

Yuli Vasiliev

Beginning Database-Driven
Application Development
in Java™ EE
Using GlassFish™

Beginning Database-Driven Application Development in Java™ EE: Using GlassFish™

Copyright © 2008 by Yuli Vasiliev

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (paperback): 978-1-4302-0963-8

ISBN-13 (electronic): 978-1-4302-0964-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book
was written without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Developmental Editor: Tom Welsh
Technical Reviewer: Gordon Yorke
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Tracy Brown Collins
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Dina Quan
Proofreader: Linda Seifert
Indexer: Carol Burbo
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

To my father.

Contents at a Glance

About the Author . xvii

About the Technical Reviewer . xix

Introduction. xxi

PART 1 ■ ■ ■ Introduction
■CHAPTER 1 Setting Up Your Working Environment . 3

■CHAPTER 2 Getting Started with GlassFish . 27

■CHAPTER 3 Introducing EJB 3 and the Java Persistence API 49

PART 2 ■ ■ ■ Planning the Application
■CHAPTER 4 Planning a Java EE Application . 79

■CHAPTER 5 Planning the Underlying Database. 135

PART 3 ■ ■ ■ Building the Database Tier
■CHAPTER 6 Implementing the Database Tier . 161

■CHAPTER 7 Setting Up the Data Source . 183

PART 4 ■ ■ ■ Building the Persistence Tier
■CHAPTER 8 Designing JPA Entities . 199

■CHAPTER 9 Object/Relational Mapping . 223

■CHAPTER 10 Using EntityManager. 253

■CHAPTER 11 Using Java Persistence Query Language (JPQL) 283

PART 5 ■ ■ ■ Building the Business Logic Tier
■CHAPTER 12 Designing Session Beans . 305

■CHAPTER 13 Managing Transactions . 319

iv

PART 6 ■ ■ ■ Building the Presentation Tier
and Testing

■CHAPTER 14 Building the Presentation Tier . 337

■CHAPTER 15 Testing the Application . 357

PART 7 ■ ■ ■ Appendix
■APPENDIX Getting Familiar with Relational Databases . 365

■INDEX . 393

v

Contents

About the Author . xvii

About the Technical Reviewer . xix

Introduction. xxi

PART 1 ■ ■ ■ Introduction

■CHAPTER 1 Setting Up Your Working Environment . 3

Setting Up the GlassFish Application Server. 3

Obtaining GlassFish. 3

Installing GlassFish . 5

Testing the GlassFish Installation . 6

Testing the GlassFish Admin Console . 7

Setting Up the NetBeans IDE . 10

Obtaining the NetBeans IDE. 10

Installing the NetBeans IDE on Windows . 11

Installing the NetBeans IDE on Linux . 12

Connecting the NetBeans IDE to GlassFish . 12

Setting Up Oracle Database XE . 14

Obtaining Oracle Database XE. 14

Installing Oracle Database XE on Windows. 14

Installing Oracle Database XE on Linux . 15

Testing the Database Server with Oracle SQL*Plus. 16

Setting Up the hr/hr Demonstration Schema 17

Testing the Database Home Page. 18

Setting Up MySQL . 19

Obtaining MySQL . 19

Installing MySQL on Windows . 20

Installing MySQL on Linux . 21

Setting Up a New User Account with the MySQL
Command-Line Client . 22

Managing the Database Server with MySQL GUI Tools. 23

Summary . 25

vii

■CHAPTER 2 Getting Started with GlassFish . 27

Overview of the GlassFish Application Server . 27

GlassFish: What Is It? . 27

Why GlassFish? . 28

How to Get Started . 29

GlassFish Documentation. 30

Commercial Support for GlassFish . 30

Starting the Application Server . 31

Performing GlassFish Administration with Admin Console 32

Using the Admin Console Interface. 33

Using the Admin Console Help System . 34

Configuring the GlassFish Application Server 35

Performing GlassFish Administration with asadmin 36

Deploying Applications to the Server . 37

Creating a Simple Web Application. 37

Creating Deployment Descriptors . 39

Packaging the Application . 40

Deploying the Application Using Autodeploy. 40

Deploying the Application with asadmin . 41

Deploying the Application with Admin Console 41

Testing the Application . 43

Creating and Deploying a Web Application with the NetBeans IDE 44

Creating a “Hello World!” Application. 44

Deploying an Application with NetBeans . 45

Understanding GlassFish Domains. 46

Creating a Domain . 46

Running Several Domains Simultaneously . 47

Deleting a Domain . 47

Summary. 48

■CHAPTER 3 Introducing EJB 3 and the Java Persistence API 49

Overview of EJB 3 . 50

What Is EJB 3? . 50

Advantages of EJB 3 . 50

EJB Container . 51

EJB 3 Components . 51

Your First EJB 3 Application . 57

Creating a Simple Enterprise Bean . 57

Packaging the Enterprise Bean . 60

■CONTENTSviii

Deploying the Enterprise Bean to GlassFish . 60

Creating the Client Application . 61

Packaging the Client Application. 62

Creating the Application Archive . 63

Testing the Application . 64

JPA at a Glance . 64

What Is JPA?. 65

JPA Implementation at GlassFish . 65

JPA Entities and ORM Mapping. 65

Your First EJB JPA Application . 66

The Project Structure . 67

Using the Java DB Database . 68

Setting Up the Data Source . 69

Creating the Entity . 70

Creating the Session Bean . 72

Creating the persistence.xml Configuration File. 73

Packaging and Deploying the Session Bean . 73

Creating the Client . 74

Compiling and Packaging the Client. 75

Testing the Application . 76

Summary. 76

PART 2 ■ ■ ■ Planning the Application

■CHAPTER 4 Planning a Java EE Application . 79

Understanding the Structure of a Java EE Application 79

Understanding the Multitier Architecture. 79

Understanding the Architecture of the Java EE Container 81

Distributing Business Logic Between Application Tiers 82

Planning Application Components and Their Interactions 84

Planning JPA Entities . 84

Transaction Considerations . 99

Planning for Security . 111

XML Deployment Descriptors vs. Annotations 115

Application Organization and Reuse. 119

Collecting Information . 119

Thinking of Reusability . 122

Planning the Structure of Your Application . 127

■CONTENTS ix

Planning the Steps to Building and Deploying Your Application 128

The General Steps to Building the Underlying Database. 130

The General Steps to Building an EJB Module 130

The General Steps to Building a Web Application Module 131

The General Steps to Building an Enterprise Application
Module . 131

Planning the Sample Application . 132

Planning the Sample Structure . 132

Planning the Steps to Building and Deploying the Sample. 133

Summary. 134

■CHAPTER 5 Planning the Underlying Database. 135

Planning the Persistence Tier Upon an Existing,
Underlying Database . 135

Using Database Views. 136

Utilizing New Database Schemas . 137

Implementing Some Business Logic of an Application Inside
the Database. 139

Moving Business Logic Into Triggers . 140
Moving Business Logic Into Stored Procedures 146

Thinking of Reusability . 150

Knowing When You Might Want to Use Native SQL Queries. 151
Planning Applications Invoking Stored Procedures Directly

from Within the Business Logic Tier . 154

Planning the Database Tier of the Sample Application 156

Planning the Structure of the Underlying Database 156

Planning the Steps to Building the Database Tier 157

Summary. 158

PART 3 ■ ■ ■ Building the Database Tier

■CHAPTER 6 Implementing the Database Tier . 161

Creating the Database Schema for the Sample Application 162

Creating the Database Schema in MySQL. 162

Creating the Database Schema in Oracle . 163

Creating Database Tables to Store Application Data. 164

Building Database Tables in MySQL. 164

Building Database Tables in Oracle . 166

Populating the Tables with Initial Data . 168

■CONTENTSx

Building the Stored Subprograms. 169

Building the Stored Subprograms in MySQL. 171

Building the Stored Subprograms in Oracle 173

Defining the Triggers . 175

Defining the Triggers in MySQL. 175

Defining the Triggers in Oracle . 176

Testing the Underlying Database . 177

Summary. 181

■CHAPTER 7 Setting Up the Data Source. 183

Overview of JNDI . 183

Installing a Database Driver on the Application Server 185

Obtaining and Installing the JDBC Driver for MySQL. 186

Obtaining and Installing the JDBC Driver for Oracle 186

Setting Up and Configuring the Data Source . 186

Setting Up the Data Source to Interact with MySQL 187

Setting Up the Data Source to Interact with Oracle 190

Performing a Quick Test of the Data Source . 192

Configuring the Settings of an Existing Data Source. 195

Summary. 196

PART 4 ■ ■ ■ Building the Persistence Tier

■CHAPTER 8 Designing JPA Entities . 199

Creating JPA Entities Upon the Underlying Database Tables. 199

Diagramming the Persistence Tier . 200

Creating the Entities . 201

Compiling the Entities . 208

Adjusting the Database Tier. 209

Adjusting the Database Tier Implemented with MySQL 209

Adjusting the Database Tier Implemented with Oracle 210

Testing the Additions. 210

Performing a Quick Test of the Newly Created JPA Entities 213

Building the Sample with the NetBeans IDE . 221

Summary . 222

■CONTENTS xi

■CHAPTER 9 Object/Relational Mapping . 223

Mapping Java Objects to the Underlying Database 223

Object-Oriented and Relational Paradigms . 224

The Big Picture. 225

Specifying Object/Relational Mapping Metadata . 227

Using Mapping Annotations . 227

Specifying Mapping Metadata in orm.xml. 227

Utilizing Entity Relationships . 232

Navigating Over Relationships. 232

Cascading Operations Performed on Related Entities 234

Dealing with Entity Primary Keys . 239

Dealing with Composite Primary Keys . 239

Generating Values for Primary Key Columns. 244

Summary. 252

■CHAPTER 10 Using EntityManager. 253

Managing Entities . 253

The Big Picture. 254

Persistence Contexts. 255

Managing the Life Cycle of Entity Instances 260

EntityManager Interface . 262

Using EntityManager to Manipulate Entities . 262

Obtaining an Instance of EntityManager . 263

Uses of EntityManager . 264

Using Entity Life-Cycle Callback Methods. 276

Summary. 282

■CHAPTER 11 Using Java Persistence Query Language (JPQL). 283

Defining Queries Over Entities. 283

What Is JPQL? . 283

When You Might Want to Use JPQL . 285

Operations Supported in JPQL. 285

Dealing with JPQL Statements . 286

Using Query API . 288

Retrieving Entities with JPQL . 289

A Simple Example of JPQL in Action . 289

Are Retrieved Entities Managed? . 291

Navigating Over Relationships in the Retrieved Entities 293

Using JPQL Fetch Joins . 296

■CONTENTSxii

Using Native SQL Queries . 300

Dealing with Native SQL Queries . 300

A Simple Example of Native SQL Query . 301

Summary. 301

PART 5 ■ ■ ■ Building the Business Logic Tier

■CHAPTER 12 Designing Session Beans. 305

Creating Session Beans Implementing the Sample
Application Logic . 305

Planning the Business Logic Tier . 305

Creating the Stateless Session Beans . 306

Creating the Stateful Session Beans . 308

Compiling, Packaging, and Deploying the Session Beans 310

Testing the Newly Created Session Beans . 311

Testing Session Beans with Servlets . 311

If Something Goes Wrong . 317

Continuing with the Sample Project in the NetBeans IDE. 317

Summary. 318

■CHAPTER 13 Managing Transactions . 319

Using Transactions in Java EE Applications . 319

JTA Transactions . 320

Types of Transaction Demarcation . 320

Using Declarative Transaction Demarcation 321

Demarcating Transactions Programmatically 324

Using Transaction Demarcation in Client Code 326

Dealing with Resource-Local Transactions . 327

Some Transaction Scenarios. 328

Transactional Behavior of a Business Method Involving
Operations of More Than One Container-Managed
EntityManager . 328

Defining Transactions in Stateful Session Beans 333

Summary . 334

■CONTENTS xiii

PART 6 ■ ■ ■ Building the Presentation Tier
and Testing

■CHAPTER 14 Building the Presentation Tier . 337

Accessing Java EE Functionality from a Presentation Tier. 337

Choosing a Web Tier Technology . 338

Planning the Presentation Tier. 339

Using JAAS to Secure Java EE Applications . 341

Creating a JDBC Realm in GlassFish . 341

Building the Sample’s Presentation Tier with JSF. 345

Diagramming the Project . 345

Developing JSF Managed Beans. 346

Developing JSF Pages. 349

Creating Security Pages . 351

Configuring the Application . 352

Summary. 355

■CHAPTER 15 Testing the Application . 357

Launching the Sample Application . 357

Log In to the Sample . 358

Filling Up the Shopping Cart . 359

Looking Through the Cart Items and Placing an Order 359

Testing the Functionality of the Sample . 360

Finding Weaknesses . 360

Fixing the Problems. 361

Summary. 362

PART 7 ■ ■ ■ Appendix

■APPENDIX Getting Familiar with Relational Databases. 365

What Database to Choose? . 366

The Underlying Database Is Part of the Entire Solution. 366

Understanding the Architecture of Your Database 367

Knowing Your Database Features . 375

■CONTENTSxiv

Using the SQL Database Language . 376

What Is SQL? . 376

Categories of SQL Statements. 377

Performing DDL Operations . 378

Performing DML Operations. 382

Performing Transaction Management Statements 385

Performing Administrative Tasks . 388

Using Management Tools Shipped with Your Database 390

MySQL Command-Line Tool . 390

Oracle SQL*Plus . 391

■INDEX . 393

■CONTENTS xv

xvii

About the Author

■YULI VASILIEV is a software developer, freelance author, and consultant currently specializing
in open source development, Java technologies, databases, and service-oriented architecture
(SOA). He has more than ten years of software development experience as well as several years
of technical writing experience. He also wrote a series of technical articles for Oracle Technol-
ogy Network (OTN) and Oracle Magazine.

xix

About the Technical Reviewer

■GORDON YORKE is a technical lead on the Oracle TopLink, EclipseLink,
and Glassfish TopLink Persistence projects. He is a current member of the
JPA 2.0 expert group and the EclipseLink Architecture council. Having
worked on Oracle TopLink since its infancy, he has considerable ORM
and Java EE application experience; he also has a bachelor’s degree in
computer science from Acadia University. In addition, he has been
known to make speaking appearances at industry conferences.

xxi

Introduction

In most cases, developing a data-centric Java EE application doesn’t start with building the
persistence tier. Instead, you first have to build an underlying database or adjust an existing
one to be utilized within your application. Even if you’re not charged with building an under-
lying database for your application, you will look much better if you choose to understand
how it works in detail.

Beginning Database-Driven Application Development in Java EE: Using GlassFish is an
example-driven, practical book that explains in detail how to develop Java EE applications
utilizing relational database technologies with examples using Oracle and MySQL as well as
the GlassFish application development framework and deployment platform—all based on
Java EE. The book brings together the most useful Java EE technologies such as EJB, JPA, and
JSF, providing information that can be immediately put to work.

Over the course of this book, you will be guided through every step of building and deploy-
ing a data-centric Java EE application. As you work through the book-length case study, you
will learn how to develop each tier of a Java EE application, including the database tier, per-
sistence tier, business logic tier, and presentation tier.

Who Is This Book For?
Beginning Database-Driven Application Development in Java EE: Using GlassFish is aimed at
anybody who wants to learn how to build data-centric Java EE applications. Regardless of
whether you have already gotten your feet wet with Java EE technologies or just want to start
now, there will be something in this book for you. To get the most out of this book, however,
you should have some familiarity with the basics of Java EE.

How Is This Book Structured?
The book includes fifteen chapters and an appendix, with the chapters grouped into six logical
parts. The first part of the book guides you through the process of installing and configuring
the software components required to follow the examples provided in the following chapters.
Also, it explains some basics of the Java Persistence API and EJB 3 technologies used to imple-
ment the persistence tier and the business logic tier of a Java EE application, respectively. (The
basics of relational databases are explained in the appendix.)

In the second part, you will look at the planning stage of the development process. In par-
ticular, you will learn how to plan a multitier architecture for your Java EE application and
efficiently distribute business logic between the application tiers.

The third part of the book walks you through the process of creating an underlying data-
base to be used with a Java EE application. You will learn how to plan and then develop an
underlying database, using Oracle and MySQL—the two most popular databases nowadays.

This part also explains how to set up data sources in your GlassFish server for the underlying
database just created.

With the underlying database already in place, the next four chapters grouped into the
fourth part cover building the persistence tier, and they explain how to design the JPA entities
through which your Java EE application will actually interact with its underlying database.
Here, you will also look at the object/relational mapping facility available in Java EE and how
to use Java Persistence Query Language (JPQL) as well as native SQL when it comes to query-
ing JPA entities.

The fifth part of the book focuses on building the business logic tier of the Java EE appli-
cation sample application. In particular, it explains how to create session beans to be utilized
within the sample. Also, it covers transactions, explaining how to develop transactional enter-
prise beans and client applications.

Finally, the sixth part discusses how to build the presentation tier; you’ll build JSF beans
through which you will access the session beans already in place. Then, you will see how to
test the entire application.

What Will You Need to Use This Book?
The examples in the book are designed to be deployed to the GlassFish application server.
Also, you will need to implement the underlying database in either MySQL or Oracle. Chapter
1 explains in detail how you can install all these software components. Then, Chapter 2 gives
you the information required to get started with GlassFish.

The complete source code for the examples discussed in the book is available in the
Source Code/Download section of the Apress website at http://www.apress.com.

■INTRODUCTIONxxii

Introduction

P A R T 1

Setting Up Your Working
Environment

This chapter provides a quick guide to setting up the software components required to follow
the samples provided in this book. In particular, it covers how to obtain, install, test, and pre-
pare for using the following pieces of software:

• The GlassFish application server

• The NetBeans IDE

• Oracle Database XE

• MySQL

■Note The book assumes you have installed either Oracle Database or MySQL, or both. If you decide on
Oracle, you can actually choose any version of Oracle Database. This chapter, though, discusses how to
install Oracle Database Express Edition (XE), a lightweight, easy-to-use, free edition of Oracle Database.

It is interesting to note that each of these software components can be downloaded and
used for free. The following sections will give you all the information required to quickly set up
these components on your system.

Setting Up the GlassFish Application Server
This section explains how to set up the GlassFish application server on your computer. Then,
Chapter 2 will give you a good overview of that application server and discuss how you can
quickly get started with it. Also, you might want to check out the “GlassFish Quick Start Guide”
document available at https://glassfish.dev.java.net/downloads/quickstart/index.html.

Obtaining GlassFish
You can download the latest version of the GlassFish application server from the GlassFish
Community web site. As a starting point, you can visit the GlassFish Community home page at

3

C H A P T E R 1

https://glassfish.dev.java.net/. At the top-right corner of this page, you should see a set of
Download Now buttons, each of which is related to a certain release of GlassFish, as well as
the button related to the latest release of TopLink Essentials.

■Note In fact, the GlassFish bundle includes the TopLink Essentials implementation of the Java Persistence
API by default. So, you don’t need to download it separately. This book assumes you will use the TopLink
Essentials bundled with GlassFish. For further information, you can refer to the “JPA Implementation at
GlassFish” section in Chapter 3. Also, you can visit the TopLink Essentials page at https://glassfish.
dev.java.net/javaee5/persistence/index.html.

The https://glassfish.dev.java.net/ page looks like Figure 1-1.

Figure 1-1. GlassFish Community home page

On the GlassFish Community home page shown in Figure 1-1, you can click the top
Download Now button to move on to the download page of the most up-to-date stable release
of GlassFish. The download page offers binary builds for different platforms. Choose what you
need, and start downloading.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT4

Installing GlassFish
Once you have downloaded the GlassFish bundle, you can proceed to the installation. Before
you can do this, though, you need to have JDK 5 or JDK 6 installed on your computer.

■Tip If you still have not installed the JDK on your computer or have an older version of it, you should pick
up a recent JDK package at Sun’s web site and install it on your system. You can download JDK 5 from
http://java.sun.com/javase/downloads/index_jdk5.jsp and JDK 6 from http://java.sun.
com/javase/downloads/index.jsp. Once you have installed the JDK, make sure to set the JAVA_HOME
environment variable to it.

After you download the GlassFish bundle, follow these steps to unbundle and configure
the application server:

1. In the command-line console, change the directory to the one where you have saved
the GlassFish bundle file, and run the following command to unbundle it:

java -Xmx256m -jar glassfish-installer-xx-xxxx.jar

2. Scroll down the License Agreement window that appears and then click Accept to
accept the license agreement terms and proceed with the installation. You should see
a lot of text running on the screen and finally the following:

Installation complete

In fact, the command in step 1 simply creates the glassfish directory and unpacks the
bundle to it. Although it says the installation is complete, you still have to run an Ant
script to complete the installation.

3. Change the directory to the newly created glassfish directory:

cd glassfish

4. Before you run Ant to complete the installation, make sure that ports 8080 and 8181
are not already in use on your system. If this is the case, edit the following lines in the
setup.xml file located within the glassfish directory:

<property name="instance.port" value="8080"/>
<property name="https.port" value="8181"/>

so that they refer to other ports, say, as follows:

<property name="instance.port" value="2118"/>
<property name="https.port" value="8183"/>

5. Run Ant to complete the installation. The following command assumes you are using
Ant bundled with GlassFish. On Windows, issue the following command:

lib\ant\bin\ant -f setup.xml

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 5

On a Unix-like system, issue this:

chmod -R +x lib/ant/bin
lib/ant/bin/ant -f setup.xml

After the Ant build script has completed, you should see the following message at the
bottom of the terminal:

BUILD SUCCESSFUL
Total time: 48 seconds

6. Once the build is completed, read the information in the terminal carefully. Pay close
attention to the lines under the create.domain section, which tell you what ports will
be used with the default GlassFish domain.

■Note GlassFish domains are covered in more detail in the section “Understanding GlassFish Domains” in
Chapter 2.

After you’ve completed the previous steps successfully, you have GlassFish installed on
your system and can start using it.

Testing the GlassFish Installation
Now that you have GlassFish installed on your system, it is time to verify your installation.
To do this, you can follow these steps:

1. Change the directory to the glassfish\bin directory:

cd glassfish_install_dir\glassfish\bin

2. Run the following command to start GlassFish:

asadmin start-domain domain1

3. To make sure your GlassFish application server is up and running, enter the following
URL in your browser:

http://localhost:8080

Note that the port in the previous URL may vary depending on the number specified in
the setup.xml file during the GlassFish installation.

The previous should output the default GlassFish application server page, which looks
like Figure 1-2.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT6

Figure 1-2. The default GlassFish application server page

If you see the page shown in Figure 1-2, then your application server is ready for use,
meaning you can deploy your applications to it now. That part of deployment is discussed in
the “Deploying Applications to the Server” section in Chapter 2.

Testing the GlassFish Admin Console
GlassFish ships with two administrative tools to let you perform administration tasks:

• Admin Console, which is a GUI web interface

• asadmin, which is a command-line tool

In the preceding section, you saw how you can use asadmin to start an instance of the
GlassFish server. Although asadmin can be used to perform any administration task on
the GlassFish server instances, many developers prefer the web-based Admin Console to it.
Before you can test the web-based Admin Console bundled with GlassFish, you need to have
GlassFish up and running. If you followed the steps in the preceding section, you should have
a running GlassFish server instance now.

To launch Admin Console, enter the following URL in your browser:

http://localhost:4848

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 7

■Note In fact, 4848 is the default port for Admin Console. If you changed it in the setup.xml file before
installing GlassFish to another one, then you must use the specified port number instead.

Once you’ve loaded Admin Console, you will be prompted to enter a username/password
combination, as shown in Figure 1-3.

Figure 1-3. The login page of Admin Console

To log in to the server, you can use the default username/password pair: admin/adminadmin.
It is recommended that you change the default administrator password for security reasons.
So, your first administration task to perform might be to change the default password of the
admin user. To achieve this, you can follow these steps:

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT8

1. Assuming you are already logged in to the server, click the Application Server node
under the Common Task column located on the left side of the Admin Console
window.

2. Click the Administrator Password tab. As a result, you should see the screen shown in
Figure 1-4.

3. On the Administrator Password tab, type in a new password in the New Password text
box and then type in the same password in the Confirm New Password text box.

4. Click the Save button on the right side of the display to replace the old password with
the new one.

Figure 1-4. The Administrator Password tab of the Application Server screen in Admin Console

As you can see in the figure, the Application Server screen in Admin Console includes
some other tabs besides Administrator Password discussed here. In the “Configuring the
GlassFish Application Server” section in Chapter 2, you will learn how to accomplish major
configuration tasks using the menus and buttons located on the Application Server screen’s
tabs.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 9

■Note Although this section gives you a rough idea of how to use Admin Console, Chapter 2 provides more
detailed information on using this browser-based GUI tool, including discussing how you can use it to config-
ure your application server.

Now that you have performed some initial tests of your GlassFish application server, you
might want to stop it. To do that, you can execute the following command from a terminal
window:

asadmin stop-domain domain1

Once you have stopped the server, you cannot manage it with Admin Console anymore—
at least, not until you start the server again. In that case, though, you first will be redirected to
the login page shown in Figure 1-3 earlier.

As an alternative to stopping the GlassFish application server instance with the asadmin
command, you could stop the instance through the Admin Console tool. To do this, you
should move to the General tab of the Application Server screen and click the Stop Instance
button there.

That concludes this concise guide on installing and testing the GlassFish application
server and its GUI-based configuration tool, Admin Console. Now you’re ready to move on
and take a deeper look at GlassFish and the way it is used. For further discussion, refer to
Chapter 2.

Setting Up the NetBeans IDE
The NetBeans IDE is an open source integrated development environment that will be used
throughout this book, making it easier for you to develop and deploy the samples discussed.

To learn more about the NetBeans IDE, you can visit its page at http://www.netbeans.
org/products/ide/. Also, you might want to check out the NetBeans IDE 5.5.1 Installation
Instructions page at http://www.netbeans.org/community/releases/55/1/install.html,
which provides the NetBeans IDE 5.5.1 installation instructions for Windows, Solaris OS,
Linux, and Macintosh OS X. Another interesting document to check out is the “NetBeans IDE
5.5 Quick Start Guide” that is available at http://www.netbeans.org/kb/55/quickstart.html.

Obtaining the NetBeans IDE
You can download the NetBeans IDE from the NetBeans downloads page at http://www.
netbeans.info/downloads/index.php. As of this writing, the most recent stable release of
NetBeans IDE is 5.5.1. It is interesting to note that the NetBeans IDE can be downloaded in
different bundles. For example, you can download the package containing the NetBeans IDE
alone or the NetBeans IDE with the Java EE application server bundle, which contains the Net-
Beans IDE and a Java EE application server in a single download. For the purpose of this book,
though, you should download the package containing nothing but the NetBeans IDE.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT10

■Note When downloading NetBeans bundled with an application server, you in fact have several choices.
For example, you can download the NetBeans IDE bundled with a Sun Java system application server or with
a JBoss application server. In our situation here, you don’t need to download the NetBeans IDE bundled with
an application server, since you should have already installed GlassFish on your system.

Once you have obtained the installation package, you can proceed to the installation.
Before you can do that, though, make sure you have the JDK installed on your system. To
install NetBeans IDE 5.5.1, you must have JDK version 5.0 or later.

Installing the NetBeans IDE on Windows
To install NetBeans IDE 5.5.1 on Windows, follow these steps:

1. Execute the installer file to launch the installation process. As a result, you will see the
first installer screen, which looks like Figure 1-5.

Figure 1-5. The welcome screen of the NetBeans IDE 5.5.1 Installer

2. On the welcome screen of the wizard shown in Figure 1-5, click Next.

3. On the License Agreement screen, read the agreement, choose I Accept the Terms in
the License Agreement if you agree with it, and then click Next.

4. On the next screen, specify a new or empty directory in which you want to install the
NetBeans IDE.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 11

5. On the next screen, choose a JDK from the list of suitable JDKs found on your machine
and then click Next.

6. On the next screen, confirm that the specified location is correct and that you have
enough space for the installation and then click Next to start the installation.

7. On the last screen of the wizard informing you that the NetBeans IDE has been suc-
cessfully installed on your computer, click Finish to exit the wizard.

After performing these steps, you should have the NetBeans IDE installed and ready
for use.

Installing the NetBeans IDE on Linux
To install NetBeans IDE 5.5.1 on Linux, follow these steps:

1. In the command-line console, change the directory to the directory containing the
installer:

cd path_to_install_dir

2. Set the execute permission for the installer:

chmod +x netbeans-5_5_1-linux.bin

3. Run the installer:

./netbeans-5_5_1-linux.bin

4. On the License Agreement screen, read the agreement, choose I Accept the Terms in
the License Agreement if you agree with it, and then click Next.

5. On the next screen, specify a new or empty directory in which you want to install the
NetBeans IDE.

6. On the next screen, choose a JDK from the list of suitable JDKs found on your machine
and then click Next.

7. On the next screen, confirm that the specified location is correct and that you have
enough space for the installation and then click Next to start the installation.

8. On the last screen of the wizard informing you that the NetBeans IDE has been suc-
cessfully installed on your computer, click Finish to exit the wizard.

After performing the previous steps, you should have the NetBeans IDE installed and
ready for use.

Connecting the NetBeans IDE to GlassFish
Now that you have installed the NetBeans IDE, you need to connect it to your GlassFish instal-
lation so that applications built with the IDE can be easily deployed to the application server.
To do this, follow these steps:

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT12

1. Launch the NetBeans IDE from the Start menu of your operating system. When
launched, the IDE looks like Figure 1-6.

Figure 1-6. The NetBeans IDE 5.5.1 when you launch it for the first time

2. In the NetBeans IDE, select Tools ➤ Server Manager.

3. In the Server Manager dialog box, click the Add Server button. As a result, the Add
Server Instance dialog box appears.

4. On the Choose Server screen of the Add Server Instance dialog box, choose Sun Java
System Application Server in the Server combo box and then type GlassFish in the
Name box. Then, click Next.

5. On the Platform Folder Location screen of the Add Server Instance dialog box, choose
the directory of your GlassFish installation, and click Next.

6. On the Domain Admin Login Info screen of the Add Server Instance dialog box, specify
the password for the admin user, and click Finish.

7. In the Server Manager dialog box, click Close.

After you’ve completed these steps, the NetBeans IDE will deploy your application to the
GlassFish application server by default if you select the Deploy Project item from the pop-up
menu that appears when right-clicking the application in the Project window. In the “Deploy-
ing Applications to the Server” section in Chapter 2, you will see a simple example of how to
deploy an application to GlassFish from within the NetBeans IDE.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 13

Setting Up Oracle Database XE
As mentioned earlier, the samples discussed in this book assume you install either an Oracle
Database or MySQL on your computer. It is left up to you which one of the previous two to
choose. However, there will be nothing wrong with choosing both, because they both can be
installed on the same computer and can be used simultaneously.

This section explains how to set up Oracle Database XE on your computer. You can refer
to the appendix if you want to learn some advantages of using this lightweight Oracle Data-
base that is free to develop, deploy, and distribute.

At the time of this writing, Oracle Database XE is available only for Windows and Linux.
So, the following sections describe the basic installation steps for these two operating systems.
Once have completed these steps, you will have an Oracle Database XE server (including a
database), Oracle Database XE client, and SQL*Plus installed on your computer.

Obtaining Oracle Database XE
All Oracle Database software is available for download from the Oracle Technology Network
(OTN). To obtain Oracle Database XE, you can visit its page on OTN at http://www.oracle.
com/technology/software/products/database/xe/index.html and then follow a link to the
Download page.

On the Download page, obtain the Oracle Database XE installation executable appropri-
ate for your platform.

■Note To follow the Oracle-related examples throughout this book, you are not in fact limited to using
Oracle Database XE—any edition of Oracle Database will do. Note, however, that whereas any edition
of Oracle Database can be downloaded and then used for developing and prototyping for free, only Oracle
Database XE can still be used for free in the production environment.

Installing Oracle Database XE on Windows
To install Oracle Database XE on Windows, follow these steps:

1. Log in to Windows as a user of the Administrators group.

2. Make sure to remove the ORACLE_HOME environment variable if it has been set on your
system. You can do this in the System Properties dialog box, which can be invoked
from the System Control Panel.

3. Launch the Oracle Database XE installation executable downloaded from OTN to run
the Oracle Database XE Server installer.

Figure 1-7 shows what the Oracle Database XE Server installer window looks like after
you just ran it.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT14

Figure 1-7. The Preparing to Install screen of the Oracle Database XE Server installer
on Windows

4. On the welcome screen, click Next.

5. On the License Agreement screen, click I Accept and then click Next.

6. On the Choose Destination Location screen, choose the directory in which you want to
install Oracle Database XE and then click Next.

7. You will be prompted to enter an available port number or numbers if at least one of
the following port numbers is already in use on your system: 1521, 2030, or 8080.
Otherwise, these numbers will be used automatically.

8. On the Specify Database Passwords screen, specify the passwords for the SYS and
SYSTEM database accounts and click Next.

9. On the Summary screen, click Install to continue with the installation, or click Back to
turn back and modify the settings.

10. On the last screen of the wizard that appears after the installation is complete, click
Finish.

After you’ve completed these steps, your database server should be ready for use.

Installing Oracle Database XE on Linux
To install Oracle Database Express Edition on Linux, follow these steps:

1. Log in to your computer as root.

2. Change the directory to the one in which you downloaded the Oracle Database XE
oracle-xe-10.2.0.1-1.0.i386.rpm installation executable, and install the RPM:

rpm -ivh oracle-xe-10.2.0.1-1.0.i386.rpm

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 15

3. When prompted, run the following command to configure the database:

/etc/init.d/oracle-xe configure

4. When prompted to enter the configuration information, accept the default port num-
bers for the Oracle Database XE graphical user interface and Oracle Database listener:
8080 and 1521, respectively. Then, specify the passwords for the SYS and SYSTEM default
user accounts.

Assuming that during the installation you answered Yes to the question of whether you
want the database to automatically start along with the computer, you should have the data-
base server up and ready for use now. Otherwise, you have to start it manually as follows:

/etc/init.d/oracle-xe start

Testing the Database Server with Oracle SQL*Plus
The simplest way to make sure your Oracle Database has been installed successfully and the
database server is working properly is to issue a SQL statement against the database.

■Note Structured Query Language (SQL) provides a universal way to interact with relational databases.
Each database, though, has its own SQL dialect, providing an additional set of commands and functions
specific to that particular database. For example, to interact with Oracle Database, you use Oracle SQL.

To issue a SQL statement against an Oracle Database, you can use Oracle SQL*Plus, an
interactive and batch query command-line tool that is installed by default with every Oracle
Database installation. Assuming you have an Oracle Database server installed and running on
your system, you can launch Oracle SQL*Plus from a terminal window by entering sqlplus.
Then, you will be prompted to enter a username to connect to the database. You can connect
as SYSDBA by entering /as sysdba.

Once you are connected, you should see the SQL> prompt where you can enter a SQL
statement to be issued against the database. For example, you might enter the following sim-
ple statement to make sure the database server is reachable:

SELECT SYSDATE FROM DUAL;

The previous statement should produce the output representing the system date, and
that might look like this:

SYSDATE

07-NOV-07

As you no doubt have realized, the previous is a toy example. Here, the only information
you receive from the database server is the system date. Practically, you will use SQL*Plus to

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT16

access database data, as well as perform database administration tasks and manipulate data-
base objects.

Setting Up the hr/hr Demonstration Schema
All Oracle Databases usually come with one or two demonstration schemas installed by
default during a typical installation and containing a few related tables populated with data.
The most recent Oracle Database releases include the hr/hr demonstration schema, which
will be used in some simple Oracle-related samples in this book. So, you first need to make
sure this schema is present and unlocked in the database. To find out whether the hr/hr
schema exists, you can try to connect to it from within SQL*Plus as follows:

CONN hr/hr

If the hr/hr account exists but is locked, you should receive the following error message:

ERROR:
ORA-28000: the account is locked

Warning: You are no longer connected to ORACLE.

In that case, you should reconnect as SYSDBA and then issue the ALTER USER statement to
unlock the hr/hr account:

CONN /as sysdba
ALTER USER hr ACCOUNT UNLOCK;

Now you can connect as hr/hr and perform a query against one of the hr default tables:

CONN hr/hr
SELECT count(*) FROM employees;

The previous query should count the number of rows in the hr.employees table and pro-
duce the following output:

COUNT(*)

107

Now that you have seen that everything works properly, you may want to quit the
SQL*Plus session. To do this, simply enter the following:

quit

In Chapter 6, which covers how to implement the database tier of a Java EE application,
there will be plenty of opportunities to get your hands dirty issuing SQL queries against an
Oracle Database from SQL*Plus.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 17

Testing the Database Home Page
Oracle Database XE comes with the Database home page, a browser-based user interface that
makes administering the database much easier. You can use this interface as a GUI alternative
to the SQL*Plus command-line tool discussed in the preceding section.

After you have installed Oracle Database XE, you can start the Database home page by
following these steps:

1. You can launch the Database home page from the Start menu of your operating
system—find the Oracle Database Express Edition menu group, and select Go to Data-
base Home Page within it. This launches the Database home page within a browser.

2. On the Database Login page, enter a valid database username and password, and click
Login. For example, to log in as an administrator, you can use the SYSTEM account, pro-
viding the password specified during the installation.

After performing these steps, you should see the Database home page, which looks simi-
lar to the one shown in Figure 1-8.

Figure 1-8. The home page of the Oracle Database XE graphical user interface, a GUI tool
installed by default during Oracle Database XE server installation

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT18

Now that you’re logged in to the database via the Database home page, you can perform
administration tasks, access database data, and manipulate database objects—the same tasks
you can do when connected via SQL*Plus discussed in the preceding section. For example, to
alter the hr/hr demonstration schema through the Database home page, you can follow these
steps:

1. On the Database home page, click the Administration icon.

2. On the Administration page, click the Database Users icon.

3. On the Manage Database Users page, click the HR icon to go to the hr/hr schema page.

4. On the hr/hr schema page, you can change the settings as required and click Alter User
to apply the changes made. Otherwise, you can click Cancel.

It is important to note that the Database home page is a highly multifunctional tool.
Besides offering an integrated visual environment for performing administration tasks and
manipulating database objects and data, this graphical interface also provides integrated tools
for monitoring important database parameters, such as current memory allocation and stor-
age space usage. It also allows you to export and import data to and from external data
sources, generate reports, and run SQL queries like you would with SQL*Plus.

Concluding this short guide on Oracle Database XE installation and initial testing, it
should be noted that if you have managed to execute all the tasks discussed here, this means
your Oracle Database installation has been successful and the database server is working
properly.

Setting Up MySQL
Although MySQL can be set up on many operating systems, this section provides the installa-
tion steps only for Windows and Linux, two most popular platforms nowadays. Then, I’ll
provide concise instructions for testing your MySQL installation. Also, you might want to
check out the MySQL Documentation page at http://dev.mysql.com/doc/. On this page you
can find a set of MySQL reference manuals available in a variety of languages and for different
MySQL releases.

Obtaining MySQL
When choosing MySQL, you in fact have more than one choice. Generally speaking, you can
choose between MySQL Community Server and MySQL Enterprise. The former is a freely
downloadable version of MySQL and can be used under the open source GPL license. The
latter is used on a commercial basis only. In more detail, the difference between these two
editions is discussed in the “Which Should I Use: MySQL Enterprise or MySQL Community
Server” document available at http://www.mysql.com/products/which-edition.html.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 19

■Note In fact, MySQL Enterprise is available in four levels—Basic, Silver, Gold, and Platinum—thus allow-
ing you to choose the service level most suitable for you. For further information, you can refer to the MySQL
Enterprise Features page at http://www.mysql.com/products/enterprise/features.html.

The MySQL Downloads page available at http://dev.mysql.com/downloads/ contains a
questionnaire designed to help you choose between MySQL Community Server and MySQL
Enterprise. Once you have made your decision, you can move on and start downloading the
MySQL distribution. To follow the MySQL-related samples provided in this book, you don’t
have to purchase MySQL Enterprise—having MySQL Community Server installed will be
enough.

You can download the MySQL distribution from the MySQL Downloads page at http://
dev.mysql.com/downloads/mysql. The MySQL-related book samples assume you will use
MySQL Server 5.1 or newer.

If you are a Windows user, pick up the Windows Essentials file from the Windows down-
loads section on the page. This file contains the minimum set of files needed to install MySQL,
including the Configuration Wizard. If you want to download the package containing all the
MySQL components, consider the Complete Package available on the same page and packed
within a zip archive, mysql-5.1.xx-beta-win32.zip, assuming that you choose MySQL 5.1. At
the time of this writing, though, MySQL 6.0 is available. You can download MySQL 6.0 from
http://dev.mysql.com/downloads/mysql/6.0.html.

If you’re using Linux, then pick up the RPMs for Server and Client from the appropriate
section of the MySQL Downloads page. These packages are required for a standard minimal
installation.

Installing MySQL on Windows
Installing MySQL on your computer is as easy as choosing the appropriate options and click-
ing Next buttons in the wizard. To install MySQL on Windows, follow these steps:

1. Execute the downloaded mysql-essential-5.1.xx-beta-win32.msi or Setup.exe
extracted from mysql-5.1.xx-beta-win32.zip to start installing MySQL.

2. Click Next on the first screen of MySQL Server’s Setup Wizard, which should look like
Figure 1-9.

3. On the Setup Type page of the MySQL Setup Wizard, you have to choose Typical, Com-
plete, or Custom. It is OK if you choose the Typical installation type.

4. In the Confirmation screen, click the Install button to begin the installation.

5. On the final screen of the installer, make sure the Configure the MySQL Server Now
check box is checked, and click Finish. As a result, the MySQL Configuration Wizard
launches.

6. On the Configuration Type screen of the Configuration Wizard, choose the Standard
Configuration option to get started with MySQL quickly. The following steps assume
that you chose the Standard Configuration option in this step.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT20

Figure 1-9. The welcome screen of the Setup Wizard for MySQL Server 5.1

7. On the next screen, make sure that the Install As Windows Service option is selected,
and click Next.

8. On the next screen, set the password for the root user.

9. On the final screen of the MySQL Configuration Wizard, click the Execute button to
complete the configuration process.

After you have completed these steps, the MySQL server should be up and running on
your Windows machine.

Installing MySQL on Linux
Using the RPM packages is the recommended way to install MySQL on Linux. The following
steps assume your Linux supports RPMs:

1. Perform the following commands to install the server and client RPMs picked up from
the MySQL Downloads page:

• # rpm -i MySQL-server-VERSION.i386.rpm

• # rpm -i MySQL-client-VERSION.i386.rpm

By default, the server RPM adds the entries to /etc/init.d/, which are required to start
the mysqld server automatically at boot time.

2. After the installation, it is highly recommended you assign the password to the anony-
mous accounts:

• # mysql -u root

• mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_pswd');

• mysql> SET PASSWORD FOR ''@'your_hostname' = PASSWORD('new_pswd');

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 21

After you have completed these steps, the MySQL server should be up and running on
your machine.

Setting Up a New User Account with the MySQL
Command-Line Client
Now that you have the MySQL database server installed on your computer, it is time to verify
that it is up and ready for use. To start with, you might want to set up a new user account on
your MySQL database server. This section explains how to do this with the help of the MySQL
command-line client, a command prompt tool bundled with the MySQL installation. The user
account set up here will be used in the MySQL-related examples throughout the book.

To start a MySQL command-line session from a terminal, you use the mysql command.
For example, to connect to the database server as the root user from the localhost, you might
enter the following command:

mysql -h localhost -u root -p

In response, you will be prompted to enter the root password. You should enter the root
password specified during installation. If everything is OK, you should see the mysql> prompt
through which you can interact with the server.

Now, let’s create a new database on the server. To do this, you might enter the following
command:

CREATE DATABASE mydb;

■Note It is interesting to note that a MySQL database is implemented as a directory, and the tables
belonging to this database are implemented as files within that directory.

The next step is to create a new user account and grant to it the privileges required to
operate with the newly created database. You can do this with the following command:

GRANT CREATE, DROP, SELECT, INSERT, UPDATE, DELETE
ON mydb.*
TO 'usr'
IDENTIFIED BY 'pswd';

The previous command creates the usr user account and grants the privileges to it, which
are required to perform a common set of operations on the mydb database. Now you can con-
nect as the usr/pswd user to the server. To do this, you first need to disconnect from the server:

EXIT

This will take you back to the operating system prompt. Then, you should enter the fol-
lowing command:

mysql -h localhost -u usr -p

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT22

When asked, enter pswd as the password. As a result, you will be connected as the usr user
to the database server. Now you can instruct MySQL to use the mydb database by default. To do
this, you should issue the following command:

USE mydb

At the moment, the mydb database is empty. You will create tables in it when it comes to
performing the first MySQL-related sample in Chapter 4. Also, you can explore examples in
the appendix.

Now you might want to quit the MySQL command-line client. To do this, you can issue
the following command:

QUIT

The MySQL command-line client tool will be used throughout this book when it comes to
creating and manipulating MySQL database objects utilized within the samples discussed.

Managing the Database Server with MySQL GUI Tools
As an alternative to the MySQL command-line client tool, you might want to use a GUI tool
or tools, which allow you to visually perform all the operations you may need to perform on
your MySQL database and the data stored in it. To fulfill these needs, MySQL AB has devel-
oped the MySQL GUI Tools bundle containing the following tools:

• MySQL Administrator (http://www.mysql.com/products/tools/administrator/)

• MySQL Query Browser (http://www.mysql.com/products/tools/query-browser/)

• MySQL Migration Toolkit (http://www.mysql.com/products/tools/migration-toolkit/)

You can pick up this bundle from the MySQL GUI Tools Downloads page at http://dev.
mysql.com/downloads/gui-tools/. At the time of this writing, MySQL GUI Tools was available
for the MySQL 5.0 release.

The MySQL Administrator tool included in the MySQL GUI Tools bundle allows you to
visually perform administrative tasks on your MySQL server. Say, for example, you want to
add the INDEX privilege to the usr user account created in the preceding section so that this
account can use the CREATE INDEX and DROP INDEX statements. To do this using MySQL Admin-
istrator, you can follow these steps:

1. Launch MySQL Administrator, and connect as the root user.

2. In the left column of MySQL Administrator, click the User Administration node.

3. In the bottom-left corner of the MySQL Administrator window, click usr.

4. In the right frame of the MySQL Administrator window, click the Schema Privileges tab.

5. On the Schema Privileges tab, select the mydb item in the box located on the left side
of the tab. As a result, you should see the screen shown in Figure 1-10.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 23

Figure 1-10. The Schema Privileges tab of the User Administration screen in MySQL Administrator

6. In the Available Privileges box, select the INDEX item, and click the < button to move
the selected item to the Assigned Privileges box.

7. Click the Apply Changes button to apply the changes made.

8. Quit MySQL Administrator by choosing File ➤ Close.

Of course, you could still use the MySQL command-line client tool to accomplish the
same goal: granting another privilege to a user account. To achieve that, being connected as
root, you might issue the following statement:

GRANT INDEX
ON mydb.*
TO 'usr'

However, some developers prefer a GUI alternative, since a GUI tool gives a visual repre-
sentation of the task being performed.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT24

Summary
At this point, you should have set up all the software components required to follow the
samples discussed in this book. Moreover, you should have a cursory knowledge of how this
software works and how to handle it.

CHAPTER 1 ■ SETTING UP YOUR WORKING ENVIRONMENT 25

Getting Started with GlassFish

Sun’s plan to open source its application server was implemented through Project GlassFish,
which was announced at JavaOne 2005. Sun and Oracle Corporation became the main source
code donors for this project. As a result of this effort, we have a freely available, open source,
Java EE 5–compatible application server that is quickly growing in popularity. As of this writ-
ing, the final release of GlassFish 2 is available, and the community is working on GlassFish 3.

The purpose of this chapter is to help you get started with GlassFish quickly. After a brief
overview, you will learn how to perform a common set of tasks on the application server,
including the following:

• Starting an instance of the GlassFish application server

• Configuring the application server with Admin Console

• Deploying applications to the application server

• Creating and managing GlassFish domains

If you already have a basic knowledge of GlassFish and know how to implement the previ-
ous tasks, you can skip this introductory chapter and move to Chapter 3.

This chapter assumes you have already installed the GlassFish application server on your
system. If not, you should refer to Chapter 1.

Overview of the GlassFish Application Server
This section gives a quick overview of the GlassFish application server. In particular, it
explains what GlassFish is, why you might want to choose it over any other Java EE 5–
compliant application server, and what the general steps are to start using it quickly.

GlassFish: What Is It?
GlassFish refers to both a community and an application server. The GlassFish community
includes developers working on a free, open source, Java EE 5–compatible application server,
GlassFish, as well as on a Java Persistence API (JPA) implementation, TopLink Essentials.
Henceforth, GlassFish will refer to the GlassFish application server in this book.

27

C H A P T E R 2

■Tip A good article on GlassFish basics is available on Sun’s web site at http://java.sun.com/
developer/technicalArticles/glassfish/GFBasics.html.

GlassFish is available under the dual-licensing model, which lets you choose one of the
following free software licenses:

• Common Development and Distribution License (CDDL); for information, refer to
http://www.sun.com/cddl/.

• GNU General Public License (GPL); for information, refer to http://en.wikipedia.org/
wiki/GNU_General_Public_License.

■Note To learn more about open source licenses, you can visit the Open Source Initiative (OSI) web site at
http://opensource.org/.

GlassFish can be downloaded from the GlassFish Community page at https://glassfish.
dev.java.net/. Sun offers GlassFish under the name Sun Java System Application Server. For
example, GlassFish v2 is available from Sun’s web site as Sun Java System Application Server 9.1.
You can also download the NetBeans IDE bundled with Sun Java System Application Server;
for further information, refer to http://www.netbeans.info/downloads/index.php.

Why GlassFish?
This section gives a quick overview of GlassFish advantages, explaining why you might want to
choose GlassFish over any other Java EE 5–compliant application server.

If you have bought this book, this most likely means you already know what GlassFish is
and which advantages it has over its competitors. If so, you can skip this section. But if you
just picked the book up from the shelf in a bookstore, wondering what GlassFish is all about
and what makes it stand out from the other Java EE application servers available, then you
might find the information provided here interesting.

The following points sum up GlassFish advantages:

• GlassFish is the most widely adopted Java EE reference implementation.

• GlassFish includes the TopLink Essentials implementation of JPA.

• GlassFish is open source and freely available software.

• Sun provides commercial support for GlassFish.

• GlassFish can be used with popular Java IDEs such as NetBeans and Eclipse.

• GlassFish is compatible with many popular frameworks such as Spring and Struts.

• GlassFish ships with Admin Console, a GUI tool to simplify administration tasks.

• GlassFish lets you create different domains with profiles that suit specific needs.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH28

As you no doubt realize, GlassFish is a production-quality Java EE 5 application server
available under an open source license, which makes it possible for Java developers to access
the source code of this application server and participate in its development.

Although potentially every Java developer concerned can contribute to the development
of GlassFish, the great bulk of the source code is developed by teams of professionals, and the
main donors for the GlassFish project are Sun and Oracle. For example, JPA, a new Java EE 5
feature providing a standards-based solution for persistence, is implemented in GlassFish
using TopLink Essentials, which was contributed by Oracle.

As of this writing, GlassFish offers the most complete Java EE 5 implementation, thus
promoting the adoption of the Java EE 5 platform. It enables Java developers to create applica-
tions based on the most recent specifications of JSP, JSF, Servlet, EJB, JAX-WS, JAXB, and other
Java EE technologies.

■Note To find out what application servers used today are Java EE compatible, you can refer to the
“Comparison of application servers” wiki document available at http://en.wikipedia.org/wiki/
Comparison_of_application_servers.

GlassFish proves flexible when it comes to creating and configuring administrative
domains. When creating a GlassFish administrative domain, you have more than one choice.
In particular, you can choose between three different usage profiles, namely, Developer,
Cluster, and Enterprise. Each of these profiles is designed to suit specific needs. For example,
the Developer profile is chosen when creating a domain to be used in a development environ-
ment. After you have created a domain, you can further configure it using tools bundled with
GlassFish. Domains are explained in the “Understanding GlassFish Domains” section later in
this chapter.

How to Get Started
To get started with GlassFish, follow these general steps:

1. Obtain GlassFish. Download and installation issues are discussed in Chapter 1.

2. Perform any preinstallation steps. Once you have obtained the GlassFish bundle and
before you can proceed to installing it, you need to make decisions regarding what
type of installation to choose and what port numbers to use for the services being
installed to avoid port conflicts.

If you have to change the default port numbers, you need to make the appropriate
changes to the setup.xml configuration file used during installation, as discussed in
Chapter 1.

If you want to choose the clustering-supported installation as an alternative to the
installation based on the Developer profile, you will have to use setup-cluster.xml
as the parameter of ant when building the application server, rather than using
setup.xml.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 29

■Note Clustering is beyond the scope of this book. It is assumed that you have performed the installation
based on the Developer profile, using setup.xml as the parameter of ant when building the application
server.

3. Install GlassFish on your system. This is discussed in detail in Chapter 1.

4. Configure your GlassFish installation by using the tools bundled with GlassFish. After
you have installed GlassFish, you might want to further configure the server to simplify
development. For example, you might configure the server so that it starts up in debug
mode automatically. Postinstallation configuring is discussed in the “Configuring the
GlassFish Application Server” section later in this chapter.

5. Deploy a simple web application to GlassFish to verify your installation. This is dis-
cussed in detail in the “Deploying Applications to the Server” section later in this
chapter.

In addition to these steps, you might take advantage of some GlassFish sample applica-
tions demonstrating Java EE technology. For further information, refer to the GlassFish
Samples page at https://glassfish-samples.dev.java.net/. Also, you can look at the “Glass-
Fish Quick Start Guide” document available at https://glassfish.dev.java.net/downloads/
quickstart/index.html.

GlassFish Documentation
The GlassFish project’s Documentation home page is available at https://glassfish.dev.
java.net/javaee5/docs/DocsIndex.html. On this document index page, you can find a full list
of the latest GlassFish documentation.

Also, you might want to visit the following GlassFish resources:

• The GlassFish community’s Frequently Asked Questions page at https://glassfish.
dev.java.net/public/faq/index.html

• The GlassFish discussion forum at http://forums.java.net/jive/forum.
jspa?forumID=56&start=0

Commercial Support for GlassFish
As discussed earlier, GlassFish is available from the Sun web site as Sun Java System Applica-
tion Server. Sun also provides commercial support for this product. This support includes
services such as e-mail and phone technical support, access to the knowledge database,
immediate access to updates and upgrades, and so on.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH30

You can get Sun’s support for Sun Java System Application Server by subscribing to any
of three tiers: Standard, Premium, and Premium Plus. To learn more about support levels
and current prices, you can visit the Java System Application Server Subscriptions page at
http://www.sun.com/service/applicationserversubscriptions/.

In addition, Sun offers Sun Java System Application Server training courses. For more
information on the courses, visit the Sun Java Enterprise System Web and Application Services
Course List page at http://www.sun.com/training/catalog/enterprise/application.xml.

Starting the Application Server
In Chapter 1, you already saw how to start an instance of the GlassFish application server with
the asadmin command-line tool. To make this process easier, it is recommended that you add
the [glassfish_dir]/bin directory to the PATH environment variable.

That done, you can launch the server from a terminal window, regardless of the current
directory:

asadmin start-domain domain1

If the server has launched successfully, you should see the following messages, among
some others, of course:

Domain domain1 is ready to receive client requests. ➥
Additional services are being started in the background.

...

Domain listens on at least following ports for connections:
[8080 8181 4848 3700 3820 3920 8686]

The previous is a set of default port numbers used for the default administrative domain
called domain1 created during the GlassFish installation. These are listed in Table 2-1.

Table 2-1. The Default domain1 Ports for Connections

Connection Port Number

HTTP 8080

HTTPS 8181

Administration server 4848

Internet Inter-ORB Protocol (IIOP) 3700

IIOP over SSL 3820

Mutual authentication over SSL 3920

Java Management Extensions (JMX) admin 8686

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 31

It is important to understand that the actual port numbers may vary depending on the
values specified in the setup.xml configuration file utilized during the installation process.
Before proceeding to the installation, you can edit setup.xml and change the default ports, if
required, to avoid port conflicts.

Of particular importance are the first three ports in Table 2-1. User web applications
deployed to the server will use the first two ports, 8080 and 8181, which are HTTP and HTTPS
ports, respectively. Thus, web applications deployed will be available at the following URLs:

http://localhost:8080/appname
https://localhost:8181/appname

And the third port in Table 2-1 is 4848, the default administration server port. You can use
this port to launch Admin Console:

http://localhost:4848

Admin Console is discussed in more detail in the next section. Then, in the section
“Deploying Applications to the Server,” you will learn how to deploy user web applications
to the application server so that they are available via HTTP and HTTPS.

Now that you know how to start the server, you might want to learn how to stop it. To do
this, you issue the following command:

asadmin stop-domain domain1

This will stop the domain1 instance running on your system.

Performing GlassFish Administration with
Admin Console
Now that you have your application server up and running, what is your next step? You might
want to learn how you can deploy your web applications to the application server. Also, you
might want to learn how to look at the server settings and maybe change something. To fulfill
these needs, GlassFish ships with a set of tools, both visual and command line, that let you
perform all the previous administration tasks and more. This section discusses Admin Con-
sole, a browser-based GUI tool that lets you visually perform administration tasks. In the
“GlassFish Administration with asadmin” section later in this chapter, you will learn how you
can perform administration tasks with asadmin, a command-line tool bundled with GlassFish.

You can use Admin Console to perform the following administration functions:

• Deploying, managing, and undeploying applications

• Creating and manipulating server resources

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH32

• Configuring application server settings

• Viewing application server logs

The details of how to perform these administration and configuration tasks are discussed
in the later sections of this chapter.

■Note As an alternative to Admin Console, GlassFish offers a set of command-line tools for performing
administrative tasks. You can find the full list in the Command-Line Tools table within the “GlassFish Quick
Start Guide” document at https://glassfish.dev.java.net/downloads/quickstart/index.html.

From a user standpoint, the most significant Admin Console features are the following:

• Easy-to-navigate interface

• Online help system

Both are discussed in the following sections.

Using the Admin Console Interface
Admin Console provides an intuitive interface that is easy to navigate and use. You launch it
by pointing your browser to http://localhost:4848, using the actual host name and port
number provided during installation, in case you change the default. As a result, the Admin
Console login page appears, where you need to enter an appropriate username/password
pair. You can log in as the admin user, using the admin/adminadmin default pair. Once you are
logged in, you can perform configuration tasks, deploy applications, and access application
server resources such as connection pools and server logs.

Admin Console has an easy-to-navigate interface implemented as a two-column layout
with the menu on the left. Common tasks are grouped into categories displayed in the left col-
umn of the console window. To reach a certain page, you should expend appropriate category
nodes, moving on to the page of interest. For example, to reach the JDBC Resources page, you
need to traverse the following path: Resources/JDBC/JDBC Resources.

Admin Console also includes multitab pages. Figure 2-1 shows the Application Server/
General Information page, which can be reached by clicking the General tab on the Applica-
tion Server page.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 33

Figure 2-1. The Admin Console interface

You can reach some Admin Console pages via buttons on their parent pages. For example,
to view the server logs, you can click the View Log Files button on the Application Server/
General Information page shown in Figure 2-1. As a result, the Log Viewer page will be loaded
in a separate browser window.

Using the Admin Console Help System
Admin Console comes with an online help system allowing you to get context-sensitive help.
To get help on the topic related to a particular Admin Console page, you need to have this
page open and then click the Help button located at the top-right corner of the Admin Con-
sole window. As a result, the Help window appears in a separate window, with the topic of
interest displayed.

For example, if you click the Help button when the Application Server/JVM Settings page
is open, you should see the “To configure the JVM settings” information in the Help window,
as shown in Figure 2-2.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH34

Figure 2-2. The Help window of the online help system bundled with Admin Console

As you can see, the Help window provides index and search functionality and also allows
you to send the page currently being displayed to the printer.

Configuring the GlassFish Application Server
As mentioned earlier, Admin Console lets you perform a full set of administration and config-
uration tasks on your application server, including accessing and manipulating settings of the
server.

You can start by viewing the server setting on the Application Server page that can be
loaded by clicking the Application Server item in the left column. The Application Server page
is a multitab screen allowing you to access the server settings. Some tabs of this screen are
multitab screens themselves. For example, the Monitor screen contains six tabs.

It is interesting to note that not only can you view the server settings, but you also can
change them. In particular, you can change the admin password, JVM settings, logging, moni-
tor, and other server settings. To do this, you should navigate to the page of interest, change
the settings as needed, and then click the Save button located at the top-right side of the page.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 35

■Note It is important to realize that most configuration changes take effect immediately and do not require
restarting the server. For example, if you change the log level for one or more server modules on the Applica-
tion Server/Logging/Log Levels page, these changes will take effect immediately, impacting the information
being saved in the log files. On the other hand, some changes require restarting the server to take effect.
For example, if you change the Admin Console port when editing Configuration/HTTP Service/HTTP
Listeners/admin-listener, then you will have to restart the server for the change to take effect.

The Application Server page is not the only place where you can find and edit the applica-
tion server settings. You can find many more server settings under the Configuration node in
the left column of the Admin Console window. Here you can find and manipulate the web
container and EJB container settings, HTTP and admin service settings, security, monitoring,
and some other server settings.

Another important configuration task you will need to perform is setting up a data source
that will be used by your application to interact with a relational database. Chapter 7 explains
in detail how to set up a reusable connection for a particular database.

Performing GlassFish Administration with
asadmin
It is interesting to note that everything you can do using Admin Console can also be done with
one of the command-line tools bundled with GlassFish. The most powerful of these is asadmin.

You can issue an asadmin command either at the asadmin prompt or at the operating sys-
tem command prompt. To switch to the asadmin prompt from the system command prompt,
just type the following:

asadmin

As a result, you should see the following prompt:

asadmin>

To look through the list of all the asadmin commands, you can use the asadmin help
command:

asadmin>help

To obtain the usage information for a particular asadmin command, you can use the fol-
lowing syntax:

asadmin>help asadmin's_command_of_interest

For example, to obtain the usage information for asadmin’s create-domain command, you
might issue the following command:

asadmin>help create-domain

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH36

The information provided contains not only the synopsis and detailed description of the
command specified but also a detailed description of each command parameter and several
examples. Often, the information to be displayed cannot fit entirely in the terminal window. In
that case, asadmin divides the information into several pages. You pass on to the next page by
pressing Enter, or you quit by typing q.

Sometimes you might want to obtain just a synopsis briefly describing how to use the
command. If so, you can simply enter the command of interest at the asadmin prompt like this:

asadmin>create-domain

As a result, you should see the following synopsis:

Usage: create-domain [--user user] [--passwordfile passwordfile]
[(--adminport port_number | --portbase portbase)]
[(--profile developer | cluster | enterprise] --template domain_template)]
[--domaindir domain_directory/domains]
[--instanceport port_number] [--savemasterpassword=false]
[--domainproperties (name=value)[:name=value]*]
[--savelogin=false] [--terse=false]
[--echo=false] [--interactive=true]
domain_name

With that in hand, you can easily compose the right command to issue, using the com-
mand parameters properly. You can find an example of the create-domain command in the
section “Creating a Domain” later in this chapter.

To exit the asadmin prompt and return to the system command prompt, use the exit
command:

asadmin>exit

Deploying Applications to the Server
Now that you have an idea of how to configure GlassFish, how might you deploy an applica-
tion to it? After all, the reason for using an application server is that you will deploy your
applications to it, thus making them available to users.

The following sections discuss several different ways in which you can deploy an applica-
tion to GlassFish. First, you will learn how to manually develop and then deploy a simple web
application. Later, in the section “Creating and Deploying a Web Application with the Net-
Beans IDE,” you will see how to perform the same task with the NetBeans IDE, a GUI tool.

Creating a Simple Web Application
Before you can deploy an application to your application server, you should have that applica-
tion created and packed properly. This section discusses how you can manually create a “Hello
World!” web application to be packed and deployed to GlassFish.

For simplicity, the application will contain a single JSP page displaying the message “Hello
World!”

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 37

First, let’s develop the directory structure for the application. In fact, a web application is
deployed as a WAR archive having a predetermined structure. Figure 2-3 gives a graphical
depiction of that structure.

Figure 2-3. The structure of a web application

As you can see in the figure, the application’s root directory contains JSP files. In a real-
world example, there may be many more JSP, HTML, and CSS files here. Aside from these files,
the root directory contains the META-INF and WEB-INF directories.

You don’t need to worry about creating the META-INF directory and the MANIFEST.MF file
within it. The jar utility that you will use to build the WAR archive takes care of that nuance
for you.

The WEB-INF directory has a somewhat more complicated structure. In particular, it
contains the configuration files required for deployment, as well as the classes and lib direc-
tories containing the compiled Java classes and library dependencies, respectively. When
developing the “Hello World!” application discussed here, though, you don’t need to create the
classes and lib directories within WEB-INF. This is because this simple application does not
utilize any Java classes at all. What you must create, however, is the sun-web.xml runtime
deployment descriptor containing information required when deploying the application to
GlassFish. Also, you might include the web.xml deployment descriptor.

■Note In this particular example, including web.xml is optional. You don’t have to include this application
deployment descriptor if your application contains only JSP pages and static files and does not contain any
servlets, filters, or listeners. In that case, though, you may still want to use web.xml, for example, to set a
particular JSP file to be a welcome page.

Finally, for your “Hello World!” application, you might create the directory structure
shown in Figure 2-4.

Figure 2-4. The structure of a “Hello World!” application

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH38

You can create the structure shown in the figure in any folder in your system. Once you
have created the directories, you can move on and create the files. The index.jsp file responsi-
ble for displaying the “Hello World!” message might look like the one shown in Listing 2-1.

Listing 2-1. The index.jsp File of the “Hello World!” Application

<%@page contentType="text/html"%>
<%@page pageEncoding="UTF-8"%>
<html>
<head>

<title>Hello World! Page</title>
</head>
<body>

<h1>Hello World!</h1>
</body>

</html>

As you can see, the index.jsp page does not contain any dynamic content—it does not
access any Java object. It simply uses static HTML to display the message.

Creating Deployment Descriptors
The next step in building the “Hello World!” application is to create the web.xml and
sun-web.xml configuration files containing information to be utilized during the deployment
process.

web.xml is a deployment descriptor whose elements are used to configure your web appli-
cation. As mentioned in the preceding section, using web.xml in this particular example is
optional, as long as the application does not contain any servlets, filters, or listeners. However,
you are using it here to explicitly set the index.jsp page to a welcome page.

Listing 2-2 shows a simple deployment descriptor that might be used in the “Hello
World!” application.

Listing 2-2. A (Simple) web.xml Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<welcome-file-list>
<welcome-file>

index.jsp
</welcome-file>

</welcome-file-list>
</web-app>

Remember to save this file in the WEB-INF directory within the root directory of your
application.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 39

The next step is to create the sun-web.xml runtime deployment descriptor, providing the
information required for deploying the application to GlassFish. In this particular example,
you need to specify only the information about the context root of the application.

The sun-web.xml runtime deployment descriptor of the “Hello World!” application might
look like Listing 2-3.

Listing 2-3. A (Simple) sun-web.xml Runtime Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems,
Inc.//DTD Application Server 9.0 Servlet 2.5//EN"
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>

<context-root>/HelloWorld</context-root>
</sun-web-app>

You must save this file in the WEB-INF directory within the root directory of your
application.

Packaging the Application
Now that you have created the application sources, you can move on and build the WAR file.
To do this, you should change the directory to the root directory of your application and then
use the jar program as shown here. And don’t forget to put the period at the end of this
command:

#jar cvf helloworld.war .

As a result, the helloworld.war file should appear in the HelloWorld directory. Now you
can use this archive to deploy the application to the application server.

Deploying the Application Using Autodeploy
Deployment can be accomplished in different ways. The simplest way to deploy an application
is to copy its WAR deployment archive to the autodeploy directory under [glassfish_dir]/
domains]/your_domain. If you are using the default domain, this should be the following direc-
tory: [glassfish_dir]/domains/domain1/autodeploy.

Once you have copied the WAR file to the previous directory, the application will be
automatically deployed to the server. To make sure it has been done, you can check out the
server.log file located in the [glassfish_dir]/domains/domain1/logs/ directory. The last two
lines in this file should look similar to the following ones:

[#|2007-11-18T20:30:00.781-0800|INFO|sun-appserver9.1 ➥|
javax.enterprise.system.tools.deployment|_ThreadID=13;_ThreadName=Timer-5;| ➥
deployed with moduleid = helloworld|#]

[#|2007-11-18T20:30:00.906-0800|INFO|sun-appserver9.1| ➥
javax.enterprise.system.tools.deployment|_ThreadID=13;_ThreadName=Timer-5;| ➥
[AutoDeploy] Successfully autodeployed : ➥
C:\glassfish\domains\domain1\autodeploy\helloworld.war.|#]

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH40

■Tip You will have more readable results if you look at the logs in Admin Console. This is discussed in the
“Deploying the Application with Admin Console” section later in this chapter.

You can undeploy the application by removing the helloworld.war file from the
[glassfish_dir]/domains/domain1/autodeploy directory.

Deploying the Application with asadmin
Copying the WAR file from one directory to another may take a long time if you have to type
the full path to [glassfish_dir]/domains/domain1/autodeploy by hand. So, you may find it
easier to accomplish the deployment using the asadmin tool. To do this, change the directory
to the HelloWorld directory and then issue the following command:

#asadmin deploy helloworld.war

If everything is OK, you should see the following output:

Command deploy executed successfully.

To make sure this has been done, you can issue the following command:

#asadmin list-components

The previous should produce the following output:

helloworld <web-module>
Command list-components executed successfully.

You can undeploy the application by issuing the following command:

#asadmin undeploy helloworld

It is interesting to note that you can use the asadmin undeploy command to undeploy the
application deployed by copying the WAR application deployment file to the autodeploy direc-
tory, as discussed in the preceding section.

Another important thing to note is that deploying and undeploying applications takes
effect immediately and does not require restarting the server.

Deploying the Application with Admin Console
If you prefer a GUI tool to a command-line one, you might deploy your applications using
Admin Console. To do this, follow these steps:

1. Launch Admin Console.

2. Log in to Admin Console.

3. Navigate to the Applications/Web Applications page.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 41

4. On the Web Applications page, click the Deploy button. As a result, the Deploy Enter-
prise Applications/Modules page appears.

5. On the Deploy Enterprise Applications/Modules page, make sure that Web Application
(.war) is chosen in the Type combo box.

6. Move down to the Location group, and make sure that the Packaged File to Be
Uploaded to the Server button is selected.

7. Click the Browse button located on the right of the Packaged File to Be Uploaded to
the Server button, and navigate to the helloworld.war file discussed in the preceding
sections.

8. After you have specified the location of the helloworld.war file, the Application Name
and Context Root boxes will be filled in with helloworld.

9. In the Context Root box, replace helloworld with /HelloWorld.

10. Leave the other fields at their defaults, and click OK at the top-right side of the page.

After performing these steps, you will be taken back to the Applications/Web Applications
page. This time, the Deployed Web Applications dialog box within the Applications/Web
Applications page should show one deployed application, namely, helloworld.

Figure 2-5 shows the Deployed Web Applications area within the Applications/Web Appli-
cations page after you have deployed the “Hello World!” application.

Figure 2-5. Mock-up of the Deployed Web Applications area located within the Applications/Web
Applications page of Admin Console

It is interesting to note that the Deployed Web Applications area shown in Figure 2-5
shows all the applications deployed on this domain, regardless of the way you deployed them.
So, if you now undeploy the “Hello World!” application and then deploy it again using one of
the methods discussed in the preceding sections, you will see the same results as shown in
Figure 2-5.

Once the “Hello World!” application is deployed, an appropriate entry appears in the log
file. To make sure that is the case, follow these steps:

1. In Admin Console, navigate to the Application Server/General page.

2. On the Application Server/General page, click the View Log Files button. This opens
the Log Viewer window.

3. In the Log Viewer window, move on to the Log Viewer Results table, and find the
upper row containing the following message: deployed with moduleid =
helloworld(details).

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH42

4. In the message deployed with moduleid = helloworld(details), click details. This
should open the Log Entry Detail dialog box shown in Figure 2-6.

Figure 2-6. Log Entry Detail dialog box

As you can see in the figure, the server has created a log entry upon deploying the
application.

Testing the Application
Checking out the logs to make sure the application has been successfully deployed is defi-
nitely not the fastest way to go in this case. You can quickly check your application if you
simply point a browser to the URL of the application.

To run the “Hello World!” application discussed here, point your browser to http://
localhost:8080/HelloWorld/. As a result, the browser should output the page shown in
Figure 2-7.

Figure 2-7. The “Hello World!” page

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 43

If you undeploy the application and then point your browser to http://localhost:8080/
HelloWorld/ again, you will see the following messages:

HTTP Status 404 -
--
type Status report
message
description The requested resource () is not available.
--
Sun Java System Application Server 9.1

This indicates that the application is not deployed on the server and, therefore, is not
available.

Creating and Deploying a Web Application with
the NetBeans IDE
The preceding example illustrates how to create a simple web application and then deploy it
to the application server in several ways. In the following sections, I will illustrate how to
perform this same task using the NetBeans IDE, an open source integrated development envi-
ronment that can be used as a single, easy-to-use interface when it comes to building and
deploying Java EE applications.

Creating a “Hello World!” Application
Follow these steps to build a “Hello World!” application using the NetBeans IDE:

1. Launch the NetBeans IDE.

2. In the NetBeans IDE, select File ➤New Project.

3. On the Choose Project screen of the New Project Wizard, choose Web in the Categories
box and Web Application in the Project box and then click Next. This should create an
empty web application as a standard NetBeans IDE project.

4. On the Name and Location screen of the New Project Wizard, type HelloWorldWith-
IDE in the Project Name box, and set the Project Location box to the directory in which
you want to save the project files. Leave the other settings at their defaults, and click
Next.

5. On the Frameworks screen, make sure that no framework is checked, and click Finish.
As a result, the HelloWorld project will be generated, and you should see the contents
of the index.jsp file in the IDE’s Source Editor. Listing 2-4 shows the file (the com-
ments have been removed to improve readability).

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH44

Listing 2-4. The index.jsp Page Automatically Generated with the NetBeans IDE When
Creating a Web Application Project

<%@page contentType="text/html"%>
<%@page pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JSP Page</title>

</head>
<body>
<h1>JSP Page</h1>
</body>

</html>

6. In the Source Editor, change the body of the index.jsp page as follows:

<body>
<h1>Hello World!!!</h1>
</body>

Note that you put three exclamation marks at the end of the “Hello World” message to
distinguish it from the “Hello World!” application discussed earlier in this chapter.

7. In the NetBeans IDE, select File ➤ Save to save the changes made in the index.jsp
page.

8. On the Projects tab of the IDE, right-click the HelloWorldWithIDE project, and select
Build Project.

If everything is OK, you should see the BUILD SUCCESSFUL message in the Output win-
dow of the IDE.

After performing these steps, you should have the “Hello World!” application project cre-
ated and ready for deployment.

Deploying an Application with NetBeans
Deployment with NetBeans is straightforward. Once you have finished creating your applica-
tion, you can deploy it as follows:

1. On the Projects tab of the IDE, right-click the HelloWorldWithIDE project.

2. In the pop-up menu, select Deploy Project.

After performing these steps, you should have your “Hello World!” application deployed
to the application server. To make sure it has done so, you can point your browser to http://
localhost:8080/HelloWorldWithIDE/. As a result, you should see the page displaying the Hello
World!!! message.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 45

Understanding GlassFish Domains
GlassFish uses the concept of domains to organize application server instances into groups,
each of which shares the same configuration settings, log files, and user applications
deployed.

You might create more than one domain in your application server if you need to use the
deployed applications in different environments.

■Note This discussion assumes that you run your GlassFish server in the Single Instance mode. In this
mode, although you can create more than one domain and then run them simultaneously, each domain can
access and manipulate only its own configuration, resources, and deployed applications. Alternatively, you
might take advantage of the Cluster mode available in GlassFish 2. The Cluster mode assumes you’re using
a group of server instances sharing the same resources. For more information on clustering with GlassFish,
you can refer to the “Cluster Support in GlassFish V2” document at http://wiki.glassfish.java.net/
Wiki.jsp?page=GlassFishV2Architecture.

Creating a Domain
You can create a new domain with the asadmin’s create-domain command. In the following
example, you bring up the asadmin prompt in a terminal window:

asadmin

Then, you issue the following command:

asadmin>create-domain --user admin --profile developer --portbase 9000 domain2

Let’s take a closer look at the create-domain command. You issue this command here
with three parameters. In particular, you use the --user parameter to specify the username
of the administrator of the domain being created. Then, you explicitly define the profile of
the domain. Finally, you set the port base, defining the number with which the ports of the
domain being created should start.

When you enter the create-domain command, you are prompted to enter the admin
password:

Please enter the admin password>

After you have entered the admin password and confirmed it, you will be asked to enter
the master password or hit Enter to accept the default:

Please enter the master password [Enter to accept the default]>

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH46

You can hit Enter here. After the confirmation, the creation of the domain begins. You
should see the following output:

Using port 9048 for Admin.
Using port 9080 for HTTP Instance.
Using port 9076 for JMS.
Using port 9037 for IIOP.
Using port 9081 for HTTP_SSL.
Using port 9038 for IIOP_SSL.
Using port 9039 for IIOP_MATUALAUTH.
Using port 9086 for JMX_ADMIN
Domain being created with profile: developer, as specified on command line or ➥
environment.
Security Store uses: JKS
Domain domain2 created.

Running Several Domains Simultaneously
If required, you can run several domains simultaneously. For example, you might issue these
commands one after another:

asadmin>start-domain domain1
asadmin>start-domain domain2

Once both the domains are up and running, you can run the applications deployed
under those domains. For example, if you deployed the “Hello World!” application under
both domains, you can launch two browser windows and point one of them to http://
localhost:8080/HelloWorld and the other one to http://localhost:9080/HelloWorld.

Deleting a Domain
When deleting a domain, you should understand that you in fact delete all the configuration
associated with that domain, including deployed applications.

To delete a domain, you first have to leave the asadmin prompt:

asadmin>exit

Then, you can delete the domain as follows:

asadmin delete-domain domain2

If everything is OK, you should see the following message:

Domain domain2 deleted

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH 47

Summary
In this chapter, you learned what GlassFish is and why you might want to choose it over any
other Java EE 5–compliant application server. Then, you looked at the GlassFish tools for
administration, both visual and command line. You learned how to configure your GlassFish
application server, as well as how to deploy and undeploy applications using different tech-
niques.

The knowledge and techniques you learned in this chapter are required to follow the
samples discussed in the later chapters of this book. This is because all the book sample appli-
cations assume that you deploy them to GlassFish.

CHAPTER 2 ■ GETTING STARTED WITH GLASSFISH48

Introducing EJB 3 and the Java
Persistence API

In the preceding chapter, you learned about GlassFish, one of the most powerful Java EE 5–
compatible application servers. By Java EE 5 compatible, I mean you can deploy Java applica-
tions, which are built in compliance with the Java EE 5 specification, to this application server.

In fact, the Java EE 5 platform involves several Java APIs, such as JSP 2.1, JSF 1.2, EJB 3.0,
and JAX-WS 2.0, to name a few. JSP and JSF are web tier technologies utilized in developing
the presentation layer of a Java EE 5 application. You saw an example of using a JSP page in
the preceding chapter when developing a “Hello World!” application. In Chapter 14, you will
learn how to use the JSF technology when building the presentation tier of an enterprise
application.

This chapter discusses the basics of Enterprise JavaBeans 3.0 (EJB 3), which is one of the
key Java EE 5 specifications, providing a standard way to implement server-side components
that encapsulate the business logic of enterprise applications. The chapter also introduces the
EJB 3 Java Persistence API (JPA), a new Java EE 5 technology used for accessing relational data-
bases from Java EE applications.

Here are the main topics covered in the chapter:

• Overview of EJB 3

• Building and deploying a “Hello World!” session enterprise bean

• Creating a client application to test the “Hello World!” bean

• Overview of JPA

• Building, deploying, and testing a simple application using EJB and JPA technologies
together

You can skip this chapter if you already have some basic knowledge of the EJB 3 and JPA
technologies.

To follow the examples discussed in this chapter, you need to have GlassFish installed in
your system. If you still have not installed it, you can refer to Chapter 1.

49

C H A P T E R 3

Overview of EJB 3
This section provides a brief overview of the EJB 3 technology. It discusses what EJB 3 is and
what the advantages of using EJB 3 as a technology are.

This section is followed by the “Your First EJB 3 Application” section, providing a simple
example of using the EJB 3 technology.

What Is EJB 3?
Depending on how you look at it, EJB may be one of the following:

• A technology: As a technology, EJB 3 is based on the EJB 3.0 specification (JSR-220)
available at http://jcp.org/en/jsr/detail?id=220, and it provides a platform for
developing reusable, scalable, and mission-critical enterprise applications.

• A component: EJB components, also known as enterprise beans, implement the EJB
technology. An EJB component is a reusable, server-side piece of code implementing a
business method or methods to be utilized within enterprise applications. For further
details on EJB components, refer to the “EJB 3 Components” section later in this
overview.

• A container: An EJB container is a runtime environment implemented within the appli-
cation server, which enables deployment of enterprise beans and provides runtime
support for beans’ instances in the form of services, such as persistence and transac-
tion management, concurrency control, and security authorization. For further details
on EJB containers, refer to the “EJB Container” section later.

As you can see, EJB may mean different things in different situations. Throughout this
book, though, EJB will typically refer to an EJB component, while EJB 3 will refer to the EJB 3
technology, unless noted otherwise.

Advantages of EJB 3
Now that you have learned what EJB 3 is, it’s time to look at the advantages of using this tech-
nology and why you might want to choose it.

The following are some advantages of the EJB 3 technology:

• The EJB platform provides a standard way for developing and deploying reliable
component-based Java enterprise applications that scale.

• The fact that EJB 3 is a standard Java EE 5 technology enables you to deploy your EJB
components on any Java EE 5–compliant application server.

• On the EJB 3 platform, the back-end code, encapsulating most of the repetitive tasks,
was moved into the framework, making the development process easier and making
the technology much friendlier, especially for beginners.

• When using the EJB technology, the developer can concentrate on implementing
business logic to be utilized within particular enterprise applications, rather than
on reimplementing logic related to the problems commonly found in enterprise
applications.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API50

• When it comes to performing configuration tasks, EJB 3 developers have choices. Anno-
tations can be used in favor of XML descriptors or together with them.

• Typically used to implement the business logic and persistence tiers of an enterprise
application, EJB 3 can be seamlessly used with other Java EE APIs, such as JSP and JSF
that are employed for building the application presentation tier.

Looking through this list, you may conclude that EJB 3 as a technology provides a powerful
yet easy-to-use way of developing enterprise applications in the Java programming language.
The most important thing about EJB 3 is that it doesn’t require you to perform a set of repeti-
tive tasks typically found in enterprise applications. Such tasks are implemented as services
provided by the EJB container and include transaction management, concurrency control,
persistence, security, and some others described in the EJB 3 specification. This approach
based on moving the back-end code into the framework allows you to focus your efforts
entirely on solving particular problems related to your application rather than on making
desperate efforts to develop back-end code yourself.

EJB Container
The EJB container represents a runtime environment in the application server, providing core
functionality common to many EJB components.

The EJB components deployed to the application server are executed within the EJB
container that provides system-level services such as transaction management and security
authorization to those components. As mentioned, this architecture allows developers to con-
centrate on the particular business problems, rather than on reimplementing solutions to the
common problems usually found in enterprise applications.

It is interesting to note that the EJB container is not the only container running within an
instance of a Java EE 5–compliant application server. Another important container of an
application server is a web container that is responsible for managing the execution of JSP
and JSF pages, as well as servlet components.

EJB 3 Components
As mentioned, an EJB is a server-side, reusable component that encapsulates specific busi-
ness logic and is activated and executed by the EJB container within an application server.

An EJB component may be one of the following two:

• Session bean

• Message-driven bean

■Note Also, there are Java Persistence API entities (formerly, entity beans). You will see a JPA entity in
action in the “Your First EJB JPA Application” section later in this chapter.

It is interesting to note that all EJB components are plain old Java objects (POJOs) with
Java EE annotations incorporated.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 51

Session Beans
Session beans are used to encapsulate the business logic of enterprise applications, executing
business tasks inside the EJB container on the application server. A session bean can be either
stateless or stateful. The following two sections explain these two types of session beans.

Stateful Session Beans

When a client application invokes a stateful session bean, the EJB container provides the same
instance for each subsequent method invocation performed by the client during the session.
You might want to use a stateful session bean when you need, for example, to implement a
business process involving several steps, each of which may rely on the state maintained in a
previous step.

A typical example is creating a user account on a web site. The process of collecting user
information is usually divided into several steps. For example, when creating a new e-mail
account, you first may be asked to provide the information of vital importance, such as an
account name and password. If the information provided in this stage is OK, you will be taken
to the next page of the wizard, which may ask you to enter your personal information, such as
your name and birthday. Finally, on the last page, you will be asked to confirm the information
you have provided so far.

As you have no doubt realized, the previous business process requires maintaining state
information all the way through. It’s fairly obvious that when you click the Create Account but-
ton in the last step, you expect that all the information provided so far will be properly saved
to the database on the server. Using a session bean in the previous situation is a standard
way to go. Instead of implementing a custom, likely to be error-prone, solution, you gain the
advantages provided by the container. In particular, the container automatically takes care of
maintaining session state, also known as conversational state, during the entire process of col-
lecting user information.

The downside of using stateful beans is that each stateful bean instance is one-to-one
related to a certain client and cannot be reused with another client. Diagrammatically, it
might look like Figure 3-1.

Figure 3-1. One-to-one mapping of client applications and stateful session bean instances

A stateful bean instance terminates when either the client removes it or the session ends.
This can add considerable memory overhead if the stateful bean has a great number of con-
current clients.

You will see an example of using a stateful session bean in Chapter 12 of this book.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API52

Stateless Session Beans

As you learned in the previous discussion, stateful session beans come in handy when you
need to retain the state. In practice, though, stateless session beans are used more often than
stateful ones. Stateless beans provide business methods to their clients, while not maintaining
a conversational state with them. The latter makes it possible for the container to pool and
reuse instances of stateless beans, sharing them between clients. This is graphically depicted
in Figure 3-2.

Figure 3-2. Using a pool of stateless session bean instances

Using a stateless bean is ideal when you need to implement the task that can be con-
cluded with a single method call performed by a client. Listing 3-1 shows a simplified example
of a stateless session bean class.

Listing 3-1. A Simple Example of a Stateless Session Bean Class

package example.ejb;
import javax.ejb.Stateless;
@Stateless
public class HelloSessionBean implements example.ejb.HelloSession {
private String helloMessage;
public String outputHelloMessage(String usrname) {

helloMessage = "Hi, "+ usrname;
return helloMessage;

}
}

As you can see, the previous session bean provides the only business method, namely,
outputHelloMessage. This method takes the parameter name and compiles a “hello” message
based on the value passed in with that parameter, returning the compiled message to the
client.

Note that in the outputHelloMessage business method, you modify the helloMessage
bean variable. You can safely perform this operation, since each new invocation of the
outputHelloMessage business method will rewrite the value of the helloMessage instance vari-
able with new data. However, since HelloSessionBean used here is defined as stateless, a more
elegant way of using the helloMessage bean variable would be as follows:

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 53

@Stateless
public class HelloSessionBean implements example.ejb.HelloSession {
private String helloMessage = "Hi, ";
public String outputHelloMessage(String usrname) {

return helloMessage + usrname;
}

}

You will see a simple working example of a stateless session bean in the “Your First EJB 3
Application” section later in this chapter. More interesting examples of session beans are dis-
cussed in Chapter 12.

Interfaces Defining Access to Session Beans

Continuing with the discussion on session beans, it is interesting to note that they can be
accessed only through the business interfaces they implement. This programming model
makes it easier for you to change beans without having to alter the client code. You can change
the bean class while leaving its business interface untouched.

A session bean can implement a local or remote business interface, or both. You can use a
local business interface only if the bean and the client application consuming that bean are
running in the same JVM. Otherwise, you have to use a remote interface.

■Note It is recommended that you use a local interface for the enterprise beans that are utilized by appli-
cations deployed on the same server. This will allow you to avoid the performance overhead associated with
supporting a distributed computing environment. However, if you develop an enterprise bean that will be
then utilized by applications distributed across a network, you have to use a remote interface with that bean.

Listing 3-2 shows a local interface that might be implemented by the HelloSession bean
shown in Listing 3-1 earlier.

Listing 3-2. The Business Interface for the HelloSession Bean

package example.ejb;
import javax.ejb.Local;
@Local
public interface HelloSession {
public String outputHelloMessage(String usrname);

}

Note the use of the @Local annotation in the previous example. With that, you declare the
HelloSession business interface as local.

Alternatively, you might specify the interface in the bean’s class. In that case, you would
have to include the @Local annotation in the HelloSession bean class shown in Listing 3-1 as
follows:

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API54

package example.ejb;
import javax.ejb.Local;
import javax.ejb.Stateless;
@Stateless
@Local(HelloSession.class)
public class HelloSessionBean implements example.ejb.HelloSession {
...
}

Now the HelloSession interface shown in Listing 3-2 might look like this:

package example.ejb;
public interface HelloSession {
public String outputHelloMessage(String usrname);

}

With this approach, you are free to use the HelloSession interface as local or remote as
appropriate.

Client Code Utilizing Session Beans

Now that you have seen an example of a session bean, you might want to look at the client
code utilizing that bean. Listing 3-3 shows a simple example of such a client.

Listing 3-3. The Client Code Utilizing the outputHelloMessage Business Method of the
HelloSession Bean

package example.client;
import javax.ejb.EJB;
import example.ejb.HelloSession;
public class HelloSessionClient {

@EJB
private static HelloSession helloSession;
public static void main (String[] args)
{

System.out.println(helloSession.outputHelloMessage("John"));
}

}

The most interesting thing to notice in this code is the use of the @EJB annotation. In
this example, you use @EJB to annotate the static field helloSession that represents the
HelloSession bean business interface.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 55

■Note This is an example of how a client can obtain a session bean’s business interface using dependency
injection. In a nutshell, dependency injection lets the container automatically insert (inject) references to
other components and resources with the help of annotations. In this particular example, you acquire a
reference to the HelloSession interface by annotating the private, static HelloSession helloSession

with @EJB.

A little later, in the “Your First EJB 3 Application” section, you will learn how to build a
simple stateless session bean, deploy it to the GlassFish application server, and then test it
with a client application. Then, in Chapter 12, you will see more realistic examples of using
session beans. For the time being, though, that concludes this concise discussion of session
beans.

Message-Driven Beans
It is important to realize that all communications between session bean instances and their
clients are synchronous. What this means in practice is that the client cannot continue execu-
tion until the bean instance completes the request. In some situations, though, you may need
to develop an asynchronous solution built upon loosely coupled components. This is where
message-driven beans come in handy.

Unlike session beans, message-driven beans enable asynchronous communications
between the server and client, thus avoiding tying up server resources. Instead of directly
invoking bean’s methods, a client sends a message to a JMS queue or a JMS topic. Listing 3-4
illustrates the source code for a simple message-driven bean.

Listing 3-4. An Example of a Message-Driven Bean

package example.ejb;
import javax.ejb.MessageDriven;
import javax.ejb.MessageDrivenContext;
import javax.jms.MessageListener;
import javax.jms.Message;
import javax.jms.TextMessage;
import javax.jms.JMSException;

@MessageDriven(mappedName = "jms/Queue")
public class SimpleMessageDrivenBean implements MessageListener {

public void onMessage(Message msg) {
TextMessage txtMsg = null;
try
{
txtMsg = (TextMessage) msg;
System.out.println("The following message received: " +txtMsg.getText());

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API56

} catch (JMSException e) {
e.printStackTrace();

}
}
}

As you can see, a message-driven bean is decorated with the @MessageDriven annotation.
You use the mappedName attribute with this annotation in order to specify the name of the JMS
queue or topic from which the bean will consume messages.

The SimpleMessageDrivenBean message-driven bean shown in the listing implements the
javax.jms.MessageListener interface providing the onMessage method. This method is auto-
matically invoked by the EJB container when the queue specified with the mappedName attribute
of the @MessageDriven annotation receives a message.

In this particular example, the bean simply prints the message, sending it to the applica-
tion server log.

Your First EJB 3 Application
Now that you have a rough idea of EJB 3, let’s take a look at a simple application based on
this technology. This application will surprise you with its simplicity, but it will also give you
a high-level view of how to build and deploy applications utilizing EJB 3 components.

The following sections explain how to build, deploy, and test a “Hello World!” enterprise
bean. You will learn how to do it using only command-line tools, which will allow you to better
understand the structure of an EJB application.

■Note The fact is that visual tools like NetBeans IDE do a lot of work behind the scenes, hiding some
details from the developer. This is generally good, since it makes the development process easier. However,
if you are a beginner, you might want to go into more detail. The NetBeans IDE will be used in later chapters.

Creating a Simple Enterprise Bean
In this section, you’ll create a “Hello World!” session enterprise bean, compiling it with the
javac command-line tool. In the next section, you’ll package this bean and then deploy it to
the GlassFish application server.

What you really need to develop here is a session enterprise bean, which you will then
deploy to the application server, thus making it available for a client application. To achieve
this goal, you have to create the enterprise bean class and business interface defining the
methods implemented by that class. In this particular example, the enterprise bean class
named HelloWorldBean will contain only one method, outputHelloWorld. The business inter-
face, HelloWorld, will be remote. Thus, all you need to do to develop a simple EJB is build two
Java files.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 57

■Note In EJB 3, unlike its predecessor EJB 2.x, you don’t have to define a deployment descriptor that pro-
vides the information required for deployment. Instead, you can use metadata annotations; this simplifies the
development work.

Before you move on and develop the previous files, though, take some time to build the
directory structure for the project. To do this, follow these steps:

1. Under any directory in your system, create the root project directory, say,
HelloWorldProject. In fact, you will have two projects under this directory, each of
which is in a separate subdirectory, of course. The first one will be used to build the
HelloWorld enterprise bean, and the second will be used to build a client application
to test that bean.

2. Within the HelloWorldProject directory, create the directory HelloWorldEJB that will
contain files and folders required for building the HelloWorld enterprise bean dis-
cussed here.

3. Within the HelloWorldEJB directory, create three directories, namely, dist, src, and
target.

4. In the src directory, create a helloworld/ejb directory. In this directory, you will then
create the enterprise bean class, HelloWorldBean.java, and its business interface,
HelloWorld.java.

Finally, the directory structure for the project will look like the one shown in Figure 3-3.

Figure 3-3. The directory structure of the “Hello World!” EJB project

After you have created the directory structure for the HelloWorld EJB project, you can
switch your focus to developing the project sources.

You might start by creating the HelloWorld.java file implementing the remote interface
for the HelloWorldBean enterprise bean class. This interface will be used by the clients of the
bean. The source code for the HelloWorld.java file might look like Listing 3-5.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API58

Listing 3-5. The Remote Business Interface for the HelloWorldBean Enterprise Bean Class

package helloworld.ejb;
import javax.ejb.Remote;
@Remote
public interface HelloWorld {
public String outputHelloWorld();

}

Now that you have the business interface created for your enterprise bean, it is time to
create the enterprise bean class. Listing 3-6 shows the source code for the HelloWorldBean.
java file.

Listing 3-6. The Source Code for the HelloWorldBean Enterprise Bean Class

package helloworld.ejb;
import javax.ejb.Stateless;
@Stateless
public class HelloWorldBean implements helloworld.ejb.HelloWorld {
public String outputHelloWorld() {

return "Hello World!";
}

}

As you can see, this is a very simple session bean. All it does is return the string Hello
World!

Now that you have both the session bean class and the business interface for that bean,
you can compile them. Since this is a very simple example, you can compile the sources
using the javac compiler. First, change the directory to the root directory of your project,
HelloWorldEJB, and then use the javac program as shown here:

javac -cp /glassfish_dir/lib/javaee.jar -d target src/helloworld/ejb/*.java

In this command, you explicitly specify the path to the Java EE library, javaee.jar, located
in the GlassFish’s lib directory. You might exclude this parameter from the command if you
include the path to this library to the CLASSPATH environment variable. In that case, the previ-
ous command might be shortened to the following one:

javac -d target src/helloworld/ejb/*.java

After executing the previous, the target\helloworld\ejb directory should appear within
the HelloWorldEJB directory. In this directory, you should find the HelloWorld.class and
HelloWorldEJB.class files.

Now the target directory should have the structure shown in Figure 3-4.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 59

Figure 3-4. The directory structure of the target directory located within the root directory of the
HelloWorld EJB project

Packaging the Enterprise Bean
Now that you have compiled class files, you are ready to package them into an EJB JAR archive
to be then deployed to the application server. For the purpose of this example, you package
the HelloWorld session bean code into a .jar file named helloworldejb.jar.

To do this, change the directory to the target directory located within the HelloWorldEJB
root directory of the project:

cd target

Then issue the following command:

jar cvf ..\dist\helloworldejb.jar .

This command should create the helloworldejb.jar file in the HelloWorldEJB\dist direc-
tory. If you list this archive, you should see that it has the structure shown in Figure 3-5.

Figure 3-5. The directory structure of the JAR archive containing the HelloWorld session bean

As you can see, the jar utility automatically created the MANIFEST.MF file in the META-INF
directory. All the other files and the directory structure are equal to the ones found under the
target directory.

Deploying the Enterprise Bean to GlassFish
Now that you have packaged the HelloWorld session bean into the JAR archive, you can move
on and deploy it to the GlassFish application server.

If you recall from Chapter 2, you can deploy your deployment archive to the GlassFish
application server in several ways. One of the simplest ways to perform deployment is to copy
the deployment archive to the autodeploy subdirectory under the [glassfish_dir]/domains/
your_domain directory. If you are using the default domain, domain1, this should be the follow-
ing directory: [glassfish_dir]/domains/domain1/autodeploy.The obvious disadvantage of this

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API60

autodeploying approach is that it doesn’t immediately show you whether the deployment
operation has been successful. You need to check with the logs to find it out.

So, you might want to use the asadmin’s deploy command to deploy the HelloWorld ses-
sion bean. After executing, this command gives a message informing you about the result of
the deployment operation.

Before you can deploy the archive, make sure to start the application server. If you recall
from Chapter 2, this can be done with asadmin as follows:

asadmin start-domain domain1

With that done, you can change the directory to dist. Assuming that you are currently in
the target directory, you need to perform the following commands:

cd ..
cd dist

And then issue the following command:

asadmin deploy helloworldejb.jar

If the deployment operation is successful, you should see the following message in the
terminal:

Command deploy executed successfully

To make sure this has been done, you can check the Applications/EJB Modules page of
Admin Console. On this page, you should see the helloworldejb module in the list of deployed
EJB modules.

Creating the Client Application
Now that you have created and deployed the HelloWorld enterprise bean, you might want to
test it. For this, you need to create a client application that will make the EJB container create
an instance of that bean and invoke its outputHelloWorld method.

The first thing to take care of is building the directory structure for the client application
project. To do this, follow these steps:

1. Within the HelloWorldProject directory, create the directory HelloWorldClient that will
contain files and folders required for building the client application discussed here.

2. Within the HelloWorldClient directory, create three directories, namely, dist, src, and
target.

3. In the src directory, create directory helloworld/client. In this directory, you will then
create the client class in the file HelloWorldClient.java.

4. In the target directory, create the directory META-INF. In this directory, you will then
create the MANIFEST.MF file.

Finally, the directory structure for the client project should look like the one shown in
Figure 3-6.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 61

Figure 3-6. The directory structure of the client application project

Now that you have created the directory structure for the project, it is time to create the
HelloWorldClient class. Listing 3-7 shows the source code for the HelloWorldBean.java file.

Listing 3-7. The Source Code for the HelloWorldClient Client Application

package helloworld.client;
import javax.ejb.EJB;
import helloworld.ejb.HelloWorld;
public class HelloWorldClient {

@EJB
private static HelloWorld helloWorld;
public static void main (String[] args)
{

System.out.println(helloWorld.outputHelloWorld());
}

}

As you can see, the client code simply invokes the outputHelloWorld method of a
HelloWorld bean instance, printing the method’s output in the terminal.

After you have saved the HelloWorldClient.java file in the HelloWorldClient/src/
helloworld/client directory, you can compile it. For this, first make sure to change to
the HelloWorldClient directory:

cd HelloWorldClient

And then issue the following command:

javac -cp /glassfish_dir/lib/javaee.jar; ➥
../HelloWorldEJB/dist/helloworldejb.jar -d target src/helloworld/client/*.java

Although the previous command is broken in two lines here, you must type it on a single
line. When you hit the Enter, javac starts execution. If everything is OK, you should see no
error message.

Packaging the Client Application
The next step in building the client application discussed here is packaging it into a JAR
archive. Before you can do that, though, you need to create the MANIFEST.MF file in the
target/META-INF directory. Listing 3-8 shows the source code for the MANIFEST.MF file.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API62

Listing 3-8. The Source Code for the MANIFEST.MF File

Manifest-Version: 1.0
Main-Class: helloworld.client.HelloWorldClient

The next step is to build the helloworldclient.jar archive. To do this, first change the
directory to the HelloWorldClient/target directory:

cd target

And then issue the following command:

jar cvfM ../dist/helloworldclient.jar .

Note the use of the M option along with the other options usually used when building a
.jar archive. You specify the M option here to force the jar utility not to generate a new mani-
fest file. This guarantees that the MANIFEST.MF file you created earlier will be used in the
archive.

Creating the Application Archive
By now you should have the helloworldclient.jar file in the HelloWorldClient/dist directory
and the helloworldejb.jar file in the HelloWorldEJB/dist directory. In the next step, you
should place these files in a single .jar archive, say, helloworldapp.jar, that will be then exe-
cuted with the appclient utility that comes with GlassFish and can be found in its bin
directory.

To begin with, you need to create the directory structure for the helloworldapp.jar
archive. To do this, follow these steps:

1. Within the HelloWorldProject directory, create the dist directory to which you will
save the helloworldapp.jar file.

2. Within the HelloWorldProject directory, create the target directory.

3. To the HelloWorldProject/target directory created in the preceding step, copy the
helloworldejb.jar and helloworldclient.jar archives created as described earlier.

4. In the HelloWorldProject/target directory, create the directory META-INF. In this direc-
tory, you will then create the Java EE deployment descriptor, application.xml.

Finally, you should have the directory structure shown in Figure 3-7.

Figure 3-7. The directory structure of the HelloWorld project

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 63

For the application discussed here, you can define the Java EE deployment descriptor,
application.xml, as shown in Listing 3-9.

Listing 3-9. The Source Code for the application.xml Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<application version="5" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd">
<display-name>helloworldejb</display-name>
<module>
<ejb>helloworldejb.jar</ejb>

</module>
<module>
<java>helloworldclient.jar</java>

</module>
</application>

After you have created the application.xml deployment descriptor shown in the listing,
you can move on and build the helloworldapp.jar archive:

jar cvf ..\dist\helloworldapp.jar .

As a result, the helloworldapp.jar file should appear in the HelloWorldEJB/dist directory.

Testing the Application
Finally, you can test your first EJB 3 application built as described in the preceding sections. To
do this, change the directory to HelloWorldEJB/dist, and issue the following command:

appclient -client helloworldapp.jar

This command assumes that the glassfish_dir/bin directory is included in the PATH
environment variable. This should produce the following output:

Hello World!

Believe it or not, you just successfully created and tested your first EJB 3 application.
Although it simply says Hello World! in a terminal window, it illustrates the ideas behind EJB 3
development well enough. In particular, this example showed you how to use EJB 3 annota-
tions when developing EJB components. Also, it illustrated that clients can access EJBs only
via interfaces and that a deployment archive containing an EJB must have a certain structure
to be successfully deployed to the application server.

JPA at a Glance
The following two sections briefly describe JPA, giving you the basics required to start building
solutions utilizing this exciting technology.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API64

What Is JPA?
In a nutshell, JPA, a new Java EE 5 technology, was created as an answer to the problem of data
persistence. It brings the object-oriented and relational models together, making Java EE
developers more productive.

As you have no doubt guessed, the Java Persistence API represents a standard way of
accessing relational databases from Java EE applications. You can use this API to access and
manipulate relational data in EJB and web components, as well as application clients.

■Note It is important to note that JPA can also be used in J2EE 1.4 and Java SE applications.

Java Persistence provides the following features:

• Object/relational mapping (ORM)

• The EntityManager API

• The Java Persistence Query Language (JPQL)

Each of these features is discussed in great detail later in this book. For the time being,
though, it is important to understand that the ORM mechanism allows you to map POJOs to
relational data stored in a database, with the help of ORM annotations or XML. Such POJOs
are called JPA entities and must be annotated with the javax.persistence.Entity annotation
or described in an object/relational mapping XML configuration file. When developing a JPA
entity, there is no need to include any methods performing database-related operations, such
as save or update. Instead, you can use the EntityManager API to manipulate JPA entity
instances. This prevents you from using the JDBC API directly, which means you don’t need
to write your own SQL code to manipulate database data.

JPA Implementation at GlassFish
In GlassFish, the Java Persistence API is implemented with the TopLink Essentials product
donated by Oracle Corporation. TopLink Essentials is an open source edition of Oracle’s
TopLink product. It comes with the GlassFish application server and also can be downloaded
as a stand-alone product.

For further information, you can visit the TopLink Essential page on the GlassFish Com-
munity web site at https://glassfish.dev.java.net/javaee5/persistence/. You can also visit
the TopLink Essential microsite on the Oracle Technology Network (OTN) at http://www.
oracle.com/technology/products/ias/toplink/jpa/index.html.

JPA Entities and ORM Mapping
As mentioned earlier, JPA entities are POJOs. So, you can safely say that the JPA technology
brings POJO programming to persistence. You incorporate ORM annotations into an entity,
applying them to either the entity’s instance variables or the properties. With ORM annota-
tions, you describe how objects are mapped to relational tables. For example, you use the

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 65

@Table annotation to specify the name of the underlying database table, and you use @Column
to specify the column name in that table.

Although an example of an entity is provided a little later, Figure 3-8 provides a concep-
tual depiction of the mechanism called object/relational mapping.

Figure 3-8. A conceptual depiction of object/relational mapping

You will see a simple example of an entity in action when building your first EJB JPA appli-
cation, as described in the next section. In later chapters, you will see more realistic examples
showing you how to use JPA entities and define relationships between them, much like you do
with relational objects when setting up a database schema.

Your First EJB JPA Application
Now that you have a grasp of the ideas behind the JPA technology, it’s time to see how you can
put it into action. In the following sections, you will build a simple application using the EJB
and JPA technologies. Along the way, you will set up and configure the following components
utilized within the application:

• The myderbydb database schema within the default Java DB database

• The employees table within the myderbydb database

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API66

• The jdbc/myderbypool data source

• The employee JPA entity

• The EmployeeSessionBean stateless session bean

• The EmployeeSessionClient stand-alone client application

Figure 3-9 illustrates how these components fit together, giving you a high-level view of
their interactions at runtime.

Figure 3-9. A high-level view of component interactions in the EJB JPA application discussed here

The following sections walk you through the process of developing the application
depicted in the figure.

The Project Structure
As mentioned, before you can deploy a bean to the application server, you need to create a
certain structure for a JAR archive packaging the bean’s components. Similarly, the first step in
developing the application discussed here is to develop the directory structure for the project.

Similarly to the preceding application, the entire application project will include two
smaller projects, the enterprise bean project and the application client project, which are
called in this particular example EJBJPA and AppClient, respectively. Returning to creating the
directory structure, this means you need to create the EJBJPA and AppClient directories within
the root project directory that you can create in any directory in your system and name, say,
EJBJPAProject. Under this directory, you also need to create the target and dist directories.

Since the directory structure to be created is similar to the one discussed in the preceding
example, this section will not give you step-by-step instructions on how to complete this task.
Instead, you might do it yourself by referring to the directory structure shown in Figure 3-10.

■Note Right now, you don’t need to worry about creating the files within the directories. All you need to do
right away is to create the directories. You will create the files later as discussed in the next sections.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 67

Figure 3-10. The directory structure for the application project

Using the Java DB Database
For simplicity, the EJB JPA application discussed here will interact with the Java DB database
included with the GlassFish application server by default. To learn more about this database,
you can visit the Apache Derby Project web site at http://db.apache.org/derby/.

You can start the database using the following command:

asadmin start-database

If everything is OK, you should see the following messages on your terminal:

Starting database in the background.
Log redirected to C:\\derby.log.
Command start-database executed successfully.

Now that you have started the database, you need a way to connect to it and then issue a
few SQL commands against it in order to create a new database and a table within the newly
created schema.

In fact, the Derby database provides several tools that you might use to interact with the
database. The simplest one is probably ij, which allows you to enter SQL commands at a
command prompt. To move on to the ij prompt, you need to start the ij script from a termi-
nal window:

cd glassfish_dir/javadb/bin
ij

As a result, the ij prompt should appear. The next step is to create a new database. The
Derby SQL does not provide a create database command. Instead, you should use the create

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API68

attribute set to true when connecting to the database. So, you can create a new database and
connect to it with a single command, as shown here:

connect 'jdbc:derby://localhost:1527/myderbydb;create=true';

If no error messages appeared, then you successfully connected to the newly created
myderbydb database.

The next time you will connect to the myderbydb database, you can use the following
command:

connect 'jdbc:derby://localhost:1527/myderbydb';

Now you can create the employees table by issuing the following command from the ij
prompt:

CREATE TABLE employees(
empno INT PRIMARY KEY,
firstname VARCHAR(24),
lastname VARCHAR(24)
);

Although you are not performing an operation on a row, the previous command should
produce the following output:

0 rows inserted/updated/deleted

The next step is to insert a row into the newly created employees table. You can do this
with the following command issued from the ij prompt:

INSERT INTO employees VALUES(10, ‘John’, ‘Rater’);

This time the following message should appear:

1 rows inserted/updated/deleted

Setting Up the Data Source
The ij tool used in the preceding section is well and good if you need to interact with the
database directly, from within a terminal window. Now, you need to find a way to interact with
the database from within the application discussed here.

To do this, you first have to define a data source within the application server. This can be
easily done with the help of Admin Console, as follows:

■Note This task is discussed in more detail in Chapter 7. In particular, Chapter 7 explains in extensive
detail how to set up data sources in GlassFish for Oracle and MySQL databases.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 69

1. Start Admin Console by pointing your browser to http://localhost:4848.

2. Log in to Admin Console as admin.

3. In Admin Console, go to the Resources/JDBC/Connection Pools page.

4. On the Resources/JDBC/Connection Pools page, click the New button.

5. In the first step of the wizard, before you click Next, enter the general settings as
follows:

• Name: myderbypool

• Resource Type: javax.sql.DataSource

• Database Vendor: JavaDB

6. In the next step of the wizard, scroll down to the Additional Properties table and make
sure to set up the following five settings before you click Finish:

• Database Name: myderbydb

• User: APP

• Password: APP

• Server Name: localhost

• Port Number: 1527

7. In Admin Console, move on to the Resources/JDBC/JDBC Resources page and then
click the New button.

8. In the New JNDI Resource page, set the properties as shown here and then click Finish:

• JNDI Name: jdbc/myderbypool

• Pool Name: myderbypool

• Status: Enabled

After performing these steps, you should have the jdbc/myderbypool data source through
which the application will interact with the database.

Creating the Entity
Now that you have set up the database and created the data source required to programmati-
cally interact with that database, it’s time to develop the JPA entity that will be mapped to the
database table employees that is created and populated with data as described in the “Using
the Java DB Database” section earlier.

Listing 3-10 shows the source code for the Employee entity that you have to save as
Employee.java to the EJBJPAProject/EJBJPA/src/ejbjpa/entities directory, according to the
project structure shown in Figure 3-10 earlier.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API70

Listing 3-10. The Source Code for the Employee.java File

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity
@Table(name = "employees")
public class Employee implements Serializable {

@Id
@Column(name = "empno")
private Integer empno;
@Column(name = "firstname")
private String firstname;
@Column(name = "lastname")
private String lastname;
public Employee() {
}
public Integer getEmpno() {

return this.empno;
}
public void setEmpno(Integer empno) {

this.empno = empno;
}
public String getFirstname() {

return this.firstname;
}
public void setFirstname(String firstname) {

this.firstname = firstname;
}
public String getLastname() {

return this.lastname;
}
public void setLastname(String lastname) {

this.lastname = lastname;
}

}

As you can see, the Employee entity shown in the listing doesn’t include any methods used
to perform database-related operations, such as save or update. You may be asking yourself,
how can I store that entity to the database, or how can I update the database table row repre-
senting this entity? The answer is to use the EntityManager, a JPA interface providing all the
methods for manipulating JPA entities mapped to relational tables. In the next section, you
will see the EntityManager in action. You can find more thorough information on this tool in
Chapter 10.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 71

Creating the Session Bean
The next step is to create the EmployeeSessionBean session bean that will utilize the Employee
entity discussed in the preceding section. You start by creating the bean’s business interface.

Listing 3-11 shows the source code for the remote business interface to be used in this
example. You have to save it as Employee.java to the EJBJPAProject/EJBJPA/src/ejbjpa/ejb
directory.

Listing 3-11. The Source Code for the EmployeeSession.java File

package ejbjpa.ejb;
import javax.ejb.Remote;
@Remote
public interface EmployeeSession {

public String getEmplastname(Integer empno);
}

Next, you can create the bean implementing this interface. Listing 3-12 shows the source
code for the EmployeeSessionBean stateless session bean.

Listing 3-12. The Source Code for the EmployeeSessionBean.java File

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import ejbjpa.entities.*;

@Stateless
public class EmployeeSessionBean implements EmployeeSession {

@PersistenceUnit(unitName = "ejbjpa-pu")
private EntityManagerFactory emf;
public String getEmplastname(Integer empno) {

String fullname;
try {

EntityManager em = emf.createEntityManager();
Employee emp = em.find(Employee.class, empno);
fullname = emp.getFirstname()+" "+emp.getLastname();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return fullname;

}
}

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API72

In this example, you create an instance of the EntityManager by invoking the
createEntityManager method of javax.persistence.EntityManagerFactory. Then, you obtain
an instance of the Employee entity with the find method of the EntityManager, specifying the
primary key of the record to be obtained. Once you have obtained the record, you invoke the
getFirstname and getLastname methods of the Employee instance to set the fullname variable
being returned by the bean’s business method.

It is interesting to notice the use of the @PersistenceUnit annotation in the previous code,
with which you inject the EntityManagerFactory instance into your code. With the unitName
parameter of @PersistenceUnit, you specify the persistence unit, namely, ejbjpa-pu, defined
in the persistence.xml configuration file. In this particular example, however, you might not
use the unitName parameter to explicitly specify the persistence unit. This is because you’re
using a single persistence unit here, and therefore, the container will use it by default.

Creating the persistence.xml Configuration File
In the persistence.xml configuration file, you define the persistence unit to be utilized with
the application.

Listing 3-13 shows the source code for the persistence.xml configuration file to be used
in this example. You have to save this file to the EJBJPAProject/EJBJPA/target/META-INF
directory.

Listing 3-13. The Source Code for the persistence.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">
<persistence-unit name="ejbjpa-pu" transaction-type="JTA">

<jta-data-source>jdbc/myderbypool</jta-data-source>

<class>ejbjpa.entities.Employee</class>

</persistence-unit>
</persistence>

In this example, the persistence.xml file contains configuration information describing
the persistence unit named ejbjpa-pu.

Packaging and Deploying the Session Bean
Now that you have created the sources, you can compile them. First you need to change the
directory to EJBJPAProject/EJBJPA. Once you are there, you can use the javac compiler:

javac -d target src\ejbjpa\entities*.java src\ejbjpa\ejb*.java

This command will compile both the Employee entity and the EmployeeSession bean files.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 73

In the next step, you change directory to the target directory and build the ejbjpa.jar
archive:

cd target
jar cvf ../dist/ejbjpa.jar .

Finally, you need to deploy the session bean archive to the application server. To achieve
this, issue the following commands:

cd ..
cd dist
asadmin deploy ejbjpa.jar

As a result, you should see the following message:

Command deploy executed successfully

If you see this result, you just successfully completed creating and deploying the
EmployeeSession stateless session bean utilizing the Employee JPA entity.

Creating the Client
Now that you have created and deployed the bean, it’s time to develop a client application to
test it.

Listing 3-14 shows the source for the MANIFEST.MF file you need to create in the
EJBJPAProject/AppClient/target/META-INF directory.

Listing 3-14. The Source Code for the MANIFEST.MF File

Manifest-Version: 1.0
Main-Class: ejbjpa.client.EmployeeSessionClient

Listing 3-15 shows the source for the EmployeeSessionClient.java file you have to create
in the EJBJPAProject/AppClient/src/ejbjpa/client directory.

Listing 3-15. The Source Code for the EmployeeSessionClient.java File

package ejbjpa.client;
import javax.ejb.EJB;
import ejbjpa.ejb.EmployeeSession;
public class EmployeeSessionClient {

@EJB
private static EmployeeSession employeeSession;
public static void main (String[] args)
{

System.out.println(employeeSession.getEmplastname(10));
}

}

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API74

As you can see, the client code is very straightforward. You simply inject an instance of the
EmployeeSession bean and then invoke its method getEmplastname, passing 10 as the parame-
ter. The result returned is printed with System.out.println.

Compiling and Packaging the Client
Although the previous section provides the source code for the client, the appclient program
that comes with GlassFish requires you to provide the compiled code.

To compile the EmployeeSessionClient.java file shown in Listing 3-15, you need to
change the directory to EJBJPAProject/AppClient and then issue the following command:

javac -cp /glassfish_dir/lib/javaee.jar; ../EJBJPA/dist/ejbjpa.jar ➥
-d target src/ejbjpa/client/*.java

Then, you can change directory to the target directory and build the appclient.jar
archive as follows:

cd target
jar cvfM ../dist/appclient.jar .

As a result, the appclient.jar file should appear in the EJBJPAProject/AppClient/dist
directory.

Now you are ready to build the application archive that you will run with the appclient
program. First, copy the ejbjpa.jar and appclient.jar archives created earlier to the
EJBJPAProject/target directory. Then, create the application.xml deployment descriptor in
the EJBJPAProject/target/META-INF directory. Listing 3-16 shows the source code for this file.

Listing 3-16. The Source Code for the application.xml Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<application version="5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_5.xsd">
<display-name>ejbjpa</display-name>
<module>
<ejb>ejbjpa.jar</ejb>

</module>
<module>
<java>appclient.jar</java>

</module>
</application>

After you have created the application.xml deployment descriptor shown in the listing,
you can move on and build the ejbjpaapp.jar archive. To do this, you need to change the
directory to EJBJPAProject/target and then issue the following command:

jar cvf ..\dist\ejbjpaapp.jar .

As a result, the ejbjpaapp.jar file should appear in the EJBJPAProject/dist directory.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API 75

Testing the Application
Before you can run the application, you must have the Java DB database running. You can
start it as described in the “Using the Java DB Database” section earlier. Also, make sure you
have started your default application server domain. After that, you can test the application
created in the preceding sections. To do this, change the directory to EJBJPAProject/dist, and
issue the following command:

appclient -client ejbjpaapp.jar

This should produce the following output:

John Rater

As you have no doubt realized, the previous is a simple example, but it should have given
you a taste of how JPA can be used and what it can do for you.

Summary
This chapter started by explaining some basic concepts of EJB 3. Then, you looked at a simple
stand-alone application based on this technology. To build it, you used only command-line
tools. This approach of manually building and deploying was chosen to help you better under-
stand the structure of EJB components and how they work.

Then, the chapter covered the basics of the JPA technology. You also looked at a simple
example of the application demonstrating the JPA technology in action.

CHAPTER 3 ■ INTRODUCING EJB 3 AND THE JAVA PERSISTENCE API76

Planning the
Application

P A R T 2

Planning a Java EE
Application

At the planning stage, you first analyze the needs of potential users of your application,
determining how it will be used and what it must do. After you have realized what kind of
application you want to develop and what results it must produce, you then need to decide
what technologies will be used and plan the application structure. Finally, you need to deter-
mine what application modules you have to develop and how these modules will interact with
each other, planning the steps for building and deploying each application component.

As its title implies, this chapter discusses the planning stage of a Java EE application proj-
ect. In particular, you will look at the following:

• Planning a multitier architecture for your Java EE application

• Distributing business logic between the application tiers

• Planning Java EE application components

• Using XML deployment descriptors vs. annotations

After reading this chapter, you will have a good understanding of the issues related to the
planning stage of the development process. Along the way, you will look at the architecture of
a typical Java EE application and learn how that architecture might be implemented in your
particular application.

Understanding the Structure of a Java EE
Application
Before you start developing your application, it is important to take the time to look at the
application architecture and to understand what components you need to build and how they
will fit into the big picture.

Understanding the Multitier Architecture
A Java EE application typically employs a multitier architecture. One of the greatest strengths
of the multitier architecture is scalability. You build your application from a set of reusable
components executed within the containers of a Java EE server. This means you can change

79

C H A P T E R 4

one or more components without impacting client applications. For example, you can modify
an EJB component implementing a piece of business logic so that it has no impact on the
other EJB components utilized within the application and, of course, has no impact on the
components implementing the other tiers of the application.

Figure 4-1 gives a graphical depiction of the four-tier architecture that is often employed
by enterprise applications.

Figure 4-1. Graphical depiction of the four-tier architecture

As you can see in the figure, the presentation, business logic, and persistence tiers are
implemented within the application server, whereas the database tier resides within the data-
base server. As you will learn in the next section, the Java EE application server provides the
underlying services to the components implementing the presentation logic, business logic,
and persistence logic of your application.

While Figure 4-1 gives a graphical depiction of the four-tier architecture, Table 4-1 sum-
marizes each tier.

Table 4-1. Layers of the Four-Tier Architecture

Layer Description

Presentation tier Includes the user interface elements of your application, making it possible
for users to interact with the application.

Business logic tier Implements the business logic of your application. Processes the user
requests coming from the presentation tier.

Persistence tier Implements the persistence logic of your application. The business logic tier
interacts with the underlying database via the persistence tier, rather than
directly interacting with the database.

Database tier Includes a relational database that is used to persist the objects, which are
part of the persistence tier.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION80

As you can see, each tier plays a certain role in the entire architecture and can interact
only with neighboring tiers. For example, you can create an instance of an enterprise bean
and then invoke its business methods from within a JSP page belonging to the presentation
tier. However, a JSP page cannot be used to directly interact with the database tier.

Understanding the Architecture of the Java EE Container
As stated earlier, the Java EE application server provides underlying services to the deployed
components so that you can concentrate on implementing business logic related to your par-
ticular application, rather than reimplementing logic related to the problems often found in
enterprise applications.

These underlying services are logically grouped into containers. For example, the web
container provides the services that enable you to build web components based on the JSP
and JSF technologies typically used when developing the presentation layer of a Java EE appli-
cation. You saw a simple example of using JSP pages in Chapter 2 when developing a “Hello
World!” application. In Chapter 14, you will learn how to use the JSF technology when build-
ing the presentation tier of an enterprise application.

The EJB container provides the services required to deploy and execute enterprise beans.
Typically used to implement the business logic of an enterprise application, EJB 3 can be
seamlessly used with other Java EE APIs, such as JSP and JSF that are employed for building
the application presentation tier.

Figure 4-2 gives a simple representation of how the tiers of a Java EE application are
implemented within the Java EE server.

Figure 4-2. Most tiers of a Java EE application are implemented using the technologies that let
you build components executed within the application server containers.

As you can see in the figure, each application tier is implemented in a single Java EE con-
tainer, using different technologies.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 81

■Note It’s important to note here that the technologies used in the neighboring tiers can seamlessly inter-
act with each other. For example, you don’t need to worry a lot about how to invoke an EJB bean method
from within a JSP page or how to manipulate JPA entities from the code of a session bean. Both of these
tasks can be easily accomplished because EJB 3 is seamlessly integrated with the other Java EE technolo-
gies, such as Java Server Pages (JSP) and Java Persistence API (JPA).

Table 4-2 summarizes the Java EE server containers depicted in Figure 4-2.

Table 4-2. Java EE Server Containers Providing Configurable Services to the Components of a
Java EE Application

Java EE Server Container Description

Web container Provides underlying services for and manages the execution of the web
pages comprising the presentation tier of your Java EE application,
which can be built using JSP and JSF technologies

EJB container Provides underlying services for and manages the execution of the
enterprise beans comprising the business logic tier of your Java EE
application

JPA provider Provides persistence services, allowing you to map JPA entities to the
underlying datastore

When deploying an application component to the application server, you actually deploy
it to the corresponding server container to provide the low-level functionality needed by that
component. Thus, when deploying an EJB bean to the application server, you in fact deploy it
into the EJB container, therefore enabling that bean to utilize the container’s underlying serv-
ices such as transaction management, concurrency control, and security authorization.

Distributing Business Logic Between Application Tiers
According to the diagram shown in Figure 4-2, the business logic of an enterprise application
is implemented at the business logic tier with the EJB 3 technology. In a real-world scenario,
though, some business logic may be implemented in the other tiers as well. For example, data
processing logic may be and often should be moved to the database tier, thus moving data
processing to the data. This can be best understood with an example.

Suppose your company wants to pay an annual bonus of 5 percent to its employees who
work in the accounting department and a bonus of 4 percent to all the others. The informa-
tion about what bonuses are awarded to a certain department is stored in a single database
table, say, bonuses. Now, based on this information, you need to calculate the amount of the
bonus to be paid to an employee and then also store this information in the database, this
time, in the table payments. Another interesting thing to note here is that the information
about employees’ salaries that is needed to calculate bonuses is also stored in the database,
in the employees table.

As you can see, in this example the starting data and resultant data are stored in the data-
base. Therefore, it’s a good idea to perform all the required processing inside the database,
rather than first moving the starting data from the database and then, after processing that

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION82

data, moving the results back to the database. To accomplish this, you might develop one or
more stored procedures to perform all the required processing inside the database. You will
see stored procedures in action in Chapter 6.

Sometimes, though, it is a good idea to implement some data processing logic with the
components executed within the application server rather than inside the database. Again,
this can be best understood with an example.

Suppose you need to implement functionality enabling an employee to place an order by
filling out the order form and then submitting it. Upon setting the order details, the order total
sum should be automatically recalculated, showing the updated figure after each item is
inserted or updated. As someone who already has experience with Java EE technologies, you
might guess that each time an employee adds a new item line to the order, the information
about this item is retrieved from the database and then shown in the form. This means the
information about the items chosen and their quantity is accumulated on the application
server side rather than on the database server side. So, in this particular example, it would be
much more efficient to perform the required processing on the application server side.

As you can see from these examples, the decision of whether to move business logic into
the database should be made in the context of the task you are dealing with. Figure 4-3 dia-
grammatically shows that the data-processing logic of an enterprise application may be
implemented within either the application server or the database server (in reality, though, it
is usually implemented partly within the application server and partly within the database
server).

Figure 4-3. Most data-processing logic within an application can and should be implemented
inside the database, if it doesn’t hurt application flexibility, of course.

You will see more detailed examples on moving data processing to the underlying data-
base in Chapter 5 and in Chapter 6.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 83

Planning Application Components and Their
Interactions
Now that you have a good initial understanding of the structure of a typical Java EE applica-
tion, you might want to perform some sort of analysis, trying to figure out how the four-tier
architecture might be implemented in the application you are going to build.

Assuming you have a clear understanding of what your application is supposed to do,
your first task in the application planning is to determine what application components you
need to build and how they will interact with each other. Let’s look at a very simple example.

Suppose you need to develop an application that accesses and manipulates the informa-
tion about the customers your company deals with. One of the tasks to be implemented
within the application is retrieving the information about a certain customer whose ID is
equal to the specified one. For the sake of simplicity, let’s assume the information about the
customers can be stored in just two database tables: customers and billing_addresses. If so,
you might need to create the following components distributed between the application tiers:

• Business logic tier: CustomerSessionBean session bean

• Persistence tier: Customer and Address entities

• Database tier: customers and billing_addresses tables

■Note Although a typical Java EE application is a four-tier architecture, this example focuses only on the
business, persistence, and database tiers.

Now that you know what components should be created in the application tiers, you’ll
want to look into the details concerning how you might implement these components and set
up relationships between them.

The following few sections will discuss some planning considerations related to the previ-
ous components, placing most emphasis on those that belong to the persistence and database
tiers. After all, this is a book about TopLink, which is the Java Persistence API implementation
at GlassFish. As you will see in the following sections, the persistence and database tiers are
very closely related, so it’s always a good idea to plan them together.

Planning JPA Entities
As you might recall from the “JPA Entities and ORM Mapping” section in Chapter 3, a JPA
entity is a POJO with object/relational mapping (ORM) annotations incorporated, which you
use to specify how the entity is mapped to the database.

■Note This section gives you some insight into the things to consider when planning JPA entities to be
then utilized within your application, providing examples along the way to help you. JPA entities are dis-
cussed in further detail in Chapter 8 and Chapter 9.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION84

At first glance, it may be fairly obvious how entities can be used in your application. You
define entities so that each entity represents a database table in the underlying database, cre-
ating entities upon only those tables that store the data needed by your application. If you
create two entities corresponding to the tables related through a parent key/foreign key asso-
ciation, you define a relationship between these entities using an appropriate relationship
annotation such as @OneToOne and @OneToMany.

Although this is the most common approach to the problem, in practice, though, you
have a few other options. This is best understood with an example.

Continuing the example of retrieving the information about a certain customer, let’s first
look at how the customers and billing_addresses tables might be organized. Suppose you
have created these tables as shown in Listing 4-1.

Listing 4-1. Creating the customers and billing_addresses Tables

CREATE TABLE customers (
cust_id INTEGER PRIMARY KEY,
company_name VARCHAR(100),
phone VARCHAR(20)

);

CREATE TABLE billing_addresses (
cust_address_id INTEGER PRIMARY KEY REFERENCES customers(cust_id),
street VARCHAR(100),
city VARCHAR(100),
state VARCHAR(2),
zipcode VARCHAR(20)

);

As you might guess, in this example you use a one-to-one relationship between the
customers and billing_addresses tables, assuming each customer has only one billing
address. Listing 4-2 illustrates how you might populate these tables with data. First you insert
a row into the customers table, and then you can insert a row with the same ID into the
billing_addresses table.

Listing 4-2. Populating the customers and billing_addresses Tables with Data

INSERT INTO customers VALUES(1, 'Fast Express', '(650)777-5665');
INSERT INTO billing_addresses VALUES(1, '10000 Broadway Street', 'San Mateo', ➥
'CA', '94400');

Now, once you have the underlying tables in place, you can move on and create the per-
sistence tier, building JPA entities mapped to these tables. Here are some ways in which you
can do that:

• Create the Customer and Address entities in the customers and billing_addresses
underlying database tables, and define a relationship between these entities. You can
define either a unidirectional relationship or a bidirectional relationship. You’ll be
looking at the details of this a little later.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 85

• Create the Customer entity in the customers and billing_addresses underlying tables
so that the Customer entity includes fields from both tables. In the “Mapping an Entity
to More Than One Table” section, you will see how you can do this using the
@SecondaryTable annotation.

• Create the Customer entity upon a database view built on the customers and
billing_addresses underlying tables, using this view as if it were a single table. This
approach is discussed in detail in the later section “Mapping an Entity to a Database
View.”

Figure 4-4 gives a graphical depiction of each approach outlined in the previous list. Note
that although the diagram for approach A shows a unidirectional relationship between the
Customer and Address entities (in this example, the Customer entity refers to the Address
entity), it might be a bidirectional relationship here. You will look at how to establish a bidirec-
tional relationship between these two entities in the “Using Bidirectional Relationships
Between Entities” section a little later.

Figure 4-4. You can design the database and persistence tiers of your application in a few
different ways.

■Note As you no doubt have guessed, approaches B and C make sense only if the underlying tables use a
one-to-one relationship, as in the example discussed here. If your underlying tables use a one-to-many rela-
tionship, then approach A is the only one you should seriously consider.

There are some nuances to consider when choosing between these options. Although it is
generally OK to choose approach A, with which you create an entity upon each underlying
table and define relationships between the entities as needed, you should consider whether
you really need to have two entities related with a relationship rather than a single entity con-
taining the fields from both underlying tables. To determine this, you might ask yourself a

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION86

simple question: “Is there any situation where I might want to use only one entity without
using the other one?” If the answer is no and you will always use the corresponding instances
of these two entities together, you might consider using approach B, as shown in Figure 4-4.
Also, you might consider approach C, which assumes you use a view derived from your two
underlying tables so that this view appears as a single table to the application. Returning to
approach A, you might consider using lazy loading, which assumes that, upon retrieving a
Customer instance, its related Address entity instance is not automatically loaded—it may hap-
pen later when you first access that Address instance through the corresponding method of
the Customer instance.

The following sections discuss how to implement each of the approaches outlined here.

Using Unidirectional Relationships Between Entities
When planning entities to be then utilized within your application, you also have to plan the
relationships between those entities. Just like relational tables, entities can be related with a
one-to-one, one-to-many, or many-to-many relationship. The relationship you establish
between entities can be either unidirectional or bidirectional.

The example discussed in this section illustrates a unidirectional relationship between
entities. This means only one entity (it’s Customer in this particular example) contains a rela-
tionship property that refers to the other (it’s Address here).

Listing 4-3 shows what the source code for the Address entity might look like (the getter
and setter methods of the entity have been removed to save space).

Listing 4-3. Source Code for the Address Entity Mapped to the billing_addresses Database Table

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity
@Table(name = "BILLING_ADDRESSES")
public class Address implements Serializable {

@Id
@Column(name = "CUST_ADDRESS_ID")
private Integer cust_address_id;
@Column(name = "STREET", nullable = false)
private String street;
@Column(name = "CITY", nullable = false)
private String city;
@Column(name = "STATE", nullable = false)
private String state;
@Column(name = "ZIPCODE", nullable = false)
private String zipcode;
public Address() {
}

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 87

//The Address entity setter and getter methods
...
}

As you can see, the Address entity doesn’t refer to the Customer entity. Put simply, the
Address entity knows nothing about the Customer entity.

Now let’s look at Listing 4-4, which shows what the source code for the Customer entity
might look like (again, the getter and setter methods of the entity have been removed to save
space).

Listing 4-4. Source Code for the Customer Entity Mapped to the customers Database Table

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.OneToOne;
import javax.persistence.PrimaryKeyJoinColumn;
@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable {

@Id
@Column(name = "CUST_ID")
private Integer cust_id;
@Column(name = "COMPANY_NAME", nullable = false)
private String company_name;
@Column(name = "PHONE", nullable = false)
private String phone;
@OneToOne
@PrimaryKeyJoinColumn(
name="CUST_ID",
referencedColumnName="CUST_ADDRESS_ID")

private Address address;
public Customer() {
}
public Address getAddress() {

return this.address;
}
public void setAddress(Address address) {

this.address = address;
}

//The other Customer entity setter and getter methods
...
}

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION88

In Listing 4-4, the lines in bold are what you added to the Customer entity code to establish
a one-to-one relationship to the Address entity shown in Listing 4-3 earlier. With that in place,
you can obtain an Address instance corresponding to the Customer instance being used, using
the getAddress method of the latter. On the other hand, you should remember that the
Address entity doesn’t contain any code allowing that entity to reach the Customer entity. That
is, you have no way to obtain a Customer instance corresponding to the Address instance by
using one of the methods of the latter. This is what is called a unidirectional relationship.

Now that you know how to establish a unidirectional relationship between entities, it’s
time to see how you can put these entities into action. Listing 4-5 shows how, by using the
getAddress method of the Customer instance, you might create a Customer instance within the
code of a session bean and then obtain the corresponding Address instance (the import decla-
rations have been removed to save space).

Listing 4-5. Source Code for the CustomerSessionBean Bean That Consumes the Customer Entity

//import declarations
...
@Stateless
public class CustomerSessionBean implements CustomerSession {

@PersistenceUnit(unitName = "jpaplanning-pu")
private EntityManagerFactory emf;
public String getCustomerAddress(Integer cust_id) {

String cust_address;
try {

EntityManager em = emf.createEntityManager();
Customer cust = em.find(Customer.class, cust_id);
cust_address = cust.getAddress().getStreet()+", "+

cust.getAddress().getCity()+", "+
cust.getAddress().getState()+", "+
cust.getAddress().getZipcode();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cust_address;

}
}

As this snippet shows, you obtain the values of the Address instance properties through
the instance of the Customer entity by using the getAddress method of Customer. Note that you
don’t pass any parameters to the getAddress method. This is because the JPA provider knows
what row to select from the billing_addresses underlying table when setting the Address
entity instance, without you specifying any additional information. In particular, the JPA
provider will select the billing_addresses’s record that refers to the customers’s record used
when setting the Customer entity. This can be easily done, since the billing_addresses and
customers underlying tables connected through the primary/foreign keys assume, in this par-
ticular case, a one-to-one relationship.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 89

Finally, you might want to look at the client code that can be used to create an instance of
the CustomerSessionBean bean discussed here and then invoke its getCustomerAddress busi-
ness method, as shown in Listing 4-6.

Listing 4-6. Source Code for the Client Consuming the CustomerSessionBean Bean

package ejbjpa.client;
import javax.ejb.EJB;
import ejbjpa.ejb.CustomerSession;
public class CustomerSessionClient {

@EJB
private static CustomerSession customerSession;
public static void main (String[] args)
{

System.out.println("Billing address of the customer whose id=1 is: "➥
+ customerSession.getCustomerAddress(1));

}
}

Provided that you populated the customers and billing_addresses tables with data as
shown in Listing 4-2 earlier, the client just shown, when executed, should output the following
message:

Billing address of the customer whose id=1 is: 10000 Broadway Street, ➥
San Mateo, CA, 94400

As you might expect, the resultant string contains information taken from both under-
lying tables.

Using Bidirectional Relationships Between Entities
In the preceding example, you use a unidirectional relationship between the Customer and
Address entities. In particular, you define the Address property within the Customer entity,
which refers to the Address entity.

In practice, you may need to establish a bidirectional relationship between these entities.
In that case, you will be able not only to obtain the Address entity instance corresponding to
the Customer entity instance you are dealing with but also to perform a reverse operation—
obtaining the Customer instance from within the corresponding Address instance. Listing 4-7
shows the updated version of the Address entity originally shown in Listing 4-3.

Listing 4-7. Source Code for the Address Entity That Allows You to Obtain the Corresponding
Instance of the Customer Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION90

import javax.persistence.OneToOne;
@Entity
@Table(name = "BILLING_ADDRESSES")
public class Address implements Serializable {

@Id
@Column(name = "CUST_ADDRESS_ID")
private Integer cust_address_id;
@Column(name = "STREET", nullable = false)
private String street;
@Column(name = "CITY", nullable = false)
private String city;
@Column(name = "STATE", nullable = false)
private String state;
@Column(name = "ZIPCODE", nullable = false)
private String zipcode;
@OneToOne(mappedBy="address")
private Customer customer;
public Address() {
}
public Customer getCustomer () {

return this.customer;
}
public void setCustomer(Customer customer) {

this.customer= customer;
}

//The other Address entity setter and getter methods
...
}

Note that with the Address entity shown in the listing you might use the same Customer
entity you saw in Listing 4-4 in the preceding section. In this example, the Address entity rep-
resents the inverse side of the bidirectional relationship, referring to the owning side with the
mappedBy element of the @OneToOne annotation. You also added the customer property with its
setter and getter methods, thus explicitly specifying the owning side of the relationship.

To see the bidirectional relationship discussed here in action, you could modify the
CustomerSessionBean bean as shown in Listing 4-8.

Listing 4-8. Source Code for the CustomerSessionBean Bean That Shows How You Might Use the
Bidirectional One-to-One Relationship Between Entities

//import declarations
...
@Stateless
public class CustomerSessionBean implements CustomerSession {

@PersistenceUnit(unitName = "jpaplanning-pu")
private EntityManagerFactory emf;
public String getCustomerDetails(Integer cust_address_id) {

String cust_details;

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 91

try {
EntityManager em = emf.createEntityManager();
Address addr = em.find(Address.class, cust_address_id);
cust_details = addr.getCustomer().getCompany_name()+", "+

addr.getCustomer().getPhone()+", "+
"address id is "+" "+
addr.getCustomer().getAddress().getCust_address_id();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cust_details;

}
}

In Listing 4-8, pay close attention to the code highlighted in bold. Note that unlike the
example shown in Listing 4-5 in the preceding section, you first obtain the instance of the
Address entity and then get the corresponding instance of Customer through the getCustomer
method of the Address instance.

It is interesting to note that the Customer instance obtained through the getCustomer
method of the Address instance in turn will refer to this same Address instance. So, as the
last line highlighted in bold shows, you can refer to the Address instance properties via the
Customer instance obtained in turn via the Address’s getCustomer method. This is how a
bidirectional relationship works.

Listing 4-9 illustrates how you might put the previously shown CustomerSessionBean bean
into action.

Listing 4-9. Source Code for the Client Consuming the CustomerSessionBean Bean Shown in
Listing 4-8

package ejbjpa.client;
import javax.ejb.EJB;
import ejbjpa.ejb.CustomerSession;
public class CustomerSessionClient {

@EJB
private static CustomerSession customerSession;
public static void main (String[] args)
{

System.out.println("Customer details: "➥
+customerSession.getCustomerDetails(1));

}
}

When executed, the client shown in the listing should output the following message:

Customer details: Fast Express, (650)777-5665, address id is 1

As you can see, like in the preceding example, the resultant string contains information
taken from both underlying tables.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION92

Mapping an Entity to More Than One Table
Taking a closer look at the preceding example, you might find it redundant to have informa-
tion related to a single customer presented in the form of two entities. If you are planning to
use these two entities together in any scenario, you might safely consider combining them
into one.

Consider the updated Customer entity shown in Listing 4-10.

Listing 4-10. Source Code for the Customer Entity Mapped to Two Underlying Tables

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.SecondaryTable;
import javax.persistence.PrimaryKeyJoinColumn;
@Entity
@Table(name = "CUSTOMERS")
@SecondaryTable(name="BILLING_ADDRESSES",
pkJoinColumns=@PrimaryKeyJoinColumn(

name="CUST_ADDRESS_ID",
referencedColumnName="CUST_ID"))

public class Customer implements Serializable {
@Id
@Column(name = "CUST_ID")
private Integer cust_id;
@Column(name = "COMPANY_NAME", nullable = false)
private String company_name;
@Column(name = "PHONE", nullable = false)
private String phone;
@Column(name = "STREET", table="BILLING_ADDRESSES", nullable = false)
private String street;
@Column(name = "CITY", table="BILLING_ADDRESSES", nullable = false)
private String city;
@Column(name = "STATE", table="BILLING_ADDRESSES", nullable = false)
private String state;
@Column(name = "ZIPCODE", table="BILLING_ADDRESSES", nullable = false)
private String zipcode;
public Customer() {
}

//The Customer entity setter and getter methods
...
}

Note the use of the @SecondaryTable annotation, with which you specify the billing_
addresses table to be used as the secondary underlying table for the Customer entity. Next,

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 93

when defining the entity fields derived from the billing_addresses table, you set the table
element of the @Column annotation to BILLING_ADDRESSES, thus explicitly specifying the table
name.

You might wonder what SQL query will be generated by the JPA provider when setting up
an instance of the Customer entity discussed here. Listing 4-11 shows how this query might
look.

Listing 4-11. SQL Query Generated by the JPA Provider to Fill in the Fields of an Instance of the
Customer Entity

SELECT t0.CUST_ID, t1.CUST_ADDRESS_ID, t1.STREET, t1.CITY, t0.PHONE, t1.STATE, ➥
t0.COMPANY_NAME, t1.ZIPCODE FROM CUSTOMERS t0, BILLING_ADDRESSES t1 ➥
WHERE ((t0.CUST_ID = ?) AND (t1. CUST_ADDRESS_ID = t0.CUST_ID))
bind => [1]

As you can see, the previous is a join query over two base tables, namely, customers and
billing_addresses.

In this example, the CustomerSessionBean bean utilizing the Customer entity might look
like the one shown in Listing 4-12.

Listing 4-12. Source Code for the CustomerSessionBean Bean That Shows How You Might Use the
Customer Entity Built Upon Two Underlying Tables

//import declarations
...
@Stateless
public class CustomerSessionBean implements CustomerSession {

@PersistenceUnit(unitName = "jpaplanning-twotables-pu")
private EntityManagerFactory emf;
public String getCustomerDetails(Integer cust_id) {

String cust_details;
try {

EntityManager em = emf.createEntityManager();
Customer cust = em.find(Customer.class, cust_id);
cust_details = cust.getCompany_name()+", "+

cust.getPhone()+", "+
"address is: "+" "+
cust.getStreet()+", "+
cust.getCity()+", "+
cust.getState()+", "+
cust.getZipcode();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cust_details;

}
}

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION94

In this example, you deal only with an instance of the Customer entity, which includes all
the fields of both the customers and billing_addresses tables.

The client invoking the getCustomerDetails method of the CustomerSessionBean bean dis-
cussed here might look like the one shown in Listing 4-9 in the preceding section. This time, it
should output the following message:

Customer details: Fast Express, (650)777-5665, address is: 10000 Broadway ➥
Street, San Mateo, CA, 94400

As you can see, the previous string is composed of the data derived from the fields of the
two related records stored in the customers and billing_addresses tables, respectively.

Mapping an Entity to a Database View
Looking at the query shown in Listing 4-11, you might wonder what would happen if this
query were used as the query for the view upon which the Customer entity would be then built.
Although the example in the preceding section showed how you might map a single entity to
two underlying database tables, the example discussed in this section takes it one step further,
showing how you can map an entity to a database view derived from two or more underlying
tables.

The advantage of this technique is that it allows you to use a view as if it were a single
table. It is interesting to note that you might use the same technique when the base tables
from which the view is derived use a one-to-many relationship. In that case, though, the view
records representing the line items of an order would provide repetitive data, including the
same information related to the order in each record.

Returning to the customers and billing_addresses tables, you start by creating the view
derived from these tables. You can do this as shown in Listing 4-13.

Listing 4-13. Creating the customers_vView Built Upon the customers and billing_addresses
Tables

CREATE VIEW customers_v AS
SELECT c.cust_id, c.company_name, c.phone, a.street, a.city, a.state, a.zipcode
FROM customers c, billing_addresses a
WHERE c.cust_id = a.cust_address_id

After you’ve created the customers_v view, you can build a Customer entity mapped to this
view. Listing 4-14 shows how this entity looks like.

Listing 4-14. Source Code for the Customer Entity Mapped to the customers_vView Built Upon the
customers and billing_addresses Tables

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
@Entity

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 95

@Table(name = "CUSTOMERS_V")
public class Customer implements Serializable {

@Id
@Column(name = "CUST_ID")
private Integer cust_id;
@Column(name = "COMPANY_NAME", nullable = false)
private String company_name;
@Column(name = "PHONE", nullable = false)
private String phone;
@Column(name = "STREET", nullable = false)
private String street;
@Column(name = "CITY", nullable = false)
private String city;
@Column(name = "STATE", nullable = false)
private String state;
@Column(name = "ZIPCODE", nullable = false)
private String zipcode;

public Customer() {
}

//The Customer entity setter and getter methods
...
}

The code line highlighted in bold illustrates the use of the @Table annotation to identify
the name of the database view rather than database table.

Listing 4-15 shows what the CustomerSessionBean bean utilizing the Customer entity might
look like.

Listing 4-15. Source Code for the CustomerSessionBean Bean Utilizing the Customer Entity Built
Upon the customers_vView

//import declarations
...
@Stateless
public class CustomerSessionBean implements CustomerSession {

@PersistenceUnit(unitName = "jpaplanning-view-pu")
private EntityManagerFactory emf;
public String getCustomerDetails(Integer cust_id) {

String cust_details;
try {

EntityManager em = emf.createEntityManager();
Customer cust = em.find(Customer.class, cust_id);
cust_details = cust.getCompany_name()+", "+

cust.getPhone()+", "+
"address is: "+" "+
cust.getStreet()+", "+
cust.getCity()+", "+

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION96

cust.getState()+", "+
cust.getZipcode();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cust_details;

}
}

Again, as in the example from the preceding section, here you deal only with an instance
of the Customer entity that includes all the fields of both the customers and billing_addresses
tables.

To test the CustomerSessionBean bean discussed here, you might use the client code
shown in Listing 4-9 earlier.

Finally, I must issue a word of caution. Although this view-based approach helps simplify
dealing with JPA entities being used to access data derived from multiple database tables, you
need to use it with caution when you are planning to use those entities for updating the data.
The fact is that neither MySQL nor Oracle allows you to update fields from different base
tables within a single UPDATE statement issued against a view. For example, if you issue the
statement shown in Listing 4-16 against the customer_v view discussed here, you will receive
the following error message:

Can not modify more than one base table through a join view

Listing 4-16. An Attempt to Update the Join View Fields Derived from Different Base Tables
Inevitably Leads to Failure When Trying to Do This with a Single UPDATE Statement

UPDATE customer_v
SET phone = '(650)777-5667',
zipcode = '94401';

What this means for the bean code utilizing the entity deriving data from a multitable
view is that you cannot update the entity properties mapped to different base tables within a
single statement.

■Note The default transaction mode used in EJB assumes that a transaction starts when an EJB business
method is invoked and ends when the method execution completes. Utilizing this model, the container does-
n’t perform entity updates immediately, synchronizing the changes made to the database. Rather, it batches
up all the entity updates and executes a single UPDATE statement for each entity at the end of the transac-
tion. Transactions are touched upon briefly in the “Transaction Considerations” section later in this chapter
and are discussed in more detail in Chapter 13.

For example, if you try to invoke the getCustomerDetails method of the
CustomerSessionBean bean updated as shown in Listing 4-17, you will end up with the
error caused by not being able to modify more than one base table through a join view.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 97

Listing 4-17. The CustomerSessionBean Bean Trying to Update the Customer Entity Built Upon the
customers_vView

//import declarations
...
@Stateless
public class CustomerSessionBean implements CustomerSession {

@PersistenceUnit(unitName = "jpaplanning-view-pu")
private EntityManagerFactory emf;
public String getCustomerDetails(Integer cust_id) {

String cust_details;
try {

EntityManager em = emf.createEntityManager();
Customer cust = em.find(Customer.class, cust_id);
cust.setPhone("(650)777-5667");
cust.setZipcode("94401");
cust_details = cust.getCompany_name()+", "+

cust.getPhone()+", "+
"address is: "+" "+
cust.getStreet()+", "+
cust.getCity()+", "+
cust.getState()+", "+
cust.getZipcode();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cust_details;

}
}

As stated earlier, if you try to invoke the getCustomerDetails method shown in the listing,
you will end up with an error. The fact is that the JPA provider when dealing with the previous
code implicitly generates the UPDATE statement shown in Listing 4-16.

However, if you try to perform this update operation with two separate UPDATE statements,
this should work. Listing 4-18 shows how to do this.

Listing 4-18. Updating the Join View Fields Derived from Different Base Tables with Several
UPDATE Statements

UPDATE customer_v
SET phone = '(650)777-5667';

UPDATE customer_v
SET zipcode = '94401';

Listing 4-19 shows how you might make the JPA provider perform two UPDATE statements
shown in Listing 4-18 rather than performing the one shown in Listing 4-16.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION98

Listing 4-19. The CustomerSessionBean Bean Trying to Update the Customer Entity Built Upon the
customers_vView

//import declarations
...
@Stateless
public class CustomerSessionBean implements CustomerSession {

@PersistenceUnit(unitName = "jpaplanning-view-update-pu")
private EntityManagerFactory emf;
public String getCustomerDetails(Integer cust_id) {

String cust_details;
try {

EntityManager em = emf.createEntityManager();
Customer cust = em.find(Customer.class, cust_id);
cust.setPhone("(650)777-5669");
em.flush();
cust.setZipcode("94401");
em.flush();
cust_details = cust.getCompany_name()+", "+

cust.getPhone()+", "+
"address is: "+" "+
cust.getStreet()+", "+
cust.getCity()+", "+
cust.getState()+", "+
cust.getZipcode();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cust_details;

}
}

In this example, after each update of the Customer entity instance, you explicitly tell the
JPA provider to synchronize all the changes made with the database.

Transaction Considerations
Transactions are another important thing to look at when planning your application. What
makes using transactions extremely important in application development is that they make it
possible for multiple applications to concurrently access the same data without compromis-
ing data integrity and consistency. Transactions are discussed in more detail in Chapter 13,
but this section looks at some transaction-related issues to consider when planning your
application.

At the planning stage, you should determine the transactional behavior of the entire
application and each of its components. Even if you’re going to rely on the default transac-
tional behavior of the application components, you should clearly understand the sequence
of the implicit transactions that will take place.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 99

The first question you might ask in planning application transactional behavior is, what
application components will be involved in transaction-related interactions? It is fairly obvi-
ous that transactions can be implemented at the application tiers where business logic
resides. Therefore, as for a Java EE application, transactional code can be implemented at the
business tier and the database tier. Diagrammatically, this might look like Figure 4-5.

Figure 4-5. In a Java EE application, transactional code is implemented at the business logic tier
and database tier.

Using transactions in a Java EE application is best understood by example. Suppose you
run an online bookstore, where customers may order one or more books from those that are
in stock. In a reality, bookstores also let their customers order books that are temporarily out
of stock. In that case, however, the orders placed are shipped in a few weeks, since the book-
store first needs to obtain a copy or copies of the ordered book and then perform the order.
This particular example, though, assumes that customers can place orders only for those
books that are available right now. If a customer tries to place an order for a copy of the book
that is out of stock, then an error is generated, and the transaction is rolled back.

To keep things simple, suppose you store all the information about the books you are
selling in a single table, say, books. Also, you store information about users’ orders in the table
orders.

The next problem is, how do you enforce the integrity rule requiring the values of the
quantity field in the books table to be not less than 0? The solution to this problem has two
approaches.

When creating the books table, you might define a CHECK constraint on the quantity col-
umn. This will restrict insert and update operations issued against the books table to only
those that do not attempt to set the quantity field to something less than 0. Although this
approach is a good example of using database features when implementing the business logic
of your application, you won’t be able to enjoy it in MySQL (at least not in MySQL 5.1). The
MySQL documentation says unambiguously that although the CHECK clause in the CREATE
TABLE statement is parsed, all storage engines ignore it.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION100

The second approach is based on using a BEFORE UPDATE trigger defined on the books table
to prevent the updates that modify the quantity field to become a negative integer. Unlike the
preceding approach, this one can be used in both MySQL and Oracle. However, the imple-
mentation of the trigger will differ radically, depending on the database platform.

■Note In addition, you might implement validation in the presentation tier, utilizing client-side validation.
The advantage of this approach is that it allows your application to immediately block bad input, without
having to check it with the underlying database.

Figure 4-6 gives a graphical depiction of the second approach, the one based on using a
BEFORE UPDATE trigger defined on the books table.

Figure 4-6. By default, a transaction starts when an enterprise bean business method is invoked
and ends on a return from this method.

In this example, you implement the functionality related to placing an order in the
placeOrder method of an enterprise bean. In this method, you first create an instance of the
order entity, setting its fields to the data derived from the order being placed. Then, you obtain
an instance of the book entity, deriving the data from the books table’s record whose quantity
field must be modified to correspond to the changes in the number of available book copies.
You change the quantity field of the book entity instance, reducing the number of available
copies for the book by the number of book copies specified in the order.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 101

So, to make a long story short, you have to complete two operations in this example. In
particular, you have to create an order and modify the number of available in-stock copies,
completing both of these operations in a single transaction. This means either both of these
operations or none should take place.

As you will learn in Chapter 13, when developing an enterprise bean, you can choose
between the container-managed transaction (CMT) and bean-managed transaction (BMT)
transaction models. The CMT model is used by default and assumes that a transaction starts
when an enterprise bean business method is invoked and ends on return from this method. In
the example discussed here, you employ a CMT model, assuming that the container automati-
cally starts a transaction when the placeOrder business method is invoked. If no error occurs
during execution of the method, the transaction is committed. Otherwise, it is rolled back.

Figure 4-6 shown earlier illustrates that the code of the placeOrder business method con-
sidered among the business logic tier implicitly uses the SQL statements generated by the JPA
provider at the persistence tier. And one of these statements, namely, UPDATE, invokes a trigger
implemented in the database tier. While the process of generating the underlying SQL state-
ments is implicitly performed by the JPA provider without you doing a thing, and supposedly
without any error, the execution of these statements, including execution of the trigger that
takes place at the database tier, may result in an error, of course.

For example, the placeOrder method has been invoked to place an order with which
someone tries to purchase a copy of the book that is currently out of stock. If so, the BEFORE
UPDATE trigger defined on the books table should generate an error, causing the transaction
started upon the method execution to be rolled back. If this happens, then the changes made
by the preceding INSERT statement will be disregarded, thus preventing the record represent-
ing an improper order from inserting into the underlying orders table.

■Note So, if an error occurs at the database tier, the entire transaction started at the business logic tier
will be rolled back by default. You have more choices, though, when using the BMT transaction model men-
tioned earlier. This model allows you to explicitly decide when to start or stop transactions within a business
method of an enterprise bean. You will look at examples of using the BMT model in Chapter 13 of this book.

Now let’s look at how you might implement the previous example. You start by creating
the books and orders tables, as shown in Listing 4-20.

Listing 4-20. Creating the books and orders Tables

CREATE TABLE books(
isbn VARCHAR(20) PRIMARY KEY,
title VARCHAR(150),
author VARCHAR(150),
quantity INTEGER,
price NUMERIC(8,2)

);

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION102

CREATE TABLE orders(
pono INTEGER PRIMARY KEY,
cust_id INTEGER,
book_id VARCHAR(20),
units INTEGER,
FOREIGN KEY(cust_id) REFERENCES customers(cust_id),
FOREIGN KEY(book_id) REFERENCES books(isbn)

);

The INSERT statement in Listing 4-21 illustrates how you might populate the books table
with data.

Listing 4-21. Populating the books Table with Data

INSERT INTO books VALUES('1430209631', 'Beginning GlassFish TopLink: ➥
From Novice to Professional', 'Yuli Vasiliev', 1, 44.99);

In this example, you set the number of available copies for the book you’re reading now to
1. You don’t need to worry about populating the orders table with data at this stage, because it
should be done later with the placeOrder business method of the orderSessionBean enterprise
bean.

The next step in building the sample is to define the BEFORE UPDATE trigger on the books
table. As stated earlier, there are some differences between trigger implementations in MySQL
and Oracle. First, let’s look at how things work in MySQL.

Before you can create a trigger, you need to grant the TRIGGER privilege for the table on
which you want to create the trigger. Or you can grant that privilege for the entire database to
the user. To do this, you need to connect as root and then issue the statement shown here:

GRANT TRIGGER ON mydb.* TO 'usr'@'localhost'

With that done, you can reconnect as usr and create the BEFORE UPDATE trigger on the
books table, as shown in Listing 4-22.

Listing 4-22. Creating the BEFORE UPDATE Trigger on the books Table, Which Won’t Change the
Quantity Field If Its New Value Less Than 0

use mydb
delimiter //
CREATE TRIGGER newquantity BEFORE UPDATE ON books
FOR EACH ROW
BEGIN
DECLARE x INT;
DECLARE EXIT HANDLER FOR NOT FOUND SET NEW.quantity = OLD.quantity;
IF NEW.quantity<0 THEN
SELECT 1 INTO x FROM dual WHERE 1=0;
END IF;
END;
//
delimiter ;

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 103

The idea behind this implementation is very straightforward. If the new value for the
quantity field of the record being updated is less than 0, you perform a SELECT statement that
definitely returns no rows, thus causing the NOT FOUND SQL condition. To handle that condi-
tion, you define the handler that sets the quantity field to its original value and terminates the
trigger execution.

The problem with the BEFORE UPDATE trigger shown in Listing 4-22 is that it doesn’t actu-
ally cause an error when you try to set the quantity field to a negative integer. Rather, it
prevents such an update from taking place. The following example illustrates this in action.
Provided that you’ve populated the books table with data as shown in Listing 4-21 earlier in
this section, you might now issue the following UPDATE statement:

UPDATE books
SET quantity=quantity -2
WHERE isbn ='1430209631';

Looking at the message generated by the server, you may notice that the previous state-
ment affected no row despite that one row matched the selection criteria.

Query OK, 0 rows affected (0.00 sec)
Rows matched: 1 Changed: 0 Warnings 0

But what is really worth your attention here is that the previous UPDATE statement doesn’t
result in an error. As you may notice, even a warning was not issued.

Things like that should be always noted at the planning stage. At first glance, it looks like
the BEFORE UPDATE trigger shown in Listing 4-22 serves the purpose very well—it prevents
improper update operations from taking place. From the point of view of transactional behav-
ior, though, it turns out that this trigger will not cause an error forcing the transaction within
which it is executed to be rolled back.

Put simply, the BEFORE UPDATE trigger shown in Listing 4-22 is not the best way to go in the
example discussed here. What you really need here is the BEFORE UPDATE trigger that ends up
with an error each time you try to update a row in the books table, when setting the quantity
field of that row to a negative integer. So, you can drop the trigger you have as follows:

DROP TRIGGER newquantity;

Then, you can create the updated trigger as shown in Listing 4-23.

Listing 4-23. Creating the BEFORE UPDATE Trigger on the books Table, Which Causes an Error If the
New Value of the quantity Field Is Less Than 0

delimiter //
CREATE TRIGGER newquantity BEFORE UPDATE ON books
FOR EACH ROW
BEGIN
IF NEW.quantity<0 THEN
INSERT INTO books VALUES();
END IF;
END;
//
delimiter ;

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION104

This time, when attempting to set the quantity field to a negative integer, you simply
issue a statement that always results in an error, inevitably forcing the transaction within
which the UPDATE statement has been issued to be rolled back. For example, you might issue
the following statement:

UPDATE books
SET quantity=quantity -2
WHERE isbn ='1430209631';

This should result in the following error:

ERROR 1364 (HY000): Field 'isbn' doesn't have a default value

As you might guess, this error occurred because you tried to insert a row into the books
table in the trigger, specifying actually no data to be inserted. In fact, it doesn’t matter what
error will occur and how you achieve this. What really matters is that the trigger execution is
terminated with an error.

When examining Listing 4-22 and Listing 4-23, which contain the code for the BEFORE
UPDATE trigger, you might notice that building triggers in MySQL is a bit tricky. Triggers as well
as stored procedures are new MySQL features that first appeared in MySQL 5.0 and, of course,
are not perfect yet.

Now let’s look at how you might create the BEFORE UPDATE trigger for the books table in
Oracle, similar to the one in Listing 4-23. Before you can do that, you must grant the CREATE
TRIGGER privilege to the usr schema. Just connect /as sysdba to Oracle and then issue the fol-
lowing statement:

GRANT CREATE TRIGGER TO usr

With that done, you can reconnect as the usr user and create the BEFORE UPDATE trigger on
the books table, as shown in Listing 4-24.

Listing 4-24. Creating the BEFORE UPDATE Trigger on the books Table in Oracle, Which Generates
an Error If the New Value of the quantity Field Is Less Than 0

CREATE OR REPLACE TRIGGER newquantity
BEFORE INSERT OR UPDATE ON books
FOR EACH ROW
WHEN (new.quantity < 0)
BEGIN
RAISE_APPLICATION_ERROR(-20001, 'Improper quantity');
END;
/

As you can see, unlike MySQL, Oracle allows you to explicitly raise a user-defined excep-
tion, which, nevertheless, brings the trigger to the point of failure. Note the use of the WHEN
clause, which instructs the database to fire the trigger only if the specified condition is satis-
fied. In this particular example, the condition specified in the WHEN clause is used to ensure
that the trigger will fire only when attempting to insert or update the record whose new
quantity value is less than 0. To make sure everything works as expected, you can issue the
following UPDATE statement:

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 105

UPDATE books
SET quantity=quantity -2
WHERE isbn ='1430209631';

This should result in the following error:

ERROR at line 2:
ORA-20001: Improper quantity
ORA-06512: at "USR.NEWQUANTITY", line 2
ORA-04088: error during execution of trigger 'USR.NEWQUANTITY'

Now that you have seen how to implement the newquantity BEFORE UPDATE trigger defined
on the books table, it’s time to look at the components implemented in the persistence and
business logic tiers. To start with, let’s look at the Order and Book entities defined upon the
orders and books tables, respectively. Listing 4-25 shows what the Order entity might look like.

Listing 4-25. Source Code for the Order Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@Id
@Column(name = "PONO")
private Integer pono;
@Column(name = "CUST_ID", nullable = false)
private Integer cust_id;
@Column(name = "UNITS", nullable = false)
private Integer units;
@ManyToOne
@JoinColumn(
name="BOOK_ID",
referencedColumnName="ISBN")

private Book book;
public Order() {
}
public Book getBook() {

return this.book;
}
public void setBook(Book book) {

this.book = book;
}

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION106

//The other setter and getter methods of the Order entity
...
}

Looking at the code in the listing, you may notice that the Order entity contains no speci-
fication for the book_id column presented in the underlying orders table nevertheless. You
don’t need that specification here because book_id is the foreign key column through which
you establish a many-to-one relationship with the Book entity. To achieve this, you use the
@ManyToOne and @JoinColumn annotations highlighted in bold.

Following this pattern, you might also remove the specification for the cust_id column
that is the foreign key referencing the primary key column in the customers table, thus
establishing a many-to-one relationship between the Order and Customer entities with the
@ManyToOne and @JoinColumn annotations, like you do with the Order and Book entities.

■Note In practice, you may deal with tables that have a few foreign key columns referencing a number of
different tables. When creating JPA entities upon such tables, you have to include a lot of annotations such
as @ManyToOne, @OneToMany, and @JoinColumn, which are required for establishing relationships between
entities. As a result, the source code for those entities may grow quite large. One possible way to solve this
problem is to reduce the number of entities being used by your application, moving some business logic
into the database. You will see an example on how this can be implemented in the next chapter in the
“Implementing Some Business Logic of an Application Inside the Database” section.

Listing 4-26 shows the Book entity to which you establish a many-to-one relationship in
the Order entity.

Listing 4-26. Source Code for the Book Entity

package ejbjpa.entities;
import java.util.List;
import javax.persistence.CascadeType;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.OneToMany;
@Entity
@Table(name = "BOOKS")
public class Book implements Serializable {

@Id
@Column(name = "ISBN")
private String isbn;
@Column(name = "TITLE", nullable = false)
private String title;
@Column(name = "AUTHOR", nullable = false)

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 107

private String author;
@Column(name = "PRICE", nullable = false)
private Double price;
@Column(name = "QUANTITY", nullable = false)
private Integer quantity;
@OneToMany(mappedBy="book", cascade = CascadeType.ALL)
private List<Order> orders;
public List<Order> getOrders(){

return orders;
}
public void setOrders(List<Order> orders) {

this.orders = orders;
}
public Book() {
}

//The Book entity setter and getter methods
...
}

As far as a bidirectional relationship is concerned, you use the @OneToMany annotation
in the Book entity shown in the listing to establish a relation with the Order entity shown in
Listing 4-25 earlier.

Now that you have seen the components being used in the persistence tier, let’s look at
the business logic tier. Listing 4-27 shows what the OrderSessionBean enterprise bean might
look like. In the listing, take a close look at the placeOrder business method of the enterprise
bean, whose invocation starts the transaction within which the newquantity trigger discussed
earlier in this section may fire.

Listing 4-27. Source Code for the OrderSessionBean Enterprise Bean

//import declarations
...
@Stateless
public class OrderSessionBean implements OrderSession {

@PersistenceUnit(unitName = "order-pu")
private EntityManagerFactory emf;
public void placeOrder(Integer pono,

Integer cust_id,
Integer units,
String book_id) {

try {
EntityManager em = emf.createEntityManager();
Book book = (Book) em.find(Book.class, book_id);
Order order = new Order();
order.setPono(pono);
order.setCust_id(cust_id);
order.setUnits(units);
book.setQuantity(book.getQuantity()-units);

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION108

order.setBook(book);
em.persist(order);

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
}

}

The most interesting code in this listing is highlighted in bold. First, you find the book
record of interest using the find method of the EntityManager instance created in this method
earlier. Next, you create an instance of the Order entity and set its cust_id and units fields to
the values of the respective arguments passed to the placeOrder method discussed here. You
also calculate the new value for the quantity field of the Book entity instance, subtracting the
number of units to which you set the units field of the Order entity instance from the current
value of the quantity field. Then, you use the setBook method to set the book field of order.
Finally, you persist the order instance using the persist method of the EntityManager instance.

It is interesting to note here that although you explicitly persist only the order instance,
the changes made to the book instance will be stored to the database as well. If you recall
from Listing 4-26, when defining the Book entity, you set cascade = CascadeType.ALL in the
@OneToMany annotation that is used to establish a relationship to the Order entity. This means
every time an instance of the Order entity is persisted to the database, the related instance of
the Book entity is also persisted. Behind the scenes, as you might recall from Figure 4-6, the JPA
provider issues the two SQL statements, namely, INSERT that is issued against the orders table
and UPDATE issued against the books table. You don’t need to worry about the order in which
these statements will be issued, since they are both performed in a single transaction. If one of
these statements fails, the changes made by the other will be automatically disregarded.

Now let’s look at the client that might be used to invoke the placeOrder method. For the
sake of simplicity, like in all the preceding examples, the client shown in Listing 4-28 is a ter-
minal client that you will launch from your operating system prompt.

Listing 4-28. Source Code for the Client That Might Be Used to Test the OrderSessionBean
Enterprise Bean Shown in Listing 4-27

package ejbjpa.client;
import javax.ejb.EJB;
import ejbjpa.ejb.OrderSession;
public class OrderSessionClient {

@EJB
private static OrderSession orderSession;
public static void main (String[] args)
{

Integer pono = Integer.parseInt(args[0]);
Integer cust_id = Integer.parseInt(args[1]);
Integer units = Integer.parseInt(args[2]);
String book_id = args[3];
orderSession.placeOrder(pono, cust_id, units, book_id);

}
}

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 109

Examining the code in this listing, you may notice that this client assumes you will specify
the parameters of the order being processed as the input arguments of the client’s main method.
As you might guess from the code, the order in which the arguments should be specified when
invoking the client matters. Here is the proper order: pono, cust_id, units, book_id.

Now, assuming you packed the application in the transactions-planning.jar archive,
you might issue the appclient command from a terminal window, specifying the main method
parameters as follows:

appclient -client transactions-planning.jar 1 1 1 1430209631

■Note This example illustrates an interesting use of the GlassFish’s appclient command. You provide the
input arguments for the client’s main method, adding them to the end of the command line with which you
invoke the client.

The previous command runs the client that invokes the placeOrder business method,
passing the parameters specified in the prompt. This particular invocation should result
in persisting the order whose pono is 1, cust_id is 1, units is 1, and book_id is 1430209631.
Also, the books table will be modified, reducing the quantity of available copies for the book
included in the order by the number of units specified (by 1, in this example). To make sure
this has been done correctly, you can issue the following two queries, shown with the output:

SELECT * FROM orders;

pono cust_id book_id units
1 1 1430209631 1

SELECT * FROM books;

isbn title author quantity price
1430209631 Beginning GlassFish Yuli Vasiliev 0 44.99

The result generated by the first query shows that a new record appeared in the orders
table. The second query shows you that the value of the quantity field in the record from the
books table has changed and is set to 0. This means that both operations, namely, the insert
into the orders table and update of the books table, have been successfully completed.

Now, you might try to insert another record into the orders table by issuing the following
command:

appclient -client transactions-planning.jar 2 1 1 1430209631

Although in the previous command you change the value for the pono field in order to
avoid the primary key constraint violation, this will end up with an error anyway. The reason
for this is that the value of the quantity field in the record representing the book specified in
the order is 0, meaning the item is out of stock at the moment. In this case, the UPDATE opera-
tion implicitly issued by the JPA provider against the books table is attempting to change the

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION110

preceding quantity field to a negative integer, which leads to an error generated by the BEFORE
UPDATE trigger defined on the books table, as discussed earlier. As a result, both operations, the
insert into the orders table and the update of the books table, are rolled back.

The sample you looked at in this section should give you a clear idea of what you’re facing
when planning the transactional behavior of your Java EE application. In particular, you
learned that although a transaction typically starts and ends with the code implemented at
the business logic tier, the underlying SQL statements and triggers executed at the database
tier affect profoundly whether the transaction is committed or rolled back.

Planning for Security
Applications that manipulate sensitive information need to be protected. It is important to
plan a strategy for security from the beginning, at the planning stage. In particular, you should
choose the security model that suits you best. As you will learn in Chapter 12, when develop-
ing a Java EE application, you can employ declarative or programmatic security in the
business logic tier.

In reality, though, it is often a good idea to implement security not only in the business
logic tier but also in the other tiers of your application. For example, when planning an appli-
cation that will heavily access and/or manipulate database data, it is wise to think about
implementing security in the database tier in addition to implementing security measures in
the business logic tier.

Before you start planning security at the database level, you need to understand that
database security is based on the permissions you grant to user accounts. Therefore, it is
always a good idea to give users only those permissions that they need to accomplish their
tasks—not less, not more. Again, this is best understood by example.

Taking a closer look at the example discussed in the preceding section, you might notice
that using the Book entity was not actually a necessity and in fact poses a security risk because
it makes it possible to modify the data stored in the books table from within the business logic
tier.

The simplest solution to this problem is to move some business logic implemented in the
placeOrder business method of the OrderSessionBean enterprise bean shown in Listing 4-27
earlier into the database so that reducing the number of available book copies by modifying
the books table takes place inside the database, thus making the Book entity unnecessary. You
will see how to do this in the next chapter in the “Implementing Some Business Logic of an
Application Inside the Database” section.

From a security standpoint, though, removing the Book entity from the project doesn’t
make things much better. The problem is that the books table still can be modified from within
the business logic tier with the help of a SQL statement issued against that table directly.

■Note As you will learn in Chapter 11, using entities is recommended but not the only way in which you
can access and manipulate database data from within enterprise beans. Alternatively, you can always issue
a native SQL query.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 111

A good solution to this problem is to create another user account in the database through
which your application will interact with the database.

Returning to the example from the preceding section, you might create the sec_usr
account and grant it the privileges only to the orders table. Although the newly created
sec_usr account will be used by the application to connect to the database, the database
administrator (DBA) will still use the usr account to manipulate database data and metadata
as required.

Provided that the books table will be automatically updated from within the BEFORE
INSERT trigger defined on the orders table every time you insert a new record into that table,
you don’t have to grant any privilege to the books table to the sec_usr account. The details of
how to implement this BEFORE INSERT trigger will be discussed in the next chapter in the
“Implementing Some Business Logic of an Application Inside the Database” section. In this
section, however, let’s look at a more comprehensive and general example that shows how you
might implement security at the database level.

Suppose your application needs only to access some columns in the orders and books
tables. Following the least privilege pattern, you should give the sec_usr account (the one the
application server will use to connect to the database) only those permissions that enable
your application to access the needed columns in the previous tables and nothing more. So,
what you need to do here is to implement a mechanism that provides column-level access
control over the orders and books tables.

This is where a view built upon these tables comes in handy. The trick is to include in the
view’s query only the needed columns from the underlying tables and then grant the sec_usr
account only the SELECT privilege on this view, while not granting this account any access priv-
ilege to the orders or books table. Diagrammatically, this might look like Figure 4-7.

Figure 4-7. The application server interacts with the database via the sec_usr account that can
see only the orders_v view. The DBA can still use the usr account to manipulate database data
and metadata as required.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION112

Now, let’s look at how you might implement this in MySQL. The following commands
assume you’re using the MySQL command-line tool. To start with, you connect to the MySQL
server as usr from your operating system prompt:

mysql -u usr -p
Enter password: ****

Next, you create the orders_v view in the mydb database:

use mydb
CREATE VIEW orders_v AS
SELECT o.pono, b.title, o.units FROM orders o, books b WHERE o.book_id=b.isbn;

To make sure everything works as expected, you can issue a SELECT statement against the
newly created view:

SELECT * FROM orders_v;

This should generate the following output:

pono title units
1 Beginning GlassFish ... 1

Now you should exit the MySQL command-line tool and then reconnect as root:

mysql -u root -p
Enter password: ****

After this, you can create the sec_usr account and grant it the SELECT privilege on the
orders_v view with the help of the following statement:

GRANT SELECT
ON mydb.orders_v
TO 'sec_usr'@'localhost'
IDENTIFIED BY 'pswd';

Then, you exit the MySQL command-line tool and reconnect as sec_usr:

mysql -u sec_usr -p
Enter password: ****

Now, if you issue a SELECT statement against the orders_v view as follows:

use mydb
SELECT * FROM orders_v;

you should receive the following output:

pono title units
1 Beginning GlassFish ... 1

However, if you try to issue a SELECT statement against the orders or books table directly,
say, like this:

SELECT * FROM orders;

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 113

you will see the following error message:

ERROR 1142 (42000): SELECT command denied to user 'sec__usr'@'localhost' ➥
for table 'orders'

The most interesting thing about this approach is that it allows the user to selectively
access fields of the underlying tables, keeping that user from being able to access the other
fields of those tables. In this particular example, you create the view through which an appli-
cation will be able to access only three fields from the underlying orders or books table.

Now, let’s look at how the previous sample might be implemented in Oracle. Oracle,
unlike MySQL, automatically assigns a working area for a new user account. So, if you connect
as usr, then everything you create in the database will, by default, belong to this schema.

To execute the statements discussed next, you will need a SQL command-line tool inter-
acting with Oracle, such as Oracle SQL*Plus. You can start by connecting as usr and then
creating the orders_v view upon the orders or books table in the same way you would in
MySQL:

CONN usr/pswd

CREATE VIEW orders_v AS
SELECT o.pono, b.title, o.units FROM orders o, books b WHERE o.book_id=b.isbn;

Then, you need to reconnect as sysdba and create the sec_usr account, to which you
grant the SELECT privilege on the usr.orders_v view just created in the usr schema:

CONN /as sysdba

CREATE USER sec_usr
IDENTIFIED BY pswd;
GRANT connect, resource TO sec_usr;

GRANT SELECT ON usr.orders_v
TO sec_usr;

Now you can connect as sec_usr and then issue a SELECT query against the orders_v view:

CONN sec_usr/pswd

SELECT * FROM usr.orders_v;

As a result, you should see the same output you saw in the MySQL example discussed a
bit earlier:

pono title units
1 Beginning GlassFish ... 1

As in MySQL, if you try to query an underlying table, connected as sec_usr, you will
receive an error message. In Oracle, this error message might look like the following:

ERROR at line 1:
ORA-00942: table or view does not exist

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION114

The example provided in this section should have given you a taste of what database-level
security is and how this can be implemented. Of course, it is impossible for a single section to
cover all the security features your database may offer you. The main purpose of this section,
though, is to show you that it is always a good idea to implement some security measures at
the database level, where the data resides. Another important conclusion you can draw is that
it is a necessity to spend some time thinking about security during the planning stage, rather
than trying to incorporate security measures afterward.

XML Deployment Descriptors vs. Annotations
Prior to Java EE 5, you had to use XML deployment descriptors describing the metadata for an
application, a component, or a module. One of the significant improvements the Java EE 5
platform offers is that XML deployment descriptors are now optional. Instead, you can use
annotations that are inserted directly into your Java code, associating metadata with program
components.

This section briefly explains when you might prefer using deployment descriptors to
annotations and gives an example of how you might replace annotations with deployment
descriptors.

■Note It is important to understand that you can use both annotations and deployment descriptors within
the same project simultaneously. Almost all the samples discussed so far used both of these approaches. For
example, in each sample interacting with a database, you used the persistence.xml descriptor file defin-
ing a persistence unit being utilized in the application. Also, you used the application.xml deployment
descriptor in which you included information about modules utilized within the application. To describe the
other metadata, you used annotations, such as @Entity, @Table, @EJB, and many others.

Now that you have two choices when it comes to defining metadata in your Java EE appli-
cation, you should consider the pros and cons for both approaches, taking into account the
specifics of a particular project.

Annotations are built on the idea that metadata can be more intuitive and vivid. You
embed annotations in your Java code, providing the application server with the required con-
figuration information and leaving the actual work of creating deployment descriptors to the
application server.

However, many developers think that keeping configuration data apart from the code is a
good design practice. Figure 4-8 depicts these two approaches to providing configuration
information when developing a Java EE component.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 115

Figure 4-8. When developing a Java EE component, you provide configuration information using
annotations or deployment descriptors.

At first glance, it seems that using annotations can improve productivity and reduce
development time, since annotations are intuitive to use and allow the developer to keep the
code and configuration data in one place, thus reducing the number of project files. You might
be surprised to learn, however, that annotations are best used only in small to middle-sized
projects. Large projects require more granularity. In such projects, manageability is the chal-
lenge; therefore, keeping the metadata apart from the code is typically a requirement. Not
following this rule can lead to a poorly designed solutions, reducing scalability, maintainabil-
ity, and component reusability.

So, it is always a good idea to decide at the planning stage whether to use annotations,
deployment descriptors, or a mix in your project.

■Note It is interesting to note that annotations can be overridden with deployment descriptors. This
approach is not recommended, though, since duplicating configuration information is wasteful and pretty
error-prone.

By now, you have seen a lot of examples of how to define a session bean using annota-
tions. In particular, you saw how to define stateless session beans implementing a remote
interface with the help of the @Stateless and @Remote annotations used in the class and busi-
ness interface of a bean, respectively. In the OrderSessionBean bean shown in Listing 4-27 (in
the “Transaction Considerations” section earlier), you also saw the @PersistenceUnit annota-
tion in action.

Returning to the example discussed in the “Transaction Considerations” section, let’s look
at how the OrderSessionBean bean might be implemented with no annotations. Listing 4-29
shows how you can implement the business interface for the OrderSessionBean bean without

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION116

using annotations (annotations are still included but have been commented out and high-
lighted in bold for clarity).

Listing 4-29. The Business Interface for the OrderSessionBean Bean Without Using Annotations

package ejbjpa.ejb;
//import javax.ejb.Remote;
//@Remote
public interface OrderSession {

public void placeOrder(Integer pono,
Integer cust_id,
Integer units,
String book_id);

}

In the same way, you can remove the annotations from the OrderSessionBean bean class.
Listing 4-30 shows the updated bean’s code, with annotations commented out.

Listing 4-30. A Snippet of the OrderSessionBean Enterprise Bean Originally Shown in
Listing 4-27, with No Annotations This Time

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
//import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
//import javax.persistence.PersistenceUnit;
import ejbjpa.entities.*;
//@Stateless
public class OrderSessionBean implements OrderSession {
// @PersistenceUnit(unitName = "order-pu")

private EntityManagerFactory emf;
public void placeOrder(Integer pono,

Integer cust_id,
Integer units,
String book_id)

{
//the placeOrder method code

...
}

}

Examining the code in the previous two listings, you may notice that removing annota-
tions made the OrderSessionBean bean more flexible. Now you won’t need to change the
source code if you want to use the bean with a local interface, employ it as a stateful bean, or
utilize another persistence unit. However, since the configuration data has been removed
from the code, the following question arises: where can all this specification information can
be found now? The answer is, in the deployment descriptor describing the OrderSessionBean

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 117

bean. Listing 4-31 shows what the ejb-jar.xml deployment descriptor describing
OrderSessionBean might look like.

Listing 4-31. Source Code for the ejb-jar.xml Deployment Descriptor Describing the
OrderSessionBean Enterprise Bean Shown in Listing 4-30

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
metadata-complete="true" version="3.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
<enterprise-beans>
<session>
<display-name>OrderSessionBean</display-name>
<ejb-name>OrderSessionBean</ejb-name>
<business-remote>ejbjpa.ejb.OrderSession</business-remote>
<ejb-class>ejbjpa.ejb.OrderSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<persistence-unit-ref>
<persistence-unit-ref-name>ejbjpa.ejb.OrderSessionBean/emf➥

</persistence-unit-ref-name>
<persistence-unit-name>order-pu</persistence-unit-name>
<injection-target>
<injection-target-class>ejbjpa.ejb.OrderSessionBean➥

</injection-target-class>
<injection-target-name>emf</injection-target-name>

</injection-target>
</persistence-unit-ref>
<security-identity>
<use-caller-identity/>

</security-identity>
</session>

</enterprise-beans>
</ejb-jar>

Looking at this listing, you may not like the idea of replacing annotations with deploy-
ment descriptors. As you might guess, writing deployment descriptors takes more time and
energy than dealing with annotations. As the previous listing shows, writing descriptors by
hand may be extremely tedious and very error-prone.

The best way to start learning deployment descriptors is to look at the ones generated by
your application server. The application server automatically generates the deployment
descriptors that will actually be used at runtime, when you’re deploying your Java EE compo-
nent to that server, assuming that all the configuration information has been specified with
annotations. In particular, you should examine the glassfish_dir/domains/domain1/
generated/xml/j2ee-modules/your_ejb_name/ META-INF directory to find the deployment
descriptors generated by the container when you deployed your bean.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION118

In other words, this approach assumes you first utilize annotations in the Java code of
your component. Then, you deploy the component to the application server, making the latter
generate the deployment descriptors based on the data specified with annotations. Finally,
you can return to your component and remove the annotations from the source code, includ-
ing the generated deployment descriptors to the deployment archive instead.

This approach generally takes away the need for you to write deployment descriptors by
hand and may be especially helpful if you’re new to XML in general and deployment descrip-
tors in particular. The downside is that you need to compile and deploy your component
twice—first with annotations and then with deployment descriptors.

Returning to the ejb-jar.xml deployment descriptor shown in Listing 4-31, you will prob-
ably not be surprised to learn that this one was generated by the application server when
deploying the OrderSessionBean bean shown in Listing 4-27 in the “Transaction Considera-
tions” section earlier in this chapter. Including this ejb-jar.xml file into the META-INF directory
of the bean’s deployment archive makes it possible for you to completely remove annotations
from the OrderSessionBean bean’s source, as you did in Listing 4-29 and Listing 4-30 earlier in
this section.

A good example of when you might prefer using deployment descriptors to annotations is
when developing JPA entities. If you recall from the “Planning JPA Entities” section, the source
code for an entity may grow quite large if you include annotations required for establishing
relationships with related entities. This is where moving the configuration information from
annotations to deployment descriptors may come in very handy. You will see an example of
how this can be accomplished in Chapter 9 later in this book.

However, for the time being, that concludes this brief discussion on the pros and cons of
using annotations and XML deployment descriptors. After reading this section, you should
realize that although using annotations, a new Java EE 5 feature, makes the process of devel-
oping Java EE components easier, this approach may even increase the complexity when it
comes to large projects. This is because mixing source code with configuration data reduces
the flexibility, scalability, and reusability of application components—things that cannot be
ignored in large projects. In contrast, the approach based on deployment descriptors, while
not obvious and may require more expertise, lets you reconfigure your Java EE component
without touching the original source, which is particularly welcome in real-world projects.

Application Organization and Reuse
Now that you have some understanding of the structure of a typical Java EE application and
have looked at some common issues to consider at the application planning stage, it’s time to
move on and look at how you can organize your Java EE solution.

Collecting Information
Admittedly, planning any application begins with collecting information. Although in reality
the planning stage actually starts with a discussion between the developer responsible for the
application planning and the business decision maker and/or some other people who are
interested in the application, our discussion here assumes that you, as the developer responsi-
ble for planning, already know what potential users expect from the application.

Before you move on to drawing up a plan of what exactly has to be done at the develop-
ment phase, you need to collect some information on what you already have, what is missing,

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 119

and what has to be done to complete the project. In particular, you need to consider the
answers to the following questions:

• Is the underlying database already in place, or are you going to generate a new one
from scratch?

• What Java EE components are already in use, and which of those might be reused in
your application?

• What Java EE components are missing and need to be built from scratch?

The answers to these questions help you determine what you can reconfigure and then
reuse in your application and what has to be built from scratch.

For example, you may already have the underlying database upon which you need to
build your application. In practice, this is often the case when your application works with the
database structures also utilized by some other applications.

It is important to understand here that the presence of the underlying database doesn’t
automatically mean you have the database tier ready to be used. You may need to do a lot of
work on the database side before it is actually ready to be utilized within your application. If
you recall from the earlier sections, you may need to create views and triggers and even define
new database schemas in the underlying database when implementing the database tier of
your application. Sometimes, however, modifying the preexisting database is not an option.
If this is the case, you will end up with a more complicated entity structure and Java code.

Another issue that may arise if you’re dealing with an already existing underlying data-
base is how to learn the exact structure of the database objects being utilized within the
application. For example, you have to know for sure the structure of the underlying database
tables upon which you want to build JPA entities. Moreover, you need to have all the informa-
tion about the primary/foreign key pairs in the underlying tables to establish the relationships
between the entities you build on those tables.

Suppose you know that all the database objects your application will work with are
located in the database schema named usr. The problem is that you don’t know for sure what
tables and views this schema contains. To find out this, in MySQL you might use the SHOW
TABLES statement, which will output the names of both the tables and views belonging to a
certain database. For example, if you connect to the MySQL command-line tool as usr and
then issue the following commands:

use mydb
SHOW TABLES;

you might receive the following output:

Tables_in_mydb

billing_addresses
books
customers
customers_v
employees
orders
orders_v

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION120

Now that you know what tables and views are in your database, how can you view the
structure of those tables and views? The simplest way to look at the structure of a table or view
is with the DESCRIBE command. For example, to look at the structure of the orders table, you
can issue the following command:

DESCRIBE orders;

The output of the previous command should tell you the columns’ names in the orders
table, their types, whether nulls are allowed, whether the column is indexed, and the column’s
default value. However, it doesn’t tell you what columns are foreign keys in the table and what
corresponding primary key tables are.

To find out this, you might use the SHOW CREATE TABLE statement. So, by issuing the fol-
lowing command, you can obtain not only names and types of the orders table but also the
foreign keys defined on this table:

SHOW CREATE TABLE orders;

The output of the previous command should look much like the CREATE TABLE orders
statement shown in Listing 4-20 earlier in this chapter.

In Oracle, to look through the list of tables and views belonging to the usr schema, you
might issue the following statement, being connected as sysdba:

SELECT object_name FROM dba_objects ➥
WHERE owner ='USR' AND (object_type='TABLE' OR object_type='VIEW');

The output might look like this:

OBJECT_NAME

billing_addresses
books
customers
customers_v
employees
orders
orders_v

Now that you have the list of tables, you might want to look at the structure of a certain
table. Like in MySQL, the DESCRIBE command available in SQL*Plus doesn’t give you all the
information about a table. So, to obtain information about foreign key columns defined in a
table, you might query the dba_cons_columns and dba_constraints views predefined in the
Oracle Database. For example, issue the following query to obtain information about the con-
straints defined on the orders table:

SELECT column_name, constraint_name FROM dba_cons_columns
WHERE owner ='USR' AND table_name = 'ORDERS';

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 121

The output generated will look something like this:

COLUMN_NAME CONSTRAINT_NAME
BOOK_ID SYS_C006515
CUST_ID SYS_C006514
PONO SYS_C006513

Now that you know what constraints are defined on the orders table, and on which
columns they reside, you can learn which of these constraints are foreign keys. This is where
the following query may come in handy:

SELECT constraint_name, constraint_type FROM dba_constraints
WHERE owner ='USR' AND table_name = 'ORDERS';

The output will look like this:

CONSTRAINT_NAME CONSTRAINT_TYPE
SYS_C006513 P
SYS_C006514 R
SYS_C006515 R

You may find the values in the constraint_type column a little confusing. According to
the Oracle documentation, though, P stands for a primary key constraint, but R means a for-
eign key constraint.

Thinking of Reusability
After examining the underlying database, the next important task you have to perform in the
beginning of the planning stage is determining which Java EE components from other appli-
cations might be reused in the application you’re planning now.

You might consider reusing EJB components borrowed from other applications. In prac-
tice, this means you would reuse enterprise beans already deployed to the application server
and currently utilized within other solutions. Thus, an EJB component can be used in more
than one application. For example, you can utilize a session bean also used by another appli-
cation, invoking its business methods from within the client or JSP pages of your application.

As a simplistic example, let’s return to the sample application discussed in the “Transac-
tion Considerations” section earlier in this chapter. If you recall, the application consisted of
the OrderSessionBean enterprise bean providing the placeOrder method and the client invok-
ing this method. Assuming that the bean has been packed in the order.jar archive and the
client in the appclient-order.jar, you might have the application.xml deployment descrip-
tor shown in Listing 4-32 in the application archive.

Listing 4-32. The Application Deployment Descriptor Used in the Application Discussed in the
“Transaction Considerations” Earlier Section

<?xml version="1.0" encoding="UTF-8"?>
<application version="5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd">

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION122

<display-name>transactions-planning</display-name>
<module>
<ejb>order.jar</ejb>

</module>
<module>
<java>appclient-order.jar</java>

</module>
</application>

If you recall, you launched the application with the help of the appclient command
issued from the command line like this:

appclient -client transactions-planning.jar 2 1 1 1430209631

■Note So far, the book samples have been built along with an application client so that you can launch
them with GlassFish’s appclient command. This approach is particularly handy when you need to perform
a quick test of an EJB module deployed to the application server. In practice, though, you will most likely use
web modules to utilize EJBs deployed with EJB modules. From the reusability standpoint, the previous
approaches are different in how you can reuse EJBs. You don’t have to deploy your application archive to the
server when the appclient is used to launch the application. This means the EJB module included in the
application archive and specified in the application.xml deployment descriptor will not conflict with this
same EJB module already deployed to the server. In contrast, an EAR application archive, in which you pack
the EJB module along with the web module utilizing it, has to be deployed to the application server before
you can use it. If the EAR archive being deployed contains an EJB module that is already deployed to the
server, you will receive an error. To avoid this problem, you might deploy EJB modules and web modules uti-
lizing them, each separately, rather than in an EAR archive, thus providing more room for reusability. This will
be discussed in more detail in the “Planning the Steps to Building and Deploying Your Application” section
later in this chapter.

In the previous command, the appclient command is followed by the name of the appli-
cation archive, which is followed by a set of parameters passed to the client’s main method. In
particular, you pass the following parameters: the pono (PO number) of the order being cre-
ated, the ID of the customer, the number of book copies being purchased, and the ISBN of the
book.

Looking at the parameters passed in the previous command line, you may notice that
they are just figures presented in a form that is not readily presentable. Let’s look at what you
can do to improve the situation.

It is fairly obvious that there is no need to change the way in which you specify the num-
ber of units and the ISBN of the book ordered (these are the third and fourth parameters,
respectively). As for the order number (the first parameter), in a real-world application you
most likely won’t need to figure it out and then pass it as the argument—the application auto-
matically will do it for you. This will be discussed in more detail in Chapter 6. As for now,
however, let’s leave it the way it is.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 123

It looks like the only parameter passed to the client’s main method that is worth your
attention here is the customer ID that you specify as the second argument. Say you want to
deal with the customer name rather than its ID. After all, the name is more human-friendly.
So, assuming that the updated application is packed in the two-ejbs.jar archive, you might
insert a new record into the orders table with the following command:

appclient -client two-ejbs.jar 3 "Fast Express" 1 1430209631

■Note It is important to realize that this approach can be used only if you are sure that no two customers
in the customers table are stored with the same name. Otherwise, you run the risk of relating a record
being created in the orders table with a wrong record in the customers table.

Now that you know how the updated application should behave, how might you imple-
ment it? Another question you might ask is, what components of the existing application
might be reused?

To start with, let’s take a closer look at the already existing components. If you recall from
earlier, there are only two such components: the client packed in the appclient-order.jar
archive and the EJB module containing the OrderSessionBean bean packed in the order.jar
archive.

In this situation, making some changes to the client sounds obvious, since the way in
which the client’s main method takes the information about the customer has changed—now
you pass the name of a customer instead of its ID. However, you can avoid changing the EJB
component used here, because the way in which you insert a new record into the orders
underlying table has not changed; you still need to use the ID of a customer when inserting a
new record. Therefore, the placeOrder method of the OrderSessionBean bean does not have to
be changed, meaning the bean can be reused in the updated application.

As you might guess, the only missing piece of logic so far is the one that defines the
process of obtaining the customer’s ID based on its name passed as a parameter. (Once again,
this approach makes sense only if you are absolutely sure that no two customers in the
customers table are stored with the same name.) To implement this functionality, you might
define another session bean, say, CustSessionBean, putting it into a separate EJB module
packed as, say, cust.jar. Alternatively, you might add this new session bean into the already
existing order.jar archive. Although the latter will not affect the functionality of the
OrderSessionBean bean already residing in the order.jar archive, it will require you to
redeploy the module to the application server.

If you decide on the former and pack the CustSessionBean bean into the separate EJB
module cust.jar, then the application.xml deployment descriptor might look like the one
shown in Listing 4-33.

Listing 4-33. The application.xml Deployment Descriptor for the Application Utilizing Two EJB
Modules

<?xml version="1.0" encoding="UTF-8"?>
<application version="5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION124

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd">
<display-name>two-ejbs</display-name>
<module>
<ejb>order.jar</ejb>

</module>
<module>
<ejb>cust.jar</ejb>

</module>
<module>
<java>appclient-updated.jar</java>

</module>
</application>

As you can see, order.jar is reused in this application, while cust.jar highlighted in bold
is a new EJB module archive.

Now let’s look at how the CustSessionBean bean packed in cust.jar might be imple-
mented. Listing 4-34 shows the source code for the CustSessionBean bean implementation.

Listing 4-34. Source Code for the CustSessionBean Bean Containing the getCustId Business
Method

//import declarations
...
@Stateless
public class CustSessionBean implements CustSession {

@PersistenceUnit(unitName = "cust-pu")
private EntityManagerFactory emf;
public Integer getCustId(String company_name)
{
Integer cust_id;

try {
EntityManager em = emf.createEntityManager();
Customer customer = (Customer) em.createQuery("SELECT c ➥

FROM Customer c WHERE c.company_name = :company_name")
.setParameter("company_name", company_name)
.getSingleResult();

cust_id = customer.getCust_id();
} catch (Exception e) {

throw new EJBException(e.getMessage());
}

return cust_id;
}

}

As you can see, the CustSessionBean bean shown in the listing contains only one method,
namely, getCustId, which receives the customer’s name as the parameter and returns the

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 125

corresponding ID. The highlighted code obtains the Customer entity instance based on the
customer’s name passed in and then specified in the WHERE clause of the JPQL query used here.

As stated earlier, you also have to modify the client code. Listing 4-35 shows the source
code for the updated client, with the lines that have been added or modified in bold.

Listing 4-35. Source Code for the Updated Client That Utilizes Two EJBs

package ejbjpa.client;
import javax.ejb.EJB;
import ejbjpa.ejb.OrderSession;
import ejbjpa.ejb.CustSession;
public class OrderSessionClient {

@EJB
private static OrderSession orderSession;
@EJB
private static CustSession custSession;
public static void main (String[] args)
{

Integer pono = Integer.parseInt(args[0]);
String company_name = args[1];
Integer units = Integer.parseInt(args[2]);
String book_id = args[3];
Integer cust_id = custSession.getCustId(company_name);
orderSession.placeOrder(pono, cust_id, units, book_id);

}
}

As you can see, the client utilizes both the CustSessionBean and OrderSessionBean
beans. An alternative approach could be to utilize the CustSessionBean from within the
OrderSessionBean bean. However, that would be the worst solution from a reusability stand-
point. This is because it would require you to rewrite the source code for the OrderSessionBean
bean, and even worse, it would make it impossible to continue using that bean in the original
application.

The sample discussed here demonstrates quite nicely how EJB components might be
reused. In this particular example, you reused the OrderSessionBean bean without even
redeploying its deployment archive to the application server.

Although reusing EJB components is something that can be easily understood and
accomplished, how might you reuse JPA entities implementing the persistence code in Java EE
applications? To answer this question, you need to have a clear understanding of the structure
of a typical EJB module deployed to an application server.

Usually, an EJB module deployed to an application server contains one or more enter-
prise beans and a set of JPA entities utilized by those beans. It is fairly obvious that entities
included in an EJB module are designed to work with the beans residing within the same
module, rather than any other beans. If you want an entity to be reused in a bean residing in
another EJB module, you might make a copy of that entity source file, putting it to the appro-
priate directory within the new EJB module structure. Then, you compile the module sources,
package the compiled classes and configuration files into the deployment package, and
deploy it to the application server.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION126

Strictly speaking, this second usage described in this scenario is not exactly what is called
reusing. That way, you actually reuse the source code for the entity, rather than reusing that
entity as part of the EJB module already deployed to the application server.

In reality, though, this is not a big problem. The point is, each EJB module, even if it deals
with the same underlying database data as some other EJB modules, often utilizes another set
of JPA entities, following its own requirements for data access.

Planning the Structure of Your Application
After you have decided what components you need and what role each component will play
in the application, you need to figure out how you might put all those components together.
In the preceding example, you utilize two EJB components within a single application, where
one of those components is also utilized within another application. In reality, though, you
may need to develop an application that utilizes tens of EJBs and, therefore, requires careful
planning.

As mentioned in the preceding section, you might add a new EJB to an existing EJB mod-
ule as an alternative to creating a new module. Your decision as to which method to use
should not be made spontaneously—you should decide it at the planning stage.

If you are planning a small application whose business logic won’t be reused, you might
pack all the EJBs and JPA entities being utilized within a single EJB module. However, if you
anticipate that some parts of the business logic may be reused, you should organize the EJB
components with that in mind. The example in the preceding section illustrated this concept
in action. If you recall from that example, the OrderSessionBean bean packed in order.jar and
deployed to the application server was then utilized within two different applications.

Although in the preceding example you call the business methods of two different EJBs
from within the same client, in a real-world application you might want to utilize several EJBs
within a coarser-grained one that will be then utilized within the client code. This approach
assumes that a fine-grained EJB can be reused in more than one coarse-grained EJB, thus
enhancing reusability and flexibility. Figure 4-9 gives a graphical depiction of this approach.

Figure 4-9. Fine-grained EJBs can be utilized within coarser-grained ones whose business meth-
ods are invoked from within the presentation tier.

When using this approach based on building coarser-grained EJBs upon fine-grained
ones, you are not limited to the two-level granularity shown in the figure. Actually, you can

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 127

choose the level of granularity that suits you best. In most cases, though, using two levels is
quite enough.

You might be wondering why you would want to build EJBs upon other EJBs. As stated
earlier, this approach allows you to enhance the reusability and flexibility of the EJB compo-
nents utilized. For example, you may have a set of reusable EJB components, each of which
implements a small piece of business logic that potentially will be reused in more than one
application. Upon these fine-grained EJBs, you build EJBs that satisfy the requirements of a
particular application and, therefore, are application-specific. If the business requirements
change, you can modify the coarse-grained EJB involved, while the underlying EJBs will
remain unchanged.

The most difficult thing in this approach is to determine how to divide enterprise logic
between fine-grained EJBs so that you have a set of reusable components to be then used as
building blocks for coarser-grained, solution-specific components. As a general rule of thumb,
when planning fine-grained EJBs, avoid including application-specific logic. Whenever possi-
ble, you should avoid dependencies between fine-grained EJBs. Typically, a fine-grained EJB
should provide functionality for performing a common set of operations on the correspon-
ding entities and should be solution-agnostic.

The OrderSessionBean bean discussed in the preceding section is a good example of a
solution-agnostic EJB. Its placeOrder method simply inserts a new record into the orders table
through an instance of the Order entity, setting that instance’s fields to the values passed in as
arguments. It is important to note that placeOrder doesn’t provide any other functionality
than that described earlier. So, when you decided to build another application using the
OrderSessionBean bean, you created the CustSessionBean bean and then modified the client
code to utilize both the beans, following the application requirements. Although in that par-
ticular example you used the application client to implement application-specific logic, in a
larger project those specifics might be implemented within a coarse-grained EJB to be then
utilized from within one of the following components: a JSP, JSF’s managed bean, application
client, or another EJB.

Planning the Steps to Building and Deploying
Your Application
Before you start developing your application, it is essential to have a clear understanding of
the steps you need to take in order to perform the project tasks. Once you’ve figured out which
components will be used in your application and how they will interact with each other, you
are ready to outline a plan of what really needs to be done at the development and deploy-
ment stages.

Of course, such a plan may vary from project to project—you need to tackle each project
individually. To begin with, let’s take a look at the major building blocks of a typical Java EE
application.

As stated previously, you have several choices when it comes to packaging and deploying
components to be utilized within your Java EE application. For example, if you are developing
an application consisting of a web application module and EJB module, you can either pack-
age both of these modules in an EAR application archive and then deploy it to the server or
deploy each module separately. Although the former sounds like common sense—you have all
the application modules packed within a single archive—the latter is more appropriate if you

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION128

are planning to reuse the EJB module utilized within your application in another application;
you will have to add only the EJB-JAR module archive to the WAR file of the web application in
which you want to reuse that EJB module.

Table 4-3 lists the major components you need to build when developing a Java EE appli-
cation.

Table 4-3. Major Components of a Typical Java EE Application

Component Description

Underlying database Represents the database tier of your application and consists
of one or more relational databases used to persist the objects
belonging to the persistence tier.

EJB module or modules (EJB-JAR) Each EJB module may contain one or more EJBs implementing
the business logic of your application. EJB modules also
usually contain the JPA entities implementing the persistence
logic of your application. You can deploy an EJB module as
part of an enterprise application archive (EAR) or as a stand-
alone module. The latter is wise if you are planning to reuse
that EJB module in more than one application.

Web application archive Contains components implementing the presentation tier of
your application. Like an EJB module, a web application
archive (WAR) may be deployed to the application server as
part of an enterprise application archive (EAR) or as a stand-
alone unit. In the latter case, you need to make sure to add all
the EJB modules’ archives being utilized within the web
application to its WAR file. Moreover, each of the EJB modules
included in the WAR archive must have been deployed to the
application server.

Enterprise application archive This includes an application deployment descriptor(s) and
Java EE modules such as web application and EJB modules to
be utilized within your application. You deploy this archive to
the application server, thus deploying all the Java EE modules
included. You should not include an EJB module in an EAR
archive if that module has been already deployed to the server
as a separate module. If you do so, you will end up with an
error occurring during the deployment. The opposite is also
true—you should not deploy an EJB module if this same mod-
ule is included in the EAR archive already deployed to the
server. Regardless of the way you deploy an EJB module, it
becomes available to all the other modules deployed.

You might be surprised to learn that an EJB module deployed within an EAR archive can
be utilized by the other deployed components not included in that EAR archive. As mentioned
earlier, regardless of the way you deploy an EJB module (within an EAR or as a stand-alone
module), you can utilize it from within any other module deployed to the application server.
Let’s look at a quick example. Suppose you want to deploy an order.ear EAR that includes an
order-ejb.jar archive containing the EJB module to be utilized within the web application
packed with the order-war.war archive also included in that EAR. Once the order.ear has
been deployed, however, the EJBs packed in the order-ejb.jar module can be utilized not
only by the web application packed in order-war.war but also by any other application
deployed to the application server.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 129

In practice, though, it might not seem to make a lot of sense to include an EJB module in
an EAR application archive if you are planning to reuse that EJB module in another applica-
tion. In that case, it would be a more elegant solution to deploy such an EJB module as a
stand-alone unit, thus making it clear that the EJBs included in that module might be used in
any application that needs them.

As you no doubt have realized, deciding what modules to package your application com-
ponents in is a task that requires careful thought and thorough planning. The most important
thing to keep in mind at this stage is that good planning of the application modules will help
you not only build a well-structured application but also improve reusability of some of the
business logic that you have already implemented.

Now that you have looked at what building blocks your Java EE application may be com-
prised of, let’s take a brief look at how to build each of these components. In the preceding
chapters, you saw some examples of building EJB modules. In the later chapters, you will see
more examples of how to prepare the previously mentioned, as well as the other, major parts
of a Java EE application, which were outlined in Table 4-3. The following sections provide only
the general steps to creating these application building blocks, which you have to outline at
the planning stage.

The General Steps to Building the Underlying Database
As you learned from the preceding examples, you start the development process with the
underlying database. In some cases, you may already have the database upon which you will
build your application. If so, you need to check whether you have all the database objects in
place and what you have to add.

Follow these general steps when developing the underlying database from scratch:

1. Create one or more database schemas.

2. Build the database objects in the schemas created in step 1.

3. Populate the database tables with data.

However, if you have the underlying database in place, you will need to follow these gen-
eral steps:

1. Create a database schema through which the application will interact with the
database.

2. Build the database objects in the schema created in step 1.

Planning the underlying database is discussed in detail in the next chapter. Then, in
Chapter 6, you will look at how to build it to be utilized within your application.

The General Steps to Building an EJB Module
As you have seen in the preceding examples, EJB beans are usually packed with the correspon-
ding JPA entities in EJB modules that are then deployed to the application server.

Here are the general steps you follow when building and deploying an EJB module:

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION130

1. Develop JPA entities and EJB beans.

2. Compile the sources.

3. Create the configuration files.

4. Package the classes and configuration files into an EJB-JAR module archive.

5. Deploy the EJB module package to the application server.

Developing JPA entities is discussed in extensive detail in Chapter 8. Then, Chapter 12
covers building EJB components by utilizing JPA entities.

The General Steps to Building a Web Application Module
As stated earlier, most real-world Java EE applications rely on a web tier technology such as
JSF or JSP when it comes to the presentation layer. Web application artifacts are usually
packed in a WAR file and then deployed to the application server.

Here are the general steps to follow when building and deploying a web application
archive:

1. Develop the web pages.

2. Compile the Java classes (if, for example, JSF technology is used).

3. Create the configuration files.

4. Package the web application artifacts into a WAR file.

5. Deploy the WAR package to the application server.

In Chapter 14, I’ll discuss how to build the web application to be then utilized as the pres-
entation tier within a Java EE application.

The General Steps to Building an Enterprise Application
Module
As an alternative to deploying EJB and web application archives as stand-alone units, you
might pack them, as well as archives containing helper classes, into an EAR archive and then
deploy it to the application server.

You should perform these general steps to build and deploy an enterprise application:

1. Build the web and EJB archives containing the components to be utilized within the
application.

2. Create the application.xml deployment descriptor.

3. Package the application modules into an EAR file.

4. Deploy the EAR package to the application server.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 131

As stated earlier, it’s wise to keep EJB modules that will be reused in another application
as stand-alone units, not including such modules, in the EAR application archive. However, it
is good practice to include the web application archive and EJB modules that won’t be reused
in other applications.

Of course, when you’re planning an application that will contain only one EJB module, it
is easy to determine whether to include that module in the application archive. But for appli-
cations utilizing a number of EJB modules, you’re going to think a little harder about which
modules to include in the EAR and which ones to deploy as stand-alone units.

Planning the Sample Application
Now that you have gained some useful insights into planning a Java EE application, let’s map
out a plan for developing the sample application to be built in the next chapters. Without
going into all the details, the following sections outline the structure of the sample application
and the general steps to be performed to implement that structure.

Planning the Sample Structure
Admittedly, diagrams may worth thousands of words. Providing a visual representation of the
components the application will be comprised of and their interactions is an important part
of the planning process.

You might start with a simplified graphical representation of the structure of the applica-
tion being planned. Such a diagram can include only the key components to be utilized within
the application. Later, you might draw more detailed diagrams for each tier being utilized
within the application.

Figure 4-10 gives a graphical depiction of the structure of the sample application being
discussed in the following chapters.

As you can see, the sample application depicted in the figure has a two-layer business
logic tier. In the upper layer, you have the JSF bean that will invoke the business methods of
the session bean located in the lower layer. In a real-world application, you most likely will
have more JSF beans and session beans in the upper layer.

As mentioned earlier, dividing the business logic tier into layers allows you to develop
more flexible and reliable solutions utilizing stand-alone pieces of business logic, which get
repeated use among applications deployed to the application server.

Another interesting thing to note here is that although both the JSF bean and the EJB
bean logically belong to the business logic tier, physically they are packed in different mod-
ules. The JSF bean is part of the web application and, therefore, is packed in the WAR archive,
whereas the EJB bean is packed into an EJB-JAR module archive.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION132

Figure 4-10. A simplified representation of the structure of the sample application

Planning the Steps to Building and Deploying the Sample
The next step is to figure out what technically should be done to develop the sample applica-
tion. You start by planning the general steps to be accomplished. As usual, let’s start with
planning the steps required to build the underlying database.

1. Create the usr database schema.

2. Build database objects in the usr schema, including the Customers, Employees, and
Orders tables.

3. Populate the Customers and Employees database tables with data.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION 133

Of course, this is a very rough plan. It doesn’t reflect some details, such as creating the
BEFORE INSERT trigger on the Orders table. You will see a more detailed plan in the next chap-
ter, which is dedicated to planning the underlying database.

Once you have outlined the steps required to build the database tier, you can move on
and figure out the general steps for building the other application tiers. To start with, let’s out-
line the steps for building the order-ejb.jar EJB module:

1. Develop the Customer, Order, and Employee JPA entities.

2. Develop the OrderSessionBean bean.

3. Compile the sources created in steps 1 and 2.

4. Create the persistence.xml configuration file.

5. Package the classes and configuration files into the order-ejb.jar archive.

Note that you didn’t deploy the order-ejb.jar archive. In this example, you won’t deploy
it as a stand-alone module. In contrast, the order-ejb.jar archive will be included in the
order.ear application archive as discussed later in this section.

The next step in developing the sample is creating the web application. Here are the gen-
eral steps to follow:

1. Develop the placeOrder, updateOrder, and ordersList JSF pages.

2. Develop the OrderJSFBean bean.

3. Compile the OrderJSFBean bean class.

4. Create configuration files, including faces-config.xml and web.xml.

5. Package the web application artifacts into the order-war.war archive.

Now that you have both the EJB module and web application, you can pack their archives
into the order.ear application archive and then deploy to the application server, as outlined
here:

1. Create the application.xml deployment descriptor.

2. Package the order-ejb.jar and order-war.war archives created earlier into the
order.ear application archive.

3. Deploy the order.ear package to the application server.

That is it. After performing these steps, you should have your application deployed and
ready for use.

Summary
When planning your application, you should make a number of design decisions. This chapter
introduces valuable concepts and pulls together some best practices related to planning Java
EE applications. Knowing these things should help you make informed decisions at the plan-
ning stage.

CHAPTER 4 ■ PLANNING A JAVA EE APPLICATION134

Planning the Underlying
Database

Data is a critical part of almost every Java EE application today. That is why it’s important to
properly design the database tier of your Java EE solution. Like planning any other application
tier, you should consider database tier planning in light of your business needs. Although you
may already have an underlying database containing the core data your application will
access, you still often need to adjust an existing database structure to address the require-
ments of the application.

In the preceding chapter, you looked at the issues related to the planning process of all
the tiers of a Java EE application. This chapter covers the details related to the planning stage
of the database tier of a Java EE application. After reading this chapter, you will have learned
how to do the following:

• Map out a plan for building the database tier of a Java EE application

• Plan a Java EE application being built upon an existing, underlying database

• Design an application in which most data processing takes place inside the database

• Make a graphical depiction of the major steps being performed by the application

It is fairly obvious that database planning is a huge topic that cannot be fully covered in
one chapter—it would take an entire book to describe it in extensive detail. However, the
topics discussed in the following sections focus on the most important issues related to the
underlying database design and will help you make informed decisions when planning the
database tier of your Java EE application.

Planning the Persistence Tier Upon an Existing,
Underlying Database
In practice, it is often the case that a new application is built upon an existing, underlying
database. For example, you may need to build an application that will be used for generating
sales reports based on the data stored in a number of tables manipulated by some other appli-
cations. In such a situation, although you have all the data to be accessed in place, you might
want to organize that underlying data in structures that will be easily utilized within your
application.

135

C H A P T E R 5

The following sections will discuss some ways of how you can create the intermediate
database objects to bridge the gap between the underlying database tables and JPA entities,
thus facilitating the existence of multiple applications built upon the same underlying
database.

Using Database Views
Often the underlying database upon which you want to build your application is utilized by
another already existing application. In such a situation, it is fairly clear that you cannot
change the structure of the underlying tables to address the requirements of your application.
This is where database views can come in handy.

As you no doubt know, database views provide another representation of the data stored
in the underlying tables. If you recall from the “Mapping an Entity to a Database View” section
in the preceding chapter, using views built upon more than one table may be a good idea
when you need only to access the underlying data, not modify it.

Diagrammatically, using views as an intermediate layer between the underlying tables
and JPA entities might look like Figure 5-1.

Figure 5-1. You might want to create a set of views upon which the persistence tier will be based.

As the diagram illustrates, the views upon which the JPA entities are based can be built on
either a set of underlying tables or a single table.

It is interesting to note that hiding some underlying tables’ columns containing sensitive
information from the application is not the only reason why you might want to utilize views.
Another situation where you might want to use views is if there is an existing EJB module con-
taining particular JPA entities and you want to reuse that EJB module. Let’s look at a quick
example. Suppose your underlying database contains the departments table, which has the
following structure:

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE136

department_id INTEGER
department_name VARCHAR(100)
location_id INTEGER

However, the dept EJB module you already have deployed contains the Department entity,
which is designed to work with the table called depts, which has a slightly different structure:

dept_id INTEGER
dept_name VARCHAR(100)
loc_id INTEGER

In that case, you might create a view upon the departments table so that the column
names in that view meet the Department entity requirements. Consider the depts view created
as follows:

CREATE VIEW depts AS
SELECT department_id as dept_id, department_name as dept_name, location_id as loc_id
FROM departments

Note that you named the view depts so that you don’t need to change the table name used
within the EJB module and specified either with the @Table annotation in the Department
entity or in a deployment descriptor document.

From a security standpoint, using views is good practice when you need to hide some
columns of the underlying tables from the users. For example, you might build a view upon
several underlying tables, including just a few columns from those tables. This approach
makes sense if the user account through which your application will access the views has the
privileges only on the views but no privileges on the underlying tables. This was discussed in
extensive detail in Chapter 4 in the section “Planning for Security.”

Utilizing New Database Schemas
To make the underlying database more secure and more logically structured, you might think
about putting the views built upon the core tables into an intermediate layer built between
the underlying database and the application persistence tier, implemented as a separate data-
base schema.

Figure 5-2 graphically illustrates how you might group the views built upon the core
tables into separate schemas so that each schema is designed to work with the persistence tier
of a particular application.

As you can see in the figure, you can build more than one database schema that will con-
tain views built upon a single schema containing the core underlying tables. In practice,
however, the views in such schemas might be based on the database tables located in more
than one schema.

Actually, databases may differ in the way they organize custom data and provide access
to it. For example, MySQL assumes that you first create a database (schema) that will contain
custom objects and then you create a user account, granting it the privileges required to
manipulate those schemas’ custom objects. Actually, a single user account can be granted the
privileges that allow it to access database objects stored in more than one schema.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 137

Figure 5-2. You might group the views, upon which the persistence tier of an application will
be built, into a separate database schema for better security and structure of the underlying
database.

■Note For additional information on how databases may differ in the way they organize custom data, you
can refer to the appendix, specifically, the section “Understanding the Architecture of Your Database.”

In Oracle, the schema is automatically defined when you create a user account. Like in
MySQL, you can grant a user account privileges that allow it to access database objects stored
in more than one schema.

In practical terms, this means you’re going to need to create a new schema in Oracle or
MySQL, in which you will then create the views being utilized by the persistence tier of an
application. In MySQL, you will then need to create a new user account with the privileges to
work with that schema’s objects. But in Oracle, you will need to create another schema—if you
recall from earlier in the chapter, in Oracle the schema is automatically defined when creating
a user account. In other words, in the case of Oracle, you will have a redundant, empty
schema created just because you needed to create a user account that allows the application
to access only those objects that are located in the schema in which you create the views being
utilized by the persistence tier of an application.

Figure 5-3 should help you understand these differences between MySQL and Oracle.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE138

Figure 5-3. Oracle and MySQL are different in the way they organize user data and provide access
to that data. Unlike MySQL, Oracle implicitly defines the schema when creating a user account.

As you can see in the figure, in the case of Oracle you have a more complicated structure.
However, it doesn’t seem so complicated when it comes to building it. For an example of how
you might organize database schemas and user accounts for better security configuration in
both MySQL and Oracle, you can review the section “Planning for Security” in Chapter 4.

Implementing Some Business Logic of an
Application Inside the Database
Another important issue you should consider at the beginning of the planning stage is deter-
mining how much business logic you might move inside the database. The good news is that
both Oracle and MySQL give you the ability to do this by implementing views, stored proce-
dures, and triggers.

■Caution Stored procedures and triggers are new MySQL features that first appeared in MySQL 5.0. So,
the following discussion assumes you’re using version 5 of MySQL or later.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 139

Although you’ve already seen how views might be utilized in your application, the follow-
ing sections explain how you might use triggers and stored procedures when you want to
move some of the business logic of your application inside the database. The examples pro-
vided should give you a good idea of how to effectively plan the database tier of your
application.

Moving Business Logic Into Triggers
Continuing the example from the “Transaction Considerations” section in the preceding
chapter, you might consider moving some business logic implemented in the business logic
and persistence tiers into the database. If you recall, the sample application consists of the
components listed in Table 5-1.

Table 5-1. The Components Utilized Within the Sample Application from the “Transaction
Considerations” Section in Chapter 4

Component Name Component Type Application Tier

OrderSessionBean Session bean Business logic tier

Order JPA entity Persistence tier

Book JPA entity Persistence tier

orders Database table Database tier

books Database table Database tier

newquantity BEFORE UPDATE trigger on the books table Database tier

Now, suppose you want to move the logic that is used to calculate the new value of the
quantity field in the books table into the database. One way to do this is to define the BEFORE
INSERT trigger on the orders table, which will update the quantity field in the books table,
reducing the value of the quantity field by the number of units specified in the order being
inserted.

So, the updated set of components to be utilized within the sample application will look
like the one listed in Table 5-2. The changes column in the table tells you whether you have to
modify the component borrowed from the sample discussed in the “Transaction Considera-
tions” section in Chapter 4.

Table 5-2. The Components to Be Utilized Within the Sample Application Discussed in
This Section

Component Name Component Type Application Tier Changes

OrderSessionBean Session bean Business logic tier Yes

Order JPA entity Persistence tier Yes

orders Database table Database tier No

books Database table Database tier No

newquantity BEFORE UPDATE trigger on the books table Database tier No

neworder BEFORE INSERT trigger on the orders table Database tier New

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE140

Not only does Table 5-2 contain one less persistence tier object and one more database
tier object, but also the structure of the Order entity has been simplified, since the annotations
used to define the relationship between this entity and the Book entity become irrelevant and
are removed.

Now let’s look at how all these components will interact with each other, by inserting a
new record into the orders table. This task is comprised of multiple actions, which diagram-
matically might look like Figure 5-4. An explanation of each numbered step is given after the
figure.

Figure 5-4. A graphical depiction of the actions performed by the sample application

■Tip It is always a good idea to draw a diagram that depicts the actions performed by the application
you’re planning. Such a diagram lets you quickly figure out how the components involved in the application
development will interact and what can be done to improve the structure of your application.

In Figure 5-4, the actions are numbered in order and can be interpreted as follows:

1. When executed, the placeOrder business method of the OrderSessionBean bean creates
an instance of the Order entity and then sets its fields to the appropriate values.

2. The JPA provider persists the Order entity as specified in the placeOrder method of the
OrderSessionBean bean, trying to insert a new record into the orders table.

3. The database server fires the neworder BEFORE INSERT trigger, just before inserting the
record into the orders table.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 141

4. The neworder trigger tries to update the corresponding record in the books table by
issuing the UPDATE statement.

5. The database server fires the newquantity BEFORE UPDATE trigger, just before updating
the record in the books table.

Looking at these steps, you may notice that the event of inserting a record into the orders
table is followed by the event of firing the neworder trigger, which are steps 2 and 3, respec-
tively. In reality, though, the event of firing the trigger is followed by the event of inserting a
record, since the neworder trigger is a BEFORE INSERT one, meaning it fires before the actual
inserting takes place. The same is true for steps 4 and 5: updating a record in the books table
and firing the newquantity trigger, respectively.

As you might recall from the discussion in the “Transaction Considerations” section in the
preceding chapter, if the newquantity BEFORE UPDATE trigger generates an error, then the entire
transaction is rolled back, meaning the changes made by both the INSERT and UPDATE opera-
tions that were applied to the orders and books tables, respectively, are nullified.

The following discussion assumes you have the orders and books tables created as shown
in Listing 4-20 in Chapter 4. Also, you need to have the newquantity BEFORE UPDATE trigger
defined on the books table as shown in Listing 4-23 for MySQL or Listing 4-24 for Oracle.

As you can see in Table 5-2, the OrderSessionBean bean and Order entity have to be modi-
fied, and the neworder BEFORE INSERT trigger on the orders table has to be created from
scratch.

Let’s first look at how you might create the neworder trigger, which reduces the value of
the quantity field in the books table by the number of units specified in the order being
inserted. In MySQL, being connected as the usr user via the MySQL command-line client,
you might issue the CREATE TRIGGER statement shown in Listing 5-1.

Listing 5-1. Creating the BEFORE INSERT Trigger on the orders Table in MySQL

delimiter //
CREATE TRIGGER neworder
BEFORE INSERT ON orders
FOR EACH ROW
BEGIN
UPDATE books
SET quantity = quantity – NEW.units
WHERE isbn = NEW.book_id;
END;
//
delimiter ;

In a similar way, you could create the neworder trigger in Oracle. Being connected as
usr within a SQL*Plus session, issue the CREATE OR REPLACE TRIGGER command shown in
Listing 5-2.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE142

Listing 5-2. Creating the BEFORE INSERT Trigger on the orders Table in Oracle

CREATE OR REPLACE TRIGGER neworder
BEFORE INSERT ON orders
FOR EACH ROW
BEGIN
UPDATE books
SET quantity = quantity – :NEW.units
WHERE isbn = :NEW.book_id;
END;
/

With that done, you can switch your focus to the Order entity, which has to be modified a
little to reflect the changes made in the database tier. Listing 5-3 shows the updated source
code for the Order entity. The lines of code that were used within the preceding sample but
have become unnecessary in this updated version have been commented and highlighted in
bold for clarity. The new inserted lines are highlighted in bold too.

Listing 5-3. Source Code for the Updated Order Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
// import javax.persistence.ManyToOne;
// import javax.persistence.JoinColumn;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@Id
@Column(name = "PONO")
private Integer pono;
@Column(name = "CUST_ID", nullable = false)
private Integer cust_id;
@Column(name = "BOOK_ID", nullable = false)
private String book_id;
@Column(name = "UNITS", nullable = false)
private Integer units;
// @ManyToOne
// @JoinColumn(
// name="BOOK_ID",
// referencedColumnName="ISBN")
// private Book book;
public Order() {
}
public Integer getPono() {

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 143

return this.pono;
}
public void setPono(Integer pono) {

this.pono = pono;
}
public Integer getCust_id() {

return this.cust_id;
}
public void setCust_id(Integer cust_id) {

this.cust_id = cust_id;
}
public String getBook_id() {

return this.book_id;
}
public void setBook_id(String book_id) {

this.book_id = book_id;
}
public Integer getUnits() {

return this.units;
}
public void setUnits(Integer units) {

this.units = units;
}
// public Book getBook() {
// return this.book;
// }
// public void setBook(Book book) {
// this.book = book;
// }

}

As you can see in the updated Order entity shown in the listing, you commented the lines
of code responsible for establishing the relationship with the Book entity. This is because the
Book entity is not used in the application anymore.

The next step in modifying the sample application is to update the placeOrder business
method of the OrderSessionBean bean. Listing 5-4 shows the entire source code for the updated
OrderSessionBean bean. Just as in the preceding listing, the lines commented and to be
removed as well as the newly inserted lines of code are highlighted in bold.

Listing 5-4. Source Code for the Updated OrderSessionBean Bean

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE144

import ejbjpa.entities.*;
@Stateless
public class OrderSessionBean implements OrderSession {

@PersistenceUnit(unitName = "order-pu")
private EntityManagerFactory emf;
public void placeOrder(Integer pono,

Integer cust_id,
Integer units,
String book_id)

{
try {

EntityManager em = emf.createEntityManager();
// Book book = (Book) em.find(Book.class, book_id);
Order order = new Order();
order.setPono(pono);
order.setCust_id(cust_id);
order.setBook_id(book_id);
order.setUnits(units);
// book.setQuantity(book.getQuantity()-units);
//order.setBook(book);
em.persist(order);

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
}

}

Since the Book entity has been removed from the application, you comment all the lines of
code where there are references to it. Instead, you insert the code line that sets the book_id
field of the order instance to the appropriate value.

Once all these changes are applied to the application components, you can recompile
these components and then package and deploy them as discussed in extensive detail in
Chapter 3. After that, you can test the updated sample application.

If you recall from the examples discussed in the preceding chapter, you can launch the
sample application with the appclient command. In this particular example, assuming you
packed the client application archive and the EJB module archive within processing-todata.
jar, you might issue appclient like this:

appclient -client processing-todata.jar 5 1 1 1430209631

The previous should insert a new record in the orders table and update the record whose
primary key is 1430209631 in the books table, provided that the value of the quantity field in
the books’s record is not less than or equal to 1. In particular, the orders table should have a
new record whose pono is 5, cust_id is 1, units is 1, and book_id is 1430209631. Respectively,
the value of the quantity field in the corresponding record in the books table will be reduced
by 1.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 145

■Note When issuing the previous command, you may bump into an error occurring because the value of
the quantity field in the books’s record whose primary key is 1430209631 is less than 1. After you per-
formed the INSERT command shown in Listing 4-21 in Chapter 4, you should have that field set to 1.
However, if you launched the sample discussed in the section “Planning for Security” in that chapter later,
the value of the quantity field was reduced to 0. To solve this problem, you have to update the books’s
record whose primary key is 1430209631, setting the quantity field to an integer that is equal to or more
than 1. For example, setting it to 10 would be a good idea.

As you can see, the sample application discussed in this section performs the same task
as the sample discussed in the section “Planning for Security” in the preceding chapter. From
the developer’s standpoint, though, these applications are different in how much business
logic is implemented in the database tier. Obviously, moving some business logic of your
application into the underlying database helps you design more intuitive and simple persist-
ence and business logic tiers. The good news is that you have a lot of flexibility—you can
decide what you want to be implemented in the database tier and what you want to be imple-
mented in the other tiers of your application.

Moving Business Logic Into Stored Procedures
Now that you have seen how some business logic of your application can be passed from the
business logic and persistence tiers down to the database tier, you might want to go one step
further and implement some business logic in the database within stored routines, which
could be invoked from within the triggers fired in response to the events triggered from within
the persistence tier. This approach greatly enhances your ability to utilize features of the
underlying database when implementing the business logic of your application.

A stored routine or subprogram is a named programming block stored in the database
that can be invoked with a set of parameters. When implementing a stored routine, you have
two choices: a stored procedure or a function. As you might guess, a procedure differs from a
function in that the latter returns a computed value, while the former simply performs a spe-
cific task.

■Note It is interesting to note that both stored procedures and stored functions are usually called stored
procedures.

Figure 5-5 gives a graphical representation of the structure of an application that utilizes
stored procedures in the database tier.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE146

Figure 5-5. A graphical illustration of how business logic of your application might be divided
among application tiers and components

According to the diagram, stored procedures can be called from within triggers rather
than directly from within the persistence tier of the application. This needs a little additional
explanation. As you’ve learned from the examples discussed in this book so far, JPA entities are
mapped to specific database tables or views (but not stored procedures) so that you can
access and/or manipulate database data from within your Java code. So, when you, for exam-
ple, persist an instance of an entity to the corresponding database table, you make, among
other things, the database server fire an insert trigger, if any, defined on that table. When fired,
the trigger in turn may invoke a stored procedure or procedures. In practice, though, you have
more options. For example, you may issue a native SQL query from within a business method
of an enterprise bean, directly invoking a stored procedure. You will see an example of how
you might do this in the “Planning Applications Invoking Stored Procedures Directly from
Within the Business Logic Tier” section later in this chapter.

To better organize the logic implemented within a set of triggers and stored procedures,
you might divide the database tier into sublayers, thus achieving a good level of reusability,
flexibility, and scalability.

Returning to the sample discussed in the preceding section, you might, for example, cre-
ate the updateBooks stored procedure, which will be called from within the neworder BEFORE
INSERT trigger and issue the UPDATE statement against the books table, rather than issuing that
statement directly from within the neworder trigger.

Figure 5-6 diagrammatically illustrates the interactions between the components in the
updated sample application.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 147

Figure 5-6. A graphical depiction of the actions performed by the sample application

Here is the explanation of the steps depicted in the figure:

1. The placeOrder business method of the OrderSessionBean bean creates an instance of
the Order entity and then sets its fields to the appropriate values.

2. The JPA provider persists the Order entity, trying to insert a new record into the orders
table.

3. The database server fires the neworder BEFORE INSERT trigger before inserting the
record into the orders table.

4. The neworder trigger invokes the updateBooks stored procedure.

5. The updateBooks stored procedure tries to update the specified record in the books
table by issuing the UPDATE statement.

6. The database server fires the newquantity BEFORE UPDATE trigger before updating the
record in the books table.

Returning to the figure, you may notice that this time the database tier is logically divided
into three sublayers, thus providing a better level of flexibility. Note that the UPDATE against the
books table is not issued directly from within the neworder BEFORE INSERT trigger anymore.
What this means in practice is that you won’t need to change the upper database tier’s sub-
layer that is interacting with the persistence tier if, for example, you want to change the

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE148

condition that is handled now in the newquantity BEFORE UPDATE trigger belonging to the bot-
tom sublayer of the database tier. In that case, you most likely will need to change only the
middle and bottom sublayers.

It is a good idea to keep the trigger code as simple as possible by implementing business
logic with separated stored procedures that will be invoked from within the trigger.

In this particular example, the middle sublayer of the database tier contains only one
database object: the updateBooks stored procedure, which will be invoked from within the
neworder BEFORE INSERT trigger. The only statement the updateBooks procedure issues is the
UPDATE issued against the books table. The procedure takes two input parameters: the book_id
identifying the record in the books table to be updated and the units representing the number
by which the quantity field in the record being updated must be reduced.

Listing 5-5 shows how you would create the updateBooks stored procedure in MySQL.

Listing 5-5. Creating the updateBooks Stored Procedure in MySQL, Which Will Be Called from
Within the neworder Trigger Defined in Listing 5-6

delimiter //
CREATE PROCEDURE updateBooks (IN book_id VARCHAR(20), IN units INT)
BEGIN
UPDATE books
SET quantity = quantity – units
WHERE isbn = book_id;
END;
//
delimiter ;

Now, you need to modify the neworder BEFORE INSERT trigger originally created as shown
in Listing 5-1. First you need to drop the original version of the trigger and then create the
updated one, as shown in Listing 5-6.

Listing 5-6. Updating the neworder BEFORE INSERT Trigger in MySQL Originally Created in
Listing 5-1

DROP TRIGGER neworder;

delimiter //
CREATE TRIGGER neworder
BEFORE INSERT ON orders
FOR EACH ROW
BEGIN
CALL updateBooks (NEW.book_id, NEW.units);
END;
//
delimiter ;

As you can see, the only thing the neworder trigger does is to call the updateBooks stored
procedure, passing as parameters the ID of the book record to be updated and the number by
which to reduce the quantity of the book.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 149

Now, let’s look at how you can create the updateBooks stored procedure in Oracle.
Listing 5-7 shows the statement you should issue.

Listing 5-7. Creating the updateBooks Stored Procedure in Oracle, Which Will Be Called from
Within the neworder Trigger Defined in Listing 5-8

CREATE OR REPLACE PROCEDURE updateBooks (book_id IN VARCHAR2, units IN NUMBER) AS
BEGIN
UPDATE books
SET quantity = quantity – units
WHERE isbn = book_id;
END;
/

As Listing 5-8 shows, in the case of Oracle you don’t have to explicitly drop the original
version of the neworder trigger before creating the updated version of it. Instead, you use the
CREATE TRIGGER statement with the OR REPLACE clause.

Listing 5-8. Updating the neworder BEFORE INSERT Trigger in Oracle Originally Created As Shown
in Listing 5-2

CREATE OR REPLACE TRIGGER neworder
BEFORE INSERT ON orders
FOR EACH ROW
BEGIN
updateBooks (:NEW.book_id, :NEW.units);
END;
/

With that done, you can test the updated application. It is important to note that all the
changes made in the database tier in this section do not require you to change anything in the
other application layers. So, you can issue the appclient command in the way you did in the
“Moving Business Logic Into Triggers” section. Don’t forget to increase the ID of the order
being inserted to avoid a unique key constraint violation:

appclient -client processing-todata.jar 6 1 1 1430209631

Just like in the preceding example, the previous should result in inserting a new record
into the orders table and reducing the value of the quantity field in the corresponding record
in the books table by 1.

Thinking of Reusability
As you no doubt have realized, from the user’s standpoint, there is no difference between the
applications discussed in this chapter and the application discussed in the “Transaction Con-
siderations” section in the preceding chapter. So, you may be wondering what benefits
moving the business logic into the database tier actually brings.

As mentioned earlier, implementing business logic inside the underlying database allows
you to simplify the persistence and business logic tiers of your application. Moreover, moving
data processing to the data lets you centralize control over business logic. You won’t need to

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE150

duplicate the same code in the other applications working with the same data and performing
the same operations on it. For example, if you’re going to need to develop another application
dealing with the books table, which will automate the process of returning unsold book copies
to the publisher, you could rely on the functionality provided by the updateBooks stored proce-
dure and the newquantity trigger, rather than implementing this functionality in the business
logic tier of that new application.

You might argue that some business logic implemented in the underlying database might
be otherwise implemented within a reusable EJB module or modules, which might be easily
utilized within newly created applications dealing with the same underlying data. But what if
you want to have some applications implemented using different technologies, not EJB 3? It is
fairly obvious that you would not be able to reuse that EJB module or modules if your new
application was implemented, say, in PHP.

Figure 5-7 gives a conceptual depiction of how business logic of an application can be
divided between the underlying database and Java EE application server or PHP/web server. It
illustrates that the logic implemented inside the database can be reused by many applications
built upon that database.

Figure 5-7. Moving business logic to the data can improve reusability since the logic implemented
inside the database can be reused by applications regardless of the technologies on which they
are built.

As you can see, implementing business logic inside the underlying database lets you
improve reusability in a scalable and cost-effective way. Once you have a piece of logic sitting
in the database, you don’t need to reimplement it in the language you chose for building the
business logic tier of your application. This is especially useful if you anticipate that logic sit-
ting in the database will be reused by several applications, each of which may be built using
different technologies and/or languages.

Knowing When You Might Want to Use Native SQL Queries
As you saw in the preceding sections, moving some business logic of your application into the
underlying database simplifies the task of building the persistence and business logic tiers of

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 151

the application. Moreover, a great thing about implementing business logic inside the data-
base tier is that it lets you centralize control over that logic and improve reusability.

As usual, however, all good things come at a price. Now that you have simplified the Order
entity because of removing the code defining a relationship with the Book entity, and now that
you don’t have the Book entity at all, how are you going to access the books table, if needed? For
example, you might want your application to display information about the number of avail-
able book copies when a user opens the book’s page (long before she might want to purchase
a copy, placing an order). To obtain this information, you need to access the books table
somehow.

This problem has more than one solution. One possible solution to the problem is to
restore the Book entity, while not restoring the original Order entity (since you don’t need to
establish a relationship between these two entities again). In this particular example, this
would be the optimal solution, since all you need here is the value of the quantity field of a
certain record in the books table. This value could be easily obtained with the help of the
getQuantity getter method of the Book entity. With JPA, you could obtain the required instance
of the Book entity through either the entity manager, JPQL, or a native SQL query. All these
approaches will be discussed in later chapters of this book.

Another solution to the problem is to directly issue a native SQL query against the books
table from within the business logic tier using the Java Database Connectivity (JDBC) technol-
ogy. Schematically, this might look like Figure 5-8.

Figure 5-8. You can access database objects directly from within the business logic tier with the
help of the native SQL queries.

As you can see in the figure, native SQL queries can be issued from within enterprise
beans against database tables, views, or stored procedures.

In this particular example, you might create a separate enterprise bean and define a busi-
ness method within it, which will query the books table with a SELECT query issued through the
Persistence Provider. JDBC should be used only in cases where the application developer
knows that the Persistence Provider will not be accessed within the same transaction or the
transaction is managed by the container and a “managed” datasource is used.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE152

Figure 5-9 identifies the application components involved in the operation of getting the
number of copies of a book and depicts the interaction between them.

Figure 5-9. A graphical depiction of how your application gets and then displays the number of
available copies of a book when a user opens the page of that book

As you might guess, the BookSessionBean bean will be invoked from within the JSP page
describing a particular book each time that page is loaded.

■Note In this particular example, you use the JDBC API from a session bean. In practice, though, you might
use it from a JSP directly to access the underlying database, thus moving some business logic of your appli-
cation to the presentation tier.

Listing 5-9 shows what the source code for the BookSessionBean bean might look like.

Listing 5-9. Source Code for the BookSessionBean Bean Whose gettingQuantity Business Method
Issues a Direct SQL Query Against the books Table Over JDBC

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.annotation.Resource;

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 153

import javax.sql.DataSource;
import java.sql.*;

@Stateless
public class BookSessionBean implements BookSession {

@Resource(name="jdbc/MySQL")
private DataSource dataSource;
public Integer gettingQuantity(String book_id)
{
Integer qnty;

try {
Connection conn = dataSource.getConnection();
PreparedStatement stmt = conn.prepareStatement➥

("SELECT quantity FROM books WHERE isbn= ?");
stmt.setString(1, book_id);
ResultSet rslt = stmt.executeQuery();
rslt.next();
qnty = rslt.getInt("quantity");
rslt.close();
stmt.close();
conn.close();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return qnty;

}
}

In this example, you use the @Resource annotation to inject the data source required to
make a connection to the database. Then, you use standard JDBC APIs to retrieve the data of
interest from the books table.

Planning Applications Invoking Stored Procedures Directly
from Within the Business Logic Tier
You saw how to create a stored procedure in the “Moving Business Logic Into Stored Proce-
dures” section earlier in this chapter. If you recall from that example, the stored procedure was
designed to be invoked from within a BEFORE INSERT trigger. In some situations, however, you
may need to invoke a stored procedure from within an enterprise bean directly.

Returning to the sample in the preceding section, you might wrap the select statement
issued against the books table in a stored function implemented inside the database and then
call this function from within the bean code, rather than issuing a direct query against the
books table.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE154

■Note In this particular example, the decision to move the SELECT statement issued against the books
table does not seem to make a lot of sense. After all, you issue a query against a single table, retrieving a
single number. However, this approach would make sense if, for example, you needed to calculate that num-
ber based on the data received from a set of different database objects. Furthermore, hiding SQL queries
within stored procedures improves security since the application does not interact with the underlying tables
directly.

To create such a function in MySQL, you might issue the CREATE FUNCTION statement as
shown in Listing 5-10.

Listing 5-10. Creating the copiesInStock Stored Function in MySQL

delimiter //
CREATE FUNCTION copiesInStock (book_id VARCHAR(20)) RETURNS INT
BEGIN
DECLARE qnty INT;
SELECT quantity INTO qnty FROM books WHERE isbn = book_id;
RETURN qnty;
END;
//
delimiter ;

To create the copiesInStock stored function in Oracle, you might issue the CREATE
FUNCTION statement shown in Listing 5-11.

Listing 5-11. Creating the copiesInStock Stored Function in Oracle

CREATE FUNCTION copiesInStock (book_id VARCHAR2) RETURN NUMBER AS
qnty NUMBER;
BEGIN
SELECT quantity INTO qnty FROM books WHERE isbn = book_id;
RETURN qnty;
END;
/

For a quick test of the copiesInStock function, you might issue the following SELECT state-
ment in both MySQL and Oracle:

SELECT copiesInStock('1430209631') as InStock FROM DUAL;

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 155

If everything is OK, this should produce output that looks like the following:

InStock

4

Now you can modify the BookSessionBean bean shown in Listing 5-9 earlier. In fact, you
will need to modify a single line in the code—the one containing the SELECT statement. The
updated line of code should look like this:

PreparedStatement stmt = conn.prepareStatement("SELECT copiesInStock(?) ➥
as quantity FROM DUAL");

This is the only change you need to apply to the BookSessionBean bean so that it uses the
newly created copiesInStock stored function.

Planning the Database Tier of the Sample
Application
The examples discussed in the preceding sections should have given you some insight into
approaches you can take when planning and designing the database tier of your application.
Now, let’s draw up a plan for developing the database tier of the sample application, which
you will start building in the next chapter.

Planning the Structure of the Underlying Database
As explained in the preceding chapter, a visual representation of the components to be uti-
lized within your application, as well as their interactions, is an important part of the planning
process. In this section, you will look at the diagram representing database objects to be uti-
lized within the database tier, and interactions between these objects, so that you should have
no difficulty following along when it comes to the development.

The diagram includes only the key database objects. Later, you might want to draw up a
more detailed diagram as you continue development.

Figure 5-10 gives a graphical representation of the structure of the underlying database,
which will be discussed in further detail in the following chapter.

As you can see in the figure, the database tier of the sample application is logically divided
into three sublayers. In the upper layer, you have the tables whose data will be directly manip-
ulated from within the application persistence tier. The stored subprograms in the middle
layer will be invoked from within the neworder BEFORE INSERT trigger. In the lower layer, you
have the tables that will be accessed from within the stored subprograms rather than directly
from within the persistence tier.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE156

Figure 5-10. A graphical representation of what components your database tier is comprised of
and how these components interact with each other

Planning the Steps to Building the Database Tier
Now that you have looked at a graphical representation of the structure of the underlying
database, you need to think about the steps to be performed to implement the underlying
database outlined in the figure. Here are the general steps required to build the under-
lying database:

1. Create the usr database schema that will be used as the container for the custom data-
base objects being utilized within the sample application.

2. Build the following tables in the usr schema: Customers, Employees, Orders, Books, and
Locations.

3. Build the updateBooks stored procedure and shippingDate stored function.

4. Define the neworder BEFORE INSERT trigger on the Orders table and the newquantity
BEFORE UPDATE trigger on the Books table.

5. Populate the Customers, Employees, Books, and Locations database tables with data.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE 157

Summary
Developing successful Java EE applications requires you to concentrate on a variety of issues
beginning in the application planning stage. In this chapter, you not only looked at some key
concepts you need to understand to effectively plan your underlying database, but you also
spent some time practicing how to put these concepts into action.

CHAPTER 5 ■ PLANNING THE UNDERLYING DATABASE158

Building the
Database Tier

P A R T 3

Implementing the
Database Tier

In the preceding chapters, you learned a lot about how to plan and design a relational data-
base to be used as the database tier within a Java EE application. The underlying database is
an important part of most applications. Considering the underlying database as a black box
used just to store and retrieve information limits your ability to take full advantage of the data-
base features that could help you build a more efficient solution.

Now that you have a good understanding of how to build an underlying database with
MySQL or Oracle, let’s follow the steps outlined in the “Planning the Steps to Building the
Database Tier” section of the preceding chapter and build the database tier for the sample
application whose other tiers will be discussed in later chapters of the book. So, as you read
this chapter, you will perform the following tasks:

• Create the database schema for the database objects being utilized within the sample
application

• Create database tables to store application data

• Populate the database tables with initial data

• Build stored procedures implementing some business logic of the application

• Define triggers on the database tables

• Test the newly created underlying database

If you followed the examples discussed in this book so far, you should already have seen
how to perform many of these tasks. In this chapter, however, you will perform them again in
a consecutive manner, building the database tier for the sample application.

In case you want to look again at the particular database objects to be created and how
these objects will communicate with each other, you might look at Figure 5-10 in the “Plan-
ning the Steps to Building the Database Tier” section in the previous chapter. Note, however,
that Figure 5-10 gave you only the general shape of the database tier. In this chapter, you will
create a few more objects than depicted in the figure.

161

C H A P T E R 6

Creating the Database Schema for the
Sample Application
The first thing you typically have to do when building the underlying database for your appli-
cation is to create the database schema through which the application will interact with that
database. Although a real-world application may utilize database objects defined in more than
one database schema, in this particular example, for the sake of simplicity, you will create all
the underlying database objects being utilized by the application in a single schema.

Creating the Database Schema in MySQL
If you’ve already read the appendix and, in particular, the “How User Database Objects Are
Organized in MySQL” section, you might recall that the task of creating a working area for a
new project in MySQL is typically twofold. You first create a database (schema) on the data-
base server, and then you create a database user to interact with the newly created database.

If you followed the examples discussed in the preceding chapters, you already should
have the mydb database created, as well as the usr user account that is granted privileges to
access and manipulate objects in that database. Of course, you might purge the mydb database,
removing all the previously created objects, so that it can be used as the container for the
database objects to be utilized within the sample you are working on now. In that case, how-
ever, you won’t be able to return to the examples discussed in the preceding chapters and
build upon database objects currently located in the mydb database. So, to avoid collisions,
let’s create a new database, say, dbsample. To do this, you have to connect to the MySQL server
as root:

mysql -u root -p
Enter password: ****

Then, you can issue the CREATE DATABASE statement from the mysql prompt, as shown in
Listing 6-1.

Listing 6-1. Creating the dbsample Database

CREATE DATABASE dbsample;

To make sure you have it, you might issue the SHOW DATABASES statements, as discussed
in the “How User Database Objects Are Organized in MySQL” section in the appendix. As a
result, among others, you should see the dbsample database in the list displayed.

The next step is to create the user account that will be used to access and manipulate
database objects in the dbsample database. To do this, you can issue the statements shown in
Listing 6-2.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER162

Listing 6-2. Creating the usrsample Account and Granting It the Privileges Required to Access and
Manipulate Objects in the dbsample Database

DROP USER 'usrsample'@'localhost';
GRANT CREATE, ALTER, DROP, SELECT, UPDATE, INSERT, DELETE, CREATE ROUTINE, TRIGGER
ON dbsample.*
TO 'usrsample'@'localhost'
IDENTIFIED BY 'pswd';

With that done, you can start creating the database objects in the dbsample database using
the usrsample user account.

Creating the Database Schema in Oracle
Creating the usr database schema in Oracle is discussed in the “How User Database Objects
Are Organized in Oracle” section in the appendix. As explained in that section, Oracle, unlike
MySQL, automatically assigns a working area for a new user account. That said, once you have
created a new user account and granted required privileges to it, you don’t need to worry
about the container for the database objects you want to create; Oracle implicitly has taken
care of this for you.

Again, if you followed the Oracle-related examples in the preceding chapters, you should
already have the usr schema created in your Oracle database, as shown in Listing A-3 in the
appendix. However, to avoid collisions with the examples discussed in the preceding chapters,
you need to create a new user schema. You can create it as shown in Listing 6-3.

Listing 6-3. Creating the usrsample Account and Granting It the Required Privileges

CONNECT /AS SYSDBA
CREATE USER usrsample IDENTIFIED BY pswd;
GRANT connect, resource TO usrsample;

To make sure you have it, you could, being connected as sysdba, issue the following
query:

SELECT username FROM dba_users;

As a result, you should see usrsample in the output list.
It is important to note here that granting the resource and connect roles to a user gives

only some basic privileges to that user, allowing them to connect to the database and then
create and manipulate database objects of some types in its working area. For example, you
will be able to create a table or even a stored procedure, when connected as the user who is
granted the resource role. However, if, for example, you need to define a view, you first need to
grant the CREATE VIEW privilege to that user.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 163

Creating Database Tables to Store
Application Data
Let’s first determine which particular tables you need to create and how these tables will be
related with each other. So, you might look at Figure 5-10 provided in Chapter 5. However, as
mentioned earlier, that figure can give you only the general shape of the database tier being
built here.

Figure 6-1 goes a bit further and illustrates the entire set of the tables to be created, as well
as the relationships between those tables.

Figure 6-1. Database tables that will be used within the sample application

As you can see, we’ve added two more tables, namely, details and shoppingCarts, in
order to make the application look more realistic. The details table will be used to store the
line items of orders. It’s common practice to store order items in a separate table, since a single
order usually has more than one line item. The shoppingCarts table is designed to store the
information from the shopping carts of users. Having put one or more books in the shopping
cart, a user will be able to then place an order. In that case, the items in the shopping cart are
moved from the shoppingCarts table to the details table.

The tables upon which you will build JPA entities are shown in the upper line of the dia-
gram. The tables shown at the bottom will be accessed from within the database tier or
business logic tier directly, not through JPA entities.

Building Database Tables in MySQL
This section walks you through the steps to create the tables shown in Figure 6-1, in MySQL.
Although some of these tables may already exist in the mydb database because they were used
in the previous examples, you have to re-create them in the newly created dbsample database
so that they can be used in the sample application.

Before you can follow the SQL commands shown in Listing 6-4, you need to connect to
the MySQL server through the MySQL command-line tool as the usrsample user:

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER164

mysql -u usrsample -p
Enter password: ****

Then you can perform the commands shown in the listing.

■Tip You can find the batch script shown in the listing in the downloadable archive accompanying this
book, specifically, in the ch6/tablesmysql.sql file. This can save you lots of time if you use this file as an
input parameter of the mysql program, as discussed in the “MySQL Command-Line Tool” section in the
appendix.

Listing 6-4. Creating the Tables That Will Be Used in the Sample, in MySQL

USE usrsample;
DROP TABLE IF EXISTS details;
DROP TABLE IF EXISTS shoppingCarts;
DROP TABLE IF EXISTS orders;
DROP TABLE IF EXISTS customers;
DROP TABLE IF EXISTS locations;
DROP TABLE IF EXISTS employees;
DROP TABLE IF EXISTS books;

CREATE TABLE locations (
loc_id INTEGER PRIMARY KEY,
area VARCHAR(100)

)
ENGINE = InnoDB;

CREATE TABLE customers (
cust_id INTEGER PRIMARY KEY,
cust_name VARCHAR(100),
loc_id INTEGER,
email VARCHAR(100),
phone VARCHAR(20),
FOREIGN KEY(loc_id) REFERENCES locations(loc_id)

)
ENGINE = InnoDB;

CREATE TABLE employees(
empno INTEGER PRIMARY KEY,
firstname VARCHAR(30),
lastname VARCHAR(30)
)
ENGINE = InnoDB;

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 165

CREATE TABLE books(
isbn VARCHAR(20) PRIMARY KEY,
title VARCHAR(150),
author VARCHAR(150),
quantity INTEGER,
price NUMERIC(8,2)

)
ENGINE = InnoDB;

CREATE TABLE orders(
pono INTEGER PRIMARY KEY,
cust_id INTEGER,
empno INTEGER,
shipping_date DATE,
delivery_estimate VARCHAR(20),
FOREIGN KEY(cust_id) REFERENCES customers(cust_id),
FOREIGN KEY(empno) REFERENCES employees(empno)

)
ENGINE = InnoDB;

CREATE TABLE details(
ordno INTEGER,
book_id VARCHAR(20),
units INTEGER,
unit_price NUMERIC(8,2),
PRIMARY KEY(ordno, book_id),
FOREIGN KEY(ordno) REFERENCES orders(pono),
FOREIGN KEY(book_id) REFERENCES books(isbn)

)
ENGINE = InnoDB;

CREATE TABLE shoppingCarts(
cart_id INTEGER,
book_id VARCHAR(20),
units INTEGER,
unit_price NUMERIC(8,2),
PRIMARY KEY(cart_id, book_id),
FOREIGN KEY(book_id) REFERENCES books(isbn)

)
ENGINE = InnoDB;

If everything is OK, you should see no error messages.

Building Database Tables in Oracle
In this section, you will look at how to create the tables in Oracle. To do this, you first need to
connect to the database through SQL*Plus as usrsample:

sqlplus usrsample/pswd

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER166

Then, you can run the batch query shown in Listing 6-5.

■Tip You can find the batch script shown here in the ch6/tablesmysql.sql file located in the download-
able archive accompanying this book. To find out how you can run the entire batch script from within
SQL*Plus, refer to the “Oracle SQL*Plus” section in the appendix.

Listing 6-5. Creating the Tables That Will Be Used in the Sample, in Oracle

DROP TABLE details;
DROP TABLE shoppingCarts;
DROP TABLE orders;
DROP TABLE customers;
DROP TABLE locations;
DROP TABLE employees;
DROP TABLE books;

CREATE TABLE locations (
loc_id NUMBER PRIMARY KEY,
area VARCHAR2(100)

);

CREATE TABLE customers (
cust_id NUMBER PRIMARY KEY,
cust_name VARCHAR2(100),
loc_id NUMBER,
email VARCHAR2(100),
phone VARCHAR2(20),
FOREIGN KEY(loc_id) REFERENCES locations(loc_id)

);

CREATE TABLE employees(
empno NUMBER PRIMARY KEY,
firstname VARCHAR2(30),
lastname VARCHAR2(30)
);

CREATE TABLE books(
isbn VARCHAR2(20) PRIMARY KEY,
title VARCHAR2(150),
author VARCHAR2(150),
quantity NUMBER,
price NUMBER(8,2)

);

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 167

CREATE TABLE orders(
pono NUMBER PRIMARY KEY,
cust_id NUMBER,
empno NUMBER,
shipping_date DATE,
delivery_estimate VARCHAR2(20),
FOREIGN KEY(cust_id) REFERENCES customers(cust_id),
FOREIGN KEY(empno) REFERENCES employees(empno)

);

CREATE TABLE details(
ordno NUMBER,
book_id VARCHAR2(20),
units NUMBER,
unit_price NUMBER(8,2),
PRIMARY KEY(ordno, book_id),
FOREIGN KEY(ordno) REFERENCES orders(pono),
FOREIGN KEY(book_id) REFERENCES books(isbn)

);

CREATE TABLE shoppingCarts(
cart_id NUMBER,
book_id VARCHAR2(20),
units NUMBER,
unit_price NUMBER(8,2),
PRIMARY KEY(cart_id, book_id),
FOREIGN KEY(book_id) REFERENCES books(isbn)

);

The DROP TABLE statements at the beginning of this script ensure that the old versions of
tables being created, if any, are removed. However, if you run the script for the first time within
an empty schema, then each DROP TABLE will generate the following error:

ERROR at line 1:
ORA-00942: table or view does not exist

The previous, though, doesn’t prevent the execution of the subsequent queries in the
batch. So, the tables will be created as described in the CREATE TABLE statements.

Populating the Tables with Initial Data
Now that you have the tables created, you can populate them with some data. Of course, you
don’t have to populate the orders, shoppingCarts, and details tables at this stage; these tables
will be implicitly populated later through the application interface. But what you can populate
with initial data right now are employees, customers, locations, and books. Listing 6-6 contains
the INSERT statements you should perform to populate these tables for both Oracle and MySQL.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER168

In MySQL, before performing the INSERT statements shown in the listing, you should per-
form the following statements:

USE dbsample;
START TRANSACTION;

Again, entering the statements in the listing as a batch query could save you a lot of time.
To insert data into the tables created in MySQL, you can use the ch6/tablespopulatingmysql.
sql file in the code archive. For Oracle, use the ch6/tablespopulatingoracle.sql file.

Listing 6-6. Populating the Tables with Data

INSERT INTO locations VALUES(1, 'US');
INSERT INTO locations VALUES(2, 'Canada');
INSERT INTO locations VALUES(3, 'Europe');
INSERT INTO locations VALUES(4, 'Other');

INSERT INTO customers VALUES(1, 'John Poplavski', 1, 'joshp@mail.com', ➥
'(650)777-5665');
INSERT INTO customers VALUES(2, 'Paul Medica', 3, 'paulmed@mail.com', ➥
'(029)2124-5540');

INSERT INTO employees VALUES(1, 'Serg', 'Oganovich');
INSERT INTO employees VALUES(2, 'Maya', 'Silver');

INSERT INTO books VALUES('1430209631', 'Beginning GlassFish TopLink: ➥
From Novice to Professional', 'Yuli Vasiliev', 10, 44.99);
INSERT INTO books VALUES('1590595300', 'Expert Oracle Database Architecture: ➥
9i and 10g Programming Techniques and Solutions', 'Thomas Kyte', 10, 49.99);

COMMIT;

The COMMIT statement you can see at the end makes the changes made by the INSERT
statements permanent. Entering all the statements within a single transaction here ensures
that either all the changes have been saved in all the tables or none of them has been saved in
any table.

Building the Stored Subprograms
According to the plan outlined at the beginning of this chapter, the next step in building the
underlying database is creating the stored subprograms. First, though, let’s determine the list
of the subprograms to be created. Table 6-1 summarizes these subprograms.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 169

Table 6-1. The Stored Subprograms to Be Utilized Within the Sample Application

Subprogram Name Subprogram Type Description

updateBooks Procedure Reduces the number of available book copies stored
in the books table by the number of copies specified
in the order being placed. This procedure is
automatically invoked upon inserting a new row
into the details table.

shippingDate Function Calculates the shipping date for the order being
placed. The function is automatically invoked upon
inserting a new row into the orders table.

deliveryEstimate Function Calculates the estimate delivery date for the order
being placed. Like shippingDate, this function is
automatically invoked upon inserting a new row
into the orders table.

As you can see, the stored functions shippingDate and deliveryEstimate outlined in the
table will be invoked upon inserting a new row into the orders table. In particular, they will be
invoked from within the BEFORE INSERT trigger defined on the orders table. In contrast, the
updateBooks procedure will be invoked from within the BEFORE INSERT trigger defined on the
details table.

Diagrammatically, this might look like Figure 6-2.

Figure 6-2. Stored subprograms that will be called from within the neworder and newdetail
BEFORE INSERT triggers that will be discussed in the “Defining the Triggers” section later in
this chapter

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER170

As you can see in the figure, the updateBooks procedure and deliveryEstimate function
interact with the underlying tables, accessing the books and locations tables, respectively. In
contrast, the shippingDate function does its job without accessing any table.

In the following two sections, you will look at how to implement these stored subpro-
grams in both MySQL and Oracle.

Building the Stored Subprograms in MySQL
As mentioned, the updateBooks procedure is to reduce the number of available book copies
stored in the books table by the number of copies specified in the item line record being
inserted into the details table. Actually, this same procedure might be used when an order is
being canceled and, therefore, its line items are being deleted. In these cases, however, the
second parameter passed to the procedure must be a negative integer reflecting the number
of copies specified in the line item record being deleted.

■Note In real-world applications, the items belonging to an order being canceled are not typically deleted
from the details table immediately. Rather, they are simply marked as canceled in a certain column of the
details table. In this particular example, however, for the sake of simplicity, the details table does not
contain such a column.

Listing 6-7 shows the CREATE PROCEDURE statement you might issue, when connected as
usrsample, to create the updateBooks procedure.

Listing 6-7. Creating the updateBooks Stored Procedure in MySQL

USE dbsample
delimiter //
CREATE PROCEDURE updateBooks (IN book_id VARCHAR(20), IN units INT)
BEGIN
UPDATE books
SET quantity = quantity – units
WHERE isbn = book_id;
END;
//
delimiter ;

As you can see, this is the same procedure you saw in the “Moving Business Logic Into
Stored Procedures” section of the preceding chapter. This time, though, this procedure will be
invoked from within the BEFORE INSERT trigger defined on the details table rather than the
orders table.

Now let’s move on to the shippingDate stored function. If you recall, this function doesn’t
access any table when calculating the shipping data of an order. What it actually does is deter-
mine the weekday of the current day, and if this is a weekend day, then it sets the shipping
date to the next Monday; otherwise, the shipping date is set to the current date.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 171

Listing 6-8 shows the CREATE FUNCTION statement you should issue to create the
shippingDate stored function.

Listing 6-8. Creating the shippingDate Stored Function in MySQL

delimiter //
CREATE FUNCTION shippingDate() RETURNS DATE
BEGIN
DECLARE dayno INT;
DECLARE shpdate DATE;
SELECT WEEKDAY(NOW()) INTO dayno;
IF dayno < 5 THEN
SELECT CURDATE() INTO shpdate;
ELSEIF dayno = 5 THEN
SELECT DATE_ADD(CURDATE(), INTERVAL 2 DAY) INTO shpdate;
ELSEIF dayno = 6 THEN
SELECT DATE_ADD(CURDATE(), INTERVAL 1 DAY) INTO shpdate;
END IF;
RETURN shpdate;
END;
//
delimiter ;

After performing this statement, you should have the shippingDate function created and
stored in your database. As a quick test, you might issue the following statement:

SELECT shippingDate() FROM DUAL;

The output might look like this:

shippingDate();

2008-03-17

Finally, you need to create the deliveryEstimate stored function, which will return the
approximate number of business days required for delivering the order, based on the location
of the recipient, as specified in the locations table. In a real application, a similar mechanism
could be used to calculate the shipping fee of an order being placed.

Listing 6-9 shows you the statement you need to issue to create the deliveryEstimate
function.

Listing 6-9. Creating the deliveryEstimate Stored Function in MySQL

delimiter //
CREATE FUNCTION deliveryEstimate(location_id INT) RETURNS VARCHAR(20)
BEGIN
DECLARE estimate VARCHAR(20);
DECLARE location VARCHAR(100);
SELECT area INTO location FROM locations WHERE loc_id = location_id;

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER172

CASE
WHEN location = 'US' THEN
SET estimate = '2 business days';
WHEN location = 'Canada' THEN
SET estimate = '2-4 business days';
WHEN location = 'Europe' THEN
SET estimate = '4-6 business days';
ELSE
SET estimate = '8-12 business days';
END CASE;
RETURN estimate;
END;
//
delimiter ;

In a real-world situation, the logic implemented in this function would be much more
complicated, of course. The fact is that the delivery estimate depends on the shipping option
the customer chooses. Many online shops provide several shipping options to their cus-
tomers. To keep things simple, though, this particular example doesn’t deal with different
shipping options.

Now to test the newly created deliveryEstimate stored function, you might issue the fol-
lowing statement:

SELECT deliveryEstimate(1) FROM DUAL;

This should produce the following output:

deliveryEstimate(1);

2 business days

Building the Stored Subprograms in Oracle
Now let’s look at how the stored subprograms discussed here might be created in Oracle. Let’s
start with the updateBooks stored procedure.

Listing 6-10 shows the CREATE OR REPLACE PROCEDURE statement you can issue from
SQL*Plus, being connected as usrsample, to create the updateBooks procedure.

Listing 6-10. Creating the updateBooks Stored Procedure in Oracle, Which Will Be Called from
Within the newdetail Trigger Defined As Shown in Listing 5-8

CREATE OR REPLACE PROCEDURE updateBooks (book_id IN VARCHAR2, units IN NUMBER) AS
BEGIN
UPDATE books
SET quantity = quantity – units
WHERE isbn = book_id;
END;
/

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 173

Next, to create the shippingDate stored function in Oracle, you might issue the CREATE OR
REPLACE FUNCTION statement shown in Listing 6-11.

Listing 6-11. Creating the shippingDate Stored Function in Oracle

CREATE OR REPLACE FUNCTION shippingDate RETURN DATE IS
dayno NUMBER;
shpdate DATE;
BEGIN
SELECT TO_NUMBER(TO_CHAR(SYSDATE, 'D')) INTO dayno FROM DUAL;
IF (dayno>1) AND (dayno<7) THEN
SELECT SYSDATE INTO shpdate FROM DUAL;
ELSE
SELECT NEXT_DAY(SYSDATE, 'MONDAY') INTO shpdate FROM DUAL;
END IF;
RETURN shpdate;
END;
/

To test the newly created shippingDate function, you might issue the same query you
used to test the MySQL version of the function, as discussed in the preceding section.

Next, you can move on and create the deliveryEstimate function returning the approxi-
mate number of business days required for delivering the order. Listing 6-12 shows you the
statement you need to issue to create the deliveryEstimate function in Oracle.

Listing 6-12. Creating the deliveryEstimate Stored Function in Oracle

CREATE OR REPLACE FUNCTION deliveryEstimate(location_id NUMBER) RETURN VARCHAR2 AS
estimate VARCHAR2(20);
location VARCHAR2(100);
BEGIN
SELECT area INTO location FROM locations WHERE loc_id = location_id;
estimate :=
CASE
WHEN location = 'US' THEN
'2 business days'
WHEN location = 'Canada' THEN
'2-4 business days'
WHEN location = 'Europe' THEN
'4-6 business days'
ELSE
'8-12 business days'
END;
RETURN estimate;
END;
/

After performing this statement, you might test the deliveryEstimate function as dis-
cussed in the preceding section.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER174

Defining the Triggers
By now you should have all the stored subprograms created and stored in your database. Next
you can create the code that will invoke these subprograms. If you recall from the diagram in
Figure 6-2, they will be invoked from within the database tier, in particular, from within the
triggers defined on the orders and details tables.

In the following two sections, you will look at how to create these triggers, as well as the
BEFORE UPDATE trigger defined on the books table, which will generate an error upon trying to
update the quantity field to a negative value.

Defining the Triggers in MySQL
Let’s first create the newdetail BEFORE INSERT trigger on the details table. This trigger will be
invoked each time a new record representing an order line item is inserted into the details
table. The only action the trigger performs is to invoke the updateBooks stored procedure
that reduces the value of the quantity field in the corresponding record of the books table by
the number of units specified in the line item record being inserted. You should have the
updateBooks stored procedure created as shown in Listing 6-7 earlier in this chapter.

Listing 6-13 shows the CREATE TRIGGER statement to be issued, being connected as the
usrsample user via the MySQL command-line client.

Listing 6-13. Creating the BEFORE INSERT Trigger on the details Table in MySQL

delimiter //
CREATE TRIGGER newdetail
BEFORE INSERT ON details
FOR EACH ROW
BEGIN
CALL updateBooks (NEW.book_id, NEW.units);
END;
//
delimiter ;

The next trigger you need to define is the BEFORE INSERT trigger on the orders table. This
trigger will invoke the shippingDate and deliveryEstimate functions to determine and then
set the shipping_date and delivery_estimate fields, respectively.

Listing 6-14 shows the statement for creating the trigger.

Listing 6-14. Creating the BEFORE INSERT Trigger on the orders Table in MySQL

delimiter //
CREATE TRIGGER neworder
BEFORE INSERT ON orders
FOR EACH ROW
BEGIN
DECLARE location_id INTEGER;
SELECT loc_id INTO location_id FROM customers WHERE cust_id = NEW.cust_id;
IF NEW.shipping_date IS NULL THEN
SET NEW.shipping_date = shippingDate();

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 175

END IF;
SET NEW.delivery_estimate = deliveryEstimate(location_id);
END;
//
delimiter ;

Finally, you need to define the BEFORE UPDATE trigger on the books table, which will cause
an error if the new value of the quantity field is less than 0. The idea behind this trigger is to
prevent committing the transaction that should include the operation of inserting a new order
and the operations of inserting all its line items, if at least one line item of that order contains
an inappropriate quantity of book copies being ordered.

Listing 6-15 shows how you might create this trigger in MySQL.

Listing 6-15. Creating the BEFORE UPDATE Trigger on the books Table in MySQL

delimiter //
CREATE TRIGGER newquantity BEFORE UPDATE ON books
FOR EACH ROW
BEGIN
IF NEW.quantity<0 THEN
INSERT INTO books VALUES();
END IF;
END;
//
delimiter ;

The trick in this code is that the INSERT statement issued when the new quantity value is
less than 0 always fails, generating an error that prevents not only the current update opera-
tion from being completed but also makes the database server roll back the entire transaction
within which that update is happening. So, if you group all the operations inserting the order
and its details into a single transaction, the entire transaction will be rolled back upon the fail-
ure of any insert operation. Otherwise, you can safely commit the transaction, making the
changes made by the insert operations permanent.

Defining the Triggers in Oracle
This section walks you through the steps required to create the triggers in Oracle. Like in the
preceding section, let’s start with the newdetail BEFORE INSERT trigger, defining it on the
details table.

Listing 6-16 shows the statement you might issue from SQL*Plus when connected as the
usrsample user.

Listing 6-16. Creating the newdetail BEFORE INSERT Trigger in Oracle

CREATE OR REPLACE TRIGGER newdetail
BEFORE INSERT ON details
FOR EACH ROW
BEGIN

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER176

updateBooks (:NEW.book_id, :NEW.units);
END;
/

Next, you create the BEFORE INSERT trigger on the orders table. Listing 6-17 shows how
you could do that.

Listing 6-17. Creating the neworder BEFORE INSERT Trigger on the orders Table in Oracle

CREATE TRIGGER neworder
BEFORE INSERT ON orders
FOR EACH ROW
DECLARE
location_id INTEGER;
BEGIN
SELECT loc_id INTO location_id FROM customers WHERE cust_id = :NEW.cust_id;
IF :NEW.shipping_date IS NULL THEN
:NEW.shipping_date := shippingDate();
END IF;
:NEW.delivery_estimate := deliveryEstimate(location_id);
END;
/

Finally, you define the BEFORE UPDATE trigger on the books table, as shown in Listing 6-18.

Listing 6-18. Creating the BEFORE UPDATE Trigger on the books Table in Oracle

CREATE OR REPLACE TRIGGER newquantity
BEFORE INSERT OR UPDATE ON books
FOR EACH ROW
WHEN (new.quantity < 0)
BEGIN
RAISE_APPLICATION_ERROR(-20001, 'Improper quantity');
END;
/

You just finished the underlying database that will be used within the sample application
whose other layers will be discussed in the later chapters.

Testing the Underlying Database
Now that you have all the database objects in place, you might want to make sure the entire
underlying database works as expected. Although you don’t have the entire application built
yet, you can issue a set of SQL statements against the database, simulating interactions
between the application and the underlying database.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 177

To perform such a test, you might accomplish the following steps:

1. Start a new transaction.

2. Insert a new record into the orders table.

3. Insert a new record into the details table, related to the record inserted in step 2.

4. Insert another new record into the details table, related to the record inserted in
step 2.

5. Commit or roll back the transaction opened in step 1, depending on whether both
steps 3 and 4 were successful.

These steps simulate the behavior of your application. It is important that the previous
insert statements are issued within a single transaction. This allows you to roll back the
changes made by all the inserts if at least one of them fails.

Figure 6-3 provides a graphical representation of these steps.

Figure 6-3. Inserting a new order with its details within a single transaction

Now let’s look at the previous mechanism in action. For that, you will need to connect to
your database server as the usrsample user and execute the statements discussed next.

In MySQL, you start with explicitly opening a transaction by issuing the following state-
ment:

START TRANSACTION;

In Oracle, the transaction will be started implicitly, without you doing a thing.
Next, you might want to take a look at the amount of the book copies for each book stored

in the books table. This can be done with the following statement:

SELECT isbn, quantity FROM books;

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER178

If you filled the books table with data as it was shown in Listing 6-6 earlier in this chapter,
this query should produce the following output:

isbn quantity

1430209631 10
1590595300 10

Then, you can insert a new record into the orders table. Here is how you could do that:

INSERT INTO orders(pono, cust_id, empno) VALUES(1, 1, 1);

You might wonder why you specify only the first three fields when inserting the previous
record. The fact is that the other two fields—namely, shipping_date and delivery_estimate—
are filled implicitly with the shippingDate and deliveryEstimate functions, respectively, which
are invoked from within the neworder BEFORE INSERT trigger.

To make sure that the new record has been successfully inserted, you might issue the fol-
lowing statement:

SELECT * FROM orders;

This should produce the following output:

pono cust_id empno shipping_date delivery_estimate

1 1 1 2008-03-17 2 business days

This illustrates that both the shippingDate and deliveryEstimate functions work as
expected, as well as the neworder BEFORE INSERT trigger that invokes these stored functions.

Now that you have inserted a record in the orders table, you can modify the details table,
inserting records representing line items of the newly inserted order. For example, you might
insert the following record into the details table:

INSERT INTO details VALUES(1, '1430209631', 5, 44.99);

You should have no problem when executing this statement. Now, if you query the books
table again:

SELECT isbn, quantity FROM books;

you should see the following output:

isbn quantity

1430209631 5
1590595300 10

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 179

As you can see, the number of available copies for the book with the ISBN 1430209631
was reduced by 5. That means the updateBooks stored procedure works fine, as well as the
newdetail BEFORE INSERT trigger.

Finally, you need to test the newquantity BEFORE UPDATE trigger. To do this, you might issue
the following statement:

INSERT INTO details VALUES(1, '1590595300', 15, 49.99);

This time, the third parameter representing the number of book copies being ordered is
15, which exceeds the available amount of book copies specified in the books table. So, this
statement should fail, outputting an error generated by the newquantity trigger.

Since you failed to insert another record into the details table, you should roll back the
changes made by the previous two insert operations. In particular, you should roll back the
insert into the orders table and the preceding successful insert into the details table. You can
do this with the following statement:

ROLLBACK;

With that done, you should check all the tables again:

SELECT * FROM orders;

This should give you the following output:

Empty set (0.00 sec)

When querying the details table:

SELECT * FROM details;

you should have the same result:

Empty set (0.00 sec)

Finally, when querying the books table:

SELECT isbn, quantity FROM books;

you should see the following output:

isbn quantity

1430209631 10
1590595300 10

This is what you started with. The same is true for the orders and details tables; when
the transaction started, these tables were empty.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER180

■Note In the previous example, you decided to roll back the transaction based on that the last insert state-
ment has failed, manually entering the ROLLBACK statement. This is a test, however. For an application
deployed within an application server, the rollback operation will be automatically performed upon the failure
of any operation included into the transaction. This was discussed already in the “Transaction Considera-
tions” section in Chapter 4 and will be discussed in more detail in Chapter 13.

Summary
Without long introductions, this chapter told you exactly what you needed to do to build the
underlying database for the sample application. In particular, it walked you through the steps
of building all the database objects required for the sample application to work.

In the next chapter, you will look at how to build the data source on your GlassFish appli-
cation server to be used as the bridge between the underlying database created as discussed
here and the other sample application’s layers being discussed in the later chapters.

CHAPTER 6 ■ IMPLEMENTING THE DATABASE TIER 181

Setting Up the Data Source

By now you should have the underlying database created as discussed in the preceding
chapters. Before you can use it as part of an enterprise application, you have to define the data
source in your application server, through which the database will be available to the compo-
nents deployed to the server.

If you recall, Chapter 2 had a tiny section named “Setting Up the Data Source.” In that sec-
tion, you looked at the steps required to create the data source to be used for establishing a
connection with the Java DB database included with the GlassFish application server by
default. This chapter provides a more detailed look at the problem of setting up the data
source to be utilized by a Java EE application. In particular, you will look at the following:

• An overview of the Java Naming and Directory Interface (JNDI) naming service

• How to install a database driver on your GlassFish application server

• How to set up data sources in your GlassFish server for the underlying database imple-
mented in both MySQL and Oracle

• How to perform a quick test of the newly created data source

As you can see, you will first look at JNDI and how the JNDI naming service is used in the
Java EE platform to find and access data sources as well as other resources and components.
Then, you will learn how to obtain and then install the database driver on your application
server so that you can then define the data source required to connect to the underlying
database.

After performing the steps provided in this chapter, you should have the data source to be
utilized within the sample application, and its database tier should be already built as dis-
cussed in the preceding chapter.

Overview of JNDI
Now that you have the underlying database created, how can you make it available to the
other layers of the application? The standard way to do this in the Java EE platform is via the
JNDI naming service, which makes it possible for Java EE components to find and access
required resources, such as Java Database Connectivity (JDBC) data sources. The JNDI name
organizes components in a hierarchical tree structure, called a JNDI tree or JNDI repository,
providing a mechanism to bind a component to a name.

183

C H A P T E R 7

Of course, JNDI is not solely used to deal with JDBC resources, providing applications
with a means to connect to their underlying databases. A Java EE application also uses the
JNDI feature to locate the components deployed to the application server, as well as the other
resources utilized within these components, such as EJB beans and JMS resources. It’s impor-
tant to realize, however, that in EJB 3 you typically do not use JNDI lookups directly in order to
obtain a reference to the resource of interest. Instead, you use dependency injection, which
provides an abstraction over the JNDI repository.

■Note Through Admin Console, you can always look at the JNDI Tree Browsing list, which contains the
JNDI names of the resource objects available on the application server. The JNDI Tree Browsing list is dis-
played in a single window, when you click the JNDI Browsing button in the Application Server dialog box
(which you can access by selecting Common Tasks➤ Application Server).

Figure 7-1 provides a conceptual view of a JNDI tree.

Figure 7-1. An example of a JNDI tree

Returning to the task of creating a data source, you start by creating a JDBC connection
pool, which you then associate with a JDBC resource. Your application will obtain a database
connection from the JDBC connection pool, locating the data source on the JNDI tree and
then asking for a connection.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE184

Figure 7-2 shows a simplified diagram of how a Java EE application interacts with its
underlying database.

Figure 7-2. A graphical depiction of the structure through which a Java EE application interacts
with its underlying database

As you can see in Figure 7-2, there are three components between the persistence tier of
an application and its underlying database. The upper one, the JNDI naming service, is pro-
vided by the application server and, as stated earlier, is used to locate and access the data
source associated with the underlying database. Before you can set up a data source, however,
you must have the JDBC driver for your database installed in your domain in the application
server.

The following section will discuss how to obtain and install JDBC drivers for MySQL and
Oracle databases.

Installing a Database Driver on the
Application Server
JDBC is a standard way for Java applications to connect and then interact with relational data-
bases. The JDBC drivers implement the standard java.sql interfaces and can also implement
vendor-specific interfaces.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE 185

In GlassFish, installing the JDBC driver for your database is very straightforward. All you
need to do is copy the appropriate JDBC driver into the lib directory located within the root
directory of your domain in the application server. Before you can do that, though, you have
to obtain the driver.

Obtaining and Installing the JDBC Driver for MySQL
MySQL Connector/J is the official MySQL JDBC driver providing connectivity for Java applica-
tions. You can download this driver from the MySQL Connectors Downloads page at http://
dev.mysql.com/downloads/connector/. You might also be interested in looking at the “MySQL
Connector/J” section in the “Connectors” chapter of the MySQL Reference Manual. If you
don’t have this manual installed on your computer, you can refer to the online documentation
for Connector/J available at http://dev.mysql.com/doc/refman/5.0/en/connector-j.html.

Once you have downloaded the mysql-connector-java-[version]-.zip archive file
([version] stands for the three-digit release number, which is 5.1.6 for the time being), you
need to unpack it and then copy the connector JAR file into the lib directory of your GlassFish
domain, as mentioned earlier. For example, to install the driver in domain1, you must copy the
mysql-connector-java-[version]-bin.jar driver JAR file to the glassfish_dir/domains/
domain1/lib directory.

After you copy the JDBC driver in the domain’s lib directory, you need to restart the
domain to enable that driver.

Obtaining and Installing the JDBC Driver for Oracle
If your underlying database is Oracle, you need to obtain and then install the Oracle JDBC
Thin driver. You can download it from the JDBC Drivers Downloads page on the Oracle Tech-
nology Network (OTN) website, at http://www.oracle.com/technology/software/tech/java/
sqlj_jdbc/index.html. On this page, you can choose the drivers for a certain version of the
Oracle Database. Also, you might want to look at the documentation available from the SQLJ
JDBC Documentation page at http://www.oracle.com/technology/docs/tech/java/
sqlj_jdbc/index.html.

Once you have obtained the ojdbc5.jar file containing the classes for use with JDK 1.5 or
ojdbc6.jar for use with JDK 1.6, you simply need to copy it into the lib directory of your
GlassFish domain.

Just like with the MySQL driver, you need to restart the application server domain to
enable the driver.

Setting Up and Configuring the Data Source
Now that you have the JDBC driver integrated with your application server and ready for use,
you can move on and create the data source—actually a configuration defined upon that
JDBC driver.

When creating a data source, you define a set of parameters to be used with the JDBC
driver so that your application can interact with a certain underlying database in the way you
want it. In particular, you need to specify the database server name, database name (URL),
username, and password, as well as some other settings required to establish a connection
and settings that must be in place for it to be used.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE186

Defining a data source in the GlassFish application server implies creating the following
two resources:

• JDBC connection pool, which will be associated with the JDBC resource created in the
next step

• JDBC resource, which will be utilized by applications in order to establish a database
connection with characteristics described in the associated connection pool

■Note It is interesting to note that the settings you have to establish when creating a JDBC connection
pool will depend on the database for which you define the pool. For example, when defining a connection
pool for an Oracle database, you have to set the ServiceName attribute, which is not required when defining
such a pool for another database.

The following sections walk you through the process of setting up the data sources via
Admin Console for the underlying MySQL and Oracle databases created as discussed in the
preceding chapter.

Setting Up the Data Source to Interact with MySQL
Assuming you have already integrated the MySQL JDBC driver with the application server as
discussed in the “Obtaining and Installing the JDBC Driver for MySQL” section earlier, you can
perform the following steps to create the JDBC connection pool that defines the aspects of a
connection to your MySQL underlying database:

1. Launch the application server’s Admin Console by pointing your browser to
http://localhost:4848/login.jsf.

2. Log in to Admin Console as admin.

3. In Admin Console, go to the Resources/JDBC/Connection Pools page by following
the corresponding link in the Common Tasks page located on the left side of Admin
Console.

4. On the Resources/JDBC/Connection Pools page, click the New button to start the New
JDBC Connection Pool Wizard.

5. In the first step of the New JDBC Connection Pool Wizard, set the general settings as
follows:

• Name: mysqlpool

• Resource Type: javax.sql.DataSource

• Database Vendor: MySQL

CHAPTER 7 ■ SETTING UP THE DATA SOURCE 187

6. Click the Next button to move to the second screen of the wizard.

Figure 7-3 shows what the first screen of the New JDBC Connection Pool Wizard should
look like, after you have defined the settings but before you click the Next button.

Figure 7-3. The first screen of the New JDBC Connection Pool Wizard

The second screen of the wizard displays lots of parameters. You should set some of
them to appropriate values, while leaving the others with their default values. The set-
tings are grouped into the following categories:

• General Settings

• Pool Settings

• Connection Validation

• Transaction

• Additional Properties

■Note You could use the context help to learn more about settings displayed here. To invoke the Help win-
dow, just click the Help button in the top-right corner of the Admin Console window.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE188

7. Now, scroll down to the Additional Properties table, and set up the following five
parameters, setting them to appropriate values:

• databaseName: dbsample

• user: usrsample

• password: pswd

• serverName: localhost

• portNumber: 3306

8. Finally, click the Finish button to complete the wizard. As a result, you should see
the newly created mysqlpool entity in the table located on the Resources/JDBC/
Connection Pools page.

Before proceeding any further, it’s a good idea to verify the connection pool settings.
Assuming that the database server is up and running properly, you can select the mysqlpool
entity on the Resources/JDBC/Connection Pools page of Admin Console, and then click the
Ping button. If everything is OK, the Ping Succeeded message should appear, as shown in
Figure 7-4.

Figure 7-4. Verifying the connection pool settings

The next step in defining the data source through which the sample will interact with the
underlying database is to create the JDBC resource based on the just-created connection pool.
To accomplish this, you should perform these steps:

1. In Admin Console, move on to the Resources/JDBC/JDBC Resources page, and then
click the New button.

2. In the New JNDI Resource page, set up the JDBC resource settings as shown here:

• JNDI Name: jdbc/mysqlpool

• Pool Name: mysqlpool

• Status: Enabled

3. Click OK to create the new JDBC resource.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE 189

Figure 7-5 shows what the New JDBC Resource page might look like before you click OK
to create the resource.

Figure 7-5. Creating a new JDBC resource with Admin Console

After you click OK on the New JDBC Resource page, you should see the jdbc/mysqlpool
entity appear on the Resources/JDBC/JDBC Resources page. Now you can utilize the newly
created JDBC resource in your applications, referring to it by its JNDI name: jdbc/mysqlpool.
The first example illustrating it is provided in the “Performing a Quick Test of the Data Source”
section later in this chapter.

Setting Up the Data Source to Interact with Oracle
If your underlying database is Oracle and you have installed the Oracle JDBC driver as dis-
cussed in the “Obtaining and Installing the JDBC Driver for Oracle” section earlier, you should
follow the steps in this section to define the data source to be then used by the sample to
interact with the underlying database.

First you have to create the JDBC connection pool defining the parameters of a connec-
tion to your Oracle database. This can be done as follows:

1. Launch the application server’s Admin Console by pointing your browser to
http://localhost:4848/login.jsf.

2. Log in to Admin Console as admin.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE190

3. In Admin Console, move on to the Resources/JDBC/Connection Pools page by clicking
the corresponding link in the Common Tasks page of Admin Console.

4. On the Resources/JDBC/Connection Pools page, click the New button to launch the
New JDBC Connection Pool Wizard.

5. In the first step of the wizard, configure the general settings of the connection pool as
follows:

• Name: oraclepool

• Resource Type: javax.sql.DataSource

• Database Vendor: Oracle

6. Click Next to move on to the next screen of the wizard.

7. In the next step of the wizard, scroll down to the Additional Properties table, and make
sure to set up the following settings:

• ServiceName: XE

• User: usrsample

• Password: pswd

• ServerName: localhost

• PortNumber: 1521

• URL: jdbc:oracle:thin:@localhost:1521:XE

The only parameter that needs some additional explanation here is ServiceName. The
fact is that the Oracle JDBC Thin driver interacts with the database server via SQL*Net,
which uses alias specified for a connection in the [ORACLE_HOME]\NETWORK\ADMIN\
tnsnames.ora configuration file. You have to check out this file to make sure to choose
the right value for the ServiceName parameter.

8. Click Finish to complete the wizard. As a result, you should see the newly created
oraclepool entity in the table located on the Resources/JDBC/Connection Pools page.

Now that you have created the JDBC connection pool whose settings characterize con-
nections to be established to the underlying Oracle database, you need to create the JDBC
resource associated with this connection pool. To do this, you should perform these steps:

1. In Admin Console, move on to the Resources/JDBC/JDBC Resources page, and then
click the New button.

2. On the New JNDI Resource page, set up the JDBC resource settings as shown here:

• JNDI Name: jdbc/oraclepool

• Pool Name: oraclepool

• Status: Enabled

3. Click OK to create the new JDBC resource.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE 191

With that done, the jdbc/mysqlpool entity should appear on the Resources/JDBC/JDBC
Resources page. That means the newly created jdbc/mysqlpool JDBC resource is ready for
use now.

Performing a Quick Test of the Data Source
Now that you have created the data source to be used with the sample application, you might
want to perform a quick test of it.

In the sample, you will use the data source created in the preceding section to interact
with the underlying database from within enterprise beans. However, you might use it from a
servlet or a JSP page as well. So, in this section, you will test the data source with the help of a
simple JSP page accessing the database data via that JDBC resource.

Listing 7-1 shows the source code for such a JSP page. You can save this JSP page in a
single file, say, testPage.jsp, putting it into any empty directory in your file system.

Listing 7-1. A Simple JSP Page for Testing a JDBC Resource

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<sql:query var="rslt" dataSource="jdbc/mysqlpool">
select isbn, title, quantity, price from dbsample.books

</sql:query>
<html>
<head>
<title>JDBC Connection Test</title>

</head>
<body>
<h1>Available books:</h1>
<c:forEach var="book" items="${rslt.rows}">
Isbn: ${book.isbn}

Title: ${book.title}

Price: $${book.price}

In stock: ${book.quantity}

</c:forEach>
</body>

</html>

As you can see in the listing, the JSP page uses the jdbc/mysqlpool JDBC resource to con-
nect to the underlying database and then access the books table, displaying the data stored in
some fields of that table.

Now that you have the JSP page file, you have to create the deployment descriptors
required to deploy that page to the application server.

Listing 7-2 shows what the source code for the web.xml deployment descriptor might look
like. You need to store it in the WEB-INF subfolder of the project root directory (the one where
you saved the testPage.jsp file shown in Listing 7-1).

CHAPTER 7 ■ SETTING UP THE DATA SOURCE192

Listing 7-2. web.xml Deployment Descriptor Containing the resource-ref Element Declaring the
Data Source Defined in the Application Server

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<welcome-file-list>
<welcome-file>

testPage.jsp
</welcome-file>

</welcome-file-list>
<resource-ref>

<res-ref-name>jdbc/mysqlpool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

Finally, you need to create the sun-web.xml runtime deployment descriptor containing
the context root information for the web application being created.

Listing 7-3 shows the source code for the sun-web.xml runtime deployment descriptor.
Like web.xml, you need to store it in the WEB-INF folder.

Listing 7-3. sun-web.xml Runtime Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.// ➥
DTD Application Server 9.0 Servlet 2.5//EN" ➥
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app error-url="">
<context-root>/testPage</context-root>

</sun-web-app>

The next step is to package the application so that it can be deployed to the application
server. If you recall from Chapter 2 where you built a similar simple web application, you
should change directory to the root directory of your application and then issue the following
command:

#jar cvf testdb.war.

This should create the WAR archive that can be deployed to the application server. As you
might recall from the discussion in Chapter 2, you have more than one choice when it comes
to deploying a web application or EJB module to GlassFish. You might, for example, use the
GlassFish’s asadmin tool, issuing the following command:

#asadmin deploy testdb.war

CHAPTER 7 ■ SETTING UP THE DATA SOURCE 193

If the deployment process has been successful, you should see the message informing
you about that.

Now you can launch the application. You can do this by pointing your browser to
http://localhost:8080/testPage/. As a result, you should see the page similar to the one
in Figure 7-6.

Figure 7-6. Testing a JDBC connection through a JSP page

You just tested the jdbc/mysqlpool JDBC resource created as discussed in the “Setting Up
the Data Source to Interact with MySQL” section earlier. If you need to test jdbc/mysqlpool
JDBC resource created in the “Setting Up the Data Source to Interact with Oracle” section, you
have to change the sql:query tag in the JSP page to the following one:

<sql:query var="rslt" dataSource="jdbc/oraclepool">
select isbn, title, quantity, price from books

</sql:query>

Then, you need to modify the res-ref-name tag in the web.xml deployment descriptor as
follows:

<res-ref-name>jdbc/oraclepool</res-ref-name>

With that done, you have to repackage the application archive so that it contains the
updated files and then redeploy that archive. Now, if you launch the application by pointing
your browser to http://localhost:8080/testPage/, the result page should look like the one
shown in Figure 7-6 earlier.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE194

Configuring the Settings of an Existing
Data Source
The settings you define when creating a JDBC connection pool can be changed later if neces-
sary. This is handy when the aspects of a connection to the underlying database change. In
that case, you won’t have to change the code—you will simply need to adjust the settings of
the connection pool and then save the changes made.

To edit the settings of an existing connection pool via Admin Console, you need to the
Resources/JDBC/Connection Pools page and then choose that connection pool from the list.
As a result, a three-tab Edit Connection Pool Properties page should appear. You will most
likely need to modify the settings specified on the Additional Properties tag, since it contains
some important properties specific to the underlying database, such as the database name,
username, and password.

Figure 7-7 shows what the Additional Properties tab of the Edit Connection Pool Properties
page might look like.

Figure 7-7. Editing the connection pool properties

On the Additional Properties tab, you can change one or more settings and then click the
Save button to save the changes made. Also, you can add a new setting by clicking the Add
Property button or delete one or more settings with the help of the Delete Properties button.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE 195

Summary
In this chapter, you looked at how to integrate the JDBC driver with the GlassFish application
server and then created the data source upon that driver, defining the aspects of a connection
to your underlying database.

Now you’re all set to proceed to the next chapters, where you will learn how to build the
other layers of the sample application discussed here.

CHAPTER 7 ■ SETTING UP THE DATA SOURCE196

Building the
Persistence Tier

P A R T 4

Designing JPA Entities

Now that you have both the underlying database and the data source allowing the applica-
tions deployed to the application server to communicate with that database, you can move on
and build the persistence tier, designing the JPA entities through which the sample will actu-
ally interact with the underlying database tables.

This chapter describes how to design JPA entities to be utilized within a Java EE applica-
tion. In particular, over the course of the chapter, you will do the following:

• Create JPA entities that will be utilized within the sample application that you started
building in Chapter 6

• Adjust the database tier to be appropriate for the persistence tier

• Perform a quick test of the newly created JPA entities

• Launch a NetBeans project for the sample application

By the time you’re done, you should have the persistence tier that will be utilized within
the sample application. In the next chapter, you will take a closer look at the object-relational
mapping, which makes it possible for you to access and manipulate the underlying data from
within enterprise beans. Continuing this theme, Chapters 10 and 11 will discuss how you can
employ standard JPA mechanisms to access and manipulate JPA entities, thus accessing and
modifying the underlying data via the sample application interface.

Creating JPA Entities Upon the Underlying
Database Tables
If you recall from the “Creating Database Tables to Store Application Data” section in Chapter 6,
the sample application will access the data stored in the following seven tables: customers,
orders, employees, shoppingCarts, locations, details, and books. As stated, you should build
JPA entities only upon the first four of these tables.

You might be wondering why you’re building a JPA entity upon the orders table while not
building it upon the details table. The fact is that there is another table for storing ordered
items: shoppingCarts. When a user selects an item for purchasing, an appropriate record
appears in the shoppingCarts table rather than in the details table. Then, if the user proceeds
to the checkout and places the order, a new record is created in the orders table, and all the
appropriate records in the shoppingCarts table are moved to the details table.

199

C H A P T E R 8

This approach makes it unnecessary for the application to utilize a Detail JPA entity,
since moving the data from the shoppingCarts table to the details table can be performed at
the database tier directly. For example, the following INSERT statement with a subquery might
be issued from within the AFTER INSERT trigger defined on the orders table:

INSERT INTO details (ordno, book_id, units, unit_price)
SELECT NEW.pono, book_id, units, unit_price FROM shoppingCarts
WHERE cart_id=NEW.cust_id;

This statement might be followed by this one:

DELETE FROM shoppingCarts WHERE cart_id=NEW.cust_id;

Or, instead of the previous SQL DELETE statement issued from within the trigger, you
might issue the JPQL DELETE statement from within an enterprise bean so that both of the pre-
vious statements are issued within the same transaction. The later section “Adjusting the
Database Tier” discusses in detail what changes should be applied to the database tier so that
it fits the persistence tier being created here.

As an alternative, you might still define and then use a Detail entity, thus making the
application more independent of the business logic stored in the underlying database. In that
case, however, there will be the additional overhead of making up the instances of the Detail
entity on the application server side and then persisting them to the database. Furthermore,
the main purpose here is to show you different ways in which the task of persisting details of
an order might be implemented.

Diagramming the Persistence Tier
Returning to the entities to be built here, let’s first look at the diagram, shown in Figure 8-1,
that represents these entities and the relationships between them.

Figure 8-1. A graphical representation of the entities to be built here and the relationships
between them

CHAPTER 8 ■ DESIGNING JPA ENTIT IES200

As you might notice in the figure, a parent/foreign key relationship established between
the underlying tables turns into a bidirectional relationship between the corresponding JPA
entities. Of course, that is not a requirement. You can still define no relationship or can define
a unidirectional relationship when creating the Customer, Order, and Employee entities. In the
case of defining no relationship between the entities, however, an instance of an entity cannot
be used to find and then access a corresponding instance or instances of another entity.

If you define a unidirectional relationship, then only one side of the relationship knows
about the other, but the opposite is not true. For example, if you define the Order entity so that
it has a relationship field to the Customer entity but the latter has no field for the former, then
you won’t be able to navigate from an instance of the Customer entity to the corresponding
instances of the Order entity while still being able to head in the opposite direction. In this
particular example, you will define bidirectional relationships to have all options.

Creating the Entities
Now you need to create the JPA entities as depicted in Figure 8-1 earlier. Before moving on,
though, you have to create a directory structure for the files of the sample application project.
For now, you need to create at least the root directory for the project and the directory struc-
ture for the JPA entities. So, Figure 8-2 shows the structure you need to build.

Figure 8-2. The sample application directory structure for the JPA entities

Thus, the first thing you need to do now is to create the sampleapp root application
directory and then the subdirectories, as shown in Figure 8-2. Once you have created the
directories, you can create the entities. Note that the target subdirectory contains nothing
for now. The target subdirectory’s contents will appear later, when you compile the entity
sources.

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 201

To begin with, let’s look at the Customer and Employee entities defined upon the customers
and employees tables, respectively. Listing 8-1 shows what the source code for the Customer
entity might look like. It is assumed that you’ll save the Customer.java file in the sampleapp/
src/ejbjpa/entities directory, as well as the other three entity files and the ShoppingCartKey
composite primary key class, which will be created in this section later.

Listing 8-1. Source Code for the Customer Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import java.util.List;
import javax.persistence.CascadeType;
import javax.persistence.OneToMany;
@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable {

@Id
@Column(name = "CUST_ID")
private Integer cust_id;
@Column(name = "CUST_NAME", nullable = false)
private String cust_name;
@Column(name = "LOC_ID")
private Integer loc_id;
@Column(name = "EMAIL", nullable = false)
private String email;
@Column(name = "PHONE", nullable = false)
private String phone;
@OneToMany(mappedBy="customer", cascade = CascadeType.ALL)
private List<Order> orders;
public List<Order> getOrders(){

return orders;
}
public void setOrders(List<Order> orders) {

this.orders = orders;
}
public Customer() {
}
public Integer getCust_id() {

return this.cust_id;
}
public void setCust_id(Integer cust_id) {

this.cust_id = cust_id;
}
public String getCust_name() {

CHAPTER 8 ■ DESIGNING JPA ENTIT IES202

return this.cust_name;
}
public void setCust_name(String cust_name) {

this.cust_name = cust_name;
}
public Integer getLoc_id() {

return this.loc_id;
}
public void setLoc_id(Integer loc_id) {

this.loc_id = loc_id;
}
public String getEmail() {

return this.email;
}
public void setEmail(String email) {

this.email = email;
}
public String getPhone() {

return this.phone;
}
public void setPhone(String phone) {

this.phone = phone;
}

}

Looking through the source code, you may notice that the Customer entity does not
establish a relationship with a Location entity. This is despite that the customers table, as you
might recall from Listing 6-4 in Chapter 6, has a foreign key referencing the primary key of the
locations table. Note, however, that the underlying locations table will not have a correspon-
ding entity and will be accessed only from within the database tier.

On the other hand, the Customer entity establishes a one-to-many relationship with the
Order entity shown in Listing 8-3 later in the chapter. As you will see in Listing 8-3, the Order
entity, in turn, establishes a many-to-one relationship with the Customer entity, which makes
the relationship between these two entities bidirectional.

Now, let’s move on to the Employee entity. Listing 8-2 shows what the source code for the
Employee entity looks like.

Listing 8-2. Source Code for the Employee Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import java.util.List;
import javax.persistence.CascadeType;
import javax.persistence.OneToMany;

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 203

@Entity
@Table(name = "EMPLOYEES")
public class Employee implements Serializable {

@Id
@Column(name = "EMPNO")
private Integer empno;
@Column(name = "FIRSTNAME", nullable = false)
private String firstname;
@Column(name = "LASTNAME", nullable = false)
private String lastname;
@OneToMany(mappedBy="employee", cascade = CascadeType.ALL)
private List<Order> orders;
public List<Order> getOrders(){

return orders;
}
public void setOrders(List<Order> orders) {

this.orders = orders;
}
public Employee() {
}
public Integer getEmpno() {

return this.empno;
}
public void setEmpno(Integer empno) {

this.empno = empno;
}
public String getFirstname() {

return this.firstname;
}
public void setFirstname(String firstname) {

this.firstname = firstname;
}
public String getLastname() {

return this.lastname;
}
public void setLastname(String lastname) {

this.lastname = lastname;
}

}

You may notice that the Employee entity, like the Customer entity, establishes a one-to-
many relationship with the Order entity that, in turn, establishes a many-to-one relationship
with the Employee entity.

Listing 8-3 shows how you can define the Order entity.

CHAPTER 8 ■ DESIGNING JPA ENTIT IES204

Listing 8-3. Source Code for the Order Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Temporal;
import static javax.persistence.TemporalType.DATE;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;
import java.util.Date;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@Id
@Column(name = "PONO")
private Integer pono;
@Column(name = "SHIPPING_DATE", nullable = false)
@Temporal(DATE)
private Date shipping_date;
@Column(name = "DELIVERY_ESTIMATE", nullable = false)
private String delivery_estimate;
@ManyToOne
@JoinColumn(
name="CUST_ID",
referencedColumnName="CUST_ID")

private Customer customer;
@ManyToOne
@JoinColumn(
name="EMPNO",
referencedColumnName="EMPNO")

private Employee employee;
public Order() {
}
public Customer getCustomer() {

return this.customer;
}
public void setCustomer(Customer customer) {

this.customer = customer;
}
public Employee getEmployee() {

return this.employee;
}
public void setEmployee (Employee employee) {

this.employee = employee;
}

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 205

public Integer getPono () {
return this.pono;

}
public void setPono (Integer pono) {

this.pono = pono;
}
public Date getShipping_date () {

return this.shipping_date;
}
public void setShipping_date (Date shipping_date) {

this.shipping_date = shipping_date;
}
public String getDelivery_estimate () {

return this.delivery_estimate;
}
public void setDelivery_estimate (String delivery_estimate) {

this.delivery_estimate = delivery_estimate;
}

}

The Order entity establishes many-to-one relationships with the Customer and Employees
entities defined, as shown in the preceding listings.

Finally, you have to create the ShoppingCart entity that establishes no relationship with
the other entities. Before you can define this entity, however, you have to create the primary
key class that will be mapped to the cart_id and book_id fields of the ShoppingCart entity. If
you recall, these fields form the composite primary key in the underlying shoppingCarts table.

A composite primary key class must implement the java.io.Serializable interface and
override the default equals and hasCode methods. Listing 8-4 shows what the source code for a
ShoppingCartKey composite primary key class looks like.

Listing 8-4. Source Code for the ShoppingCartKey Primary Key Class for the ShoppingCart Entity

package ejbjpa.entities;
import java.io.Serializable;

public final class ShoppingCartKey implements Serializable {
public Integer cart_id;
public String book_id;
public ShoppingCartKey() {}
public ShoppingCartKey(Integer cart_id, String book_id) {
this.cart_id = cart_id;
this.book_id = book_id;

}
public boolean equals(Object obj) {
if (this == obj) {
return true;

}
if (obj == null) {

CHAPTER 8 ■ DESIGNING JPA ENTIT IES206

return false;
}
if (!(obj instanceof ShoppingCartKey)) {
return false;
}
ShoppingCartKey other = (ShoppingCartKey) obj;
if (cart_id != null && other.cart_id!= null && ➥

this.cart_id.equals(other.cart_id)) {
return (book_id != null && other.book_id!= null && ➥

this.book_id.equals(other.book_id));
}
return false;
}
public int hashCode() {
if (cart_id!=null && book_id!=null) {
return (cart_id.hashCode() ^ book_id.hashCode());
}
return 0;
}

}

With that in place, you can move on and create the ShoppingCart entity, defining both the
cart_id and book_is fields to be used as the composite primary key for the entity. Listing 8-5
shows how you can do this.

Listing 8-5. Source Code for the ShoppingCart Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;
@Entity
@Table(name = "SHOPPINGCARTS")
@IdClass(value = ejbjpa.entities.ShoppingCartKey.class)
public class ShoppingCart implements Serializable {

@Id
@Column(name = "CART_ID")
private Integer cart_id;
@Id
@Column(name = "BOOK_ID")
private String book_id;
@Column(name = "UNITS", nullable = false)
private Integer units;
@Column(name = "UNIT_PRICE", nullable = false)
private Double unit_price;

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 207

public ShoppingCart() {
}
public Integer getCart_id() {

return this.cart_id;
}
public void setCart_id(Integer cart_id) {

this.cart_id = cart_id;
}
public String getBook_id() {

return this.book_id;
}
public void setBook_id(String book_id) {

this.book_id = book_id;
}
public Integer getUnits () {

return this.units;
}
public void setUnits(Integer units) {

this.units = units;
}
public Double getUnit_price() {

return this.unit_price;
}
public void setUnit_price(Double unit_price) {

this.unit_price = unit_price;
}

}

It is interesting to note that the book_id column defined in the ShoppingCart entity as part
of the composite primary key is also a foreign key column in the underlying shoppingCarts
table. However, the books table does not have a corresponding entity to be used in this appli-
cation.

Compiling the Entities
It’s always a good idea to test the entities before you move on to creating the enterprise beans
that will utilize those entities. Before you can perform any test of the JPA entities created in the
preceding section, however, you need to make sure you can successfully compile them.

As you learned in the preceding chapters, you can use the javac command-line tool to
compile your Java sources. To compile all the four entities discussed here at once, you first
need to change the directory to sampleapp. Aside from the src/ejbjpa/entities directory con-
taining the sources for the entities, the sampleapp directory must contain the empty target
directory, as shown in Figure 8-2 earlier in this chapter. Then, you can issue the following
command:

javac -cp /glassfish_dir/lib/javaee.jar -d target src/ejbjpa/entities/*.java

CHAPTER 8 ■ DESIGNING JPA ENTIT IES208

Note that this command uses the -cp (classpath) parameter to explicitly specify the path
to the Java EE library, namely, javaee.jar, located in the GlassFish’s lib directory. This is not a
requirement, of course, provided that you have this path included in the CLASSPATH environ-
ment variable. In that case, the previous command might be shortened to the following one:

javac -d target src/ejbjpa/entities/*.java

If the compilation process has completed successfully, you should receive no error mes-
sages, and the four class files should appear in the generated sampleapp/target/ejbjpa/
entities directory.

Adjusting the Database Tier
Now that you have created the JPA entities to be utilized within the sample, it is time to look
back at the database tier and determine whether some adjustments are required. If you recall
from the earlier “Creating JPA Entities Upon the Underlying Database Tables” section, since
you did not define a Detail entity upon the underlying details table, you might want to
implement the task of moving the data from the shoppingCarts table to the details table at
the database tier. This task comes up each time a new record is inserted into the orders table.
As mentioned, you might implement the AFTER INSERT trigger on the orders table to handle
this task.

The following two sections discuss how to implement this trigger in MySQL and Oracle.

Adjusting the Database Tier Implemented with MySQL
To implement the AFTER INSERT trigger on the orders table in MySQL, you first have to con-
nect to the database as the usrsample user via the MySQL command-line tool and then issue
the CREATE TRIGGER statement shown in Listing 8-6.

Listing 8-6. Creating the AFTER INSERT Trigger on the orders Table in MySQL

delimiter //
use dbsample
CREATE TRIGGER afterinsertorder
AFTER INSERT ON orders
FOR EACH ROW
BEGIN
INSERT INTO details (ordno, book_id, units, unit_price) SELECT NEW.pono, ➥

book_id, units, unit_price FROM shoppingCarts WHERE cart_id=NEW.cust_id;
DELETE FROM shoppingCarts WHERE cart_id=NEW.cust_id;
END;
//
delimiter ;

As you can see, the trigger, when fired, issues two statements that perform two operations:
inserting the data into the details table and then deleting this same data from shoppingCarts.
So, what this trigger actually does is move a user’s shopping cart contents from the
shoppingCarts table to the details table when the user places an order.

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 209

Looking through the trigger’s code, you may notice that the cart_id of the shopping cart
being processed and the cust_id specified in the order being created here are supposed to
contain the same value. Of course, this is not the only approach you might apply here. How-
ever, by using the customer’s ID as the ID for the shopping cart, you simplify the task of
associating customers with their shopping carts. Furthermore, this approach implies that cus-
tomers cannot have more than one shopping cart associated with their records, which forces
the application to empty users’ shopping carts in a timely manner, rather than keeping a lot of
obsolete shopping cart records in the underlying database. As you will learn in Chapter 12’s
“Designing Session Beans” section, when discussing the ShoppingCart session bean, the shop-
ping cart associated with a user is emptied when that user either places the order or explicitly
empties the cart.

Adjusting the Database Tier Implemented with Oracle
If your underlying database is implemented with Oracle, you need to connect as usrsample via
SQL*Plus and then issue the CREATE OR REPLACE TRIGGER statement shown in Listing 8-7.

Listing 8-7. Creating the AFTER INSERT Trigger on the orders Table in Oracle

CREATE OR REPLACE TRIGGER afterinsertorder
AFTER INSERT ON orders
FOR EACH ROW
BEGIN
INSERT INTO details(ordno, book_id, units, unit_price) SELECT :NEW.pono, ➥
book_id, units, unit_price FROM shoppingCarts WHERE cart_id=:NEW.cust_id;
DELETE FROM shoppingCarts WHERE cart_id=:NEW.cust_id;
END;
/

In a real-world situation, of course, you might want to make many more additions to the
underlying database when flipping back to the original database tier while building the per-
sistence tier. For example, you might want to create an Oracle sequence generator that will
generate unique sequential numbers to be used as IDs for the orders being created. This will
be discussed in the next chapter in detail. As for now, though, when performing the test dis-
cussed in the “Performing a Quick Test of the Newly Created JPA Entities” section later, you
can generate the order IDs on your own.

Testing the Additions
It is good practice to test the components as you add them to the application being built. The
simplest way to test the newly created afterinsertorder AFTER INSERT trigger is to issue the
sequence of SQL statements discussed in this section.

To ensure that the data stored in the underlying tables will get back to the state it was in
before the test began, you must perform all the statements discussed here within a single
transaction. If your underlying database is implemented with Oracle, you have nothing to
worry about—as stated earlier, Oracle automatically starts a transaction along with the first
executable SQL statement. In MySQL, however, the autocommit mode is enabled by default.
Therefore, you have to explicitly start a new transaction by issuing the following statement:

CHAPTER 8 ■ DESIGNING JPA ENTIT IES210

START TRANSACTION;

Next, you need to populate the shoppingCarts table with some data representing the con-
tents of a user’s shopping cart. This could be done as follows, in both MySQL and Oracle:

INSERT INTO shoppingCarts VALUES(1, '1430209631', 1, 44.99);
INSERT INTO shoppingCarts VALUES(1, '1590595300', 1, 49.99);

If you recall from Listing 6-4 in Chapter 6, the shoppingCarts table contains a multiple-
column primary key comprised of the cart_id and book_id columns. This mechanism ensures
that a user won’t be able to put the same product item in his shopping cart while still being
able to increase the number of copies of that product by updating the units field of the corre-
sponding record in the shoppingCarts table. This is a good example of implementing business
logic in the database. With this multiple-column primary key in place, you don’t need to write
any Java code preventing users from putting the same items in the shopping cart, since this
task is handled at the database tier.

Now, to make sure that the shoppingCarts table has been successfully modified, you can
issue the following query:

SELECT * FROM shoppingCarts;

This should show the two records created earlier:

CART_ID BOOK_ID UNITS UNIT_PRICE
--
1 1430209631 1 44.99
1 1590595300 1 49.99

The next step is to insert a new record into the orders table. You could do this by issuing
the following command:

INSERT INTO orders(pono, cust_id, empno) VALUES(25,1,1);

It is important to notice that the value of the cust_id field in the previous INSERT state-
ment must be the same as the value of the cart_id field in the records inserted into the
shoppingCarts table earlier. Otherwise, the order being inserted will not be associated with the
shopping cart records inserted earlier, and therefore, these records won’t be moved from the
shoppingCarts table to the details table.

Also, you may notice that the previous INSERT statement specifies values only for the first
three fields of the order record. This is because the other two fields—namely, shipping_date
and delivery_estimate—are generated automatically with the BEFORE INSERT trigger defined
on the orders table as discussed in the “Defining the Triggers” section in Chapter 6.

As you might guess, the previous INSERT statement should have fired not only the
neworder BEFORE INSERT trigger but also the afterinsertorder AFTER INSERT trigger. If every-
thing has worked as planned, you should now have a new record in the orders table, two
records in the details table, and no records in the shoppingCarts table.

So, if you issue the following query:

SELECT * FROM details;

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 211

you should see the following two rows appear in the details table:

ORDNO BOOK_ID UNITS UNIT_PRICE
--
25 1430209631 1 44.99
25 1590595300 1 49.99

Now, if you check the shoppingCarts table like this:

SELECT * FROM shoppingCarts;

you should receive no rows. If so, this means that the afterinsertorder AFTER INSERT trigger
works as expected.

The last thing you might want to check here is the books table. If you recall from the
“Defining the Triggers” section in Chapter 6, the newdetail BEFORE INSERT trigger defined
on the details table invokes the updateBooks stored procedure every time a new record is
inserted into the table. To make sure this has happened, you can issue the following query:

SELECT isbn, quantity FROM books;

The result returned will depend on the values of the quantity fields that you had at the
beginning of the transaction. However, whatever this query returns, you should notice that the
values of the quantity fields have been reduced by the number of units specified in the units
fields of the corresponding records just inserted into the details table. For example, if the
quantity field of each book record was set to 10 before you inserted a new row into the orders
table, then the previous query should return the following result:

isbn quantity

1430209631 9
1590595300 9

Now that you know everything is correct, you can roll back all the changes made by the
INSERT statements issued in this section. To achieve this, you must issue the following state-
ment, in both MySQL and Oracle:

ROLLBACK;

After that, if you issue a SELECT statement against orders, details, or shoppingCarts, you
should receive no rows. This is the state in which these tables were before the test started.
Moreover, if you now reissue the SELECT statement against the books table as shown earlier,
this should confirm that the values of the quantity fields have been reinstated to their original
values:

CHAPTER 8 ■ DESIGNING JPA ENTIT IES212

isbn quantity

1430209631 10
1590595300 10

These results illustrate that regardless of the way in which a DML statement is issued—
explicitly from a SQL prompt tool or implicitly from within a trigger or stored procedure—the
changes that statement makes are all rolled back if the transaction it belongs to is rolled back.

Performing a Quick Test of the Newly Created
JPA Entities
To make the most of the test you might want to perform on the JPA entities created (as dis-
cussed in the earlier section “Creating JPA Entities Upon the Underlying Database Tables”),
you should have a good understanding of the purpose of each entity to be tested. The test
code you’re going to build should do the following:

• Test all the entities you have

• Be compact so you have it all in one source

• Roll back the changes made to the underlying tables upon the completion

You can meet each of these conditions if you decide on a single servlet utilizing the Java
Persistence API.

The first thing you need to do is to create a directory structure for the test project dis-
cussed here. You might create, say, the directory named entitiestest as the root directory for
the test project and then copy into it the /src/ejbjpa/entities directory with its contents
from the sampleapp sample application root directory. Then, you’re going to need to create the
entitiestest/src/ejbjpa/servlets directory into which you will put the servlet performing
the test. Finally, you need to create the entitiestest/target/WEB-INF/classes directory for
the classes being created and the entitiestest/target/WEB-INF/classes/META-INF directory
for the persistence.xml configuration file. As you might guess, the target directory is going to
be the root directory for the WAR test application archive that will be then deployed to the
application server.

Schematically, the directory structure you need to create for the test project should look
like Figure 8-3.

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 213

Figure 8-3. The test application directory structure

Once you have created the directory structure depicted in the figure, you can start creat-
ing the servlet source file as well as the configuration files.

Listing 8-8 shows the source code for the JpaTestServlet.java file, which, according to
Figure 8-3, you should save into the entitiestest/src/ejbjpa/servlets directory.

Listing 8-8. A Servlet for Testing the JPA Entities Created Earlier in This Chapter

package ejbjpa.servlets;
import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

CHAPTER 8 ■ DESIGNING JPA ENTIT IES214

import javax.transaction.*;
import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import ejbjpa.entities.*;

public class JpaTestServlet extends HttpServlet {
@PersistenceUnit
private EntityManagerFactory emf;
@Resource
private UserTransaction userTransaction;

public void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
EntityManager em= emf.createEntityManager();
//creating ShoppingCart entity instances
ShoppingCart cart1 = new ShoppingCart();
cart1.setCart_id(2);
cart1.setBook_id("1590595300");
cart1.setUnits(1);
cart1.setUnit_price(49.99);
ShoppingCart cart2 = new ShoppingCart();
cart2.setCart_id(2);
cart2.setBook_id("1430209631");
cart2.setUnits(1);
cart2.setUnit_price(44.99);
//Creating the order entity instance that will convert the above ➥
ShoppingCarts into the order's details
Customer cust1 = (Customer) em.find(Customer.class, 2);
Employee emp1 = (Employee) em.find(Employee.class, 1);
Order order1 = new Order();
order1.setPono(10);
order1.setCustomer(cust1);
order1.setEmployee(emp1);
//Performing transaction
try{
userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(cart1);
em.persist(cart2);
em.flush();
em.persist(order1);

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 215

em.flush();
out.println("Order shipping date is: " + order1.getShipping_date() + ➥
"
");
em.refresh(order1);
out.println("Order instance has been refreshed from database!" + ➥
"
");
out.println("Order shipping date is: " + order1.getShipping_date() + ➥
"
");
userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

As you can see, the code in the listing is fairly straightforward. First, you inject an
EntityManagerFactory instance into the servlet with the @PersistenceUnit annotation, and
you inject the UserTransaction resource with the @Resource.

Next, you set up two ShoppingCart instances, setting their cart_id fields to 2. This means
that these instances are associated with the customer whose cust_id is also 2. Then, you set
an Order instance, associating it with appropriate Customer and Employee instances.

Finally, you start the transaction within which you first persist the two ShoppingCart
instances and call the EntityManager’s flush method, and then you persist the Order instance,
also calling flush after that. It is important to note here that by calling the flush method you
force synchronization of the entities’ data to the underlying database, which does not, how-
ever, commit the changes made—performing a rollback is still possible. The EntityManager’s
refresh method applied to the Order instance resets this instance from the database after you
have persisted it and called flush to synchronize it to the database.

As you may notice in the code, order1.getShipping_date() is invoked before you refresh
the instance from the database, and then you invoke it right after that. The trick is that you
didn’t set the shipping_date field of the instance explicitly—it is set by the shippingDate stored
function automatically invoked from within the neworder BEFORE INSERT trigger, as discussed
in Chapter 6. So, the first call of order1.getShipping_date() should receive null, but the sec-
ond one receives the date generated inside the database for the shipping_date field.

The following steps sum up what the servlet discussed here does, from the point of view
of testing the entities:

1. Sets up ShoppingCart and Order instances, obtaining the corresponding Customer and
Employee instances

2. Begins a transaction within which the operations upon the entities’ instances are
performed

3. Persists the ShoppingCart and Order instances, synchronizing them to the database

CHAPTER 8 ■ DESIGNING JPA ENTIT IES216

4. Refreshes the Order instance from the database, thus making it possible to access the
instance’s fields generated within the database

5. Rolls back the transaction so that all the changes made to the underlying database
data are undone

Now that you’ve seen the internals of the JpaTestServlet servlet, you might want to see
the servlet in action. Before you can do that, however, you have to create the required configu-
ration files. In particular, you’re going to need to create the web.xml, sun-web.xml, and
persistence.xml files, putting them into the directories as shown in Listing 8-3 earlier.

Listing 8-9 shows the source code for the web.xml deployment descriptor, which you
should save into the entitiestest/target/WEB-INF directory.

Listing 8-9. The web.xml Configuration File for the JpaTestServlet Servlet Application

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<servlet>
<servlet-name>JpaTestServlet</servlet-name>
<servlet-class>ejbjpa.servlets.JpaTestServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>JpaTestServlet</servlet-name>
<url-pattern>/jpatestservlet</url-pattern>

</servlet-mapping>
</web-app>

Also, you need to create the sun-web.xml runtime deployment descriptor, in which you
should specify the context root of the application. Listing 8-10 shows the source code for this
configuration file, which you should save into the entitiestest/target/WEB-INF directory.

Listing 8-10. The sun-web.xml Configuration File for the JpaTestServlet Servlet Application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.// ➥
DTD Application Server 8.0 Servlet 2.4//➥
EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-0.dtd">
<sun-web-app>
<context-root>/jpatest</context-root>

</sun-web-app>

Finally, you have to create the persistence.xml configuration file providing information
about the data source to be used within the application. The persistence.xml document
shown in Listing 8-11 specifies the data source jdbc/mysqlpool, created as discussed in the
preceding chapter, assuming your underlying database is implemented with MySQL. If your

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 217

underlying database is Oracle and you have the jdbc/oraclepool data source created as dis-
cussed in the preceding chapter, then you have to change jdbc/mysqlpool for jdbc/oraclepool
in the jta-data-source element within the persistence.xml file shown in the listing.

Listing 8-11. The persistence.xml Configuration File for the JpaTestServlet Servlet Application

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence ➥
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="jpatestservlet2-pu" transaction-type="JTA">
<jta-data-source>jdbc/mysqlpool</jta-data-source>

</persistence-unit>
</persistence>

Now you’re ready to move on and build the test application. The first step is to compile
the entities created as discussed in the “Creating the Entities” earlier section, as well as the
JpaTestServlet shown in Listing 8-8. To do this, you need to change the directory to the root
directory of the project, entitiestest, and then issue the following command:

javac -cp c:\glassfish\lib\javaee.jar -d target\WEB-INF\classes ➥
src\ejbjpa\entities*.java src\ejbjpa\servlets*.java

Before you can execute the servlet, you have to package it into a WAR file so that you can
deploy it to the application server. With the following commands, you change the directory to
target, which will be used as the root directory for the WAR archive, and then create that
archive:

cd target
jar cvf jpatestservlet.war .

If you haven’t started the application server already, make sure to do it now. This is the
command you should issue to start the server:

asadmin start-domain domain1

Once you’ve done that, you can deploy the jpatestservlet.war application archive to the
application server:

asadmin deploy jpatestservlet.war

If deployment has successfully completed, you can start a test by pointing your browser
to http://localhost:8080/jpatest/jpatestservlet.

If everything goes right, the output might look like this:

Transaction began!
Order shipping date is: null
Order instance has been refreshed from database!
Order shipping date is: Thu Apr 03 00:00:00 PDT 2008
Transaction has been rolled back!

CHAPTER 8 ■ DESIGNING JPA ENTIT IES218

As you can see, the order’s shipping date (calculated before refreshing the order’s
instance) is null, while after refreshing it, you have a real date. As mentioned earlier, this hap-
pens because the shipping_date field of the order’s instance is not set within the servlet code,
but it is set by a database stored function, when that instance is persisted to the underlying
orders table. So, the previous illustrates that the order’s instance created within the servlet has
been successfully persisted to the database. Finally, to restore the data to its previous state,
you roll back the transaction. This means that if you check the underlying tables after the
servlet has completed, you should see no changes.

Looking through the code performing the test, you may notice that it doesn’t actually
check whether the ShoppingCart instances have been persisted to the database—it simply
checks whether the order’s instance has been successfully persisted. Although the mechanism
of moving the data from the shoppingCarts table to the details table upon inserting an order’s
record is implemented inside the database, you might still want to make sure that this mecha-
nism works as expected when an order’s instance is persisted to the database.

Returning to the JpaTestServlet servlet shown in Listing 8-8 earlier, you might modify the
try block within the doGet servlet method so that it implements a little more complicated test.

Listing 8-12 shows how you might update the try block within the doGet servlet method
so that it checks whether the ShoppingCart instances have been successfully persisted and
they’re gone right after the order’s instance has been persisted.

Listing 8-12. Updated try Block Within the doGet Servlet Method, Allowing You to Perform a More
Detailed Test

...
public void doGet(

...
int status;

...
//Performing transaction
try{

userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(cart1);
em.persist(cart2);
em.flush();
em.refresh(cart1);
out.println("cart1 has been refreshed from database!"+ "
");
out.println("Price of the book in cart1 is: $" + ➥
cart1.getUnit_price() + "
");
em.refresh(cart2);
out.println("cart2 has been refreshed from database!"+ "
");
out.println("Price of the book in cart2 is: $" + ➥
cart2.getUnit_price() + "
");
em.persist(order1);
em.flush();
out.println("Order shipping date is: " + ➥
order1.getShipping_date() + "
");
em.refresh(order1);

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 219

out.println("Order instance has been refreshed from database!" + ➥
"
");
out.println("Order shipping date is: " + ➥
order1.getShipping_date() + "
");
try{
em.refresh(cart1);
out.println("Price of the book in cart1 is: $" + ➥
cart1.getUnit_price() + "
");
em.refresh(cart2);
out.println("Price of the book in cart2 is: $" + ➥
cart2.getUnit_price() + "
");

}
catch (Exception ex){
out.println("Failed to refresh ShoppingCart ➥
instances from database!" + "
");
status = userTransaction.getStatus();

if (status==Status.STATUS_MARKED_ROLLBACK){
out.println("Transaction has been marked for roll back ➥
due to exception!");

}
}
status = userTransaction.getStatus();
if (status==Status.STATUS_ACTIVE){
userTransaction.rollback();
out.println("Transaction has been rolled back!");
}

}
catch (Exception e){

e.printStackTrace();
}

}
}

Examining the try block shown in the listing, you may notice that it contains a nested
try block, within which you’re trying to refresh the shopping cart instances, after the order
instance has been persisted and flushed. However, since the shoppingCarts table’s records
corresponding to the shopping cart instances discussed here should be gone by now, this
refreshing undoubtedly will fail, throwing an exception that will bring the program to a halt.
To handle this, you define the catch clause with the nested try block. The code in the catch
clause will be executed when the shopping cart entries are not found.

To try the updated servlet, you first need to recompile it and then package and deploy it
to the application server as discussed earlier in this section. After this, you can point your
browser to http://localhost:8080/jpatest/jpatestservlet to start the test. This is what the
browser’s output might look like:

CHAPTER 8 ■ DESIGNING JPA ENTIT IES220

Transaction began!
cart1 has been refreshed from database!
Price of the book in cart1 is: $49.99
cart2 has been refreshed from database!
Price of the book in cart2 is: $44.99
Order shipping date is: null
Order instance has been refreshed from database!
Order shipping date is: Fri Apr 04 00:00:00 PDT 2008
Failed to refresh ShoppingCart instances from database!
Transaction has been marked for roll back due to exception!

If your browser’s output matches up with the previous (the shipping date should be differ-
ent, of course), this means you just completed the test and the JPA entities work as expected.

Building the Sample with the NetBeans IDE
If you want to implement the sample application with the help of the NetBeans IDE, this sec-
tion explains how to launch a new Enterprise Application project with this visual tool and
then incorporate the JPA entities you created as discussed in the earlier section “Creating JPA
Entities Upon the Underlying Database Tables” into that IDE project.

In the “Creating and Deploying a Web Application with the NetBeans IDE” section in
Chapter 2, you saw how to build and deploy a “Hello World!” application with the NetBeans
IDE. In this section, you will launch a more complicated project that will grow as you build the
sample application.

With the entities already written, all that’s left is to create a new IDE project and then put
the entities’ sources to an appropriate directory within the root project directory.

The following are the steps to create a new standard NetBeans IDE project for an enter-
prise application and then incorporate the JPA entities’ sources you already have into it:

1. Start the NetBeans IDE from the Start menu of your operating system.

2. In the NetBeans IDE, select File➤New Project to start the New Project Wizard.

3. On the Choose Project screen of the New Project Wizard, choose Enterprise in the
Categories box and Enterprise Application in the Project box, and then click Next.

4. On the Name and Location screen of the New Project Wizard, type sampleappIDE in
the Project Name box, and set the project location to the directory in which you want
to save the project files. Leave the other settings at their defaults, and click Finish. As a
result, the following three nodes should appear in the Projects window:

• sampleappIDE

• sampleappIDE-ejb

• sampleappIDE-war

Next, you need to create a persistence unit that will be used within the
sampleappIDE-ejb project.

CHAPTER 8 ■ DESIGNING JPA ENTIT IES 221

5. In the Projects window, right-click sampleappIDE-ejb, and choose New➤ Persistence
Unit.

6. In the Provider and Database dialog box, select a data source from the drop-down
menu, say, jdbc/mysqlpool. Then, select None for Table Generation Strategy, and click
Finish, leaving the other settings at their defaults. As a result, the persistence.xml doc-
ument should appear under the sampleappIDE-ejb/Configuration Files node.

Next, you need to incorporate the entities’ sources into the project.

7. In your file system, go to the sampleappIDE project root directory that was just gener-
ated by the IDE. Once you’re there, move on to the sampleappIDE-ejb/src/java
directory.

8. Within the sampleappIDE/sampleappIDE-ejb/src/java directory, create the ejbjpa/
entities directory, and copy the JPA entities’ sources created as discussed in the
earlier section “Creating the Entities.” So, you should copy five files: Customer.java,
Employee.java, Order.java, ShoppingCartKey.java, and ShoppingCart.java.

9. Return to the IDE, and extend the sampleappIDE-ejb/Source Packages node in the
Projects window. You should see that the ejbjpa.entities package has appeared.

10. Double-click the ejbjpa.entities package node. You should see that the package con-
tains the entities’ sources you copied into the sampleappIDE/sampleappIDE-ejb/src/
java/ejbjpa/entities directory in step 6.

11. Right-click the ejbjpa.entities package node, and choose Compile Package. If every-
thing goes right, the last message you should see in the Output window is BUILD
SUCCESSFUL.

12. Close the IDE by choosing File➤ Exit.

You’ll return to this project in Chapter 12, where you will design the enterprise beans
utilizing the JPA entities created in this chapter.

Summary
In this chapter, you built JPA entities upon the underlying database tables created earlier, as
discussed in Chapter 6. The entities created and tested in this chapter form the persistence
tier of the sample application.

In the next three chapters, you will take a closer look at object-relational mapping, the
EntityManager API, and Java Persistence Query Language (JPQL). Armed with this knowledge,
you will then build the enterprise beans that will manipulate the JPA entities discussed in this
chapter.

CHAPTER 8 ■ DESIGNING JPA ENTIT IES222

Object/Relational Mapping

It’s hardly possible to show all the features provided by the Java Persistence API with a single
sample application. So, in this chapter, I’ll temporarily digress from the sample you started
building in the preceding chapters and give you a closer look at the object/relational mapping
of Java objects to relational database data, investigating this facility with many examples.

The chapter starts with an overview of the object/relational mapping facility, briefly
reviewing what you’ve already learned about it in the preceding chapters of this book. Then, it
moves on to some interesting topics explaining how to seamlessly bridge the gap between Java
objects and the underlying database tables with the help of object/relational mapping. In par-
ticular, this chapter discusses the following:

• Specifying object/relational mapping metadata with annotations

• Using XML deployment descriptors instead of mapping annotations

• Navigating related entities over their relationships

• Cascading operations performed on related entities

• Defining composite primary keys that include foreign key mappings

• Generating values for identity columns

Of course, object/relational mapping is a very broad topic that can’t be covered in full
detail in a single chapter. The main purpose of this chapter, however, is to show you that
although object/relational mapping offers a fairly wide variety of features, it can still be quite
easy to use and understand.

Mapping Java Objects to the Underlying Database
If you have followed the examples discussed in the preceding chapters, you should already
have at least a cursory knowledge of object/relational mapping. To recap, the Java Persistence
API uses an object/relational mapping approach when it comes to managing relational data.
With this approach, you can associate a regular Java class with a relational database table,
mapping each field of the class to a column in the underlying table. To turn a Java class into a
JPA entity representing a table in a relational database, you can use object/relational mapping
annotations or XML, specifying the exact details of the mapping applied.

223

C H A P T E R 9

The following two sections provide a brief overview of the JPA’s object/relational mapping
approach, followed by the sections that provide some examples of mapping the entity data to
the underlying database.

Object-Oriented and Relational Paradigms
As you no doubt know, there are significant differences in the ways data is handled in Java and
in a relational database. In Java, like in any other object-oriented language, you use classes as
building blocks when developing an application. Classes are patterns used for creating objects
through which you can access and manipulate application data. When defining a class, actu-
ally a blueprint for the class objects (instances), you describe both attributes for holding data
and methods to access and manipulate that data. Once a class is defined, you can create as
many instances as you need. However, when it comes to entity instances found within the
same persistence context, you cannot have two instances of the same entity class, if the values
of their primary key attributes are equal.

Often, application data is distributed across many objects. In most cases, these objects
are related to each other, following the relationships defined in the underlying relational
structures. However, unlike relational structures containing underlying data, Java objects
have methods to access and manipulate their data. Also, you can navigate from one object to
another if you have established a relationship between those objects. Since many objects are
related with other ones with a parent/child relationship (one-to-many or many-to-one), these
objects form a tree that you can move up and down, navigating from one object to another.
Figure 9-1 shows an example of this.

Figure 9-1. A graphical representation of how you can access data from within a related JPA
entity

As you can see in the figure, the getBook method of a ShoppingCart instance is used to
obtain the corresponding Book instance so that you can access the data held within the fields
of the latter. Here is what this might look like in the code:

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING224

...
Double book_price;
book_price = cart1.getBook().getPrice();

You will see this approach in action in the later sections in this chapter.
Now let’s look at how things work in a relational database. As you learned in Chapter 6,

relational data is stored in tables that can be related to other tables with primary/foreign key
relationships. A relational table typically holds a set of records, each of which, like a Java
object, represents a business entity. Unlike Java objects, however, a table’s records do not con-
tain a mechanism to access their data or navigate to the data stored in other records, following
the primary/foreign key relationships defined. As discussed in the “Using SQL Database
Language” section in the appendix, the primary tool to access and manipulate data in any
modern relational database is SQL. For example, when you need information from related
rows stored in more than one table, you use a SQL join query, extracting information from
these related tables as specified in the select list and WHERE clause of that join query.

Figure 9-2 shows how you can obtain data stored in two different tables related with a
primary/foreign key relationship.

Figure 9-2. A graphical representation of how you can extract information from related records
stored in different database tables

As you can see, there are several significant differences in the way data is structured and
accessed in Java and in a relational database in which the underlying data resides. To smooth
the difficulties that arise from these differences, the Java Persistence API uses an object/
relational mapping approach, hiding the complexity of what actually occurs behind the
scenes. This allows Java programmers to deal with Java objects mapped to the underlying
tables, rather than dealing with those tables directly via SQL/JDBC.

The Big Picture
The concept behind object/relational mapping is simple. You start by creating Java classes
called JPA entities or just entities, building them upon the underlying database tables. In a
simple entity, you define persistent instance variables, one per column in the underlying
table, as well as the getter and setter methods for these variables.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 225

Next, using either object/relational annotations or deployment descriptor elements in an
object/relational mapping XML file named orm.xml, you provide the persistence provider with
the details of the mapping being applied. These approaches will be discussed in more detail in
the next two sections.

Given object/relational mapping metadata, the persistence provider can figure out what
SQL statement to implicitly issue in response to a certain operation performed upon an entity
instance. Note, however, that when developing an entity, you do not need to define methods
performing database-related operations, such as persist, merge, refresh, or remove. The fact is
that all these methods, as well as some others designed to interact with the persistence con-
text, are available through the EntityManager standard interface whose instance is injected in
the code dealing with entities.

Figure 9-3 gives a graphical illustration of how relational data mapped to a JPA entity can
be accessed from your application code via an EntityManager instance.

Figure 9-3. A graphical representation of how application code accesses underlying data mapped
to JPA entities

In short, to take advantage of the object/relational mapping approach in your applica-
tion, you need to accomplish the following tasks:

• Build entity classes upon those underlying tables that store the data needed by your
application

• Create a persistence unit by defining the persistence.xml configuration file within
which you specify the data source along with some other information to be used by the
persistence provider

• Inject an EntityManager instance into the application component that will manipulate
entity instances

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING226

As you saw in the book examples so far, an EntityManager instance required to handle
dealing with entities can be injected into an enterprise bean or a web component such as a
servlet.

Specifying Object/Relational Mapping Metadata
As mentioned, you can specify object/relational mapping metadata in two ways, providing
the persistence provider with the details of the mapping being applied. You can use mapping
annotations, object/relational mapping for the XML file orm.xml, or a combination of both.
Although you should be already familiar with the first method, the second one has not been
covered in this book yet, so it will be discussed in more detail here.

Using Mapping Annotations
As you saw in many examples discussed earlier in this book, object/relational mapping anno-
tations are used to specify the mapping between an entity and its underlying relational table.
For example, you use the @Table annotation to specify the name of the underlying database
table, and you use @Column to specify the column name in that table. You apply the column
mapping annotations to either an entity’s persistent fields or an entity’s getter methods, thus
specifying the way in which the persistence provider will access entity’s data.

If you create two entities built upon the tables related to each other through a parent
key/foreign key association, you may define a relationship between these entities using either
appropriate relationship annotations, such as @OneToOne and @OneToMany, as you saw in the
book examples discussed so far, or mapping metadata in orm.xml, as you will see in the “Speci-
fying Mapping Metadata in orm.xml” section later.

For a quick refresher on using mapping annotations, you might take a peek back at the
“Planning JPA Entities” section in Chapter 4. For a detailed list of the annotations used to per-
form object/relational mapping, you can refer to the Enterprise JavaBeans 3.0 Specification
Java Persistence API document, which is part of the Enterprise JavaBeans 3.0 Specification
(JSR-220) available at http://jcp.org/en/jsr/detail?id=220.

Specifying Mapping Metadata in orm.xml
If you recall from the “XML Deployment Descriptors vs. Annotations” section in Chapter 4,
you can use XML deployment descriptors to specify the application metadata as an alternative
to using annotations or as an overriding mechanism for them. In that section, you looked at
the pros and cons for both approaches. In particular, you learned that the main advantage
of using deployment descriptors is that it enables you to keep the code of your application
separate from the application’s metadata, thus increasing maintainability and component
reusability. Also, you saw an example of how to replace annotations with deployment descrip-
tor XML elements when developing an enterprise bean.

In this section, you will look at an example of moving object/relational mapping meta-
data from an entity annotation to the orm.xml configuration file. Based on the test project
discussed in the “Performing a Quick Test of the Newly Created JPA Entities” section from the
preceding chapter, you create a new project that will demonstrate how to specify mapping
metadata in an orm.xml configuration file instead of using mapping annotations.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 227

You might create a new directory—say, ormxmltest—to be used as the root directory for
the project. The directory structure for this new project might be the same as the one used
for the test project in the preceding chapter. You can omit the ShoppingCart.java and
ShoppingCartKey.java files in the /src/ejbjpa/entities directory and also add the orm.xml
file to the target/WEB-INF/classes/META-INF directory. Listing 9-1 shows what the source
code for this configuration file might look like.

Listing 9-1. Source Code for the orm.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm orm_1_0.xsd"
version="1.0">

<package>ejbjpa.entities</package>
<access>FIELD</access>
<entity class = "Employee">
<table name = "EMPLOYEES" />
<attributes>
<id name = "empno">
<column name = "EMPNO"/>

</id>
<basic name="firstname">
<column name="FIRSTNAME" nullable = "false"/>

</basic>
<basic name="lastname">
<column name="LASTNAME" nullable = "false"/>

</basic>
<one-to-many name="orders" mapped-by="employee">

<cascade>
<cascade-all/>

</cascade>
</one-to-many>

</attributes>
</entity>

</entity-mappings>

As you can see, the orm.xml file shown in the listing contains only one entity element,
which provides the mapping metadata for the Employee entity. Actually, you might include as
many entity elements in this file as there are entities being used in your application. In this
particular example, however, the other entity elements are omitted to save space.

If you want, you can write the rest of the entity elements in the orm.xml file discussed
here on your own. In that case, you’re going to need to look at a detailed list of the XML ele-
ments that you can use in an object/relational mapping XML file. This information can be
found in the Enterprise JavaBeans 3.0 Specification Java Persistence API document, which is
part of JSR-220 available at http://jcp.org/en/jsr/detail?id=220.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING228

■Note It is interesting to note that you can use both the deployment descriptor and mapping annotations
in the same application. For example, you can specify mapping metadata for the Employee entity in the
orm.xml file, while still using mapping annotations in the Order and Customer entities—the way it is
done in this example. Also, you can specify mapping metadata for an entity using both methods. In that
case, however, the deployment descriptor will override annotations. If you find it difficult to deal with XML
elements for now, you can still use annotations until you are ready to take on building an orm.xml configu-
ration file on your own.

Now that you have defined mapping metadata for the Employee entity in the orm.xml file,
you might completely remove the annotations specified in the Employee entity file. After that,
the source code for the Employee entity will look like Listing 9-2. You can compare the updated
Employee.java with the original one shown in Listing 8-2 in the preceding chapter.

Listing 9-2. Source Code for the Employee Entity Without Object/Relational Mapping Annotations

package ejbjpa.entities;
import java.io.Serializable;
import java.util.List;

public class Employee implements Serializable {
private Integer empno;
private String firstname;
private String lastname;
private List<Order> orders;
public List<Order> getOrders(){

return orders;
}
public void setOrders(List<Order> orders) {

this.orders = orders;
}
public Employee() {
}
public Integer getEmpno() {

return this.empno;
}
public void setEmpno(Integer empno) {

this.empno = empno;
}
public String getFirstname() {

return this.firstname;
}
public void setFirstname(String firstname) {

this.firstname = firstname;
}
public String getLastname() {

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 229

return this.lastname;
}
public void setLastname(String lastname) {

this.lastname = lastname;
}

}

As you can see, there are no annotations anymore. Removing the annotations was not
a requirement, though. As mentioned earlier, you could have both mapping metadata in
orm.xml and annotations. In that case, however, the deployment descriptor elements override
the annotations.

Next, check out the Order.java and Customer.java files implementing the Order and
Customer entities, respectively. These entities still have to contain mapping annotations since
you do not define mapping metadata for them in the orm.xml file, and they should look like
they were presented in Listing 8-3 and Listing 8-1 in the preceding chapter, respectively.

Finally, you need to create a servlet with the help of which you could make sure that
replacing annotations with the deployment descriptor does not cause any problem at run-
time. So, move on to the src/ejbjpa/servlets directory, and replace the JpaTestServlet.java
file with the OrmXMLTestServlet.java file shown in Listing 9-3.

Listing 9-3. Source Code for the OrmXMLTestServlet Servlet You Might Use to Test the Employee
Entity Implemented Without Mapping Annotations

package ejbjpa.servlets;
import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.transaction.*;
import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import ejbjpa.entities.*;
public class OrmXMLTestServlet extends HttpServlet {

@PersistenceUnit
private EntityManagerFactory emf;
@Resource
private UserTransaction userTransaction;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING230

EntityManager em= emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, 2);
Employee emp = (Employee) em.find(Employee.class, 2);
Order order1 = new Order();
order1.setPono(10);
order1.setCustomer(cust);
order1.setEmployee(emp);
Order order2 = new Order();
order2.setPono(11);
order2.setCustomer(cust);
order2.setEmployee(emp);
//Performing transaction
try{

userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(order1);
em.persist(order2);
em.flush();
em.refresh(emp);
out.println("order " + emp.getOrders().get(0).getPono()+ " placed ➥
via: " + emp.getOrders().get(0).getEmployee().getLastname() + "
");

out.println("order " + emp.getOrders().get(1).getPono()+ " placed ➥
via: " + emp.getOrders().get(1).getEmployee().getLastname() + "
");

userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

In the OrmXMLTestServlet servlet shown in the listing, you find Employee and Customer
entity instances by the primary keys specified and define two Order entity instances, which
you then persist to the database. Next, you refresh the Employee entity from the database.
Finally, to make sure everything works as expected, you obtain the employee’s last name for
each order just persisted using the following calls to the Employee entity:

emp.getOrders().get(0).getEmployee().getLastname()
emp.getOrders().get(1).getEmployee().getLastname()

Now that you have the sources ready, all that’s left is to compile them, package them into
a WAR archive, and finally deploy the package to the application server. After that, you can
run the servlet shown in the listing by pointing your browser to http://localhost:8080/
ormxmltest/ormxmltestservlet (the actual URL will depend on the settings you specified in
the web.xml and sun-web.xml files, of course). If everything is right, you should see the follow-
ing output:

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 231

Transaction began!
order 10 placed via: Silver
order 11 placed via: Silver
Transaction has been rolled back!

Note that, like the preceding test, this one is also performed within a transaction that is
rolled back at the end to ensure that all changes made to the underlying tables during the test
are canceled.

Utilizing Entity Relationships
Taking a quick peek at the “Using Unidirectional Relationships Between Entities” and “Using
Bidirectional Relationships Between Entities” sections in Chapter 4, you might recall that
when defining two entities upon two underlying tables related with a primary/foreign key
relationship, you can and often should define a relationship between those entities. A rela-
tionship between two entities may be one-to-one, one-to-many, many-to-one, or many-to-
many established with @OneToOne, @OneToMany, @ManyToOne, or @ManyToMany relationship
modeling annotation, respectively.

In the following two sections, you will look at how you can navigate from one entity to
another through the relationship established between them and how cascading operations are
performed on related entities.

Navigating Over Relationships
As mentioned, you’ve already seen how to establish both unidirectional and bidirectional rela-
tionships in Chapter 4. To recap, to define a relationship between two entities, you apply an
appropriate relationship modeling annotation to the corresponding persistent field or prop-
erty in the referencing entity. In the case of a bidirectional relationship, an appropriate
annotation is applied to each side of the relationship.

The example discussed in this section illustrates how you can navigate from one related
entity to the other via a one-to-many/many-to-one bidirectional relationship, using the rela-
tionship between the Customer and Order entities discussed in the preceding examples.

Like in the example in the earlier “Specifying Mapping Metadata in orm.xml” section,
you might use the test project discussed in the “Performing a Quick Test of the Newly Created
JPA Entities” section in the preceding chapter as a starting point for the new project being
discussed here. Again, you might borrow the directory structure from the test project,
adjusting the configuration details in the XML files and implementing, this time, the
RelationshipTestServlet servlet in the src/ejbjpa/servlets directory.

Before you start coding the RelationshipTestServlet servlet, though, let’s do a little plan-
ning and look at the steps it is supposed to perform:

1. Get a Customer instance from a database, as well as an Employee instance, using the
find method of the EntityManager instance injected into the servlet.

2. Create two Order instances, and then set their Customer and Employee fields to the
instances obtained in step 1.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING232

3. Persist the Order instances created in step 2.

4. Synchronize the Order instances to the database with flush.

5. Refresh the Customer instance from the database.

6. Create an ArrayList, and then populate it with the Order instances, using the
getOrders method of the Customer instance refreshed from the database in step 5.

7. Make sure that the Order instances created in step 2 have been successfully obtained
through the Customer instance, accessing those Order instances via the ArrayList
created in step 6.

Now that you know what exactly the RelationshipTestServlet servlet is going to do,
you can start writing the code. Listing 9-4 shows what the source code for this servlet might
look like.

Listing 9-4. Source Code for a Servlet That Illustrates How You Can Navigate from One Entity to
Another Through the Relationship Established Between Them

package ejbjpa.servlets;
import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.transaction.*;
import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import java.util.List;
import ejbjpa.entities.*;
public class RelationshipTestServlet extends HttpServlet {

@PersistenceUnit
private EntityManagerFactory emf;
@Resource
private UserTransaction userTransaction;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
EntityManager em= emf.createEntityManager();
//Creating the order entity instances
Customer cust = (Customer) em.find(Customer.class, 2);
Employee emp = (Employee) em.find(Employee.class, 1);
List<Order> orders = new ArrayList<Order>();
Order order1 = new Order();

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 233

order1.setPono(10);
order1.setCustomer(cust);
order1.setEmployee(emp);
Order order2 = new Order();
order2.setPono(11);
order2.setCustomer(cust);
order2.setEmployee(emp);
//Performing transaction
try{

userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(order1);
em.persist(order2);
em.flush();
em.refresh(cust);
orders = cust.getOrders();
for (int i = 0; i < orders.size(); i++) {
out.println("order "+ orders.get(i).getPono()+ " placed by: " + ➥
orders.get(i).getCustomer().getCust_name() + "
");

}
userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

After you are done with compiling, packaging, and deploying the servlet, you can run it. If
everything is OK, the results should look as follows:

Transaction began!
order 10 placed by: Paul Medica
order 11 placed by: Paul Medica
Transaction has been rolled back!

The next run should give the same results, since all the operations performed against the
data in the servlet got rolled back.

Cascading Operations Performed on Related Entities
When defining a relationship between two entities with a @OneToOne, @OneToMany, @ManyToOne,
or @ManyToMany annotation, you can use the cascade annotation element to describe how the
effect of an operation will be propagated to instances of the associated entity.

Table 9-1 summarizes the cascade types you can use when setting up the cascade annota-
tion element.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING234

Table 9-1. The Cascade Types to Which You Can Set the Cascade Annotation Element

Cascade Type Description

MERGE EntityManager’s merge operations will be cascaded to the target of the
association.

PERSIST EntityManager’s persist operations will be cascaded to the target of the
association.

REFRESH EntityManager’s refresh operations will be cascaded to the target of the
association.

REMOVE EntityManager’s remove operations will be cascaded to the target of the
association.

ALL Any the previous operations will be cascaded to the target of the association.

In fact, you’ve already seen an example of using the cascade annotation element in the
Customer and Employee entities utilized in most of the preceding examples. As a quick recap,
Listing 9-5 shows a fragment of Customer.java, illustrating the use of the cascade annotation
element.

Listing 9-5. An Example of Using the Cascade Annotation Element

...
import javax.persistence.CascadeType;
...
public class Customer implements Serializable {
...

@OneToMany(mappedBy="customer", cascade = CascadeType.ALL)
private List<Order> orders;
public List<Order> getOrders(){

return orders;
}
public void setOrders(List<Order> orders) {

this.orders = orders;
}

...
}

Let’s now create a servlet that illustrates how cascading of, say, the persist operation per-
formed against a Customer instance works. For example, you could implement a servlet that
accomplishes the following steps:

1. Obtain a Customer instance from a database, as well as an Employee instance, with the
help of the find method of the EntityManager.

2. Set up two Order instances, setting their Customer and Employee fields to the instances
obtained in step 1.

3. Define an ArrayList, and then add the Order instances created in step 2 to this
structure.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 235

4. Associate the ArrayList defined in step 3 with the Customer instance obtained in step
1, using the setOrders method of the latter.

5. Persist the Customer instance. Actually, this step is optional. This is because the
Customer instance, unlike Order instances created in step 2, is in the EntityManager’s
persistence context from the beginning and, therefore, will be automatically synchro-
nized to the database in the next step with the flush EntityManager’s method.

6. Synchronize the Customer instance to the database with flush. Since you have the
cascade element of the @OneToMany annotation in the Customer entity set to ALL, the
Order instances associated with the Customer instance will also be persisted to the
database.

7. Refresh the Customer instance from the database.

8. Make sure that the Order instances associated with the Customer instance in step 4
have been persisted. To obtain these instances, you use the getOrders method of the
refreshed Customer instance, looping through the array returned by the getOrders
method.

Now let’s look at the source code for a servlet that performs these steps. In Listing 9-6
showing the code, the import declarations, as well as some other code lines unimportant here,
have been omitted to save space.

Listing 9-6. Source Code for a Servlet That Shows How Cascading of the Persist Operation
Performed Against a Customer Instance Works

//import declarations
...
public class CascadingTestServlet extends HttpServlet {
...

public void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

...
Customer cust = (Customer) em.find(Customer.class, 2);
Employee emp = (Employee) em.find(Employee.class, 2);
Order order1 = new Order();
order1.setPono(10);
order1.setCustomer(cust);
order1.setEmployee(emp);
Order order2 = new Order();
order2.setPono(11);
order2.setCustomer(cust);
order2.setEmployee(emp);
List<Order> orders = new ArrayList<Order>();
orders.add(order1);
orders.add(order2);
cust.setOrders(orders);
//Performing transaction

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING236

try{
userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(cust); //can be omitted
em.flush();
em.refresh(cust);
orders = cust.getOrders();
for (int i = 0; i < orders.size(); i++) {
out.println("order "+ orders.get(i).getPono()+ " placed by: " + ➥
orders.get(i).getCustomer().getCust_name() + "
");

}
userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

The most interesting thing about the code shown in the listing is that you don’t have to
explicitly persist the Order instances created there to the database. The persistence provider
does it implicitly when the Customer instance with which those Order instances have been
associated is persisted. It’s important to realize that the previous is not the default behavior.
As you might recall from Table 9-1, the persistence provider does it that way here because
the cascade element of the @OneToMany annotation in the Customer entity is set to ALL, which
means all operations performed against a Customer instance will be cascaded to the associated
Order instances.

By default, the cascade element is not set at all. This means that if you modify the
Customer entity as shown in the snippet in Listing 9-7, then the CascadingTestServlet servlet
shown in Listing 9-6 will end up with an error, providing no output after the “Transaction
began!” message appears.

Listing 9-7. The One-to-Many Relationship Defined in the Customer Entity, Without the Cascade
Annotation Element

...
public class Customer implements Serializable {
...

@OneToMany(mappedBy="customer")
private List<Order> orders;
public List<Order> getOrders(){

return orders;
}
public void setOrders(List<Order> orders) {

this.orders = orders;
}

...
}

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 237

Now, to make the CascadingTestServlet servlet shown in Listing 9-6 work again and pro-
duce the same results, you might change its source code as shown in Listing 9-8.

Listing 9-8. The Updated CascadingTestServlet Servlet That Will Work with the Customer Entity
Modified As Shown in Listing 9-7

//import declarations
...
public class CascadingTestServlet extends HttpServlet {
...

public void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

...
Customer cust = (Customer) em.find(Customer.class, 2);
Employee emp = (Employee) em.find(Employee.class, 2);
List<Order> orders = new ArrayList<Order>();
Order order1 = new Order();
order1.setPono(10);
order1.setCustomer(cust);
order1.setEmployee(emp);
Order order2 = new Order();
order2.setPono(11);
order2.setCustomer(cust);
order2.setEmployee(emp);
//Performing transaction
try{

userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(order1);
em.persist(order2);
em.flush();
em.refresh(cust);
orders = cust.getOrders();
for (int i = 0; i < orders.size(); i++) {
out.println("order "+ orders.get(i).getPono()+ " placed by: " + ➥
orders.get(i).getCustomer().getCust_name() + "
");

}
userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING238

As you can see, the servlet shown in the listing works in a similar manner as the one
shown in Listing 9-6 earlier. This time, however, you explicitly persist the Order instances to
the database. This is because the @OneToMany annotation used in the Customer entity to define
a relationship with the Order entity doesn’t set the cascade element anymore. As a result, the
persistence provider will no longer cascade any operations performed against a Customer
instance to the associated Order instances.

Dealing with Entity Primary Keys
Like relational tables, entities use primary keys to uniquely identify entity instances. If you
recall, you can use the @Id annotation to specify the primary key property or field when creat-
ing an entity.

In the following sections, you will look at some practical examples of how to define pri-
mary key entity fields, including how to deal with composite primary keys that include foreign
key mappings and how to instruct the persistence provider to automatically generate values
for the primary key fields.

Dealing with Composite Primary Keys
If you recall from the discussion in the “Creating the Entities” section in Chapter 8, you can
declare a composite primary key using the @IdClass annotation. A more complex example
assumes that one of the composite primary key fields is also a foreign key through which you
establish a relationship with a related entity. The following example shows what you can do in
this situation.

Let’s create a new project for this example. Again, to save time, you can borrow the direc-
tory structure from the test project discussed in the “Performing a Quick Test of the Newly
Created JPA Entities” section in the preceding chapter. This time, however, you must not
remove the ShoppingCart.java and ShoppingCartKey.java files from the /src/ejbjpa/entities
directory. Instead, you can remove the Customer.java and Employee.java files. Also, for this
example, you’re going to need to create a Book entity and modify the ShoppingCart entity,
establishing a bidirectional relationship between these entities. As you might recall from
Chapter 6, the shoppingCarts table is defined with the composite primary key that includes
the book_id column, which is also a foreign key to the primary key of the books table.

Listing 9-9 shows the code you might use to create the Book entity.

Listing 9-9. Source Code for the Book Entity

package ejbjpa.entities;
import java.util.List;
import javax.persistence.CascadeType;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.OneToMany;
@Entity

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 239

@Table(name = "BOOKS")
public class Book implements Serializable {

@Id
@Column(name = "ISBN")
private String isbn;
@Column(name = "TITLE", nullable = false)
private String title;
@Column(name = "AUTHOR", nullable = false)
private String author;
@Column(name = "PRICE", nullable = false)
private Double price;
@Column(name = "QUANTITY", nullable = false)
private Integer quantity;
@OneToMany(mappedBy="book", cascade = CascadeType.ALL)
private List<ShoppingCart> shoppingCarts;
public List<ShoppingCart> getShoppingCarts(){

return shoppingCarts;
}
public void setShoppingCarts(List<ShoppingCart> shoppingCarts) {

this.shoppingCarts = shoppingCarts;
}
public Book() {
}
public String getIsbn() {

return this.isbn;
}
public void setIsbn(String isbn) {

this.isbn = isbn;
}
public String getTitle() {

return this.title;
}
public void setTitle(String title) {

this.title = title;
}
public String getAuthor() {

return this.author;
}
public void setAuthor(String author) {

this.author = author;
}
public Double getPrice() {

return this.price;
}
public void setPrice(Double price) {

this.price = price;
}

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING240

public Integer getQuantity() {
return this.quantity;

}
public void setQuantity(Integer quantity) {

this.quantity = quantity;
}

}

Now you can move on and modify the ShoppingCart entity, defining an association to the
Book entity. Listing 9-10 shows the updated ShoppingCart entity.

Listing 9-10. Source Code for the Updated ShoppingCart Entity

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;

@Entity
@Table(name = "SHOPPINGCARTS")
@IdClass(value = ejbjpa.entities.ShoppingCartKey.class)
public class ShoppingCart implements Serializable {

@Id
@Column(name = "CART_ID")
private Integer cart_id;
@Id
@Column(name = "BOOK_ID", insertable=false, updatable=false)
private String book_id;
@Column(name = "UNITS", nullable = false)
private Integer units;
@Column(name = "UNIT_PRICE", nullable = false)
private Double unit_price;
@ManyToOne
@JoinColumn(
name="BOOK_ID",
referencedColumnName="ISBN")

private Book book;
public ShoppingCart() {
}
public Book getBook() {

return this.book;
}

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 241

public void setBook(Book book) {
this.book = book;

}
public Integer getCart_id() {

return this.cart_id;
}
public void setCart_id(Integer cart_id) {

this.cart_id = cart_id;
}
public Integer getUnits () {

return this.units;
}
public void setUnits(Integer units) {

this.units = units;
}
public Double getUnit_price() {

return this.unit_price;
}
public void setUnit_price(Double unit_price) {

this.unit_price = unit_price;
}

}

Note that in the ShoppingCart entity shown in the listing, the BOOK_ID column is mapped
twice: first as a primary key field, book_id, and then as a relationship field, book. However,
since the persistence provider cannot allow you to have two writable entity fields mapped to
the same underlying table column, you have to define one of them as read-only. That is why
you set insertable=false and updatable=false when defining the book_id entity field. Other-
wise, you will end up with the following error:

Multiple writable mappings exist for the field [SHOPPINGCARTS.BOOK_ID]. ➥
Only one may be defined as writable, all others must be specified read-only.

Now that you have the entities, it’s time to put them to use. The CompositeKeyTestServlet
servlet shown in Listing 9-11 illustrates how you might create some ShoppingCart entities,
persist them to the database, and then obtain them from the database again. The servlet
assumes that in addition to the ShoppingCart.java and Book.java files discussed earlier, you
also have the ShoppingCartKey.java in the /src/ejbjpa/entities directory, created as shown
in Listing 8-4 in Chapter 8.

Listing 9-11. Source Code for the CompositeKeyTestServlet Servlet

package ejbjpa.servlets;
import java.io.*;
import java.util.*;
import java.sql.*;

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING242

import javax.servlet.*;
import javax.servlet.http.*;
import javax.transaction.*;
import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import ejbjpa.entities.*;
public class CompositeKeyTestServlet extends HttpServlet {

@PersistenceUnit
private EntityManagerFactory emf;
@Resource
private UserTransaction userTransaction;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
EntityManager em= emf.createEntityManager();
//creating ShoppingCart entity instances
ShoppingCart cart1 = new ShoppingCart();
cart1.setCart_id(2);
Book book1 = (Book) em.find(Book.class, "1590595300");
cart1.setBook(book1);

cart1.setUnits(3);
cart1.setUnit_price(49.99);
out.println("Price of the book in book1 is: $" + book1.getPrice() + "
");
ShoppingCart cart2 = new ShoppingCart();
cart2.setCart_id(2);
Book book2 = (Book) em.find(Book.class, "1430209631");
cart2.setBook(book2);
cart2.setUnits(2);
cart2.setUnit_price(44.99);
out.println("Price of the book in book2 is: $" + book2.getPrice() + "
");
//Performing transaction
try{

userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(cart1);
em.persist(cart2);
em.flush();
out.println("cart instances have been persisted to database!"+ "
");
ShoppingCart cart3 = (ShoppingCart) em.find(ShoppingCart.class, ➥
new ShoppingCartKey(2, "1590595300"));

out.println("Price of the book in cart3 is: $" + ➥
cart3.getBook().getPrice() + "
");

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 243

ShoppingCart cart4 = (ShoppingCart) em.find(ShoppingCart.class, ➥
new ShoppingCartKey(2, "1430209631"));
out.println("Price of the book in cart4 is: $" +➥
cart4.getBook().getPrice() + "
");
userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

If everything goes right, the CompositeKeyTestServlet servlet shown in the listing should
produce the following output:

Price of the book in book1 is: $49.99
Price of the book in book2 is: $44.99
Transaction began!
cart instances have been persisted to database!
Price of the book in cart3 is: $49.99
Price of the book in cart4 is: $44.99
Transaction has been rolled back!

These results indicate that the ShoppingCart entities have been successfully persisted to
the database and then obtained again from it with the help of the composite primary key
specified. As usual, you finish by rolling back the transaction.

Generating Values for Primary Key Columns
Databases are different from one another. Frameworks like TopLink Essentials are designed to
smooth all the major differences between databases, providing Java developers with a unified
interface to the underlying data. However, there are of course still things that work differently
for different underlying databases. One of those things is generating values for primary key
columns.

Table 9-2 lists the types of primary key generation strategies.

Table 9-2. The Types of Primary Key Generation

Generation Type Description

TABLE Instructs the persistence provider to store the sequence name and its current
value in a table in the underlying database, increasing the current value each
time a new instance of the annotated entity is persisted.

SEQUENCE Can be used if your underlying database supports sequences. The persistence
provider will utilize the sequence specified, which you must have created in the
database.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING244

Generation Type Description

IDENTITY Can be used if your underlying database supports generating a unique identity
for new rows.

AUTO The persistence provider chooses an appropriate strategy, based on the type of
the underlying database.

In the next three sections, you will look at each of the first three primary key generation
strategies outlined in the table.

Generating Primary Keys Using the TABLE Strategy
The main advantage of the TABLE primary key generation strategy over the others is that it can
be used with an underlying database of any type—no special features are required. To start
with, you create a two-column table in the same database schema where you have created the
other underlying tables. In this table, you will store information about custom sequences so
that the first column stores a sequence name and the second stores its current value.

Listing 9-12 shows how you might create such a table.

Listing 9-12. An Underlying Table to Store Information About User-Defined Sequences

CREATE TABLE pono_gen_table(
gen_name VARCHAR(20) PRIMARY KEY,
gen_value NUMERIC(10)
);

To set up a new sequence, you have to insert a new row into the previous table. For exam-
ple, you might insert the following row:

INSERT INTO pono_gen_table VALUES('pono_gen', 10);

With that done, you have a custom sequence named pono_gen whose initial value is set
to 10.

Now that you have defined a custom sequence for generating primary keys, you can start
using it. Once again, you can create a new project, borrowing the structure from the test proj-
ect discussed in the “Performing a Quick Test of the Newly Created JPA Entities” section in
Chapter 8. Then, modify the Order entity source as shown in Listing 9-13.

Listing 9-13. The Order Entity Updated to Use the TABLE Primary Key Generation Strategy

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Temporal;
import static javax.persistence.TemporalType.DATE;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 245

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.TableGenerator;
import java.util.Date;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@TableGenerator(name = "ponoGen",
table = "PONO_GEN_TABLE",
pkColumnName = "GEN_NAME",
valueColumnName = "GEN_VALUE",
pkColumnValue = "PONO_GEN",
allocationSize = 1)

@Id
@GeneratedValue(strategy=GenerationType.TABLE, generator = "ponoGen")
@Column(name = "PONO")
private Integer pono;
@Column(name = "SHIPPING_DATE", nullable = false)
@Temporal(DATE)
private Date shipping_date;
@Column(name = "DELIVERY_ESTIMATE", nullable = false)
private String delivery_estimate;
@ManyToOne
@JoinColumn(
name="CUST_ID",
referencedColumnName="CUST_ID")

private Customer customer;
@ManyToOne
@JoinColumn(
name="EMPNO",
referencedColumnName="EMPNO")

private Employee employee;
public Order() {
}

...
//The Order entity setter and getter methods
...
}

To test the generator defined in the Order entity, you might create the
GeneratingKeyTestServlet servlet as shown in Listing 9-14.

Listing 9-14. Source Code for a Servlet That Tests the Order Entity Updated to Use Automatically
Generated Primary Keys

//import declarations
...
public class GeneratingKeyTestServlet extends HttpServlet {

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING246

@PersistenceUnit
private EntityManagerFactory emf;
@Resource
private UserTransaction userTransaction;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
EntityManager em= emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, 2);
Employee emp = (Employee) em.find(Employee.class, 2);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
Order order2 = new Order();
order2.setCustomer(cust);
order2.setEmployee(emp);
//Performing transaction
try{

userTransaction.begin();
out.println("Transaction began!"+"
");
em.persist(order1);
em.persist(order2);
em.flush();
em.refresh(order1);
em.refresh(order2);
out.println("order "+ order1.getPono()+ " placed by: " + ➥
order1.getCustomer().getCust_name() + "
");

out.println("order "+ order2.getPono()+ " placed by: " + ➥
order2.getCustomer().getCust_name() + "
");

userTransaction.rollback();
out.println("Transaction has been rolled back!");

}
catch (Exception e){

e.printStackTrace();
}

}
}

Note that in the GeneratingKeyTestServlet servlet shown in the listing, you don’t set pono
fields of the Order instances, since the persistence provider will do it for you.

When executed, the GeneratingKeyTestServlet servlet should output the following
messages:

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 247

Transaction began!
order 11 placed by: Paul Medica
order 12 placed by: Paul Medica
Transaction has been rolled back!

As mentioned, the main advantage of using the TABLE primary key generation strategy is
that it can be easily adopted for any underlying database. However, this strategy has some
disadvantages. The main disadvantage is that the current value of the sequence used for
generating subsequent numbers is stored in a regular table. That means this value may be
changed in several ways, not necessarily through the persistence provider.

Generating Primary Keys Using the IDENTITY Strategy
Another downside to the TABLE strategy is that the value of the pono field can still be set via the
setPono method or directly with an INSERT statement, and the current value of the pono_gen
sequence stored in the pono_gen_table table will not change. Furthermore, if the generated
value happens to be already present in the pono field of an existing record in the orders table,
then an error will occur upon trying to persist that new Order instance. Even worse, if such an
error occurs, you won’t be able to overcome it by retrying to perform the persist operation on
the same Order instance. Each new attempt will fail, causing the transaction to be rolled back.
Therefore, the current value of the table generator used here will never be increased, unless
you manually change the pono field of the instance being inserted or change the current value
of the table generator by directly updating the pono_gen_table table.

Using the IDENTITY primary key generation strategy lets you avoid all these problems (at
least, this is true when your underlying database is MySQL). This strategy implies that the per-
sistence provider actually exploits the primary key generation mechanism provided by the
database server, which will handle all the data integrity issues using its built-in functionality.

Unfortunately, not all databases support the IDENTITY strategy. MySQL is one of those that
support it. If your underlying database is MySQL, you can now alter the orders table created as
shown in Listing 6-4 in Chapter 6. To do this, you need to connect to the database server as
usrsample user and then issue the ALTER statement shown in Listing 9-15.

Listing 9-15. Setting the AUTO_INCREMENT Attribute to the pono Column of the orders Table

use dbsample;
ALTER TABLE orders MODIFY pono INTEGER AUTO_INCREMENT;

■Caution Although the examples discussed in this chapter are implemented in separate projects, and as
stated in the beginning of the chapter, you temporarily digressed from the main book sample project that you
started building in the preceding chapters, altering the orders underlying table will, of course, affect the
sample discussed throughout the book. So, if you’re implementing the underlying database in MySQL, you
must modify the Order.java file shown in Listing 8-3 and used in the main book sample, as shown in
Listing 9-16 in this section.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING248

It is important to note that later you can always remove the AUTO_INCREMENT attribute,
returning the orders table to its original state as follows:

ALTER TABLE orders MODIFY pono INTEGER;

Listing 9-16 shows how you have to update the Order.java file so that it can utilize the
IDENTITY primary key generation strategy. As mentioned in the previous caution block, in case
your underlying database is implemented in MySQL, you also have to update the Order.java
file used in the main book sample project and shown in Listing 8-3 in Chapter 8.

Listing 9-16. The Order Entity Updated to Utilize the IDENTITY Primary Key Generation Strategy

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Temporal;
import static javax.persistence.TemporalType.DATE;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import java.util.Date;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name = "PONO")
private Integer pono;
@Column(name = "SHIPPING_DATE", nullable = false)
@Temporal(DATE)
private Date shipping_date;
@Column(name = "DELIVERY_ESTIMATE", nullable = false)
private String delivery_estimate;
@ManyToOne
@JoinColumn(
name="CUST_ID",
referencedColumnName="CUST_ID")

private Customer customer;
@ManyToOne
@JoinColumn(
name="EMPNO",
referencedColumnName="EMPNO")

private Employee employee;
public Order() {

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 249

}
...
//The Order entity setter and getter methods
...
}

It is interesting to note that when using the IDENTITY strategy, you don’t need to worry
about specifying an initial value with which the generator starts producing sequence num-
bers—the database server will do it for you, figuring out a new sequence number based on the
maximum value of the pono field within existing records in the orders underlying table. So,
when you now run the GeneratingKeyTestServlet servlet for the first time, you should see that
the value generated for the pono field of the first entity is the number that is right next to the
maximum value of the pono field within already existing records. For example, if the orders
table already has some records and the maximum value of the pono field within those records
is 5, then you should see the following output when executing the GeneratingKeyTestServlet
servlet for the first time:

Transaction began!
order 6 placed by: Paul Medica
order 7 placed by: Paul Medica
Transaction has been rolled back!

Each new load of the servlet will show increased results, regardless of whether the trans-
action has been rolled back or committed.

From now on, even if you explicitly specify the value for the pono field of an Order
instance, as shown in the following snippet:

...
Order order1 = new Order();
order1.setPono(25);
order1.setCustomer(cust);
order1.setEmployee(emp);

...

the specified value, if any, will be disregarded, and the generated value will take effect.

Generating Primary Keys Using the SEQUENCE Strategy
In the case of Oracle, you can use the SEQUENCE primary key generation strategy as an alterna-
tive to the TABLE strategy discussed earlier.

To start with, you must create a sequence to be used. To do this, you need to connect
to the database server as usrsample user and then issue the ALTER statement shown in
Listing 9-17.

Listing 9-17. Creating a Sequence in Oracle

CREATE SEQUENCE pono_gen_sequence START WITH 10 INCREMENT BY 1;

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING250

Next, you can change the Order.java file as shown in Listing 9-18. Also, make sure to
update the Order.java file used in the main book sample project, provided you’re going to use
an Oracle underlying database in this project.

Listing 9-18. The Order Entity Updated to Utilize the SEQUENCE Primary Key Generation Strategy

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Temporal;
import static javax.persistence.TemporalType.DATE;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.SequenceGenerator;
import java.util.Date;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@SequenceGenerator(name = "ponoGen",
sequenceName = "PONO_GEN_SEQUENCE",
initialValue = 10,
allocationSize = 1)

@Id
@GeneratedValue(strategy=GenerationType.SEQUENCE, generator = "ponoGen")
@Column(name = "PONO")
private Integer pono;
@Column(name = "SHIPPING_DATE", nullable = false)
@Temporal(DATE)
private Date shipping_date;
@Column(name = "DELIVERY_ESTIMATE", nullable = false)
private String delivery_estimate;
@ManyToOne
@JoinColumn(
name="CUST_ID",
referencedColumnName="CUST_ID")

private Customer customer;
@ManyToOne
@JoinColumn(
name="EMPNO",
referencedColumnName="EMPNO")

private Employee employee;
public Order() {
}

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING 251

...
//The Order entity setter and getter methods
...
}

In Oracle, each time a sequence is accessed, its current value is incremented immediately
and won’t be set back even if you roll back the transaction within which you access the sequence.
This is similar to the IDENTITY strategy on this point. However, if you now explicitly specify the
value for the pono field when defining an Order instance in the way you saw in the snippet
shown at the end of the preceding section, then the specified value will be given priority over
the generated one. To be exact, the generator will not even generate a value in this situation,
so the current sequence number will not be increased.

Summary
As you no doubt have realized, the Java Persistence API provides an efficient way of mapping
between object-oriented and relational data storage, removing the burden from Java develop-
ers to access the underlying database via SQL/JDBC. However, there is still a lot to learn to be
able to efficiently map the entity data to the underlying database.

In this chapter, you looked at some practical examples on object/relational mapping,
including how to specify mapping metadata, utilize entity relationships, and deal with pri-
mary keys in entities.

CHAPTER 9 ■ OBJECT/RELATIONAL MAPPING252

Using EntityManager

As you learned in the preceding chapter, the idea behind object/relational mapping is to
provide the persistence provider with detailed information on how to associate entities with
the corresponding underlying database tables and also to describe relationships between
entities and how the operations performed on related entities should work. The object/
relational mapping facility, however, has nothing to do with managing entity instances and
their life cycles.

In this chapter, you will take a close look at the EntityManager, a Java Persistence API
interface providing all the methods for manipulating entities mapped to relational tables.
The chapter starts with an overview of the EntityManager and then talks about the different
ways in which you can use it. After reading this chapter, you will have learned how to do the
following:

• Manage the life cycles of entity instances

• Obtain an instance of the EntityManager

• Deal with container-managed and application-managed EntityManagers

• Use Java Transaction Architecture (JTA) and resource-local EntityManagers

• Utilize EntityManager methods to manipulate entities

• Use entity life-cycle callback methods

Over the course of this chapter, you will look at some basic examples that tackle these
operations, helping you understand the mechanics behind the EntityManager tool.

Managing Entities
Now that you know how to use ORM metadata to tell the persistence provider how to map
entities to underlying database tables, what persistence mechanism might you use to manip-
ulate those entities?

The following sections address this question while taking a look at the EntityManager, the
tool through which you can manage the entity instances’ life cycles.

253

C H A P T E R 1 0

The Big Picture
In a nutshell, if ORM metadata provides the persistence provider with the exact details of how
to map the entities to the underlying database, then the EntityManager interface methods
provide a standard way to manipulate instances of those entities from within application
components, such as enterprise beans and servlets.

Diagrammatically, this might look like Figure 10-1.

Figure 10-1. Application components employ the EntityManager interface to manipulate entities
mapped to the underlying database data.

As you can see in the figure, an application component can interact with the underlying
database through the EntityManager interface, which is similar to JDBC in that it provides a
set of standard methods allowing you to perform all operations on relational data. Unlike
JDBC, however, EntityManager methods operate with JPA entities mapped to the underlying
tables with object/relational mapping, as discussed in the preceding chapter.

■Note It’s interesting to note that behind the scenes the EntityManager relies on a set of JDBC drivers
used by the persistence provider to interact with the underlying databases of different types. So, each time
you invoke an EntityManager method, the persistence provider generates and then implicitly issues an
appropriate SQL statement through the corresponding JDBC driver (sometimes, though, cached data
is used).

The EntityManager can be used in both Java EE and Java SE environments. In Java EE
environments, the EntityManager can be used in EJB components, Java EE web components,
and Java EE application clients.

To take advantage of the EntityManager interface in your application, you have to accom-
plish the following key steps:

1. Create entities upon the underlying tables as necessary.

2. Define a persistence unit upon an appropriate JDBC resource defined in the applica-
tion server.

CHAPTER 10 ■ USING ENTITYMANAGER254

3. In case you want to obtain an application-managed EntityManager, you first have to
obtain an instance of EntityManagerFactory created upon a certain persistence unit.
In the case of a container-managed EntityManager, the container will create the
EntityManagerFactory implicitly.

4. Obtain an EntityManager instance.

5. Access and manipulate the entities through the EntityManager instance.

Whether explicitly or not, an EntityManager instance is obtained from an
EntityManagerFactory associated with a certain persistence unit. There cannot be more than
one EntityManagerFactory per persistence unit available simultaneously. Graphically, this
might look like Figure 10-2.

Figure 10-2. An EntityManager instance is obtained from an EntityManagerFactory associated
with a certain persistence unit.

Actually, you’ve already seen the EntityManager in practice in the preceding chapter,
where you used the EntityManager APIs to manipulate entity instances from within a servlet.
In this chapter, in the later “Uses of EntityManager” section, you will see some examples of
using the EntityManager in EJB components.

Persistence Contexts
As mentioned, you have to obtain an instance of EntityManager before you can use its meth-
ods to access and manipulate entities available within your application. Not surprisingly, each
instance of the EntityManager is associated with a certain context, which is called the persist-
ence context of that EntityManager instance.

So, you might think of an EntityManager instance as an object of a class that implements
the EntityManager interface and allows you to operate on a certain persistence context.

CHAPTER 10 ■ USING ENTITYMANAGER 255

■Note In the object-oriented world, it is most common that an instance of a class manipulates the data
specific to that instance and held in its variables. Note, however, that EntityManager is not a regular class
but an interface and, thus, has no variables for holding data. Creating an object that lets you manipulate a
certain persistence context through the EntityManager interface methods occurs behind the scenes with the
help of an entity manager factory. Such an object is typically called an EntityManager instance.

It’s important to realize that a single persistent context may be associated with more than
one EntityManager reference, provided all those EntityManager references are obtained from
the same entity manager factory.

■Note You may be wondering why the term EntityManager reference is used instead of EntityManager
instance here. As you will learn in the later “Obtaining a Container-Managed EntityManager” section, obtain-
ing a container-managed EntityManager instance is performed through dependency injection or direct JNDI
lookup of the EntityManager. So, you don’t actually create a container-managed EntityManager instance—
rather, you obtain a reference to the instance provided by the container.

Another important thing to remember is that the applicability of some EntityManager
methods is dependent upon the type of associated persistence context. For example, you can
call the EntityManager interface’s close method only when using an application-managed
EntityManager.

The EntityManager instance operating on a persistence context is obtained from an entity
manager factory associated with a certain persistence unit. As you will learn a bit later in this
chapter, you won’t need to explicitly deal with the EntityManagerFactory interface in the case
of a container-managed EntityManager, since the container does it for you implicitly.

The following sections explain the concept behind the persistence context in more detail.

EntityManager and Its Persistence Context
The persistence context of an EntityManager instance defines the scope within which you can
use that EntityManager instance to access and manipulate particular entity instances. Within
a certain persistence context, any persistent entity identity may be represented by a single
instance.

Figure 10-3 illustrates that a persistence context consists of a set of entity instances
manipulated by a certain EntityManager instance.

As stated earlier, an EntityManager instance uses its methods to access and manipulate
the entity instances in the associated persistent context. You can find the list of the most com-
monly used EntityManager interface methods in Table 10-2 later in this chapter.

CHAPTER 10 ■ USING ENTITYMANAGER256

Figure 10-3. A persistence context consists of a set of entity instances managed by an
EntityManager instance.

The life cycle of a persistence context depends on its type. As you will learn in the
following sections, there are two major types of persistence contexts: container-managed
and application-managed. A container-managed persistent context in turn can be either
transaction-scoped or extended, depending on whether the context is scoped to a single
transaction or might span multiple transactions, respectively. In both cases, though, the life
cycle of the persistent context is automatically managed by the Java EE container. In contrast,
the life cycle of an application-managed persistence context is explicitly managed by the
application.

Container-Managed Persistence Context
In EJB components, you will normally use EntityManagers associated with container-
managed persistence contexts. As its name implies, the container manages a container-
managed persistence context. What this means in practice is that it is the responsibility of the
Java EE container to manage the life cycle of such a persistence context. The scope of a con-
tainer-managed persistence context is defined upon creating the EntityManager instance
and, by default, corresponds to the scope of an active JTA transaction or can be defined as
extended so that it can survive multiple transactions.

■Note A JTA transaction is one that is controlled by the Java EE transaction manager and may include
invocations across multiple application components. The alternative to JTA is resource-local transactions
that are controlled by the application. The type of transactions to be used is defined in the persistence unit
whose factory was used when creating the EntityManager instance. An EntityManager whose underlying
transactions are JTA is called a JTA EntityManager. The underlying transactions of a container-managed
EntityManager instance are always JTA transactions. You will see an example of using an application-
managed EntityManager whose underlying transactions are resource-local in the “An Example of Using an
Application-Managed EntityManager” section later in this chapter. Then, the “An Example on Persistence
Context Propagation” section provides an example of using an EntityManager whose persistence context is
propagated with the JTA transaction.

CHAPTER 10 ■ USING ENTITYMANAGER 257

The following two sections will touch upon these two types of the container-managed
persistence context: transaction-scoped and extended.

Transaction-Scoped Persistence Context

As mentioned, the lifetime of a container-managed persistence context defaults to the scope
of a single transaction.

When you inject a container-managed EntityManager into a component, you obtain an
EntityManager instance whose persistence context is bound to the JTA transaction. If there is
no existing persistent context defined upon the JTA transaction by the time one of the Entity-
Manager’s methods is invoked, the persistence provider will create a new persistence context.
After the JTA transaction ends, the container closes the EntityManager instance associated
with it, detaching all managed entities within the EntityManager’s persistence context.

As you might guess, this mechanism enables a single persistent context to be shared
between more than one application component, as shown in Figure 10-4.

Figure 10-4. A transaction-scoped persistence context is bound to a single JTA transaction that
can be shared between more than one application component.

Each application component interacts with the persistence context bound to the JTA
transaction through an EntityManager reference injected into that component via the
javax.persistence.PersistenceContext annotation.

Extended Persistence Context

An extended persistence context can be bound only to the scope of a stateful session bean. To
achieve this, you have to explicitly set the type element of the PersistenceContext annotation
to PersistenceContextType.EXTENDED. An extended persistence context can survive more than
one transaction, as depicted in Figure 10-5.

CHAPTER 10 ■ USING ENTITYMANAGER258

Figure 10-5. An extended persistence context can survive more than one transaction.

An extended persistence context bound to a stateful session bean begins when an
instance of that stateful bean is created and ends just before the container removes the bean’s
instance.

Application-Managed Persistence Context
When using an application-managed EntityManager, the application explicitly manages the
life cycle of the persistence context. Application-managed persistence contexts are not bound
to the scope of a transaction and may actually survive multiple transactions, as depicted in
Figure 10-6.

Figure 10-6. An application-managed persistence context starts when the associated Entity-
Manager is explicitly created and ends when it is closed. It may survive several transactions.

As you can see in the figure, an application-managed persistence context begins when
you obtain an EntityManager instance by invoking the createEntityManager method of the
EntityManagerFactory interface and is closed when the associated EntityManager instance is
closed with the close method. If the EntityManager instance being closed is associated with
an active transaction, the persistence context is closed when the transaction completes.

CHAPTER 10 ■ USING ENTITYMANAGER 259

Although the persistence context depicted in the figure spans multiple transactions, this
is not always the case with an application-managed persistence context. For example, if an
application-managed JTA EntityManager is created within the scope of the current JTA trans-
action, then the persistence context will be associated with the transaction. In that case,
however, you will still need to explicitly close the EntityManager.

■Note If you recall from the note on JTA in the “Container-Managed Persistence Context” section, a JTA
EntityManager is one whose underlying EntityManagerFactory is based on a persistence unit where the
type of transactions to be used is set to JTA. In practical terms, in the persistence.xml file that defines
the persistence unit, you have to set the transaction-type attribute of the persistence-unit element
to JTA.

In practice, though, application-managed EnityManagers are often used to deal with
resource-local transactions controlled by the application through the EntityTransaction inter-
face. You will see an example of using a resource-local EntityManager in the “An Example of
Using an Application-Managed EntityManager” section later.

Managing the Life Cycle of Entity Instances
Now that you know how the life cycle of persistence contexts is managed, how can you man-
age the life cycle of a certain entity instance within a persistence context? The following two
sections briefly address this question.

States of Entity Instances
You use an appropriate EntityManager instance to manage the life cycle of an entity instance.
An entity instance can be in one of the following states: new, managed, detached, or removed.
Table 10-1 summarizes these states.

Table 10-1. Possible States of an Entity Instance

Method Description

New When you create an instance of an entity with the new operator, it is not yet associated
with a persistence context, and its state is set to new.

Managed When you perform the persist operation on an entity instance in the new state or
obtain an entity instance by the find method of the EntityManager within a
transaction context, that instance becomes managed and is associated with the
persistence context. A detached instance becomes managed when you perform the
merge operation on it.

Detached When a persistence context ends, all its entity instances become detached—not
managed and not associated with a persistence context anymore. Also, when you
obtain an entity by the find method or query outside the scope of a transaction, the
state of that entity is set to detached.

Removed When you perform the remove operation on an entity instance in the managed state,
its state changes to removed. A removed entity is then removed from the database
when the persistence context is synchronized to the database.

CHAPTER 10 ■ USING ENTITYMANAGER260

The most important thing to understand here is that some EntityManager operations
cause a change in the state of the entity instances to which they apply. If you want an entity
instance’s data to be synchronized to the database, you first have to make it managed.

Attaching Entities to the Persistence Context
As explained earlier, an entity instance becomes managed when you perform one of the Enti-
tyManager operations that associate that instance with a persistence context. The particular
method to use depends on the current state of the entity instance you want to make managed.

For example, when you have an entity instance in the new state, you can use the Entity-
Manager’s persist method to make it managed, associating it with the EntityManager’s
persistence context. If you have an entity instance in the detached state, you can use the merge
method to attach it to the persistence context.

You don’t need to worry about explicitly attaching an entity instance to the persistence
context if you are obtaining that instance by the find method invoked within the scope of a
transaction.

Figure 10-7 shows a graphical depiction of how an entity instance can be attached to a
persistence context.

Figure 10-7. A graphical representation of how an entity can be attached to the EntityManager
persistence context

An important thing to remember when dealing with entity instances is that only managed
entity instances are synchronized to the database (to be exact, the state of the entities sched-
uled for removal from the database is synchronized too—they are removed).

The problem is that, in many cases, a persistence context to which entity instances are
attached ends implicitly, because of an operation performed by the container behind the
scenes, making all the managed entity instances detached. For example, say the container
commits the underlying transaction with which the persistence context is associated.

As a quick example, let’s look at a stateless session bean that uses container-managed
transactions. As a matter of fact, all the entity instances you attach to a transaction-scoped
persistence context within a business method of such a bean become detached when method
execution ends. So, when calling another method of that bean, you have to reattach those
entity instances, provided you want to continue to synchronize their state to the database.

CHAPTER 10 ■ USING ENTITYMANAGER 261

EntityManager Interface
As stated earlier, the EntityManager interface provides the methods through which you can
interact with the persistence context associated with a certain EntityManager instance.

Table 10-2 summarizes the most commonly used EntityManager interface methods.

Table 10-2. The Most Commonly Used EntityManager Interface Methods

Method Description

public <T> T find(Class<T> entityClass, Finds an entity by its primary key and then sends
Object primaryKey) it to the EntityManager’s persistence context

public void persist(Object entity) Makes an instance managed, sending it to the
EntityManager’s persistence context

public <T> T merge(T entity) Merges an instance into the EntityManager’s
persistence context

public void remove(Object entity) Schedules an instance for removal from the
EntityManager’s persistence context

public void refresh(Object entity) Refreshes an instance in the EntityManager’s
persistence context from the database

public void flush() Synchronizes the EntityManager’s persistence
context to the underlying database

public boolean isOpen() Determines whether the EntityManager is open;
returns true if the EntityManager has not been
closed

public void clear() Clears the EntityManager’s persistence context,
detaching all managed entities

public void close() Used to close an application-managed
EntityManager

public EntityTransaction Used with a resource-local EntityManager to
getTransaction() obtain the resource-level transaction object

through which you can then begin and commit
multiple transactions

public void joinTransaction() Associates an application-managed EntityMan-
ager with the current JTA transaction

Note that this table doesn’t include EntityManager methods with which you can create a
Java Persistence Query Language (JPQL) or native SQL statement. These methods will be listed
and discussed in the next chapter.

You can find the full list of the EntityManager interface methods in the section entitled
“EntityManager Interface” in the Enterprise JavaBeans 3.0 Specification Java Persistence API
document, part of JSR-220, available at http://jcp.org/en/jsr/detail?id=220.

Using EntityManager to Manipulate Entities
Now that you have a grasp of the ideas behind the EntityManager API, it’s time to look at how
you can put the API into action.

In the following sections, you’ll start by looking at how you can obtain an EntityManager
instance. Then, you will take a look at some examples of using the EntityManager API.

CHAPTER 10 ■ USING ENTITYMANAGER262

Obtaining an Instance of EntityManager
The ways in which you can obtain an EntityManager instance vary, depending on whether you
want a container-managed or application-managed EntityManager instance.

Obtaining a Container-Managed EntityManager
The container-managed EntityManager is the most commonly used type of EntityManager in
Java EE environments. Using a container-managed EntityManager simplifies development,
since the life cycle of it is controlled by the container rather than by the code you write. So,
when designing an EJB component, you will most likely want to utilize a container-managed
EntityManager.

The simplest way to obtain a container-managed EntityManager instance is to inject it
into the component with the help of the javax.persistence.PersistenceContext annotation
like this:

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
...
@PersistenceContext
EntityManager em;

If you have more than one persistence unit available, you have to explicitly specify which
one will be used, with the unitName element of the PersistenceContext annotation:

@PersistenceContext(unitName="containeremtest-pu")
EntityManager em;

If you need to inject a container-managed EntityManager of type PersistenceContextType.
EXTENDED into a stateful session bean, you might do it like this:

@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager em;

The alternative to injection is JNDI lookup, which can be done as follows:

...
import javax.annotation.Resource;
import javax.ejb.SessionContext;
...
@PersistenceContext(name="containeremtest")
public class TestSessionBean implements TestSession {
@Resource SessionContext ctx;
public void testMethod() {
EntityManager em = (EntityManager)ctx.lookup("containeremtest");
...
}

}

CHAPTER 10 ■ USING ENTITYMANAGER 263

Obtaining an Application-Managed EntityManager
In a Java EE environment, obtaining an application-managed EntityManager is a two-step
process. First, you inject an EntityManagerFactory like this:

...
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
...
@PersistenceUnit
EntityManagerFactory emf;

Then, you can obtain an EntityManager instance as follows:

EntityManager em = emf.createEntityManager();

If you have more than one persistence unit available, you have to use the unitName ele-
ment of the PersistenceUnit annotation to explicitly specify which one will be used:

@PersistenceUnit(unitName="appemtest-pu")
EntityManagerFactory emf;

Uses of EntityManager
The following sections provide examples using the EntityManager API. In particular, you will
look at some uses of container-managed and application-managed EntityManagers in EJB
components.

An Example of Using a Container-Managed EntityManager
Let’s start with a simple example of using a container-managed EntityManager. To illustrate
the concept, you might create a stateless session bean with a single business method,
within which you utilize the EntityManager instance injected into the bean with the
@PersistenceContext annotations.

Take a look at the OrderTestBean bean shown in Listing 10-1. This bean assumes you will
use the Customer and Employee entities defined as shown in Listing 8-1 and Listing 8-2 in
Chapter 8, respectively. As for the Order entity, it should be defined as discussed in Chapter 9
and shown in Listing 9-16 for an underlying MySQL database or in Listing 9-18 for Oracle.

Listing 10-1. An Example of Stateless Session Bean That Uses a Container-Managed
EntityManager

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import ejbjpa.entities.*;

CHAPTER 10 ■ USING ENTITYMANAGER264

@Stateless
public class OrderTestBean implements OrderTest {

@PersistenceContext
private EntityManager em;
public Integer setOrder(Integer cust_id, Integer empno) {

Integer order_pono;
try {
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
em.persist(order1);
em.flush();
em.refresh(order1);
order_pono = order1.getPono();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return order_pono;

}
}

The first step you perform here is injecting a container-managed EntityManager instance
with the PersistenceContext annotation. Then you use the obtained EntityManager instance
in the setOrder business method of the OrderTestBean session bean.

In particular, the setOrder business method performs the following steps:

1. Obtains a Customer and an Employee instance with the help of the find method of the
EntityManager

2. Creates a new Order instance and then sets its Customer and Employee fields to the
instances obtained in step 1

3. Persists the Order instance created in step 2, attaching it to the EntityManager’s per-
sistence context

4. Synchronizes the Order instance to the database with flush

5. Refreshes the Order instance from the database

6. Obtains the generated pono with the getPono method of the Order instance

Now, to test the OrderTestBean session bean, you might use the servlet shown in
Listing 10-2.

Listing 10-2. A Servlet That Might Be Used to Test the OrderTestBean Session Bean

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;

CHAPTER 10 ■ USING ENTITYMANAGER 265

import javax.servlet.http.*;
import javax.ejb.EJB;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class EmEjbTestServlet extends HttpServlet {

@EJB private OrderTest orderTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
try{

out.println("Created order: "+orderTest.setOrder(2,1)+"
");
}
catch (Exception e){

e.printStackTrace();
}

}
}

The EmEjbTestServlet servlet shown in the listing simply calls the OrderTestBean’s
setOrder business method, passing in 2 and 1 as the customer ID and employee ID, respec-
tively. This method returns the generated order’s pono, which is then sent to the browser’s
output.

This is a simple example of using a container-managed EntityManager. It simply demon-
strates how you can obtain and then utilize a container-managed EntityManager instance.

Now, suppose you deploy the OrderTestBean session bean discussed here with the
persistence.xml configuration file that defines two persistence units rather than one. The
point of utilizing two persistence units here is to get some practice using EntityManager
instances created with different factories to deal with common problems.

Listing 10-3 shows what such a persistence.xml configuration file might look like.

Listing 10-3. An Example of the persistence.xml Configuration File Containing More Than One
Persistence Unit Element

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence ➥
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="containeremtest1-pu" transaction-type="JTA">
<jta-data-source>jdbc/mysqlpool</jta-data-source>

</persistence-unit>
<persistence-unit name="containeremtest2-pu" transaction-type="JTA">

<jta-data-source>jdbc/mysqlpool</jta-data-source>
</persistence-unit>

</persistence>

CHAPTER 10 ■ USING ENTITYMANAGER266

If you try to use the persistence.xml configuration file with the OrderTestBean bean
shown in Listing 10-1 earlier, you will get the following deployment error message:

Could not resolve a persistence unit corresponding to the persistence-context➥
-ref-name [ejbjpa.ejb.OrderTestBean/em] in the scope of the module called ...

So, you might update the OrderTestBean session bean as shown in Listing 10-4. (To save
space, the body of setOrder is not shown in this listing.)

Listing 10-4. The OrderTestBean Session Bean Updated to Use Two Persistence Contexts

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import ejbjpa.entities.*;
@Stateless
public class OrderTestBean implements OrderTest {

@PersistenceContext(unitName="containeremtest1-pu")
private EntityManager em;
@PersistenceContext(unitName="containeremtest2-pu")
private EntityManager em2;
public Integer setOrder(Integer cust_id, Integer empno) {

...
//The code of this method is shown in Listing 10-1

...
}
public String changeOrderEmpTest(Integer pono, Integer empno) {

String order_details;
try {
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = (Order) em.find(Order.class, pono);
order1.setEmployee(emp);
order_details = "order "+ order1.getPono()+ " placed via: " + ➥
order1.getEmployee().getLastname()+"
";
Order order2 = (Order) em2.find(Order.class, pono);
order_details = order_details+"order "+ order2.getPono()+ " placed ➥
via: " + order2.getEmployee().getLastname()+"
";
order_details = order_details+"order "+ order1.getPono()+ " placed ~CC
via: " + order1.getEmployee().getLastname();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return order_details;

}
}

CHAPTER 10 ■ USING ENTITYMANAGER 267

As you can see, the updated version of the bean includes another business method called
changeOrderEmpTest. This method illustrates using two different persistence contexts within a
single method. In particular, it shows you that employing two different persistence contexts
makes it possible for you to have two different entity instances running simultaneously and
representing the same record in the underlying table.

To test the updated OrderTestBean session bean, you also need to update the
EmEjbTestServlet servlet, as shown in Listing 10-5.

Listing 10-5. The Updated EmEjbTestServlet Servlet to Test the OrderTestBean Session Bean
Utilizing Two Persistence Contexts

//import declarations
...
public class EmEjbTestServlet extends HttpServlet {

@EJB private OrderTest orderTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
try{

Integer pono = orderTest.setOrder(2,1);
out.println("Created order "+ pono +"
");
out.println(orderTest.changeOrderEmpTest(pono,2));

}
catch (Exception e){

e.printStackTrace();
}

}
}

The updated EmEjbTestServlet servlet first calls the OrderTestBean’s setOrder method and
then the changeOrderEmpTest method.

The output of the EmEjbTestServlet servlet shown in the listing might look like this:

Created order 11
order 11 placed via: Silver
order 11 placed via: Oganovich
order 11 placed via: Silver

An Example of Using an Application-Managed EntityManager
Unlike a container-managed EntityManager whose life cycle is managed by the container, an
application-managed EntityManager is controlled by the code you write. As stated earlier,
an application-managed EntityManager can be either JTA or resource-local, depending on
the type of underlying transactions, as specified in the corresponding persistence unit.

CHAPTER 10 ■ USING ENTITYMANAGER268

Listing 10-6 shows the persistence.xml configuration file defining two persistence
units—both of which are resource-local.

Listing 10-6. An Example of the persistence.xml Configuration File Defining Persistence Units
Whose Transaction Type Is Resource-Local

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence ➥
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="appemtest1-pu" transaction-type="RESOURCE_LOCAL">
<jta-data-source>jdbc/mysqlpool</jta-data-source>

</persistence-unit>
<persistence-unit name="appemtest2-pu" transaction-type="RESOURCE_LOCAL">

<jta-data-source>jdbc/mysqlpool</jta-data-source>
</persistence-unit>

</persistence>

Returning to the OrderTestBean session bean discussed in the preceding section, you
might update it now as shown in Listing 10-7.

Listing 10-7. The OrderTestBean Session Bean Updated to Use an Application-Managed
EntityManager

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.transaction.UserTransaction;
import javax.persistence.PersistenceUnit;
import javax.annotation.Resource;
import ejbjpa.entities.*;
@Stateless
public class OrderTestBean implements OrderTest {

@PersistenceUnit(unitName="appemtest1-pu")
private EntityManagerFactory emf;
@PersistenceUnit(unitName="appemtest2-pu")
private EntityManagerFactory emf2;
public Integer setOrder(Integer cust_id, Integer empno) {

Integer order_pono;
try {
EntityManager em = emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();

CHAPTER 10 ■ USING ENTITYMANAGER 269

order1.setCustomer(cust);
order1.setEmployee(emp);
em.getTransaction().begin();
em.persist(order1);
em.flush();

em.refresh(order1);
order_pono = order1.getPono();
em.getTransaction().commit();
em.close();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return order_pono;

}
public String changeOrderEmpTest(Integer pono, Integer empno) {

String order_details;
try {
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = (Order) em.find(Order.class, pono);
order1.setEmployee(emp);

order_details = "order "+ order1.getPono()+ " placed via: " + ➥
order1.getEmployee().getLastname()+"
";
EntityManager em2 = emf2.createEntityManager();
Order order2 = (Order) em2.find(Order.class, pono);
order_details = order_details+"order "+ order2.getPono()+ " placed ➥
via: " + order2.getEmployee().getLastname()+"
";
em.getTransaction().commit();
em2.refresh(order2);
order_details = order_details+"order "+ order2.getPono()+ " placed ➥
via: " + order2.getEmployee().getLastname();
em.close();
em2.close();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return order_details;

}
}

CHAPTER 10 ■ USING ENTITYMANAGER270

When executed, the previous servlet should produce output like the following:

Created order 14
order 14 placed via: Silver
order 14 placed via: Oganovich
order 14 placed via: Silver

You might want to spend some time practicing how to use transactions with resource-
local EntityManagers. The first thing to note here is that each call to the EntityManager’s flush
method must be explicitly wrapped in a transaction. Not following this rule will cause the
javax.persistence.TransactionRequiredException to be thrown. To understand why it works
this way, you need to recall that the flush method is used to synchronize the persistence con-
text to the underlying database. So, you cannot call flush outside a transaction context. For
example, if you change the try block in the setOrder business method as follows:

...
EntityManager em = emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
em.persist(order1);
em.getTransaction().begin();
em.flush();
em.refresh(order1);
order_pono = order1.getPono();
em.getTransaction().commit();
em.close();

...

this will still work, despite that the persist method is invoked out of the transaction. However,
if you put the call to the flush method outside the scope of the transaction like this:

...
EntityManager em = emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
em.persist(order1);
em.flush();
em.getTransaction().begin();
em.refresh(order1);
order_pono = order1.getPono();
em.getTransaction().commit();
em.close();

...

CHAPTER 10 ■ USING ENTITYMANAGER 271

this will cause the persistence provide to throw a javax.persistence.TransactionRequired➥
Exception exception.

In practice, however, it’s always a good idea to explicitly include any call to persist, merge,
remove, or refresh in a transaction. The fact is that the flush default mode is set to AUTO, which
means the persistence provider will automatically perform synchronization with the database
when it needs to ensure that the results of a query being issued are correct. For example, look
at the following try block in the setOrder business method:

EntityManager em = emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
em.getTransaction().begin();
em.persist(order1);
List orderList = em.createQuery("SELECT o FROM Order o")

.getResultList();
em.refresh(order1);
em.flush();
em.refresh(order1);
order_pono = order1.getPono();
em.getTransaction().commit();
em.close();

Within the resource transaction used here, you added calls to the createQuery and
refresh methods of the EntityManager instance—both are highlighted in bold. Although
the refresh method applied to order1 is called before the call to flush, the previous code
works OK. As mentioned earlier, the default flush mode of the Query object is set to AUTO. That
is why the call to the createQuery method here will force the persistence provider to implicitly
perform the flush operation, synchronizing the state of the EntityManager instance persist-
ence context to the database. This is like explicitly making a call to the flush method before
calling createQuery.

So, if you remove the call to the createQuery method, you will get the following error
caused by the call to the refresh method before the flush operation has been performed:

Entity no longer exists in the database:

In this particular case, though, you should take it as saying “The entity has not been per-
sisted to the database yet.”

But what happens if the call to the createQuery method is made outside the transaction
scope?

EntityManager em = emf.createEntityManager();
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);

CHAPTER 10 ■ USING ENTITYMANAGER272

em.persist(order1);
List orderList = em.createQuery("SELECT o FROM Order o")

.getResultList();
em.getTransaction().begin();
em.refresh(order1);
em.flush();
em.refresh(order1);
order_pono = order1.getPono();
em.getTransaction().commit();
em.close();

Again, the call to the refresh method highlighted in bold here will cause an error. This is
because in this example the order1 instance has not been synchronized to the database.

An Example on Persistence Context Propagation
Returning to container-managed EntityManagers, it might be interesting to look at an exam-
ple of how a persistence context is propagated by the container across component calls.

Listing 10-8 shows the source code for the PropagationTestBean stateless session bean
whose checkShoppingCart method will be invoked from another bean, ShoppingCartTestBean,
shown in Listing 10-9 later. These beans illustrate the concept behind persistence context
propagation.

The beans discussed here utilize the Book and ShoppingCart entities from Chapter 9,
shown in Listing 9-9 and Listing 9-10, respectively. Also, you’re going to need the
ShoppingCartKey composite primary key class from Chapter 8, shown in Listing 8-4.

Listing 10-8. The PropagationTestBean Session Bean Whose checkShoppingCart Method Will Be
Invoked from a Business Method of Another Bean Within the Same Persistence Context

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import ejbjpa.entities.*;
@Stateless
public class PropagationTestBean implements PropagationTest {

@PersistenceContext
private EntityManager em;
public void checkShoppingCart(Integer cart_id, String book_id) {

try {
ShoppingCart testcart = (ShoppingCart) em.find(ShoppingCart.class, ➥
new ShoppingCartKey(cart_id, book_id));
testcart.setUnits(testcart.getUnits()+1);

CHAPTER 10 ■ USING ENTITYMANAGER 273

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
}

}

As you can see, the checkShoppingCart business method performs the following opera-
tions: it retrieves a specified ShoppingCart entity instance, and it changes the value of the
units field in the retrieved ShoppingCart instance.

Now, take a look at the ShoppingCartTestBean session bean whose setShoppingCart
method invokes the PropagationTestBean’s checkShoppingCart method.

Listing 10-9. The ShoppingCartTestBean Session Bean Whose setShoppingCart Method Makes a
Call to the checkShoppingCart Method of PropagationTestBean, Sharing the Same Persistence
Context

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.ejb.EJB;
import ejbjpa.entities.*;
@Stateless
public class ShoppingCartTestBean implements ShoppingCartTest {

@PersistenceContext
private EntityManager em;
@EJB private PropagationTest test;
public String[] setShoppingCart(Integer cart_id, String book_id, ➥

Integer units, Double unit_price) {
String[] cart_details = new String[8];
try {
Book book = (Book) em.find(Book.class, book_id);
ShoppingCart cart = new ShoppingCart();
cart.setCart_id(cart_id);
cart.setBook(book);
cart.setUnits(units);
cart.setUnit_price(unit_price);
em.persist(cart);
cart_details[0] = cart.getCart_id().toString();
cart_details[1] = cart.getBook().getIsbn();
cart_details[2] = cart.getUnits().toString();
cart_details[3] = cart.getUnit_price().toString();
test.checkShoppingCart(cart_id, book_id);
cart_details[4] = cart.getCart_id().toString();
cart_details[5] = cart.getBook().getIsbn();
cart_details[6] = cart.getUnits().toString();

CHAPTER 10 ■ USING ENTITYMANAGER274

cart_details[7] = cart.getUnit_price().toString();
em.remove(cart);

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return cart_details;

}
}

To make sure that the persistence context created by the container when the
setShoppingCart method is invoked is then propagated along with the JTA transaction that
includes the call to the checkShoppingCart method, you might use the servlet shown in
Listing 10-10.

Listing 10-10. The EmEjbTestServlet Servlet Making a Call to the setShoppingCart Method of
ShoppingCartTestBean

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class EmEjbTestServlet extends HttpServlet {

@EJB private ShoppingCartTest cartTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
try{

String[] details = new String[8];
details = cartTest.setShoppingCart(2,"1430209631", 1, 44.99);
out.println("Cart id : "+ details[0] +"
");
out.println("Book id : "+ details[1] +"
");
out.println("Units : "+ details[2] +"
");
out.println("Unit_price: "+ details[3] +"
");
out.println("-------------------"+"
");
out.println("Cart id : "+ details[4] +"
");
out.println("Book id : "+ details[5] +"
");
out.println("Units : "+ details[6] +"
");
out.println("Unit_price: "+ details[7] +"
");

}
catch (Exception e){

e.printStackTrace();

CHAPTER 10 ■ USING ENTITYMANAGER 275

}
}

}

When executed, the servlet shown in the listing should output the following results:

Cart id : 2
Book id : 1430209631
Units : 1
Unit_price: 44.99

Cart id : 2
Book id : 1430209631
Units : 2
Unit_price: 44.99

This proves that the called checkShoppingCart method used the same persistence context
as the calling setShoppingCart method. In other words, the persistence context started upon
invocation of the ShoppingCartTestBean’s setShoppingCart method was then propagated to
the PropagationTestBean session bean upon calling its checkShoppingCart method.

Using Entity Life-Cycle Callback Methods
The concept behind entity life-cycle callback methods is the same as the concept of triggers in
relational databases. Like a database trigger defined for each row on a certain table, an entity
life-cycle callback method is invoked for each instance of the entity in response to a certain
event. Also, like triggers, entity callback methods are invoked as part of the corresponding
operation—before or after it. So, there are Pre and Post entity callback methods.

You can define an entity life-cycle event callback method directly in an entity class or in
an entity listener class. To do this, you can decorate a method of interest with an appropriate
annotation. Table 10-3 lists the annotations you can use to designate life-cycle event callback
methods.

Table 10-3. The Annotations Used for Entity Life-Cycle Event Callback

Annotation Description

PrePersist Marks a method to be invoked for an entity before the EntityManager executes the
persist operation for that entity. This is also invoked on all entities to which this
operation is cascaded.

PostPersist Marks a method to be invoked for an entity after it has been persisted. Generated
primary keys are available in this method. This is also invoked on all entities to
which this operation is cascaded.

PreUpdate Marks a method to be invoked before the operation that triggers a database
update operation performed against a given entity. Depending on the implemen-
tation, it may be invoked at the time the entity state is updated in the persistence
context or at the time the context is flushed to the database.

PostUpdate Marks a method to be invoked after the operation that triggers a database update
operation performed against a given entity. Depending on the implementation, it
may be invoked at the time the entity state is updated in the persistence context or
at the time the context is flushed to the database.

CHAPTER 10 ■ USING ENTITYMANAGER276

Annotation Description

PreRemove Marks a method to be invoked for an entity before the EntityManager executes the
remove operation for that entity. This is also invoked on all entities to which this
operation is cascaded.

PostRemove Marks a method to be invoked after an entity has been removed. This is also
invoked on all entities to which this operation is cascaded.

PostLoad Marks a method to be invoked after an entity is loaded or refreshed from the
underlying database.

The easiest way to see how entity event callback methods work is by example. Suppose
you want to define the PrePersist method on the Order entity class discussed in some exam-
ples earlier in this book. For example, you might want this PrePersist method to check
whether the shipping_date field of the Order instance is set and to set it if it is null. As you
might guess, the PrePersist method discussed here overrides some functionality of the
neworder BEFORE INSERT trigger defined on the orders underlying table as discussed in
Chapter 6.

Figure 10-8 gives a graphical depiction of the process of persisting an Order entity.

Figure 10-8. A graphical representation of the steps that occur during the process of persisting an
order entity to the underlying database

Here is the explanation of the steps in the figure:

1. You start the process of persisting an Order entity by calling the persist method of an
EntityManager instance. If you have a method decorated with @PrePersist defined in
the Order entity, then this method is invoked.

2. The Order instance being persisted is then added to the EntityManager’s persistence
context.

CHAPTER 10 ■ USING ENTITYMANAGER 277

3. Upon flushing the persistence context, the Order instance is sent to the underlying
database in the form of the appropriate INSERT statement issued against the orders
table. So, if the BEFORE INSERT trigger is defined on the orders table, it is fired.

4. The Order instance data is saved to the orders table.

Now you’re ready to update the Order entity class. In particular, you need to add the
PrePersist life-cycle event callback method to it.

Listing 10-11 shows the source code for the updated Order entity class.

Listing 10-11. The Updated Order Entity Class Containing the PrePersist Life-Cycle Event Call-
back Method

package ejbjpa.entities;
import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Temporal;
import static javax.persistence.TemporalType.DATE;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import java.util.*;
import javax.persistence.PrePersist;

import java.util.Date;
@Entity
@Table(name = "ORDERS")
public class Order implements Serializable {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name = "PONO")
private Integer pono;
@Column(name = "SHIPPING_DATE", nullable = false)
@Temporal(DATE)
private Date shipping_date;
@Column(name = "DELIVERY_ESTIMATE", nullable = false)
private String delivery_estimate;
@ManyToOne
@JoinColumn(
name="CUST_ID",
referencedColumnName="CUST_ID")

private Customer customer;
@ManyToOne
@JoinColumn(

CHAPTER 10 ■ USING ENTITYMANAGER278

name="EMPNO",
referencedColumnName="EMPNO")

private Employee employee;
@PrePersist
private void setShippingDate() {
if (this.getShipping_date() == null)
{
Calendar calendar = new GregorianCalendar();
long weekday = calendar.get(Calendar.DAY_OF_WEEK);
long days;
if (weekday == 6) {

days = 3;
} else if (weekday == 7) {

days = 2;
} else {

days =1;
}
Date date = new Date();
long msDay = 1000 * 60 * 60 * 24;
date.setTime(date.getTime() + msDay * days);
this.setShipping_date(date);

}
}
public Order() {
}
public Customer getCustomer() {

return this.customer;
}
public void setCustomer(Customer customer) {

this.customer = customer;
}
public Employee getEmployee() {

return this.employee;
}
public void setEmployee (Employee employee) {

this.employee = employee;
}
public Integer getPono () {

return this.pono;
}
public void setPono (Integer pono) {

this.pono = pono;
}
public Date getShipping_date () {

return this.shipping_date;
}
public void setShipping_date (Date shipping_date) {

CHAPTER 10 ■ USING ENTITYMANAGER 279

this.shipping_date = shipping_date;
}
public String getDelivery_estimate () {

return this.delivery_estimate;
}
public void setDelivery_estimate (String delivery_estimate) {

this.delivery_estimate = delivery_estimate;
}

}

To test the updated Order entity, you might rewrite the OrderTestBean session bean, as
shown in Listing 10-12.

Listing 10-12. The OrderTestBean Session Bean Rewritten to Test the Updated Order Entity

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.Date;
import ejbjpa.entities.*;
@Stateless
public class OrderTestBean implements OrderTest {

@PersistenceContext
private EntityManager em;
public String[] setOrder(Integer cust_id, Integer empno, ➥

Date shipping_date, String delivery_estimate) {
String[] order_details = new String[2];
try {
Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
order1.setShipping_date(shipping_date);
order1.setDelivery_estimate(delivery_estimate);
em.persist(order1);
Date date = order1.getShipping_date();
order_details[1] = date.toString();
em.flush();

em.refresh(order1);
order_details[0] = order1.getPono().toString();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}

CHAPTER 10 ■ USING ENTITYMANAGER280

return order_details;
}

}

Finally, to perform a test, you might use a servlet shown in Listing 10-13.

Listing 10-13. The EmEjbTestServlet Servlet Rewritten to Test the Updated OrderTestBean
Session Bean

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class EmEjbTestServlet extends HttpServlet {

@EJB private OrderTest orderTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
try{

String[] details = new String[2];
details = orderTest.setOrder(2,1, null, null);
out.println("Created order pono: "+ details[0] +"
");
out.println("Order shipping date: "+ details[1] +"
");

}
catch (Exception e){

e.printStackTrace();
}

}
}

The results generated by the servlet shown in the listing might look like this:

Created order pono: 21
Order shipping date: Sat Apr 26 15:02:26 PDT 2008

It is important to remember that the PrePersist life-cycle event callback method defined
in the Order entity class will set the shipping_date field only if it is not null. So, you can still set
the shipping_date field explicitly when dealing with an Order entity instance. Listing 10-14
shows how you might do it from within a servlet.

CHAPTER 10 ■ USING ENTITYMANAGER 281

Listing 10-14. The Version of the EmEjbTestServlet Servlet That Illustrates That the
shipping_date Field Can Still Be Set Explicitly

//import declarations
...
import java.util.Date;

public class EmEjbTestServlet extends HttpServlet {
@EJB private OrderTest orderTest;
public void doGet(

...
try{

long days =5;
Date date = new Date();
long msDay = 1000 * 60 * 60 * 24;
date.setTime(date.getTime() + msDay * days);
String[] details = new String[2];
details = orderTest.setOrder(2,1, date, null);
out.println("Created order pono: "+ details[0] +"
");
out.println("Order shipping date: "+ details[1] +"
");

}
...
}

In this servlet, you call the setOrder method of OrderTest, specifying the date parameter
set to a particular date—five days forward from the current date.

Summary
In this chapter, you looked at the EntityManager interface whose methods are used to manage
entity instances. You saw some basic examples of using the EntityManager interface in differ-
ent scenarios, helping you understand the mechanics behind this Java Persistence tool.

In the next chapter, you will look at the EntityManager methods that allow you to use the
Query API for retrieving entities.

CHAPTER 10 ■ USING ENTITYMANAGER282

Using Java Persistence Query
Language (JPQL)

In the preceding chapter, you saw how you can find and retrieve an entity instance by pri-
mary key with the help of the EntityManager’s find method. This method of retrieving entities
has at least two serious limitations, however. First, you are limited to using primary keys only.
Second, you can retrieve only a single entity instance at a time. In practice, however, you may
need to retrieve a set of entity instances, based on a condition defined over entity attributes.
This is where Java Persistence Query Language (JPQL) comes to the rescue.

Of course, this is not the only situation where you might need to use JPQL. You will come
to JPQL when, for example, you need to perform join queries on the entities related to each
other with a relationship. The applicability of JPQL is further discussed in the “When You
Might Want to Use JPQL” section later in this chapter.

This chapter covers the details related to using JPQL as well as native SQL. After reading
this chapter, you will have learned how to do the following:

• Use JPQL and native SQL queries

• Create static and dynamic queries

• Utilize the Query API

As you will see in this chapter, the JPQL syntax appears to be very similar to the syntax of
SQL. So, it is assumed that you are already somewhat familiar with SQL.

Defining Queries Over Entities
To illustrate the scope of JPQL, the chapter starts with a brief overview of this query language.
This overview explains what JPQL is and when you might want to use it. Also, it covers the
operations you can perform with JPQL and gives you the basics of how to deal with JPQL
statements.

What Is JPQL?
In many ways, JPQL is similar to SQL, a standard tool to interact with a relational database.
Both are used to interact with a relational database, accessing and manipulating data with the
help of nonprocedural statements, which are commands recognized by a special interpreter.

283

C H A P T E R 1 1

Furthermore, JPQL is similar to SQL in its syntax. The JPQL statements and their clauses are
similar to those used in SQL.

The key difference between JPQL and SQL lies in the objects you specify in the statements
and the objects returned by those statements. In SQL statements, you define directly the data-
base objects to operate on, specifying, for example, a certain table or view to be queried or
modified. In contrast, in JPQL statements, you deal with entities. The same is true for the
results retrieved by JPQL queries; they are entity instances, whereas the results returned by
SQL queries are usually table or view records. To summarize, JPQL deals with entities mapped
to underlying database structures, rather than dealing with those database structures directly.

Another thing that distinguishes JPQL from SQL is that it is a database vendor–independent
language. What this means in practice is that, to JPQL, it does not make any difference to what
type of underlying database the entities being manipulated are mapped.

Of course, if there were no JPQL, you could still query the underlying data with SQL/JDBC
and then create entity instances, manually setting their fields. Then, you would need to make
these entity instances managed, performing the persist operation over them. That would
require a lot of extra coding, though.

JPQL simplifies the task of retrieving entity instances a lot. All the entity instances
returned become automatically managed, provided the query method is invoked within a
transaction context. So, you don’t need to perform the merge operation over such instances.

Figure 11-1 provides a high-level view of interactions between a persistence context and
the underlying database performed via JPQL.

Figure 11-1. When you query the underlying database with JPQL, the retrieved entity instances
become automatically managed—when retrieved within a transaction context, of course.

While Figure 11-1 gives a very high-level view of how JPQL is used in the process of inter-
action between a persistence context and the underlying database, Figure 11-2 provides a
more detailed depiction of how an application component may interact with the underlying
database through JPQL.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)284

Figure 11-2. An application component issues a JPQL statement via the EntityManager and
Query interfaces.

As you can see in the figure, an application component interacts with the JPQL engine
through the EntityManager and Query interfaces. For further details on how the EntityMan-
ager and Query interfaces can be utilized when it comes to JPQL, you can refer to the later
“Dealing with JPQL Statements” section. Then, in the “Retrieving Entities with JPQL” section,
you will look at some examples that should help to clear it all up.

For detailed information on JPQL, you can refer to the documentation chapter “Query
Language” in the Enterprise JavaBeans 3.0 Specification Java Persistence API document, part
of JSR-220, which is available at http://jcp.org/en/jsr/detail?id=220.

When You Might Want to Use JPQL
When developing an application that utilizes the Java Persistence API (JPA), you have strong
reason to choose JPQL over SQL. This is because JPQL is specifically designed to deal with JPA
entities and, therefore, is ideally suited for use in Java applications utilizing JPA.

As mentioned at the beginning of the chapter, JPQL is perfectly appropriate when you
need to retrieve a set of entity instances, based on a condition defined over a nonprimary key
column or columns. Like SQL, JPQL lets you restrict the results returned by a query, specifying
a condition or conditions in the WHERE clause of the JPQL SELECT statement. GROUP BY, HAVING,
and ORDER BY are also allowed. Also, you will be able to perform join queries on the entities
related to each other with a relationship.

With JPQL, not only can you issue select queries, but you can also perform bulk delete
and update operations, applying them to entities of a certain entity class or inheritance
hierarchy.

Being a database vendor–independent language, JPQL lets you create portable solutions.
Although JPQL uses a SQL-like syntax, JPQL queries are portable across different underlying
databases. So, the ability to create database platform–independent queries is another good
reason to choose JPQL over SQL.

Operations Supported in JPQL
Now that you have a rough idea of what JPQL is and when you might want to use it, it’s time
to look at what statements are supported in this query language. The list of statements sup-
ported in JPQL contains three items. A JPQL statement may be one of the following:

• SELECT

• UPDATE

• DELETE

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 285

Since SELECT is of most interest this list, let’s look at the clauses that can be used in this
statement. Aside from the SELECT and FROM required clauses, there are a few optional ones, as
listed in Table 11-1.

Table 11-1. Optional Clauses of the SELECT Statement

Clause Description

WHERE Conditions specified in this clause are used to restrict the result set of the query.

GROUP BY A set of the retrieved entity instances is divided into groups based on the values of the
entity field specified in this clause.

HAVING Used in conjunction with GROUP BY to restrict the groups of the retrieved entities to
those groups that satisfy the specified condition.

ORDER BY A set of the retrieved entity instances is ordered based on the sorting applied to the
entity field specified in this clause.

Also, JPQL provides a set of operators and functions that you can use in query clauses.
The syntax and use of most of them are similar to those used in SQL. For further information,
you can look at chapter “Query Language” in the Enterprise JavaBeans 3.0 Specification Java
Persistence API document.

Dealing with JPQL Statements
The EntityManager interface provides two methods that you can use in conjunction with the
Query interface methods to create, bind, and execute JPQL statements. Table 11-2 summarizes
these EntityManager methods.

Table 11-2. The EntityManager Interface Methods for Creating a Query Instance for Executing a
JPQL Query

Method Description

public Query createQuery(String jpql_stmt) Creates a dynamic query defined
within business logic code. It takes
a JPQL statement string as the
parameter and returns a Query
instance for executing that JPQL
statement.

public Query createNamedQuery(String query_name) Creates a static query defined in meta-
data. It takes the name of either a JPQL
query defined with the NamedQuery
annotation or a native SQL query
defined with the NamedNativeQuery
annotation applied to an entity and
returns a Query instance for executing
that named query.

The createQuery and createNamedQuery methods return a Query instance that lets you
execute that query using either the getResultList or getSingleResult methods for a SELECT
query or the executeUpdate method for an UPDATE or DELETE query.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)286

■Note The EntityManager interface methods that can be used to create a Query instance for executing a
native SQL query are listed in Table 11-4, which can be found in the “Dealing with Native SQL Queries” later
section.

Here is an example of creating and executing a SELECT query:

Query query = em.createQuery("SELECT e FROM Employee e");
List<Employee> employees = (List<Employee>)query.getResultList();

In practice, however, you might want to use the following syntax instead:

List<Employee> employees = (List<Employee>)em.createQuery(➥
"SELECT e FROM Employee e")

.getResultList();

As you can see, this alternate syntax eliminates the need for you to explicitly import the
javax.persistence.Query interface.

In the later “Retrieving Entities with JPQL” section, you will look at some more compli-
cated examples of SELECT queries. In particular, you will see how to bind an argument to a
named parameter of a query, set a vendor-specific hint, and fetch entity associations with
JPQL join fetch.

Figure 11-3 provides a graphical representation of how a List object returned by the
Query’s getResultList method is then cast to a List of instances of a certain type.

Figure 11-3. A Query instance returned by an EntityManager’s create query method lets you
invoke the getResultList method that returns a List castable to a List of a certain type.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 287

Both the getResultList and getSingleResult methods belong to the Query API, which is
discussed in the next section.

Using Query API
Once you have created a Query instance with the createQuery or createNamedQuery method,
you then need to execute the query and retrieve the results. These tasks, as well as the tasks of
parameter binding and pagination control are handled with the Query interface methods.

By and large, the Query interface provides methods used to control execution of JPQL and
native SQL queries. Table 11-3 lists the most commonly used Query interface methods.

Table 11-3. The Most Commonly Used Query Interface Methods

Method Description

public List getResultList() Executes a SELECT query created by the
EntityManager’s createQuery or
createNamedQuery method and retrieves
a set of entities as a list

public Object getSingleResult() Executes a SELECT query created by the
EntityManager’s createQuery or
createNamedQuery method and retrieves
a single entity as the result

public int executeUpdate() Executes an UPDATE or DELETE query
created by the EntityManager’s
createQuery or createNamedQuery
method and returns the number of
entities affected

public Query setMaxResults(int maxResult) Defines the maximum number of entity
instances to be retrieved, returning the
same Query instance

public Query setFirstResult(int startPosition) Defines the position of the first entity
instance to be retrieved, returning the
same Query instance

public Query setHint(String hintName, Specifies a vendor-specific hint,
Object value) returning the same Query instance

public Query setParameter(String name, Performs named parameter binding,
Object value) returning the same Query instance

public Query setParameter(String name, Binds a Date instance to a named
Date value, TemporalType temporalType) parameter, returning the same Query

instance

public Query setParameter(int position, Performs positional parameter binding,
Object value) returning the same Query instance

public Query setParameter(int position, Binds a Date instance to a positional
Date value, TemporalType temporalType) parameter, returning the same Query

instance

In the rest of this chapter, you will look at several examples of using some of the Query
interface methods listed in the table.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)288

Retrieving Entities with JPQL
As you learned earlier, JPQL lets you perform select, update, and delete operations over enti-
ties. In practice, however, select operations are most commonly used ones.

The following sections provide several examples of how you can perform select opera-
tions with JPQL.

A Simple Example of JPQL in Action
Let’s start with a simple example. In the getEmployees business method of the JpqlTestBean
session bean shown in Listing 11-1, you create and execute the JPQL query that retrieves all
the employee entity instances.

Listing 11-1. A Session Bean That Illustrates How You Can Retrieve a Set of Entity Instances with a
Single JPQL Statement

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.List;
import ejbjpa.entities.*;
@Stateless
public class JpqlTestBean implements JpqlTest {

@PersistenceContext
private EntityManager em;
public List<Employee> getEmployees() {

List<Employee> employees = null;
try {
employees = (List<Employee>)em.createQuery("SELECT e FROM Employee e")

.getResultList();
} catch (Exception e) {

throw new EJBException(e.getMessage());
}
return employees;

}

As you can see, all the JpqlTestBean’s getEmployees method does is create a SELECT JPQL
query with the EntityManager’s createQuery method and then execute the query with the
Query’s getResultList method. Next, the retrieved list is cast to a list of employee instances,
which is then returned by the getEmployees method.

To test the JpqlTestBean session bean, you might create a servlet that calls the bean’s
getEmployees method. Consider the JpqlTestServlet servlet shown in Listing 11-2.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 289

Listing 11-2. A Servlet That You Might Use to Test the JpqlTestBean Session Bean Shown
in Listing 11-1

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;
import java.util.List;
import java.util.Iterator;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class JpqlTestServlet extends HttpServlet {

@EJB private JpqlTest jpqlTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
try{

List<Employee> employees = jpqlTest.getEmployees();
Iterator i = employees.iterator();
Employee employee;
while (i.hasNext()) {

employee = (Employee) i.next();
out.println("Employee id: "+ employee.getEmpno() +"
");
out.println("First name: "+ employee.getFirstname() +"
");
out.println("Last name: "+ employee.getLastname() +"
");
out.println("----------"+ "
");

}
}
catch (Exception e){

e.printStackTrace();
}

}
}

In the JpqlTestServlet servlet, you make a call to the JpqlTestBean’s getEmployees
method and then use an Iterator instance to navigate through the retrieved list of employee
entity instances, displaying the values of their fields.

If you have populated the employees table with data as shown in Listing 6-5 back to
Chapter 6, the previous servlet should generate the following output:

Employee id: 1
First name: Serg
Last name: Oganovich

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)290

Employee id: 2
First name: Maya
Last name: Silver

Are Retrieved Entities Managed?
The last example brings up an interesting question: do entity instances retrieved by a JPQL
query become automatically managed?

The JPA specification has the answer to this question, of course. According to the JPA
specification, regardless of the way you retrieve entities, they are automatically attached to the
current persistence context, provided you execute the query in a transactional context. To look
at how all this works in practice, you might perform the test discussed in this section. For that,
you’re going to need to add a checkIfManaged method to the JpqlTestBean bean shown in
Listing 11-1 earlier.

Listing 11-3 shows what the source code for the checkIfManaged method might look like.

Listing 11-3. The JpqlTestBean Bean Originally Shown in Listing 11-1 with the checkIfManaged
Method

//import declarations
...
import java.util.Iterator;
@Stateless
public class JpqlTestBean implements JpqlTest {

@PersistenceContext
private EntityManager em;
public List<Employee> getEmployees() {

...

}
public boolean checkIfManaged(){

List<Employee> employees = null;
try {
employees = (List<Employee>)em.createQuery("SELECT e FROM Employee e")

.getResultList();
Employee employee;
Iterator i = employees.iterator();
while (i.hasNext()) {

employee = (Employee) i.next();

if (!em.contains(employee)) {
return false;

}
}

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 291

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return true;

}
}

In the checkIfManaged business method shown in the listing, you check to see whether
each employee entity instance retrieved belongs to the current persistence context, using the
EntityManager’s contains method. The checkIfManaged business method returns true only if
all of the retrieved employee entity instances are in the managed state.

■Note You might be wondering why it is important to know in what state the entities you are dealing with
are. If you recall from the discussion on entity states in the preceding chapter, only managed entities are
attached to a persistence context and can be manipulated within it as necessary. For example, you can per-
form the remove operation against a managed entity, thus changing its state to removed. It is important to
realize, however, that all managed entities become automatically detached when their persistence context is
closed. In this particular example, the persistence context associated with the checkIfManaged business
method is closed when method execution ends. To make a detached entity managed again, you should call
the EntityManager’s merge method on it.

Now, to perform the test, you might update the JpqlTestServlet servlet so that it makes a
call to the checkIfManaged method. The added code line in which you call the checkIfManaged
method is highlighted in bold in Listing 11-4.

Listing 11-4. The JpqlTestServlet Servlet Updated to Make a Call to the checkIfManaged Method
of the JpqlTestBean Session Bean

//import declarations
...
public class JpqlTestServlet extends HttpServlet {

@EJB private JpqlTest jpqlTest;
public void doGet(

...
try{

...
out.println("All employee entities were managed during the ➥
checkIfManaged call: "+ jpqlTest.checkIfManaged() +"
");
}
catch (Exception e){

e.printStackTrace();
}

}
}

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)292

The highlighted line should output true since all the employee entity instances retrieved
by a JPQL query created and executed within the checkIfManaged method must be in the man-
aged state.

Navigating Over Relationships in the Retrieved Entities
Now that you’ve seen that entity instances retrieved by a JPQL query are automatically man-
aged, what about their associations? Do they become automatically managed upon retrieving
the query results too?

Although this question will be addressed in the next section, the example in this section is
going to show you that in the most common cases the answer to this question is irrelevant.

It is important to understand that the entity instances related to the entity instances
retrieved by a JPQL query are not necessarily returned with the query execution. Whether or
not the instances of the related entity are retrieved along with the entity instance returned by
a query depends on the fetch mode of the relationship defined between those entities.

■Note You can explicitly set the fetch mode when defining a relationship between entities using the
OneToOne, OneToMany, ManyToOne, or ManyToMany annotation, setting the fetch element to either EAGER
or LAZY. By default, the fetch mode is set to LAZY for one-to-many and many-to-many relationships, while
one-to-one and many-to-one are defaulted to EAGER.

In most cases, however, it doesn’t make any difference whether associated entities have
been retrieved with the query. The following example illustrates that when you start accessing
associated entities, they automatically become managed.

Listing 11-5 shows the JpqlTestBean’s checkIfManaged method updated to check not only
the employee instances retrieved by the query but also the order instances associated with
those employee instances. If at least one instance is not in the managed state, checkIfManaged
will return false. The added code is highlighted in bold.

Listing 11-5. The JpqlTestBean Session Bean Updated to Illustrate That Entities Related to
Entities Retrieved by a Query Automatically Become Managed the First Time They Are Accessed

//import declarations
...
@Stateless
public class JpqlTestBean implements JpqlTest {

@PersistenceContext
private EntityManager em;
public List<Employee> getEmployees() {
...
}
public boolean checkIfManaged(){

List<Employee> employees = null;
List<Order> orders =null;
try {

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 293

employees = (List<Employee>)em.createQuery("SELECT e FROM Employee e")
.getResultList();

Employee employee;
Order order;
Iterator i = employees.iterator();
Iterator j;
while (i.hasNext()) {

employee = (Employee) i.next();

if (!em.contains(employee)) {
return false;
}
orders = (List<Order>)employee.getOrders();
j= orders.iterator();
while (j.hasNext()) {

order = (Order) j.next();
if (!em.contains(order)) {
return false;

}
}

}
} catch (Exception e) {

throw new EJBException(e.getMessage());
}
return true;

}
}

To test the updated bean, you might use the JpqlTestServlet servlet shown in Listing 11-4
in the preceding section. Like in the previous example, the checkIfManaged method called
within the servlet should return true, thereby proving the order instances are managed by the
time they are accessed through an iterator.

■Note If an employee instance has no associated order instances, the nested while loop will not be
executed. However, if you followed the examples from the preceding chapter, you should have some orders
associated with employees.

Now if you modify the checkIfManaged method so that it, for example, removes an order
entity before checking its status, the EntityManager’s contains method will then return false
when called on that order entity.

To see this in action, you might modify the nested while loop in the checkIfManaged
method as follows:

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)294

while (j.hasNext()) {
order = (Order) j.next();
em.remove(order);
if (!em.contains(order)) {
return false;

}

}

To make sure that the remove operation will not actually affect the underlying data in the
orders table, you might wrap a call to the checkIfManaged method in a transaction that is then
rolled back.

Listing 11-6 shows the updated JpqlTestServlet servlet. Again, the added code is high-
lighted in bold.

Listing 11-6. The JpqlTestServlet Servlet Updated to Call the checkIfManaged Method Within a
Transaction

//import declarations
...
import javax.annotation.Resource;
import javax.transaction.UserTransaction;
public class JpqlTestServlet extends HttpServlet {

@EJB private JpqlTest jpqlTest;
@Resource
UserTransaction utx;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
try{

List<Employee> employees = jpqlTest.getEmployees();
Iterator i = employees.iterator();
Employee employee;
while (i.hasNext()) {

employee = (Employee) i.next();
out.println("Employee id: "+ employee.getEmpno() +"
");
out.println("First name: "+ employee.getFirstname() +"
");
out.println("Last name: "+ employee.getLastname() +"
");
out.println("----------"+ "
");

}
utx.begin();
out.println("All employee entities were managed during the ➥
checkIfManaged call: "+ jpqlTest.checkIfManaged() +"
");
utx.rollback();

}

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 295

catch (Exception e){
e.printStackTrace();

}
}

}

As mentioned earlier, this time the checkIfManaged method called in the JpqlTestServlet
servlet shown in the listing should return false.

Using JPQL Fetch Joins
The previous example doesn’t answer the question of whether the entity instances related to
the entity instances retrieved by a JPQL query become immediately managed upon retrieving
the query results. As stated in the beginning of the preceding section, the answer to this ques-
tion depends on the fetch mode defaulted or explicitly set when defining a relationship
between entities. If the LAZY mode is used, then the associations are not retrieved. Sometimes,
however, you might want to retrieve them along with the query results. This is where using
JPQL FETCH JOINS may come in very handy.

Let’s look at an example that makes it possible for you to look at the state of the associa-
tions of the entity instances returned by a regular query and a join query, immediately after
retrieving. Say you create a JpqlJoinsTestBean session bean whose countOrders business
method implements the logic required to perform this test.

For testing purposes, you could employ several EntityManager instances, each of which
is based on a separate persistence unit. In particular, you might define three independent
EntityManager instances to execute three JPQL queries, each in a separate persistence con-
text, and then evaluate the results of those queries.

The following steps summarize the tasks you might want the JpqlJoinsTestBean’s
countOrders business method to perform:

1. Inject three independent EntityManager instances.

2. With em0, create and execute a SELECT JPQL query retrieving the employee instance with
the specified empno.

3. With em1, create and execute a SELECT JPQL FETCH JOIN query retrieving the employee
instance with the specified empno, along with the associated order instances.

4. With em2, create and execute a SELECT JPQL query retrieving the employee instance with
the specified empno.

5. Obtain the order entities related to the employee retrieved by the first query performed
in step 2. Count the number of those orders.

6. Increase the number of orders for the employee retrieved by the first query by 1, and
commit the change.

7. Obtain the order entities related to the employee retrieved by the second query per-
formed in step 3. Count the number of those orders.

8. Obtain the order entities related to the employee retrieved by the third query per-
formed in step 4. Count the number of those orders.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)296

The idea behind this test is to make sure that a SELECT JPQL FETCH JOIN query returns the
associated order instances together with the employee instance retrieved. To find out this, you
first create and execute three queries associated with three different persistence contexts, in
steps 2, 3, and 4, respectively. Then, you compare the numbers of the order instances obtained
in steps 5, 7, and 8.

Since the number of orders calculated in step 5 is obtained before a new order is added
(in step 6), this number should be the same as you got when the test started.

After adding a new order associated with the employee and synchronizing this change to
the database, you, in step 7, calculate the number of the orders associated with the employee
returned by the SELECT JPQL FETCH JOIN query executed in step 3. In fact, the number of orders
calculated in step 7 should be equal to the number calculated in step 5. This is because the
orders associated with the employee returned by the FETCH JOIN query have been obtained
upon the query execution in step 3 and immediately attached to the persistence context.

However, this is not the case for the SELECT JPQL query executed in step 4. When, in step 8,
calculating the number of orders associated with the employee returned by this query, you
should have the number of orders increased by 1. This is because the associated orders were
obtained when you first time accessed them, rather than upon query execution. Since you first
time accessed those orders after a new order had been added and the transaction had been
committed, you got the number of orders increased by 1.

Listing 11-7 shows what the source code for the JpqlJoinsTestBean session bean imple-
menting this test might look like.

Listing 11-7. An Example of a Session Bean That Illustrates a JPQL Join Query in Action

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import java.util.List;
import ejbjpa.entities.*;
@Stateless
public class JpqlJoinsTestBean implements JpqlJoinsTest {

@PersistenceUnit(unitName="jpqljoins0-pu")
private EntityManagerFactory emf0;
@PersistenceUnit(unitName="jpqljoins1-pu")
private EntityManagerFactory emf1;
@PersistenceUnit(unitName="jpqljoins2-pu")
private EntityManagerFactory emf2;
public Integer[] countOrders(Integer empno){

List<Order> orders0 = null;
List<Order> orders1 = null;
List<Order> orders2 = null;
EntityManager em0 = emf0.createEntityManager();
EntityManager em1 = emf1.createEntityManager();
EntityManager em2 = emf2.createEntityManager();

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 297

Integer[] numOfOrders= new Integer[3];
try {
//perform queries
Employee employee0 = (Employee)em0.createQuery("SELECT e ➥
FROM Employee e WHERE e.empno=:empno")

.setHint("toplink.refresh", "true")

.setParameter("empno", empno)

.getSingleResult();
Employee employee1 = (Employee)em1.createQuery("SELECT DISTINCT e ➥

FROM Employee e LEFT JOIN FETCH e.orders WHERE e.empno=:empno")
.setHint("toplink.refresh", "true")
.setParameter("empno", empno)
.getSingleResult();

Employee employee2 = (Employee)em2.createQuery("SELECT e ➥
FROM Employee e WHERE e.empno=:empno")

.setHint("toplink.refresh", "true")

.setParameter("empno", empno)

.getSingleResult();
//count the number of orders for the employee retrieved with ➥
the first query
orders0 = (List<Order>)employee0.getOrders();
numOfOrders[0] = orders0.size();
//increase the number of orders for the employee by 1 and commit➥
the change

Order order = new Order();
order.setEmployee(employee0);
em0.getTransaction().begin();
em0.persist(order);
em0.getTransaction().commit();
//count the number of orders for the employee retrieved with the ➥

second and third queries
orders1 = (List<Order>)employee1.getOrders();
numOfOrders[1] = orders1.size();
orders2 = (List<Order>)employee2.getOrders();
numOfOrders[2] = orders2.size();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
em0.close();
em1.close();
em2.close();
return numOfOrders;

}
}

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)298

To use the JpqlJoinsTestBean session bean shown in the listing, you might create a servlet
that will make a call to the bean’s countOrders business method. The JpqlJoinsTestServlet
servlet shown in Listing 11-8 is designed for this purpose.

Listing 11-8. A Servlet That Might Be Used to Test the Session Bean Shown in Listing 11-7

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class JpqlJoinsTestServlet extends HttpServlet {

@EJB private JpqlJoinsTest jpqlJoinsTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
Integer[] numOfOrders= new Integer[3];
numOfOrders=jpqlJoinsTest.countOrders(1);
try{

out.println("Number of orders associated with employee 1 before ➥
increasing: "+numOfOrders[0] +"
");

out.println("Number of orders returned by the JOIN query after ➥
increasing: "+numOfOrders[1] +"
");

out.println("Number of orders you actually got after ➥
increasing: "+numOfOrders[2] +"
");

}
catch (Exception e){

e.printStackTrace();
}

}
}

When executed, the servlet shown in the listing should output the results that might look
like this:

Number of orders associated with employee 1 before increasing: 25
Number of orders returned by the JOIN query after increasing: 25
Number of orders you actually got after increasing: 26

The actual numbers may vary of course. However, the first two figures should be always
equal, while the last one should greater by 1.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 299

Using Native SQL Queries
When developing a Java application that utilizes the Java Persistence API, you can still express
queries in native SQL. You might want to choose SQL over JPQL in the cases where you need,
for example, to exploit database-specific features that cannot be leveraged with JPQL.

The following two sections provide a brief look at how you might use native SQL queries
in your Java applications utilizing JPA.

Dealing with Native SQL Queries
Like with JPQL, you use special EntityManager methods to create a query expressed in native
SQL.

There are some EntityManager methods to deal with native SQL queries. Table 11-4 sum-
marizes these EntityManager methods.

Table 11-4. The EntityManager Interface Methods That Can Be Used to Create a Query Instance
for Executing a Native SQL Query

Method Description

public Query createNamedQuery(String query_name) Creates a static query defined in
metadata with either the NamedQuery
annotation or the NamedNativeQuery
annotation applied to an entity and
returns a Query instance for executing
that named query.

public Query createNativeQuery(String sql_stmt) Creates a dynamic query defined
within business logic code. It takes a
native SQL statement: UPDATE or
DELETE as the parameter and returns a
Query instance for executing that SQL
statement.

public Query createNativeQuery(String sql_stmt, Creates a dynamic query defined
Class result_class) within business logic code. It takes two

parameters, a SELECT SQL statement
and the entity class of the resulting
instance or instances, and it returns a
Query instance for executing the SQL
statement specified.

public Query createNativeQuery(String sql_stmt, Creates a dynamic query defined
String result_SetMapping) within business logic code. It takes two

parameters, a SELECT SQL statement
and the name of the result set map-
ping defined in metadata with the
SqlResultSetMapping annotations,
and it returns a Query instance for exe-
cuting the SQL statement specified.

As you might notice, the createNamedQuery method listed at the top of the table can also
be found in Table 11-2 (in the “Dealing with JPQL Statements” section earlier). The fact is
that this method is used to create a static query based on either a JPQL statement or a SQL
statement.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)300

A Simple Example of Native SQL Query
The most important thing to understand about native SQL queries created with the Entity-
Manager methods listed in Table 11-4 is that they, like JPQL queries, are typically used to
return entity instances, rather than table records.

Listing 11-9 illustrates a simple use of a dynamic native SQL query in a stateless session
bean.

Listing 11-9. A Session Bean Providing a Simple Example of Using a Dynamic Native SQL Query

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.List;
import ejbjpa.entities.*;
@Stateless
public class NativeQueryTestBean implements NativeQueryTest {

@PersistenceContext
private EntityManager em;
public List<Employee> getEmployees() {

List<Employee> employees = null;
try {

employees = (List<Employee>)em.createNativeQuery("SELECT * FROM➥
employees", ejbjpa.entities.Employee.class)

.getResultList();
} catch (Exception e) {

throw new EJBException(e.getMessage());
}
return employees;

}
}

It’s interesting to note that to test the NativeQueryTestBean session bean shown in the list-
ing you might use the same servlet you used to test the JpqlTestBean session bean discussed
in the earlier “A Simple Example of JPQL in Action” section. The only thing you will have to
change is the name of the bean injected with the EJB annotation.

Summary
As you learned in this chapter, JPQL provides a powerful way to access and manipulate entity
instances. JPQL is database vendor–independent language. To JPQL, it does not make any dif-
ference what underlying database the entities being manipulated are mapped to. However,
when you need to take advantage of a database-specific feature that cannot be leveraged with
JPQL, you can still use native SQL to create and execute queries over JPA entities.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL) 301

This chapter completes our discussion of the Java Persistence API features. Now you’re all
set to return to the sample application discussed throughout the book, the one from which
you temporarily digressed in Chapter 9. In the next chapter, you will learn how to build the
business logic tier of the sample.

CHAPTER 11 ■ USING JAVA PERSISTENCE QUERY LANGUAGE (JPQL)302

Building the Business
Logic Tier

P A R T 5

Designing Session Beans

In the past three chapters, you learned a lot about the Java Persistence API, which you can
utilize as a standards-based persistence solution in your Java EE and even Java SE applica-
tions. You’re now ready to take a closer look at how you can utilize the Java Persistence API
from enterprise beans.

Returning to the sample application in Chapter 9, you can now take the next step and
develop the business logic tier, building the session beans that implement the business logic
of the sample application.

In particular, through the course of the chapter, you will do the following:

• Create session beans to be utilized within the sample application

• Perform a quick test of the newly created session beans

• Continue with the NetBeans project started in Chapter 8

After performing these steps, you should have the business logic tier in the sample appli-
cation. Then, after looking at transactions in the next chapter, you will be guided through the
process of creating the sample presentation tier discussed in Chapter 14.

Creating Session Beans Implementing the Sample
Application Logic
Now that you have the underlying database tables and JPA entities defined upon them, it’s
time to develop the session bean that implements the business logic of the sample.

For simplicity, the sample application discussed here will use just a couple of session
beans—the first one, OrderBean, will be stateless, and the other one, CartBean, will be stateful.
In the following three sections, you will look at how you can implement these beans.

Planning the Business Logic Tier
Before proceeding to building the beans, however, it’s important to take some time for plan-
ning. Normally, you need to answer the following questions at this stage:

305

C H A P T E R 1 2

• What beans should you build?

• What operations will each bean perform?

• Does the bean you’re building need to contain a conversational state between its
method invocations?

As mentioned, in this particular example you might have just two beans: OrderBean and
CartBean. Let’s take a little closer look at each of them.

The OrderBean session bean will be used to deal with orders. At the least, this bean might
have two business methods: placeOrder and getOrdersList. You might want to create the
OrderBean bean stateless because there is no need for it to contain a conversational state
between its method invocations. When a user places an order, the OrderBean bean’s placeOrder
business method is invoked, resulting in the creation of the new record in the underlying
orders table and possibly a few related records in the details table. This doesn’t mean, how-
ever, that the placeOrder method directly manipulates the underlying data. Instead, it deals
with the corresponding JPA entities, of course.

The other bean to be created is the CartBean stateful session bean. Unlike OrderBean,
CartBean should maintain its conversational state. This is because each instance of this
stateful bean will be associated with a certain client’s shopping cart whose state should be
maintained during the entire client’s session.

■Note It’s important to understand, however, that creating a bean implementing a shopping cart as
stateful is not a requirement. For example, you might have a stateless shopping cart bean whose state is
synchronized with the database as required upon its business method invocations. In that case, you would
need to track sessions in the applications utilizing such a stateless bean. In particular, you would need to
pass the client’s ID to each bean’s method so that it can access or manipulate the data related to this partic-
ular client. In a stateful bean, such information is usually contained in an instance’s variable.

The CartBean bean discussed here will have the following methods: initialize, addItem,
removeItem, getItems, and emptyCart. The names of the previous business methods are self-
explanatory. In the “Creating the Stateful Session Beans” section, you will look at how these
methods are implemented.

Creating the Stateless Session Beans
In this section, you will look at how to build the OrderBean stateless session mentioned earlier.
The business methods of this bean will access and manipulate the JPA entities created as dis-
cussed in Chapter 8.

Listing 12-1 shows what the source code for the OrderBean stateless session bean might
look like. You should continue with the project started in Chapter 8, so you need to create the
sampleapp/src/ejbjpa/ejb directory, in which you should save the OrderSample.java and
OrderBean.java files. As you can see in the listing, OrderSample is the business interface imple-
mented by OrderBean.

CHAPTER 12 ■ DESIGNING SESSION BEANS306

Listing 12-1. Source Code for the OrderBean Stateless Session Bean

package ejbjpa.ejb;
import java.io.Serializable;
import javax.ejb.EJBException;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.List;
import ejbjpa.entities.*;
@Stateless
public class OrderBean implements OrderSample {

@PersistenceContext
private EntityManager em;
public void placeOrder(Integer cust_id,

Integer empno) {
try {

Customer cust = (Customer) em.find(Customer.class, cust_id);
Employee emp = (Employee) em.find(Employee.class, empno);
Order order = new Order();
order.setCustomer(cust);
order.setEmployee(emp);
em.persist(order);

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
}
public List<Order> getOrdersList() {
List<Order> orders = null;

try {
orders = (List<Order>)em.createQuery("SELECT o FROM Order o")

.getResultList();
} catch (Exception e) {

throw new EJBException(e.getMessage());
}

return orders;
}

}

Let’s take a close look at the placeOrder business method of the OrderBean stateless ses-
sion bean shown in the listing. You may wonder why this method doesn’t deal with an order’s
details. How are an order’s details persisted to the database then? At first glance, it may seem
that you still need another business method to deal with the details of an order.

Actually, all work on an order’s details is performed behind the scenes after placeOrder is
invoked. For details, you can refer to the “Adjusting the Database Tier” section in Chapter 8.

CHAPTER 12 ■ DESIGNING SESSION BEANS 307

To recap, here is what is going on when you invoke the placeOrder business method:

1. The placeOrder business method starts by obtaining instances of the Customer and
Employee entities, based on the cust_id and empno incoming parameters.

2. Then it creates an instance of the Order entity and sets its fields to the appropriate
values.

3. Next, it calls the persist EntityManager method. As a result, the JPA provider persists
the Order entity, trying to insert a new record into the orders table.

4. The database server fires the neworder BEFORE INSERT trigger before inserting the
record into the orders table. This trigger will automatically populate the shipping_date
and delivery_estimate fields of the order record being inserted.

5. The database server fires the afterinsertorder AFTER INSERT trigger also defined on
the orders table. The afterinsertorder trigger moves the records associated with the
customer placing the order, from the shoppingCarts table to the details table.

6. The database server fires the newdetail trigger defined on the details table. The
newdetail trigger invokes the updateBooks stored procedure. The updateBooks stored
procedure tries to update the specified record in the books table by issuing the UPDATE
statement.

7. The database server fires the newquantity BEFORE UPDATE trigger before updating
the record in the books table. This trigger will cause an error if the new value of the
quantity field of the updated record in the books table is less than 0.

As you can see, the placeOrder business method, when invoked, starts a complex
sequence of invocations that take place inside the database.

Creating the Stateful Session Beans
As mentioned, there’s no state to keep track of in instances of the OrderBean session bean. That
is why you created that bean as stateless. In contrast, you might want to keep track of the state
of an instance of the CartBean session bean. This is because instances of this stateful bean will
be maintained for each client’s session.

Within the same client’s session, each time the ShoppingCart JSP page is accessed, the
container will provide access to the same CartBean instance. The custId instance variable is
initialized within the initialize business method you should invoke upon creating each bean
instance. In particular, you might want to invoke the initialize method the first time you
access the ShoppingCart JSP page within a client’s session.

The values of the instance variables of a stateful bean instance are preserved between
invocations within the same client session. So, all business methods of a CartBean instance
will use the value of the custId instance variable initialized in the initialize method at the
beginning.

Listing 12-2 shows how you might implement the CartBean stateful session bean dis-
cussed here. Like the OrderSample.java and OrderBean.java files, you save the CartBean.java
and Cart.java files in the sampleapp/src/ejbjpa/ejb directory.

CHAPTER 12 ■ DESIGNING SESSION BEANS308

Listing 12-2. Source Code for the CartBean Stateful Session Bean

package ejbjpa.ejb;
import java.util.List;
import javax.ejb.Remove;
import javax.ejb.Stateful;
import javax.ejb.EJBException;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;
import ejbjpa.entities.*;
@Stateful
public class CartBean implements Cart {
@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager em;
Integer custId;
List<ShoppingCart> items;
public void initialize(Integer cust_id) {
if (cust_id == null) {
throw new EJBException("Null cust_id provided.");
} else {

custId = cust_id;
}
}
public void addItem(String item_id, Integer quantity, Double price) {
ShoppingCart cart = (ShoppingCart) em.find(ShoppingCart.class, ➥
new ShoppingCartKey(custId, item_id));
if(cart != null)
{
em.remove(cart);
em.flush();

}
cart = new ShoppingCart();
cart.setCart_id(custId);
cart.setBook_id(item_id);
cart.setUnits(quantity);
cart.setUnit_price(price);
em.persist(cart);

}
public void removeItem(String item_id) {
ShoppingCart cart = (ShoppingCart) em.find(ShoppingCart.class, ➥
new ShoppingCartKey(custId, item_id));
if(cart == null){
throw new EJBException("This item is not in cart.");
} else {
em.remove(cart);
}

}

CHAPTER 12 ■ DESIGNING SESSION BEANS 309

public List<ShoppingCart> getItems() {
items = (List<ShoppingCart>)em.createQuery("SELECT s FROM ➥

ShoppingCart s WHERE s.cart_id =:cust_id")
.setParameter("cust_id", custId)
.getResultList();

em.clear();
return items;

}
@Remove
public Integer emptyCart() {
Integer num =0;
num = em.createQuery("DELETE FROM ShoppingCart s WHERE s.cart_id =:cust_id")

.setParameter("cust_id", custId)

.executeUpdate();
return num;

}
@Remove
public void clearCartInstance() {
}
}

In the bean’s listing, note the use of the @Remove annotation, which has not been used in
the preceding examples. With this annotation, you decorate a bean’s method whose invoca-
tion should cause the removal of the bean instance upon the method completion.

As you might notice, there are two remove methods in the CartBean stateful session bean
shown in the listing. The first one is called emptyCart and is designed to empty the customer’s
cart, deleting all the shoppingCarts table’s rows associated with that customer. The emptyCart
method returns the number of rows deleted.

The other remove method, clearCartInstance, does nothing and should be called when
you simply want to destroy the bean’s instance. Alternatively, you might rely on that the con-
tainer automatically removes an instance of a stateful session bean when its lifetime expires.
However, this approach is inefficient in terms of memory consumption, since a bean’s
instance remains in the application server memory even after the client’s session within
which that instance has been utilized closes.

Compiling, Packaging, and Deploying the Session Beans
Now that you have created the session beans that will be utilized in the sample application,
you need to compile, package, and finally deploy them to the application server.

You might compile the beans along with the JPA entities created as discussed in Chapter 8.
For that, in a terminal prompt, you should go to the sample project directory, namely,
sampleapp, and then issue the following command:

javac -d target src/ejbjpa/entities/*.java src/ejbjpa/ejb/*.java

If the entities and beans have been compiled successfully, you should receive no error
messages, and the class files should appear in the sampleapp/target/ejbjpa/entities and
sampleapp/target/ejbjpa/ejb directories.

CHAPTER 12 ■ DESIGNING SESSION BEANS310

The next step is to package the compiled classes in the deployment archive. Before you
can do this, though, you have to create the sampleapp/target/META-INF directory and put
the persistence.xml file in it. Listing 12-3 shows what the source for persistence.xml might
look like.

Listing 12-3. Source Code for the persistence.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence ➥
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="sampleapp-pu" transaction-type="JTA">
<jta-data-source>jdbc/mysqlpool</jta-data-source>

</persistence-unit>
</persistence>

Once you’re done, you can then proceed to creating the deployment archive. This can be
done with the following commands:

cd target
jar cvf appejb.jar .

Finally, you can deploy the archive to the application server as follows:

asadmin deploy appejb.jar

If everything is OK, you should receive the following message:

Command deploy executed successfully

Testing the Newly Created Session Beans
Before proceeding to the presentation tier of the sample, it’s a good idea to test the newly
created and deployed session beans discussed in the preceding sections.

If you recall from the preceding discussions, the OrderSessionBean bean was first intro-
duced in the “Transaction Considerations” section in Chapter 4, where you performed a quick
test of this bean. Although the OrderBean bean discussed in this chapter is a little different
from the OrderSessionBean bean discussed in Chapter 4, each of these beans contains the
placeOrder business method that triggers the underlying mechanism of the stored procedure
invocations inside the database. So, if you want to look at how to perform a simple test of the
OrderBean bean, you can refer to Chapter 4.

In the following section, you will look at the servlets designed to test the CartBean stateful
session bean.

Testing Session Beans with Servlets
Although the presentation of the sample will be built using the JSF technology, this section
illustrates how you might perform a quick test of deployed session beans with servlets. As far

CHAPTER 12 ■ DESIGNING SESSION BEANS 311

as a stateful session bean is concerned, it is a good idea to perform a test that illustrates how
an instance of that bean might be used within the duration of a certain client session.

To achieve this, you might create two servlets that will be launched one after another so
that the second servlet uses the CartBean instance created and used during the invocation of
the first servlet. Diagrammatically, this might look like Figure 12-1.

Figure 12-1. The same CartBean instance can be used within the duration of a certain client
session.

Here are the tasks the first servlet might accomplish:

1. Obtains a CartBean bean instance and associates it with the HttpSession object,
binding that bean instance to a session parameter

2. Adds a couple of items to the cart instance obtained in step 1

3. Iterates through the cart, displaying the items added in step 2

4. Only if an exception occurs, removes the cart instance from the session

■Note When testing a session bean, it is important to take into account that an uncaught exception thrown
from within a business method of a session bean changes the state of that bean to “does not exist.”

Listing 12-4 shows what the source code for the TestSampleServlet servlet might look like.

Listing 12-4. Source Code for the TestSampleServlet Servlet That Might Be Used to Test the
CartBean Stateful Session Bean

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;

CHAPTER 12 ■ DESIGNING SESSION BEANS312

import javax.naming.InitialContext;
import java.util.List;
import java.util.Iterator;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class TestSampleServlet extends HttpServlet {

@EJB(name="ejb/CartBean", beanInterface=Cart.class)
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
HttpSession session = request.getSession();
Cart cart = (Cart)session.getAttribute("cartatt");
try{
if (cart == null) {
cart = (Cart) (new ➥

InitialContext()).lookup("java:comp/env/ejb/CartBean");
session.setAttribute("cartatt", cart);
cart.initialize(2);
out.println("Cart initialized" +"
");
}
cart.addItem("1430209631", 1, 29.69);
cart.addItem("1590595300", 2, 32.99);
List<ShoppingCart> items = cart.getItems();
Iterator i = items.iterator();
ShoppingCart shoppingCart;
while (i.hasNext()) {

shoppingCart = (ShoppingCart) i.next();
out.println("Cart id: "+ shoppingCart.getCart_id() +"
");
out.println("Book id: "+ shoppingCart.getBook_id() +"
");
out.println("Quantity: "+ shoppingCart.getUnits() +"
");
out.println("Unit price: "+ shoppingCart.getUnit_price() +"
");
out.println("----------"+ "
");

}
}
catch (Exception e){

e.printStackTrace();
session.removeAttribute("cartatt");

}
}

}

Of special interest here is the code responsible for obtaining an instance of the CartBean
bean and associating it with the HttpSession object. You start by creating a session object
using the HttpServletRequest’s getSession method. Then you try to obtain the CartBean
instance bound to the session. If the cart instance is null, you obtain it through JNDI lookup

CHAPTER 12 ■ DESIGNING SESSION BEANS 313

and then bind it to the session. Finally, you invoke the cart’s initialize method, passing the
ID of a customer as the parameter.

■Note JNDI lookup is used here because a servlet’s instance may be shared by several clients simultane-
ously, thus making the use of dependency injection impossible.

Note that you remove the cart instance from the session only if an exception occurs. If this
is not the case, the CartBean instance obtained in this servlet is not destroyed after servlet exe-
cution completion and stays available for further uses.

It is interesting to note that if you execute the TestSampleServlet servlet discussed here
two or more times, one after another, the second or subsequent execution will result in an
error generated when calling the cart’s addItem method. This is caused by the database server
in response to the attempt to insert the same records into the shoppingCarts table. As a result,
an exception will be thrown, and HttpSession’s removeAttribute method will be called in the
catch block, removing the cart instance from the session. In this situation, you don’t need to
worry about destroying the cart instance, since the container will do it for you.

To avoid errors, however, you should not perform another execution of the
TestSampleServlet servlet immediately after it has been executed. Instead, you should launch
the TestSampleServletCont servlet that, among other things, will handle the task of destroying
the CartBean instance obtained in the TestSampleServlet servlet earlier.

Here are the tasks the TestSampleServletCont servlet might accomplish:

1. Obtains a CartBean bean instance and associates it with the HttpSession object,
binding that bean instance to a session parameter

2. Removes one of those cart items added during the execution of the TestSampleServlet
servlet discussed earlier

3. Iterates through the cart, displaying the items currently available in the cart

4. Empties the cart and destroys its instance

5. Removes the cart instance from the session

Listing 12-5 shows what the source code for the TestSampleServletCont servlet might
look like.

Listing 12-5. Source Code for the TestSampleServletCont Servlet That Might Be Used to Test the
CartBean Stateful Session Bean, When Called After the TestSampleServlet Servlet in Listing 12-4

package ejbjpa.servlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;
import javax.naming.InitialContext;
import java.util.List;

CHAPTER 12 ■ DESIGNING SESSION BEANS314

import java.util.Iterator;
import javax.ejb.EJBException;
import ejbjpa.entities.*;
import ejbjpa.ejb.*;
public class TestSampleServletCont extends HttpServlet {

@EJB(name="ejb/CartBean", beanInterface=Cart.class)
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
HttpSession session = request.getSession();
Cart cart = (Cart)session.getAttribute("cartatt");
try{
if (cart == null) {
cart = (Cart) (new InitialContext()).lookup("java:comp/env/ejb/CartBean");
session.setAttribute("cartatt", cart);
cart.initialize(2);
out.println("Cart initialized" +"
");
}
out.println("Remove the first item from the cart "+ "
");
cart.removeItem("1430209631");
cart.removeItem("1590595300");
cart.addItem("1590595300", 2, 32.99);
List<ShoppingCart> items = cart.getItems();
ShoppingCart shoppingCart;
Iterator i = items.iterator();
while (i.hasNext()) {

shoppingCart = (ShoppingCart) i.next();
out.println("Cart id: "+ shoppingCart.getCart_id() +"
");
out.println("Book id: "+ shoppingCart.getBook_id() +"
");
out.println("Quantity: "+ shoppingCart.getUnits() +"
");
out.println("Unit price: "+ shoppingCart.getUnit_price() +"
");
out.println("----------"+ "
");

}
Integer num = cart.emptyCart();
out.println(num + " item(s) removed " + "
");

}
catch (Exception e){

e.printStackTrace();
}
finally {

session.removeAttribute("cartatt");
}

}
}

CHAPTER 12 ■ DESIGNING SESSION BEANS 315

As you can see, the TestSampleServletCont servlet shown in the listing uses the same
mechanism of obtaining a CartBean instance as you saw in the TestSampleServlet servlet
shown in Listing 12-4 earlier.

Note that the HttpSession’s removeAttribute method is called in the finally block in the
previous servlet. This guarantees that the operation of removing the cart instance from the
session will take place under all circumstances.

The deployment descriptor to be used with the servlets discussed here should, among
other elements such as servlet and servlet-mapping, contain the ejb-ref element high-
lighted in bold in the snippet shown in Listing 12-6.

Listing 12-6. You Have to Include the ejb-ref Element in the web.xml Deployment Descriptor to
Declare CartBean References

<web-app
...

<ejb-ref>
<ejb-ref-name>ejb/CartBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<remote>ejbjpa.ejb.Cart</remote>

</ejb-ref>
</web-app>

After you are done with compiling, packaging, and deploying the test application dis-
cussed in this section, you can launch the TestSampleServlet servlet. If everything is OK, it
should produce the following output:

Cart initialized
Cart id: 2
Book id: 1430209631
Quantity: 1
Unit price: 29.69

Cart id: 2
Book id: 1590595300
Quantity: 2
Unit price: 32.99

As you can see, the cart instance has been initialized and two items have been added to
the cart. Now, you can launch the TestSampleServletCart servlet. This should produce the fol-
lowing results:

Remove the first item from the cart
Cart id: 2
Book id: 1590595300
Quantity: 2

CHAPTER 12 ■ DESIGNING SESSION BEANS316

Unit price: 32.99

1 item(s) removed

This time, the Cart initialized message does not appear. This simply means
the TestSampleServletCart servlet launched here used the cart instance created
by the TestSampleServlet servlet launched previously. The output also shows that the
TestSampleServletCart servlet successfully removed one item from the cart, then it
displayed what was left, and finally it emptied the cart.

If you want, you can repeat the test by making another run of the TestSampleServlet
servlet and then the TestSampleServletCart servlet. You should see the same results.

If Something Goes Wrong . . .
If you have managed to deploy your bean on the application server and received no error mes-
sages but you get an error when starting the application invoking that bean, it is always a good
idea to look at the JNDI Tree Browsing list, which contains the JNDI names of the resource
objects available on the server.

If the bean you deployed is missing in the JNDI tree, the next place to go is the glassfish_
dir/domains/domain1/generated/xml/j2ee-modules/your_ejb_name/META-INF directory, where
you can find the deployment descriptors actually used by the application server. The applica-
tion server automatically generates these descriptors during the deployment stage, based on
the metadata found in the annotations and custom deployment descriptors.

Continuing with the Sample Project in the
NetBeans IDE
You may find the information provided in this section useful if you implement the sample
application discussed here with the help of the NetBeans IDE. In the “Building the Sample
with the NetBeans IDE” section in Chapter 8, you started a new standard NetBeans IDE proj-
ect for an enterprise application and then incorporated the JPA entities discussed in that
chapter into the project.

In this chapter, you will look at how you can add the session beans created in this chapter
into the IDE project created as discussed in Chapter 8. Here are the steps to accomplish this:

1. In your file system, go to the sampleappIDE project root directory generated by the IDE
when you created the sampleappIDE project as discussed in Chapter 8. Once you’re
there, move on to the sampleappIDE-ejb/src/java directory.

2. Within the sampleappIDE/sampleappIDE-ejb/src/java/ejbjpa directory, create the ejb
directory, and copy the session bean sources created as discussed in the earlier sec-
tions “Creating the Stateless Session Beans” and “Creating the Stateful Session Beans.”
In particular, you should copy four files: Cart.java, CartBean.java, OrderSample.java,
and OrderBean.java.

3. Launch the IDE from the Start menu of your operating system.

CHAPTER 12 ■ DESIGNING SESSION BEANS 317

4. In the Projects window, extend the sampleappIDE-ejb/Source Packages node. You
should see two packages there: ejbjpa.entities and ejbjpa.ejb.

5. In the Projects window, double-click the ejbjpa.ejb package node. You should see that
the package contains the session beans sources you copied into the sampleappIDE/
sampleappIDE-ejb/src/java/ejbjpa/ejb directory in step 2.

6. In the Projects window, right-click the sampleappIDE-ejb node, and choose Build
Project. If everything is OK, the last message you should see in the Output window is
BUILD SUCCESSFUL.

7. In the Projects window, right-click the sampleappIDE-ejb node, and choose Deploy
Project. If everything is OK, the last message you should see in the Output window is
BUILD SUCCESSFUL.

8. Close the IDE by choosing File ➤ Exit.

Now that you have deployed the deployment archive, you can test the session beans
included in that archive. For this, you might create a servlet application as discussed earlier
in this section.

Summary
Following the instructions provided in this chapter, you built the session beans to be utilized
within the sample application discussed throughout the book. You looked at both stateless
and stateful session beans.

In the next chapter, you will take a close look at transaction management. Then, in
Chapter 14 you will return to the sample discussed here and learn how to build the presenta-
tion tier of it.

CHAPTER 12 ■ DESIGNING SESSION BEANS318

Managing Transactions

Transactions are an important part of any enterprise system. When your Java EE application
performs operations affecting the underlying data, the changes are done within the scope of a
transaction, ensuring the data you’re dealing with is always in a consistent state.

This chapter discusses choices you have when it comes to transactions in your Java EE
application. The material provided will help you better understand how transactions are man-
aged and find the best transaction scenario for your application, out of many alternatives. In
particular, you will learn how to do the following:

• Develop transactional enterprise beans and client applications

• Use different types of transaction demarcation

• Deal with resource-local transactions

• Implement an appropriate transaction scenario when developing a stateless or stateful
session bean

Although the discussion in this chapter does not affect directly the sample discussed
throughout the book, it may give you some ideas on how you might modify the sample and
move some sample’s business logic from the database to the business logic tier, relying on the
transactional behavior of the components implemented in the business logic tier.

Using Transactions in Java EE Applications
Usually a Java EE application accesses and manipulates the data stored in one or more under-
lying databases, which may be simultaneously accessed by other applications. The operations
an enterprise application performs on the data are typically grouped in logical units of work,
each of which corresponds to an indivisible business operation, for example, transferring
money from a savings account to a checking account.

Since the underlying data a typical enterprise application deals with is crucial for a busi-
ness, there must be a reliable mechanism ensuring that the data is kept consistent, accurate,
and current, regardless of the operations you perform on it and the number of applications
concurrently accessing it. In enterprise environments, all these problems are solved with the
help of transactions.

319

C H A P T E R 1 3

JTA Transactions
In most cases, when developing a Java EE application, you will have to deal with Java Transac-
tion API (JTA) transactions, which are managed by the container. To recap, JTA provides a set
of interfaces to the underlying transaction manager used by the application server.

In practice, however, the only JTA interface you may need to know about is javax.
transaction.UserTransaction, which allows you to control transaction boundaries program-
matically. This interface will be discussed in the “Demarcating Transactions Programmatically”
section later in this chapter. For more detailed information on JTA, you can refer to JTA speci-
fications at http://java.sun.com/products/jta/.

To instruct the container to use JTA when dealing with a DataSource object defined upon
the underlying database, you have to define that data source in persistence.xml using the
jta-data-source element, as you did in many preceding examples. As a quick recap, look at
the following snippet:

<persistence ...>
<persistence-unit name="sampleapp-pu" transaction-type="JTA">

<jta-data-source>jdbc/mysqlpool</jta-data-source>
</persistence-unit>

</persistence>

It’s interesting to note that when dealing with JTA transactions, you don’t necessarily have
to use the javax.transaction.UserTransaction interface. If you choose container-managed
transaction demarcation, it will be the container’s responsibility to demarcate transaction
boundaries. The next section outlines the types of transaction demarcation you can choose
when developing a Java EE component. Each of these types is then discussed in more detail in
the subsequent sections.

As an alternative to JTA transactions, you can use resource-local transactions, which are
controlled by the application rather than the container. Resource-local transactions will be
further discussed in the “Dealing with Resource-Local Transactions” section later in this
chapter.

Types of Transaction Demarcation
If you look through any technical article on transactions, you should notice that, from the
application developer’s perspective, the most important thing when developing transactional
code is defining transaction boundaries. Even if explicit transaction demarcation is not
required, the developer should clearly understand where a transaction starts and where it
completes.

Table 13-1 summarizes the types of transaction demarcation you can use in a Java EE
application.

CHAPTER 13 ■ MANAGING TRANSACTIONS320

Table 13-1. The Transaction Attribute Can Be Set to One of These Values

Demarcation Type Description

Declarative transaction demarcation Known as container-managed transaction
demarcation. With it, the container controls
transaction demarcation declaratively, based on
the value of the transaction attribute that you
can specify using the TransactionAttribute
annotation applied to an entire bean class or a certain
bean’s business method. As an alternative to the
TransactionAttribute annotation, you can specify
the transaction attributes in the deployment
descriptor.

Programmatic transaction demarcation Often called bean-managed transaction demarcation.
When using this type of demarcation, you explicitly
demarcate transaction boundaries in the bean’s
business methods, using the UserTransaction
interface.

Client-managed transaction demarcation Like bean-managed transaction demarcation, client-
managed transaction demarcation implies using the
UserTransaction interface methods to explicitly
demarcate transactions. In this case, though, you
define a transaction in a client program that invokes
an enterprise bean’s business method.

When developing enterprise bean transactional code, you can choose between using
container-managed and bean-managed transaction demarcation. When developing transac-
tional client application code, you can demarcate transactions programmatically.

It’s interesting to note, however, a business method of an enterprise bean may be a client
to a business method of another bean. If this is the case, the client may still use container-
managed transaction demarcation, which is discussed in more detail the next section.

Using Declarative Transaction Demarcation
When declarative transaction demarcation is used, the EJB container will control transactions
without you having to explicitly invoke begin and commit. In this case, it’s the responsibility of
the container to demarcate transactions.

However, you can still affect the way the container will demarcate transactions by
setting the transaction attribute to an appropriate value or programmatically demarcating
the transaction. That is, the transaction attribute is used to control the scope of a transaction.
You can set the transaction attribute through the TransactionAttribute metadata annotation
or in the deployment descriptor, setting the trans-attribute element used within the
container-transaction element.

Table 13-2 lists the possible values of the transaction attribute.

CHAPTER 13 ■ MANAGING TRANSACTIONS 321

Table 13-2. The Transaction Attribute Can Be Set to One of These Values

TransactionAttribute trans-attribute
Annotation Element Description

NOT_SUPPORTED NotSupported The container will not start a transaction if the
transaction attribute of the enterprise bean’s
business method being invoked is set to this value.
If the client code is running within a transaction
context, then the client’s transaction is suspended
until the called business method completes.

REQUIRED Required The container invokes the business method with a
transaction context. If the client is associated with
a transaction context, the business method runs
within the client’s transaction. Otherwise, the
container creates a new transaction for the method.

SUPPORTS Supports If the client is associated with a transaction context,
the business method runs within the client’s
transaction. Otherwise, the container invokes the
business method without a transaction context.

REQUIRES_NEW RequiresNew The container invokes the business method with a
new transaction, regardless of whether the client is
executed within a transaction. If the client is
running within a transaction, that transaction is
temporarily suspended and then resumed when
the called business method ends.

MANDATORY Mandatory The container invokes the business method within
the client’s transaction context. If the client has no
transaction context, a TransactionRequired➥
Exception exception is thrown.

NEVER Never The container invokes the business method
without a transaction context. If the client is
running within a transaction context, a
RemoteException is thrown.

By default, the transaction attribute is set to REQUIRED. This means that by default a busi-
ness method is executed in a transaction context, regardless of whether the client is executed
in a transaction context.

Figure 13-1 illustrates both of these situations. A call to a business method of an enter-
prise bean from a transactional client is depicted at the left side of the figure, and a non-
transactional client scenario is shown on the right.

CHAPTER 13 ■ MANAGING TRANSACTIONS322

Figure 13-1. If the transaction attribute is set to REQUIRED, a business method called will be exe-
cuted in the context of the client’s transaction, if any. Otherwise, the method is executed in a new
transaction context.

Don’t be misled by begin and commit shown in the scenario involving a nontransactional
client in the figure (the diagram shown on the right). In fact, you don’t need to explicitly
invoke these methods there. Since you use container-managed transaction demarcation,
everything will be done by the container behind the scenes. In particular, the container will
start a new transaction just before the business method executes and completes it immedi-
ately after execution of the method.

An important thing to note here is that the EJB architecture does not support nested
transactions—only flat transactions are allowed. For example, if the transaction attributes of
the bean’s methods being invoked from a transactional client are set to REQUIRED and all calls
to those methods are made within a single client’s transaction, all these methods will be exe-
cuted within that single transaction, as depicted in the transactional client scenario in the
figure (shown on the left).

■Note Even if you set the transaction attribute to REQUIRES_NEW for the business methods invoked from a
transactional client, the client’s transaction is suspended during invocations of those methods. So, at any
given moment, there is only one active transaction and no nested transactions.

Container-managed transaction demarcation is best understood by example. Say you
have two session beans, where one acts as the client to the other one. Listing 13-1 shows the
snippet of the client.

Listing 13-1. Snippet of the ShoppingCartBean Stateless Session Bean Whose placeOrder Business
Method Is Executed in a New Transaction

...
@Stateless
public class ShoppingCartBean

implements ShoppingCart {
@EJB
private OrderSession neworder;

CHAPTER 13 ■ MANAGING TRANSACTIONS 323

...
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void placeOrder() {
...
pono = neworder.createOrder(cust_id);
neworder.addOrderDetails(pono, items);

...
}
...

}

As you can see, the placeOrder business method of the ShoppingCartBean stateless session
bean shown in the snippet will be always executed with a new transaction, since its transac-
tion attribute is set to REQUIRES_NEW. So, the calls to the OrderSessionBean’s createOrder and
addOrderDetails methods made from within placeOrder are performed in a single transaction.

Listing 13-2 shows the structure of the OrderSessionBean session bean whose createOrder
and addOrderDetails methods are called from the client.

Listing 13-2. Snippet of the OrderSessionBean Stateless Session Bean Whose Transaction Attribute
Is Set to REQUIRED

...
@TransactionAttribute(TransactionAttributeType.REQUIRED)
@Stateless
public class OrderSessionBean

implements OrderSession {
...
public Integer createOrder() {
...
return pono;
}
public Integer addOrderDetails(Integer pono, List items) {
...

}
...

}

As you can see in the listing, the OrderSessionBean stateless session bean uses the
REQUIRED transaction attribute for the entire class, meaning the REQUIRED transaction attribute
is applied to all the OrderSessionBean’s methods.

Demarcating Transactions Programmatically
In some situations, you might want to programmatically demarcate transaction boundaries.
In such cases, you might take advantage of the javax.transaction.UserTransaction interface
used to interact with the underlying JTA transaction manager controlling transactions. This
interface can be used in client programs and enterprise beans.

Table 13-3 lists the methods of the javax.transaction.UserTransaction interface.

CHAPTER 13 ■ MANAGING TRANSACTIONS324

Table 13-3. The Methods of the UserTransaction Interface

Method Description

void begin() Begins a new transaction, associating it with the
current thread

void commit() Completes the transaction attached to the current
thread, making the effects of all operations performed
within the transaction permanent

void rollback() Rolls back the transaction attached to the current
thread, undoing the effects of all operations within the
transaction

void setRollbackOnly() Instructs the container that the only possible outcome
for the transaction is to roll back it.

int getStatus() Obtains the status of the transaction attached to the
current thread

void setTransactionTimeout(int secs) Modifies the timeout for the transactions started by
the current thread

In the example shown in Listing 13-3, you use the UserTransaction’s begin and commit to
delimit transaction boundaries in the placeOrder business method of the ShoppingCartBean
bean whose structure was originally shown in Listing 13-1.

Listing 13-3. The ShoppingCartBean Stateless Session Bean Modified to Delimit Transaction
Boundaries Programmatically

...
@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class ShoppingCartBean

implements ShoppingCart {
@Resource
javax.Transaction.UserTransaction ut;
@EJB
private OrderSession neworder;
...
public void placeOrder() {
...
ut.begin();
pono = neworder.createOrder(cust_id);
neworder.addOrderDetails(pono, items);
ut.commit();

...
}
...

}

The main difference between the snippet shown in Listing 13-1 earlier and the one shown
here is that in the former the transaction associated with the placeOrder business method

CHAPTER 13 ■ MANAGING TRANSACTIONS 325

automatically starts by the container before the method execution and commits immediately
after it, while in the latter you manually define transaction boundaries. So, the latter is more
flexible in that it allows you to include only part of the business method code in a transaction
or define more than one transaction within a single business method.

Using Transaction Demarcation in Client Code
The example in the preceding section illustrated how you might use the UserTransaction’s
begin and commit to delimit transaction boundaries in an enterprise bean when using bean-
managed transaction demarcation. However, the use of the UserTransaction interface is not
limited to enterprise beans. You can also use it to demarcate a JTA transaction in web compo-
nents, such as servlets and JSP pages.

The snippet shown in Listing 13-4 illustrates how you might wrap calls to the
OrderSessionBean’s createOrder and addOrderDetails methods in a transaction defined
in a servlet.

Listing 13-4. An Example of Using the UserTransaction Interface to Demarcate Transaction
Boundaries in a Servlet

...
public class placeOrder extends HttpServlet {
@Resource
UserTransaction utx;
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
...
try {
utx.begin();
pono = neworder.createOrder(cust_id);
neworder.addOrderDetails(pono, items);
utx.commit();
} catch (Exception ex) {
try {
utx.rollback();
} catch(Exception e) {
e.printStackTrace();
}
}
}
...
}

In the servlet shown in the listing, you call the rollback method of the UserTransaction
interface if something goes wrong, calling this method from within the try block nested in the
catch block executed if createOrder or addOrderDetails fails.

CHAPTER 13 ■ MANAGING TRANSACTIONS326

Dealing with Resource-Local Transactions
Aside from JTA transactions, there are resource-local transactions controlled by the applica-
tion through the EntityTransaction interface. Normally, you might want to use resource-local
transactions in Java SE environments, since JTA is not supported in such environments.

You can obtain a reference to the EntityTransaction instance by calling the getTransaction
method of a resource-local EntityManager. Before moving on to an example, however, let’s
first look at the EntityTransaction interface methods listed in Table 13-4.

Table 13-4. The Methods of the EntityTransaction Interface

Method Description

void begin() Begins a new resource transaction

void commit() Completes the current transaction, making the effects of all
operations performed within the transaction permanent

void rollback() Rolls back the current transaction, undoing the effects of all
operations within the transaction

void setRollbackOnly() Marks the current transaction to be rolled back

boolean getRollbackOnly() Checks to see whether the current transaction has been marked to
be rolled back

boolean isActive() Checks to see whether there is a transaction in progress

To use resource-local transactions, you have to set the transaction-type attribute of the
persistence-unit element in persistence.xml to RESOURCE_LOCAL. Then you should use the
non-jta-data-source element to define a non-JTA data source to be used in the application.
Listing 13-5 shows what a resource-local data source in persistence.xml might look like.

Listing 13-5. An Example of persistence.xml Configuration File Defining a Persistence Unit
Upon a Resource-Local Data Source Object

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence ➥
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="app-pu" transaction-type="RESOURCE_LOCAL">
<non-jta-data-source>jdbc/mysqlpool</non-jta-data-source>

</persistence-unit>
</persistence>

Listing 13-6 provides an example of how you might use the EntityTransaction interface
to define resource-local transactions in a POJO.

Listing 13-6. An Example of Using Resource-Local Transactions in a Regular Java Class

public class OrderClass {
private EntityManagerFactory emf;
private EntityManager em;

CHAPTER 13 ■ MANAGING TRANSACTIONS 327

private Order order;
private Part part;
public OrderClass() {
emf = Persistence.createEntityManagerFactory("app-pu");
em = emf.createEntityManager();
}
public void getOrder(int pono) {
order = em.find(Order.class, pono);
}
public void getPart(String partid) {
part = em.find(Part.class, partid);
}
public void addLineItem(int quantity) {
em.getTransaction().begin();
LineItem lineItem = new LineItem(order, part, quantity);
order.getLineItems().add(lineItem);
em.getTransaction().commit();
}
public void destroy() {
em.close();
emf.close();
}
}

In the constructor of OrderClass shown in the listing, you create an entity manager
factory as it is created in Java SE environments, and then you obtain a resource-local Entity-
Manager. In the addLineItem method, you use the EntityManager’s getTransaction method to
obtain the EntityTransaction interface used then to create a resource-local transaction.

Some Transaction Scenarios
Now that you have a good grasp of how transactions can be utilized in your Java EE applica-
tion, it’s time to look at some transaction scenarios.

In the next section, you will look at how transactions work in a business method perform-
ing persistence operations with the help of two container-managed entity managers. Then,
you will look at an example of using transactions in a stateful session bean utilizing an entity
manager of type PersistenceContextType.EXTENDED.

Transactional Behavior of a Business Method Involving
Operations of More Than One Container-Managed
EntityManager
You already saw some examples of using several entity managers within a single business
method. In particular, in the “An Example of Using a Container-Managed EntityManager” sec-
tion in Chapter 10, you saw an example of using two container-managed entity managers of
type PersistenceContextType.TRANSACTION. Returning to that example, let’s now take a closer
look at the code used there, from the standpoint of transactions.

CHAPTER 13 ■ MANAGING TRANSACTIONS328

First, though, let’s look at Listing 13-7 illustrating the persistence.xml configuration file
that might be used to define two persistence units upon which the container will configure
and create entity manager factories used then for creating container-managed entity
managers.

Listing 13-7. persistence.xml Defining Two Persistence Units

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" ➥
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence ➥
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="contaneremtest1-pu" transaction-type="JTA">
<jta-data-source>jdbc/mysqlpool</jta-data-source>

</persistence-unit>
<persistence-unit name="contaneremtest2-pu" transaction-type="JTA">

<jta-data-source>jdbc/mysqlpool</jta-data-source>
</persistence-unit>

</persistence>

Now, let’s return to the OrderTestBean session bean utilizing two container-managed
entity managers, as it was originally shown in Listing 10-4 in Chapter 10. Listing 13-8 shows
the source code for OrderTestBean with comments in the changeOrderEmpTest business
method to help you better understand how this method is working from the standpoint of
transactions.

Listing 13-8. The OrderTestBean Stateless Session Bean Whose changeOrderEmpTest Method,
When Executed, Is Associated with Two Transactions

//import declarations
...
@Stateless
public class OrderTestBean implements OrderTest {

@PersistenceContext(unitName="contaneremtest1-pu")
private EntityManager em1;
@PersistenceContext(unitName="contaneremtest2-pu")
private EntityManager em2;
public Integer setOrder(Integer cust_id, Integer empno) {

Integer order_pono;
try {
Customer cust = (Customer) em1.find(Customer.class, cust_id);
Employee emp = (Employee) em1.find(Employee.class, empno);
Order order1 = new Order();
order1.setCustomer(cust);
order1.setEmployee(emp);
em1.persist(order1);
em1.flush();
em1.refresh(order1);

CHAPTER 13 ■ MANAGING TRANSACTIONS 329

order_pono = order1.getPono();
} catch (Exception e) {

throw new EJBException(e.getMessage());
}
return order_pono;

}
public String changeOrderEmpTest(Integer pono, Integer empno, Integer custid) {

String order_details;
try {
//finds the order
Order order1 = (Order) em1.find(Order.class, pono);
//shows the original order
order_details = "order "+ order1.getPono()+ " emp: " + ➥
order1.getEmployee().getLastname()+" cust: " + ➥
order1.getCustomer().getCust_name()+"
";
//updates order1 and synchronize it to the database
Employee emp = (Employee) em1.find(Employee.class, empno);
order1.setEmployee(emp);
em1.flush();
em1.refresh(order1);
//shows the change in order1 obtained from the database
order_details = order_details+"order "+ order1.getPono()+ " emp: " + ➥
order1.getEmployee().getLastname()+" cust: " + ➥
order1.getCustomer().getCust_name()+"
";
//obtains the same order with the other EntityManager
Order order2 = (Order) em2.find(Order.class, pono);
//change order2 and synchronize it to the database
Customer cust = (Customer) em1.find(Customer.class, custid);
order2.setCustomer(cust);
em2.flush();
em2.refresh(order2);
//shows the change in order2 obtained from the database
order_details = order_details+"order "+ order2.getPono()+ " emp: " + ➥
order2.getEmployee().getLastname()+" cust: " + ➥
order2.getCustomer().getCust_name()+"
";

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return order_details;

}
}

As you can see, the OrderTestBean stateless session bean shown in the listing contains two
business methods: setOrder and changeOrderEmpTest. The first one creates and persists an
order, while the second one allows you to change the employee and customer fields of an
already existing order to another value.

Of special interest here is the changeOrderEmpTest method, where you deal with two dif-
ferent container-managed entity managers. The method illustrates that a change applied to

CHAPTER 13 ■ MANAGING TRANSACTIONS330

the order instance with the first entity manager appears at the instance associated with the
same order record but obtained with the other entity manager after you have performed the
flush operation with the first entity manager. It is important to realize that although the two
entity managers used here are associated with two different persistence contexts, they both
operate in the same transaction. That is why changes made by the first entity manger can be
seen when using the other manager, after the first manager synchronizes those changes to the
database.

To test the OrderTestBean’s business methods, you might use the EmEjbTestServlet servlet
shown in Listing 13-9.

Listing 13-9. The EmEJBTestServlet Servlet Can Be Used to Test the OrderTestBean Stateless
Session Bean

//import declarations
...
public class EmEjbTestServlet extends HttpServlet {

@EJB private OrderTest orderTest;
public void doGet(

HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();
Integer custid1=1;
Integer custid2=2;
Integer empno1=1;
Integer empno2=2;
try{

Integer pono = orderTest.setOrder(custid1,empno1);
out.println("Created order "+ pono +"
");
out.println(orderTest.changeOrderEmpTest(pono,empno2, custid2));

}
catch (Exception e){

e.printStackTrace();
}

}
}

In the EmEJBTestServlet servlet shown in the listing, you first call the setOrder method to
create a new order and then invoke the changeOrderEmpTest method that changes the value of
the employee and customer fields and outputs the values of the changed fields in the context of
each of the two entity managers. This output might look like this:

Created order 21
order 21 emp: Oganovich cust: John Poplavski
order 21 emp: Silver cust: John Poplavski
order 21 emp: Silver cust: Paul Medica

CHAPTER 13 ■ MANAGING TRANSACTIONS 331

The first line in the previous output tells you that the new order whose pono is 21 has been
created. All the other output lines are generated in the changeOrderEmpTest method. The sec-
ond line shows the values of the employee and customer fields of the order entity instance
obtained with the first manager, before applying any changes to that order. In the third output
line, you can see that the employee field of the order has been changed. This is done with the
first manager. Then, with the help of the second manager, you change the customer field of
the order and synchronize this change to the database. The last line of the output shows the
employee and customer fields you finally have when obtaining the order with the second man-
ager. As you can see, the changes made by the first manager and flushed to the database can
be seen when using the second manager.

It’s interesting to note that flushing changes to the database in this example does not
automatically mean committing the transaction in the context for which these changes are
made. As mentioned earlier, both the entity managers used here operate in the same transac-
tion. So, if you mark the transaction for rollback, then all the changes made by both the
managers will be rolled back upon completion of the method.

Listing 13-10 shows the code you need to add to the changeOrderEmpTest method so that it
rolls back the changes made within it.

Listing 13-10. The OrderTestBean Stateless Session Bean Modified to Roll Back the Changes Made
by Both the Entity Managers Used in the changeOrderEmpTest Method

//import declarations
...
import javax.annotation.Resource;
import javax.ejb.SessionContext;
@Stateless
public class OrderTestBean implements OrderTest {
...
@Resource
private SessionContext ctx;

...
public String changeOrderEmpTest(Integer pono, Integer empno) {

...
ctx.setRollbackOnly();

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
return order_details;

}
}

The simplest way to make sure the transaction has been rolled back is to connect to the
underlying database directly with a command-line tool and issue the query retrieving the
record of interest from the orders table. So, the query might look like this:

SELECT o.pono, e.lastname, c.cust_name FROM orders o, employees e, customers c ➥
WHERE o.pono = 21 AND o.empno=e.empno AND o.cust_id=c.cust_id;

CHAPTER 13 ■ MANAGING TRANSACTIONS332

This should produce the following output:

pono lastname cust_name

21 Oganovich John Poplavski

As you can see, the employee and customer have not been changed. This is because the
transaction started during the changeOrderEmpTest method execution is rolled back.

Defining Transactions in Stateful Session Beans
Another interesting case is defining a transaction in a stateful session bean that has an
extended persistence context.

Listing 13-11 illustrates an example of such a stateful session bean. In particular, you can
see the ShoppingCartBean stateful bean that uses bean-managed transaction demarcation.

Listing 13-11. An Example of How You Can Define a Transaction in a Stateful Session Bean, So
That It Survives Several Client Calls

...
@Stateful
@TransactionManagement(TransactionManagementType.BEAN)
public class ShoppingCartBean

implements ShoppingCart {
@Resource
javax.Transaction.UserTransaction ut;
@PersistenceContext(type=EXTENDED)
EntityManager em;
private Order order;
...
public void newOrder(Integer pono) {

ut.begin();
order = em.find(Order.class, pono);

}
public void addLineItem(LineItem lineItem) {

order.getLineItems.add(lineItem);
}
public void placeOrder() {

ut.commit();
}
...

}

When you call the ShoppingCartBean’s newOrder business method, a new transaction
begins. The transaction is then retained across all calls to the addLineItem method. Finally, it
commits when the placeOrder method is invoked.

CHAPTER 13 ■ MANAGING TRANSACTIONS 333

Summary
In this chapter, you looked at how transactions work in Java EE environments. You learned
that there are several types of transaction demarcation to choose from when it comes to build-
ing Java EE components. You looked at JTA and resource-local transactions and at how they
can be explicitly and implicitly utilized in stateless and stateful session beans and servlets.

In the next chapter, you will return to the sample application discussed throughout the
book and learn how to build the presentation tier of the sample.

CHAPTER 13 ■ MANAGING TRANSACTIONS334

Building the
Presentation Tier
and Testing

P A R T 6

Building the Presentation Tier

Having the database, persistence, and business logic tiers of your application would not
make sense without implementing, at some point, the presentation tier, also referred to as the
front-end layer of the application. As its name implies, the presentation tier implements the
application’s presentation logic, making it possible for the users of the application to take
advantage of all this functionality implemented in the other application layers.

This chapter describes how you might build the presentation tier for the sample applica-
tion discussed throughout the book, using the JavaServer Faces (JSF) technology. This is the
final stage in development of the sample application. Following the instructions provided in
the chapter, you will do the following:

• Build JSF beans through which you will access the session beans already in place

• Develop JSF pages upon the JSF beans

• Secure your web application

• Configure your web application

• Deploy your web application to the application server

As you can see, the way in which this chapter is going to deal with JSF doesn’t assume
using JBoss Seam, the framework allowing you to effectively integrate EJB 3.0 and JSF compo-
nents that is quickly gaining popularity among Java EE developers. In a nutshell, JBoss Seam
lets you refer to EJB session beans directly from within JSF UI components, eliminating the
need for JSF managed beans and thus simplifying development of the front-end layer of a Java
EE application. However, a discussion of the JBoss Seam framework could fill an entire book
by itself and is beyond the scope of this book.

Accessing Java EE Functionality from a
Presentation Tier
As you might recall from the examples discussed in the first chapters, you don’t necessarily
have to build web components to access EJB and JTA components. For example, you might
create an application client to access enterprise beans using the appclient command-line
tool.

337

C H A P T E R 1 4

In most situations, however, you might want to build an application client only to test the
EJB and JTA components built to be eventually utilized in a web application. So, building the
presentation tier of a Java EE application means building a web application utilizing the Java
EE components that provide the business logic for the application.

Choosing a Web Tier Technology
In the preceding chapter, you saw how the sample’s enterprise beans might be utilized within
servlets. Since the purpose of those servlets was to perform a quick test of the beans, many
parameters were simply hard-coded into the servlet code. In reality, though, you would need a
solution that interacts with the user and deals with dynamic parameters. In this chapter, you
will look at how to build the sample’s presentation tier using the JavaServer Faces technology.

Of course, JavaServer Faces is not the only technology to choose from when it comes to
implementing a Java EE web application. For example, it’s still possible to build the web tier of
a Java EE application using the JSP technology and invoking enterprise bean’s business meth-
ods directly from within JSP pages.

However, the JavaServer Faces technology provides many advantages over JSP, where the
most important one is a clean separation between business logic and presentation.

Actually, you don’t necessarily have to utilize enterprise beans when developing a JSF
application. Instead, you might use JSF managed beans. However, since you already have the
enterprise beans built, you might want to develop the JSF beans that will utilize the function-
ality of those enterprise beans, rather than implementing the application’s business logic from
scratch. This means the JSF beans to be used in your application won’t need to deal directly
with the JPA entities built upon the underlying database; they deal with the enterprise beans
instead. So, the enterprise beans act as the facade built upon the persistence tier, uncoupling
the client from the entity model. Figure 14-1 gives a graphical depiction of this approach.

The solution depicted in the figure is known as the Facade pattern. To learn more about
the Facade pattern, you can refer to the “Using a Model Facade” document available at
https://blueprints.dev.java.net/bpcatalog/ee5/persistence/facade.html and the “Using
an EJB Session Bean as a Model Facade” document at https://blueprints.dev.java.net/
bpcatalog/ee5/persistence/ejbfacade.html.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER338

Figure 14-1. A Java EE application based on the Facade pattern

Planning the Presentation Tier
What you are going to build here is not, of course, a full-functional application. The idea is to
illustrate how you can utilize EJB components from within JSF managed beans, using the
Facade pattern.

Now let’s try to figure out how the JSF application to be built in the next sections might be
organized. Since you want to see the CartBean and OrderBean enterprise beans in action,
you’re going to need at least the following two pages:

• A page that displays all the books available for purchasing and allows the user to add a
book of interest to the shopping cart. This can be the page being loaded first and called
index.jsp.

• A page that shows the shopping cart items and allows the user to delete unnecessary
items from the cart and eventually place an order. This page could be called
showcart.jsp, for example.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 339

You might want to create the following JSF managed beans to be referred to from within
these two pages:

• A JSF managed bean that will be used to interact with the CartBean and OrderBean
enterprise beans created as discussed in Chapter 12. This managed bean might be
called OrderJSFBean.

• A managed bean to access the data in the books underlying table. You might call it
BookJSFBean.

Another important thing you need to think about is security. In the next section, you will
look at the JAAS-based security mechanism to be used in the sample in more detail. For the
time being, however, it’s interesting to note that you will need to create two more pages:

• A login authentication page, say, login.jsp, for form-based authentication.

• An error page to which the user will be redirected if authentication fails. This might be
called, say, login_error.jsp.

The resulting diagram might look like Figure 14-2.

Figure 14-2. A high-level view of the sample application

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER340

As you can see in the figure, the sample is going to employ the Java Authentication and
Authorization Service (JAAS), a set of APIs that enable user authentication and authorization.
Although it’s not a requirement, in this particular example you will authenticate users against
account information stored in the underlying database.

You might also notice that the BookJSFBean managed bean doesn’t refer to the facade
beans, dealing with the underlying database directly. As you will learn a bit later in this chap-
ter, the BookJSFBean managed bean establishes a JDBC connection to the database and
obtains information from the books underlying table.

Using JAAS to Secure Java EE Applications
Since the sample discussed here is going to manipulate sensitive information, you need to
employ a security mechanism that enables user authentication and authorization. Once
authenticated, the user credentials will determine the security context of the sample instance,
allowing it to associate the shopping cart with the authenticated user.

The JAAS provides a standard way to achieve these goals. To take advantage of JAAS in
GlassFish, you first need to set up a security realm, organizing users into security groups. Once
the security realm is set up in the application server, you will need to add a login page to your
application, where the user will enter its credentials. A properly authenticated user will be
authorized to use only those resources that are allowed for the group to which that user
belongs.

In the following section, you will create a JDBC security realm in your GlassFish applica-
tion server so that users of the sample are authenticated against the data stored in the
underlying database. Then, in the “Creating Security Pages” section, you will create the
login.jsp and login_error.jsp pages.

Creating a JDBC Realm in GlassFish
GlassFish ships with the following three predefined security realms: admin-realm, file realm,
and certificate realm. The admin-realm is used to control user’s access to the application
server resources. So, you use users defined in this realm to connect to the Admin Console, a
GlassFish’s browser interface to perform administration and configuration tasks.

Unlike the admin-realm, the file realm and certificate realm can be used to authenticate
users of the applications deployed to the application server. The file-realm stores users’
authentication information in the local file keyfile. You can manipulate file-realm users from
within Admin Console. The certificate realm stores user credentials in a certificate database
using certificates with the HTTPS protocol for authenticating users.

Aside from these three preconfigured GlassFish’s realms, you can create the following
ones:

• A LDAP realm stores authentication information in a LDAP database.

• A JDBC realm stores authentication information in a relational database.

• A Solaris realm can be used only on the Solaris operating system.

In the following sections, you will look at how to create a JDBC realm holding authentica-
tion information in the underlying database.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 341

Creating the Database Tables to Store Account Information
Before you can create a JDBC realm in your application server, you need to create the database
tables to store users’ account information. In particular, you will need to set up the following
three tables:

• A table holding user credentials. For that, you might use the already existing customers
table created as discussed in Chapter 6 (specifically Listing 6-4). However, you will need
to modify the customers table’s structure, adding a password column for storing users’
passwords.

• A table holding information about groups of users.

• A join table of the many-to-many relationship between these two tables.

Once you have these three tables in place, you might want to create a view upon these
tables so that the JDBC realm you’re going to create will use only one database contact point.
Listing 14-1 shows a set of the SQL commands you have to perform on your MySQL server
when connected as usrsample user:

Listing 14-1. Creating the Database Structure in MySQL to Be Used by the JDBC Security Realm

use dbsample;
ALTER TABLE customers ADD COLUMN password CHAR(32);

CREATE TABLE groups(
group_id VARCHAR(25) PRIMARY KEY,
group_desc VARCHAR(100)
);

CREATE TABLE customergroups(
cust_id INTEGER,
group_id VARCHAR(25),
PRIMARY KEY(cust_id, group_id),
FOREIGN KEY(cust_id) REFERENCES customers(cust_id),
FOREIGN KEY(group_id) REFERENCES groups(group_id)
);

CREATE VIEW login_v
AS SELECT c.cust_id, c.password, g.group_id FROM ➥
customers c, groups g, customergroups r
WHERE c.cust_id = r.cust_id AND g.group_id = r.group_id;

You might notice that the password column added to the customers table is defined as
CHAR(32). The fact is that the MD5 is the default algorithm in GlassFish to encrypt users pass-
words, and a MD5 hash is a 32-character string.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER342

■Note If you’re using Oracle as the underlying database, you have to modify it in a similar way, choosing
appropriate types for the columns in the tables being created.

The next step is populating the tables created here with data. Also, you have to populate
the password column added to the customers table. Of course, real-world applications usually
offer a form where new users may register. For simplicity, however, in this particular example
you will populate the security tables directly. Listing 14-2 shows the SQL statements you might
perform to insert authentication information for the two customer records you should already
have in the customers table (from Listing 6-5 in Chapter 6).

Listing 14-2. Populating the Tables Containing Information About Users and Groups

INSERT INTO groups VALUES('testRole', 'Security group for users of the sample app');

INSERT INTO customergroups VALUES(2, 'testRole');

UPDATE customers
SET password = '42766beab1dc267fbf26df32e1addfff'
WHERE cust_id = 1;

UPDATE customers
SET password = '0f8031d929f89ecb1d251f0f8bc9d9f9'
WHERE cust_id = 2;

In the first UPDATE statement in the listing, you set the password field of the customer
whose cust_id is 1 to the MD5 hash corresponding to the password poplavskipswd. The sec-
ond UPDATE sets the password of the second customer record to the MD5 hash of medicapswd.

Creating the JDBC Realm
Now that you have set up the database to store user credentials, you can move on and create a
JDBC realm in your application server.

To start with, connect to Admin Console as admin, and then move on to the Configuration/
Security/Realm page, which is shown in Figure 14-3.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 343

Figure 14-3. The Realms page in Admin Console

In the Realms page shown in the figure, click the New button. As a result, the New Realm
dialog box will appear. To start with, type in the name in the Name field, say, myjdbc, and then
choose com.sun.enterprise.security.auth.realm.jdbc.JDBCRealm in the Class Name box.

Next, move on to the Properties Specific to This Class section of the dialog box, and fill in
the fields as described in Table 14-1.

Table 14-1. Setting Up the JDBC Realm Properties

Property Name Property Value Description

JAAS context jdbcRealm Type of login module to use, defaulted to jdbcRealm.

JNDI jdbc/mysqlpool JNDI name of the data source through which the
security tables can be accessed.

User Table login_v Table containing information about users to be used.
In this example, you use a view derived from both the
customers and groups tables.

User Name Column cust_id The username column in the user table.

Password Column password The password name column in the user table.

Group Table login_v Table containing information about security groups.
In this example, you use a view derived from both the
customers and groups tables.

Group Name Column group_id The username column in the group table.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER344

Once you are done with setting up the properties, click the OK button in the New Realm
dialog box. As a result, a new JDBC realm will be created.

Building the Sample’s Presentation Tier with JSF
Now you are ready to start building the sample’s presentation tier. In the following sections,
you will build it using the JavaServer Faces technology.

Diagramming the Project
As usual, let’s first create a diagram representing the directory structure of the project, includ-
ing files to be created. Figure 14-4 shows what actually needs to be done.

Figure 14-4. The structure of the sample project

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 345

To begin with, you need to create the directory structure for the project as shown in the
figure, and then you can create the files as discussed in the following sections.

Developing JSF Managed Beans
As mentioned earlier, in a JSF application, managed beans encapsulate the application’s busi-
ness logic so that JSF pages can refer to beans properties.

In the sample discussed here, however, you already have some business logic imple-
mented in the enterprise beans created as discussed in Chapter 12. So, to utilize that logic in
the enterprise beans, you will need to create a managed bean that will act as a bridge between
JSF pages and the logic in those enterprise beans. For this purpose, you will create the
OrderJSFBean managed bean shown in Listing 14-3.

Listing 14-3. Source Code for the OrderJSFBean Managed Bean

package ejbjpa.jsfbeans;
import javax.ejb.EJB;
import javax.naming.InitialContext;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpSession;
import java.util.List;
import java.util.Map;
import ejbjpa.ejb.*;
import ejbjpa.entities.*;

@EJB(name="ejb/CartBean", beanInterface=Cart.class)
public class OrderJSFBean {

private Cart cart;
@EJB
private OrderSample order;
private List<ShoppingCart> cartItems;
private Integer custId;
public OrderJSFBean() {

custId = Integer.parseInt(
FacesContext.getCurrentInstance().getExternalContext().➥

getUserPrincipal().getName());
try{
if (cart == null) {

cart = (Cart) (new InitialContext()).lookup("java:comp/env/ejb/CartBean");
}
cart.initialize(custId);
} catch (Exception e) {

e.printStackTrace();
}
}

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER346

public Integer getCustId() {
return custId;

}
public List<ShoppingCart> getCartItems() {

cartItems = null;
try {

cartItems = cart.getItems();
} catch (Exception e) {

e.printStackTrace();
}
return cartItems;

}
public void addToCart() {

try {
FacesContext cxt = FacesContext.getCurrentInstance();
Map params = cxt.getExternalContext().getRequestParameterMap();
String isbn = (String)params.get("isbn");
String price_str = (String)params.get("price");
Double price =new Double(price_str);
cart.addItem(isbn, 1, price);
} catch (Exception e) {

e.printStackTrace();
}

}
public void removeFromCart() {

try {
FacesContext cxt = FacesContext.getCurrentInstance();
Map params = cxt.getExternalContext().getRequestParameterMap();
String itemId = (String)params.get("itemId");
cart.removeItem(itemId);
} catch (Exception e) {

e.printStackTrace();
}

}
public String ProceedToCheckout() {

try {
order.placeOrder(custId, 1);

} catch (Exception e) {
e.printStackTrace();

}
return "continue";

}

}

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 347

Unlike the OrderJSFBean managed bean, BookJSFBean shown in Listing 14-4 has no refer-
ences to the enterprise beans. Instead, the BookJSFBean managed bean directly connects to the
underlying database through a JDBC connection and retrieves all the records from the books
table.

Listing 14-4. Source Code for the BookJSFBean Managed Bean

package ejbjpa.jsfbeans;
import javax.ejb.EJB;
import javax.naming.InitialContext;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpSession;
import java.util.List;
import ejbjpa.ejb.*;
import ejbjpa.entities.*;
import java.sql.*;
import javax.sql.DataSource;
public class BookJSFBean {

private Connection connDb;
public void openConnection() throws Exception {
if(connDb != null)
return;

DataSource dataSource = (DataSource) (new ➥
InitialContext()).lookup("java:comp/env/jdbc/mysqlpool");

connDb = dataSource.getConnection();
}
public ResultSet getAllBooks() throws Exception {
ResultSet rslt = null;
this.openConnection();
Statement stmt = connDb.createStatement();
rslt = stmt.executeQuery("SELECT * FROM books");
return rslt;

}
}

}

As you can see, the BookJSFBean managed bean doesn’t even utilize JPA entities, illustrat-
ing a JDBC way of interacting with the underlying database from within a JSF managed bean.

Now that you have created the source files for the managed beans, you can compile them.
For that, you can change the directory for sampleapp and then issue the following command:

javac -cp target/WEB-INF/lib/appejb.jar;yourglassfishdir/lib/javaee.jar ➥
-d target/WEB-INF/classes src/ejbjpa/jsfbeans/*.java

As a result, the ejbjpa/jsfbeans directory should appear within the sampleapp/target/
WEB-INF/classes directory and the BookJSFBean.class and BookJSFBean.class files should
appear in it.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER348

Developing JSF Pages
The next step in building the application is to create the JSF pages. Listing 14-5 shows the
source code for the index.jsp page that refers to the allBooks property of the BookJSFBean
managed bean.

Listing 14-5. Source Code for the index.jsp Page

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>
<head>
<link href="stylesheet.css" rel="stylesheet" type="text/css"/>
</head>
<h:form>
<h2>List of books</h2>

<h:dataTable value="#{book.allBooks}" var ="book"
headerClass= "header"
columnClasses="evenCol, oddCol">
<h:column>
<f:facet name="header">
<h:outputText value="ISBN"/>

</f:facet>
<h:outputText value="#{book.isbn}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Title"/>

</f:facet>
<h:outputText value="#{book.title}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Author"/>

</f:facet>
<h:outputText value="#{book.author}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Price"/>

</f:facet>
<h:outputText value="#{book.price}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Copies left"/>

</f:facet>

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 349

<h:outputText value="#{book.quantity}"/>
</h:column>
<h:column>
<h:commandLink action="#{OrderJSFBean.addToCart}" value="Add to cart">
<f:param name = "isbn" value = "#{book.isbn}"/>
<f:param name = "price" value = "#{book.price}"/>

</h:commandLink>
</h:column>

</h:dataTable>
<p/>
<h:commandButton action="showcart" value="Move to cart"/>
</h:form>
</f:view>

As you can see in the listing, the index.jsp page will display the entire list of the book
records, allowing the user to add books of interest to the shopping cart.

Listing 14-6 shows the source for the showcart.jsp page that can be launched from within
the index.jsp.

Listing 14-6. Source Code for the showcart.jsp Page

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>
<head>
<link href="stylesheet.css" rel="stylesheet" type="text/css"/>
</head>
<h:form>
<h2>Your shopping cart items to buy now</h2>

<h:dataTable value="#{OrderJSFBean.cartItems}" var ="shoppingCart"
headerClass= "header"
columnClasses="evenCol, oddCol">
<h:column>
<f:facet name="header">
<h:outputText value="Book isbn"/>

</f:facet>
<h:outputText value="#{shoppingCart.book_id}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Quantity"/>

</f:facet>
<h:outputText value="#{shoppingCart.units}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Unit price"/>

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER350

</f:facet>
<h:outputText value="#{shoppingCart.unit_price}"/>
</h:column>
<h:column>
<h:commandLink action="#{OrderJSFBean.removeFromCart}" value="Delete">
<f:param name = "itemId" value = "#{shoppingCart.book_id}"/>

</h:commandLink>
</h:column>

</h:dataTable>
<p/>
<h:commandButton action="#{OrderJSFBean.ProceedToCheckout}" value=➥

"Proceed to checkout"/>
<h:commandButton action="continue" value="Continue shopping"/>
</h:form>
</f:view>

As you can see, the showcart.jsp shown in the listing lets you look through the contents
of the shopping cart and remove an item or items if necessary. Then, you can place the order,
which will automatically empty the cart.

Creating Security Pages
Now, let’s create pages required to perform form-based authentication. Listing 14-7 shows the
source for the login.jsp page.

Listing 14-7. Source Code for the login.jsp Page

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>
<html>
<head><title>Login Page</title></head>
<h2>Please login:</h2>
<form method="POST" action="j_security_check">
<p>Enter Customer ID: <input type="text" name="j_username" size="25"></p>
<p>Enter Password:<input type="password" size="15" name="j_password"></p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
</html>

If authentication fails, the login_error.jsp page should appear. Listing 14-8 shows the
source for this page.

Listing 14-8. Source Code for the login_error.jsp Page

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<head><title>Login error page</title></head>
<body>

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 351

<c:url var="url" value="index.faces"/>
<h2>User name or password is wrong.</h2>
<p>Please enter a valid user name and password. ➥

Click here to ➥
try again.</p>

</body>
</html>

As you can see, the login_error.jsp page informs the user that authentication has failed
and offers to try again by clicking at the try again link.

Configuring the Application
Before you can package the application into the deployment archive, you need to create the
deployment descriptors: sun-web.xml and web.xml, as well as the configuration resource file:
faces-config.xml.

Listing 14-9 shows the source for the faces-config.xml configuration file.

Listing 14-9. Source Code for the faces-config.xml Configuration File

<?xml version="1.0"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
version="1.2">

<managed-bean>
<managed-bean-name>OrderJSFBean</managed-bean-name>
<managed-bean-class>ejbjpa.jsfbeans.OrderJSFBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
<managed-bean>

<managed-bean-name>book</managed-bean-name>
<managed-bean-class>ejbjpa.jsfbeans.BookJSFBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>
<navigation-rule>

<navigation-case>
<description>

By clicking the "Move to cart" button on the index.jsp page ➥
you move to showcart.jsp

</description>
<from-outcome>showcart</from-outcome>

<to-view-id>/showcart.jsp</to-view-id>
</navigation-case>
<navigation-case>

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER352

<description>
Clicking the "Continue shopping" turns you back to index.jsp ➥

showing the list of books available
</description>
<from-outcome>continue</from-outcome>

<to-view-id>/index.jsp</to-view-id>
</navigation-case>

</navigation-rule>
</faces-config>

Listing 14-10 shows what the web.xml web application deployment descriptor might
look like.

Listing 14-10. Source Code for the web.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ➥

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<security-constraint>
<web-resource-collection>
<web-resource-name>testing web app</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>testRole</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>
<login-config>
<auth-method>FORM</auth-method>
<realm-name>myjdbc</realm-name>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/login_error.jsp</form-error-page>

</form-login-config>
</login-config>
<security-role>
<role-name>testRole</role-name>

</security-role>
<servlet>

<display-name>FacesServlet</display-name>

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 353

<servlet-name>FacesServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>FacesServlet</servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.faces</welcome-file>
</welcome-file-list>
<ejb-ref>

<ejb-ref-name>ejb/CartBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<remote>ejbjpa.ejb.Cart</remote>

</ejb-ref>
<resource-ref>
<res-ref-name>jdbc/mysqlpool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
</web-app>

Finally, Listing 14-11 shows the source for the sun-web.xml runtime deployment
descriptor.

Listing 14-11. Source Code for the sun-web.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//➥
DTD Application Server 8.0 Servlet 2.4//EN" ➥
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-0.dtd">
<sun-web-app>
<context-root>/sampleapp</context-root>
<security-role-mapping>

<role-name>testRole</role-name>
<group-name>testRole</group-name>

</security-role-mapping>
</sun-web-app>

Now that you have all the files in place, you can move on and pack them into a deploy-
ment package. To achieve this, you have to change directory for sampleapp\target and issue
the following command:

jar cvf jsfapp.war .

Then, you can deploy the archive as follows:

asadmin deploy jsfapp.war

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER354

Summary
In this chapter, you completed the sample discussed throughout the book. You saw how the
JavaServer Faces technology might be used to implement the presentation tier of a Java EE
application, utilizing enterprise beans encapsulating the application’s business logic.

In the next chapter, you will test the sample application completed here, figuring out
what might be changed to improve efficiency.

CHAPTER 14 ■ BUILDING THE PRESENTATION TIER 355

Testing the Application

The final step involved in the development cycle is to test the application to make sure every-
thing works as expected. After performing a test, you may want to make some changes or
additions to the application to improve its functionality.

In this chapter, you will test the sample built throughout the book. For that, you will need
to perform a set of steps typically carried out at the testing stage. In particular, during the
course of the chapter, you will do the following:

• Launch the sample application

• Test the sample’s functionality

• Modify some of the sample’s components to improve their functionality

Put simply, in this chapter you will test the functionality and behavior of the sample and
then modify some application components as necessary.

Launching the Sample Application
Now that you have built the sample, you need to test it. The first step in this process is launch-
ing the application.

Before you can launch the application, make sure your application server is running.
Otherwise, you need to start it. As you might recall from the first chapters of this book, you can
do this with the following command issued from the command line:

asadmin start-domain domain1

Assuming you have deployed the sample as discussed at the end of the preceding chapter,
you can now launch it by pointing your browser here:

http://localhost:8080/sampleapp/index.faces

You might be wondering why index.faces is specified in the URL instead of index.jsp,
which is actually used in the application. The .faces extension is used here to activate the JSF
servlet, which then replaces faces with jsp behind the scenes. Returning to Listing 14-10 in
the preceding chapter, take a closer look at the servlet-mapping element in the web.xml
deployment descriptor file. To recap, it should look as follows:

357

C H A P T E R 1 5

<servlet-mapping>
<servlet-name>FacesServlet</servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>

As you can see, a suffix mapping is used here.

Log In to the Sample
It’s interesting to note, however, that pointing your browser to http://localhost:8080/
sampleapp/index.faces won’t lead to loading the index.jsp page. Instead, you first will be
taken to the login.jsp page, as shown in Figure 15-1.

Figure 15-1. The login page of the sample

The login.jsp page is loaded because you specified it as the login form in the web.xml
descriptor, back in Listing 14-10:

<login-config>
<auth-method>FORM</auth-method>
<realm-name>myjdbc</realm-name>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/login_error.jsp</form-error-page>

</form-login-config>
</login-config>

CHAPTER 15 ■ TESTING THE APPLICATION358

Also note that the login_error.jsp page is specified as the error page that will be dis-
played upon authentication failure. If authentication is successful, you will be taken to the
index.jsp page.

Now that you know how the authentication mechanism used here works, let’s try it. In the
Enter Customer ID field, type 2, and in the Enter Password field, type medicapswd. Then click
the Submit button.

Filling Up the Shopping Cart
If authentication was successful, you should see the index.jsp page shown in Figure 15-2.

Figure 15-2. The index page of the sample, showing all the books available

In this page, you can look through the entire list of books and move the book or books of
interest to the shopping cart.

Looking Through the Cart Items and Placing an Order
After you have filled up the cart, you can move on to the cart page by clicking the Move to
Cart button on the index.jsp page. When loaded, the showcart.jsp page might look like
Figure 15-3.

CHAPTER 15 ■ TESTING THE APPLICATION 359

Figure 15-3. The shopping cart page of the sample, showing the items selected

On the showcart.jsp page, you can remove a cart item by clicking the corresponding
Delete link. Finally, you can place an order by clicking the Proceed to Checkout button. Since
this is a simplified example, the order is placed immediately after the Proceed to Checkout
button is clicked—no confirmation dialog boxes appear.

Testing the Functionality of the Sample
Unfortunately, some application components, when utilized within the application, may
behave differently from what you expect, and this is hard to predict in advance.

In the following section, you will take a closer look at the sample behavior, trying to iden-
tify weaknesses in the design and implementation.

Finding Weaknesses
A more detailed test of the sample shows the following weaknesses:

• If an item is already in the cart and you click its Add to Cart link on the index.jsp page,
then all the items shown in showcart.jsp will disappear.

• After clicking the Proceed to Checkout button, you won’t be able to choose an item that
was in the cart when you started placing the order.

Let’s take a closer look at what the application is actually doing and why it encounters
these troubles. A simple analysis shows that a problem arises when you try to add the same
item to the cart for the second time. It’s interesting to note that even if you have placed an
order, which automatically removes the corresponding records from the shoppingcarts under-
lying table, it doesn’t empty the persistence context associated with the CartBean stateful
session bean instance being employed by the application.

CHAPTER 15 ■ TESTING THE APPLICATION360

Fixing the Problems
To fix the problems outlined in the preceding section, you will need to make some changes to
the CartBean enterprise bean originally created as discussed in Chapter 12.

Listing 15-1 shows the updated CartBean stateful session bean. For your convenience, the
code added or modified is highlighted in bold.

Listing 15-1. Source Code for the Updated CartBean Stateful Session Bean

package ejbjpa.ejb;
import java.util.List;
import javax.ejb.Remove;
import javax.ejb.Stateful;
import javax.ejb.EJBException;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;
import ejbjpa.entities.*;
@Stateful
public class CartBean implements Cart {
@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager em;
Integer custId;
List<ShoppingCart> items;
public void initialize(Integer cust_id) {
if (cust_id == null) {
throw new EJBException("Null cust_id provided.");
} else {

custId = cust_id;
}
}
public void addItem(String item_id, Integer quantity, Double price) {
ShoppingCart cart = (ShoppingCart) em.find(ShoppingCart.class, ➥
new ShoppingCartKey(custId, item_id));
if(cart != null)
{
em.remove(cart);
em.flush();

}
cart = new ShoppingCart();
cart.setCart_id(custId);
cart.setBook_id(item_id);
cart.setUnits(quantity);
cart.setUnit_price(price);
em.persist(cart);

}
public void removeItem(String item_id) {
ShoppingCart cart = (ShoppingCart) em.find(ShoppingCart.class, ➥

CHAPTER 15 ■ TESTING THE APPLICATION 361

new ShoppingCartKey(custId, item_id));
if(cart == null){
throw new EJBException("This item is not in cart.");
} else {
em.remove(cart);
}

}
public List<ShoppingCart> getItems() {

items = (List<ShoppingCart>)em.createQuery("SELECT s FROM ShoppingCart s ➥
WHERE s.cart_id =:cust_id")

.setParameter("cust_id", custId)

.getResultList();
em.clear();
return items;

}
@Remove
public Integer emptyCart() {
Integer num =0;
num = em.createQuery("DELETE FROM ShoppingCart s WHERE s.cart_id =:cust_id")

.setParameter("cust_id", custId)

.executeUpdate();
return num;

}

@Remove
public void clearCartInstance() {
}
}

Now you should recompile the CartBean.java file, re-create the appejb.jar deployment
package, and redeploy it to the application server. Also, make sure to re-create the jsfapp.war
web application package, replacing the appejb.jar lib file with the newly created one. Then,
you will need to redeploy jsfapp.war.

Once you’re done with it, you can launch the sample again. This time everything should
work as expected.

Summary
In this chapter, you looked at the sample application in action. However, the first test showed
that the application does not always behave as expected. So, you had to return to the CartBean
stateful enterprise bean and make some slight changes to it to fix the situation.

CHAPTER 15 ■ TESTING THE APPLICATION362

Appendix

P A R T 7

Getting Familiar with Relational
Databases

The last example in Chapter 3 shows how the EJB 3 and JPA technologies can be used
together, providing a standard yet easy-to-use way of interacting with the underlying database
from within a Java EE application. In that example, you use a simple Derby database contain-
ing a single table. It is fairly obvious, however, that real-world applications utilize much more
complicated relational database structures built on popular open source and commercial
RDBMS platforms.

In this appendix, you first will look at why databases are different from one another and
why you might prefer one over another. Then, you will look at the SQL database language,
which provides the most common way of interacting with relational databases. Finally, you
will learn some interesting details about using management tools shipped with your data-
bases, which allows you to improve your experience of using these tools.

To summarize, here is a list of what you will have learned after reading this appendix:

• How to choose an appropriate database for your application

• Why databases are different

• What SQL is and how to use this database language

• How to use management tools shipped with your database

Although there are dozens of databases, the examples provided in this appendix are based
on perhaps the most popular two: MySQL and Oracle. If you have already gotten your feet wet
with relational databases and perhaps have had a project or two with both MySQL and Oracle,
you may not be interested in the material provided here.

The appendix assumes you have already installed MySQL and Oracle Database XE or
any other edition of Oracle Database. If not, you can refer to Chapter 1 for the installation
instructions.

365

A P P E N D I X

What Database to Choose?
When choosing a database platform for your application, you should clearly understand the
following:

• The underlying database is an integral part of your application.

• Databases are different in architecture they implement.

• Each database offers a different set of features and has different capabilities.

It’s interesting to note that each of these statements could be followed by this sentence:
therefore, you should choose the database that suits the needs of your application best. The
following sections explain these statements in more detail.

The Underlying Database Is Part of the Entire Solution
When designing an application interacting with a database, an important thing to understand
is that the underlying database is an integral part of the entire solution being designed.

This is best understood by example. Suppose your application operates on purchase
orders stored in two tables: orders and items, generating reports and printed forms of orders
based on the information stored in these tables. One of the common tasks performed by the
application when preparing the printed form of an order is calculating the total sum of that
order based on the quantities, item prices, and shipping and handling figures. Actually, there
are several ways in which you can accomplish this task. The most significant two scenarios are
discussed in this section.

Scenario 1 assumes that the application obtains the required figures from the database,
calculating the results in Java. Using JPA, you will need to establish a one-to-many relation-
ship between the Order and Item entities. Then, you will loop through the Item entities
representing the items of an order of interest, getting the cumulative result at the end. The
problem of mapping JPA entities is discussed in Chapter 9. Then, Chapter 10 explains in
detail how to manipulate entities with EntityManager.

Scenario 2 assumes that all the computing takes place inside the database, returning the
resultant figure to the calling Java code. To make the database server perform this computing,
you might issue a complex SQL query employing the SUM SQL aggregate function and a sub-
query. Another approach to this problem is to create a stored function performing all the
required computation within the database. The problem of moving key business logic of an
application into the database is further discussed in Chapter 4 and Chapter 5.

Both of these scenarios are depicted in Figure A-1, which illustrates that a significant part
of the business logic in a database-based application can be moved inside the underlying
database:

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES366

Figure A-1. A significant part of the business logic in a database-backed application may be
implemented inside the database.

This figure shows you that some business logic of your application interacting with a
database may be and often should be moved to the database tier, thus making the underlying
database an integral part of the entire solution.

Understanding the Architecture of Your Database
Nowadays, when the SQL database language is used as a standard and is the most popular
way to interact with a relational database whatever platform it belongs to, you might assume
all databases implement a similar architecture and are different only in a set of features
provided.

This would be a false assumption, though. Of course, in the case of GlassFish, you gener-
ally don’t have to worry about the specifics of the underlying database you’re using with your
application. This is because the TopLink framework used in GlassFish smoothes out all the
major differences between databases. For example, you don’t have to worry about how your
application establishes a connection to the underlying database. Once you have set the data
source, the application server will be responsible for establishing and pooling database con-
nections, without you doing a thing. However, there are still several issues arising from the
architectural differences between databases. What this means in practice is that it is still
highly recommended that you understand the architecture of the database of your choice.

Returning to MySQL and Oracle, let’s look at a simple example illustrating some differ-
ences between these databases, which you need to know about. In particular, let’s look at the
ways in which database objects created by a user are logically organized in each of these
databases.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 367

How User Database Objects Are Organized in MySQL
When you want to define custom database objects in MySQL, such as tables and views to be
then utilized within your application, you first need to perform the following three steps:

1. Create a database (schema) on the server.

2. Create a user to interact with the database.

3. Grant the privileges to the user to perform required operations on the database.

■Note The following discussion assumes you have your MySQL server up and running. This is most likely
the case if you agreed to start the server automatically at boot time, during the MySQL server installation.
For more details, you can refer to Chapter 1. Also, you can refer to the MySQL documentation at http://
www.mysql.com/doc/en/index.html.

The first step is to connect to the running server via the MySQL command-line client, log-
ging in as the root user. Assuming you are in the mysql/bin directory or that this directory is
included in the PATH environment variable, you can issue the following command from a com-
mand prompt:

mysql -u root -p

You will be prompted to enter the root password specified during the MySQL server
installation:

Enter password: ****

After you have entered the password, the mysql> prompt appears, allowing you to issue
commands against the server.

■Caution The following discussion explains how to create the mydb database and usr user account in
your MySQL server. The problem, though, is that you should already have them set if you followed the
instructions provided in Chapter 1. To prevent an error from occurring, you start by issuing the DROP
DATABASE and DROP USER statements in the following listings. However, if you haven’t set the mydb data-
base and usr user account yet, you can disregard the DROP statements in the following listings.

Now you are ready to create a new database. When issued, the statement shown in
Listing A-1 creates a database named mydb.

Listing A-1. Creating a New Database on the MySQL Server

DROP DATABASE IF EXISTS mydb
CREATE DATABASE mydb;

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES368

Alternatively, you could issue the following statement:

DROP SCHEMA IF EXISTS mydb
CREATE SCHEMA mydb;

To make sure the database has been created, you can issue the following command:

SHOW DATABASES

This should output the databases that already exist:

Database

information_schema
mysql
mydb
test

Note that the result includes several databases, most of which are predefined, installed
during the server installation. The newly created mydb database is highlighted in bold.

Now that you have created the database, you need to create a user account that will be
used to interact with that database. Assuming you are still connected to the server as the root
user (alternatively you might be connected as another user granted the GRANT OPTION privi-
lege), you can issue the query shown in Listing A-2.

Listing A-2. Creating a New User Account and Granting It the Required Privileges

DROP USER 'usr';
DROP USER 'usr'@'localhost';
GRANT CREATE, ALTER, DROP, SELECT, UPDATE, INSERT, DELETE
ON mydb.*
TO 'usr'@'localhost'
IDENTIFIED BY 'pswd';

The GRANT query shown in the listing accomplishes the following two tasks: creates the
user account usr and grants to it the privileges required to work with the mydb database when
connecting from the localhost. This assumes your application server and MySQL server reside
on the same computer. In that case, limiting users to connect only from localhost is often a
good security practice.

After you have created a user account, you can grant or revoke privileges to/from it at a
later time. It is important to note that you are not limited to granting privileges to a user only
on the resources created within a single database. You may grant to a user privileges on the
resources located in different databases. For example, you might let the usr user select from
the db predefined table located in the mysql database:

GRANT SELECT
ON mysql.db
TO 'usr'@'localhost'

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 369

Now you can connect as usr from a new terminal:

mysql -u usr -p
Enter password: ****

and instruct MySQL to use the mydb database:

use mydb

Then you can issue the following query:

SELECT host, db, user FROM mysql.db

This should produce the following output:

host | db | user
--
localhost | mydb | usr

The previous example illustrates that a single user account can be granted the privileges
allowing it to access database server resources stored in various databases. Figure A-2 gives a
graphical depiction of this architecture.

Figure A-2. Client applications connect to the MySQL server using a user account defined on the
server.

As you can see in the figure, a client application connects to the server using one of the
user accounts available. Accounts are different in the set of privileges they are granted. There
may be accounts that allow the users connected through them to access only the resources
belonging to a certain database. On the other hand, there may be accounts that are granted

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES370

permissions to access the resources stored in more than one database. Also, this figure doesn’t
show the root user account that is used by the administrator to perform administrative tasks
and that is allowed to perform any operations on the resources stored in any database on the
server.

■Note For more information on granting privileges to MySQL users, you can refer to the MySQL documen-
tation’s “SQL Statement Syntax” chapter, specifically, the section “GRANT Syntax.” In this section, you will
also find the entire list of privileges you can grant to a user account in MySQL.

You should now have a general idea of how data is logically organized in MySQL and how
you can access that data. By now, you should know what the term database means in the con-
text of MySQL and how to create one to be then utilized within your application.

How User Database Objects Are Organized in Oracle
Now, let’s look at how things work in Oracle. To understand this, you first need to get at least a
cursory knowledge of the Oracle architecture. In particular, you need to learn what the terms
instance and database mean in Oracle. As you will learn in this section, the term database in
the context of Oracle means a different thing than it means in the context of MySQL.

In simple terms, an Oracle database is simply a collection of database files that hold the
database data and metadata. But what good is a set of files simply stored on disk if you have
no mechanism to manage them? An instance comes to the rescue here. An Oracle database
instance represents a set of operating system processes running on your machine and a
shared memory pool used by those processes, making it possible for users to access the
database mounted by the instance. An instance can mount a single database, as shown in
Figure A-3.

Figure A-3. An Oracle database instance can be used to mount and open a single database.

As you can see, the figure shows the one-to-one relationship between an instance and
database, which is the most common type of relationship here.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 371

■Note It is interesting to note, though, that in some cases a database may be mounted and opened by
more than one instance. The Oracle Real Application Clusters (RAC) technology assumes that a database can
be manipulated by several instances simultaneously. For further information, you can refer to Oracle Data-
base documentation. To find the documentation release corresponding to your Oracle Database release, you
can visit the Oracle Documentation page at http://www.oracle.com/technology/documentation/
index.html. You can find the Oracle Database documentation library corresponding to the most recent
release of Oracle Database at http://www.oracle.com/technology/documentation/database.html.
On this page, you can also find a link to the Oracle Database Express Edition (XE) Documentation page.

So, to make an Oracle database available for use, the following general steps must be
performed:

1. Start an instance.

2. Mount the database.

3. Open the database.

It is important to note that Oracle can automatically perform the last two tasks when you
start an instance. That means all three tasks can be performed in one step. One way to do this
is to issue the STARTUP command from SQL*Plus, which is the Oracle SQL command-line tool
bundled with all editions of Oracle Database. When executed, STARTUP starts an instance and
reads a default initialization parameter file that contains the information required to find the
database files and then mount and open the database specified in that file.

■Note Actually, you can start an instance without mounting a database or start an instance and mount a
database without opening it. For example, you might want to choose the latter when you need to perform full
database recovery. In most cases, though, you use a mounted and opened database.

The good news is that you most likely will not need to manually start an Oracle database
instance with the STARTUP command when you need to make the database available for users
to connect to it and then access it. If you are a Windows user, your Oracle database will be
started with the services set up during the database installation. In the case of Oracle Data-
base XE, these are the following services:

• OracleServiceXE representing your Oracle database instance

• OracleXETNSListener representing the Oracle listener that enables clients to connect to
the database

By default, the Startup Type property of these services is set to Automatic, which means
they will automatically start upon starting the operating system, without you doing a thing.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES372

In Linux, during the Oracle database software installation, you are asked whether you
want the database to start automatically upon starting the computer. If your answer is Yes, you
will have the database server up and ready for use every time the computer starts.

Now that you have a rough idea of how Oracle makes a database available for use, how
can you create one? When installing an Oracle database server, a starter database is installed
by default (you can turn off this option, though, for most editions of Oracle database). After
the installing Oracle database server software, if needed, you can create a new database with
the CREATE DATABASE command. However, this probably will not be the first thing you might
want to do, if ever. In Oracle, the CREATE DATABASE command should be used with care, since it
may erase existing data files, preparing them for initial use. The Oracle’s CREATE DATABASE has a
lot of ramifications, which you should know about before you use the command. Once you
have created a new database, you will need to mount and open it with an instance to make it
available for use.

Unlike in MySQL, when you need to create a working area for a new user in Oracle, you
create a new user schema within an existing database with the CREATE USER statement.
Listing A-3 shows how it could be done.

Listing A-3. Creating a New User Schema and Granting It the Required Privileges

CONNECT /AS SYSDBA
DROP USER usr;
CREATE USER usr IDENTIFIED BY pswd;
GRANT connect, resource TO usr;

In this example, you first connect to your Oracle Database instance as a privileged default
user with AS SYSDBA, actually connecting to the default schema SYS. Then, you drop the user
schema usr in the case you have it created. Next, you create a new user schema usr with pass-
word pswd. Finally, you grant the privileges to the newly created user so that it can connect to
the database and create resources in the schema being created. Now you might want to select
the information from the predefined DBA_USERS view to make sure the usr user schema has
been successfully created:

SELECT username, created FROM dba_users;

■Note In MySQL, you would most likely issue both the SELECT user FROM mysql.user and SHOW
DATABASES statements in this situation in order to obtain information about users and databases that can be
used by those users. In Oracle, you obtain the information only about users because each user account is
given a working area by default. When you grant a user to the RESOURCE role, you actually enable it to create
and manipulate database objects in its working area.

The output might look like this:

USERNAME CREATED

USR 12-DEC-07

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 373

SYS 25-NOV-07
SYSTEM 25-NOV-07
ANONYMOUS 25-NOV-07
HR 25-NOV-07
MDSYS 25-NOV-07
OUTLN 25-NOV-07
DIP 25-NOV-07
TSMSYS 25-NOV-07
FLOWS_FILES 25-NOV-07
CTXSYS 25-NOV-07
DBSNMP 25-NOV-07
XDB 25-NOV-07

This output shows all the schemas presented in the database. The newly created usr
schema is highlighted in bold. All the other schemas are predefined Oracle schemas created
during installation. Note that all these schemas are located within a single database, which is
the one that is mounted and opened by the instance you’re using now.

It is important to realize that even if you create a new database, you will have to create a
new user schema within it anyway, unless you want to use a predefined one, which is not rec-
ommended, of course. The fact is that Oracle doesn’t allow you to create tables and other
database objects directly in a database. Instead, you create them in a certain user schema cre-
ated within your database. So, in Oracle it’s OK if you have a single database with a number of
user schemas defined within it. Client applications use an appropriate schema to connect to
the database and access its resources. Graphically, this might look like Figure A-4.

Figure A-4. Database clients connect to the database using a user schema defined within that
database.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES374

As noted earlier, you grant privileges to a user schema so that the clients using this schema
can perform the tasks they need to accomplish. It is interesting to note that a user schema
may be granted the rights to access database objects defined within another user schema. For
example, you could grant the SELECT privilege on the departments default table located in the
hr demonstration schema to a custom schema, say, usr:

CONN /AS SYDBA
GRANT SELECT ON hr.departments TO usr;

After that, you could connect as usr and issue the following statement against the
hr.departments table:

CONN usr/pswd
SELECT * FROM hr.departments;

In this example, hr is followed by departments, explicitly telling Oracle that the
departments table can be found in the hr schema.

■Note For more information on granting privileges and roles, you can refer to the “Authorization: Privi-
leges, Roles, Profiles, and Resource Limitations” chapter in the Oracle Database Security Guide.

That concludes this concise discussion on how user database objects are logically organ-
ized in the MySQL and Oracle databases. By now, you should have a clear understanding that
the term database means different things, depending on the database platform you’re using.
To create a new working area for a user account in MySQL, you create a new database with the
CREATE DATABASE statement. To achieve this same goal in Oracle, you create a new user schema
within an existing database with the help of the CREATE USER statement.

Knowing Your Database Features
As you learned in the preceding sections, databases may differ in the way they organize custom
data, and even fundamental terms, such as database, may have different meanings in different
database platforms. However, this is not the only part of what distinguishes databases from
one another. Although all databases are designed to store and retrieve information, a set of the
features provided may vary a lot from database to database.

The best way to learn what features are available is to look at the vendor documentation.
For example, to find out what features are available in MySQL, you might visit the MySQL Ref-
erence Manual page at http://www.mysql.com/doc/en/index.html and look through the TOC
of the MySQL Reference Manual.

This way, you will discover that MySQL lets you create stored programs and triggers, thus
making it possible for you to implement key business logic of your application inside data-
base. You can find some examples of MySQL stored routines in Chapter 6 of this book.

Scrolling down the MySQL Reference Manual TOC, you will learn that MySQL supports
several storage engines, allowing you to handle both the transaction-safe and non-transac-
tion-safe tables. Then, you will notice that MySQL supports enterprise-level features such as
Replication and MySQL clusters.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 375

To learn what features are available in Oracle, you might look at the book titles included
in the Oracle Database Documentation Library. To start with, you might visit the Oracle Data-
base Documentation page at http://www.oracle.com/technology/documentation/database.
html. On this page, you should follow the View Library link to move on to the Oracle Database
Documentation Library page, which in turn should contain the Master Book List link that
brings you to the page containing the Oracle Database Documentation book titles.

Looking at the list of book titles, you may notice that Oracle Database is unparalleled in
terms of the features provided. Aside from enterprise-level features such as Replication and
Oracle Real Application Clusters (RAC), you may spot some features that you might want to
use even when you are building a simple Oracle-backed application, such as PL/SQL, an
Oracle database programming language that you might want to use when developing stored
procedures and triggers. You can see PL/SQL in action in Chapter 6 of this book.

Another interesting Oracle feature you may know about when examining the documenta-
tion is Oracle XML DB, which actually represents a wide set of Oracle XML features that allow
you to store, retrieve, update, and transform XML data and generate it from relational data.
The purpose of Oracle XML DB is to simplify working with XML data, which, in the case of an
XML-enabled application, lets you move a large amount of XML processing into the database.

It is interesting to note that, unlike Oracle, MySQL doesn’t provide native XML support.
So, if you choose MySQL as the underlying database for the application that operates on XML
data, then you will have to implement logic performing XML processing in Java rather than
employing the predefined solutions provided by the database. In that case, you will need to
worry about shredding XML into relational data each time you have to persist it, as well as
performing an inverse operation each time you have to extract XML from relational data
stored in the database.

Although developing XML-enabled applications is beyond the scope of this book, the pre-
vious example perfectly illustrates that databases differ in the features they provide, so it is
always a good idea to take some time to examine the documentation of several database ven-
dors when deciding what database to choose as the back end for your application.

Using the SQL Database Language
As noted earlier, SQL provides a standard way to interact with a relational database. The fol-
lowing sections provide you with a brief introduction to SQL and its syntax, giving examples of
the most commonly used SQL statements when interacting with MySQL and Oracle.

What Is SQL?
SQL stands for Structured Query Language. Being a nonprocedural language, SQL lets you
define an instruction usually called a SQL statement to be issued against the database,
describing the operation you want to be done. The SQL compiler then translates the state-
ment into the code necessary to perform the desired task and execute it against the database.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES376

■Note Despite that SQL is the standard language in all the major RDBMS systems today, many database
tools allow you to interact with the database without explicitly building SQL statements. One of those tools is
the TopLink Essentials used in GlassFish as the JPA implementation. As explained in Chapter 3, JPA doesn’t
require you to manually design SQL queries, leaving the details to the framework (TopLink Essentials in this
case). It is important to realize, though, that tools like TopLink Essentials implicitly generate SQL statements
and issue them against the database to fulfill the application’s requests.

Although SQL is a standard language accepted by both ANSI and ISO, many database ven-
dors add vendor-specific proprietary extensions to their implementations of SQL to increase
the functionality provided. What this means is that each vendor uses its own SQL dialect to
enhance the standard language. The easiest way to understand that SQL dialects used in dif-
ferent databases have some differences is by example. Just connect to your MySQL server as
any user via the MySQL command-line client tool, and then issue the following command:

use

In response, MySQL should generate the following error message:

ERROR:
USE must be followed by a database name

This tells you that the USE statement exists in MySQL SQL dialect and must be followed by
a database name.

Now if you connect to an Oracle database server with Oracle SQL*Plus and then issue the
same command, you will see the following error message:

SP2-0042: unknown command "use" – rest of line ignored.

As you can see, Oracle SQL doesn’t understand the USE statement. And this is not the only
difference, of course. Some SQL statements are used in both databases but have a different
syntax in each database when it comes to the clauses you can use with those statements. You
already saw an example of using the CREATE DATABASE statement in MySQL. Unsurprisingly,
this statement offers another set of branches in Oracle. As you might recall from the earlier
section “Understanding the Architecture of Your Database,” in Oracle the term database is
treated differently than in MySQL. That is why in Oracle the CREATE DATABASE statement serves
another purpose than it does in MySQL.

Categories of SQL Statements
Depending on the tasks they perform, SQL statements can be divided into several groups.
Here are the most important categories of SQL statements:

• Data Definition Language (DDL) statements

• Data Manipulation Language (DML) statements

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 377

• Transaction management statements

• Database administration statements

Note, however, that vendor documentation will most likely give you a more detailed list
specific to a particular database. For example, the Oracle documentation introduces the ses-
sion control statements and embedded SQL statements categories in the list.

The following sections discuss the categories specified in the previous list, providing
examples in both MySQL and Oracle as appropriate.

Performing DDL Operations
It is fairly obvious that before you can manipulate database data, you first need to create the
database structures required to store that data. To address these needs, SQL provides DDL
statements. Table A-1 lists the most commonly used DDL statements.

Table A-1. Most Commonly Used DDL Operations

DDL Operation Description

ALTER There is a set of statements beginning with ALTER, including ALTER DATABASE,
ALTER TABLE, and ALTER VIEW. You use an appropriate ALTER statement when you
need to change the structure of an existing database object.

CREATE There is a set of statements beginning with CREATE, including CREATE DATABASE,
CREATE TABLE, and CREATE VIEW. You use an appropriate CREATE statement when
you need to create a new database object.

DROP There is a set of statements beginning with DROP, including DROP DATABASE, DROP
TABLE, and DROP VIEW. As opposed to CREATE, you use an appropriate DROP
statement when you need to remove an existing database object.

GRANT Enables you to grant privileges to user accounts. In MySQL, it also lets you create
new user accounts.

REVOKE As opposed to GRANT, you use a REVOKE statement to revoke privileges granted to a
user account.

In the earlier section “Understanding the Architecture of Your Database,” you saw exam-
ples of the CREATE DATABASE and GRANT statements in action. In the following sections, you will
look at an example of how to create a single database table and then alter its structure, in both
MySQL and Oracle.

Examples of DDL Operations in MySQL
Assuming you have created the mydb database in MySQL as described in Listing A-1, you can
now create a table in that database. To do this, you first need to connect to your MySQL server
as the usr user, as described in Listing A-2, by issuing the following command from a terminal:

mysql -u usr -p
Enter password: ****

As a result, the mysql prompt should appear. In the mysql prompt, you should issue the
following command to instruct MySQL to use the mydb database:

use mydb

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES378

Now, you can create a table with the CREATE TABLE statement, as shown in Listing A-4.

Listing A-4. Creating an employees Table in MySQL

CREATE TABLE employees(
empno INTEGER AUTO_INCREMENT PRIMARY KEY,
firstname VARCHAR(24) NOT NULL,
lastname VARCHAR(24) NOT NULL,
salary NUMERIC(10, 2) NOT NULL,
hiredate DATE NOT NULL
)
ENGINE = InnoDB;

If everything is OK, you should see the following message:

Query OK, 0 rows affected (0.11 sec)

Note the use of the AUTO_INCREMENT attribute in the previous statement. When specifying
this attribute, you instruct MySQL to automatically generate a unique identity for each new
row. In this particular example, specifying AUTO_INCREMENT with the empno column instructs
MySQL to generate a subsequent integer value for this column each time you insert a new row.
In other words, you don’t need to worry about the value to insert for this column, since MySQL
will do it for you, inserting a subsequent integer.

Another thing to note in the previous statement is that you explicitly instruct MySQL to
use the InnoDB storage engine for the employees table being created, making it possible to use
this table for storing the data used in transaction processing applications.

After you have created a table, you can populate it with data, as will be discussed in the
“Performing DML Operations” section later in this chapter. Sometimes, however, you may
need to modify the structure of an existing table. If so, you can use the ALTER TABLE statement.
This statement has a great deal of branches, allowing you to perform a full set of alterations to
an existing table structure. To look at the entire list of options available, you can refer to the
MySQL documentation, specifically, the section “ALTER TABLE Syntax” in the chapter “SQL
Statement Syntax.” The following example illustrates how you could drop the primary key of
the employees table created earlier in this section, with the help of the ALTER TABLE statement.
First, you need to drop the AUTO_INCREMENT attribute. This could be done as follows:

ALTER TABLE employees MODIFY empno INTEGER;

Then, you can drop the primary key with another ALTER TABLE statement:

ALTER TABLE employees DROP PRIMARY KEY;

If the employees table has been successfully altered, each of the previous statements
should generate the following message:

Query OK, 0 rows affected (0.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 379

Now if you issue the DESCRIBE statement to obtain information about the columns in the
employees table, you should see the following output:

Field Type Null Key Default Extra

empno int(11) No 0
firstname varchar(24) No
lastname varchar(24) No
salary decimal(10,2) No
hiredate date No

As you can see, the empno column is not the primary key column anymore, and the
AUTO_INCREMENT attribute originally specified on this column is gone too.

Turning the primary key and AUTO_INCREMENT attribute back is surprisingly easy. To do this,
you can issue the following ALTER TABLE statement:

ALTER TABLE employees MODIFY empno INTEGER AUTO_INCREMENT PRIMARY KEY

To make sure the primary key and AUTO_INCREMENT attribute have been set on the empno
column again, you can issue the DESCRIBE statement:

Field Type Null Key Default Extra

empno int(11) NO PRI NULL auto_increment
firstname varchar(24) NO
lastname varchar(24) NO
salary decimal(10,2) NO
hiredate date NO

This example illustrates how you might define a primary key on an existing table with the
help of the ALTER TABLE statement.

Examples of DDL Operations in Oracle
Now that you have seen a few examples of DDL operations in MySQL, let’s look at how these
things work in Oracle. For that, you first need to connect to the Oracle server with SQL*Plus
as the usr user created in Listing A-3 earlier in this appendix. To do this, you can issue the
sqlplus command from a terminal window:

sqlplus

and then enter the username and password:

Enter user-name: usr
Enter password:

After you have connected, you can create an employees table in the usr schema by issuing
the statement shown in Listing A-5.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES380

Listing A-5. Creating an employees Table in MySQL

CREATE TABLE employees(
empno NUMBER(6) PRIMARY KEY,
firstname VARCHAR2(24) NOT NULL,
lastname VARCHAR2(24) NOT NULL,
salary NUMBER(10, 2) NOT NULL,
hiredate DATE NOT NULL
);

If everything is OK, you should see the following message:

Table created

Looking through this statement, you may notice that the data types used here are differ-
ent from those specified in the MySQL variation of the employees table created as shown in
Listing A-4 in the previous section. In particular, you may note that Oracle uses the NUMBER
datatype when it comes to defining numeric table fields, regardless of whether you are defin-
ing an integer or floating-point number column. When defining an integer number column,
you use the NUMBER(p) syntax, where p is the maximum allowed number of decimal digits. In
the case of a floating-point number column, you use the NUMBER(p, s) syntax, where s is the
number of digits from the decimal point.

Also you may note that the Oracle variation of the employees table uses the VARCHAR2
datatype rather than VARCHAR. The fact is that the Oracle documentation encourages you to do
so. For further details, you can refer to the Oracle Database SQL Reference Manual, specifi-
cally, the “Oracle Built-in Datatypes” chapter.

Taking the course of the MySQL example discussed earlier in this section, you might want
to look at how the ALTER TABLE statement can be used in Oracle. To drop the primary key, for
example, you might issue the following statement:

ALTER TABLE employees DROP PRIMARY KEY;

If the table has been successfully altered, you should see the following message:

Table altered

Note that, unlike the MySQL example discussed previously, you drop the primary key in
one step. This is because you don’t need to worry about removing the AUTO_INCREMENT attrib-
ute. The fact is that there is no such attribute in Oracle, and therefore, you cannot set it on or
remove it from a column. Instead, in Oracle you can use a sequence, which is a database object
allowing you to generate unique integers. To start with, you create a sequence as follows:

CREATE SEQUENCE empno_seq;

Once a sequence is created, you can use it when inserting a new row into the table. You
will see this technique in action in the next section.

Returning to the employees table, you can restore the primary key as follows:

ALTER TABLE employees MODIFY empno NUMBER(6) PRIMARY KEY;

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 381

This ALTER TABLE statement modifies the empno column, setting it to NUMBER(6) and defin-
ing a primary key on it.

Performing DML Operations
Data Manipulation Language (DML) operations allow you to access and manipulate database
data. Table A-2 lists the most commonly used DML statements.

Table A-2. Most Commonly Used DML Operations

DML Operation Description

SELECT Retrieves data from one or more database tables and/or views. SELECT may
include subqueries. Also, you may write a UNION query combining the results
from multiple SELECT statements.

INSERT Inserts new rows into a database table. You can use INSERT with SELECT to insert
new rows into a table from the dataset selected from another table or tables.

DELETE Deletes rows from a database table.

UPDATE Can be thought of as a delete followed by an insert operation. In the SET clause of
this operation, you define how the rows should be updated in the target table or
tables.

As you no doubt have realized, DML operations are used much more often in real life than
DDL operations. Really, you use a DDL only when you need to define a new database object,
say, a table, or when you need to modify the structure of an existing object. In other words,
DDLs are used to define or modify metadata, whereas DMLs are used every time you need to
retrieve from or save to the database a portion of the data your application is dealing with.

Examples of DML Operations in MySQL
Continuing with the example discussed in the previous sections, you might want to populate
the employees table with data. To do this, you might use the INSERT statement as shown in
Listing A-6.

Listing A-6. Inserting Rows into the employees Table in MySQL

INSERT INTO employees(firstname, lastname, salary, hiredate) VALUES ('Maya', ➥
'Silver', 3000, '2007-12-15'),('Bob', 'Browe', 3500, '2007-12-15');

This is an example of a multirow INSERT. If the rows have been successfully inserted, the
following message should be generated:

Query OK, 2 rows affected (0.04 sec)
Records: 2 Duplicates: 0 Warnings: 0

Now you can issue the SELECT statement against the employees table:

SELECT * FROM employees;

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES382

You should see the following results:

empno firstname lastname salary hiredate
--
1 Maya Silver 3000.00 2007-12-15
2 Bob Browe 3500.00 2007-12-15
2 rows in set (0.03 sec)

Although this SELECT statement retrieves all the rows in the employees table and shows all
the fields in each row, the following query selects only the employee whose empno is 1, display-
ing just the first three fields:

SELECT empno, firstname, lastname FROM employees WHERE empno=1;

The output should look like this:

empno firstname lastname

1 Maya Silver
1 row in set (0.00 sec)

In a real-world situation, however, you often need to issue a SELECT statement querying
more than one table. Typically, you have foreign key constrains established on such tables.
You can find some examples of how to set foreign keys and then issue multitable queries in
Chapter 5.

Examples of DML Operations in Oracle
Now let’s look at how the examples discussed in the preceding section might look in Oracle. To
start with, let’s populate the employees table with data. For this, you might issue the two INSERT
statements shown in Listing A-7.

Listing A-7. Inserting Rows into the employees Table in Oracle

INSERT INTO employees VALUES (empno_seq.NEXTVAL, 'Maya', 'Silver', 3000, ➥
'15-dec-2007'
INSERT INTO employees VALUES (empno_seq. NEXTVAL, 'Bob', 'Browe', 3500, ➥
'15-dec-2007');

If the rows have been successfully inserted, each of these statements should output the
following message:

1 row created.

As you can see, this example uses two INSERT statements to insert two rows into the
employees table. Unlike MySQL, Oracle doesn’t support multirow INSERT statements. But what
Oracle supports is multitable INSERTs that allow you to insert rows into one or more tables.
The structure of a multitable INSERT may be complicated, though, and is beyond the scope of

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 383

this section. If you want to learn more about the Oracle INSERT statement, you can refer to the
Oracle Database SQL Reference, specifically the “SQL Statements” chapter’s “INSERT” section.

Now that you have populated the employees table with data, you can issue the SELECT
statement against it:

SELECT * FROM employees;

This statement should generate the following result:

EMPNOFIRSTNAME LASTNAME SALARY HIREDATE

1 Maya Silver 3000.00 15-DEC-2007
2 Bob Browe 3500.00 15-DEC-2007

2 rows selected

Like in the MySQL example discussed in the preceding section, you can also issue the
SELECT statement that selects only the rows that satisfy the condition specified in the WHERE
clause of the statement, as well as display only the columns specified in the select list. For
example, to obtain information about the employee whose empno is 1 and display just the first
three fields of the record, you might issue the following SELECT statement:

SELECT empno, firstname, lastname FROM employees WHERE empno=1;

The output should look like this:

empno firstname lastname

1 Maya Silver

Running ahead a little, it is interesting to note that Oracle automatically starts a transac-
tion when you perform your first executable SQL statement and ends it when you explicitly
commit or roll it back. What this means in this particular case is that the transaction automati-
cally opened by the first INSERT statement shown in Listing A-7 earlier in this section is not
committed yet. If, for example, you now connect to Oracle with another terminal as the usr
user and issue a SELECT statement against the employees table discussed here, you will find out
that the changes resulting from the INSERT statements performed in another session are not
visible within this new session. To make the changes made to the employees table permanent
and therefore visible to any other user’s statements, you need to explicitly commit the transac-
tion by issuing the COMMIT statement from within the same terminal window and in the same
session (that is, you didn’t reconnect to the server) in which you issued INSERT statements:

COMMIT

After that, the changes made to the employees table by the INSERT statements become
permanent.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES384

Performing Transaction Management Statements
As their name implies, the transaction control statements are used to manage transactions.
The fact is that the list of transaction management statements used in MySQL is slightly differ-
ent from that used in Oracle. This is mostly because these databases use different models
when it comes to transaction management. To make a long story short, MySQL uses the auto-
commit mode by default, automatically committing the changes made by each successful
DML operation. In contrast, Oracle expects you to explicitly commit a transaction.

Table A-3 lists the transaction management statements used in MySQL.

Table A-3. The Transaction Control Statemements Used in MySQL

Transaction Operation Description

SET AUTOCOMMIT Lets you to disable the autocommit mode, which is used in MySQL by
default. To do this, you issue SET AUTOCOMMIT = 0.

START TRANSACTION Disables autocommit until you explicitly end the transaction with COMMIT
or ROLLBACK.

SAVEPOINT Enables you to set a point in a transaction to which you will be able to roll
back later.

COMMIT Commits the current transaction, making the changes made in that
transaction permanent.

ROLLBACK Rolls back the current transaction, disregarding the changes made in it.
You can use the ROLLBACK TO SAVEPOINT statement to roll back a transac-
tion to the named savepoint set earlier with the SAVEPOINT statement.

Table A-4 lists the transaction management statements used in Oracle.

Table A-4. The Transaction Control Statements Used in Oracle

Transaction Operation Description

SET AUTOCOMMIT Enables you to specify how pending changes will be committed to the
database. Actually, this is not an Oracle Database command. Rather, this is
an Oracle SQL*Plus command.

SET TRANSACTION Enables you to explicitly begin a transaction, establishing characteristics
of it as needed. For example, you might instruct Oracle to begin a read-
only transaction.

SAVEPOINT Enables you to set a point in a transaction to which you will be able to roll
back later.

COMMIT Commits the current transaction, making the changes made within that
transaction permanent.

ROLLBACK Rolls back the current transaction, disregarding the changes made in it.
You can use ROLLBACK TO SAVEPOINT statement to roll back a transaction
to the named savepoint set earlier with the SAVEPOINT statement.

As you can see, Oracle, unlike MySQL, doesn’t use the START TRANSACTION statement. As
stated earlier, Oracle implicitly begins a transaction with the first executable SQL statement
and ends it when you explicitly commit or roll it back.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 385

■Note Also Oracle implicitly commits the current transaction before and after executing a DDL statement.
For example, if you insert a new row into a table with an INSERT and then issue an ALTER statement (not
necessarily on this same table), then the changes made by the INSERT will be automatically committed. It is
interesting to note that SQL*Plus also commits any uncommitted data when it exits.

The following sections provide some examples of how transactions work in MySQL and
Oracle. Chapter 13 discusses building transactional Java EE applications in more detail.

Examples of Transaction Management Statements in MySQL
Let’s look at an example to understand the concept of a transaction. Say you want to update
the rows inserted into the employees table created and populated with the data as discussed
in the preceding sections. You want to perform two update operations, making sure these
updates become permanent only if each update has been successful.

To follow this example, you need to connect to your MySQL server as usr and then change
database to mydb. Listing A-8 shows the statements you issue as well as the messages these
statements generate. The statements are highlighted in bold.

Listing A-8. Performing a Set of DML Operations in a Single Transaction in MySQL

START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

UPDATE employees SET salary = 3500 WHERE empno=1;
Query OK, 1 row affected (0.06 sec)
Row matched: 1 Changed: 1 Warnnings: 0

UPDATE employees SET salary = 1000000000 WHERE empno=2;
ERROR 1264 (22003): Out of range value for column 'salary' at row 1

ROLLBACK;
Query OK, 0 rows affected (0.02 sec)

In this example, you explicitly start a transaction with START TRANSACTION, disabling the
autocommit mode for the following two UPDATE statements. After executing these statements,
you roll back the changes made by them, since the last UPDATE failed.

Now if you issue the following SELECT statement against the employees table:

SELECT empno, salary FROM employees WHERE empno=1 OR empno=2;

you should see that the values of the salary fields haven’t changed for the employees whose
empno are 1 and 2:

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES386

empno salary

1 3000
2 3500

As you might guess, the example discussed in this section assumes that you yourself
decide whether to apply ROLLBACK or COMMIT, depending on whether both UPDATE statements
have been successful. In reality, though, the process of issuing a set of required statements, as
well as making the decision about whether to commit or roll back, is automated; that is, the
entire process is implemented within a single program unit, say, a stored procedure. In that
case, the program, not you, decides whether to apply ROLLBACK or COMMIT.

Examples of Transaction Management Statements in Oracle
Now let’s look at how you might implement the example discussed in the preceding section in
Oracle.

To start with, make sure to connect to Oracle as usr, and then you can issue the state-
ments shown in Listing A-9. The listing shows the statements along with the messages
generated. The statements are highlighted in bold.

Listing A-9. Performing a Set of DML Operations in a Single Transaction in Oracle

COMMIT;
Commit complete.
UPDATE employees SET salary = 3500 WHERE empno=1;
1 row updated.

UPDATE employees SET salary = 1000000000 WHERE empno=2;
ERROR at line 1:
ORA-01438 : value larger than specified precision allowed for this column

ROLLBACK;
Rollback complete.

You start this listing with COMMIT to make sure the following UPDATE is the first statement in
the transaction. You execute two UPDATE statements in this transaction. Since the last UPDATE
failed, you roll back the entire transaction, disregarding the changes made by both UPDATE
statements.

To make sure this has been done, you might issue the following SELECT statement against
the employees table:

SELECT empno, salary FROM employees WHERE empno=1 OR empno=2;

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 387

As the following output shows, the values of the salary fields haven’t changed for the
employees whose empno are 1 and 2:

EMPNOSALARY

1 3000
2 3500

Performing Administrative Tasks
To perform administrative tasks, you use statements that might be grouped into a category
named, say, database administrative statements. According to vendor documentation, though,
MySQL introduces the database administration statements, while Oracle offers the session
control statements and system control statements instead.

Examples of Database Administration Statements in MySQL
It is interesting to note that MySQL documentation numbers account management state-
ments such as CREATE USER, GRANT, and REVOKE with the database administration statements.
If you recall, these statements were discussed in the “Performing DDL Operations” section
earlier.

Perhaps the most interesting statement from the database administration statements cat-
egory in MySQL is SHOW, which is used at the beginning of about thirty SHOW statements. You
have already seen the SHOW DATABASES statement in action, and now you will look at some
other uses of SHOW.

Suppose you want to look at how you might re-create the employees table you created as
described in Listing A-4 earlier in this appendix. To find this out, you might connect to the
MySQL server as root and then issue the following statement:

SHOW CREATE TABLE mydb.employees;

This should output the CREATE TABLE command that you might use for re-creating the
employees table:

CREATE TABLE 'employees'(
'empno' int(11) NOT NULL AUTO_INCREMENT,
'firstname' varchar(24) NOT NULL,
'lastname' varchar(24) NOT NULL,
'salary' decimal(10, 2) NOT NULL,
'hiredate' date NOT NULL,
PRIMARY KEY('empno')
) ENGINE = InnoDB DEFAULT CHARSET=latin1;

Before you could use the previous statement, though, you would need to remove the
quotes before and after the table and column names.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES388

Another interesting SHOW statement is SHOW PROCESSLIST, which shows information about
the threads representing connections to the MySQL server. Being connected as root, you
might use the following syntax to look at all current connections:

SHOW PROCESSLIST;

If you have two connections to the server, the output might look like this:

Id User Host db Command Time State Info
--
1 usr localhost:1041 NULL Sleep 67NULL
2 root localhost:1042 NULL Query 0 NULL show processlist

Once you have obtained this information, you can terminate a connection with another
administrative statement: KILL. For example, to terminate the thread whose ID is 1, you can
issue the following statement:

KILL 2;

Now, if you try to issue any statement with the MySQL client that used the terminated
connection, then the client will first reconnect to the server and then execute the statement
issue.

Examples of Database Administration Statements in Oracle
Oracle doesn’t use the SHOW syntax. Instead, you can query an appropriate v$ system view. For
example, being connected via SQL*Plus as /as sysdba, you might obtain the list of the current
sessions with the following statement:

SELECT sid, serial#, username FROM v$session;

Suppose you have opened two sessions, connecting as /as sysdba and usr, respectively.
In that case, the output of the previous statement might look like this:

SID SERIAL# USERNAME
--
26 26 USR
29 1
31 1
33 1
38 99 SYS
39 1
...

With that information in hand, you can terminate a session using the ALTER SYSTEM KILL
SESSION statement and specifying the SID and serial number values of the session you want to
terminate:

ALTER SYSTEM KILL SESSION '26, 26';

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 389

Now, if you try to issue a statement from within SQL*Plus whose session has been termi-
nated, you will see the following error message:

ERROR at line 1
ORA-00028: your session has been killed

So, you first need to reconnect to the server.

Using Management Tools Shipped with Your
Database
By now, you should have a good understanding of how to access and manage database data
and metadata with command-line tools: the MySQL command-line tool and Oracle SQL*Plus,
which are installed by default with MySQL and Oracle Database, respectively. However, since
these tools will be used throughout the rest of this book when it comes to directly creating and
manipulating database data and metadata, they are worth further investigation.

MySQL Command-Line Tool
Now that you’ve gotten your feet wet with the MySQL command-line tool, you might want to
improve your experience of using this tool. In particular, this section discusses how you might
execute SQL statements stored in a text file on your disk. You may find this technique useful
when you need to execute statements that you have already saved in a file. If so, you don’t
need to type all those statements again. All you need to do is to specify the filename as an
input parameter of the MySQL program or specify it as the parameter of the mysql’s source
command if you are already running MySQL.

Suppose you create the SQL script file queryemp.sql in the c:\queries folder. This file con-
tains the following lines:

use mydb;
select * from employees;

Now you can run MySQL command-line tool as follows:

mysql -u usr -p < c:\queries\queryemp.sql

First, you will be prompted to enter the password. Then the following output should
appear:

empno firstname lastname salary hiredate
--
1 Maya Silver 3000.00 2007-12-15
2 Bob Browe 3500.00 2007-12-15

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES390

After this, the MySQL session ends, and you return to the operating system prompt. The
most significant downside to this approach is that you can execute your SQL script file only
once, upon starting the MySQL session. To execute it again, you need to start the MySQL
again. Moreover, you cannot see the information messages generated by the server. For exam-
ple, the previous output should be followed by the following message:

2 rows in set (0.03 sec)

However, it is not displayed.
Often, though, you need to execute a script file from within a mysql prompt and stay there

after the execution is complete. In MySQL command-line tool this can be done with the
source command, which you can issue from within the mysql prompt. Just connect to the
server:

mysql -u usr -p

Then, enter the following command:

source c:\ queries\queryemp.sql

Now you should see the following output:

Database changed
empno firstname lastname salary hiredate

1 Maya Silver 3000.00 2007-12-15
2 Bob Browe 3500.00 2007-12-15
2 rows in set (0.00 sec)

After performing the source command, you stay at the mysql prompt, and all the informa-
tion messages generated during the execution of the SQL script specified are displayed as if
you had entered the statements manually.

For more complete information on MySQL command-line tool, you can refer MySQL doc-
umentation’s “Client and Utility Programs” chapter, specifically, the section “The MySQL
Command-Line Tool.”

Oracle SQL*Plus
Now that you have seen a number of examples of how to access and manage database data
and metadata with Oracle SQL*Plus tool, you might want to learn how to simplify entering
SQL statements being executed with this tool.

You may find it exhausting to repeatedly type the same statement or sequence of state-
ments at the SQL*Plus prompt. To make your life easier, Oracle SQL*Plus lets you create and
execute scripts that can be stored to disk and edited with an operating system editor.

Run SQL*Plus, and connect as usr. Then, enter the edit command at the SQL*Plus
prompt, specifying the name you want to be used for the script file being created:

EDIT scriptemp

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES 391

As a result, your default operating system editor will open, and you will be asked to save
the scriptemp.sql file to disk. Once you click Yes in the Save Changes dialog box, you can edit
the newly create scriptemp.sql file, typing the SQL statements as if you were at the SQL*Plus
prompt. To keep things simple, you might type just the following statement:

select * from employees;

Then, save the changes made to the file, and close the editor. Now, you can run the script
from within SQL*Plus by entering the following command:

START scriptemp

This should execute the statements contained in the scriptemp.sql script file. As a result,
you should see the following output:

EMPNOFIRSTNAMELASTNAME SALARYHIREDATE

1 Maya Silver 3000.00 15-DEC-2007
2Bob Browe 3500.00 15-DEC-2007

Now, if you want to edit the statement contained in the scriptemp.sql script or add
another statement or statements, you can enter EDIT scriptemp command again and then
edit the script in the editor as needed.

For complete information about Oracle SQL*Plus, you can refer to the SQL*Plus User’s
Guide and Reference.

APPENDIX ■ GETTING FAMILIAR WITH RELATIONAL DATABASES392

■Symbols
@Column, using, 227
@EJB annotation, 55
@JoinColumn annotation, 107
@Local annotation, 54
@ManyToOne relationship annotation, 107
@MessageDriven annotation, 57
@MessageDriven annotation, mappedName

attribute of, 57
@OneToMany relationship annotation, 85,

107, 227
@OneToOne relationship annotation, 85, 227
@PersistenceUnit annotation, 73
@Remove annotation, using in CartBean

stateful session bean, 310
@Table annotation, using, 227

■A
addItem method, for CartBean stateful

session bean, 306
Address entity

for obtaining Customer entity, 90–91
mapped to billing_address database table,

87–88
Admin Console. See also GlassFish Admin

Console
deploying web applications with, 41–43
performing GlassFish administration with,

32–36
admin user, logging in as, 33
administrative tasks, performing, 388–390
AFTER INSERT trigger

creating on orders table in MySQL,
209–210

creating on orders table in Oracle, 210
afterinsertorder AFTER INSERT trigger,

testing, 210–213
ALTER SYSTEM KILL SESSION statement,

terminating Oracle session with,
389–390

ALTER TABLE statement, using in MySQL,
379–380

annotations
@EJB, 55
@JoinColumn, 107
@Local, 54
@ManyToOne relationship, 107
@MessageDriven, 57
@OneToMany relationship, 85, 107, 227
@OneToOne relationship, 85, 227
@PersistenceUnit, 73
@Remove, 310
@Table, 227
cascade element, 234–235
MANDATORY transaction attribute, 322
mapping, 27
NEVER transaction attribute, 322
NOT_SUPPORTED transaction attribute,

322
PersistenceContext, 258
REQUIRED transaction attribute, 322
REQUIRES_NEW transaction attribute,

322
TransactionAttribute, 321
TransactionAttribute metadata, 321
XML deployment descriptors vs., 115–119

Ant, running to complete GlassFish install, 5
Apache Derby Project, web site address, 68
appclient command

launching application with, 123
use of, 110

application archive, creating, 63–64
application components, planning for them

and their interactions, 84–119
application server, starting, 218
Application Server/General Information

page, 33–34
application servers, 196. See also GlassFish

application server
defining data source within, 69–70
installing database driver on, 185
Java EE 5 compatible, 29

Index

393

application tiers
creating components distributed

between, 84
distributing business logic between, 82–83

application-managed EntityManager
example of using, 268–273
obtaining, 264

application-managed persistence context,
259–260

application.xml deployment descriptor, 115
for application using two EJB modules,

124–125
source code for, 64, 75

applications, deploying to application server,
37–44

Applications/Web Applications page,
Deployed Web Applications area
within, 42

arguments, proper order when invoking
client matters, 110

asadmin command-line tool
commands, 36
deploying web applications with, 41
performing GlassFish administration with,

36–37
starting GlassFish application server with,

31–32
undeploying application with, 41

asadmin prompt
exiting, 37
switching to, 36

asadmin undeploy command, 41
Assigned Privileges box, moving items to, 24
autodeploy, deploying web applications with,

40–41
AUTO_INCREMENT attribute

setting in MySQL, 379
setting to pono column of orders table,

248
turning back, 380

Available Privileges box, moving items
from, 24

■B
bean-managed transaction demarcation,

321, 334. See also programmatic
transaction demarcation

BEFORE INSERT trigger
creating on MySQL books table, 176
creating on MySQL details table, 175
creating on MySQL orders table, 175–176

BEFORE UPDATE trigger
creating on books table, 103–106
creating on books table in Oracle, 105–106
defining on books table in Oracle, 177
defining on the books table, 103
defining on the books table quantity

column, 101
bidirectional relationships, using between

entities, 90–99
billing_address database table, Address

entity mapped to, 87–88
Book entity, source code for, 107, 239–108,

241
BookJSFBean managed bean, creating, 348
books and orders tables, creating, 102–103
books table

accessing information in, 152–154
populating with data, 103
queries for assuring reduction of quantity,

110
BookSessionBean bean, source code for,

153–154
business logic

implementing in underlying database,
150–151

moving into stored procedures, 146–150
moving into triggers, 140–146

business logic tier
building, 305–318
CustomerSessionBean session bean, 84
planning applications invoking stored

procedures from, 154–156
planning, 305–306

■C
CartBean stateful session bean, 339

business methods, 306
planning, 306
source code for, 308–310
updated after testing, 361–362

cascade = CascadeType.ALL, setting in
@OneToMany annotation, 109

cascade annotation element
cascade types for setting up, 234–235
example of using, 235
using, 234

CascadingTestServlet servlet, that will work
with modified Customer entity,
238–239

certificate realm, 341
changeOrderEmpTest method, modified to

roll back changes, 332–333

■INDEX394

CHECK constraint, defining on the books
table quantity column, 100

checkIfManaged method
JpqlTestBean session bean with, 291–292
modifying nested while loop in, 294

checkShoppingCart method, 276
Class Name box, 344
classes and lib directories, in WEB-INF

directory, 38
clearCartInstance method, for destroying

bean’s instance, 310
client, source code for updated that utilizes

two EJBs, 126
client application

compiling and packaging, 75
creating EJB 3, 61–62
creating for EJB JPA application, 74–75
creating the application archive, 63–64
packaging into JAR archive, 62–63
testing EJB 3, 64

client-managed transaction demarcation,
321

close method, of EntityManager interface,
255

“Cluster Support in GlassFish V2” document,
web site address, 46

column-level access control, implementing,
112–115

COMMIT statement, making changes
permanent with, 169

Common Development and Distribution
License (CDDL), for GlassFish, 28

“Comparison of application servers” wiki
document, web site address, 29

composite primary keys, dealing with,
239–244

CompositeKeyTestServlet servlet, source
code for, 242–244

connect roles, granting in Oracle database
schema, 163

Connector/J documentation, MySQL web
site address for, 186

constraints, determining which are foreign
keys, 122

container-managed EntityManager
example of stateless session bean that

uses, 264–265
example of using, 264–268
injecting into a stateful session bean, 263
obtaining, 263
transactional behavior of, 328–333

container-managed persistent context,
257–258

container-managed transaction
demarcation, 321, 334. See also
declarative transaction demarcation

containers, architecture of Java EE, 81–82
conversational state, 52
copiesInStock stored function

creating in MySQL, 155
creating in Oracle, 155
testing, 155–156

countOrders business method, steps to
perform JpqlJoinsTestBean’s, 296–297

CREATE DATABASE command, using in
Oracle, 373

CREATE USER statement, creating new user
schema in Oracle with, 373–375

create-domain command, getting usage
information for, 36–37

create.domain section, checking ports in for
GlassFish domain, 6

createEntityManager method, 73
createEntityManager method, invoking, 259
createNamedQuery method, 286
createQuery method, 272, 286
Customer and Address entities, creating

customers and billing_addresses
tables, 85

Customer entity
Address entity for obtaining, 90–91
creating in customers and

billing_addresses tables, 86
creating upon a database view, 86
CustomerSessionBean bean utilizing,

96–97
CustomerSessionBean that consumes, 89
mapped to customers database table,

88–89
mapped to customers_v view, 95–96
one-to-many relationship defined in,

237–238
source code for, 202–203

Customer ID, obtaining, 124
customers and billing_addresses tables,

creating and populating with data, 85
customers database table, Customer entity

mapped to, 88–89
CustomerSessionBean bean

showing bidirectional one-to-one
relationship, 91

source code for Client consuming, 90, 92

■INDEX 395

that consumes the Customer entity, 89
utilizing the Customer entity, 94–95, 96–97

customers_v View
creating on customers and

billing_addresses tables, 95
Customer entity mapped to, 95–96

CustSessionBean bean, containing getCustId
business method, 125–126

■D
Data Manipulation Language (DML)

operations. See DML operations
data source

configuring settings of an existing, 195
defining to interact with database,

189–190
performing quick test of, 192–194
setting up and configuring, 186–192
setting up, 183–196
setting up for EJB JPA application, 69–70

database
planning structure of underlying, 156
steps to building underlying, 130

database administration statements,
example of in Oracle, 389–390

database driver, installing on application
server, 185

Database home page
starting, 18
testing, 17–19
tools provided by, 19

database objects
accessing with native SQL queries, 152
defining custom in MySQL, 368
organization of in Oracle, 371–375

database planning, 135–158
implementing application business logic

in, 139–156
planning the persistence tier, 135–139

database schemas, utilizing new on
underlying database, 137–139

database security, understanding, 111
database server, testing on Oracle SQL *Plus,

16–17
database structure, creating to be used by

JDBC security realm, 342
database tables

building in MySQL, 164–166
creating to store account information,

342–343
creating to store application data, 164–169

populating with data, 343
populating with initial data, 168–169

database tier
actions performed by sample application,

147–148
adjusting, 209–213
customers and billing_addresses tables, 84
implementing, 161–181
planning for sample application, 156–157
planning steps to building, 157
planning structure of underlying

database, 156
database views

mapping entities to, 95–99
using as layer between tables and JPA

entities, 136–137
databases

command to show creation of, 369
knowing features of, 376
underlying as part of entire solution,

366–367
understanding architecture of, 367

databases. See relational databases
dbsample database, creating, 162
DDL operations

examples in MySQL, 378–380
examples in Oracle, 380–382
most commonly used, 378
performing, 378–382

declarative transaction demarcation, using,
321–324

deleting, GlassFish domains, 47–48
deliveryEstimate stored function

creating in MySQL, 172–173
creating in Oracle, 174
testing for in MySQL, 173
testing for in Oracle, 174

demarcation types, 320–321
deployment descriptors, best way to start

learning, 118–119
deployment descriptors, 134. See also XML

deployment descriptors
DESCRIBE command, seeing structure of

table or view with, 121
DESCRIBE statement, issuing in MySQL, 380
details table

adding to sample database application,
164

modifying, 179–180
directory structure

building for HelloWorld EJB project, 58
of client application project, 61

■INDEX396

DML operations
examples of in MySQL, 382–383
examples of in Oracle, 383–384
most commonly used, 382
performing, 382
performing in a single transaction in

MySQL, 386
doGet servlet method, updated try block

within, 219–220
domain1

default ports for connections, 31–32
stopping, 32

■E
EJB 3

advantages of, 50–51
and Java Persistence API, 49–76
components, 51–57
creating client application, 61–62
overview of, 50–57
testing the client application, 64
what it is, 50
your first application, 57–64

EJB components, 76. See also enterprise
beans

reusability of, 122–127
EJB container, 50, 51, 82

in Java EE application, 81
EJB JPA application project

building your first, 66–76
components utilized within, 66–67
creating client application, 74–75
creating entity for, 70–71
creating persistence.xml configuration file

for, 73
creating session bean for, 72–73
directory structure, 67
how components fit together, 67
packaging and deploying session bean,

73–74
project structure, 67
setting up data source, 69–70
testing, 76
using Java DB database, 68–69

EJB module
deploying to GlassFish, 193–194
steps to building, 130–131

ejb-jar.xml deployment descriptor,
describing OrderSessionBean
enterprise bean, 118

ejb-ref element, including in web.xml
deployment descriptor, 316

EJBs, using fine-grained within coarser-
grained, 127–128

EmEjbTestServlet servlet, updated to test the
OrderTestBean session bean, 268

Employee entity
source code for, 203–204
source code without ORM annotations,

229
Employee.java file, source code for, 70–71
employees table

creating, 69
inserting row into, 69
inserting rows into in Oracle, 383
issuing SELECT statement against in

MySQL, 382–383, 386–387
issuing SELECT statement against in

Oracle, 384
EmployeeSession.java file, source code for,

72
EmployeeSessionBean.java file, source code

for, 72–73
EmployeeSessionClient.java file, source code

for, 74
emptyCart method

emptying customer cart with, 310
for CartBean stateful session bean, 306

enterprise application, creating new
standard NetBeans IDE for, 221–222

enterprise application module, steps to
building, 131–132

Enterprise Application project, building
sample with NetBeans IDE, 221–222

enterprise beans, 50
creating simple, 57–59
deploying to GlassFish, 60–61
packaging, 60

Enterprise JavaBean 3.0 (EJB 3), 76. See also
EJB 3

Enterprise JavaBeans 3.0 Specification Java
Persistence API document (JSR-220),
web site address, 227, 262

entities
cascading operations performed on,

234–239
defining queries over, 283–288
managing, 253–262
mapping to database view, 95–99
mapping to multiple tables, 93–95
unidirectional relationships between,

87–90

■INDEX 397

using bidirectional relationships between,
90–99

using EntityManager to manipulate,
262–276

entities, 222. See also JPA entities
entity, creating for EJB JPA application, 70–71
entity instances

attaching to the persistence context, 261
managing life cycle of, 260–261
states of, 260–261

entity life-cycle callback methods, using,
276–282

entity life-cycle event callback, annotations
used for, 276–277

entity primary keys, dealing with, 239–252
entity relationships, utilizing, 232–239
EntityManager

and its persistence context, 256–257
obtaining an instance of, 263–264
obtaining application-managed, 264
obtaining container-managed, 263
the big picture, 254–255
uses of, 264–276
using, 253–282

EntityManager instance
injecting into application component, 226
possible states of, 260–261

EntityManager interface
commonly used methods, 262
steps to take advantage of, 254–255

EntityManager methods
for creating a query instance for JPQL

queries, 286
to deal with native SQL queries, 300

EntityManager standard interface, methods
available through, 226

EntityManagerFactory, EntityManager
instance obtained from, 255

EntityTransaction interface
defining resource-local transaction in a

POJO, 327–328
methods of, 327
resource-local transactions controlled

through, 327
environment, setting up working, 3–25
extended persistence context, 258–259

■F
Facade pattern

Java EE application built on, 338
web site address, 338

faces-config.xml configuration file, creating,
352–353

FETCH JOINS, using JPQL, 296–299
fetch mode, explicitly setting, 293
file realm, 341
find method, 261

of EntityManager instance, 109
flush method, used to synchronize

persistence context, 271
foreign keys

determining which constraints are, 122
Oracle designations for, 122

four-tier architecture
graphical depiction of, 80
layers of, 80

front-end layer of application. See
presentation tier

■G
GeneratingKeyTestServlet servlet, for testing

TABLE primary key generation
strategy, 246–248

getBook method, of ShoppingCart instance,
224

getCustomerDetails method, error when
invoking on CustomerSessionBean,
97–98

getEmployees business method, of
JpqlTestBean session bean, 289

getItems method, for CartBean stateful
session bean, 306

getOrdersList business method, for
OrderBean session bean, 306

getPono method, of Order instance, 265
getResultList method, 288
getSingleResult method, 288
GlassFish

administrative domains, 29
advantages of using, 28–29
command-line tools for administrative

tasks, 33
commercial support for, 30–31
connecting NetBeans IDE to, 12–13
creating a JDBC realm in, 341–345
deploying enterprise bean to, 60–61
downloading, 28
getting started with, 27–30, 29–48
performing administration with Admin

Console, 32–36
performing administration with asadmin,

36–37

■INDEX398

testing the Admin Console, 7–10
testing the installation, 6–7
tools for administration tasks, 7
what it is, 27–28

GlassFish Admin Console, 25, 48
default port for, 8
GlassFish administration with, 36
launching, 10, 33
logging in to, 33
login page for, 8
significant features of, 33
testing, 7–10
tool for stopping application server, 10
using the help system, 34–35
using the interface, 33–34

GlassFish administrative domains, usage
profiles, 29

GlassFish application, testing additions to,
210–213

GlassFish application server
Administrator Password tab in, 9
alternative to stopping, 10
checking ports before installing, 5
configuring, 35–36
default domain1 ports for connections,

31–32
default username/password pair, 8
deploying applications to, 37–44
installing database driver on, 185
launching from a terminal window, 31
logging in to, 8
obtaining, 3–4
overview of, 27–31
setting up, 3–10
software licenses for, 28
starting, 31–32
stopping, 10

GlassFish bundle
installing, 5–6
steps for unbundling, 5–6
Top Link Essentials in, 4

GlassFish community
Frequently Asked Questions page, 30
function of, 27

GlassFish Community homepage
example of, 4
web site address, 3, 65

glassfish directory, creation of, 5
GlassFish discussion forum, web site

address, 30

GlassFish Documentation home page, web
site address, 30

GlassFish domains
creating, 46–47
deleting, 47–48
running several simultaneously, 47
understanding, 46–48

GlassFish project, code donors for, 27
GlassFish Quick Start Guide, web site

address, 30
GlassFish Samples page, web site address, 30
GNU General Public License (GPL), for

GlassFish, 28
GRANT OPTION privilege, tasks

accomplished by, 369–371

■H
“Hello World!” session enterprise bean

building directory structure for, 58
creating, 57–59

“Hello World!” web application
creating and deploying with NetBeans

IDE, 44–45
creating deployment descriptors in, 39–40
creating simple, 37–39
deploying, 40–41
index.jsp file of, 39
packaging, 40
structure of, 38
testing, 43–44

HelloSession bean
business interface for, 54–55
client code utilizing, 55

HelloSession bean class, including @Local
annotation in, 54–55

HelloWorld EJB project, compiling, 59
helloworld.war file, 42
HelloWorldBean enterprise bean class

creating HelloWorld.java file for, 58–59
source code for, 59

HelloWorldClient class, creating, 62
HelloWorldClient client application, source

code for, 62
hr/hr demonstration schema

altering through Database home page, 19
quitting, 17
setting up for Oracle Databases, 17
unlocking the account, 17

HttpServletRequest’s getSession method,
creating a session object with, 313

■INDEX 399

■I
IDENTITY primary key generation strategy,

248–250
Order entity updated to utilize, 249–250

index.jsp file, of the “Hello World!”
application, 39

index.jsp page, creating, 349–350
information, collecting for Java EE

application, 119–122
initialize method, for CartBean stateful

session bean, 306
installing

MySQL on Windows, 20–21
MySQL on Linux, 21–22

■J
JAR archive, containing HelloWorld session

bean, 60
Java Authentication and Authorization

Service (JAAS), 341
Java Database Connectivity (JDBC) data

sources. See JDBC data sources
Java Database Connectivity (JDBC)

technology, 158
issuing native SQL queries against books

table with, 152–153
Java DB database, in EJB JPA application

project, 68–69
Java EE 5, compatible application servers, 29
Java EE application

collecting information, 119–122
defining metadata in, 115–119
EJB container in, 81
graphical depiction of sample application

actions, 141
implementing database tier, 161–181
interacting with underlying database, 185
major components of typical, 129
modified sample application components,

140
multitier architecture, 79–81
organization and reuse, 119–128
planning, 79–134
planning for security, 111–115
planning steps to building and deploying,

128–134
planning structure of, 127–128
planning the sample, 132–134
planning underlying database, 135–158
sample application components, 140

setting up the data source, 183
structure of, 79–83
transaction considerations in, 99–111
transaction demarcation you can use in,

320–321
web container in, 81
XML deployment descriptors in, 115–119

Java EE applications
configuring, 352–353
deploying jsfapp.war, 354
using JAAS to secure, 341–345

Java EE components
providing configuration information for,

115
reusability of, 122–127

Java EE containers, 134
architecture of, 81–82
providing services to application

components, 82
Java EE deployment descriptor, defining, 64
Java EE functionality, accessing from

presentation tier, 337–341
Java EE server containers. See Java EE

containers
Java Naming and Directory Interface (JNDI)

naming service. See JNDI naming
service

Java objects, mapping to the underlying
database, 223–224

Java Persistence API (JPA), 76
at a glance, 64–66
EJB 3 and, 49–76
entities and ORM mapping, 65–66
features provided by, 65
implementation at GlassFish, 65
what it is, 65

Java System Application Server Subscriptions
page, web site address, 31

Java Transaction API (JTA) transactions. See
JTA transactions

JavaServer Faces (JSF) technology
building presentation tier with, 337–355
building sample’s presentation tier with,

345–354
javax.jms.MessageListener interface,

implementation of, 57
javax.persistence.TransactionRequired-

Exception, cause of being thrown,
271

javax.transaction.UserTransaction interface,
320

■INDEX400

javax.transaction.UserTransaction interface
for demarcating transaction boundaries in

servlet, 326
methods of, 324–325

JBoss Seam, 337
JDBC connection

packaging the application, 193
testing through a JSP page, 194

JDBC connection pool, creating for
connection to Oracle database, 190

JDBC data sources, 183, 196
JDBC driver

obtaining and installing for MySQL, 186
obtaining and installing for Oracle, 186

JDBC realm
creating in GlassFish, 341–345
setting up properties for, 344–345

JDBC resources, 183
JSP page for testing in Oracle, 192

JDBC security realm, creating database
structure used by, 342

JDBC technology. See Java Database
Connectivity (JDBC) technology

jdbc/mysqlpool entity, 192
JDK packages, web site addresses for

downloading, 5
JNDI lookup, as alternative to injection,

263–264
JNDI naming service, 196

overview of, 183–185
JNDI Tree Browsing list

looking at, 184
looking at if something goes wrong, 317

JNDI tree or JNDI repository
conceptual view of, 184
for binding components to a name, 183

Join View fields
problems using UPDATE statement on,

97–98
updating with several UPDATE

statements, 98
JPA. See Java Persistence API (JPA)
JPA entities, 225

building test application for, 218–221
compiling, 208–209
creating upon underlying data tables,

199–209
defining bidirectional relationships for,

201
designing, 199–222
planning, 84–99

representation of and relationships
between, 200

reusing, 126–127
sample application directory structure for,

201
testing newly created, 213–221

JPA provider, 82
performing two UPDATE statements,

98–99
JpaTestServlet servlet, trying updated,

220–221
JpaTestServlet servlet application

creating sun-web.xml configuration file
for, 217

web.xml deployment descriptor for, 217
JpaTestServlet.java file, source code for,

214–217
jpatestservlet.war application archive,

deploying to application server, 218
JPQL

example of in action, 289–290
management of entities retrieved by,

291–293
operations supported in, 285–286
retrieving entities with, 289–299
using, 283
using FETCH JOINS, 296–299
what it is, 283–285

JPQL join query
example in action, 297–299
servlet to test, 299

JPQL statements, dealing with, 286–288
JpqlJoinsTestServlet servlet, to test JPQL join

query, 299
JpqlTestBean session bean

servlet to test, 289–290
updated, 293–294
with checkIfManaged method, 291–292

JpqlTestServlet servlet
testing updated JpqlTestBean session

bean with, 294
updated to call checkIfManaged method,

292, 295–296
JSF application

creating database tables for, 342–343
deploying, 354
structure of, 345

JSF managed beans, developing, 346–348
JSF pages, developing, 349–351
JSF technology. See JavaServer Faces (JSF)

technology

■INDEX 401

JSP page, testing JDBC connection through,
194

JSR-220, web site address, 228
JTA specifications, web site address for, 320
JTA transactions, 334

dealing with, 320
transaction-scoped persistent context

bound to, 258
jta-data-source element, using to define data

source, 320

■KL
License Agreement window, for GlassFish, 5
Linux

installing MySQL on, 21–22
installing NetBeans IDE on, 12
installing Oracle Database XE on, 15–16
manually starting Oracle Database XE on,

16
Log Entry Detail dialog box, 43
login.jsp page

creating, 351
for sample application, 358

login_error.jsp page, creating, 351–352

■M
management tools, shipped with your

database, 390–392
MANDATORY transaction attribute

annotation, 322
MANIFEST.MF file, source code for, 62–63, 74
mapping annotations, using, 227
mapping metadata, specifying in orm.xml,

227–232
merge method, attaching entities to

persistence context with, 261
message-driven beans, 56–57
META-INF directory, in web application root

directory, 38
metadata, specifying for object/relational

mapping, 227–232
myderbydb database, connecting to, 69
MySQL

adjusting database tier implemented with,
209–210

building database tables in, 164–166
building stored subprograms in, 171–173
creating copiesInStock stored function in,

155
creating database schema in, 162–163
creating employees table in, 379, 380–381

database schemas in, 137
defining triggers in, 175
explicitly opening a transaction in, 178
inserting rows into employees table in, 382
installing on Linux, 21–22
installing on Windows, 20–21
obtaining and installing JDBC driver for,

186
obtaining, 19–20
organization of user database objects in,

368
performing DML operations in, 386
setting up, 19–24
setting up data source to interact with,

187–190
using SELECT statement in, 382–383
vs. Oracle database schemas, 138
web site address for documentation, 368

MySQL 6, web site address, 20
MySQL Administrator

using, 23–24
web site address, 23

MySQL command-line client, setting up new
user account with, 22–23

MySQL command-line tool, 390–391
MySQL Connectors Downloads page, web

site address, 186
MySQL Downloads page

getting RPMs for Server and Client from,
20

questionnaire available on, 19
web site address, 19

MySQL Enterprise
levels available in, 20
Features page web site address, 20

MySQL GUI tools
downloads page web site address, 23
managing database server with, 23–24

MySQL Migration Toolkit, web site address,
23

MySQL Query Browser, web site address, 23
MySQL Reference Manual page, web site

address, 375
MySQL server

connecting to as root, 162
creating new database on, 368

■N
native SQL queries

dealing with, 300
EntityManager methods to deal with, 300

■INDEX402

issuing against books table, 152–153
knowing when to use, 151–154
session bean providing example of using

dynamic, 301
simple example of, 301
using, 300–301

NativeQueryTestBean session bean, testing,
301

NetBeans IDE
connecting to GlassFish, 12–13
continuing with sample project in,

317–318
creating and deploying web application

with, 44–45
creating new project in, 44–45
deploying an application with, 45
downloading bundled with Sun Java

Systems Application Server, 28
index.jsp Page generated with, 44–45
installing on Linux, 12
installing on Windows, 11–12
obtaining, 10–11
setting up, 10–13

NetBeans IDE 5.5 Quick Start Guide, web site
address, 10

NetBeans IDE 5.5.1, installation instructions,
10

NetBeans IDE project, creating for enterprise
application, 221–222

NEVER transaction attribute annotation, 322
New JDBC Connection Pool Wizard

configuring Additional Properties table in
Oracle, 191

configuring general settings in Oracle, 191
launching in Oracle, 191
setting general settings in for MySQL, 187
setting parameters in for MySQL, 188–189
verifying settings, 189

New JDBC Resource page
creating new resource in Oracle, 191–192
creating with Admin Console, 189–190

New Realm dialog box, opening, 344
newdetail BEFORE INSERT trigger, creating

in Oracle, 176–177
neworder BEFORE INSERT trigger, 141

creating in MySQL, 142
creating in Oracle, 142–143, 177
updating in MySQL, 149
updating in Oracle, 150

newquantity BEFORE UPDATE trigger, 142
implementing on books table, 105
testing, 180

nonprocedural statements, use of in JPQL,
283

NOT FOUND SQL condition, causes of, 104
NOT_SUPPORTED transaction attribute

annotation, 322
NUMBER(p) syntax, defining integer number

column with, 381

■O
object-oriented and relational paradigms,

224–225
object-relational mapping (ORM)

conceptual depiction of, 66
overview of, 223–252
specifying metadata for, 227–232
the big picture, 225–227

onMessage method, 57
Open Source Initiative web site, for open

source license information, 28
Oracle

adjusting database tier implemented with,
210

building stored subprograms in, 173–174
creating copiesInStock stored function in,

155
creating database schema in, 163
database schemas in, 138
defining triggers in, 176–177
examples of DML operations in, 383–384
implicitly opening transaction in, 178
inserting rows into employees table in, 383
obtaining and installing JDBC driver for,

186
organization of user database objects in,

371–375
performing DML operations in, 387
vs. MySQL database schemas, 138

Oracle Corporation, code donor for GlassFish
project, 27

Oracle database, 371
making available for use, 372–375
starting as Windows user, 372–373

Oracle Database Documentation book titles,
accessing, 376

Oracle Database Documentation page, web
site address, 376

Oracle Database Express Edition (XE)
Documentation page, web site
address, 372

Oracle database instance, 371

■INDEX 403

Oracle Database XE
installing on Linux, 15–16
installing on Windows, 14–15
manually starting on Linux, 16
obtaining, 14
services set up during database

installation, 372
setting up, 14–19
testing the Database home page, 17–19

Oracle documentation page, web site
address, 372

Oracle SQL *Plus
testing database server on, 16–17
tool, 391–392

Oracle Technology Network (OTN)
JDBC Drivers Downloads page on website,

186
obtaining Oracle Database XE from, 14

Oracle XML DB, 376
Order entity class

depiction of process of persisting, 277–278
OrderTestBean session bean rewritten to

test, 280–281
source code for updated, 143–144
source code for, 106–107, 204–206
updated to use SEQUENCE primary key

generation strategy, 252
updated to use TABLE primary key

generation strategy, 245–246
updated, 278–280

OrderBean stateless session bean, 339
business methods, 306
creating, 306–307
planning, 306

OrderJSFBean managed bean, creating,
346–348

orders table
checking if record was inserted

successfully, 179
constraints defined on, 121–122
inserting new record into, 124, 179
viewing column names in, 121

orders table, 134. See also books and orders
tables

OrderSessionBean bean class
implementing with no annotations,

116–117
removing annotations from, 117
source code for updated, 144–145

OrderSessionBean enterprise bean
client used to test, 109–110
describing with deployment descriptor,

118
source code for, 108–109

OrderSessionBean stateless session bean,
snippet of, 324

OrderTestBean session bean
container-managed EntityManager used

by, 264–265
modified to roll back changes, 332–333
rewritten to test updated Order entity

class, 280–281
testing using EmEJBTestServlet, 331–332
testing, 265–266
updated to use application-managed

EntityManager, 269–271
updated to use two persistence contexts,

267–268
with comments in changeOrderEmpTest

method, 329–331
orm.xml

specifying mapping metadata in, 227–232
source code for configuration file, 228

OrmXMLTestServlet servlet, to test Employee
entity, 230–231

outputHelloMessage, 53

■P
persist method, using EntityManager’s, 261
persist operation cascading, source code for

servlet, 236–237
persistence context propagation, example

on, 273–276
persistence contexts

application-managed, 259–260
attaching entities to, 261
container-managed, 257–258
EntityManager and, 256–257
extended, 258–259
of EntityManager instances, 255–260, 282
transaction-scoped, 258

persistence tier
building, 199–222
creating, 85–87
Customer and Address entities, 84
diagramming, 200–201
planning on an existing underlying

database, 135–139
persistence unit, creating, 221, 226

■INDEX404

persistence.xml configuration file
containing more than one persistence

unit element, 266
creating for EJB JPA application, 73
creating for JpaTestServlet servlet

application, 217–218
defining data source in, 320
defining two persistence units, 269, 329
example of using, 327
source code for, 73, 311

persistence.xml descriptor file, 115
PersistenceContext annotation, explicitly

setting type element of, 258
placeOrder business method, 102, 325

client used to invoke, 109–110
modifying, 144–145
of OrderBean stateless session bean,

306–307
what happens when invoked, 307–308

presentation tier, 354
building, 337–355
diagramming the sample’s, 345
planning, 339–341

primary key
dropping in Oracle, 381
restoring in Oracle, 381
turning back, 380

primary key columns, generating values for,
244–252

primary key generation, types of, 244–245
programmatic transaction demarcation,

324–326
project structure, EJB JPA application, 67
PropagationTestBean stateless session bean,

source code for, 273–274
Properties Specific to This Class section, in

New Realm dialog box, 344

■Q
queries, defining over entities, 283–288
query API, using, 288
Query interface methods, commonly used,

288
Query Language documentation chapter, in

JSR-220, 285

■R
Realms page, in Admin Console, 343
refresh method, of EntityManager instance,

272

relational databases
choosing for your application, 366–376
getting familiar with, 365–392
using management tools shipped with,

390–392
relationships

navigating over, 232–234
utilizing entity, 232–239

RelationshipTestServlet servlet
planning, 232–233
source code for, 233–234

removeAttribute method, 316
removeItem method, for CartBean stateful

session bean, 306
REQUIRED transaction attribute annotation,

322
REQUIRES_NEW transaction attribute

annotation, 322
resource roles, granting in Oracle database

schema, 163
resource transaction, explicitly including

method calls in, 272
resource-local transactions

dealing with, 327–328
using, 327–328

Resources/JDBC/Connection Pools page
moving to in Oracle, 191
oraclepool entity in table located in, 191

retrieved entities
management of by JPQL, 291–293
navigating over relationships in, 293–296

reusability, in application development,
150–151

rollback method, calling if something goes
wrong, 326

ROLLBACK statement, used in sample
database application, 181

RPMs for Server and Client, from MySQL
Downloads page, 20

■S
sample application

components, 140
depiction of actions performed by, 147
finding weaknesses in, 360
fixing problems with, 361–362
graphical depiction of actions performed

by, 141
interpretation of graphical depiction of

actions, 141–142
launching, 357–360

■INDEX 405

launching with appclient command, 145
logging in to, 358
planning, 132–134
planning database tier of, 156–157
planning steps to building and deploying,

133–134
planning structure of, 132
steps depicted in database tier figure, 148
testing, 150, 357–362

sample database application
building database tables in MySQL,

164–166
building database tables in Oracle,

166–168
building stored subprograms, 169–174
creating database schema for, 162–163
creating user account for, 162–163
defining triggers for, 175–177
populating tables with initial data,

168–169
testing underlying database, 177–180

sample project, continuing with in NetBeans
IDE, 317–318

sampleapp root application directory,
creating with subdirectories, 201–208

sampleapp/src/ejbjpa/ejb directory,
creating, 306

sampleapp/target/WEB-INF/classes
directory

BookJSFBean.class and files in, 348
ejbjpa/jsfbeans directory in, 348

sampleappIDE, creating, 221
security, planning for in applications,

111–115
security pages, creating, 351–352
sec_usr account, creating and using, 112
SELECT privilege, granting, 112
SELECT query, creating and executing, 287
SELECT statement, optional clauses of, 286
SELECT user FROM mysql.user statement,

373
sequence, creating in Oracle, 381
SEQUENCE primary key generation strategy,

using with Oracle, 250–252
SEQUENCE strategy, generating primary

keys with, 250–252
ServiceName parameter, in Oracle, 191
servlets

adding to Chapter 8 IDE project, 317–318
client code utilizing, 55–56
compiling, packaging, and deploying,

310–311

creating for EJB JPA application, 72–73
creating to implement sample application

logic, 305–311
demarcating transaction boundaries in,

326
illustrating persist operation cascading,

235–236
interfaces defining access to, 54–55
session beans, 52–56
testing, 311–317

setOrder business method, steps performed
by, 265

setShoppingCart method, EmEjbTestServlet
servlet making a call to, 275–276

shippingDate stored function
creating in MySQL, 171–172
creating in Oracle, 174
testing for in MySQL, 172
testing for in Oracle, 174

shipping_date field, setting explicitly,
281–282

shopping cart
filling up, 359
looking through cart items and placing

order, 359–360
ShoppingCart entity

creating, 206–208
ShoppingCartKey primary key class for,

206–207
source code for, 207–208
source code for updated, 241–242

ShoppingCart JSP page, 308
ShoppingCartBean stateless session bean

modified to delimit transaction
boundaries, 325

snippet of client from, 323–324
ShoppingCartKey primary key class, source

code for, 206–207
shoppingCarts table, adding to sample

database application, 164
ShoppingCartTestBean session bean,

274–275
SHOW CREATE TABLE statement, for

obtaining table foreign keys, 121
SHOW DATABASES statement, 373
SHOW statements, in MySQL, 388–389
SHOW TABLES statement, 120
showcart.jsp page, creating, 350–351
SimpleMessageDrivenBean, 57
software, required for projects in book, 3
SQL (Structured Query Language), using,

376–390

■INDEX406

SQL database language, using, 376–390
SQL statements, 376–378
SQLJ JDBC Documentation page, web site

address, 186
STARTUP command, issuing from SQL *Plus,

372
Startup Type property, for Oracle database,

372
stateful session beans, 52

creating, 308–310
defining transactions in, 333
downside of using, 52

stateless session bean class, simple example
of, 53

stateless session beans, 53–54, 116
creating, 306–308

stored functions, 158. See also stored
procedures

vs. stored procedures, 146
stored procedures

called from within triggers, 147
moving business logic into, 146–150
structure of that utilizes in database tier,

146
vs. stored functions, 146

stored routine. See stored procedures
stored subprograms

building for sample database application,
169–174

building in MySQL, 171–173
building in Oracle, 173–174

Structured Query Language (SQL),
interacting with relational
databases, 16

Sun Java System Application Server,
downloading, 28

Sun Java System Application Server training
courses, web site address, 31

Sun Microsystems, code donor for GlassFish
project, 27

sun-web.xml configuration file
creating, 354–354
creating for JpaTestServlet servlet

application, 217–218
sun-web.xml runtime deployment

descriptor, 38
creating, 193, 217
simple, 40

SUPPORTS transaction attribute annotation,
322

■T
TABLE primary key generation strategy,

advantage of, 245
TABLE strategy, generating primary keys

with, 245–248
tables, mapping entities to multiple, 93–95
tables and views, looking through list of in

Oracle, 121
test code, creating directory structure for,

213–214
testing

additions to application, 210–213
copiesInStock stored function, 155–156
EJB JPA application project, 76
newly created JPA entities, 213–221

TestSampleServlet servlet, for testing
CartBean stateful session bean,
312–314

TestSampleServletCart servlet, results from
launching, 316–317

TestSampleServletCont servlet
source code for, 314–316
tasks it might accomplish, 314

tier planning, for database, 135–158
tools, 392. See also management tools
Top Link Essentials

in GlassFish bundle, 4
Java EE 5 implemented in GlassFish

with, 29
microsite web site address, 65
tool used in GlassFish, 377

trans-attribute element, setting, 321
transaction attribute, possible values of,

321–322
transaction control statements, used in

MySQL and Oracle, 385
transaction demarcation, using in client

code, 326
transaction management statements

examples in MySQL, 386–387
examples in Oracle, 387
performing, 385–386

transaction management statements, 392.
See also transaction control
statements

transaction-scoped persistent context, 258
TransactionAttribute annotation, 321
TransactionAttribute metadata annotation,

setting transaction attribute through,
321

■INDEX 407

transactions
dealing with resource-local, 327–328
defining in stateful session beans, 333
demarcating programmatically, 324–326
demarcation types, 320–321
in application development, 99–111
managing, 319–334
some scenarios using, 328–333
using in Java EE applications, 319–328

transactions-planning.jar archive, specifying
main method parameters in, 110

trigger, dropping, 104
TRIGGER privilege, granting for table or

database, 103
triggers

defining for sample database application,
175–177

moving business logic into, 140–146

■U
unidirectional relationships, using between

entities, 87–90
unitName element, of PersistenceContext

annotation, 263–282
UPDATE statement, problems using on Join

View fields, 97–98
updateBooks stored procedure

creating in MySQL, 149, 171
creating in Oracle, 150, 173–174
in middle sublayer of database tier, 149

user account, creating new and granting
privileges to, 369

user schema, 392
creating new in Oracle, 373

username/password pair, changing for
admin user, 8

Using an EJB Session Bean as a Model Facade
document, web site address, 338

usr schema. See user schema
usrsample account, creating and granting

permissions to, 163

■V
VARCHAR2 datatype, used in Oracle, 381
view-based approach, caution about

using, 97

■W
web application

contents of root directory, 38
creating simple, 37–39
deploying to GlassFish, 193–194
structure of, 38

web application module, steps to building,
131

web container, in Java EE application, 81–82
web site address

Apache Derby Project, 68
article on GlassFish basics, 28
“Cluster Support in GlassFish V2”

document, 46
downloading GlassFish, 28
EJB 3 specification (JSR-220), 50
Enterprise JavaBeans 3.0 Specification

Java Persistence API document, part
of JSR-220, 262

for obtaining NetBeans IDE, 10
for starting JPA entity test, 218
GlassFish Common Development and

Distribution License (CDDL), 28
GlassFish Community homepage, 3, 65
GlassFish Documentation home page, 30
GlassFish GNU General Public License

(GPL), 28
Java System Application Server

Subscriptions page, 31
JDBC Drivers Downloads page on OTN,

186
JTA specifications, 320
MySQL 6.0, 20
MySQL Administrator, 23
MySQL Connector/J documentation, 186
MySQL Connectors Downloads page, 186
MySQL documentation, 368
MySQL Enterprise Features page, 20
MySQL GUI Tools Downloads page, 23
MySQL Migration Toolkit, 23
MySQL Query Browser, 23
MySQL Reference Manual page, 375
NetBeans IDE 5.5.1 installation

instructions, 10
NetBeans IDE bundled with Sun Java

Systems Application Server, 28
NetBeans IDE information, 10

■INDEX408

Open Source Initiative web site, 28
Oracle Database Documentation page,

376
Oracle Database Express Edition (XE)

Documentation page, 372
Oracle documentation page, 372
Oracle Technology Network (OTN), 14
Query Language documentation chapter

in JSR 220, 285
SQLJ JDBC Documentation page, 186
Sun Java System Application Server, 28
Sun Java System Application Server

training courses, 31
TopLink Essential microsite, 65
Using a Model Facade document, 338
Using an EJB Session Bean as a Model

Facade document, 338
“Which Should I Use MySQL Enterprise or

MySQL Community Server”
document, 19

web tier technology, choosing, 338
WEB-INF directory

configuration files for deployment in, 38
in web application root directory, 38

web.xml configuration file, creating, 353–354

web.xml deployment descriptor, 38
containing resource-ref element in Oracle,

192–193
including ejb-ref element in, 316
simple, 39

WHEN clause, using in BEFORE UPDATE
trigger, 105

WHERE clause, specifying conditions in, 285
“Which Should I Use MySQL Enterprise or

MySQL Community Server”
document, web site address for, 19

Windows
installing MySQL on, 20–21
installing NetBeans IDE on, 11–12
installing Oracle Database XE on, 14–15

Windows Essentials file, from Window
downloads section, 20

■X
XML deployment descriptors vs.

annotations, 115–119

■INDEX 409

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

