
without applying an IoC implementation:

static void Main(string[] args)
{
 /* Wrong way
 *
 * */
 var firstLogger = new FileLogger();
 firstLogger.WriteLog("Some Text.");
 var secondLogger = new DatabaseLogger();
 secondLogger.WriteLog("Some other Text.");
 Console.ReadKey();
}

The biggest problem with this approach—not applying an IoC implementation—is that if
you want to specify a different log at runtime, you’ll need to rewrite some code. That’s a
huge architectural constraint. For example, suppose that you want to get rid of the FileLogger
object. That’s not easy. You can’t simply eliminate it, because the application wouldn’t
execute any more, or at least, you would need to modify and recompile it for it to continue
working.

To solve the problem, the first step is to decouple the existing hierarchy by using an interface
instead of the base abstract class, as illustrated in Figure 2-10. This way, you simply define a
contract between a concrete log and its interface. Subsequently, to write a log message to a
different location, you just need to render the interface in a specific way.

46	 Chapter 2  Design Patterns

Figure 2-10  Refactor ng the LogWriter us ng a common nterface.

The code that follows is a refactored version that uses an IoC approach to declare the type of
logger to be used at runtime. This approach is still procedural, because it decides which log-
ger to use, but at least it decouples the code, so this is a somewhat more flexible version of
the custom writer.

/// <summary>
/// Custom writer that can uses any log
/// </summary>
public sealed class Writer
{
 /// <summary>
 /// Accessor to the injected logger
 /// </summary>
 private ILogger logger;

 /// <summary>
 /// Initializes a new instance of the <see cref="Writer"/> class.
 /// </summary>
 /// <param name="logger">The logger.</param>
 public Writer(ILogger logger)
 {
 this.logger = logger;
 }

 /// <summary>
 /// Writes the specified message.
 /// </summary>
 /// <param name="message">The message.</param>
 public void Write(string message)
 {
 this.logger.WriteLog(message);
 }
}

At this point, you need something between the application and the logger that can resolve
which logger to use at runtime. The following example uses procedural code to do that with-
out using the Dependency Injection or the Service Locator patterns:

48	 Chapter 2  Design Patterns

Microsoft Unity
Microsoft Unity is an application framework that is delivered as part of the Microsoft
Enterprise library, but you can also download it as a standalone component from CodePlex
at http://unity.codeplex.com. As of this writing, the latest version is 2.0, available for WPF and
Silverlight. You can also use Microsoft Unity in any other type of .NET application.

Unity is an extensible Dependency Injection container through which you can apply
Dependency Injection in your code using either a declarative approach (XML) or a procedural
approach (C# or Visual Basic .NET). With Unity, you can inject code into constructors, proper-
ties, and methods.

Unity has an extensible core engine called “container” that implements the interface
IUnityContainer (you can inherit from this if you need to extend the existing implementa-
tion). It has three principal methods which it uses to register an instance, retrieve a specific
instance, and define the lifetime of an object. Figure 2-12 shows the basic structure of Unity.

Figure 2-12  The bas c structure of a Un ty app cat on b ock.

Dependency Injection with Unity
In this first example, you’ll see how to define a policy for a specific logger and use it in your
applications. In this case, the logger is declared in the container, and then the example
assigns Unity the responsibility of creating the logger.

To implement this, change the code in the Writer constructor to specify that Unity will be in
charge of creating this object at runtime using the [InjectionConstructor] attribute.

	 Advanced Design Patterns and Techniques	 49

 /// <summary>
 /// Initializes a new instance of the <see cref="Writer"/> class.
 /// </summary>
 /// <param name="logger">The logger.</param>
 [InjectionConstructor]
 public Writer(ILogger logger)
 {
 this.logger = logger;
 }

Now you can change the code to register the type of logger that you want to use along with
the type of writer, and leave the responsibility of creating the objects to Unity.

 //Prepare the container
 var container = new UnityContainer();
 //We specify that the logger to be used is the FileLogger
 container.RegisterType<ILogger, FileLogger>();
 //and how to instantiate a new Writer
 container.RegisterType<Writer>();
 //Here Unity knows how to create the new constructor
 var writer = container.Resolve<Writer>();
 writer.Write("Some Text.");

Beyond that, you can use Unity to implement all aspects of the Dependency Injection pat-
tern. For example, you can write some policies that define how long an instance of a specific
object should stay alive, or you can intercept object creation and change the code injected at
runtime using specific behaviors.

Service Locator with Unity
Another possible implementation of the IoC pattern is to use the Service Locator.

Note  You m ght read on the Internet that the Serv ce Locator s an ant -pattern, because ts
decoup ng s too h gh, and that you shou d not use t because t can prevent you from know ng
f your code executes correct y outs de the runt me context, thus mak ng your code ess testab e
Or you m ght read that you tota y ose contro of the nject on because the resu t ng code s
more decoup ed than when us ng Dependency Inject on I d sagree, as the next examp e shows

To see how you can write a Service Locator using Unity, there is nothing better than some
sample code. To use the Service Locator with Unity you need an adapter, which you can find
on the CodePlex website at http://commonservicelocator.codeplex.com. This adapter was built
to apply the Service Locator pattern with any of the available IoC containers for .NET, includ-
ing Unity, Castle, Spring, StructureMap, and so on.

50	 Chapter 2  Design Patterns

First, you create a simple adapter (provider) so you can use the Microsoft Service Locator in
conjunction with Unity, as shown in the following:

/// <summary>
/// Utility to configure the container
/// </summary>
public sealed class UnityContainerConfigurator
{
 /// <summary>
 /// Configures this instance.
 /// </summary>
 /// <returns></returns>
 public static IUnityContainer Configure()
 {
 var container = new UnityContainer()
 .RegisterType<ILogger, FileLogger>()
 .RegisterType<Writer>();
 return container;
 }
}

Then you implement the writer using the Service Locator instead of Unity (of course, you
know that this is not totally true, because you’re using the Unity container behind the
scenes); what the developer will see here is a Service Locator implementation:

 // create a new instance of Microsoft Unity container
 var provider = new UnityServiceLocator(UnityContainerConfigurator.Configure());
 // assign the container to the Service Locator provider
 ServiceLocator.SetLocatorProvider(() => provider);
 // resolve objects using the service locator
 var writer = ServiceLocator.Current.GetInstance<Writer>();
 writer.Write("Some Text.");

In this case, the created provider instantiates and registers a new Unity container. It then
assigns the provider to the ServiceLocator instance, and finally, resolves the objects by using
the Service Locator.

As you probably noticed, the primary difference is that with the Dependency Injection pat-
tern, you control the creation and the flow of the code. In contrast, when using the Service
Locator, you no longer control how or what to create; you simply call the common Service
Locator and get an instance of the available component.

Typically, you’d use the Service Locator in decoupled applications for which the developer
doesn’t have access to common components that aren’t referenced in the current assembly.
The Service Locator covers that gap.

52	 Chapter 2  Design Patterns

To use MEF, you need to write a custom logger that satisfies the MEF design requirements. In
this case, you want to specify how MEF should export and use the logger.

 /// <summary>
 /// Logger customized for MEF
 /// </summary>
 [Export(typeof(ILogger))]
 public class MefLogger : ILogger
 {
 /// <summary>
 /// Writes the log.
 /// </summary>
 /// <param name="message">The message.</param>
 public void WriteLog(string message)
 {
 Console.WriteLine("String built from MEF: {0}.", message);
 }
 }

At this point, you can use the program and declare an MEF property. Next, you need to
instantiate the MEF catalog; here, the code declares that the catalog is the executing assem-
bly. Then you can easily use the components.

 /// <summary>
 /// Gets or sets the writer.
 /// </summary>
 /// <value>The writer.</value>
 [Import]
 public ILogger Writer { get; set; }

 public void Run()
 {
 // first we build the catalog
 var catalog = new AssemblyCatalog(Assembly.GetExecutingAssemb
 //create the container using the catalog
 var container = new CompositionContainer(catalog);
 container.ComposeParts(this);
 //use the resolved property
 Writer.WriteLog("Mef message");
 }

The approach here is significantly different than using an IoC container. With MEF, you pre-
pare a catalog of components and then access them directly. Notice that this example does
not in any way control how to create a new instance of a logger, it simply starts the MEF
engine.

Differences Between MEF and Unity
To wrap up this discussion, I want to focus your attention on what an IoC container is, what
an extensibility framework like MEF is, and why you should use one instead of the other.

	 Advanced Design Patterns and Techniques	 53

The main reasons to use Unity (or any other IoC container) are if:

n	 You have dependencies between your objects.

n	 You need to manage the lifetime of an object.

n	 You want to manage dependencies at runtime, such as cache, constructors, and
properties.

n	 You need to intercept the creation of an object.

The main reasons to use MEF are if:

n	 You need to implement external and reusable extensions in your client application, but
you might have different implementations in different hosts.

n	 You need to auto-discover the available extensions at runtime.

n	 You need a more powerful and extensible framework than a normal Dependency Injec-
tion framework, and you want to get rid of the various boot-strapper and initializer
objects.

n	 You need to implement extensibility and/or modularity in your components.

If your application doesn’t require any of the items in these lists, you probably should not
implement the IoC pattern, and you might not need to use Unity and MEF.

DSLs: Writing Fluent Code
The Fluent Interface approach we are going to view now is not specifically related to the
MVVM pattern, and it doesn’t need to be implemented in order to obtain good results with
the MVVM pattern.

On the other hand, as this approach is used in this book when I talk about MVVM and how
to write some custom factories used to build the ViewModels, I believe it is worthwhile to
spend some time taking a look at it, if only to see what it is and how it works.

The domain-specific language (DSL) approach instigates another interesting discussion about
enterprise patterns. DSL is a technique to make code fluent and readable for a specific con-
text. For example, when you write a query for Microsoft SQL Server, you work with a DSL
language known as T-SQL; it’s a domain-specific language because it doesn’t work outside
the specific context of writing queries for SQL Server. The main purpose of this technique is
to make the code more readable inside the context where it’s supposed to be used, helping
to reduce mistakes and misunderstanding.

You might need to implement a custom DSL language in your application to avoid mistakes
or improper implementations by other colleagues. For example, you might have a small
MVVM framework that needs to be implemented in a specific order, and you would like

54	 Chapter 2  Design Patterns

to avoid changes in the call stack order. When a DSL is built for an internal use, it takes the
name fluent interface, which is a term that was first coined by Martin Fowler and Eric Evans
when they were writing about Enterprise patterns.

The following code shows how you might write a fluent interface by using C#:

Var mvvmView = FluentEngine
 .BuildCommands()
 .BuildData()
 .InitView()
 .Create();

You could write the same thing using a normal approach in this way:

Var mvvmView = new MvvmView();
mvvmView.BuildCommands();
mvvmView.BuildData();
mvvmView.InitView();

You might agree with me that you can read the first implementation with greater ease. A
second important point though, is that the first implementation provides a constraint. Using
the fluent approach, a developer cannot initialize the View before calling the initialization of
the Commands and the Data.

This approach can be very easy to implement, but it must be designed carefully; otherwise,
the DSL might end up using a custom dictionary that’s not always readable and understand-
able for other developers, such as the code that follows:

Var mvvmView = FluentEngine
 .BuildPart01()
 .BuildPart02()
 .DoThis()
 .DoThat();

Of course, this is an extreme view of what a DSL implementation should look like, but it’s bet-
ter to get the team members to agree to the terminology so that you don’t end up writing a
DSL language that only you can understand.

Writing a Fluent Interface in C#
Microsoft’s LINQ syntax is a good example of a fluent interface. The essence of LINQ is the
IQueryable collection, whose methods always return another IQueryable collection. That
makes it easy to “chain” the methods, so you can easily write code such as the following:

Var employees = employees
 .Where(x => x.FirstName == "John")
 .Where(x => x.Age > 35)
 .OrderBy(x => x.LastName)
 .First();

	 Advanced Design Patterns and Techniques	 55

This fluent code will be translated by LINQ to SQL in something like the following:

SELECT TOP 1 FROM EMPLOYEE
WHERE FIRSTNAME = 'JOHN'
AND AGE > 35
ORDER BY LASTNAME

Consider for a moment how you create an object. Usually, you call the object constructor,
often a parameterless constructor, and then assign a value to each property, such as this:

Var employee = new Employee();
employee.Firstname = "John";
employee.Lastname = "Smith";
employee.Age = 35;

This is pretty simple, but what if you want to know, in advance of creating the object, that the
object will be valid, or ensure that Employee.Age will never be lower than 30? Unfortunately,
you can’t; instead, you need to remember to run some checks before using the created
object.

However, if you were to refactor this code using the Factory pattern and a fluent interface,
you could provide such constraints. To do that, you first need an interface to define the con-
tracts available in the DSL object, such as the following:

 public interface IFluentEmployee
 {
 /// <summary>
 /// The Firstname.
 /// </summary>
 /// <param name="firstName">The first name.</param>
 IFluentEmployee FirstName(string firstName);

 /// <summary>
 /// The Lastname.
 /// </summary>
 /// <param name="lastName">The last name.</param>
 IFluentEmployee LastName(string lastName);

 /// <summary>
 /// The company name.
 /// </summary>
 /// <param name="company">The company.</param>
 IFluentEmployee Company(string company);

 /// <summary>
 /// Creates this instance.
 /// </summary>
 /// <returns></returns>
 Employee Create();
 }

56	 Chapter 2  Design Patterns

Now you can implement this interface in a custom class and massage the static methods, to
make the code more fluent, as follows:

 /// <summary>
 /// The Fluent creator
 /// </summary>
 public class FluentEmployee : IFluentEmployee
 {
 private static Employee employee;

 private static IFluentEmployee fluent;

 /// <summary>
 /// Initializes a new instance of the <see cref="FluentEmployee"/> class.
 /// </summary>
 public FluentEmployee()
 {
 fluent = new FluentEmployee();
 }

 /// <summary>
 /// Inits this instance.
 /// </summary>
 public static IFluentEmployee Init()
 {
 employee = new Employee();
 return fluent;
 }

 /// <summary>
 /// The Firstname.
 /// </summary>
 /// <param name="firstName">The first name.</param>
 public IFluentEmployee FirstName(string firstName)
 {
 employee.FirstName = firstName;
 return fluent;
 }

 /// <summary>
 /// The Lastname.
 /// </summary>
 /// <param name="lastName">The last name.</param>
 public IFluentEmployee LastName(string lastName)
 {
 employee.LastName = lastName;
 return fluent;
 }

 /// <summary>
 /// The company name.
 /// </summary>
 /// <param name="company">The company.</param>

	 Advanced Design Patterns and Techniques	 57

 public IFluentEmployee Company(string company)
 {
 employee.Company = company;
 return fluent;
 }

 /// <summary>
 /// Creates this instance.
 /// </summary>
 /// <returns></returns>
 public Employee Create()
 {
 return employee;
 }
 }

Now, you can write a fluent interpretation of the Employee constructor in the following way:

 var employee = FluentEmployee
 .Init()
 .FirstName("John")
 .LastName("Smith")
 .Company("Microsoft")
 .Create();

This is a simple task with far-reaching implications; it helps to ensure that any developer
who uses the code won’t misunderstand the methods. For example, it’s pretty clear that the
FirstName() method will change the value of the Employee instance’s FirstName property.

You can now move forward and refactor this code again to define a specific order for this
method or implement lambda expressions to make your DSL language totally dynamic.

You’ll see a custom implementation of the DSL syntax in the Chapter 4 and subsequent
chapters. For example, in Chapter 3, “The Domain Model,” you’ll see how to build a custom
Factory and a custom Validator using the DSL technique and lambda expressions.

Introduction to TDD
TDD is a parallel programming technique of developing software by writing tests for it—even
before you write the code. This is a topic that you’ll revisit throughout this book; this section
provides a brief overview of what TDD is.

With the MVVM pattern, you can use TDD, which works very well due to the decoupled
nature of the MVVM pattern; TDD is not mandatory to use the MVVM pattern, but it is a very
highly-suggested step.

That dovetails nicely with the main concept of TDD, which is to write the test for your code
before writing the code itself. Any input you provide at this point would cause the test to fail.

58	 Chapter 2  Design Patterns

Only then do you implement the code that would pass the test. Finally, you refactor the code
and run the test to be sure that the refactor process has been implemented correctly.

At first, the idea of writing a test before writing the required code might sound strange, but
you’ll find that when you apply this pair-programming technique, you will write better code.
In contrast, if you develop the code first, and then try to test it, it’s far more difficult to guar-
antee that the code is implemented properly.

The motto of TDD is “red, green, refactor,” which means, write the specifications, verify the
code against those specifications, and then refactor.

A TDD Example
Here’s an example that illustrates how you might write code using TDD. For consistency,
this example also sticks with the by now well-known Employee entity. Simply right-click the
[TestMethod()] text, and then select Add New Unit Test; the final result should appears as in
the following example:

 /// <summary>
 ///A test for Company
 ///</summary>
 [TestMethod()]
 public void CompanyTest()
 {
 Employee target = new Employee();
 string expected = "Microsoft";
 string actual;
 target.Company = expected;
 actual = target.Company;
 Assert.AreEqual(expected, actual);
 }

The preceding code verifies that the property Company in the class Employee is populated
correctly. Of course, this is a simple (and probably inconclusive) test but it should serve to
give you an overview of how TDD works.

Tools for Unit Testing
There are several good tools for building unit tests. In the interest of space, I’ll limit the dis-
cussion to only two common ones. This book uses MSTest, which is the unit test tool that is
delivered with Microsoft Visual Studio 2010 and Team Foundation Server (TFS). It is available
through the Visual Studio IDE. Figure 2-14 shows the integration between Visual Studio and
MSTest.

	 Advanced Design Patterns and Techniques	 59

Figure 2-14  Ava ab e opt ons for V sua Stud o and MSTest.

If you’re planning to use MSTest, you’ll welcome its full integration into Visual Studio and
TFS, which makes it easy to deliver your code with integrated tests during the build pro-
cess. Another agile programming technique called Continuous Integration (CI) requires you
to deliver a build of your code every day; to do that, the only possible safe approach is to
implement TDD throughout your application and integrate it in into your build process. If
you use Visual Studio 2010 with TFS, all these features are available in one environment.

Another famous test framework for .NET is NUnit, a ported version of the JUnit frame-
work used in the Java language derived from xUnit. NUnit is written in C# and is fully .NET
compliant.

NUnit is more flexible than MSTest, and it ships with both a command line and an inte-
grated environment for Visual Studio. If you’re planning to work using the TDD approach,
you should give it a try. Unfortunately, syntax differs considerably between the various test-
ing frameworks, so it’s best to try all the available frameworks in advance, and then adopt
only one.

Available Resources for TDD
TDD is a complex technique that can’t be learned and implemented in a couple of days. To
make it work, you need to implement it correctly. More important, TDD requires discipline
and consistency.

60	 Chapter 2  Design Patterns

For more reading about TDD, I recommend these books:

n	 Test-Driven Development in Microsoft .NET, by James W. Newkirk and Alexei A.
Vorontsov (Microsoft Press, 2009; ISBN: 978-0-7356-1948-7)

n	 The Art of Unit Testing, by Roy Osherove (Manning, 2009; ISBN: 978-1-933988-27-6)

You can also find a useful list of TDD resources on the MSDN website at
http://msdn.microsoft.com/en-us/library/aa730844(VS.80).aspx, or at this TDD
development community site: http://www.testdriven.com.

In this book, you will often find references to TDD techniques, along with explanations of
how to properly test the MVVM pattern implementations that are discussed here.

Summary
A design pattern is a guideline that identifies a common solution for a common problem but
that might be adapted to the specific problem to which it is applied. The common design
patterns are known as Gang of Four design patterns and classified into three categories:
creational, structural, and behavioral. The classification is based on the type of problem
the design pattern tries to solve.

An additional category of design patterns is composed of those used for user interfaces;
in this category there are four major patterns: the MVC, the MVP, the PM, and the MVVM.
While the MVC and the MVP are more generic and flexible, the MVVM is specifically
designed for WPF and Silverlight.

Yet another category of design patterns is known as Design Patterns for the Enterprise, or
Architectural Design Patterns. Martin Fowler and Eric Evans classified these patterns, and
you’ll find them explained in the book Patterns of Enterprise Application Architecture. The IoC
pattern is just one of these Enterprise Patterns. It’s useful for moving the dependencies inside
a called object from a caller object.

Testing your application is fundamental to avoiding bugs and runtime errors. If you imple-
ment TDD techniques from the outset, you can guarantee that your application is following
the design requirements and that your code has been tested before moving the application
to a production environment.

	 	 61

Chapter 3

The Domain Model
After completing this chapter, you will be able to:

n	 Understand Domain-Driven Design techniques.

n	 Create a validation mechanism for the Domain Model.

n	 Create a sample Domain Model.

Introduction to Domain-Driven Design
The key role of software is to solve problems and fulfill requirements. Of course, this can
be accomplished in different ways. One way is by using Domain-Driven Design (DDD). With
DDD, you try to solve the business problems that characterize the Domain Model by creating
a set of Domain Entities that represent the various business parts of the application.

Using the DDD technique, you write an application that has a firm foundation, based on an
object-oriented approach. You develop the code around the business entities that compose
the business domain and then adapt it to satisfy the business relationships between the enti-
ties and their behaviors.

DDD is a set of methodologies and technologies applied to a specific context, so implemen-
tation can be very different from one application to another. The main objective of a DDD
application is to focus on understanding and modeling the Domain (the business require-
ment), which is possible only when the development team already has a deep knowledge
of the business requirements. For this and other reasons, DDD can usually be achieved only
when the team works in parallel with a group of analysts who already know the business
requirements of the application. If you and your team decide to apply the DDD technique,
you are essentially agreeing to define a common language focused on the Domain Model
designed for the application, which will reduce the language gap between analysts, archi-
tects, and developers. In fact, when you start to develop an application that involves people
from different backgrounds (such as the aforementioned analysts, architects, or developers)
you will find that each will typically define the same thing using different terminology. The
DDD technique should be able to bridge this gap.

Because the DDD approach acts as a communications channel between the project mem-
bers, it is essential that the language defined for the Domain Model is unambiguous and
clear. If the Domain Model is well defined and the domain language is clear and reflects the
domain behaviors and relationships, the business logic of the entire domain will be clear
and understandable, as well—to all the members of the project, whether they are analysts,

62	 Chapter 3  The Domain Model

architects, or developers. The language you create using the Domain Model should let you
identify gaps and mistakes in the model, because it is the only bridge between you and the
model.

One fundamental requirement of DDD is to isolate the Domain from the rest of the applica-
tion; you need to keep the Domain Model as a pure language construct for your domain
problem. With that said, it’s pretty clear that the DDD approach requires a lot of additional
effort, and you should probably consider it only when the domain problems are relatively
complex and the application is relatively large. By that, I mean that you probably shouldn’t
consider the DDD as a feasible approach for a very simple application because of its high
cost. Still, I personally always use the DDD approach, even for very small domains composed
of only two or three domain entities. I believe that the DDD approach gives my applications a
very high level of flexibility for future growth.

As a summary of this brief introduction to the DDD approach, here are the main benefits of
applying the DDD technique to your application:

n	 Common Language  If you define a common domain for your application you will
create a common language usable in the same way and with the same meanings by all
the team members.

n	 Extensibility  The DDD approach lets you create an extensible application because the
domain is the core of the application—and by design a domain is extensible and loosely
coupled, so it should be relatively easy to extend and implement new features in an
existing domain model.

n	 Testability  A DDD application is testable by design.

DDD Terminology
To understand and model a domain, you need an introduction to the common terminology
used in this set of techniques so that you can understand how DDD is structured.

n	 The Domain is the set of activities, knowledge, and contexts with which the application
is developed; it is specific to the business context of the application.

n	 The Model is part of the Domain. It usually represents a specific set of aspects related to
the Domain, and is composed of a set of entities and value objects.

n	 An entity is a unique object represented in the Domain by a Domain Entity. Domain
Entities are unique and do not change when the application state changes. An entity
encapsulates properties, behaviors, and states. For example, the Customer object of the
sample CRM application is a Domain Entity.

	 Introduction to Domain-Driven Design	 63

n	 A value object is an object used to describe some aspect of the Domain but that is
immutable and doesn’t have a unique identity in the Domain. For example, a Customer
might have a list of Addresses; one of these Addresses is a value object because it is used
to describe an address of a Domain Entity of type Customer.

n	 Aggregate roots are root entities used to control relationships between child entities or
child value objects. They typically control access to these child objects and/or to control
the interactions between them.

n	 The ubiquitous language is language constructed around the Domain that developers
and analysts will use to specify a particular aspect of the Domain.

n	 The context is clearly the world in which the model can exist.

Analyzing the CRM Domain
With those definitions in place, you can start with the “user stories” that represent the CRM
application example.

Note  A user story captures a requ rement, task, or part of a bus ness process that the user w
carry out when us ng the app cat on It descr bes the bus ness process n an understandab e way
for both users and deve opers

The design of this application will be domain-driven (a concept analyzed in depth in this
chapter), so the domain is the first component that needs to be designed. This domain-first
design is the typical approach you will use when developing MVVM applications using DDD
for the Domain Layer.

The user story is the draft of the business space; it describes how the various elements of the
domain interact and how specific tasks or business processes will be accomplished. There are
usually several user stories for an application, not just one.

The sample CRM application that you’ll build in this book is composed of some user stories
which are summarized in the following paragraph as a set of macro user stories:

“As an Employee, I want to be able to add and manage Customers.”

“As an Employee, I also want to be able to manage Orders submitted by a
Customer.”

“As an Employee, I also want to verify that a specific Product ordered by a
Customer is available in stock.”

“As a Customer, I want to Order any available Product.”

	 Domain Entity and Data Transfer Object	 65

A DTO is a flat object—it’s serializable, and used to transfer data between layers, objects,
and/or tiers. It doesn’t have any business logic, and usually, it doesn’t have any circular refer-
ences to parent or child objects. Software architects such as Martin Fowler use the term Value
Object to define a simple object in the Domain Model that doesn’t have a specific identity.

The concept of a DTO is mandatory in DDD, and here’s why. Imagine that the MVVM applica-
tion has a simple XAML combo box that you want to populate with all the available employ-
ees in the database. You might easily come up with something like this:

// C# code to retrieve the data
Var employees = dataLayer.GetAllEmployees(); // this returns an IList<Employee>
// Pseudo XAML
<combobox
 ItemSource="{Binding Path=employees}"
 DisplayMemberPath="FirstName"
 SelectedValuePath="Id" />

In the preceding code, a big problem is that you are truly binding the entire employee entity.
Even though the code uses only the first name and the ID, in reality, you’re holding the entire
object in memory. For example, if the Employee has a list of Address entities mapped as a
property, the code also carries that list along in memory.

The solution is to flatten this object by using a DTO that will represent only the data needed
at the moment. An entity might have one or many DTOs, depending on the context. The
following example uses a LINQ extension to create a new list of DTOs, starting from a list of
entities.

Public class EmployeeDto
{
 string FirstName { get; set; }
 Guid Id { get; set; }
}

// C# code to retrieve the data
Var employees = dataLayer
 .GetAllEmployees()
 .Aggregate(new List<EmployeeDto>() => (list, obj)
 {
 var dto = new EmployeeDto { FirstName = obj.FirstName, Id = obj.Id };
 list.Add(dto);
 return list;
 });
// Pseudo XAML
<combobox
 ItemSource="{Binding Path=employees}"
 DisplayMemberPath="FirstName"
 SelectedValuePath="Id" />

There are two more considerations about entities and DTOs. First, note that although busi-
ness logic was not discussed, it should be included in the Domain Entities and in the Domain

66	 Chapter 3  The Domain Model

Services. You’ll see why in future chapters. The second consideration lies in the way you can
map an entity against a DTO, and vice versa. You’ll see how to use reflection or emit to cre-
ate a simple auto-mapper component for your applications, and how to use existing tools
such as Auto-Mapper (http://automapper.codeplex.com) or Emit Mapper (http://emitmapper.
codeplex.com).

Here’s a brief summary of what a Domain Entity is, along with its common characteristics and
constraints:

n	 A Domain Entity should be implemented using persistence ignorance; it should not be
aware of how it is persisted in a database or when it should be persisted. You want to be
able to use the domain across multiple applications and across multiple storage types.

n	 A Domain Entity represents a specific problem of the domain, but it is not a business
object; it encapsulates only the business logic required, and nothing more. If you want
to add business logic to a Domain Entity, you should consider building a specific Busi-
ness Object (this is discussed in future chapters).

n	 A Domain Entity should be aware of its validation and its constraints as related to other
Domain Entities available in the same Domain. It should use a clear naming conven-
tion, and it should reflect the ubiquitous language using only the native properties and
methods of the entities.

The POCO Object and the O/RM
In the previous section, you saw that the unique role of a Domain Entity is to address a spe-
cific area or aspect in the domain. This concept is clear, but it’s a far cry from the reality of
a real-world application. Based on DDD definitions and paradigms, a Domain Entity should
be a POCO object, or rather, an object that doesn’t know anything about its persistence,
and that doesn’t inherit specific classes before it can be persisted or used with a specific
framework.

Referring back to the previous example, you might have noticed that I added an ID property
to the Employee entity to specify its uniqueness in the collection, such as in a database table.
Without the ID, you would not be able to identify the selected Employee in the ComboBox. In
DDD, the Domain Entity should be a POCO (.NET) or POJO (Java) object. In my opinion, this
concept works only in the abstract; it is not feasible in practice.

I also want to expound upon the importance of identity for a Domain Entity. Suppose you
have two Employee entities, defined as follows:

Var employee = new Employee { FirstName = "John", LastName = "Smith", Age = 54 }
Var employee = new Employee { FirstName = "John", LastName = "Smith", Age = 23 }

	 Development Approaches of a Domain	 67

Without attaching some sort of UniqueId to each one, you wouldn’t be able to distinguish
between them. This isn’t an unrealistic example; it’s highly likely that an organization might
have two different employees with the same FirstName and LastName, but who have differ-
ent ages or different roles in the system.

To work with an O/RM such as the Entity Framework or NHibernate (as you will in this book
or in any other multi-tiered application), it will be mandatory, by design, to add a constraint
to such entities that makes them unique in the model. Therefore, you must give them an
identity—just as you would with the rows of a table, using the primary key. This require-
ment does not mean that the entities are not POCO, but it does break the perfect design
of a POCO object.

Another question revolves around persistence ignorance, which occurs when your classes and
the surrounding application layers don’t know or care how their data is stored. For example,
in the .NET 3.5 version of Entity Framework, if you wanted to use pre-existing classes, you
had to modify them by forcing them to derive from EntityObject. In .NET 4, this is no lon-
ger necessary. You don’t need to modify your entities for them to participate fully in Entity
Framework operations. This allows you to build applications that embrace loose coupling
and Separation of Concerns. With these coding patterns, your classes are concerned only
with their own jobs. Many layers of your application, including the UI, have no dependencies
on external logic, such as the Entity Framework APIs, yet those external APIs are still able to
interact with your entities.

In conclusion, the concept of POCO (POJO) objects is neat and clear in DDD, but unrealistic
in a real-world application. As I have mentioned before, remember that the concepts are
guidelines, not policies, so you should follow them when possible, and then adapt your code
to meet your specific needs.

Development Approaches of a Domain
Martin Fowler’s book, Patterns of Enterprise Architecture Application (PoEAA), mentions three
different approaches for developing the Domain.

Taking the concept of a Domain as just a general definition, Fowler says that you can develop
an application using one of the three available patterns for the Domain: the Transaction
script, the Active Record, and the Domain Model.

The DDD approach described in this book uses the Domain Model approach, but for simpler
applications, you might consider using the Active Record approach, or if you just need to
write a sequential set of commands, you would probably want to use the Transaction Script
approach. It’s worth exploring why and when you should use each of these patterns.

68	 Chapter 3  The Domain Model

Transaction Script
The Transaction Script approach is often used by non-expert developers in situations such
as a junior developer’s first project or for a simple utility script. The main concept of the
Transaction Script is to organize all logic primarily as a single procedure, making calls directly
to the database or through a thin database wrapper. Each transaction will have its own
Transaction script, although common subtasks can be broken into subprocedures.

For example, you might need to write a function that will print out a list of available employ-
ees. To do that using the Transaction Script approach, you would write code similar to that
shown below, where the connection, the SQL statements, and the C# code are mixed togeth-
er in a single step.

Var connection = new SqlConnection();
var command = new SqlCommand(connection, "SELECT * FROM EMPLOYEE");
var reader = command.ExecuteReader();
Connection.Open();
while(reader.Read())
{
 Console.WriteLine("Employee: {0} – {1}" reader["FirstName"], reader["LastName"]);
}
// end of pseudo code …

You might agree with me that this piece of code is faster to develop and easier to read and
change than a layered application approach, but it’s absolutely unmaintainable and redun-
dant. That’s because if you later decide that you need to execute that same query within
some other function, you would have to copy (or rewrite) the same code—and every time
you need to change something you would have to make that change in every piece of code
that uses that SQL statement. In addition, this code is non-testable, because the database
logic and the code are totally bound together without any architectural logic.

Using the Transaction Script approach becomes untenable when the single transaction code
(procedure) becomes complex. Eventually, you will want to break the code into a smaller set
of transactions that are called sequentially by a main task. That’s the point where you begin
to completely lose control of your application. Every time you have a bug, the only solution is
to debug the full stack.

I simply don’t recommend this technique for any situation—except when you have sequential
steps that need to be executed and the flow of these sequential steps will never change dur-
ing the evolution of the software, such as in the following pseudo code:

Public void ApproveOrder()
{
 VerifyOrder(order);
 VerifyCustomer(customer);
 AssignOrder(employee, order);
 ApproveOrder(order);
}

	 Development Approaches of a Domain	 69

In this case, the workflow sequence is a requirement of the Domain Entity Order before an
order can be approved. Most probably, this workflow will never change, so you can use the
Transaction Script approach in this type of situation successfully. Still, note that this example
is just a sequence of methods; it doesn’t embed SQL calls or UI calls within a single method.

Database-Driven Approach
Often, developers don’t have the power to design an application from the beginning, for
many different reasons. For example, you might be tasked with rewriting an existing legacy
system where the database can’t be altered, and it’s difficult to design a domain that fits the
existing database. Or you might have scarce programming resources, and the lifetime of the
application will be short, such as a utility that will run for few months. These cases aren’t con-
ducive to writing a complex tiered system that will possibly take more time to develop than
the expected application lifetime.

The database-driven approach forces you to adopt the Active Record pattern. In this pat-
tern, the main player of the application is the database, and you design the domain to reflect
the structure of that database. Therefore, you will have a Domain Entity for each table in the
database and the needs of the database drive the application flow.

This approach is not wrong—especially if you have just started to use the DDD approach but
haven’t yet mastered it. Many O/RMs, such as Entity Framework or NHibernate, offer the pos-
sibility of creating an Active Record domain without losing the power of a relational model
and a Data Layer; unfortunately, this approach is still far away from the more robust and
complex DDD approach.

In this case, because the object (entity) is a specular image of the relative database table, the
object itself must be in charge of updating its status against the database, and must also be
aware of how it’s saved and retrieved from the database, so you’d typically see code such as:

Var employee = New Employee().Get(1);
employee.FirstName = "John";
employee.Save();

I would say that if you need to write a simple data-entry application that doesn’t include
any complex business logic or any data transactions, the Active Record pattern is probably
a good starting point. Remember however, that it would be both the starting and ending
point; this pattern can’t be extended or changed like DDD. Another problem with this pat-
tern is that because entities have full control of the persistence process, a developer can eas-
ily write code that will incorrectly drop or change an existing record.

70	 Chapter 3  The Domain Model

In my opinion, you should avoid this pattern when designing complex and extendable Line of
Business (LOB) applications, because:

n	 Versioning of a record with the Active Record patterns is a nonsensical approach.
The “active” entity is the row in the database, so if you want to keep a history of data
changes, you have to clone the active record whenever it changes, storing the older ver-
sion and replacing it with the new version.

n	 You cannot separate state and behavior, because the entity is in charge of persisting
itself and also holds its data structure. In other words, with Active Record, entity state
and behavior are wrongly mixed together, such as in the Save() command or the IsNew
property.

n	 There’s no Separation of Concerns, and the code is difficult to test. For one thing, the
entity works only if the database is available, so you can’t test the entity by itself without
also testing the database—and that breaks one of the principles of Test-Driven Develop-
ment (TDD), because the tests cannot be as independent as they should be.

Domain-Driven Approach
The Domain-Driven approach is the concrete implementation of the DDD technique. In this
case, you have a Domain that drives the entire application. The Domain is totally unaware
of any corresponding database. To make everything simpler, you can use an O/RM, such as
Entity Framework or NHibernate, to help create the correct SQL code to persist the entities in
the database.

DDD is the most complicated approach because it requires more time, more tests, and more
agility, and because it also requires a deep knowledge of the business processes. In the end,
though, it is also the most flexible and maintainable approach because the Domain and the
database are not closely related. Suppose that next month, your company has decided to
switch from SQL Server to MySQL. By using the DDD approach, you will only need to change
the connection string in your O/RM. Or suppose that the order approval process changes,
because of some restrictive policies introduced in the accounting department. With DDD,
you will just need to identify that process in the model and update it.

With the Domain-Driven approach, you usually work with an O/RM and have a UnitOfWork,
which is a component that keeps the database session alive so that you can execute create,
read, update, and delete (CRUD) operations against it. You’ll analyze this pattern in detail in
the next chapter, when you build the Data Layer for the sample CRM application. With the
UnitOfWork and the DDD, you would execute the code you saw in the Transaction Script
section this way instead:

Var employees = unitOfWork.Get<Employee>();
foreach (var employee in employees)
{
 Console.WriteLine("Employee: {0} {1}", employee.FirstName, employee.LastName);
}

	 How To Create an Object In DDD	 71

You saw in the chapter introduction why you should use the Domain-Driven approach and
why it’s more flexible than other approaches. As you go forward, just keep in mind the high-
lights listed here:

n	 DDD is business oriented, so you don’t need to know all the available tables in a data-
base to commit a business transaction with your code; the Domain “speaks for itself”
and it’s self-explanatory, providing ubiquitous language

n	 The Domain is extensible and recyclable because the only constraint is the business
around it and nothing else, such as a database or framework

n	 Your application becomes plug-and-play because the Domain (the business core) isn’t
constrained to a specific technology. If you need it for another application, you can just
add it as a component and use it

n	 It’s totally testable; you can test the Domain before you have any database or UI ready
for testing. You can also expand or evolve and retest it repeatedly during your applica-
tion’s evolution.

How To Create an Object In DDD
In object-oriented programming (OOP) syntax, you usually create non-static objects using
the new keyword. The process is similar but a little bit different in C#, Visual Basic .NET, or
Java. When you need a new instance of an object, you simply create it using the new key-
word, and then start using it, for example, by changing some property values or calling a
specific method.

Using the constructor method, you can come up with two different choices; you can create a
parameterless constructor or a constrained constructor that will force developers to provide
specific values when creating the object.

//parameterless
var employee = new Employee();
employee.FirstName = "John";
employee.LastName = "Smith";
employee.Age = 54;

//constructor with parameters
var employee = new Employee("John". "Smith", 54);

Both methods work fine. The first one is probably more “open” because it doesn’t force
developers to specify anything—they can simply create an empty new Employee object. The
second one is more data driven because it requires a specific FirstName, LastName, and Age
to work. (You can also use C# 4 optional parameters to avoid the last one, but in that case
you can set up default values that might be incorrect for that Entity type.)

72	 Chapter 3  The Domain Model

When you start to work with MVVM, the first problem you will encounter from an architec-
tural point of view is that the application is layered, so the developer who wrote the Domain
Model might not be the same as the developer(s) who will use it in the ViewModel or
Business Layer. For these reasons, you must apply some constraints on how to create a new
Domain Entity to ensure that the entity is valid and created correctly.

The factory pattern, discussed in Chapter 2, “Design Patterns,” is an object-creational pattern
designed to drive the creation of a specific object. The factory pattern is mandatory in a DDD
application because it drives developers to create entities using specific guidelines and it sup-
ports TDD. The following example illustrates why:

//factory for Employee
var employee = Factory.CreateEmployee("John", "Smith", 54);

// throw exception because the age can’t be lower than 1
var employee = Factory.CreateEmployee("John", "Smith", 0);

//here we have some business logic that we may not need to know
var employee = Factory.CloneEmployee(anotherEmployee);

The preceding code forces developers to create a new Employee through the available
factory methods; if the developer enters an invalid age, for example, the factory will simply
throw an exception. The same is true for the cloning process; using the factory method forces
the developer to clone an employee in a predefined way, driven by the Domain logic.

Factory Patterns
If you plan to use the factory method in your Domain you will guarantee a constraint in the
creation of a new Domain Entity in the entire project. Factory patterns are divided into two
subpatterns: the abstract factory and the factory method. The main difference between
these two creational patterns is that the first one defines a generic factory that’s in charge
of creating any object, as shown in the following code:

Var employee = AbstractFactory.CreateEmployee();
var order = AbstractFactory.CreateOrder();

In contrast, the Factory pattern is oriented more toward the Domain Entity, so you will have a
factory class for each available entity in the domain:

Var employee = EmployeeFactory.Create();
var order = OrderFactory.Create();

Which method you use is up to you, but you should consider the maintenance process when
making a decision. For example, if you choose to use the abstract factory, whenever you
need to change the creational process for a specific type, you might break the code for cre-
ating some other type. For simplicity, I use a custom implementation of an abstract factory/
method.

	 How To Create an Object In DDD	 73

The small Domain below (Figure 3-2) represents an Employee entity with a set of addresses.
The first rule of the factory is that you can’t create an Address without having it attached to a
parent Employee, because an Address without an Employee doesn’t have any logical business
meaning in the Domain.

Figure 3-2  A samp e Doma n Mode for the Factory Pattern.

The factory method/abstract factory implementation I use is represented by the following
class diagram (Figure 3-3), which contains an abstract factory that defines the constraints in
my code but has a concrete implementation of the factory for each Domain Entity, to provide
more control and decoupling from the Abstract Factory pattern:

Figure 3-3  mp ementat on of the Abstract Factory pattern n conjunct on w th the factory method.

This architecture provides a clean way to create a new object for use in an application. For
example, to create a new Address, you must specify a parent Employee entity, and to create a
new Employee, you must provide the basic information required for an Employee:

 // Create a new Employee
 var employee = FluentFactory
 .Employee()
 .Create("John", "Smith", "Microsoft", 54);

 // Create a new Address
 var address = FluentFactory
 .Address()
 .Create(employee, "Main Street 14", country: "USA");
 employee.Addresses.Add(address);

74	 Chapter 3  The Domain Model

 // verify the object created
 Console.WriteLine("Employee: {0} {1} has {2} addresses.",
 employee.FirstName,
 employee.LastName,
 employee.Addresses.Count);
 Console.ReadLine();

 //clone the employee and change the first name
 var cloned = FluentFactory.Employee().Clone(employee);
 cloned.FirstName = "Sarah";

 // verify the cloned object
 Console.WriteLine("Employee cloned: {0} {1} has {2} addresses.",
 cloned.FirstName,
 cloned.LastName,
 cloned.Addresses.Count);
 Console.ReadLine();

You can still put constraints in your factory, such as throwing an exception if the value pro-
vided for a parameter is not correct (for example, the Age < 21) or if a value is not within a
specified range, but at this point, you can make developers aware of the potential exceptions
using Visual Studio decorations. Look at the following code used to create a new Employee:

 /// <summary>
 /// Creates the specified Employee.
 /// </summary>
 /// <param name="firstName">The first name.</param>
 /// <param name="lastName">The last name.</param>
 /// <param name="company">The company.</param>
 /// <param name="age">The age.
 /// </param>
 /// <returns></returns>
 /// <exception cref="System.ArgumentNullException">Thrown when the
 /// Age is lower than 21</exception>
 public Employee Create(
 string firstName,
 string lastName,
 string company,
 int age)
 {
 if (age < 21)
 {
 /// <exception cref="System.ArgumentNullException">Thrown when
 /// the Age is lower than 21</exception>
 throw new ArgumentNullException("The Age should be greater than 21.");
 }

You might also consider leaving the factory wide open, and then implementing the valida-
tion pattern over the Domain Entity. You’ll see more about the Validation Pattern in the next
section.

	 Domain Entities Validation	 75

Domain Entities Validation
Earlier, when discussing the Domain Model, I wrote that a Domain Entity should be agnostic
against any framework or Data Layer: it should be a POCO object. For the same reason, a
Domain Entity should not be aware of its validation, because that might differ between two
different applications using the same Domain. Note that this is just my point of view; there
are ongoing debates in the software architect community on where to place validation logic.
Some believe it should be placed inside a Domain Entity while others believe it should be
placed outside.

Validation is the process by which you verify that the data of a specific object or class is valid.
To make that decision, you need a set of validation rules for each property that describes why
and when the data might or might not be valid.

One possible way to provide validation support in the Domain Model is to provide a layer
supertype (a common class or component used to incorporate common behaviors or proper-
ties used by all the classes or objects of that layer through inheritance from this supertype)
that can delegate the validation of a specific entity to a separate validation service. This is
what happens with the Entity Framework auto-generated model, in which each class inherits
from a common base class that also provides validation support. An alternative method is
to provide a parallel interface for validating a specific Domain Entity, using that Interface to
keep the Entity itself unaware about the validation process.

Classic Validation
The example that follows shows the classic way of validating an object using a simple
Validation Service, not generic, with embedded validation rules. First, there’s a base class
that defines the contract for the validator:

 public abstract class BaseValidator<T>
 {
 /// <summary>
 /// Determines whether the specified entity is valid.
 /// </summary>
 /// <param name="entity">The entity.</param>
 /// <returns>
 /// 	 <c>true</c> if the specified entity is valid; otherwise, <c>false</c>.
 /// </returns>
 public abstract bool IsValid(T entity);

 /// <summary>
 /// Gets or sets the errors.
 /// </summary>
 /// <value>The errors.</value>
 protected IList<ValidationResult> Errors { get; set; }
 }

76	 Chapter 3  The Domain Model

Next, you need to create a validator for each Domain Entity that you want to validate. Of
course, using this approach, you can easily extend the validator for other objects, such as a
ViewModel in a WPF/Silverlight application or a DTO for an RIA Service.

 public sealed class EmployeeValidator : BaseValidator<Employee>
 {
 /// <summary>
 /// Determines whether the specified entity is valid.
 /// </summary>
 /// <param name="entity">The entity.</param>
 /// <returns>
 /// 	 <c>true</c> if the specified entity is valid; otherwise, <c>false</c>.
 /// </returns>
 public override bool IsValid(Employee entity)
 {
 var result = true;
 this.Errors = new List<ValidationResult>();
 if (entity.FirstName.Length < 10)
 {
 this.Errors.Add(new ValidationResult(
 "The Firstname should be greater than 10."));
 result = false;
 }
 if (entity.LastName.Length < 10)
 {
 this.Errors.Add(new ValidationResult(
 "The Lastname should be greater than 10."));
 result = false;
 }
 return result;
 }

 }

You can easily test this code by verifying that the Domain Entity is not valid if you insert an
empty FirstName, such as in the following:

 /// <summary>
 ///A test for IsValid
 ///</summary>
 [TestMethod()]
 public void IsValidTest()
 {
 EmployeeValidator target = new EmployeeValidator();
 Employee entity = new Employee { FirstName = "", LastName = ""};
 bool expected = false;
 bool actual;
 actual = target.IsValid(entity);
 Assert.AreEqual(expected, actual,
 "The Entity should not be valid at this point.");
 }

	 Domain Entities Validation	 77

The main disadvantages of this approach are:

n	 It embeds the validation rules in a custom class that is difficult to document.

n	 The validation rules are composed of a set of if statements in procedural C# code; as the
rule set becomes more complex, it becomes more difficult to test its correctness.

The advantage of using this approach is that the Domain Model is totally unaware of the
available validation rules. You can use this Domain Entity with or without validation support,
and you can change the validation depending on the context.

Validation Using Attributes and Data Annotations
In the .NET Framework 4, a namespace called System.ComponentModel.DataAnnotations is
available for both the common CLR (WPF) and the lighter Silverlight CLR. You can use the
DataAnnotations namespace for various purposes. One of these is for data validation using
attributes, and another is the visual description of fields, properties, and methods, or to cus-
tomize the data type of a specific property. These three categories are classified in the .NET
Framework as Validation Attributes, Display Attributes, and Data Modeling Attributes. This
section uses Validation Attributes to define validation rules for objects. You’ll use the Display
Attributes category in Chapter 6, “The UI Layer with MVVM,” which is dedicated to the
MVVM toolkit, and the Data Modeling Attributes in Chapter 4, “The Data Access Layer.”

To use the DataAnnotations namespace, you need to add a reference to the assembly—that
reference is not included in any Visual Studio project template by default. Then you need to
decorate your objects with the correct attributes.

As an example, the code below uses an incorrect approach of decorating a Domain Entity
directly with these attributes. Next, I will refactor this code to make that entity unaware of its
validation.

 public sealed class Customer
 {
 /// <summary>
 /// Gets or sets the first name.
 /// </summary>
 /// <value>The first name.</value>
 [Required(ErrorMessage = "The FirstName is a mandatory Field")]
 [StringLength(10, ErrorMessage =
 "The FirstName should be greater than 10 characters.")]
 public string FirstName { get; set; }

 /// <summary>
 /// Gets or sets the last name.
 /// </summary>
 /// <value>The last name.</value>

78	 Chapter 3  The Domain Model

 [Required(ErrorMessage = "The LastName is a mandatory Field")]
 [StringLength(10, ErrorMessage =
 "The LastName should be greater than 10 characters.")]
 public string LastName { get; set; }

 /// <summary>
 /// Gets or sets the title.
 /// </summary>
 /// <value>The title.</value>
 [Required(ErrorMessage = "The Title is a mandatory Field")]
 public string Title { get; set; }
 }

The Customer entity can be easily validated using a generic validator because you know that
we want to validate only those properties that have a DataAnnotations attribute on them.

 public sealed class GenericValidator<T>
 {
 /// <summary>
 /// Validates the specified entity.
 /// </summary>
 /// <param name="entity">The entity.</param>
 /// <returns></returns>
 public IList<ValidationResult> Validate(T entity)
 {
 var results = new List<ValidationResult>();
 var context = new ValidationContext(entity, null, null);
 Validator.TryValidateObject(entity, context, results);
 return results;
 }
 }

At this point, we can easily test the validator against the Customer entity, as follows:

 /// <summary>
 /// Determines whether this instance [can validate customer].
 /// </summary>
 [TestMethod]
 public void CanValidateCustomer()
 {
 Customer entity = new Customer { FirstName = "", LastName = "" };
 GenericValidator<Customer> target = new GenericValidator<Customer>();
 bool expected = false;
 bool actual;
 actual = target.Validate(entity).Count == 0;
 Assert.AreEqual(expected, actual,
 "The Entity should not be valid at this point.");

 }

Now, to remove the validation from the Domain Entity you need to create an interface that
represents the Domain Entity and that includes the validation rules, and then inherit the
Domain Entity from this interface. At the end of this process, you should be able to write
code like this:

	 Domain Entities Validation	 79

 /// <summary>
 /// Determines whether this instance [can validate customer].
 /// </summary>
 [TestMethod]
 public void CanValidateCustomer()
 {
 Customer entity = new Customer { FirstName = "", LastName = "" };
 GenericValidator<ICustomer> target = new GenericValidator<ICustomer>();
 bool expected = false;
 bool actual;
 actual = target.Validate(entity).Count == 0;
 Assert.AreEqual(expected, actual,
 "The Entity should not be valid at this point.");

 }

Available Validation Frameworks
The validation technique that was just presented is only one of the techniques available for
.NET. The advantage of using DataAnnotations is that it plugs into WPF and Silverlight per-
fectly, and it is designed in a way that works throughout all the layers of an MVVM applica-
tion. In the ViewModel section, you’ll see why the DataAnnotations approach is the perfect
match for WPF or Silverlight.

Another interesting framework created by Microsoft is the Validation Application Block, which
is available with Microsoft Enterprise Library 5.0 (http://entlib.codeplex.com/). The Validation
Application Block uses the same general approach—validating an object against a set of
rules defined using attributes (data annotations) or an external XML file. The major difference
from the DataAnnotations is the process you use to validate an object, but you should obtain
the same final result.

Another framework, part of the open-source project NHibernate, is the NHibernate
Validation Framework. This is available at http://sourceforge.net/projects/nhcontrib/ as part of
the NHibernate Contrib project. The main disadvantage of using this framework is that unless
you are planning to use NHibernate as your O/RM, you will introduce an additional depen-
dency in your layers that might not be needed. This framework also requires you to sully
your entities with validation rules related to a specific O/RM.

To sum up, it’s important to keep the Domain clean and unaware of the validation rules or
methods you’re using, but it’s also important that you decide to use the appropriate frame-
work for the type of application that you’re writing. In this book, you’ll largely use the data
annotations feature provided in the .NET Framework.

80	 Chapter 3  The Domain Model

Unit Test the Domain Model
You should create the process for testing the Domain Model before starting to write the
code for the Domain Model itself; this will guarantee that you will test the code against the
expected results rather than vice versa.

When you write a Domain Model, you usually include some small business rules in your code
that should be validated so that you can be sure that the Model is working properly. For
example, the CRM Domain Model will have a Person entity that will have a set of Address
entities included in an IList<T> collection. We want to guarantee throughout the entire model
context that a Person can have one, and only one, Address as the default address. Another
rule is that unless specified, the first address added to a Person entity’s Address list will be the
default address.

For this example, you should be able to write a first test like this:

Var person = PersonFactory.Create();
var address01 = AddressFactory.Create();
var address02 = AddressFactory.Create();
person.AddAddress(address01);
person.AddAddress(address02);
Assert.IsNotNull(person.DefaultAddress);
Assert.IsTrue(person.DefaultAddress == address01);

Another test—boring but useful—is to test each property value of your entity before start-
ing to validate the entity itself. For example, we might want to be sure that when we call the
FullName read-only property of a Person entity, the result will be the FirstName, a space, and
the LastName.

Var person = PersonFactory.Create("John", "Smith");
Assert.AreEqual(person,FullName, "John Smith");

Constantly testing the definition of your Domain Model against the rules of your Model is
your blueprint for guaranteeing that any change to the Model won’t adversely affect the
existing data structure and the existing flow of the Model.

Validation is also another interesting part that must be tested to be sure that the approach is
working as expected. The only problem you might have when testing validation is that you
should hard code the validation rules in your tests to be sure that you are testing the cor-
rectness of the validation rule set; on the other hand, that’s useful for tracking what you have
changed in the validation rule set itself.

Var person = PersonFactory.Create("John", "Smith");
// Validate return a Boolean result
Assert.IsTrue(Validator.Validate(person));
var invalidPerson = PersonFactory.Create();
Assert.IsFalse(Validator.Validate(invalidPerson));

	 Sample Code: The CRM Domain Model	 81

Sample Code: The CRM Domain Model
Beginning with this chapter, the end of every chapter contains a section called “Sample
Code,” which is where you’ll build the CRM application using the knowledge acquired in
the earlier parts of the chapter. In this chapter, you’ve seen what a Domain Model is, how it
should be implemented and tested, and looked at factory implementation and the validation
process.

So first, let’s revisit the user story that was given to us from the customer when he called to
get a new CRM application.

“As a Company that sells products, I want to be able to manage my Orders; I
need a system that monitors the availability of the Products, a registry section
to administer my Customers, and an approval process managed by one of the
available employees registered in the system.”

I have identified this user story with one Domain composed of the entities in charge of
administering employees, customers, and their information, and an entity in charge of mak-
ing and approving an order, based on a list of submitted and available products.

The Person Context
An Employee and a Customer can be grouped by some common information, such as
FirstName, LastName, and so on. But there are also properties that relate more to a Customer
than to an Employee. For example, you might not care about displaying an address for an
employee, but you might need to know how to contact him; on the other hand, the user
probably needs to know everything about a customer who placed an order, because you
must know where to ship the order and how to contact the customer if there is a problem
with the submitted order.

Your Domain will have, for now, a very simple layer supertype that will be the DomainObject
class. This class has only one property, PrimaryKey, of type GUID, which will help distinguish
the various entities available in the Domain context. In the next chapter you’ll see why it’s
important to decide the primary key type of an entity before deciding on the final data store.

Note  As a des gn cho ce I w decorate the Doma n Ent t es w th Va dat on Ru es I am do ng
th s so e y because I want to show how to use va dat on attr butes—and at the same t me you’
be ab e to exp ore the structure of the Doma n Ent t es For rea -wor d app cat ons, I suggest
that you embed va dat on attr butes on an externa nterface that w be mp emented by the
Doma n Ent ty

82	 Chapter 3  The Domain Model

The following code shows the base DomainObject layer supertype:

 /// <summary>
 /// The basic Domain Object
 /// </summary>
 public abstract class DomainObject
 {
 /// <summary>
 /// Gets or sets the primary key.
 /// </summary>
 /// <value>The primary key.</value>
 [Required(ErrorMessage = "The Primary Key can’t be null or empty.")]
 public Guid PrimaryKey { get; set; }
 }

The Model will contain another abstract class called Person, which defines some common
properties and methods available for both Employee and Customer entities. The class must
be abstract because we don’t want this class used directly by some developer in the code by
mistake, but at the same time, we don’t want to write the same code twice.

 public interface class Person : DomainObject
 {
 /// <summary>
 /// Gets or sets the first name.
 /// </summary>
 /// <value>The first name.</value>
 [Required(ErrorMessage = "The FirstName can’t be null or empty.")]
 public string FirstName { get; set; }

 /// <summary>
 /// Gets or sets the last name.
 /// </summary>
 /// <value>The last name.</value>
 [Required(ErrorMessage = "The LastName can’t be null or empty.")]
 public string LastName { get; set; }

 /// <summary>
 /// Gets the full name.
 /// </summary>
 /// <value>The full name.</value>
 public string FullName
 {
 get { return String.Format("{0} {1}", FirstName, LastName); }
 }

 /// <summary>
 /// Gets or sets the title.
 /// </summary>
 /// <value>The title.</value>
 [Required(ErrorMessage = "The Title can’t be null or empty.")]
 public string Title { get; set; }

	 Sample Code: The CRM Domain Model	 83

 /// <summary>
 /// Gets or sets the birth date.
 /// </summary>
 /// <value>The birth date.</value>
 [Required(ErrorMessage = "The Birth Date can’t be null or empty.")]
 public DateTime BirthDate { get; set; }

 /// <summary>
 /// Gets or sets a value indicating whether this instance is active.
 /// </summary>
 /// <value><c>true</c> if this instance is active; otherwise, <c>false</c>.</value>
 public bool IsActive { get; set; }

 /// <summary>
 /// Gets or sets the contacts.
 /// </summary>
 /// <value>The contacts.</value>
 public IList<Contact> Contacts { get; set; }

 /// <summary>
 /// Gets the default contact.
 /// </summary>
 /// <value>The default contact.</value>
 public Contact DefaultContact
 {
 get
 {
 if (Contacts == null)
 {
 return null;
 }
 return Contacts.Where(x => x.IsDefault).FirstOrDefault();
 }
 }

 /// <summary>
 /// Adds the contact.
 /// </summary>
 /// <param name="contact">The contact.</param>
 public void AddContact(Contact contact)
 {
 if (Contacts == null)
 {
 Contacts = new List<Contact>();
 }

 // If there are no default address, set this one as default
 if (Contacts.Where(x => x.IsDefault).Count() < 1)
 {
 contact.IsDefault = true;
 }

84	 Chapter 3  The Domain Model

 //If this is the new default address
 if (contact.IsDefault)
 {
 foreach (Contact cont in Contacts)
 {
 cont.IsDefault = false;
 }
 }

 // If the address is not already in the list
 if (!Contacts.Any(x => x.PrimaryKey == contact.PrimaryKey))
 {
 Contacts.Add(contact);
 }
 }

You might already notice that this entity introduces two new entities: Contact and Address.
The Contact entity will be exposed by both Employee and Customer entities, because we
might need to have a default contact for each of them. The Address entity is exposed only by
the Customer, because it is not part of the LOB application that we are building to make us
aware of any specific address for an Employee.

 public sealed class Contact : DomainObject
 {
 /// <summary>
 /// Gets or sets the type of the contact.
 /// </summary>
 /// <value>The type of the contact.</value>
 public ContactType ContactType { get; set; }

 /// <summary>
 /// Gets or sets the name.
 /// </summary>
 /// <value>The name.</value>
 [Required(ErrorMessage = "The Name is a mandatory field")]
 public string Name { get; set; }

 /// <summary>
 /// Gets or sets the description.
 /// </summary>
 /// <value>The description.</value>
 [Required(ErrorMessage = "The Description is a mandatory field")]
 public string Description { get; set; }

 /// <summary>
 /// Gets or sets the number.
 /// </summary>
 /// <value>The number.</value>
 [Required(ErrorMessage = "The Number is a mandatory field")]
 public string Number { get; set; }

	 Sample Code: The CRM Domain Model	 85

 /// <summary>
 /// Gets or sets a value indicating whether this instance is default.
 /// </summary>
 /// <value>
 /// 	 <c>true</c> if this instance is default; otherwise, <c>false</c>.
 /// </value>
 public bool IsDefault { get; set; }
 }

Note that the Contact entity introduces the first Enum in this application. Using Enums in a
Domain is important because they’re self-explanatory and totally eliminate mistakes that can
occur when using plain strings or integer values.

The following Address entity is no different than the Contact entity except for the exposed
properties.

Note  If you fo ow the Mart n Fow er approach, you wou d c ass fy the Contact and Address
ent t es as Va ue Objects more than Doma n Ent t es because they represent a sma component
of a b gger Doma n Ent ty, but they are not rea y Doma n Ent t es—they don’t have an dent ty
representat on n the Doma n

 public sealed class Address : DomainObject
 {
 /// <summary>
 /// Gets or sets the address line1.
 /// </summary>
 /// <value>The address line1.</value>
 [Required(ErrorMessage = "The AddressLine1 is a mandatory field")]
 public string AddressLine1 { get; set; }

 /// <summary>
 /// Gets or sets the address line2.
 /// </summary>
 /// <value>The address line2.</value>
 public string AddressLine2 { get; set; }

 /// <summary>
 /// Gets or sets the town.
 /// </summary>
 /// <value>The town.</value>
 public string Town { get; set; }

 /// <summary>
 /// Gets or sets the city.
 /// </summary>
 /// <value>The city.</value>
 public string City { get; set; }

86	 Chapter 3  The Domain Model

 /// <summary>
 /// Gets or sets the state.
 /// </summary>
 /// <value>The state.</value>
 [Required(ErrorMessage = "The AddressLine1 is a mandatory field")]
 public string State { get; set; }

 /// <summary>
 /// Gets or sets the country.
 /// </summary>
 /// <value>The country.</value>
 [Required(ErrorMessage = "The AddressLine1 is a mandatory field")]
 public string Country { get; set; }

 /// <summary>
 /// Gets or sets the zip code.
 /// </summary>
 /// <value>The zip code.</value>
 [Required(ErrorMessage = "The AddressLine1 is a mandatory field")]
 public string ZipCode { get; set; }

 /// <summary>
 /// Gets or sets a value indicating whether this instance is default.
 /// </summary>
 /// <value>
 /// 	 <c>true</c> if this instance is default; otherwise, <c>false</c>.
 /// </value>
 public bool IsDefault { get; set; }
 }

The Domain Entity Employee has been omitted because, as you can see from Figure 3-4, the
implementation is self-explanatory; it inherits from the class Person and it doesn’t have any
additional properties.

In conclusion, we now have the two main entities of this Model: Employee and Person. The
difference between them is, as pointed out previously, the Addresses list, but also, a Customer
has a list of Orders while the Employee has a list of Approval.

Figure 3-4 shows the final diagram for the Person Domain. To save space, I haven’t included
the rest of the code here, but the full code is available with the downloadable companion
content to this book (see the download instructions in the Introduction to this book).

	 Sample Code: The CRM Domain Model	 87

Figure 3-4  Part of the fu Doma n Mode , the Person Doma n.

The Order Domain
The CRM application example is in charge of monitoring the order process for a specific
Customer/Products combination. The order process is composed of three major entities: the
order itself, the order s list of items, and each item which is composed of a product, a quan-
tity, a unit price, and a total amount based on an applied discount.

Going in reverse, the first entity we encounter is the Product entity, which represents a
unique product in the company’s stock. The Product is the Domain Entity in charge of repre-
senting a product and its properties throughout the entire domain. Figure 3-5 represents the
full domain for an order process.

88	 Chapter 3  The Domain Model

Figure 3-5  The Order Doma n Mode .

In the diagram, you can see the Order entity, exposed by an OrderLine, which identifies the
amount and the total price for that Order. The Order has two Address references: one for the
BillingAddress and one for the ShipmentAddress. Each Order is subject to an approval process
that involves the Order itself, an Employee, and a Customer.

A couple of interesting lines of code involve calculating the total amount of an OrderLine, as
shown in the following:

 /// <summary>
 /// Calculates the total.
 /// </summary>
 private void CalculateTotal()
 {
 if (Discount > 0)
 {
 Total = Product.Price * Quantity * Discount;
 }
 else
 {
 Total = Product.Price * Quantity;
 }
 }

As a constraint in the constructor of an OrderLine, we must already know how to build an
OrderLine before creating one.

 /// <summary>
 /// Initializes a new instance of the <see cref="OrderLine"/> class.
 /// </summary>
 /// <param name="order">The order.</param>
 /// <param name="product">The product.</param>
 /// <param name="quantity">The quantity.</param>
 /// <param name="discount">The discount.</param>
 public OrderLine(Order order, Product product, int quantity, decimal discount)

	 Summary	 89

 {
 this.Product = product;
 this.Quantity = quantity;
 this.Discount = discount;
 this.Order = order;
 CalculateTotal();
 }

The entire transaction is wrapped around the AddProduct method of an Order entity.

 /// <summary>
 /// Adds the product.
 /// </summary>
 /// <param name="product">The product.</param>
 /// <param name="quantity">The quantity.</param>
 /// <param name="discount">The discount.</param>
 public void AddProduct(Product product, int quantity, decimal discount = 0)
 {
 if (OrderLines == null)
 {
 OrderLines = new List<OrderLine>();
 }
 OrderLines.Add(new OrderLine(this, product, quantity, discount));
 }

The complete project code available with this book includes all the unit tests for the Domain,
the factories for each Domain Entity and all the validation rules. To avoid printing numerous
pages of C# code, the book itself includes only the highlighted steps of the Domain Model
creation.

Summary
In this chapter, you created a basic Domain Model for a CRM application. This is the Business
Context (not the business logic) for the application that you’ll complete in the following
chapters. You can easily extend this Domain by using a different approach or by adding
new entities, such as those in the suggestions below:

n	 The Product should reference a Magazine or Stock that will keep the inventory and
availability of the Product itself up to date.

n	 The Approval process used in the Order process should contact the corresponding Cus-
tomer and Employee using their default address every time the status of the Approval
changes.

For other improvements, we will use a specific Business Layer in Chapter 5, “The Business
Layer,” where you’ll see how to implement custom rules and workflow for approving, reject-
ing, and completing an order.

	 	 91

Chapter 4

The Data Access Layer
After completing this chapter, you will be able to:

n	 Identify and choose the proper Object/Relational Mapper.

n	 Create a flexible Data Access Layer.

n	 Create a mapping with Entity Framework and with NHibernate.

Introduction
The Data Access Layer (DAL) abstracts data access and storage away from the rest of the
application, providing a Separation of Concerns (SoC) that lets you separate the mechanics
of data storage and retrieval from the use of the data within the application. This means that
the application and data store can evolve more easily—or even be swapped out completely.
However, the two are not completely decoupled; there is a ”contract“ between them which
is designed so that the DAL provides access to the specific data (entities) that the application
needs, regardless of how the underlying data is actually stored. The DAL allows you to write
the application in terms of entities, which can be read and updated through the DAL. The
DAL also enforces any business rules or business logic to ensure data integrity.

Whether you are planning to use a third-party library, an open-source framework, a more
complex Object/Relational Mapper (O/RM), or an in-house DAL, you should always try to
keep its use encapsulated in the DAL component itself. This means that the DAL should
expose atomic methods that are able to execute queries and interact with the internal objects
that compose the DAL without exposing these objects to the other layers. Another problem
you might face when building a custom DAL is the mapping process. The DAL must provide
a translation mechanism between the data model (the Domain Entities) that the application
will use and the underlying data storage and schema. You can do this manually and simulta-
neously gain some benefits in terms of performance and customizability, or you could also
employ an O/RM framework such as Microsoft Entity Framework or NHibernate (just to men-
tion two) to make the translation more flexible and increase the level of standardization.

The use of a DAL in a Model View ViewModel (MVVM) application is not a mandatory
requirement because the two architectural patterns are not interconnected; the DAL
describes a way of layering the data access component while the MVVM describes a presen-
tation design pattern. Usually, you would also add a DAL to an MVVM application to main-
tain a clean SoC and to increase the flexibility of the application. Ideally, the Domain Entities
should support the interfaces and features that make them ideal Model classes for use in an

92	 Chapter 4  The Data Access Layer

MVVM application (such as INotifyPropertyChanged, IErrorInfo, and so on) by breaking the
concept of POCO objects. In the same way, a well-designed DAL allows the application to
retrieve the Model that it needs for a particular screen and supports updating it.

Using a DAL in your application isolates the UI and the Domain from the database. The
example MVVM application will have a structure composed of the Domain (Chapter 3, “The
Domain Model”), the DAL (this chapter), the Business Layer (Chapter 5, “The Business Layer”)
and the UI Layer (Chapter 6, “The UI Layer with MVVM”).

The Database and Stored Procedures
A Database Management System (DBMS) is a set of computer programs that controls the
creation, maintenance, and use of a database.

In my opinion, the most dangerous thing you can do in a database is create stored pro-
cedures (SPs). It’s possible that many of you will not agree with me on this point. From a
Domain-Driven Design (DDD) perspective, here’s why SPs are evil—not only in an MVVM
application that uses a Data Layer, but also for more generic Line of Business (LOB) applica-
tions that have been layered to increase the testing surface and decrease the effort involved
in maintenance.

The main purpose of using a Data Layer is to abstract the application away from the data
storage by making the other layers unaware of the persistence mechanism used by the DAL.
If the data storage uses SPs then this goal can be achieved—in fact, several O/RM implemen-
tations provide full support for SPs. On the other hand, the main purpose of having a DAL is
to avoid tight coupling between the C# code and the database, apart from the contract that
you define as part of the DAL. As long as the database fulfills this contract, you don’t need to
care at all about exactly what the underlying implementation is. You create a mockup of the
DAL so that you can test everything on the upstream side of it. Similarly, you can test any-
thing on the downstream side of the DAL to ensure that the database is fulfilling its contract.

Ideally, you would not keep the application business logic inside an SP, because an SP s role
should focus more on maintaining data integrity within the database. However, in practice,
creating solid business logic and data integrity can be considered as two sides of the same
coin. Testing the business logic stored inside an SP is a complex task, as are maintaining a
database and securing a database. These concepts are well understood by database adminis-
trators, and of course many organizations might not tolerate the costs of building and main-
taining a database where all applications have to play by the rules to ensure data integrity
and security, because that wouldn’t be practical.

	 Choosing an O/RM	 93

To help clarify why you should avoid the use of SPs and introduce a flexible DAL-O/RM com-
bination in your applications, I’ve included few common arguments that I use with database
administrators:

n	 Maintenance  SPs are not easy to maintain. When you change an SP, you often need
to change its signature to include a new parameter. As a result of that change, every
piece of code that uses that SP is invalid—but the DBMS doesn’t offer a way to find the
dependencies between an SP and the C# code that uses it.

n	 Security  In Microsoft SQL Server, you can define and grant granular access to a single
field of a single row of a table, and that’s pretty safe, but with a DAL application you can
simply apply security through a Security Layer without worrying about authentication
and authorization on the database side.

n	 Performance  Most modern O/RMs can generate execution plans and optimize the
Dynamic SQL created by the DAL, which effectively ends the fantasy story that SPs are
more efficient in terms of performance than dynamic SQL statements.

If you are still motivated to use SPs in your applications, you are of course free to do so.
You should also consider that O/RMs such as NHibernate and Entity Framework are able to
replace their auto-generated T-SQL code using some predesigned SPs that you might need
to use if you have a legacy database.

Choosing an O/RM
An O/RM (also known as an Object-Relational Mapper) is a framework in charge of convert-
ing data between two disparate systems. One of these systems is usually an Object Model
and the second one is a database object, such as a table or a view.

As you saw in Chapter 3, there are different ways to develop an application Domain. Based
on whether you use an Active Record pattern or DDD, your O/RM will be configured
differently.

The O/RM concept is an easy-to-understand but difficult-to-accomplish mechanism for per-
sistence. It stores the instructions to map a Domain Object against one or more database
objects in a mapping dictionary. Using this dictionary, the O/RM generates the necessary
code to retrieve and store data from the database to the Domain Model and vice versa, on
the fly. It usually also generates a ghost class of your Domain Model known as a proxy, which
is an override of the Domain Model class specifically for the persistence aspect.

More than that, many O/RMs offer the ability to cache data, write transactions against the
data store, and might even provide an object-oriented programming query language that is
fully integrated with the Domain Ubiquitous Language, translated on demand to a Domain-
Specific Language (DSL) understandable by the data store. Some O/RMs also offer the ability

94	 Chapter 4  The Data Access Layer

to switch between different databases, such as from SQL Server to Oracle, or from MySQL to
IBM DB2.

The following list shows why it’s so important to use an O/RM in an MVVM application:

n	 Isolation  You can completely isolate the Domain from the data store. This is a princi-
pal rule of a DDD application, and of course, for any LOB MVVM application.

n	 Simplification  O/RMs eliminate the need to write code to create, modify, and query
database objects.

n	 Improved Maintainability  With an O/RM, you need to change only the Domain
Model; the data store will be adapted automatically if you plan to use the O/RM to
drive the maintenance of your database schema.

n	 Domain Navigation  It’s not easy to understand how a database flow works just by
reading the available table schema, but it’s usually quite easy to read a UML diagram of
a Domain Model to understand how the application has been designed. If you use an
O/RM, the Domain will be your only blueprint. Of course, in this case you can achieve
the same goal using a custom DAL; it is important that behind that there is a Domain
Model.

n	 Features  My motto is, why re-invent the wheel? O/RMs offer features such as caching,
transactional capabilities, concurrency checking, and so forth.

That’s probably enough. O/RMs are cool and shiny—but not all that glitters is gold. For
example, an O/RM generates dynamic SQL as needed, so it probably isn’t a good fit with
some specific architectural designs. Here are two more considerations:

n	 Learning Curve Degrades  It’s been my experience that there’s a problem with the
learning curve, especially with an O/RM or a technology such as XAML. If you don’t
know how to use these properly, you can easily end up using them the wrong way,
resulting in the worst outcome from using the products.

n	 Large Bulk Operations  While most modern O/RMs are able to execute bulk opera-
tions, they don’t always choose the best possible method to do them. For example,
truncating a table is far more efficient than clearing an IList<Employee>, which, when
executed by an O/RM, is often translated to a set of DELETE commands.

There are several types of O/RMs on the market that range from reliable, to semi-reliable, to
only for newbies. In the next sections, I will show the most reliable O/RMs and—based purely
on my experience—when you should use one instead of another.

96	 Chapter 4  The Data Access Layer

Note  In V sua Stud o, a text temp ate s a m xture of text b ocks and contro og c that
can generate a text fi e The contro og c s wr tten as fragments of program code n
M crosoft V sua C# or M crosoft V sua Bas c The generated fi e can be text of any k nd,
such as a webpage, or a resource fi e, or program source code n any anguage Text tem-
p ates can be used at runt me to produce part of the output of an app cat on They can
a so be used for code generat on, n wh ch the temp ates he p bu d part of the source
code of an app cat on

n	 ADO.NET Self-Tracking Entity  You use this option to generate entity types that have
the ability to record changes on scalar and complex property values, and on reference
and collection navigation properties, independent of the Entity Framework.

Figure 4-2  Ava ab e opt ons for Ent ty Framework w th n M crosoft V sua Stud o 2010.

Right now, Entity Framework version 4 is still lacking in its implementation of the POCO con-
cept. In fact, if you have an existing Domain Model such as the one created in Chapter 3, the
only solution is to create a manual mapping for each entity, bypassing the power of the inte-
grated Entity Framework designer. Alternatively, you would need to use the Entity Framework
designer to create a proxy entity for each Domain Entity.

Here are the pros and cons of using Entity Framework for your data mapping:

Pros

n	 Entity Framework is easy to learn, easy to use, and has rich wizard and UI designers that
allow you to create a model from an existing database with just a few clicks.

n	 It is fully integrated with the .NET LINQ query language.

	 Choosing an O/RM	 97

n	 It’s a Microsoft product that will benefit from continued updates and enhancements,
and it is probably the most reliable in terms of lifecycle.

n	 Entity Framework is perfect for a database-first approach because it has a powerful
T4 code generator that can generate a full Domain Model starting from an existing
database.

Cons

n	 Entity Framework forces you to use LINQ to Entities, an extension of LINQ designed
for Entity Framework with a somewhat different syntax than the original LINQ provider.

n	 It lacks the flexible support for lazy load and POCO concepts that are present in other
O/RMs.

n	 The SQL it generates is still not perfect, and in some situations, the performance is
unacceptable.

With Entity Framework, you can write mapping files two ways. One way is to decorate your
POCO objects using Entity Framework attributes, specifying the SQL data type, the field
name in the data store, and the validation rules for each property. Here’s an example of
this approach:

public class Book
{
 [Key]
 public string ISBN { get; set; }

 [StringLength(256)]
 public string Title { get; set; }

 public string AuthorSSN { get; set; }

 [RelatedTo(RelatedProperty="Books", Key="AuthorSSN", RelatedKey="SSN")]
 public Person Author { get; set; }
}

The second way is to use three available XML files to specify the database mappings, the
entity mappings, and the relationship mappings, as demonstrated here:

<Association Name="CustomerOrders">
 <End Type="ExampleModel.Customer" Role="Customer" Multiplicity="1" />
 <End Type="ExampleModel.Order" Role="Order" Multiplicity="*">
 <OnDelete Action="Cascade" />
 </End>
 <ReferentialConstraint>
 <Principal Role="Customer">
 <PropertyRef Name="Id" />
 </Principal>
 <Dependent Role="Order">
 <PropertyRef Name="CustomerId" />
 </Dependent>
 </ReferentialConstraint>
</Association>

	 Choosing an O/RM	 99

n	 NHibernate is an open-source product with a very large community. It thus benefits
from extensive documentation, such as easy-to-find e-books, blogs, code samples, and
sample projects on the Internet.

n	 You can find a number of free plug-ins for NHibernate that assist in tasks from configur-
ing your domain mapping, to writing LINQ queries, to using a GUI designer inside Visual
Studio.

n	 Again, NHibernate is an open-source project, which makes it highly customizable and
configurable. You can obtain the latest build and configure it—and even change the
core code if you want or need to. Beyond that, NHibernate has a very powerful tracing
engine; you can monitor the dynamic SQL and the mappings it creates.

Cons

n	 It’s an open-source product—and yes I realize that I’ve just been expounding the virtues
of an open-source project. But the flip side to open-source applications is that they can
be a big risk, because there’s no guaranteed support or any warranty that the product
will be available as long as you need it.

n	 It has a steep learning curve. At the beginning, NHibernate is not an easy solution. The
configuration is extremely complex (especially if you choose the XML method), and the
core engine has thousands of options and methods that can give you poor performance
if used incorrectly.

n	 It works better with the custom SQL generated by the engine. It is not intended to be
used with customized SQL statements or for bulk operations.

The code example that follows shows the classic mapping used by NHibernate and by its Java
parent Hibernate. Specifically, the example shows an XML file with an .hbm.xml extension.
Everything is defined using a specific XML format, based on three main .xsd files that you can
easily import into Visual Studio—after which, Visual Studio will provide custom IntelliSense.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="QuickStart" assembly="QuickStart">

 <class name="Cat" table="Cat">
 <id name="Id">
 <generator class="identity" />
 </id>

 <property name="Name">
 <column name="Name" length="16" not-null="true" />
 </property>
 <property name="Sex" />
 <many-to-one name="Mate" />

	 The Unit of Work	 101

The Unit of Work
If you plan to write your DAL using an O/RM, you won’t need to put a lot of effort into writ-
ing custom SQL code and custom transactional code to save or retrieve entities. On the other
hand, you do need a solid “orchestrator” which will be in charge of entity status. For example,
you need to know whether an entity is new, or whether a requested entity is already in mem-
ory or needs to be retrieved from the data store.

Martin Fowler introduced the concept of the Unit of Work (UoW) (see Chapter 2, “Design
Patterns”). The UoW is in charge of maintaining a list of objects affected by a business trans-
action and coordinating writing out changes and resolving concurrency problems.

Each of the O/RMs discussed in the previous section have a UoW concept at their
core. NHibernate uses the Session and ITransaction objects, Entity Framework uses the
ObjectContext class, and basic LinQToSQL uses the DataContext. These are implemented and
work differently, but their main goals are the same. The following code displays the basic
concept of a UoW:

Public IUnitOfWork<T>
{
 void MarkDirty<T> (T entity);
 void MarkNew<T> (T entity);
 void MarkDeleted<T> (T entity);
 void Commit();
 void Rollback();
}

The main concept here is that the UoW takes care of entity status. The only thing you need
to remember to do is to mark an entity with the specific status and then Commit or Rollback
the business transaction. The next pseudo-code example shows how this works over a com-
plete transaction using the UoW pattern:

var unitOfWork = Container.Resolve<IUnitOfWork>(); //IoC to retrieve the IUnitOfWork
var customer = Factory.CreateCustomer();
var order = Factory.CreateOrder();
customer.Orders.Add(order);
try {
 unitOfWork.MarkNew(customer); //mark the new entity
 unitOfWork.Commit(); //commit the changes to the database
} catch(Exception ex) {
 unitOfWork.Rollback(); //rollback if an error occurs
}

If you keep this pattern in the DAL, you don’t need to implement a custom DAL for each
O/RM that you plan to use. For example, you might have an application composed of
two DALs: one is the Entity Framework, and the other is a more complex DAL that uses
NHibernate. In this case, you might only need to implement the IUnitOfWork interface in two
different ways, using the most appropriate one for each DAL, without having to change the
code of the UnitOfWork itself.

102	 Chapter 4  The Data Access Layer

I’ve seen the UnitOfWork over engineered in many projects. For example, I’ve seen a
UnitOfWork implementation that was able to retrieve data, execute SQL statements, and
more. At that point, of course, it isn’t really the UnitOfWork pattern any longer; it’s the
Repository pattern (you’ll explore more about this in the next sections). Remember that the
only purpose of the UnitOfWork is to keep the state of a set of business objects for a related
business transaction.

Lifecycle of a UoW
Another important point is the lifecycle of your UoW. The lifecycle depends on the type of
application that you are writing. For example, a business transaction that involves a Windows
Presentation Foundation (WPF) client application might be very different than a business
transaction that happens in a more web-oriented Silverlight application.

In the classic MVVM pattern, I usually like to associate the lifecycle of a UnitOfWork to
the corresponding View/ViewModel association. That way, everything that happens in the
ViewModel is covered by a UoW transaction. If I need to work on a web application, I try to
get help from the HttpContext object, and store the UoW within it. But remember, everything
depends on the type of application that you are writing; the lifecycle of the UoW is context
sensitive.

The Oracle guide for Database Transactions (http://download.oracle.com/docs/cd/B14099 19/
web.1012/b15901/xactions002.htm#i1132715) defines the UoW as a business context that
opens a transaction as soon as the business activity begins and controls this activity by com-
mitting or rolling back that transaction. It’s up to you to determine when the business activity
is complete and when you need to commit any changes.

Identify a Business Transaction
In an MVVM application, the business transaction is usually strictly related to the View/
ViewModel coupling, but some cases might not satisfy this requirement. For example, you
might have a main View that displays all the available customers. At the same time, you might
have a Command that allows users to add, modify, or remove a customer from that list.

Because many views include subviews, there is usually a hierarchy of view models, as well; the
association between a transaction is usually at the screen level, which in this case might be
composed of more than one child View/ViewModel coupling. Figure 4-4 displays a practical
example in WPF.

	 The Unit of Work	 103

Figure 4-4  A samp e WPF MVVM Master Deta s app cat on.

You can see that there are two types of business transactions here. The first one occurs as
soon as the main view loads. At that point, you call the UoW and retrieve all the available
data from the data store. You then display this data in the View using your ViewModel. This
transaction is completed as soon as the data is displayed in the View.

The second transaction might happen any time you add, modify, or delete a customer. This
transaction is pretty simple but challenging at the same time. For example, clicking the Add
Customer command creates a new View/ViewModel with an associated UoW that might or
might not be committed, depending on a specific business logic. In the following example,
the persistence is committed in the command call. Clicking the Save command adds a new
customer to the current session of the UoW. At that point, you should commit the transaction
and refresh the main ViewModel. Is this a unique transaction or is it a set of transactions?
Well, in business transaction terms, this is just one transaction that includes the following steps:

Using (var uow = Container.Resolve<IUnitOfWork>())
{
 try{
 uow.BeginTransaction();
 var customer = CustomerViewModel.GetModel();
 uow.SaveOrUpdate(customer);
 MainViewModel.Refresh();
 uow.Commit();
 }catch(Exception ex){
 uow.Rollback();
 MainViewModel.Refresh();
 }
}

104	 Chapter 4  The Data Access Layer

The previous pseudo-code starts by getting a Customer entity from the CustomerViewModel,
and then it tries to add or update this entity. Next, it refreshes the MainViewModel. If
something goes wrong, the code rolls back the entire transaction and refreshes the
MainViewModel—which should not display the new customer because the transaction failed.

In conclusion, the business transaction handled in a UoW should not be considered the same
as a simple database transaction; instead, consider it as a set of operations that will accom-
plish one or more business “steps.” NHibernate’s ITransaction object, for example, can handle
multiple SQL calls, executing them only when you call the Commit command. At the same
time, based on your configuration, it will update the current session, and of course, the list of
available customers to match the changes made through the UI.

The Repository Pattern
In the previous section, you saw the core of a DAL, the UoW. Unfortunately, with the basic
UoW pattern, you can only add, remove, or update an entity and execute a business transac-
tion, but to have a complete DAL, you need more than that. You need to be able to retrieve
a set of entities, to lazy-load related child and parent entities, and to be able to query and
page results without affecting database performance. For these and other business require-
ments of the DAL, you need to use the Repository pattern.

Martin Fowler first introduced the concept of the Repository pattern in his book, Patterns of
Enterprise Application Architecture (see Chapter 2). A repository should act as an in-memory
collection of entities, and it should facilitate the query and retrieval processes for these enti-
ties without affecting database performance.

A basic repository should support adding and removing entities, and updating existing
entities. It should also provide an easy way to retrieve and query them. The following pseudo-
code displays a common Repository pattern:

interface ICustomerRepository
{
 void AddCustomer(Customer customer);
 void RemoveCustomer(Customer customer);
 void UpdateCustomer(Customer customer);

 IQueryable<Customer> GetCustomers();
 Customer GetCustomer(object primaryKey);
}

Using the following “contract,” you can implement a concrete CustomerRepository that will
be able to execute any type of Create, Read, Update, or Delete (CRUD) operation against
the data store using the UoW. Of course, each of these operations might be included in

	 The Repository Pattern	 105

one or more business transactions. In particular, note the GetCustomers method, which, as
you might have noticed, doesn’t return a “real” collection at all; it returns an IQueryable<T>
collection. That’s because IQueryable is the only collection type that is able to execute a
call to the database when you access only one of the items of the collection. That means
you can apply additional LINQ filters to the collection before the final call to the database
executes. For example, if you write the following code, and the O/RM is Entity Framework or
NHibernate:

var repository = Container.Resolve<ICustomerRepository>();
var customers = repository.GetCustomers()
 .Where(x => x.Company == "Microsoft)
 .OrderBy(x => x.FirstName);
// call to the Db
customers.ToList();

the final T-SQL generated from our O/RM, if well configured, will be something like this:

SELECT * FROM
TBL_CUSTOMER C WHERE C.COMPANY = ‘Microsoft’
ORDER BY C.FIRSTNAME

You can see the IQueryable<T> collection type analyzed in more detail at http://msdn.
microsoft.com/en-us/library/system.linq.iqueryable.aspx. IQueryable<T> is part of the System.
Linq namespace, and not a part of the System.Collections namespace like other collections
available in .NET. Of course, to use it properly, you must be sure that your O/RM has full sup-
port for LINQ or one of its providers.

To keep this concept general, you might consider using .NET generics and creating a more
generic Repository pattern contract, such as the following:

Interface IRepository<T>
{
 void Add(T entity);
 void Remove(T entity);
 void Update(T entity);

 T Get(object primaryKey);
 IQueryable<T> GetEntities();
}

This code creates a more generic contract that we can recycle throughout our applications,
and that—in conjunction with a generic UoW—makes a very flexible and reusable DAL. Later
in this chapter, you’ll build simple UoW and IRepository classes using generics and see how
easy it is to plug these two powerful patterns into the same MVVM project by using two dif-
ferent O/RMs.

106	 Chapter 4  The Data Access Layer

A sample implementation of a generic Repository should look like this:

public GenericRepository<T> : IRepository<T>
{
 private IUnitOfWork uow;

 public GenericRepository()
 {
 this.uow = Container.Resolve<uow>();
 }

 public void Add<T> (T entity){
 try
 {
 uow.BeginTransaction();
 uow.Add(entity);
 uow.Commit();
 }catch (Exception ex){
 uow.Rollback();
 }
 }
}

Test-Driven Development: The Data Layer
In Chapter 2, I stressed how important Test-Driven Development (TDD) is and why you need
to introduce it at the beginning of the development process. Of course, the Data Layer also
needs to be tested.

To test the Data Layer, you should follow two different directions, depending on the com-
position of the DAL. The first step is to test the mapping against the O/RM; you need to be
sure that the entity is mapped properly in the O/RM, and that each field is mapped to the
appropriate field in the database. For example, you don’t want the FirstName property of the
Customer entity mapped to the LastName field of the Customer’s table.

To test the mapping, depending on the O/RM you are using, you should follow a few simple
steps. First, you want to ensure that when you create and save a new entity, for example, a
Customer entity, that the values are persisted properly in the database. To accomplish this
test, you simply need to create a new entity, save it, retrieve it, and then check it against a
static value.

public void CanSaveFirstName()
{
 var firstName = "John";
 var customer = Factory.Create<Customer>();
 customer.FirstName = firstName;
 GenericRepository<Customer>.Add(customer);
 var expected = GenericRepository<Customer>.Get(customer.PrimaryKey);
 Assert.AreEquals(expected.FirstName, firstName);
}

108	 Chapter 4  The Data Access Layer

The following example shows how FluentNHibernate lets you write “fluent” mapping files:

public class CatMap : ClassMap<Cat>
{
 public CatMap()
 {
 Id(x => x.Id);
 Map(x => x.Name)
 .Length(16)
 .Not.Nullable();
 Map(x => x.Sex);
 References(x => x.Mate);
 HasMany(x => x.Kittens);
 }
}

The next code example shows you how to test your mapping against a data store using the
FluentNHibernate component. The code creates a new Employee entity, persists it to the
database, and then verifies that the entity has been persisted properly.

[Test]
public void CanCorrectlyMapEmployee()
{
 new PersistenceSpecification<Employee>(session)
 .CheckProperty(c => c.Id, 1)
 .CheckProperty(c => c.FirstName, "John")
 .CheckProperty(c => c.LastName, "Doe")
 .VerifyTheMappings();
}

One final consideration: remember that the domain mapping for a normal MVVM applica-
tion happens just once during the entire lifecycle of the application. Of course, you will need
to change and modify the Domain and the data store during the application’s lifetime, but
the main schema should not change. A good TDD layer for the DAL will guarantee that every
change you make to the Domain will be properly reflected to the corresponding data store.

Building a Distributed Data Layer with RIA and WCF
What you’ve seen so far is fine if your DAL is written in C# or Visual Basic .NET, and if it’s used
by a “normal” .NET application that uses the common CLR, such as a WPF Client application.
This means that you can write your custom and generic DAL once and reuse it repeatedly
for your WPF application, for your ASP.NET application, or for a simple Windows Service
application. If you are using a three-tier approach, the concept becomes more complex. This
is because you will need to add an additional abstraction using a Windows Communication
Foundation (WCF) or a web service technology that will provide the atomic methods to call
the DAL stored at the application server level.

110	 Chapter 4  The Data Access Layer

Figure 4-6 How to create a S ver ght App cat on that nc udes WCF R A Serv ces.

You can use WCF RIA Services in your WPF applications if you want, but they were originally
designed to satisfy the problem of Silverlight generating code only for the Silverlight CLR.

To create a WCF RIA Application, you need a base Silverlight Client application. This applica-
tion will have a Silverlight project and an ASP.NET or ASP.NET MVC website that hosts the
compiled Silverlight application.

After creating the base Silverlight Client, you need to add a new WCF RIA Service to the web
application, as shown in Figure 4-6. At this point, you are able to share the DAL, Domain,
and anything else you need from your Common CLR to the Silverlight application. Figure 4-7
summarizes these steps, and shows you how simple it is to use and how simple it is to share a
Domain across a Silverlight application.

Note  To be prec se, you’d usua y use th s w zard when creat ng a Doma n Mode based exact y
on the database schema of the tab e you choose, wh ch s not typ ca of what you wou d do n a
rea LOB app cat on

	 Building a Distributed Data Layer with RIA and WCF	 111

Figure 4-7  Two easy steps to add an ex st ng Doma n to a WCF R A Serv ce.

Having added the references to the Silverlight application, you are ready to query your
Domain using your existing DAL from the Silverlight code. Because RIA Services has full sup-
port for XAML code, this is a very good combination for the MVVM pattern, as well.

The following code loads some data into the ViewModel and binds it to a grid in a Silverlight
View:

public class GridViewModel : ViewModel
 {
 private CustomerDomainContext customerContext = new CustomerDomainContext();
 public LoadOperation<Customer> VMDataSource;
 public GridViewModel()
 {
 InitializeView();
 VMDataSource = this. customerContext.Load(
 this.customerContext.GetCustomersByLastNameLetterQuery(LetterValue.Text),
 CustomerLoadedCallback, null);
 }
 }
//XAML

<Page.Resources>
 <vm:GridViewModel />
</Page.Resources>
<myGrid:DataGrid DataSource="{Binding Path=VMDataSource}" ...

Note WCF RIA Serv ces work we w th O/RM, Ent ty Framework, and NH bernate

This listing introduced a CustomerDomainContext—a custom class that inherits from the
DomainContext class and is created by the WCF RIA Services Wizard. A domain context class
is generated in the client project for every domain service in the server project. You call
methods on the domain context class that correspond to the domain service method that
you want to use.

112	 Chapter 4  The Data Access Layer

If you want to keep an eye on WCF RIA Services, Microsoft has an official website for this
technology (http://www.silverlight.net/getstarted/riaservices) where you can find a lot of use-
ful code, samples, and tutorials. If you have an existing DAL and you are planning to build
your next LOB application using Silverlight, you should definitely consider using WCF RIA
Services to save time and work.

Of course, if you plan to use this approach, you will need to consider additional issues that
accompany the SOA approach, such as records concurrency, data latency, and bottlenecks
across the network.

Sample Code: The CRM Data Access Layer
In the Sample Code section of Chapter 3, we created the Domain Model for the CRM exam-
ple application, which is composed of two main groups of entities: the Person entity and the
Order entity. In this chapter, we’ll map that Domain to a database using two different O/RMs:
Entity Framework and NHibernate.

A Flexible IUnitOfWork Interface
Before creating the domain mapping, you need to create the basic IUnitOfWork interface,
which will be used throughout the layers of the MVVM application. The class diagram in
Figure 4-8 illustrates an IUnitOfWork interface that is very close to the UoW explained earlier
in this chapter. The UoW will expose the three principal commands to change the status of an
entity (Create, Update, Delete) as well as functions to execute these commands in a transac-
tion context.

The UoW will be specific to each O/RM because Entity Framework uses the ObjectContext,
while NHibernate uses the ISession interface. For this reason, the IUnitOfWork will not expose
the real DataContext, only the basic commands needed to execute the SQL statements.
The application uses the ISessionFactory interface for the same reason; depending on the
O/RM in use, we will create a specific concrete UnitOfWork that will have an O/RM-specific
DataContext.

Finally, you’ll need a generic Repository that will perform the CRUD operations in a transac-
tional context. The Repository will expose the current IUnitOfWork so that we will be able to
execute specific commands as well as the predefined CRUD operations available through the
Repository.

	 Sample Code: The CRM Data Access Layer 	 113

Figure 4-8  The CRM.Da abstract ayer: the bas c ayer for any DAL.

You also need to create two additional layers: one for Entity Framework, and one for
NHibernate. As mentioned earlier, this step is required because you can choose which O/RM
you want to use, but you can’t apply the same concrete UnitOfWork to two different O/RMs,
because they manage entity persistence and the data context in different ways. The final
result should look like the diagram in Figure 4-9. Remember that all the code mentioned in
this book is available in the CRM example application included in the downloadable compan-
ion content for this book.

Figure 4-9  The CRM Doma n w th the comp ete Data Layer.

Figure 4-9 shows that the Domain is totally unaware of the persistence technique in use. At
the same time, the abstract Data Layer that you will use in your MVVM application doesn’t
know about the concrete implementation.

Mapping the Domain Model Using Entity Framework
Using Entity Framework, you can develop a Domain using two different DDD approaches:
domain-first or database-first. As discussed in Chapter 3, you should avoid the database-first
approach unless you are restricted to a specific legacy database. Because the CRM applica-
tion is new, we will not be bound to a specific database schema, so we will use the domain-
first approach here.

114	 Chapter 4  The Data Access Layer

Before .NET Framework 4.0, you were not able to create a complete POCO Domain and
plug it into a new Entity Framework model, but with version 4, you can now accomplish this
task without the need to rewrite everything. Unfortunately, Entity Framework requires a set
of proxy classes that act as mappers for the POCO Domain Entities. Therefore, you need to
implement the same model you have in the Domain in the Entity Framework designer. This
mandatory requirement causes a major problem; Entity Framework needs to know how to
perform lazy loading and how to persist a POCO entity. Because the entity is POCO, the only
way to do that is to create a proxy that overrides the POCO entity with the specific configura-
tion for the database.

To start, create a new project and name it CRM.Dal.EF. This will be a concrete implementa-
tion of the Data Layer for Entity Framework. Next, add these three references: CRM.DAL
(our base data layer), System.Data.Entity (Entity Framework) and System.ComponentModel.
Composition (MEF for the Plug-In design).

Now, add a new empty .edmx file (ADO.NET Entity Model). You need to create the same enti-
ties that exist in your basic domain. This step is pretty frustrating and overly time-consuming,
but to keep your domain POCO unaware of the Entity Framework, this is the only solution
available right now. The final result should be similar to Figure 4-10.

POCO DOMAIN IN CRM.DOMAIN ENTITY FRAMEWORK MAPPING
DOMAIN IN CRM.DAL.EF

Figure 4-10  C ass d agrams compar son: POCO Doma n versus Ent ty Framework Doma n.

I have found some custom tools at www.codeplex.com that might help you to generate your
custom Entity Framework mapping diagram from an existing POCO Domain. Of course,
the best fit for this type of approach is to generate your Entity Framework Model from an
existing database and then build proxies for your Domain Model. In this chapter, you saw
the pros and cons of this O/RM. You should not use Entity Framework if you plan to keep a
Domain Model totally POCO because the current release (CTP 4) still lacks a mapping process
between Entity Framework proxies and POCO Domain Entities.

	 Sample Code: The CRM Data Access Layer 	 115

Creating a Concrete DAL for Entity Framework
The next step is to create a proxy ObjectContext that will be able to persist the POCO enti-
ties. The following code maps each Entity Framework proxy entity to its corresponding CRM.
Domain entity. To do this you must add a reference to the CRM.DAL.EF layer that points to
the CRM.Domain. You will not recycle this part of the DAL because it is specific to the sample
MVVM application for this specific Domain.

namespace CRM.Dal.EF
{
 public class CRMObjectContext : ObjectContext
 {
 public CRMObjectContext(string connectionString) : base(connectionString)
 {
 /// <summary>
 /// Gets or sets the employees.
 /// </summary>
 /// <value>The employees.</value>
 public ObjectSet<Employee> Employees { get; set; }

 /// <summary>
 /// Gets or sets the customers.
 /// </summary>
 /// <value>The customers.</value>
 public ObjectSet<Customer> Customers { get; set; }
 }
 }
}

Now that you have the ObjectContext, you can start to implement the concrete DAL for the
Entity Framework side. The first class you need to implement is, of course, the UnitOfWork,
which will inherit from CRM.DAL.IUnitOfWork. You need to instruct MEF that you’re using a
plug-in IUnitOfWork by adding the [Export] attribute to the concrete UnitOfWork implemen-
tation, as shown in the following code:

 [Export(typeof(IUnitOfWork))]
 public class UnitOfWork : IUnitOfWork
 {
 private ObjectContext orm;

 /// <summary>
 /// Initializes a new instance of the <see cref="UnitOfWork"/> class.
 /// </summary>
 /// <param name="orm">The orm.</param>
 public UnitOfWork(ObjectContext orm)
 {
 this.orm = orm;
 }

In the UoW constructor you will inject the current ObjectContext, which is the proxy used for
your Domain Model.

116	 Chapter 4  The Data Access Layer

The next short code example shows a simple Add method. Basically, you must add the entity
to the ObjectContext. Then the CommitTransaction method will try to update the Entity
Framework session in a transactional context. If the Add operation fails, Entity Framework
doesn’t need a rollback method, because it will automatically roll back the entities’ status:

 /// <summary>
 /// Adds the specified entity.
 /// </summary>
 /// <typeparam name="T"></typeparam>
 /// <param name="entity">The entity.</param>
 public void Add<T>(T entity)
 {
 try
 {
 this.orm.AddObject(EntitySetName, entity);
 }
 catch (Exception ex)
 {
 throw new Exception(string.Format(
 "An error occurred during the Add Entity.\r\n{0}", ex.Message));
 }
 }
 /// <summary>
 /// Commits the transaction.
 /// </summary>
 public void CommitTransaction()
 {
 try
 {
 if (tx == null)
 {
 throw new TransactionException(
 "The current transaction is not started!");
 }
 orm.SaveChanges(false);
 tx.Complete();
 orm.AcceptAllChanges();
 }
 catch (Exception ex)
 {
 throw new Exception(string.Format(
 "An error occurred during the Commit transaction.\r\n{0}", ex.Message));
 }
 finally
 {
 tx.Dispose();
 }
 }

The second class you will implement is the generic Repository that inherits from CRM.DAL.
IRepository and that exposes all the available methods from the IRepository interface. The
Repository will also have an Export attribute so that you can use MEF in the MVVM layer to
load the selected O/RM on the fly.

	 Mapping the Domain Using NHibernate	 117

 [Export(typeof(IRepository))]
 public class Repository : IRepository
 {
 [Import]
 private IUnitOfWork uow;

 /// <summary>
 /// Adds the entity.
 /// </summary>
 /// <typeparam name="T"></typeparam>
 /// <param name="entity">The entity.</param>
 /// <returns></returns>
 public T AddEntity<T>(T entity)
 {
 try
 {
 uow.BeginTransaction();
 uow.Add(entity);
 uow.CommitTransaction();
 return entity;
 }
 catch (Exception ex)
 {
 uow.RollbackTransaction();
 throw new Exception(string.Format(
 "An error occurred during the Add Entity method.", ex));
 }
 }

Note that the code marks the private field IUnitOfWork with the [Import] attribute. MEF
will use this attribute to realize the corresponding mapped concrete UnitOfWork at run-
time when you create a new instance of the Repository class. All the other methods of the
Repository should be implemented similarly: you open a transaction, call the corresponding
UnitOfWork method, and then call CommitTransaction or RollbackTransaction at the end.

That completes the UnitOfWork implementation for the Entity Framework. You have a fully
pluggable DAL for the Domain Model that is not aware of the mapping model, which you
designed using the .edmx designer of the Entity Framework.

Mapping the Domain Using NHibernate
The process to map the domain using NHibernate is simpler and should take less time—but
remember, everything depends on the type of DDD approach that you are using. In this
case, if you’re using a domain-first approach, NHibernate lets you auto-generate everything,
from the mapping to the final database schema. If you’re using the database-first approach,
NHibernate will require more effort than Entity Framework to generate the mapping files.

118	 Chapter 4  The Data Access Layer

Getting the Tools
First, go to www.nhforge.com and download the latest build or the last available General
Availability (GA) release. At the time of this writing, version 3 has been released in beta 2, and
it’s already pretty stable. After you have downloaded the version that you want to use, go to
www.fluentNHibernate.com and download the latest version of FluentNHibernate so that you
can create the mappings using a few lines of code rather than manually writing error-prone
XML files.

Create a new solution in Visual Studio and call it CRM.DAL.NHibernate. Add these three
references: CRM.DAL (the abstract DAL layer), CRM.Domain (The Domain Model) and System.
ComponentModel.Composition (for MEF support).

Find the folder where you installed NHibernate; you should see a set of assemblies that are
mandatory to run this O/RM. To fully install NHibernate, you should have downloaded three
different packages: NHibernate[version].GA, the core engine: LINQtoNHibernate[version].GA,
which supplies support for LINQ; and FluentNHibernate, as discussed at the beginning of this
section.

You should reference all three packages in your NHibernate concrete DAL. Refer to
Figure 4-11 as a reference.

Figure 4-11  The requ red assemb es for NH bernate.

Before we begin, I’ll briefly explain this list of assemblies. The folder named Core contains the
NHibernate engine; Log4Net.dll, which is an open-source log that’s plugged into this O/RM;
Iesi.Collection.dll is a proxy collection used by the O/RM; and Antlr3.Runtime.dll is a profiler
for the O/RM. FluentNHibernate.dll is self-explanatory. The Proxies folder is one of the avail-
able proxy engines for “on-the-fly” creation of proxy classes. You can choose from Castle,
LinFu, or Spring; unfortunately, Unity is not available for this O/RM. Select the one you prefer.
For demonstration purposes here, I will use Castle, just because it’s the simplest to configure.

	 Mapping the Domain Using NHibernate	 119

After referencing all the assemblies, you can begin to build your NHibernate mapping
and session factory. Let’s start with the UnitOfWork. You want to do the same thing you
did for the Entity Framework DAL: create a new UnitOfWork that inherits from CRM.DAL.
IUnitOfWork and implement each concrete method.

The UnitOfWork and the ISession
The UnitOfWork for NHibernate is slightly different because there’s no ObjectContext object.
Instead, we have an ISession object generated by the Session Factory. Here’s how it works:

 [Export(typeof(IUnitOfWork))]
 public class UnitOfWork : IUnitOfWork
 {
 private ITransaction tx;

 private ISession orm;

 public UnitOfWork(ISession orm)
 {
 this.orm = orm;
 }

The ISession interface is more powerful than the ObjectContext object provided by Entity
Framework, and it’s also more flexible. Unfortunately, due to its characteristics you must pro-
vide all the necessary code to execute a correct business transaction. The ISession itself will
keep the transaction alive as long as you want.

 public void BeginTransaction()
 {
 if (tx != null)
 {
 tx = orm.BeginTransaction();
 }
 }

 public void CommitTransaction()
 {
 if (tx == null)
 {
 throw new Exception("The current transaction has not been initialized.");
 }
 tx.Commit();
 }

 public void RollbackTransaction()
 {
 if (tx == null)
 {
 throw new Exception("The current transaction has not been initialized.");
 }
 tx.Rollback();
 }

120	 Chapter 4  The Data Access Layer

The other methods are pretty close to what you’ve already seen with Entity Framework. The
main difference is that NHibernate doesn’t need to get attached to an existing entity if you
disposed the ISession. NHibernate’s persistence ignorance mechanism is able to understand
whether an entity is a new entity or an existing one.

NHibernate has very specific management for the Domain Session, represented by the
Session Factory, a static class that is able to generate all the required proxies and connections
for the O/RM in one shot. Your DAL will retrieve the Session from the Session Factory, which
will return a new UoW. The sample code uses the FluentNHibernate plug-in, and the short
excerpt that follows shows you how to create an automatic mapping (Domain fields data-
base fields) with just one call:

 [Export(typeof(ISessionFactory))]
 public class SessionFactory : ISessionFactory
 {
 private IUnitOfWork uow;

 public IUnitOfWork CurrentUoW {
 get
 {
 if (uow == null)
 {
 uow = GetUnitOfWork();
 }

 return uow;
 }
 }

 public SessionFactory()
 {

 }

 /// <summary>
 /// Gets the unit of work.
 /// </summary>
 /// <returns></returns>
 private IUnitOfWork GetUnitOfWork()
 {
 var session = Fluently.Configure()
 .Database(
 MsSqlConfiguration.MsSql2008
 .ConnectionString(x => x.FromAppSetting("DatabaseConnection")))
 .Mappings(m => m.AutoMappings
 .Add(AutoMap.AssemblyOf<Person>)
 .Add(AutoMap.AssemblyOf<Customer>)
 .Add(AutoMap.AssemblyOf<Employee>)
 .BuildConfiguration();
 var uow = new UnitOfWork(session);
 return uow;
 }

	 Summary	 121

This sample created a new SQL 2008 session which, like the Entity Framework session, will
retrieve the connection string from the App.Config/Web.Config and create an automapping
for each entity added to the configuration. That’s it. Using a domain-first approach you don’t
need to do anything else—the ISession is ready for use.

The Repository
I left the repository implementation until the end of the tutorial because it should not be dif-
ferent between the two O/RMs. The only difference is that in the Entity Framework, you will
query the ObjectContext object, while in NHibernate, you will query the ISession object.

The only important thing for taking advantage of lazy loading and dynamic SQL creation is
to always return an IQueryable<T> collection.

The following code uses the Entity Framework UnitOfWork to retrieve a list of Customers:

 public IQueryable<T> GetList<T>() where T : class
 {
 return ((ObjectContext)this.UoW.orm).CreateObjectSet<T>();
 }

Here’s the same code using the NHibernate Repository:

 public IQueryable<T> GetList<T>() where T : class
 {
 return ((ISession)this.UoW.orm).Linq<T>();
 }

Both of these repositories allow you to write something such as this:

 var customers = GetList<Customer>()
 .Where(c => c.FirstName == "John")
 .OrderBy(c => c.FirstName)

The implementation will be the same for all the repository implementations. In this way, we
will use the IQueryable<T> objects without the need to know what DAL we are really using in
the MVVM layers.

Summary
In this chapter, you’ve seen a number of concepts, the O/RM being among them. If you have
not yet worked with an O/RM, you should review the sample code for this book and spend
some time investigating documentation and tutorials based on the O/RM that you choose.
The purpose of the exercise in this chapter is to show you how to write dynamic and recy-
clable code. Of course, in a real-world MVVM LOB application, you will probably never need

122	 Chapter 4  The Data Access Layer

to map your Domain Model to two different O/RMs—but the point is that if you follow these
techniques, you will be able to recycle parts of your code for your next MVVM application.

You saw that we can still use the “classic style” of writing custom T-SQL code—or you can
spend less time and focus more on the business logic of an application by delegating the
hard work to an O/RM. An O/RM is nothing more than an application framework used to
help translate a Domain Model into something that the database understands, all with-
out losing the powerful POCO concepts of having the Domain unaware of the persistence
mechanism.

There are other O/RMs available for the .NET Framework, but the most popular (and free)
are the Entity Framework and NHibernate. While the Entity Framework is designed more
for a database-first approach, NHibernate is more flexible when used with a domain-first
approach. However, you saw that either O/RM can be used with either of these two DDD
approaches.

	 	 123

Chapter 5

The Business Layer
After completing this chapter, you will be able to:

n	 Create and execute Business Rules.

n	 Create the correct Business Logic Layer.

n	 Apply the knowledge acquired to the sample application.

Introduction
One of the most time-consuming tasks—and probably the most expensive in terms of main-
tenance—is the Business Layer of your application (provided, of course, that the application
you are working on has one).

In both old-fashioned and modern applications, the Business Layer is generally composed
of a nested set of classes. Some applications store the business logic in the Domain Layer;
others store it in the database using stored procedures or views. The worst applications store
the business logic in a haphazard manner, scattered throughout the code.

There are few things less enjoyable than trying to maintain an application that has business
logic strewn all over. Not only will you waste a lot of time just trying to figure out how the
code works, but every change you make could cause unexpected behaviors in other sections
of the application.

In a clean, modern design, the Business Layer should be a separate layer of your application.
It should be aware of the Domain Layer and probably also the Data Layer. The Business Layer
is the logical core of any Line of Business (LOB) application, and it should be the only place
where the business logic of your application resides. It should also be easy to maintain and
self-documenting.

In an Model View ViewModel (MVVM) application, the Business Layer is composed of a set of
Services and Business Rules that define the business processes which the program is designed
to perform. This layer is exposed and used by the ViewModels that should include only the
presentation logic. This scheme lets you maintain a loose coupling between the business
logic and the presentation logic.

124	 Chapter 5  The Business Layer

Note Wh e the term “Bus ness Ru es” s often used to mean any non-UI og c, n th s book, the
term nc udes on y og c that mp ements bus ness processes and ensures data ntegr ty Th s
code s ndependent of the c ent port on of the app cat on

Before exploring how to accomplish the goal of keeping the business logic separate from the
views and the domain entities in the sample CRM application, I want to explain the difference
between validation rules and business rules.

A Business Rule Is Not a Validation Rule
A Validation Rule is any criterion that describes how to validate a specific value of a specific
object. Examples include the field length constraint for a database table, or the “Required
Field” messages displayed in a View. Validation Rules are usually applied to an object that
needs to be validated before its value is saved to the data store or before it’s processed by
another transaction that requires the value to be valid.

In contrast, a Business Rule is any rule that acts to change the value of an object, based on a
set of rules or based on a specific behavior. Often, Business Rules have the sole purpose of
informing users whether an action can or cannot be executed after the evaluation of specific
objects involved in that transaction.

Note  I have not ced that many peop e do not make a d st nct on between Bus ness Ru es
and Va dat on Ru es Because both serve the same master, you can ump both types of ru es
together—but you shou d be aware that there are two d fferent types of ru es The first type en-
sures data ntegr ty and va d ty, and be ong to what th s book ca s Va dat on Ru es, the second
type hand es bus ness processes and operat ons; n th s book, those are ca ed Bus ness Ru es

Usually, you define Validation Rules in two distinct layers: the Domain Model and the UI. In
the first case, you set up constraints to ensure a Domain Entity is valid before saving it to
a data store or processing it with another component. You can define these rules manu-
ally using procedural code, using third-party frameworks, or through simple decoration
attributes. The following code shows how you might validate an object using the System.
ComponentModel namespace available with the Microsoft .NET Framework:

/// <summary>
/// Gets or sets the first name.
/// </summary>
/// <value>The first name.</value>
[Required(ErrorMessage = "The First Name can’t be null or empty.")]
[StringLength(50, ErrorMessage = "The First Name can’t be greater than 50 characters.")]
public string FirstName { get; set; }

	 A Business Rule Is Not a Validation Rule	 125

The preceding code defined some simple validation rules on the Person Domain Entity, spe-
cifically, on its FirstName property. We want to ensure that the property value isn’t blank
and that it doesn’t exceed 50 characters in length. Each validation error is associated with a
specific error message. In Chapter 6, “The UI Layer with MVVM,” you’ll see how you can easily
bind these properties to the ViewModel.

A second application of this rule lies in the UI layer. For example, in a simple LOB Silverlight
application, you might encounter validation behavior when trying to log on using improper
credentials. Figure 5-1 shows a classic validation rule applied to a Silverlight MVVM view.

Figure 5-1  S ver ght v ew w th a va dat on message.

A Business Rule uses a different approach because it is composed of a set of rules that aren’t
easily defined using a simple attribute approach. Typically, you need to write if/else state-
ments or switch statements, depending on the type of ruleset that you want to verify. The
.NET Framework includes a free and useful tool to accomplish this task: Windows Workflow
Foundation version 4 (WF 4.0). Of course, the problem here is not only about writing com-
plex if/else or switch statements. It’s about the application logic you use to implement a busi-
ness process or to ensure that a complex set of rules is applied, which you can’t express as a
single attribute on a property.

For example, you can consider the workflow shown in Figure 5-2 as a set of rules.

126	 Chapter 5  The Business Layer

Figure 5-2  A custom workflow to create an order.

The workflow in Figure 5-2 executes a set of Business Rules to verify that a submitted Order
can be fulfilled; for example, whether a requested product is in stock and available to be
shipped. If verification succeeds, then the Order will be created, and a message will be sent to
the queue. Otherwise, the order will be discarded, and a different message will be sent to the
queue to inform the customer that the product is not in stock.

You can also accomplish this process by using the following pseudo C# code:

 public class CustomRules

 {

 [Import]

 private IRepository repository;

 public void CanAddAnOrder(Order order, Customer customer)

 {

 foreach (var orderLine in order.OrderLines)

 {

 var available =

 repository.GetEntity<Product>(orderLine.Product.PrimaryKey)

 .AmountInStock;

 if (!available)

 {

 RemoveOrder(order, customer);

 break;

 }

	 Business Rules by Service	 127

 ConfirmOrder(order, customer);

 }

 }

 private void RemoveOrder(Order order, Customer customer) { }

 private void ConfirmOrder(Order order, Customer customer) { }

 }

This second example demonstrates that translating the ruleset to a programming language is
a potentially error-prone process. More than that, this ruleset is totally incomprehensible to
anyone not fluent in code, such as an analyst or an account manager, who also need to know
how this ruleset works. In addition, the process of maintaining up-to-date documentation for
such rules can be time-consuming.

In contrast, when you use a graphical tool such as WF 4.0 to implement a ruleset, you can
share the rules with programmers involved in the development process and non-coders,
alike. In other words, the visual representation makes your rule code more readable and
maintainable to all participants.

In this chapter, you’ll see other third-party tools available for using this “workflow-by-design”
approach, and why that approach is much better than having custom C# code spread
throughout the layers of your LOB applications. First, consider the testability of your Business
Rules; if they are part of a specific layer/component, you can test them easily against a set of
mockup data. Second, consider the documentation: a visual workflow is also readable and
understandable by non-technical persons such as an operations employee, or an auditor
who might need to verify the business logic applied to the application.

Business Rules by Service
Business Rules need to be stored inside a layer, and probably the best place to do that is
in an additional assembly visible to the Business Layer. That is not an additional layer but
an extension of the Business Logic Layer (BLL) that includes only the physical workflows.
It doesn’t matter nearly as much which technology you use to create your business rules
(whether workflows, procedural code, or XML files), but it’s important that you keep these
rules separate from any other code in your LOB application so that you can easily separate
maintenance and test processes.

It’s also useful to execute these rules with code that uses the same format throughout your
LOB application so that you can easily recognize a call to a Business Rule and apply them in
a consistent way.

The Design by Service is a design pattern introduced by Martin Fowler, in which the core of
your business transaction runs in a service that knows everything about the Model and the
Data Layer. It is also the only object in charge of making business decisions.

128	 Chapter 5  The Business Layer

By using Design by Service in the Business Layer, you delegate the execution of a rule or set
of rules, object validation, and specific business transactions to a service class that doesn’t
need anything more than the objects involved in the process. The best way to do that is to
create a set of service classes based on the business transactions that your application will
execute. The more granular the codes in this part of the application, the easier it will be to
maintain this important layer.

Pseudo code for such a service class would look similar to this:

var svc = Container.Resolve<IService<Customer>>();
var order = svc.CreateProcess(ProcessEnum.CreateOrder, myPerson, myOrderLines);
var result = svc.Verify(RulesEnum.AddOrder, myPerson, order);

The preceding code is a simple generic class that can execute workflows based on the type of
operation that you want to perform. The class is flexible, readable, and easy to maintain. You
can define the operations using a set of enumeration values to add more readability to the
code, and then refer to a specific workflow with the same name.

The Facade Pattern
Another interesting way would be to use one or more of the design patterns we saw in
Chapter 2, “The Design Patterns,” to make the Business Layer more flexible. For example, the
Facade pattern would be a good match for the base service that exposes simple methods
through a common facade interface, which hides the real interaction between the systems.
In the following example, we want to expose an AddOrder method within our facade, but we
don’t want to require developers to know what is going on behind that process.

Figure 5-3 illustrates a classic Facade service layer. Each facade in this case uses generic
implementation to identify the primary entity involved in the process, and each service
exposes some business methods that execute a set of transactions that are not visible out-
side the facade service. For example, the method CanAddOrder executes additional methods
inside its signature, such as:

n	 IsProductAvailable

n	 IsOrderCompleted

n	 CanCustomerSubmitOrder

Because these three additional methods are marked as private, they are not visible outside
the Facade service. This way, you can keep the code separate, but also make using the service
layer less error-prone, because it forces developers to call only the exposed methods, such as
CanAddOrder and doesn’t provide direct access to the shortcut methods used by the facade.

	 Business Rules by Workflow with WF 4.0	 129

Figure 5-3  A bus ness serv ce us ng the Facade pattern.

Business Rules by Workflow with WF 4.0
When you build your Business Layer, it’s important that you provide a means for non-technical
but business-savvy people to read and understand it—just like the Domain Model. Using the
right combination of Domain Model and Business Layer, a non-programmer should be able to
understand the design of your application and the business logic behind the application.

In the previous section, you learned that it’s difficult to embed custom generic logic in a C#
procedure and make it self-documenting. Of course, you can write a nice, clean fluent inter-
face, but often that’s not enough, especially because the Business Layer often continues to
grow and change throughout an application’s lifetime.

WF 4.0, which ships with the .NET Framework 4, has an updated workflow engine built
around XAML code—just like a normal MVVM application. This version is completely differ-
ent from the previous version; it’s both very flexible and allows you to build custom work-
flows and rulesets for your Business Layer.

The basic concept of WF 4.0 is to simplify writing a procedural workflow that can make deci-
sions and adapt, based on values it receives as input parameters. Of course, these values can
be either from one or more domain model entities, or just simple scalar values.

The following example uses a new “Workflow Activity Library” project type, available with
.NET Framework 4 and Microsoft Visual Studio 2010. I have added two references to the proj-
ect: one to the generic Data Layer that you created in Chapter 4, “The Data Layer,” and one
to the Domain Model that you created in Chapter 3, “The Domain Model.” This workflow is
intended to ensure that a user can add and confirm an Order. In this case, there will be two
parameters: the current Customer and the Order to process.

	 Business Rules by Workflow with WF 4.0	 131

WorkFlowInvoker
The first (and simplest) method to run a workflow (which was inherited from version 3 of
the Workflow engine) is called WorkflowInvoker. This class requires that the workflow you
want to run is already in hand, so you must either know the real code file name of the work-
flow or have the XAML code. It works in the following way:

// first of all you render the workflow in memory
Activity wf;
using (Stream xaml = File.OpenRead("CanAddOrder.xaml"))
{
 wf = ActivityXamlServices.Load(xaml);
}

Next, you call the static Workflow Engine and pass it any input and output parameters inside
an IDictionary<string, object> collection, where the key of the collection is the parameter
name, and the object is the current value.

var params = new Dictionary<string, object>
{
 { "CurrentCustomer", myCustomer },
 { "CurrentOrder", myOrder },
}
// execute the workflow
var output = WorkflowInvoker.Invoke(wf, params);
// access the result
Console.Writeline("Can Execute? {0}", output["CanExecute"]);

The WorkflowInvoker returns another collection of type <string, object>, which includes all
the available output parameters.

Pros and Cons of the WorkflowInvoker
The WorkflowInvoker is fairly simple and easy to use. In fact, it’s too simple; it doesn’t give you
much control over the workflow. For example, you can’t track the status of the workflow, and
you can’t monitor the execution by using events. Therefore, you should use WorkflowInvoker
only for simple workflows such as CanExecute on a Context Menu or a Button command. You
might also use it for testing your workflows before going into production, but keep in mind
that WorkflowInvoker is not designed for a more complex environment.

WorkflowApplication and WCF
If you plan to build your MVVM application’s BLL using WF 4.0, you should concentrate on
the more complex hosting engine, called WorkflowApplication. This component uses the
same collections of input and output parameters, but you also have access to specific events
and asynchronous calls by which you can build a more complex and sophisticated rule
engine.

132	 Chapter 5  The Business Layer

To run a workflow this way, you first need to retrieve your current workflow. To do that, you
don’t need to know the XAML path, just the class name available in the DLL, as shown in the
following example:

WorkflowApplication wf = new WorkflowApplication(new CanAddOrder());
// parameters
var params = new Dictionary<string, object>
{
 { "CurrentCustomer", myCustomer },
 { "CurrentOrder", myOrder },
}

Then you create a new instance of the non-static WorkflowApplication and subscribe to all
the available events, so that you can have full control over the execution of the ruleset:

wf.Completed = delegate(WorkflowApplicationCompletedEventArgs e)

{

 // Handle the execution Complete

};

wf.Aborted = delegate(WorkflowApplicationAbortedEventArgs e)

{

 // handle the execution aborted

};

wf.OnUnhandledException =

 delegate(WorkflowApplicationUnhandledExceptionEventArgs e)

{

 // handle the failure

 return UnhandledExceptionAction.Terminate;

};

wf.Run();

Using this approach, you can execute the ruleset on a middle tier, for example, which might
be faster and more powerful than the client’s PC, or you can simply monitor the execution of
a workflow and make business decisions without throwing exceptions in UI.

AppFabric and the WCF Execution
Microsoft AppFabric is a set of integrated technologies that make it easier to build, scale,
and manage web and composite applications that run on IIS and Windows Server. Windows
Server AppFabric is available at http://msdn.microsoft.com/en-us/windowsserver/ee695849.
You can download and install it through the easy-to-use web platform Installer component.

One feature of AppFabric is that it provides the possibility to host and execute Windows
Workflows through a set of WCF Services, so that the BLL of your application can be stored
in a separate application server. Because AppFabric is also based on .NET Framework 4, it
provides—out of the box—a set of persistence, monitoring, and hosting functionalities that

	 Third-Party Toolkits	 133

can be useful when you are building an application server that needs to host one or more
application BLLs.

AppFabric is a complex product that probably deserves an entire book, but the point here is
that AppFabric is absolutely the answer for building a medium to complex BLL with a scalable
and maintainable application server. To support this claim and to help you understand the
product better, here is a list of features that Windows AppFabric server makes available:

n	 Deployment and management of WCF and WF Services hosted using WAS

n	 Configuration and persistence of workflows, their statuses, and their execution results

n	 Dedicated queryable storage for management

n	 Full integration with Windows PowerShell

n	 Customizable monitoring of hosted services

Pros and Cons of WorkflowApplication
If you plan to use the WorkflowApplication engine, the considerations are essentially the
opposite of those for using the WorkflowInvoker. The WorkflowApplication class requires
more effort, but it allows you to write a more stable and powerful workflow executor. At the
same time, it provides more control and options that you might need if you plan to use WF
as your unique ruleset engine.

WF also offers many additional features, such as hosting a workflow directly in your WPF
application, or persisting the status of a workflow in SQL, so you can pause and restore the
workflow execution as required.

For this and other features, see the WF documentation and other information available at
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx.

Third-Party Toolkits
In this case, the Business Layer will be very complex and you will probably not have the time
to learn and master a complex technology such as WF. You must also keep in mind that WF
is an open technology, so to customize it to satisfy your customer’s needs, you will need to
spend some time on it.

I have also noticed that usually, in a big environment, the Business Layer is incorrectly left to
the analyst side, where they know how to write the business rules, but unfortunately, most of
the time, they don’t know how to translate these rules into something usable by an MVVM
application. In such cases, you should consider using a third-party tool which will alleviate
the effort involved; you will just need to plug this technology into your BLL. There are usually
suitable third-party tools that can provide analysts with an easy-to-use workflow designer

134	 Chapter 5  The Business Layer

and at the same time extend a powerful rule engine to developers that can be plugged into
any LOB application.

Technologies for the Data Validation
The Microsoft Enterprise Library, currently at version 5.0, will probably satisfy all your require-
ments for adding data validation to your Domain Entities. You can obtain Enterprise Library
here at http://msdn.microsoft.com/en-us/library/ff632023.aspx. Enterprise Library ships with a
Validation Application Block (VAB); a useful framework that provides a default set of valida-
tion rules, plus a powerful and customizable rule engine.

Note  Remember that data va dat on shou d be enforced not on y on the Doma n Mode but
a so n the V ewMode of your MVVM UI, and n any p ace where data va dat on s requ red by
des gn

Basically, VAB lets you decorate classes with the validation rules provided by the Library or
with custom rules that you provide. Later, you can validate the object and retrieve any vali-
dation errors. The following code illustrates how to perform basic validation using the VAB
library:

using Microsoft.Practices.EnterpriseLibrary.Validation;

using Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

public class Customer

{

 [StringLengthValidator(0, 20)]

 public string CustomerName;

 public Customer(string customerName)

 {

 this.CustomerName = customerName;

 }

}

public class MyExample

{

 private ValidatorFactory factory;

 public MyExample(ValidatorFactory valFactory)

 {

 factory = valFactory;

 }

	 Third-Party Toolkits	 135

 public void MyMethod()

 {

 Customer myCustomer = new Customer("A name that is too long");

 Validator<Customer> customerValidator

 = factory.CreateValidator<Customer>();

 // Validate the instance to obtain a collection of validation errors.

 ValidationResults r = customerValidator.Validate(myCustomer);

 if (!r.IsValid)

 {

 throw new InvalidOperationException("Validation error found.");

 }

 }

}

VAB contains a default set of validation attributes that include the following:

n	 Contains Characters Validator

n	 Date Time Range Validator

n	 Domain Validator

n	 Enum Conversion Validator

n	 Not Null Validator

n	 Object Collection Validator

n	 Object Validator

n	 Or Composite Validator

n	 Property Comparison Validator

n	 Range Validator

n	 Regular Expression Validator

n	 Relative Date Time Validator

n	 String Length Validator

n	 Type Conversion Validator

n	 Single Member Validators

136	 Chapter 5  The Business Layer

You might also be interested in other third-party validation frameworks; most of these are
both reliable and open source, meaning that you don’t need to purchase licenses to use
them in your MVVM application. Additional validation frameworks that you want to explore
for .NET are:

n	 EVIL (http://evil.codeplex.com)  An open-source project that works much like the VAB
library, using decorations and rulesets.

n	 Active Record (http://www.castleproject.org/activerecord/index.html)  An open-source
plug-in for NHibernate that transforms your domain into an Active Record domain.

n	 Conditions (http://conditions.codeplex.com)  Another open-source framework that uses
the Fluent Interface (see Chapter 2) instead of attributes.

Rule Engine and Business Rule Engine
When you move to the concepts of Business Rules, the argument becomes more complex. A
Business Rule engine should usually be able to execute custom rules, provide a fluent syntax
that is understandable by non-technical users, and provide an easy-to-read and modifiable
authoring tool.

Of course, if you are looking for all these requirements in one tool, ready to use, you will
probably need to test and purchase a third-party Business Rule engine—which won’t be free.

The two tools you’ll see here are the most popular for .NET. That doesn’t necessarily mean
that they are the best or the most flexible tools available for all purposes. In addition, these
tools have a starting price close to 100,000 USD.

There are various tools available online; the one shown here and the next one are just some
of them, and in no way does it mean that you should adopt this particular tool as your busi-
ness rule engine.

InRule for .NET
InRule is a very flexible and easy to use Business Rules engine that you can easily plug into
any .NET application. It provides user controls for editing rules directly within your applica-
tion, and it has a straightforward, easy to understand infrastructure.

InRule might not be the most scalable solution, but the price is nowhere near as high as
many other Business Rules engines. You can download a demonstration version of InRule
from http://www.inrule.com and run the available tutorials to see how to use the tool.

Figure 5-5 shows a custom Silverlight application using InRule to edit some Business Rules.

	 Business Layer Considerations 	 137

Figure 5-5  The nRu e S ver ght author ng too .

Business Layer Considerations
In this chapter, you’ve seen how complex a Business Layer can be and why it’s a requirement
for your MVVM applications. Of course, having a Business Layer in your application can intro-
duce some problems that you need to consider.

When Do I Need to Create a Business Layer?
It’s a good practice to always try to understand whether a feature is truly needed in your
MVVM application so that you can avoid over-engineering. The Business Layer can be less or
more complicated, and you should always keep in mind the following notes before starting
to create a BLL in your application:

n	 If you need to execute a significant number of operations and/or business rules to per-
sist new data in your application’s data store, it’s probably a good idea to create a BLL
layer in your application. On the other hand, if you only need to save and retrieve data
from a database and display it a UI, designing and using a BLL is probably overkill.

n	 If you need to validate your objects before saving them in your datastore or before
moving to the next step of your application flow, a BLL is a good way to keep the vali-
dation process isolated from the rest of the application. However, when you are working
with basic data that doesn’t need much or any validation, you don’t need a BLL.

n	 If the logic of your application is dynamic, complex, and incremental (meaning that
it will grow and change during the development process) and needs to be docu-
mented for auditing purposes, you must have a BLL—and you will probably also need

138	 Chapter 5  The Business Layer

to consider purchasing a Business Rules engine. By doing this, you will also be able to
keep your BLL separated from the other application components and allow it to evolve
independently.

To sum up, if your application requires any significant amount of business logic and/or data
validation, you should consider creating a BLL to keep that functionality separate from the
rest of your application code. That will simplify both application maintenance and help with
documentation.

Bad BLL Habits
The last few words regarding BLLs are about bad habits I’ve encountered that you should
always avoid.

First, the BLL is not the Unit of Work (UoW) of your application, and it is not the Repository
for your Data Access Layer. The BLL has atomic methods that can execute a set of business
transactions, such as:

var result = BLL.CanAddOrderToCustomer(myCustomer, myOrder);

It’s very likely that the CanAddOrderToCustomer method implements a set of operations that
involve the UoW, the Repository, and the Domain Model, such as in the following example:

public void CanAddOrderToCustomer(myCustomer, myOrder)
{
 UnitOfWork.StartTransaction();
 var available = repository.Get<Order>(myOrder).AmountInStock;
 if (available)
 {
 myCustomer.Orders.Create(myOrder);

 repository.Update<Customer>(myCustomer);
 … …
 }
}

This doesn’t mean that a BLL should have a method like GetCustomer(int id), because this
method should be exposed by the Repository, not implemented in the BLL. More than likely,
there will be another place in the application that doesn’t need to use BLL functionality but
needs to load a customer by ID.

Second, the BLL is the layer that you use to speak “business language,” so you should always
use a clear and neat naming convention. A method that verifies whether an order can be
added should be called something like CanCustomerCreateOrder or CanItemBePurchased
instead of the shorter but less understandable AddOrder or PurchaseItem. Remember that
the BLL includes the business logic of the application, so you will eventually need to change
or upgrade it, either because the business logic has been revised or the process has changed.

	 Sample Code: The Business Service Layer	 139

Finally, test, test, and test again. You must test each method of the BLL with real data, espe-
cially if the BLL executes calculations and statistics. Every single method must be examined
with a set of fully reliable tests that you can run in the future, when you have to update the
application’s business logic.

Sample Code: The Business Service Layer
Now that we have the Domain Model in place, and we know how to persist and retrieve
the Domain Model from the database, we need a smart way to execute business logic
rules against the Domain Model and to validate the Domain Entities using a specific set of
Validation Rules.

For the validation process, the example CRM application will use the Enterprise Library 5.0;
specifically, this example makes use of the VAB and C# generics to build a generic validator.

For Business Rules, the application uses Windows WF 4.0. You’ll also see how to create a sim-
ple FluentEngine that is able to run any workflow you want.

Data Validation with the Enterprise Library 5.0
The first step is to download the latest version of the Enterprise Library, which is avail-
able at http://entlib.codeplex.com. Then you need to run the Build command available
in the Enterprise Library 5.0 setup. You should now have two folders (depending on the
setup options you chose): one containing the Enterprise Library source code, and one
with a compiled deployed version. The DLL that you need is named Microsoft.Practices.
EnterpriseLibrary.Validation.dll.

Add a reference to this DLL in the CRM.Domain layer so that you can add Data Validation
rules for each Domain entity. The following code example shows the Person entity with some
basic data validation rules applied:

 /// <summary>
 /// Gets or sets the first name.
 /// </summary>
 /// <value>The first name.</value>
 [NotNullValidator(ErrorMessage = "The First Name can’t be null or empty.")]
 [StringLengthValidator(50, ErrorMessage =
 "The First Name lenght can’t be greater than 50 characters.")]
 public string FirstName { get; set; }

 /// <summary>
 /// Gets or sets the last name.
 /// </summary>
 /// <value>The last name.</value>

140	 Chapter 5  The Business Layer

 [NotNullValidator(ErrorMessage = "The Last Name can’t be null or empty.")]
 [StringLengthValidator(50, ErrorMessage =
 "The Last Name lenght can’t be greater than 50 characters.")]
 public string LastName { get; set; }

 /// <summary>
 /// Gets or sets the birth date.
 /// </summary>
 /// <value>The birth date.</value>
 [NotNullValidator(ErrorMessage = "The Birth Date can’t be null or empty.")]
 [RelativeDateTimeValidator(18, DateTimeUnit.Year,100,DateTimeUnit.Year,
 ErrorMessage = "The Birth Date can’t be lower than 18 years.")]
 public DateTime BirthDate { get; set; }

The preceding code tries to reflect the database schema constraints in the Domain Entities so
that the application can validate each entity before saving or retrieving it from the database.
You can then apply this step in the UoW so that every entity passed to it can be self-validated
before committing the transaction.

Now we need to validate this entity, and if it’s not valid, we should return a Boolean result in
conjunction with a collection of errors generated by the validation process. Every entity that
is inherited from a Domain Base Object can be validated, so there is no better place than
the Domain Object to introduce this validation process. By design, the VAB exposes a collec-
tion called ValidationResults that contains the results of a validation process and a Boolean
property called IsValid. You can retrieve the validation collection by using the Validator class
exposed by the application block.

First, let’s open the Domain Object class and add a read-only property that exposes the vali-
dation results:

 /// <summary>
 /// Gets the validation errors.
 /// </summary>
 /// <value>The errors.</value>
 public ValidationResults Errors { get; private set; }

Now, we need to expose an IsValid property, which will fire the validation process behind
the scenes. Before doing that, I want to show you how you apply the Validation Facade pat-
tern to the VAB. When you want to validate a new object, you can simply use the Validation
Factory facade provided in the library. Unfortunately, the syntax of the Facade is as follows:

// option using generics
var validator = ValidationFactory.CreateValidator<T>();
// second option without generics
var validator = ValidationFactory.CreateValidator(Type);

This means that you cannot expose the method from the base class without exposing its
generic signature; otherwise, when you call this method from an inherited class, the valida-
tion will validate only the base class properties. A smart solution might be:

	 Sample Code: The Business Service Layer	 141

 /// <summary>
 /// Gets or sets a value indicating whether this instance is valid.
 /// </summary>
 /// <value><c>true</c> if this instance is valid; otherwise, <c>false</c>.</value>
 public virtual bool IsValid { get; private set; }

 /// <summary>
 /// Validates this instance.
 /// </summary>
 /// <typeparam name="T"></typeparam>
 /// <returns></returns>
 protected bool Validate<T>()
 {
 Errors = ValidationFactory.CreateValidator<T>().Validate(this);
 return Errors.IsValid;
 }

Now you can override the validation process if you want (note that the preceding change
marked the property as virtual, and not abstract). When you need to implement a validation
process, such as in the Person class we previously decorated with the Enterprise Library attri-
butes, you can simply override the IsValid property in this way:

 /// <summary>
 /// Gets or sets a value indicating whether this instance is valid.
 /// </summary>
 /// <value><c>true</c> if this instance is valid; otherwise, <c>false</c>.</value>
 public override bool IsValid
 {
 get
 {
 return base.Validate<Person>();
 }
 }

At this point, you have a simple validator that you can recycle throughout the Domain Model.
Using the same Facade pattern, you can validate the ViewModel in the same way.

For more in-depth information about Enterprise Library, download the complete docu-
mentation in PDF form from the CodePlex website at http://entlib.codeplex.com/releases/
view/46741. The documentation includes a wealth of samples and tutorials.

A Generic Workflow Engine
Earlier, this chapter showed how Workflow Foundation can be the perfect solution for build-
ing an in-house Business Rules engine. While the syntax to load and run a workflow is not
ideal, by using the Fluent Language pattern that was presented in Chapter 2, you can create
a fluent engine that’s both easy to use and able to process any workflow.

Remember, you have two options for running a workflow: the skinny, static WorkflowInvoker,
or the more complex WorkflowApplication. Using the second option, you can monitor the

142	 Chapter 5  The Business Layer

status of a workflow and add custom runtime behaviors (such as writing to a specific log) or
attach events.

Let’s start by adding the infrastructure to create the fluent syntax. The schema in Figure 5-6
shows the UML diagram for a Fluent Workflow Engine. Using this engine, you can load an
assembly that contains a set of Workflows, load a specific Workflow, create listeners for WF
events using lambda syntax, and of course, run the workflow.

Figure 5-6  The UML Schema for the F uent Eng ne.

Note  If you don’t remember how to bu d a fluent Interface, rev ew the “DSL Wr t ng F uent
Code” sect on on page 53, n Chapter 2

Here, I have created two interfaces so that the fluent interface will have two major steps. The
first step loads and initializes a workflow. In the second step, you configure the events to
which you want to listen. Both interfaces can directly run the workflow—but if you don’t at
least listen for the onComplete event, you won’t know when workflow execution completes.

The static class is used only to create a more fashionable fluent syntax to avoid the ugly use
of the new keyword.

The final syntax used to run a workflow should look something like the following:

//Init the engine class
FluentEngine.Init()
 //load assembly and workflow
 .LoadAssembly("MyWorkflowLibrary.dll")
 .LoadActivity("CanAddAnOrder.xaml")
 //prepare the parameters collection
 // it should contains input/output params
 .AddParamters(new Dictionary<string, object>

	 Sample Code: The Business Service Layer	 143

 {
 { "Order", null },
 { "Customer", null }
 })
 .Configure()
 //when the WF is done
 .OnComplete(() => {
 Console.WriteLine("Complete!");
 })
 //when the WF raises an error
 .OnError((ex) => {
 Console.WriteLine("Error: {0}", ex);
 })
 .Run();

You can use this easy-to-read syntax in the MVVM application to run and monitor a work-
flow. For more in-depth information about the workflow engine, the project CRM.BL.WF
contains the Workflow Engine implementation and all the workflows for the CRM application
example.

Service for Business Transactions
With the base code in place, we need to implement the Facade pattern for the BLL to pre-
pare the services for use. In this section, you’ll see how to implement the process of adding
a New Order service from beginning to end. You can then optionally create custom Business
Rules or you can simply open the final project and see how I implemented the BLL.

The first important concept is the user story that will drive this Business Transaction:

As a User, I want to be able to create an Order and submit the Order by adding the
Order to the corresponding Customer, and then send an e-mail confirmation. For
each Product in the Order, I need to verify that the Product is in stock.

Figure 5-7 shows the workflow result of this user story, divided into three sections to make it
easier to read.

144	 Chapter 5  The Business Layer

Check that each Product
s ava ab e n Stock for
the amount requested n
the OrderL ne

f not ava ab e, the
prev ous for each oop
w throw an except on
and we catch t here

f the workf ow arr ves
at th s step, t means
that the Order s f ne,
so we subm t the Order
and send an e ma

Figure 5-7  The comp ete workflow to add an order.

This workflow requires two input parameters, a Customer and an Order. It returns a Boolean
result. The code to run this workflow should look something like this:

 public bool CanAddAnOrder(Customer customer, Order order)
 {

 //Init the engine class
 FluentEngine.Init()
 //load assembly and workflow
 .LoadAssembly("CRM.BL.WF.dll")
 .LoadActivity("CanAddAnOrder.xaml")
 //prepare the parameters collection
 // it should contains input/output params
 .AddParameters(new Dictionary<string, object>
 {
 { "Order", order },
 { "Customer", customer },
 { "CanAddOrder", false}
 })
 .Configure()
 //when the WF is done
 .OnComplete((parm) => {
 return (bool)parm["CanAddOrder"];
 })

	 Sample Code: The Business Service Layer	 145

 //when the WF raises an error
 .OnError((ex) => {
 return false;
 })
 .Run();
 }

This workflow also satisfies the compliance office requirements for documenting the code
involved in a business transaction.

The previous code should be included in a Facade service. The one used here has
IUnitOfWork and the main entity involved in the transactions injected at runtime.

In the Business Layer, I have created a basic service that loads the correct IUnitOfWork using
Managed Extensibility Framework (MEF) (see Chapter 4) at runtime and the corresponding
entity using generics. Figure 5-8 shows the basic UML structure of the CRM.BL Layer.

Figure 5-8  Structure of a Facade Bus ness Serv ce c ass.

The code for the base class is pretty straightforward. You have a generic class that requires
the current entity as a parameter, which must be of type DomainObject, and an IUnitOfWork
injected at runtime by the MEF engine.

 public class BaseFacade<TEntity> where TEntity : DomainObject
 {
 /// <summary>
 /// Gets or sets the unit of work.
 /// </summary>
 /// <value>The unit of work.</value>
 [Import]
 public IUnitOfWork UnitOfWork { get; private set; }

 /// <summary>
 /// Gets or sets the entity.
 /// </summary>
 /// <value>The entity.</value>
 public TEntity Entity { get; private set; }

146	 Chapter 5  The Business Layer

 /// <summary>
 /// Initializes a new instance of the <see cref="BaseFacade<TEntity>"/> class.
 /// </summary>
 /// <param name="entity">The entity.</param>
 public BaseFacade(TEntity entity)
 {
 this.Entity = entity;
 }
 }

From this generic service base class, you can create a specific service class for each entity
and use the UoW or the referenced entity directly within the service. The following code, for
example, is a Facade service for a Customer entity. It has a method called CanAddAnOrder
that requires only the Order entity because the Customer entity is injected in the constructor.
MEF creates the IUnitOfWork .

Using this solution, you can easily implement the Transaction pattern, where for a series of
business steps, you include everything in a business transaction, implemented in this case by
the UoW and the Try/Catch statement.

 public class CustomerFacade : BaseFacade<Customer>
 {
 public CustomerFacade(Customer customer) : base(customer)
 {

 }

 public bool CanAddOrder(Order order)
 {
 try
 {
 bool result = false;
 UnitOfWork.BeginTransaction();

 //previous code to execute the workflow
 // result = EXECUTE WORKFLOW

 if (result)
 {
 Entity.AddOrder(order);
 UnitOfWork.Update(Entity);
 }
 UnitOfWork.CommitTransaction();
 return result;
 }
 catch (Exception ex)
 {
 UnitOfWork.RollbackTransaction();
 throw new ApplicationException(
 "The CanAddOrder process has thrown an exception.", ex);
 }
 }
 }

	 Summary	 147

This example forms the starting point for any Business Service. By following this approach,
you will end up with two layers; one (CRM.BL in the sample code) will be the base layer, which
contains all the Facade service classes, the other will be the Workflow Layer (CRM.BL.WF in
the sample code), which contains all the Business Rules (Workflows or procedural C# code).

I realize that there’s a large effort involved in placing this logic outside the Domain or the
Data Layer, but the advantage of this approach becomes clear as soon as you need to change
something in the application.

Remember also that if you keep the business logic outside the UI and outside the Domain,
you might be able to recycle it for other applications, without the need to rewrite any code.

Summary
The Business Layer, also known as the Business Logic Layer, is probably the most complex
and articulated layer of a LOB application. The Business Logic Layer is usually divided into
two major parts: Validation Rules and Business Rules. This concept is often misunderstood by
developers, but the parts have two radically different purposes.

Validation Rules are in charge of validating the values of an object against a set of basic rules,
such as regular expressions, not nullable, string length, and so on. Business Rules are com-
posed of rulesets, which define how an object should behave based on a set of circumstances
or values.

You can establish Validation Rules easily using the .NET Framework’s System.ComponentModel
namespace or by using any open source validation library, such as the VAB from the
Enterprise Library 5.0.

To implement Business Rules, you can use one of the full-featured (but expensive) third-
party frameworks, or you can customize the powerful ruleset engine provided with Windows
Workflow Foundation 4.0, as shown in this chapter.

Although building the flexible architecture for the Business Layer is time-consuming, the
time you spend building the layer is time that you will save in the future, during application
maintenance.

	 	 149

Chapter 6

The UI Layer with MVVM
After completing this chapter, you will be able to:

n	 Identify the parts that compose the MVVM pattern.

n	 Apply the command pattern and the WeakEvent manager.

n	 Provide additional services and facilities for MVVM.

In this chapter, you will finally delve into the Model View ViewModel (MVVM) pattern, and
see how it should be implemented to maintain total separation between the XAML-based UI
declarative syntax and the UI presentation logic code.

As I mentioned in Chapter 1, “Introduction to Model View ViewModel and Line of Business
Applications,” Microsoft introduced the MVVM pattern a few years ago, and it’s still a hot
topic of discussion in many user groups and forums. This chapter includes more than just my
personal point of view about how you should implement MVVM to fulfill the basic rules that
constitute this pattern.

You want to implement the MVVM pattern in any Line of Business (LOB) application built
using Silverlight or Windows Presentation Foundation (WPF) because:

n	 The whole client application should be fully testable, and to do that, the presentation
logic of the View should be separated from the declarative XAML code that composes it.
Using a presentation pattern such as MVVM puts more of the application’s behavior into
non-UI classes that can be tested more easily.

n	 You want to make the UI designer’s job easier by leaving development of the presenta-
tion logic to a different team/developer.

n	 Decoupling the UI logic from the UI declarative markup makes it easy to recycle the
ViewModel (the model of the view) for different views.

n	 You can more easily evolve or change the UI without changing the underlying presen-
tation logic of the application using the power of the DataTemplate and DataBinding
engines provided by XAML markup.

Due to its complex structure, a correct implementation of the MVVM pattern requires a deep
understanding of how the DataTemplate, DataBinding, Styling, and Dependencies mecha-
nisms work in WPF and Silverlight. However, the purpose of this book is to give you the guide-
lines for implementing a LOB application using the MVVM pattern—explaining how these
mechanisms work on WPF or Silverlight is beyond the scope of this book. I will provide an

	 The View	 151

The V ew The assoc ated
V ewMode

The Routed Commands

Figure 6-2  A s mp e WPF V ew w th an assoc ated V ewMode .

When you bind the ViewModel to the View, you make the ViewModel’s properties and
events available to the UI so it can provide a user interface for them. Interactions between
the View and the ViewModel occur through data bindings, commands, and so on.

At this point, the challenge is to know how to customize the DataTemplate of the View to
bind these properties correctly, and of course, which properties to expose in the ViewModel.
Data templates are a specific way of defining the UI without code-behind—essentially a way
to define a View so that it is bound to a ViewModel automatically. Data templates are a way
to construct the UI, but they are not the main challenge.

The View
In the MVVM pattern, the View is the graphical interface in charge of displaying data to
users and interacting with them. If you’re writing a WPF application, the View might be a
UserControl, a Window, or a Page; however, in a Silverlight application, the View will be
a Silverlight User Control or a Silverlight Page or a Silverlight Child Window (a pop-up).

To make the View MVVM compatible, you first need to add a reference to the correspond-
ing ViewModel in the DataContext of the View. This allows you to start to bind the proper-
ties and commands of the ViewModel to the corresponding controls exposed in the View. To
do that, you just add a reference to the DataContext using a procedural approach, as in the
following code:

/// <summary>
/// Sets the data source.
/// </summary>
/// <param name="dataSource">The data source.</param>
public void SetViewModel(PersonModel dataSource)
{
 this.DataContext = dataSource;
}

152	 Chapter 6  The UI Layer with MVVM

Alternatively, you can add a reference to the DataSource by using an XAML declarative
approach, as in the following XAML code:

<Window x:Class="MVVM.MainWindow"
 xmlns:vm="clr-namespace:MVVM"
 Title="MainWindow" Height="250" Width="250">
 <Window.DataContext>
 <vm:PersonViewModel />
 </Window.DataContext>

After accomplishing this step, you might safely leave the remaining work of creating the
layout and assigning the binding of the ViewModel properties to the View Controls to a UI
designer. Unfortunately, this example doesn’t truly uncouple the View from the ViewModel,
and it also introduces a constraint between the real ViewModel and the ViewModel the
designer is using—because in this example, they are the same object. A better approach is to
create a dummy ViewModel just for the designers so that they can continue to tweak the UI
while you (or somebody else) can still work on the presentation logic for that view.

Of course, the properties, events, commands, and so on provided by the ViewModel repre-
sent a contract to the View. The View and ViewModel are not completely uncoupled; they are
loosely coupled. If you define the contract up front, then you can mock out the ViewModel
so that the UI designer can focus on the UI design while the developer focuses on imple-
menting and unit testing the ViewModel.

Blendability: A Dummy ViewModel
Before you hand off the responsibility of creating the bindings to the designers, you can
make their jobs easier while staying firmly on the MVVM track by introducing Microsoft
Expression Blend and the Expression SDK into your process. By doing so, you can achieve
Blendability. Of course, this is just a fancy term for enabling designers to see an accurate pre-
view of their Views in Microsoft Visual Studio and/or Expression Blend.

Microsoft introduced a new namespace for WPF and Silverlight designers, which is available
at http://schemas.microsoft.com/expression/blend/2008. Expression Blend is a UI design tool.
It has an SDK that provides extensible behaviors. Behaviors are a way to package interactivity
into re-usable components that can be dragged onto the UI. Expression Blend also provides
a sample data feature that lets designers design the UI against dummy data. In terms of the
MVVM pattern, the dummy data provides a mocked-up ViewModel.

The following code adds this namespace to the View using the des (for design) prefix:

xmlns:des="http://schemas.microsoft.com/expression/blend/2008"
des:DesignWidth="300" des:DesignHeight="300"
des:DataContext="{Binding SampleViewModel}"

	 The View	 153

The code des:DataContext simply allows you to specify a data context that will be used
at design time; the real data context will be used at runtime. With this technique you can
apply a dummy ViewModel at design time so that a designer can create the UI design based
on dummy data, which of course will be replaced with real data at runtime. The previous
code binds the design-time data context of the View to a class called SampleViewModel,
Expression Blend creates a SampleDataSource object that’s basically a collection of proper-
ties, which you can define, thus allowing the designer to create a dummy ViewModel with
the same properties as the real ViewModel but using dummy data values.

To do that, you need to create an additional XAML file to act as the dummy ViewModel,
and then populate it with dummy data (that closely reflects data from the real ViewModel).
Designers use this dummy data file to proceed with the presentation logic development pro-
cess. For example, the following is a sample XAML Dummy ViewModel for the Person view:

<vm:Customer
 xmlns:vm="clr-namespace:CRM.Domain.Domain;assembly=CRM.Domain"
 Title="Mr." FirstName="John" LastName="Smith"
 BirthDate="12/31/1970" IsActive="True">
 <vm:Customer.Contacts>
 <vm:Contact
 Name="Home Phone" ContactType="Phone"
 Number="111-11-11" IsDefault="True" />
 <vm:Contact
 Name="Office Phone" ContactType="Phone"
 Number="111-22-22" IsDefault="False" />
 <vm:Contact
 Name="Email" ContactType="Email"
 Number="john.smith@email.com" IsDefault="False" />
 </vm:Customer.Contacts>
 <vm:Customer.Addresses>
 <vm:Address
 AddressLine1="4 Main Street" City="New York"
 Country="USA" State="NY" ZipCode="11040" />
 <vm:Address
 AddressLine1="54 The Road" City="Seattle"
 Country="USA" State="WA" ZipCode="12000" />
 </vm:Customer.Addresses>
</vm:Customer>

The example creates a Customer model instance, because the ViewModel will expose one
instance of this class with its related lists of contacts and addresses. The first line adds an
instance of the CRM.Domain.Customer class using the clr-namespace declaration that is avail-
able in XAML; you use the same declaration to add a reference in the XAML-based View.
Because the Customer model has some child collections required for the final View, those are
also included and populated with some dummy data. This gives designers everything they
need to create the View in Expression Blend.

154	 Chapter 6  The UI Layer with MVVM

Now that the designers have everything in place, they can bind the dummy ViewModel to
the View and work on the binding process, the DataTemplate, and the styles without inter-
rupting developer work on other parts of the application. The following code shows the
binding syntax used in the XAML View to consume the previously created dummy data:

<UserControl x:Class="CRM.MVVM.WPF.DetailsView.CustomerDetails"
 <!—OMITTED -->
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="500" d:DesignWidth="500" DataContext="{Binding}"
 d:DataContext="{d:DesignData Source=/DesignData/CustomerSampleData.xaml}">
 <UserControl.Resources>

 <!—OMITTED -->

 <StackPanel>
 <TextBlock>First Name :</TextBlock>
 <TextBox Text="{Binding FirstName}"/>
 <TextBlock>Last Name :</TextBlock>
 <TextBox Text="{Binding LastName}"/>
 <TextBlock Text="Data of Birth :" />
 <DatePickerTextBox Text="{Binding Path=BirthDate.Date, StringFormat=\{0:d\}}" />
 <TextBlock>Is Active :</TextBlock>
 <CheckBox IsChecked="{Binding IsActive}" />
 </StackPanel>

Using this approach, the designer can work directly in either Expression Blend or Visual
Studio to test the UI without actually running the application, because the UI render engine
available in Expression Blend and Visual Studio can render the data at design time, as shown
in Figure 6-3.

Figure 6-3  A des gn t me XAML V ew us ng the DesignData dummy V ewMode .

This approach looks pretty convenient at first glance, so it’s worth noting a few possible dis-
advantages to using it.

	 The Model	 155

First, if you intend to tweak the UI using the final ViewModel structure, you need to create
a design-time ViewModel that represents all the properties, commands, and behaviors that
you plan to expose in the final ViewModel. Second, you need to keep in mind that for huge
ViewModels—for example a ViewModel that exposes 30 properties, plus commands and val-
idation rules—creating a dummy ViewModel will take significant time. Finally, remember that
it might not be possible to create a dummy value that matches each property, command, or
behavior if your real ViewModel is complex, so you might need to think about other solu-
tions. For example, you might create a complex dummy ViewModel composed of parent and
child ViewModels. Such complexity might be difficult to represent using XAML markup.

The Model
As you might have noticed, this chapter has discussed the ViewModel—not the Model
discussed in Chapter 3. In fact, the Model is a Domain Entity, declared and exposed in the
Domain Model, and it should not be confused with the ViewModel, which is exposed in
the View.

Expanding on that further, the Model is the entity in charge of moving data to and from the
data store; that’s the object known to the Data Layer and the Business Layer. By contrast,
the ViewModel is the Model for a View—the part of Model exposed for that specific View,
including the validation and behaviors needed in that specific UI circumstance, plus all the
presentation logic. Figure 6-4 shows the flow of a Model and why it is often so different
from a ViewModel.

The v ew wh ch knows
the V ewMode but not
the Model

The V ewMode wh ch
knows the Model and
how to update t

The Model wh ch
doesn t know the
V ew nor the
V ewMode

The DAL wh ch
knows how to
save the Mode

Figure 6-4  The flow used n an MVVM app cat on.

Consider that you will never implement an ICommand in the Model, because the Model is
not related to the UI, but you will probably expose the Model directly from the ViewModel
to make it easier to create a custom DataTemplate for a specific Domain Entity from your
Domain Model. This is a problem that we will analyze right now. A common mistake I’ve seen

156	 Chapter 6  The UI Layer with MVVM

in MVVM implementations is that they pass the Model to the View from the ViewModel, so
that (for example) the binding path of a FirstName property in the Person model would be
exposed in the View in this way:

<TextBox Grid.Column="2" Grid.Row="1" Text="{Binding PersonModel.FirstName}" />

In my opinion, rather than letting the View bind to the property from the Model directly, the
ViewModel should expose its own, separate property called FirstName that represents the
FirstName of the Person Model:

<TextBox Grid.Column="2" Grid.Row="1" Text="{Binding FirstName}" />

Using this approach, the ViewModel becomes the Model for the View, masking the real
Model. That improves the safety of the application because you’re not exposing the whole
Model directly to the View. In addition, it helps uncouple the View from the Model, because
the View no longer needs to know anything about the Model directly.

Exposing the Model in the ViewModel
I have had this discussion in the past with many people. The solution of exposing the
Model directly from the ViewModel, as a public property, and then binding it directly
to the View is probably the easiest and fastest solution—but it doesn’t represent the
purist way of implementing a separated presentation pattern, in which the View should
be only loosely coupled to the Model through a specific ViewModel.

Instead, the ViewModel should declare its own properties, hiding the specifics of the
Model from the View. This provides the greatest flexibility, and it helps to prevent
ViewModel-type issues from leaking into the Model classes.

You need to remember that if you plan to expose your Model properties directly into
the View by exposing the Model as a property of the ViewModel, you should imple-
ment the INotifyPropertyChanged interface in the Domain Entity object, as well,
and not only in the ViewModel; otherwise, when the View changes the Model, the
ViewModel will not be able to see the change because the binding engine of WPF or
Silverlight will raise a notification of the change.

On the other side, using the approach of rewriting each property of the Model (includ-
ing child and parent relationships) inside the corresponding ViewModel is a daunting,
time-consuming, and error-prone task, which also adds additional work in terms of
testing and maintenance.

	 The Command in WPF and Silverlight	 157

At this point, you’re probably wondering which is the best approach. Quite honestly,
there isn’t a “best” approach; there are only different approaches to the same prob-
lem. If you want to expose the Model directly to the View so that you can easily write
a DataTemplate that represents a Domain Entity, you will need to pollute your Domain
Entities with the INotifyPropertyChanged interface. On the other hand, if you want to
follow the purist way, you will wind up with a lot more code that must be written and
tested. I would say that the “best” approach depends on the complexity and architec-
ture of your application.

The Command in WPF and Silverlight
One of the most interesting features in WPF and Silverlight is the ICommand interface and
how it works. The ICommand interface exposes Execute and CanExecute methods that let
you control the command execution. By using the binding engine in WPF or Silverlight and
the ICommand implementation, you are able to place a ViewModel that exposes ICommand
commands in the View, and bind controls such as Button, Link, and so on to these com-
mands. The ICommand lets you control command execution based on changes that might
occur in the ViewModel. For example, you might enable the Save command on a View only
after the ViewModel has fired the OnPropertyChanged() method at least once.

Usually, you will need to expose these commands in the ViewModel as public properties to
properly create the binding between the View and the ViewModel. Exposing an ICommand
property from the ViewModel allows the View to bind to the command proffered by the
ViewModel. You can implement the ICommand interface in a number of ways. You also need
to implement some presentation logic in your ViewModel to decide whether the command
can or cannot be executed.

The common solution is to simply create a public property of type ICommand in the
ViewModel with a private accessor that can evaluate some presentation logic inside the
ViewModel itself. Another possible implementation is to create a custom class for each com-
mand that inherits from the ICommand interface and exposes it in the ViewModel—but of
course, you would then need to create a custom command class for each command avail-
able in the application. You might think that this approach is time-consuming and counter-
productive, but for shared commands, such as New, Save, Delete, Undo, or Redo, you will
need to write the custom implementation of these commands only once. For other com-
mands, you might wish to use the MVVM Command approach, which is explained in the
next section.

158	 Chapter 6  The UI Layer with MVVM

A Workaround: An MVVM Command
Silverlight 3 had no support for the Commanding feature that is available in WPF.
Unfortunately, Silverlight 4 doesn’t support Commanding in the same way that WPF does,
either. But thanks to the ICommand interface you saw earlier, you can easily bind a command
to a Menu in Silverlight and recycle the same command to bind to a Button in WPF, without
the need to rewrite any code.

Some third-party tools, such as Prism (Microsoft patterns & practices framework), MVVM
Light Toolkit (Laurent Bugnion s framework), and Caliburn (CodePlex project) have their own
implementations of ICommand that you can recycle in both Silverlight and WPF applications.
The code you’ll see in this section does the same thing by creating an MVVMCommand that
you can expose in ViewModels rather than hard-coding an ICommand implementation.

First, create a new CRM.MVVM project, which will be the utility framework for the MVVM
pattern. This is where the project stores some utility classes, which include MVVM command
implementations for WPF and Silverlight.

The first class we will build is MvvmCommand, which must implement the ICommand inter-
face. It defines a generic Function<T> for the CanExecute evaluation and a Delegate<T> for
the Execute implementation. These methods are injected into the constructor of the com-
mand using the following code:

 /// <summary>
 /// Custom MVVM command
 /// </summary>
 public class MvvmCommand : ICommand
 {
 private readonly Func<object, bool> canExecute;
 private readonly Action<object> executeAction;
 private bool canExecuteCache;

 /// <summary>
 /// Initializes a new instance of the <see cref="MvvmCommand"/> class.
 /// </summary>
 /// <param name="executeAction">The execute action.</param>
 /// <param name="canExecute">The can execute.</param>
 public MvvmCommand(Action<object> executeAction, Func<object, bool> canExecute)
 {
 this.executeAction = executeAction;
 this.canExecute = canExecute;
 }
}

Of course, this type of implementation forces you to implement the execution logic of the
Execute and the CanExecute method outside of the command itself—probably directly into
the ViewModel that exposes them.

	 The Command in WPF and Silverlight	 159

First, you implement the CanExecute method, which evaluates whether a command can or
cannot be executed. This action is supported by both the WPF and Silverlight engines but
in different ways. For example, WPF has a Command Manager class that re-evaluates the UI
(and of course, the bound ViewModel) every time the UI changes. The UI change fires the re-
evaluation of the CanExecute action automatically. In contrast, the Silverlight engine doesn’t
have a command manager, so you need to implement the re-evaluation yourself.

The following code represents a simple CanExecute implementation that raises an event
every time the command is re-evaluated:

/// Defines the method that determines whether the command
/// can execute in its current state.
/// </summary>
/// <param name="parameter">Data used by the command. If the command
/// does not require data to be passed, this object can be set to null.</param>
/// <returns>
/// true if this command can be executed; otherwise, false.
/// </returns>
public bool CanExecute(object parameter)
{
 if (CanExecuteChanged != null)
 {
 CanExecuteChanged(this, new EventArgs());
 }
 return canExecute(parameter);
}

public event EventHandler CanExecuteChanged;

Now that you can evaluate command execution, you can simply associate the execution del-
egate provided in the constructor to the one required by the ICommand interface, as follows:

/// <summary>
/// Defines the method to be called when the command is invoked.
/// </summary>
/// <param name="parameter">Data used by the command. If the command
/// does not require data to be passed, this object can be set to null.</param>
public void Execute(object parameter)
{
 executeAction(parameter);
}

As it is set up here, you can declare a command on the ViewModel with a private accessor
and assign two lambda expressions to get a concrete implementation of the MVVM com-
mand in this way:

 public sealed class PersonViewModel : BaseViewModel<Person>
 {
 public ICommand SavePerson { get; private set; }

 /// <summary>
 /// Initializes a new instance of the <see cref="PersonViewModel"/> class.

160	 Chapter 6  The UI Layer with MVVM

 /// </summary>
 /// <param name="model">The model.</param>
 public PersonViewModel(Person model)
 : base(model){}

 /// <summary>
 /// Inits the commands.
 /// </summary>
 private void InitCommands()
 {
 SavePerson = new MvvmCommand(
 (parm) =>
 {
 // execute
 PersonService.Save(model);
 },
 (parm) =>
 {
 // canExecute, can save if
 // the model is valid ...
 return model.IsValid;
 });
 }
 }

Now, every time you change the Person (in this specific case), the UI will re-evaluate the Save
command, and if the Person model is not valid, it will disable the Save button. You need only
a final tweak to fix the problem of Silverlight not having a Command Manager.

Re-evaluate ICommand Execution
What we’ve done up until now is pretty cool, flexible, and testable; we can create a generic
MvvmCommand, expose it as an ICommand interface object and declare the code to execute
and to evaluate the execution using the anonymous delegate, which is also fancy and pretty
readable.

At this point, you ll probably try to create a basic ViewModel object that exposes a couple of
properties and an ICommand property, like the one in the following listing, and you ll bind
these properties to a View. What you want is to enable the FormatCommand property only if
the text in the TextBox is not null.

The CanExecute method of an ICommand object is executed only when the DataBinding
engine creates the binding between the UI element and the command, and then the com-
mand execution is re-evaluated only if something changes and the CommandManager
is listening for that change. For example, when you change the text in the TextBox, the
CommandManager is unaware of the change, and it doesn’t update the command, so the
Button remains disabled.

	 The ViewModel	 161

If the code were not in a ViewModel but in the code-behind for a specific Window or
UserControl, you could call the static method CommandManager.InvalidateRequerySuggested
method that raises the RequerySuggested event, which then re-evaluates all the com-
mands inside the CommandManager. Unfortunately, if you call this method inside the
ViewModel object, it simply doesn’t work because you don’t have access directly to the View
CommandManager object.

Another big disadvantage of using the CommandManager is that it doesn’t re-evaluate just
the execution of one command; instead it re-evaluates all the commands attached to the
CommandBinding collection.

A possible alternative is to manually re-evaluate the command each time the OriginalText
property changes, such as in the following code:

public string OriginalText
{
 get { return originalText; }
 set
 {
 originalText = value;
 OnPropertyChanged(vm => vm.OriginalText);
 (FormatCommand as MvvmCommand).OnCanExecuteChanged();
 }
}

Another interesting alternative would be to make the command aware of changes that
might happen in the ViewModel and re-execute the OnCanExecuteChanged() method if this
“change” happens in the ViewModel. In other words, that means making the ICommand lis-
ten for the PropertyChanged event raised by the ViewModel.

The ViewModel
Recall that the classic definition of a ViewModel in the MVVM pattern is that the “ViewModel
is the Model provided for the View,” which is not necessarily sufficient to describe the power
this object might acquire during an application’s development process.

The ViewModel should satisfy four principal requirements:

n	 Provide the data that must be exposed in the View

n	 Provide a set of commands available in the View

n	 Implement the INotifyPropertyChanged interface

n	 Implement the IDataErrorInfo interface

Of course, not all ViewModel implementations must satisfy all four requirements. Depending
on the situation, it might not be necessary for a ViewModel to expose a set of ICommand

162	 Chapter 6  The UI Layer with MVVM

commands, or implement the IDataErrorInfo interface (used for UI validation), or the
INotifyPropertyChanged interface (which raises notifications about UI changes). The imple-
mentation of any given ViewModel depends upon specific use cases. But all ViewModels will
expose at least some values.

The previous section discussed the pros and cons of exposing the Model from the
ViewModel. For explanatory purposes, I will expose the sample application Domain Entities
directly from the ViewModel in the View—but that doesn’t mean that you must expose data
in your ViewModel using this approach.

The next sections explain how you should implement the four ViewModel requirements
and how to create some custom base ViewModels that you can then recycle in your future
MVVM applications.

The INotifyPropertyChanged Interface
The INotifyPropertyChanged interface has been available since the .NET Framework ver-
sion 2.0. It resides in the System.dll and is exposed through the namespace System.
ComponentModel. INotifyPropertyChanged provides a mechanism for notifying a client or
any other listener that the value of a property (or of an entire object) has changed. It exposes
a PropertyChanged event that requires a custom implementation in inheriting classes. If you
bind an object that implements this interface to an XAML datasource, for example, the View
will receive a notification each time the object changes. In the same way, if you bind such
an object to a Windows Form data source, the same behavior will occur without the need
to modify any code because of the changed data source.

At this point, you can think of any object that implements the interface INotifyPropertyChanged
as an Observable object, which is an abstract object type that you’ll create here for your
MVVM toolkit. The only requirement is that the observable object must implement the
INotifyPropertyChanged interface, which is abstract because it’s a base class; you don’t want
it to be used directly. Finally, you want to define the property that has changed using lambda
expressions.

To start, create a new class in the CRM.MVVM project and call it ObservableObject, as
shown here:

public abstract class ObservableObject<T> : INotifyPropertyChanged

Every object that implements this interface will use itself as <T>. In this way, you can now use
a lambda expression trick to auto-resolve the property name. The next step is the interface
implementation:

	 The ViewModel	 163

#region Implementation of INotifyPropertyChanged

/// <summary>
/// Occurs when a property value changes.
/// </summary>
public event PropertyChangedEventHandler PropertyChanged;

/// <summary>
/// Called when [property changed].
/// </summary>
/// <param name="property">The property.</param>
protected virtual void OnPropertyChanged(Expression<Func<T, object>> property)
{
 if (property == null || property.Body == null)
 {
 return;
 }

 var memberExp = property.Body as MemberExpression;
 if (memberExp == null)
 {
 return;
 }

 PropertyChangedEventHandler handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(memberExp.Member.Name));
 }
}

#endregion

The preceding code declares a PropertyChanged event, which requires a
PropertyChangedEventArgs argument that holds the name of the property that has
changed. Then we have the signature of the OnPropertyChanged delegate, which is the
method that will be called each time a property changes. Note that this code doesn’t use a
compiled lambda expression result (which is slower), because we want to read only the value
of the body of the lambda expression; this technique will not affect the runtime performance.
If there are any subscribers to the event, you raise the event, including the property name.

Now we can implement this class in our base ViewModel in the following way:

 public class BaseViewModel<T> : ObservableObject<BaseViewModel<T>> where T : class
 {
 public T model;

 /// <summary>
 /// Gets or sets the model.
 /// </summary>
 /// <value>The model.</value>
 public T Model

164	 Chapter 6  The UI Layer with MVVM

 {
 get { return model; }
 set
 {
 if (model == value)
 {
 return;
 }
 model = value;
 OnPropertyChanged(vm => vm.Model);
 }
 }
 }

This example shows a base ViewModel class that requires a generic <T> model. This is the
model that you will expose in the View using the XAML DataBind engine. If the model
changes, it will notify the UI by firing the OnPropertyChanged event.

You can do the same thing with simple properties such as a string or integer property
exposed through the ViewModel.

The IDataErrorInfo Interface
The IDataErrorInfo interface also resides in the System.ComponentModel namespace. It’s
intended to provide specific error information for an object bound to a client interface (a
View). This interface has been exposed by the .NET Framework since version 1.0 (although
with a different structure), but it became famous only when WPF and Silverlight appeared.
However, you can easily use it in a Windows client or ASP.NET application to implement data
validation in a View.

The interface exposes two properties: Error and Item. The Error property represents the cur-
rent validation error. This is most commonly implemented in the client, so you won’t imple-
ment this property in the sample toolkit, because you’ll display validation errors using the
XAML data template, instead.

The Item property is invoked each time an item in the View (which has validation enabled, so
a change triggers the validation engine) changes its value and/or requires validation.

A simple implementation of this interface in the base ViewModel should look something
like this:

/// <summary>
/// Gets the <see cref="System.String"/> with the specified column name.
/// </summary>
/// <value></value>
public virtual string this[string columnName]
{
 get
 {
 var errorMessage = string.Empty;

	 The ViewModel	 165

 switch (columnName)
 {
 case "Model":
 if (this.Model == null)
 {
 errorMessage = "The View can’t be bound to an empty model.";
 }
 break;
 }
 return errorMessage;
 }
}

It should be virtual so that you can override the implementation in each concrete ViewModel.
For example a PersonViewModel might have different validation rules. This process is not
terribly productive, it’s time-consuming, and it’s probably redundant, because you might
already have some validation rules applied to the underlying model.

A smarter way to accomplish this task is to use the Microsoft Enterprise Library that you saw
in Chapter 5, “The Business Layer,” to self-validate both the ViewModel and the underlying
model, which already has validation rules.

To do that, you first need a ViewModelValidator class that you can call whenever you need to
validate a ViewModel property or validate an entire object. The Validation Application Block
(VAB) provided with the Enterprise Library offers a neat and easy way to validate an object,
so I suggest that you use it, and verify that any validation errors that occur are related to the
property we are trying to validate. Here’s the code for validating a field:

 public sealed class ViewModelValidator
 {
 /// <summary>
 /// Validates the field.
 /// </summary>
 /// <param name="entity">The entity.</param>
 /// <param name="field">The field.</param>
 /// <returns></returns>
 public static string ValidateField<T>(T entity, string field)
 {
 var validationResults =
 ValidationFactory.CreateValidator<T>().Validate(entity);
 var errorMessage = new StringBuilder();
 // if the entity is valid we don’t go ahead
 if (validationResults.IsValid)
 {
 return errorMessage.ToString();
 }
 // verify that the errors are for this field
 var errors = validationResults.Where(x => x.Key == field);
 if (errors.Count() > 0)
 {

166	 Chapter 6  The UI Layer with MVVM

 foreach (var validationResult in errors)
 {
 errorMessage.AppendLine(validationResult.Message);
 }
 }
 // return the error message as a string with \r\n
 return errorMessage.ToString();
 }
 }

And this is the change in the base ViewModel:

 /// <summary>
 /// Gets the <see cref="System.String"/> with the specified column name.
 /// </summary>
 /// <value></value>
 public virtual string this[string columnName]
 {
 get
 {
 return ViewModelValidator.ValidateField(this, columnName);
 }
 }

Now the trick is to bind the ViewModel to a View and create a specific visual method—for
example a TextBox—to display any errors generated during the validation process. Figure 6-5
presents a functional validation style that uses a WPF TextBox.

Figure 6-5  Va dat on temp ate app ed on a WPF TextBox.

To see more information about the validation template, examine the Validation.ErrorTemplate
attached property. This property lets you define a specific template for a control to display a
validation error.

	 DataTemplate in WPF and Silverlight	 167

Of course, to raise the validation in the first place, you need to define the binding as shown in
the following code example, specifying the ValidatesOnDataErrors and ValidateOnExceptions
attributes to make the binding engine aware of the validation availability in the DataContext:

<TextBox Text="{
 Binding ValidatesOnDataErrors=True,
 Path=FirstName,
 ValidatesOnExceptions=True
}">
</TextBox>

DataTemplate in WPF and Silverlight
Another important aspect of the WPF/Silverlight UI engine is the DataTemplate, which
describes how to render data that is bound to a control by specifying how the data will be
rendered. Windows Forms doesn’t have an easy way to customize the items exposed by a list
control, such as a Listbox, so you had to create a custom property in the Model exposed in
the DataSource of the control in order to use it as a Display property of that control.

With WPF or Silverlight, however, you can easily bind a Person class to a UserControl, and
bind a collection property from that class, such as a list of addresses, to a Listbox. By custom-
izing the data template, you can cause the ListBox UI to look like a simple Grid and avoid
using a more complex Grid control. The following code uses a DataTemplate to display three
properties of an Address entity in a ListBox:

<ListBox ItemsSource="{Binding Contacts}"
 Grid.Column="5" Grid.ColumnSpan="3"
 Grid.Row="2" Grid.RowSpan="3">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Name}" />
 <TextBlock Text=" : " />
 <TextBlock Text="{Binding Number}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Another interesting approach would be to have an IList<ICommand> exposed in the
ViewModel. Then, using the DataTemplate, you could create a dynamic list of buttons or
a list of commands in a Command Bar, resulting in an extremely dynamic View.

168	 Chapter 6  The UI Layer with MVVM

DataTemplate and MVVM
Why is the DataTemplate so important for the MVVM Pattern? The principal purpose of
the MVVM pattern—or more accurately, one of the primary reasons for using the MVVM
pattern—is to separate presentation logic from UI logic so that your ViewModels can be
loosely coupled and reusable. If you use a DataTemplate to display the data exposed by the
ViewModel in the View, you’ll wind up with more flexibility in the future for changing and
adapting that View to a new design requirement or to a new client technology, such as from
WPF to Silverlight.

Also, because a DataTemplate is essentially a View without code-behind, you can bind the UI
directly against a ViewModel and apply a DataTemplate, which then becomes the View to the
ViewModel.

Refer back to Figure 6-3, which represents a Customer Details View bound to a
CustomerViewModel. How many times are you likely to use this View? In a real-world CRM
application, you would probably use this View several times; for example, to represent a
selected customer, to create a new customer, to display the customer details in an order view,
and so on.

You can see that this approach could be very time-consuming; you would need to apply the
same validation rules and write the same XAML view repeatedly. Using a DataTemplate, you
can create a simple UserControl in both Silverlight and WPF, bind it to a CustomerViewModel,
and then add a reference to that DataTemplate to any View that requires it, thus saving time
and making the code more reusable.

WeakEvents and Messages
If you are familiar with event programming with .NET, you might already know what an event
is and how painful it can be to create and destroy events attached to a specific form.

With WPF and .NET Framework 4, Microsoft has introduced a new type of event called
WeakEvent, which implements the Weak Event design pattern—a mechanism that is able to
self-manage the event subscription and cancellation process. You can accomplish the same
result in Silverlight, as you’ll see later in this section.

The WeakEvent Pattern
In the old-fashioned style of managing events, the lifecycle of an object that listens for an
event (the listener) might be different than expected because it’s driven by the lifecycle of the
object raising the event (the source). In this case, the only possible solution is to remove the
listener from the source declaratively, by detaching the event handler from the source.

	 WeakEvents and Messages	 169

With .NET 4 you can now use two different objects to implement the WeakEvent pattern:
WeakEventManager, a class that you should inherit to create a custom event manager, and
IWeakEventListener, an interface that any listener for a weak event should implement.

Figure 6-6 displays the basic implementation of the WeakEvent pattern in .NET.

Figure 6-6 WeakEvent pattern mp ementat on.

As illustrated in Figure 6-6, this implementation is both time-consuming and verbose, espe-
cially when you realize that this implementation should be applied to every event that you
want to listen for from the UI.

At this point, you will probably want to move to a more generic solution (available in the
downloadable companion source code for this book) and create a factory that is able to sub-
scribe and remove listeners to an event using lambda expressions and delegates. The final
result looks like this:

MyEventFactory.Listen<MyEventHandler>(
 () =>
 {
 // implement event here …
 });

Unfortunately, that solution runs into another .NET problem, because it’s difficult (if not
impossible) to subscribe and unsubscribe to an event—even a weak event—using lambda
expression syntax. So you might want to skip this altogether and consider adopting a more
reliable solution: the Messaging pattern.

The EventAggregator Pattern
I always followed with pleasure any guidance provided by Microsoft’s patterns & prac-
tices team, especially the Smart Client Software Factory (SCSF). I know it was designed

	 Dialogs and Modal Pop-Ups	 171

other pattern, the Message pattern has some requirements that you must satisfy in your
design, such as:

n	 You need to register the message somewhere. Usually this step is accomplished by a
bootstrapper or an initializer method in your UI.

n	 After registering the message, you must keep the aggregator alive that will notify listen-
ers for that message. This is a perfect requirement for an Inversion of Control container.
In this case, I usually use the Service Locator pattern.

n	 Just as Prism and other composite UI application frameworks do, you should add con-
straints to your messages to make them discoverable and unique. It might be difficult to
distinguish a message that carries a general string value.

Dialogs and Modal Pop-Ups
One of the more complex tasks that you need to accomplish when using the MVVM pat-
tern is to keep a dialog open between the user and a View, by means of a dialog window or
a modal pop-up. This task is difficult not because of any difficulties in creating a dialog view
in WPF or Silverlight, but because the loosely-coupled design that distinguishes the MVVM
pattern makes the task hard to accomplish while keeping the View separate from the presen-
tation logic.

Before exploring how you go about doing this, I want to show you the difference between a
MessageBox displayed in WPF or Silverlight and a modal pop-up. Usually, a dialog window is
a particular view that pops up in front of any other view, and prevents users from continuing
program execution until the modal view receives a specific input or confirmation. This type
of window, which includes both the MessageBox and the FolderDialogBox is called a modal
dialog. Other windows, such as the FindAndReplace dialog that is available in most editors
also appears in front of any other view, but it’s not modal, because it allows you to edit the
content of the view below. This type of window is called a modeless dialog.

WPF offers a set of default dialogs that are commonly used in applications. Some display a
message to users and require a response, which is usually some combination of “Yes,” “No,”
and “Cancel.” This type of dialog is known as a MessageBox; it is a classic modal dialog box.
Other types are the OpenFileDialog, SaveFileDialog, and so on. These types of dialogs prevent
users from proceeding with the main application until they complete some action inside the
modal view. After that action has been completed, execution returns to the original applica-
tion, which reads the result from the dialog view.

You can also create a custom View that might act as a dialog just by launching the View with
the ShowDialog command in C# or Visual Basic .NET.

172	 Chapter 6  The UI Layer with MVVM

Modal View in MVVM
Using the MVVM pattern, the common approach for showing a dialog view won’t work
because the dialog code runs inside the View, and thus resides in the UI logic. But in MVVM,
such code should execute in the presentation logic, in the ViewModel code.

There are various approaches to accomplish dialog display. By examining the code in the
available open source MVVM toolkits, such as MVVM Light, Prism, and Caliburn, you will
discover that each one uses a different approach, but they are all efficient. It’s up to you to
understand and decide which one is the best for you and your needs.

Modal Service
The first example you’ll see here is called the “service approach.” Using this method, you
create a service in charge of managing the dialog views. The general idea is to create some
code, (a service in this case), that acts as a ModalService, which is able to create and destroy
any type of dialog and return the dialog result. Here’s some simplified pseudocode for the
service contract:

 public interface IDialogService
 {
 bool? ShowDialogMessage(string title, string message);
 bool? ShowDialogView(object view, object viewModel);
 void ShowMessage(string title, string message);
 void ShowView(object view, object viewModel);
 }

One possible way to implement this service is with an Inversion of Control framework that
renders the service directly in your ViewModels. At this point, you can create a command
that can show a MessageBox and wait until it returns a Boolean value (true if the user con-
firmed some action, false for cancellation, and null if the user closed the MessageBox without
answering).

private IDialogService dialogService;

public ICommand SavePerson { get; private set; }

/// <summary>
/// Inits the commands.
/// </summary>
private void InitCommands()
{
 ShowMessage = new MVVM.Commanding.MvvmCommand(

	 Dialogs and Modal Pop-Ups	 173

 (sender) =>
 {
 var result =
 dialogService.ShowDialogMessage("Confirm?", "This is a confirm message.");
 if (result.HasValue && result.Value)
 {
 // do something
 }
 },
 (sender) =>
 {
 return true;
 });
}

I like this approach because it doesn’t require a lot of effort and doesn’t pollute the View or
the UI logic with the code required to implement the dialog. Of course, this is just a starting
point—if you plan to use this approach, you should keep in mind that:

n	 You might need a return value of a different type, such as a selected value.

n	 The dialog result might raise a message or fire an event that updates the parent
ViewModel/View.

n	 The dialog might need to listen for additional messages and update its status (for exam-
ple, a progress bar dialog that responds to a long-running task update).

A Mediator Approach
The WPF Disciples, a group composed of developers passionately interested in WPF technol-
ogy and the MVVM pattern, propose another interesting approach.

The mediator approach emulates the Mediator pattern, which tries to encapsulate the com-
munication logic between two or more objects into an external class, called Mediator. The
Mediator pattern involves two major steps: subscription and notification. For subscription,
any object can subscribe to the mediator, making the mediator aware of the subscriber. The
mediator then listens to notifications raised by the subscribed objects and reacts based on
some specific business logic.

In MVVM, you can use the Mediator to accomplish the messaging task; Views subscribe to
a mediator, and the mediator then listens and redirects messages raised by the subscribed
Views. This approach is similar to the common event approach, wherein a listener regis-
ters a delegate to an event and waits to be notified when the event is raised by a caller. In
Prism, the composite application framework released by the patterns & practices team, the

174	 Chapter 6  The UI Layer with MVVM

EventAggregator, uses the Mediator pattern in conjunction with Action<T> and WeakEvents
to accomplish this task, as shown in the following:

// Event aggregator in PRISM

// subscription

eventAggregator.Get<MyEvent>().Subscribe(

 (message) =>

 {

 // some code

 });

// sending a notification

eventAggregator.Get<MyEvent>().SendMessage(MyMessage);

You can use the Mediator pattern in conjunction with a dialog service, because together they
accomplish two different tasks. By using the Mediator pattern, you don’t need to wait for the
dialog result, because the subscriber will be notified when the dialog is complete; conversely,
a plain dialog service simply locks the application while waiting for an answer or a user input.

Inversion of Control with MVVM
If you are planning to build your own MVVM facilities you should also consider how you plan
to bootstrap the application; how you want to load common services and containers; and
how to keep the MVVM triad and other objects involved in your application alive. You should
also contemplate how to manage the loose coupling between objects and managing their
dependencies during creation.

Toward the beginning of this chapter, in the section, “The View,” you learned how to bind
a data context for a View to a design-time ViewModel, just to provide enough flexibility
so designers can continue the process of developing the UI part of our MVVM application
without requiring a finalized ViewModel. But this approach fixes only part of the problem,
because you haven’t yet seen how to inject a ViewModel at runtime for the View. You also
haven’t seen how to initialize the ViewModel chain dependencies properly. Using Inversion
of Control (IoC), you will avoid having a dependency between the View and the ViewModel,
because that will be injected at runtime by the IoC framework itself.

If you use an IoC container, such as Microsoft Unity, you can sort out the bootstrap problem
by using it as an application bootstrapper. The section “Inversion of Control” on page 44,
covered what an IoC container is and how it should be used. Figure 6-7 shows the normal
flow used by an MVVM application bootstrapped by an IoC container.

176	 Chapter 6  The UI Layer with MVVM

The Microsoft Office Ribbon and MVVM
If you plan to work with the Microsoft Office Ribbon on a WPF application, the first step is
to go to the CodePlex project for WPF (http://wpf.codeplex.com) and find the Office Ribbon
section. You will need to go to the Office UI License site at the provided URL and accept the
license agreement with regard to using the WPF Ribbon on your application; then you need
to download the latest version of the Ribbon and reference the Ribbon DLL in your MVVM
application.

More Information  If you’re not fam ar w th the R bbon contro , you w find the sect on of
MSDN ded cated to gu dance and tutor a s on how to use the WPF R bbon contro extreme y
usefu You can find t at http://msdn.microsoft.com/en-us/library/cc872782.aspx.

This section focuses on how you can plug an Office Ribbon into an MVVM application, not
on how to build a Ribbon control, as that is beyond the scope of this book.

Note  From the R bbon project webs te, you can a so down oad some beta V sua Stud o tem-
p ates that he p you bu d a spec fic V ew or WPF app cat on that ntegrates the R bbon contro

The following code shows how you can create a simple Ribbon tab that contains a Ribbon
group pane containing a Ribbon button control.

<ribbon:RibbonGroup x:Name="Group1"
 Header="Group1">
 <ribbon:RibbonButton x:Name="Button1"
 LargeImageSource="Images\LargeIcon.png"
 Label="Button1" />
</ribbon:RibbonGroup>

Because the Ribbon control fully implements the Commanding binding, you can control the
status and the execution of a Ribbon control by accessing its Command property, as you
would with a normal Button control.

 <ribbon:RibbonButton x:Name="Button1" Command="MyMVVMCommand"

At this point, the Ribbon control will behave just like any other UI control bound to an MVVM
Command that implements the ICommand interface.

Another suggested approach is to bind each Ribbon item to a specific DataContext item, and
bind each property of the DataContext item to the corresponding properties of the Ribbon
controls, using, for example, WPF styles. This will give you more control over the Ribbon
behaviors.

	 Summary	 177

<ribbon:RibbonButton DataContext="{x:Static data:WordModel.Cut}" />

<!—RibbonControl style -->
<Style x:Key="RibbonControlStyle">
 <Setter Property="ribbon:RibbonControlService.Label"
 Value="{Binding Label}" />
 <Setter Property="ribbon:RibbonControlService.LargeImageSource"
 Value="{Binding LargeImage}" />

Here’s the suggested way to define a style for a Ribbon button and bind the corresponding
Command.

<!-- RibbonButton -->
<Style TargetType="{x:Type ribbon:RibbonButton}"
 BasedOn="{StaticResource RibbonControlStyle}">
 <Setter Property="Command" Value="{Binding Command}" />
</Style>

Using code like this, you can keep the ICommand interface as the Ribbon implementation
pattern and bind the Command to the Ribbon control using TwoWay binding, so that the
Ribbon state will always be re-evaluated based on what the UI state.

Note  The WPF R bbon SDK nc udes an nterest ng examp e that ustrates how to popu ate the
R bbon contro w th n the constra nts of MVVM, by us ng a co ect on of commands bound to the
ent re R bbon contro

Summary
The Model View ViewModel pattern is based on the Presentation Model pattern introduced
by Martin Fowler, but it has a specific implementation related to WPF and Silverlight. The
pattern involves three components that can be summarized as the View, the Model, and
the ViewModel.

The core engine of an MVVM application is the ViewModel object, which contains the pre-
sentation logic of the application and acts as an intermediary to bind the Model to the View.
A standard ViewModel should implement the INotifyPropertyChanged interface to be com-
patible with the WPF and Silverlight binding engine and should implement the IDataErrorInfo
interface so it can notify the UI about validation errors. Usually, the ViewModel is in charge of
exposing and managing its Commands bound to the View.

178	 Chapter 6  The UI Layer with MVVM

Using the WPF engine, you can build a very flexible MVVM application—especially if you
include the DataTemplate and the styles provided with the UI engine. To notify and interact
with users, you can use Dialogs, Modal Views, and Pop-ups; each should be used appropri-
ately for specific UI design requirements.

Because of its dependency design, the MVVM pattern works extremely well when orchestrat-
ed with an IoC container such as Unity, which lets you create a simple workflow to manage
the application.

	 	 179

Chapter 7

MVVM Frameworks and Toolkits
Although the Model View ViewModel (MVVM) pattern is not yet a famous presentation pat-
tern along the lines of Model View Presenter (MVP) and Model View Controller (MVC), it is
an evolution of these patterns and rapidly gaining fame in the .NET community. Despite not
having been around very long, there are already a number of frameworks and toolkits that
you can use to implement MVVM with Window Presentation Foundation (WPF), Silverlight, or
Windows Phone 7.

This chapter discusses some of the more common MVVM frameworks available in the .NET
environment. You’ll see how they can solve many of the problems discussed in the previ-
ous chapters related to presentation logic in an MVVM application—most of which occur
because WPF and Silverlight are two different technologies. The chapter also briefly explores
a technology called “Prism,” that the Microsoft patterns & practices team has spent a lot of
time and effort developing.

These frameworks not only explain how to implement the MVVM pattern in WPF and
Silverlight; they also provide a set of tools and facilities with which you can build a modular
and very functional application.

MVVM Toolkits
When I look for an MVVM toolkit, I usually prepare a list of requirements that I want the
framework to handle easily, and then I try to determine whether the framework I’m evaluat-
ing satisfies my requirements. The MVVM pattern has a strict set of core requirements for
basic implementation, such as the INotifyPropertyChanged interface implementation, UI vali-
dation, and commanding support. In addition, there is a set of advanced functionalities more
generally related to a UI application, including Views testability, messaging between views,
event handling, and so on.

The previous chapter showed that it is not easy to implement an MVVM command that you
can use easily in both WPF and Silverlight, in the same way. Usually, this will require having
to rewrite the code, because the two technologies handle the ICommand interface in differ-
ent ways. It is not also easy to expose the Model in the ViewModel without having to write
redundant code, because of the lack of automation in the base classes.

This chapter examines all of these requirements by discussing a set of MVVM Toolkits and
facilities that you can use to quickly resolve these problems.

180	 Chapter 7  MVVM Frameworks and Toolkits

Note  The three major MVVM Toolkits that are introduced in the following section
are available from the .NET community. You can download and use them more or
less immediately in your projects. But the availability of such prebuilt toolkits should
not prevent you from implementing your own toolkit. It’s also worth noting that
these three are not the only available toolkits. There are other, less mature toolkits on
CodePlex and other .NET community sites that you can try out and use. The three pre-
sented here have rich documentation and active communities, which makes them good
starting points for practice and mastery of the MVVM pattern.

MVVM Light Toolkit, by Laurent Bugnion
Laurent Bugnion is a great developer the recipient of a Most Valuable Person (MVP) award
from Microsoft for his work related to Silverlight technology. Three or four years ago, Laurent
wrote an MVVM toolkit for WPF that has evolved to support Silverlight and Windows
Phone 7, as well. That toolkit is now called the MVVM Light Toolkit.

As of the beginning of 2011, the toolkit is now at version 3. It has full support for WPF,
Silverlight, and Windows Phone 7. You can download it from http://www.galasoft.ch/mvvm/
getstarted/. MVVM Light Toolkit integrates nicely with both Visual Studio 2010 and Microsoft
Expression Blend.

After installing the toolkit on your development machine, you’ll see that the installation add-
ed some extensions to Microsoft Visual Studio 2010 and Expression Blend, which gain new
WPF, Silverlight, and Windows Phone 7 project templates and code-snippets.

Note  In V sua Stud o 2010, a code-sn ppet s a spec a fi e w th a sn ppet extens on that works
w th Inte Sense, g v ng you a qu ck and easy way to nsert ready-made sn ppets of code nto
your projects

Figure 7-1 shows this integration in Visual Studio 2010 and Expression Blend.

	 MVVM Toolkits	 181

ntegrat on w th Express on B end 3 and 4 ntegrat on w th V sua Stud o 2008 and 2010

Figure 7-1 MVVM Too k t ntegrat on w th V sua Stud o 2010 and Express on B end.

The toolkit provides the following features for writing an MVVM application

n	 A ViewModelBase class that you can use for any ViewModel object

n	 A Messenger class that implements the Publisher/Subscriber pattern as well as a
full set of messaging components, such as NotificationMessages, DialogMessages,
PropertyChangedMessages, and more

n	 A flexible RelayCommand (MVVM Command) that works for both WPF and Silverlight

n	 Helpers and facilities to work with the Dispatcher of WPF and Silverlight for multi-
threading UI integration, Expression Blend integration, Item templates, project tem-
plates in Visual Studio, and more

MEFedMVVM
MEFedMVVM is a library for building Managed Extensibility Framework (MEF) applications
using Silverlight or WPF; it provides a set of base classes and components through which you
can implement the MVVM pattern with the help of MEF.

Note MEF s a brary that s exposed n the System ComponentMode Compos t on assemb y
that addresses the prob em of des gn ng extens b e and composab e app cat ons You a ready
saw how MEF works n the prev ous chapters, espec a y dur ng the d scuss on of Invers on of
Contro w th MEF and Un ty

MEFedMVVM is an open-source project hosted on http://www.codeplex.com, and download-
able from http://mefedmvvm.codeplex.com/. It currently has full support for both WPF and
Silverlight 4.

182	 Chapter 7  MVVM Frameworks and Toolkits

The feature that distinguishes this framework from other MVVM frameworks is the Attribute
pattern applied to every class. This Attribute pattern transforms these classes into a plug-
gable ViewModel or component for MVVM. For example, to create a ViewModel class in
MEFedMVVM, you just need to implement the following code:

[ExportViewModel("MyViewModel")]
public class MEFViewModel
{
 // implementation of the ViewModel
}

At this point, the ViewModelLocator attached to the view will resolve this ViewModel. You will
be able to declare the ViewModel in your XAML View just by using the attached properties
provided by this toolkit, as follows:

<UserControl
 <-- XAML namespaces -->
 MEFed: ViewModelLocator.ViewModel = "MyViewModel">

Using this approach, MEFedMVVM provides a partial mechanism for dependency injection
so that your ViewModels can declare dependent services and components, and you do not
need to worry about their creation. For example, the following code uses MEF to inject ser-
vices into a specific ViewModel class:

[ExportViewModel("MyViewModel")]
public class MEFViewModel
{
 [InportingConstructor]
 public MEFViewModel(IMyService myService){
 // store the myService instance ...
 }
}

MEFedMVVM provides a set of facilities right out of the box for implementing the MVVM
pattern. Of course, it is a lighter framework than the MVVM Light Toolkit, and it has a
different approach that’s oriented more toward the Inversion of Control (IoC) pattern.
MEFedMVVM includes the following components:

n	 Attribute pattern to decorate a ViewModel class

n	 Full integration with MEF

n	 Design-time support for Visual Studio

Cinch, by Sacha Barber
Cinch is another MVVM open-source framework, created by Sacha Barber, who is an MVP
for Visual C#. He writes numerous articles about both C# and WPF. Cinch is available on
CodePlex at http://cinch.codeplex.com/, and is compatible with both WPF and Silverlight.

	 MVVM and XAML Facilities	 183

Cinch has a number of features, including:

n	 Flexible creation of editable ViewModel objects that include validation support and UI
error notification

n	 Complete set of WeakEvent managers as well as an implementation of the Mediator
pattern

n	 Threading helpers that simplify interaction between the UI and calls on other threads

n	 Support for various IoC frameworks and for MEF

Cinch deserves your time and attention. One way to keep up with the framework’s progress
is to read Sacha Barber’s articles, which discuss features and the various versions of the tool.
Uunfortunately, Cinch isn’t yet integrated with Visual Studio 2010, and it takes a significant
amount of time to fully understand its mechanisms and structure.

You can find a full set of tutorials written by Sacha at http://www.codeproject.com/KB/WPF/
Cinch.aspx.

MVVM and XAML Facilities
The MVVM pattern is not terribly complicated; what is complicated is the knowledge
required by the technology you plan to use. For example, if you’re planning to create an
MVVM application using WPF, you need to have some deep knowledge about how WPF
works—and that’s time-consuming. Whenever you work with a specific UI technology such
as WPF or Silverlight, you must learn that technology thoroughly to be able to use all of its
power.

Another problem you might face when you will start to work with WPF or Silverlight is the
process of building the UI—how does it work and how do you optimize it? In XAML, you can
lay out a set of UI controls on a View in many different ways. For example, you can lay out
controls using a StackPanel, a GridPanel, and so on.

Through the .NET community, I have found some very useful open-source tools that I per-
sonally use in my daily work, and that can make your life much easier. There are tools to pro-
vide additional IntelliSense to Visual Studio; tools to prepare a set of base classes required by
the MVVM pattern; and tools to provide wizards and facilities that your MVVM application
will require.

This section does not include all the available tools provided by the .NET communities and
by the open-source projects; it mentions only some of them, the ones that I know and that I
have seen in action. So I urge you to explore the open-source communities yourself, to find
new—and perhaps even better—tools than the ones mentioned here.

184	 Chapter 7  MVVM Frameworks and Toolkits

Karl Shifflett’s Tools
I met Karl not long ago at Microsoft, in Seattle, at a Microsoft patterns & practices annual
meeting. I found his contribution on the WPF community to be essential; he’s employed at
Microsoft as a program manager for the patterns & practice Prism project, about which I’ll
discuss more on page 186. Karl has produced three major projects so far that can make the
life of a WPF/SL programmer much easier. These three projects are:

XAML Power Toys
XAML Power Toys is a set of enhancements for Microsoft Visual Studio 2008 and Visual
Studio 2010 that enrich the WPF/SL designers and XAML editor. It provides:

n	 A set of wizards to visually create and layout an XAML view

n	 A set of base classes and wizards to create ViewModels and Command objects

n	 Similar features for Silverlight

You can download XAML Power Toys from http://karlshifflett.wordpress.com/
xaml-power-toys/.

XAML Editor
The XAML Editor is a powerful and useful XAML IntelliSense add-in that enriches the native
XAML IntelliSense that is packaged with Visual Studio by adding filters and other functional-
ity. When you write XAML code using this add-in, the contextual IntelliSense is more obvious,
and the user interface has some additional and very useful features.

You can download XAML Editor by using the Visual Studio Extensions manager, or from
http://visualstudiogallery.msdn.microsoft.com/1a67eee3-fdd1-4745-b290-09d649d07ee0/.

In the Box Tutorial (MVVM)
In the Box is a set of tutorials embedded inside the Visual Studio UI that provide training on
specific topics, such as MVVM, by reading a document and interacting with the correspond-
ing code in the same Visual Studio instance that runs the tutorial. Karl Shifflett recently
published the first tutorial that uses this approach. It is available from http://karlshifflett.
wordpress.com/2010/11/07/in-the-box-ndash-mvvm-training/. The download provides a full
set of tutorials and guidelines in C# that cover writing a WPF MVVM application from begin-
ning to end.

	 MVVM and XAML Facilities	 185

Radical, by Mauro Servienti
Mauro Servienti is an Italian Microsoft MVP for Visual C# and a friend of mine. He is a fre-
quent speaker at events for the .NET Italian community and an evangelist for the MVVM
pattern.

On his blog (http://www.topics.it/), you will find a wealth of useful information about MVVM.
Even more absorbing is how he approaches some of the features lacking in MVVM by archi-
tecting clever and useful solutions.

In 2010, Maruso decided to publish a “set of facilities” (which is not just a set of facilities in
my opinion) on CodePlex. He named this toolset “Radical.” You can download Radical from
http://radical.codeplex.com.

You might wonder why I am drawing your attention to a specific set of C# facilities when you
can find hundreds of them on CodePlex with the same purpose. The answer is that Radical
takes a different approach; that’s why I like to use it during my daily activities. Radical pro-
vides a unique set of tools specifically aimed at aiding the correct implementation of the
MVVM pattern. For example, one set of tools called Memento lets you create objects with
Undo/Redo capabilities. The following listing shows a simple implementation of this service:

IChangeTrackingServiceProvider provider = ChangeTrackingServiceProvider.GetCurrent();

provider.CreateTrackingService();
IList<Person> list = new EntityCollection<Person>();
Person p = new Person();
p.FirstName = "Mauro";
p.LastName = "Servienti";
list.Add(p);

IChangeTrackingService svc = provider.GetTrackingService();
if(svc.IsChanged) {
 svc.RejectChanges();
}

Another interesting tool is an IMonitor with the DelegateCommand, a combination of a con-
crete implementation of the ICommand interface (for WPF and Silverlight) and an Observer
pattern that uses WeakEvents to update the Command execution verification.

var command = DelegateCommand.Create()
 .OnCanExecute(o => true)
 .OnExecute(o => { })
 .TriggerUsing(PropertyChangedObserver
 .Monitor(this)
 .HandleChangesOf(vm => vm.IsValid));

186	 Chapter 7  MVVM Frameworks and Toolkits

The toolset is well designed, and it provides numerous features. Exploring Radical is well
worth your time, and Mauro is always willing to provide support. Here’s a brief list of features
available with Radical:

n	 Extension methods and helpers for a wide variety of situations, including LINQ, lists,
objects, and more

n	 Implementation of a Message broker (Publisher/Subscriber) engine

n	 Base classes for domain entities

n	 Observers that can monitor object states

n	 A threading manager that uses a convenient fluent interface approach

n	 Validators and code contracts that use a fluent interface

n	 A plethora of XAML extensions, helpers, behaviors, UI effects, converters, and more

Composite UI Frameworks
As you have seen in this book, when you build a WPF/Silverlight application, implementing
the MVVM pattern is only one part of the process; you also need to implement a persistence
mechanism—a way to keep the Business Logic Layer loosely coupled to the rest of the appli-
cation, and a mechanism for orchestrating the UI.

The MVVM pattern defines a methodology to separate the UI from the presentation for
applications built using WPF/Silverlight or Windows Phone 7 but it doesn’t explain how to
orchestrate the UI, how to compose it, how to open communications between two or more
views, and other tasks related to the UI.

The term “Composite UI Framework,” introduced and applied by the Microsoft patterns &
practices team with the Composite Application Block (CAB) project, covers a set of facilities,
frameworks, patterns, and guidelines that will help you build applications using loosely-
coupled components that can evolve independently from the rest of the application. CAB is
developed and optimized for the Windows Form technology, while Prism is developed for
WPF and Silverlight.

The Prism projects represent a considerable investment in effort on the part of Microsoft
toward a Composite UI Framework. One valid alternative to Prism is Caliburn, a simpler—but
less powerful—framework for building composite UI applications using WPF or Silverlight.

Microsoft Prism
Prism is a comprehensive and well-architected framework for building a composite UI. The
latest version (version 4) works with WPF, Silverlight and Windows Phone 7. It provides a set

188	 Chapter 7  MVVM Frameworks and Toolkits

Figure 7-2 shows that a Prism application is usually composed of a set of components that typi-
cally characterize the structure of a composite or modular application. These components are:

n	 Shell and Regions  The shell is the host application into which modules are loaded,
while the regions are the logical placeholders used to define locations where a View will
be loaded in the UI.

n	 Modules and Module Catalog  Modules are packages of functionality that can be
developed and tested independently. The catalog is responsible for orchestrating the
loading process of these modules.

n	 Event aggregator  This is the concrete implementation of the Publisher/Subscriber
pattern that allows communication between the Views.

n	 IoC and Services  In Prism, the Services are components used to encapsulate non-UI
functionality, and the IoC is used to inject these services in the application components.

Prism is not only a composite UI application framework, as already discussed, but it also pro-
vides, out of the box, guidelines and tutorials for implementing the MVVM pattern. Many
developers trying to get started with Prism are discouraged by the huge amount of docu-
mentation and samples provided with this application framework, leading them to believe
that Prism is too complex and not easy to use. However, that’s not true. Prism is both easy to
learn and easy to implement. After you start working with it, however, you will not want to
return to a more traditional multiview or MDI application, because you will find that you miss
all the facilities and functionality that Prism provides.

Calcium SDK
Calcium is an open-source WPF and Silverlight (alpha release) composite application toolset
that takes advantage of the Composite Application Library. It provides much of what you
need to build multifaceted and sophisticated modular applications rapidly. Calcium consists
of a client application and server-based WCF services, which support interaction and com-
munication between clients. Out of the box, Calcium comes with a host of modules and ser-
vices, and a ready-to-use infrastructure.

Calcium is hosted on a dedicated website, http://calciumsdk.net/, and it’s a free download.
The Calcium website includes links to useful videos and getting-started tutorials.

The CalciumSDK includes the following features that enhance the Prism framework:

n	 Advanced module management and Module Manager for enabling or disabling mod-
ules at runtime.

n	 Visual Studio templates for rapidly creating Calcium projects, including client applica-
tions, MVVM Module Templates, and server WCF host projects (for both C# and VB.NET).

n	 Theme Support, with two attractive themes included.

	 Composite UI Frameworks	 189

n	 Duplex messaging services that use the same API for interacting with users from either
the client or server. For example, you can interact with the user from the server by caus-
ing message boxes to appear on the client!

n	 Advanced commanding support, with content interfaces that determine enabled com-
mands and views.

n	 Region Adapters for Toolbars and Menus.

n	 Client-server logging that works out of the box.

n	 Prebuilt modules, including a web browser, text editor, output window, and many more.

n	 Tabbed interface with dirty file indication (reusable across modules).

n	 A User Affinity module that assists in creating collaboration features so users of the
application can interact.

n	 Undo/Redo/Repeat task management system.

Caliburn
The last framework discussed in this book is Caliburn, an open-source project hosted on
CodePlex at http://caliburn.codeplex.com/. Caliburn was introduced to WPF developers at
around the same time Microsoft released the first version of Prism.

At the beginning, due to missing features in Prism, Caliburn gained a large audience, because
it was the first framework for building composite UI application with WPF. Lately, Caliburn
has been losing adherents; in my opinion, that’s because Prism now provides more features.

For those who don’t need the full complement of features, Caliburn also ships in a micro ver-
sion called Caliburn.Micro, available at http://caliburnmicro.codeplex.com/.

Caliburn doesn’t either require or even suggest that you use a specific presentation pattern
with WPF or Silverlight; it works with and provides examples for MVC, MVP, and MVVM.
Caliburn’s main purpose is to simplify the creation of composite UI applications, and to make
it easier to test your UI and presentation layer.

In Caliburn, the application is driven by the Presenter, which in MVVM is the ViewModel
component. The ViewModel is associated with a corresponding XAML View, and the boot-
strapper or IoC container are in charge of resolving and associating these objects.

The latest version of Caliburn works with MEF and introduces the concept of “Decoration
Attributes” to resolve dependencies such as you’ve already seen in the section on the
MEFedMVVM toolkit.

All in all, Caliburn is a composite UI framework that’s very close to Prism, but it’s an open-
source project that’s evolving somewhat more slowly than Prism.

	 	 191

Index
Symbols
.NET

categories  77
CLR  4
distributed data

layers  108
event programming  168
generics  105
IDataErrorInfo

interface  164
INotifyPropertyChanged

interface  162
InRule  136
LINQ query language  96
LOB applications  xi
O/RMs  100, 122
Rule Engine and Business

Rule Engine  136
WF 4  125

 (underline) character
Menubar  11

A
abstract factory method  72
abstract factory pattern  27
Action<T>  174
Active Record  67, 136
adapter pattern  27
Add method  116
AddOrder method  128
AddProduct method  89
Address entity  84
ADO.NET  95
ADO.NET Entity Data

Model  95
ADO.NET Entity Object

Generator  95
ADO.NET Self-Tracking

Entity  96

aggregate roots,
defined  63

agnostic Views  29
alerts  13
Alexander, Christopher, de-

sign patterns  26
annotations, data

annotations  77
AppFabric  132
Approval process  89
architectural design

patterns
classification  26

aspect-oriented program-
ming languages  18

ASP.NET MVC, MVC
pattern  32, 34

attributes
attribute pattern in

MVVM classes  182
Data Modeling

Attributes  77
Display Attributes  77
domain entities

validation  77
InjectionConstructor

attribute  48
Validation Attributes  77

Auto-Mapper  66
automatic mapping  120

B
BaseLogger class  45
behavior and state  70
behavior patterns  28
Behaviors SDK  6
binding

dummy ViewModel to the
View  154

ViewModel properties to
the View Controls to
a UI Designer  152

ViewModel to the
View  151

View to the command
proffered by the
ViewModel  157

blendability, a dummy
ViewModel  152

BLL (Business Logic
Layer)  127

AppFabric  132
Business Transactions  143
use of  137

BLL habits  138
bootstrap  174
bootstrapper method  171
bridge pattern  27
browsers, MVC pattern  33
Bugnion, Laurent  180
Build command  139
builder pattern  27
bulk operations, O/RM  94
Business Context, domain

model  89
Business Layer  123–148

about  123
BLL habits  138
Business Rules by

Service  127
Business Rules by

workflow and WF
4.0  129–133

Business Rules versus Vali-
dation Rules 
124–127

Model  155
Sample Code: the

Business Service
Layer  139–147

192	 Business Layer

Business Layer,  continued
third-party toolkits 

133–137
when to create  137

business logic
BLL  138
Business Layer  123
Domain Entity  66
testing  92

Business Logic Layer.
See BLL

Business Object, Domain
Entity  66

Business Rules
and Rule Engine  136
by Service  127
by workflow and WF

4.0  129–133
versus Validation

Rules  124–127
Business Service

Layer  139–147
Business Transactions

identifying  102
UoW (Unit of Work)  103

C
C#

custom generic logic and
Business Rules  129

Fluent Interface  54–57
MVC pattern  32

CAB (Composite
Application Block),
Composite UI
Framework  186

Calcium SDK  188, 189
Caliburn  158, 172
CanAddOrder method  128
CanExecute

context  14
method  157, 160
workflow  131

Castle  118

categories, .NET
framework  77

chaining, methods  54
chain of response

pattern  28
change notifications, MVP

pattern  35
Cinch  182
classes

base classes for Domain
Entity  186

BaseLogger class  45
behavior patterns  28
Business Layer  123
creational patterns  26
DomainContext class  111
DomainObject class  81
Facade service

classes  147
IRepository classes  105
Messenger class  181
Model classes  91
MVVM classes  182
proxy classes  114
Repository class  116
structural patterns  27
Validator class  140
ViewModel  182
ViewModelBase class  181
ViewModelValidator

class  165
WeakEventManager

class  169
XAML Power Toys  184

classifying design
patterns  26–29

behavior patterns  28
creational patterns  26
structural patterns  27

client-server logging  189
color scheme  17
CommandBinding

collection  161
Command execution

verification  185

Commanding
binding  176
Silverlight  158

CommandManager  161
command pattern  28
commands. See also

methods
Build command  139
Ribbon bar  16
routed commands  5
Save() command  70
ShowDialog com-

mand  171
Toolbar commands  12

Common CLR  109
common language  62
Composite Application

Block. See CAB
composite pattern  27
Composite UI Frameworks 

186–189
Calcium SDK  189
Prism  186

concerns, SoC  17
Conditions  136
confORM  100
constraints

Domain Entity  66
factory  74
messages  171

constructor method  71
Contact entity  84
context, defined  63
contextual design  18
controls

Silverlight versus WPF  5
Tooltips  13

creational patterns  26
CRM applications

Business Service
Layer  139

LOB applications  3
CRM Data Access

Layer  112–117
IUnitOfWork inter-

face  112

	 domain-driven design. See DDD	 193

mapping the Domain
Model using EF 
113–117

CRM Domain  63, 113
CRM Domain Model

about  80
sample code  81–89

CRUD operations
Domain-Driven

approach  70
Repository  112

Customer entity  82

D
DAL (Data Access

Layer)  91–122
about  91
database and stored pro-

cedures  92
distributed data

layers  108–112
mapping the Domain us-

ing NHibernate 
117–121

O/RM  93–100
Repository Pattern  104
Sample Code: The CRM

Data Access
Layer  112–117

TDD  106
UoW (Unit of Work) 

101–104
data access layer  18
Data Annotations

about  79
domain entities

validation  77
Database Management

System (DMBS)  92
databases

DAL and stored
procedures  92

Domain  69
Domain Entity  66, 69

database schema
constraints  140

DataContext
IUnitOfWork

interface  112
specifying  153

data-entry applications  69
Data Layer

Business Layer  123
Model  155

Data Modeling
Attributes  77

DataSource, View and
MVVM  152

data template
Expression Blend  7
Silverlight  5

DataTemplate
customizing  151
Domain Entity  157
MVVM  168
PM pattern  40
Tooltips  13
WPF and Silverlight  167
XAML  17

data validation  139
DB2, EF  95
DBMS (Database

Management
System)  92

DDD (domain-driven
design)

analyzing the CRM
domain  63

creating objects  71–74
DAL  92
mapping the Domain

Model  113
terminology  62

DDD (Domain-Driven
Design)  61–64

decorator pattern  27
default dialogs  171
DelegateCommand  185
dependencies, Unity  53
Dependency Injection

MEF (Managed Extensibil-
ity Framework)  51

Service Locator  49
Dependency Injection con-

tainer, Unity  48
Dependency Injection

pattern  44, 47
Design by Service  127
design patterns  25–60

about  25–29
DSL  53–57
IoC  44–53
TDD  57–60
UI design patterns  29–43

Design Patterns: Elements
of Reusable
Object-Oriented
Software  26

design-time
ViewModel  155

development phase, LOB
applications  3

dialogs
about  14
MVVM  171–174

Dijkstra, Edsger W.  18
Dispatcher  181
Display Attributes  77
distributed data layers,

building with RIA
and WCF  108–112

Domain  67–71
database-driven

approach  69
defined  62
Domain-Driven

approach  70
isolating from the rest of

the application  62
mapping using

NHibernate  117–121
transaction script  68

Domain Base Object  140
domain context  81
DomainContext class  111
domain-driven design.

See DDD

194	 Domain Entities

Domain Entities
DAL  91
database schema

constraints  140
DTOs  65
Enterprise Library  134
Model and MVVM  150

domain entities
validation  75–79

available validation
frameworks  79

classic validation  75
using attributes and data

annotations  77
Domain Entity

about  64
base classes  186
DataTemplate  157
INotifyPropertyChanged

interface  156
Model  155

Domain Entity Order, work-
flow sequence  69

domain-first
applications  107

Domain Layer
about  18
Business Layer  123

Domain Model  61–90
DDD (Domain-Driven

Design)  61–64
development approaches

of a Domain  67–71
domain entities

validation  75–79
domain entity and DTO

(data transfer
object)  64

how to create an object in
DDD  71–74

mapping using Entity
Framework  113–117

NHibernate  98
POCO object and the

O/RM  66
proxy  93

sample code: the CRM
Domain Model 
81–89

unit testing  80
Domain Navigation,

O/RM  94
Domain Object.

See Domain Entity
DomainObject class  81
DomainObject layer super-

type  82
Domain Services, DTOs  65
Domain Session  120
DSL (domain-specific

language)  53–57
DTO (data transfer

object)  64
duplex messaging

services  189
dynamic SQL creation  121

E
embedded validation

rules  75
Emit Mapper  66
Employee entity  82
end users

about  9
communication with  13

enterprise applications
business layer  123–148
DAL  91–122
design patterns  25–60
domain model  61–90
MVVM frameworks and

toolkits  179–190
MVVM (Model View

ViewModel)  1–24
UI layer and MVVM 

149–178
Enterprise Library  134, 139,

141, 165
Entities

defined  62
DTOs  65
repositories  104

Entity Framework
about  67, 95–97
DAL  91
Domain-Driven

approach  70
mapping the Domain

Model  113–117
proxy entities  115

error messages, validation
errors  125

Error property  164
errors, methods for

handling  15
EventAggregator  174
EventAggregator

pattern  169
events

event programming with
.NET  168

onComplete event  142
PropertyChanged

event  2, 161, 162
WorkflowApplication  131

EVIL  136
exceptions, throwing  74
Execute method  157
exposing the Model in the

ViewModel  156
Expression Blend  6, 152,

154, 180
Expression SDK  152
Expression Studio  6
Expression Suite  9
extensibility  62
Extensible Application

Markup Language.
See XAML (Extensible
Application Markup
Language)

extension methods  186
extensions, MEF  53

F
Facade Pattern  27, 128
Facade service classes  147
factor patterns  72–74

	 LOB applications	 195

factory Method pattern  27
FindAndReplace dialog  171
Fluent Interface  53–57

Conditions  136
validators  186

FluentNHibernate  100, 107,
118

plug-in  120
fluent syntax  142
Fluent Workflow

Engine  142
flyweight pattern  27
FormatCommand

property  160
Fowler, Martin  19, 30

G
Genome  100
GOF patterns  29, 43

H
Hibernate  98
HttpContext object  102

I
ICommand interface

about  40
methods  157
Model  155
MVVM toolkits  179
Ribbon control  176
WPF and Silverlight  157–

161
ICommand property  157,

160
icons  11
IDataErrorInfo interface  14,

164
identifying a business

transaction  102
ID property  66
IErrorInfo  92
Iesi.Collection.dll  118
if/else statements  125
if statements  77
IMonitor  185

initializer method  171
InjectionConstructor

attribute  48
INotifyPropertyChanged

interface
about  162
MVVM pattern  179
notification system  40
POCO objects  92
ViewModel  2, 156

InRule  136
interfaces

Fluent interface  53–60,
136

ICommand interface  40,
155, 157–161, 176,
179

IDataErrorInfo
interface  14, 164

INotifyPropertyChanged
interface  2, 40, 156,
162, 179

IRepository interface  116
ISessionFactory

interface  112
IUnitOfWork

interface  112
IUnityContainer

interface  48
IWeakEventListener

interface  169
parallel interface  75
Web interfaces: LOB

applications  3
interpreter pattern  28
inversion of control with

MVVM  174
IoC container  174
IoC framework

Cinch  183
service approach  172

IoC pattern  44–53
Dependency Injection  48
Microsoft Unity  48

IQueryable collection  54
IRepository classes  105
IRepository interface  116

ISession
mapping the Domain us-

ing NHibernate  119
object  121

ISessionFactory
interface  112

IsNew property  70
isolation, O/RM  94
IsValid property  140
Item property  164
ITransaction object  104
IUnitOfWork interface  112
IUnityContainer

interface  48
IWeakEventListener

interface  169

L
lambda syntax  142, 169
layers. See also modules

about  19–22
Separation of

Concerns  23
SoC  17
Validation Rules  124

layer supertype  75
lazy loading  121
libraries

Enterprise Library  134,
139, 141, 165

MEFedMVVM library  181
lifecycle

UoW (Unit of Work)  102
of a view  150

Line of Business. See LOB
LINQ

NHibernate  98
syntax  54, 95, 100

LINQtoSQL  55
Listbox  167
listener  168
LOB applications  2

Business Layer  123, 134
Business Rules  127
design patterns  25
.NET Framework  xi
UI layer with MVVM  149

196	 LOB Silverlight applications, validation rules and the UI layer

LOB Silverlight applications,
validation rules and
the UI layer  125

LOB user interface  9–17
general style and control

considerations  16
Menubar  11
notifications and

alerts  13
Ribbon bar  15
Toolbar  12
Tooltip  12

LogWriter, refactoring  46

M
maintainability, O/RM  94
maintenance

LOB applications  3
SPs  93

Managed Extensibility
Framework. See MEF

mapping
dictionary  93
Domain Mapping  108
files  117
testing  106

MDI (Multiple Document
Interface)  11

“mediator” approach:
Modal View in
MVVM  173

mediator pattern  28
MEFedMVVM library  181
MEF (Managed Extensibility

Framework)
about  51
Cinch  183

Memento  185
memento pattern  28
Menubar  11
MessageBox  171
Message broker

engine  186
Message pattern  170

messages
constraints  171
error messages  125
MVVM and Weak

Events  168–171
messaging task,

Mediator  173
Messenger class  181
methods. See also

commands
Add method  116
AddOrder method  128
AddProduct method  89
BLL  138
boostrapper method  171
CanAddOrder

method  128
CanExecute method  157,

160
chaining  54
constructor method  71
Employee and Customer

entities  82
Execute method  157
extension methods  186
handling errors  15
initializer method  171
OnCanExecuteChanged()

method  161
OnPropertyChanged()

method  157
shortcut methods  128

Microsoft Dynamics  10
Microsoft Enterprise

Library  134
Microsoft Entity

Framework  95–97
Microsoft Expression

Blend  6, 152, 154,
180

Microsoft Expression
SDK  152

Microsoft Expression
Studio  6

Microsoft Expression
Suite  9

Microsoft.Practices.
EnterpriseLibrary.
Validation.dll  139

Microsoft Service
Locator  50

Microsoft SketchFlow  8
Microsoft Unity

about  48
compared to MEF  52
IoC container  174
Microsoft Unity  48
Service Locator  49

mockups, example using
Sketchflow  9

modal dialog  171
modal pop-ups  171–174
Modal Service  172
Modal View  172
Model

defined  1, 62
MVC pattern  31
MVP pattern  34
MVVM  150, 155
PM pattern  39
UI design patterns  29

Model classes  91
modeless dialog  171
Model View ViewModel.

See MVVM
modules. See also layers

Separation of
Concerns  23

MSTest, about  58
Multiple Document

Interface (MDI)  11
MVC (Model View

Controller), UI design
pattern  29

MVC patterns  30–34
MVP pattern  29, 34–39
MVP Supervising

Presenter  38
MVVM applications

Business Layer  123, 133,
137, 143

DAL  91, 92
Domain mapping  108

	 patterns. See also design patterns	 197

MVVM Light  172, 180–189
MVVM (Model View

ViewModel)  1–24,
149–178, 179–190

about  xi, 1
as a design pattern  25
Composite UI Frame-

works  186–189
creating objects in

DDD  72
DataTemplate in WPF and

Silverlight  167
dialogs and modal pop-

ups  171–174
DSLs  53
ICommand interface in

WPF and Silver-
light  157–161

inversion of control  174
LOB applications  2
LOB user interface  9–17
Model  155
MVVM pattern  150–151
PM pattern  39–43
Sample Code: The Micro-

soft Office Ribbon
and MVVM  175

Silverlight versus WPF
(Windows Presenta-
tion Foundation)  4

SoC  17–22
toolkits  179–183
UI-building tools  5–9
View  151–155
ViewModel  161–167
WeakEvents and

messages  168–171
XAML  183–186

MVVM pattern
about  150–151
PM pattern  39
TDD  57
View  151
ViewModel  29
WPF  30

MySQL, Domain-Driven
approach  70

N
namespaces

DataAnnotations
namespace  77

System.ComponentModel
namespace  124

for WPF and
Silverlight  152

navigation pane  10
NHibernate

about  98
DAL  91
mapping the Do-

main  117–121
O/RM  67, 70
TDD  107

NHibernate Validation
Framework  79

non-static objects  71
notifications  13
NUnit  59

O
ObjectContext  115
ObjectContext object  121
Object Mapper. See O/RM
object-oriented program-

ming languages  18
objects

behavior patterns  28
creating a new object for

use in an
application  73

creating in DDD  71–74
creational patterns  26
Domain Entity object  156
DSL objects  55
DTO (data transfer

object)  64
HttpContext object  102
ISession object  121
ITransaction object  104
lifecycle of a view  150
Model  155
non-static objects  71
ObjectContext object  121

POCO objects  66, 92, 107
session object  98
structural patterns  27
Unity  53
validating  165
value object  63
ViewModel objects  183

Observer pattern
defined  28
IMonitor with the Del-

egateCommand  185
OnCanExecuteChanged()

method  161
onComplete event  142
OnPropertyChanged()

method  157
OpenFileDialog  171
open source

Active Record  136
Calcium SDK  188
Cinch  182
MEFedMVVM library  181
NHibernate  99

operations, controls and
tooltips  13

Oracle, EF  95
order domain  87
OrderLine  88
Order process  87
OriginalText property  161
O/RM (Object/Relational

Mapper)  93–100
FM  95–97
.NET  100
NHibernate  98
POCO object  66

P
parallel interface for

validating a specific
Domain Entity  75

passive MVC pattern  31
patterns. See also design

patterns
EventAggregator

pattern  169
Facade Pattern  128

198	 patterns

patterns,  continued
Mediator pattern  173
Message pattern  170
MVVM pattern  179
Observer pattern  185
WeakEvent pattern  168

Patterns of Enterprise
Application
Architecture  26

performance
managing events  170
O/RMs  93

persistence ignorance  66,
67

person context  81–87
Person Domain  86
plug-and-play  71
plug-ins, NHibernate  99
PM pattern  39–43
PM (Presentation Model),

UI design pattern  29
POCO-compliant Domain

Model  98
POCO concepts

Entity Framework  97
O/RM  122

POCO Domain Entities  114
POCO entities  115
POCO objects

DAL  92
domain-first

applications  107
O/RM  66

presentation logic,
ViewModel and
MVVM  150

Presenter, MVP pattern  35
PrimaryKey  81
Prism  158, 172, 186
procedural programming

languages  18
Product  89
Product entity  87
programming

paradigms  18

properties
Employee and Customer

entities  82
Error property  164
FormatCommand

property  160
ICommand property  157,

160
ID property  66
IsNew property  70
IsValid property  140
Item property  164
OriginalText property  161
ViewModel  156
ViewModel

properties  152
PropertyChanged event  2,

161, 162
prototype pattern  27
proxy classes  114
proxy, Domain Model  93
proxy pattern  27

Q
queries, ObjectContext

object and ISession
object  121

R
Radical  185
Reade, Chris  18
Reenskaug, Trygve  30
refactoring, LogWriter  46
RelayCommand  181
render template  13
Repository

IUnitOfWork  112
mapping the Domain us-

ing NHibernate  121
Repository class  116
Repository Pattern  104
requirements, LOB

applications  3

RIA Service
distributed data

layer  108–112
DTO  76

Ribbon bar  15
Ribbon control  12, 175
routed commands  5
Rule Engine, and Business

Rules  136

S
sample code

the Business Service
Layer  139–147

CRM Data Access
Layer  112–117

the CRM Domain
Model  81–89

The Microsoft Office Rib-
bon and MVVM  175

Save() command  70
SaveFileDialog  171
SCSF (Smart Client Software

Factory)  169
security, DAL  93
Separation of Concerns.

See SoC
service approach  172
service for business

transactions  143
Service Locator  49, 50
Service Locator pattern  47
service-oriented design  18
services  19–22
session object  98
Shifflett, Karl  184
shortcut key

combinations  11
shortcut methods  128
ShowDialog command  171
Silverlight

about  xi
Calcium SDK  188
Cinch  182
Commanding  158
DataTemplate  167

	 unit testing	 199

Dependency Injection
pattern  44

Dispatcher  181
Distributed Data

Layer  109
ICommand interface 

157–161
InRule  137
Laurent Bugnion  180
MEF  51
MessageBox  171
MVC pattern  34
MVP pattern  38
MVP Supervising

Presenter  38
namespace  152
PM pattern  39, 40
Prism  186
UserControl  168
versus WPF (Windows

Presentation
Foundation)  4

XAML  183
Silverlight CLR  110
singleton pattern  27
SketchFlow  8
Smart Client Software

Factory (SCSF)  169
SOA approach  112
SOAP protocol, Distributed

Data Layer  109
SoC (Separation of

Concerns)  17–19
DAL  91
UI design patterns  29

SPs (stored procedures), da-
tabase and DAL  92

SQL
Entity Framework  97
NHibernate  98
WorkflowApplication  133

SQL Server
DSLs  53
Entity Framework  95

state and behavior  70

state pattern  28
strategy pattern  28
structural patterns  27
structure, LOB applica-

tions  3
styles

Silverlight versus WPF  5
XAML  17

Subsonic  100
Supervising Presenter

pattern  38
switch statements  125
System.ComponentModel

namespace  124

T
T4 code generator  97
TDD (test-driven

development)  57–60
DAL  106
example  58
factory patterns  72
MVC pattern  34
resources for  59
unit testing  58

template method
pattern  28

templates
data template Expression

Blend  7
render template  13
Silverlight versus WPF  5
validation template  166
Visual Studio tem-

plates  188
terminology, DDD

(Domain-Driven
Design)  62

testing
business logic  92
Database-Driven

approach  70
DDD applications  62
Domain-Driven

approach  71

importance of  60
UI without running the

application  154
unit testing the domain

model  80
text labels, Toolbar

buttons  12
threading helpers  183
threading manager  186
throwing exceptions  74
tiers  19–22
Toolbar  12
Tooltip  12
Transaction Script  67, 68
triggers  5
T-SQL

about  53
code  93, 122

U
ubiquitous language  63
UI-building tools  5–9

Expression Blend  6
SketchFlow  8

UI declarative markup  149
UI design patterns  29–43

MVC pattern  30–34
MVP pattern  34–39
PM pattern and

MVVM  39–43
UI layer

LOB applications  18
validation rules  125

UI logic, decoupling from
the UI declarative
markup  149

UI mockup  8
UI View, general

structure  150
underline () character,

Menubar  11
unit testing

domain model  80
TDD  58

200	 Unity

Unity
about  48
compared to MEF  52
dependencies  53
Dependency Injection  48
IoC container  174
Service Locator  49

UoW constructor  115
UoW (Unit of Work) 

101–104
Business Service Lay-

er  140
identifying a business

transaction  102
lifecycle  102
mapping the Domain us-

ing NHibernate  119
UserControl  168
user stories

CRM Domain  63
sample code: the CRM

Domain Model  81

V
VAB (Validation Application

Block)
about  134
validating objects  165

validation
Business Service

Layer  139
domain entities

validation  75–79
Domain Entity  66
objects  165
third party toolkits  134
unit test the domain

model  80
Validation Application

Block  79
Validation Attributes  77
validation errors  125
Validation Facade

pattern  140
validation pattern,

factory  74

ValidationResults  140
Validation Rules, versus

Business Rules 
124–127

Validation Service,  75
validation template  166
Validator class  140
validators, Radical  186
Value Object, defined  63,

65
verification, Command

execution
verification  185

versioning  70
View

adding a namespace
to  152

binding to the command
proffered by the
ViewModel  157

business transactions  102
DataTemplate  168
defined  1
MVP pattern  35
MVP Supervising

Presenter  38
MVVM  43, 151–155
object in lifecycle  150
PM pattern  39
UI design patterns  29
ViewModel  161

ViewModel  161–167
blendability, a dummy

ViewModel  152
Business Layer  123
Business Transactions  103
DataTemplate and PM

pattern  40
defined  1
exposing properties  156
exposing the Model

in  156
ICommand property  157
IDataErrorInfo

interface  164

INotifyPropertyChanged
interface  162

IoC framework  172
MVVM  43, 182
MVVM and Domain

Entities  150
recycling for different

views  149
UI design patterns  29
validator for Domain

Entity  76
ViewModelBase class  181
ViewModel, design-time

ViewModel  155
ViewModelLocator  182
ViewModel properties  152
ViewModelValidator

class  165
visitor pattern  28
Visual Studio

Calcium projects  188
Expression Blend  6
MSTest  58
MVVM Light Toolkit  180
NHibernate  99
testing the UI  154

Visual Studio
decorations  74

Visual Studio IDE, PM pat-
tern and MVVM  42

W
WCF RIA service

about  108–112
Distributed Data

Layer  109
website for  112

WCF (Windows
Communication
Foundation)

AppFabric and Windows
Workflows  132

WorkflowApplication  131
WeakEventManager

class  169
WeakEvent pattern  168

	 XAML (Extensible Application Markup Language)	 201

WeakEvents  168–171
Cinch  183
EventAggregator pat-

tern  169
EventAggregtor  174
Observer pattern  185
WeakEvent pattern  168

Web interfaces, LOB
applications  3

WF (Workflow Foundation)
Business Rule  125
Business Rules by work-

flow with WF
4.0  129–133

events  142
Windows Forms. See

also WPF (Windows
Presentation
Foundation)

MVP pattern  35
Windows Phone 7,

Prism  186
Windows Presentation

Foundation. See WPF
Windows Server,

AppFabric  132
Windows Workflows,

AppFabric  132
Workflow Activity Library

project type  129
WorkflowApplication

asynchronous calls  131
control over the execution

of the ruleset  132

pros and cons  133
running a workflow  141
WCF  131

workflow-by-design  127
Workflow Engine  141
WorkflowInvoker  131, 141
workflow sequence,

Domain Entity
Order  69

WPF applications, View  151
WPF MVVM

applications  184
WPF MVVM Master Detail’s

application  103
WPF/Silverlight applica-

tions, composite UI
frameworks  186

WPF/Silverlight
designers  184

WPF textbox  166
WPF (Windows

Presentation
Foundation)

about  xi
Calcium SDK  188
Cinch  182
DataTemplate  167
Dependency Injection

pattern  44
Dispatcher  181
Distributed Data

Layer  108
ICommand interface 

157–161

MEF  51
MessageBox  171
MVC pattern  34
MVP pattern  38
MVP Supervising Pre-

senter  38
namespace  152
PM pattern  39, 40
Prism  186
UserControl  168
versus Silverlight  4
XAML  183

WriteLog message  45

X
XAML (Extensible

Application Markup
Language)  183–186

about  5
code  149
controls  8
DataBind engine  164
in the Box tutorial  184
markup  149, 155
Power Toys  184
Radical  185, 186
UserControl/Page/

Window  150
View  154
XAML Editor  184
XAML Power Toys  184

	Team rebOOk

