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Foreword 

The "Integration of Neural and Symbolic Processes" has been with us ever 
since the earliest days of Computer Science, for the foundation paper of neural 
networks (McCulloch and Pitts 1943) was entitled A Logical Calculus of the 
Ideas Immanent in Nervous Activity. It had as its centerpiece the demonstra
tion that the control box of any Turing machine (Turing 1936), the essential 
formalization of symbolic computation, could be implemented by a network of 
formal neurons. Moreover, the ideas of McCulloch and Pitts influenced John 
von Neumann and his colleagues when they defined the basic architecture of 
stored program computing, and von Neumann (e.g., 1951, 1956) remained 
intrigued with the biological dimension of computing, both in neural networks 
and self-reproduction. 

Why, then, more than 50 years after 1943 do we need a book on Computational 
Architectures Integrating Neural and Symbolic Processes? I want to show that, 
in fact, we need many such books, and this is one of them. 

One possible book on "Integrating Neural and Symbolic Processes" would be 
on Cognitive Neuroscience: it would use clinical data and brain imaging data 
to form a high-level view of the involvement of various brain regions in human 
symbolic activity, and would use single-cell activity recorded from animals en
gaged in analogous behaviors to suggest the neural networks underlying this 
involvement. Such a book would integrate the work of psychologists, neu
rologists, and neurophysiologists along with the work applying computational 
concepts to the analysis of biological neurons. The catch, of course, is that the 
"analogous behaviors" of animals are not very analogous at all when it comes 
to such symbolic activities as language and reasoning. Thus, the greatest suc
cesses in seeking the neural underpinnings of human behavior have come in 
areas such as vision, memory, and motor control where we can make neural 
network models of animal models of human capabilities, not in the area of 
high-level symbolic reasoning. And so we come to the nature and the im
portance of the present book: it is about high-level intelligent processes — a 
contribution to computer science in general, and to Artificial Intelligence in 
particular, rather than to neuroscience. 

xiii 



XIV FOREWORD 

The work of Turing, McCulloch and Pitts, and von Neumann came together 
with the work of Norbert Wiener in the 1940s to create the field of Cybernetics 
(Wiener 1948), "the study of control and communication in the animal and the 
machine." Cybernetics was based on concepts like feedback and information, 
mixing McCulloch-Pitts neural networks with the engineers' theories of com
munication and control. The volume Automata Studies, published in 1956 and 
containing von Neumann's "Probabilistic logics and the synthesis of reliable 
organisms from unreliable components," was a major event in the development 
of the automata theory/neural networks component of cybernetics, yet in that 
very same year one of this volume's editors, John McCarthy, coined the term 
Artificial Intelligence (AI) at a meeting held at Dartmouth College. When in 
1961 Marvin Minsky (a contributor to Automata Studies and at that time a 
colleague of McCarthy's at MIT) published the article "Steps toward artificial 
intelligence" which helped define the subject, cybernetic concepts and neural 
nets were very much part of his formulation of AI. Yet, sadly, AI came to be 
seen more and more in opposition to cybernetic concepts and neural networks. 
The use of logic was seen by many as the sine qua non of intelligence, and 
serial computation (careful search, one item at a time) was taken by many to 
be a virtue rather than a bottleneck. Although the study of neural networks 
and cybernetics continued through the 60s and 70s (the many excellent articles 
in such journals as Kybernetik, later Biological Cybernetics, attest to that), it 
tended to do so outside computer science departments. 

(One aside which shows the interwoven nature of all this is that it was Warren 
McCulloch who brought Seymour Papert to MIT in 1963, and thus laid the 
basis for the book (Minsky and Papert, 1969) which many see as the major 
intellectual attack on neural networks. Actually, it provided excellent contri
butions to neural network theory, and anyone who is convinced that results on 
the limitations of simple perceptrons showed the inutility of neural networks 
should give up the use of computers since it is also known that simple programs 
without loops have limited capability!). 

In the 1970s, then, most computer scientists working in AI outside such spe
cialty areas as computer vision or robotics focused exclusively on symbolic 
representations of knowledge, using logic and a variety of more or less serial 
search strategies to address game-playing, problem-solving, and commonsense 
reasoning. However, the success of expert systems for many domains, such 
as medical diagnosis (Shortliffe 1976), showed the importance of probabili
ties or levels of confidence in weighing diverse evidence rather than adhering 
strictly to logical inference; while such contributions to distributed AI as the 
HEARSAY speech understanding system (Lesser et al. 1975) favored a com
putational metaphor based on interacting agents rather than serial processing, 
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a metaphor fully expressed in Minsky's (1985) "conversion" to a theory of 
intelligence rooted in The Society of Mind. On the technological front, the de
velopment of VLSI made parallel computation a practical, indeed crucial, part 
of computer science. And the 1980s saw an immense resurgence of interest in 
neural networks, sparked in no small part by the appeal of Hopfield (1982) to 
physicists; the reception of the collections edited by Rumelhart and McClelland 
(1986) by cognitive psychologists and a new generation of AI workers; and by 
the adoption by technologists of neural networks as "universal approximators" 
with a wide range of applications; as well as by the work of many others, both 
"old- timers" and newcomers too numerous to mention. 

And so at last we come to the 1990s and to the long postponed answer to 
the question "Why do we need a book on Computational Architectures Inte
grating Neural and Symbolic Processes!" The present book is in the domain 
of cognitive psychology and AI: seeking a computational model which can 
efficiently implement high-level "intelligent processes," rather than seeking 
to model the detailed neural processes of the human brain. Fifty years on 
we build on the legacies of Turing and McCulloch and Pitts, but much has 
happened in symbolic computation since Turing. Where he spoke of general 
effective procedures operating on a string of Os and Is, we have learned how 
to define hierarchical, symbolic structures - whether a search tree, a relational 
database, or an AI frame - which simplify the representation of data on a 
given domain and make the definition of operators far more transparent than 
would otherwise be possible. We have learned how to automate many of the 
processes of logical inference, and have seen the creation and recreation of 
vast structures of theoretical linguistics. And much has happened in neural 
networks since McCulloch and Pitts. Where they showed us how to translate 
logical formulas and state transitions into networks of "logical neurons," the 
emphasis has now switched to artificial networks whose connection strengths 
(thus the term connectionism used by many for the study of networks of "non-
biological neurons") are subject to a variety of learning rules. We have learned 
how to exploit the parallelism of neural networks in a vast array of problem 
domains from vision to diagnosis, and in particular have developed powerful 
learning theories, both for self-organization of networks, and for their learning 
in response to supervision or reinforcement. We have found tasks for which a 
single neural network serves admirably, others for which an array of special
ized networks serves best, and yet other for which a hybrid of neural networks 
and abstract symbol processors appears optimal. The present volume exem
plifies each of these architectures in providing fresh approaches to many of the 
problems which, until a decade ago, had seemed securely and purely in the do
main of symbolic processing alone: arithmetic, commonsense reasoning, story 
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comprehension, and language processing — to convincingly demonstrate the 
power of integrating neural and symbolic processes. 
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Preface 

The focus of this book is on a currently emerging body of research — com
putational architectures integrating neural and symbolic processes. With the 
reemergence of neural networks in the 1980's and its emphasis on overcoming 
some of the limitations of symbolic AI, there is clearly a need to support some 
form of high-level symbolic processing in connectionist networks. As argued 
by many researchers, on both the symbolic AI and connectionist sides, many 
cognitive tasks, e.g., language understanding and commonsense reasoning, 
seem to require high-level symbolic capabilities. How these capabilities are 
realized in connectionist networks is a difficult question and it constitutes the 
focus of this book. 

Although there has been a great deal of work in integrating neural and symbolic 
processes, both from a cognitive and/or application^ viewpoint, there has been 
relatively little effort in comparing, categorizing, and combining these fairly 
isolated approaches. Recently, there have been many new developments, 
some of which were reported at the AAA! Workshop on Integrating Neural and 
Symbolic Processes (The Cognitive Dimension) that was held in July, 1992, in 
association with the Eleventh National Conference of Artificial Intelligence; 
and those reported in the 1993 special issue of Connection Science, Vol.5, 
No.3-4. This body of work needs to be better understood, especially in terms 
of its architectural approaches. 

The editors of this book intend to fill this void and address the underlying 
architectural aspects of this integration. In order to provide a basis for a 
deeper understanding of existing divergent approaches and provide insight 
for further developments in this field, the book presents (1) an examination 
of specific architectures (grouped together according to their approaches), 
their strengths and weaknesses, why they work, and what they predict, and 
(2) a critique/comparison of these approaches. The book will be of use to 
researchers, graduate students, and interested laymen, in areas such as cognitive 
science, artificial intelligence, computer science, cognitive psychology, and 
neurocomputing, in keeping up to date with the newest research trends. It 
can also serve as a comprehensive, in-depth introduction to this new emerging 

xvn 
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field. A unique feature of the book is a comprehensive bibliography at the end 
of the book. 

Some of the questions addressed in the book are: 

1. What architectural approaches exist and what are the relative advantages 
and/or disadvantages of each approach? 

2. How cognitively plausible is each proposed approach? 

3. Is there any commonality among various architectural approaches? Should 
we try to synthesize existing approaches? How do we synthesize these 
approaches? 

And also, more generically, 

4. What processes are natural to do at the neural and symbolic level of 
description? 

5. How do symbolic representation and connectionist learning schemes in
teract in integrated systems with different architectures? 

6. What are the problems, difficulties and outstanding issues in integrating 
neural and symbolic processes? 

7. What have we achieved so far by integrating neural and symbolic pro
cesses? 

The body of the book starts with an introductory chapter, which comments on 
the current state of affairs and addresses what advances are necessary in order 
that continued progress be made. Following that, each particular architectural 
approach (i.e., localist, distributed, and integrated localist and distributed) is 
described by three chapters. The final two chapters compare some of the 
existing approaches. Note that we do not include work that is solely concerned 
with pure learning issues, neural networks for low-level processing, and pure 
engineering applications, since those topics are better covered by other existing 
books. 

Finally, we wish to thank all the authors who contributed to this book. 

Ron Sun 
Lawrence Bookman 
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1 
An Introduction: On Symbolic 
Processing in Neural Networks 

RON SUN 

Department of Computer Science 
College of Engineering 

The University of Alabama 
Tuscaloosa, AL 35487 

1 INTRODUCTION 

Various forms of life have been existing on earth for hundreds of millions of 
years, and the long history has seen the development of life from single cell 
organisms to invertebrates, to vertebrates, and to humans, the truly intelligent 
beings. The biological organizations of various species, from the lowest to 
the highest, differ in their complexities and sizes. Such differences in inter
nal complexity manifest in the differences in overt behaviors and intelligence. 
Generally speaking, organizational complexities of various species are pro
portionate with capabilities displayed by respective species. However, a gap 
seems to exist when one goes from high vertebrate animals to humans, in that 
a conscious, rational capacity is readily available to human beings, that does 
not seem to be present in any other animals, no matter how high they are on the 
evolutionary hierarchy. There is a qualitative difference. Yet, strange enough, 
there is no known qualitative difference between the biological make-up of hu
man brains and animal brains. So the questions are: Where does the difference 
lie? What is the key to the emergence of rational thinking and intelligence?1 

It is well known that human and animal brains are made up of "neural net
works", or densely interconnected special kinds of cells, namely neurons, that 
possess simple "information processing" capabilities through the opening and 

1 The physical symbol hypothesis attempts to answer this question. However, it is deficient in 
several respects: it does not answer the question of how intelligent behaviors and their requisite 
physical symbols (according to the advocates of the theory) emerge from biological systems; it 
does not take into account subconceptualand intuitive thinking (see Smolensky [22] and Dreyfbs 
& Dreyfus [5]) and does not address the question of how rational thinking can be coupled with 
such intuitive thinking; it ignores low-level processes (such as pattern recognition) and their 
interactions with high-level processes (Harnad [11]). 

1 
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Figure 1 Diagram of a neuron with ion channels. 

closing of membrane ion channels (and the enabling and disenabling of ion 
flows; see Figure 1) and through induced electrical spikes propagating from 
neuron to neuron (roughly speaking at least; for details, see, e.g., Kandel & 
Schwartz [13]). One question that naturally arises in this regard is how macro-
level information processing, such as recognizing a face or bringing back a 
memory, can be accomplished with such micro-level "information process
ing" (i.e. channel opening and closing). A further question is how high-level 
conscious, rational thinking, such as drawing an inference or understanding a 
sentence, can emerge from networks of such low-level elements. The field of 
(artificial) neural networks seems to be addressing such problems, although the 
emphasis is on studying the capabilities of simplified and highly schematized 
artificial "neurons" (i.e. abstract mathematical models of simple processing el
ements), rather than exploring capabilities of biological neural networks (with 
the exception of a few groups of neuroscientists whose interests lie exclusively 
in information processing in biological neurons and in their interconnecting 
networks). 

Some progress has been made to date in understanding low-level information 
processing (such as pattern recognition or associative memory) in neural net
works, with highly homogeneous nodes and with regular connections among 
them (see, e.g., Figure 2 for such a model). The homogeneity and regularity 
enable mathematical and computational analyses of these models and thus fa
cilitate advances in this field. Given the fact that preliminary understanding of 
neural networks for low-level information processing has been achieved (or at 
least is well on the way of being achieved), the other question, which is much 
more profound, immediately arises and cries out for answers: How can such 
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Figure 2 Diagram of a neural network with a regular interconnection 
pattern. 

simple models capture high-level cognitive processes, such as rational think
ing, natural language understanding, and logical inference? It is currently well 
understood (or presupposed, according to some people) that symbolic process
ing is capable of capturing a wide range (or all, according to some others) of 
rational thinking and intelligence; therefore it is of paramount importance to 
be able to incorporate symbolic processing in these models, to enable them to 
capture high-level cognitive processes. This is, however, especially difficult, 
because such processes are mostly discrete, structured, and systematic (see 
Fodor & Pylyshyn [8]), which are in sharp contrast with the characteristics of 
conventional connectionist models. The research being done under the banner 
of high-level connectionism and under the banner of hybrid systems, including 
the work described in the present book, attempt to answer exactly the above 
question, each in a partial and small way, by exploring the symbolic process
ing capability of neural network models. Note that, while the term "high-level 
connectionism" tends to describe cognitively motivated research, such as nat
ural language processing (Sharkey & Reilly [21]) or commonsense reasoning 
(Sun [26]), the term "hybrid systems" tends to describe engineering-oriented 
approach toward incorporating symbolic processing or systems, such as fuzzy 
logic based neural networks (Bezdek [3]) or neural networks preprocessors 
coupled with symbolic planning (Hendler [12]). In my view, both schools are 
invaluable to the endeavor of investigation into how organizations of (artificial) 
neural networks can give rise to intelligence, thinking, and other high-level 
cognitive capacities. Thus I will not draw the distinction any further in the 
subsequent discussion. 

In the following sections, I will take a brief look at high-level connectionist 
models incorporating symbolic processing, and discuss the issues and difficul-
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ties facing this field as well as possible future directions. Then I will present 
an overview of the chapters in the present book on the basis of the discussion. 

2 BRIEF REVIEW 

Let us look back briefly at some work in the short history of connectionist 
symbolic processing models. Incorporating symbolic processes in (artificial) 
neural networks is- not a new idea at all. In as early as McCulloch & Pitts 
[15], it was shown that simple network models can perform some simple 
logical operations easily, and thus it was conjectured that human intelligence 
can be modeled with these simple logical operations (which contributed to the 
invention of digital computers and later, ironically, the enormous popularity 
of digital computers temporarily put an end to the fruitful research on neural 
networks). 

The new connectionism of 1980's had been spawned mainly by work in cog
nitive modeling, including language learning and schemata processing (see, 
e.g., Rumelhart & McClelland [19]). However, the majority of work in this 
field shifted quickly to focus on low-level processes of vision, speech recogni
tion, and sensory-motor control, as well as engineering applications, for these 
areas are particularly amenable to modeling with regular and homogeneous 
networks. Thus, high-level connectionist models (for modeling high-level 
cognitive processes) started to gain a separate identity, featuring a combination 
of neural network models and AI techniques in various ways.2 

Work in the area of high-level connectionist models (which incorporate sym
bolic processing) includes Touretzky & Hinton [28], which first demonstrated 
that neural networks can implement symbolic production systems (in their 
simple form, as 3-tuples) and carry out corresponding symbolic reasoning. 
Work in this area also includes Barnden [2], which described a grid-form con
nectionist network for syllogistic reasoning incorporating the mental model 
approach. Work done by Dyer and associates (e.g., Dyer [6], Miikkulainen 
& Dyer [16] and Lange & Dyer [14]) focused on implementing symbolic AI 
ideas, especially Schankian constructs (such as scripts, schemas, and dynamic 
memory), in neural network models. The 1989 Cognitive Science Conference 
saw three papers on implementing rule-based reasoning in connectionist mod-

2 Since it is common knowledge that it is difficult, if not impossible, to capture high-level 
cognitive processes with fully homogeneous connectionist networks, the majority of high-level 
connectionist models utilizes some alternative structures, such as localist models, as will be 
discussed later. 
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els: Ajjanagadde & Shastri [1], Lange & Dyer [14], and Sun [23], all of which 
enables neural networks to carry out rule(logic)-based reasoning in some flex
ible way and handle variable binding through either phase synchronization or 
sign propagation (see Appendix A for a listing of other relevant publications 
in this area). 

On the other hand, some researchers explored the capability of neural net
work learning algorithms, and the distributed representation they produce, for 
symbolic processing. Pollack [17] and Sharkey [20] exploited the capabil
ity of distributed representation and showed how complex structures can be 
processed (to some extent) with such representations. There are also various 
systems for utilizing distributed representation to accomplish a variety of other 
tasks, ranging from simple similarity-matching to inheritance reasoning and to 
unification of logical terms (cf. Cottrell [29] and Sun [26]). 

There have also been various proposals as to how to combine different types 
of models, such as combining symbolic models with connectionist networks 
(e.g., Bookman [4] and Hendler [12]) or combining localist and distributed 
representations (e.g., Sun [26]). The goal of such combinations is generally 
to enhance the symbolic processing power of respective models, by utilizing 
the synergy of different types of models. In this regard, there have been some 
initial successes for combined systems. 

The AAAI Workshop on Integrating Neural and Symbolic Processes (The Cog
nitive Dimension), which was held in July 1992, brought together work utilizing 
various approaches in developing symbolic processing connectionist models 
and explored how to compare, categorize and combine various isolated models 
and architectures in an effort to better understand these individual models, their 
interrelations, and the state of the art of this field overall. The work presented at 
the workshop was collected in [30]. The present book is the outgrowth of this 
workshop, with a slightly enlarged scope (in that we are no longer exclusively 
concerned with the "cognitive dimension"). 

3 EXISTING APPROACHES 

Now let us examine what various symbolic processing connectionist models 
(such as those mentioned above) have in common; in other words, we want 
to categorize various models in terms of a few types in order to see emerging 
trends and to identify issues and problems. 
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The existing architectural approaches in integrating neural and symbolic pro
cessing (that is, with respect to the internal organizations of and the repre
sentations used in respective models) can be divided into the following four 
categories: 

• Developing specialized, structured, localist networks for symbolic pro
cessing. 

• Performing symbolic processing in distributed neural networks (in a holis
tic way). 

• Combining separate symbolic and neural network modules. 

• Using neural networks as basic elements in symbolic architectures (the 
embedded approach). 

The first approach above uses individual nodes to represent individual concepts 
(and hence the term 'localist"), and the connections between nodes directly 
reflect the linkage between the corresponding concepts. Such architectures 
amount to directly map symbolic structures onto connectionist network struc
tures and in the process, massively parallel systems result. This approach was 
formerly advocated by Feldman & Ballard [7]. (See also Chapters 3 and 4.) 

The second architectural approach represents concepts as distributed patterns 
(of activations) across a large number of nodes in a network (or a certain 
part of a network, i.e., a "layer"). This approach is thus connectionist in its 
purest form. Some connectionists believe the strong connectionist thesis that 
simple networks, trained with corresponding learning algorithms (such as the 
backpropagation learning algorithm), can perform the functional equivalent 
of symbolic processing in a holistic and functional way. This strong thesis 
is in fact quite controversial. However, most connectionists do believe that 
symbolic processing can be accomplished in a holistic and functional way to 
some large extent. Thus, this type of architectures remains an active subject 
of connectionist symbolic processing research. (See Chapters 5, 6 and 7.) 

The third architectural approach is the juxtaposition of two or more compo
nents, or "modules". Each of these modules uses a different type of repre
sentation, ranging from purely symbolic systems to distributed connectionist 
systems, but together they accomplish a wide range of processes. Currently, 
there are a variety of ways of organizing these modules, depending on the types 
of modules used and the tasks to be accomplished. For example, the loosely 
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coupled organization allows communication through an interface that con
nects various modules and moderates information flows; such an organization 
is prevalent in and good for (i.e., facilitating the development of) application 
systems. The tightly coupled organization uses a variety of different channels 
for communication, and thus allows closer interaction between modules. The 
completely integrated organization has so many connections between various 
modules that the distinction between modules almost vanishes, although dif
ferent representations are used in these different modules. However, in order to 
be completely integrated, usually only different connectionist representations 
can be used. This type of architectures is currently a highly active area of 
research, for both application-oriented and theoretically-motivated work. (See 
Chapters 8,9 and 10.) 

The forth approach utilizes basically a symbolic architecture overall, such 
as a semantic network or a parallel production system, but instead of using 
symbolic components, small scale neural networks are used in their places to 
enable parallel, fault-tolerant computation that is capable of partial matching. 

It should be cautioned that these types are not as clear-cut as they seem to be 
from the foregoing discussion. As a matter of fact, they are interrelated and 
often they are mixed together in a model (that is, one model involves more 
than one architectural approach). In addition, these approaches are still in the 
process of evolving. Therefore, any classification scheme should be taken with 
a grain of salt. 

4 ISSUES AND DIFFICULTIES 

There are many research issues that need to be addressed, in order to advance 
this field of study, as well as, more broadly speaking, to better understand the 
nature of intelligence and cognition. These issues can be addressed in technical 
terms (focusing on techniques) as well as in biological terms (in relation to 
biological systems). This section takes a brief look at several of these issues 
from a technical perspective. 

Can purely connectionist systems account for all kinds of cognitive pro
cesses and model all kinds of intelligent behaviors? Purely connectionist 
systems, such as backpropagation networks, are known to be able to perform 
certain types of symbolic processing; the question is how far we can push 
this type of systems and how much symbolic processing that is necessary for 
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high-level cognitive processes this type of systems can ultimately account for. 
Some researchers keep on pushing the frontier in this direction, and try to 
prove the sufficiency, or at least the dominant role, of such processes in mod
eling cognition and intelligent behaviors (recall the strong connectionist thesis 
mentioned earlier). So far, some progress has been made, and more symbolic 
processing tasks necessary for modeling high-level cognitive processes (such 
as structure-sensitive operations in distributed representation) are being per
formed in these systems (see, e.g., Chapter 7). In utilizing such systems for 
performing various symbolic processing tasks (such as embedding part-whole 
hierarchies, language induction, and implementing production systems), better 
understanding has been achieved of this type of connectionist models. How
ever, it is clear that not all kinds of cognitive processes can be captured in 
such processes (at least not yet). While the aforementioned researchers are 
continuing their work in this direction, other researchers look into other means 
for accomplishing symbolic processing tasks (as in Chapters 3 and 8). Gen
erally, structured localist networks and semantic-network-like models (i.e., 
links represent some meaningful connection, such as is-a or part-ofy between 
concepts each of which is represented by an individual node in a network) 
are used to replace or supplement purely connectionist forms. Whether such 
structured models can eventually be subsumed by purely connectionist models 
or whether they will eventually be an alternative form, or even the prevailing 
form, of connectionist systems (with purely connectionist models as special 
cases) is yet to be seen. In any event, some sort of convergence of the two 
approaches seems to be necessary, in that structured localist systems need 
the learning capability usually associated with purely connectionist systems 
and, conversely, connectionist systems need to be able to represent complex 
structures somehow. 

Do we need a specialized connectionist system for each kind of cognitive 
processes? In other words, one system or many? It has been an acute prob
lem that in symbolic AI, for each type of tasks, a set of specialized mechanisms 
are developed, which are not necessarily related to any other mechanisms for 
any other tasks. This practice creates an abundance of specialized mechanisms 
and limited models, but also creates a lack of uniformity and coherence. It 
should be noted that it is usually not the case that once one has all the com
ponents, a whole necessarily follows. It has been a tremendous problem for 
traditional AI to form a coherent system incorporating various processes; even 
if a kludge (an ad hoc collection of disparate mechanisms) can be worked out, 
what kinds of understanding can such a system provide us, beside the fact that 
it is a kludge? It is, in some sense, an issue of long-term progress vs. short-term 
expediency, since in the short term, within some limited task domains, a kludge 
may indeed work better, but in the long term, fundamental principles, elegantly 
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and succinctly expressed, are much more desirable and much more important. 
The same problem has started to emerge in connectionist research: when more 
and more specialized connectionist models are proposed, a unifying theory, 
explanation, or model is what is most needed. Some researchers are beginning 
to address this problem, by including in a single model a range of capabilities 
and by trying to propose a uniform explanation of a variety of processes (e.g., 
with a uniform mechanism encompassing many processes; cf. Sun [26]). 

How can more powerful learning algorithms be developed that can ac
quire complex symbolic representation in connectionist systems, includ
ing structured localist systems? This is an important issue, in that simple 
learning algorithms that build up functional mappings in typical neural net
work models are insufficient for symbolic processing connectionist networks, 
because of the discrete and discontinuous nature of symbolic processes and 
because of the systematicity of such processes. Newer and more powerful 
learning algorithms are needed that can extract symbolic structures from data 
and/or through interaction with environments. As a minimum requirement, for 
example, such learning algorithms must be able to handle embedding relations 
among symbolic structures (Sun [27]) and combinational composition of sym
bolic structures (Fodor & Pylyshyn [8]). However, unfortunately, currently 
there is no learning algorithm that adequately meet these needs.3 Therefore, 
most of the existing work on integrating neural and symbolic processes fo
cuses on representational aspects rather than learning-related aspects and the 
interplay between learning and representation, although such interplay is one 
main appeal of the original connectionist paradigm (cf. Hanson and Barr [10]). 

One practical difficulty in developing learning algorithms for complex sym
bolic structures (such as those in Lange & Dyer [14] or in Sun [25]) lies in 
the fact that neural network learning algorithms tend to be simple, numerical, 
and structurally uniform (with the same, or similar, operation being applied 
to all the nodes in an entire network), which is in direct contrast to the char
acteristics of symbolic representation (as in, e.g., Sun [25]), where irregular, 
content-dependent connections and discrete, individuated activation functions 
are commonplace. Therefore, some new kinds of learning algorithms are 
needed for symbolic processing connectionist models; such algorithms, I be
lieve, should somehow incorporate some symbolic methods, as more powerful 
learning algorithms will result from such incorporation. 

31 did not mention the backpropagation networks using distributed representation in the 
preceding discussion. Although such networks can accomplish some of the aforementioned 
processing, there are various difficulties with them, such as long training time, inaccuracy in 
symbolic mappings, and the inadequacy in structure-sensitive operations (although some of 
them can be carried out holistically). 
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How can the distinction between conceptual and subconceptual processes 
be profitably explored in symbolic processing connectionist models? The 
distinction between conceptual and subconceptual processes has been argued 
for by, for example, Smolensky [22],4 and it seems intuitively very appealing 
as a way of capturing the two differing styles of thinking and useful in a 
theoretical understanding of the role of connectionist models in cognitive 
modeling. However, this distinction needs to be qualified and made clear 
and precise; connectionist models, especially high-level connectionist models, 
provide the hope that this idea can be studied through computational modeling 
and experimentation, with integrated connectionist systems in which both 
symbolic and subsymbolic processes are captured (in either a separate or a 
mixed manner). Through such experiments, a mechanistic explanation of the 
distinction between conceptual and subconceptual processes may result, for 
the benefit of an enhanced theoretical understanding. On the other hand, future 
advances in connectionism require the understanding of the theoretical notions 
and ideas in order to come up with principled solutions for problems arising in 
cognitive modeling (and in other areas as well): for example, on the one side, 
conscious rule application [9], explanation generation, and rule manipulation 
and modification, and on the other side, intuitive, holistic, and non-verbal 
(tacit) reasoning, and also their interaction in cognition (cf. Chapter 8). This 
mutual dependency of theories and computational models is not uncommon 
in AI and cognitive science, but in this case such dependency clearly needs 
serious attention and devoted efforts to explore. 

I believe that in the dichotomy of conceptual and subconceptual processes may 
lie the key to achieving the fundamental understanding of the architecture of 
cognition and intelligence. Specifically, I believe that conceptual processes 
can be best captured by symbolic processes (in purely symbolic systems or in 
localist connectionist systems), while subconceptual processes can somehow 
be modeled by the (artificial) neural networks and their variants, as discussed 
by Smolensky [22]. In light of the above, it is highly desirable for connec
tionist researchers to try to utilize the dichotomy in their work and place their 
models in a proper place; it is also important for connectionist researchers 
to address the problem of modeling both types of processes (conceptual and 
subconceptual) in an integrated architecture, in order to strive for a better un-

4The conceptual processes handle knowledge that possesses the following characteristics: 
(1) public access, (2) reliability, and (3) formality. The appropriateness of modeling such 
knowledge by symbolic processes has been argued for by many and seems self-evident. But 
on the other hand, there are different kinds of knowledge, such as skill, intuition, individual 
knowledge, and so on, that are not expressible in linguistic forms and do not conform to the three 
criteria prescribed above. They constitute subconceptual processes. It seems futile to model 
such knowledge in symbolic forms. 
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demanding of the overall cognitive architecture. So far, unfortunately, there 
are only a handful of models directly confronting the problem, probably due 
to the lack of experimental understanding regarding this issue and the lack of 
methodologies for approaching the problem, which in turn can probably be at
tributed to the long history of the dominance by rationalistic philosophies that 
ignore the intuitive, subconceptual, and subconscious side of cognition. We 
need to overcome such philosophical and methodological obstacles in order to 
make more fundamental progress. The effort may reasonably be expected to 
produce profound results. Hopefully, models addressing this issue may help to 
shed some light on the puzzle concerning the difference between human and 
animal intelligence (or, conceptual processes vs. subconceptual processes and 
rationality vs. association; see Section 1 of this chapter), in that a mechanis
tic explanation of the distinction may be produced based on the same basic 
building material, i.e., artificial neurons. 

5 F U T U R E D I R E C T I O N S , O R W H E R E S H O U L D W E G O F R O M 

H E R E ? 

Although the outlook of this field is still murky, there are indeed several trends 
discernible at this point in time. Whether they will come to full fruition in the 
future, which, as usual, depends on the progress of the whole field and also 
depends on the interplay of these trends, is yet to be seen. 

First of all, connectionist systems being developed are becoming increasingly 
more complex. They tend to encompass more and more functional aspects, 
and more and more varieties of different techniques. For example, there 
is little work now dealing exclusively with the variable binding problem, 
or focusing only on word sense disambiguation. Instead, solutions for the 
variable binding problem are being integrated into larger systems of reasoning, 
possibly along with approximate matching, multiple instantiation, and type 
hierarchies (implicit or explicit). By the same token, models for word sense 
disambiguation are becoming part of systems for story comprehension or other 
higher-level tasks. This, on the one hand, indicates in some way the maturation 
of the field, in that simple, partial models and techniques have been explored 
to a point that some syntheses are becoming possible or even necessary. This 
maturation of the field allows the development of systems on a scale roughly 
comparable to traditional "symbolic" systems; such larger-scale systems are 
more useful in artificial intelligence and cognitive research, and will definitely 
generate more impact for AI and cognitive science in the years to come. 
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On the other hand, the increasing complexity of connectionist systems entails 
the necessity of integration instead of mere combination, due to the need to 
manage the complexity and to avoid ad hoc-ness, as alluded to before. There 
are some promising new developments in this respect (see, e.g., Chapter 8), 
but more efforts are certainly needed to further the development. 

Another trend is the flourishing of application-oriented system development, 
as evident from recent neural networks and AJ conferences. Applications 
of connectionist symbolic processing systems to real world problems are not 
only beneficial to application domains, but are also important to the future 
development of the field, in that such applications can provide new incentives, 
new motivations, and new problems for theoretical studies. Both the theoretical 
research and the practical development are worth emphasizing. 

Yet another direction that is of great importance to the future of this field is the 
development of a clear and concise theoretical (and/or mathematical) frame
work, one that supersedes existing models and provides directions for future 
advances, in ways similar to what the backpropagation algorithm did for the 
early connectionist research, or what Maxwell's equation did for the study of 
electromagnetism. The advances in model building and the resulting diver
sity in perspectives, approaches, and techniques in the area of connectionist 
symbolic processing models call for serious theoretical treatments to clarify 
the existing ideas and to generate new thinking. A solid theoretical foundation 
is what is most needed for this field. The present book itself is an attempt in 
this direction, in that it provides a framework for the field, although it is not 
focused on the theoretical issues per se. 

6 OVERVIEW OF THE CHAPTERS 

The rest of the chapters in this book can be divided into four parts. Each of the 
first three parts covers a different architectural approach, in accordance with 
the foregoing discussion and classification (see Section 3 of this chapter): Part 
1, which includes Chapters 2, 3, and 4, covers localist architectures; Part 2, 
which includes Chapters 5, 6, and 7, covers distributed architectures; Part 3, 
which includes Chapters 8,9, and 10, covers combined architectures. The last 
part of the book, which includes Chapters 11 and 12, is a set of commentaries 
critiquing work in this field, including those reported in this book. 
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In Part 1, Chapter 2 (by John Barnden) describes symbol processing in a "tran
siently" localist connectionist model, with representations being constructed 
on the fly. The system performs syllogistic reasoning through the manipula
tion of mental models (as proposed by Philip Johnson-Laird). Some unique 
localist representational techniques are developed; the techniques predispose 
the system towards random instead of pre-ordered sequencing of subtasks, 
and towards associative linking of symbolic structures as opposed to explicit 
linking constructs. The system is elaborate and complex — it is one of the 
most complex symbolic processing problems to be tackled in connectionism. 

Chapter 3 (by Trent Lange) describes a structured localist connectionist model 
capable of high-level inferencing with variable binding and rule application. 
In his model, variable binding is handled by distinct activation patterns that 
uniquely identify the concept bound to a variable. Rules are pre-wired into 
the structure of the network, resulting in a semantic network like system. 
Based on such a model, he further develops a system for integrating language 
understanding and episodic memory retrieval with spreading activation. 

Chapter 4 (by Chris Lacher and K. D. Nguyen) presents a way of combining 
expert systems and neural network learning, resulting in a localist network 
model, which is termed "expert networks" by the authors. This method has the 
advantage of being able to learn and adapt, unlike traditional expert systems, 
and the advantage of being able to utilize pre-wired structures, in addition to 
homogeneous neural network connectivity patterns. The authors also intro
duces ways of implementing each node in "expert networks" with a small scale 
neural network, which is related to the embedded approach mentioned earlier 
(see also [25]). 

In Part 2, Chapter 5 (by Risto Miikkulainen) presents a distributed connec
tionist model for processing sentences with recursive relative clauses. The 
architecture deals with the tasks of segmenting word sequence into clauses, 
forming case-role representations, and keeping track of recursive embeddings. 
The model is a purely distributed connectionist model, and has many usual 
properties of such systems such as generalization, graceful memory degrada
tion, and statistical constraint induction. 

Chapter 6 (by David Noelle and Gary Cottrell) presents an approach for dis
tributed connectionist networks to "learn by being told". While many learning 
algorithms have been proposed which allow connectionist models to modify 
their representation based on examples and statistical correlations in them, 
this approach allows input directives to influence the behavior of a network di
rectly. Given the difficulties of connectionist learning techniques in addressing 
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symbolic processing tasks, such an approach may go a long way to shed new 
light on connectionist symbolic processing models. The authors also examine 
a distributed connectionist network that performs a reverse task: generating 
linguistic descriptions of time-varying scenes. 

Chapter 7 (by Noel E. Sharkey and Stuart Jackson) analyzes theories of dis
tributed connectionist representation. It challenges a key assumption of such 
theories: that the precise distances between distributed representations in the 
hidden layer of a backpropagation network reflect systematic semantic and/or 
structural similarity relations. A detailed argument is provided that utilizes 
a simple decision space technique, demonstrating that this assumption is not 
warranted except under special circumstances. The authors claim that the com
putational role of a distributed representation may be separated from specific 
distance relations. 

In Part 3, Chapter 8 (by Ron Sun) presents a connectionist architecture that 
consists of two levels: one is an inference network with nodes representing 
concepts and links representing rules connecting concepts (i.e., with localist 
representation), and the other is a microfeature based replica of the first level 
(with distributed representation). Based on the interaction between the concept 
nodes and microfeature nodes in the architecture, inferences are facilitated and 
knowledge not explicitly encoded in a system can be deduced via a mixture 
of similarity matching and rule application. The model is for structuring 
knowledge in vague and continuous domains where similarity plays a large 
role in performing plausible inferences. The architecture is able to take account 
of many important desiderata of plausible reasoning, and produces sensible 
conclusions accordingly. 

Chapter 9 (by Larry Bookman) presents a connectionist model that supports 
both structured representations and non-structured representations in which 
knowledge is encoded automatically using information-theoretic methods. A 
two-tier structure is proposed to encode such knowledge: a relational tier (net
work) that represents a set of explicit conceptual relations, and an associational 
tier (network) that encodes the associational or nonstructured knowledge. This 
model supports two complementary views of text comprehension: a "coarse-
grain" view, that utilizes explicit semantic relationships to reason about the 
"meaning" of a text; and a "fine-grain" view, that explores details of interac
tion between context and background knowledge. 

Chapter 10 (by Charles Lin and Jim Hendler) presents an application of a 
hybrid system. A hybrid system shell is developed and used in the task of 
detecting certain patterns in the sensor traces of ballistic firings. The hybrid 
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system contains both connectionist (neural network) components and expert 
system components. The chapter explains how the expert system can be used 
to add to the ability of the neural network, by using expert domain knowledge. 

In Part 4, Chapter 11 (by Vasant Honavar) attempts to explore questions re
garding fundamental similarities and differences between symbolic systems 
and connectionist systems. A historical examination of such questions leads 
to the conclusion that the two paradigms offer formally equivalent but prac
tically different models, and their integration is useful when various design 
alternatives are fully explored. 

Chapter 12 (by Michael Dyer) reviews the state of the art of natural language 
processing with connectionist models. Specifically, he examines the following 
issues in these models: (1) the creation and propagation of dynamic bindings, 
(2) the manipulation of recursive, constituent structures, (3) the acquisition and 
access of lexical, semantic, and episodic memories, (4) the control of multiple 
learning/processing modules, and (5) the "grounding" of basic-level language 
constructs in perceptual/motor experiences. The chapter indicates the current 
strengths and weaknesses of various approaches. 

7 SUMMARY 

The present chapter presents an introduction to the field of connectionist sym
bolic processing models, reviewing its development, discussing various ap
proaches, highlighting some issues, and pointing out possible future directions. 
Overall, in the field of connectionist symbolic processing models, the ground 
has been broken and some foundations have been laid down. However, to 
complete the skyscraper that we are aiming for on the basis of what we have 
so far, a lot more hard work is still needed; the process of advancing connec
tionist symbolic processing models to the stage in which these models serve as 
a dominant paradigm for AI and cognitive research still requires much inge
nuity to come up with workable new ideas and plausible innovative designs. I 
believe that the enterprise of connectionist symbolic processing models holds 
great promise for artificial intelligence and cognitive research, and may even 
help to shed light on some deep philosophical questions; thus it is well worth 
pursuing. 
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Part I: Localist Architectures 

• Chapter 2 (by John Barnden) describes a localist connectionist model 
with dynamically constructed representations for performing syllogistic 
reasoning. 

• Chapter 3 (by Trent Lange) describes a structured localist connectionist 
model capable of high-level inferencing with variable binding. 

• Chapter 4 (by Chris Lacher and Ky Nguyen) presents a method for com
bining expert systems and neural network learning. 
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1 INTRODUCTION 

Two unusual primitives for the structuring of symbolic information in con
nectionist systems were discussed in [9]. The primitives are called Relative-
Position Encoding (RPE) and Pattern-Similarity Association (PSA). The present 
article shows that the primitives are powerful and convenient for effecting cog-
nitively sophisticated connectionist symbol processing. Specifically, it shows 
how RPE and PSA are used in a connectionist implementation of Johnson-
Laird's mental model theory of syllogistic reasoning [23] [24] [25]. The 
symbol processing achieved is therefore at the level of complexity to be found 
in existing, detailed information-processing theories in cognitive psychology. 
This system is called Conposit/SYLL, but for brevity it will often be referred 
to here as Conposit. To be exact, Conposit is a general framework for imple
menting rule-based systems in connectionism, and Conposit/SYLL is just one 
instance of it. (The name "Conposit" is derived from "CONnectionist POSI-
Tional encoding." Conposit/SYLL is a major extension beyond the preliminary 
version described in [2]). 

The Johnson-Laird theory is used here merely as a case study in the applica
tion of the Conposit framework. In particular, it is not important here whether 
Johnson-Laird's theory is psychologically correct; even if it is correct, it is not 
important whether Conposit is anywhere near the actual implementation of the 
theory in the brain's neural circuitry. The reason for choosing to implement the 
Johnson-Laird theory is that computationally it has been relatively completely 
specified in the psychological literature, and presents a major implementa-
tional challenge to high-level connectionism. The nature of the challenge will 
be clarified later, but, briefly, it arises from the mutability, multiplicity, and 
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diversity of the working memory structures that need to be set up, and the 
elaborateness of the sequences of modifications to them that should take place 
during reasoning. Conposit copes easily with the challenge. 

The plan of the paper is as follows. Section 2 summarizes the Johnson-Laird 
theory of syllogistic reasoning, and explains the nature of the challenge it 
presents to connectionism. Section 3 explains how the Johnson-Laird theory 
is implemented in Conposit. The section is at a level a little above that of 
connectionist circuitry. Section 4 sketches the mapping of this level down 
to connectionist circuitry. Section 5 shows how the challenge described in 
section 2 is met by Conposit. This section includes a discussion of variable 
binding. Section 6 summarizes two simulation runs of Conposit/SYLL. Section 
7 comments briefly on some other theoretical contributions of the Conposit 
framework. Section 8 concludes. 

The PSA and RPE primitives make Conposit distinctly different in flavor from 
other connectionist systems that do symbolic processing (see, e.g., Bookman, 
this volume, Lange, this volume, Sun, this volume, and [18] [31] [32] [37].) 
However, the PSA technique in Conposit is closely related to Shastri and 
Ajjanagadde's use of synchrony for binding [31] (see [8] and [9] for discussion), 
and somewhat less so to Lange's use of signatures. A form of RPE technique 
is used in [15]. 

2 T H E JOHNSON-LAIRD THEORY AND ITS CHALLENGES 

2.1 SUMMARY OF THE JOHNSON-LAIRD THEORY 

This subsection summarizes the mental model theory of syllogistic reasoning 
as presented in [23] and [24], making reference also to later developments in 
[25]. An example of a syllogism is 

Some of the artists are beekeepers. 
All the beekeepers are chemists. 
[Therefore:] Some of the artists are chemists. 

In general, a syllogism is an argument, expressed in natural language, con
sisting of two premises that are followed by a conclusion. Each of the three 
propositions states some relationship between two sets of entities. The first 
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proposition is about two sets A and B, the second is about sets B and C, 
and the third about A and C. The relationship is either a subset relationship 
(expressed as "all the X are Y"), an intersection relationship ("some of the 
X are Y"), a negated-subset relationship ("some of the X are not Y"), or a 
negated-intersection relationship ("none of the X are Y"). In each of the three 
propositions, the two sets can appear either way round. For example, the 
second premise could be either "all the B are C" or "all the C are B." Each of 
the three sets is assumed to be non-empty (in most of Johnson-Laird's work). 

Of course, the actual sets chosen for a syllogism make no difference in a logical 
sense.1 Also, the switching of the two sets in a premise may make no logical 
difference: "some of the A are B" and "some of the B are A" are logically 
equivalent, as are their negations, "none of the A are B" and "none of the B 
are A." However, the Johnson-Laird theory does count the equivalent forms 
as different premises. Again, the ordering of the two premises with respect to 
each other makes no logical difference, but nevertheless the ordering is taken 
as significant psychologically. 

For a given pair of premises it may be impossible to complete the syllogism 
by means of a valid conclusion that relates sets A and C by one of the four 
relationships above. For example, from "some of the A are B" and "some 
of the B are C" no valid conclusion can be drawn. On the other hand, for a 
given pair of premises there may be more than one correct conclusion. For one 
thing, a conclusion can be replaced by an equivalent proposition (cf. previous 
paragraph). But there can also be non-equivalent alternatives: for instance, 
the proposition "some of the A are C" is a correct deduction from "all the A 
are B" and "all the B are C", granted the existence presupposition noted above. 
However, a stronger conclusion is that "all the A are C". The Johnson-Laird 
theory tries to generate "all the A are C" before "some of the A are C," and 
similarly "none of the A are C" before "some of the A are not C," so as to 
be maximally informative. Also, there is a processing order effect that helps 
determines whether the model tries to generate a conclusion in A-C order or 
in C-A order first, depending on the set-ordering in the premises. 

The theory has it that people syllogize by constructing one or more "mental 
models" conforming to the premises, and then trying to generate conclusions 
from the models. One possible mental model for the above syllogism can be 
drawn as follows: 

1 This is not to say that they make no difference to a human reasoner — cf. the experimental 
results in [27] and [28]. 
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MENTAL MODEL MM 2-1 

(a) (b) = (c) 
a = b = c 
a = b = c 

(c) 

A mental model is a data structure containing atomic tokens (shown by the 
letters) and identity links between tokens (shown by the equality signs). The 
model contains arbitrarily selected numbers of tokens standing for artists, 
beekeepers, or chemists (the occurrences of 'a', 'b ' and 'c'). Because of the 
first premise of the syllogism, namely the proposition that some of the artists 
are beekeepers, an arbitrarily selected non-empty subset of the artist tokens 
is related by identity links to some beekeeper tokens. Similarly, because 
of the second premise, namely that all of the beekeepers are chemists, all 
beekeeper tokens are similarly linked to chemist tokens. The parentheses 
indicate that the enclosed tokens are declared as being optional. Distinct 
tokens not related directly or indirectly by identity links are taken to represent 
different individuals. The tentative conclusion that some artists are chemists 
would arise from the syllogizer noticing that some artist tokens are linked by 
chains of identity links to chemist tokens. Notice that a mental model can 
contain redundancy — the second line of MM 2-1 is not necessary. It does no 
harm apart from possibly slowing the processing. 

A mental model thus serves as a highly abstract description of what may be 
viewed as an "example situation" conforming to the premises of the natural 
language syllogism. More precisely, what is described by MM 2-1 is really 
several example situations, differing on which of the optional individuals are 
actually present. Naturally, the tentative conclusion read off from a model 
might merely be an artifact of the particular example(s) it describes. Johnson-
Laird therefore postulates that the system attempts to construct several different 
models conforming to the premises, in an attempt to falsify any particular 
tentative conclusion. The attempted-falsification process would fail in our 
example, but would succeed (if pushed to completion) in the variant example 
obtained by changing the second premise to "some of the beekeepers are 
chemists". This is because in choosing beekeeper tokens to link to chemist 
tokens, it might happen that none of the chosen beekeeper tokens are linked to 
artist tokens. 

The process of building an initial model that conforms to the premises has two 
parts: creating a model conforming to the first premise, and then extending this 
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by using the second premise to form a model of both premises. In the syllogism 
displayed above, the first premise would lead to a model containing just a and 
b tokens — perhaps the a and b portion of MM 2-1. This model would then 
be extended to produce a model involving chemist tokens. A possible result is 
MM 2-1. 

A negative premise is handled in [24] by dividing the token set up into disjoint 
subsets by means of a "negative baITier.,, Conposit does away with the barriers, 
as does the later formulation of the theory in [25]. 

2 . 2 A D J U S T M E N T S T O T H E J O H N S O N - L A I R D T H E O R Y 

The system to be presented embodies an adjusted, somewhat simplified form 
of the Johnson-Laird theory, while still having the same logical power. This 
section summarizes the adjustments. See [2] for a fuller discussion, with justifi
cations. Some of the adjustments to the theory are in areas where Johnson-Laird 
has been unsure, not entirely consistent, or unclear. Also, some of the ma
jor changes actually make no difference from the standpoint of psychological 
predictions or experiment, since they are in aspects of the theory that are not 
appealed to in the presentations of the predictions and experiments. In any 
case, the version implemented in Conposit preserves the interesting challenges. 

The key ideas of mental models, mental model construction from premises, 
derivation of tentative conclusions from mental models, and attempted falsi
fication of tentative conclusions through construction of further models have 
been preserved in Conposit. On the other hand, some of the detail of the struc
ture of models has been adjusted, and the method for exploring the space of 
mental models has been radically modified. The model-structure adjustments 
are natural ones that are suggested by the way Conposit works and make good 
sense in the terms of mental model theory as such. 

The adjustments fall into two broad classes: representational and procedural. 
They will be considered in that order. The procedural ones partly follow from 
the representational ones. 

Name Sharing instead of Identity Links 

Johnson-Laird and Bara ([24], especially p. 28) imply that a line like 

a = b = c 
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in a model corresponds to an ordered list of items in their computer program 
embodying the theory. Also, the left-right ordering in such a line is significant 
in the processing details of the theory as such. One of our adjustments, 
however, is to replace identity links by sharing of token names. Thus, instead 
of 

a = b 

the following unordered set of tokens is used: 

A:x B:x 

which could just as well be written down as: 

B : x A:x 

The x is some arbitrary label that uniquely names the individual represented 
by the token. Thus, the token set shown represents a single individual that is 
in both set A and set B. On the other hand, the token set 

A:x B:y 

represents two distinct individuals, since x and y are different names. Alto
gether, then, model MM 2-1 now takes the following form: 

MODIFIED MENTAL MODEL MM 2-2 

A:x\ B:x\ C:a?i 
A:x2 B:x2 C:x2 

(A:x3) 

( B : z 4 ) (C:^ 4 ) 

(C:x 5 ) 

Notice that because the positioning of tokens in an Conposit model is insignif
icant, it turns out that the premises "Some of the X are Y" and "Some of the 
Y are X" (see next subsection) look essentially the same to Conposit. Equally, 
the premises "None of the X are Y" and "None of the Y are X" look essentially 
the same. The reversals may, however, affect the randomly-selected numbers 
of tokens of the two sets, which in turn affects details of performance to some 
extent. 
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Negative Premises 

To indicate that a token of a set A is not in set B, it can simply be made 
non-optional and unlinked to any token of class B. Thus, if the first premise is 
"Some of the artists are not beekeepers," a possible model is: 

A:x\ 
A:x2 
A: x3 B:x3 

B:#4 

Here there are some artist tokens that definitely do not represent beekeepers. 
There is also an artist token that does represent a beekeeper. The premise 
"None of the artists are beekeepers" leads to a similar sort of model, but no 
token representing both an artist and a beekeeper is included. 

In [25], negative barriers are abandoned, and instead tokens prefixed by a 
negation symbol are used. In our view, even the use of negation symbols is 
unnecessary. Johnson-Laird and Byrne's use of them presumably comes from 
the idea that a token that is not mentioned as not being in a given set might be 
in the set nevertheless. Conposit's semantic assumption differs: it takes such 
a token as definitely not being in the set. 

Procedural Adjustments 

In [24], Johnson-Laird and Bara hypothesize that in some cases human syllo-
gizers need to switch the order of the premises in order to allow the information 
from them to be more easily integrated. This re-ordering feature is not included 
in Conposit, although it would have been conceptually straightforward to in
clude it. 

A conclusion produced by a syllogizer is meant to be of the form "C rel 
A" or "A rel C". Sometimes the Johnson-Laird theory will first consider the 
possibility of a conclusion in one of these forms and then, perhaps, consider 
the other. Processing load problems may, however, cause the second order 
to be neglected, resulting in the overlooking of a possible conclusion. In the 
Conposit version, both orders are always tried. However, in line with the 
fact that Conposit is essentially insensitive to the distinction between premises 
"Some of the X are Y" and "Some of the Y are X"\ the system does not bother 
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to produce the conclusion "Some of the C are A" as well as "Some of the A 
are C." A similar point applies to "None of..." conclusions. 

Given that a conclusion of the form "X rel Y" is being sought, the Johnson-
Laird theory first tries to produce a universal affirmative conclusion (all the 
X are Y), and only if that fails will it consider a particular affirmative one 
(some of the X are Y). There is a similar pre-empting of particular negative 
conclusions (some of the X are not Y) in favor of universal negative ones (none 
of the X are Y). By contrast, Conposit produces the particular versions from a 
model even when the universal versions can also be produced. 

In [24] (pp.38/39), Johnson-Laird and Bara present five diverse rules for mod
ifying the current mental model to get a new one that is still consistent with 
the premises (but possibly falsifying a current tentative conclusion). Johnson-
Laird and Bara (p.37) doubt that human syllogizers search the space of models 
"either randomly or in a totally systematic way," but their implementation of 
the theory appears to be largely if not wholly systematic. Instead, Conposit 
embodies a simple, random model-generation process. When one model has 
been created and tentative conclusions drawn from it, another one is randomly 
created, and so on. The possibility that a previous model might be re-generated 
up to isomorphism, just by chance, is tolerated. This exploration method is 
much simpler than that in [24], while still letting the modified theory be com
plex enough to act as a significant challenge to connectionism. Notice that 
because Conposit considers only randomly many randomly-constructed mod
els, it is possible for more than one totally incorrect conclusion to survive. By 
contrast, the Johnson-Laird theory never produces more than one conclusion. 

Summary of the Modified Processing 

The overall syllogistic reasoning process as conducted by Conposit is as fol
lows. Given a pair of premises (expressed in an internal propositional form 
rather than in natural language), Conposit creates randomly many, randomly-
constructed models that are consistent with the premises. Each model is 
constructed by first creating suitably linked tokens for the sets A and B in the 
first premise, and then adding in some C tokens, linked to B tokens in a way 
that is consistent with the second premise. From the first model constructed, 
as many tentative conclusions as possible are constructed. Subsequent models 
are used to eliminate tentative conclusions that do not hold in them. 
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2 . 3 T H E C H A L L E N G E P O S E D BY T H E J O H N S O N - L A I R D T H E O R Y 

The challenge posed by the Johnson-Laird theory has three main parts: 

(1) The theory requires at least two sorts of relatively complex, temporary 
information structure to be rapidly created on the fly. These are the mental 
models and tentative syllogism conclusions. 

(la) In particular, mental models involve variable numbers of co-existing 
members of each of several sets. 

(lb) Similarly, at any time several temporary propositions co-exist in working 
memory (two premises and possibly a conclusion, at least; and often several 
tentative conclusions). 

(2) The mental model processing is meant to work with any three distinct sets 
in a syllogism (cf. artists, beekeepers and chemists in the above example), and 
thus raises the issue of systematicity of inference [20]. 

(3) The theory involves complex procedural control. 

These features are linked to various major, well-known difficulties for con-
nectionism. In particular, the structures in (1) are simple from the point of 
view of symbolic AI, but complex in the context of connectionism, which has 
a problem even with the encoding and systematic processing of quite simple 
structures. The variable binding problem is a particular manifestation of (2). 

A full, detailed explanation of exactly why features (1) to (3) impose significant 
elaboration requirements on connectionism would be involved and lengthy. It 
would have to take account of the numerous different types of connectionist 
network, and would have to grapple with the fact that connectionism has no 
precise, general definition. Nevertheless, detailed arguments that go a long 
way towards explaining why the features are troublesome are given in [1], [5], 
[6] and [9]. The following comments only give some brief indications of the 
nature of the issues. 

Feature (1) requires some means for rapidly putting together the components 
of the information structures, where the combinations formed may be unan
ticipated in their specifics. For instance, in creating a tentative syllogism 
conclusion, the system must be able to state any of the four allowed rela
tionships between any two sets A and C whatsoever (cf. feature (2)). Set A 
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might be athletes, set C might be clouds. The system may never before have 
formed any proposition that relates athletes to clouds. Furthermore, the sets 
themselves could be novel. Although examples of syllogisms usually use just 
plural nouns to define the sets, one could have more complex noun phrases 
such as "the athletes with red hair." 

The upshot is that the possible combinations are extremely numerous and 
arbitrary. This calls into question, for instance, the idea of setting aside one 
network unit for each possible syllogism conclusion. At the same time, the 
coexistence in (lb) means that the system cannot simply light up an athletes 
unit, a clouds unit, and a "some" unit to represent the proposition that some 
athletes are clouds. Such a scheme would lead to the well-known problem 
of crosstalk. Other suggestions include facilitating suitable connection paths 
among the athletes node (unit or sub-assembly), the "some" node, the clouds 
node, and a recruited node standing for the proposition as a whole. However, 
this leads to considerable problems in seeing how the constructed proposition 
could be used in further reasoning, such as determining that the proposition is 
inconsistent with some mental model. (This is especially so if the facilitation 
consists of weight changes on the connection paths as opposed to the activation 
of gating nodes on the paths, but even the latter is troublesome. See especially 
[1].) 

A recent suggestion has been to use reduced representations (see, e.g., [22] [30] 
[29]) to encode structured data. The difficulty here is (la) and (lb). Should 
one overall reduced representation be formed for the entire set of tentative 
conclusions, model tokens, premises, etc., or should these items be encoded as 
separate reduced representations sitting in different regions of the network? 

The former suggestion is conceptually very tidy, but either requires continual 
expansion of reduced representations in order to extract individual propositions 
(etc.) and components of them, or requires a high, and as yet unproven, degree 
of ability to get the same effect by manipulating reduced representations as 
wholes. A certain interesting degree of ability on this has been achieved (e.g., 
[14] [30] [16] [13] [33]), but there is a long way to go before it has been 
sufficiently extended and elaborated. (Some particular obstacles are detailed 
in [5] [6].) 

On the other hand, if separate reduced representations are maintained, there is 
an elaborate "storage management" problem. Available regions in which to 
place new propositions, tokens, etc. need to be found; and either the requisite 
inferencing circuitry must be replicated across the different regions, or the 
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system must move representations to canonical regions where they can be 
subjected to inference. 

As for (3), the overall process required by the Johnson-Laird theory is much 
more complex than the overall processes effected by connectionist systems 
heretofore. Many steps are involved, and there is important iteration and 
branching. Some of the iteration has unpredictable extent — mental models 
(in the modified theory) vary in size randomly, but the system must be able to 
inspect all the tokens in various ways. 

Any methods proposed for coping with the challenges should be extensible 
beyond the Johnson-Laird theory, which is after all only being used as a 
case study. But features (1) to (3) are just special, highly restricted cases 
of the general point that high-level cognition involves multiple, co-existing, 
complex, short-lived, rapidly-created, diverse, novel working memory items, 
and complex manipulation profiles. For instance, the arbitrariness and novelty 
of combination in syllogism conclusions is just a pale reflection of the fact that 
natural language understanding, commonsense reasoning, and so on naturally 
bring in very arbitrary combinations of concepts. This is especially so when, 
for instance, mistaken beliefs, metaphor, counterfactual propositions, dreams 
or children's fiction are at issue. 

3 MENTAL MODELS IN CONPOSIT 

This section gives a general overview of Conposit, details the way syllogisms 
and mental models are realized in its working memory, and briefly sketches the 
rules that manipulate the contents of working memory. Since this paper is fo
cused mainly on RPE (relative-position encoding) and PSA (pattern-similarity 
association), it omits a detailed description of the nature of rules and of how 
they cooperate to work a syllogism. This detail can be found in [2], which 
also has an appendix detailing simulation results. A portion of those results is 
included as section 6 below. 

The descriptions in the present section are cast at a level of description some
what higher than that of connectionist circuitry. The connectionist realization 
is sketched in section 4. 

3.1 OVERALL STRUCTURE 
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CONFIGURATION MATRIX 
(CM) 
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short-term data structures 
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Figure 1 Overall architecture of Conposit. 
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The gross architecture of Conposit (and all other previous Conposit versions) 
is pictured in Figure 1. The system is more or less a conventional rule-based 
system. The "Configuration Matrix" (CM) is the working memory, and is 
where syllogism propositions and tokens sit. The action parts of the rules 
are realized in the Action Parts module. The condition parts of the rules are 
realized in the Subconfiguration Detection Module, which detects particular 
data structures in the CM. On each cycle of operation of the system, one action 
part is chosen randomly out of those that are enabled by the output of the 
Subconfiguration Detection Module. This action part is executed, usually with 
the effect of changing the state of the CM. A new cycle then starts. 

Each action part can perform a major amount of processing — the rules are 
quite coarse-grained. Consequently, there are only about ten rule firings per 
mental model constructed during a simulation. This count includes the rule 
firings for constructing the model, creating or checking tentative conclusions, 
and destroying the model. 

The initial state of the CM is set by the experimenter. The simulation program 
contains a procedure that converts syllogism propositions expressed in a con
venient list format into data structures within the CM, but this format and the 
conversion of it are not part of Conposit proper. The simulation program stops 
when no rules are enabled. 

3.2 CONFIGURATION MATRIX (CM) 

The CM, Conposit's working memory, is a 32 x 32 array of "(active) registers." 
The state of a register at any time consists of two main portions: a "symbol" 
and a "highlighting state". Each register is a connectionist subnetwork. The 
symbol and highlighting state in the register are activity vectors in certain 
portions of the subnetwork. 

Some symbols are called "constant" symbols, and permanently denote partic
ular entities. Denoted entities can be of any sort whatever, including not only 
people (e.g. individual artists) and classes of people (e.g. the set of all artists), 
but also situations (e.g., that of a particular artist loving a particular beekeeper), 
and classes of situations. Any register can contain any symbol, and a symbol 
may occur in many different registers at the same time. There is also a "null" 
symbol, which never has a denotation, and a set of variable-like "unassigned 
symbols," which pick up temporary denotations in a way to be described. 
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The highlighting state is a vector of ON/OFF values for a tuple of "highlighting 
flags. Each register has the same tuple of flags, but of course the values need 
not be the same. Highlighting flag values serve mainly 

• to help define relationships among things denoted by the symbols, 

• as markers identifying current loci of attention of a rule that is executing, 

• as markers in marker passing processes. 

There is no in-principle restriction on how many of the highlighting flags can 
be ON at once in a given register, but in fact only a small number ever are. If 
a given flag is ON, the register is said to be highlighted in or with that flag. 

A register not involved in a representation is said to be free. It has a "null" 
symbol (all symbol-vector units OFF). It also has OFF values on all highlighting 
flags except some that are used in certain housekeeping activities. 

Each representation in the CM consists of one or more separate "clumps" of 
registers in suitable symbol/highlighting states. A clump consists of a non-free 
"head register" together with one or more non-free "role registers" immediately 
adjacent to it. An idea of the nature of a clump can be obtained from Figure 2, 
which shows only an arbitrary 8x8 region of the CM. The head in this case is 
the register that is highlighted by a flag called instance, which is indicated by 
the V sign in the figure. There are also three role registers. These are the ones 
shown with a black dot, "argl" and "arg2." These three marks indicate certain 
highlighting flags. The clump encodes the proposition that "all the artists are 
beekeepers." The ARTISTS and BEEKEEPERS symbols denote the sets of all 
conceivable artists and beekeepers respectively. The SUBSET symbol denotes 
the class of all conceivable situations in which one set is a subset of another. 
Further explanation of the figure will be given in a moment. 

Each syllogism premise, tentative conclusion, and token in a mental model 
is realized as a single clump. Different clumps are separated by free space: 
that is, no register of one clump is adjacent to a register of another. The 
absolute positions of the clumps in the CM are irrelevant: what is important is 
the particular symbols and highlighting states within each clump, and (as will 
become apparent) the way that clumps share symbols. 

Also, the only important between-register relationships within a clump are 
their adjacency relationships and certain combinations of highlighting states 
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argl 

ARTISTS 

V 
Y 

• 
SUBSET 

arg2 

BEEKEEPERS 

Figure 2 8x8 region of the Configuration Matrix, containing a possible 
clump representing "All the artists are beekeepers." 

in adjacent registers. The direction of adjacency is unimportant. For instance, 
if a clump contains just two registers, they can be "horizontally," "vertically," 
or "diagonally" arranged in the Configuration Matrix. The arrangement makes 
no difference to the way the clump is treated by rules. 

Representations in the CM are modified when individual registers respond to 
the "command signals" that rules send to the CM as a whole. A register's 
response consists of a replacement of its symbol and/or changes to its high
lighting flag values. As a result, clumps can rapidly be modified and made to 
appear and disappear. 
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3.3 SYLLOGISM PROPOSITIONS IN CONPOSIT 

In Figure 2, the register containing the SUBSET symbol is highlighted with a 
flag called class, as indicated by the • sign.2 The significance of instance and 
class highlighting is as follows: 

Semantic Stipulation on Class Membership 

If a register is currently highlighted with class and contains a symbol s denoting 
a class, and is adjacent to a register that is currently highlighted in instance, 
then the latter register currently denotes some (putative) member of the class 
denoted by s. 

Hence, the mstance-highlighted register in Figure 2 denotes some subset situ
ation. 

Notice that both symbols and registers are regarded as being able to denote. In 
fact, the following principle applies: 

Stipulation on Denotation by Registers and Symbols 

If a register currently contains a non-null symbol, then the register and the 
symbol currently denote the same thing. 

The three symbols mentioned so far have a fixed, permanent denotation, and 
this is borrowed by any register such a symbol temporarily lies in. As will be 
seen in a moment, the borrowing can go in the other direction, in the case of 
unassigned symbols. In either case, however, denotation by registers is always 
temporary, since the presence of a symbol in a register is only ever temporary. 

There is a further semantic stipulation to the effect that if a register denotes a 
subset situation and is highlighted with instance, then any neighbor highlighted 
with a flag called argl denotes the subset, and any arg2 neighbor3 denotes the 
superset. Highlighting with argl and arg2 is shown in Figure 2. 

Set intersection relationships, such as in "some of the beekeepers are chemists," 
are encoded in a similar way, only using an INTERSECTION symbol instead 

2 The flag names instance and class replace the names white and black, respectively, used in 
other papers on Conposit. 

3"arg2 neighbor" means the neighbor highlighted with arg2. 
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of SUBSET. For the proposition just quoted, the argl register would contain the 
BEEKEEPERS symbol and the arg2 register would contain the CHEMISTS 
symbol. 

The method described here for encoding propositions is exactly the same as is 
used in other Conposit versions having nothing to do with syllogistic reasoning. 
For instance, in another Conposit version the proposition that John loves Mary 
would be encoded by means of a clump like that in Figure 2, only using a 
LOVES symbol instead of SUBSET, and JOHN and MARY symbols instead 
of ARTISTS and BEEKEEPERS. Here the LOVE symbol would denote the 
class of all conceivable loving situations. 

A negative premise/conclusion is realized as pictured in Figure 3. The two 
clumps together encode the proposition that the ARTISTS set is not a subset of 
BEEKEEPERS. This involves two clumps linked by virtue of the fact that they 
each include a register containing the symbol Y. Symbols Y and Z are two of 
Conposit/SYLL's fifty "unassigned symbols," which have no assigned denota
tions. Unassigned symbols are regarded as picking up temporary denotations 
from the registers they are in. This is by virtue of the Stipulation on Denotation 
by Registers and Symbols. Consider the head register containing Y in Figure 
3. That register temporarily denotes the situation S of the ARTISTS set being 
a subset of the BEEKEEPERS set. This makes Y denote that situation as well. 
Hence, by that same Stipulation, the register containing Y in the other clump 
also denotes situation S. Hence, this clump represents the situation of S not 
holding. (The assigning of denotations to unassigned symbols and registers is 
entirely in our minds as observers — it is not a process performed by Conposit 
itself. Conposit merely processes register states in a way which is consonant 
with the theoretical assignation of denotations.) 

Symbol-sharing is viewed as establishing an association between the registers 
that share a symbol. Since a symbol is implemented as a connectionist activa
tion pattern, between-clump association by symbol sharing is a simple special 
case of PSA. On the other hand, the association of registers within a clump is 
by a simple form of RPE. Within-clump association depends only on the adja
cency of suitably-highlighted registers. (See [9] for a description of PSA and 
RPE in general terms, possible instances of them diverging from Conposit's, 
and relationship the two techniques bear to other connectionist work and to 
computer data structuring techniques.) 

Propositional embedding, as implemented through PSA, is also used in Con
posit to order the components of a syllogism, as illustrated in Figure 4. This 
shows one possible encoding of the following syllogism: 
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argl 

ARTISTS 

NOT 
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V 
Y 

V 
z 

• 

SUBSET 

argl 

BEEKEEPERS 

argl 

Y 

Figure 3 Clumps for "Some of the artists are not beekeepers" (i.e. it is 
not the case that all artists are beekeepers). 

(PI) All the artists are beekeepers. 

(P2) Some of the beekeepers are chemists. 

(I) The relationship of artists to chemists is to be 
investigated. 

The inclusion of this third item is a respect in which Conposit might be said 
to be cheating, in that human subjects in syllogism experiments are not always 
given an explicit command about what sets to relate. However, in [24] Johnson-
Laird and Bara do not give an account in their theory of how human subjects 
work out what sets to relate, and in any case it would be possible to modify 
Conposit so that it works this out. 
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Figure 4 A possible encoding of a syllogism problem. 

The proposition (PI) that all the artists are beekeepers is ordered before the 
proposition (P2) that some of the beekeepers are chemists. The left-hand 
SUCCESSION clump in the Figure states that whatever is represented by 
unassigned symbol P2 is to be considered after whatever is represented by 
PI. PI and P2 are made to denote the mentioned propositions by virtue of 
their appearance in the heads of the clumps in the middle of the Figure. The 
"FIRST" proposition in the Figure states that proposition (PI) is the first item 
in the sequence of three propositions. A run of Conposit is initialized with a 
CM state of the sort shown. 

In some applications of Conposit there might be propositions with more than 
seven argument places, which is a problem in view of the fact that a head 
register in a clump has at most eight neighbors. In order to solve this problem, 
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Figure 5 Clumps for mental model MM 2-2. 

Conposit allows a proposition to be separated into several clumps encoding 
different aspects of the proposition [2]. 

3.4 REPRESENTATION OF MENTAL MODELS 

An individual token is encoded by a straightforward application of the above 
techniques. For instance, the encoding of an artist token consists of a in
stance/class clump, where the class register contains the ARTISTS symbol, 
and the instance register contains some unassigned symbol. See the three 
clumps at the left of Figure 5. The instance register in each of these three 
clumps denotes some artist. So the unassigned symbol in the register also tem
porarily denotes that artist. In terms of the adjustments to the Johnson-Laird 
theory that were described in section 2.3, the unassigned symbol acts as the 



Symbol-Processing in Conposit 41 

name of the token. The clump corresponds directly to the notation " A:x" used 
there, if A stands for the artists set. A token is marked as being optional by 
virtue of its head register being highlighted with a special flag called optional 
(cf. opt in bottom left clump of Figure 5.) 

Because mental models are randomly constructed one at a time by Conposit, 
the CM never contains more than one model. The Johnson-Laird mental model 
MM 2-1, which has the adjusted form MM 2-2, could in principle take the form 
pictured in Figure 5. However, this arrangement is regimented for illustrative 
clarity. The positioning of the clumps is, as always, irrelevant, and when they 
are created they are placed in arbitrary positions in the CM. They can even be 
arbitrarily placed with respect to the clumps that encode the syllogism itself 
(Figure 5). That is, the CM is not divided into separate regions for propositions 
and tokens. 

3 . 5 C O N P O S I T ' S R U L E S 

Conposit has the following rules. 

Note-First 

Designates the first premise as the "current" proposition by imposing a certain 
highlighting state on it. 

Note-Next 

Transfers the "current" designation from first premise to second, when the 
former has been marked as having been processed. Similarly, the rule transfers 
the "current" designation from the second premise to the "to be investigated" 
proposition. 

Create-Unclassified-Tokens 

If there are no unclassified tokens (as happens if and only if the CM contains no 
mental model), and some syllogism proposition is "current," this rule creates 
randomly many "unclassified" tokens. These are just like, say, ARTISTS 
tokens but using the symbol THINGS rather than ARTISTS. 



42 CHAPTER 2 

When one of the rules below creates a proper token, say an ARTISTS one, the 
token is a modified copy of an arbitrarily chosen unclassified token. The mod
ification consists of replacing the THINGS symbol by the ARTISTS symbol. 

Intersection 

When an intersection proposition ("Some of the X are Y") is "current" and 
there are some tokens, this rule proceeds as follows. 

Unless there are already some X tokens and some Y tokens, the rule assumes 
the proposition is a premise and modifies the model appropriately. The modi
fications consist mainly of additions of tokens of X and/or Y (unless some X, 
Y tokens, respectively, already exist), and ensuring that at least one X token 
has the same name as some Y token. 

On the other hand, if there are both some X tokens and some Y tokens, the 
rule assumes the proposition is a tentative conclusion. In this case it deletes 
the proposition if and only if it fails to hold in the model. 

Subset, Not-Intersection, Not-Sub set 

These three rules are analogous to Intersection, and deal with premises or 
tentative conclusions of the form "All the X are Y," "None of the X are Y" and 
"Some of the X are not Y" respectively. 

Create-Conclusions 

When the first mental model has just been created from the premises and 
therefore the "to be investigated" proposition is "current," this rule creates 
tentative conclusions about the end terms (the A and C sets) in the syllogism. 
A tentative conclusion is encoded in just the same way as a premise except 
that it has its head register highlighted with the tentative flag. 

The marker passing process that organizes the conclusion creation is detailed 
in section 3.6 below. 

Check-Conclusions 

When a mental model other than the first has just been created, and therefore 
once again the "to be investigated" proposition is "current," this rule transfers 
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the "current" designation to the existing set of tentative conclusions, left over 
from the previous models. This prepares the way for rules Intersection, Subset, 
Not-Inter section ox Not-Subset to check those tentative conclusions against the 
current model. 

Destroy-Tokens 

When tentative conclusions have just been created or checked, this rule destroys 
the current mental model. The destruction consists simply of the elimination 
of all tokens, returning each register involved in the clumps to the "free" state. 

Remodel 

When the current model has just been destroyed and there are some tentative 
conclusions left, the firing of this rule makes a certain highlighting change 
that causes Note-First to become enabled again. Thus, a new model will be 
created. 

Finish 

When the current model has just been destroyed and there are some tentative 
conclusions left, the firing of this rule deletes all tentative highlighting, thereby 
making the surviving conclusions into definite propositions. This also causes 
it to be the case that no rules are now enabled. The simulation therefore halts. 

Mostly, only one of the above rules is enabled in any given CM state. There are 
two exceptions to this. First, rules Remodel and Finish have exactly the same 
enabling condition, and are therefore always enabled together. The system 
randomly chooses which one to fire. This is tantamount to the system randomly 
choosing to try out a new model or to stop. The probability of choosing one 
of the rules as opposed to the other depends on Conposit parameter settings. 
The second exception is that when conclusion checking is in progress, more 
than one of the rules Intersection, Subset, Not-Inter section and Not-Subset can 
be enabled. For instance, if there is a tentative intersection conclusion and 
a tentative negated subset proposition, then rules Intersection and Not-Subset 
are both enabled. 

If there are two tentative subset conclusions, say, rule Subset makes an arbitrary 
choice of one conclusion to work on. When the rule finishes it removes the 
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"current" designation from this conclusion, so that another firing of the rule 
will deal with a different subset conclusion. 

Much more detail on how the rules work can be found in [2]. 

3.6 TENTATIVE CONCLUSION CREATION BY MARKER PASSING 

Rule Create-Conclusions organizes its job by means of a marker passing pro
cess that is described here. The presence of a marker at a token consists 
simply of the highlighting of the head register of the token with one of the 
flags member-of-1, member-of-2, member-of-only-one, member-of-both. The 
"sharing of token names" mentioned at the start of section 2.2.1 is simply 
sharing of unassigned symbols by the head registers of tokens. (See Figure 5.) 

The process has the following steps. The A and C sets are the two sets involved 
in the syllogism conclusion. 

Initialization 

(a) Mark all A tokens with member-of-1 and all C tokens with member-of-2. 
Spread these marks according to name-sharing (i.e. "identity links"). That is, 
if a token is marked with member-of-1 then also mark with member-of-1 any 
token with the same name; and proceed similarly with member-of-2. 

(b) Put member-of-both marking on each token that is marked with both 
member-of-I and member-of-2. 

Symmetric Conclusion Formation 

(a) If there are some tokens marked with member-of-both, construct the tenta
tive conclusion "Some of the A are C". 

(b) If there are no such tokens, construct the tentative conclusion "None of the 
A are C". 

A-C Asymmetric Conclusion Formation 

(a) Putmember-of-only-one marking on all tokens that are marked with member-
of-1 but not member-of-both. 
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(b) If there are some non-optional tokens marked with member-of-only-one, 
construct the tentative conclusion "Some of the A are not C". 

(c) If there are no tokens marked with member-of-only-one, construct the 
tentative conclusion "All the A are C". 

C-A Asymmetric Conclusion Formation 

Prepare by deleting member-of-only-one marking. Proceed as in A-C case but 
with A and C interchanged. 

3 . 7 SUBCONFIGURATION DETECTION MODULE AND RULE 

ENABLEMENT 

The condition part of a rule consists essentially of a portion of the circuitry in 
the Subconfiguration Detection Module. This module undeniably contributes 
the lion's share of the circuitry in Conposit.4 It consists of a group of in
terconnected "location matrices" (LMs). Each location matrix is in charge of 
detecting a particular sort of state subconfiguration within the CM. For instance, 
one location matrix detects unclassified tokens (like those in Figure 5 but with 
symbol THINGS in place of ARTISTS etc.). Another detects SUCCESSION 
propositions that are "ready." A "ready" SUCCESSION proposition is one 
whose argl register is highlighted in done. This highlighting indicates that the 
proposition denoted by that register has been dealt with, and that it is time to 
move on to the proposition denoted by the argl register. A further location 
matrix detects current INTERSECTION propositions. An INTERSECTION 
proposition is current if its head register is highlighted with current. 

Notice carefully that there is only one LM that detects current INTERSECTION 
propositions. This LM is insensitive to which sets (ARTISTS, etc.) are 
involved. Similar comments apply to other LMs. Thus, there is no explosive 
replication of circuitry within the Subconfiguration Detection Module in order 
to cope with the possible trios of sets in syllogisms. 

Each location matrix is a 2D matrix of the same size as the CM, and the 
elements are again called registers. For present purposes the reader may take 
an LM register to have just a binary state, ON or OFF. Suppose the location 
matrix is the one for detecting current INTERSECTION propositions. Then 

4It can be dispensed with entirely, however, at the cost of considerably slower processing. 



46 CHAPTER 2 

any register in it is ON if and only if thepositionally corresponding register in 
the CM is 

either the head register of a current INTERSECTION proposition 

or a register that contains the same symbol as such a head register. 

ON states in LMs arise out of the interconnections between LMs as well as 
connections going from the CM to LMs. 

Several rules may be enabled by the Subconfiguration Detection Module in 
a given state of the CM. The choice of rule to fire is random, as governed 
by probabilities provided by Conposit parameters. The enablement condition 
for a rule is a logical combination of elementary conditions. Each elementary 
condition is in terms of (a) the presence/absence of ON states in specific 
LMs, and/or (b) the presence/absence of specific highlighting in the CM. For 
instance, the enablement condition of the rule Note-Next can be paraphrased 
as: 

"the ready-SUCCESSION LM contains ON somewhere and 
there is no current highlighting anywhere in the CM." 

The "somewhere" and "anywhere" in the two elementary conditions conjoined 
here illustrate the point that enablement never depends on where a specific 
highlighting state occurs in the CM or where the ONness is in an LM. 

3.8 COMMAND SIGNALS 

Firing a rule consists largely of the rule's action part sending a sequence of 
instructions called "CM command signals" to the CM. Each CM command 
signal goes without modification to every register in the CM in parallel. More
over, the command signal does not contain any sort of name or address for any 
register, and is therefore unable to explicitly instruct any particular, fixed regis
ter to do anything. Nevertheless, different registers may respond differently to 
the signal, so that in effect the command signal does implicitly cause different 
registers to do different things. The differences between registers in how they 
respond to a CM command signal depend mainly on their own current states 
and the highlighting states of their neighbors. (The CM therefore acts like a 
grid of processors in an SIMD parallel computer.) 
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In a simple case, the command signal will dictate that a register is to respond 
if and only if its highlighting state is as specified by the signal. The command 
signal may require specific flags already to be ON and/or specific flags already 
to be OFF, and allows the remaining flags to be at either setting. The register's 
response then typically consists of changing its highlighting state in the way 
dictated by the command signal, and/or adopting the symbol conveyed in the 
command signal. The command signal may also dictate that for a register 
to be able to respond at all, its neighbors must obey a highlighting condition 
conveyed in the signal. More exactly, the command signal can only require 
that either some or all of the register's neighbors have certain highlighting flags 
ON and/or certain ones OFF. 

A command signal often decrees that arbitrary selection be done — i.e., that 
just one, arbitrarily chosen, member of the set of registers that obey the signal's 
highlighting condition be in the response set. An example of this is when the 
system makes an arbitrary choice as to which of several different tentative 
conclusions to check against the mental model. The selection process is 
performed by the Temporal-Winner-Take-All (TWTA) mechanism, described 
in section 4.3 below. 

The command signal may also decree that spread by symbol sharing is to occur 
(after arbitrary selection if any). This means that any register containing the 
same symbol as any register already in the response set is now put in the set as 
well. 

A rule action part can also send "LM command signals" that affect the CM 
indirectly through the medium of LMs. An LM command signal goes to a 
specific LM, whereupon every ON register in that LM sends a simple signal to 
the positionally corresponding register in the CM. The CM registers receiving 
these simple signals then turn on a highlighting flag called detected. For 
instance, if the LM is the current-INTERSECTION one, the CM head register 
of each current INTERSECTION proposition in the CM turns on its detected 
highlighting. The rule that is firing may now focus its processing on those 
propositions.5 

5 Elsewhere, CM and LM command signals are called "direct command signals" and "indirect 
command signals" respectively. 
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3.9 REGISTER RECRUITMENT 

Rules often need to create clumps, representing tokens or propositions. A rule 
creates a clump by means of a short series of CM command signals. The first 
command signal sets up the required symbol and highlighting values of the 
clump's head register H, which is arbitrarily chosen out of the set of "ultra-
free" registers (see below). It then sets up the symbol and highlighting values 
for each of the one or more required adjacent registers, choosing each register 
arbitrarily out of the set of neighbors of the head register. The setting up for 
each register requires either one or two CM command signals. 

When choosing a free register for the head H, the system must ensure that the 
completed clump will be separated by free space from every existing clump. 
Let us call a free register "super-free" if it is entirely surrounded by free 
registers. Let us call a super-free register "ultra-free" if it is entirely surrounded 
by super-free registers. Register H is chosen arbitrarily out of the set of "ultra-
free" registers. The selection of H from among the set of ultra-free registers is 
done in just the same way that arbitrary selection is done in response to CM 
command signals, i.e. by another instance of the Temporal-Winner-Take-All 
mechanism described below. A simple, continuously operating background 
process in each register maintains two special highlighting flags indicating 
respectively whether it is super-free or ultra-free. The background processes 
in different registers operate in parallel with each other. 

If the CM is full, i.e. there are no ultra-free registers, then the clump is simply 
not created. This failure could cause a mental model to be oversimplified by 
not having some tokens, or could cause a possible tentative conclusion not 
to appear, but the system would be able to continue its processing. In any 
case, the CM has not become full in the many simulation runs that have been 
performed. 

4 CONNECTIONIST REALIZATION OF CONPOSIT 

This section sketches the quite straightforward way in which Conposit's Con
figuration and Subconfiguration Detection Module are realized in connectionist 
circuitry. The most interesting aspect is perhaps the Temporal-Winner-Take-
All selection mechanism (section 4.3). For detail on the connectionist realiza
tion of rule enablement and action parts, see [2]. An action part is realized 
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as a connectionist subnet structured as a flowchart, most nodes of which send 
command signals to the CM or LMs. 

4.1 CONFIGURATION MATRIX, COMMAND SIGNALS, AND 

PARALLEL DISTRIBUTOR 

Each register in the CM is implemented as a small connectionist subnetwork. 
Different registers are isomorphic as subnetworks, except for minor variations 
in the registers at the edges of the CM. The symbol in a register at any given 
moment is an arbitrary binary activation pattern over some group of units in 
the register. Also, each highlighting flag is realized as a unit in that register 
that is either ON or OFF. The symbol and highlighting units maintain their 
values until changed by a CM or LM command signal. 

A CM command signal sent by a rule or routine actually arrives at the CM's 
"parallel distributor." This module is connected to each register in the CM, 
and forwards an identical copy of the signal to each register. See Figure 6. The 
signal is an activation vector, each of whose components is a binary or ternary 
value. The signal therefore travels from place to place on "cables" consisting 
of parallel connection paths. The vector is divided up into separate portions, 
some of which are as follows. 

Two portions of the command signal vector specify the symbol (if any) and 
highlighting that a register must have if it is to respond to the signal. The latter, 
"own-highlighting," portion has an ON, OFF or DONT-CARE value for each 
highlighting flag. Another, "neighbor-highlighting" portion of the command 
signal vector similarly specifies the highlighting that a register's neighbors 
must have in order for the register to respond to the signal. An immediate 
effect of the arrival of the command signal at a register is to turn on a "own-
condition" unit in the register if and only if it satisfies the own-highlighting 
condition in the signal. Another effect is to turn on a "neighborly" unit in the 
register if and only if it satisfies the neighbor-highlighting condition. 

Each register is connected uniformly to each of its eight neighbors (or fewer, 
at the edges of the array). These connections allow a register to sense the 
highlighting states of its surrounding registers. In more detail, each register R 
simply receives a connection from the "neighborly" unit of every neighboring 
register, as pictured in Figure 7. These connections feed both into (a) an OR 
unit and (b) into an AND unit within R. This scheme allows R to detect (a) 
whether some neighboring register satisfies the neighbor-highlighting condition 
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CONFIGURATION 

MATRIX 

'copies of the command signal 
distributed to all registers 

incoming CM command signal 

Figure 6 Parallel distributor, and distribution of CM command signals. 
The registers can also send certain items of information to the parallel 
distributor. 

in a command signal, and (b) whether all neighboring registers satisfy the 
neighbor-highlighting condition in a command signal. At most one of these 
decisions is used in determining whether the register should respond to the 
command signal. 

The ability of command signals to make register responses depend on neigh
bors ' highlighting states is part of the means whereby RPE has causal efficacy 
in the system. The other part is mentioned in the next subsection. 

When a certain binary component of a command signal (as an activation 
vector) is ON, the signal is decreeing that each responding register broadcast 
its symbol to all other registers.6 The broadcast is indirect, going via the 
parallel distributor, as there is no direct connectivity between non-neighboring 
registers. A broadcast symbol is simply held by the parallel distributor until the 
next command signal arrives, at which time the parallel distributor forwards 
the symbol to every register. The expectation is that the new command signal 

6 In fact, we assume that in such a case all the responding registers contain the same symbol. 
In most cases of symbol broadcasting there is only one such register. 
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Figure 7 The (only) connectivity between neighboring registers. The 
large squares depict registers. The small squares containing 4n' depict 
the "neighborly" units mentioned in the text. (The arrows ending in mid
air depict connections that go to the AND and OR units in the middle 
register.) 

will ordain (by means of an ON value at a certain component of the signal 
vector) that every responding register take on the broadcast symbol as its new 
symbol. A symbol travels between registers and parallel distributor on cables 
of connections. 

Broadcasting is also one method that has been used in Conposit to achieve the 
spread-by-symbol-sharing capability of command signals (see section 3.8). 
This capability enables the effect of a command signal to be transmitted across 
the inter-register "linkages" arising from PSA. 

4 . 2 SUBCONFIGURATION DETECTION MODULE 

The connectionist realization of each location matrix in the Subconfiguration 
Detection Module is analogous to that of the CM. However, it is considerably 
simpler, since LM registers do not need to decode CM command signals and 
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therefore, in particular, do not need to be connected to neighbors. However, 
each LM register does need to receive a copy of the symbol in the correspond
ing CM register. This is to enable ONness to be consistent across positions 
containing the same symbol, thus respecting PSA "linkages." The mechanism 
for ensuring this involves symbol broadcasting within the LM. The broadcasts 
are prevented from conflicting with each other by being arbitrarily sequenced 
(see below) by a parallel distributor for the LM. This parallel distributor is also 
involved in the distribution of LM command signals to the LM's registers. 

A given LM register is connected to some or all of the following sorts of 
register in other LMs or in the CM: (i) the positionally corresponding register 
in the CM; (ii) the positionally corresponding register in another LM; (iii) the 
registers neighboring the corresponding register in the CM; (iv) the registers 
neighboring the corresponding register in another LM. Thus, the LM-LM 
and CM-LM connectivity is "topographical" to within fan-in from immediate 
neighbors. The fan-in is important part of the way in which RPE has causal 
efficacy in the system. More detail of the configuration of the connections can 
be found in [4]. 

The LM-LM connections define a directed acyclic network of LMs. Thus, LM 
states are updated (whenever the CM state changes) in a single forward sweep 
through the LMs, starting with those connected only to the CM. The set of LMs 
taking input only from the CM consists of one "basic" LM for every constant 
symbol and unassigned symbol used by the system. A register in the basic LM 
for symbol s is ON if and only if the corresponding CM register contains s. 
This scheme allows a very simple, fast, parallel implementation of the optional 
"spreading by symbol sharing" phase of a CM register R's response to a CM 
command signal. 

4 . 3 CM R E G I S T E R S E L E C T I O N BY 

T E M P O R A L - W I N N E R - T A K E - A L L (TWTA) 

A CM command signal often decrees arbitrary selection out of some dynami
cally defined set of contending registers. TWTA is also used within LMs and 
in rule circuitry, as described in [2]. 

TWTA is a technique for making a selection out of a set of contending com
ponents (units, sub-assemblies) of a connectionist network. It is therefore 
analogous to conventional connectionist winner-take-all (WTA) mechanisms 
(see, e.g., [19], [21], [26], [35]; see also [17]). Such a mechanism attempts 
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to select the contending component that is initially most highly active. The 
selection usually amounts to driving the activations of all the other contending 
components to some ignorable value (e.g. zero). By contrast, TWTA pro
ceeds on the basis of fine signal timing differences, rather than the activation 
differences. TWTA is not specific to Conposit - it can be used in any type of 
connectionist system that allows fine signal timing differences. 

TWTA rests on a simple "race" or "first past the post" idea, as follows. Each 
contending component sends a simple "ready" signal to an arbitration network. 
The ready signals are generated at times among which there are small random 
differences, and/or take randomly different amounts of time to travel to the 
arbitration network. This subnetwork tries to declare as the winner the sender 
of the ready signal that is earliest to arrive. It does this essentially by using 
each incoming signal to inhibit the receipt of all the others. However, if several 
earliest signals are sufficiently close together in time, the arbitration network 
may not be able to distribute the inhibition fast enough. In such a case, a 
new round of attempted selection must occur, though now only from among 
the components whose ready signals scraped through before they could be 
inhibited. Successive rounds therefore normally use smaller and smaller sets 
of contenders. On average, the set of contenders is reduced to a fraction / of 
what it was, where / depends on various network parameters. 

By analysis and experiment [11] [12], it has been shown that the expected 
number of rounds of contention is only roughly logarithmic in the number of 
initially contending components; and extensive experiments suggest that the 
actual number rarely exceeds twice the expected number. 

In Conposit, an ON value in a certain component of a CM command signal 
decrees the need for arbitrary selection. A register satisfying the highlighting 
condition in the command signal sends out its first "ready" signal in an attempt 
to win the TWTA contention. The arbitration network is part of the parallel 
distributor. When a register wins, a special "win" highlighting flag within it 
turns on. 

The logarithmic relationship mentioned above, together with the various pa
rameter settings, means that even if all 1024 registers in the CM were initially 
contending the number of rounds of contention would only be about seven. In 
fact, in almost all selections, the number of contending registers is far lower. 
The 1024 figure only arises when the system has to recruit a random regis
ter when the CM is entirely empty. After that, further recruitments are done 
as close as possible to already recruited registers, so that the contending set 
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is much smaller. Also, selection among clumps, such as tokens in a mental 
model, involves small contention sets. 

5 COPING WITH THE JOHNSON-LAIRD CHALLENGE 

The present section will show how Conposit meets the requirements posed 
by the Johnson-Laird theory, through the power provided by its versions of 
Relative-Position Encoding and Pattern-Similarity Association. A major sub-
issue is the question of how Conposit solves the variable binding problem. In 
[4] and [9] there is more discussion of variable binding in relation to RPE, PSA 
and other representation techniques.) 

Feature (1) of the challenge (see start of section 2.3) is the need to handle 
multiple sorts of relatively complex, temporary information structure, where 
these structures are rapidly created on the fly. Conposit's working memory is a 
pool of recruitable registers. It is easy for the system to recruit however many 
registers are needed (assuming enough are free) and to structure them into the 
different sorts of required propositions and token representations. This ease 
arises from a simple and efficient clump-creation method. All that is required is 
to put a suitable collection of registers into the right states of activation, in such 
a way as to achieve the desired RPE and PSA relationships among registers. 
The CM command signals that achieve this do not need to be sent by rules to 
any specific registers; rather, command signals are identically broadcast to all 
registers, and it is the registers' individual states that dictate whether they are 
to respond to the rule. 

The circuitry within the CM that supports all this consist mainly of simple logic 
within each register, very simple neighbor-neighbor interactions (consisting 
merely of sensing whether neighbors satisfy a highlighting condition in a 
CM command signal), simple TWTA arbitration circuitry within the parallel 
distributor, and trivial circuitry within the parallel distributor for distributing 
command signals and broadcasting symbols within the CM. The rapidity of 
data structure creation is ensured in part by having an efficient register selection 
mechanism (namely TWTA), and by there being an efficient means for each 
register to determine for itself whether it is free, super-free or ultra-free (section 
3.9). These determinations are done in parallel across all registers. 

The temporariness of the data structures in the CM is ensured by the fact that 
non-free registers can easily be put back into the free state, combined with the 
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fact that data structures in the CM have a localist quality, being separated from 
each other much as symbolic structures in a computer memory are. Therefore, 
data structures can be individually eliminated without affecting other ones (that 
are not sub- or super-structures of the ones deleted). 

This ease of data structure deletion is brought out especially by the rule that 
eliminates a whole mental model. All the rule needs to do is to suitably highlight 
all registers that share an unassigned symbol with a THINGS token, and then 
eliminate all clumps that are headed by those just-highlighted registers. Each 
of these actions requires only a couple of command signals. All the token 
eliminations proceed in parallel with each other. 

Feature (la) in section 2.3 is the need for connectionist systems to be able to 
manipulate variable numbers of co-existing members of each of several sets. 
In the Johnson-Laird case the members are the tokens and the sets are those 
mentioned in the syllogism. Conposit's flexibility in this regard is ensured by 
the fact that the working memory is only a pool of registers that can be used 
for any representational purpose. No register is permanently dedicated to a 
specific representational task, such as representing a token of a specific type. 
Thus, the pool can have any mix of token types that might be necessary at any 
given time. Several tokens might all be of the same type (all of type ARTIST, 
say). 

Similar comments apply to feature (lb), which is concerned with the co
existence of multiple propositions. Conposit thereby gets away from a narrow 
view that seems to be adopted in many connectionist discussions of frame 
instantiation, role-binding, etc. Such discussions often do not take explicit ac
count of the need to be able to have several instantiations of a frame, predicate, 
etc. co-existing at any one time. The non-dedicatedness of registers is the key 
to Conposit's handling of this issue. 

A further point about the tokens is that they can, when necessary, be manipu
lated in parallel in Conposit. A simple example of this is the deletion of whole 
mental models. Another important example is that each step in the marker 
passing process of section 3.6 is done by manipulating tokens in parallel. Sup
pose, say, marker member-of-1 is on several token-head registers Ri, and it is 
required to copy this marking to any register holding the same (unassigned) 
symbol as one of the Ri. This effect is achieved by a single CM command 
signal that does a "spread-by-symbol-sharing" action. What is spread is the 
ONness of member-of-1 highlighting. The spreads from different registers Ri 
occur in parallel, via the medium of the location matrices that correspond to 
the symbols in the Ri. 
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Feature (2) in section 2.3 is the need for the mental model processing to work 
for any three classes A, B, C that the system knows about. This is tantamount 
to saying that the processing rules must have variables that can be bound to 
whatever classes are involved in the presented syllogism. An idea of how this 
happens in Conposit can be obtained by looking at the rule Intersection, which 
was briefly described in section 3.5. Neglecting for simplicity the fact that one 
thing the rule can do is check a tentative conclusion, it can in gross terms be 
described as follows: 

IF there is a current INTERSECTION proposition, p, 

THEN modify the current mental model according to P. 

In this formulation there is one variable, P, which gets bound to the intersection 
premise. The form this binding takes in Conposit is the placing of detected 
highlighting on the head register of the proposition's clump. In effect, variable 
p is realized as detected highlighting as such. This highlighting then allows 
the rule to access the registers containing the symbols SI and S2 denoting the 
sets that are stated to intersect. These registers are just the argl -highlighted 
and argl -highlighted registers adjacent to the detected register, i.e. the head 
register. What the rule does is to place setl highlighting on the argl register, and 
set2 highlighting on the arg2 register. Each of these actions is accomplished 
very simply by one command signal. For instance, in the first case, this signal 
just tells all registers to turn their setl flags on if their argl flags are on and 
they are adjacent to a register that has its detected flag on. Also, the command 
signal specifies spread-by-symbol-sharing, so the setl highlighting actually 
actually goes on all registers that contain the SI symbol. Similarly for S2. 
Setl and setl highlighting may now be regarded as being variables denoting 
the first and second sets involved in the intersection proposition. The rule can 
perform further actions involving SI and S2 by restricting command signals 
to affect only those registers that are highlighted with setl or setl. (Note that 
setl and setl highlighting can be used for other purposes by other rules.) 

An important aspect of the variable binding by means of detected highlighting 
is the method by which that highlighting is positioned by the rule. The rule's 
action part is only executed when there is an ON value anywhere within the 
LM that detects the presence of current intersection propositions. (These are 
intersection propositions whose head registers are highlighted with current?) 
Thus, the ON values can be viewed as temporarily binding the variable P 
simultaneously to all the possible current intersection propositions in the CM. 
The first action of the rule is to send an LM command signal (recall section 
3.5) to this LM, causing all the CM registers corresponding to the ON registers 
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in the LM to acquire detected highlighting. The next action is a command 
signal that restricts this highlighting to just one proposition head. The result is 
that variable P can be regarded as being bound to just one, randomly chosen, 
current intersection proposition. 

It is important to realize that in this discussion the variable P is purely notional. 
There is no localized circuit component in Conposit that corresponds to it. It 
is an abstraction from the way ON states are positioned in LMs and of the way 
particular types of highlighting are positioned in the CM. Of course, the units 
that support such ON states and highlighting could be regarded as a rather 
spread-out realization of the variable in the circuitry. 

Conposit's variable binding has an interesting "plurality" feature that appears 
not to be shared by other connectionist frameworks capable of variable binding. 
Let us say that a highlighting flag that is regarded as a variable (such as the 
detected flag) is a "binding flag." As was explained a moment ago, a binding 
flag can get turned on at more than one place in the CM. This flagging can be 
viewed as a "plural" binding. 

In some circumstances plural binding allows a useful form of parallelism in 
a rule's effect. A good example is provided by the deletion of the current 
mental model by rule Destroy-Tokens. In order to do the deletion, all the rule 
needs to do is to eliminate all the clumps acting as tokens. This it does by 
putting detected highlighting on the head registers of all unclassified tokens, 
and spreading the highlighting to all registers containing the same symbols. 
The latter registers are the head registers of all the other, classified, tokens. 
That is all done by one command signal. The highlighting now has a plural 
binding to all tokens in the CM. Another command signal suffices to spread 
the highlighting to the non-head, class register in each token as well. Again, 
that is all parallel. Finally, a further command signal causes all the registers 
that have detected highlighting to be made free, in parallel. Thus, the plural 
binding of the detected highlighting has been used to achieve the in-parallel 
deletion of all tokens. 

Finally, feature (3) in section 2.3 is the need for complex procedural control. 
This is provided by Conposit in the following way: 

• Rules can create data structures and other traces, such as special high
lighting states, that affect the activities of later rules. This is illustrated 
by rule Note-First transferring the "current" highlighting state from one 
proposition to another (see section 3.5). 
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• The action parts of individual rules have a complex, flowchart-like form. 
For instance, rule Create-Conclusions acts according to the marker-passing 
process detailed in section 3.6. This process involves several conditional 
tests, implying a branching structure in the flowchart. Looping is used in 
the part of rule Intersection that creates new tokens in the mental model. 

• Branching and looping within action parts can be sensitive to the state 
of the CM. The direction the processing takes at a branch point (which 
may be a loop boundary) can be influenced by the presence of a specific 
highlighting state anywhere in the CM or by specific LMs contain ON 
registers (anywhere). For instance, the Symmetric Conclusion Formation 
phase of the marker-passing process mentioned above tests whether any 
CM register is marked with highlighting flag member-of-both. 

6 SIMULATION RUNS 

This section summarizes the mental model processing performed by two par
ticular runs of Conposit/SYLL, both on the same syllogism. For clarity of 
illustration, mental models are displayed using identity-link notation, and to
ken names are suppressed. That is, the notation is as in MM 2-1 in Section 
2. 

In each run the Finish rule was disabled, in order better to show how Con
posit/SYLL can check and eliminate tentative conclusions. In each run the 
probabilities of loop exits were set so as to achieve the following expected 
numbers: 

expected number of unclassified tokens created for each model: 8 
expected number of tokens put into a set that is so far empty: 3 
expected number of tokens added to a non-empty set: 2 
expected number of tokens randomly chosen from a non-empty set: 1.5 

Of course, the actual numbers involved on individual occasions sometimes 
depart greatly from these expected values. One extreme effect is for very 
few unclassified tokens, perhaps just one, to be created. In some cases this 
can cause Conposit/SYLL to be unable to form a model consistent with the 
premises. In these situations the model construction is aborted; the existing 
tokens are destroyed and a new attempt at model construction is made. 
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Another extreme effect is for so many tokens to be created that the CM becomes 
full. This can cause failures to generate tentative conclusions, if the model 
in question is the first, or to eliminate conclusions otherwise. However, this 
extreme is much less likely than the too-few-tokens extreme, and rarely occurs. 

A.l: RUN1 

Premises 

Some of the beekeepers are artists. 
All the chemists are beekeepers. 

Valid Conclusions'. None. 

Summary of Behavior 

Conposit/S YLL produced two affirmative conclusions on the basis of the first 
model, eliminated one of them because of the second model, and eliminated 
the remaining one because of the third. The system therefore achieved the 
correct answer by creating three models. 

First Mental Model, A.l -1 (3 unclassified tokens created) 

a = b = c 
(b) 

(a) 

Tentative Conclusions Generated from First Model 

Some of the artists are chemists. 
All the chemists are artists. 

Mental Model A.l-2 (5 unclassified tokens created) 
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a = b = c 
b = c 

(a) 

Conclusions Eliminated: 

All the chemists are artists. 

Mental Model A.l -3 (2 unclassified tokens created) 

a = b 
b = c 

Conclusions Eliminated: 

Some of the artists are chemists. 

No conclusions remaining: simulation stops. 

A.2: RUN 2 

Premises (same as in RUN 1) 

Some of the beekeepers are artists. 
All the chemists are beekeepers. 

Valid Conclusions: None. 

Summary of Behavior 
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Conposit/SYLL produced three tentative conclusions, two affirmative and one 
negative, on the basis of the first model. It eliminated the two affirmative ones 
because of the second model, and eliminated the negative one because of the 
third. The system again achieved the correct answer by creating three models. 

First Mental Model, A.2-1 (20 unclassified tokens created) 

a = b = c 
a = b 
(a) 

Tentative Conclusions Generated from First Model 

Some of the artists are chemists. 
Some of the artists are not chemists. 
All the chemists are artists. 

Mental Model A 2-2 (5 unclassified tokens created) 

a = b 
b = c 
b = c 
(b) 
(b) 

Conclusions Eliminated: 

Some of the artists are chemists. 
All the chemists are artists. 

Mental Model A.2-3 (15 unclassified tokens created) 
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a = b = c 
b = c 
b = c 

(a) 
(a) 
(a) 
(a) 

Conclusions Eliminated: 

Some of t he a r t i s t s a re not chemis t s . 

No conclusions remaining: simulation stops. 

7 D I S C U S S I O N 

Conposit is a little difficult to locate on the localist/distributed spectrum. It is 
certainly not distributed in any usual sense, but neither is it straightforwardly 
localist. No register is permanently dedicated to representing any particular 
thing. However, at any one time, a non-free register represents one specific 
thing. In this way, Conposit could be said to be "transiently localist." 

There is a danger, in considering symbolically oriented connectionist systems 
such as Conposit or BoltzCONS, of thinking that that they are merely im-
plementational — that is, of thinking that the connectionist, implementational 
level has no influence on the symbolic, implemented level. However, Conposit 
serves as a demonstration of the implementational level affecting the nature 
of the implemented level. Such bottom-up, implementing-to-implemented ef
fects have been pointed out by other connectionists, for instance by [37] in 
noting that his implementation of trees in BoltzCONS allows makes it natural 
to do traversal without a separate stack, whereas such traversal requires special 
measures in a standard computer implementation. Conposit gets the same 
effect with tree traversal, because PSA and RPE associations can be traversed 
in either direction. However, there some other bottom-up effects as well. 
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The representational facilities of Conposit lead naturally to the idea of estab
lishing identities between tokens by means of name sharing (i.e. sharing of 
unassigned symbols), rather than by separate linking elements as in Johnson-
Laird's own theory and implementation. This is significant change to the 
conceptual level of the theory. Separate linking elements could have been im
plemented in Conposit - it would just have been more cumbersome. Equally, 
when Johnson-Laird's theory is implemented in a standard programming lan
guage such as Lisp it is more natural to use separate linking elements (e.g., by 
putting tokens into lists) than to use name sharing. 

Another significant bottom-up effect in Conposit is the use of "random se
quencing." For instance, consider the task of going sequentially through a set 
of representations, applying some processing to each one individually (as in 
the investigation of die current set of tentative conclusions in Conposit). It is 
simpler and more efficient for Conposit to select one representation at random, 
process it, mark it as processed, then select another one, and so on, than to 
go through the representations in the order defined by some overarching data 
structure. (An interesting conjecture is that, for many if not most common-
sense cognitive tasks involving a conceptually unordered set of items, random 
sequencing is all that is necessary.) 

By contrast, in a standard symbolic framework a set is usually implemented as 
a structure in which a linear order can naturally be discerned. (The order may 
be imposed behind the scenes by the programming language implementation, 
and be unknown to the programmer.) It is simpler and more efficient just to 
traverse the set in that order than it is to proceed randomly. The issue here 
is not the relative efficiency of getting to individual members of the set, but 
rather the housekeeping that would need to be done to discipline the random 
selections. For instance, suppose the set elements are the values of an array 
implemented in a standard way in contiguous memory cells in the computer. 
Hence, all elements can be accessed equally efficiently. Random sequencing 
would require that, at any stage, a random selection of an element be done only 
amongst those elements that have not yet been marked as having been selected. 
But since the marked elements are in arbitrary positions in the array, a random 
selection operation would have to scan through the unmarked elements, rather 
than just generating a (pseudo)random number and use it to go directly to a 
position in the array. 

Conposit has some similarity to SIMD computer architectures, although it 
differs from computer architectures in not containing any pointers or stored 
instructions. (Command signals are an analogue of computer instructions, 
but they are generated by fixed subnetworks in the rule networks, rather than 
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being items that can dynamically placed in storage locations.) Also, as further 
discussed in [9], RPE and PSA are highly reminiscent of basic computer tech
niques for structuring data in memory. Despite these connections to computers, 
it would be a mistake to claim that Conposit is not really connectionist. It is 
merely that Conposit has a level of description that can profitably be cast in 
terms different from the language of connectionist units and links. However, 
exactly analogous observations can be made about many more standard types of 
connectionist system. Many such systems can be completely described as do
ing mathematical operations such as matrix multiplications. These operations 
are at a higher level than and have no necessary connection to connectionist 
units and links. Yet, the existence of this mathematical level of description 
does not lead one to claim that the systems are not connectionist. 

The main deficiency of the Conposit as instanced in this chapter is that there is 
no provision for learning. However, this is a fault in the overall architecture, 
not in the basic techniques such as RPE, PSA and TWTA. In fact, some ongoing 
work on Conposit is looking at the use of these techniques in ABR-Conposit 
[10] [7], a connectionist implementation of analogy-based and case-based 
reasoning, with various provisions for learning. A significant modification 
that has been introduced is to have the unassigned symbols be dynamically 
constructed out of the symbols and highlighting states in the clumps they lie 
in. The unassigned symbols thereby become somewhat like the compressed 
encodings or reduced representations in other connectionist research. The use 
of these encodings in rapid, parallel mechanisms for matching complex data 
structures, and in mechanisms for structure-sensitive retrieval of analogues or 
cases from a long-term database, is under investigation. 

8 SUMMARY 

Conposit copes well with the challenge to connectionism presented by a com
plex symbolic cognitive theory developed entirely independently. Conposit 
gains its advantages largely from have a working memory (namely the "Con
figuration Matrix") that consists of components that can be dynamically re
cruited for any representational purpose, and that, to within resource bounds, 
allows any number of highly temporary complex representations to coexist 
without interference. The RPE (relative-position encoding) and PSA (pattern-
similarity association) methods are at the crux of the ability to rapidly set up 
complex data structures of any required sort. The Temporal-Winner-Take-All 
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selection mechanism is also a useful contribution to the connectionist arsenal 
of techniques. 
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1 INTRODUCTION 

Simple connectionist models have generally been unable to perform natural 
language understanding or memory retrieval beyond simple stereotypical sit
uations that they have seen before. This is because they have had difficulties 
representing and applying general knowledge rules that specifically require 
variables, barring them from performing the high-level inferencing necessary 
for planning, reasoning, and natural language understanding. This chapter 
describes ROBIN, a structured (i.e., localist) connectionist model capable of 
massively-parallel high-level inferencing requiring variable bindings and rule 
application, and REMIND, a model based on ROBIN that explores the inte
gration of language understanding and episodic memory retrieval in a single 
spreading-activation mechanism. 

One of the most difficult parts of the natural language understanding process 
is forming a semantic interpretation of the text. A reader must often make 
multiple inferences to understand the motives of actors and to causally connect 
actions that are unrelated on the basis of surface semantics alone. The inference 
process is complicated by the fact that language is often ambiguous in multiple 
ways. Even worse is that context from further input sometimes forces a 
reinterpretation of a text's meaning. 

A relatively unexplored fact about the language understanding process is that 
it does not exist in a vacuum. As people read text or hold conversations, 
they are often reminded of analogous stories or episodes in memory. The 
types of memories that are triggered are influenced by context created by the 
inferences and disambiguations of the understanding process. A full model 
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of the language understanding and memory retrieval processes must take into 
account the interaction of the two and how they affect each other. 

An example of some of the inferencing and disambiguation problems of the 
language understanding process can be seen in the sentence: 

"John put the pot inside the dishwasher because the police were coming" 
(Hiding Pot). 

In this sentence, it first seems that John is trying to clean a cooking-pot. But 
after reading about the police coming, it seems (to many people) that he was 
instead trying to hide marijuana from the police. This reinterpretation cannot be 
made without a complex plan/goal analysis of the input — an analysis requiring 
the ability to make multiple inferences from general knowledge rules. 

After people read stories, they are sometimes reminded of similar episodes. 
For example, after reading Hiding Pot, a person might be reminded of an 
analogous story that had been read earlier, such as "Billy put the Playboy under 
his bed so his mother wouldn't see it and spank him." (Dirty Magazine). Both 
stories involve somebody hiding something from an authority figure to avoid 
punishment. This example shows how crucial the understanding process can 
be to reminding, since the similarities allowing recall can only be recognized 
after several necessary inferences. 

These examples illustrate several of the problems of language understanding 
and memory retrieval. First, people must make multiple, dynamic inferences 
very rapidly to understand texts. The speed with which they do so indicates 
that they probably use a parallel inferencing process to explore several possible 
interpretations of a text at once. Secondly, they need to be able to integrate 
multiple sources of evidence from context to disambiguate words and between 
interpretations, implying that some sort of constraint satisfaction process is 
used along with the inferencing process. Equally important is that the interpre
tations from these language processes affect the kinds of episodes and analogies 
that people retrieve from memory. The episodes recalled from memory often 
then affect the interpretation process in turn. 

These problems have presented great difficulties for artificial intelligence and 
connectionist models. Traditional symbolic artificial intelligence models can 
perform the inferencing necessary for comprehension, but have not scaled up 
well because of their lack of parallelism and their difficulties with disambigua
tion. In contrast, connectionist (or neural network) models have parallelism 
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and can perform some disambiguation, but have generally had difficulties 
performing symbolic processing and inferencing. 

This chapter focuses on the development of connectionist models that are able 
to handle these high-level reasoning tasks in a computationally and psychologi
cally plausible manner. It describes ROBIN (Lange and Dyer [19], Lange [20]) 
and REMIND (Lange and Wharton [21]), two structured connectionist models 
that provide a potential explanation for these abilities. Several developments 
in connectionist variable binding and parallel dynamic inferencing abilities 
were achieved to create ROBIN (ROle Binding and Inferencing Network), 
allowing it to perform high-level inferencing and disambiguation difficult for 
other connectionist and symbolic models of natural language understanding. 
Using ROBIN as a base, we are also developing REMIND (Retrieval from 
Episodic Memory by INferencing and Disambiguation), a model that explores 
the integration of language understanding and episodic memory retrieval with 
a single spreading-activation mechanism. The integration of episodic memory 
retrieval with ROBIN's inferencing abilities allows REMIND to explain many 
psychological memory retrieval results that retrieval-only models cannot. 

The current versions of ROBIN and REMIND have had a great deal of success 
handling the problems of language understanding and memory retrieval. The 
extensions (in progress) to both models discussed in this chapter will improve 
both of their respective capabilities and allow us to explore how well their 
initially promising results scale up. These extensions should prove to be a 
significant addition to the reasoning and retrieval abilities of connectionist 
models in general. 

1.1 LANGUAGE UNDERSTANDING AND 

HIGH-LEVEL INFERENCING 

The part of the natural language understanding process that this chapter con
centrates on is the problem of high-level inferencing (Lange and Dyer [19]). 
High-level inferencing is the use of knowledge and rules about the world to 
build new beliefs about what is true. To understand a text, a reader must often 
make multiple inferences to understand the motives of actors and to causally 
connect actions that are unrelated on the basis of surface semantics alone. 
Complicating the inference process is the fact that language is often both lex
ically and conceptually ambiguous. As an example of some of the problems 
arising in high-level inferencing, contrast Hiding Pot ("John put the pot inside 
the dishwasher because the police were coming") with the following example: 
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"John put the pot inside the dishwasher because company was coming" (Din
ner Party) 

In Dinner Party, most people would infer that John transferred a Cooking-Pot 
inside a dishwasher to get the Cooking-Pot clean. In Hiding Pot, however, it 
seemed more likely that John was trying to hide his Marijuana from the police. 
There is therefore a conflict between the interpretation suggested by the first 
clause alone (that John was cleaning a cooking-pot) and the final interpretation 
suggested by the first clause combined with the second clause (that John was 
hiding marijuana). Even recognizing this conflict subconsciously to allow 
the potential for reinterpretation clearly requires a number of inferences. For 
example, Hiding Pot does not explicitly state that if the police see John's 
marijuana, then they might arrest him for possessing an illegal object (II), that 
John doesn't want this to happen (12), that he might therefore use a hiding plan 
to stop them from seeing it (13), and that being inside an opaque dishwasher 
might be acting as his plan to stop them from seeing it (14). All of these 
inferences are necessary to recognize the most probable causal relationship 
between the different actions. Shastri and Ajjanagadde [33] have called this 
kind of processing reflexive reasoning, since the inferences must be made very 
quickly, without readers necessarily even consciously noticing that they have 
made them. 

To understand episodes such as Dinner Party and Hiding Pot, a system must be 
able to dynamically make chains of inferences and temporarily maintain them 
with a variable-binding mechanism. For example, a system must know about 
the general concept (or frame) of an actor transferring himself to a location 
("coming"). To initially represent the phrase "police were coming" in Hiding 
Pot, the system must be able to temporarily maintain a particular instantiation 
of this Transfer-Self frame in which the Actor role (a variable) is bound to 
Police and the Loc role is bound to some unknown location (which should 
later be inferred to be the location of John). The system must also have the 
general knowledge that when an actor transfers himself to a location, he ends 
up in the proximity of that location, which can be represented as the rule: 

Rl: (Actor X Transfer-Selfljoc Y) results-in (Actor X Proximity-Of Ob) Y) 

Applying this rule to the instantiation of the police Transfer-Self would allow 
the system to infer that the police will be in the proximity of John and his 
marijuana. Another rule the system must have to understand Hiding Pot is 
that a precondition of seeing an object is being in proximity of it: 

R2: (Actor X Proximity-OfObj Y) precond-for (Actor X See-Object Obj Y) 
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Applying this rule to the new knowledge that the police will be in the proximity 
of John, the system can infer that there is the potential for the police to see 
John and his marijuana (II). The rest of the inferences required to understand 
Hiding Pot are the result of the application of similar knowledge rules about 
the world. 

Even the ability to maintain variable bindings and apply general knowledge 
rules of the above sort is often insufficient for language understanding and 
other high-level cognitive tasks. This is because the ambiguity of language 
and multiple possible explanations for actions often leads to several possible 
interpretations of a text (as illustrated by Hiding Pot). A system must therefore 
have some means to select between those different possible interpretations to 
choose the most plausible in a given context. One of the fundamental problems 
in high-level inferencing is thus that offrame selection (Lytinen [22]; Lange 
and Dyer [19]). When should a system make inferences from a given frame 
instantiation? And when conflicting rules apply to a given frame instantiation, 
which should be selected? Only a system that can handle these problems 
will be able to address the following critical subparts of the frame selection 
problem: 

• Word-Sense Disambiguation: Choosing the contextually-appropriate mean
ing of a word. In Dinner Party, the word "pot" refers to a Cooking-Pot, 
but when Hiding Pot is presented, the evidence is that its interpretation 
should change to Marijuana. 

• Inferencing: Applying causal knowledge to understand the results of 
actions and the motives of actors. There is nothing in Hiding Pot that 
explicitly states that the police might see the pot, or even that the police 
will be in proximity of it and John. Nor is it explicitly stated what the 
police will do if they see he possesses Marijuana (II). Each of these 
assumptions must be inferred from the surface facts of the text. 

• Concept Refinement: Instantiating a more appropriate specific frame from 
a general one. In Dinner Party, the fact that the pot was put inside a 
dishwasher tells us more than the simple knowledge that it was put inside 
a container. In contrast, the salient point in Hiding Pot is that it is inside 
of an opaque object, which allows us to infer that the police will not be 
able to see it (14). 

• Plan/Goal Analysis: Recognizing the plan an actor is using to fulfill his 
goals. In Dinner Party, John has put die pot into the dishwasher as part 
of the Dishwasher-Cleaning script (a stereotypical sequence of actions) 
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to satisfy his goal of getting the pot clean, which perhaps itself serves 
as part of his plan to prepare for company coming over. In Hiding Pot, 
however, it appears that John has put the pot into the dishwasher to satisfy 
his sub-goal of hiding the pot from the police (13), which is part of his 
overall goal of avoiding arrest (12). 

High-level inferencing is complicated by the effect of additional context, which 
often causes a reinterpretation to competing frames. For example, the inter
pretation of Hiding Pot can change again if the next sentence is: 

P3: 'They were coming over for dinner in half an hour" 

P3 provides more evidence for the possibility that John was trying to clean 
the pot to prepare for dinner, perhaps causing the word pot to be reinterpreted 
back to a cooking-pot, as in Dinner Party. These examples clearly point 
out two sub-problems of frame selection, those of frame commitment and 
reinterpretation. When should a system commit to one interpretation over 
another? And if it does commit to one interpretation, how does new context 
cause that interpretation to change? 

2 LANGUAGE UNDERSTANDING AND MEMORY RETRIEVAL 

MODELS 

To perform semantic language understanding of inputs for short texts of the type 
described here, a system must be able to (1) perform the high-level inferencing 
necessary to create causal plan/goal analyses of the cue, (2) dynamically hold 
the resulting representations' structure and bindings, and (3) perform lexical 
and pragmatic disambiguation (and possible reinterpretation) to select the most 
contextually-appropriate representation. In this section we discuss several 
related symbolic and connectionist approaches to these language understanding 
problems and give a brief overview of previous models of episodic memory 
retrieval. 

2.1 SYMBOLIC RULE-BASED SYSTEMS 

Symbolic rule-based systems have had the most success performing the high-
level inferencing necessary for natural language understanding. A good exam-
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pie is BORIS (Dyer [16]), a program for modeling in-depth understanding of 
relatively long and complex stories. BORIS has a symbolic knowledge base 
containing knowledge structures representing various actions, plans, goals, 
emotional affects, and methods for avoiding planning failures. When a story 
is read in, BORIS fires rules from its knowledge base to infer additional 
story information. This allows BORIS to form an elaborated representation 
of the story, about which it can then answer questions. Other models that 
have successfully approached complex parts of the language understanding 
process have all had similar types of knowledge representation and rule-firing 
capabilities (cf. Schank and Abelson [31]; Wilensky [40]; Lytinen [22]). 

While traditional symbolic models have demonstrated an ability to understand 
relatively complex stories in limited domains, they have encountered difficulty 
when trying to resolve and reinterpret ambiguous input. One solution has been 
to use expectation-based conceptual analyzers, such as used in BORIS. These 
systems use bottom-up or top-down requests or demons that are activated as 
words are read in. A word is disambiguated when one of the request rules 
fires. An example of a bottom-up request that might be used to disambiguate 
the word pot would be: 

If the context involves Cleaning, then interpret "pot" as a Cooking-Pot. 

Once such a request is fired, the interpretation chosen is generally used through
out the rest of the inferencing process, and the word is thrown away. However, 
this makes it impossible to reinterpret the word if the context changes, such 
as in Hiding Pot. A partial answer might be to keep words around in case 
a new context causes another disambiguation request to fire. However, this 
solution creates a different problem — how to decide between conflicting dis
ambiguation rules. For example, one cannot simply specify that the "pot" 
disambiguation request involving the Police context always has a higher pri
ority than the request involving the Cleaning context, because police can be in 
the same place as cooking pots (e.g., if Hiding Pot was followed by "They were 
coming over for dinner in half an hour") As the amount of knowledge stored 
in the system grows, the number of disambiguation requests needed grows with 
them, producing even more conflicts. Moreover, because rule application in 
traditional symbolic models is fundamentally serial, these systems slow down 
dramatically as the number of inferencing and disambiguation rules increases. 
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2 . 2 M A R K E R - P A S S I N G N E T W O R K S 

Marker-passing models operate by spreading symbolic markers in parallel 
across labeled semantic networks in which concepts are represented by indi
vidual nodes. Possible interpretations of the input are formed when marker 
propagation results in a path of units connecting words and concepts from the 
input text. Like rule-based systems, marker-passing systems are able to per
form much of the high-level inferencing necessary for language understanding 
because of the symbolic information held in their markers and networks (cf. 
Charniak [5]; Riesbeck and Martin [28]; Granger, Eiselt, and Holbrook [11]; 
Norvig [26]; Kitano, Tomabechi, and Levin [17]). The primary advantage 
of marker-passing networks over traditional symbolic, rule-based systems is 
that their massively parallel marker-passing process allows them to generate 
all of the different possible interpretations of a text in parallel. This becomes 
particularly important for large knowledge and rule-bases needed for complex 
language tasks. 

Marker-passing systems have many of the same problems as traditional sym
bolic systems in performing disambiguation and reinterpretation. Because of 
the generally all-or-none symbolic nature of the inference paths generated by 
the marker-passing process, these systems have problems selecting the most 
contextually-sensible interpretation out of all the paths that they generate. Most 
marker-passing models attempt to deal with this problem by using a separate 
symbolic path evaluation mechanism to select the best interpretation. Unfortu
nately, the marker-passing process generally creates an extremely large number 
of spurious (i.e., unimportant or logically impossible) inference paths, which 
often represent over 90 percent of the paths generated even for small networks 
(Charniak [5]). As network size increases to include more world knowledge, 
there is a corresponding explosion in the number of paths generated. Because 
path evaluation mechanisms work serially, this substantially diminishes the ad
vantage of generating inference paths in parallel. This explosion of generated 
connections and the generally all-or-none nature of marker-passing inference 
paths becomes an especially difficult problem when applying marker-passing 
systems to ambiguous natural language texts (Lange [20])1. 

Partial solutions to these problems using hybrid marker-passing networks that include 
aspects of spreading-activation have been proposed (cf. Kitano et al. [17]; Hendler [13]). 
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2.3 DISTRIBUTED CONNECTONIST NETWORKS 

Distributed connectionist (or PDP) models represent knowledge as patterns 
of activation within massively parallel networks of simple processing ele
ments. Distributed connectionist models have many desirable properties, such 
as learning rules that allow stochastic category generalization, noise-resistant 
associative retrieval, and robustness against damage (cf. Rumelhart et al. [29]). 

McClelland and Kawamoto's [23] case-role assignment model provides a good 
example of how distributed connectionist models have been used to model lan
guage understanding. The main task of their model is to learn to assign proper 
semantic case roles for sentences. For example, given the syntactic surface 
form of the sentence "The boy broke the window", their network is trained to 
place the semantic microfeature representation of Boy in the units representing 
the Agent role on the output layer. But when given "The rock broke the win
dow" , it is trained to place the representation of Rock in the Instrument role. 
Their network is also trained to perform lexical disambiguation, for example, 
mapping the pattern for the word "bat" to a Baseball-Bat for sentences such 
as "The boy hit the ball with the bat", and to a Flying-Bat for sentences such 
as "The bat flew." Once the input/output pairs have been learned, the network 
exhibits a certain amount of generalization by mapping the case roles and per
forming lexical disambiguation for new inputs that are similar to the training 
sentences. 

One of the main limitations of McClelland and Kawamoto's model for language 
understanding is that it can only successfully analyze direct, one-step mappings 
from the input to the output. This limits the model to sentences that can be 
understood and disambiguated based solely upon the surface semantics of the 
input. Two distributed connectionist models that get around this limitation 
are those of Miikkulainen and Dyer [25] and St. John [34]. Both models 
use recurrent networks with a hidden layer of units whose activation pattern 
essentially stores the state (or "gestalt") of the stories being understood. This 
allows them to learn to process more complex texts based on stereotypical 
scripts and script-like stories (Schank and Abelson [31]). Both models have 
the lexical disambiguation abilities of McClelland and Kawamoto's model, but 
are also able to infer unmentioned story events and role-fillers from the script 
that has been recognized by the hidden layer. 

Unfortunately, there may be significant problems in scaling distributed connec
tionist models to handle more complex language. Both the Miikkulainen/Dyer 
and the St. John model work by resolving constraints from the context of the 
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input to recognize one of their trained scripts and to instantiate it with the bind
ings of the particular input story. However, much of language understanding 
involves the inference of causal relationships between events for completely 
novel stories in which no script or previously trained input/output pair can be 
recognized. This requires dynamic inferencing — producing chains of infer
ences over simple known rules, with each inference resulting in a potentially 
novel intermediate state (Touretzky [37]). Most importantly, the problem of 
ambiguity and the exponential number of potential causal connections between 
two or more events requires that multiple paths be explored in parallel (the forte 
of marker-passing networks). It remains to be seen whether a single blended 
activation pattern across the bank of hidden units in a recurrent network can 
solve this problem by simultaneously holding and making dynamic inferences 
for multiple, never-before encountered interpretation chains. 

Other distributed models explicitly encode variables and rules, such as the 
models of Touretzky and Hinton [38] and Dolan and Smolensky [8]). Conse
quently, such rule-implementing distributed models are able to perform some 
of the dynamic inferencing necessary for language understanding. However, 
the types of rules they can currently encode are generally limited. More im
portantly, like traditional rule-based systems, they are serial at the knowledge 
level — i.e., they can fire only one rule at a time. As previously mentioned, this 
is a serious drawback for natural language understanding, particularly for am
biguous text, in which the often large number of multiple alternative inference 
paths must be explored in parallel (Lange [20]). 

2.4 STRUCTURED SPREADING-ACIWATION MODELS 

Structured (or localist) spreading-activation models are connectionist models 
that represent knowledge in semantic networks like those of marker-passing 
networks, but in which the nodes are simple numeric units with weighted in
terconnections. The activation on each conceptual node generally represents 
the amount of evidence available for its concept in a given context. As in 
marker-passing networks, structured connectionist networks have the poten
tial to pursue multiple candidate interpretations of a story in parallel (i.e. be 
parallel at the knowledge level) as each interpretation is represented by ac
tivation in different local areas of the network. A potential advantage over 
marker-passing networks, however, is that the evidential nature of structured 
spreading-activation networks make them ideally suited to perform lexical dis
ambiguation. Disambiguation is achieved automatically as related concepts 
under consideration provide graded activation evidence and feedback to one 
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another in a form of constraint relaxation (cf. Cottrell and Small [6]; Waltz and 
Pollack [39]; Kintsch [16]). 

Until recently, the applicability of structured connectionist models to natural 
language understanding has been severely hampered because of their difficul
ties representing dynamic role-bindings and performing inferencing. The basic 
problem is that the evidential activation on structured networks' conceptual 
units gives no clue as to where that evidence came from. The networks can 
therefore tell which concepts are activated, but have no way of determining 
which roles concepts are dynamically bound to (see discussion in Lange [20]). 
More importantly, without a mechanism to represent such dynamic bindings, 
they cannot propagate bindings to make the chains of inferences necessary 
for understanding more complex texts. Thus, unlike marker-passing systems, 
most structured connectionist models have been limited to processing simple 
sentences that can be resolved on the surface semantics of the input alone (e.g., 
"The astronomer married the star", Waltz and Pollack [39]). 

One way of compensating for the lack of dynamic inferencing abilities in 
spreading-activation networks is to use a symbolic processing mechanism 
external to the spreading-activation networks themselves to perform the vari
able binding and inferencing necessary for language understanding. Such a 
spreading-activation/symbolic hybrid has been used in Kintsch's [16] construct
ion-integration model of language comprehension. This system uses a tradi
tional symbolic production system to build symbolic representations of the 
alternative interpretations of a text. These representations are then used to 
construct a spreading-activation network in which the different interpretations 
compete to integrate contextual constraints. The integration of constraints 
with spreading-activation in the network allow Kintsch's model to correctly 
disambiguate and interpret input sentences. A somewhat similar approach is 
taken by ACT* (Anderson [1]), a psychologically-based spreading-activation 
model of language understanding, fact encoding and retrieval, and procedure 
encoding and retrieval. Kintsch's and Anderson's models both illustrate many 
of the impressive emergent properties of spreading-activation networks for 
modeling realistic language understanding, such as their ability to model the 
time course of lexical disambiguation in a way consistent with psycholog
ical evidence. However, if a mechanism internal to the networks (instead 
of an external symbolic production system) could be found to construct text 
inferences, the parsimony and psychological realism of structured spreading-
activation networks would be greatly increased. 

Recently, a number of researchers have shown how structured connectionist 
models can handle some variable binding and inferencing abilities within the 
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networks themselves (e.g., Barnden [2]; Bookman [7]; Holldobler [26]; Shas-
tri and Ajjanagadde [33]; Sun [35]). Most of these models, however, have 
no mechanisms for handling ambiguity or frame selection. An exception is 
ROBIN [19], a structured spreading-activation model that propagates signa
tures (activation patterns that identify the concept bound to a role) in order 
to generate all possible interpretations of an input text in parallel. At the 
same time, ROBIN uses the network's evidential constraint satisfaction to per
form lexical disambiguation and selection of the contextually most plausible 
interpretation. Thus, ROBIN is able to perform high-level inferencing and 
disambiguation within the structure of a single network, without the need for 
external symbolic processing. The following sections describe ROBIN and 
the extensions we are planning to make to further its inferencing and language 
understanding abilities. 

2.5 MEMORY RETRIEVAL MODELS 

The process of memory retrieval has generally been explored in isolation from 
the process of language understanding. However, remembering and retriev
ing complex episodes requires many of the same representational, binding, 
and inferencing abilities that natural language understanding does. Because 
connectionist models have had difficulties handling complex structural re
lationships in general, few attempts have been made to build connectionist 
retrieval models for the type of high-level episodes discussed in this paper. 

Nonetheless, a few models have shown the potential value of connectionist 
models for memory storage and retrieval. For example, COPYCAT (Hofs-
tadter and Mitchell [14]) uses connectionist constraint-satisfaction in solving 
letter-string analogy problems. Although the retrieval portion of COPYCAT 
only retrieves simple concepts and not memory episodes, it seems to exhibit 
some of the fluidity of concepts and perception apparent in human analogical 
reasoning. DISCERN (Miikkulainen [24]) shows how a variant of distributed 
connectionist topological feature maps can be used to store and retrieve script-
based stories. Besides showing how purely-distributed connectionist models 
can store and retrieve multiple-sentence episodes, DISCERN exhibits a num
ber of features of human episodic memory, such as certain kinds of memory 
confusions and recency effects. Although COPYCAT and DISCERN are only 
able to store and retrieve relatively simple or stereotypical episodes, they do 
illustrate some of connectionist models' promise for psychologically-plausible 
memory retrieval. 



Inferencing and Retrieval 81 

Symbolic models have had the greatest success in modeling retrieval of com
plex, high-level memory episodes. Case-based reasoning (CBR) models (cf. 
Kolodner et al. [18]; Hammond [12]; Riesbeck and Schank [27]; Schank 
and Leake [32]; Barnden and Srinivas [3]) form the largest class of symbolic 
memory retrieval models. In CBR models, memory access is performed by 
recognition of meaningful index patterns in the input that allow retrieval of 
the episodes (or cases) most likely to help them solve their current problem. 
An analysis phase is usually performed to determine the indices that are most 
important for finding relevant cases for a particular problem, such as cases 
that share similar plans, goals, enabling preconditions, or explanation failures. 
In addition, CBR models are usually careful to retrieve only those cases that 
will help find a solution, explicitly rejecting cases that do not. CBR models 
are therefore generally models of expert reasoning within a given domain of 
expertise, rather than models of general human reminding. It is quite possible 
that expert memory retrieval may be satisfactorily modeled by such methods. 
However, general reminding seems to be substantially messier, being affected 
by not only by the sort of useful abstract indices used in CBR models, but also 
by superficial semantic similarities that often lead to quite inexpert remindings. 
Further, the problem of selecting and recognizing appropriate indices becomes 
substantially more difficult when reading ambiguous texts outside of limited 
expert domains. 

General, non-expert reminding has been modeled in systems such as ARCS 
(Thagard et al. [36]) and MAC/FAC (Gentner and Forbus [10]). These sys
tems model retrieval without using specific indexing methods. Instead they 
retrieve episodes whose representations share superficial semantic similarities 
with retrieval cues, with varying degrees of preference towards retrieval of 
episodes that are also analogically similar or structurally consistent. However, 
unlike most CBR models, these systems do not specify how they construct 
the representation of retrieval cues from a source input or text, and so cannot 
explain how inferences and comprehension affect reminding. 

REMIND (Lange and Wharton [21]) is a structured spreading-activation model 
of general non-expert reminding based on ROBIN in which memory retrieval 
is a side-effect of the language understanding process. REMIND performs 
dynamic inferencing and disambiguation to infer a conceptual representation 
of its input cues, as in ROBIN. Because stored episodes are connected to 
the concepts used to understand them, the spreading-activation process also 
activates any memory episodes in the network that share features or knowledge 
structures with the cue. After a cue's conceptual representation is formed, the 
network recalls the memory episode having the highest activation. Since the 
inferences made from a cue often include actors' plans and goals only implied in 
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a cue's text, REMIND is able to get abstract, analogical remindings that would 
not be possible without an integrated understanding and retrieval model. 

3 INFERENCING IN ROBIN 

Our approach is to develop and explore structured connectionist networks that 
build upon the advantages of spreading-activation networks and that are capa
ble of supporting the processing abilities necessary for language understand
ing. To this end, we have developed ROBIN, a structured spreading-activation 
model that is capable of performing dynamic inferencing to generate multi
ple possible interpretations of an input text in parallel. At the same time, 
ROBIN uses evidential constraint satisfaction within the network to allow it 
to automatically disambiguate to the most plausible interpretation in a given 
context. This section gives an overview of how ROBIN uses these abilities 
to perform high-level inferencing and disambiguation for natural language. A 
more detailed description is provided in Lange and Dyer [19] and Lange [20]. 

3 .1 K N O W L E D G E G I V E N T O ROBIN 

ROBIN uses structured networks of simple connectionist units to encode se
mantic networks of frames representing world knowledge. Each frame has one 
or more roles, with each role having selectional restrictions (i.e. expectations 
or type restrictions) on its fillers. General knowledge rules used for inferenc
ing are encoded as interconnected pathways between corresponding roles. The 
knowledge base of frames and rules consists of the causal dependencies relat
ing actions, plans, goals, and scripts (Schank and Abelson [31]) necessary for 
understanding stories in a limited domain. The knowledge base is hand-built, 
as in most structured connectionist models. However, there is no information 
in the knowledge base about specific inputs (such as Hiding Pot, Dinner Party, 
and Dirty Magazine) that the networks will be used to understand. 

Figure 1 gives an example of how knowledge is defined in ROBIN. It defines 
the conceptual frame Inside-Of, which represents the general state of one object 
being inside of another. Inside-Ofhas three roles: an Object that is inside of 
something (which must be a Physical-Obj), a Location that the Object is inside 
of (which must be a Container-Obj), and a Planner that may have caused the 
state to be reached (which must be a Human). Physical-Obj, Container-Obj', 
and Human represent the role's respective selectional restrictions — the types 
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Figure 1 Simplified definition of the frame representing the state Inside-
Of 

of objects that are semantically allowed to bind to them. The rest of Figure 1 
defines Inside-Of s relations to other frames. The knowledge represented here 
is that it is (a) directly accessed by the phrase S-is-inside-of-DO (as in 'The 
fork is inside of the dishwasher"), (b) a result-of the action Transfer-Inside, 
and (c) has several possible concept refinement frames: Inside-Of-Dishwasher, 
Inside-Of-Opaque and Inside-Of-Carwash. 

Refinements (short for concept refinements, an inverse of the is-a relation) of 
frames are useful because they allow specific inferences to be made when role-
bindings are known (Lytinen [22]). For example, if the network has inferred 
that a cooking utensil is inside of a dishwasher (Inside-Of-Dishwasher), a 
likely inference is that it is about to cleaned. If the network has inferred 
that something is inside of an opaque object (Inside-Oj"-Opaque), the network 
can infer that it is blocked from sight. When multiple frames are defined 
as alternatives for a given relation to a frame, as in the multiple refinements 
of Inside-Of, they are defined as mutually exclusive relations which compete 
for selection as the relation's instantiation at any given time. For example, 
although there are multiple possible plans -for the goal of Satisfy-Hunger (e.g., 
Restaurant, Eat-At-Home, etc.), generally only one will be used as the plan 
for a given instance of somebody wanting to satisfy his hunger in a particular 
story. 

The relations and their role correspondences shown in Figure 1 also define the 
network's general knowledge rules, such as the following: 

R3: (Subject X S-is-inside-of-DO DO Y) phrase (Obj X Inside-OfLoc Y) 

(The phrase "X is inside ofY" means that object X is inside of object Y). 

R4: (Actor X Transfer-Inside Obj Y Loc Z) results-in (Obj Y Inside-Ofhoc Z 
Planner X) 
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(When actor X transfers an object Y into location Z, then Y is inside ofZ). 

Finally, the numbers in Figure 1 represent the connection weights (ranging 
from 0 to 1) from each of the related concepts to Inside-Of and are chosen on 
the basis of how much evidence they provide. For example, if an object has just 
been transferred inside of something else (Transfer-Inside), then die network 
can definitely infer that the object is Inside-Of it. Therefore, the weight from 
Transfer-Inside to Inside-Of is maximal (1.0). If something that is a container 
(Container-Obf) has been mentioned in a story, then there is some, though not 
certain, evidence that something is inside of it, so a corresponding middling 
weight of 0.3 from Container-Obj to Inside-Of % Location role is given. On the 
other hand, a very small weight (0.05) is given from Physical-Ob) to Inside-
Of's Object role, since mere mention of any particular physical object does not 
very strongly imply Inside-Of. The actual weights chosen are clearly arbitrary. 
What is important is that they be in a range reflecting the amount of evidence 
the concepts provide for their related concepts in a certain knowledge base. 

3.2 STRUCTURE OF ROBIN 

The knowledge given to ROBIN is used to construct the network before any 
processing begins. As with other structured connectionist models, a single 
node in the network represents each frame or role. Relations between concepts 
are represented by weighted connections between the nodes. Activation on 
frame and role nodes is evidential, corresponding to the amount of evidence 
available from the current context for that concept. However, as described 
earlier, simply representing the amount of evidence available for a concept 
is not sufficient for complex inferencing tasks. Solving the variable binding 
problem requires a way to identify the concept that is dynamically bound to a 
role. Furthermore, the network's structure must allow such role-bindings to 
propagate across the network to dynamically instantiate inference paths and 
form an elaborated representation of the input. 

3.3 VARIABLE BINDING WITH SIGNATURES 

Representation of variables and role-bindings is performed in ROBIN by net
work structure that processes signatures — activation patterns that uniquely 
identify the concept bound to a role (Lange and Dyer [19]). Every concept 
in the network has a set of signature units that output its signature, a constant 
activation pattern different from all other signatures. A dynamic binding exists 
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Figure 2 Examples of signature patterns (banks of units on top plane) 
for concepts (ovals on lower plan). Actor and Location roles and of the 
Transfer-Inside frame and their binding units are also shown. 

when a role or variable's binding units have an activation pattern matching the 
activation pattern of the bound concept's signature. 

An example of signatures is shown in Figure 2, which shows the concept nodes 
for the concepts Police, John, and Dishwasher (on the lower plane) and their 
associated signature units (banks of units on the top plane). Here signatures are 
shown as unique six-unit distributed patterns, with different levels of activation 
being represented by different levels of gray. The figure also shows some of the 
units for the frame Transfer-Inside and their activation values when its Actor 
is bound to John. The virtual binding of Transfer-Inside's Actor role to John is 
represented by the fact that its binding units have the same activation pattern as 
John's signature. The binding banks for the Location role have no activation 
because this role is currently unbound. The complete Transfer-Inside frame is 
represented in the network by the group of units that include the conceptual 
unit Transfer-Inside, a conceptual unit for each of its roles (the Object role not 
shown), and the binding units for each of its roles. The same binding units 
could, at another time, hold a different virtual binding, simply by having the 
activation pattern of another concept's signature. 

In general, signatures can be uniquely-identifying activation patterns of any 
size. Ideally, signatures are distributed activation patterns (e.g., made up of 
semantic microfeatures) that are themselves reduced semantic representations 
of the concept for which they stand (as in Figure 2). Having the signatures 
represented as distributed activation patterns carrying semantic information 
may allow their future use as inputs for local distributed learning mechanisms 
after inferencing (discussed later). For simplicity, however, ROBIN's sim-
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Figure 3 Simplified ROBIN network segment showing parallel paths of 
evidential activation (bottom plane) and signature activation (top plane). 
Initial activation is shown for "John put the pot inside the dishwasher". 
Signature nodes (outlined rectangles) and binding nodes (solid black cir
cles) are in the top plane. Thickness of conceptual node boundaries (ovals) 
in the bottom plane represents their levels of evidential activation. Node 
names do not affect the spread of activation in any way. Connections 
encode rule R4 and others. 

ulations currently represent signatures as unique, arbitrarily-generated scalar 
values (e.g., 6.8 for Marijuana and 9.2 for Cooking-Pot). 

3 .4 PROPAGATION O F S I G N A T U R E S F O R INFERENCING 

The most important feature of signatures is that they can be propagated without 
change across long paths of binding units to dynamically instantiate inference 
chains. Figure 3 shows how the network's structure accomplishes this and 
automatically propagates signatures to fire rules (such as R4). Evidential ac
tivation for disambiguation is spread through the paths between conceptual 
units on the bottom plane, e.g., Transfer-Inside and its Object role. Signa
ture activation for dynamic role-bindings and inferencing is spread across the 
parallel paths of corresponding binding units (solid black circles) on the top 
plane. As shown here, there are actually multiple binding units per role (e.g., 
the interchangeable left and right binding units of Transfer-Insiders Object role 
). This allows simultaneous propagation of ambiguous bindings, such as the 
multiple meanings of the word "pot". In general, this requires that each role 
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have as many binding units as there are possible meanings of the network's 
most ambiguous word. 

Initially there is no activation on any of the conceptual or binding units in 
the network. When input for a phrase such as "John put the pot inside 
the dishwasher" (PI) is presented, the lexical concept nodes for each of the 
words in the phrase are clamped to a high level of evidential activation. This 
directly provides activation for the concepts John, Transfer-Inside, Cooking -
Pot, Marijuana, and Dishwasher. To represent the role-bindings given by 
phrase PI, the binding units of each of Transfer-Inside's roles are clamped 
to the signatures of the concepts bound to them (Actor and Location roles 
not shown). For example, the binding units of Transfer-Inside's Object are 
clamped to the signature activations (6.8 and 9.2) of Marijuana and Cooking -
Pot, representing the candidate bindings from the word "pot" (Figure 3)2. An 
alternative input, such as "George put the cake inside the oven", would be 
represented by clamping the signatures of its bindings (i.e., George, Cake, and 
Oven) instead. A completely different set of inferences would then ensue. 

The activation of the network's conceptual units is equal to the weighted sum 
of their inputs plus their previous activation times a decay rate, similar to the 
activation function of previous structured networks. However, the activation 
of the binding units is equal to the maximum of their unit-weighted inputs so 
that signatures can be propagated without alteration. Binding units calculate 
their activation as the maximum of their inputs because this preserves their 
signature input value even when the signature can be inferred from more than 
one direction. The actual relative signature activation values do not matter, 
because gated connections (not shown) ensure that two different signatures do 
not reach the same binding node. 

As activation starts to spread after the initial clamped activation values in Figure 
3, Inside-Of receives evidential activation from Transfer-Inside, representing 
the evidence that something is now inside of something else. Concurrently, the 
signature activations on the binding units of Transfer-Inside's Object propagate 
to the corresponding binding units of Inside-Of s Object (Figure 4), because 
each of the binding units calculates its activation as the maximum of its inputs. 
For example, Inside-Of s left Object binding unit has only one input connection, 
that from the corresponding left Object binding unit of Transfer-Inside. This 
unit-weighted connection allows the network to make the inference that the 
Object of Inside-Of is the same as the Object ofTransfer-Inside (from rule R4). 

2ROBIN does not currently address the problem of deciding upon the original syntactic 
bindings, that is that pot is bound to the Object role of phrase PI. Rather, their networks are 
initially given these bindings and then use them for high-level inferencing. 
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Figure 4 Simplified ROBIN network segment showing activation mid
way through processing Hiding Pot. At this time, Cooking-Pot and 
Inside-Of-Dishwasher have higher evidential activations than Marijuana 
and Inside-Of-Opaque, as is illustrated by their thicker ovals. 

Here, the left Object binding unit of Transfer-Inside has an activation of 6.8, so 
Inside-Ofs left Object binding unit also becomes 6.8 (Marijuana's signature), 
because 6.8 is its maximum (and in this case only) input. The binding of 
Cooking-Pot (9.2) to Inside-Ofs right Object binding unit propagates at the 
same time, as do the bindings of Inside-Ofs Planner role to the signature of 
John and its Location to the signature of Dishwasher (not shown). 

By propagating signature activations from Transfer-Insiders binding nodes 
to Inside-Ofs binding nodes, the network has made its first inference. The 
network therefore not only holds the information that something is inside of 
something else (as shown by its evidential activation) — it also represents 
exactly which thing is inside the other through the signatures on its binding 
units. 

ROBIN continues making inferences from the activations of this new knowl
edge in turn. Evidential and signature activation spreads, in parallel, from 
Inside-Of to its refinements Inside-Of-Dishwasher and Inside-Of Opaque and 
their corresponding binding units (see Figure 4), on through the rest of the 
network3. Figure 5 shows an overview of the signature bindings in a portion of 

3The reader may note that the signature for Marijuana (6.8) did not reach the left binding 
unit of Inside-Of-Dishwasher in Figure 4. This is due to additional structure of gated links that 
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Figure 5 Overview of a small portion of a ROBIN network showing 
inferences made after clamping of inputs for the phrases of Hiding Pot. 
Thickness of frame boundaries shows the amount of evidential activation 
on the frames conceptual nodes. Role fillers shown are the ones dynam
ically instantiated by propagation of signature activation over the roles' 
binding nodes (as in Figure 4). Darkly shaded area indicates the most 
highly-activated path of frames representing the network's interpretation 
of the input. Dashed area shows the discarded dishwasher-cleaning inter
pretation. Frames outside of both areas show a small portion of the rest 
of the network that received no evidential or signature activation. 
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the network after presentation of the input for the rest of Hiding Pot (''because 
the police were coming") is presented and the network eventually settles. The 
network has made the inferences necessary to build the correct interpretation 
of the story in this domain, with most of the inferences being shown in the 
figure. 

3.5 DISAMBIGUATION AND ^INTERPRETATION 

ROBIN 'S propagation of signature activations dynamically instantiates can
didate inference paths in parallel in much the same way as marker-passing 
systems and the structured connectionist binding mechanisms of Shastri and 
Ajjanagadde [33] and Sun [35]. However, natural language understanding 
requires more than basic variable binding and rule-firing capabilities. It also 
requires the ability to resolve ambiguities and select between the large num
ber of candidate inference paths instantiated by rule-firing. This is handled 
in ROBIN by the evidential activation that spreads in parallel with signature 
bindings. 

If this were a marker-passing system constructing an internal representation of 
Hiding Pot, it would need an external symbolic path evaluator to select between 
the cleaning path and the longer hiding path connecting John's Transfer-Inside 
to the Police's Transfer-Self. At the end of processing, the path evaluator would 
also have to recognize that Marijuana should be selected over the Cooking-Pot 
and Planting-Pot bindings throughout the network. 

Such disambiguation is performed entirely within ROBIN's network without 
resorting to a separate path-evaluation module. Instead, the evidential portion 
of the network (e.g., the bottom plane of Figure 3) decides between the com
peting inference paths that have been instantiated by signature activation. The 
connections of the network and ROBIN's global inhibition mechanism (Lange 
and Dyer [19]) assure that the activations of the conceptual frame nodes are 
always approximately proportional to the amount of evidence available for 
them in the current context from their bindings and related frames. ROBIN's 
interpretation of its input is the most highly-activated path of frame units and 
their bindings when the network settles4. 

encode knowledge about what kind of concepts can be bound to the roles of particular frames 
— such that only concepts that are refinements of Cooking-Utensils are prototypically cleaned 
as the Object in Inside-Of-Dishwasher. These selectional restrictions and their importance are 
described in Lange and Dyer [19]. 

4 As in all connectionist models, the network's "decision" or "selection" is actually simply 
the interpretation that the human modeller gives to the levels of activation present in it. 
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Figure 6 Evidential activations for meanings of "pot" and of competing 
refinements of Inside-Of after presentation of "John put the pot inside the 
dishwasher" at cycles 1 to 31 and "the police were coming" at cycles 51 
to61. 

Often there are multiple possible competing interpretations for a given frame. 
This occurs when there are multiple meanings for a word or phrase, multiple 
plans to achieve a goal, or multiple refinements for a frame (e.g., the Inside -
Of-Dishwasher and Inside-Of-Opaque refinements of Inside-Of). In these 
cases, the most highly activated interpretation that has been instantiated with 
compatible signature role-bindings is chosen as part of the inference path. The 
alternatives having lower activation are ignored, unless future context causes 
them to become more highly activated (leading to reinterpretation). Similarly, 
when there are multiple possible bindings for a role, the binding chosen at 
any given time is the one whose concept has the highest level of evidential 
activation. 

Figure 6 illustrates how evidential activation works through constraint satisfac
tion to disambiguate meanings and interpretations. The evidential activations 
of the competing meanings of "pot" and refinements of Inside-Of 'change during 
the processing of Hiding Pot. Initially there is more evidence for the interpre
tation that John was trying to clean a cooking pot. This is shown by the fact that 
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after Inside-Of-Dishwasher becomes activated at about cycle 60, Cooking-Pot 
becomes more highly activated than Marijuana or Planting-Pot. Input for the 
second phrase of Hiding Pot ("because the police were coming") is presented 
at cycles 51 through 61. The evidential activation levels shown by the thick
ness of conceptual node boundaries in Figure 4 correspond to the activations 
at cycle 90. The inferences about the police propagate through Transfer-Self, 
Proximity-Of See-Object, and Block-See, until they reach Inside-Of-Opaque 
(see Figure 5). This occurs at about cycle 95. By about cycle 160, rein
forcement from the Blockl Seel Police-Capture path causes Inside-Of-Opaque 
to become more activated than Inside-Of-Dishwasher y and Marijuana to be
come more highly activated than Cooking-Pot. Thus, ROBIN'S interpretation 
of Hiding Pot is that John was trying to avoid detection of his Marijuana from 
the police by hiding it inside of an opaque dishwasher. The final inference path 
interpretation is shown in the darkly shaded area of Figure 5. 

ROBIN's ability to use the constraint satisfaction of evidential activation in 
combination with its parallel dynamic inferencing with signatures makes it a 
promising approach to natural language understanding. Its automatic disam
biguation abilities through evidential activation is a primary advantage over 
most symbolic marker-passing systems, which can also generate alternative 
inference paths in parallel, but which must use a serial path evaluator separate 
from the marker-spreading process to select the best interpretation, a significant 
problem as the size of the networks increase and the number of generated in
ference paths to be evaluated increases dramatically. More details of ROBIN's 
current abilities and structure are described in Lange and Dyer [19] and Lange 
[20]. Future research should expand these abilities further. 

4 E P I S O D I C RETRIEVAL IN REMIND 

Most research in analogical and case-based memory retrieval has explored 
retrieval in isolation from the comprehension process. We believe, however, 
that memory retrieval and comprehension are intricately related, and that much 
more can be learned by developing a model that integrates the two within a 
single mechanism. Building upon our work in ROBIN, we are developing 
REMIND, an inferencing-based model of memory retrieval that allows us to 
explore the effects of inferencing and disambiguation on the retrieval process. 
REMIND receives syntactic representations of short input texts as memory 
cues. Using general knowledge stored in its long-term memory, REMIND 
constructs elaborated interpretations of the cues, and then retrieves the episodes 
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that are most similar to the surface and inferred features of their interpretations. 
This section provides an overview of how REMIND works. A more detailed 
description can be found in Lange and Wharton [21]. 

REMIND uses the same simple spreading-activation mechanism as ROBIN 
to encode world knowledge and perform inferencing and interpretation (see 
section 3). REMIND's networks also contain representations of prior episodes, 
such as "Fred put his car in the car wash before his date with Wilma" (Car 
Wash) and "Billy put his Playboy under the bed so his mother wouldn't see it 
and spank him" (Dirty Magazine). The representations of these episodes are 
the actual plan/goal analyses (or interpretations) that the network inferred for 
them earlier. These prior episodes are indexed into the comprehension network 
through connections with the knowledge structure nodes of their representation. 

To perform retrieval, REMIND is given a short text passage to use as a delib
erate memory cue, such as "John put the pot inside the dishwasher because 
the police were coming" (Hiding Pot). Evidential and signature activation 
spread through the ROBIN portion of the network to disambiguate and infer 
an interpretation of the cue (as described in section 3). Because the units 
representing long-term memory episodes are connected within the network, an 
important side-effect of this understanding process is that episodes having con
cepts related to the elaborated cue also become highly activated. This includes 
episodes related due to superficial semantic overlap with the cue (e.g., other 
episodes involving police, drugs, or kitchen appliances) and episodes related 
abstractly because they share similar inferred plans and goals of their actors 
(e.g., episodes that share the inferences that a person was trying to Avoid-
Detection of something to avoid Punishment, such as Dirty Magazine). After 
the network settles, the episode that received the most activation from the cue's 
interpretation and surrounding context becomes the most highly activated, and 
is therefore retrieved as the best match for the cue. 

4 . 1 REPRESENTATION OF LONG-TERM EPISODES 

Whereas the general world knowledge and inference rules used to initially 
build REMIND's networks are hand-coded, REMIND is not given any in
formation about the particular episodes it is going to understand and store in 
long-term memory. The representations used for these target episodes are cre
ated entirely by REMIND's spreading-activation understanding process. Input 
for each episode's text is presented to the network, which then infers an in
terpretation of it by the spread of signature and evidential activation. Next, 
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units and connections are added (by hand) to store the episode's entire resulting 
interpretation in REMIND's long-term memory. Accordingly, each episode's 
representation includes all aspects of its interpretation, from its disambiguated 
surface features (such as the actors and objects in the story) to the plans and 
goals that REMIND inferred that the actors were using. The units added to 
encode long-term episodes' representations are added to the same network 
used for the inferencing and understanding process, causing both processes to 
interact with and affect each other. 

As a complete example, consider how Dirty Magazine ("Billy put the Playboy 
under his bed so his mother wouldn't see it and spank him") is processed and 
stored in the network as a memory episode. First, signature and evidential 
activations representing its phrasally-analyzed input are clamped to start the 
understanding process. As described earlier for Hiding Pot, the input is 
presented to the network by clamping the evidential activations of the input's 
phrase and word nodes to 1 and clamping the binding units of the phrases' roles 
to the signatures of their bindings' word meanings. Activation then spreads 
through the network to infer and disambiguate an interpretation of the input. 

As in Hiding Pot, the network infers that somebody is hiding something (Avoid-
Detection) and that it is blocked from sight (Block-See). Here, however, the 
inferred signatures show that it is Billy hiding a Playboy-Magazine rather than 
John hiding Marijuana. Several other knowledge structures involved in Hiding 
Pot (e.g., Proximity-Of, Possess-Obj, Punishment) are also activated by Dirty 
Magazine. These similarities make Dirty Magazine a likely candidate for 
reminding when the network is presented with Hiding Pot as a cue. However, 
there are a number of differences, e.g. frames of the Guardian-Discipline 
structure are part of Dirty Magazine's interpretation, but the Police-Capture 
frames are not. 

Figure 7 shows an overview of the network after Dirty Magazine and sev
eral other episodes (from Figure 8) have been understood and memorized. 
The frames activated as part of Dirty Magazine's interpretation are shown by 
nodes that have a circled " 1 " above them in the figure. Other circled numbers 
represent elements of other stored episodes' interpretations. It is important to 
note that each episode's representation also includes all of the simple bridg
ing inferences that were necessary to make the plan/goal analysis. Here the 
bridging inferences for Dirty Magazine include that the Playboy was Under 1 
the bed, that Billy possessed the Playboy (Possess-Obj.7), that the salient re
finement of this possession was that it was possession of a naughty object 
(Possess-Naughty-Obj.l), and so on. 
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Figure 7 Overview of part of a REMIND network storing the episodes 
of Figure 8. Circles above frames indicate long-term instances connected 
to them. Numbers within circles indicate which episode the instance is 
part of. Overview is shown after activation has settled in processing of 
Hiding Pot. Gray boxes around nodes represent the final level of eviden
tial activation on the frame concept nodes (darker = higher activation, no 
box = no activation). 
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Figure 8 Episodes understood and stored in the network of Figure 7. 

Once the full interpretation for an episode has been determined, units and con
nections representing it are hand-coded into the network's long-term memory. 
For Dirty Magazine, the units added include (a) nodes representing each instan
tiated frame of its interpretation in Figure 7 (e.g., Billy. 1, Playboy>-Magazine. 1, 
Avoid-Detection.l, and Possess-Obj.1), (b) units to represent their roles, and 
(c) a unit to stand as a placeholder for the entire episode (e.g., Episode.1). 
These units are then connected to their corresponding local elements in the 
normal evidential semantic network. They are also interconnected to encode 
their role-bindings and which episode they are part of. 

Figure 9 shows an example of the units and connections that are added to 
the network to represent episodes. The figure shows a simplified part of the 
network's evidential layer after several episodes have been understood and 
added to long-term memory. The gray units in the figure are the normal 
semantic conceptual units originally in the network, including the conceptual 
units for frames Possess-Obj and Possess-Naughty-Obj and a number of other 
frames (shown here as connected in a refinement is-a hierarchy). At this 
stage, two episodes have been processed that include Possess-Obj or Possess-
Naughty-Obj as part of their interpretation: Dirty Magazine {Episode.7), and 
"Betty wanted to smoke a cigarette, so she put it on top of the stove and 
lit it" (Cigarette Lighting; Episode.4). Cigarette Lighting's interpretation 
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Figure 9 Encoding of Possess- Obj and Possess-Naughty- Obj instances 
for Episode. 1 (Dirty Magazine) and Episode A (Cigarette Lighting). Gray 
units are pre-existing conceptual nodes. 
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includes an instance of Possess-Obj because the network inferred that Betty 
must possess the cigarette to light it. 

The white units in Figure 9 show some of the units added to the network 
to encode Dirty Magazine and Cigarette Lighting. For each episode, there 
is a single episode unit serving to represent and group all of its elements 
together, such as Episode. 1 and Episode A in Figure 9. In addition, there is an 
episode instance unit representing each element of the episode's interpretation. 
For Dirty Magazine, there is an episode instance unit for Billy. 7, Playboy -
Magazine.7, Possess-Obj.1 and Possess-Naughty-Obj.l, along with units (not 
shown) representing all of the other elements of its representation. These 
episode instance units are connected both to the general semantic concept they 
instantiate (e.g., Billy. 1 is connected to Billy) and to the episode unit of which 
they are part (e.g., Episode.1 for Dirty Magazine's elements). Furthermore, 
each episode instance is connected to units representing its roles (e.g., the 
Actor and Object unit for Possess-Obj.7), which are in turn connected to the 
concepts that were bound to them (e.g., Possess-Obj.1 's Actor is connected to 
Billy.l, and its Object is connected to Playboy-Magazine.1). The rest of the 
interpretation of each episode (e.g., in Figure 7) is encoded similarly with units 
and connections that represent all of its other instantiated frames and elements. 

As can be seen, REMIND's method of encoding its episodes is different from 
that of many memory retrieval and case-based reasoning models. Episodes 
in REMIND are not indexed under any one knowledge structure or important 
groups of knowledge structures. They are instead indexed under every concept 
that was an aspect in understanding them in the first place. These concepts 
include both the abstract inferences that make up the plan/goal analysis of 
the episode and the simple disambiguated surface semantic features of the 
text (such as its direct word and phrase meanings). This fully dispersed form 
of indexing has important implications for the kinds of remindings that the 
model produces. Notice that more specific frames tend to have fewer episode 
instances than less specific frames (see Figure 7). This is to be expected, since 
specific knowledge structures pertaining to certain situations (such as a police 
search or a parent disciplining a child) represent events that are less frequently 
encountered than general knowledge structures about simple actions and states 
(such as being inside of something, or possessing an object). As an example, 
five of the episodes in Figure 7 (1,2,4,6, and 7) inferred ^Possess-Obj as part of 
their interpretation, but only one episode (1) involved a Possess-Naughty-Obj 
or Avoid-Detection. An important consequence of specific frames providing 
activation evidence for a smaller number of instances is that specific, contentful 
knowledge structures tend to be stronger reminding indices than general ones. 
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Figure 10 Evidential activations of episode units for eight episodes 
of Figure 8 after presentation of Hiding Pot. EpisodeSs activation 
reaches asymptote (1.0) at around cycle 56, but declines at around cycle 
112, when Episode.2 reaches 1.0, until Episode! declines again when 
Episode.1 reaches 1.0 at around cycle 124. 

4 . 2 T H E P R O C E S S O F E P I S O D I C R E M I N D I N G 

Retrieval in REMIND begins with presentation of an input cue to the network 
to be understood. Because episode instance units are connected directly to their 
corresponding concept units in the same network, they become active when 
the concepts they are instantiations of become activated by the understanding 
process. The more similarities an episode shares with the inferred interpretation 
of a cue, the more of the episode's instance units will become active. Episodes 
having a number of elements in common with the cue's interpretation therefore 
tend to become highly active. After the network settles, the episode with the 
most highly-activated episode unit is retrieved. 

Now consider what happens when input for Hiding Pot is presented as a cue 
to the network. Evidential and signature activation spread through the net
work, dynamically instantiating the competing inference paths as described 
earlier. At the same time, similar episodes that are connected to those in
ferences through their episode units also become activated. Figure 10 shows 
the activation levels of the eight episodes as activation spreads through the 
network. As can be seen, Episode.6 ("Barney put the flower in the pot, and 
then watered it") initially becomes highly active because it shares a number 
of surface features with Hiding Pot. For example, both involve a Transfer-
Inside, both have humans, and Planting -Potreceives activation from the word 
"pot". Similarly, Episode.2 (Car Wash) initially becomes active because of 
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shared surface features with Hiding Pot. Episode'.2's activation continues to 
climb when the Clean frame is inferred, since a Clean is part of Car Wash's 
interpretation. However, as REMIND continues to process Hiding Pot, the 
hiding and punishment frames are inferred and become active. Eventually, 
Episode.! 's (Dirty Magazine) activation climbs and wins because it shares the 
most surface and abstract features of any episode with Hiding Pofs interpreta
tion (see Figure 7). Dirty Magazine is therefore retrieved as the episode most 
similar to Hiding Pot. 

An explanation for why Dirty Magazine becomes the most-highly activated 
of the eight episodes can be seen in Figure 7. The gray boxes around nodes 
in Figure 7 indicate the final levels of evidential activation of the frames 
inferred for Hiding Pot. Of the eight episodes stored in the network, Dirty 
Magazine has the most instances of its interpretation shared with Hiding Pot's 
final active interpretation (e.g., instantiations Avoid-Detection.7, Block-See.7, 
Punishment.7, and Possess-Obj.l). It therefore eventually becomes the most 
activated of the episodes. 

Besides serving as an example of retrieval in REMIND, this example illus
trates a number of important points about the model. The first point to notice 
is that even when the network settles, the losing episodes retain significant 
activation — enough that they could potentially be recalled later. As in the 
ROBIN portion of the network, this is the result of controlling episodes' ac
tivations through REMINDS global inhibition mechanism. The mutual (or 
competitive) inhibition mechanism used to control the spread of activation 
in many structured connectionist models drives the activation of "losing" in
terpretations down to zero, making reinterpretation difficult or impossible. In 
contrast, ROBIN and REMIND use a global inhibition mechanism that inhibits 
all evidential units by an equal damping factor. This allows competing frames 
and episodes to retain a level of evidential activation relative to the amount of 
evidence available for them, facilitating reinterpretation if warranted by later 
context. 

A second point of interest is that elements and episodes that are superficially 
similar to the cue tend to become activated before elements and episodes that 
are only abstractly related to the cue (through inferences). This is a direct result 
of the spreading-activation process, since activation and signature inferences 
reach closely-related concepts before they reach more distant concepts. An 
example of this was seen in Figure 10, where the superficially-related Episode. 6 
became activated before the more abstractly-related Dirty Magazine. As seen, 
however, the early activation of superficially-similar episodes does not stop 
abstractly-similar episodes from winning if the abstractly-similar episodes 



Inferencing and Retrieval 101 

ultimately share more features and activation with the cue. Because all episodes 
retain their relative supported levels of activation, abstractly-similar episodes 
such as Dirty Magazine can climb as inferences reach them and end up with 
the highest level of activation when the network settles. 

Another important thing to note is that retrieval in REMIND is not all-or-
nothing. As in human recall, REMIND often gets partial recall in which 
only subparts of the retrieved episode are activated. Parts of the retrieved 
episode distant from the current context of inferences may not become activated 
initially. This is true, for example, for parts of Dirty Magazine that differ 
significantly from Hiding Pot's interpretation (such as the Guardian-Discipline 
and Spank structures, which are relatively distant from anything in Hiding Pot). 
However, the directly similar inferences between episodes and their primary 
actors and objects in episodes, such as Billy.l and Playboy-Magazine.1 in 
Dirty Magazine, do tend to become active because they play a part in so 
many of its roles. A final aspect to note about REMIND is how its language 
understanding and retrieval processes come full circle. The episode retrieved 
depends crucially on the interpretation of the cue from the spreading-activation 
network's inferences. Once an episode is retrieved, it in turn primes the 
activation of the evidential spreading-activation network, perhaps leading to a 
different disambiguation and therefore interpretation of the next cue. 

Theoretically, REMIND lies somewhere between case-based reasoning models 
and general analogical retrieval models such as ARCS and MAC/FAC. Like 
ARCS and MAC/FAC, REMIND is meant to be a psychologically-plausible 
model of general human reminding, and therefore takes into account the preva
lence of superficial feature similarities in remindings. However, we believe 
that many of the types of high-level planning and thematic knowledge struc
tures used as indices in case-based reasoning systems also have an important 
effect on reminding. REMIND is thus partially an attempt to bridge die gap 
between case-based and analogical retrieval models. As it turns out, this gap 
is naturally bridged when the same spreading-activation mechanism is used 
to both understand cues and retrieve episodes from memory. Using the same 
mechanism for both processes causes retrieval to be affected by all levels that 
a text was understood with. This is the case in REMIND, in which the un
derstanding mechanism is given the superficial features and actions of a text 
and attempts to explain them by inferring the plans and goals being used — 
causing memory episodes to be activated by both. This seems to give a more 
psychologically-plausible form of reminding than previous models, because 
the episodes it retrieves have varying degrees of superficial and abstract sim
ilarities to the cue (Lange and Wharton [21]; Wharton and Lange [41]), as 
seems to be the case in human reminding. 
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5 FUTURE WORK 

Our initial research on developing structured connectionist models for natural 
language understanding and episodic memory retrieval seems quite promising. 
The use of signatures in ROBIN allows it to perform some of the variable 
binding and parallel dynamic inferencing difficult for connectionist models, 
while its integration within the constraint satisfaction abilities of its evidential 
layer allows it to perform disambiguation and reinterpretation difficult for 
traditional symbolic models. In turn, REMIND has illustrated many of the 
potential computational and predictive benefits of integrating the language 
understanding and episodic memory retrieval processes. 

However, ROBIN and REMIND's representation and rule-firing abilities are 
currently limited relative to those of traditional symbolic models, limiting the 
length and complexity of the texts the model can understand and remember. 
Here we discuss planned advances to ROBIN and REMIND to improve their 
capabilities and allow us to explore how well their initially promising results 
scale up to more complex and longer inputs and texts. These include: (1) the 
ability to handle multiple dynamic instances of each frame, (2) the ability to 
handle more complex rules, (3) signatures as distributed patterns of activation 
to allow learning, and (4) the ability to handle more complex rules having 
conjunctive terms. We plan to integrate these new inferencing abilities both 
into ROBIN and REMIND and to perform a number of experiments on how 
they allow the models to scale up. 

5.1 MULTIPLE DYNAMIC INSTANCES 

One of the main restrictions of the model as described is that there can be 
only one dynamic instance of each frame at any given time, since binding 
units can only hold one signature at once. Because of this, ROBIN cannot 
yet represent or interpret texts involving two different seeing or eating events, 
for instance. We plan on developing a solution in which each concept in the 
network is actually represented by a small number of separate sub-networks 
of conceptual and binding units that can each represent a single dynamic 
instance of the conceptual frame with signatures. This will increase the size 
of the network by a linear amount k equal to the average number of dynamic 
instance sub-networks per concept, but will allow processing of inputs that 
involve multiple dynamic instances of the same frame, as in a similar approach 
for phase-binding networks described by Shastri and Ajjanagadde [33]. An 
important issue to be resolved in this approach is how to connect and gate the 
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Figure 11 Overview of nework handling multiple dynamic instances of 
every frame. Black lines indicate paths over which signatures havepassed. 
Dashed lines indicate paths ruled out because they violate the frame's 
selectional restrictions. Grey lines indicate paths ruled out because a 
dynamic instance already exists. 

sub-networks so that the proper inferences are made, while assuring that the 
parallel evidential portion of the network is immune to crosstalk. 

Figure 11 illustrates this solution and some of the issues involved. It shows 
an overview of a portion of the network having multiple dynamic instances 
per frame. Here each frame has two separate sub-networks, each potentially 
holding the signatures and evidential activation for one dynamic instance. 
Inside-Of, for example, is shown with two separate dynamic instance sub
networks: Inside-Of 1 and Inside-Of2. The overview shows a hypothetical 
state of the network after processing input for "John put the pot inside the 
dishwasher, but the dishwasher soap was inside the cupboard'. The sub
network for Inside-Ofl holds the instance of the Cooking-Pot inside of the 
Dishwasher, while Inside-Ofl holds the instance of Soap inside Cupboard. 
Each dynamic instance sub-network will have the same structure of conceptual 
and binding units as ROBIN does now to hold a single dynamic instance (cf. 
Figure 3). 

Each dynamic instance sub-network of a frame uses the same basic network 
structure as is currently used for a single instance. However, there must 
be additional structure for the connections between related frames as defined 
by the knowledge base's general knowledge rules. This multiple instance 
gating structure will be responsible for controlling the spread of activation 
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to particular dynamic instance sub-networks as inferences are made. The 
first thing this multiple instance gating structure must do is to assure that 
only one instance of a related frame receives signatures when an inference 
is made. Consider what should happen in Figure 11 if there is no activation 
in the network until Inside-Ofl gets activated as a Cooking-Pot Inside-Of a 
Dishwasher. Signature and evidential activation should then spread to Inside-
Of-Dishwasher and Inside-Of-Opaque, since they can both be inferred from 
it. However, only one dynamic instance of each should be inferred. The 
multiple instance gating structure between the frames must therefore assure that 
Inside-Ofl's activation only propagates to Inside-Of-Dishwasher 1 and Inside-
Of-Opaquel, respectively, and not to either Inside-Of-Dishwasher! or Inside-
Of-Opaque!. This is shown in Figure 11 by the grey (gate closed) connections 
from Inside-Ofl to Inside-Of-Dishwasher! and Inside-Of-Opaque!. 

The multiple instance gating structure must also assure that activation does 
not propagate to instance sub-networks that already hold instances. It should 
instead channel it to the first available instance sub-network. For example, 
when Inside-Of! (Soap Inside-Of & Cupboard) gets activated in Figure 11, its 
activation should not propagate to Inside-Of-Opaque 1 (grey arrow), which is 
already filled with a Cooking-Pot inside of a Dishwasher. Its activation and 
signatures should instead propagate to the first available sub-network, Inside-
Of-Opaque!. Notice that this multiple instance gating structure must interact 
with the other structure in the network that enforces selectional restrictions 
by stopping activation from propagating when binding constraints are vio
lated. For example, even though the Inside-Of-Dishwasher! sub-network is 
free to receive activation, it should not receive activation from Inside-Of!'^ 
instance, since Soap inside of a Cupboard violates the constraints on Inside-
Of-Dishwasher (that a Cooking-Utensil be inside of a Dishwasher). 

The actual multiple instance gating structure will be similar to the structure 
currently in ROBIN for enforcing selectional restrictions (i.e. assuring that 
only legal inferences are made). This will be done with the same sort of simple 
units and connections to compare activations as in the rest of the model, with 
additional small winner-take-all networks to break ties when two different 
instances arrive at the same time. 

5.2 M O R E C O M P L E X R U L E S 

Using signatures of pre-existing concepts, ROBIN can create and infer novel 
network instances. However, ROBIN currently only propagates signatures 
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Figure 12 Example of using the signature of a dynamically-created 
instance. 

of pre-existing concepts, such as of Cooking-Pot, Marijuana, or John. It 
does not propagate signatures of the dynamically created instances inferred 
by signatures (e.g., the dynamic instance of Cooking-Pot or Marijuana being 
Inside-Ofdi Dishwasher in Figure 4). Inferences using the dynamic instances 
themselves as bindings are necessary to encode most rules for general planning 
knowledge or complex interactions of goals, which generally require the ability 
to reason over any dynamic plan or goal instance the system might have. It 
is also crucial that the network be able to encode rules using combinations 
of terms (such as conjunctive terms). All of these types of rules are needed 
to understand many complex texts, such as those involving abstract planning 
failures or themes (cf. Schank [30]; Dyer [16]). These types of relatively 
complex rules are particularly difficult problems for connectionist models. 

The first thing the network must be able to do is to hold and propagate signatures 
representing the dynamic instances created when sub-networks representing a 
frame are instantiated with signatures. For example, in the sentence "Juliet 
saw that Romeo was dead', Juliet did not see a pre-existing person or thing. 
She saw a new state — that Romeo was dead. This new state instance itself 
is easily represented by the signature for Romeo being placed on one of the 
binding units of the Object role of the first available Dead frame instance (e.g., 
Dead!). The difficult part, however, is that the network must somehow be able 
to represent and propagate new instances such as this as signatures. 

A solution to this problem is to use the frames' signatures themselves to 
represent the dynamic instance they hold. Figure 12 shows an example of how 
this can be done. Dead2 has the activation representing the instance of Romeo 
being dead. The signature of Dead! shown here is 1.12. The fact that Juliet 
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saw this is represented by binding her signature (3.3) to one of the binding 
units of Seel's Actor, and binding one of the binding units of its Object to 
the signature of Dead! (1.12). The network therefore dynamically represents 
the fact that Juliet sees some concept, which happens to be the instance held 
by the signature of Dead! (that Romeo is dead). The same signature (1.12) 
would be used during processing if at some other time Dead! held another 
dynamic instance, such as that President-Hoover was dead. Using the pre
existing signature of each frame instance sub-network will allow ROBIN to 
hold and propagate signatures representing dynamic instances. For example, 
in this case, the network would have a rule that said that if somebody Sees 
an existing state, then they Know it. The network would then infer that Juliet 
Knows that Romeo is dead by propagating its signature (1.12) from Seel to 
Knowl. 

It is also important to extend ROBIN's network structure to handle more 
complex rules that themselves create and propagate new instances that are 
functions of their instances, as opposed to just the signatures themselves. In 
predicate logic terms, this is the same as admitting rules with function terms. 
Consider, for instance, a simple rule that says "If somebody punches somebody 
else, then that person's nose will be broken," or: 

R5: (Actor X Punch Object Y) results-in (Broken Object (Nose Y)) 

As with ROBIN's normal rules, R5 would spread activation to its consequent 
frame, Broken. But instead of causing Broken's Object role to be bound to one 
of the concepts that Punch's roles were bound to (i.e. X or Y), it will cause it to 
be bound to a function of one of those concepts — the (Nose Y). So R5 should 
cause two things to happen. First, it should cause activation to spread to create 
a new instance of Nose whose Owner is Y. Second, it should make Brokers 
Object role receive the signature of that new instance of Nose. 

Figure 13 shows how the network will do this. It shows the evidential and 
binding unit sub-networks representing one instance each of Punch (Punchl), 
Broken (Brokenl), and Nose (Nosel). The Object binding units of Punchl has 
connections directly to the Owner binding units of Nosel, since it is the Object 
of the Punching (Y) whose nose is involved. There is then a connection directly 
from the signature of Nosel to one of the Object binding units of Brokenl, 
since the network can infer that Nosel will be broken. The signatures show the 
network after it has propagated activation for "Juliet punched Romeo". The 
network has inferred that the concept whose signature is 4.21 is broken, where 
4.21 is the signature of Nosel, representing Romeo (9.2)'s nose. 
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Figure 13 Network structure encoding a rule with a function term (R5). 

A number of issues need to be resolved to determine the structure needed to 
allow rules with function terms. As with normal rules, signature and evidential 
activation should only propagate when the selectional restrictions (binding 
constraints) are not violated and when there is enough evidential activation to 
support the inference. Thus, in Figure 13, the connection from the signature 
unit of Nosel should have a gate that only allows the signature to propagate to 
the first Object binding unit of Brokenl when the inference can be made. This 
structure will have to work consistently with the structure allowing multiple 
dynamic instances of every frame described in the previous section. Similarly, 
connections between concepts on the evidential layer will have to be gated so 
that they only propagate evidential activation when an inference can be made. 

Similar changes need to be made to allow ROBIN to handle rules with con
junctive antecedents, where more than one thing must be true for the rule to 
fire. For example, a rule for jealousy might be that one person (X) is jealous 
of a second person (Z) if they love somebody (Y) and that person (Y) loves the 
second person (Z). To encode such rules, the structure of the network must only 
allow signature and evidential activation to propagate to instantiate a resulting 
instance when all antecedents are active and all of their bindings meet the rules' 
constraints (such as that the signature of the person that X loves is the same 
as the signature of the person Y who loves somebody else). The same kind of 
network structure encoding other kinds of binding constraints and comparing 
signatures to the expected signatures can be simply extended to handle these 
kinds of conjunctive rules. 
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Figure 14 Distributed signatures, where each signature is a unique pat
tern distributed over a bank of units. Here each signature or binding bank 
is made up of six units, with increasing levels of activation represented 
by increasing darkness of shading (ranging from white = 0 to black =1). 
Shown is the (desired) state of the network after Bill's distributed signa
ture has propagated from the binding bank of Transfer-Inside" s Actor to 
the binding bank of Inside-Ofs Planner, but before reaching Inside-Of-
Dishwasher and Inside-Ojf-Opaque. 

5.3 DISTRIBUTED SIGNATURES 

Currently, each signature is a single arbitrary scalar value that uniquely identi
fies its concept. Large models could conceivably have thousands or hundreds 
of thousands of separate concepts that they could recognize (such as Mari
juana, Cooking-Pot, Catfish, Guppy, John, John-Wayne, John-Kennedy, etc.). 
It is untenable to expect a single binding node to have enough precision to 
accurately distinguish between such a large number of signatures5. 

A better solution is that each signature be a distributed pattern of activation 
which uniquely identifies its concept. As proposed in Lange and Dyer [19], 
distributed signatures would be propagated for inferencing over paths of bind
ing banks in exactly the same way as scalar signatures. Figure 14 shows an 
example of this. Similar concepts would have similar distributed patterns of 
activation as their signatures (or reduced descriptions), so that each signature 
would carry at least a limited amount of semantic content. A first pass at this 
might entail the use of microfeature-like patterns, as in the distributed model 
of McClelland and Kawamoto [23], but it would be preferable to have the 

5The normal coding capacity of connectionist elements is usually in the range of 1-5 bits. 
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signature patterns learned over time, as done by the model of Miikkulainen 
and Dyer [25]. 

One of the most important results of using distributed signatures would be a 
simplification of the network structure calculating whether individual signature 
bindings match a role's selectional restrictions (or logical binding constraints). 
If signatures are distributed patterns of activation that are similar for similar 
concepts, then selectional restrictions could be computed with a bank of nodes 
that does a simple similarity threshold between the signature binding and the 
distributed signature of the binding constraint to determine whether signatures 
should be passed through. The most intriguing possibility, however, is that 
the binding constraint nodes could be replaced by small distributed ensem
ble of nodes trained by backpropagation or some other distributed learning 
mechanism to recognize the signatures that their roles can accept. 

We will be exploring distributed signatures and their possible uses for learning 
binding constraints in the future, along with other ways of using learning 
based on the semantic content of signatures themselves after the network has 
performed inferencing. These possibilties for applying learning techniques 
with distributed signatures make for potentially the most important difference 
between signatures and other parallel inferencing techniques in which the 
bindings themselves convey no semantic information, such as marker-passing 
models and Shastri and Ajjanagadde's [33] synchronization approach. 

5 .4 E X T E N S I O N S T O REMIND 

The above advances to ROBIN'S dynamic representation and inferencing abili
ties should significantly increase the types and lengths of the stories that ROBIN 
will be able to disambiguate and understand. Because REMIND is based on 
ROBIN, these advances should also form the basis for significantly increasing 
the ability of REMIND to understand and retrieve longer and more complex 
stories. We therefore plan to extend REMIND to include the advances devel
oped in ROBIN'S inferencing abilities. We will then run a number of different 
simulations to test these new retrieval abilities and how REMIND compares 
to other models of analogical and case-based retrieval. 

Another set of simulations to be run will test how the integration of under
standing and retrieval within the single spreading-activation mechanism of 
REMIND has an effect on the language understanding and disambiguation 
process. Initial experiments has shown that priming from analogous episodes 
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(cases) activated as part of the retrieval process has a desirable effect on the 
understanding process by influencing the context in which disambiguation and 
interpretation of input cues takes place. Furthermore, it appears that many 
of the desirable features of the explicit indexing methods of case-based rea
soning systems emerge from the dynamics of REMIND's spreading-activation 
process and how episodes are learned over time. For example, one important 
feature of a useful index is how unique it is. Although REMIND indexes its 
episodes under all of their features, relatively unique features affect retrieval 
more than common ones simply because they activate fewer episodes (com
pare Possess-Obj to the more abstract Avoid-Detection and Punishment frames 
in Figure 7). Another important aspect of the spreading-activation process 
is that particularly salient features receive the most activation and therefore 
automatically act as stronger retrieval indices. We plan to run a number of 
simulations to explore whether these initial results scale up and whether they 
can show that the benefits of explicit indexing in CBR models can fall out of 
the comprehension process. The effect of retrieval of analogous cases on the 
interpretation process may also show another way that learning can occur in 
the network. 

6 SUMMARY 

Our initial research on developing structured connectionist models for natural 
language understanding and episodic memory retrieval is quite promising. 
The use of signatures in ROBIN allows it to perform some of the variable 
binding and parallel dynamic inferencing difficult for connectionist models, 
while its integration within the constraint satisfaction abilities of its evidential 
layer allows it to perform disambiguation and reinterpretation difficult for 
traditional symbolic models. Once a connectionist model can perform some of 
inferencing and disambiguation of the natural language understanding process, 
it is a natural extension to have the resulting interpretations directly influence 
memory retrieval, as appears to be the case in people. REMIND's integration 
of ROBIN's language understanding networks with sub-networks performing 
memory retrieval has illustrated many of the potential benefits of this approach. 
These include several computational benefits over retrieval-only models and 
the fact that it can potentially account for many psychological phenomena 
involving priming and language effects on human memory retrieval. 

We are currently developing a number of extensions to the inferencing and 
representational abilities of ROBIN and REMIND's network structure. They 
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include: (1) the ability to handle multiple dynamic instances of each frame, 
(2) the ability to handle recursive inferences and rules with function terms, 
(3) the ability to handle more complex rules having conjunctive terms, and (4) 
exploring the use of representing signatures as uniquely-identifying distributed 
patterns of activation carrying limited semantic content (i.e. as reduced de
scriptions) for learning. We plan to integrate these new inferencing abilities 
into ROBIN and REMIND, allowing us to perform a number of experiments 
on how they allow the models to scale up and how they compare to cur
rent connectionist models of language understanding and to current models 
of analogical and case-based retrieval. These developments should allow a 
significant increase in the abilities of connectionist models' reasoning abilities 
and our understanding of the processes of language understanding and episodic 
memory retrieval. 

A C K N O W L E D G E M E N T S 

I would like to thank Michael Dyer, Ken Forbus, Keith Holyoak, and Charles 
Wharton for helpful discussions on the models. I would also like to thank 
Lawrence Bookman and Ron Sun for the opportunity to present this chapter 
and for several useful comments and suggestions. 

REFERENCES 

[1] Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: 
Harvard University Press. 

[2] Barnden, J. (1990). The power of some unusual connectionist data-
structuring techniques. In J. Barnden and J. Pollack (eds.), Advances 
in Connectionist and Neural Computation Theory. Norwood, NJ: Ablex. 

[3] Barnden, J. and Srinivas, K. (1992). Overcoming rule-based rigidity and 
connectionist limitations through massively-parallel case-based reason
ing. International Journal of Man-Machine Studies, 36:221-246. 

[4] Bookman, L.A. (1994). Trajectories through Knowledge Space: A Dy
namic Framework for Machine Comprehension. Boston, MA: Kluwer. 



112 CHAPTER 3 

[5] Charniak, E. (1986). A neat theory of marker passing. In Proceedings 
of the Fifth National Conference on Artificial Intelligence, Philadelphia, 
PA. 

[6] Cottrell, G. and Small, S. (1982). A connectionist scheme for modeling 
word-sense disambiguation. Cognition and Brain Theory, 6:89-120 

[7] Diederich, J. (1990). Steps toward knowledge-intensive connectionist 
learning. In J. Barnden and J. Pollack (eds.), Advances in Connectionist 
and Neural Computation Theory. Norwood, NJ: Ablex. 

[8] Dolan, C. and Smolensky, P. (1989). Tensor product production system: 
A modular architecture and representation. Connection Science, 1:53-68. 

[9] Dyer, M. (1983). In-depth Understanding: A Computer Model of Inte
grated Processing for Comprehension. Cambridge, MA: MIT Press. 

[10] Gentner, D. and Forbus, K. (1991). MAC/FAC: A model of similarity-
based retrieval. In Proceedings of the Thirteenth Annual Conference of 
the Cognitive Science Society (pp. 504-509). Hillsdale, NJ: Lawrence 
Erlbaum. 

[11] Granger, R. H., Eiselt, K. P., and Holbrook, J. K. (1986). Parsing with 
parallelism: A spreading activation model of inference processing during 
text understanding. In J. Kolodner and C Riesbeck (eds.), Experience, 
Memory, and Reasoning (pp. 227-246). Hillsdale, NJ: Lawrence Erlbaum. 

[12] Hammond, K. (1989) Case-based Planning. Boston: Academic Press. 

[13] Hendler, J. (1989). Marker-passing over microfeatures: Towards a hybrid 
symbolic/connectionist model. Cognitive Science, 13:79-106. 

[14] Hofstadter, D. and Mitchell, M. (in press). The copycat project: A model 
of mental fluidity and analogy-making. To appear in J. Barnden and 
K. Holyoak (eds.), Advances in Connectionist and Neural Computation 
Theory, volume II: Analogical Connections. Norwood, NJ: Ablex. 

[15] Holldobler, S. (1990). A structured connectionist unification algorithm. In 
Proceedings of the Ninth National Conference on Artificial Intelligence, 
Boston, MA. 

[16] Kintsch, W. (1988). The role of knowledge in discourse comprehension: 
A construction-integration model. Psychological Review, 95:163-182. 



Inferencing and Retrieval 113 

[17] Kitano, H., Tomabechi, H. and Levin, L. (1989). Ambiguity resolution in 
DMTrans Plus. In Proceedings of the Fourth Conference of the European 
Chapter of the Association of Computational Linguistics. New York, NY: 
Manchester University Press. 

[18] Kolodner, J., Simpson, R., and Sycara, K. (1985). A process model of 
case-based reasoning in problem solving. In Proceedings of the Ninth 
International Joint Conference on Artificial Intelligence, p. 284-290. Los 
Altos, CA: Morgan Kaufman. 

[19] Lange, T. and Dyer, M. (1989). High-level inferencing in a connectionist 
network. Connection Science, 1(2):181-217. 

[20] Lange, T. (1992). Lexical and pragmatic disambiguation and reinterpre-
tation in connectionist networks. Interational Journal of Man-Machine 
Studies, 36:191-220. 

[21] Lange, T. and Wharton, C. (in press). REMIND: Retrieval from episodic 
memory by inferencing and disambiguation. In J. Barnden and K. Holy oak 
(eds.), Advances in Connectionist and Neural Computation Theory\ Vol
ume 3: Metaphor and Reminding. Norwood, NJ: Ablex. 

[22] Lytinen, S. (1984). The organization of knowledge in a multi-lingual 
integrated parser. Ph.D. thesis, Research Report 340, Yale University, 
Department of Computer Science, New Haven, CT. 

[23] McClelland, J. L. and Kawamoto, A. H. (1986): Mechanisms of sentence 
processing: Assigning roles to constituents of sentences. In McClelland 
and Rumelhart (eds.), Parallel Distributed Processing: Vol 2, p. 272-325. 
Cambridge, MA: The MIT Press. 

[24] Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An 
Integrated Model of Scripts, Lexicon, and Memory. Cambridge: MIT 
Press. 

[25] Miikkulainen, R. and Dyer, M. (1991). Natural language processing 
with modular PDP networks and distributed lexicon. Cognitive Science, 
15:343-399. 

[26] Norvig, P. (1989). Marker passing as a weak method for text inferencing. 
Cognitive Science, 13:569-620. 

[27] Riesbeck, C. K. and Schank, R. (1989). Inside Case-based Reasoning. 
Hillsdale, NJ: Lawrence Erlbaum. 



114 CHAPTER 3 

[28] Riesbeck, C. K. and Martin, C. E. (1986). Direct memory access pars
ing. In J. Kolodner and C. Riesbeck (eds.), Experience, Memory, and 
Reasoning, pp. 209-226. Hillsdale, NJ: Lawrence Erlbaum. 

[29] Rumelhart, D. E., Hinton, G. E., and McClelland, J. L. (1986): A general 
framework for parallel distributed processing. In Rumelhart and McClel
land (eds.), Parallel Distributed Processing: Vol. 7, p. 45-76. Cambridge, 
MA: The MIT Press. 

[30] Schank, R. (1982). Dynamic memory. NY: Cambridge University Press. 

[31] Schank, R. and Abelson, R. (1977). Scripts, Plans, Goals and Under
standing. Hillsdale, NJ: Lawrence Erlbaum. 

[32] Schank, R., and Leake, D. B. (1989). Creativity and learning in a case-
based explainer. Artificial Intelligence, 40:353-385. 

[33] Shastri, L. and Ajjanagadde, V. (1993). From simple associations to sys
tematic reasoning: A connectionist representation of rules, variables, and 
dynamic bindings using temporal synchrony. Behavioral and Brain Sci
ences, 16:417-494. 

[34] St. John, M. (1992). The story gestalt: A model of knowledge-intensive 
processes in text comprehension. Cognitive Science 16:271-306. 

[35] Sun, R. (1993). Integrating Rules and Connectionism for Robust Com-
monsense Reasoning. New York: John Wiley and Sons, Inc. 

[36] Thagard, P., Holyoak, K. J., Nelson, G., and Gochfeld, D. (1990). Analog 
retrieval by constraint satisfaction. Artificial Intelligence, 46:259-310. 

[37] Touretzky, D. (1990). Connectionism and compositional semantics. In 
J. Barnden and J. Pollack (eds.), Advances in Connectionist and Neural 
Computation Theory, Norwood, NJ: Ablex. 

[38] Touretzky, D. and Hinton, G. (1988). A distributed connectionist produc
tion system. Cognitive Science, 12:423-466. 

[39] Waltz, D. and Pollack, J. (1985). Massively parallel parsing: A strongly 
interactive model of natural language interpretation,. Cognitive Science, 
9:51-74. 

[40] Wilensky, R. (1983). Planning and Understanding. Reading, MA: 
Addison-Wesley. 



Inferencing and Retrieval 115 

[41] Wharton, C. M. and Lange, T. (1993). Case-Based Retrieval and Prim
ing: Empirical Evidence for Integrated Models. In Proceedings of the 
IJCAI-93 Workshop on Reuse of Designs: An Interdisciplinary Cognitive 
Approach. Chambery, France, August 1993. 



4 
Hierarchical Architectures for 

Reasoning 
R.C. L A C H E R A N D K.D. N G U Y E N 

Department of Computer Science 

Florida State University 
Tallahassee, FL 32306-4019 

1 INTRODUCTION 

This chapter has a threefold purpose: (1) to introduce a general framework 
for parallel/distributed computation, the computational network; (2) to expose 
in detail a symbolic example of a computational network, related to expert 
systems, called an expert network; and (3) to describe and investigate how an 
expert network can be realized as a neural network possessing a hierarchical 
symbolic!sub-symbolic architectural organization. 

A computational network is essentially a directed graph in which each com
ponent (vertex or directed edge) has data processing functionality, further 
endowed with a concept of global network computation. Examples of com
putational entities that admit descriptions within the computational network 
model include biological neural networks, artificial neural networks, the par
allel virtual machine model of loosely coupled MIMD computation, human 
collaborations such as committees, and expert networks. Many of the prin
ciples of neural network learning can be lifted to the level of computational 
networks. We present a re-examination of backpropagation learning in this 
context and derive the computational network backpropagation, or CNBP, 
learning algorithm. 

An expert network is a computational network that can be obtained from an 
expert system. The architecture of the expert network is derived from the 
expert system: the network topology from the rule base, the local processing 
functionality of the vertices and edges from the system of inference, and 
the global computation concepts from the inference engine. The process of 
constructing an expert network from an expert system is reversible. 
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Expert network backpropagation, or ENBP, is a learning method for expert 
networks obtained as an instantiation of CNBP. ENBP has proven to be useful in 
knowledge refinement, allowing an expert system builder to make the transition 
from coarse knowledge, in the form of rough-draft rules, to fine knowledge, 
in the form of rules with subtlety represented by analog parameters such as 
certainty factors, using supervised learning and the historical record of expert 
behavior as a training set. 

The symbolic-level nodes of an expert network can be represented by neural 
networks, which we view as computational networks of sub-symbolic pro
cessors. We investigate the optimal architectures for these representations, 
which provide a realization of an expert network as a neural network with a 
hierarchical topological organization: a sparsely interconnected collection of 
densely intraconnected neural nets. This hierarchical sparse/dense organiza
tion is analogous to biological neural organization. It captures two levels of 
knowledge: domain knowledge in the sparse superstructure and metaknowl
edge in the dense substructures. The hierarchical structural parameters are 
well within the connectivity constraints found in biology, making feasible the 
scaling up of neural-based expert networks to sizes comparable to those of 
living systems. 

2 COMPUTATIONAL NETWORKS: A GENERAL SETTING FOR 

DISTRIBUTED COMPUTATIONS 

A computational network is a general framework for parallel/distributed com
putation modeled on a directed graph in which the vertices and directed edges 
have computational functionality and for which there is some holistic notion of 
cooperative computation [32,34]. Computational paradigms that fit within the 
computational network framework include biological neural networks; artifi
cial neural networks; distributed computation on a loosely coupled collection of 
von-neuman machines connected to a digital communications network, as ex
emplified by Parallel Virtual Machine [54, 55]; human collaborative decision
making and problem-solving; and expert networks [31]. We return briefly to 
each of these examples after introducing computational network concepts. 
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2 .1 D E F I N I T I O N S AND NOTATION 

A computational network (CN) is a directed graph together with certain at
tributes and specifications. These may be local or global, the former referring 
to individual CN components (vertices or edges) and the latter to the CN itself. 
In particular, to compute with a CN one must specify the types of data allowed 
for (various parts of) the computation; the local functionalities associated with 
digraph components; a method of timekeeping or scheduling to keep the global 
computation organized; a method of aggregating the local computations into a 
global network computation; and how data is to be presented to, and retrieved 
from, the CN. 

Data Types 

The types of data with which the computational network is competent must 
be specified. Depending on the setting, allowed data types may be specific 
molecules, discrete or continuous numerical values, character data, or even 
sounds that represent either analog data or discrete symbolic information. 
Different components of the CN may require different data types, and the CN 
may operate internally with data types distinct from the I/O data types. 

Local Functionalities 

The components of a computational network must have computational at
tributes. Thus each vertex of a CN must have an associated ability to receive 
data at its incoming edges, process that data into an internal state, compute 
an output value, and make this output value available to each of its outgoing 
edges. Each directed edge must have an associated ability to receive data at 
its initial end, compute a value, and make this value available at its terminal 
end. We use the terms node and connection to mean, respectively, a vertex or 
a directed edge in a CN together with its associated functionality. 

Node functionality is broken down into two stages, an input or combining 
stage and an output or firing stage. In the combining stage a node computes an 
internal state y from its input data values x\,..., xn. We denote the function 
so implied by r and call it the combining function of the node (or associated 
with die vertex). After computing its internal state y9 a node must compute 
an output value z. We denote this second function by <p and call it the firing 
function of the node. 
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The node combining functions of a computational network may be specified 
in a number of ways, either explicitly or implicitly. For example, if time is 
continuous r may be determined implicitly by a differential equation, whereas 
if time is discrete r may be given by an explicit formula. 

Connection functionality transforms the data received by a connection into a 
transmitted signal value. The input to a connection is the output value z of the 
node at its initial end. The connection computes one of the input values x for 
the node at its terminal end. We denote the function making this computation 
by a and call it the synaptic function of the connection. 

Commonly encountered synaptic functions may be linear functions; linear 
threshold functions; sigmoidal functions; or simple conduits that transmit data 
unchanged except for a possible time delay. 

Time 

A notion of timekeeping or scheduling of the various component computations 
and data transactions is required in order to give meaning to whole-network 
activation and computation. The possibilities for timekeeping range intrinsic 
such as self-organization to extrinsic such as management by outside expertise. 

Global Activation 

The local components of a CN are activated by simply applying their function
ality to whatever input they have at any given time. For global computation, 
however, these local activations must be orchestrated in some way to define 
a notion of global or network activation. Options include: synchronous acti
vation, in which each network component is activated simultaneously; asyn
chronous activation, in which network components are activated randomly 
one at a time; event-driven activation, in which a network component acti
vates when one of its input values changes; and managed activation, in which 
components activate on the command of a central scheduler or manager. 

Network Computation 

A computational network is intended to be used as a computer, and like a 
traditional computer the computations of the various parts must be orchestrated 
into a holistic whole-network computation in some way. In all cases, the global 
network computation is obtained by successive global activations. The cases 
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differ in how they determine when a network computation is completed. There 
are two basic choices: either activate for a certain length of time, or activate 
until the network has reached some kind of global equilibrium state. 

Input and Output 

A method must be prescribed whereby data values may be introduced into, 
and retrieved from, a CN from outside the network. For the purposes of this 
work we will assume that I/O is accomplished by specification of two subsets 
of nodes (possibly overlapping), "input" nodes and "output" nodes. Data is 
inserted into the CN to begin a computation by externally setting the states 
y of the input nodes to the input data values. After network computation is 
completed, data is retrieved from the CN by reading the outputs z of the output 
nodes. 

2.2 ACTIVATION DYNAMICS 

The attributes which collectively define a computational network are not in
dependent. For example, the method of keeping time, the concept of holistic 
computation, and the meaning of I/O are all interelated, and some choices in 
one direction may preclude a possibility in another direction. A coherent set 
of attributes for timekeeping, global activation, network computation, and I/O 
together constitute the rules for activation dynamics of the CN. We consider 
briefly some of the most often used network computation strategies. 

Centrally Managed Computation 

Usually used with discrete time, although possible with continuous time. A 
central entity, such as an operating system or a manager, makes decisions as 
to timing of local computations and routing of data. Output is read at a time 
specified by the computation manager. 

Synchronous Equilibrium Computation 

Used with either discrete or continuous time. This method activates the local 
functionalities indefinitely at each clock tic (or continuously) until a dynamic 
equilibrium is reached. Output is read at equilibrium. Classically this equi
librium is assumed to be a fixed point in the space of node states, but more 
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general attractors are sometimes allowed [21, 10, 41, 51]. It may be quite 
challenging to decide whether appropriate equilibria are always attained in a 
given CN [19]. Virtually all continuous-time CNs use synchronous activation, 
and most use equilibrium dynamics to define network computation. 

Fixed Time Delay Computation 

Used with either discrete or continuous time. The network is activated as in 
synchronous activation above, but for a certain number of iterations (or length 
of time) after which output is retrieved. This is often used in place of an 
equilibrium rule. The time of activation is chosen so that the network will be 
close to equilibrium upon completion. 

Asynchronous Equilibrium Computation 

This makes sense only for discrete time. There are two variations, a global 
one in which a node is chosen at random and its incoming connections and the 
node itself are activated, and local one in which each component chooses to 
activate at random times. In either case the process continues until equilibrium 
is reached. When the probability of local activation is kept small, these produce 
equivalent equilibrium dynamics [18, 20]. 

Event Driven Computation 

Again for discrete time only. Each component of the CN activates whenever 
it receives a new input value, until no values change. This is equivalent to 
synchronous equilibrium dynamics [32]. Expert networks and human collab
orations typically use event-driven activation, and results are generally useful 
only when an equilibrium state is achieved. 

2.3 EXAMPLES 

In a biological neural network (BNN), the local functionalities are determined 
by the extraordinarily complex biochemical processes of synaptic transmission, 
membrane channels, and internal cell chemistry. The synaptic functions reflect 
the type and density of transmitter molecules, together with properties of the 
inbound membrane channels of the receiving cell. The combining and firing 
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functions reflect the internal cell biochemical accrual process and the sensitivity 
and other properties of the outbound membrane channels, respectively. 

An artificial neural network (NN) is a mathematical analogy of a BNN. The 
synaptic and firing functions are usually specified explicitly. Quite typically, 
the synapses are simple linear functions. The firing functions may be of 
virtually any type, but most often are sigmoidals such as logistic or hyperbolic 
tangents, threshold functions (with discrete output), symmetric distributions 
such as the gaussian, or some combination of these types. In discrete time 
NNs, the combining function is usually given explicitly, with simple additive 
accrual being the most common, while in continuous time NNs r is more often 
given implicitly by constraints on its derivatives. 

A typical use of parallel virtual machine (PVM) is to perform a computation 
by parceling out identifiable sub-computations to various computers on a high 
speed communications network. The synaptic functions are pure transmis
sions of data, with some small time delay. The node functionalities are quite 
complex and determined by user programs. Global activation is event-driven 
and network computation is centrally managed. 

In human collaborations (HC) the synaptic functions transmitting human-
human communication are again simple conduits, albeit of very complex data. 
The combining functions reflect the receiving and interpretation by one person 
of the information supplied by all the others in the collaboration. The firing 
functions reflect the formulation and transmission of personal information and 
conclusions out to other members of the collaboration. Activation dynamics 
can be a form of managed computation, for example when there is a strong 
leader such as a teacher or supervisor. Often more effective is the committee 
model, with event-driven activation. There is no guarantee of convergence; 
convergence is a goal of the collaboration. 

An expert network (EN) is a computational network derived from a rule-based 
expert system (production system). The digraph topology is determined by 
the domain rule base; the local functionalities are determined by the infer
ence system; and the timing mechanism is derived from the computational 
scheduling method of the expert system shell. ENs typically use discrete time, 
have acyclic topology, and process analog data. Expert networks are discussed 
further in following sections. 
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Table 1 Classification of example CNs. 

DD/AD 
DT/CT 
AT/RT 

BNN NN PVM HC EN 
1 x 0 x 1 
1 x 0 0 0 
1 x 1 1 0 

2.4 CN CLASSIFICATION 

There are three broad dichotomies that occur very naturally in the specification 
of a CN. The five examples discussed briefly above give evidence that the 
resulting categories are non-vacuous and interesting. These dichotomies, and 
some notation we will use for the resulting classification, are as follows: 

• DD/AD: Discrete or Analog Data 

• DT/CT: Discrete or Continuous Time 

• AT/RT: Acyclic or Recurrent Topology 

Only when compactness of notation is convenient, we use a 3-digit binary 
encoding to represent a set of choices in these three dichotomies, the left digit 
representing data type, the middle digit representing time type, and the right 
digit representing topology type. We also use V as a don't-care or union 
of types. For example, A CN of type 101 computes with analog data using 
discrete time and a recurrent topology, while type lOx has the same data and 
time restrictions but does not specify whether the topology is acyclic or not. 

Classification of the five examples discussed above is given in Table 1. Some 
of the classification choices are arguable, but most will agree that these choices 
indicate a legitimate point of view within which the paradigm may be studied 
and that some choice must be made in order to focus the study. 

2 . 5 D I S C R E T E T I M E COMPUTATIONAL N E T W O R K S : NOTATION 

We establish some notation for updating discrete time (or "type xOx") CNs. 
Similar notation is appropriate for continuous time CNs except that often 
some of the local functionalities are specified implicitly through differential 
equations. 
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A CN consists of nodes and connections organized into a directed graph struc
ture. We will use an adjacency matrix notation system for the CN components 
based on a labeling of the nodes: a single subscript indicates an association 
with the vertex so labeled, and a double subscript indicates association with 
a directed edge, with "assignment statement order" for the edge subscripts: a 
subscript ji indicates association with the edge from vertex i to vertex j . In 
this notation, r ; and <pj are the combining and firing function, respectively, of 
node j , and crJ2 is the synaptic function of the connection from node i to node 
j . We also use z to denote node output (or activation value) and y to denote 
node internal state. If the ji synapse is linear, then o-jifa) - Wjizif where wj{ 

is the weight of the connection. We assume in this discussion that the node 
labels constitute an enumeration 1,. . . , n. 

The internal state of the CN at a particular time t consists of all the node states 
yj(t) usually collected into a vector y(t) = (yi(t),..., yn(0)- Similarly, the 
activation state of the CN at time/ is the vector z (t) = (zi(t),..., zn(t)) of local 
activation values at time t. (It should be kept in mind that important properties 
of these state vectors are symmetric, that is, independentof the particular vertex 
ordering.) New states are calculated using the update equations 

Xji := (Tji(zi) for i—l)...,n (4.1a) 

yj := Tj(xju...,xjn) (4.1b) 

zj : = <Pj(Vj) ( 4 - l c ) 

during three time steps (or in one time step split into three sub-steps). How 
local updates are organized into network activation varies as discussed earlier. 
Activation dynamics is the study of the behavior of network states as they 
change over time. 

One requirement not often made explicit for computational networks is sym
metry of combining functions: r ; should give output that is independent of 
the labeling order of the nodes. Another system of notation that makes this 
requirement more obvious is based on predecessor/successor relations in the 
network topology. Define a predecessor of node j to be any node in the net
work that initiates a connection into j . The set of predecessors of j is defined 
and denoted as 

Pred(j) — {i\there is an edge from i to j}. 

The update equations can be restated in terms of predecessors as follows. First 
compute post-synaptic input for node j : 

Xji :— (TjiyZi) 
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for all i e Pred(j), where a^ is the synaptic function of the connection from % 
to j . Denote the vector of all post-synaptic input for node j by XJ . This vector 
has dimension \Pred(j)\, one component xj{ for each % e Pred(j), but the order 
of components is not important. Next compute the internal state of node j : 

Vj : = Tj(xj) 

where Tj is the combining function for node j . Tj is a symmetric function of 
\Pred(j)\ variables. Finally compute the activation value of node j : 

ZJ '-=<pj(yj) 

where <pj is the output function of node j . 

We will generally stick to the simpler adjacency matrix notation of equations 
4.1. This simplicity does blur certain subtleties, however, by making the 
tacit assumption that computation doesn't need to distinguish between no 
connection from i to j and a connection from i to j with aj{ = 0. Cases can 
arise where this distinction is important. In such cases the missing connectivity 
information can be maintained in a seperate adjacency matrix. If the network 
is sparse, it may be appropriate to use more compact representations such as 
adjacency lists that implement the predecessor/successor notation. 

3 TYPE XOO COMPUTATIONAL NETWORKS 

For the remainder of this chapter we restrict our attention to computational 
networks of type xOO, that is, we assume discrete time and acyclic topology 
but allow either discrete or analog data types both internally and as I/O. 

3.1 ACTIVATION DYNAMICS 

Activation dynamics of acyclic, discrete-time computational networks may 
assume any of the forms discussed in Section 2.2. Synchronous, asynchronous, 
and event-driven activation are all equivalent to fixed time delay (if the delay is 
appropriately large) and all result in reaching a terminal activation state in finite 
time [32]. In other words, given a CN of type xOO, we can activate using any 
of these methods for a globally fixed amount of time, after which activation 
will cease to produce changes in any of the internal states of the CN. This 
activation may be component-parallel, component-distributed, or component-
serial. The type xOO CN thus becomes a (parallel/distributed) computer with 
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a fixed number of local computations required for I/O: insert input, compute a 
fixed number of local activations, then retrieve output. The local computations 
consist of applying the update assignment statements given by equations 4.1 
until a steady activation state {z\,..., zn) is reached. We call this the terminal 
activation state of the network and refer to the component ZJ as the terminal 
activation value of node j . 

3.2 INFLUENCE AND ERROR 

Backpropagation is one of the most widely known and successfully used con-
nectionist learning methods [57, 44]. Most often, backpropagation is applied 
to layered feedforward computational networks with the kind of simple pro
cessing functionality associated with low-level, sub-symbolic networks: linear 
synapses, additive combining functions, and sigmoidal or gaussian output func
tions. Many of the ingredients of backpropagation learning can be generalized 
for general computational networks. For CNs, the standard algorithm requires 
two changes: localize forward and backward activation to free the algorithm 
of the layer structure, and decouple the process of node error assignment from 
the weight correction step. The first is described previously and in [36]. The 
second uses the concept of influence factor, introduced in [32]. Influence fac
tors are associated with connections and specific network input. The influence 
factor Skj of the connection from node j to node k is the rate of change of 
output of node k with respect to the output of node j , evaluated at the terminal 
activation state: ekj = dzk/dzj(zj). Expanding this derivative using the chain 
rule we obtain 

£kj = tp'kiVk) x ^ ^ ( a : j f e i , . . . , z j b n ) x <T'kj(zj). (4.2) 

Again we emphasize that influence factors are dependent on particular network 
input: The derivative of <pk is evaluated at the terminal internal state of node 
k9 the partial of Tk is evaluated at the terminal post-synaptic input to node 
k, and the derivative of akj is evaluated at the terminal output of node j . 
Influence factors are associated with connections and are calculated during 
forward activation of the network. 

Once influence factors have been calculated for all the connections of an 
acyclic CN during forward activation, error can be assigned to all of the nodes 
in the CN during a reverse activation. This reverse activation is in essence an 
activation of the reverse of the CN. The reverse network topology consists of 
the vertices and edges of the original network, but with all edge orientations 
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reversed. The nodes of the reverse network use summation combining function 
and the identity activation function, i.e., the nodes are linear units. The synaptic 
functions are also linear with weight equal to the influence factor. Note that 
the reverse network is also acyclic. 

Error is assigned to each of the output nodes using equation 4.3a, where / is 
ideal output, and to all non-output nodes using equation 4.3b: 

ej '•- fj-Cj, (4-3a) 
ej := ^Skjek. (4.3b) 

k 

Applying equation 4.3b recursively is an activation of the reverse network with 
input given by 4.3a. The resulting terminal reverse activation state is an error 
assignment throughout the network. The error assignment process works in 
any acyclic CN for which the derivatives of equation 4.2 are defined. 

3.3 LOCAL GRADIENT DESCENT 

Once error has been distributed among the nodes in a computational network, 
we can apply gradient descent learning both selectively and locally to any node 
whose incoming synapses are linear. This decoupling of error assignment and 
learning means we can allow more complex synaptic functionality into certain 
nodes, we can have hard-wired connections into perhaps other selected nodes, 
and suppress learning at any selection of sites, while maintaining a global 
learning process. Local gradient descent amounts to applying the Widrow-
Hoff delta rule using local error. 

Calculating the gradient of squared local error at node j with respect to synaptic 
weights wji,...,wjn and taking a step in the opposite direction yields the 
following learning rule: 

dY-
Awji = r)ej(p

f
j(yj)-^r(xji,... ,xjn)zi + fiAw?™". (4.4) 

This equation defines one learning step with learning rate r/ and momentum fi 
in the direction of steepest descent of square local error. 
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3.4 CNBP 

Putting all these components together results in a learning method called Com
putational Network BackPropagation, or CNBP. CNBP applies to type xOO 
CN at any nodes with linear incoming synapses. All that is required to com
plete an implementation of CNBP is calculation of the derivatives appearing 
in equations 4.2 and 4.4. CNBP is summarized as follows. 

Assume given a set of training exemplars (£' ,/ ') , / = 1,2,.. .consisting of input 
£' = (£i > • • • > £m) ^ d ideal output / ' = ( /{, . . . , Il

n). The basic learning process 
goes as follows: 

Initialize 
present £' to input nodes 

Activate 
calculate terminal activation state zl- for each node 
calculate influence factors ekj for each connection 

Initialize error 
present external error e[ = l[ - z[ to output nodes 

Reverse activate 
activate the reverse network, assigning error el- to each node 

Learn 
change soft weights using local gradient descent 

The learn step can be carried out after each exemplar presentation (on-line 
learning) or accumulated and carried out at the end of an epoch (batch learning). 
The entire procedure loops until error is reduced sufficiently. 

4 EXPERT SYSTEMS 

An expert system (ES) captures domain-specific knowledge and uses this 
knowledge to reason about problems in the domain. By far the most successful 
type of expert system so far has been the rule-based system [15]. A rule-based 
expert system consists of an inference engine that defines and executes the rules 
of inference and a rule base that comprises the domain-specific knowledge of 
the system. 

Rule-based expert systems have become a mature advanced technology, with 
many successful software shells on the market, whether success is measured by 
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technical achievement or commercial viability. Three of these are particularly 
pertinent to the research, development, and production discussed here: M-41, 
CLIPS2, and G23. These products are all in significant use in a wide variety of 
application domains by a heterogeneous user community. Commercial users 
of M-4 have valuable (and proprietary) rule bases ranging in size from a few 
dozen to ten thousand rules.4 CLIPS has an avid following despite its lack 
of user amenities, due in part to its low cost. G2 is the most elaborate (and 
costly) of the three, with commercial site licenses listing at $42,000. Many of 
the worlds largest corporations have signed with Gensym for developing their 
real-time expert system needs, including ASEA Brown Boveri, GE, Monsanto, 
Occidental Petroleum, Boeing, DuPont, Texaco, Laf arge Coppee, and 3M [17]. 

These three shells each deal with uncertainty using a form of EMYCIN logical 
semantics. M.4 is discussed in some detail below; Hruska and coworkers have 
constructed a superset of CLIPS that uses essentially the same uncertainty 
semantics as M.4 [45]; and G2 uses a classical version of fuzzy inference. 

4 . 1 EMYCIN 

A seminal demonstration of the efficacy of rule-based systems was a med
ical diagnosis and treatment advisory system for infectious diseases called 
MYCIN[48, 1]. A natural consequence of the success of MYCIN was its 
abstraction to an "expert system shell" in order to apply the same reasoning 
automation in other domains. A shell is just an expert system with an empty 
knowledge base and a user interface system to facilitate the insertion and mod
ification of rules. A shell that implements the MYCIN reasoning system is 
called EMYCIN (for "Empty MYCIN"). M.4 is a commercially available 
EMYCIN shell. The computational experiments discussed below are based on 
M.4. The features of EMYCIN inferencing that are important in what follows 
are the evidence accumulator and the various logical operations [49, 14]. 

A rule in EMYCIN has the form 

IF a THEN b (cf) 

where a and b are assertions and cf is a certainty factor or confidence factor 
associated with the rule. The certainty factor may take on any value in the 

Product of Cimflex Teknowledge Corporation. 
2 Designed and Produced by NASA, distributed as shareware. 
3Product of Gensym Corporation. 
4Private communication from representative of Cimflex Teknowledge 
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range - 1 < cf < 1. We use the notation cfb\a to denote the certainty value of 
the implication IF a THEN b. Certainty factors are static numerical attributes of 
rules. They reside in the knowledge base and do not change during inferencing. 

An assertion 6 may take on an evidence value (also sometimes called a cer
tainty factor). The evidence value of an assertion is dynamically updated during 
inferencing, either through assignment when a query is made or through cal
culation in terms of evidence values of other assertions previously calculated 
or assigned during the inference. We denote the evidence value of assertion b 
by yb. yb may range in the interval - 1 < y < 1. The dynamically calculated 
evidence value of an assertion may be interpreted as a degree of confidence or 
correctness of the assertion. The evidence value yb is then converted to & firing 
value zb through the use of a threshold or other postprocessing criterion. The 
firing value (in this version of EMYCIN) is restricted to the range 0 < z < 1. 

Suppose that we have a current dynamic evidence value yb for assertion 6 and 
subsequently encounter another assertion IF a THEN 6 (cf). Then EMYCIN 
adjusts yb by adding an amount proportional to the firing value za for a, the 
certainty factor cf - cfh\a for the rule, and the proximity of yb to its domain 
limits. (When the current evidence value yb and the rule certainty factor cfb\a 

have opposite signs, a mediation process is used instead.) The output value zb 

for assertion b is then updated by applying the firing criterion to yb. The firing 
criterion may vary somewhat from one EMYCIN shell to another. M.4 uses 
the linear-threshold firing function with threshold value of 0.2. 

This update process breaks naturally into three steps. First calculate the 
certainty-mediated input evidence: 

*b\a := Cfb\a X Za] (4.5) 

then update the evidence value: 

..new 
Vb 

[ Vb + xb\a(l - yb) , if both yh and xhW are positive, 
Vb + xbla(l + yh) , if both yh and xh\a are negative, (4 6) 

• 1 w . g t + f ? r n , otherwise; 

then recalculate the firing value: 

U 6 , if 2/5 > 0.2; 
6 ' ~ \ o , otherwise. { } 

This firing value is then used as input to other rules of the form IF b THEN 
c (cf), and so on, until all firing values are stabilized. The inference process 
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begins with external setting of the firing values of selected rule antecedents and 
spreads through the rule base under control of the inference engine. After the 
inference process terminates, the values of consequents with non-zero values 
constitute the conclusions of inference. 

The reader will probably have noticed the similarity between the equations 
above and equations 4.1 as well as a principal distinction: 4.6 represents an 
accumulation process over rules with 6 as consequent, while 4.1b represents 
the evaluation of a combining function over all incoming connections simul
taneously. We give a closed form version of 4.6 in the next section. 

EMYCIN shells differ somewhat in their treatment of logical operations, al
though they typically use minimum and maximum for AND and OR, respec
tively, and some kind of inversion for NOT. The differences among shells 
appear in the way these values are thresholded (or otherwise postprocessed), 
after applying this common calculation, to determine whether the compound 
assertion fires. Generally, rules are allowed to have compound antecedents 
(using the defined logical operations) but compound consequents are discour
aged. 

M.4 recognizes three logical operations explicitly: AND, NOT, and UNK. The 
UNK (for "unknown") operation is a version of NOR (NOT following OR).5 

For AND, M.4 uses the same firing function as for evidence combining, given 
above by 4.7. For NOT, M.4 uses a firing function that is a strict threshold, with 
threshold value 0.8, resulting in discrete values for NOT and NOR operations. 

Each of the operations can be described in three functional steps analogous to 
4.5, 4.6, and 4.7 above. These operations, along with the evidence accumu
lation process, provide functionality to the vertices and edges of an inference 
network model of the knowledge base, resulting in a computational network. 
We describe this network, along with explicit M.4 functionalities, in detail in 
the next section. 

5M.4 does not recognize an explicit OR operation, hence the non-standard terminology. 
M.4 implicitly uses two different versions of OR - the DeMorgan dual of AND as well as the 
evidence accumulator. 
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5 EXPERT NETWORKS 

Expert Network learning technology, a process developed by a group at FSU6 in 
partnership with the Florida High Technology and Industry Council, provides 
a means of automated knowledge refinement in rule-based expert systems. In 
settings where sufficient historical data exists, expert network learning can 
significantly improve both the development time and the ultimate level of 
expertise captured in an expert system project. 

The expert network method, at the algorithm level, is a method for knowledge 
refinement in a rule-based expert system that uses uncertainty. The uncertainty 
theory can be that of EMYCIN certainty factors as in M-4, fuzzy logic as 
in G2, probability, Dempster-Shaffer theory, or any other theory that uses a 
continuously variable value or values to define a level or degree of certainty to 
implications and/or factual statements. In all such systems the role of uncer
tainty is to represent the subtle variations of knowledge that, once discovered 
and captured, complete the transition from coarse novice-level knowledge to 
refined expertise. 

Expert networks allow these systems to make this passage from novice to expert 
through neural network style learning from data rather than from laborious 
human expert tinkering. The data required may be either historical records 
of correct inferences, in which case the learning methods are supervised, 
particularly Expert Network BackPropagation (ENBP); or the data may be in 
the form of critique of the expert system's conclusions by experts, in which 
case the learning methods are reinforcement methods such as Expert Network 
Temporal Difference (ENTD(A)). The critical technology implementing both 
of these learning methods is that of influence factors. 

The expert network, or ExNet, technology consists of two major components: 
Translation and Learning. 

Translation 

The rule base is translated into a directed graph. The vertices of this digraph 
represent atomic-level factual statements or actions; these are the antecedents 
and consequents of the rules. The directed edges represent implications. 

The logical semantics, or rules of inference, of the expert system, including 
the rules dealing with uncertainty, are used to assign information processing 

Lacher, Hruska, and Kuncicky 
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functionality to the vertices and edges. Thus the digraph becomes a computa
tional network. This is called the expert network associated with the original 
expert system. 

After the expert network has been modified during the learning phase (described 
below), the modified expert network is translated back into expert system form, 
resulting in a new, or refined, set of rules that have optimized performance with 
respect to the training data. This step requires nothing more than applying the 
inverse of the translation process. 

Learning 

Neural network learning methods are applied to the expert network. This 
learning process results in changes in the parameter values for the uncertainties 
in the rules, optimized for set of correct inference instances data set (i.e., 
history). There are several difficult problems to overcome to make this idea 
actually work, including how to assign a local error to the nodes and how to 
reduce this local error through gradient descent. We have worked out and 
implemented all details of this idea in the case of EMYCIN (M-4) and for 
fuzzy inference. The solutions are detailed in the papers [31, 32, 34, 39]. 
When the expert system uses EMYCIN certainty factors and/or fuzzy logic to 
capture uncertainty, ExNet has been completely derived, proved, tested, and 
covered with patents (pending). In the following treatment we restrict to the 
M.4 instantiation of EMYCIN. 

5.1 TRANSLATION 

The network topology is constructed in two stages. First an inference network 
is created from the rule base. Each vertex in this network represents an 
antecedent or consequent of a rule and each directed edge represents a rule. 
The certainty factor of the rule is placed on the edge as a weight. Thus a rule 
of the form 

IF a THEN b (cf) 

where a and 6 are assertions and cf = cfb\a is the certainty or confidence factor, 
defines a connection 

a — • o. 

At this point we have constructed an inference net in the usual sense (see [15], 
page 237). 
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The evidence accumulation process (equations 4.5, 4.6, and 4.7) of the infer
ence engine defines functionality for the vertices of this inference net, and the 
edges process initial to terminal value by multiplication by cf (defining linear 
synaptic functions). The resulting computational network is the first order 
expert network defined by the expert system. Note that all of the nodes in this 
network represent assertions; they are called regular or evidence nodes and 
denoted as REG nodes. 

The second stage of construction is to expand each regular node that represents a 
compound antecedent statement into a subnetwork. A regular node antecedent 
such as in the connection 

OP(au...,ak)^Lb 

expands to the subnetwork 

ax -^ OP 

ak -i+ OP 
OP - ^ b. 

Those ai that are consequents of other rules are already represented by existing 
nodes. New nodes are created for the other a,-. A connection of weight 1 
is added from each a* to the new OP node, and a connection of weight cf 
added from the OP node to the consequent b replaces the original outgoing 
connection. All connections into OP nodes have fixed weight 1 and are called 
hard connections. Connections into REG nodes have weight originating as a 
certainty factor of a rule and are called soft connections. 

The combining function for an OP node performs the logical computation 
defined by the rules of inference used by the expert system. The output 
function for an OP node is the firing condition for the logical operation. The 
resulting computational network is the second order expert network defined by 
the expert system. 

Note that there are two kinds of nodes in the second order expert network: REG 
nodes representing assertions and OP nodes representing logical operations. 
Note also that all synaptic functions are linear with weights as already described 
above: soft connections (incoming to REG nodes) have weight cf and hard 
connections (incoming to OP) have weight 1. Thus synaptic functionality is 
completely specified. We now give more detailed descriptions of the node 
functionalities in EMYCIN/M.4 expert networks. 
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REG Nodes 

The EMYCIN evidence accumulator given by equation 4.6 can be written in 
closed form. Let b be a REG node, and suppose b has at least one predecessor 
in the expert network. (In the parlance of expert systems, b is an assertion that 
is consequent to at least one other assertion.) For each predecessor a of b let 
xa\h denote the corresponding post-synaptic input cfb\a x za. 

The positive and negative evidence values for regular node 6 are given by 

yt = + 1 - I I (X-Xb\a) ™d (4.8a) 

*b | a>0 

*6 | a<0 

respectively. Positive and negative evidence are then reconciled, yielding the 
internal state of the node as the value of the REG combining function: 

Vh := TH£;G(x6|1,...,^6|n) =
 b

 +
6 —. (4.9) 

1 - min{yj ,-yh } 
Note that TREG is a symmetric function. The only input variables which affect 
the values of TREG are those labeled by predecessors of 6, and we could use 
alternative notation (as described in section 2) to reflect this fact. The notation 
above assumes that xh\a = 0 whenever a is not a predecessor of 6. 

The output function (pREG for a regular node b is the firing function for assertions 
defined by equation 4.7: 

/ x _ / Vb , if 2/6 > 0.2; ( . 
* : = ? „ * ( * ) = | 0 > o t h e n v i s e . (4-10) 

OP Nodes 

Consider an AND node generated by the antecedent of the rule 

IF ai AND a2 AND . . . AND ak THEN b (cf) 

for some assertions (nodes) ax,..., ak in the expert net. Let a denote the 
compound antecedent AND(ai,..., ak). Thus a is an OP node in the second 
order network. To define the logical AND operation as a function of dynamic 
evidence values is to define the combining and firing functions of a. 
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The combining function for a is given by 

Va := TAND(xu...,xk) = min{xi} (4.11) 

where x{ = *ai is post-synaptic input. The output function is the same threshold 
function used for REG nodes: 

A NOT node such as generated by the antecedent of 

IF NOT a THEN b (cf) 

has only a single incoming connection, from a. The combining function is 
given by 

y :=r„ O T (*) = l - * (4.13) 

(where x - za) and the output function is 

, , f 1 , if y > 0.8; fA ... 
z:=vNOT(y)^[^ Q ^ i s e > (4-14) 

An UNK node may be generated by the antecedent of a rule such as 

IF ax UNK a2 UNK . . . UNK ak THEN b (cf) 

for some assertions (nodes) au . . . , ak in the expert net. Let a denote the 
compound antecedent UNK(ai,..., ak). The combining function for a is given 
by 

ya := TUNK(x1,.. .,xk) = 1 - max{xi) (4.15) 
i 

where x{ = zai is post-synap tic input. The output function is the same as for 
NOT: 

( x _ / 1 , if ya > 0.8; fA 1CN 

r.:=y» lwJ f(».) = | 0 i o t h e n v i s e (4-16) 

Notwithstanding the fact that M.l does not explicitly acknowledge an OR op
eration, we could define an OR node that might be generated by the antecedent 
of a rule such as 

IF ax ORa2OR ... OR ak THEN b (cf) 
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for some assertions (nodes) au . . . , ak in the expert net. As usual letting a 
denote the compound antecedent OR(ai,. . . , a*), we define the combining 
function for a to be 

ya := TOR(xi,...,xk) = rnax{xi} (4.17) 
i 

where Xi = zat is post-synaptic input and the output function to be the same as 
for AND: 

z f l . - ^ O R (y f l ) = | 0 j o t h e r w i s e . (4-18) 

Given this definition of OR, it is easily verified that UNK = NOT(OR). 

Logical Functions 

Composing appropriate functions given above yields the following throughput 
functions (from input to firing value) for logical operations in M.4: 

AND(Xl,...,Xk) := |™»{*,}, J j £ ^ * 0 - 2 - (4.19a) 

NOTM = {I, oth'envise; (4'19b> 

TT AT T'/ \ I 1 i if max {xi] < 0.2, ( . i r. . 
^ A ( « l l . . . , „ ) := ( 0 ; o t h e m W - (4.19c) 

where as usual x is interpreted as post-synaptic input for the node (or current 
evidence value during inference). 

5 .2 LEARNING 

An EMYCIN expert network satisfies all the requirements for CNBP learning: 
an acyclic CN with linear synapses. Learning can take place only at soft 
connections (connections into regular nodes), but of course all connections 
must be used in the error assignment process. 

Of the derivatives appearing in equations 4.2 and 4.4, a'kj is just the weight 
wkj of the kj connection, and ^ is easily calculated, but may vary because of 
choices of <p made during a particular implementation. If we can calculate (or 
"define"7) the partial derivatives of the node combining functions then we can 
implement CNBP in expert networks. 

7The CNBP learning algorithm is sufficiently robust to accommodate approximations. Thus 
if an approximate derivative can be devised it may work as well as a real derivative. 
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For a REG node k the partial derivatives are given by 

dT REG 

dx kj 
(xk) 

- * k \ j 

1 

1 
l+Xk\j 

1 
I l+^fe|j 

• Jk 

z?V. if2>it < |yJT | and arfcJ- > 0; 

^ 4 , ify? > Inland**; < 0; 

5£> i f ^ < \yk\mdxkj < 0 

(4.20) 

provided xk\j ^ ±1. Here xfc|j is c/^^ x z ;, the post-synaptic input to node k 
from node j9 and y^ is given by equation 4.8. (See [36] for details.) 

For AND nodes we have 
dTAND _ f 1 , if xk\j = mini{xk\i} 
dxkj \ o , otherwise 

(4.21) 

It is interesting to examine what this means for reverse error assignment: the 
AND node assigns error backward through node k acting as a demultiplexer 
switch to the line with lowest incoming value. 

Similar results hold for NOT and UNK nodes. 

5 . 3 E N B P 

Having calculated the derivatives appearing in equations 4.2 and 4.4, we can 
apply CNBP in the context of expert networks. This instantiation of CNBP is 
called Expert Network BackPropagation, or ENBP. 

ENBP has been tested on several M.4-based expert systems, including the 
Wine Advisor [9] and the Control Chart Selection Advisor of Dagli and Stacey 
[3, 23, 24]. A functioning expert system is used to define expert knowledge 
by generating specific examples of correct reasoning. In ablation testing, a set 
of soft connections is ablated by setting their connections weights to zero. In 
refinement testing, all of the soft connections are initialized to the neutral value 
0.5. The object of the tests is to determine whether the network can recover 
the knowledge embodied in the connection weights. 

In these tests, both learning and generalization have worked remarkably well. 
The algorithms converge the ablated system to a knowledge state that correctly 
inferences on the training set, and generalization is perfect: the new system 
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reasons correctly on all possible inputs. Moreover, the ratio of training set 
size to test set size is small. For example, as few as 22 correct inferences 
are required to move a 25-connection ablation of wine advisor (a 97 node 
expert network) to a system that inferences correctly on all 6,912 sensible 
input queries [34]. Refinement tests have yielded 95-100% generalization 
rates using training sets of 40 or more exemplars [9]. 

Mahoney and Mooney subsequently (but independently) developed aversion of 
ENBP (which they call "CFBP") [37]. They are also developing a constructive 
method using ENBP to enhance the network connectivity at the output nodes 
that shows significant promise when compared to existing methods [38]. 

6 N E U R A L N E T W O R K S 

By a neural network (NN) we mean a discrete-time computational network 
with linear synapses, linear combining functions, and non-decreasing firing 
functions. An expert network is a symbolic computer. The individual nodes 
have externally assigned and understood meaning - either assertion or logical 
operation - and the dynamically computed and transported values also have 
external meaning - degrees of certainty in a conclusion. A neural net, in 
contrast, is a sub-symbolic computer. The individual nodes and values have 
external meaning only collectively and selectively. In most cases, an individual 
node in a NN has no identifiable meaning to an outside observer. 

It has been argued that an expert network can be realized as a neural network 
by replacing each node in the EN with a small NN [34]. We present here some 
results on the practicality of that process. 

6 .1 O P T I M A L A R C H I T E C T U R E S 

We are interested in finding the "optimal" sub-symbolic NN to replace a 
symbolic node in an expert net. We consider here two nodes types: REG 
and AND. We restrict our investigation to the class of layered feedforward 
networks with one hidden layer and sigmoidal output functions, and we use 
standard backpropagation to train these networks. (See [52, 53] for similar 
considerations.) Thus the only architectural variable is the number of units in 
the hidden layer. Our working definition of *'optimal" is as follows. 
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Figure 1 NN for REG node. 

For a given architecture we train the NN until generalization error reaches a 
minimum value. Generally the generalization, or test, error reaches a minimum 
and begins to increase due to the "overtraining effect". The state of the NN 
at this minimum generalization error is saved as the acceptable state for that 
NN. This test is repeated a number of times to obtain an average minimum 
generalization error (MGE) for a given architecture. The MGE is then plotted 
as a function of the architecture. As the number of units increases, this 
plot can be expected to reach a minimum and begin to increase due to the 
"memorization effect". The architecture that attains this minimum MGE is our 
optimal architecture. 

It is now well known that many functions can be approximated by neural net
works (see [12, 22] for example). In particular, all of the node combining and 
output functions for EMYCIN/M.4, given section 5.1, can be approximated 
with NNs. We now present some experimental results on finding these approx
imations. All of the data discussed below was generated using 50 randomly 
generated training exemplars and 10 randomly generated test exemplars for 
each training run on each architecture. Five such training runs were made for 
each architecture, and the average training and testing error over all five runs 
was used to determine MGE for each architecture. 

We are investigating two methods of constructing REG nodes. The first, 
shown in Figure 1, uses a parallel evidence network (labeled A) followed 
by a reconciler (r). To determine an "optimal" architecture for the evidence 
network we follow the process described in section 6.1 above. The results of 
averaging five training trials on a 4-4-1 architecture for a 4-input y+ network 
are illustrated in Figure 2. The generalization curve attains a minimum at 41 
epochs with MGE = 5.6 x 1CT3. TheMGEfor4-n-l architectures, n= 2,.. ,9, 
are given in Figure 3. These computations show that 4-6-1 is the optimal 
architecture (in the class under consideration) for the 4-input y+ network, with 
MGE = 3.9 x 10"3. 
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Figure 2 Training and generalization error for 4-4-1 y+ network (aver
age of five runs). 

The second architecture we are currently testing for REG nodes is a modu
lar construction as illustrated in Figure 4. The modularity is based on the 
accumulation of evidence as given in equation 4.6. Modularity allows us to 
concentrate on solving the 3-input REG problem and then build more general 
REG nodes using extant components. The modules labeled A and B in Figure 
4 are identical 3-n-2 NNs that take three evidence values as input and give the 
values y+ and y~ as output. Once the optimal 3-n-2 module is trained it can 
be used in cascade fashion to build an evidence accumulator for any number 
of inputs. The savings in training effort is offset by loss of parallelism in the 
evidence computation. The MGE plot for 3-n-2 indicates that 3-6-2 is optimal. 

We have tested the idea of replacing symbolic nodes with these subsymbolic 
networks and subsequently training the EN/NN with ENBP (as in section 5.3). 
For the small expert net we used for testing this experiment worked as one 
would expect: the EN/NN learned with about the same efficiency as the original 
EN. 

We are carrying out exhaustive experiments to determine optimal architectures 
for y+ ,y~ as well as "black box" REG nodes with n inputs, n = 3,4,.... 
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Figure 3 Minimum generalization error x 1000 for 4-n-l y+ networks. 

These should give a good picture of how parallel REG NNs scale with the 
number of inputs. For models of human reasoning, however, this scaling may 
be irrelevant: it seems likely that the modular architecture approach more 
closely resembles human evidentiary techniques - we tend to weigh evidence 
a few components at a time and "build a case" rather than process many 
pieces of evidence in parallel. What even these preliminary results show is 
that symbolic-level nodes in an expert network can be built with very simple 
sub-symbolic neural networks and standard training techniques. 

7 SUMMARY 

We have defined a general framework for parallel/distributed computation, the 
computational network, or CN. Examples of computational phenomena that 
admit descriptions within the CN model include biological neural networks, 
artificial neural networks, the parallel virtual machine model of loosely coupled 
MIMD computation, human collaborations such as committees, and expert 
networks. A CN is essentially a directed graph in which each component 
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Figure 4 Modular NN for REG node. 

(vertex or directed edge) has data processing functionality, further endowed 
with a concept of global network computation. 

A computational network can be classified according to whether it (1) processes 
discrete or analog data, (2) uses discrete or continuous time, and (3) has an 
acyclic or recurrent network topology. Expert networks are CNs of "type xOO", 
according to this classification. 

The principles of backpropagation learning are re-examined in the context 
of computational networks, and a general learning method, computational 
network backpropagation, or CNBP, is derived. 

Expert networks, or ENs, are the focus of the remainder of the chapter. An 
expert network is a symbolic-level computational network that can be derived 
from an expert system (ES). The network topology of the EN is derived from 
the rule base of the ES, the local processing functionality of the EN components 
from the rules of inference of the ES, and the global computation concepts of 
the EN from the inference engine of the ES. The process of constructing an 
EN from an ES is called translation. Translation, before or after learning, is a 
reversible process. 

Learning methods for CNs can be instantiated for expert networks. In particu
lar, CNBP specializes to expert network backpropagation, or ENBP, a learning 
method that has proven to be useful in knowledge acquisition and refinement. 
ENBP allows an expert system builder to make the transition from coarse 
knowledge, in the form of rough-draft rules, to fine knowledge, in the form 
of rules with subtlety represented by analog parameters such as certainty fac
tors, using supervised learning and the historical record of expert behavior 
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as a training set. This relieves the human expert whose knowledge is being 
captured from specifying any parameters such as probabilities or certainties. 

We conclude with an investigation of how an EN can be given the structure 
of an artificial neural network. By a neural network, or NN, we mean a 
computational network consisting entirely of sub-symbolic processors such as 
linear/sigmoidal units. The nodes of an EN can, in principle, be represented 
by small NNs, and we investigate the practicality of this theory. We show in 
practice how such components can be constructed and determine optimal neural 
architectures for such components. In this way an expert network is given a 
realization as a neural network with a hierarchical topological organization: 
a sparsely interconnected (0(n)) collection of densely intraconnected (0(n2)) 
neural nets. 

This hierarchical sparse/dense EN/NN organization is analogous to biological 
neural organization. It captures two levels of knowledge: domain knowledge 
in the sparse superstructure and metaknowledge in the dense substructures. The 
sparse/dense architecture also scales much more comfortably than the dense 
0(n2) connectivity of, for example, feedforward NNs. Memory stability is 
supported by constructive EN learning methods. Using conservative estimates 
of 1010 neurons and 1013 synapses in the human cerebral cortex, and assuming 
a sparse/dense topology with constant size dense subnetworks, an estimated 
subnetwork size is 1,000 units. This is more than enough resource to train 
complex symbolic-level components. 

Research continues in this area. Projects using expert networks as a tool in 
large expert system development are testing the limits of usefulness of EN 
technology. Other more fundamental work investigates how dual sparse/dense 
representations of expert networks may self-organize from random soup of 
neural networks and may shed light on questions of the role of early learning 
in cognitive development. 

Computational networks are ubiquitous in the natural world and in the creations 
of humankind. 
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Part II: Distributed Architectures 

• Chapter 5 (by Risto Miikkulainen) presents a distributed connectionist 
model for parsing recursive relative clauses. 

• Chapter 6 (by David Noelle and Gary Cottrell) presents a distributed 
connectionist model that learns to act in accordance with a given set of 
instructions. 

• Chapter 7 (by Noel Sharkey and Stuart Jackson) challenge the notion that 
the precise distances between distributed representations in the hidden 
layer of a backpropagation network reflect systematic semantic and/or 
structural similarity relations. 
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1 INTRODUCTION 

Symbolic artificial intelligence is motivated by the hypothesis that symbol 
manipulation is both necessary and sufficient for intelligence [34]. Symbolic 
systems have been quite successful, for example, in modeling in-depth natural 
language processing [13, 26, 43], episodic memory [22, 24], and problem 
solving [23, 35, 36]. In such systems, knowledge is encoded in terms of 
explicit symbolic structures, and processing is based on handcrafted rules that 
operate on these structures. 

For cognitive processes based on conscious rule application, symbol manipula
tion is a natural approach. However, the symbolic approach does not naturally 
lend itself to modeling the statistical (intuitive) nature of certain cognitive 
processes. In many routine tasks, such as image understanding or sentence 
processing, large amounts of information about the current context and past 
experience are simultaneously brought together to produce the most appropri
ate interpretation. The process occurs through associations immediately, in 
parallel, and without conscious control. 

Subsymbolic (i.e. distributed) neural networks represent knowledge in terms 
of correlations, coded in the weights of the network. For a given input situa
tion, the network computes the most likely answer given its past training. The 
process is immediate and opaque, and fits very well into modeling intuitive 
inference (see also [18,54, 61]). A major motivation for subsymbolic artificial 
intelligence, therefore, is to give a better account for high-level cognitive phe
nomena that are intuitive in nature. For example, the subsymbolic approach to 
sentence processing has several appealing properties: it is possible to combine 
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syntactic, semantic, and thematic constraints in the interpretation, generate ex
pectations automatically, generalize to new inputs, and process noisy sentences 
robustly [14, 15, 28, 30, 58]. To a limited extent, it is even possible to train 
such networks to process sentences with complex grammatical structure, such 
as embedded relative clauses [4, 21, 29, 50, 59]. 

However, it has been very difficult to build subsymbolic systems that could 
effectively deal with structure. Distributed neural networks are pattern trans
formers, and they generalize by interpolating between patterns on which they 
were trained. They cannot make inferences by dynamically combining knowl
edge about structures that were previously associated to different contexts. 
For example, a sentence processing network can be trained to form a case-role 
representation of each clause in a sentence like The g i r l , who l i k e d the 
dog, saw t h e boy1, and it will be able to generalize to different versions 
of the same structure, such as The dog, who b i t the g i r l , chased 
the cat [29]. However, such network cannot parse sentences with novel 
combinations of familiar clause structures, such as The g i r l , who l i k e d 
the dog, saw the boy, who chased the cat . Such a lack of gener
alization is a serious problem, given how effortlessly people can understand 
sentences they may have never seen before. 

This chapter describes SPEC (Subsymbolic Parser for Embedded Clauses), a 
subsymbolic sentence parsing architecture that can generalize to new relative 
clause structures. The basic idea is to separate the tasks of segmenting the 
input word sequence into clauses, forming the case-role representations, and 
keeping track of the recursive embeddings into different modules. The system 
is trained with only the most basic relative clause constructs. It abstracts the 
"idea" of a relative clause from these examples and is able to generalize to novel 
sentences with remarkably complex structure. Importantly, although SPEC has 
powerful symbolic capabilities, it is not a neural network reimplementation 
of a symbol processor. It is purely a distributed system, and has the usual 
properties of such systems. For example, unlike symbolic parsers, the network 
exhibits plausible memory degradation as the depth of the center embeddings 
increases, and its performance is aided by semantic constraints between the 
constituents. Also, unlike many modular neural networks architectures, SPEC 
is self-contained. During performance, SPEC controls its own execution, and 
no external symbolic supervisor is needed. 

aIn all examples in this chapter, commas are used to indicate clause boundaries for clarity. 
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2 OVERVIEW OF SUBSYMBOLIC SENTENCE PROCESSING 

Sentence processing has been an active area of connectionist research for about 
a decade. Subsymbolic models have been developed to address a variety of 
issues such as semantic interpretation, learning syntax and semantics, preposi
tional phrase attachment, anaphora resolution, active-passive transformation, 
and translation [1, 2, 7, 8,10, 25, 33, 61]. 

A good amount of work has been done showing that networks can capture 
grammatical structure. For example, Servan-Schreiber et al. [46, 47] showed 
how Simple Recurrent Networks (SRNs; [14]) can learn a finite state grammar. 
In an SRN, the pattern in the hidden layer is copied to the previous-hidden-layer 
assembly and serves as input to the hidden layer during the next step in the 
sequence, thus implementing a sequence memory. The network is trained with 
examples of input/output sequences, adjusting all forward weights according 
to the backpropagation algorithm [42]. Servan-Schreiber et al. trained an SRN 
with sample strings from a particular grammar, and it learned to indicate the 
possible next elements in the sequence. For example, given a sequence of 
distributed representations for elements B, T, X, X, V, and V, the network turns 
on two units representing X and S at its localist output layer, indicating that in 
this grammar, die string can continue with either X or S. 

Elman [15, 16] used the same network architecture to predict a context-free 
language with embedded clauses. The network could not learn the language 
completely, but its performance was remarkably similar to human performance. 
It learned better when it was trained incrementally, first with simple sentences 
and gradually including more and more complex examples. The network could 
maintain contingencies over embeddings if die number of intervening elements 
was small. However, deep center embeddings were difficult for the network, 
as they are for humans. 

The above architectures demonstrated that distributed networks build meaning
ful internal representations when exposed to examples of strings in a language. 
They did not address how such capabilities could be put to use in parsing 
and understanding language. McClelland and Kawamoto [28] identified the 
sentence case-role assigment as a good approach. Case-role representation is 
a common artificial intelligence technique for describing the shallow semantic 
meaning of a sentence. The idea is loosely based on the theory of thematic 
case roles [17,9]. Each act is described by the main verb and a set of semantic 
cases such as agent, patient, instrument, location, and recipient. The task is 
to decide which constituents fill these roles in the sentence. The approach is 
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particularly well-suited for neural networks because the cases can be conve
niently represented as assemblies of units that hold distributed representations, 
and the parsing task becomes that of mapping between distributed representa
tion patterns. McClelland and Kawamoto showed that given the syntactic role 
assignment of the sentence as the input, the network could assign the correct 
case roles for each constituent. The network also automatically performed 
semantic enrichment on the word representations (which were hand-coded 
concatenations of binary semantic features), and disambiguated between the 
different senses of ambiguous words. 

Miikkulainen and Dyer [31, 32] showed that essentially the same task can be 
performed from sequential word-by-word input by a simple recurrent network, 
and, through a technique called FGREP (Forming Global Representations 
with Extended backPropagation), meaningful distributed representations for 
the words can be automatically developed at the same time. In FGREP, the 
component values are assigned initially randomly within [0, 1] and modified 
by backpropagation as part of learning the task. The final representations 
reflect how the words are used in the examples, and in that sense, represent 
word meanings. Systems with FGREP representations generally have a strong 
representation of context, which results in good generalization properties, 
robustness against noise and damage, and automatic "filling in" of missing 
information. 

St. John and McClelland [57, 58] further explored the subsymbolic approach 
to sentence interpretation in their Sentence Gestalt model. They aimed at 
explaining how syntactic, semantic, and thematic constraints are combined 
in sentence comprehension, and how this knowledge can be coded into the 
network by training it with queries. The gestalt is a hidden-layer representation 
of the whole sentence, built gradually from a sequence of input words by 
a simple recurrent network. The second part of the system (a three-layer 
backpropagation network) is trained to answer questions about the sentence 
gestalt, and in the process, useful thematic knowledge can be injected into the 
system. 

The above three parsing architectures each built a semantic interpretation of 
the sentence, but they could not handle grammatically very complex sentences. 
Several extensions and some completely new architectures that could do that 
have been proposed. For example, the CLAUSES system [29] was an ex
tension of the SRN+FGREP case-role assignment architecture into sentences 
with multiple clauses. CLAUSES read clause fragments one at a time, brought 
together the separated constituents, and concatenated the case-role represen
tations into a comprehensive canonical sentence representation in its output 
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layer. CLAUSES was limited both by the rigid output representation and also 
by a somewhat surprising lack of generalization into new sentence structures. 
On the other hand, Stolcke [59] showed that if the output representation was 
made more flexible, the network was likely to forget earlier constituents. The 
conclusion from these two models is that straightforward applications of sim
ple recurrent networks are unlikely to be successful in parsing and representing 
grammatical structure. 

A number of researchers have proposed modular and more structured architec
tures. In Jain's [21] Structured Incremental Parser, one module was trained to 
assign words into phrases, and another to assign phrases into case roles. These 
modules were then replicated multiple times so that the recognition of each 
constituent was guaranteed independent of its position in the sentence. In the 
final system, words were input one at a time, and the output consisted of local 
representations for the possible assignments of words into phrases, phrases into 
clauses, phrases into roles in each clause, and for the possible relationships 
of the clauses. A consistent activation of the output units represented the in
terpretation of the sentence. The system could interpret complicated sentence 
structures, and even ungrammatical and incomplete input. However, it did 
not build an explicit representation for the sentence meaning. The parse result 
was a description of the semantic relations of the constituents; the constituents 
themselves were not represented. 

Berg's XERIC [4] and Sharkey and Sharkey's parser [50] were both based 
on the idea of combining a simple recurrent network with a Recursive Auto-
Associative Memory (RAAM; [39]) that encodes and decodes parse trees. 
RAAM is a three-layer backpropagation network trained to perform an identity 
mapping from input to output. As a side effect, the hidden layer learns to form 
compressed representations of the network's input/output patterns. These 
representations can then be recursively used as constituents in other input 
patterns. A potentially infinite hierarchical data structure, such as a parse tree, 
can this way be compressed into a fixed-size representation. The structure 
can later be reconstructed by loading the compressed representations into the 
hidden layer and reading off the expanded representation at the output. 

In Sharkey and Sharkey's model, first the RAAM network was trained to form 
compressed representations of syntactic parse trees. Second, an SRN network 
was trained to predict the next word in the sequence of words that make up 
the sentence. Third, a standard three-layer feedforward network was trained to 
map the SRN hidden-layer patterns into the RAAM parse-tree representations. 
During performance, a sequence of words was first read into the SRN, its final 
hidden layer transformed into a RAAM hidden layer, and then decoded into 
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a parse tree with the RAAM network. Berg's XERIC worked in a similar 
manner, except the SRN hidden layer representations were directly decoded 
by the RAAM network. 

All five of the above architectures can parse sentences with complex gram
matical structure, and they can generalize to new sentences where constituents 
have been substituted with other familiar constituents. Unfortunately, gen
eralization into new sentence structures is limited. For example, due to 
its rigid output representation and excessive context-sensitivity, CLAUSES 
could not parse The g i r l , who l i k e d the dog, saw the boy, who 
chased t h e ca t , even if it knew how to process The g i r l , who l i k e d 
the dog, saw the boy and The g i r l saw the boy, who chased 
the cat . Jain's architecture is similarly limited because of the fixed hardware 
constraints; XERIC and Sharkey and Sharkey's parser because the RAAM ar
chitecture generalizes poorly to new tree structures. 

The architecture described in this chapter, SPEC, was especially designed to 
address the problem of generalization into new sentence structures. SPEC is a 
descendant of CLAUSES. The central component is the familiar simple recur
rent network that reads distributed word representations as its input and gener
ates case-role representations as its output. SPECs generalization capability 
is based on simplifying the SRN's task through three architectural innovations: 
(1) training the SRN to generate a sequence of clause case-role representations 
as its output (like [59]) instead of a single comprehensive representation, (2) 
introducing a segmenter network that breaks the input sequence into smaller 
chunks, and (3) introducing a stack network that memorizes constituents over 
intervening embedded clauses. Below, the SPEC architecture is described in 
detail, and its performance is demonstrated on an artificially-generated corpus 
of sentences with complex relative clause structures. 

3 T H E S P E C A R C H I T E C T U R E 

An overview of the architecture is shown in figure 1. The system receives 
a sequence of word representations as its input, and for each clause in the 
sentence, forms an output representation indicating the assignment of words 
into case roles. The case-role representations are read off the system and placed 
in a short-term memory (currently outside SPEC) as soon as they are complete. 
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Input 

Figure 1 The SPEC sentence processing architecture. The system 
consists of the Parser (a simple recurrent network), the Stack (a RAAM 
network), and the Segmenter (a feedforward network). The gray areas 
indicate propagation through weights, the solid lines stand for pattern 
transport, and the dashed lined represent control outputs (with gates). 
The lines controlling propagation within the Stack have been omitted. 

The collection of case-role representations constitutes the final result of the 
parse. This is a canonical representation for the sentence. The recursive 
clause structure is not explicitly represented, but it is implicit in the clause 
representations. For example, two clauses may share the same agent, or the 
agent of one clause may be the patient of another clause. The idea behind 
such representation is that the recursive structure is a property of the language, 
not the information itself. The canonical representation can serve as input to 
higher-level cognitive processes, which can access all constituents in parallel 
without being biased by the linguistic form of the information. 

SPEC consists of three main components: the Parser, the Segmenter, and the 
Stack. Below, each component is described in detail and the reasons for the 
main architectural choices are explained. 

3.1 THE PARSER 

The Parser performs the actual transformation of the word sequence into the 
case-role representations, and like most of the other parsers described above, 
it is based on the simple recurrent network architecture (figure 2). Words are 
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Sequence of input words 

Input layer 

1 g i r i 

1 Agent 

ran 
(? ) 

Act 

ilii 
(? ) | 

Patient | 

Previous hidden layer 

Output layer 

Case-role assignment 

Figure 2 The Parser network. The figure depicts a snapshot of the 
network after it has read the first two words The and g i r l . The activity 
patterns in the input and output assemblies consist of word representations. 
The input layer holds the representation for the last word, g i r l , and the 
activity pattern at the output represents the (currently incomplete) case-
role assignment of the clause. At this point, it is clear that g i r l is going 
to be the agent. The act and the patient are not known; the patterns in these 
slots indicate expectations, that is, averages of all possible alternatives. 

represented distributively as vectors of gray-scale values between 0 and 1. 
The component values are initially assigned randomly and modified by the 
FGREP method [30, 31, 32] as part of the learning process. FGREP is a 
convenient way to form distributed representations for input/output items, 
but SPEC is not dependent on FGREP. The word representations could have 
been obtained through semantic feature encoding as well (as was done by e.g. 
McClelland and Kawamoto [28]). SPEC will even work with random word 
representations, although some of the advantages of distributed representations 
(such as generalization, robustness, and context representation) would not be 
as strong. 

The case-role assignment is represented at the output of the Parser as a case-
role vector (CRV), that is, a concatenation of those three word representation 
vectors that fill the roles of agent, act, and patient in the sentence2 (figure 2). 

2The representation was limited to three roles for conciseness; more roles could be easily 
included. However, each slot can represent only one constituent at any one time. 
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For example, the word sequence t h e g i r l saw the boy receives the case-
role assignment agent=girl, act=saw, patient=boy, which is represented as 
the vector i g i r l saw boy I at the output of the Parser network. When the 
sentence consists of multiple clauses, the relative pronouns are replaced by 
their referents: The g i r l , who l i k e d the dog, saw the boy parses 
into two CRVs: I g i r l l i k e d dog I and I g i r l saw boy I. 

The obvious approach for representing multiple CRVs would be to concatenate 
them into a single vector at the output of the Parser network. This was 
the approach taken in CLAUSES [29]. Such representation has two serious 
limitations: 

1. The size of the output layer always poses a hard limit on the number 
of clauses in the sentence. If there is space for three CRVs, sentences 
with four clauses (such as The g i r l saw the boy, who chased 
the c a t , who saw the g i r l , who l i k e d the dog) could not be 
parsed without changing the architecture and retraining the entire network. 

2. Somewhat less obviously, such representation turns out to be detrimental 
to generalization. The network always has to represent the entire sentence 
in its memory (in the hidden layer). Every new item in the sequence 
is interpreted in the context of the entire sequence so far. CLAUSES 
learned to recognize certain sequences of act fragments, and to associate a 
particular interpretation to each sequence. If there ever was a novel input, 
such as an additional tail embedding in the end of an otherwise familiar 
sequence, the network did not know how to combine it with its current 
hidden-layer representation. As a result, CLAUSES could only process 
variations of those clause structures it was trained on. 

The above problems can be overcome if the network is not required to form a 
complete sentence representation at its output. Instead, the network generates 
the CRV for each clause as soon as the information for the clause is complete. 
Another network (or even a symbolic system [53]) then reads the sequence 
of complete act representations as its input and builds a representation for the 
whole sentence using a flexible-size representation technique, such as tensor-
product encoding [12, 55]. 

This is the approach taken in SPEC. The Parser receives a continuous sequence 
of input word representations as its input, and its target pattern changes at 
each clause boundary. For example, in reading The g i r l , who l i k e d 
the dog, saw the boy, the target pattern representing I g i r l saw boy I 
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is maintained during the first two words, then switched to | g i r l l i k e d dogl 
during reading the embedded clause, and then back to I g i r l saw boy | for 
the rest of the sentence. The CRV for the embedded clause is read off the 
network after dog has been input, and the CRV for the main clause after the 
entire sentence has been read. 

When trained this way, the network does not have to maintain information 
about the entire past input sequence in its memory, making it possible in 
principle to generalize to new clause structures. The early words do in fact 
fade from the memory as more words are read in, but by itself this effect is 
not strong enough, and needs to be enforced by an additional network (the 
Segmenter, discussed in section 3.3). However, even such slight forgetting is 
strong enough to cause problems with the center embeddings. After parsing 
who l i k e d the dog, the network does not remember that it was t he g i r l 
who saw t h e boy. The system needs a memory component external to the 
parser so that the top-level parse state can be restored before reading rest of 
the top-level constituents. This is the task of the Stack network. 

3.2 THE STACK 

The hidden layer of a simple recurrent network forms a compressed descrip
tion of the sequence so far. The Stack has the task of storing this repre
sentation at each center embedding, and restoring it upon return from the 
embedding. For example, in parsing The g i r l , who l i k e d the dog, 
saw the boy, the hidden-layer representation is pushed onto the stack after 
The g i r l , and popped back to the Parser's previous-hidden-layer assembly 
after who l i k e d the dog. In effect, the SRN can then parse the top-level 
clause as if the center embedding had not been there at all. 

The Stack is implemented as a RAAM network [39] trained to encode and 
decode linear lists (figure 3). The input/output of the Stack consists of the 
Stack's top element and the compressed representation for the rest of the stack. 
Initially the stack is empty, which is represented by setting all units in the 
"Stack" assembly to 0.5 (figure 3). The first element, such as the hidden-layer 
pattern of the Parser network after reading The g i r l , is loaded into the "Push" 
assembly, and the activity is propagated to the hidden layer. The hidden-layer 
pattern is then loaded into the "Stack" assembly at the input, and the Stack 
network is ready for another push operation. 
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Encoding cycle 

Decoding cycle 

Figure 3 The Stack network. This figure simultaneously illustrates 
three situations that occur at different times during the training and the 
performance of the Stack: (1) A training situation where the network 
learns to autoassociate an input pattern with itself, forming a compressed 
representation at the hidden layer; (2) A push operation, where a rep
resentation in the "Push" assembly is combined with the empty-stack 
representation (in the "Stack" assembly) to form a compressed represen
tation for the new stack in the hidden layer; (3) A pop operation, where 
the current stack representation in the hidden layer generates an output 
pattern with the top element of the stack in the "Pop" assembly and the 
representation for the remaining stack (currently empty) in the "Stack" 
assembly. 

When the Parser returns from the center embedding, the stored pattern needs to 
be popped from the stack. The current stack representation is loaded into the 
hidden layer, and the activity is propagated to the output layer. At the output, 
the "Pop" assembly contains the stored Parser-hidden-layer pattern, which is 
then loaded into the previous-hidden-layer assembly of the Parser network 
(figure 1). The "Stack" assembly contains the compressed representation for 
the rest of the stack, and it is loaded to the hidden layer of the Stack network, 
which is then ready for another pop operation. 

RAAM networks usually generalize well into encoding and decoding new 
instances of familiar structures, but poorly into processing new structures 
[5, 7, 8, 50]. The deeper the structure, the less accurate its representation, 
because more and more information will be superimposed on the same fixed-
width vector. Fortunately, this is not a major problem for SPEC, because the 
RAAM network only needs to encode one type of structure (a linear list), 
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and there are very strong memory limitations in human processing of deep 
embedded structures as well. It should be very easy to train the RAAM network 
to model human memory for embedded clauses, and it should generalize well 
to new instances. 

3.3 THE SEGMENTER 

The Parser+Stack architecture alone is not quite sufficient for generalization 
into novel relative clause structures. For example, when trained with only 
examples of center embeddings (such as the above) and tail embeddings (like 
The g i r l saw the boy, who chased the cat) , the architecture gen
eralizes well to new sentences such as The g i r l , who l i k e d the dog, 
saw the boy, who chased the cat . However, the system still fails 
to generalize to sentences like The g i r l saw the boy, who the dog, 
who chased the c a t , b i t . The problem is the same as with CLAUSES: 
even though the Stack takes care of restoring the earlier state of the parse, the 
Parser has to learn all the different transitions into the relative clauses. If it 
has encountered center embeddings only at the beginning of the sentence, it 
cannot generalize to a center embedding that occurs after an entire full clause 
has already been read. Even though the Parser is free to "forget" the irrelevant 
information in the early sequence, the hidden-layer patterns remain sufficiently 
different so that its processing knowledge does not carry over. 

The solution is to train an additional network, the Segmenter, to divide the input 
sequence into clauses. The segmenter receives the current hidden-layer pattern 
as its input, together with the representation for the next input word, and it is 
trained to produce a modified hidden-layer pattern as its output (figure 4). The 
output is then loaded into the previous-hidden-layer assembly of the Parser. In 
the middle of reading a clause, the Segmenter passes the hidden-layer pattern 
through without modification. However, if the next word is a relative pronoun, 
the segmenter modifies the pattern so that only the relevant information re
mains. In the above example, after boy has been read and who is next to come, 
the Segmenter generates a pattern similar to that of the Parser's hidden layer 
after only The boy in the beginning of the sentence has been input. 

In other words, the Segmenter (1) detects transitions to relative clauses, and (2) 
changes the sequence memory so that the Parser only has to deal with one type 
of clause boundary. This way, the Parser's task becomes sufficiently simple so 
that the entire system can generalize to new structures. The Segmenter plays 
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1 Next: 
1 who 

Parser-hidden for The g i r l 1 

llMlllllMIHIIIIIIIIIIIIIIIIIIIIIIIIIIlMlllllllllllllll 
Hidden layer 

MllllllllHIIIIIIHIIIIIIlllI 

(Un)Modified Parser-hidden: The g i r l 

Figure 4 The Segmenter network. The Segmenter receives the 
Parser's hidden-layer pattern as its input together with the next input 
word, which in this case is who. The control outputs are 1, 0, 0, indicat
ing that the Parser's hidden-layer representation should be pushed onto 
the Stack, the current case-role representation is incomplete and should 
not be passed on to the output of the system, and the stack should not be 
popped at this point. In this case, the Segmenter output is identical to its 
input, because the g i r 1 is the smallest context that the Parser needs to 
know when entering a center embedding. 

a central role in the architecture. The next section shows that it is very natural 
to give the Segmenter a complete control over the entire parsing process. 

3.4 CONTROL 

At first glance, the control of execution in SPEC seems rather complicated. 
The activation patterns propagate between networks in a very specific manner, 
and execution of each network needs to be carefully timed with respect to 
what the other networks are doing. However, it is actually very easy to train 
the Segmenter to control the parsing process. The Segmenter always sees 
the current state of the parse (as encoded in the hidden layer of the Parser 
network) and the incoming word, and based on this information, it can control 
the pathways of the system. There are five different control tasks in the SPEC 
system: 

1. Detecting clause transitions and modifying the sequence memory to re
move unnecessary previous context as described above. 
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2. Recognizing the end of the sentence, indicated by "." (full stop) in the input 
sequence, and subsequently clearing the previous hidden layer (which is 
all-0 at the beginning of each sentence). This makes it possible for the 
system to parse multiple sentences without an external "reset". 

3. Deciding when to push the Parser's hidden-layer representation onto the 
stack. This requires opening the pathway from the hidden layer to the 
"Push" assembly of the Stack, allowing propagation to the Stack's hidden 
layer, and transporting the resulting pattern back to the Stack's input 
assembly. 

4. Deciding when to pop the previous hidden layer from the stack; this task 
involves allowing propagation from the Stack's hidden layer to its output 
layer, transporting the output "Stack" pattern back to its hidden layer, and 
opening the pathway from the "Pop" assembly to the Parser's previous 
hidden layer. 

5. Deciding when the Parser's output CRV is complete, and consequently, 
opening the output pathway to the external short-term memory system. 

Control is implemented through three additional units at the Segmenter 's output 
(figure 4). These are called Push, Pop, and Output, corresponding to the tasks 
3,4, and 5 above. These units gate the system pathways through multiplicative 
connections (as described in [38, 41]). The weights on the pathways are 
multiplied by the output values, so that propagation only takes place when the 
output is high. The Segmenter is trained to output 1 for the desired propagation, 
and 0 otherwise. 

The control implementation in SPEC emphasizes an important point: although 
much of the structure in the parsing task is programmed into the system ar
chitecture, SPEC is still a self-contained distributed neural network. In many 
modular neural network architectures control is due to a hidden symbolic su
pervisor. SPEC demonstrates that such external control mechanisms are not 
necessary: even a rather complex subsymbolic architecture can take care of its 
own control and operate independently of its environment. 

4 E X P E R I M E N T S 

A prototype implementation of SPEC was tested with an artificially-generated 
corpus of relative clause sentences. The purpose was to evaluate the soundness 



Subsymbolic Parsing 167 

s 
NP 
VP 
RC 
N 
V 
DET 

- • 

- + 

— • 

- + 

-> 
-> 
— • 

NP VP "." 
DET N | DET N RC 
V NP 
who VP | who NP V 
boy | girl | dog I cat 
chased I liked 1 saw | bit 
the 

Table 1 The sentence grammar. 

of the basic ideas, test the cognitive plausibility of the model, and get a feeling 
for the scale-up possibilities of the approach. The experiments are described 
below, and some general conclusions drawn from them are presented in the 
Discussion section. 

4.1 DATA 

The training and testing corpus was generated from a simple phrase structure 
grammar depicted in table 1. This grammar generates sentences where each 
clause consists of three constituents: the agent, the verb and the patient. A 
relative who-clause could be attached to the agent or to the patient of the parent 
clause, and who could fill the role of either the agent or the patient in the relative 
clause. In addition to who, the and "." (full stop, the end-of-sentence marker 
that had its own distributed representation in the system just like a word), the 
vocabulary consisted of the verbs chased, l iked, saw and bi t , and the 
nouns boy, g i r l , dog and cat. 

A number of semantic restrictions were imposed on the sentences. A verb 
could have only certain nouns as its agent and patient (see table 2). These 
restrictions are not necessary to train SPEC, but they create enough differences 
in the word usage so that their FGREP representations do not become identical 
[32, 30]. The main motivation for the restrictions, however, was to determine 
whether SPEC would be able to use the semantics to aid parsing under difficult 
conditions. The grammar was used to generate all sentences with up to four 
clauses, and those that did not match the semantic restrictions were discarded. 
The final corpus consists of 49 different sentence structures, with a total of 
98,100 different sentences (table 3). 
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1 Verb 

chased 

l i k e d 

saw 

b i t 

Case-role 

Agent: 
Patient: 

Agent: 
Patient: 

Agent: 
Patient: 

Agent: 
Patient: 

Possible fillers 

boy, g i r l , d o g , c a t 
ca t 

b o y , g i r l ' 
b o y , g i r l , d o g 

b o y , g i r l , c a t 
b o y , g i r l 

dog 
boy, g i r l , d o g , c a t 

Table 2 Semantic restrictions. 

Since the SPEC architecture divides the sentence parsing task into low-level 
pattern transformation, segmentation, and memory, each component needs to 
see only its own basic constructs during training. The combined architecture 
then forces generalization into novel combinations of these structures. The 
Parser and the Segmenter need to be able to process the following three types 
of sequences: 

(1) The g i r l saw t he b o y . . . (top level clause) 
(2) . . . t h e g i r l , who saw the boy, . . . (who as the agent) 
(3) . . . t h e g i r l , who the boy saw, . . . (who as the patient). 

The Segmenter also needs to see four different types of embedded clause 
transitions, such as 

(1) The g i r l , who. . . (top-levelcenter) 
(2) . . . t h e g i r l , who the boy, who. . . (embeddedcenter) 
(3) The g i r l saw t he boy, who. . . (top-level tail) 
(4) . . . t h e g i r l , who saw t he boy, who. . . (embedded tail), 

and examples of the two different types of popping operations: 

(1) . . . t h e g i r l , who saw the boy, l i k e d . . . (after who as agent) 
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( 2 ) . . . the g i r l , who the boy saw, l i k e d . . . (after who as patient), 

The Stack needs to handle only a very small number of different types of 
patterns for pushing and popping. Either it receives a center embedding at the 
top level, followed by a number of center embeddings at deeper levels, such as 

(1) The g i r l , (top-level center embedding) 
who the dog, (first deeper center embedding) 
who the boy, (second deeper center embedding) 

or it receives a number of deeper center embeddings without a preceding 
top-level embedding: 

(2) The g i r l saw the boy, who the c a t , (first deeper embedding) 
who the dog, (second deeper embedding) 

Because the Segmenter makes all the clause transitions look the same for the 
Parser, the representations that are pushed on the stack are similar at all levels 
of embeddings. Therefore, if the Stack is trained to encode, say, a stack 
of 15 elements, it should generalize to the 16th push without any problems. 
However, three levels of center embeddings is about the most that would occur 
in a natural language, and as a result, the architecture cannot really make use 
of the generalization capabilities of the Stack. The Stack will not generalize 
to encoding and decoding a 3-element stack after it has been trained only up 
to 2-element stacks, and there is little point in doing that anyway. It is quite 
easy to train the Stack to up to 3 levels of embeddings and thereby guarantee 
that the Stack is not going to be limiting the generalization capabilities of the 
system. 

4 . 2 TRAINING M E T H O D O L O G Y 

There is a variety of strategies for training a modular system such as SPEC. 
They usually lead to comparable results, but vary in amount of computational 
and programming effort involved, final accuracy, and robustness of die trained 
system. 
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Template 
l. 
2. 
3. 

4. 

5. 

*6. 

7. 

8. 

9. 
10. 

11. 

12. 

13. 

14. 

15. 

16. 
17. 

18. 

19. 

20. 

Generates 
27T" 
102 
528 

2738 

2814 

544 

2878 

2802 

106 
560 

2878 

2962 

544 

2898 

2814 

106 
544 

2814 

2898 

560 

Example sentence 
The 
The 
The 
who 
The 
who 
The 
who 
The 
who 
The 
who 
The 
who 
The 
The 
who 
The 
who 
The 
who 
The 
who 
The 
who 
The 
who 
The 
The 
who 
The 
who 
The 
who 
The 
who 

girlsaw the boy. 
girl saw the boy, who chased the 
girl saw the boy, who chased the 
saw the girl. 
girl saw the boy, who chased the 
saw the girl, who liked the dog. 
girl saw the boy, who chased the 
saw the girl, who the dog bit. 
girl saw the boy, who chased the 
the dog bit. 
girl saw the boy, who chased the 
the dog, who bit the girl, bit. 
girl saw the boy, who chased the 
the dog, who girl liked, bit. 

cat. 
cat, 

cat, 

cat, 

cat, 

cat, 

cat, 

girl saw the boy, who the dog bit. 
girl saw the boy, who the dog, 
chased the cat, bit. 
girl saw the boy, who the dog, 
chased the cat, who saw the girl, 
girl saw the boy, who the dog, 

bit. 

chased the cat, who the girl chased, bit. 
girl saw the boy, who the dog, 
the girl liked, bit. 
girl saw the boy, who the dog, 
the girl, who chased the cat, liked, bit. | 
girl saw the boy, who the dog, 
the girl, who the cat saw, liked, 
girl, who liked the dog, saw the 
girl, who liked the dog, saw the 
chased the cat. 
girl, who liked the dog, saw the 
chased the cat, who saw the girl 
girl, who liked the dog, saw the 
chased the cat, who the dog bit. 
girl, who liked the dog, saw the 
the dog bit. 

(to be continued on the next page) 

bit. 
boy. 
boy, 

boy, 

boy, 

boy, 

Table 3 The sentence structures. The total number of sentences for 
each different clause structure is given together with an example sentence. 
The different clause structures are referred to as "sentence templates" 
below. SPEC was trained with 100 sentences from templates 6 and 40 
each (with complete training of the Stack to up to three levels) and it 
generalized correctly to all others. Commas are inserted in the examples 
to help discern the clause boundaries; they were not part of the actual 
input. 
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Template Generates Example sentence 

The girl, who liked the dog, saw the boy, 
who the dog, who chased the cat, bit. 
The girl, who liked the dog, saw the boy, 
who the dog, who the boy liked, bit. 
The girl, who liked the dog, who bit the cat, 
saw the boy. 
The girl, who liked the dog, who bit the cat, 
saw the boy, who chased the cat. 
The girl, who liked the dog, who bit the cat, 
saw the boy, who the dog bit. 
The girl, who liked the dog, who bit the cat, 
who saw the girl, saw the boy. 
The girl, who liked the dog, who bit the cat, 
who the boy chased, saw the boy. 
The girl, who liked the dog, who the dog bit, 
saw the boy. 
The girl, who liked the dog, who the dog bit, 
saw the boy, who chased the cat. 
The girl, who liked the dog, who the dog bit, 
saw the boy, who the dog bit. 
The girl, who liked the dog, who the dog, 
who chased the cat, bit, saw the boy. 
The girl, who liked the dog, who the dog, 
who the boy liked, bit, saw the boy. 
The girl, who the dog bit, saw the boy. 
The girl, who the dog bit, saw the boy, 
who chased the cat. 
The girl, who the dog bit, saw the boy, 
who chased the cat, who saw the girl. 
The girl, who the dog bit, saw the boy, 
who chased the cat, who the dog bit. 
The girl, who the dog bit, saw the boy, 
who the dog bit. 
The girl, who the dog bit, saw the boy, 
who the dog, who chased the cat, bit. 
The girl, who the dog bit, saw the boy, 
who the dog, who the girl liked, bit. 
The girl, who the dog, who chased the cat, 
bit, saw the boy. 
The girl, who the dog, who chased the cat, 
bit, saw the boy, who liked the girl. 
The girl, who the dog, who chased the cat, 
bit, saw the boy, who the girl liked. 
The girl, who the dog, who chased the cat, 
who saw the boy, bit, saw the boy. 
The girl, who the dog, who chased the cat, 
who the boy chased, bit, saw the boy. 
The girl, who the dog, who the boy liked, bit, 
saw the boy. 
The girl, who the dog, who the boy liked, bit, 
saw the boy, who the dog bit. 
The girl, who the dog, who the boy liked, bit, 
saw the boy, who chased the cat. 
The girl, who the dog, who the boy, 
who chased the cat, liked, bit, saw the boy. 
The girl, who the dog, who the boy, 
who the cat saw, liked, bit, saw the boy. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 
34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

2962 

2878 

544 

2802 

2878 

2814 

2898 

560 

2878 

2962 

2962 

2878 

102 
528 

2738 

2814 

544 

2878 

2802 

544 

2814 

2898 

2802 

2878 

528 

2738 

2814 

2814 

2738 

Total 98100 

Table 3 (continued) The sentence structures. 
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One possibility is to train the entire SPEC as a whole, propagating the patterns 
between modules as during normal performance. For example, the output 
of the Stack would be propagated into the previous-hidden-layer assembly of 
the Parser as it is, even if it is highly inaccurate during early training. The 
advantage is that the modules learn to compensate for each other's errors, and 
final accuracy may be better. On the other hand, convergence is often slower, 
because the modules have to continuously adjust to each other's changing 
output representations. 

If SPEC is to be trained as a whole, a set of templates from table 3 must be 
selected so that all the basic constructs are included in the set of sentences. One 
such set consists of templates 3,15, and 49. Indeed, trained with 100 randomly 
chosen examples from each template, the network correctly generalized to all 
other sentences in the entire corpus. 

On the other hand, each component can be trained separately, with compatible 
training data from the same set of examples but without propagating the actual 
output to the input of the next network. For example, after the previous-hidden-
layer representation is obtained from the stack, it is cleaned up (i.e. replaced by 
the correct representation) before actually loading it into the previous hidden 
layer. This way the modules learn more independently, and converge faster. 
If the Parser is trained first, the Segmenter and the Stack can be trained very 
efficiently with the Parser's final hidden-layer patterns. The total training 
time in CPU cycles is minimized this way. It is also possible to train the 
different networks simultaneously on separate machines, thereby minimizing 
the wallclock training time. In the end, after the networks have learned to 
produce output close to their targets, they can be connected and they will work 
well together, even filter out each other's noise [30]. 

Training SPEC is not computationally very intensive with this particular cor
pus, and therefore, the most convenient training strategy was selected for 
the experiments reported below. All modules were trained separately and si
multaneously on a single machine, sharing the gradually evolving word and 
hidden-layer representations. With this strategy, it is enough to train SPEC 
only with templates 6 and 40, because they contain all the basic constructs for 
the Parser and the Segmenter. Complete training data for the Stack can be 
obtained from Parser's hidden layer during the course of processing sentences 
6 and 40. 
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4.3 RESULTS 

The word representations consisted of 12 units. Parser's hidden layer was 75 
units wide, that of the Segmenter 50 units, and that of the Stack 50 units. All 
networks were trained with plain on-line backpropagation with 0.1 learning rate 
and without momentum. The training set consisted of 100 randomly-selected 
sentences from templates 6 and 100 each. Both the Parser and the Segmenter 
developed word representations at their input layers (with a learning rate of 
0.001). The Stack was trained to encode and decode up to three levels of center 
embeddings. 

The convergence was very strong. After 400 epochs, the average error per 
output unit was 0.018 for the Parser, 0.008 for the Segmenter (0.002 for the 
control outputs), and 0.003 for the Stack, while an error level of 0.020 usually 
results in acceptable performance in similar assembly-based systems [30]. The 
training took approximately three hours on an IBM RS6000 workstation. The 
final representations, developed by FGREP, reflected the word categories very 
well. 

SPEC'S performance was then tested on the entire corpus of 98,100 sentences. 
The patterns in the Parser's output assemblies were labeled according to the 
nearest representation in the lexicon. The control output was taken to be correct 
if those control units that should have been active at 1 had an activation level 
greater than 0.7, and those that should have been 0 had activation less than 
0.3. Measured this way, the performance was excellent: SPEC did not make 
a single mistake in the entire corpus, neither in the output words or in control. 
The average unit error was 0.034 for the Parser, 0.009 for the Segmenter 
(0.003 for control), and 0.005 for the Stack. There was very little variation 
between templates and words within each sentence, indicating that the system 
was operating within a safe margin. 

The main result, therefore, is that the SPEC architecture successfully general
izes not only to new instances of the familiar sentence templates, but to new 
templates as well, which the earlier sentence processing architectures such as 
CLAUSES could not do. However, SPEC is not a mere reimplementation of 
a symbol processor. As SPEC'S Stack becomes increasingly loaded, its output 
becomes less and less accurate; symbolic systems do not have any such inher
ent memory degradation. An important question is, does SPEC'S performance 
degrade in a cognitively plausible manner, that is, does the system have similar 
difficulties in processing recursive structures as people do? 
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There are two ways to elicit enough errors from SPEC to analyze its limitations: 
(1) it can be tested during early training, or (2) its memory can be disturbed 
by noise. In a sense, testing during training illustrates developmental effects, 
whereas adding noise can be claimed to simulate overload, stress, cognitive im
pairment, and lack of concentration situations. Both methods produce similar 
results; ones obtained with noise are reported below. 

The Stack's performance was degraded by adding 30% noise in its propagation. 
During encoding, the final value ht of the hidden unit i was obtained from r2, 
the value after correct propagation, by the transformation 

hi = 0.70rf + 0.30X, (5.1) 

where X is a random variable uniformly distributed within [0, 1]. Similarly 
during decoding, the output values o{ were degraded by 

0i = 0.70c,-+ 0.30X, (5.2) 

where c,- is the correct value of unit i. The SPEC system turned out to be 
remarkably robust against such degradation. The average Parser error rose to 
0.058, but the system still got 94% of its output words right, with very few 
errors in control. 

As expected, most of the errors occurred as a direct result of popping 
back from center embeddings with an inaccurate previous-hidden-layer rep
resentation. For example, in parsing The g i r l , who the dog, who 
the boy, who chased the c a t , l i k e d , b i t , saw the boy (tem
plate 48), SPEC would have trouble remembering the agents of l i k e d , b i t 
and saw, and patients of l i k e d and b i t . The performance depends on the 
level of the embedding in an interesting manner. It is harder for the network 
to remember the earlier constituents of shallower clauses than those of deeper 
clauses (figure 5). For example, SPEC could usually connect boy with l iked , 
but it was harder for it to remember that it was the dog who b i t and the g i r l 
who saw in the above example. 

Such behavior seems plausible in terms of human performance. It is easier 
to remember a constituent that occurred just recently in the sentence than one 
that occurred several embeddings ago. Interestingly, even though SPEC was 
especially designed to overcome such memory effects in the Parser's sequence 
memory, the same effect is generated by the Stack architecture. The latest 
embedding has noise added to it only once, whereas the earlier elements in the 
stack have been degraded multiple times. Therefore, the accuracy is a function 
of the number of pop operations instead of a function of the absolute level 
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Figure 5 Memory accuracy after return from center embeddings 
(with 30% noise degradation). The percentage of correctly-remembered 
agents is plotted after the first, second, and the third pop in sentence 
templates 48 and 49 (represented by the words boy, dog and g i r l 
in the example sentences of table 3). Each successive pop is harder and 
harder to do correctly. Similarly, SPEC remembers about 84% of the 
patients correctly after the first pop, and 67% after the second pop. 

of the embedding. With the example data, the percentage of correct agents 
after the first pop is always around 80%, whether that pop occurs after a single 
embedding (as in template 16), two embeddings (as in 40), or three (as in 
48/49, figure 5). 

When the SPEC output is analyzed word by word, several other interesting 
effects are revealed. Virtually in every case where SPEC made an error in 
popping an earlier agent or patient from the stack it confused it with another 
noun. In other words, SPEC performs plausible role bindings: even if the 
exact agent or patient is obscured in the memory, it "knows" that it has to 
be a noun. The weights of the Parser network have learned to encode this 
constraint. Moreover, SPEC does not generate the noun at random. Out of all 
nouns it output incorrectly, 75% had occurred earlier in the sentence, whereas 
a random choice would give only 54%. It seems that traces for the earlier 
nouns are discernible in the previous-hidden-layer pattern, and consequently, 
they are slightly favored at the output. Such priming effect is rather surprising, 
but it is very plausible in terms of human performance. 
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Figure 6 Effect of the semantic restrictions on the memory accuracy 
(with 30% noise degradation). The percentage of correctly-remembered 
agents and patients over the entire corpus is plotted against how strongly 
they were semantically associated with the verb. When there was only 
one alternative (such as dog as an agent for b i t or ca t as the patient 
of chased), SPEC remembered 95% of them correctly. There was a 
marked drop in accuracy with two, three and four alternatives. 

The semantic constraints (table 2) also have a marked effect on the perfor
mance. If the agent or patient that needs to be popped from the stack is strongly 
correlated with the verb, it is easier for the network to remember it correctly (fig
ure 6). The effect depends on the strength of the semantic coupling. For exam
ple, g i r l is easier to remember in The g i r l , who the dog b i t , l i k e d 
the boy, than in The g i r l , who the dog b i t , saw the boy, which 
is in turn easier than The g i r l , who the dog b i t , chased the ca t . 
The reason is that there are only two possible agents for l iked , whereas there 
are three for saw and four for chased. 

A similar effect has been observed in human processing of relative clause struc
tures. Huang [19] showed that young children understand embedded clauses 
better when the constituents are semantically strongly coupled. Caramazza 
and Zurif [6] observed similar behavior on aphasics. This effect is often at
tributed to impaired capability for processing syntax. The SPEC experiment 
indicates that it could be at least partly due to impaired memory as well. When 
the memory representation is impaired with noise, the Parser has to clean it 
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up. In propagation through the Parser's weights, noise that does not coincide 
with the known alternatives cancels out. Apparently, when the verb is strongly 
correlated with some of the alternatives, more of the noise appears coincidental 
and is filtered out. 

5 DISCUSSION 

SPEC is quite insensitive to configuration and simulation parameters. Many 
variations were tried in the experiments, such as hidden layers with 10-75 
units, training sets with 200-4,000 sentences, different templates for training, 
modifying word representations in the Parser only, not modifying them at 
all, fixed learning rates 0.1-0.001 for weights and representations, gradually 
reducing the learning rates, training the modules together, and training them 
separately. All these variations led to roughly comparable results. Such 
flexibility suggests that the approach is very strong, and there should be plenty 
of room for adapting it to more challenging experiments. 

Several other observations also indicate that the approach should scale up well. 
First, as long as SPEC can be trained with the basic constructs, it will generalize 
to a very large set of new combinations of these constructs. Combinatorial 
training [56] of structure is not necessary. In other words, SPEC is capable of 
dynamic inferencing, previously postulated as very difficult for subsymbolic 
systems to achieve [61]. Second, like most subsymbolic systems, SPEC does 
not need to be trained with a complete set of all combinations of constituents for 
the basic constructs; a representative sample, like the 200 out of 1088 possible 
training sentences above, is enough. Finally, with the FGREP mechanism it 
is possible to automatically form meaningful distributed representations for a 
large number of words, even to acquire them incrementally [32, 30], and the 
network will know how to process them in new situations. 

The SPEC architecture was mostly motivated from the artificial intelligence 
point of view, that is, by the desire to build a system that (1) would be able to 
process nontrivial input like symbolic systems, and (2) makes use of the unique 
properties of distributed neural networks such as learning from examples, 
spontaneous generalization, robustness, context sensitivity, and integrating 
statistical evidence. While SPEC does not address several fundamental issues 
in connectionist natural language processing (such as processing exceptions 
and representing flexible structure), it goes a long way in showing that learning 
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and applying grammatical structure for parsing is possible with pure distributed 
networks. 

However, SPEC was not aimed at only generating best possible performance 
without an underlying Cognitive Science philosophy. The architecture is de
cidedly not a reimplementation of a symbol processor, or even a hybrid system 
consisting of subsymbolic components in an otherwise symbolic framework. 
SPEC aims to model biological information processing at a specific, uniform 
level of abstraction, namely that of distributed representation on modular net
works. SPEC should be evaluated according to how well its behavior matches 
that produced by the brain at the cognitive level. 

The most immediate direction for future work is to apply the SPEC architecture 
to a wider variety of grammatical constructs and to larger vocabularies. Two 
main issues need to be addressed in this work: 

1. It will be necessary to develop methods for representing the final parse 
result. Currently, SPEC passes the output CRVs to an unspecified short-
term memory system. This system needs to be made an explicit part of 
SPEC, preferably in such a way that the sentence representation can be 
used by other subsymbolic networks in processing multi-sentential text 
and in various reasoning tasks. 

2. It might be possible to utilize the interpolation capability and context sen
sitivity of distributed neural networks at the level of processing structure. 
The current SPEC architecture generalizes to new instances of basic con
structs, but generalization to new sentence structures is built in into the 
architecture. Perhaps a way can be found to generalize also at the level of 
control and segmentation. This way, the system could perform more ro
bustly when the input is irregular (or ungrammatical), and contains novel 
basic constructs. 

The Segmenter is perhaps the most significant new feature of the SPEC archi
tecture. Most connectionist systems to date are based on simple propagation 
through homogenous networks or between networks of a modular system. As 
we have seen above, such systems are very good at dealing with regularities 
and integrating large amounts of small pieces of evidence, but they do not 
easily lend themselves to processing complex knowledge structures and un
usual and novel situations. Such systems are not "conscious" of what they 
are doing, that is, they do not have representations concerning the nature of 
their internal representations and processes. As a result, they cannot employ 
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high-level strategies in controlling the execution; their behavior is limited to a 
series of reflex responses. 

With a comprehensive high-level monitor and control system, it would be pos
sible to build much more powerful subsymbolic models. Current systems try 
to process every input in exactly the same way, regardless of whether the input 
makes sense or not. A high-level controller could monitor the feasibility of the 
task and the quality of the output, and initiate exception processing when the 
usual mechanisms fail. For example, unusual events or ungrammatical input 
could be detected and then processed by special mechanisms. The monitor 
could also clean up internal inaccuracies and keep the system execution on a 
stable path. Sequential high-level procedures and reasoning mechanisms could 
be implemented, such as comparing alternative interpretations and applying 
high-level rules to conclude new information. Equipped with such mecha
nisms, subsymbolic models would be able to perform much more robustly in 
the real world. Eventually, the goal would be to develop a distributed con
trol system that would act as a high-level "conscious" monitor, similar to the 
central executive system in psychological and neuropsychological theories of 
controlled processes [3,11,27, 37,40, 45,48, 49,51, 52]. 

The Segmenter is a first step toward implementing such a control system in 
the connectionist framework (see also [20,21,44, 60]). This module monitors 
the input sequence and the state of the parsing network, and issues I/O control 
signals for the Stack memory and the Parser itself at appropriate times. The 
Segmenter has a high-level view of the parsing process, and uses it to assign 
simpler tasks to the other modules. In that sense, the Segmenter implements a 
strategy for parsing sentences with relative clauses. Further developing such 
control mechanisms in parsing and in other cognitive tasks constitutes a most 
exciting direction for future research. 

6 SUMMARY 

SPEC is a distributed neural network architecture for parsing sentences with 
relative clauses. It receives a sequence of input word representations as its 
input, and generates a sequence of clause case-role representations as its output. 
SPEC consists of three modules: the Parser, the Segmenter, and the Stack. The 
Parser is a simple recurrent network that maps a sequence of words into a 
case-role representation. The Segmenter is a feedforward network that breaks 
the input sequence into clauses (so that the Parser only has to process one 
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clause at a time) and controls the execution of the entire system. The Stack is 
a RAAM network that stores the state of the parse before a center embedding 
and restores it upon return from the center embedding. 

By dividing the parsing task this way into transformation, segmentation and 
memory, the system only needs to be trained with the most basic relative clause 
constructs. During performance, SPEC generalizes not only to new instances 
of familiar sentence structures, but to novel structures as well, thereby demon
strating dynamic inferencing. Importantly, SPEC is not a neural network 
reimplementation of a symbol processor. It is purely a distributed system, and 
has die usual properties of such systems. SPEC exhibits plausible memory 
degradation as the depth of the center embeddings increases, and its perfor
mance is aided by semantic constraints between the constituents. SPEC is 
also self-contained: it controls its own execution during performance, and no 
external symbolic supervisor is needed. Scaling up the architecture towards 
processing real-world texts, designing a representation system for the parse re
sult, and further expanding the mechanisms of connectionist high-level control 
constitute the main directions for further research. 
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1 INTRODUCTION 

At least three disparate channels have been used to install new knowledge into 
artificial intelligence systems. The first of these is the programmer channel, 
through which the knowledge in the system is simply edited to include the 
desired new knowledge. While this method is often effective, it may not be 
as efficient as learning directly from environmental interaction. The second 
channel may be called the linguistic channel, through which knowledge is 
added by explicitly telling the system facts or commands encoded as strings 
of quasi-linguistic instructions in some appropriate form. Finally, there is, for 
want of a better phrase, the learning channel, through which the system learns 
new knowledge in an inductive way via environmental observations and sim
ple feedback information. These latter two channels are the ones upon which 
we wish to focus, as they are the hallmarks of instructable systems. Most 
instructable systems depend upon, or at least heavily favor, one of these two 
channels for the bulk of their knowledge acquisition. Specifically, symbolic 
artificial intelligence systems have generally depended upon the explicit use 
of sentential logical expressions, rules, or productions for the transmission of 
new knowledge to the system. In contrast, many connectionist network mod
els have relied solely on inductive generalization mechanisms for knowledge 
creation. There is no apparent reason to believe that this rough dichotomy 
of technique is necessary, however. Systems which are capable of receiving 
detailed instruction and also generalizing from experience are both possible 
and potentially very useful. 

Consider an autonomous robot which is to operate in a typical office envi
ronment. It is reasonable to expect that some relevant knowledge concerning 
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this environment could be extracted directly from the experience of the robot. 
Navigation about the work area, avoidance of obstacles, grasping of common 
objects, and similar skills could all be learned over time. However, it is un
reasonable to expect the robot to use induction to operationalize advice like "it 
is best to remove the books from the shelves of a bookcase before attempting 
to move it". The robot must have some means of receiving such explicit in
struction and operationalizing it. Instructability provides a way of overcoming 
gaps in knowledge overlooked by the programmer and of quickly acquiring 
knowledge yet to be learned by direct experience. 

The integration of instruction and inductive learning may be approached from 
a number of directions. It may appear reasonable to begin with a system 
framework which uses a logic or some other sentential representation for 
knowledge. In such a framework, "learning by being told" comes almost for 
free. To the degree that a simple mapping exists between linguistic directives 
and quasi-linguistic knowledge objects, instruction becomes a simple matter 
of translation. Starting, then, from such an instructable framework, inductive 
generalization mechanisms may be added to the system. A good deal of 
research has been conducted on just this sort of integration [10] — on induction 
using a sentential knowledge representation. But there is another option. 

A system which is meant to exploit both detailed instruction and experiential 
generalization may also be rooted in a learning framework, such as that of 
connectionist networks. In this case, inductive learning comes almost for free, 
since the wide array of robust connectionist learning techniques are available 
at the onset. The system design task then becomes one of finding a way to 
directly instruct such artificial neural networks without severely limiting their 
learning mechanisms. This is the approach to be discussed here. 

This approach to instructable systems does not involve the use of a sentential 
knowledge representation but, like many connectionist designs, relies on the 
encoding of long term procedural knowledge as numerical weight values on 
connections between simple processing elements. Short term state knowledge 
can also be encoded numerically, as the activation levels of those processing 
elements. In other words, the knowledge that such an instructable system 
possesses about the problem that it must presently face is internally represented 
by a real activation vector of dimensionality equal to the number of processing 
elements in the system. The "state" of such a system at any point in time may 
be specified as one such activation vector, and a "computation" may be viewed 
as a dynamic trajectory through the corresponding vector space. Furthermore, 
the real vector knowledge encodings of such connectionist systems do not lend 
themselves to semantic interpretations based on the simple decomposition 
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of concepts into primitive features corresponding to the ordinal dimensions 
(i.e., the processing elements) of the activation vector space. The knowledge 
representations to be used in this approach are distributed, which is to say 
that the activity level of any individual processing element need not carry any 
independent meaning. The state knowledge of these systems is encoded across 
whole activation vectors and may not be trivially mapped into a compositional 
semantics. 

Such a distributed knowledge representation may seem like a handicap to an 
instructable connectionist system which is expected to understand and op-
erationalize linguistic advice, but there are several key advantages to this 
representational strategy. These advantages include the availability of power
ful learning algorithms, the efficient use of representational resources, and the 
enhancement of fault tolerance. 

First, and foremost, of these advantages is the access to powerful connectionist 
learning algorithms afforded by this choice of representation. Many training 
techniques for multiple layer connectionist networks, such as the well stud
ied backpropagation learning algorithm [11], tend to produce systems which 
utilize distributed representations over their processing elements. Accepting 
such representations opens the door to use of these powerful layered network 
learning methods. Also, this focus on experiential learning lends an air of cog
nitive plausibility to this strategy in that representational features which appear 
to be learned in humans may also be learned by a multiple layer connectionist 
system [8]. 

Another advantage of such learned distributed representations involves their 
relative flexibility and efficiency in distributing representational resources (i.e., 
the "meaning" of processing element activity) in a manner appropriate to the 
behavioral tasks at hand. Unlike a representational strategy which assigns an a 
priori meaning to the activation level of each processing element, a distributed 
representation approach may semantically "carve up" the activation vector 
space in any way which facilitates proper system response. For example, 
features which require fine grained discrimination may be represented over a 
large region of the activation vector space, utilizing a significant fraction of the 
available representational resources, while less important features may be rep
resented over smaller regions. In this way, a learned distributed representation 
may be automatically tailored to the domain of the system. 

As an added bonus, this efficient distribution of representational resources 
may also result in encodings which are robust in the face of noise and loss of 
processing elements. Distributing represented information across a sufficiently 
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large set of processing elements often results in representations which degrade 
gracefully when damaged. This automatic utilization of excess resources to 
enhance fault tolerance is yet another benefit of adopting a system design 
strategy which involves the induction of distributed representations. 

In short, representing knowledge as distributed activation space vectors 
strongly supports the inductive learning aspect of instructable systems. What 
is needed is an approach to incorporating linguistic advice into such a connec-
tionist learning model. Such integration is the focus of this chapter. 

The basic idea of our approach is taken from an observation by Paul Church-
land [1]. Clearly, standard weight change mechanisms are too slow to account 
for "learning by being told". Instead, the proper mechanism for instruction 
based learning is changes in activation space. Shifts in activation occur at the 
right time scale for such learning. However, for such a learning mechanism 
to work, we need an activation space that consists of articulated attractors. 
In other words, for a connectionist network to receive propositional knowl
edge via instruction, the activation space of that network should give rise to 
a combinatorial number of possibilities for attractors, corresponding to the 
propositions that may be represented. This may be envisioned as a series of 
attractors for the arguments of each proposition and for each predicate. This 
slavish following of logical terminology is not to be construed to mean that 
we are proposing yet another connectionist implementation of predicate logic! 
Rather, these terms provide the simplest way to describe what we hope will 
be a much richer formalism. For example, one obvious advantage to this 
kind of approach is that constraints between arguments and the predicate can 
easily be encoded in connections between these attractor bowls. Distributed 
representations of predicates, and thus, complicated carvings of the attractor 
bowl surface in response to shades of meaning, are another consequence of 
this view. 

In this way, knowledge provided through the linguistic channel may be stored, 
at least temporarily, in die activation space of the system. Longer term reten
tion of this knowledge may be had by allowing weight changes to deepen the 
attractor wells, perhaps through Hebbian learning, so that a given pattern in 
the activation space will become more likely to be reinstated in the ftiture. An 
important point to take away is that the system can only "learn" by this mech
anism what it almost already knows. What we mean by this is that the attractor 
space, or the activation dynamics, must contain attractor wells or activation 
trajectories that are easily instantiated, and meaningful to the system as such. 
The system may never have actually visited a given region of activation space 
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before being presented with some instruction, but the appropriate attractor in 
this region must be relatively stable nonetheless. 

Finally, it should not be forgotten that the primary goal of "learning by being 
told" is improved system performance. An instructable system must be able 
to demonstrate, operationally, that it has acquired the knowledge that we have 
endeavored to impart. We take this to be a definitional aspect of "learning by 
being told". 

To summarize, an instructable system must demonstrate the three R's: rep
resent, remember, and respond. If the system cannot represent the results of 
linguistic input and remember it, the system will not "learn by being told". If 
it does not respond appropriately after instruction, it has not learned from that 
instruction. These are rather obvious points to anyone who has studied psy
chology, but it is important for connectionists to be explicit about the possible 
mechanisms that may underlie such transformations. The issue of "learning by 
being told" cannot be avoided. It must be addressed if connectionist approaches 
to cognition are to survive. 

Connectionist "learning by being told" may be accomplished in a number of 
different ways, depending on the domain. For example, a question-answering 
system, after being told some facts, should be able to correctly answer ques
tions concerning those facts, whether by rote, or preferably, by demonstrating 
inference from the given facts. This would typically require a system that 
understands both statements and questions on the same sensory channel, and 
is also capable of generating linguistic strings as answers. 

Another version of this idea would be to have a two-part system in which one 
part, which performs a given task, is manipulated by another part which uses 
advice or instruction to alter what the first part does. In this chapter, we will 
focus on this approach. Specifically, we will give a mapping network a series 
of instructions on how to map inputs to outputs. Here we are most concerned 
with demonstrating "proof of concept". While this demonstration system does 
display systematic responses to our instruction, we have not implemented the 
storage of these instructions as attractors. This is a small extension to what 
we have done. This example system may also be criticized as being rather 
small. In short, the models presented here should be seen as working "towards 
instructable connectionist systems", and it should be recognized that there is 
still a long way to go. 

To motivate our ideas, we first review two independent previous systems. The 
first is a network capable of learning simple symbolic arithmetic procedures for 
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arbitrarily sized numeric inputs. This system demonstrates a useful strategy for 
generating connectionist systems capable of systematic behavior. The success 
of this network also shows that a learned distributed representation may be 
effectively used to perform a discrete symbol manipulation task. Next, a 
connectionist model is presented which learns to map complex sensory events 
into temporal pattern sequences which represent descriptive linguistic strings. 
This model demonstrates how temporal sequences of activation patterns may be 
used to represent linguistic statements and how such sequences may come to be 
naturally associated with the elements of some task domain. This system is also 
used to show how distributed representational resources may be automatically 
allocated in an efficient and appropriate manner. 

With the techniques exemplified by these two systems in hand, some initial at
tempts towards the formulation of a connectionist model of "learning by being 
told" will be discussed. Our demonstration system allows for the performance 
of a systematic symbol manipulation task, modulated by instructions encoded 
as temporal sequences of activation patterns. The modulation of behavior is ac
complished by allowing input instruction sequences to prejudice the activity of 
a domain task network towards appropriate regions of that network's activation 
space. The results of experiments involving a simple symbolic mapping task 
are presented, and the application of this strategy to the problem of symbolic 
arithmetic is briefly discussed. 

2 SYSTEMATIC ACTION 

2.1 CONNECTIONIST SYSTEMATICITY 

In this section we review a simple model of procedural learning by Cottrell 
& Tsung [3]. This model (among many others) demonstrates that systematic 
behavior is possible in connectionist networks. Some critics of connectionism 
have posited that connectionist networks are incapable of certain systematic 
reasoning tasks without first implementing some sort of symbolic architecture 
[6]. It is, therefore, important for the justification of the instructable network 
approach being explored here to demonstrate that such networks can indeed 
perform systematic symbol manipulation tasks while retaining their important 
inductive learning mechanisms. 

The systematic symbol manipulation task of interest here is simple addition 
of arbitrarily sized natural numbers. The numbers are represented as strings 
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of digits in some radix, and the two strings are assumed to be aligned by 
column, so two digits of the same magnitude (i.e., in the same "place") are 
adjacent. Such an arithmetic task may be accomplished by a connectionist 
network by presenting the network with one column of digits at a time. The 
system is then to systematically step through the actions of addition: announc
ing the sum of the two visible digits, announcing when a carry is generated 
by the addition, and requesting the next column of digits. Such systematic 
behavior may be used to demonstrate that connectionist networks are capable 
of learning behaviors analogous to simple programming constructs, such as 
action sequences, conditional branches, and condition bounded iteration. Such 
a network shows that connectionist systems are capable of systematic symbol 
manipulation tasks. 

2.2 ARITHMETIC 

Rumelhart et al. [8] proposed that a symbol processing task, such as arithmetic 
addition, may be accomplished by a connectionist system by first creating a 
"physical representation" of the problem, and then modifying this representa
tion by means of a pattern association process. For example, the problem of 
adding "327" and "865" may be encoded as a "physical representation" that 
looks like: 

327 
865 

A system which is given this representation (or some appropriate portion of 
it) as input is now faced with a pattern recognition problem. A connectionist 
network may be trained to respond to this input representation by recording a 
sum and marking a carry, producing the new physical representation: 

1 
327 
865 

2 
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This new representation may be iteratively presented to the network to produce 
the sum value for the next column. This process may continue until the 
arithmetic operation is complete. 

In hopes of handling arbitrarily large numbers, the addition problem of interest 
here will assume some sort of rudimentary attentional process which may 
segment the physical representation into "interesting" portions. Specifically, 
at any given point in time, only one column of digits will be made visible to 
the system, starting with the rightmost column. The system will be expected 
to issue a particular output signal in order to have the next column presented. 
This formulation of the problem allows a network with a fixed size input to 
handle arbitrarily long digit sequences, and it also forces a successful network 
to exhibit some degree of systematicity in its behavior. 

Also, the system at hand will not be allowed to mark the "physical represen
tation" with carry information from one column to the next. The inputs to the 
system will not include information concerning the presense of a carry in a 
given column. The network will be forced to remember the state of a carry bit 
as consecutive columns are processed. This means that the system must retain 
some "internal state" over time. 

Formally, the adder network is to be presented with an input pattern vector 
consisting of three parts: the two digits in the current column, and a single bit 
flag which signals the end of the digit strings to be added. The system has 
four exclusive output signals which it may generate, encoded in a " 1 -out-of-N" 
localist fashion: WRITE, CARRY, NEXT, and DONE. Another portion of the 
network output is dedicated to an encoding of a sum digit to be written in 
the result field of the current column. The system is expected to sequentially 
process the columns of digits according to the following algorithm: 

while (not done) do 
begin 

output (WRITE, low order digit of sum) 
if ( sum > radix) then 

output (CARRY, anything) 
output (NEXT, anything) 

end 
if (there was a carry on the last column) then 

output (WRITE, "1") 
output (DONE, anything) 
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1 Time Step! 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 Done? 
No 
No 
No 
No 
No 
No 
No 
No 
Yes 
Yes 

1st Digit 
7 
7 
7 
2 
2 
3 
3 
3 
0 
0 

2nd Digit 
5 1 
5 
5 
6 
6 
8 
8 
8 
0 
0 

| Action ~ 
WRITE 
CARRY 
NEXT 

WRITE 
NEXT 

WRITE 
CARRY 
NEXT 
WRITE 
DONE 

Result 
2 
— 
— 
9 
— 
1 

— 
— 
1 

— 

Table 1 An Example Addition: 327 + 865 

One time step is to pass for each "output" command which is executed in this 
algorithm. New inputs (i.e., the next column of digits) are presented to the 
network on the time step which immediately follows any time step in which 
the NEXT output is issued. Note that there is no explicit representation of 
the carry bit amongst the inputs made available to this program at any given 
time step. The system is expected to remember carry information between 
iterations of the loop, and implicitly apply this information to the computation 
of the next sum and the next carry. An example execution of this algorithm is 
presented in Table 1. 

2.3 T H E MODEL 

A simple feed-forward network is not sufficient for this addition problem. 
For a connectionist system to generate temporal sequences of actions, as is 
expected here, it must have some way to remember "where it is" in the current 
sequence. A typical connectionist network's only form of short-term memory 
is in the form of internal activation states, so any network which is to perform 
action sequences must have access to different activation states at different 
points in the desired sequences. One way to allow such a network to have 
distinct activation states is to introduce recurrence into the network. This 
essentially involves providing as input to a network the previous activation 
state of some portion of the network's processing elements. Access to this 
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Figure 1 Network Architectures — (a) simple recurrent network; (b) 
Jordan network 

previous activation information allows a network to determine its location 
in a sequence of actions, making the generation of such sequences possible. 
Recurrence was used to maintain activation state in the model presented here. 

Note also that this adder system is expected to remember the value of a carry 
bit over multiple time steps. This means that the adder network must encode 
carry information into the activation state of the processing elements which 
provide recurrent inputs. By performing such an encoding, the system will be 
able to modify its behavior based on the activation levels of these recurrent 
inputs, thereby recalling and utilizing the required carry information. 

Two basic recurrent network architectures were examined for use as adders. 
Both of these architectures are shown in Figure 1. Each box in Figure 1 
represents a layer of connectionist processing elements, and each solid arrow 
represents full interconnection between the two given layers. The dashed 
arrows correspond to fixed, one-to-one connections between layers. In both 
architectures, the input layer consisted of a single binary "done" flag and two 
binary encoded input digits. In all of these experiments a radix of 4 was used 
for the numbers to be added, so two processing elements were used to encode 
each digit. The output layer of both network types included four elements 
to provide a localist code for the four possible actions — WRITE, CARRY, 
NEXT, and DONE — and two more elements for a binary encoded result 
digit. Various hidden layer sizes were examined, with the results reported 
here originating from a network with 16 hidden units. The first of these 
architectures is Elman's simple recurrent network, in which the hidden layer 
provides recurrent inputs to the network [5]. As shown in the figure, this 
recurrence is implemented by "unrolling the network in time" [11 ] for a single 
time step — essentially recording previous hidden layer activation levels in a 
special "context" layer which provides input on the following time step. This 
is equivalent to complete interconnectivity between the processing elements 
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at the hidden layer. The second architecture is based on the work of Jordan, 
and it provides recurrence from the output layer rather than from the hidden 
layer [7]. This is implemented by maintaining a special "state" layer with a 
decaying average of output layer processing element activation levels. In other 
words, the activation level of the "state" layer at some time, t, is the sum of the 
previous, time (t -1), "state" activation, attenuated by some proportion, /i, and 
the activation of the output layer at time (t - 1). Both of these architectures 
provide the recurrence which is needed to enact sequential behaviors, and 
both may be trained using simple variations of the backpropagation learning 
algorithm [11]. 

2 . 4 T H E TRAINING P R O C E D U R E 

Both connectionist network architectures were taught to execute the addition 
algorithm by repeated exposure to a training corpus of base 4 addition problems. 
The problems in this corpus were restricted to contain numbers with no more 
than 3 digits. Despite this restricted problem size, the resulting training set 
was extremely large, and training times on the entire corpus turned out to be 
prohibitive. Training sets consisting of small random subsets of the whole 
training corpus were used in an attempt to decrease training times, but these 
trials resulted in networks which essentially "memorized" the given training 
sets and exhibited poor generalization. Clearly some non-standard training 
regime was needed to prepare the adder networks properly. 

The training technique which was invented to solve this problem was dubbed 
combined subset training. This method involves training on a small random 
subset of the entire training corpus initially, and then successively doubling the 
training set size until success on the entire corpus is achieved. Training is ter
minated either when the entire corpus is presented for training and successfully 
learned or when the network successfully generalizes to all of the remaining 
cases in the training corpus. Combined subset training was used throughout 
the adder network experiments described here. 

2.5 THE RESULTS 

The combined subset training procedure allowed both simple recurrent net
works and Jordan networks to successfully learn the addition algorithm. In
deed, after being exposed to only 8% of the entire training corpus, the networks 
were found to generalize well to all of the remaining number pairs. Further 
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tests were conducted to examine how well the networks generalized to numbers 
with more than 3 digits. The networks were tested on random sets, consisting 
of 10 problems each, involving numbers with up to 14 digits. They were found 
to miss only one addition out of ten on average. In hopes of improving per
formance on the longer digit strings even further, a special "clean-up" training 
procedure was tried. The networks were subjected to a series of training ses
sions, with each session consisting of 10 epochs using the set of 10 problems 
which exhibited the most error. After 40 epochs of such training, the networks 
successfully generalized to arbitrary addition problems containing numbers 
with up to 14 digits! 

Since both simple recurrent networks and Jordan networks generally behaved 
similarly in these experiments, some attempts were made to find differences 
between them with regard to their use in performing systematic tasks such as 
addition. Both architectures were trained to emulate an alternative addition 
algorithm, one which performed its output operations in a slightly different 
order than the original algorithm. This new operation permutation delayed 
the announcement of a carry until after the sum digit for the next column had 
been written. This new algorithm resulted in a problem which was inherently 
unsolvable by a Jordan network architecture. Thus, a subtle relationship 
was shown between choice of network architecture and choice of symbolic 
representation for a given problem. 

Lastly, the learned internal representation of "state" information was investi
gated by a careful examination of hidden layer activation vectors over time. 
The trajectory of the hidden layer states through activation space was tracked 
in hopes of uncovering the internal representations of the learned programming 
constructs. Briefly, the hidden layer activation vectors of a simple recurrent 
network were recorded over the course of 10 addition problems, and a princi
pal components analysis was performed on the resulting set of vectors. The 
activation vectors were then projected into the plane defined by the first two 
principal components, thereby generating a two dimensional plot of the hid
den layer trajectories, focusing on the activation space dimensions of highest 
variance. A cartoon summary of such a plot is shown in Figure 2. Each point 
in the original diagram fell into one of the regions shown in the figure. The 
regions are labeled by the output action of the network corresponding to the 
given hidden layer activation. The arrows show the state transitions of the 
network between these regions. Thus, the network was shown to have imple
mented a kind of finite state automata. It is interesting to note that an output 
action (NEXT) may correspond to two different regions in the underlying state 
space. This was necessary because carry information had to be maintained by 
the network while it generated a NEXT action so that the correct sum could be 
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computed in the next time step. This carry information was plainly recorded in 
the location of the hidden layer activation state during each NEXT output. This 
analysis of hidden layer trajectories indicates that the connectionist inductive 
learning process successfully partitioned activation space in a manner which 
allowed for the recording of needed "state" information and for the appropriate 
systematic response to such information. 

2.6 T H E POSSIBILITIES 

These addition networks clearly demonstrate that recurrent backpropagation 
networks may be trained, via an inductive learning mechanism, to perform 
systematic symbol manipulation tasks. Some limitations of such an approach 
should be noted, however. Since "internal state" in these networks is encoded in 
a fixed size vector of activation values, it is reasonable to expect that there will 
be severe limits on the length of time over which a bit of state information may 
be maintained. Similarly, there should be limits on the "depth of embedding" of 
implemented control constructs, such as the nesting depth of while loops. Note 
also, that the success of this system depended upon the accurate segmentation 
of the domain task into sequential chunks. It would have been unreasonable to 
expect the network to remember all of the input digits and perform the addition 
"in its head". In short, a more efficient connectionist model of memory 
is needed to extend this network design strategy into the realm of complex 
cognitive tasks. 

Despite these limitations, the presented adder networks must be seen as strong 
indications of the power of recurrent connectionist networks to perform sys
tematic tasks. It may even be possible to construct basic reasoning systems 
using this kind of architecture by training "rules" into the associational mapping 
behavior of a network and recording intermediate conclusions in the activation 
state of recurrent layers. 

3 LINGUISTIC INTERACTION 

3.1 LINGUISTIC SEQUENCES 

In addition to a mechanism for the generation of systematic action, an in-
structable connectionist system requires some means of receiving quasi-
linguistic input sequences and some means of translating these into some 



Towards Instructable Connectionist Systems 201 

modulating force on the system's behavior. The solution proposed here in
volves training connectionist networks to modify their own behaviors based 
on input time-varying streams of quasi-linguistic tokens. Networks are ex
pected to learn the meanings of linguistic sequences in terms of the elements 
of some domain task. Domain task experience coupled with exposure to rel
evant linguistic descriptions should allow connectionist systems to associate 
linguistic tokens and constructs with corresponding behavior. In this way, 
artificial neural networks may ground linguistic meaning in perception and 
action. In this view, linguistic statements become temporal patterns which 
appropriately trained networks may map into useful internal representations in 
the form of hidden layer activation levels. 

There have been a number of connectionist systems which have utilized this 
view of linguistic sequences as activation patterns [5] [12],but only one such 
system will be described here. The task of interest here is a description task 
which involves the generation of a stream of linguistic tokens which accurately 
describe a perceived time-spanning event. In essence, this is the opposite of 
"learning by being told". It requires that quasi-linguistic sequences be gen
erated from the activity of some complex perception subsystem, as opposed 
to the instructable network task of modulating activity in a complex action 
subsystem based on perceived quasi-linguistic input. Still, the basic mech
anisms for representing linguistic statements as temporal activation patterns 
and for grounding these statements in a domain will prove to be essentially 
identical across these two system tasks. In order to demonstrate the viability of 
this scheme, a brief overview will be provided here of a connectionist network 
which is capable of performing the description task of providing "subcaptions" 
to simplified "movies". This network was generated and examined by Cottrell, 
Bartell, and Haupt [2]. 

3 .2 S U B C A P T I O N S 

The problem of interest here involves generating a string of quasi-linguistic 
tokens which may be reasonably interpreted as a description of some perceived 
event. In order to keep the problem simple, the set of possible events shall be 
quite constrained. A small visual field, 4 pixels in width and 2 in height, is to 
be presented to the system as an 8 element bipolar vector. Only one object may 
appear in this visual field at any given time — a single pixel sized ball, and 
the location of this ball is specified by an input of 1.0 at the appropriate pixel. 
Empty pixels are specified with a -1.0 input value. A temporal sequence of 
visual scenes (i.e., a "movie") is to be presented to the system, depicting the 
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ball rolling, flying, or bouncing either from left to right or from right to left. 
An event consists of four such scenes, presented contiguously and delimited 
by one to three scenes in which the ball does not appear at all. The job of 
the system is to receive this temporal sequence of visual images and produce 
a linguistic description of the perceived event. Descriptions are to take the 
form of temporal sequences consisting of three linguistic tokens: a noun, a 
verb, and an adverb. The only noun needed is "ball". Verbs are to include 
"rolls", "flies", and "bounces", and the possible adverbs are "left" and "right". 
The system is expected to output one linguistic token per time step for three 
consecutive time steps, producing descriptions such as "ball bounces right". 

Movies are to be presented in a continual stream to the system, delimited only 
by short periods in which the visual field is empty. At any point in time it 
should be possible to freeze the current movie and have the system produce a 
description of it. This means that the system must essentially forget about old 
movies and must focus on quickly identifying the nature of the current event. 
Information concerning the type and direction of ball motion must be quickly 
extracted from the scenes and must be represented internally in a manner which 
will facilitate the generation of the appropriate linguistic description. 

3.3 T H E MODEL 

As in the adder networks, recurrence is needed in order to solve this problem. 
To recognize a pattern of ball motion the system must be able to remember 
information concerning previous locations of the ball. Furthermore, in order to 
generate linguistic sequences over time the network needs to constantly keep 
track of "where it is" in the current output sequence. As was demonstrated by 
the adder networks, recurrent backpropagation networks are quite capable of 
learning to record this kind of "state" information in the activation levels of 
their recurrent layers. 

With this in mind, the Movie Description Network was constructed by con
necting two of Elman's simple recurrent networks [5]. One simple recurrent 
network was used to track ball motion in the input images, and another was 
used to step through the linguistic token sequences of output descriptions. The 
architecture of this network is show in Figure 3. The network was operated 
by presenting one movie image at the scene input layer at every time step, 
and propagating the resulting activation at least as far as the gestalt layer. It 
was hoped that the activation levels of processing elements in the gestalt layer 
would encode all of the information needed to generate an accurate description 
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Figure 3 The Movie Description Network 

of the current movie.1 When such a description was desired, the activation 
states of layers in the movie perception subnetwork were "frozen", and the 
current state of the gestalt layer was used as a constant input to the description 
generation subnetwork. This description subnetwork was then "reset" (i.e., the 
activation levels of all of the processing elements in its recurrent hidden layer 
were set to an average value — namely, zero) and clocked through three time 
steps to allow it to generate a quasi-linguistic event description at its output 
layer. After a description had been produced, the perception subnetwork could 
continue to receive movie images, and further descriptions could be elicited. 

Many experiments were conducted using this network architecture, using var
ious network layer sizes and training parameters. The experiments described 
here used a network with an input scene layer size of 8 processing elements and 
a linguistic token output layer also of size 8. The six possible output tokens 
were sparse coded over these 8 outputs. The gestalt layer in these experiments 
contained 8 processing elements, as well. The hidden layer of the perception 
subnetwork was set to contain 12 elements, and the hidden layer of the de
scription subnetwork was set to contain 20. All processing element activation 
levels were bounded by a sigmoid, forcing outputs to the range from -1.0 to 
1.0. 

lrThe name of the gestalt layer comes from the Sentence Gestalt network of St. John and 
McClelland, which had a major influence on this design. The Sentence Gestalt network has 
been successfully used to perform highly complex natural language question answering tasks 
[12]. 
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3.4 THE TRAINING PROCEDURE 

Like the adder networks, and simple recurrent networks in general, the Movie 
Description Network could be trained by a variation of the backpropagation 
learning algorithm using only a supervised error signal at the final output 
layer. Instead, this network received error information from two different 
sources, and it combined and applied this error information using standard 
backpropagation techniques. A supervised training signal was indeed provided 
at the linguistic output layer, specifying the correct sequence of tokens to 
describe the current event, but another signal was provided exclusively to the 
perception subnetwork at the predict layer. This layer was of the same size as 
the input scene layer and was intended to create an output image identical to 
the next image to be perceived. In other words, the predict layer was meant to 
be a prediction of the next "frame" in the current movie. This means that the 
perception subnetwork was shouldered with the task of understanding potential 
ball motion well enough to predict the ball's trajectory across the field of view. 
The error signal which was provided at the predict layer was simply generated 
from the actual scene that was observed at the next time step. In essence, this 
was an unsupervised (or self-supervised) training signal, since no information 
beyond the normal input sequence of images was needed to generate it. The 
Movie Description Network, therefore, used backpropagation to combine a 
supervised error signal at the linguistic output layer with an unsupervised error 
signal at the predict layer to produce weight modifications which drove the 
network both to make predictions about the current movie and to linguistically 
describe it. 

Note that this dual feedback training technique placed the two subnetworks in 
competition over the representational resources of the perception subnetwork's 
hidden layer. If the perception subnetwork had been trained alone, the infor
mation encoded at this hidden layer would have included only items relevant 
to the prediction task. This need not include all of the information required 
for the description task. For example, when the ball was moving to the right 
and was currently in the rightmost column of the field of view, no information 
concerning the "type" of motion of the ball was needed to perform the pre
diction task. The next image was always the empty scene. The description 
network, however, still needed to know whether the ball was flying, rolling, 
or bouncing. Conversely, if no feedback had been provided at the predict 
layer, the perception subnetwork's hidden layer would have been devoted to 
the description task. No distinction between a bouncing ball that entered the 
field of view low and a bouncing ball that entered high would have needed to 
have been made, for instance. Such a distinction was critical for the prediction 
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problem, however. In short, providing both sources of error feedback pushed 
the network to record a wider variety of properties of the input movies, and, 
thereby, to have a richer internal representation of the perceived events. 

The exact training regime for the Movie Description Network involved repeated 
exposure of the network to movies and their corresponding quasi-linguistic 
descriptions. Two different methods were used for selecting the next movie 
to be presented to the network. First, a deterministic method was tried in 
which all of the movies in a training corpus were presented repeatedly in a 
fixed order. Second, a random method in which the next movie was repeatedly 
selected uniformly at random from the entire training corpus was applied. In 
the deterministic case, the network was trained for 8000 epochs, where an 
epoch was a complete pass through the training corpus. The random method 
was applied for 1.6 million individual time steps. In both cases, training 
progressed by first presenting an input image to the network and then training 
the perception subnetwork using prediction feedback. Then, before the next 
scene was input, both subnetworks were trained using error feedback from 
the entire movie description. In other words, a complete description was 
solicited from the description subnetwork in between image presentations, and 
error on this description was propagated back through the entire network.2 

Once feedback was provided on the movie description, the next image was 
presented to the network and the training procedure iterated. Throughout this 
process a learning rate of 0.01 was used, along with a momentum value of 0.9. 
When the maximum number of training epochs (or time steps) was reached, 
the error history of the learning network was examined. The epoch at which 
the network achieved a minimum average sum-squared error was identified, 
and the network's weights were reset to their values at that epoch. The end 
result of this training procedure was a network capable of both predicting ball 
trajectories and generating event descriptions. 

3.5 THE RESULTS 

The trained network proved successful at both the prediction and description 
tasks. When too little information was provided to identify an event, as was the 
case during the very first frame of each movie, the network failed at both tasks, 
as should be expected. Prediction average sum-squared error rates were on the 
order of 0.24 at these times. However, whenever sufficient movie segments 

2 Actually, when the random movie selection method was used, training on the output de
scription was also done randomly. Between any two scene presentations there was a 50% chance 
of eliciting a description from the network and providing error feedback on it. 



206 C H A P T E R 6 

were presented to the network, error dropped below 0.001. The network 
correctly predicted ball trajectories and correctly described each event. 

An analysis of the internal representations formed at the gestalt layer and at the 
perception network's hidden layer was conducted. The findings of this exam
ination supported earlier intuitions concerning the competing requirements of 
the prediction and description tasks. For example, the internal representations 
of two distinct events were observed — of a ball bouncing right and entering 
the view low, and of a ball bouncing right and entering the view high. At the 
gestalt layer these events provoked almost identical representations as activa
tion vectors. This is sensible since both events share the same description: 
"ball bounces right". At the hidden layer of the perception network, how
ever, the two events generated widely different representations (as measured 
by Euclidean distance). This, too, is reasonable since the two events imply 
essentially opposite predictions at the predict layer. While the hidden layer 
clearly encoded all of the information needed to perform both tasks, it appears 
as if die gestalt layer was used by the network to cluster internal representa
tions of events in a manner which facilitated the generation of quasi-linguistic 
descriptions. 

Some final experiments were conducted which involved training the Movie 
Description Network without use of the unsupervised prediction error signal. 
It was found that this signal was not needed to achieve good performance on 
the description task. While including the prediction feedback increased the 
amount of information contained in the internal representations of events, such 
a rich representation did not significantly affect, for better or worse, the ability 
of the network to make the needed linguistic discriminations. 

3.6 THE POSSIBILITIES 

The success of the Movie Description Network at its description task demon
strates how recurrent connectionist networks may process linguistic informa
tion. The inductive learning mechanisms of such networks allow them to 
generate their own internal representations of perceptions, actions, linguistic 
tokens, and the relationships between these things. These internal representa
tions are formed to facilitate the tasks on hand. When linguistic statements are 
encoded as temporal activation patterns, connectionist systems, such as this 
subcaptioning network, may be trained to generate statements appropriate to a 
given domain task. As the following explorations shall show, such encodings 
may also make instructable artificial neural networks possible. 
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4 LEARNING B Y INSTRUCTION 

4 . 1 A S Y N T H E S I S 

The connectionist adders demonstrated that connectionist systems may per
form systematic symbol manipulation tasks. The Movie Description Network 
showed how temporal activation patterns may be used to represent linguistic 
strings and how such strings may be grounded in the elements of some domain 
task. These two strategies may now be combined to produce a connectionist 
network that is capable of responding appropriately to some simple instruction 
sequences. 

How should such an instructable network be designed? The only knowledge 
available to a typical connectionist system is in the form of connection weights 
and vectors of processing element activation levels, so any mechanism for in
struction following must make modifications to one of these two sets of system 
variables. Some attempts to formulate techniques for the partial programming 
of connectionist networks have involved approaches which compile symbolic 
rules directly into connections and connection weights [4]. In some of these 
techniques the weights are later refined by standard connectionist inductive 
learning processes [13]. A major drawback of these "weight specification" 
approaches is that advice may only be given before training begins. Standard 
connectionist learning methods generally change the representational nature 
of weight values (i.e., how they relate to desired behaviors and entities in the 
world) in hard to predict ways, making the direct manipulation of those weights 
in response to instruction quite problematic. Prohibiting all instruction once 
inductive learning has begun is both cognitively unrealistic and potentially 
troublesome for practical systems. If the desired system is to be instructed in 
the midst of performance or if it is to learn continuously while doing its job, 
then the strategy of encoding rules as initial weights will not work. There is 
another option, however. Instructions may be encoded as activation patterns, 
and connectionist networks may be trained to respond to certain patterns of 
processing element activity as advice. 

The idea is to encode instructions as network input vectors and to teach the 
system to respond to those instructions appropriately. In short, the instructable 
network has its set of inputs divided into two classes: domain task related 
inputs and instruction inputs. The domain inputs are used to communicate task 
parameters to the system, such as a column of digits in the adder networks. 
The instruction inputs receive vector encoded quasi-linguistic tokens which 
are to be interpreted as advice. The system produces output values which 
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are contingent on the domain inputs, and this mapping process is modulated 
by the sequence of instruction inputs which are presented. Some error cor
rection (supervised) training is used to get the network to "understand" the 
instruction token encodings in terms of the domain task, but once this training 
is completed the system may respond to advice immediately, without further 
connection weight modification. Alternatively, weight modification using a 
standard connectionist learning law may continue after the receipt of advice, 
with input instructions acting in a supplementary role. 

An extremely simple version of this approach could involve encoding entire 
collections of advice as fixed sized real vectors which are provided as input 
to a simple feed-forward backpropagation network [11]. The domain problem 
of mapping domain task input vectors to some set of output vectors may be 
modulated in this network by the specification of an appropriate instruction 
input vector. This system design strategy transforms the problem of learning 
from instruction into a straightforward mapping problem. 

While the use of a fixed size advice input vector is all that is really needed to 
get a feed-forward connectionist network to take advice, the encoding of whole 
collections of instructions as such fixed size vectors is a somewhat awkward 
process. It is easy to design a simple encoding which represents advice as 
a fixed size vector, but such fixed size representations generally place a hard 
limit on the size of the encoded instruction collection. A more natural way 
to present advice to the system is as a temporal sequence of symbolic tokens 
which form sentential recommendations, such as "rock => paper" to encode, 
"if the input is rock then specify paper as the output". Ideally, we would like 
to have a connectionist system which can handle arbitrarily long sequences of 
such advice tokens.3 

This is where the strategy which was exemplified by the Movie Description 
Network may be applied to the instructable network problem. A temporal se
quence of input activation vectors encoding instructional tokens may be used 
to present advice to the system, and the system may be trained using a stan
dard connectionist weight modification technique to associate such instruction 
sequences with appropriate domain task behavior. Thus, the strategy of the 
Movie Description Network may be used to transform input sequences of quasi-
linguistic tokens into processing element activation vectors which modulate 
the behavior of a domain task subnetwork. This general approach for "learning 
by being told" has been tested by application to a simple "discrete mapping" 
domain. 

3 i.e., advice sequences like those presented in graduate school 
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4.2 DISCRETE MAPPING 

The domain task initially used to explore this strategy for the fabrication of 
instructable networks was purposely kept very simple. It was an abstract 
mapping problem of the following form: 

Discrete Mapping - The goal of the system is to map inputs from 
a finite discrete set to outputs from another finite discrete set. Advice 
takes the form of temporal sequences of tokens which encode data 
points in the desired mapping (e.g. "map input A to output J9" encoded 
as the three token sequence "=> A 5"). 

In these experiments a vocabulary of three input stimuli, three output responses, 
and four instruction tokens (including "=>") were used. All inputs and outputs 
were specified to the networks using "1-out-of-N" localist codes. 

While very simple, this domain task poses interesting problems for the con
nectionist learning algorithm which is to be employed. The behavior of the 
system depends entirely on the given instructions. There are virtually no 
other behavioral regularities which the network may depend upon and dis
cover during training. The system must learn the systematic task of following 
any arbitrary instruction sequence. If the stream of instruction tokens specify 
"=> A B => C C => B C\ then the network must map the domain input cor
responding to the "A" token to the " £ " output and must map both the "B" and 
"C" domain input patterns to the "C" output pattern. If, an instant later, the in
struction sequence changes to "=> B B => A A"y the system must immediately 
change its behavior to map "A" to "A" and " S " to "£", leaving the mapping 
from "C" arbitrary (i.e., any output is acceptable). Any sensible instruction 
sequence (i.e., one that does not require more than one output pattern for each 
possible input) must be handled by the system. The way in which the dis
crete mapping problem forces the network to generalize in an exhaustive and 
systematic manner over the space of instruction sequences makes the problem 
difficult for the network to learn. 

4.3 THE MODEL 

The artificial neural network architecture which was initially used for these 
discrete mapping experiments is shown in Figure 4. The activation level of 
processing elements in this network was bounded, using a sigmoid, between the 
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values of 0.0 and 1.0. The domain task input layer consisted of three elements 
for the "1-out-of-N" localist encoding of input patterns. The advice layer 
contained four elements for the presentation of similarly encoded instruction 
tokens — "A" through "C" and also "=>". The output was trained to be a 
pattern in the same form as the domain inputs. Various sizes for the plan layer 
and for the hidden layers were examined, with a 20 processing element plan 
layer, a 20 element recurrent hidden layer, and a 10 element non-recurrent 
hidden layer being used for the bulk of the experiments reported here. 

The basic idea behind this network design is easy to describe. In short, a 
simple recurrent network [5] is used to map temporal sequences of instruction 
tokens into apian vector which is, in turn, provided as input to a feed-forward 
mapping network. This allows input advice sequences to immediately change 
the discrete mapping performed by the network to be any desired mapping. The 
entire network may be trained by a version of the backpropagation learning law, 
with error information being provided only for the final output layer.4 Weight 
modification learning may be performed on the recurrent connections using 
backpropagation by "unrolhng the network in time" for a single time step [11] 
— essentially treating the recurrent connections as non-recurrent connections 
leading to a "context" layer which is made to contain a copy of the hidden 
layer activation levels from the previous time step [5]. Such a backpropagation 
learning strategy was used in the experiments which are discussed below, with 
afixed learning rate of 0.1 and no momentum. Incremental learning (i.e., "jump 
every time,, or "on-line" learning) was used, causing weights to be modified 
with every presentation of a supervised error signal. 

The network is operated as follows. Before the network receives any input, its 
recurrent hidden layer has the activation level of all of its processing elements 
set to an average value (i.e., 0.5). A temporal sequence of input instruction 
tokens, such as "=> ,4 £ => C C => B C'\ is then presented at the advice input 
layer, one token at a time. Activation from these inputs is propagated as far 
as the plan layer, but any further propagation beyond that layer is considered 
unimportant. When the instruction sequence is complete, the activation levels 
of the processing elements in the plan layer are "frozen" and are used as 
constant modulating inputs to the mapping subnetwork. Any input patterns 
then presented at the domain task input layer should result in output patterns at 
the output layer which are consistent with the mapping specified by the given 
instruction sequence. Furthermore, if this process is repeated and anew advice 
sequence is presented to the network, the mapping behavior of the system 

4Like the Movie Description Network, this architecture was inspired by and is very similar to 
the Sentence Gestalt network [12]. Indeed, it may be argued that the Sentence Gestalt network 
actually performs a "learning by being told" task in a complex question answering domain. 
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Figure 4 An Instructable Simple Mapping Network Architecture 

should immediately change to conform to the new instructions. This instructed 
response is to occur as a direct result of input advice, with no additional weight 
modifications required. 

4.4 THE TRAINING PROCEDURE 

The basic mechanisms of this instructable mapping network are fairly straight
forward, but the systematic structure of the discrete mapping problem makes 
it a difficult problem for this network to solve via error correction learning. 
Consider that, upon the commencement of initial training, the system will not 
even be capable of adequately summarizing streams of input instruction to
kens into informative plan vectors. The network must simultaneously learn to 
translate temporal sequences of instructions into useful plan vectors and learn 
to make use of these plan vectors to modulate mapping behavior. And both of 
these skills must be acquired using only error information given at the output 
layer during individual mapping trials! It is, therefore, reasonable to expect 
difficulty during the initial training of this network, and it may be considered 
potentially profitable to explore non-standard training regimes. 

There are many training regimes that may be applied to the network architecture 
presented here. To expedite the learning process, however, a training regime 
was selected which maximizes the generation of error feedback to the recurrent 
plan subnetwork during the presentation of an instruction sequence. In general, 
learning can be expected to be slow if error is available only at the conclusion 
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of complete instruction sequences. Such a strategy would demand that an 
appropriate set of weight modifications for the proper processing of an entire 
instruction sequence be computed from a single error signal back-propagated 
from the plan layer. This is a difficult "credit assignment" task which may be 
partially mitigated by providing error feedback in the middle of advice token 
sequences. With this in mind, the training regime examined here involved error 
feedback and weight modification after every instruction token presentation 
according to the following algorithm: 

1. Initialize the maximum number of instructions per training session to 1.5 

2. Randomly choose a number of instructions for this session. 

3. Randomly generate the chosen number of instructions. 

4. Present the instruction tokens to the network, one at a time. After pre
sentation of each token, freeze the plan layer and train the network on 
each case for which it has seen an instruction. Alternatively, the network 
may also be trained on cases for which an instruction has been partially 
presented — for which the full three advice tokens have yet to be seen. 
(This alternative method which includes partial instructions was used in 
all of the experiments discussed here.) 

5. At the end of each session (collection of consecutive instructions), collect 
statistics on network performance. After each training period consisting 
of some fixed number of sessions (e.g., 5000 sessions), compute an av
erage accuracy measure based on the collected statistics. If the system's 
accuracy is high (above a threshold) then increment the maximum number 
of instructions per training session. 

6. Go to step 2. 

Training is terminated when the maximum number of instructions per training 
session surpasses a fixed threshold. (In the discrete mapping experiments with 
three possible domain task input patterns, this threshold was three instructions 
per session.) Note that this training regime is similar to that used for the Movie 
Description Network [2] and to that used for the Sentence Gestalt network [12], 
but this strategy includes a version of the combined subset training technique 
used by the connectionist adders [3]. As much error feedback as possible is 
provided to the entire network after each advice token is presented, and the 

5 Alternatively, the initial maximum number of instructions may be set at some higher value. 
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system is given a chance to work up from shorter instruction sequences to 
longer ones.6 

4.5 THE RESULTS 

Many training experiments were conducted using this instructable network ar
chitecture and the previously described training procedure, exploring the space 
of layer sizes and learning parameters. In each experiment, the instructable 
network was trained on most all those instruction sequences which provided 
at most one mapping rule for each discrete input stimulus (i.e., consistent 
instruction sequences). Training was not allowed, however, on elements of 

6The incremental growth of instruction sequence length actually provided little advantage 
for the best networks examined here. This is suspected to be a result of the small sizes of the 
potential input and output sets. The initial maximum number of instructions was set to three for 
the experimental runs for which learning curves are later provided. 



214 C H A P T E R 6 

OUTPUT 
i 

/ PLAN K 

INPUT ADVICE 

Figure 6 An Alternative Simple Mapping Network Architecture 

a generalization testing set which was randomly generated and consisted of 
12 instruction sessions (i.e., about 5% of all possible sessions). Instruction 
sessions were selected at random for presentation to each network. The initial 
maximum number of instructions per session was set to three. 

The performance achieved by the best of these networks is shown in Figure 5. 
Mapping accuracy was measured after the complete presentation of each in
struction session and is presented in this graph as a percentage of the number 
of input/output mappings which were correctly generated by the network. For 
the purpose of this measurement, the output element with the highest activation 
level indicated the network's discrete output response using a "1-out-of-N" lo-
calist encoding at the output layer. Note that the network eventually achieved 
on the order of 98% training set accuracy and up to 96% generalization accu
racy. Note also that good behavior generally required over 100,000 training 
sessions. In short, this demonstrated the viability of this strategy, but indicated 
that more efficient training strategies were required. 

In hopes of reducing training time, several architectural modifications were 
considered. Alternative forms of recurrence were tried, such as variations 
on that used in Jordan's sequential network [7], as shown in Figure 6. In 
this architecture, the activation level of the plan layer at the previous time 
step is provided as input to the plan generating subnetwork's hidden layer. 
This replaces the hidden layer recurrence of the previous simple recurrent 
network model. Some experiments with networks of this kind showed mild 
but noticeable improvements in training time, as demonstrated in Figure 7, and 
pushed generalization accuracy as high as 100%. 
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Another considered design alternative involved the introduction of multiplica
tive connections into the network, allowing, for example, the plan layer to have 
a "gating" effect on the mapping subnetwork as shown in Figure 8. Some ex
periments were conducted in which sigma-pi connections were used to provide 
such a "gating" effect [11]. Briefly, each possible pair consisting of a domain 
input processing element and a plan layer processing element provided the 
product of their activation levels as input to the non-recurrent hidden layer, 
weighted by a single trainable weight value. Experiments with such sigma-
pi networks (with a reduced learning rate of 0.05) showed slightly improved 
performance, particularly with regard to generalization accuracy, as shown in 
Figure 9. Note that this network was able to achieve better than 99% training 
set accuracy and up to 100% testing set accuracy. 

Training time remained relatively high for all of the considered alternative 
network architectures. There are many options that have yet to be tried, 
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however, including further examination of multiplicative connections, second-
order methods, and alternative training regimes. 

4 . 6 T H E P O S S I B I L I T I E S 

In addition to searching for more efficient training techniques for these sorts 
of instructable connectionist networks, tasks which are more complex than 
simple discrete mapping should be examined. Specifically, systems which are 
to perform tasks in some spatiotemporal domain should be generated. As in 
the discrete mapping task, instruction sequences should be used to modulate 
the behavior of die system, but the behavior in question should now have a 
temporal dimension. 

Experiments are currently being conducted which involve the modulation of 
the systematic behavior of an arithmetic network, similar to the adder net
works, by a sequence of quasi-linguistic instructions. The architecture which 
is being used for these experiments is shown in Figure 10. The system is to 
perform arithmetic operations on two arbitrarily sized numbers in much the 
same way that the adder network performed addition, but the exact "program" 
that the system is to follow is to be specified as an input sequence of instruction 
tokens. Different instruction sequences may specify different orderings for sets 
of standard actions (e.g., announcing the carry before or after recording the 
digit sum) or may specify completely different arithmetic operations (e.g., sub
traction rather than addition). As might be expected, training is a slow process 
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for this network. While early experiments are successfully generating systems 
capable of enacting "programs" involving several variations of addition and 
subtraction, summary results are not yet available. 

5 SUMMARY 

Some small initial steps have been taken towards connectionist systems which 
exhibit the systematic flexibility of advice following without abandoning the 
power of experiential inductive generalization. Such systems, which are ca
pable of both learning from examples and "learning by being told", could 
potentially help cognitive scientists explain "high level" reasoning processes 
and provide insight into how such processes may emerge from more sim
ple associational mechanisms. A basic strategy for instructable connectionist 
systems has been outlined, including a focus on recurrence for systematic-
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Figure 10 An Instructable Arithmetic Network Architecture 

ity, learned temporal patterns for linguistic interaction, and activation state 
modification for fast behavioral change. 

Recurrent networks are necessary to generate complex systematic behavior in a 
connectionist framework. Any task which requiies the iterative memorization 
and retrieval of internal representations will require some form of recurrence. 
Such manipulation of internal state information is common for systematically 
structured domains. Fortunately, there is currently much research being con
ducted involving the dynamic properties of recurrent connectionist systems 
and involving the training of such systems. The explorations that have been 
conducted here have shown, however, that much can be accomplished even 
with a few relatively simple network architectures. These networks, while 
conceptually simple, are capable of learning complex time-varying behav
iors by leveraging the power of distributed representations generated by the 
well studied backpropagation learning algorithm. Contrary to some critics 
of connectionism, systems based on these distributed architectures are not 
only capable of performing systematic behaviors, but they are also capable of 
learning such behaviors. 

Any instructable connectionist system must be able to receive and process 
quasi-linguistic statements. Strategies involving the compilation of linguistic 
instructions into network weights are generally too restrictive to be of use 
in cases where instruction is to be more than a one shot occurrence. By 
encoding linguistic statements as temporal activation patterns, and by allowing 
domain task specific internal distributed representations of these patterns to 
form as a result of inductive learning, connectionist systems are granted the 
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power to interact linguistically with the world and to have language interact 
appropriately with their actions. As demonstrated by the simple instructable 
networks which were discussed here, linguistic input may be made to modulate 
a systematic behavior. It is also possible that recurrent networks performing a 
systematic task may potentially be trained to explain their systematic behavior 
in a quasi-linguistic fashion, thereby revealing their inner workings. Encoding 
linguistic statements as time-varying distributed patterns of activation opens 
the door to many opportunities. 

If an instructable connectionist system is to modify its behavior immediately 
in the face of advice, only two general design strategies are possible. Either 
some sort of fast weight modification mechanism must be installed, or behavior 
must be modulated by changes in the activation state of processing elements. 
The strategy which is described here leaves the process of weight modification 
in the capable hands of inductive learning algorithms and focuses instead 
on encoding the receipt of instruction as motion in an inductively learned 
distributed activation space. Metaphorically, "learning by being told" involves 
an instruction sequence input pattern pushing a network into a new region of 
activation space — a region corresponding to the desired behavior.7 Restricting 
network activity to this region of activation space effectively restricts network 
behavior, as well. A connectionist system which has successfully learned the 
regional topology of this activation space will be capable of responding to 
instruction as rapidly as activation levels can change. 

While this proposed strategy for connectionist advice taking shows much 
promise, it is certainly not without flaw. The main thing that is missing from 
this account is, as outlined in the introduction, memory. In order to finesse 
this problem, in this work we simply "froze" the network activations at the 
plan layer. Adding a memory to this model should be seen as the first goal 
of future work. It may be trivial to add an appropriate attractor structure to 
the network, but it is more likely that such attempts will contain unforeseen 
difficulties. Also, critics of a simple attractor model of memory may attack 
such attempts by referring to related psychological phenomena. For example, 
one can remember, albeit briefly, nonsense words like "frobitz", for which there 
is no clear reason to expect an attractor bowl in our lexicon. There are several 
possible responses to such criticism. First, "frobitz" is much more similar to 
valid English words than "mxytlpx", which has the same number of letters but 
is much less memorable. This supports an attractor based memory model in 
which general phonological features help shape attractor basins. Second, it 
may be necessary to add special purpose memory devices. One memory model 

7Thanks are due to Paul Churchland for this observation [1]. 
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that makes fast associations using an activation-based approach is Metcalfe's 
CHARM [9] model. There is plentiful evidence to indicate that the human 
memory system involves many specialized components. Can less be expected 
of a connectionist cognitive model? 

Another obvious problem with this approach to "learning by being told" is 
the difficulty with which networks of this kind learn the needed language 
interpretation skills. More efficient training techniques are needed for recurrent 
networks performing systematically structured tasks if this strategy is to be 
applied to reasonably sized networks. Specifically, variations on combined 
subset training should be examined. Also, learning to take advice should be 
factored out from the task of learning to operate in a given domain. There are 
many things that could be learned in advance about the regularities of a domain 
before advice is proffered. This should make the process of learning to take 
the advice easier and correspondingly faster. 

As these issues are resolved by further research, perhaps cognitive modelers 
will not sense a need to retreat to hybrid symbolic/connectionist systems to 
solve their knowledge acquisition and manipulation problems. In the end, 
connectionism might be found to provide it all. 
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1 INTRODUCTION 

Although there is a considerable diversity of representational formalisms in the 
Connectionist literature, most of the excitement about representation has been 
concerned with the idea of distributed representations. Dissatisfied with the 
Symbolic tradition, and in search of the new, many cognitive theorists began to 
infiltrate connectionism in search of a new theory of mind. Like the Classicists, 
these theorists required that a constructed, analytic theory of mind postulate 
complex structured representations; it is only by having structural similarities 
among representations that we can account for the systematic nature of human 
thought. The Classical view is that the systematic relations between represen
tations are necessarily based on the composition of similar syntactic elements. 
Likewise, some of the representational types found in the connectionist litera
ture satisfy this requirement, only by virtue of the fact that they are similar to 
Classically conceived symbolic representations. For example, the structure of 
complex expression may be maintained in vector frames consisting of explicit 
tokens or complex expressions that are essentially passed around a net [18]. 
Only distributed representations offered the promise of a novel representational 
scheme that could underpin a connectionist theory of cognition; a scheme that 
relied upon the assumption that structural similarity relations can be captured 
in a connectionist net by systematic vectorial distances between the distributed 
representations created. 

This very idea, that spatial (Euclidean) similarity relations could capture sys
tematic structural similarities, serves to separate the Connectionist and Classi
cal theories. For the Classical theorist, the necessary and sufficient structural 
similarity relations for a representational theory of mind are syntactic, whereas 
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for the Connectionist, they are spatial (ie. given in terms of similarity of 
location in a Euclidean space). Indeed, that representations can stand in non-
syntactic similarity relations is crucial to the emergence of a Connectionist 
theory of mind. The current, ongoing debate between the Classical and the 
Connectionist schools, regarding their different conceptions of the components 
of a theory of mind, has turned precisely upon this issue, namely, upon the 
nature of the requisite structural similarity relations that hold between rep
resentations. A great deal of effort has gone into devising an explanatory 
framework that makes use of spatial, as opposed to syntactic, structure, as 
witnessed by the explosion of descriptive terms. Thus, fully distributed repre
sentations, superpositional storage, holistic computation, non-concatenative 
compositionality, and indeed, spatial structure itself, are all new terms either 
invented for the purpose, or ported into Connectionism in order to distinguish 
and explicate a non-symbolic theory of mind. 

In this chapter, we focus, not upon the terms of the debate between the Classical 
and the Connectionist schools, but on the underpinnings of the emerging con
nectionist theory of cognition. We challenge a key assumption of the proposed 
connectionist representational scheme; that the precise distances between vec
tors of distributed representations, learned by a connectionist net, reflect sys
tematic semantic and/or structural similarity relations. On this understanding, 
even a minute difference in the distance between one representation vector and 
any of the others will change the 'meaning' of that representation (cf. [11], 
[3]). The structure of our argument will proceed as follows: In Section 2, 
we examine the origins of Connectionist representations, from their humble 
beginnings to their most modern sophistication. Along the way, we shall see 
the emergence of the key 'spatial systematicity' assumption (ie. the assump
tion that systematicity has a spatial explanation). In Section 3, we present a 
detailed argument using constructive methods, drawing upon a simple decision 
space technique (cf. [20]), which demonstrates that this assumption may not 
be warranted except under special circumstances. We will show here that the 
computational role of a, so called, distributed representation may be separated 
from its specific neighbourhood distance relations (where a neighbourhood is 
a group of 'close' points defined by some Euclidean distance metric). This 
analysis will then be used to support an argument in favour of 'whole net' 
representation. In Section 4 of the paper, we consider the implications of our 
findings, and consider a possible re-orientation toward the notion of functional 
representations in which the input is represented by the whole net, weights as 
well as units, in terms of its computational role. 
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2 T H E O R I G I N S O F C O N N E C T I O N I S T R E P R E S E N T A T I O N 

The term distributed representation grew out of the idea of how concepts or 
representations, let us call them entities, from a descriptive language could 
be recoded into binary vectors (bit vectors) such that, (a) an entity that is 
described by a single term in the descriptive language is represented by more 
than one element in the connectionist representation ([13]). For example, if the 
lexical item 'ball' was a term in the descriptive language, then the distributed 
representation would have 'bits' to represent, say, the features, or microfeatures 
as they are often called, of 'ball' including 'round' and 'bouncy'; (b) each of 
the elements in the distributed representation must be involved in representing 
more than one entity described by a single term in the descriptive language. 
For example, the (micro)feature 'round' for the item 'ball' may also be used 
as part of the distributed representation for other items such as 'Edam cheese'. 

These distributed binary vectors can be thought of, in a very restricted sense, 
as representations with content in that each of the elements of a binary vector 
stands for a content element of the entity being represented. However, despite 
the use of the term microfeature instead of the Classical term feature, featural 
representation had already been used extensively in the Symbolic tradition 
(e.g. phonological features, and semantic features) as had the notion of dis
tance in feature space (e.g. semantic distance, [4]). There was not a lot of new 
action for the representationalists. The novelty of connectionism was in the 
way in which higher order relationships could be extracted from the featural 
representations and how these representations could be put to work in a variety 
of tasks. Most types of Connectionist representation were similar to Classi
cally conceived symbolic representations. Some of these consisted of explicit 
tokens or complex expressions that are essentially passed around a net, while 
others maintain the structure of complex expressions in frame vectors. This 
prompted a severe and scathing attack on the idea of a new connectionist theory 
of cognition from [9]. One of their main arguments was that connectionist rep
resentations are either hopelessly inadequate for the purpose of developing a 
cognitive architecture, or they are merely, at best, implementations of Classical 
representations. 

The Fodor and Pylyshyn criticism also had a positive side. Following its 
publication, all hands went to the pumps, and before long very many replies 
began to emerge from the connectionist community (look at any collection 
of cognitive connectionist papers between 1988 and 1992). The representa-
tionalist, in search of novelty, began to focus on the idea of fully distributed 
or superpositional representations. These are vectors of continuously valued 
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vectors such as the 'hidden unit' vectors used by multilayer learning techniques 
such as backpropagation ([17]) and its variants (e.g. [21], [54]), or the type 
of superposed unit activations developed using Tensor Products ([15]). Such 
representations are called superpositionalbecmse therepresentings of two dis
tinct items are superposed if they occupy the same portion of the unit resources 
available for representing (a clear treatment of superposition is given in [12]). 
In order to define superposition more formally, we might say, following [1], 
that R is a representation of individual content items cu c2, ... cn if, (1) R 
represents each a; (2) R is an amalgam of representations rx, r2, ... rn of 
content items ciy c2,... cn respectively, and (3) n , r2,... rn each uses the same 
unit resources in representing a given content c». 

The discovery of such novel representations was cause for much excitement in 
the cognitive science community because they, at last, had an alternative to the 
symbolic representations of Classical AI, one that also offered a non-symbolic 
alternative to the simple input/output contingencies of behaviourism. Nonethe
less, there was still considerable disquiet in the Classical camp. The main bone 
of contention concerning superpositional representations was that, according 
to some, they lacked compositional structure. In a critique of uniquely con-
nectionist representations, [8] argue that in order to support structure sensitive 
operations, complex representations must, literally, contain explicit tokens of 
the original constituent parts of the complex expression: 

'...when a complex Classical symbol is tokened, its constituents are 
tokened. When a tensor product or superposition vector is tokened, 
its components are not (except per accidens). The implication of this 
difference, from the point of view of the theory of mental processes, 
is that whereas the Classical constituents of a complex symbol are, 
ipso facto, available to contribute to the causal consequences of its 
tokenings - in particular, they are available to provide domains for 
mental processes - the components of tensor product and superposi
tions vectors can have no causal status as such.' 
(Fodor & McLaughlin, 1990, p. 198.) 

These criticisms forced the Connectionist community to examine more closely 
what [20] have called the three horns of the representational trilemma facing 
cognitive science: That is, whether distributed representations are (or could 
be) compositional, whether the kinds of putative mental processes that dis
tributed representations enter into could be systematic and (to a lesser extent 
for the purposes of this chapter) whether distributed representations could be 
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grounded. However, we must tread warily when we label a new entity in sci
ence lest we smuggle inappropriate terms and theoretical attributes behind the 
guise of the label. Compositionality and systematicity are both terms borrowed 
from the study of artificial and natural languages in model theoretic semantics 
and linguistics, and applied to the study of the putative Language of Thought 
(cf. [7]) in cognitive science. Linguistic capacities are said to be systematic, 
in that the ability to understand some sentences, for example, 'Jerry likes 
Connectionists', is intrinsically connected to the ability to understand certain 
others, for example, 'Connectionists like Jerry'. Moreover, this capacity is 
identified with the feature of all languages that its constructs (viz. sentences) 
have syntactic and semantic structure. The argument translates directly to the 
LoT. Thus, cognitive capacities are said to be systematic, in that the ability to 
think the thought that, for example, Jerry likes Connectionists is intrinsically 
connected to the ability to think certain others, for example, the thought that 
Connectionists like Jerry. Moreover, this capacity is identified with the feature 
of the putative LoT, that thoughts have syntactic and semantic structure. Thus, 
just as there are structural similarities between the sentence 'Jerry likes Con
nectionists' and the sentence 'Connectionists like Jerry', so too there must be 
structural similarities between the mental representation that Jerry likes Con
nectionists and the mental representation that Connectionists like Jerry. The 
conclusion that is drawn from these examples is that mental representations, 
just like the corresponding sentences, must be constituted of the same parts in 
a systematic compositional manner. 

So how does all of this bear on distributed representations? Well, the charge 
is made (cf. [9]) that distributed representations are not compositional and 
thereby they are not able to support systematic cognitive capacities. To be more 
specific, the charge is made that distributed representations are not candidate 
mental representations because they do not have a combinatorial syntax and 
semantics. That is, distributed representations make no use of the distinction 
between structurally molecular and structurally atomic representations, they do 
not have tokens of constituents as literal parts and the content of a distributed 
representation is not a function of the content of its literal parts together with 
its constituent structure. 

Since the publication of their article however, Fodor & Pylyshyn have been 
shown to be a little bit premature in their conclusions. Specifically, what has 
emerged from the Connectionist literature is that distributed representations 
can be compositional without themselves being Classical. To recall, the pri
mary requirement of a representational theory of mind is that representations 
have internal structure, or that they have a significant constituent structure. 
The Classical theorist argues that such constituent structure is syntactic, re-
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suiting from a concatenative method of combining constituents. However, 
the insight that van Gelder ([11]) disseminated was that Connectionist repre
sentations can have internal structure, without that structure being syntactic. 
What legislates for this assertion is the realization that concatenation is not the 
only means available to the computational theorist for constructing complex 
compounds. Thus, instead of employing a concatenative method of combining 
constituents to form compounds, which then have a resultant syntactic structure 
(as the Classical theory of mind asserts), the Connectionist theorist employs 
a non-concatenative method of combining constituents to form compounds, 
which then have a resultant spatial structure. Thus, instead of the syntactic 
similarity relations that hold between Classical symbols, the Connectionist 
theorist appeals to spatial similarity relations, similarities usefully understood 
as similarities of location in decision space. The proposal is that it is the spe
cific distances between the representations that provides Connectionism with 
a structured compositional scheme. 

Much of the force of the Classical attack on Connectionism is deflected when 
one realizes that it is possible to entertain the kind of qualitatively differ
ent spatial structure similarity relations that non-concatenative, as opposed 
to concatenative, methods of combination provide for complex Connectionist 
representations. When discussing the internal structure of vectors of activation, 
it is important to be aware that, on current understanding, a compound Connec
tionist representation is not regarded as having tokens of constituents literally 
present within it (as the compound Classical representation does). Rather, rep-
resentings of constituents are superposed within the compound representation 
itself, as we have already discussed. x 

It is these insights, of the existence of non-concatenative compositionality and 
spatial structure similarity relations, which inform a fundamental assumption 
of the Connectionist theory of mind. That is: 

.. .the particular internal makeup of & given representation determines 
how it stands to other representations. (Van Gelder, 1989) 

1 The identity of constituents in fully distributed representations are destroyed in the process of 
composition. Whilst not literally tokened, the constituents are still said to be causally effacacious 
in computation. Indeed, Sharkey ([19]) provides a method for extracting the representations of 
constituents out of holistic representations of the inputs. The implications of the current paper 
for this method of extraction are not addressed here. 
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For van Gelder, it is the distance relationships between the representations 
which is of paramount importance. Later in the same paper, he states and 
re-stresses the point that: 

The position of a representation in the space has a semantic signif
icance; vary its position in that space, and you automatically vary 
the interpretation that is appropriate for it... Representations with 
similar sets of constituency relations end up as 'neighbouring' points 
in the space. The systematic nature of these spatial relations can be 
discerned using sophisticated techniques for the comparison of large 
groups of vectors such as cluster analysis. (Van Gelder, 1989) 

In this chapter, we intend to challenge this assumption of 'spatial systematic-
ity\ by showing that neighbourhood analyses, such as hierarchical clustering 
techniques, only correlate with the computational properties of a net, they do 
not show the causal consequences of distance on the computation. This chal
lenge could have serious consequences for the emerging Connectionist theory 
of mind, because as van Gelder says: 

... all this counts for nothing unless these [distance] relationships 
matter...unless the location of a given representation in the space is 
such as to be of some kind of systematic semantic and computational 
significance, (van Gelder, 1989) 

Our purpose here is not to burn what one might call a Spatial Strawman. 
Instead, we intend to show how an alternative form of systematicity might 
arise in multilayer nets as a result of the interaction between the input weights 
and the output weights. This is a functional form of systematicity in that it 
relates the inputs, not to each other in some representational space, but to their 
function on the output. We proceed with our argument by showing how the 
computational role of input patterns can be separated from their similarity in 
representation space. 

3 REPRESENTATION AND DECISION SPACE 

In order to show some of the technical problems associated with the notion of 
spatial systematicity, we focus here only on nets with two weight matrices and 
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three layers of units (input, hidden, and output) trained using the backpropaga-
tion learning rule (but the analyses applies equally well to other types of nets). 
In order to avoid importing the theoretical spectacles of representationalism 
into our arguments, we use the neutral term address rather than hidden unit rep
resentation, fully distributed representation, or super positional representation 
to refer to a vector of hidden unit activations, h = [hi, h2>..., hn]. The elements 
of the address vector are each coordinates for a point in an ^-dimensional deci
sion space (described below). This is the addressed location of an input vector. 
For example, the address for the input vector [1,1 ], in Figure 2, is [0.05, 0.91 ]. 
Thus, for a net with two matrices of weights, there are two processing steps. 
The first step is to allocate an address for a location in decision space to the 
input vector. For the second step, the outputs are determined by the relation of 
the addressed location to the hidden-to-output weights. 

It is possible to visualise this relation using decision space analyses which 
provide graphical representations of network computation. Such analyses have 
been used extensively for networks with a single matrix of weights between the 
inputs and outputs. These make a good starting place to explain the technique. 
Before discussing multilayer nets, we first examine some simple binary nets 
like those developed by McCulloch and Pitts (1943) for the basic functions: P 
AND Q, P OR Q, and NOT P AND Q. The nets are shown in Figures l(a)-(c). 
The output function is the Heaviside or threshold function, where an output o 
= 1, if w. v > 6 (where 6 is a value between 0 and 1, w is a weight vector 
and v is an input vector). The input space for the nets shown in Figure 1 is 
two dimensional and can thus be described as a square with the binary inputs 
arranged on its vertices. Each vertex can be thought of as a vector from the 
origin. To see what the net computes, the weights to the output unit may 
also be plotted as a vector from the origin. A decision line, perpendicular to 
the weight vector, can then be drawn through the input space by solving the 
equation, xw1 + yw2 = 6, for x and y, where w1 and w2 are the two weights, and 
x and y are coordinates of the decision boundary. The line divides the square 
into two decision regions that show which of the inputs will produce a +1 as 
output and which will produce a zero. 

Figures 1 (d)-(e) show the decision regions for the corresponding nets in Figures 
l(a)-(c). The diagrams entirely determine the computation of the nets. For 
example, if continuous rather than binary values were used as input to the nets, 
the decision line would show the regions of generalisation of the net i.e. which 
continuous valued inputs would map onto a +1 output and which would map 
onto a zero output. For nets with multiple output there would be one decision 
line for each output unit. 
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Figure 1 Top: Three 'McCulloch-Pitts' binary nets for the three func
tions: P AND Q, P OR Q, (NOT P) AND Q, and bottom, the three decision 
regions for the corresponding functions. 
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In a network with a single matrix of weights the input points are all fixed 
in advance and so training is limited to moving the decision lines around 
the input space until all of the points are captured in the required regions. 
Having such fixed input points restricts the functions that such a net can 
compute to those in which the pattern classes are linearly separable. This is 
a severe restriction since the ratio of linearly separable to linearly dependent 
pattern classes rapidly approaches zero as the dimensionality of the input space 
increases. For example, it is not possible to move a line around the 2D input 
space to separate the regions appropriately for XOR function (11 —• 0,00 —• 0, 
10—• 1,01 —• 1). One solution is to translate the input points into a new space 
such that they can be separated appropriately by the decision fine. This is the 
solution strategy used by backpropagation learning in multilayer nets. 

Unlike training a net with a single weight matrix, a feedforward net with two 
matrices is not restricted to moving decision boundaries around fixed input 
points. It can move the input points as well, or at least their addressed locations. 
Initially each weight in the network matrices is set to a random value (usually 
between -0.1 and 0.1). Each input vector is passed through the two operations: 
allocate an address and generate an output. The actual output is compared with 
the required output and, if it is incorrect, an error signal is passed to the output 
weights to move the decision boundaries towards addressed locations that 
should be in those regions and away from locations that should not. An error 
signal is then passed to the input weights so that the addresses are altered to 
move the locations closer to appropriate regions and away from inappropriate 
regions. A simple macroscopic description of backpropagation learning is that 
the addressed locations are attracted by their appropriate decision regions and 
repelled by their in appropriate regions. Likewise, the decision boundaries are 
attracted and repelled by the addressed locations. During learning the decision 
boundaries and the addressed locations are juggled until the input classes are 
separated appropriately by the decision boundaries and the points are outside 
of the sphere of influence of repellor regions. 

An important point is that as soon as the net has separated the classes, as 
described, the process terminates. There is no fine tuning of the individual 
distances between the addressed locations. The main determinants of where 
an addressed location will end up in decision space (apart from rate param
eters) are: (i) the initial addresses of the inputs; (ii) Tlie initial positions of 
the decision boundaries; (iii) similarity relations in input space; and (iv) the 
required similarity relations in the output space. By way of example, Figure 2 
shows a decision space for a fully connected feedforward net that was trained 
on the XOR task using backpropagation learning. Note how the input pat
terns have been allocated addresses in the decision space that allow them to 
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be separated by a line. This shows clearly that a net with two weight layers 
does not necessarily implement a nearest neighbour classifier. Two addressed 
locations with the same computational roles may be relatively distant as shown 
for the input vectors [0,1] and [1,0] in Figure 2. The point is that being in the 
same neigbourhood often correlates with being in the same decision region, but 
the two are separable. It is not the distances between the addressed locations 
that determines the computation, rather what the net will compute for a given 
input is entirely determined by its addressed location in relation to the decision 
boundaries. 

Figure 2 The decision regions for a net trained on the XOR function. 

This latter point will be demonstrated by working through some examples. 
An address space is illustrated in Figure 3 with the coordinates of twelve 
input patterns shown as numbered locations. 2 These locations are not, as 
yet, labelled according to their input or class. Since the labels do not have a 
causal role in the computation, their ommission enables us to look at the data 
neutrally. Post hoc explanations of why, for example, 'tomato' was clustered 
with 'cucumber' instead of 'apple' can be very distracting. 

2Backpropagation tends to push the hidden unit vectors towards the axes of the space. It 
is also possible to find instances of backpropagation learning in which some points are located 
in the middle of the space, for example, where they are novel inputs patterns and they are 
orthogonal (or nearly orthogonal) to the trained patterns as illustrated in the examples. 
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Figure 3 An address space with numbered locations. 

A visual inspection of Figure 3 reveals four clusters of locations in the space: 
(i) 1,2,3; (ii) 4,8,9; (iii) 5,6,7; and (iv) 10,11,12. This is supported by a 
Hierarchical Cluster Analysis of the squared Euclidean distance between the 
points. A dendogram of the analysis, shown in Figure 4, only differs from 
the visual inspection in linking two of the clusters, (ii) and (iv), in a central 
superordinate cluster. We could speculate that the clusters represented types, 
for example, animal, vegetable and mineral. The central (superordinate) cluster 
in the dendogram could be showing that the two clusters are subordinate types 
such as mammal and non-mammal. Alternatively, the clusters could represent 
agents, verbs, and actions, with the verbs subdivided into transitives and 
intransitives. 
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Figure 4 A dendogram of the hierarchical cluster analysis of the data 
points shown in Figure 3. 

We can now use our speculations to show how a neighbourhood analysis, 
such as cluster analysis, can yield quite different results from a computational 
analysis. To complete the picture, the weights to each of the output units 
are used to draw decision boundaries through the input space. The resulting 
decision space diagram is shown in Figure 5. 

Figure 5 tells us that there are three output units (because there are 3 decision 
lines) and that they divide the space into a number of positive regions con
taining the addresses for points 1-4, 5-8, 9-12. This differs considerably from 
the neighbourhood analysis. Since the decision space determines the compu
tational type of each of the input tokens, it shows that the interpretation of 
the neighbourhood analysis was incorrect. Although the results of the cluster 
analysis were correlated, to some extent, with the decision space, they did not 
provide a reliable measure of the computational roles of the inputs. 3 

3In this chapter we describe only the common binary output nets typical in cognitive mod
elling. With continuously valued output units we may think of each output unit as implementing 
a series of boundaries each of which reflects a particular value on the output. With such a 
net the outputs are fixed by the intersection of the boundaries. For example, this is how the 
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Figure 5 A decision space for the numbered points in Figure 4. 

When cluster analyses are shown in the literature, the labels associated with 
the inputs are usually shown. These labels can often provide information about 
the computational role of the inputs and are, in a sense, often used in place 
of a proper computational analysis, e.g. we might know that tiger should 
cluster with lion rather than with comb. In Figure 5, labels are associated with 
each of the address points and decision lines from Figure 3. We can see now 
that the space is divided up into canines, herbivores, and birds. Each of the 

non-terminals of a RAAM net ([54]; [2]) work. However, there is still a legitimate separation 
between specific Euclidean distance relationships in hidden unit space and the computational 
roles of the inputs. Even then, in terms of the overall functionality of a RAAM, the correlation 
between distance and function arises as a result of similarities between the input terminals rather 
than between structurally similar input expressions. 
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Figure 6 An alternative decision space for the numbered points in Figure 
4. 

addressed locations falls into one of these regions and thus we can say that each 
of the input patterns falls into one of those types. Now, this analysis highlights 
a common misconception in the literature (e.g. [18]) that the addresses are 
representations of the input that contain type information. This is true only in 
that the coordinates do locate the addresses within particular regions. However, 
it should be very clear at this point, and must be stressed, that types are not 
implemented by their specific distance relationships within neighbourhoods. 

The force of this point can be seen by drawing new decision lines through 
the decision space as shown in Figure 6. Three new decision lines have been 
drawn through the space so that the type structure is now different than it 
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Figure 7 View of the decision space of Figure 6, viewed in 3D with the 
addition of the z axis. 

was in Figure 5. Now locations 1,3,5,6,7 share the same computational role, 
distinct from the computational role shared by locations 2,4,8 and distinct from 
the computational role shared by locations 10,11,12 (Location 9 has its own, 
unique computational role). In other words, the type membership of a location 
can change even though its vector of hidden unit activations remains constant. 
It is clearly the relationship between an addressed location and the decision 
boundaries that determines the (computational) type of the input. 

If this argument has not convinced some readers about the vagueness of the 
notion of a vector of hidden unit activations having content, then consider 
the following. Figure 5 shows the label cow in the extreme upper left of the 
space while condor is in the extreme lower right. Now suppose we wish to 
create a type category for words beginning with the letter c. This is quite easy 
in decision space. We simply add a third dimension and raise both cow and 
condor on the z axis. In this case, as shown in Figure 7, we can simply slide in 
a new decision boundary to separate cow and condor from the other labelled 
locations in the space. 

So, in what sense can it be that the vectors of hidden unit activation now contain 
information that condor and cow both belong to the class of words beginning 
with the letter c? OK, so we added a small value on a third dimension. This 
change does not really affect the distance relationships between the addressed 
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Figure 8 Cluster analysis of the 3-d space shown in Figure 8. 

locations, as can be seen from the cluster analysis of the 3-d space, shown in 
Figure 8, but it would affect their type relationships, 

In summary, the examples in this section have shown that it is decision space 
rather than representation space that indicates the similarities between the 
inputs. Systematicity arises from the relationships in decision space between 
each addressed location and the decision boundaries, rather than between the 
addressed locations themselves. The decision space analysis clearly shows the 
computational role of the input vectors. The 'meaning' of an input vector in 
the system is the relation of its address to the decision boundaries of the output 
units. The idea that the individual addresses share intrinsic content, is only 
true insofar as inputs with similar addresses may be, depending on the task, 
more likely to end up in the same region. Any point in a region will output 
the same as any other point in the same region regardless of distance from the 
decision boundaries. As the example in Figure 5 shows, two points, 1 and 4 
are relatively distant and yet are computationally identical whereas points 4 
and 8 are relatively close and computationally disparate. Moreover, we have 
shown that the address can only be said to contain information about 'type' 
or 'semantic information * in a vague and unreliable way. This is because the 
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'type' of an address can be entirely changed just by moving the decision lines, 
as shown in Figure 6. 

4 DISCUSSION 

Our aim in this paper was to challenge one of the key assumption of an emerging 
connectionist theory of mind; that of spatial systematicity. Our approach has 
been to strip away some of the layers of baggage that could obscure the issue of 
what and how a connectionist net is computing. This is reminiscent of a similar 
purge in AI some years ago when McDermott ([15]) railed against the cavalier 
use of conceptually extravagant, but ultimately meaningless, labels in artificial 
intelligence work. He complained that the rich web of associations within 
which each such label is buried both obscured what was really going on among 
the labelled entities and also led to delusions of grandeur in the experimenters. 
This hard criticism was generally accepted at the time (although not always 
acted upon) by the AI community. It is suggested here that this is a healthy 
step and that it may now be time for all of us 'sub-symbolists' to pay attention 
to this important lesson. Although it is important not to give up all that has 
been learned by the Classical tradition, it could well be a fatal distraction to 
concentrate on satisfying their terminology rather than paying attention to the 
phenomena that are to be explained. 

In our analysis of spatial systematicity, we removed the label representation 
altogether and replaced it with the more neutral terms address and addressed 
location. The main problem with the idea of hidden unit distributed represen
tations is that it considers only half of what a net with two layers of weights 
is doing. Popular neighbourhood analysis techniques such as cluster analysis 
leave out entirely the role of the output weights. What we have argued here 
is that because the computational properties of a net and the neighbourhood 
distances are often correlated, one can be misled into believing that the dis
tance relations are causal in the computation. We set out to dispel this belief by 
showing, in a number of examples, how the two can be analytically separated. 
Indeed, it is only the relationship between each addressed location and the 
collective decision boundaries that causally determines the computation of a 
net. 

The spatial relations between the individual hidden vectors are not a direct 
analogy to the syntactic relations between Classical representations. Back-
propagation works with functional rather than distance similarity among the 
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input vectors. All that happens during learning is that the input and output 
weights are moved until all of the addressed locations are on the correct sides 
of all of the decision boundaries. Once this occurs the learning terminates 
regardless of the specific distances between the points. We have shown here 
that it is possible for a cluster of addressed locations to have no functional 
significance for the particular task as shown by the dendogram of the points in 
Figure 4. The cluster of the numbered points, 4, 8, and 9 had nothing to do 
with what the net computes according to the decision spaces shown in Figures 
5 and 6. 

When we show the door to the spatial systematicity assumption two other 
subsiduary assumptions must also be asked to leave. The first is that con-
nectionist representations (our addressed locations), as vectors of activation, 
have a systematic internal structure. That is, representations which need to be 
treated similarly by a given computational process, are treated similarly, by 
virtue of their own internal structure. In one extreme case here (see Figure 8) 
we showed that although the labels condor and cow were at extreme corners 
of the space (almost as far apart as possible) their addressed locations could 
be treated similarly by the computational processes simply by moving them 
into a third dimension to enable a decision plane to cut them off from the other 
addressed locations (yet they could be the same distance or further apart from 
one another). The second subsidiary assumption is that the internal structure 
of a representation, which is a function of the content of its superposed con
stituents, determines its degree of * semantic similarity' with other compound 
representations, ie. compound representations with similar structures will have 
similar 'contents'. Again, the condor-cow example, shows this assumption up 
for what it is. And further, in Figure 5, this assumption would show, in terms of 
the vocabulary of the spatial systematists, that & poodle is 'semantically more 
similar' to a snail than it is to a fox, a wolf or & jackal. The decision space 
analysis however, reveals a qualitatively different picture, where poodle, fox, 
jackal and wolf belong to the same functional category with computational 
properties distinct from snail. 

Let us be absolutely clear. A proponent Qf 'spatial systematicity' may continue 
to argue that mere addressed location of an input in hidden unit space is still 
of paramount importance. This is wrong. It is rather the case that location is 
a relative concept, and it can only be with respect to the decision boundaries 
that an addressed location has computational significance. What we have 
shown here is that if an input maintains its addressed location, while the 
decision boundaries are changed, then that input will have a different role in 
the computation of the network. Indeed, a fixed addressed location for an 
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input may partake in many different computational roles, as a function of the 
decision boundaries implemented by the output units. 

Overall, the arguments presented here suggest that, contrary to the popular 
practice of concentrating upon a single representational resource in isolation 
(either the unit or the weight resource), connectionists would do better to adopt 
a * whole net' view of representation. Analysing unit activations in isolation is 
misleading, unless the theorist takes into account decision boundaries imple
mented by the output units: similarly, analysing decision boundaries without 
taking into account the addressed locations they partition is meaningless. It 
remains to be seen how, and in what form, the notion of 'whole net' represen
tation can be fleshed out. 

The bottom line is that spatial relations of hidden unit space can be separated 
analytically from the computational roles of the 'representations'. The burden 
of proof that such a separation cannot occur, either in principle or in practise 
in specific implementations of cognitive capacities, lies with those who are 
making the claims about spatial systematicity. Our suggestion is that a more 
stable cornerstone for a new connectionist theory of mind should be built up 
on the foundations of decision space presented here. 

5 SUMMARY 

This chapter was concerned with the underpinnings of the emerging connec
tionist theory of cognition with regards to the internal workings of connectionist 
nets (hence the title of the chapter). We did not reconsider the terms of the 
debate between the Classical and the connectionist schools, and thus, in this 
sense also, the chapter is an internal report for connectionists. Our aim was 
to challenge a key assumption of the proposed connectionist representational 
scheme, namely, that the precise distances between vectors of hidden unit ac
tivations, learned by a connectionist net, reflect systematic semantic and/or 
structural similarity relations. We did not simply attack a Spatial Strawman in 
advancing our argument because, as we have said, current understanding holds 
that even a minute difference in die distance between a given activation vector 
and any of the others will change the 'meaning' of that vector. 

The structure of our argument was in two parts. First, in Section 2, we ex
amined the origins of the Connectionist term 'representation', and described 
the key 'spatial systematicity' assumption. Second, in Section 3, we presented 
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a detailed argument using constructive methods, drawing upon a simple de
cision space technique which demonstrated that this assumption may not be 
warranted except under special circumstances. An important aspect of the 
argument was to show that the computational role of a, so called, distributed 
representation may be separated from its specific neighbourhood distance rela
tions. This analysis was then used to support an argument in favour of 'whole 
net' representation. It may seem to some that we are being a bit 'picky' here, 
but if we do not make sure that the foundations are correct we could end up 
with a tower of Babel. 

A C K N O W L E D G E M E N T S 

We would like to thank Lars Niklasson and Timothy van Gelder for helpful 
comments on an earlier draft of this chapter. 

REFERENCES 

[1] Aizawa, K. (1992) Review of Philosophy and Connectionist Theory. 
W.Ramsey, S.P.Stich & D.E.Rumelhart (Eds). In Mind and Language, 7. 

[2] Baldwin, A. (1993) The role of connectionist representation in neces
sary inference for natural language processing. Unpublished PhD. thesis, 
University of Exeter. 

[3] Chalmers, D.J. (1990) Why Fodor and Pylyshyn were wrong: The sim
plest refutation. Proceedings of the Twelfth Annual Conference of the 
Cognitive Science Society\ 340-347. 

[4] Collins, A.M. & Quillian, M.R. (1969) Retrieval time from semantic 
memory. Journal of Verbal Learning and Verbal Behavior, 8, 240-247. 

[5] Dolan, C.P. & Smolensky, P. (1989) Tensor product production system: a 
modular architecture and representation. Connection Science, 1.1., 53-68. 

[6] Elman, J.L. (1989). Representation and structure in connectionist models. 
CRL Technical Report 8903, Center for Research in Language, University 
of California, San Diego, CA. 

[7] Fodor, J.A. (1975) The Language of Thought. New York: Crowell. 



244 CHAPTER 7 

[8] Fodor, J.A. & McLaughlin, B. (1990) Connectionism and the problems 
of systematicity: Why Smolensky's solution doesn't work. Cognition, 35, 
183-204. 

[9] Fodor, J.A., & Pylyshyn, Z.W. (1988). Connectionism and cognitive ar
chitecture: A critical analysis. Cognition, 28, 2-71. 

[10] van Gelder,T.( 1989) Classical questions, radical answers: Connectionism 
and the structure of mental representations. Horgan,T. & TiensonJ. (Eds) 
Connectionism and the Philosophy of Mind. 

[11] van Gelder, T. (1990) Compositionality : A connectionist variation on a 
classical theme. Cognitive Science, 14, 355-384. 

[12] van Gelder, T. (1992) Defining 'Distributed Representation'. Connection 
Science, 4(3,4), 175-192. 

[13] Hinton, G.E. (1989) Connectionist learning procedures. Artificial Intelli
gence, 40, 184-235. 

[ 14] McCulloch W.S. & Pitts W.H. (1943) A logical calculus of ideas immanent 
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133. 

[15] McDermott, D. (1976) Artificial intelligence meets natural stupidity. 
SIGART Newsletter, no. 57, 4-9. 

[16] Pollack, J.B. (1990) Recursive distributed representations. Artificial In
telligence, 46,11-105. 

[17] Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning repre
sentations by back-propagating errors. Nature, 323, 533-536. 

[18] Sharkey, N.E. (1991) Connectionist representation techniques. Al Review, 
5,3, 143-167. 

[19] Sharkey, N.E. (1992) The Ghost in the Hybrid: A Study of Uniquely 
Connectionist Representations. AISB Quarterly. 10-16. 

[20] Sharkey, N.E. & Jackson, S.A. (In press) Three horns of the representa
tional trilemma. In V. Honavar & L. Uhr (Eds) Artificial Intelligence and 
Neural Networks: Steps towards Principled Integration. Volume 1: Basic 
Paradigms; Learning Representational Issues; and Integrated Architec
tures. Cambridge, MA: Academic Press. 



PART HI 

COMBINED ARCHITECTURES 



246 

Part III: Combined Architectures 

• Chapter 8 (by Ron Sun) presents a connectionist architecture consist
ing of two levels: one level for conceptual inference and the other for 
microfeature-based similarity matching. 

• Chapter 9 (by Lawrence Bookman) presents a connectionist architecture 
that supports both structured and non-structured representations in which 
knowledge is encoded automatically using information-theoretic methods. 

• Chapter 10 (by Charles Lin and Jim Hendler) presents an application of a 
hybrid system shell. 
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1 INTRODUCTION 

In this chapter, a connectionist architecture for structuring knowledge in vague 
and continuous domains is proposed. The architecture is hybrid in terms of 
representation, and it consists of two levels: one is an inference network with 
nodes representing concepts and links representing rules connecting concepts, 
and the other is a microfeature-based replica of the first level. Based on the 
interaction between the concept nodes and microfeature nodes in the archi
tecture, inferences are facilitated and knowledge not explicitly encoded in a 
system can be deduced via a mixture of similarity matching and rule applica
tion. The architecture is able to take account of many important desiderata of 
plausible commonsense reasoning, and produces sensible conclusions. 

One of the most important problems in building intelligent systems (and in 
modeling cognitive processes) is how to represent knowledge, that is, how to 
structure knowledge in a way that facilitates common types of inferences to 
be made. Most commonly, some types of logic or rule-based approaches are 
adopted ([44] and [13]). However, these approaches are far from matching 
the capacity and flexibility of human reasoning (see [4] and [39]). What is the 
problem? 

Knowledge is hard to grasp, as discovered by many, including some leading 
researchers (cf. Minsky [21] and Hayes-Roth et al [13]), notwithstanding the 
fact that small chunks of knowledge for a narrowly defined domain can be 
extracted and structured into rule-based, frame-based, or other similar systems. 

247 
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Psychological experiments reveal that in human cognition various kinds of 
knowledge exist and they are used in different ways [22]. Many different types 
of inferences can be performed in commonsense reasoning, sometimes based 
on the same set of knowledge [20]. In addition, most commonsense knowledge 
are uncertain, fuzzy, or probabilistic (cf. [23], [41], and [6]). 

In view of these problems, in order to build intelligent systems that are more 
capable than the existing ones in producing flexible, plausible and useful infer
ences, there is clearly a need to sharpen up means for representing knowledge; 
that is, there is a need to structure knowledge in ways that maximize the infer
ential capability while minimizing the inferential complexity (the performance 
issue does need to be considered). This is a tough goal to achieve, since the 
two subgoals are apparently mutually contradictory. (For some domains that 
will be looked into here, a nice balance between the two subgoals is indeed 
achievable.) 

Some attempts at providing more flexibility to intelligent systems result in some 
partially successful models for representing knowledge and/or performing rea
soning. One such model is fuzzy logic [43], which allows vague concepts and 
deals with vagueness in reasoning. It envisages a concept as a set of objects 
each of which belongs to the set to a certain degree, as measured by a grade of 
membership. Thus, vague concepts are accommodated and objects may belong 
to a particular concept partially, without the need of forcing a dichotomatical 
true/false decision. (This work will adopt this view of concepts as partially 
true descriptions of objects, but will not adopt the logical operations defined 
on top of that, i.e. MIN/MAX, as in [43]). 

Beside fuzzy logic, there are a number of other rule-based approaches, for 
example, probabilistic reasoning [23], Dempster-Shafer evidential reasoning 
[26], and so on, each of which is good at capturing a particular aspect of 
vagueness of real world knowledge. However, they are not meant to deal with 
aspects other than the one for which they are specifically designed. 

Another popular approach is that of PDP models (see [25] and [1]). Using 
networks of simple processing elements, typically with a global multilayer 
feedforward structure and with a continuous, sigmoidal activation function in 
each processing element, these models are capable of virtually any continuous 
mapping [16], including dealing with flexible reasoning based on similarity as 
mappings between two sets of concepts. This purely similarity-based, generic 
framework can be applied to a large variety of knowledge intensive tasks, 
by encoding knowledge distributively in link weights acquired from applying 
learning algorithms. However, these models lack certain basic characteristics 



A Two-Level Architecture 249 

for flexible yet precise commonsense reasoning, namely, explanation, symbolic 
processing, interaction with humans in acquiring and modifying knowledge, 
interpretation of internally stored knowledge, and handling of discontinuous 
cases (see [33]; more on this later). 

In the discussion here, let us generally assume that knowledge in a domain 
is composed of knowledge statements, such as Horn clauses, which could be 
atomic propositions or rules consisting of a number of atomic propositions 
expressing antecedents and consequents respectively. This is an acceptable 
assumption, because almost all knowledge-based systems are in such forms 
(or can be transformed into such forms, for example, frames, scripts, etc.; 
see [12]). (One exception is neural networks, which encode knowledge in 
a set of numerical weights, which are difficult to interpret in terms of rules. 
One of the goals of this work is to show that there is an alternative to the 
black-box style neural network models, and the architecture proposed here not 
only serves as an alternative but also has some important advantages.) From 
here on, when we discuss a domain, we will think of it as composed of a 
space of primitive statements (i.e., the set of all possible primitive statements), 
and the main operation in that space is match. When two statements are 
deemed matching each other, inferences are enabled by associating knowledge 
of one statement with the other. For example, suppose there is the following 
space of primitive statements: {a,6,c,d,e,/}, and there are the following 
associated compound knowledge statements: c —• d and e —• /. When 
given a, matching statements are searched for. Suppose e matches a (exactly 
or approximately), then the knowledge statement e —• / can be applied, and 
/ can be deduced (exactly or approximately). 

The present work will be mainly concerned with the vague domains. By 
vague domains, it is meant the type of domains that are composed of inexact 
statements (fuzzy, probabilistic, etc.), and the match between two statements 
in a domain is not all-or-nothing: a continuum can be formed that ranges 
from perfect (exact) match to no match (irrelevance) to the exact opposite (the 
negative perfect match). The key features of such domains are (1) inexactness, 
allowing partial match situations, and (2) continuity, with varying degrees of 
partial match. 

Given the above, it is impossible to have all the knowledge statements that can 
cover all possible situations in such domains: the number of possible situa
tions can be infinite, because a continuum can exist going from one statement 
(any particular statement) to the statement that is the exact opposite. Given 
this infinite space, knowledge statements need to be devised and structured 
economically, in ways that can cover a domain as accurately as possible within 
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the constraint of resources. The question of how to structure knowledge to 
help to guide and facilitate reasoning in a domain also needs to be considered. 

In the rest of this chapter, some discussion of vagueness will be provided, and 
then a two-level structuring of knowledge for vague domains will be proposed. 
Based on a particular set of requirements for plausible inferences, the parameter 
values of a two-level architecture satisfying these requirements will be derived. 
A set of experiments will also be presented to further illustrate the architecture. 
Finally, brief comparisons and conclusions will complete the chapter. 

2 D E V E L O P I N G A T W O - L E V E L A R C H I T E C T U R E 

2 .1 S O M E A N A L Y S E S 

Let us consider how we can better structure our knowledge, given the afore
mentioned considerations. First of all, we need to have explicit knowledge 
statements in our system. This is because explicitly stored knowledge state
ments can provide clarity, modularity, human comprehensibility, and expla
nations needed for interaction. We simply choose Horn clauses as the form 
of such knowledge statements (see [3]). In its simplest case, a Horn clause 
just states a proposition or a concept, without any pre-conditions or possible 
consequences. In more complex cases, a Horn clause is a rule consisting of 
a number of antecedents, which are simple propositions/concepts, and a con
sequent, which is also a simple proposition/concept. We choose Horn clause 
because of the simplicity of the formalism, its popularity in knowledge-based 
systems, its expressive power, and its inferential efficiency [3]. 

Second, we need to have a better grasp of the various kinds of vagueness in 
domains. For one thing, there should be a degree of confidence or certainty 
associated with each primitive knowledge statement (or its instantiation), judg
ing how close, and/or how likely an instance of that statement is to conform 
to the ideal of the concept involved (see [41]). For example, "warm areas are 
suitable for rice growing" can be expressed in the rule 

warm —• rice-growing 

Here "warm" is not a crisp concept (knowledge statement); various degrees of 
"warm" exist. We should allow a degree of confidence to be associated with 
the knowledge statement. We can accept as input to a system an instance of 
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the knowledge statement of a place being "warm" with an associated confi
dence degree. We then match it with an existing rule (or compound knowledge 
statement), to form an instantiation of the rule. And we derive the conclusion 
knowledge statement of a place being "rice-growing" with a corresponding de
gree of confidence determined by, among other things, the degree of confidence 
of being warm. 

We also need a way of associating a confidence value with a rule itself, deter
mining how likely it will hold. Moreover, various vague evidence leading to 
the same conclusion should be summed up; that is, the degrees of confidence 
of different pieces of evidence in a rule have to be accumulated in some way, 
for example, by a weighted-sum. An example is as follows, 

subtropical rainy flat evergreen -«flood —• rubber-producing-area 

That is, an area with subtropical and rainy weather, flat terrain, and evergreen 
vegetation cover but no frequent flood tends to be an rubber-producing area. If 
one only knows that an area is subtropical, rainy, and without flood, one may 
conclude that it could be a rubber-producing area; if one knows that an area is 
subtropical, rainy, with flat terrain, and without flood, one can conclude that 
it is more likely to be a rubber-producing area; if one knows all of the above 
conditions, one can conclude that the likelihood is very high. A cumulative 
evidentiality is in working here, which should be taken into consideration. 

There is yet another type of vagueness, which can be further pinned down. 
Basic concepts (or primitive knowledge statements) are similar to each other 
to varying degrees. Even though something is best described by one particular 
knowledge statement, other statements may also apply. Especially when there 
is no inference that can be made with the best matched case, turning to other 
related cases will definitely be of help. This is in a way similar to analogical 
reasoning (or case-based reasoning), in that some seemingly different knowl
edge is brought together from a partial match of two chunks of knowledge. 
In some sense, we need a rudimentary form of analogical reasoning capa
bility in dealing with vague domains. An example from the commonsense 
geographical reasoning domain is as follows: "Columbia basin" is described 
as tropical river-basin and coastland, and "Ecuador coast" is described as a 
tropical, coastal lowland with rainforest cover. In order to deduce possible 
agricultural products of "Columbia basin", we notice its similarity to "Ecuador 
coast" in terms of their geographical features. Since the latter produces (among 
other things) bananas, we can conclude that the former may produce bananas 
too. For another example, "Northern Brazil" is described as a tropical, hilly 
plateau with rainforest, and "Bolivia oriente rainforest area" is described as 
tropical plain and lowland with rainforest. The former is a rubber-producing 
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area. Because of the feature similarity, we might conclude that the latter is 
likely to be one too. 

To sum up, some precisely specified rules are needed, and in addition to such 
rules, vagueness in a domain needs to be dealt with by utilizing continuous 
numerical evidential combination and similarity-based inferences. Similarities 
can be explored based on features (or microfeatures, as used in [25]) to provide 
a fuller coverage of all possible situations in a domain. 

2.2 A TWO-LEVEL ARCHITECTURE 

A two-level approach for structuring knowledge to take care of the two types 
of vagueness was proposed in [34]. We call this architecture CONSYDERR, 
which stands for a CONnectionist SYstem with Dual-representation for Eviden
tial Robust Reasoning. One level of this architecture is the concept level, which 
contains primitive knowledge statements, or concepts. This level consists of 
a collection of nodes, or processing elements, for representing the concepts in 
the domain. For expressing compound knowledge statements, or rules, these 
nodes are connected via links from antecedents of a rule to consequents of the 
rule. (This level is the top level in Figure 1.) The other level (the bottom level) 
is the microfeature level, which contains nodes each of which represents a fine
grained element (a microfeature) in the meanings of the concepts represented 
in the top level. Each node in the top level is connected to all the relevant 
microfeature nodes in the bottom level; once a concept node is activated, the 
related microfeature nodes will be activated subsequently from inter-level con
nection, and vice versa. Links in the top level are replicated diffusely in the 
microfeature level by multiple links between two sets of microfeature nodes 
representing an antecedent and a consequent of a rule respectively. The first 
type of vagueness is handled by utilizing weighted-sum computation in each 
nodes, which is a continuous mapping, accumulating evidence from different 
sources (see [33, 35]), in computing its output activation. It is proven that such 
a function can actually implement Horn clause logic as a special case [35]. The 
second type of vagueness is handled by a similarity matching process based on 
microfeatures. In this structure, similarity matching is accomplished through 
the interaction between the two levels, by a top-down/settling/bottom-up cycle 
(see Figure 1). 

Equations for the computation of the three phases are specified as follows: 
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Phase I: top-down 

links enabled 

Phase II: intra-level 

links enabled 

Phase m: bottom-up 

links enabled 

Figure 1 The Two Level Structure 

For the top-down phase, 

ACTXt(t + 1) = max(tdA * ACTA(t)) 
A 

where ACT is the activation value of a node and A is any node in 
the top level that has x2 e FA (the set of microfeatures connected to 
A); td is a weight (to be determined later). That is, a microfeature 
node receives activation from the corresponding concept nodes, and 
chooses the largest value. 

For the settling phase, in the top level 

ACTc(t + 1) = J2 ri * ACTAl(i) 
i 

and in the bottom level 

ACTy(t + 1) = ] T Iwj * ACTXj{t) 
3 

where r's and Iw's are link weights (representing rule strengths), and 
Iw's can be determined from corresponding r's (as will be shown 
later); A{ 's and xi 's are the activations of nodes that are related re
spectively to C and y's by links (rules). That is, in this case, each 
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node receives activations from other nodes at the same level (which 
are related to it by rules) and does a weighted-sum for computing its 
own activation. 

For the bottom-up phase, 

ACTc(t + l) = max(ACTc(t), ] T buc * ACTVi{t)) 
VitFc 

where C is any top level node, and yi 's are its corresponding microfea-
ture nodes (because yt e Fc)\ bu is a weight (to be determined later). 
That is, a concept node receives activation from its corresponding mi-
crofeature node, and chooses the value as its activation if it is greater 
than its original activation. 

When applying this cycle, first some nodes in the top level get activated by 
external inputs (and clamped). Then the top-down phase will activate (and 
clamp) the microfeature nodes corresponding to the active concept nodes. In 
the settling phase, links representing rules related to those activated nodes take 
effect in both levels. Concepts may have overlapping microfeature represen
tations because they share some common microfeatures due to similarity; so 
some of the microfeature representations of concepts will be partially activated 
if a concept similar to them is activated (in the bottom level). Finally in the 
bottom-up phase, fully or partially activated microfeature representations will 
go back up to activate the corresponding nodes in the top level. The result can 
be read off from the top level.1 

Notice the massive parallelism in the above architecture: activations are prop
agated, in a massively parallel fashion, from all pre-link nodes to all post-link 
nodes; each node receives inputs as soon as it can, and therefore fires as soon 
as it can, ensuring a maximum degree of parallelism in terms of rule appli
cation. In terms of similarity matching, all similar concepts are activated (in 
their microfeature representations) immediately once an original concept is ac
tivated, and simultaneously matched with the original one (through top-down 
and bottom-up flows); thus the architecture is extremely efficient by employing 
the two levels. The parallelism in this architecture accounts well for the similar 
parallelism and spontaneity in human reasoning processes as identified in, for 
example, Collins & Michalski [4] and Sun & Waltz [33].2 

^ach node in the system has one or more sites (cf. [7]), each of which computes the 
weighted-sum (or any other similar functions whenever needed) of the inputs. The maximum 
of the values computed by all the sites is taken to be the activation value of the node. 

2One problem that is not addressed here is the variable binding problem, that is, how argu
ments can be associated with predicates in inference. This is especially difficult for connectionist 
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3 FINE-TUNING THE STRUCTURE 

3.1 BASIC DESIDERATA 

To show that the two-level architecture proposed above is versatile enough to 
accommodate special requirements that are often associated with various kinds 
of reasoning tasks, we will see how a set of desiderata for dealing with the 
geographical commonsense reasoning tasks (see [34]) can be used to determine 
the parameters of the architecture. 

All of the desiderata and the requirements for some commonsense reasoning 
in geographical domains are determined in [34] and they can be summarized 
together as follows (divided into three categories: rule application, similarity 
matching, and inheritance): 

Similarity. A similarity measure SAB measures the similarity between A (the 
target) and B (the source), namely, "A ~ B".3 It is needed because in vague 
domains we can and must reason based on similarities of knowledge statements, 
in order to reach plausible conclusions with an incomplete knowledge base. 
A similarity measure has the following requirements (see [34] and references 
cited therein for detailed justifications; they are too long to replicate here): 

sAB OC \FA n FB\, that is, the similarity between two concepts is 
proportional to the amount of their microfeature overlapping. 

SAB oc J ^ T , that is, the similarity is inversely proportional to the 
number of microfeatures B has, when everything else is equal. 

SAB 9̂  T^T, that is, the similarity is not (inversely or not) proportional 
to the number of microfeatures A has, when everything else is equal. 

networks (when used as implementational means), because of the simplicity and homogeneity 
of such networks. Nevertheless, such networks have been shown to handle variable binding to 
a large extent (see Sun [35] for details). 

3 Here similarity from A to B means that, when there is no direct knowledge about the concept 
A available, the concept B, which is similar to A, can be utilized to find plausible answers. This 
situation, which can also be termed similarity-based induction, is different from the generic, 
context-free notion of similarity. 
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Rules. Rules are needed for expressing precisely the knowledge that a system 
does possess. Coupling such precise knowledge statements with similarities, 
a lot of plausible inferences can be made. The following cases of rules and 
mixed rules/similarities have respective requirements:4 

(1) A —• B: if A is activated, then ACTB = rAB * ACTA, where 
ACTA is the activation value of A, ACTB is the activation value of B, 
and rAB is the strength of the rule between A and B (the same below); 

(2) A - B, B —• C: if A is activated, then ACTB = SAB * ACTA, and 
ACTC = rBC * ACTB> where sAB is the similarity between A and B 
(the same below); 

(3) A —• B, B - C: if A is activated, then ACTB = rAB * ACTA, and 
ACTC = sBC*ACTB; 

(4) A —• B, B —• C: if A is activated, then ACTB = rAB * ACTA, 
and ACTC = rBC * ACTB; 

(5) A —• B, B —• C, C —• D: if A is activated, then ACTB = 
TAB * ACT A , ACTC = rBC * ACTBy and ACTD = rCD * ^CTC; 

(6) A - B, B —• C, C —• D: if A is activated, then ACTB = 
sAB * ACT A , ACTC = rBC * ^CTB , and .4CTD = rCD * ACTC\ 

(7) A —• B, B - C, C —• D: if A is activated, then ACTB = 
rAB * ̂ C T ^ , ACTC = sBC * yiCTB, and ACTD = rCD * ^ C T C ; 

(8) A —• B, B —• C, C - D: if A is activated, then ACTB = 
rAB * J4CXI, ,4CTC = rBC * ACT*, and ACTD = «c/> * J4CTC ; 

(9)A~B,B—>C,C~D:ifAis activated, then ACTB = sAB*ACTA, 
ACTC = rBC * ACTB, and ACTD = SCD * ACTC. 

Inheritance. Inheritance is inference based on knowledge (statements) asso
ciated with a superclass or a subclass of a concept. This problem is important, 
because different concepts (primitive knowledge statements) may bear rela
tionships to each other as superclass/subclass. Therefore it is necessary to 
consider their mutual interaction, and to organize knowledge around an inher
itance hierarchy for storage economy. Let A D B, and therefore FA C FB; that 
is, the larger the extension the smaller the intension (the microfeature set); if 
A is a superset of B, the intension (the microfeature set) of A is the subset 

4 We only deal with rules with only a single premise here; rules with multiple premises are 
just extensions of these cases (see [35] for a detailed treatment). Note also that, unlike symbolic 
systems, here various sorts of chaining have to be dealt with on a one-by-one basis. 
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of the intension (the microfeature set) of B (see [19] for explanations). The 
following cases (taken from [36]) should be checked: 

(1) A has a property value C, and B has no specified property value. 
If B is activated, then C should be activated. 

(2) B has a property value D, and A has no specified property value, 
if A is activated, D should be activated too. 

(3) A has a property value C and B has a property value D ^ C. if A 
is activated, C should win over D. 

(4) A has a property value C and B has a property value D ^ C. if B 
is activated, D should win over C. 

(5) A has a property value C which has a feature set Fc, and B has 
a property value D D C (FD C FC)- If A is activated, C should win 
over D. 

(6) A has a property value C which has a feature set Fc, and B has 
a property value D D C (FD C F C ) . If B is activated, D should win 
over C. 

With all these constraints established, we can proceed to derive the exact 
specifications of the parameters, including top-down weights (denoted as td), 
bottom-up weights (denoted as bu)y and weights (denoted as lw) for finks 
between two microfeature nodes which diffusely replicate the rule links r (see 
Figure 2). This architecture can solve the similarity matching problem, 
the rule application problem, and the inheritance problem, with the same 
set of (appropriately set) parameters. 5 

3.2 PARAMETERS DERIVATION 

Below we will analyze the requirements and derive the parameters. For the 
sake of simplifying the discussion, we assume in the following discussion that 
the original rule strengths in the top level are all the same, that is, the maximum 
value 1, We first direct our attention to inheritance/cancellation. Consider cases 
three and four. When A is activated (but not B), we want C to be activated 
more strongly than D in the bottom level. Then during the bottom-up process, 

6We will use continuous activation values (for representing confidence values), approxi
mately between -1 and 1, in which 1 represents full confidence, 0 represents unknown, and -1 
represents full negative confidence. We will not use thresholds for the simple reason that we 
adopted continuous activation values which represents continuous confidence values. 
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Phase I: top-down 
links enabled 

Phase II: intra-level 

links enabled 

Phase HI: bottom-up 
links enabled 

Figure 2 A Generic Model 

these activation values will be transmitted to the corresponding concept nodes. 
To make sure that C is activated more strongly than D, Iw (weights on the links 
that diffusely replicate the link in the top level) should be somehow inversely 
related to the size of the microfeature set of the originating concept. Assume 
the original link weight is r, and the weights for links in the bottom level that 
replicate (diffusely) the original link are (uniformly) lw. Let A be the source 
node, and FA be its microfeature set. Similarly, let C be the destination node, 
and Fc be its microfeature set. 

r» 

lwAC -
/(l*UI) 

for any A and C, where / is a monotonic increasing function, linear or other
wise. Similarly, when B is activated (but not A), we want D to be activated 
more strongly than C in the bottom level. Because the microfeature set of A 
is a subset of that of B (as explained before), the total activation transmitted 
to C or D should be related to the sizes of the respective microfeature sets. 
Otherwise C and D will receive the same amount of activation, and therefore 
it will become impossible to differentiate the two. Since the total activation 
is equal to the size of the microfeature set of the originating concept times 
the activation transmitted along each individual link, to make sure that D is 
activated more strongly than C in this case, we must make / sublinear, so that 
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the total activation transmitted will be related to the size of the microfeature 
set of the originating concept. 

It is easy to confirm that no matter what bu and td are used, with this lw function, 
C and D in the bottom level (Fc and FD) will have the right activation in both 
cases. The details follow: suppose A is activated, and A is the activation of 
the microfeature nodes of A due to top-down activation, and a is the bottom-
up weight (the same for both C and D, because they both have only one 
microfeature node): 

ACTC = <x]T/u;AcA 

ACTD = a^lwQD^ 

FA 

so C is activated more strongly than D. In the other case, if B is activated (with 
activation value A; the same for its microfeature nodes), 

ACTj) — a \ J IWBD A 
FB 

= aWnk\)x 

ACTC = <TY^IWAC\ 
FA 

= 'lF'lnknx 

so D is activated more strongly than C. 

We are now ready to examine cases five and six, which are more complicated: 
because Fc is embedded in FD (because C is a superclass of D, as explained 
before), it is imperative that we pick the right bu function that takes into account 
all effects, desirable or undesirable, of sizes of microfeature sets. Look at case 
five. In order to have C activated more strongly than D,6 we have to take 

6Let us assume that there is nothing going on in the top level, and all activations come 
bottom-up. 
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into account the sizes of the microfeature sets of C and D (i.e., Fc and FD) 
in determining bu. And bu should be inversely related to the size of the 
microfeature sets of the node in the top level with which the particular bu is 
associated. Assume all microfeatures of C and D are activated to the same 
degree, and Fc is embedded in FD, that is, C has fewer microfeatures than D; 
if we have a uniform bu (equal to some <r)9 we will have an incorrect result (D 
being more strongly activated than C): 

ACTc — 2_\ buc * {acti>vati°n °f each node in Fc) 

= ^2 buc X^A * 1WAC 

Fc FA 

= \FC\ *c r* A *rAC 

provided / is the identity function, where A is the activation of the microfeature 
nodes of A, which are all the same; 

ACTD — /_, bun (activation of each node in Fp — Fc) -f 
FD-Fc 

} buj)(activation of each node in Fc) 
Fc 

- ^2 bUD XI ̂  * 1WBD + ^2bv,D 5ZA * 1WAC 

FD — FC FA Fc FA 

= \FD -FC\*(T*\FA\*\* r*J? 4- \Fc\*<r*\FA\*\* VA 

I(\FB\) ' ' ° ' ' A | f(\FA\) 

= a*X*rAC*\FA\(\Fc\*j^ 

= <T*\*rAC(\Fc\ + \FA\*\FD-Fc\*T^-7) 

provided that / is the identity function and rAC = rBD- Comparing the two 
formulas, clearly D > C, which is wrong. On the other hand, if we make bu 
to be inversely proportional to the size of the microfeature set of the CL node 
with which the bu is associated, we will have C > D, which is correct. So what 
we can do now is simply to have a function, #, that is faster than a constant 
(with coefficients properly adjusted to guarantee that the asymptotic properties 
also hold for small values), and to let 

buc = ̂ k) 
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for all C. Examples of such g include y/x, log xy the identity function, or other 
linear functions, with coefficients equal to 1. 

In case six, we want the opposite: D > C. We can perform a similar analysis. 
In this case, we would rather have little or no influence from the sizes of 
the microfeature sets. It is easy to see why: If we assume that bu = a (i.e., 
g(x) = i) , then, derived the same way as before, 

ACTC = J2bucJ2X*lwAC 

Fc FA 

= \Fc\ * cr * \FA\ * A * 

= \FC\*(T * \*rAC 

and 

ACTj) = YJ buo 2_] A * lwBD 
FD FB 

— \FD\ * <? * | F B | * A * 

VAC 

f(\FA\) 

H\FB\) 

a * A * TAC * \FB\ * \Fp\ * 
f(\FB\) 

= a * A * rAc * \FD\ 

provided / is the identity function and rAc - ^BD, where A is the activation 
of the microfeature nodes of A, which are all the same. Comparing the two 
formulas, clearly D > C, which is correct. But if we try to have a linear 
function or a function that is faster than linear functions, it can be easily shown 
that we will not get the correct result. 

Combining results from the above two cases, we conclude that g, as part of 
bu, has to be a function that is slower than linear functions, but faster than 
constants. 

Although the above derivation assumes that f(x) - xy as we have shown 
before, f(x) has to be slower than linear. To right the situation, we just have to 
make f(x) as close to linear functions as possible, so that the non-linearity of 
f(x) will not affect the obtained relation (C > D or D > C), given the ranges 
of \FA\, \FB\, \FC\, and \FD\. For example, we can choose f(x) = z9"/1000 and 
g{x) = x9'10. 

For the first two cases of inheritance, they can be handled by a mixture of 
rule application and similarity matching. Case one can be described as B ~ 
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A, A —• C, and can be handled as mixed rule application and similarity 
matching. As will be analyzed later, if B is activated, then 

ACTC = ACTB * sBA * rAC 

Case two can be described as A ~ B, B —• D, and, as will be shown later, if 
A is activated, then 

ACTD = ACTA * sAB * rBD 

Let us look into the similarity cases. Given the basic desiderata for similarity, 
we can think of many different measures (cf. [38], [22], and [11]), such as 

SAB = fH\FA n FB\) - f2(\FA -FB\)- fH\FB - FA\) 

that is, the contrast model of Tversky [38]. Or 

fi(\FAnFB\) 
SAB f2(\FA - FB\) + M\FB - FA\) 

that is, the ratio model of Tversky [38]. Yet others include 

fi(\FAnFB\) 
SAB f2(\FA\) + m\FB\) 

fl(\FAnFB\) 
SAB / 2 ( | * U | ) * / 3 ( | F B | ) 

_ fi(\FAnFB\) 
SAB - f3(\FB\) 

Many more models can be constructed. However, when we measure them 
against our previous desiderata, only the last one is acceptable, because it does 
not involve FA. 

Looking at the matter from a different perspective, considering the imple-
mentational issues, we want as simple a formula as possible, not in terms of 
numbers of parameters or the time complexity of computation, but in terms 
of ease of implementing it in a connectionist fashion with a set of simple, au
tonomous, locally connected nodes. We want (1) all computation to be local, 
(2) only simple messages to be passed around, and (3) no extra nodes to be 
added (see Feldman [7] for similar points). With these three criteria in mind, 
again only the last model can be selected (details are omitted). 
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Suppose A is externally activated, then because of the microfeatures shared 
with A, B will later be activated: the activation of A will first go top-down 
to its microfeature nodes through weights td; due to overlapping, some of the 
microfeature nodes of B (in FAc\FB) will be activated; then at the bottom-up 
phase, the activation of the microfeatures of B goes up to the node B in the top 
level, through weights bu (= ^p^jj). According to what we derived so far, 

ACTB = tdA * ACTA * \FA n FB\ * 
V(\FB\) 

To make B match what is obtained from a similarity measure, specifically, 

\FAnFB\ 

we have to choose td as 
tdA - 1 

and we have to choose g as close to the identity function as possible, in order 
to make ACTA W SAB'

 r^lus» w e determine yet another parameter. 

Now we shall check to see if the parameters derived so far satisfy the re
quirements for correct rule application and mixed similarity matching/rule 
application (including the first two cases of inheritance). Let us verify them: 

(1) For A —• B, if A is activated, then ACTB = rAB * ACTA in the top level, 
where rAB is the weight on the link between A and B (the same below), and 
the bottom-up activation is 

,l*Ui 
rAB 

ACTA * \FB\ {L
{Ff ~ rAB * ACTA 

So the overall result is ACTB « rAB * ACTA; 

(2) For A - B, B —• C, if A is activated, then 

HFBnFA
 ACTAJ^W) 

Fc ' 9(Fc) 

^ ACTArBrlFBnF^ 

ACTB = Y. 

g{Fc) 9(tB) 
ACTA * SAB * I'BC 
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(3) For A —• B, B ~ C, if A is activated, then 

ACTC = J2 
FBnFc 

g(Fc) 

\FBnFc\ArT \FA\ 
-ACTArAB-~ g(Fc) ~ * AD9(FA) 

« ACTA * rAB * sBc 

All the other cases, (4), (5), (6), (7), (8), and (9), can be verified the same way. 

4 E X P E R I M E N T S 

4 . 1 R E A S O N I N G WITH G E O G R A P H I C A L K N O W L E D G E 

Let us look into reasoning with geographical information. Utilizing the two-
level idea, the representation of the geographical knowledge is divided into two 
categories: concepts (primitive knowledge statements), which include basic 
geographical areas and regional characterizations (such as "cattle-country"), 
and microfeatures, which include basic geographical descriptions of areas, 
such as "highland", "mountainous", and "tropical", etc. Concepts are repre
sented in the top level, and microfeatures are represented in the bottom level. 
Each area is connected to concepts describing its agricultural products by rules, 
implemented as links. Each geographical area represented in the top level is 
connected to its corresponding microfeatures in the bottom level, and because 
of the fact that microfeatures are shared by similar concepts, the microfeature 
representation is similarity-based, i.e., two concepts have overlapping micro-
feature representations if and only if the two are similar and the amount of 
overlapping is proportional to the degree of the similarity between them, as 
alluded to before. Thus, inferences are enabled through similarity matching, 
and a fuller coverage of the domain is ensured. 

Some of the data stored in the system are tabulated: Figure 3 lists some of the 
geographical areas included in the system, most of which are in South America; 
Figure 4 lists concepts for characterizing a geographical area in terms of its 
agricultural products, such as rice-growing-area, cattle-country, etc.; Figure 5 
lists microfeatures used. The fact that the system is fairly large ensures that 
the experiment is meaningful. 
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"Chaco" 
"Uruguay-coastal" 
"Mendoza" 
"w-Peru" 
"e-Peru" 
"Bolivia-orient-rainforest" 
"e-Paraguay" 
"w-Paraguay-savanna" 
"w-Texas" 
"Guiana-hilly-country-forest" 
"Guiana-plain" 
"Brazil-cw" 
"Brazil-saopaulo" 
"Brazil-ne" 
"Chile-n" 
"Chile-c" 
"Argentina-pampa" 
"Argentina-andeanhighland" 
"Columbia-e" 
"Ecuador-coast" 
"Venezuela-Llanos" 
" Suriname-coastalplain" 

"Honduras" 
"Uruguay-plateau-highland" 
"Llanos" 
"c-Peru" 
"Bolivia-orient-grassland" 
"Bolivia-cordillera-occidental" 
"w-Paraguay-forest" 
"Panama-lowland" 
"Guiana-pgs" 
"Guiana-hilly-country-savanna" 
"Bolivia-SW-highlands" 
"Brazil-s" 
"Brazil-e" 
"Brazil-n" 
"Chile-s" 
"Argentina-ne" 
"Argentina-Patagonia" 
"Columbia-w" 
"Columbia-basin" 
"Ecuador-highlands" 
"Venezuela-coastalplain" 
"Suriname-plateau" | 

Figure 3 Geographical Regions Included in GIRO 

It should be stressed that the process of knowledge acquisition for this system 
is straightforward and systematic: nothing is tuned arbitrarily just for getting 
one outcome or the other. Specifically, the knowledge in the system is ob
tained from encyclopedias, such as Encyclopedia Britannica or Encyclopedia 
Americana, in the form of a basic geographical region (a region with relatively 
uniform characteristics), its products, and its geographical features. These 
types of information is well documented and rather extensive in source books. 

In extracting information from source books, there are some subtleties that 
have to be taken into consideration. Each article regarding a particular region 
is written by a particular researcher familiar with that region, and varies in 
depth, presentation, amount of details and emphasis. This diversity inevitably 
has adverse effects on the accuracy of the specification. The problem is the lack 
of details on the one hand and too much detail on the other hand. When there 
are not enough details from one sourcebook, we can find another sourcebook 
and try to fill in what is needed. In case of too much detail, we have to be 
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"cotton-producing-area" 
"coffee-growing-area" 
"wine-producing-area" 
"potato-growing-area" 
"rubber-producing-area" 
"goats-area" 
"rice-growing-area" 
"wheat-growing-area" 
"soybean-growing-area" 
"rubber-producing-area" 
"sheep-country" 
"producing-banana" 
"producing-tropical-fruits" 
"corn-growing-area" 
"sugar-producing-area" 
"fruit-veg-growing-area" 

Figure 4 Regional Characterization Included in the System 

temperate 
plateau 
lowland 
evergreen 
densely-populated 
dependable-rainfall 
rainy 

arctic 
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hill 
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woodland 
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lake 
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flood 
rugged 
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mediterrainian 
tropical 

rainforest 
sparsely-populated 

prairie 
subtropical 

desert 

Figure 5 Geographical Features Included in the System 

very careful in selecting the most important and relevant information out of the 
tangled web of irrelevant descriptions. As a rule of thumb, we usually disregard 
information associated with phases such as "plus", "in addition", "besides", 
"although", "a small portion of, "mostly but ", etc. A problem is that 
few regions are geographically homogeneous. What we want is a description 
that is applicable to the largest portion of a region, expressing its essential 
characteristics, without having irrelevant information or descriptions that can 
only be applied to a small part of that region. There is certainly a tension 
between (1) capturing important characteristics of a region, and (2) excluding 
information applicable only to a small part of a region. The tradeoff between 
these two aspects helps to decide what primitive geographical regions are and 
what information is to be included for each such region. 
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Now we are ready to describe the working of the system. Once a name of 
a geographical area is given to the system, as imposing a query, the sys
tem will find out its agricultural characterization, such as "cattle-country", 
"rice-growing-area", or "rubber-producing-area", through rule application or 
similarity matching, or a combination of the two. For example, let us choose 
to reason about "Brazil-north", which is described as "tropical rainforest hilly 
plateau". We will start by giving a query: What is the main agricultural product 
of "Brazil-north"? That amounts to activating the node representing "Brazil-
north". To answer this question, we let the system run to perform its reasoning. 
The output is as follows: 

>(consyderr 0) 

TITLE: GEOGRAPHY 
focusing on context AGRICULTURE : remove feature NIL 
setup done 
starting running 
top down 
cl propagating 
cd propagating 
bottom up 

the average activation is 0.1213409896658248 
(2, "cattle-country", 0.1249998807907104) 
(10, "fruit-veg-growing-area", 0.1249998807907104) 
(12, "producing-banana", 0.1249998807907104) 
(13, "producing-tropical-fruits", 0.1249998807907104) 
(20, "rubber-producing-area", 0.9999990463256836) 
(29, "c-Peru", 0.125) 
(32, "Bolivia-orient-rainforest", 0.125) 
(40, "Guiana-pgs", 0.125) 
(41, "Guiana-hilly-country-forest", 0.1666666666666667) 
(42, "Guiana-hilly-country-savanna", 0.125) 
(45, "Brazil-cw", 0.125) 
(50, "Brazil-n", 1) 
(60, "Columbia-basin", 0.16666666666666 67) 
(61, "Ecuador-coast", 0.125) 
(66, "Suriname-plateau", 0.125) 

The result shows that it is a rubber-producing area for sure (with confidence 
value equal to 0.999999), and it is similar, to a small extent, to "Guiana hilly 
country" and "Bolivia orient rainforest area" etc. If we want to choose one 
answer out of many, we can simply use a winner-take-all network on top of 
this, but this is not an intrinsic part of the system. See Figure 6. 
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2 
10 
12 
13 
20 
29 
32 
40 
41 
42 
45 
50 
60 
61 
66 

"cattle-country" 
"fruit-veg-growing-area" 
"producing-banana" 
"producing-tropical-fruits" 
"rubber-producing-area" 
"c-Peru" 
" Bolivia-orient-rainforest" 
"Guiana-pgs" 
"Guiana-hilly-coun try-forest" 
"Guiana-hilly-country-savanna" 
"Brazil-cw" 
"Brazil-n" 
"Columbia-basin" 
"Ecuador-coast" 
" Suriname-plateau" 

0.1249998807907104 
0.1249998807907104 
0.1249998807907104 
0.1249998807907104 
0.9999990463256836 
0.125 
0.125 
0.125 
0.1666666666666667 
0.125 
0.125 
1 
0.1666666666666667 
0.125 
0.125 

Figure 6 Output From the System: Case 1 

Another example is as follows: suppose we want to know about the Ecuador 
coastal area, we will give the system a query: What is the main agricultural 
product of "Ecuador-coast"? by activating the node representing "Ecuador-
coast". To answer this question, we let the system run to perform its reasoning. 
The output is in Figure 7. The result indicates that the area is producing banana 
(with confidence value equal to 0.99999) and is very likely producing tropical 
fruits and other fruits/vegetables. It is similar, in some way, to "Uruguay-
coastal", "eastern-Peru" and "Columbia-basin". 

As yet another example, let us reason about "Brazil-south". We will start by 
giving a query: Does "Brazil-south" produce cattle? by activating the node 
representing "Brazil-south" and looking for "cattle" in the results. The output 
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Different Areas 

6 
10 
12 
13 
30 
32 
60 
61 

"Uruguay-coastal" 
"fruit-veg-growing-area" 
"producing-banana" 
"producing-tropical-fhiits" 
"e-Peru", 
"Bolivia-orient-rainforest", 
"Columbia-basin" 
"Ecuador-coast" 

0.1666666666666667 
0.2499997615814209 
0.9999990463256836 
0.2499997615814209 
0.1666666666666667 
0.1875 
0.1666666666666667 
1 

Figure 7 Output From the System: Case 2 

is in Figure 8. The result indicates that the area does produce cattle and sheep. 
Nothing else in the network fires strongly or distinguishably in this case. 

4 . 2 O T H E R APPLICATIONS 

Now the question is: Can this same method be applied to other domains where 
no such natural division of concepts and features seems to exist? We will 
show that the same approach does work for other domains. Due to the space 
limitation, only some brief hints as to how this architecture can be applied to 
these other domains will be provided. 

Applications to Natural Language Understanding 

Natural language understanding is an area in which commonsense reasoning 
is crucial. For practical purposes, we can either perform a thorough domain 
analysis to identify useftil microfeatures along with concepts, or use some 
statistical methods to determine similarities and, based on that, construct mi-
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D i f f e r e n t Areas 

2 "cattle-country" 0.9999990463256836 
11 "sheep-country" 0.9999990463256836 
46 "Brazil-s" 1 

Figure 8 Output From the System: Case 3 

crofeature representation (see Appendix for details). Microfeatures obtained 
in this way, unlike in the geography domain, are generally uninterpretable. 

One simple example regarding lexical disambiguation (cf. [40] and [2]) and is 
"Pot" (taken from [18]): 

John put the pot inside the dishwasher, because the police are coming. 

The point is that normally the word "pot" should be interpreted as "cooking 
pot", but under certain circumstances, given some pertinent clues, it should be 
interpreted as marijuana. 

A set of situations (which are not provided in [18]) is devised to test a system's 
ability: (1) John put the pot inside the dishwasher (the solution should be 
"cooking pot" in this case); (2) John put the pot inside the dishwasher, because 
the police are coming (the word "pot" means "marijuana" in this case); (3) John 
put the pot inside the dishwasher, because the police are coming and John wants 
to make the kitchen clean (the solution should be "cooking pot" in this case); 
(4) John put the pot inside the dishwasher, because John wants to make the 
kitchen clean (the solution should be "cooking pot" in this case); (5) John put 
the pot inside the dishwasher, when the police come for the bankrobbery across 
the street (the situation is pretty ambiguous, and the system could interpret it 
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1. Pot is cooking pot. 
2. Pot could be marijuana. 
3. Marijuana is illegal. 
4. Cleaning kitchens implies cleaning cookware. 
5. Using dishwashers implies cleaning cookware. 
6. If one is having marijuana and the police are coming, then the police will see it. 
7. Police seeing illegal substance results someone being arrested. 
8. To avoid arrests, prevent the police seeing illegal substances. 
9. To prevent somebody seeing something, hide it. 

10. Putting something in a dishwasher is for washing it. 
11. Putting something in a dishwasher could be for hiding it. 
12. If there is a bankrobbery going on and the police are coming, then they are here 

to stop the bankrobbery. 

Figure 9 A List of Rules (weights are omitted). 

as "marijuana"); (6) John is cleaning the kitchen, putting the pot inside the 
dishwasher, when the police come for the bankrobbery across the street (the 
solution should be "cooking pot" in this case). 

A system is constructed based on CONSYDERR, which can solve the original 
problem and pass the six tests, as follows: Each of the concepts involved in the 
problem description is represented by one node in the top level. Knowledge in 
the form of rules is extracted from commonsense knowledge about the concepts 
involved in the story, as in Figure 9. The bottom level is basically a distributed 
version of the top level, which allows the sharing of microfeature nodes among 
the representations of related concepts, so that continuity/similarity can be 
explored. This structure is constructed using STSIS (see Appendix). The rules 
are duplicated diffusely in the bottom level. 

When the parameters are appropriately set, the system performs the task cor
rectly. It gives correct answers to all tests, distinguishing the often very subtle 
differences through rule application and similarity matching.7 

7Note that some subtle linguistic elements are not taken into account in the present imple
mentation, for example, "when the police are coming" vs. "because tht police are coming", etc. 
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Applications to Mundane Reasoning 

Mundane reasoning is another area where CONS YDERR is applicable. Mun
dane reasoning is used to refer to the type of reasoning that we do daily 
regarding mundane matters, for example, which chair to sit in, when to eat, 
etc. The goal of such mundane reasoning is to come up rapidly with an inter
pretation of a situation or to make a quick decision, given the current context. 
In applying the two level idea, we have to identify all the concepts and rules 
involved in a particular task. We also have to identify all the microfeatures 
associated with the concepts. 

Let us look into the "Ted" example [5]. Instead of using constraint satisfaction 
(as in [5]), we perform rule-based reasoning plus similarity matching. The 
problem can be stated as follows [5]: 

Ted is seen walking along a pier, dressed like a sailor. Ted launched 
into an excited monolog on the influence of TV programming. It 
seems reasonable to conclude that Ted is a professional sailor, and 
that he is interested in television. But another possibility is that Ted 
is a TV tycoon and a millionaire playboy and has a hobby of sailing. 

The point is that normally Ted should be taken to be a professional sailor, 
but under certain circumstances, given some pertinent clues, Ted should be 
interpreted as a hobby sailor. 

The knowledge used for performing this type of mundane reasoning is en
coded in rules (with associated weights); see Figure 10. In the bottom level, 
distributed representation is used so that similar concepts have shared nodes 
in that level. It is constructed according to STSIS, and each node is vaguely 
interpretable. 

A set of tests is devised to verify the correctness of the system the same way as 
before. The system works as expected; for example, when given the input that 
"Ted is dressed up like a sailor" (in the form of activating nodes "dressed-like-
sailor"), the system will indicate that Ted is a sailor (in the form of activating 
nodes "sailor" strongly); when given the input that Ted is dressed up like a 
sailor but talks a lot about the TV business (in the form of activating nodes 
"dressed-like-sailor" and "talk-about-TV-business"), the system will indicate 
hobby sailors (in the form of activating nodes "hobby-sailor" more strongly). 

When finer distinctions are needed, more nodes will have to be added into the system, along 
with possibly other mechanisms, to take those elements into consideration. 
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1. dressed-like-sailor talks-like-sailor walks-like-sailor—• sailor 
2. talk-about-TV-business —• interested-in-TV 
3. talk-about-TV-business —• in-TV-business 
4. in-TV-business -/—+ sailor 
5. dressed-as-sailor —• hobby-sailor 
6. hobby-sailor —• rich-people 
7. rich-people -/-^ sailor 

Figure 10 A List of Rules (weights are omitted). 

Applications to Planning 

Planning is yet another area in which CONSYDERR might be applicable 
(mainly of concern here are commonsensical planning activities, not formal 
planning based on strict mathematical models). The most important problem 
is that the sequential nature of the planning domain has to be adequately 
dealt with. The planning problem is inherently sequential: a plan is formed 
from a sequence of steps; moreover, steps can interfere with each other in the 
form of undoing what was accomplished or disabling what should be done, 
etc. Some notions of temporality have to be incorporated in order to express 
sequences; and actions, conditions, and results have to be associated with 
temporal measures. 

CONSYDERR, by itself, is non-sequential. So other means need to be em
ployed. This is where the idea of temporal simulation comes into play. By 
temporal simulation, it is meant actually carrying out plan steps temporally 
inside a system when forming a plan. Since a system can deduce within a 
system cycle what the next step should be and what the resulting state will be 
from applying the step, when it is given the current state, then another cycle 
can further deduce yet another step and the state resulting from that step, with 
the previously derived state as the current one. This process can go on and on, 
until reaching some desired state. 

Rules and similarities are used readily in planning. Rules are used to encode 
the relations between the plan step taken within the current context and the 
new state after the step is performed and the relations between the current state 
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and the next step to take. Similarities are used for matching a situation not 
precisely specified in the rule sets, for reaching plausible conclusions. 

5 COMPARISONS WITH OTHER APPROACHES 

Comparing the present approach with PDP models [25], we notice both simi
larities and some differences. In terms of similarities, both approaches utilize 
networks of simple processing elements, operate in a massively parallel fash
ion, and are capable of carrying out continuous functions for capturing flexible 
reasoning in vague domains. Unlike PDP models, this architecture does not 
rely exclusively on similarities - rules are implemented that can generate pre
cision as well as flexibility [28, 29, 32]. In terms of similarity matching, 
instead of producing only the closest match among the (stored) training cases 
(or clusters of them; as in most PDP models), all similar cases can be obtained 
at once in this architecture, which facilitates comparisons, explanation genera
tions, and other post-processing. Similarities obtained are fully determined by 
the similarity measure explained earlier, which is unlike most PDP models in 
which generalization (based on similarity) is unpredicatable. The architecture 
does not require long training time (as in case of backpropagation networks; 
cf. [25]), or long settling time (as in case of Boltzmann machine; cf. [5]). 

Comparing the present approach with the traditional rule-based approach (e.g., 
[44] and [13]) in constructing knowledge-based systems, we see some advan
tage: the two-level architecture is (potentially) capable of performing most 
of the functionalities of traditional rule-based systems [35], and it can also 
deal with similarity-based reasoning in an efficient and massively parallel way. 
Comparing with some variants of rule-based reasoning, such as probabilistic 
reasoning ([23] and [26]), this approach for encoding rules is computationally 
simpler, but takes into account cumulative evidentiality (the ability to accu
mulate evidence) with efficient computation. The weighted-sum computation 
used can be viewed as a simplification of probabilistic reasoning, under the 
assumption of independence of evidence (Sun & Waltz [33]). 

Comparing this approach with case-based reasoning [24], there is clearly some 
similarity: both approaches utilize similarities between the current situation 
and previously known situations to come up with a plausible conclusion. The 
differences on the other hand are as follows: (1) rules (compound knowledge 
statements) are the basic coding mechanisms for both concrete and abstract 
knowledge in CONSYDERR, which allows a simple, uniform representation 
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that encompasses both cases and rules; (2) unlike most case-based systems, 
similarity matching (as well as rule application) is done here in a massively 
parallel fashion, and thus is very efficient. 

6 SUMMARY 

In this chapter, an approach for structuring knowledge has been proposed that 
might have wide applicability in various vague domains. The idea for the ap
proach came from the analysis of different kinds of flexibilities in reasoning in 
vague domains. According to this idea, knowledge is divided into two kinds: 
(1) compound knowledge statements in the form of rules and (2) microfeatures 
associated with primitive knowledge statements (concepts). Thus, an architec
ture composed of two levels, the concept level and the microfeature level, has 
been developed, which allows both rule application and similarity matching. 
The combination of rule application and similarity matching facilitates both 
efficient use of knowledge statements explicitly represented in a system and 
wider coverage in a domain via plausible connections with these statements. 
Several experiments have been presented that show the possibility of applying 
this architecture to a wide variety of domains. 
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APPENDIX: DETERMINING SIMILARITIES AND MICROFEATURE 

REPRESENTATIONS 

STSIS, or a Statistical Test-Score procedure for determining Intensional Sim
ilarity, provides an alternative way of building microfeature representations. 
It is a procedure for constructing microfeature representations based only on 
similarities (which are obtained through empirical means). (For similar ap
proaches, see [41].) This procedure can be applied to automatically develop 
microfeatures that have no conceptual interpretation, instead of performing a 
thorough domain analysis to determine conceptually interpretable microfea
tures. This is useful because not all domains have a set of microfeatures well 
analyzed as in geography. 

Assume there is a set of concepts c = {ci,c2,c3, ,cn}, and c is the vector 
composed of all these concepts. Matrix M2 measures the pairwise similarities 
between elements of the vector c, that is, 

M2 = S(c x c) 

where x denotes outer-product, and S is the similarity matching measure: 
S([x]) = [S(x)]. (In other words, the similarity of a matrix is a matrix of the 
similarities of its elements). 

For each matrix element, 

_Er=ifl(M) 5(a,6) 
n 

where S- (a, b) is an empirical measure (i.e., a subjective rating) of the similarity 
between a and 6, ranging from 0 to 1. In other words, S(a, b) is obtained from 
averaging a large number of subjective ratings. We can also calculate the mean 
squared error: 

6(a,b) = 

N 
£(s-s,')2 

Then for higher-order similarities (those involving three or more concepts), we 
have 

M 3 = S(c xcxc) 

and 
M 4 = S(c xcxcxc) 
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and so on. Ideally, we should have Sab = {£j^hi, Sahc = |Fa"£c
bpFc|, and 

c _ | F a n F b n F c n F d | t 

One problem with this approach is that there are too many entries to fill in each 
matrix, especially in higher order ones. One way to deal with this problem is 
determining which entry will be zero beforehand and thus avoiding computing 
that entry; for a large number of entries in these matrices will be zero, which 
can be determined by examining related entries in the lower order ones (if 
one of the related entries is zero, then the entry is zero). {Related entries are 
defined to be entries that contain a subset of concepts involved in the original 
entry). 

Another problem is when we should stop, because obviously we do not want too 
many M matrices (we can produce matrices as many as the number of concepts). 
There is no theoretical result for determining when to stop. However, we can 
set up some empirical criteria. For example, we can limit the number of 
matrices to be no more than half the number of the concepts involved. 

Once the similarity matching measures are obtained, a pseudo-code description 
of the algorithm for constructing microfeature representations based on the 
similarity matching measures is as follows: suppose we have the following 
matrices: Mi, M2, , Mm. Let the total number of nodes in the bottom level 
be L. Let the number of nodes for a be U (ideally, Lz = |FCt|).

8 Define St- to 
be U. 

Leti=2 
Repeat if i ^ m 
.For each set of entries (e.g., Mi (a, b) = 5a6, and Mi (b, a) = Sba), 

allocate an appropriate number of nodes shared among those con
cepts in the entries, and subtract the same number of nodes from 
each of the node pools established for the related entries of the 
next lower numbered matrix 

.i= i+1 

Here related entries mean entries consisting of a set of concepts that is a subset 
of the original concept, for example, (a b c) for (a b c d). An appropriate 
number of nodes mean the number of nodes proportional to the similarity 
matching measure in question. For example, suppose Af,-(a,6) = Sab, and 

sLt is determined based on the principle of similarity-based representation: the more general 
a concept is, the fewer feature nodes there are for representing it. 
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Aft-(6, a) - Sba, so the appropriate number of nodes will be Sab * Lb = Sba * £fl. 
According to the definition of similarities above, the equality always holds. It 
is because Sab * Lb = J ^ p l * L6 = |Fa n F6|, and Sba * La - Pfffl * La = 
|Fa n Fb\. However, in reality this equality may not hold: because human 
similarity judgments and measurements are always error-prone, inconsistency 
is inevitable. Besides, random noises alone are enough to upset the equality. 
When inconsistency is encountered, we can use the average of the two instead 
in the formula. 

An issue is the subtraction of nodes from the node pools of the related entries 
in the lower order matrices. Because of the fact that a high-order similarity is 
part of some lower-order similarities, the (feature) nodes used in the high-order 
similarity are part of the node pools of the lower-order similarities. When we 
allocate nodes for a high-order entry, we must subtract the same number of 
nodes from each of the related lower-order entries. Since we establish node 
pools for similarities iteratively, from the lowest order up, each time we only 
need to subtract from the related entries of the closest lower-order matrix. 

The question of which nodes to remove from a pool of nodes can be an
swered partially by considering constraints we have, that is, the fact that we 
have to preserve established similarities (i.e. node sharing situations). When 
the constraints we have are not enough to determine a uniquely correct way 
of removing nodes, we can make a tentative decision and backtrack later if 
necessary, that is, performing a search over the space of all possible ways of 
removing nodes, until a test shows that all similarity matching measures are 
implemented correctly. 
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Knowledge for Comprehension 
L A WR E N C E A. B O O K M A N 
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Chelmsford, MA 01824 

1 INTRODUCTION 

Two important aspects of understanding a text are the ability to skim it, ex
tracting important elements (a coarse-grain view of comprehension), and the 
ability to read it "deeply" (a fine-grain view of comprehension). A compu
tational analogue that mimics skimming should include a representation of a 
set of semantic relationships about the text that can be used to summarize it 
and extract what is important. A computational analogue that supports a deep 
reading of the text should be able to represent the background details (nonsys-
tematic relationships) associated with the concepts in the text, including the 
larger frame in which the text concepts are situated. 

This chapter describes a two-tier view of semantic memory that supports two 
complementary views of comprehension mentioned above: a "fine-grain" view 
that captures the many details of interaction between context and background 
knowledge as temporal trajectories through "concept space," i.e., the semantic 
features active in memory at specific points in time. Together these trajectories 
represent a history of the associational knowledge of the concepts in semantic 
memory activated by the input, and this activated knowledge contributes to an 
understanding of the text. A second view, the "coarse-grain" view, captures in 
the form of a weighted semantic graph, called an interpretation graph, a set of 
explicit semantic relationships that can be used to reason about the "meaning" 
of a text. 

The semantic memory architecture consists of a relational and an associational 
tier. The top tier, the relational tier, represents the regularities underlying the 
structure of our cognitive world expressed as a set of named relationships be-

283 
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tween concepts. The bottom tier, the association^ tier, represents the common 
or shared knowledge about the concepts in the top tier, expressed as a set of 
statistical associations. The associational tier encodes the background frame 
(Fillmore [14]) associated with these concepts, in terms of an underlying sub
strate of semantic features. Because of the graded character of these semantic 
features, I will hereafter refer to them as analog semantic features or ASFs. 
The ASFs were developed from the category structure of a thesaurus. 

Fillmore [14] argues that our understanding of a concept is determined by how 
well the conditions of the background situation match the concept's prototype 
background frame. For example, according to Fillmore, to understand the 
word breakfast "is to understand the practice in our culture of having three 
meals a day, at more or less conventionally established times of the day, and 
for one of these meals to be eaten early in the day, after a period of sleep, and 
for it to consist of a somewhat unique menu." Yet as he points out, each of 
the above three conditions typically associated with it can be independently 
absent, still allowing a native user to use the word. For instance, someone can 
sleep through the morning, wake up at two o'clock in the afternoon, and sit 
down to a meal of pancakes, bacon, and orange juice, and still call that meal 
breakfast. Thus, the word breakfast can be used and understood in a variety of 
different contexts, as long as the conditions of the background situation more 
or less match its background frame. 

By viewing comprehension as, in part, the activation of temporal patterns 
through an individual's concept space, we can compare computationally the 
activated background knowledge (which resides in long-term memory) and 
activated context (which is activated at the moment of hearing or reading) 
associated with two different text passages. If their trajectories (as generated 
by the reader of the passage, e.g., the program) match, these passages will 
have a similar interpretation, and hence be similarly understood; the degree 
of similarity depends on the degree of match.1 Some neurophysiological 
justification for this view comes from evoked-potential data recorded during 
reading. For example, it is hypothesized that the sustained information-specific 
firing patterns that represent primary memory potentials (observed in the frontal 
lobe) indicate that contextual information is maintained between successive 

1 Many issues of comprehension are beyond the scope of this book. For example, a passage 
can have more than one interpretation, depending on the reader's intent, goals, and motivation, 
so there can be several different time trajectories, each reflecting the reader's current state. 
The reader's perspective can also influence which particulars of a story will be remembered and 
understood (Anderson andPichert [3]; Kozminsky [22]). For example, consider a passage about 
the physical condition of a house: if the reader is a home buyer, the physical condition of the 
house is important, whereas the contents are probably of little value; if the reader is a burglar, 
however, the contents are of prime importance (Thorndike and Yekovich [40]). 
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words in a sentence (Halgren [17]). These temporal firing patterns can be 
thought of as a set of time-directed trajectories through the concept space of 
the comprehender of the text. 

Comprehension is more than just a passive trace through concept space. Com
prehension is also partly driven by our expectations (Schank [32]). Incoming 
information sets up a context of its own, indicating what is likely to follow. 
If our expectations are met, we say we comprehend; if not, we may fail to 
comprehend. Part of this expectation-driven comprehension process is cap
tured by the relational tier of semantic memory in the model. Activation of 
the relations sets up an expectation of what patterns of knowledge are likely to 
follow. If incoming information is consistent with these patterns (i.e., if there 
is semantic overlap), these patterns are reinforced and eventually become part 
of the interpretation of the text. If not, they simply decay. 

As an illustration of these two complementary views of comprehension con
sider the sentence from Rumelhart [31]: "I was brought into a large white room 
and my eyes began to blink because the bright light hurt them." When sub
jects were presented with this sentence and asked what scene comes to mind, 
Rumelhart found that most people believed that either this was an interrogation 
situation in which the protagonist is being held prisoner or, it was a hospital 
scene in which the protagonist is a patient. What information suggests these 
interpretations? According to Rumelhart, "was brought" is apparently the key, 
as it evokes a passive situation. Details — the large white room and bright 
light — further specify the passive situation. A reader attempting to understand 
the meaning of this sentence would (with the semantic encoding proposed in 
this chapter) activate the appropriate conceptual relations (e.g., a person is put 
into a passive situation) based on the reader's and author's shared associational 
(ASF) knowledge of the concepts "bring into," "large white room," and "bright 
light-
Figure 1 depicts a relational "coarse-grained" view of the activated concept 
space in the form of a directed graph. The figure shows the explicit semantic 
relations that are needed to comprehend the interrogation interpretation of 
this example. The outlined nodes, labeled "interrogation" and "bring into" 
represent the conceptual roots (i.e., basic events) of the interpretation, from 
which a baseline summary can be generated: I was brought into a room where 
I was to be interrogated. 

Figure 2 depicts an associational "fine-grain" view of the activated concept 
space, showing the actual pattern of background knowledge relevant to the 
given input as a trajectory of semantic features through this space. The figure 
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Figure 1 A representative interpretation graph for the sentence "I was 
brought into a large white room and my eyes began to blink because 
the bright light hurt them" that supports the interrogation interpretation. 
The outlined nodes represent the basic events or conceptual roots of the 
interpretation. 

Time (cycle) 
activation level 

A(-l to+l) hurt 

began to blink 

was brought into 
-^ -^ ^ 7- 7« 7 ^ ^ features 

health care subjection passive restraint uncomfortable 

Figure 2 A set of partial time trajectories through feature (ASF) space 
of the activated background knowledge that supports the interrogation 
interpretation. The trajectories show what features (ASFs) are active 
after the processing of each input clause. The clauses containing the 
concepts "was brought into," "began to blink," and "hurt" were input 
at cycles 1, 2 and 3, respectively. The figure indicates that the features 
restraint, passive, uncomfortable, and subjection are strongly associated 
with this interpretation, and the features health and care are less strongly 
related to it. 
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shows some of the details needed to support the interrogation interpretation. 
For example, after processing the first input clause, "I was brought into a large 
white room," the features passive, restraint and subjection become activated. 
(The features health and care are minimally activated.) Processing the second 
input clause, "my eyes began to blink," the feature uncomfortable becomes 
activated, while the features passive, restraint and subjection remain activated. 
After processing of the third clause, "because the bright light hurt them," 
the features health and care become activated. Thus, interrogations involve 
restraint and subjection of the person interrogated, and are related to the care 
and health of that person; furthermore, the interrogated individual is put into a 
passive situation and usually made uncomfortable. 

This chapter argues for an integrated architecture that supports both struc
tured and non-structured representations. Structured representations provide 
explicit intelligibility and human comprehensibility. Non-structured represen
tations permit similarity-based comparisons between texts that may have some 
perceived similarity, but which have no explicit connections between them. 
Both types of representation are needed to support more detailed graded text 
representations. 

The chapter is organized as follows. Section 2 provides an overview of the 
architecture and the interaction of its components. Section 3 describes the 
details of the memory architecture. Sections 4 and 5 describe how knowledge 
is represented in long-term memory. Section 6 analyzes the behavior of the un
derlying architecture. Section 7 describes the underlying algorithm. Section 8 
concludes with a summary. 

2 OVERVIEW OF LEMICON 

To demonstrate the utility of the two-tier view of semantic memory, a se
ries of ablation experiments was performed on variations of two texts from 
the stock market domain. The experiments were designed to explore the 
model's representation of knowledge with regard to the text comprehension 
task. These experiments are implemented in a computer program named 
LeMICON (Learning Memory INtegrated CONtext). LeMICON is a struc
tured connectionist model2 that makes use of both connectionist and symbolic 
techniques to construct plausible interpretations of text. 

2 The term structured connectionist model refers to a model which represents its knowledge 
over a set of named nodes. This is similar to the way knowledge is represented in marker-
passing semantic networks (e.g., Charniak [8]; Granger et al. [16]; Norvig [28]), except that 
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Figure 3 The flow of activation through the system. 

Figure 3 depicts each of the model's components along with the flow of ac
tivation between these components. Working memory represents a history of 
LeMICON's associational knowledge. This accumulated knowledge results 
from the semantic feature activations from semantic memory, and the current 
input to the system. The links between semantic and working memory repre
sent the bi-directional pathways from which these activations are transmitted. 

The input to LeMICON is a text that has been pre-parsed into a set of clauses 
that are encoded by a set of predefined semantic features extracted from the 
categories of Roget's thesaurus. This encoding represents the background 
frame of the clause (see Appendix): the input buffer holds the representation 
of the next input clause of the text. Each input clause is encoded automatically 
using co-occurrence statistics on a text corpus (see Bookman [6]). LeMICON 
produces as one of its outputs an interpretation graph constructed from the 
active relations (the trace from semantic memory) which reside in the relational 
tier of semantic memory. (This graph is LeMICON's internal representation 
of the text.) The interpretation graph is an input to the program SSS, which 
produces among other things a baseline summary of the text. The other output 
of LeMICON is a trajectory (the trace from working memory) that represents 

the nodes in the structured connectionist networks contain simple numeric processing elements 
and connections between nodes have weights that represent the strength of their connection or 
relationship. Distributed connectionist models (e.g., Miikkulainen [24]; St. John [37]) represent 
knowledge as patterns of activation across unnamed nodes. 
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the history of active background frame details in working memory. This 
trajectory is also an input to SSS, which SSS uses to compare the similarity of 
interpretation of different texts. 

3 TEXT COMPREHENSION 

This section describes in detail the two components of LeMICON's memory 
architecture, semantic memory and working memory, and the relationship 
between them. 

3 .1 S E M A N T I C M E M O R Y : T H E RELATIONAL T I E R 

he relational tier of semantic memory represents the regularities that underlie 
our cognitive world. This conceptual structure accounts for important aspects 
of human communication, such as beliefs, preconditions, and knowledge of 
cause-effect relations (Velardi et al. [41 ]). There are several ways of expressing 
these systematic underlying regularities. In semantic network representations 
they can be expressed as a set of named relationships between concepts (e.g., 
Alterman [1]; Miller et al. [26]; Norvig [28]; Alterman and Bookman [2]). 
In such networks the meaning of a concept is represented by its position in 
the network, that is, in terms of the nexus of relationships that encompass 
it. However, such networks typically do not indicate the strength of the 
relationship between concepts. This lack, together with a non-local node 
computation, makes it difficult for these networks to handle change, or to 
reinterpret data in the light of new evidence. Instead, they must include a 
serial evaluation mechanism to select the most relevant interpretation from 
the generated candidate interpretations. Structured connectionist models (e.g., 
Lange and Dyer [32]; Shastri [33]; Shastri and Ajjanagadde [34]; Sun [39]; 
Waltz and Pollack [42]) attempt to remedy this deficiency by attaching weights 
to the connections between concepts and accumulating evidence local to the 
node, but they do not yet have any methods for automatically generating these 
strengths, or die underlying structure. In these networks, concepts are activated 
based on the amount of evidence available locally, given the current context, 
to the given node (concept). This obviates the need for a serial evaluation 
mechanism, since each potential interpretation can be represented by activation 
in different local areas, and thus can be evaluated in place, and in parallel. 
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As LeMICON is a structured connectionist model, it is able to handle reinterpre-
tation in the light of new evidence without the need for storing all the potential 
interpretations it generates. Yet such models assume some pre-existing set of 
relationships (i.e., some implicit structure) from which to generate these inter
pretations. This begs the question of how these relationships are learned in the 
first place. One technique is to construct the network based on co-occurrence 
statistics gathered from on-line textual corpora. Another constructs a network 
based on a clustering of a concept's background frame knowledge. (Bookman 
[7]) describes these techniques in more detail.) 

In LeMICON's relational tier, in contrast to some of the symbolic and struc
tured connectionist models discussed above, the meaning of a concept is not 
determined solely by its position in the network (i.e., physical closeness may 
indicate semantic closeness, but not necessarily),3 but also by the closeness 
of a concept's background frame (its ASF closeness: the degree of semantic 
overlap.)4 A strong motivating force for having a relational level is that such a 
structure represents the relational structure of our cognitive world, and so can 
be used as a basis for reasoning about "understanding." 

Figure 4 depicts a portion of the relational tier for the stock market domain 
automatically constructed from an initial set of 100 concepts. These concepts 
were chosen based on how representative they were for the given stock market 
domain.5 To determine the relationships between these concepts, I applied a 
modified form of the average conditional mutual information theoretic measure 
1 (see Bookman [7]) to all possible concept pairs (i.e., word forms that represent 
the concept), looking at single paragraphs of text from the Wall Street Journal 
corpus for the co-occurrence of each pair of concepts. 

Figure 4 depicts some of the learned relations in graphic form. It shows a 
portion of semantic memory, focused about the events recession, economic 
outlook, earnings outlook and market crash. As this graph shows, there are 
multiple graded relationships between concepts. For example, earnings out
look is affected by and affects the events recession, inflation, poor [economic] 
outlook, bright [economic] outlook and investing [in the market]. Also reces
sion is affected by inflation, slow economic growth, poor [economic] outlook, 

3 Since weights between concepts are determined by co-occurrence data from actual text, 
concepts can be physically close in the network but have weak semantic connections, or relatively 
separated physically but with strong intermediate semantic connections. 

4 The notion of semantic overlap is similar to one presented in Sun [3 8]. 
5A concept's representativeness for a given domain can be based on its frequency and 

memorability. 
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Figure 4 A learned network of relationships derived automatically from 
co-occurrence statistics gathered from the Wall Street Journal corpus. 
The weight, w, associated with each link represents the strength of the 
relationship between concept pairs, where o < w < l. 

and slump [in the market]. It is also affected by both bear market and bull 
market. 

3.2 SEMANTIC MEMORY: T H E ASSOCIATIONAL OR ASF TIER 

The associational or ASF tier represents the common or shared knowledge 
about the concepts in the relational tier. This reflects the understanding that 
each of our concepts has attached to it an associational cloud of knowledge; 
the tier encodes the nonsystematic knowledge associated with these concepts, 
what Fillmore [14] calls their background frame, in terms of a set of analog 
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semantic features, called ASFs. The work described here extends the Waltz 
and Pollack [42] microfeature notion. 

How Are the ASFs Chosen? 

The ASFs used in this research were chosen on the basis of the category struc
ture of Roget's Thesaurus [4]. The thesaurus is an extremely rich source of 
knowledge and its structure may provide a clue to how our cognitive world 
is carved up, i.e., what events, states, and categories we distinguish and use 
to communicate. As such, it provides an initial approach to encoding detailed 
knowledge (i.e., background frame knowledge) of how we represent the in
finite variety of situations in the world using a finite vocabulary. The use of 
named features (ASFs) as opposed to unnamed features (such as PDP hidden 
units, e.g., Hinton, McClelland, and Rumelhart [21]; cf. Hinton [20]) offers a 
principled way of building in this a priori knowledge. 

Another use of the thesaurus is described by Morris and Hirst [27], who show 
how its structure can be used as an aid in determining underlying text structure. 
For example, they compute what they call the lexical chains of a text, i.e., the 
sequences of semantically related words spanning a topical unit, then show 
these chains can be used as clues for indicating the intentional structure of the 
text. Using the thesaurus, Morris and Hirst are able to represent nonsystematic 
semantic word relationships, which are hard to represent in symbolic frame or 
semantic network formalisms. For example, it would be difficult to express 
the relationship between the pair of concepts "interrogation" and "bright light" 
— a relationship that is essentially nonsystematic — using any fixed set of 
systematic relationships. 

The category structure of Roget's thesaurus can roughly be described ion terms 
of eight classes: abstract relations, space, physics, matter, sensation, intellect, 
volition, and affections, with each class further subdivided. The total number 
of classifications in a thesaurus is extremely large, but 1042 basic classifications 
form what the thesaurus builders call its backbone structure. For the LeMICON 
experiments, I chose a subset of 454 of these classifications to represent the 
set of ASFs. This set is listed in Bookman [7]. Underlying the use of ASFs 
is the hypothesis that people have idiosyncratic but probably redundant sets of 
semantic features drawn from their common experiences. 
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How the ASFs Function 

The work here extends the notion of microfeature to include the background 
frame associated with everyday concepts and their interrelationships. For 
example, suppose we are given the following list of ASFs: danger, answer, 
question, opposition, resistance, security, custom, care, discharge, organiza
tion, admission, routine, procedure, payment, emergency, and purpose. This 
list can be used to distinguish the background frame associated with the two 
concepts, "hospital" and "interrogation." Table 1 shows a partial encoding of 
these concepts. Notice that the ASFs described there are role independent. 
The analog property says to what degree these ASFs discriminate these con
cepts and to what degree the ASFs indicate their similarity. The analog values 
were generated automatically by computing the mutual information6 between 
concept and ASF over a set of sentences from an on-line corpus. Bookman [7] 
describes an extended technique for encoding ASF knowledge that attempts to 
deal with the problem of small frequency counts.7 

Making Fine Discriminations 

Consider the following sentences (Waltz [43]): 

John nibbled at his food. 
John wolfed his food down. 

Ideally, we would like to characterize nibble as "to bite off small amounts" and 
wolf as "devour," not just as instances of "eating." ASFs allow one to make 
these fine discriminations within a single word sense, in this case the concept 
"eat." This is another reason for having the ASF level, as these distinctions 

6The mutual information of two events x and y, I{x, y), is defined according to Fano [11] 
as follows: I(x, y) = log2 Pfx)p(y) > w n e r e P(x,y) is the joint probability of events x and y, and 
P(x) and P(y) are the respective independent probabilities. 

7One problem that appeared in the attempt to automatically encode the associational tier 
using the ASF set was low frequency counts. So, to increase the likelihood of a concept's 
co-occurrence with an ASF, each ASF was associated with a dictionary tree of related words, 
and the concept then matched against a set of dictionary trees. A dictionary tree encodes an 
ASF with a set of words that are related in particular ways: synonymy, related to, compared 
to, contrasted to, and antonymy. A sample dictionary tree for the ASF dislocation shows that 
dislocation is linked via "synonymy" to the ASFs recession, depression and slump; via the 
relation "related to" to the ASFs crash, decline, and drop; via "antonymy" to the ASF boom; 
and via "contrasted to" to the ASFs expansion and growth; it also belongs to the sub-category 
"relative space" which in turns is a member of the class "space." See Bookman [7] for further 
details. 
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Table 1 Parts of the background frames and their association with the 
concepts "hospital" and "interrogation." The label / represents the mutual 
information value. The higher this value, the stronger the relationship 
between concept and ASF. 

Interrogation 
ASF 

resistance 
opposition 
danger 
security 
answer 
question 
customs 
payment 
care 
discharge 

Mutual 
Information (/) 

5.4 
5.4 
5.3 
5.3 
4.2 
4.2 
4.0 
0.0 
0.0 
0.0 

Hospital 
ASF 

discharge 
procedure 
emergency 
care 
admission 
routine 
payment 
organization 
purpose 
opposition 

Mutual 
Information (I) 

4.2 
3.9 
3.6 
3.5 
3.4 
3.3 
3.1 
2.2 
2.2 
1.1 

are not readily expressible via logical formalisms such as first-order predicate 
calculus, unless each semantic variation is explicitly represented. 

3.3 WORKING MEMORY 

Working memory represents a history of LeMICON's ASF knowledge. This 
accumulated knowledge results from ASF activations from semantic memory 
and the current input to the system. Figure 5 shows three different sets of 
links connecting semantic and working memory. These links represent the bi
directional pathways through which ASF activations are transmitted between 
semantic and working memory. The solid black links [4] represent the path
ways along which activated background knowledge is transmitted, the dark 
grey links [3] the pathways for each case role pattern, and the light grey links 
[2] the pathways for ASF relational knowledge between concepts. The case 
slots for each concept (see Figure 6) represent the other part of the background 
frame and are filled by the appropriate bank of ASFs in working memory by a 
process described in Bookman [7]. 
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\ LEMKKEY 

1 Links between relational and associational tiers that 
encode each concept's background frame knowledge 

Figure 5 The relationship between semantic and working memory. The 
solid black links [4] represent the pathways along which activated back
ground knowledge is transmitted, the dark grey links [3] the pathways for 
each case role pattern, and the light grey links [2] the pathways for ASF 
relational knowledge between concepts. The case slots for each concept 
(see Figure 6) represent the other part of the background frame and are 
filled by the appropriate bank of ASFs in working memory. 
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Working memory consists of three short-term buffers: (1) the input ASF buffer 
accumulates ASF background knowledge patterns from both the input text and 
from the associational tier superimposing the latter patterns onto the former 
and storing the resulting pattern; (2) the case role ASF buffer stores the ASF 
case role patterns from the input text (this buffer is flushed after an input 
clause is processed); and (3) die reactive ASF buffer accumulates the ASF 
encodings of the activated relations between concepts from the relational tier 
by superimposing these patterns onto the patterns currently in the buffer. 

The buffer that stores the case role patterns is actually segmented into 13 
mini-buffers — one buffer for each of the 13 possible case slots. This sepa
ration of case slots enables LeMICON to distinguish the semantic roles in the 
interpretation it constructs. Each mini-buffer holds a unique filler. 

4 ENCODING SEMANTIC MEMORY 

Symbolically, semantic memory can be thought of as being represented by sets 
of triples of the form, (RWtJ, C;, Cj), where each triple describes a weighted 
relationship, RWij, between concepts d and Cj of strength w. Attached to each 
concept (node) are a set of deep cases. What distinguishes the triples from 
other semantic network formalisms (e.g., see [1, 2, 8, 12, 32, 28, 33, 35, 36]; 
cf. [39, 42]) is their ASF encoding of associational knowledge and a method 
for assigning weights between concepts. 

Figure 6 provides a more detailed look at a partial ASF representation of one of 
the triples in the relational tier. This triple (subclass, financial stress, inflation) 
represents the relation that "inflation" is one kind of "financial stress." The 
ASF representation of a triple consists of representation of (1) the background 
frame of each concept, and (2) of the relation between the concepts. 

The background frame of each concept is encoded from the knowledge con
tained in the associational tier of semantic memory automatically, from on-line 
corpora, via information-theoretic methods as discussed in Section 3.2. This 
encoding is depicted in Figure 6 by the links connecting the associational tier 
of semantic memory to each concept in the relational tier of semantic mem
ory. Additionally, each concept has separate slots to hold the potential binding 
information for each distinct case role filler.8 For example, Dow Jones fills 

8Each concept contains 13 case slots, one for each of the 13 possible case relations known 
to the system. 
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Figure 6 A partial ASF representation of the semantic triple: (subclass, 
financial stress, inflation). The triple consists of the two concepts "fi
nancial stress" and "inflation" linked via a subclass relationship. Each 
concept consists of two parts: an ASF representation of its background 
frame, and an ASF representation of its filled case role slots. 

the object case slot of financial stress. Each distinct filler is represented by 
a unique pattern of ASFs linked to the case role slots. Note that these ASFs 
are kept separate from the ASFs that encode the concept. The ASFs provide 
constraints on a concept's fillers, in addition to encoding its background frame. 

The link connecting the two concepts "financial stress" and "inflation" rep
resents the ASF encoding of the subclass relation between the two concepts. 
Each link is encoded as (d - Cj), i.e., the corresponding difference between 
the constituent ASF concept encodings. This is intended to reflect any potential 
change or difference in the relation's "knowledge state." 

In LeMICON, the ASFs acting as constraints results in a soft matching capa
bility that allows concepts and the relationships between them to be activated 
even though not all semantic features match. 



298 CHAPTER 9 

5 REPRESENTATION OF SEMANTIC CONSTRAINTS 

Each concept in semantic memory contains, in addition to its ASF encod
ing, a listing of the concept's semantic roles, and any associated antonyms. 
For example, Figure 7 shows a more detailed representation of the concepts 
"inflation" and "believe." 

CONCEPT 
ASF representation: 
Semantic roles: 
Antonyms: 

1 Inflation 

stateof, object, value 
| deflation, stability 

Believe 
•illHiiBs^llft M 
agent, theme, co-theme 
disbelieve 

Figure 7 A description of the semantic information associated with the 
two concepts "inflation" and "believe." The shaded pattern represents a 
concept's ASF background knowledge. 

The semantic case role slots determine what possible fillers a concept can have. 
Thus, the concept "inflation" has three semantic case role slots, named stateof, 
object, and value. Potential fillers of the stateof slot might be "serious," as in 
"serious inflation," or "insignificant," as in "inflation was insignificant." Its 
value slot might include such fillers as "no," as in "no inflation," or "5%," 
as in "5% inflation." The antonym slot is used in conjunction with the mu
tual information measure described in Bookman [7] to handle the problem of 
having mutually exclusive information being active simultaneously. A CN-
region (Competitive-Normalized Regions: Chun, Bookman and Afshartous 
[10]) is constructed for any relational pair of concepts that is in an antonym 
relationship.9 

9 A CN-region is a network structure that represents the conceptual abstraction of a collection 
of nodes. The region also provides a computational mechanism for controlling the collective 
competitive behavior of the nodes. For example, a region can be used to inhibit the activation of 
such mutually exclusive actions as the rise and fall of the stock market. These structures allow 
for smooth competitions among concepts in semantic memory, thus enabling subtle differences 
in meaning to exist. These structures provide more stable competition, are more tolerant to 
initial noise, and eliminate the premature "lock-in" effect of WTA (Winner-Take-All) structures 
(Feldman and Ballard [13]). 
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6 E X P E R I M E N T S AND R E S U L T S 

In order to test the utility of the semantic memory representation and its un
derlying architecture, a series of text experiments were undertaken. These 
experiments took the form of automatically constructing plausible interpreta
tions of a given set of texts.10 The constructed interpretation takes two forms: 
(1) a weighted network of relations that represents a "coarse-grain" view of 
the text; and (2) a set of time-directed trajectories through ASF space that 
represents the activated background frame knowledge of the comprehender of 
the text—a "fine-grain" view of the text. 

The input to LeMICON is a text that has been pre-parsed into a set of ASF-
encoded clauses that represent the background frame of the clause. Each clause 
is encoded automatically by techniques described in Section 3.2. See Figure 16 
for a sample encoding. 

6 .1 ANALYZING T H E O U T P U T AT T H E RELATIONAL L E V E L 

Consider the texts WSJ-1 and WSJ-2 (see Figures 8 and 9): 

WSJ-1: The stock market declined 50 points yesterday. Analysts blamed 
the slump on the uncertainty in the economic outlook. They believed that 
further increases in oil prices in conjunction with the current consumer debt 
level would lead to slow economic growth. 

Figure 8 The story WSJ-1. 

WSJ-2: The stock market dropped 50 points yesterday. Then investors 
panicked and the market plunged another 100 points. Analysts blamed 
the drastic change on the uncertainty in the economic outlook. They believed 
that further increases in oil prices in conjunction with the current consumer 
debt level would lead to market chaos. 

Figure 9 The story WSJ-2. The text highlighted in boldface indicates 
the differences between this text and the text WSJ-1. 

On the surface these texts appear to be similar as they use the same concept 
vocabulary (e.g., blame, uncertainty, economic outlook, increases in oil prices, 

10 Only two of the texts are analyzed in this chapter. The others are analyzed in Bookman [7]. 
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consumer debt level, and decline/drop appear in both texts). But the two texts 
are really very different. Although forces affecting the market are the same in 
both (increases in oil prices and the current consumer debt level), the decline 
of the market in the text WS J-2 leads to panic on the part of investors causing a 
very different situation, namely market chaos, which in concert with the other 
concepts in the text could lead the reader to infer that the market has crashed. 
In the text WSJ-1, similar initial conditions (the market declined 50 points in 
both texts) lead to a very different interpretation, namely, the country may be 
heading into a recession. The interpretation graph produced from LeMICON's 
semantic memory can show how to account for some of these differences in the 
text. One difference between the texts is captured by the summaries produced 
from these graphs. 

Applying SSS [2] to the interpretation graph in Figure 10 yields the following 
summary: 

Baseline summary of WSJ-1: (summary strength = 0.72)a 

The stock market plunged 50 points. Analysts say inflation and 
slow economic growth would lead to a recession and a poor outlook 
for the stock market. 

a Summary strength is a confidence measure for the summary—the higher its numeric 
value, the more confidence we can have in the accuracy of the summary. 

Figure 10 The interpretation graph produced by LeMICON for WSJ-1. 
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Applying SSS to the interpretation graph in Figure 11 yields the following 
summary: 

I long-leni^^^H 
outlook H 

Figure 11 The interpretation graph produced by LeMICON for WSJ-2. 

Baseline summary of WSJ-2: (summary strength = 0.64) 

The stock market crashed. The outlook for the stock market was 
poor. 

A second difference in the interpretation is reflected in the important events 
that can be generated from the respective graphs. Importance of a given node 
in an interpretation graph is defined as the number of nodes reachable from 
that node in the interpretation graph. In effect, this measure of computing 
importance is based on the amount of author-emphasized detail. Tables 2 and 
3 show the results of applying SSS's importance technique to the interpretation 
graphs of the texts WSJ-1 and WSJ-2. 
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Table 2 List of events in order of 
decreasing importance for the text 
WSJ-1. An asterisk (*) preceding 
an event indicates that the event is a 
conceptual root. Note the average 
importance is 1.5. 

Table 3 List of events in order of 
decreasing importance for the text 
WSJ-2. An asterisk (*) preceding 
an event indicates that the event is a 
conceptual root. Note the average 
importance is 3.3. 

Event 
*plunge 
inflation 
Recession 
*poor outlook 
slump 
short-term outlook 

Importance 
2 
2 
2 
2 
1 
0 

Event 
*market crash 
plunge 
program trading 
inflation 
recession 
*poor outlook 
slump 
short-term outlook 
long-term outlook 

Importance 
7 
6 
5 
4 
3 
3 
2 
0 
0 

The baseline summaries and important events that LeMICON produces from 
the interpretation graphs reflect the coarse-level differences found in the texts 
WSJ-1 and WSJ-2. 

6.2 ANALYZING THE OUTPUT AT THE ASF LEVEL 

Looking at another aspect of the system's output, the constellations of the 
ASFs that form in working memory, makes it possible to further analyze the 
WSJ texts. This dynamic aspect of LeMICON's behavior can be represented 
as points in ASF space. ASF space here refers to an N-dimensional space 
(for LeMICON N=454), where each element is a vector of length N, and each 
component of the vector represents an independent ASF. The trajectories in this 
space refer to the vector of ASFs active in working memory at specific points 
in time (i.e., after the processing of an input clause). It is hypothesized that the 
different interpretations and inferences generated (by LeMICON) reflect the 
readers' associations. 

A comparison of LeMICON's behavior as a result of processing the texts, 
WSJ-1 and WSJ-2, reveals some of these differences. If one plots the change 
in ASF activity between successive cycles of working memory (a new clause 
is input on each cycle), a movie (i.e., a set of time-directed trajectories) of 
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LeMICON's behavior develops. As figures 12 and 13 show, the movies for 
the texts WSJ-1 and WSJ-2 are different. 

These differences in understanding are reflected in the activity of the work
ing memory buffer of the two texts that hold the respective ASF background 
knowledge patterns. The different peaks and valleys displayed in Figures 12 
and 13 highlight these fine-grain differences. For example, Figure 12 shows 
three such differences: (1) region 1 indicates that disappointment and expecta
tion underlie the input sequence of events blame, economic outlook, believe, 
and slow economic growth; (2) region 2 indicates that a recession underlies 
the input sequence of events economic outlook, believe, and slow economic 
outlook; and region 3 indicates that a dislocation underlies the event slow eco
nomic growth. Figure 13 also shows three fine-grain differences: (1) region 1 
is the same as region 1 in Figure 12, except that disappointment and expecta
tion underlie the input sequence of events plunge, blame, economic outlook, 
believe, and market chaos (thus, the ASFs disappointment and expectation 
are common to both texts); (2) region 2 indicates that a depression underlies 
the input sequence of events blame, economic outlook, believe, and market 
chaos; and (3) region 3 indicates that these same sequence of events have great 
breadth, i.e., their scope is broad, as opposed to narrow. Again, the movies for 
their respective buffers are different. 

The above analyses show LeMICON's ability to represent knowledge at a finer 
level of granularity. This finer granularity permits a deeper understanding of 
the text because it enables a more detailed analysis of the background details 
associated with the concepts in the text (see next section). 

6.3 A QUANTITATIVE ANALYSIS OF THE OUTPUT AT THE 

RELATIONAL AND ASF LEVELS 

How is it computationally possible to determine if two texts are similar in 
meaning, and thus will be similarly understood? First, a computational mea
sure is defined, called interpretation strength, that compares "weighted seman
tic graphs." This is a measure of the likelihood of the interpretation, or the 
strength of the interpretation. Second, another computational measure called 
background frame similarity is defined that compares interpretation trajec
tories, i.e., the generated dynamic "semantic" behavior associated with the 
comprehension of two texts over time. This latter measure provides a more 
detailed comparison of the activated background frame knowledge associated 
with the reader of the text. 
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activation level 

stock perceptual ^orct: affections 
roles dynamics 

Figure 12 A trace of the change, between successive input cycles, in 
the activity of the ASFs in working memory for the text WSJ-1. This 
buffer holds the activated ASF background frame patterns for the text 
WSJ-1. Note that the clauses containing the concepts blame, economic 
outlook, believe, and slow economic growth were input at cycles 2-5, 
respectively. Cycle 1 (decline) was input before the trace begins. The 
labels along the X-axis represents the ASF range of the classes that roughly 
reflect the structure of the thesaurus. The shaded regions highlight the 
key background frame components. 

activation level 
(-lto+1) 

4 
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roles dynamic* sensation relations 

Figure 13 A trace of the change, between successive input cycles, in the 
activity of the ASFs in working memory for the text WSJ-2. This buffer 
holds the activated ASF background frame patterns for the text WSJ-
2. Note that the clauses containing the concepts panic, plunge, blame, 
economic outlook, believe, and market chaos were input at cycles 2-7, 
respectively. Cycle 1 (drop) was input before the trace begins. The labels 
along the X-axis represents the ASF range of the classes that roughly 
reflect the structure of the thesaurus. The shaded regions highlight the 
key background frame components. 
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Definition 9.1 (Interpretation strength) The interpretation strength, IS, of a 
weighted semantic graph G is 

(A(fl t)+^>r ( b t )) 

where (i?», a,-, 6t-) is the ith triple in semantic memory, A{Ri) the activation of 
coherence relation Ri, A(a2) is the activation of concept a2. Similarly, for 
A(bi). N is the number of triples. The IS(G) is a value between 0 < IS(G) < 1. 

Definition 9.2 (Working memory closeness) Given the contents of work
ing memory, compute the average ASF closeness of the respective working 
memory buffers, as measured by the cosine of the angle between the vectors. 
Given two texts, Wi and Wj, ASFwm(Wi, Wj) denotes their working memory 
closeness. 

Definition 9.3 (ASF closeness) The ASF closeness of 2 vectors X,Y is de
fined as the cosine of the angle 0 between the vectors, where 

cose(X,Y)= 4—^-
\X\\Y\ 

and 

Intuitively, the contents of working memory represent a ' 'compressed" set of 
trajectories through ASF space, since working memory represents the accumu
lation of the active ASF patterns (i.e., associations) over time. If the trajectories 
generated for the two texts match, the hypothesis is, the two texts will have 
a similar background frame interpretation, and hence be similarly understood, 
with the degree of similarity determined by the degree of match. Evidence 
from Heit et al. [18] suggests individual neurons reveal different levels of acti
vation to different events. This supports my hypothesis, since it suggests that a 
part of the brain actually contributes specific information to the encoding and 
subsequent recognition of some stimulus during recent memory.11 

11 In one experiment, the responses of hippocampalneurons to a particular word or face were 
recorded, and approximately three-quarters of the neurons tested showed visible and statistically 
significant evidence for specific activation to one of 10 repeating words (Heit et al. [18]). 
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Conjecture (Background frame similarity): Texts whose working memory 
closeness is within some S are similar in meaning and generate similar sets of 
inferences, and hence will be similarly understood. 

Table 4 Some comparisons of background frame similarity of WSJ 
texts. WSJ-3 is the text "It was reported that there was financial chaos in 
the market." 

Background Frame Similarity 
Text 

Comparison 
(WSJ-l.WSJ-3) 
(WSJ-2,WSJ-3) 
(WSJ-l.WSJ-2) 

Working Memory Closeness 
[ASFwm(x,y)}° 

50 
43 
13 

% Change" 
[AASFwm(x,y)] 

28 
24 
7 

"Percent change calculated against a horizontal baseline of 180°. 

Table 4 compares the background frame similarities of the texts WSJ-1, WSJ-2, 
and WSJ-3.12 Several observations can be made: 

1. In terms of background frame similarity, the two texts, WSJ-1 and WSJ-2, 
differ in meaning (A/5 = 9% [0.04/0.43] and AASFwm = 7% for this 
example). Small changes in background frame similarity can lead to very 
different interpretations of the text. 

2. The interpretations of the texts WSJ-1 and WSJ-2 (A/5 = 9% and 
AASFwm = 7%) are closer in meaning than the interpretations for WSJ-1 
and WSJ-3 (A/5 = 30% and AASFwm = 28%) and the interpretations 
for WSJ-2 and WSJ-3 (A/5 = 18% and AASFwm = 24%). Again, this 
conclusion is in accord with our comprehension of these texts, i.e., it is the 
strength of the market decline, along with some market forces, "increase 
in oil prices" and "consumer debt level" which account for this finding. 
These associations override the fact that the text WSJ-3 is related to both 
WSJ-1 and WSJ-2 (i.e., "financial chaos" is a part of "recessions" and 
"market crashes"). 

Table 6 compares the background frame similarity of the sentence pairs dis
cussed in Bookman [5]. These sentence pairs are reproduced in Table 5. Again, 
several observations can be made: 

12 An alternate way of comparing interpretations is to compute the background frame similarity 
over the entire set of generated trajectories. 
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Table 5 Pairs of ambiguous sentences. 

Text Label Sentence pair 
Party 
Rev-party 
Race 
Talk 

Prog 

John went to Mary's party. He had a good time. 
He had a good time. John went to Mary's party. 
John ran the 500 meters yesterday. He had a good time. 
John was talking to his boss. The language he used was 
inappropriate. 
John was programming at his computer. The language he 
used was inappropriate. 

1. Since the texts Party and Rev-party are in essence the same, i.e., very 
similar in meaning, they should be similarly understood by LeMICON. A 
comparison of the trajectories generated for these sentences indicates this 
to be the case, since the difference between the trajectories as measured 
by the change in background frame similarity is only 2%. 

2. Although the texts Party and Race have the same second sentence, these 
sentences mean different things. Again, the change in background frame 
similarity (45%) indicates that a different interpretation was constructed 
for each text, that corresponded to their differences in meaning. Similar 
remarks apply to the texts Talk and Prog. 

3. According to the background frame similarity measure the texts Prog and 
Race are the most different in meaning (54%). 

Table 6 Some comparisons of background frame similarity for the 
sentence pairs in Table 5. 

Background Frame Similarity 
Text 
Comparison 
(prog,race) 
(prog.party) 
(party,race) 
(prog,talk) 
(party,rev-party) 

Working Memory Closeness 
[ASFwm(xty)}° 

98 
85 
81 
63 
6 

% Change 
[AASFwm(x,y)] 

54 
47 
45 
35 
2 
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7 A L G O R I T H M 

A functional description of the basic algorithm is shown in Figure 14. The 
input is a parsed ASF-encoded clause in case notation format. In Bookman [7] 
a mathematical description and formal analysis of the algorithm is presented. 
The algorithm has two basic functional components: (1) activation of semantic 
memory, and (2) update of working memory, i.e., updating the context of the 
active concepts and relations in semantic memory. Component 1 produces 
an interpretation graph as output. Component 2 produces a trajectory which 
represents a history of the active details of the background frames of those 
concepts in semantic memory that have been activated by the current context. 

Process next 
input clause 

[step 0] 

Component 1: [steps 1-4] 
Activate semantic memory 

I— Activate assembly [step 1] 

• Compare role fillers [step 2] 

I Inhibit competing [step 3] 
assemblies 

I Compute relational [step 4] 
novelty 

output^ Interpretation 
^ Graph 

Component 2: [step 5] 
Update context 

Update the activations of the 
reactive ASFs in working 
memory 

output ASF 
____^Xrajectory 

Figure 14 A functional description of the basic algorithm. 

7.1 ACTIVATION O F S E M A N T I C M E M O R Y 

As knowledge is represented in LeMICON at both the associational (ASF) 
level and at the relational level, so two allied notions underlie the activation 
of concepts in semantic memory — ASF closeness and relational closeness. 
Component 1 of the basic algorithm activates the concepts in semantic memory 
based upon each concept's ASF closeness to the ASFs in working memory and 
relational closeness to the given input. These two measures of closeness are 
used in steps 1 (activate concept assembly) and 4 (compute relational novelty) 
of the computation. 

Intuitively, ASFcloseness refers to the "semantic overlap" between two sources 
of information in ASF space. For example, one source of concept activation 
depends on how close the ASF representation of a concept's background frame 
is to the input ASF and case role ASF patterns in working memory (step 1). 
Another source of closeness depends on the ASF encoding of the relation 
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between two concepts and the reactive ASF patterns in working memory (step 
4). 

Relational closeness refers to the "relational distance" between two concepts 
in semantic memory, as measured by their propagation strengths, i.e., the 
time it takes to propagate a signal between two active concepts. Intuitively, 
concepts with less relational distance are semantically related and will have 
greater propagation strengths. Here propagation strength is proportional to 
the average conditional mutual information value (see Figure 4) — the larger 
the value, the stronger the connection and hence the faster the propagation of 
information. There are several ways to compute relational closeness. One way 
is to assume a non-uniform weight between each concept pair (Definition 9.5). 

Definition 9.4 (Immediate propagation strength) The immediate propaga
tion strength between two directly linked concepts X,Y is proportional to 
the average conditional mutual information, 7(X, Y). I(X, Y) represents the 
strength of the relationship between the two concepts, conditional on the con
cepts X and Y both not occurring together.13 

Definition 9.5 (Relational closeness) The relational closeness between two 
concepts XyY is defined to be 

c (x v\ - TT (immediate propagation strengths along some 
rA y ) - max 11 p a t h connecting Xand Y) 

all paths 

That is, the maximum over all paths, of the products of the immediate 
propagation strengths along some path connecting the two concepts. This 
definition assumes that the immediate propagation strength is a real number 
between zero and one. 

For example, given the graph shown in Figure 15, the relational closeness 
between nodes A and D is 0.54.14 

13 See Bookman [7] for a formal definition of 7 and a method of calculating its value. 
14 This value can be calculated by first computing the set of propagation strengths for all paths 

connecting the nodes A and D. 

1. the path ABCD = (.8* .8* .6) = 0.38 

2. the path ACD = (.9 * .6) = 0.54 

3. the path AD = 0.4 
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Figure IS A weighted graph. 

7.2 UPDATE WORKING MEMORY 

Component 2 of the basic algorithm determines how much "knowledge" each 
concept and relation in semantic memory actually contributes to the ASF pat
terns in working memory. This is the equivalent of the "credit assignment 
problem" as applied to text comprehension. In this case the underlying back
ground knowledge is responsible for determining which semantic features are 
relevant in the current context. As a result of this computation, the input and 
reactive ASFs in working memory are updated based on the activated ASF 
patterns in semantic memory, that is, the ASF encodings of the background 
knowledge of its active concepts and relations. 

7.3 DISTINCTIVE FEATURES OF THE ALGORITHM 

There are six distinctive features of the algorithm. These are listed below along 
with a discussion of why they are important. 

Local computation: semantic memory, the algorithm can be efficiently per
formed by massively parallel hardware, ignoring communication and sig
nal propagation. The experiments in this chapter were computed on a 

Note that in this case the shortest path, AD, is not the path that has the smallest propagation 
strength. An alternative way of computing relational closeness is to assume a unit uniform 
weight between each concept pair. If one assumes a unit uniform weight between relations in 
semantic memory, then relational closeness can be implemented using the all pairs shortest path 
algorithm which addresses the problem of determining a matrix A such that A(i,j) is the length 
of a shortest path from i to j . A more complicated scheme might take into account the type of 
the relation and/or the strength of connection between relations, in which case the weight would 
be non-uniform. For example, Definition 9.5 takes into account the strength of the relation, but 
not its type. 
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Symbolics workstation using a general purpose massively parallel simu
lator called AINET-2 (Chun [9]). In addition, the computation is done 
without spreading activation over (or relaxing) the nodes and links, un
like the spreading activation/marker passing algorithms described in the 
literature (e.g., Charniak [8]; Hendler [19]; Norvig [28]).15 

Activation of relevant knowledge: The ability to access "relevant" knowl
edge is due to the fact that LeMICON computes a dynamic context based 
on whatever knowledge is active in semantic memory (i.e., the active 
relations and activated background knowledge) and whatever knowledge 
is "contextually active" in working memory. Working memory is a rich 
source of knowledge — it contains not only the currently relevant (ac
tive) case role bindings, but also the relevant bundles of ASFs common to 
LeMICON's current interpretation of the text; and since the level of acti
vation in working memory can vary smoothly, LeMICON can construct 
graded interpretations and graded plausible inferences, shifting as the con
text shifts, without an explicit central interpreter, as prior interpretations 
that receive little supporting evidence simply become inactive. 

Case role information plays an important part in the activation of a con
cept's background frame knowledge. As shown with the Rumelhart ex
ample the details, supplied by the case roles, help further specify the given 
situation: bright light signaled to the reader that the sentence probably re
ferred to an interrogation. In LeMICON, this effect is achieved by taking 
the cross product of an input concept's background frame knowledge and 
the background frame knowledge of its associated case roles with each 
of the background frames of the concepts in semantic memory (step 1: 
activate assemblies). 

Computing what's new: As discussed in Section 1, our understanding is also 
driven by our expectations. Part of this process is captured by the relational 
tier representation of semantic memory as the activation of relations in that 
tier sets up an expectation about which patterns of knowledge are likely 
to follow (step 4: compute relational novelty). If incoming information is 
consistent with these patterns, the patterns are reinforced and eventually 
become part of the interpretation of the text (i.e., the interpretation graph); 
if not, they simply decay. The computation in step 4 emphasizes what is 
"new" about the effect of the current input on the relations in semantic 
memory, by measuring the difference in activation between previously 
active and currently active triples. If this difference is small, very little 
changes. This computation is consistent with recent neurophysiological 

15Gallant [15] describes a model of word sense disambiguation that also does not involve 
spreading activation over many cycles. 
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evidence that familiar, expected, or recently experienced stimuli cause 
less activation than novel stimuli in parts of the brain (Miller et al. [25]).16 

Fluid decision making: One additional property of the ASF substrate is its 
uniform representation of knowledge, which means all ASF information 
is processed alike. Again, no central executive determines which things 
might change; rather the temporal association of ASFs in working memory 
causes the formation of an interpretation or the generation of a set of 
inferences. As these temporal associations change because of new input, 
so does the interpretation. Furthermore, the process describes a kind 
of unsupervised learning: by varying its ASF inputs, the system can 
dynamically and automatically change the semantics for activating the 
appropriate concepts and relations in semantic memory (see Bookman [7] 
for a detailed discussion of this matter). 

Hysteresis effects: The system exhibits hysteresis, i.e., the state of LeMICON 
depends on its previous history. For example,the constellations of the reac
tive and input ASFs in working memory determines which interpretation 
will get constructed. Even if LeMICON were to process the same input 
(or sequence of inputs) for two given texts, it would produce different ASF 
trajectories if the ASF patterns that precede the input differ. In addition, 
LeMICON exhibits hysteresis effects related to learning. Bookman [6] 
reports on the results of a series of five experiments that illustrate these 
effects. These experiments indicate that prior experience affects what the 
system learns. 

Quick access to knowledge: Quick access to knowledge is also important. As 
Feldman and Ballard [13] point out, humans carry out complex behaviors 
in only a few hundred milliseconds. In LeMICON, the activation of 
relevant knowledge is determined by computing the "ASF closeness'' 
between two concepts or relations. The heart of this computation is 
rather simple, as it is based on computing inner products, and since all 
computation is local, it can be done in parallel. 

16Experiments with monkeys indicate that the formation of memories may in part consist 
of the modification of synaptic weights such that familiar, expected, or recently seen stimuli 
cause the least activation in the inferior temporal cortex (Miller et al. [25]). The authors suggest 
that the inferior temporal neurons may be acting as "adaptive mnemonic filters that seek to 
preferentially pass information about new, unexpected, or not recently seen stimuli." They state 
further that such a process is a critical component of the memory storage mechanism. Although 
these findings were based on experiments with monkeys, the authors state that they are consistent 
with recent findings in humans. For example, the responses of some face-selective cells in the 
superior temporal sulcus decline when faces are presented repeatedly (Rolls et al. [30]). 
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8 SUMMARY 

A weakness of traditional network relational representations of semantic mem
ory (e.g., Quillian [29]; Simmons [35]; Fahlman [12]; Sowa [36]) is their 
limited ability to readily represent human or computer background frames of 
knowledge. As a consequence, the systems that use such representations to 
process knowledge are somewhat limited — they cannot readily process the 
detailed knowledge that underlies each of our concepts, and therefore they 
cannot easily interpret a text at a deep level of understanding. The architecture 
described in this chapter, and its associated processing mechanisms represent 
a very different view of semantic memory: memory is dynamic, it exhibits 
hysteresis effects, and it represents knowledge at a finer level of granularity. 
The key components of this architecture are (1) its representation of a concept's 
background frame knowledge in an associational tier (long-term memory), and 
(2) its representation of dynamic context via a set of reactive ASFs in working 
memory. 

Taken together, these two views espouse a rather novel model of comprehen
sion. In the "trajectory" view, comprehension can be viewed as a dynamic 
system which changes course (and changes state) by moving to a different 
point in its associational (ASF) knowledge space as the input changes. At par
ticular points in this space (e.g., after a clause is processed), an interpretation 
graph can be extracted and used to explain some of the basic properties of the 
current state, or an ASF trajectory can be generated and used to describe the 
background details active at specific points in time, thus providing a deeper 
level of knowledge about the comprehension of the text at these points. 

A P P E N D I X A: S A M P L E P A R S E D INPUT T O L E M I C O N 

For each story below, a symbolic description of a sample of the parsed input 
to LeMICON is given. The actual input consists of this parsed input, but with 
each concept and its filled case slots replaced by their respective learned ASF 
encodings. For an example, see Figure 16. Each such encoding is a vector of 
dimension 454. 

WSJ-1: The stock market declined 50 points yesterday. Analysts blamed the 
slump on the uncertainty in the economic outlook. They believed that 
further increases in oil prices in conjunction with the current consumer 
debt level would lead to slow economic growth. 
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object concept 

(stock market) (dropped) 

mam 
value 
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LEGEND 

strong association 

mild association 

characteristically unrelated 

mildly negatively associated 

strongly negatively associated 

Figure 16 A sample ASF encoding of the input clause "Hie stock 
market declined 50 points." 

Clause 1: (decline (OBJ stock market) 
(VALUE 50 points) 
(TIME yesterday)) 

Clause 2: (blame (AGT analysts) (THM slump)) 
Clause 3: (economic outlook (STATEOF uncertainty)) 
Clause 4: (believe (AGT they) 

(THM increases in oil prices) 
(COTHM consumer debt level)) 

Clause 5: (lead (THM slow economic growth)) 

WSJ-2: The stock market dropped 50 points yesterday. Investors panicked 
and the market plunged another 100 points. Then investors panicked 
and the market plunged another 100 points. Analysts blamed the drastic 
change on the uncertainty in the economic outlook. They believed that 
further increases in oil prices in conjunction with the current consumer 
debt level would lead to market chaos. 

Clause 1: (drop (OBJ stock market) 
(VALUE 50 points) 
(TIME yesterday)) 
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Clause 2: (panic (AGT investors)) 
Clause 3: (plunge (OBJ market) 

(VALUE another 100 points)) 
Clause 4: (blame (AGT analysts) (THM drastic change)) 
Clause 5: (economic outlook (STATEOF uncertainty)) 
Clause 6: (believe (AGT they) 

(THM increases in oil prices) 
(COTHM consumer debt level)) 

Clause 7: (lead (THM market chaos)) 
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1 INTRODUCTION 

The field of artificial intelligence (AI) has produced a variety of different prob
lem solving paradigms. Two of the more prominent ones are symbolic AI and 
connectionism. Some researchers [4] [14] have argued that symbolism and 
connectionism represent differing computational paradigms, while others have 
discussed merging the differing strengths and weaknesses of these approaches, 
as evidenced by the papers in this volume. The general consensus to date seems 
to be been that symbolic systems are currently better at reasoning tasks and 
encapsulating expert knowledge, while connectionist systems have been used 
more successfully in pattern recognition and other perceptual tasks. Interest
ingly enough, the strengths of symbolic systems correspond to the weaknesses 
of connectionist systems and vice versa. 

To create more powerful AI systems, we must develop systems that can handle 
both perceptual tasks, such as image or speech recognition, and cognitive 
tasks, such as reasoning or planning. Since perceptual tasks are the forte of 
connectionist systems and reasoning tasks are the forte of symbolic systems, a 
simple and logical step is to combine the two systems into one hybrid system. 
Ideally, a hybrid system overcomes the weaknesses of each of connectionism 
and symbolic AI, while maintaining their strengths. While tighter couplings 
between these approaches may be needed to provide a neurocognitively valid 
model, current hybrids can be used to solve complex engineering problems 
and to study what capabilities of the different approaches are most useful in 
which situations. 

319 



320 CHAPTER 10 

The ability for a single system to handle perception and expert reasoning 
makes it useful for engineering applications which demand both facilities. For 
example, natural language systems which use speech processing require the 
conversion of sound to words, which is typically done by signal processing or 
neural network techniques, need to be combined with a syntactic and semantic 
processor, which are traditonally symbolic. Automated manufacturing requires 
visual information to be combined with expert reasoning. In image processing, 
identification of objects using a signal classifier can be improved by knowledge 
of maps, a model of the object, or environmental information. Thus, these 
hybrids systems hold promise for use in a wide range of problems. 

In this chapter, we discuss the application of a hybrid shell called SCRuFFY1. 
The SCRuFFY architecture consists of a connectionist component and a sym
bolic component (see Figure 1). Specifically, a neural network is used to 
classify input signals. This classification is typically accomplished by break
ing up the signal into time segments, and classifying each segment in order. 
The sequence of classifications is then processed by a temporal pattern matcher 
which looks for patterns in time and creates facts which the symbolic compo
nent, an expert system, can then reason about. 

An initial application for SCRuFFY was presented in [10]. In it, SCRuFFY 
was used to produce diagnostic messages suggesting a course of action to 
maintain the normal operating conditions of a simulated underwater robot 
welder. Based on sensor signal data (taken from a real robot, and programmed 
into the simulator), SCRuFFY determined the operating condition of the welder 
and, if it determined that there were problems, suggested setpoint changes so 
as to make corrections. 

Based on the initial success of this effort, the SCRuFFY architecture was further 
used in other control tasks. In [2], SCRuFFY was used in a chemical process 
control problem to improve the performance of PIDs. The welding control 
problem and the chemical process control problem shows that the SCRuFFY 
shell can be used to design hybrid systems which handle control problems. In 
this chapter, the SCRuFFY architecture will be used in a pattern recognition 
problem. Doing a different type of problem not only demonstrates the broad 
applicability of the SCRuFFY shell to problems which require perception and 
expert reasoning, but also lets us examine features of these various problem 
types viz the application of these sorts of techniques. 

Signals, Connections, and Rults: Fun For everKone 
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As the goal of this research is to examine the capabilities of the SCRuFFY 
hybrid architecture, the next two sections discuss some of related work in 
hybrid systems and describe the SCRuFFY architecture. Section 3 discusses 
why the ballistic signal problem was selected, and examines how the hybrid 
system was used to solve this problem. Sections 5 and 6 describe future work 
and make concluding remarks. 

2 RELATED WORK IN HYBRID SYSTEMS 

While this paper presents one view of a hybrid connectionist-symbolic system, 
specifically one that uses a neural network and an expert system as its two 
components, other researchers have also combined neural networks and expert 
systems as part of a single system. In addition to the approaches described in 
papers in this volume, several other approaches have been outlined. 

In combining neural networks with expert systems, some researchers have 
built systems that represent expert knowledge, like expert systems do, and yet 
can learn from examples, like neural networks do. In [12] , Romaniuk and 
Hall describe a connectionist model which can both encode rules or learn rules 
via examples. In [5] and [15] , the authors use a connectionist architecture to 
encode a knowledge base, essentially making a more flexible learning system 
than explanation-based learning (EBL). Goodman et al [6] [7] [8] extract 
probablistic rules using information theoretic techniques and encode them in a 
connectionist-style architecture. 

In all of these works, connectionist architectures were used to encode rules. 
Modifications were, therefore, required to the basic neural network architec
ture so that these rules could be encoded. Rather than having two distinct 
components, one symbolic and one connectionist, these systems only have one 
and thus are not particularly "hybrid/' 

There is also research whose connectionist and symbolic components are dis
tinct. In [1], Bruja concludes that neural nets are useful tools in pattern recog
nition, including the recognition of waveforms. Though he does not implement 
a knowledge-based component into his system, he discusses how such a com
ponent could be used. In [9], neural networks and rule-based expert systems 
are used to control a two-link manipulator in learning to swing (as in swinging 
a baseball bat). This method is modeled after human learning where certain 
actions, such as swinging a bat, may be learned initially by rules, but eventually 
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become natural, at which point the rules can then be dispensed. In [3], the 
authors describe a "federative" system which is composed of connectionist and 
symbolic components. Given a problem, a manager decomposes the problem 
into subtasks which are then assigned to the component best suited for solving 
the subtask. If the component can not solve the task, several components may 
cooperate to solve the problem. 

In [11 ], Kanal and Raghavan contend that pattern recognition systems require a 
hybrid approach including one-shot classifiers, neural networks, expert systems 
and other methods that have been traditionally used alone in pattern recognition, 
and states that no single approach is best suited for this task. In [16], Ulug 
presents a hybrid system with a neural network component which classifies 
measurements of hydralic pressure over time, and then uses an expert system 
to make diagnostic statements based on the classification. 

SCRuFFY shares some characteristics with these hybrid systems but differs 
in other ways. Unlike [9], where the neural network and the expert system 
are attempting the same task—namely, swinging a bat—our hybrid system has 
distinct roles for the neural network component and the expert system compo
nent. Like [11], we agree that pattern recognition problems require a hybrid 
approach. Specifically, expert systems can enhance the pattern recognition 
ability of neural networks by using domain knowledge. Our system is similar 
to [16] but uses a temporal pattern matcher to combine the neural network to 
the expert system, as described in the next section. The neural network clas
sifies consecutive segments of an input signal. The temporal pattern matcher 
takes this sequence of classifications and looks for temporal patterns. This 
approach adds more power than examining the entire signal at once (which 
may not be possible if the signal is being examined online) which is Ulug's 
approach. Essentially, Ulug's approach is the approach taken by SCRuFFY 
but lacking a temporal pattern matcher which makes it less powerful and less 
flexible than SCRuFFY. 

3 DESCRIPTION OF THE SCRUFFY ARCHITECTURE 

The system described in this paper is a direct application of the SCRuFFY 
shell described in [10]. A block diagram of the hybrid architecture used for 
SCRuFFY can be seen in Figure 1. To begin, the signal obtained from sensor 
data is preprocessed by a signal processing stage. The digital signal processor 
makes the task of classification more tractable for the neural network. For 
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example, it can do this by eliminating the noise from the incoming signal 
or by transforming it into a form where it can be more easily classified. A 
backpropagation-trained feed-forward neural network then takes the processed 
signal (or, more typically, a segment of the signal) and produces an output 
classification. 

In order to explain the next stage, the temporal pattern matcher, the neural 
network needs to be briefly discussed. In particular, the neural network used 
in SCRuFFY uses a method similar to that of NETtalk [13], by moving a time 
window over the signal. Given an i input neural network, the time window 
covers i consecutive samples of the input signal from time t to time t+i-1. This 
segment of the signal is classified by the neural network. Then, the window 
is moved over to sampled from time t + 1 to t + i, and that is classified by the 
neural network. This process is repeated. The sequence of classifications is 
presented to the temporal pattern matcher for analysis. 

The NETtalk approach allows the SCRuFFY system to be used as a control 
system. In control problems, it is often not possible the entire signal trace (as 
in [16]) at one time because the input is being received online. Typically, the 
signal comes from sensors collecting information on the current state of the 
system. Using the NETtalk approach, a neural network can process the signal 
as it is being received and decide the current state of the system by examining 
only a part of the input signal. The expert system then makes control decisions 
and monitors the effect of the decision from the changes in the input signal. 

While neural networks are not the only methods of classification (see [11] 
for other methods), one advantage is that (i) they can be trained, and (ii) once 
trained they are quite efficient. Specialized hardware can be made to implement 
neural networks which can classify much faster than traditional classification 
systems using statistical methods. This can be an important consideration if 
the SCRuFFY shell is to be used in real applications, such as control, where 
slow classification may defeat the purpose of using a control system in the first 
place. 

Because the neural network used is numeric in nature—that is, it takes in 
numeric data as input and produces numeric values as outputs, there is a need 
to convert this numeric representation into a symbolic representation which 
a rule-based expert system, or other symbolic system, can reason on. The 
temporal pattern matcher provides a means for making this conversion. As 
the name implies, the temporal pattern matcher does not make this conversion 
based on a single output from the neural network. Rather, it looks for patterns 
in the consecutive outputs of the neural network. By looking at neural network 
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outputs over time, instead of an output at a single instant in time, the pattern 
matcher can potentially provide more information to the expert system. 

For example, in [10], some of the outputs of the neural network represented 
normal operation of an underwater robot welder while others represented var
ious types of abnormal operation. The output with the largest value indicated 
the current state of the underwater robot welder. If a normal output had the 
largest value, then the robot welder was assumed to be behaving normally. 
Similarly, if an abnormal output had the largest value, the robot welder was 
assumed to be behaving abnormally. By looking at all neural networks out
puts over time, the temporal pattern matcher could look for some abnormal 
output increasing over time, but which had not yet become the largest output 
value. It could then inform the expert system of this temporal pattern. The 
expert system could then take appropriate preventative actions so the potential 
abnormal condition is dealt with before it becomes a problem. If the temporal 
pattern matcher only provided the current state of information to the expert 
system, the expert system would not have anticipated the problem, and would 
only have reacted when the problem occurred. 

While the expert system could have looked for patterns instead of the temporal 
pattern matcher, the responsibility is given to the temporal pattern matcher for 
finding the patterns while the expert system acts on the patterns. Furthermore, 
the expert system is relieved of the responsibility of directly dealing with the 
numeric output of the neural network. The temporal pattern matcher, therefore, 
provides the link between the numeric form which neural networks typically 
produces as output, and the symbolic form which expert systems typically 
handle. 

Finally, the rule-based expert system takes the patterns produced by the tem
poral pattern matcher, and suggests appropriate actions. In general, the rec
ommendations made by the rule-based component are domain specific. If the 
hybrid system is being used as a controller, it will make control decisions. It 
can then judge the effect of these decisions by looking at later patterns. Used 
in pattern recognition, the expert system uses domain knowledge to improve 
the recognition or classification done by the neural network. 

Comparing SCRuFFY to the hybrid systems presented in the previous section, 
we see that unlike some of the hybrid systems, the neural network and expert 
system are distinct. Thus, standard neural network and expert system tech
niques can be immediately applied. Unlike the system presented in [3], the 
neural network and expert system always work in conjunction, and unlike the 
system presented in [9], the connectionist component and the symbolic com-
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ponent carry out different kinds of tasks based on the analysis of their relative 
strengths and weaknesses. 

4 ANALYSIS OF BALLISTIC SIGNALS 

4.1 INTRODUCTION 

The SCRuFFY shell has been previously used in control problems, [2] [10]. 
To show the applicability of this shell to another kind of problems, a problem 
in pattern recognition was considered. Specifically, a problem from a military 
domain (provided by the U.S. Army) was considered. 

During the testing of experimental artillery, firing artillery can be dangerous 
if certain abnormal conditions arise in a previous firing. To ensure safety, a 
sensor records the pressure of the chamber as the artillery is fired. Based on 
the sensor trace of the firing, an expert can determine whether the firing was 
normal, and if so, the expert can recommend that it is safe to refire. If the firing 
is abnormal, the expert will forbid the retiring of the gun and also classify the 
kind of abnormality. In practice, it may take hours or days for the expert to 
get a chance to examine the data and make this decision. Thus, long idle times 
plague this testing process. 

To demonstrate the applicability of the SCRuFFY shell to this kind of problem, 
we use the system to makes decisions about the classification of the firings 
based on sensor information, which normally requires the presence of the 
human expert. However, the goal of this particular work was more to examine 
the ability of the SCRuFFY shell to handle pattern recognition problems and 
less to really try a hardcore application development effort on the ballistic 
analysis problem. Thus, after consultation with experts, we chose to focus our 
attention on a specific, difficult to analyse, abnormality called ringing, rather 
than trying to recognize a wide range of different abnormalities.. In Figure 
10, between sample number 2180 and 2880, there is a small, rapid oscillation. 
Figure 11 shows only the oscillation. This oscillation is called ringing and is 
an abnormal condition. Figure 2 shows a normal curve where no ringing has 
occurred. The SCRuFFY shell has the responsibility of identifying regions of 
ringing and deciding whether this ringing is of sufficient duration to require a 
warning not to refire. 
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The input to the hybrid system was an ordered set of data collected from the 
sensors. The resulting output was a recommendation of whether to refire, and 
the confidence factor of this recommendation. The hybrid system would also 
print out the times where it had determined that ringing had occurred, thus 
facilitating later human checking (in essence, SCRuFFY was more like an 
intelligent filter than an expert diagnostician - due to the explosive results if 
an improper refiring occured, the goal of the system was to recommend appeal 
to the human if any ringing at all may have occured). 

4 . 2 T H E SIGNAL P R O C E S S I N G P H A S E 

Under ideal circumstances, an expert can look at an input signal segment and 
classify it. With this same classification information, the neural network could 
reasonably be assumed to be trainable as to make the same classification and to 
make reasonable classifications for signal segments that are not in the training 
set. However, sometimes the signal is either not in a form which makes it easy 
to classify by the expert, or, there are difficulties in training the neural network 
to make the correct classifications. Signal processing can be used to aid in 
the classification done by the neural network. It can be used to remove noise, 
or convert the signal into a form that is either easier to classify by the neural 
network or by the expert when creating the training set. 

By observing Figure 2 and Figure 10, which are graphs of normal and ringing 
firings, respectively, it can be seen that the normal curve is essentially a slow-
varying curve, while the ringing curve is also a slow-varying curve, but it also 
has a ringing portion (a small rapid oscillation) during times 2180 to 2880. This 
ringing does not appear in the normal curve. In signal processing, it is well 
known that signals which vary slowly are represented by lower frequencies, 
and signals that oscillate quickly are represented by higher frequencies. By 
converting the graphs from the time domain to the frequency domain, the lower 
frequencies can be removed. The graph can then be converted back to the time 
domain. By selecting a good cutoff frequency (done by visual inspection), 
the slow varying curve can be eliminated and the oscillations kept. Thus, we 
used a fourier transform of the original signal, rather than the signal itself, in 
training and testing the network. 
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4 . 3 T H E N E U R A L N E T W O R K P H A S E 

The neural network used in this problem had 20 input nodes, 5 hidden layer 
nodes, and 2 output layer nodes. There was also a bias node used which had 
an input that was always set to 1. The output nodes produced an output within 
the range of-1 to 1. 

One of the output nodes represents a normal output while the other represents 
the ringing output. Although there are several ways of interpreting when an 
output is normal or ringing, it was decided empirically that when the ringing 
output had a value that exceeded the normal output by at least 0.4, the neural 
network should classify the input pattern as ringing. If the normal output 
exceeded the ringing output by 0.4, the pattern was classified as abnormal. 
Otherwise, it was classified as undecided. The value of 0.4 was selected so 
that an appropriate level of noise could be tolerated. 

Simply encoding the signal for the neural network was not viable because the 
neural network would have been prohibitively large if all of the 4500 points of 
data—the number of data points sampled per test firing —had been presented 
as inputs. We therefore selected a smaller number of inputs, 20. This number 
gave enough points to represent about one "period" of oscillation during the 
ringing portion. A mentioned previously, we used a "window" method similar 
to the one used in NETtalk. A vector of length 20 consisting of the data 
collected from time / to time t + 19, inclusive, was used as input vectors to the 
neural network. Thus, the first vector included all samples from time 1 to time 
20. The second vector included all samples of data from time 2 to time 21. The 
last vector consisted of samples from time 4481 to 4500, etc. The vectors were 
presented in order of increasing time, and the corresponding neural network 
outputs were produced in the same order. 

To train the neural network, the normal curve from Figure 3 and the ringing 
curve from Figure 11, were broken down into vectors of length 20. Given 
that only a small percentage of the vectors were preclassified as ringing, equal 
numbers of normal and ringing vectors were made by repeating the ringing 
vectors until there were as many ringing vectors as normal ones. A ringing 
input vector was trained to produce a 1 on the ringing output, and a -1 on the 
normal output. A normal input vector was trained to produce a 1 on the normal 
output and a -1 on the ringing output. 

Once the training was complete, the number of correct and incorrect classifi
cations were calculated (see Tables 1-4). Tables 1 and 2 were from normal 
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firings — all input vectors were preclassified as normal. Tables 3 and 4 were 
calculated from firings that showed ringing. The graphs that were considered 
ringing (Figures 10 and 14) did not have ringing occuring throughout the entire 
graph. Only the input vectors which included samples that fell in the ringing 
region were preclassified as ringing. The rest of the input vectors of these 
graphs were considered normal. For Figure 10, ringing was visually inspected 
as occurring between times 2180 and 2880. For Figure 14, ringing was visually 
inspected as occurring between times 2580 and 2880. Any input vector which 
included samples taken during the times that were ringing were preclassified 
as ringing, Input vectors taken from the curve in figures 3 and 11 were used to 
train the neural network. The other two figures (7 and 15) were used to test 
how well the neural network classified a test set of data (signal data that the 
network was not trained on). 

Actual classification 
Preclassification 
| normal 

normal 
97.2% 

undecided 
0.2% 

ringing 
2.6% 

Table 1 Of the vectors which were preclassified as normal from Fig
ure 3 (which were all of them), the neural network produced the above 
classification. The above indicates that of the input vectors which were 
preclassified as normal, 97.2% were classified as normal by the neural 
network. 

declassification 
| normal 

Actual classification 
normal 
95.2% 

undecided 
0.31% 

ringing 
4.5% 

Table 2 Of the vectors which were preclassified as normal from Fig
ure 7 (which were all of them), the neural network produced the above 
classification. 

Figures 4, 8,12, and 16 show the outputs of the neural network plotted versus 
time. The outputs are one of three values: zero, if the input vector was 
classified as normal; one-half, if the input vector was classified as undecided; 
one if it was classified as ringing. While Tables 1 -4 show that the classification 
was fairly good, it was not perfect. Ideally, we wanted n consecutive outputs 
classified as ringing before the entire graph could be considered ringing, with 
an appropriate choice of n. While we were able to get a block of consecutive 
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Actual classification 
Preclassification 

normal 
ringing 

normal 
87.3% 
1.71% 

undecided 
0.45% 
0.71% 

ringing 
12.3% 
97.6% 

Table 3 These were the results of the neural network classification of the 
input vectors from Figure 11. Some of the input vectors were preclassfied 
as normal, while others were preclassified as ringing. For example, of the 
input vectors preclassified as normal, 12.3% were classified as ringing by 
the neural network. 

Actual classification 
Preclassification 

normal 
ringing 

normal 
82.2% 
0.80% 

undecided 
0.73% 
0.00% 

ringing 
17.1% 
99.2% 

Table 4 The above are the classifications made by the neural network 
on the input vectors from Figure 15. 

neural network output classifications to be mostly ringing during the times that 
were considered ringing, they were not all classified as ringing. Hence, we 
had several short blocks of ringing. To make one large block of ringing, the 
temporal pattern matcher was used to "smooth" out the results of the neural 
network and to identify longer blocks of ringing. 

4 . 4 T H E T E M P O R A L PATTERN M A T C H E R 

In [10], the temporal pattern matcher was used to find patterns such as increas
ing values of an output (of the neural network) over time, or decreasing values 
of an output over time. However, such patterns were not particularly useful 
for this problem. The purpose of the pattern matcher, in our problem, was to 
improve the expert system's ability to identify ranges of ringing by cleaning 
up the data produced by the neural network. 

Specifically, the pattern matcher looked at a sequence of 40 neural network 
outputs (from time t to t+39, inclusive). If, in this sequence, 70% of the outputs 
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from the neural network were classified as ringing, then the pattern matcher 
produced an output of ringing for time t. The effect of this smoothing can be 
seen in Figures 5,9,13, and 17. The temporal pattern matcher produced outputs 
that were only ringing or normal, using the previous criteria for ringing. The 
values of 40 outputs and 70% were chosen empirically, inspecting the quality 
of the results when these numbers were varied. (We did not attempt to define an 
optimal choice for these parameters, but chose values that produced reasonably 
good results.) 

As the "smoothing'' procedure generates long blocks of time classified as 
ringing, it is much easier to identify when ringing has occurred. Comparing 
figure 12 to 13, there is a reduction in the amount of blocks of ringing from 
a numerous amount to four. Of the four, only one block is long. Though it 
can't be seen in Figure 12, the region between 2100 and 2800 is not a single 
contiguous block. The smoothing operation creates one contiguous block in 
Figure 4d, and eliminates many of the smaller ones. 

The "smoothing" operation had an additional benefit besides creating long 
blocks of ringing. It generally improved the accuracy of the classification done 
by the neural network. That is, more input vectors that were preclassified as 
normal were classified as normal using this smoothing technique in conjunction 
with the neural network versus using the neural network alone.2 It is more 
important to be able to identify a long segment of ringing because this becomes 
the basis for deciding whether the abnormality is serious or not, as will be 
discussed later. A long segment of ringing indicates that a significant amount 
of ringing has occurred while a short segment might indicate that the ringing 
is not serious enough to produce a warning. Even if smoothing were to 
decrease the accuracy of identification by a small amount, as long as the 
smoothing operation produced a long block of ringing in approximately the 
correct location where the expert had identified ringing, then the smoothing 
procedure would have accomplished its task. The results of the classification 
after smoothing can be seen in Tables 5-8. 

However, while the first step of the pattern matcher for this problem was to 
smooth the results of the neural network,, the main purpose of the pattern 
matcher is to convert the numeric output into facts which the expert system 
can manipulate. In this case, it takes the graphs from Figures 5, 9, 13, and 17 
and produces facts of the form, ( r ing start time end time). The fact says 
that every single output between the start time and the end time was classified 

2The accuracy also improved for the vectors which were preclassified as ringing. However, 
as the neural network had already done a fairly accurate job of classification, the improvement 
in accuracy is not significant. 
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Actual classification 
Preclassification 
| normal 

normal 
100.0% 

ringing 
0.0% 

Table 5 This is the classification made by the "smoothing" procedure 
on Figure 4. It was decided that only two classifications were needed: 
normal and ringing. 

Actual classification 
declassification 
| normal 

normal 
99.5% 

ringing 
0.5% 

Table 6 This is the classification made by the "smoothing" procedure 
on Figure 8. 

Actual classification 
Preclassification 
1 normal 
1 ringing 

normal 
94.2% 
0.0% 

ringing 
5.8% 

100.0% 

Table 7 This is the classification made by the "smoothing" procedure 
on Figure 12. 

as ringing by the smoothing procedure. Facts are generated for all such 

Actual classification 
reclassification 
normal 
ringing 

normal 
97.6% 
9.4% 

ringing 
2.4% 
90.6% 

Table 8 This is the classification made by the "smoothing" procedure 
on Figure 16. 
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consecutive sequences of ringing for a given graph, one fact for each block 
found. If no ringing occurred in the entire graph, then the pattern matcher 
produces the fact (none), indicating no ringing occurred. These facts are 
passed to the expert system as they are discovered. 

4 . 5 T H E E X P E R T S Y S T E M P H A S E 

Since the problem of recognizing ringing in signals generated by ballistic 
firings is primarily one in pattern recognition and because the authors had no 
additional domain knowledge from which to work with, the expert system is 
fairly simple. Its main task is to identify whether the graph of a firing has 
ringing or not, to determine whether to refire the gun which produced this 
graph, and to indicate the times it believes ringing has occurred. The expert 
system used in our problem was written in CLIPS, which is a forward-chaining 
rule-based expert system similar to OPS5, but written in C (In fact, this entire 
system is written in C, and runs on a Sun Sparc station.) 

As previously mentioned, the temporal pattern matcher produces facts of the 
form ( r ing start time end time). We call this span of time a ringing block. 
The length of the ringing block is the difference between the end time and the 
start time. 

The expert system takes these facts and divides them into three categories. 
Either the ringing block is longer than 100, between 10 and 100, or between 1 
and 10. If there are blocks of length 100 or more, the expert system concludes 
that there is definite evidence for ringing and advises not to refire the gun. It 
also prints out the times where it believes ringing occurred. If a block of this 
length is found, then any block of ringing with length less than 100 is ignored 
since it has already been concluded that ringing has occurred. 

If there are no blocks of ringing longer than 100, but there are ringing blocks 
of length 10 to 100 or 1 to 10, then the times of the ringing blocks are again 
printed. The longer the ringing, the more likely the advice is not to fire. Only 
when there are no ringing blocks at all will the expert system advise that it is 
safe to refire the gun. A resulting run of the CLIPS expert system for all four 
curves is seen in Figures 18, 19,20, and 21. 

However, this result neither showed the real power of the expert system, nor 
corresponded to the real analysis in one important way. It turns out that certain 
oscillations in the curve do not correspond to ringing, and should not prevent 
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the firing of the gun. If the oscillation occured early in the firing (represented 
by the original upcurve of the graphs shown previously), then the oscillation 
was not really ringing. However, the fourier method and the neural network 
could not easily be designed so as to recognize the difference, thus the expert 
system was needed to eliminate the spurious reports of ringing. 

A rule was added to the expert system which determined whether the evidence 
of ringing occurred during the upslope of the curve or the downslope. If 
ringing occurred on the upslope, it was considered to be less problematic, and 
was ignored. By adding this rule, the expert system concluded (see Figure 22) 
that it was safe to refire, whereas in Figure 19 which does not use this rule, 
the expert system advises not to refire. Figures 20 and 22 are run on the same 
input with the only difference being the change in rules of the expert system. 
This shows that expert knowledge can be used to identify unusual cases which 
would normally be incorrectly classified by the neural network. 

5 FUTURE WORK 

The work described in this paper was, essentially, a proof of concept for the 
use of the SCRuFFY hybrid system on the ballistic analysis task. The logical 
next step is to increase the difficulty of this problem. As described, only one 
kind of abnormal condition—ringing—was considered. There were, however, 
several other kinds of abnormal conditions. With these additional abnormal 
conditions, issues such as considering whether one neural network should make 
all the classifications, or whether there should be a separate neural network 
for each of the different abnormalities have to be addressed. Also, the expert 
system now has a more complicated task because it must decide which of 
several abnormalities is occurring. How the hybrid SCRuFFY shell will scale 
as the difficulty of the problem increases is still the subject of future research. 

Additionally, we are pursuing research to determine what sorts of problems are 
best suited to the hybrid approach discussed in this paper, and what extensions 
are needed. The original temporal pattern matcher [10] was based on James 
Allen's logic of temporal intervals. For the pattern recognition task, it was 
clear we needed another approach, such as the smoothing procedure described 
previously. We believe the temporal pattern matching approach is critical to 
the success of hybrid systems, but believe more research is needed to determine 
exactly what the language for the temporal patterns should be. 
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6 CONCLUSION 

To use hybrid models effectively, it is necessary to examine the kinds of 
problems that connectionist and symbolic systems are suited to solving. By 
identifying these tasks, we can find problems that are easily handled by hybrid 
systems, while challenging the capabilities (or scaling) of either neural or 
symbolic approaches. As an example, we have attempted to demonstrate that 
hybrid systems can be effectively used for a combination pattern-recognition 
and decision-making problem. Specifically, we used the hybrid system to 
classify a signal taken from the firing of a gun as either normal or ringing. 

As we have shown, hybrid systems represent one way of increasing the power 
of connectionist and symbolic systems, taking advantage of each of their 
strengths. When used in solving pattern classification problems, the expert 
system is useful if domain knowledge is readily available and can augment 
the classification work done by the neural network. For this task, a non-
hybrid approach would either have produced an inferior result or required 
significantly more training (if a neural network) or significantly more rules 
(if a purely rule-based approach). Expert Systems have not typically been 
well-suited for performing pattern recognition for sensory inputs, one of the 
reasons for the popularity of neural networks in pattern recogntion. However, 
as discussed earlier, a standard connectionist system has significant trouble in 
taking advantage of domain knowledge, and in making decisions such as when 
ringing was significant and whether the gun should be refired. The hybrid 
approach allowed us to use the strengths of both and thereby to improve the 
solution. 
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Sensor Signal 

SCRuFFy 

Numerical 

1 
Digital Signal Processing Techniques 

i 
Neural Network 

1 r 

f Temporal Pattern Matcher J 

\ 

Symbolic 

r 
Expert System 

\ r 
Actions 

Figure 1 A block diagram of the SCRuFFY system. Sensor signals 
serve as the input. DSP techniques and neural networks form the nu
merical manipulation of the data. The temporal pattern matcher converts 
the numeric output of the neural network to a symbolic output which the 
expert system then decides on appropriate output actions. 



336 C H A P T E R 10 

l O I 1 1 1 1 — i 1 — i 1 1 — | 1 1 1 1 — | 1 1 1 1 1 1 r 
H I 

o 1000 2000 3000 
t ime 

4000 

Figure 2 Graph of a normal firing. Neural network was trained on this 
curve, x-axis refers to sample number (time), y-axis refers to pressure 
measured in MPascals. No ringing occurs in this curve. 
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Figure 3 This is curve from Figure 2 with the lower frequencies re
moved. The y-axis refers to sample number (time). Notice there are 
no large oscillations (as in Figure 11) which would be an indication of 
ringing. 
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Figure 4 The output of the neural network on Figure 3. The x-axis 
refers to sample number (time). The y-axis has three discrete values. 0 
means no ringing. 0.5 means uncertain. 1 means ringing. 
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Figure 5 This is Figure 4 after "smoothing". The spikes that might have 
indicated ringing have been removed. The axes are the same as in Figure 
4. 
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Figure 6 Graph of a normal firing. Neural network was not trained 
on this curve, x-axis refers to sample number (time), y-axis refers to 
pressure measured in MPascals. No ringing occurs in this curve. 
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Figure 7 This is curve from Figure 6 with the lower frequencies re
moved. The y-axis refers to sample number (time). Notice there are 
no major oscillations (as in Figure 11) which would be an indication of 
ringing. 
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Figure 8 The output of the neural network on Figure 7. The x-axis 
refers to sample number (time). The y-axis has three discrete values. 0 
means no ringing. 0.5 means uncertain. 1 means ringing. 
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Figure 9 This is Figure 8 after "smoothing". Most of the spikes from 
Figure 8 that might have indicated ringing have been removed. The axes 
are the same as in Figure 8. 
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Figure 10 Graph of an abnormal firing. Ringing has occurred in this 
curve. Neural network was trained on this curve, x-axis refers to sample 
number (time), y-axis refers to pressure measured in MPascals. 
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Figure 11 This is curve from Figure 10 with the lower frequencies 
removed. The y-axis refers to sample number (time). Notice there are 
large spikes between times 2180 and 2880 which indicates ringing. 
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Figure 12 The output of the neural network on Figure 11. The x-axis 
refers to sample number (time). The y-axis has three discrete values. 0 
means no ringing. 0.5 means uncertain. 1 means ringing. Notice that 
between times 2000 to 3000 there is a solid range with a value of 1 which 
is also the times when ringing occurs. 
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Figure 13 This is Figure 12 after "smoothing". Notice that much of the 
"noise" in Figure 10 has been cleaned up. Between times 2100 and 2800, 
there is one large block of ringing which the expert system will look for 
to determine ringing. The axes are the same as in Figure 12. 
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Figure 14 Graph of an abnormal firing. Ringing occurs in this curve 
between times 2580 and 2880. The neural network was not trained on this 
curve, x-axis refers to sample number (time), y-axis refers to pressure 
measured in MPascals. 
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Figure 15 This is curve from Figure 14 with the lower frequencies 
removed. The y-axis refers to sample number (time). Notice there are 
large oscillations between times 2580 and 2880 which indicate ringing. 
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Figure 16 The output of the neural network on Figure 15. The x-axis 
refers to sample number (time). The y-axis has three discrete values. 0 
means no ringing. 0.5 means uncertain. 1 means ringing. Notice that 
between times 2600 to 3000 there is a solid range with a value of 1 which 
is also the times when ringing occurs. 
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Figure 17 This is Figure 16 after "smoothing". Notice that much of the 
"noise" has been cleaned up. Between times 2400 and 2800, there is one 
large block of ringing which the expert system will look for to determine 
ringing. The axes are the same as in Figure 16. 
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CLIPS> (run) 
(run) 
Type in file to be read ==> tt_norml.clips 

You may fire. There is negligible evidence of ringing. 

3 rules fired 

Figure 18 This is a sample CLIPS run based on the output produced by 
the temporal pattern matcher on Figure 5. No ringing has been found, so 
the expert system indicates refiring is safe. 

CLIPS> (run) 
(run) 
Type in file to be read ==> tt_norm2.clips 

Don't fire without more information! 
Moderate evidence of ringing between time 1645 and 1665 
Length of ringing: 20 

4 rules fired 

Figure 19 This is a sample CLIPS run based on the output produced by 
the temporal pattern matcher on Figure 9. A little ringing has been found, 
so the expert system indicates a moderate warning not to reflre. 
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CLIPS> (run) 
(run) 
Type in file to be read ==> tt_ring2.clips 

Do not firel 
High evidence of ringing between time 2148 and 2814 
Length of ringing: 666 

8 rules fired 

Figure 20 This is a sample CLIPS run based on the output produced by 
the temporal pattern matcher on Figure 13. Definite indications of ringing 
has been found, so the expert system advises not to refire. 

CLIPS> (run) 
(run) 
Type in file to be read ==> tt_ringl.clips 

Do not firel 
High evidence of ringing between time 2434 and 2 908 
Length of ringing: 474 

7 rules fired 
CLIPS> (exit) 
(exit) 

Figure 21 This is a sample CLIPS run based on the output produced by 
the temporal pattern matcher on Figure 17. Definite indications of ringing 
has been found, so the expert system advises not to refire. 
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CLIPS> (run) 
(run) 
Type in file to be read ==> tt_norm2.clips 

Evidence of ringing between time 1645 and 1665 
Being removed from consideration because it 
falls during times 0 and 1700 where there should 
should be no ringing. 

You may fire. There is negligible evidence of ringing. 

5 rules fired 

Figure 22 This is a sample CLIPS run based on the output produced by 
the temporal pattern matcher on Figure 9. An additional rule has been 
added to discount ringing when it occurs during the upslope of a curve. 
The expert system advises that refiring is safe, but also indicates that it is 
ignoring ringing on die upslope. 
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Part IV: Commentaries 

• Chapter 11 (by Vasant Honavar) attempts to explore questions regarding 
fundamental similarities and differences between symbolic systems and 
connectionist systems. 

• Chapter 12 (by Michael Dyer) reviews connectionist symbolic processing 
models with respect to natural language processing. 
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1 INTRODUCTION 

The attempt to understand intelligence entails building theories and models of 
brains and minds, both natural as well as artificial. From the earliest writings 
of India and Greece, this has been a central problem in philosophy. The 
advent of the digital computer in the 1950's made this a central concern of 
computer scientists as well (Turing, 1950). The parallel development of the 
theory of computation (by John von Neumann, Alan Turing, EmilPost, Alonzo 
Church, Charles Kleene, Markov and others) provided a new set of tools with 
which to approach this problem — through analysis, design, and evaluation of 
computers and programs that exhibit aspects of intelligent behavior — such 
as the ability to recognize and classify patterns; to reason from premises to 
logical conclusions; and to learn from experience. 

In their pursuit of artificial intelligence and mind/brain modelling, some wrote 
programs that they executed on serial stored-program computers (e.g., Newell, 
Shaw and Simon, 1963; Feigenbaum, 1963); Others had more parallel, brain
like networks of processors (reminiscent of today's connectionist networks) in 
mind and wrote more or less precise specifications of what such a realization 
of their programs mightlook like (e.g., Rashevsky, 1960; McCulloch and Pitts, 
1943; Selfridge and Neisser, 1963; Uhr and Vossler, 1963); and a few took 
the middle ground (Uhr, 1973; Holland, 1975; Minsky, 1963; Arbib, 1972; 
Grossberg, 1982; Klir, 1985). 

It is often suggested that two major approaches have emerged — symbolic 
artificial intelligence (SAI) and (numeric) artificial neural networks (NANN 
or connectionist networks) and some (Norman, 1986; Schneider, 1987) have 
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even suggested that they are fundamentally and perhaps irreconcilably differ
ent. Indeed it is this apparent dichotomy between the two apparently disparate 
approaches to modelling cognition and engineering intelligent systems that is 
responsible for the current interest in computational architectures for integrat
ing neural and symbolic processes. This topic is the focus of several recent 
books (Honavar and Uhr, 1994a; Goonatilake and Khebbal, 1994; Levine 
and Aparicioiv, 1994; Sun and Bookman, 1994). This raises some important 
questions: What exactly are symbolic processes? What do they have to do 
with SAI? What exactly are neural processes? What do they have to do with 
NANN? What (if anything) do SAI and NANN have in common? How (if 
at all) do they differ? What exactly are computational architectures? Do SAI 
and NANN paradigms need to be integrated? Assuming that the answer to the 
last question is yes, what are some possible ways one can go about designing 
computational architectures for this task? This chapter is an attempt to explore 
some of these fundamental questions in some detail. 

This chapter argues that the dichotomy between SAI and NANN is more per
ceived than real. So our problems lie first in dispelling misinformed and 
wrong notions, and second (perhaps more difficult) in developing systems 
that take advantage of both paradigms to build useful theories and models of 
minds/brains on the one hand, and robust, versatile and adaptive intelligent 
systems on the other. The first of these problems is best addressed by a criti
cal examination of the popular conceptions of SAI and NANN systems along 
with their philosophical and theoretical foundations as well as their practical 
implementations; and the second by a judicious theoretical and experimental 
exploration of the rich and interesting space of designs for intelligent systems 
that integrate concepts, constructs, techniques and technologies drawn from 
not only SAI (Ginsberg, 1993; Winston, 1992) and NANN (McClelland and 
Rumelhart, 1986; Kung, 1993; Haykin, 1994; Zeidenberg, 1989), but also 
other related paradigms such as statistical and syntactic pattern recognition 
(Duda and Hart, 1973; Fukunaga, 1990; Fu, 1982; Miclet, 1986)), control 
theory (Narendra and Annaswamy, 1989) systems theory (Klir, 1969), genetic 
algorithms (Holland, 1975; Goldberg, 1989; Michalewicz, 1992) and evolu
tionary programming (Koza, 1992). Exploration of such designs should cover 
a broad range of problems in perception, knowledge representation and infer
ence, robotics, language, and learning, and ultimately, integrated systems that 
display what might be considered human-like general intelligence. 
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2 S H A R E D F O U N D A T I O N S O F SAI AND NANN 

This section makes clear that the fundamental philosophical assumptions and 
scientific hypotheses that have shaped both SAI and NANN research are iden
tical. The shared foundations of SAI and NANN guarantee that there can be 
no fundamental incompatibility between the two paradigms for engineering 
intelligent systems or for modelling minds/brains. 

2 . 1 SAI and NANN Share the Same Working Hypotheses 

The fundamental working hypothesis that has guided most of the research in 
artificial intelligence as well as the information-processing school of psychol
ogy is rather simply stated: Cognition, or thought processes can, at some level, 
be modelled by computation. The philosophical roots of this hypothesis can 
be traced at least as far back as the attempts of Helmholtz, Leibnitz and Boole 
to explain thought processes in terms of mechanical (or in modern terms, al
gorithmic or computational) processes. This has led to the functional view of 
intelligence which is shared explicitly or implicitly by almost all of the work in 
SAI as well as NANN. NewelTs physical symbol system hypothesis (Newell, 
1980), Fodor's language of thought (Fodor, 1976), Minsky's society of mind 
(Minsky, 1986), Holland's classifier systems (Holland, 1986), and most neu
ral network models (McClelland and Rumelhart, 1986; Kung, 1993; Haykin, 
1994; Zeidenberg, 1989) are all specific examples of this functional view. In 
this view, intelligence can be characterized abstractly as a functional capability 
independent of any commitments as to the specific physical substrates that 
support the functions in question. 

The primary means of describing the behavior of intelligent systems (be they 
natural or artificial) within the SAI paradigm is in terms of their having knowl
edge and behaving in light of that knowledge. This is the so-called knowledge-
level description (Newell, 1990). But it is important to remember that de
scriptions at the knowledge-level represent just one of the many alternatives 
available. The choice of what description to use in modelling intelligence, as in 
science in general, must be based on pragmatic considerations as determined by 
aspects of the phenomena being modelled and the sorts of explanations being 
sought. Satisfactory accounts of system behavior often make use of multiple 
levels of description along with the necessary means of mapping descriptions 
at one level into descriptions at adjacent levels. 
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Perhaps not so obvious is the fact that exactly the same functional view of 
intelligence is at the heart of current approaches to mimic intelligent behav
ior within the NANN paradigm, as well as the attempts to understand brain 
function using the techniques of computational neuroscience and neural mod
elling. The earliest work on neural networks by Rashevsky (1960), McCulloch 
and Pitts (1943) and Rosenblatt (1962)nociteros62 — from which many of to
day's NANN models are derived — illustrates this point rather well. So does 
the emphasis on computational models in the recent book on this topic by 
Patricia Churchland and Terrence Sejnowski (1992) suggestively titled The 
Computational Brain (This is not to suggest that brain modelling can ignore 
the particular biological substrates that realize the computations in question 
but just that the computational characterization of what the brains do provides 
a useful class of explanations and predictions of mental phenomena). It is 
important to note that NANN models or theories of intelligence are stated in 
terms of abstract computational mechanisms just as their SAI counterparts. 
The differences (if any) from SAI are primarily in terms of the (often unstated) 
preference for functional descriptions of intelligent systems at a different level 
of detail using a different set of primitives. 

Some have (somewhat misleadingly) used the term neural level to refer to 
such descriptions. Today's NANN models are almost certainly grossly over
simplified caricatures of biological brains (Shepherd, 1989; 1990). It is far 
from clear that NANN are more suited to modelling brains any more than SAI; 
Descriptions in terms of rules, tokens, and automata (typically associated with 
SAI systems) offer extremely useful descriptions of biological neural circuits 
at the cellular and molecular levels (Cooper, 1990). (More on this later). 

It should be clear from the discussion above that both SAI and NANN 
paradigms essentially offer two different description languages for describ
ing systems in general and intelligent systems — minds/brains (be they natural 
or artificial) — in particular. As pointed out by Chandrasekaran and Josephson 
(1994), the commitment of most SAI researchers to biology in describing intel
ligence does not typically go beyond the knowledge level. Although perhaps 
not as obvious is die fact that an analogous situation holds for NANN models. 
NANN researchers pick out some interesting or relevant aspects of biological 
phenomena, and then proceed to formulate an abstract functional model (using 
abstract models of neurons) for the selected aspects of the phenomena cho
sen. The abstract descriptions in both cases are usually stated in sufficiently 
general languages. One thing we know for certain is that such languages are 
all equivalent (see below). This provides absolute assurance that particular 
physical implementations of systems exhibiting mind/brain-like behavior can 
be described using the language of SAI or NANN irrespective of the physical 
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medium (biological or silicon or some other) that is used in such an implemen
tation. And the choice of the language should (as it usually is, in science in 
general) be dictated by pragmatic considerations. 

2 . 2 SAI and NANN Rely on Equivalent Models of Computation 

Turing was among the first to formalize the common-sense notion of com
putation in terms of execution of what he called an effective procedure or an 
algorithm. In the process, he invented a hypothetical computer — the Turing 
machine. The behavior of the Turing machine is governed by an algorithm 
which is realized in terms of a program or a finite sequence of instructions. 
Turing also showed that there exists a universal Turing machine (essentially a 
general purpose stored program computer with potentially infinite memory) — 
one that can compute anything that any other Turing machine could possibly 
compute — given the necessary program as well as the data and a means for 
interpreting its programs. Several alternative models of computation were 
developed around the same time including lambda calculus of Church and 
Rosser, Post productions, Markov algorithms, Petri nets, and McCulloch-Pitts 
neural networks. However, all of these models (given potentially infinite 
memory) were proved exactly equivalent to the Turing Machine. That is, any 
computation that can be described by a finite program can be programmed in 
any general purpose language or on any Turing-equivalent computer (Cohen, 
1986). (However, a program for the same computation may be much more 
compact when written in one language than in some other; or it may execute 
much faster on one computer than some other). But the provable equivalence 
of all general purpose computers and languages assures us that any computa
tion — be it numeric or symbolic — can be realized, in principle, by both SAI 
as well as NANN systems. 

Given the reliance of both SAI and NANN on equivalent formal models of 
computation, the questions of interest have to do with the identification of 
particular subsets of Turing-computable functions that model various aspects 
of intelligent behavior given the various design and performance constraints 
imposed by the physical implementation media at our disposal. 
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3 K N O W L E D G E R E P R E S E N T A T I O N R E V I S I T E D 

Knowledge representation and inference are perhaps among the most central 
research issues in the integration of SAI and NANN paradigms for modelling 
cognitive phenomena and engineering intelligent systems. This is evident from 
the fact that almost all the recent books on the integration of SAI and NANN 
paradigms (Honavar and Uhr, 1994a; Levine and Aparicioiv, 1994; Sun and 
Bookman, 1994) have devoted several chapters to this topic. It is therefore 
worth clarifying some basic issues about knowledge representation. 

It is generally accepted in artificial intelligence and cognitive science that 
knowledge has to be represented in some form in order for it to be used. This is 
free of any commitment as to how a particular piece of knowledge is internally 
represented. However, implicit in this view is a commitment to use some 
language (e.g., first order logic, production rules, lambda calculus or LISP) to 
express and manipulate knowledge. Expressions in any such language can be 
syntactically transformed into any other sufficiently expressive language — 
this follows from the universality of the Turing framework. This is tantamount 
to saying that systems that use knowledge are simultaneously describable at 
multiple levels of description. And systems (such as living brains or robots) 
that exist in the physical world would have physical descriptions — just as the 
behavior of a computer can be described at an abstract level in terms of data 
structures and programs, or in terms of machine language operations that are 
carried out (thereby making the function of the hardware more transparent) 
or in terms of the laws of physics that describe the behavior of the physical 
medium which is used to construct the hardware. 

Note that this view is entirely consistent with that of Churchland and others 
(Churchland, 1986; Churchland and Sejnowski, 1992) who have advocated the 
search for explanations of cognition at multiple levels. It is also important to 
not lose sight of the fact that such a system is embedded within an external 
environment with which it interacts in a closed loop fashion through sensors 
and effectors and its body of knowledge is about its environment, its goals, its 
actions. This is the essence of grounding (see below). 

3 .1 N A T U R E O F K N O W L E D G E R E P R E S E N T A T I O N 

Given the central role played by knowledge representation in functional ap
proaches to understanding and engineering intelligence, the nature of represen
tation is among one the most fundamental questions in artificial intelligence 
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and cognitive science. Some insight into this question can be obtained by 
considering a concrete example. A common way to represent knowledge (at 
least in SAI) is with logic (Genesereth and Nilsson, 1987). It is worth empha
sizing that logic is not the knowledge itself; it is simply a way of representing 
knowledge. (However, logic can be viewed as a form of meta-level knowledge 
about how to represent and reason with knowledge.) What logic enables us to 
do is represent the knowledge possessed by an agent using a finite set of logical 
expressions plus a process (namely, the inference rules of logic) for generating 
a (potentially unlimited) set of other logical expressions that are part of the 
agent's knowledge. Thus if we represented an agent's knowledge in the form 
of expressions a and 6, and if a A 6 f= c, the agent has (implicit) knowledge 
of c even though c was not part of the (explicit) representation. In fact, first 
order logic is universal in that it is powerful enough to represent essentially 
any knowledge that can be captured by a formal system. However, for certain 
types of knowledge to be used for certain purposes (e.g., knowledge of the 
sort that is captured by maps of some geographical region or a city), first order 
logic representation may be awkward, indirect, or overly verbose. 

If on the other hand, we were to choose a different way of representing knowl
edge of an agent, one which did not permit any logical deduction, then the 
agent's knowledge could be limited to those expressions that were explicitly 
included in the representation. Such a representation is in essence, simply 
a lookup table for the expressions in question. Thus, (for lack of a better 
term), the knowledge content of a representation may be limited by restricting 
either the inferences allowed, the form of the expressions that may be included 
(that is, limiting the expressive power), or both. Indeed, it is often necessary 
to impose such limits on the power of representation in order to make their 
use computationally feasible (perhaps at the expense of logical soundness, 
completeness, or both). 

In order for any system to serve the role of a representation (as used in most ar
tificial intelligence and cognitive science theories) it must include: an encoding 
process that maps the physical state of the external environment into an internal 
state; processes that map transformations of the physical state of the external 
environment into appropriate (internal) transformations of the internal state; a 
decoding process that maps an internal state into a physical state of the exter
nal environment — all subject to the constraint that the result of decoding the 
result of application of internal transformations of an internal state (obtained 
from encoding a physical state of the environment) is the same as the result of 
directly transforming the physical state of the external environment. (This is 
perhaps a stronger requirement than is necessary — most likely influenced by 
the emphasis on logic. It is easy to see several ways of relaxing this constraint 
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— by allowing the correspondence to be only approximate instead of exact, 
or attainable only with a certain probability. It must also be mentioned that 
not everyone agrees with this view of representation through encoding; See 
Bickhard, 1993 for a dissenting view). In short, representations are caricatures 
of selected aspects of an agent's environment that are operationally useful to 
the agent. Thus, certain mental operations on the representation can be used 
to predict the consequences of performing corresponding physical actions on 
the environment in which the agent operates. 

Note that the internal transformations may be performed using LISP programs 
or production systems of S AI or by a suitably structured NANN. (Note however 
that the encoding and decoding processes are not purely symbolic because they 
have to deal with transduction or grounding. Also worth noting is the fact that 
most systems, be they SAI or NANN only simulate transduction and hence 
may lack grounding). 

Newell (1990) proposes an additional requirement for representations — 
namely that the application of encoding (sensing), internal transformations, 
and decoding (acting) must be executable on demand to the extent required to 
serve the purposes of the organism (which could be viewed essentially as the 
sensed internal environment of needs, drives, and emotions). 

3.2 W H E R E D O T H E REPRESENTATIONS C O M E F R O M ? 

Representations may be discovered by organisms (or evolution) by identifying 
the right medium of encoders (transducers) and decoders (effectors) and the 
right dynamics for the transformations for specific tasks. This would lead 
to a large number of task-specific analogical representations. Indeed, strong 
evidence for such analogical representations are can be found in living brains: 
the retinotopic maps in the visual cortex and the somatotopic maps of the 
sensory-motor cortex provide good examples of analogical representations 
(Kandell and Schwartz, 1985). 

Alternatively, or in addition, a set of encoders and decoders may be used in 
conjunction with the ability to compose whatever sequence of transformations 
that may be necessary to form a representation. Most SAI systems take this 
route to the design of representations — by using a sufficiently general language 
(e.g., LISP) that allows the composition of whatever functions that may be 
necessary to satisfy the appropriate representation laws. Most NANN systems 
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take the same route as well — they just happen to use a different language with 
a different set of primitives for composing the necessary transformations. 

Irrespective of the approach chosen, the discovery of adequately powerful, 
efficient, and robust representations for any non-trivial set of tasks is still a 
largely unsolved problem. This is where learning and evolutionary processes 
play a major role. They must build the representations that perception and 
cognition utilize. One of the most informative characterizations of learning to 
date is in terms of storage of results of inference in a form that is suitable for use 
in the future (Michalski, 1993). Learning can clearly provide an avenue for the 
discovery of the necessary compositions of transformations which is a major 
aspect of representation. However, note that both SAI and NANN systems 
presuppose the existence of some representation before they can discover 
other useful representations. (Therefore it appears that representations cannot 
come into existence without the existence of physical transducers and effectors 
that connect such systems with the physical world, leading to the grounding 
problem — see below). This makes the initial representation or encoding 
extremely important. If it is not properly chosen (by the designer of the system 
or by evolution), it places additional (and perhaps insurmountable) burdens 
on the learning mechanisms (e.g., if the initial representation failed to capture 
spatial or temporal relations at a level of detail that is necessary for dealing 
with the problem domain). 

It is far from clear that every task-specific representation ever used by the 
system must be learned. Representations may be constructed as necessary 
to solve specific problems and then discarded. Alternatively, some basic 
(learned or evolved) representations may be adapted in real time for solving 
specific problems. This is an important aspect of the schema-based approach 
to modelling intelligence proposed by Arbib (1994). 

As already pointed out, living brains appear to provide a rich panoply of 
representations — including analogical and iconic representations in the 
form of serial-parallel networks of topography-preserving projections (Kuf-
fler, Nicholls, and Martin, 1984; Zeki and Shipp, 1988; Uhr, 1986; Honavar, 
1989; Honavar and Uhr, 1989a; 1989b) in the visual, auditory and motor cor
tices. Such representations have been largely ignored in today's SAI as well 
as NANN models. They may very well be among the essential representa
tions grounded in the environment that form the foundation of a much larger 
representational edifice that is needed for human-like general intelligence. 

In short, SAI and NANN systems often differ in terms of the preferred form of 
knowledge representation used although any knowledge that can be represented 
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in one can also be represented (albeit not as efficiently, robustly or elegantly) 
in the other. The challenge for engineers and cognitive modellers is to choose 
the right mix of SAI and NANN (and whatever other possibilities that exist) to 
meet the needs of the problem at hand. 

4 A C L O S E R L O O K AT SAI AND NANN 

Given the shared philosophical and scientific roots that SAI and NANN have in 
common, why the great fuss about their integration? Answering this question 
entails taking a closer look at some prototypical SAI and NANN systems 
followed by a critical examination of what are generally considered their 
defining characteristics and much-touted advantages and disadvantages. This 
examination demonstrates that despite assertions by some to the contrary, the 
differences between them are less than what they might seem at first glance; and 
to the extent they differ, such differences are far from being in any reasonable 
sense of the term, fundamental; and that the purported weaknesses of each 
can potentially be overcome through a judicious integration of techniques and 
tools selected from the other (Honavar, 1990; Honavar and Uhr, 1990a; Uhr 
and Honavar, 1994; Honavar and Uhr, 1994; Uhr, 1990; Boden, 1994). 

4 . 1 P R O B L E M SOLVING AS S T A T E S P A C E S E A R C H 

State Space Search in SAI Systems 

The prototypical SAI models are more or less direct descendents of the von 
Neumann stored program model of computation. The essential components 
of such a model are: a storage for programs (instructions for processing 
data), a processor for interpretation and execution of the program; and a 
(transient) working memory for receiving inputs, and holding intermediate 
results of processing. Learning programs have additional mechanisms for 
self-modification (i.e., the modification of the set of programs that they use). 

The dominant paradigm for problem solving in SAI is state space search 
(Winston, 1992; Ginsberg, 1993). States represent snap-shots of the problem 
at various stages of its solution. Operators enable transforming one state into 
another. Typically, the states are represented using structures of symbols (e.g., 
lists). Operators transform one symbol structure (e.g., list, or a set of logical 
expressions) into another. The system's task is to find a path between two 
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specified states in the state-space (e.g., the initial state and a specified goal, the 
puzzle and its solution, the axioms and a theorem to be proved, etc.). 

In almost any non-trivial problem, a blind exhaustive search for a path will 
be impossibly slow, and there will be no known algorithm or a procedure for 
directly computing that path without resorting to search. As a result, much 
work in SAI has focused on the study of effective heuristic search procedures 
(Pearl, 1984). For example, SAI systems handle games like chess as follows: 
The initial board is established as the given, and a procedure is coded to 
compute whether a win-state has been reached. In addition, procedures are 
coded to execute legal moves and (usually) to compute heuristic assessments 
of the promise of each possible move, and to combine the separate heuristic 
assessments into an overall value that will be used to choose the next move. 
Finally, all these are put into a total structure that applies the appropriate 
heuristics, combines their results and evaluates alternative moves, and actually 
makes a move, then waits for and senses the opponent's moves, uses it to 
update the board (probably checking that it is indeed a legal move), and loops 
back to make its own next move. (For simplicity the look-ahead with minimax 
that most game-players use has been ignored, but that is essentially more of 
the same.) 

Knowledge-Guided Search 

Search in general can be guided by the knowledge that is at the disposal of the 
problem solver. If the system is highly specialized, the necessary knowledge 
is usually built into the search procedure (in the form of criteria for choosing 
among alternative paths, heuristic functions to be used, etc.). However, general 
purpose problem solvers also need to be able to retrieve problem-specific and 
perhaps even situation-specific knowledge to be used to guide the search during 
problem-solving. Indeed, such retrieval might itself entail search (albeit in a 
different space). Efficient, and flexible representations of such knowledge as 
well as mechanisms for their retrieval as needed during problem solving are, 
(although typically overlooked because most current AI systems are designed 
for very specialized, narrowly defined tasks), extremely important. This is an 
area where NANN or other implementations of content addressed memories 
and indexing schemes are especially worth exploring. 
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State Space Search in NANN Systems 

The NANN system (a network of relatively simple processing elements, neu
rons, or nodes) is typically presented with an input pattern or initialized in a 
given starting state encoded in the form of a state vector each of whose ele
ments corresponds to the state of a neuron in the network). It is designed or 
trained to output the correct response to each input pattern it receives (perhaps 
after undergoing a series of state updates determined by the rules governing its 
dynamic behavior). The input-output behavior of the network is a function of 
the network architecture, the functions computed by the individual nodes and 
parameters such as the weights. 

For example, the solution of an optimization problem (traditionally solved 
using search) can be formulated as a problem of arriving at a state of a suitably 
designed network that corresponds to one of minimum energy (which is defined 
to correspond in some natural way to the optimality of the solution being 
sought). For an example of such an approach to theorem-proving, see (Pinkas, 
1994). Ideally, the network dynamics are setup so as to accomplish this without 
additional explicit control. However, in practice, state updates in NANN 
systems are often controlled in a manner that is not much different from explicit 
control (as in sequential update of neurons in Hopfield networks (Hopfield, 
1982) where only one neuron is allowed to change its state on any update cycle) 
to guarantee certain desired emergent behaviors). Indeed, a range of cognitive 
tasks do require selective processing of information that often necessitates 
the use of a variety of (albeit flexible and distributed) networks of controls 
that is presently lacking in most NANN models (Honavar and Uhr, 1990b). 
Many such control structures and processes are suggested by an examination 
of computers, brains, immune systems, and evolutionary processes. 

In short, in both SAI and NANN systems, problem-solving involves state-space 
search; and although most current implementations tend to fall at one end of the 
spectrum or the other, it should be clear that there exists a space of designs that 
can use a mix of different state representations and processing methods. The 
choice of a particular design for a particular class of problems should primarily 
be governed by performance, cost, and reliability considerations for artificial 
intelligence applications and psychological and neurobiological plausibility 
for cognitive modelling. 
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4 . 2 S Y M B O L S , S Y M B O L S T R U C T U R E S , S Y M B O L I C P R O C E S S E S 

Symbols 

Knowledge representation as described earlier, generally implies the use of 
symbols at some level. The standard notion of a symbol is that it stands for 
something and when a symbol token appears within a symbolic expression car
ries the interpretation that the symbol stands for something within the context 
that is specified by its place in the expression. In general, a symbol serves as 
a surrogate for a body of knowledge that may need to be accessed and used 
in processing the symbol. And ultimately, this knowledge includes semantics 
or meaning of the symbol in the context in which it appears, including that 
provided by the direct or indirect grounding of the symbol structure in the 
external environment (Harnad, 1990). 

Symbolic Processes 

Symbolic processes are essentially transformations that operate on symbol 
structures to produce other symbol structures. Memory holds symbol struc
tures that contain symbol tokens that can be modified by such processes. This 
memory can take several forms based on the time scales at which such mod
ifications are allowed. Some symbol structures might have the property of 
determining choice and the order of application of transformations to be ap
plied on other symbol structures. These are essentially the programs. Programs 
when executed — typically through the conventional process of compilation 
and interpretation and eventually — when they operate on symbols that are 
linked through grounding to particular effectors — produce behavior. Work
ing memory holds symbol structures as they are being processed. Long-term 
memory, generally speaking, is the repository of programs and can be changed 
by addition, deletion, or modification of symbol structures that it holds. 

Such a system can compute any Turing-computable function provided it has 
sufficiently large memory and its primitive set of transformations are adequate 
for the composition of arbitrarily symbol structures (programs) and the in
terpreter is capable of interpreting any possible symbol structure. This also 
means that any particular set of symbolic processes can be carried out by an 
NANN — provided it has potentially infinite memory, or finds a way to use its 
transducers and effectors to use the external physical environment to serve as 
its memory). 
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Knowledge in S AI systems is typically embedded in complex symbol structures 
such as lists (Norvig, 1992), logical databases (Genesereth and Nilsson, 1987), 
semantic networks (Quillian, 1968), frames (Minsky, 1975), schemas (Arbib, 
1972; 1994), and manipulated by (often serial) procedures or inferences (e.g., 
list processing, application of production rules (Waterman, 1985), or execution 
of logic programs (Kowalski, 1977) carried out by a central processor that 
accesses and changes data in memory using addresses and indices. 

It is often claimed that the NANN systems predominantly perform numeric 
processing in contrast to SAI systems which manipulate symbol structures. 

Symbolic Processes in NANN systems 

As already pointed out, NANN systems represent problem states using (typi
cally binary) state vectors which are manipulated in a network of processors 
using (typically) numeric operations (e.g., weighted sums and thresholds). It 
is not hard to see that the numeric state vectors and transformations employed 
in such networks play an essential symbolic role although the rules of trans
formation may now be an emergent property of a large number of nodes acting 
in concert. In short, the formal equivalence of the various computational 
models guarantees that NANN can support arbitrary symbolic processes. It is 
not therefore surprising that several alternative mechanisms for variable bind
ing and logical reasoning using NANN have been discovered in recent years. 
Some of these require explicit use of symbols (Shastri and Ajjanagadde, 1989); 
others resort to quasi-symbols that have some properties of symbols while not 
being actually symbols in their true sense (Pollack, 1990; Maclennan, 1994); 
still others use pattern vectors to encode symbols (Dolan and Smolensky, 1989; 
Smolensky, 1990; Sun, 1994a; Chen and Honavar, 1994). The latter approach 
to symbol processing is often said to use sub-symbolic encoding of a symbol 
as a pattern vectors each of whose components is insufficient in and of itself to 
identify the symbol in question (see the discussion on distributed representa
tions below). In any case, most, if not all, of these proposals are implemented 
and simulated on general purpose digital computers, so none of the functions 
that they compute are outside the Turing framework. 

4 . 3 N U M E R I C P R O C E S S I N G 

Numeric processing, as the name suggests, involves computations with num
bers. On the surface it appears that most NANN perform essentially numeric 
processing. After all, the formal neuron of McCulloch and Pitts computes 
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weighted sum of its numeric inputs. And the neurons in most NANN models 
perform similar numerical computations. On the other hand, S AI systems pre
dominantly compute functions over structures of symbols. But numbers are in 
fact symbols for quantities; and any computable function over numbers can be 
computed by symbolic processes. In fact, general purpose digital computers 
have been performing both symbolic as well as numeric processing ever since 
they were invented. 

4 . 4 A N A L O G P R O C E S S I N G 

It is often claimed that NANN perform analog computation. Analog com
putation generally implies the use of dynamical systems describable using 
continuous differential equations. They operate in continuous time, gener
ally with physical entities such as voltages, currents, which serve as physical 
analogs of the quantities of interest. Thus soap bubbles, servomechanisms, and 
cell membranes can all be regarded as analog computers (Rajaraman, 1981). 

Whether physically realizable systems are truly analog or whether analog sys
tem is simply a mathematical idealization of (extremely fine-grained) discrete 
system is a question that borders on the philosophical (e.g., are matter, time 
and space continuous or discrete?). However, some things are fairly clear. 
Most NANN are simulated on digital computers and compute in discrete steps 
and hence are clearly not analog. The few NANN models can be regarded as 
analog devices — e.g., the analog VLSI circuits designed and built by Carver 
Mead and colleagues (Mead, 1989) — are incapable of discrete symbolic com
putations (because of their inability to make all-or-none or discrete choices) 
(Maclennan, 1994) although they can approximate such computations. (For 
example, the stable states or attractors of such systems can be interpreted as 
identifiable discrete states). 

Analog systems can be, and often are simulated on digital computers at the 
desired level of precision. However, this might involve a time-consuming 
iterative calculation to produce a result that could potentially be obtained 
almost instantaneously (and transduced using appropriate transducers) given 
the right analog device. Thus analog processing appears to be potentially 
quite useful in many applications (especially those that involve perceptual and 
motor behavior). It is possible that evolution has equipped living systems with 
just the right repertoire of analog devices that help them process information 
in this fashion. However, it is somewhat misleading to call such processing 
computation (in the sense defined by Turing) because it lacks the discrete 
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combinatorial structure that is characteristic of all Turing-equivalent models 
of computation (Maclennan, 1994). 

Whether analog processes play a fundamental role (beyond being part of 
grounding of representations) in intelligent systems remains very much an 
open question. It is also worth pointing out that digital computers can, and in 
fact do, make use of essentially analog devices such as transistors but they use 
only a few discrete states to support computation (in other words, the actual 
analog value is irrelevant so long as it lies withing a range that is distinguish
able from some other range). And when embedded in physical environments, 
both SAI and NANN systems do encounter analog processes through sensors 
and effectors. 

4 . 5 COMPOSITIONALITY AND SYSTEMATICITY OF 

REPRESENTATION 

It has been argued by many e.g., Fodor and Pylyshyn, 1988) that composition-
ality and systematicity (structure sensitivity) of representation are essential for 
explaining mind. In their view, NANN are inadequate models of mind because 
NANN representations lack these essential properties. Compositionality is the 
property that demands that representations must possess an internal syntactic 
structure as a consequence of a particular method for composing complex sym
bol structures from simpler components. Systematicity requires the existence 
of processes that are sensitive to the syntactic structure. As argued by Sharkey 
and Jackson (1994), lack of compositionality is demonstrably true only for a 
limited class of NANN representations; and compositionality and systematic
ity in and of themselves are inadequate to account for cognition (primarily for 
lack of grounding or semantics). Van Gelder and Port (1994) have shown that 
several forms of compositionality can be found in NANN representations. 

4.6 GROUNDING AND SEMANTICS 

Many in the artificial intelligence and cognitive science research community 
agree on the need for grounding of symbolic representations through sensory 
(e.g., visual, auditory, tactile) transducers and motor effectors in the external 
environment on the one hand and the internal environment of needs, drives, 
and emotions of the organism (or robot) in order for such representations 
(which are otherwise devoid of any intrinsic meaning to the organism or robot) 
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to become imbued with meaning or semantics (Hamad, 1990). Some have 
argued that NANN systems provide the necessary apparatus for grounding 
(Harnad, Hanson, and Lubin, 1994). It is important to realize that NANN 
as computational models do not provide physical grounding (as opposed to 
grounding in a simulated world of virtual reality) for representations any more 
than their SAI counterparts. It is only the physical systems with their physical 
substrate on which the representations reside that are capable of providing such 
grounding in physical reality when equipped with the necessary transducers 
and effectors. This is true irrespective of whether the system in question is 
a prototypical SAI system, or a prototypical NANN system, or a hybrid or 
integrated system. 

4 . 7 S E R I A L V E R S U S PARALLEL P R O C E S S I N G 

As pointed out earlier, most of today's SAI systems are serial programs that are 
executed on serial von Neumann computers. However, serial symbol manipu
lation is more an artifact of most current implementations of SAI systems than 
a necessary property of SAI. In parallel and distributed computers, memory 
is often locally available to the processors and even can be almost eliminated 
in data flow machines which model functional or applicative programs where 
data is transformed as it flows through processors or functions. Search in SAI 
systems can be, and often is, parallelized by mapping the search algorithm 
onto a suitable network of computers (Uhr, 1984; 1987; Hewitt, 1977; Hillis, 
1985) with varying degrees of centralized or distributed control. Many search 
problems that arise in applications such as temporal reasoning, resource allo
cation, scheduling, vision, language understanding and logic programming can 
be formulated as constraint satisfaction problems which often lend themselves 
to solution using a mix of serial and parallel processing (Tsang, 1993). 

Similarly, SAI systems using production rules can be made parallel by enabling 
many rules to be matched simultaneously in a data flow fashion (as in RETE 
pattern matching networks (Forgy, 1982)). Multiple matched rules may be 
allowed to fire and change the working memory in parallel as in parallel pro
duction systems (Uhr, 1979) and classifier systems (Holland, 1975) — so long 
as whenever two or more rules demand conflicting actions, arbitration mecha
nisms are provided to choose among the alternatives or resolve such conflicts 
at the sensory-motor interface. Such arbitration mechanisms can themselves 
be realized using serial, parallel (e.g., winner-take-all mechanism), or serial-
parallel (e.g., pyramid-like hierarchies of decision mechanisms) networks of 
processes. 
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NANN systems with their potential for massive fine-grained parallelism of 
computation offer a natural and attractive framework for the development of 
highly parallel architectures and algorithms for problem solving and inference. 
Such systems are considered necessary by many researchers (Uhr, 1980; Feld-
man and Ballard, 1982) for tasks such as real-time perception. But S AI systems 
doing symbolic inference can be, and often are, parallelized, and certain in
herently sequential tasks need to be executed serially. On any given class of 
problems, the choice of decomposition of the computations to be performed 
into a parallel-serial network of processes and their mapping onto a particular 
network of processors has to be made taking the cost and performance tradeoffs 
into consideration. 

4 . 8 K N O W L E D G E E N G I N E E R I N G V E R S U S K N O W L E D G E 

A C Q U I S I T I O N T H R O U G H LEARNING 

The emphasis in some SAI systems (especially the so-called knowledge-based 
expert systems (Waterman, 1985)) on knowledge engineering has led some 
to claim that SAI systems are, unlike their NANN counterparts, incapable of 
learning from experience. This is clearly absurd as even a cursory look at the 
current research in machine learning (Shavlik and Dietterich, 1990; Buchanan 
and Wilkins, 1993) and much early work in pattern recognition (Uhr, 1973; 
Fu, 1982; Miclet, 1986) shows. Research in SAI and closely related systems 
indeed have provided a wide range of techniques for deductive (analytical) and 
inductive (synthetic) learning. Learning by acquisition and modification of 
symbol structures almost certainly plays a major role in knowledge acquisition 
in humans who learn and communicate in a wide variety of natural languages 
(e.g., English) as well as artificial ones (e.g., formal logic, programming lan
guages). While NANN systems with their micro-modular architecture offer a 
range of interesting possibilities for learning, for the most part, only the sim
plest parameter or weight modification algorithms have been explored to date 
(McClelland and Rumelhart, 1986 et almr86; Kung, 1993; Haykin, 1993). In 
fact, learning by weight modification alone appears to be inadequate in and of 
itself to model rapid and irreversible learning that is observed in many animals. 
Algorithms that modify networks through structural changes that involve the 
recruitment of neurons (Greenough and Bailey, 1988; Honavar, 1989; 1990; 
Honavar and Uhr, 1989a; 1989b; 1993; Kung, 1993; Grossberg, 1980) appear 
promising in this regard. 

A detailed discussion of learning is beyond the scope of this chapter. Suffices it 
to point out that most forms of learning can be understood and implemented in 
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terms of structures and processes for representing and reasoning with knowl
edge (broadly interpreted) and for memorizing the results of such inference in a 
form that lends itself to retrieval and use at a later time (Michalski, 1993). Thus 
any NANN or SAI or some hybrid architecture that is capable of performing 
inference and has memory for storing the results of inference for retrieval and 
use on demand can be equipped with the ability to learn. The interested reader 
is referred to (Honavar, 1994) for a detailed discussion of systems that learn 
using multiple strategies and representations. Additional examples of systems 
that combine NANN and SAI approaches to learning can be found in (Uhr, 
1973; Holland, 1975; Honavar, 1992; 1994; Honavar and Uhr, 1993; Lacher 
and Nguyen, 1994; Carpenter and Grossberg, 1994; Shavlik, 1994; Goldfarb 
and Nigam, 1994; Booker, Riolo, and Holland, 1994). In short, SAI systems 
offer powerful mechanisms for manipulation of highly expressive structured 
symbolic representations while NANN offer the potential for robustness, and 
the ability to fine-tune their use as a function of experience (primarily due to 
the use of tunable numeric weights and statistics). 

4 . 9 ASSOCIATIVE AS OPPOSED TO ADDRESS-BASED STORAGE 

AND RECALL 

An often cited distinction between SAI and NANN systems is that the latter em
ploy associative (i.e., content-addressable) as opposed to the address-and-index 
based storage and recall of patterns in memory typically used by the former. 
This is a misconception for several reasons: Address-and-index based memory 
storage and retrieval can be used to simulate content-addressable memory and 
vice versa and therefore unless one had access to the detailed internal design 
operation of such systems, their behavior can be indistinguishable from each 
other. Many SAI systems conventional computers use associative memories in 
some form or another (e.g., hierarchical cache memories). While associative 
recall may be better for certain tasks, address (or location-based) recall may 
be more appropriate for others. Indeed, many computational problems that 
arise in symbolic inference (pattern matching and unification in rule-based 
production systems or logic programming) can take advantage of associative 
memories for efficient processing (Chen and Honavar, 1994). 

In prototypical NANN models, associative recall is based on some relatively 
simple measure of proximity or closeness (usually measured by Hamming 
distance in the case of binary patterns) to the stored patterns. While this 
may be appropriate in domains in which related items have patterns or codes 
that are close to each other, it would be absurd to blindly employ such a 
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simple content-addressed memory model in domains where symbols are arbi
trarily coded for storage (which would make hamming distance or a similar 
proximity measure useless in recalling the associations that are really of inter
est). Establishing (possibly context-sensitive) associations between otherwise 
arbitrary symbol structures based on their meanings and retrieving such as
sociations efficiently requires complex networks of learned associations more 
reminiscent of associative knowledge networks, semantic networks (Quillian, 
1968), frames (Minsky, 1975), conceptual structures (Sowa, 1984), schemas 
(Arbib, 1994), agents (Minsky, 1986) and object-oriented programs of SAI 
(Norvig, 1992) than today's simple NANN associative memory models. This 
is not to suggest that such structures cannot be implemented using suitable 
NANN building blocks — see (Arbib, 1994; Dyer, 1994; 1994b; Miikku-
lainen, 1994a; Bookman, 1994; Barnden, 1994a; 1994b) for some examples 
of such implementations. Indeed, such NANN implementations of complex 
symbol structures and symbolic processes can offer many potential advantages 
(e.g., robustness, parallelism) for SAI. 

4.10 DISTRIBUTED STORAGE, PROCESSING, AND CONTROL 

Distributed storage, processing, and control are often claimed to be some of 
the major advantages of NANN systems over their SAI counterparts. It is far 
from clear as to what is generally meant by the term distributed when used in 
this context (Oden, 1994). 

Perhaps it is most natural to think of an item as distributed when it is coded (say 
as a pattern vector) whose components by themselves are neither sufficient to 
identify the item nor have any useful semantic content. Thus, the binary code 
for a letter of the alphabet is distributed. Any item thus distributed eventually 
has to be reconstructed from the pieces of its code. This form of distribution 
may be in space, time, or both. Thus the binary code for a letter of the alphabet 
may be transmitted serially (distributed in time) over a single link that can 
carry 1 bit of information at a time or in parallel (distributed in space) using 
a multi-wire bus. If a system employs such a mechanism for transmission 
or storage of data, it also needs decoding mechanisms for reconstructing the 
coded item at the time of retrieval. It is easy to see that this is not a defining 
property of NANN systems as it is found in even the serial von Neumann 
computers. In any event, both NANN as well as SAI systems can use such 
distributed coding of symbols. And, as pointed out by Hanson and Burr (1990), 
distributed coding in and of itself, offers no representational capabilities that 
are not realizable using a non-distributed coding. 
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In the context of NANN, the term distributed is often used to refer to storage 
of parts of an item in a unit where parts of other items also stored (for example, 
by superposition). Thus, each unit participates in storage of multiple items and 
each item is distributed over multiple units. (There is something disconcerting 
about this particular use of the term distributed in a technical sense: Clearly, 
one can invent a new name for whatever it is that a unit stores — e.g., a number 
whose binary representation has a ' V in its second place. Does the system 
cease to be distributed as a result?). It is not hard to imagine an analogous 
notion of distribution in time instead of space but it is also fraught with similar 
semantic difficulty. 

The term distributed when used in the context of parallel and distributed pro
cessing, generally refers to the decomposition of a computational task into 
more or less independent pieces that are executed on different processors with 
little or no inter-processor communication (Uhr, 1984; 1987; Almasi and Got
tlieb, 1989). Thus many processors may perform the same computation on 
pieces of the data (as in single-instruction-multiple data or SIMD computer 
architectures) or each processor may perform a different computation on the 
same data e.g., computation of various intrinsic properties of an image (as in 
multiple-instruction-single-data or MISD computer architectures), or a com
bination of both (as in multiple-instruction-multiple-data or MIMD computer 
architectures). Clearly, both NANN and SAI systems can take advantage of 
such parallel and distributed processing. The reader is referred to (Almasi and 
Gottlieb, 1989; Uhr, 1984; 1987) for examples. 

4 . 1 1 R E D U N D A N C Y AND F A U L T T O L E R A N C E 

Often the term distributed is used more or less synonymously with redundant 
and hence fault-tolerant in the NANN literature. This is misleading because 
there are many ways to ensure redundancy of representation, processing and 
control. One of the simplest involves storing multiple copies of items and/or us
ing multiple processors to replicate the same computation in parallel, and using 
a simple majority vote or more sophisticated statistical evidence combination 
processes to pick the result. Redundancy and distributivity are orthogonal 
properties of representations. And clearly, SAI as well as NANN systems can 
be made redundant and fault-tolerant using the same techniques. 
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4.12 STATISTICAL, FUZZY, OR EVIDENTIAL INFERENCE 

It is often claimed that NANN models provide noise-tolerant and robust in
ference because of the probabilistic, fuzzy, or evidential nature of the infer
ence mechanisms used. This is largely due to combination and weighting 
of evidence from multiple sources through the use of numerical weights or 
probabilities. It is possible to establish the formal equivalence inference in 
certain classes of NANN models with probabilistic or fuzzy rules of reasoning. 
But fuzzy logic (Zadeh, 1975; Yager and Zadeh, 1993) operates (as its very 
name suggests), with logical (hence symbolic) representations. Probabilistic 
reasoning is an important and active area of research in SAI as well (See 
Pearl, 1988 for details). Heuristic evaluation functions that are widely used 
in many SAI systems provide additional examples of approximate, that is, not 
strictly truth-preserving inference in SAI systems. In many SAI systems, the 
requirements of soundness and completeness of inference procedures are often 
sacrificed in exchange for efficiency. In such cases, additional mechanisms are 
used to (after the fact) verify and if necessary, override the results of inference 
if they are found to conflict with other evidence. 

Much research on human reasoning indicates that people occasionally draw 
inferences that are logically unsound (Johnson-Laird and Byrne, 1991). This 
suggests that although people may be capable of applying sound inference pro
cedures, they probably take shortcuts when faced with limited computational 
or memory resources. Approximate reasoning under uncertainty is clearly an 
important tool that both SAI and NANN systems can potentially employ to 
effectively make rapid, usually reliable and useful, but occasionally fallible 
inferences in real time. 

4.13 SAI AND NANN As MODELS OF MINDS/BRAINS 

Some of the SAI research draws its inspiration from (rather superficial) analo
gies with the mind and mental phenomena and in turn contributes hypotheses 
and models to the study of minds; Similarly, many NANN models draw their 
inspiration from (albeit superficial) analogies with the brain and neural phe
nomena and in turn contribute models that occasionally shed light on some 
aspects of brain function (Churchland and Sejnowski, 1992). 

It is important to emphasize that neither today's SAI nor today's NANN have 
the monopoly on modelling minds and brains. Today's NANN models are 
at best, extremely simplified caricatures of biological neural networks (Shep-
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herd, 1989; 1990; McKenna, 1994). Biological neurons and microcircuits 
of neurons provide computational primitives that are far more powerful than 
simple threshold or sigmoids that are used in most NANN models (Uhr, 1994). 
Brains display highly structured yet flexible organization into regions, layers, 
and modules that perform specialized functions (Kuffler, Nicholls and Martin, 
1984; Zeki and Shipp, 1988). Such networks may be modelled by highly 
structured NANN models that organize the neurons into locally connected, 
topography preserving layers that are organized in loosely hierarchical fashion 
(Uhr, 1986; Honavar and Uhr, 1989a; 1989b; Honavar, 1992). Such structures 
appear to organize the networks of the brain in space (in ways that reflect the 
physics of the environment using networks of analog representations) and time 
(through the use of feedback loops with varying amounts of delay, networks 
of clocks and osciallators). 

The brain appears to perform symbolic, numeric, as well as analog process
ing. The pulses transmitted by neurons are digital; the membrane voltages 
are analog (continuous); The molecular level phenomena that involve clos
ing and opening of channels appears to be digital; The diffuse influence of 
neurotransmitters and hormones appear to be both analog and digital. 

Changes in learning appear to involve both gradual changes of the sort modeled 
by the parameter changing or weight modification algorithms of todays NANN 
as well as major structural changes involving the recruitment of neurons and 
changes in network topology (Greenough and Bailey, 1988; Honavar, 1989; 
1990; Honavar and Uhr, 1989a; 1989b; 1993). In fact, learning by weight 
modification alone appears to be inadequate in and of itself to model rapid and 
irreversible learning that is observed in many animals. 

Also missing from most NANN models are elaborate control structures and 
processes of the sort found in brains including networks of oscillators that 
control timing. Perception, learning and control in brains appear to utilize 
events at multiple spatial and temporal scales (Grossberg, 1982). Additional 
processes not currently modelled by NANN systems include processes that 
include networks of markers that guide neural development, structures and 
processes that carry information that might be used to generate other network 
structures, and so on (Honavar and Uhr, 1990). 

Clearly, living minds/brains are among the few examples of truly versatile 
intelligent systems that we have today. They are our existence proof that such 
systems are indeed possible. So even those whose primary interests are in 
constructing artificial intelligence systems can ill afford to ignore the insights 
offered by a study of biological intelligence (McKenna, 1994). (This does not 
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of course mean that such an effort cannot exploit alternative technologies to 
accomplish the same functions, perhaps even better than their natural counter
parts). But it is a misconception to assume that today's NANN model brains 
any more than today's SAI programs model minds. In short, the processes 
of the minds appear to be far less rigidly structured and far more flexible 
than today's SAI systems and the brains appear to have a lot more structure, 
organization, and control than today's homogeneous networks of simple pro
cessing elements which we call NAJMN. A rich space of designs that combine 
aspects of both within a well-designed architecture for intelligence remains to 
be explored. 

5 INTEGRATION O F SAI AND NANN 

It must be clear from the discussion in the previous sections that at least on the 
surface it looks like SAI and NANN are each appropriate, and possibly even 
necessary for certain problems, and grossly inappropriate, almost impossible, 
for others. But of course each can do anything that the other can. The issues 
are ones of performance, efficiency and elegance (and in cognitive modelling, 
perhaps plausibility in terms of the various known constraints between different 
levels — such as psychological, neurobiological, and neurochemical — at 
which satisfactory explanations are sought), and not theoretical capabilities as 
computational models. 

This is a common problem in computing. One computer or programming 
language may be extremely well-suited for some problems but awful for others, 
while a second computer or language may be the opposite. This suggests 
several engineering possibilities (Uhr and Honavar, 1994), including: 

1. Try to re-formulate and re-code the problem to better fit the computer or 
language. 

2. Use one computer or language for some parts of the process and the other 
for others. 

3. Build a new computer or language that contains constructs from each, and 
use these as appropriate. 

4. Try to find as elegant as possible a set of primitives that underlie both 
computers or languages, and use these to build a new system. 
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The term hybrid is beginning to be used for systems that in some way try 
to combine SAI and NANN. If any of the above is called a hybrid probably 
all of the others should also. But usually hybrid refers to systems of type 
[2] or [3]. lypes [3] and [4] would appear to be better than [2] (although 
harder to realize), since they would probably be more efficient and more 
elegant. Thus the capabilities of both SAI and NANN should be combined by 
tearing them apart to the essential components of their underlying processes 
and integrating these as closely as possible. Then the problem should be 
re-formulated and re-coded to fit this new system as well as possible. This 
restates a general principle most people are coming to agree on with respect to 
the design of multi-computer networks and parallel and distributed algorithms: 
the algorithm and the architecture should be designed to fit together as well as 
possible, giving algorithm-structured architectures and architecture-structured 
algorithms (Uhr, 1984; 1987; Almasi and Gottlieb, 1989). 

6 SUMMARY 

SAI and NANN each demonstrate at least one way of performing certain tasks 
naturally and thus pose the interesting problem for the other of doing something 
equivalent perhaps more elegantly, efficiently, or robustly than the other. It 
should be clear from the discussion above that the integration of SAI and 
NANN systems can be beneficially explored along several dimensions. 

In the short term, hybrid architectures that use NANN and SAI modules to per
form different but well-coordinated sets of functions in specific applications 
are definitely worth exploring. A partial list of examples of such integra
tion include: neural network and expert knowledge based systems (Lin and 
Hendler, 1994; Shavlik, 1994; Gallant, 1993; Medsker, 1994); systems for lan
guage processing (Bookman, 1994; Dyer, 1994a; 1994b; Miikkulainen, 1994a; 
1994b; Barnden, 1994b; Omlin and Giles, 1994; Smolensky, Legendre, and 
Miyata, 1994; Servan-Schreiber, Cleeremans, and McClelland, 1994); systems 
for visual pattern recognition and spatial reasoning (Honavar and Uhr, 1989a; 
1989b; Honavar and Uhr, 1994; Honavar, 1994; Ballard and Brown, 1982; Uhr, 
1987; Tanimoto and Klinger, 1980; Wechsler, 1990; Duda and Hart, 1973; Fu, 
1982; Miclet, 1982; Carpenter and Grossberg, 1994; Kosslyn and Jacobs, 
1994; Mjolsness, 1994); systems for symbolic inference (Sun, 1994a; 1994b; 
Barnden, 1994b; Smolensky, 1990; Shastri and Ajjanagadde, 1989; Chen and 
Honavar, 1994); systems for learning (Honavar and Uhr, 1989a; 1989b; 1993; 
Honavar, 1992; 1994; Shavlik, 1994; Goldfarb and Nigam, 1994; Fu, 1982; 
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Fukunaga, 1990; Gallant, 1994; Uhr, 1973; Holland, 1975; Booker, Riolo, and 
Holland, 1994; Lacher and Nguyen, 1994; Carpenter and Grossberg, 1994; 
Dyer, 1994a). These efforts offer a number of important insights into the de
sign and performance of such hybrid systems for cognitive modelling on the 
one hand and engineering intelligent systems for practical applications on the 
other (see below). 

The integration of concepts, constructs, techniques and technologies drawn 
from SAI and NANN as well as other closely related paradigms (includ
ing statistical pattern recognition, syntactic pattern recognition, evolutionary 
computation) offers a rich and potentially very promising design space for 
exploration by artificial intelligence engineers and cognitive theorists. It is be
coming increasingly obvious that this space exhibits almost infinite variety that 
is characteristic of complex systems. In the long-term, a coherent theoretical 
framework for analysis and synthesis of such systems has to be developed. In 
order to do this, we need to start developing and refining our categorization of 
such mutually inter-related systems. One way to approach this task is to seek 
categorizations that capture essential underlying principles of the architecture, 
alternative implementations of the architecture, and finally alternative or phys
ical realization of the candidate implementations of such systems relative to 
our goals of understanding and engineering intelligence. 

Because of the engineering and technological emphasis of artificial intelli
gence, most research in the area has focused on the development of algorithms 
for specific tasks that appear to require intelligence if performed by humans 
(e.g., diagnosis, planning, character recognition). While such efforts provide 
useful technological tools in the short term, they appear to have fallen short of 
providing much insight into alternative implementations and physical realiza
tions of architectures for general intelligence. 

Most artificial intelligence and cognitive science theories of intelligence are 
primarily about the content of knowledge or types of knowledge for some task 
of interest, with minimal commitment on the choice of architecture (or equiv
alent^, the programming language that defines the virtual architecture of the 
computer). Perhaps this is because it is tacitly assumed that any such architec
ture is one that is capable of supporting universal computation and that nothing 
else about it is of much interest. Perhaps this is where the dichotomy between 
SAI and NANN can help focus our attention on architectural issues. After 
all, NANN models do (in most cases) represent architectural commitment(s) 
that are different from those implicitly assumed by SAI models (e.g., lambda 
calculus or production systems). However, it must be emphasized that one 
architectural commitment is not necessarily better than another independent of 
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the task for which the architecture is used. Also worth noting is the fact that 
the same system may be lend itself to multiple architectural descriptions. Each 
such description can potentially add to our understanding of different aspects 
of the system in important ways. Furthermore, each architectural description 
lends itself to multiple implementations; For example, the same architecture 
can be implemented using a network of simple processors or simulated by a 
program on a conventional serial computer. And each implementation lends 
itself to multiple physical realizations. 

Living minds/brains offer an existence proof of at least one architecture for 
general intelligence. SAI and NANN paradigms together offer a wide range 
of architectural choices. Each architectural choice brings with it some obvious 
(and some not so obvious) advantages as well as disadvantages in the solu
tion of specific problems using specific algorithms, given certain performance 
demands and design constraints imposed by the available choices of physi
cal realizations of the architecture. Together, the cross-product of the space 
of architectures, algorithms, and physical realizations constitutes a large and 
interesting space of possible designs for intelligent systems. Examples of sys
tems resulting from a judicious integration of concepts, constructs, techniques 
and technologies drawn from both traditional artificial intelligence systems 
and artificial neural networks clearly demonstrate the potential benefits of ex
ploring this space. And, perhaps more importantly, the rather severe practical 
limitations of today's SAI and NANN systems strongly argues for the need for 
a systematic exploration of such design space. 

This suggests that it might be fruitful to approach the choice of architectures, 
implememtations, and their physical realizations using the entire armamen
tarium of tools drawn from the theory and practice of computer science — 
including the design of programming languages (and hence virtual architec
tures), computers, algorithms, and programs. Our primary task is to identify 
subsets of Turing-computable functions necessary for general intelligence, 
an appropriate mix of architectures for supporting specific subsets of these 
functions, as well as appropriate realizations of such architectures in physical 
devices. The hybrid or integrated SAI-NANN designs explored to date — 
including those examined in several recent books on this subject (Honavar and 
Uhr, 1994a; Sun and Bookman, 1994; Goonatilake and Khebbal, 1994; Levine 
and Aparicioiv, 1994) are only suggestive of a much larger space of interesting 
possibilities. It is almost certainly premature to pick one architecture over 
another as the architecture of choice for general intelligence (of the sort at
tributed to humans), or even eliminate certain architectures from consideration 
as candidates. Such choices can be made only after a careful evaluation of 
possible designs. 
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1 INTRODUCTION 

Connectionist networks (CNs) exhibit many useful properties. Their spreading 
activation processes are inherently parallel in nature and support associative 
retrieval of memories. The summation and thresholding of activation allows 
for smooth integration of multiple sources of knowledge. CNs with distributed 
representations (Rumelhart and McClelland, 1986) exhibit robustness in the 
face of noise/damage and can learn to perform complex mapping tasks just from 
examples. Connectionist networks are also able to dynamically reinterpret 
situations as new inputs are received. These features are very useful for natural 
language processing (NLP) and offer the hope that connectionist approaches 
to NLP will replace the more traditional, symbolic approaches to NLP. 

Consider the task of lexical disambiguation. Words may have multiple mean
ings, for instance, "pot" may refer to a cooking pot, a flower pot, or marijuana. 
Traditional, symbolic approaches to disambiguation have utilized one of the 
following strategies: (a) commit to a particular interpretation and then back
track if it is later shown to be incorrect, (b) delay the process of disambiguation 
until enough information is gathered so that backtracking will not occur, (c) 
keep track of every possible meaning, or (d) commit to an interpretation and 
later execute error-correction heuristics if that interpretation is shown to be 
wrong. None of these strategies is completely adequate. The commit-and-
backtrack strategy is very inefficient, because backtracking will often cause 
much useful work to be thrown away. For instance, assume that the cooking-pot 
meaning of "pot" is first chosen while reading sentence S1 and then subsequent 
information in the sentence leads to a marijuana interpretation of "pot." 
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SI: The pot, which Mary bought from John, made her cough. 

Here, backtracking to reinterpret "pot" (after encountering "cough") will cause 
the perfectly adequate analysis of the intervening relative clause to be thrown 
away and then redone. 

The delay strategy has the following general problems: (a) the analysis of 
the rest of the sentence may not be able to go forward while commitment to 
a meaning is delayed and (b) no matter how long disambiguation is delayed, 
subsequent input may cause a reinterpretation of a given word to occur anyway 
— e.g., as would occur if S2 followed SI: 

S2: Mary was allergic to the flower in it. 

The every-possible meaning strategy suffers from a potential combinatorial 
explosion of interpretations. If there are n k-way ambiguous words in a 
segment of text then there will be kn possible interpretations of that text. 
The intelligent error-correction strategy requires the specification of rules to 
selectively undo the harm caused by earlier commitments. As these rules 
execute, they will cause other inferences to be undone, which will cause yet 
other error-correction rules to execute, and so on. This approach requires either 
designing sophisticated error-correction heuristics or some kind of a general 
truth maintenance mechanism. 

In contrast, dynamic reinterpretation is achieved as a natural side-effect of how 
connectionist networks operate. Activation spreads in parallel and the nodes 
with the most activation represent the current interpretation. As new inputs 
are received, the most highly active nodes may drop in activation, leading to 
a reinterpretation of prior inputs. Initially, the cooking-pot node will have the 
most activation, but "cough" will cause the marijuana node to become more 
active (through an activation path of smoking, etc.). Subsequent mention of 
being allergic will send more activation to nodes representing a different reason 
for coughing and, along with "flower," cause the flower-pot interpretation now 
to be most preferred. Thus, spreading activation exhibits aspects of all of the 
traditional strategies, but is implemented via a single, uniform, parallel and 
efficient mechanism. 

The long-term goal of connectionist researchers is the complete replacement of 
symbolic processing models with connectionist models that exhibit efficient, 
robust performance and are capable of automatically learning all of the tasks 
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that are currently programmed directly by knowledge engineers within the 
field of artificial intelligence. Given die many known attractive features of 
connectionist networks, why hasn't the connectionist paradigm already swept 
aside the traditional, symbolic approach? The answer lies in the fact that 
the symbolic processing approach retains its own attractive representational 
and processing features. Connectionist models, while becoming ever more 
powerful and sophisticated, have not yet been able to provide equivalent (let 
alone alternative superior) capabilities to those exhibited by symbolic systems. 
The rest of this paper consists of an enumeration of these symbolic capabilities, 
along with a description of how current connectionist networks (both localist 
and distributed) attempt to simulate these capabilities, and with what success 
(or failure). 

2 DYNAMIC BINDINGS 

Symbolic systems are capable of binding variables to values at run time. In 
symbolic systems, values may range from simple entities to complex recursive 
structures of arbitrary depth. Let us first consider bindings to simple (i.e., 
unstructured) values. For instance, the knowledge that we own what we buy 
might be represented by a rule something like Rl: 

Rl: BUYS(personl, object, person2) —• OWNS(person2, object) 

This rule will work for any object or person, as a result of the (typed) vari
ables person 1, object and person2 being bound to their appropriate values at 
execution time. 

2.1 BINDINGS IN LOCALIST C N S 

In localist CNs, each node represents a given syntactic or semantic entity (e.g., 
a predicate, such as OWNS, or a role, such as BUYER) and the amount of 
activation on the node represents how committed the network is to a given 
node (or path of nodes) as the correct interpretation of the input. However, 
without some kind of variable+binding mechanism, localist CNs would have to 
represent, before execution, all possible binding combinations, which would 
lead to a combinatorial explosion. For instance, for a network to conclude 
that Mary owns a TV (or, say, a radio) because she bought it from another 
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person (say, Fred or Joe), then there would already have to exist CN nodes for: 
MARY-OWNS-TV, FRED-OWNS-TV, MARY-OWN-RADIO, etc. For just 
n characters and m buyable objects, there would be nxm OWNS nodes alone 
and an exponential number of mappings from BUYS to OWNS structures. 
To avoid this problem, current localist CNs use either signatures or phase 
synchronization to propagate simple bindings. 

(1) Signatures: A signature is a unique activation value that is assigned to 
a given entity and that serves as a value in a binding. For instance, the CN 
node representing FRED might be assigned an activation value of 23 as its 
permanent, identifying activation (or signature) while Mary is assigned 13 and 
TV is assigned, say, an activation value of 7 as its signature. Signature acti
vation is then propagated in the network along separate pathways from those 
used for normal spreading activation. To represent rule Rl, nodes are assigned 
to each predicate (OWNS, BUYS) and to each role (i.e., BUYS:BUYER, 
BUYS:SELLER, BUYS:OBJECT, OWNS:OWNER and OWNS:OBJECT) 
and connections are set up between roles (e.g., from BUYS:BUYER to 
OWNS:OWNER) to specify how bindings should be propagated between pred
icates. Normal activation is propagated from BUYS to OWNS to represent 
a commitment to the fact that OWNS has occurred as the result of a BUYS. 
At the same time, signatures are propagated along role-to-role pathways. The 
weights on these pathways are normally set to 1 so that the values of the sig
natures are not altered. If the signature, say, 23 spreads from BUYS:BUYER 
to OWNS:OWNER and the signature 13 spreads from BUYS:OBJECT to 
OWNS:OBJECT, then the network can be interpreted as inferring that FRED's 
buying a TV resulted in FRED owning a TV. Lange and Dyer (1989) and Sun 
(1989,1992,1993) have both designed systems that make use of signature-style 
activation to propagate simple role-bindings. 

(2) Phase synchronization: In this approach, the unit time for each basic 
spread-of-activation step is broken up into a few, smaller subunits of time, 
termed phases. For instance, if there are seven distinct phases within each 
spread-of-activation step, then a total of seven distinct bindings can be propa
gated through a localist network. In the example above, FRED, MARY and TV 
might be assigned phases 1,4, and 7, respectively. The nodes in such networks 
are designed so that, when they receive activation within a given phase, they 
propagate it along their connections within the same phase of the next basic 
spreading-activation cycle. Phase-locking (or synchronization) was originally 
proposed by neuroscientists (von der Malsburg, 1981; von der Malsburg and 
Singer, 1987) and has been employed by vision researchers to bind distinct 
features (e.g., color and shape) when more than one object is in the visual field 
(Strong and Whitehead, 1989). Shastri and Ajjanagadde (1990,1993) (Ajjana-
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gadde and Shastri, 1989) make use of phase-locking to propagate bindings in 
a localist CN used to perform deductive retrieval of information. 

The signature approach has the advantage that an unbounded number of sig
natures can be propagated simultaneously along multiple pathways while the 
phase-locking method is restricted to a small number of bindings. The restric
tion to just a few phases is not a problem for retrieval tasks, which rarely specify 
more than 7 unbound variables in a query. However, during natural language 
understanding, many new bindings can arise dynamically. For instance, within 
sentence S3 there are over 10 bindings that arise. 

S3: The tall, thin woman bought an expensive, red sports car from 
the bald salesman. 

Also, for n phases there are n subcycles required for each spread of activation 
cycle, which slows down propagation rates by a factor of n. However, both 
phase-locking and signature approaches suffer from the fact that only simple 
values can be propagated. Consider the following, common rule — one that is 
ubiquitous in story understanding systems: 

R2: TELLS(personl,message,person2) —• KNOWS(person2, mes
sage) 

The difference between Rl and R2 is that a message can be bound to any 
arbitrarily complex structure. For instance, if John tells Mary that a purple alien 
stole the hubcaps off her car, then a story understanding system should update 
Mary's knowledge to know this complex fact/event. In symbolic systems, 
this update feat is simple because all that has to be passed between TELLS 
and KNOWS is a pointer to the instantiated STOLE structure, say STOLE3. 
The STOLE3 instance will have its roles bound (i.e., that the alien is the 
STOLE:STEALER and the hubcaps are the STOLE:OBJECTS, etc.) as the 
result of parsing/analysis of the stole-related part of the text. But what would 
be the signature (or phase) for such a complex entity? If a STOLE3 node 
already exits in the network, with a unique signature preassigned, then this 
signature can be propagated from TELLS to KNOWS. However, in most cases 
the message is being mentioned for the first time by a story character; so the 
story understanding system must infer KNOWS from TELLS at about the same 
time that the stole event itself is being comprehended and incorporated into 
memory. Thus, any connectionist NLP system must face the problem of both 
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dynamically creating instances of structured entities and propagating them for 
inferencing (e.g., so that the system can infer that Mary will be upset, etc.). 

The "solution" of allowing the dynamic creation of new connectionist nodes 
and links at run time is not acceptable within the connectionist paradigm 
because it violates known constraints from neuroscience. New neurons, axons 
or dendrites simply cannot grow within the moments that pass during the 
comprehension of a sentence. Also, symbolic pointers are not acceptable 
because they refer to the location of a memory register and there is no evidence 
that any pattern of activation in one area of the brain directly encodes the 
location (address) of some other area in brain (as occurs with a von Neumann-
style pointer.) 

2 . 2 B I N D I N G S IN D I S T R I B U T E D C N S 

Given that new nodes and connections cannot be created "on the fly" in CNs, 
structured bindings must be created dynamically either by modification of fast 
synapses (modeled as connection weights in CNs) or by changes in patterns 
(i.e., entire vectors) of activation over ensembles of connectionist units. Dis
tributed CNs offer such a potential, since they manipulate patterns of activation 
over banks of connectionist processing units. The use of distributed patterns 
supports the dynamic creation of a potentially exponential number of possible 
values. Currently, two major methods have been developed for represent
ing and propagating distributed patterns of activation as role bindings: tensor 
products and ID+Content vectors. 

(1) Tensor Products : Tensor theory has been proposed for use in CNs by 
Smolensky (1990) and implemented in (Dolan, 1989; Dolan and Dyer, 1989; 
Dolan and Smolensky, 1989). Tensors result when vectors are generalized to 
higher ranks (i.e., a rank-one tensor is a vector; a rank-two tensor is a matrix; a 
rank-three tensor is a cube of units, etc.). Suppose an m-dimensional vector V 
represents, say, a role R, and an n-dimensional vector W represents the role's 
filler F. Then R and F can be bound to one another by generating the vector 
outer product VW, which consists of a tensor T (in this case, a matrix) of 
mxn elements (i.e., element-wise products of each V{ x Wj = T^). To extract, 
for instance, the binding from the role, we perform an inverse operation, 
such as calculating the dot (or inner) product T • W. This approach is not as 
straightforward as it sounds, because a single tensor product representation will 
contain multiple bindings overlaid on one another. For example, to represent 
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BUYS(JOHN, TV, FRED) and OWNS(FRED, TV) we would set up a rank-
three tensor (i.e., a cube of CN units) and overlay the following binding-triples: 

[BUYS, ACTOR, JOHN] 
[BUYS, OBJECT, TV] 
[BUYS, FROM, FRED] 
[OWNS, ACTOR, FRED] 
[OWNS, OBJECT, TV] 

Here, each dimension of the cube (i.e., position in a triple) represents a pred
icate, a role, or a role-filler. Cross-talk will result because these multiple, 
rank-three outer products have been overlaid (e.g., through element-wise sum
mation) within the same tensor product. Dolan (1989) has developed various 
methods for extracting bindings from tensor networks in the face of such cross
talk. For example, one method is the use of "clean-up circuits." One kind 
of clean-up circuit consists of a network of pre-known bindings organized via 
inhibition. Thus, the noisy output from the tensor product is mapped to the 
closest matching vector (from a fixed set of possible alternatives) via a winner-
take-all process. Another method is termed "pass-thru circuits/' A path-thru 
circuit basically applies additional dot-products (representing additional con
straints on what the output should look like). For example, if we are looking 
for the OBJECT bought and know that it is also owned, then we can set up 
pass-thru circuits that essentially find the intersection of two related queries, 
such as [BUYS1, OBJECT, ?] and [OWNS, OBJECT, ?]. 

Tensors are mathematically elegant and can be implemented in a CN network 
via conjunctive coding — i.e., multiplicative connections (Hintonet al., 1986). 
However, the problems of scale-up and cross-talk can be problematic. For 
n-dimensional vectors one needs n3 units to hold bindings as [predicate, role-
name, role-filler] triples. If there are numerous BUYS events, then there will 
be massive cross-talk or one must encode triples that distinguish instances: 

[BUYS 1, ACTOR, JOHN] ... 
[BUYS2, ACTOR, JOE] 
[BUYS1, ISA, BUYS] 
[BUYS2, ISA, BUYS]. 

The problem with this approach is that, ironically, the tensor network functions 
so much like a symbolic system that the nice features of distributed CNs (e.g., 
generalization) can become lost. Also, storing and access via one triple at a 
time creates a system that, while parallel at the subsymbolic level, is essen
tially sequential at the knowledge level (Sumida and Dyer, 1989; Feldman, 
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1989) because only one triple can be accessed or manipulated at a time. In 
contrast, numerous triples are activated simultaneously in a localist CN, since 
the predicates and roles of each event are separately represented. 

(2) ID+Content Vectors: In localist CNs, each instance (e.g., BUY3) is repre
sented by a separate node, with a connection to the general type (e.g., BUY). In 
distributed CNs, BUY3 will consist of a pattern (i.e., vector) of activation with 
segments of the pattern sharing similar activation values with the activation 
vector representing the type. In the ID+Content approach (Miikkulainen and 
Dyer, 1991), the vector is split up into two segments: (a) the Content segment, 
which holds information concerning t he general type of object/action being 
represented and (b) the ID segment, which holds information concerning the 
specific instance. A distributed CN, such as a PDP network (Rumelhart and 
McClelland, 1986), can then be trained to propagate the ID segment from one 
layer to another without altering the ID segment. This is accomplished by 
training the network on a random subset of ID patterns. Miikkulainen and 
Dyer (1991) have shown that PDP networks can efficiently learn to propagate 
novel ID patterns when trained on just a small subset of random patterns. The 
networks essentially learn the identity mapping for the ID segments. Miikku
lainen and Dyer use this technique in the propagation of role bindings. Their 
system, DISPAR, contains 4 recurrent PDP networks, such as those developed 
by (Elman, 1990), that are connected to a lexical memory. DISPAR has the 
task of learning to generate complete paraphrases from fragmentary inputs of 
novel script-based stories (Schank and Abelson, 1977; Dyer et al., 1987. For 
instance, given the input fragment: "Mary ordered steak at Leone's." DIS
PAR generates a complete sequence of events — e. g., that includes: "Mary 
ate steak." Thus, generating paraphrases requires propagating bindings, since 
DISPAR must learn (from the training data) to perform the equivalent of infer
ring: 

ORDER(diner, food) —• EATS(diner, food) 

A problem they encountered was that long-term knowledge (implicit in the 
training set of script-based stories) would be encoded in the connection weights 
and result in short-term information (from the input story) being overridden. 
For example, if every story in the training set had Mary order and eat a steak at 
a restaurant, then, even if (during performance) the input story contained the 
sentence "Mary ordered a hamburger," DISPAR would still generate "Mary 
ate a steak" as part of its paraphrase. This effect was also noticed in (St. John 
and McClelland, 1990). This problem was solved in DISPAR by representing 
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"steak" and "hamburger" each as ID+Content vectors. The Content segment of 
each food-type of word contained a pattern that was similar for all foods used in 
the training data, while the ID segments were assigned unique patterns for each 
distinct food instance (e.g., hamburger vs. steak). Thus, when "Mary ordered 
hamburger." was input during performance, DISPAR passed the ID portion 
to subsequent banks without alteration. DISPAR used the pattern within the 
Content part (i.e., the FOOD type) to aid in processing while propagating the 
instance (ID segment) without change. As a result, DISPAR could conclude 
that "Mary ate hamburger." when told "Mary ordered hamburger." even 
though all training set instances consisted of Mary always ordering and eating 
"steak." 

3 FUNCTIONAL B I N D I N G S AND S T R U C T U R E D PATTERN 

M A T C H I N G 

Although the above techniques (e.g., signatures, ID+Content vectors, etc.) 
have greatly extended the symbolic capabilities of both localist and distributed 
CNs, they are still weak when compared to the binding capabilities of symbolic 
systems. The use of a heap, addressing, and pointers allows symbolic systems 
to create structures like STOLE3 "on the fly." Symbolic systems support 
propagation of even more complex bindings; for instance, they allow modules 
to receive entire functions or procedures as data. This results in styles of 
programming termed "data-driven" and "object-oriented." A simple example 
of this capability is the APPLY function in LISP, in which one function Fl 
applies whatever function F2 is passed to Fl as a parameter. This code-binding 
and propagation capability allows one module within a symbolic system to 
perform any of the operations that another module is capable of. 

In addition, symbolic systems typically exhibit powerful pattern matching ca
pabilities. A prime example is that of unification, e.g., as in Prolog. Holldobler 
(1990) and Stolcke (1989) have built localist CNs to perform this unification 
process. Holldobler, for instance, sets up several layers of threshold units. 
The term layer is a matrix of units with one side representing the terms in two 
expressions to be unified and the other side representing positions where terms 
may occur. The unification layer contains units that are connected in a manner 
to impose unification constraints, for instance, whether two occurrences share 
a common variable. The occur check layer makes sure that cycles do not occur, 
such as x becoming bound to f(x). 
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The major problems with this localist CN approach to unification are: (a) that 
all of the units and their connections must be prewired for the given expressions 
that are to be unified and thus are finite and non-general, and (b) only a single 
solution is produced. In contrast, unification in logic programming languages, 
such as Prolog, work on an infinite number of possible expressions to be 
unified and can return multiple solutions when they exist. Thus, a localist CN 
with any generality would require a method for recruiting and wiring up units 
dynamically. In the area of distributed CNs there are no architectures, to my 
knowledge, designed to attempt unification. 

4 ENCODING AND ACCESSING RECURSIVE STRUCTURES 

Recursive structure is essential for high-level reasoning, particularly natural 
language processing. Localist networks can represent recursive structures by 
connecting up the appropriate nodes in a tree-like manner. However, localist 
networks that propagate phases or signatures have difficulty with propagating 
multiple instances of the same type. Consider sentence S4: 

S4: John told Mary that Betty told Fred that Jim went home. 

Here there are two TELL structures. In localist CNs, there is usually only 
one node for each type of predicate. Thus, the "John told Mary" segment can 
be represented by passing signatures (or phases) over the TELL:TELLER and 
TELL:RECEIVER nodes. However, the embedded "Betty told Fred" must be 
represented by another TELL instance that would be dynamically bound to the 
TELL:MESSAGE node of the top-level TELL. One solution to the problem 
(of multiple instances of the same type) is to have n copies for each predicate 
(and corresponding roles). If n = 2, then the CN network could parse and 
represent one TELL instance embedded within another TELL. For instance, 
if each TELL node had a pre-assigned signature, then the signature of the 
embedded TELL could by propagated to the TELL:MESSAGE of the outer 
TELL. This approach will always fail for sentences with embeddings greater 
than n. This limit, on depth of recursion, may not be so bad, however, because 
people also exhibit a limit. Consider S5: 

S5: John told Mary that Betty told Fred that Sally told Frank that Jim 
went home. 
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Most people, upon hearing such a sentence out loud, protest that they cannot 
keep straight who is telling whom and immediately recall it as "Several people 
telling other people that Jim went home.." 

In the area of distributed CNs, early PDP networks lacked a recurrent layer; 
as a result, the encoding of recursive structure was problematic. If a 3-layer 
PDP network, for instance, had 4 banks (e.g., representing the ACT, ACTOR, 
RECIPIENT, OBJECT) then a sentence like S4 could not be encoded, because 
the embedded TELL required its own ACT, ACTOR, etc. This problem has 
been solved by the use of distributed CNs with a recurrent layer. A number 
of distinct recurrent architectures have been employed to encode recursive 
structures and their constituents. Two common approaches are the Simple 
Recurrent Network (SRN) of Elman (1990) and the Recursive Autoassociative 
Memory (RAAM) of Pollack (1988,1989,1990). In SRNs, the hidden layer is 
copied onto an added bank in the input layer (termed the "context" bank) and 
then is fed back into the hidden layer at the next cycle. In contrast, RAAMs 
make use of an autoassociative (or encoder) network, in which a PDP network 
is trained to generate on the output layer the same pattern as that placed on 
the input layer (Rumelhart and McClelland 1986). In Pollack's RAAMs, the 
pattern of activation produced on the hidden layer is copied back into a bank 
on both the input and output layers. Figure 1 illustrates how S4 can be encoded 
in a RAAM. 

(3) John told Mary PAV2 

(2) Betty told Fred PAV1 

(1) Jim went home NIL 
I ACTOR ACT TO MESSAGE 1 

PAV1,2,3 j I (2)PAV1 
C~ I (3)PAV2 

• _ I (4) PAV3 

ACTOR ACT TO MESSAGE 1 

(1) Jim went home NIL 

(2) Betty told Fred PAV1 

(3) John told Mary PAV2 

Figure 1 Encoding of an embedded structure within a RAAM. 

First, "Jim went home" is autoassociated on the RAAM's input/output layers. 
The resulting pattern of activation (PAV1) in the hidden layer is then placed in 
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the input/output banks representing the MESSAGE role. Then "Betty told Fred 
PAV1" is autoassociated. The resulting pattern over the hidden layer (PAV2) is 
placed in the MESSAGE bank. Now "John told Mary PAV2" is autoassociated. 
The resulting hidden-layer activation vector (PAV3) now encodes the entire 
recursive structure. To retrieve this recursive structure, one can place PAV3 on 
the hidden layer of the same RAAM and [JOHN TOLD MARY PAV2] will be 
reconstructed on the 4 banks of the output layer. Now PAV2 can then be placed 
over the hidden layer and [BETTY TOLD FRED PAV1 ] will be reconstructed 
on the output layer. When PAV1 is placed over the hidden layer, the pattern 
for [JIM WENT HOME NIL] will appear in the banks on the output layer. 
So a RAAM can basically function as a stack thus can encode both simple 
lists and trees into a fixed-width vector. For example, Miikkulainen (in press) 
makes use of a RAAM to act as a stack in a distributed CN that learns to parse 
embedded relative clauses. 

If a long-term memory is added, to store these hidden-layer patterns (e.g., 
PAV1, PAV2), then autoassociative networks can be used to store graphs (i.e., 
recursive structures with cycles). For instance, Dyer et al. (1992) made use 
of an architecture called DUAL, which consists of a 3-layer PDP network 
(labelled STM) and an autoassociative encoder network (labelled LTM) whose 
hidden layer is of the same length as the input/output layers of the STM and 
whose input/output layers are of a length equal to the number of weights in all 
STM layers. DUAL has been used to encode a simple semantic network (i.e., 
a graph of nodes and labelled links, with cycles). For instance, each node is 
defined as a number of labelled-arc-to-node pairs: 

JOHN: -LOVES—• MARY 
-GENDER—• MALE 
- J O B — PROFESSOR 

The STM's weights are set (via backpropagation learning) to associate roles 
with values (e.g., LOVES on input layer and MARY on the output layer). 
After learning, all of the weights in the STM network are then passed as a 
single, (larger dimensional) vector of activation values (call it V-JOHN) to the 
input and output layers of LTM, which is taught to autoassociate it. Thus, LTM 
stores entire STM networks. To retrieve the V-JOHN STM weights, one places 
V-JOHN on the LTM's hidden layer. The resulting weights (on LTM's output 
layer) can then be used to reset the weights of the STM. To retrieve any piece 
of information about JOHN, we now place the appropriate role representation 
(e.g., JOB) on the STM input layer and its value (e.g., PROFESSOR) will 
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appear on the output layer. Now, consider the encoding of cycles. Suppose 
that MARY has the following arcs: 

MARY: -LOVES—• JOHN 
-GENDER— FEMALE 
-JOB—• DEAN 

Here we have a cycle because both [JOHN -LOVES—• MARY] and [MARY -
LOVES—• JOHN]. To train STM to encode MARY, we train STM to associate 
MARY's roles with the appropriate values. For instance, we place LOVES on 
the STM input layer and V-JOHN on the STM output layer. After training, 
the resulting STM weights (call it V-MARY) now encode all information 
about MARY. However, when the JOHN network was encoded, we did not 
have V-MARY as the representation for MARY (we had just whatever initial, 
arbitrary representation had been selected to represent MARY). So now we 
have to retrain the JOHN STM network to properly associate LOVES with 
V-MARY. This encoding cycle will alter the STM weights (that encode all 
properties for JOHN), resulting in a new set of weights (call this vector of 
weights V-JOHN 1). As a result, the encoding for MARY must be altered 
(since MARY now -LOVES—• V-JOHN1, not V-JOHN). MARY is also now 
better represented by a new vector (call it V-MARY 1), and so on. Over time, 
the network will find an encoding of both JOHN and MARY as their distributed 
representations are recirculated through the DUAL architecture. If two nodes 
Nl and N2 have similar arc/node associations, then Nl and N2 will end up 
being represented by vectors that are very similar. This similarity aids in 
generalization. For instance, if a country CI has n properties (where, say, one 
property is [CI: -PRODUCES—> RICE] and country C2 has n-1 properties 
that are the same as those of CI (but it is not known whether or not C2 produces 
rice) then the similarity of the vectors formed for CI and C2 will cause DUAL 
to conclude that C2 also produces rice. 

5 FORMING LEXICAL MEMORIES 

Natural language processing requires a lexical memory. In symbolic systems, 
each word is encoded as a symbol (e.g., in ASCII) that is mapped to some frame
like structure (Minsky, 1985) with attached rules. For example, in the BORIS 
story understanding and question-answering system (Dyer, 1983), the word 
"eats" is mapped to an INGEST frame with a number of rules (implemented as 
test/action "demons"). For instance, one of the demons searches for a FOOD 
frame following the INGEST frame and if found, the demon binds the FOOD 
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frame to the OBJECT role of the INGEST frame. Another demon searches for 
an animate agent preceding the INGESTS frame and binds it to the ACTOR 
role, and so on. 

In such a system, the internal (ASCII) representation for the word "eats" is 
arbitrary and static. In localist CNs, the node for "eats" is also static and its 
connections (to other nodes representing words or frames) are specified by the 
knowledge engineer. In contrast, in some recent distributed CN architectures, 
methods have been developed to automatically form distributed representa
tions (i.e., activation vectors) for lexical entries. The most interesting and 
useful result of these methods is that words with similar semantics end up pos
sessing very similar representations (e.g., as result in the recirculation method 
in DUAL) — thus supporting generalization to novel yet related natural lan
guage texts. For instance, if "pasta" ends up forming a similar representation 
to "spaghetti" then a distributed connectionist network trained on "John ate 
the spaghetti" will automatically tend to correctly process "John ate the pasta" 
even if it has never been trained on this particular input. 

Two methods have been developed for automatically forming lexical repre
sentations: Miikkulainen's FGREP method (Miikkulainen and Dyer, 1991; 
Miikkulainen, 1993) and Lee's xRAAM method (Lee, 1991; Lee et al., 1990; 
Lee and Dyer in press). In the FGREP method, one PDP network (call it Ml) 
is trained to map words (represented as activation vectors) or word sequences 
(if the network is recurrent) from banks in the input layer to banks in output 
layer. For instance, "chicken" might map from the SUBJECT input bank to 
the ACTOR output bank in "The chicken ate the worm." while it might map 
from the DIECT-OBJECT input bank to the RECIPIENT output bank in "The 
man ate the chicken." While the weights in the M network are updated (via 
backpropagation) to learn the correct mapping, at the same time, the vector 
(representing "chicken") is modified. This modification is accomplished by ex
tending backpropagation learning over a set of weights representing "chicken" 
in a lexical memory. All other weights (representing other words) in the lexicon 
are not modified. As a result, the representation of any word W will become 
altered as the network M is trained to map a word W from its input to output 
layers. A single lexicon can then be linked to multiple PDP networks. As each 
network learns to map words from the lexicon, those words will be altered and 
their altered weight vectors are stored back into the lexicon. Thus, as each 
network as trained on lexical data, the representations of the training data are 
themselves undergoing alteration. Figure 2 illustrates the FGREP process on 
a recurrent network. 
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Figure 2 FGREP process. Word representations are taken from the 
lexicon and used to train the input/output layers of a recurrent network. 
During learning, backpropagation is extended back into just that section 
of the lexicon that represents the current input word and just its weights 
are updated at that point. The altered representations in the lexicon can 
also be used to train other networks, which will cause these words to again 
undergo modification. 

Interestingly, convergence to stable patterns does not take much longer than 
training with static data. The reason is that the alterations in the representations 
of the lexical data make the mapping tasks easier — i.e., for the networks 
that are learning to map this data from their input to output layers. That 
is, the network M has an easier learning task because the data being used is 
being altered to support M's mapping task. Using FGREP and ID+Content 
vectors, Miikkulainen and Dyer (1991) designed DISPAR, a story paraphrasing 
system consisting of 4 SRN modules and a lexical memory. Each module 
performs a distinct task: (a) mapping a sequence of words to a case-role event 
representation, (b) mapping a sequence of events to a script representation, 
(c) mapping a script back to an event sequence, and (d) mapping an event 
to a sequence of words. During training, each module is trained with word 
representations taken from the lexicon and modified via the FGREP method. 
During performance, DISPAR is given, as input, a script-based story fragment 
and generates, as output, a complete story — i.e., with all intervening actions 
and roles instantiated. 

In the xRAAM method (Lee, 1991; Lee et al., 1990; Dyer and Lee, in press), a 
distributed representation of each word is formed by encoding all propositional 
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information in which the word is involved. An xRAAM network is a RAAM 
augmented with a lexical memory. Consider the word "milk." This word 
might be represented in terms of the following (simplified) propositions: 

[MILK IS WHITE] 
[MILK PRODUCED-BY COWS] 
[MILK CONTAINED-IN CARTONS] .. . 

As each proposition is autoassociated within a RAAM (as described earlier), a 
pattern of activation is formed on the hidden layer. The final pattern formed is 
taken to be the representation of the word/symbol being encoded (in this case, 
MILK). By cycling back through the RAAM, this propositional information 
can be extracted (as described earlier for autoassociative networks). This 
distributed representation (i.e., as an activation vector) is stored in a separate 
lexicon. The representations for other words are formed in the same way. For 
example, COW will be involved in the following propositions: 

[COW PRODUCES MILK] 
[COW EATS GRASS] 
[COW HAS FOUR-LEGS] ... 

After COW is encoded in a RAAM and its lexical representation has been 
formed, we must then go back and re-encode MILK (because when [MILK 
PRODUCED-BY COWS] was encoded into the RAAM, the representation for 
COWS was different). Thus, the encoding process involves a recirculation of 
all words (as in the DUAL and FGREP methods) in which the fact that there are 
changing lexical representations cause other modules to have to be retrained 
on these new lexical representations (Dyer, 1990). Lee terms the resulting 
representations Distributed Semantic Representations (DSRs) because: (a) 
they are distributed patterns that can be passed to a variety of CNs, (b) they 
encode the propositional content of the words and this content can be extracted 
by different modules (who were not necessarily involved in the learning of 
the word's representation), and (c) this "symbol recirculation'' process (Dyer, 
1990) results in DSRs with similar meaning having similar vectors (as with 
the FGREP and DUAL methods). Using DSRs, Lee designed the DYNASTY 
system (Lee, 1991; Dyer and Lee in press) — a multi-modular system of PDP 
networks, SRNs, and xRAAMs — which takes simple goal/plan-based stories 
as input and generates, as output, a chain of inferred goals, plans and/or sub-
goal preconditions as an explanation for actions taken by the main narrative 
character. 
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6 FORMING SEMANTIC AND EPISODIC MEMORIES 

Episodic memory (Tulving, 1972) consists of personal episodes or events and 
is distinct from semantic memory, which consists of general world knowledge. 
In symbolic systems, both semantic and episodic memories are built out of 
symbols. The knowledge engineer selects the basic set of symbols to use. 
Episodic memory then consists of instantiations of semantic memory symbols. 
For instance, semantic memory in the BORIS system (Dyer 1983) contained an 
INGEST structure in semantic memory. Specific INGEST instances were in
dexed in episodic memory as the result of reading a story involving a particular 
character eating a particular food at some particular location or time. 

In localist CNs, semantic memory consists of a connected network of nodes, 
also specified by the knowledge engineer. The formation of episodic memories 
is problematic in localist CNs because any dynamically-created instance is 
represented by semantic nodes momentarily containing signature (or phase-
locked) activation. This activation must be cleared from the network before 
the next sentence is read. But then how are any event instances to be stored 
away for long-term retrieval? One way is to simply created new nodes and 
links, but as we have seen, this approach violates a connectionist paradigm 
constraint. Thus, any localist CN theory of episodic memory will require a 
theory of how to "recruit" preexisting nodes and connections to form new, 
long-term memories. 

In distributed CNs, the formation of semantic memories is straightforward. 
Semantic memory is represented in the weights of the network. These weights 
undergo modified (e.g., via backpropagation) to reflect statistical features inher
ent in the training data. However, the storage and retrieval of specific episodes 
is problematic because events are laid on top of one another in a distributed 
connectionist network (since the same network performs multiple mappings). 
This approach supports generalization but makes the retrieval of individual 
events difficult. To date, the most successful approach to modeling episodic 
memory has been to make use of extensions of Kohonen self-organizing fea
ture maps (Kohonen, 1988). A feature map consist of a 2-dimensional plane 
of units, with each unit receiving, in parallel, the same n-dimension vector 
as input along its weights. The most active unit on the map then causes its 
neighboring units to modify their weight vectors so that, in the future, they 
will respond more to that input. The result of this form of learning is that 
similar inputs will tend to activate contiguous regions. Thus, a Kohonen fea
ture map clusters or self-organizes the input data in a 2-D space without the 
need for explicit training (as in backpropagation). Feature maps have several 
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nice properties, including: (a) Similar events will be stored in similar regions, 
thus supporting generalization, (b) Distinct vectors will be mapped to different 
regions and thus be retrieved without interference from other memories. In 
general, humans recall very distinct actions/objects more easily also, (c) Re
cent memories get laid on top of other and thus are more memorable. Humans 
also demonstrate this kind of recency effect. 

The DISCERN system (Miikkulainen, 1993) is an extension to DISPAR that 
includes a question-answering module that learns to retrieve unique events 
from an episodic memory. The episodic memory consists of Kohonen features 
maps that are organized into a 3-level hierarchy. At the top level, different 
scripts are self-organized on the map (e.g., restaurant vs. travel vs. shopping). 
At the middle level are maps that self-organize distinct tracks within a given 
scripts (e.g., for restaurants, the tracks are fastfood vs. cafeteria vs. snazzy 
restaurant, etc.). At the bottom level are the unique bindings (e.g., within 
the fastfood track of the restaurant script, the diner was Joe and the food was 
steak). Hierarchical maps were employed to speed up learning because, in 
Miikkulainen's task domain, the data itself is hierarchical. Another extension 
Miikkulainen made was to alter feature maps so that they could store bindings. 
Standard Kohonen maps simply categorize their data. Miikkulainen altered 
the bottom level feature maps so that role bindings are encoded in the lateral 
connections (i.e., between nearby units on the map). 

How does this approach compare to that use in symbolic systems? Kolodner 
(1984) developed a symbolic, computational model of human episodic mem
ory. Her system, CYRUS, modeled aspects of the episodic memory of Cyrus 
Vance (when he was Secretary of State). CYRUS contained episodes described 
in the press, e.g., trips to foreign countries, summit meetings, treaty negoti
ations, etc. Unlike hierarchical Kohonen maps, which have a fixed-size per 
map and hierarchical depth, Kolodner's memories consisted of multi-indexed 
symbolic structures of arbitrary depth. However, Kohonen maps have the 
ability to encode finer regions within areas of the same map, and so can encode 
hierarchical structure. 

Kolodner also modeled a complex set of heuristics for generating retrieval cues 
automatically — i.e., to search memory in those cases in which indices did not 
exist directly. For example, CYRUS did not have an index of wives-meeting-
wives, yet it could still recall times that Vance's wife met Menachim Begin's 
wife, by generating possible retrieval cues (e.g., trips to Israel in which wives 
are taken along and embassy parties). No such meta-level knowledge (i.e., of 
how memory is indexed) yet exists or is employed in connectionist models. 
However, this lack is probably more due to the youth of the connectionist NLP 
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field, which only began to develop in the late 1980s. To my knowledge, Mi-
ikkulainen's model is the first to even attempt to model episodic memory. The 
advantage of the connectionist approach is that the resulting memory exhibits 
well-known connectionist features, namely, it is robust to noise/damage and 
provides parallel, associative retrieval from subsymbolic cues. 

7 ROLE OF WORKING MEMORY 

In addition to lexical, semantic and episodic memories, there is a need for a lim
ited capacity but rapid memory — in which intermediate structures can be built 
and manipulated. For example, in Touretzky and Hinton's (1988) distributed 
connectionist production system (DCPS), a coarse-coded (Rumelhart and Mc
Clelland, 1986) working memory is used to store sets of triples. Production 
rules are then "matched'' (via spreading activation) to determine which rule 
to fire next. In Barnden's connectionist implementation of Johnson-Laird's 
model of syllogistic reasoning (Barnden 1991; in press; Barnden and Srinivas, 
1991; Johnson-Laird, 1983) a central component is a connectionist working 
memory (termed Conposit) in which instances of predicates (representing ob
jects, events, etc.) can be rapidly represented and bound to one another. The 
method, by which this rapid binding is performed, is unique. Barnden employs 
a unique approach to representing transient bindings, termed relative-position 
encoding. Conposit's working memory consists of a 2-dimensional matrix 
where each cell in the matrix consists of a complex subnetwork capable of a 
number of operations. One of these operations is to notice configurations of 
activation patterns in neighboring cells. Such operations allow symbols (rep
resented as activation patterns within a given cell) to be bound simply by being 
placed in any one of the 8 contiguous cells surrounding a given cell. This 8-cell 
region places an upper limit on the number of symbols that can be bound into a 
single structure, so Barnden employs an additional binding mechanism, termed 
Pattern Similarity Association. Namely, structures are bound to one another if 
they share the same symbols. Each cell of the matrix is quite complex and can 
perform numerous operations. Barnden argues that such complexity is needed 
to model human syllogistic reasoning. 

Another situation requiring working memory is in the dynamic Unking of 
recursive structures. For example, in efficiently parsing embedded relative 
clauses, Miikkulainen (this volume) employs a RAAM to act as stack, in order 
to push/pop clauses appropriately as they are parsed into case-role vectors. 
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8 R O U T I N G AND C O N T R O L 

Both localist and multi-module distributed CNs require methods for controlling 
the sequencing of operations and for routing information among different 
modules. Localist networks must control along what pathways signatures are 
to travel. For example, in the ROBIN system (Lange and Dyer, 1989; Lange, 
1994), there are nodes whose connections act to control or gate connections 
between other nodes. If ROBIN receives "John inhaled the pot" as input 
then activation will not spread at all to the FLOWER-POT meaning of "pot," 
because gating nodes will only let through signatures within a given set (i.e., 
in this case, different types of gases). Thus, gating acts to greatly reduce 
the amount of spreading activation that occurs and to impose syntactic and 
semantic restrictions on inference propagation. 

In most distributed CNs, control processes are specified procedurally. For 
example, in DISCERN all routing of patterns between modules, and control of 
when modules execute (during both learning and performance), are specified 
by designer-specified procedures. 

Miikkulainen (1994), however, has shown how control can be learned automat
ically. His SPEC model, designed to parse embedded relative clauses, contains 
3 modules: (a) a SRN which takes as input an sentence with embedded clauses, 
(b) a RAAM (which acts a stack) and (c) a three-layer PDP network, termed 
the Segmenter. It is the job of the Segmenter to determine when to push or 
pop the stack, based on the current state of the parse (i.e., due to encountering 
clause boundaries for right branching vs. left branching vs center embedded 
clauses). Miikkulainen's work shows that distributed connectionist architec
tures can be trained to control their operations instead of having to employ a 
top-level, non-connectionist procedure. 

With respect to all CNs, one can imagine a "granularity spectrum." At one 
end of the spectrum are purely localist CNs, with potentially many thou
sands/millions of nodes, each representing an individual type or instance. Here 
each single node acts as a module; the grain size is very small and the number 
of modules is extremely large. At the other extreme of the granularity spectrum 
lies, say, a single SRN, where each layer consists of an extremely wide vector. 
Here the granularity is very coarse, with only 1 module (consisting of 3 layers 
with one set of recurrent connections). The problems with the localist extreme 
are: (a) a combinatorial explosion of nodes are needed to represent world 
knowledge — e.g., the problem of representing all possible visual angles and 
other information concerning one's grandmother via separate "grandmother 
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neurons" (Feldman, 1989), (b) the difficulty of incorporating learning, and (c) 
the recruitment of neurons/connections in forming long-term memories dy
namically. The problems with the other extreme (i.e., single SRN) are: (a) 
learning to set the weights (especially when performing complex task involv
ing language and higher-level reasoning) will take an impossibly long time, 
and (b) all brains exhibit a lot of specialization of circuitry and modularization 
(even if the modules are heavily overlapping). Miikkulainen and Dyer (1990) 
have shown that breaking up the the story paraphrase task into 4 modules (each 
independently trained yet communicating via a common lexicon) dramatically 
reduces the overall training time. This approach is an obvious — i.e., one 
of divide and conquer. But the DISPAR and DISCERN modules still lie very 
much near the single module extreme of the spectrum, since they contain under 
a dozen, relative large modules. Can we imagine architectures with modules 
that are finer than those in DISCERN, perhaps hundreds or a few thousand, but 
far fewer than those at the localist extreme? This level of granularity would 
correspond more to how the brain appears to be organized. 

The DCAIN system (Sumida, 1991; Sumida and Dyer, 1989,1992) lies within 
this region of die spectrum. It is a distributed CN which consists of (potentially 
many hundreds of) ensembles of units. The global organization between 
ensembles is like that of a semantic network. Thus, these networks are termed 
Parallel Distributed Semantic (PDS) networks. Each ensemble is connected to 
other ensembles via multiple adaptive connections which are themselves under 
the control of learnable routing ensembles, termed propagation filters (Figure 
3). 

selector 
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Figure 3 Propagation filter arrangement. A pattern (jagged lines) over 
the selector ensemble causes one filter ensemble to go above threshold and 
allows routing of a pattern from sourcel to destinationl while blocking 
the propagation of other patterns. Arrows represent full connectivity. 
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A propagation filter consists of a selector ensemble of units and a filter ensem
ble. When a particular pattern of activation occurs over the selector ensemble, 
every unit in the filter group is driven above threshold, which allows an acti
vation vector to be routed (over multiple connections) from a source ensemble 
to a given destination ensemble. 

In DCAIN, each distinct type of semantic or syntactic information is repre
sented as an ensemble of connectionist units. Each ensemble is connected 
to other ensembles based on semantic/syntactic relations between types. For 
example, the predicates BUYS and OWN and their roles would be represented 
each as a distinct ensemble. To represent the implication that [x BUYS y —• 
x OWNS y], the roles of the BUYS ensemble are connected to the appropriate 
roles of the OWNS ensemble. Thus, at the ensemble level, PDS networks 
share organizational principles with localist networks. However, there are no 
separate instance nodes. Instead, each instance of a type (e.g., BUYS1 — say, 
that John bought a TV from Sears) is represented as a particular pattern of ac
tivation that occurs within the BUYS ensemble. Thus, an exponential number 
of instances can be stored and the problem of node recruitment (at least for 
representing instances) does not arise. The relationship between a predicate 
ensemble and its role ensembles is similar to that of an autoassociative encoder 
network. That is, there are connections from role ensembles to the predicate 
ensemble and back and these connections are dynamically modified (during 
learning) so that the activation pattern over the predicate ensemble will cause 
the reconstruction of the correct role ensembles and vice versa. For example, 
if the pattern for BUYS1 is placed in the BUYS ensemble, then that pattern 
will cause the role ensembles to reconstruct (via pattern completion) die fol
lowing values: BUYER = John and FROM = Sears. Thus, unlike localist 
CNs (which have relationships between role values and predicate instances 
specified by hand), PDS networks learn this relationship. Also, PDS networks 
can store more than one type within a given ensemble. For instance, BUYS 
could be a pattern of activation over an ensemble designated to be an ACT 
ensemble, while OWNS might be a pattern of activation over a more general 
STATE ensemble. Thus, the ACT ensemble might hold other actions (besides 
buying) and the STATE ensemble might hold other states (besides the OWN 
state). Syntactic categories (e.g., SUBJECT, DIRECT-OBJECT) are also rep
resented as ensembles and a parsing analysis that, say, John is the subject of 
a sentence, is represented by propagating the John pattern of activation to the 
SUBJECT ensemble. Relationships among syntactic and semantic pieces of 
knowledge are represented in terms of propagation filters, which determine 
how patterns are propagated among ensembles. Figure 4 illustrates syntac
tic/semantic analysis of simple sentence, i.e., of the form [SUBJECT, VERB, 
D-OBJECT]). 
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Notice that, in Figure 4, the pattern for "boy" controls its own routing, i.e., 
causing it to be routed to the humans ensemble (vs. the animals ensemble). 
The pattern in the humans ensemble can only be routed to the subj ensemble 
after the correct kind of noun-phrase pattern has arrived in the NP ensemble. 
The correct pattern in the NP ensemble will cause patterns for "the" and "boy" 
to be reconstructed in the DET and N ensembles. The correct pattern in the 
Basic-S ensemble will cause its appropriate roles (in this case, subj = boy, verb 
= hit, dir-obj = dog) to be reconstructed in its role ensembles. When "the cat" 
is input, existing patterns over the NP and verb ensembles will cause "cat" to 
be routed to dir-obj (vs. to subj). This part of the analysis is not shown in 
the figure. Note that each predicate/roles encoder network and selector/filter 
group is trained to perform its reconstruction (or routing) task. 

VDFT J ( N, ) 

at) (3_ 
the boy 

Figure 4 A fragment of a simplified PDS network showing some of the 
interaction between syntactic and semantic elements when parsing the 
phrase "the boy" from the sentence "The boy hit the cat." Propagation 
filters are small circles with black color indicating filters that allow allow 
patterns to be propagated. Two-way arrows between predicate and role 
ensembles (ovals) represent autoassociative encoder networks, with a 
predicate serving as a hidden layer and the roles serving as both input and 
output layers (i.e., the output layer is "folded" back onto the input layer). 
Dotted lines are from ensembles (that act as selectors) to filters. 

The word "hit" has different interpretations, depending on context. For ex
ample, it can mean to perform music, as in "The boy hit the note." Figure 5 
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shows how filters propagate role bindings, based on the context within which 
"hit" appears. 

perform-music basic-s hit 

Figure 5 Pattern-based routing to perform word disambiguation. The 
pattern for boy-hit-cat appearing over the basic-s ensemble causes a filter 
to open and propagate the subject of the sentence to the actor role of the 
hit ensemble. 

PDS networks retain many of the advantages of both localist and distributed 
CNs. Training PDS networks is more rapid than training distributed CN ar
chitectures with just one (or a few) modules because each PDS subnetwork is 
small and can be trained independently. In general, more modules of smaller 
size will result in faster overall training when implemented over a parallel ar
chitecture. Since there are many modules in separate locations, it is possible to 
pursue in parallel many distinct inference paths at the knowledge level. Novel 
instances can be created dynamically by forming new patterns over existing 
ensembles. Since role ensembles are connected to predicate (type) ensembles 
in the manner of encoder networks, they have the ability to perform pattern 
completion (i.e., roles reconstructing its predicate instance or a predicate in
stance reconstructing its roles) and to generalize to related patterns. As a 
result of pattern completion, PDS networks can propagate structured bindings 
— i.e., a pattern laid over a type ensemble will cause the reconstruction of 
all of its role bindings in the associated role ensembles. These role patterns 
can then be routed to other predicate ensembles, thus causing their roles to be 
reconstructed, and so. If there is only one ensemble for a given predicate then 
only one instance (e.g., only TELL1 or TELL2, but not both) can be active 
at a time. However, it is possible to sequence through these instances over 
time (e.g., first filling the N ensemble with "boy" and then later with "cat" in 
"The boy hit the cat"). This sequencing is controlled by propagation filters. 
Finally, because predicate/role ensemble groups are trained via example to act 
as encoder networks, they extract statistical regularities from the training data. 
Their distributed representations also allow them to exhibit robustness in the 
face of noise and/or damage because the loss of a unit within an ensemble will 
only degrade its performance, not destroy it. In addition, PDS networks reside 
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in a region of the "granularity spectrum" that is closer to that of the brain (i.e., 
than either purely localist or distributed CNs with just a few modules). 

9 GROUNDING LANGUAGE IN PERCEPTION 

Although language relies on (and manipulates) highly abstract concepts and 
other forms of knowledge> it appears to be the case that children acquire early 
language semantics by associating verbal utterances (e.g., from adult care
givers) with ongoing sensory/motor experiences. Consider (one meaning of) 
the word "passing." After the child has learned simple objects by verbal/visual 
association (e.g., "ball," "car," "dog") the child can begin to learn the meaning 
of "passes" (e.g., as in "the car passes the dog") by simultaneously observing 
a car moving along, coming up from behind the running dog and then outstrip
ping the dog, with both moving in the same direction. At the same time the 
child hears the phrase "car passes dog" (or, in the case of deaf children, receives 
a gestural sequence as visual input). By watching different size/shape/color 
objects catch up to and pass one another, the child can begin to form a percep
tually based representation of the word "passes." It is unclear what a candidate 
symbolic representation would be. More likely, a major part of the meaning of 
"passes" consists of a generalized spatio-temporal visual experience. This per
ceptually based representation can then serve as a foundation for more abstract 
representations (such as "passes" later meaning that one becomes superior to 
someone else in a given cognitive skill, like playing chess, or that one "passes" 
an exam, etc.). 

The task of mapping the abstract symbols of language to/from perceptual/motor 
experience has been called variously, the "symbol grounding task" (Harnad, 
1990), "L0 language acquisition task" (Feldman et al., 1990) or "perceptually 
grounded language learning task" (Nenov, 1991; Dyer and Nenov, 1993). This 
task has been addressed by several connectionist researchers. 

Regier (1992) developed a connectionist network that learns the meanings of 
phrases by associating them with two simple objects (where one is a stationary 
landmark and the other is moving relative to it in a 2-D microworld). This 
research is part of the L0 Project led by Feldman (Feldman et al., 1990) at 
the International Computer Science Institute at Berkeley, CA. The long-term 
goal of the L0 Project is to acquire language via association with perception. 
The architecture is designed to extract object features (e.g., center of mass and 
major axis orientation) and spatial features (e.g., concerning the relative angle, 
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orientation, and distance of the moving object with respect to the landmark). 
These spatial features are extracted by non-neural, procedural modules. The 
resulting representations consist of both feature vectors and 2D feature maps. 
The feature maps are trained to produce, on the output layer, descriptions 
of the motion sequences. The learning method is a variant of backpropaga-
tion learning, in which every positive instance (during training) for a given 
spatial concept constitutes weak, implicit negative evidence for all other spa
tial relationships being learned. Regier argues that this modification allows 
the system to learn from positive examples only. He points out that in the 
child acquisition data, children acquire language apparently without the ben
efit of negative evidence (Pinker, 1989). Regier's system consists of distinct 
and independent modules, each with a different connectivity arrangement and 
learning/activation parameters. 

The DETE system (Dyer and Nenov, 1993; Nenov and Dyer in press-a, b, c) 
also learns the meanings of word sequences via association with simple moving 
objects. The DETE system's microworld (called Blobs World) consists of a 
simulated (64x64 "pixels") visual screen (VS) of up to five 2-D, homogeneous, 
mono-colored (and possibly noisy) "blobs" of various shapes (e.g., rectangular, 
circular, triangular). During learning, DETE receives also a simulated verbal 
sequence describing the visual sequence. Motor sequences may also be input, 
which tell DETE how to move and/or zoom in/out its single EYE. DETE also 
has a FINGER which can be made to touch or push blobs. After learning, DETE 
performs two tasks: (a) Verbal-to-visual/motor association — given a verbal 
sequence, DETE generates the visual/motor sequence being described, (b) 
Visual/motor-to-verbal association — given a visual/motor sequence, DETE 
generates a verbal description of it. 

The current version of DETE is a massively parallel model that consists of over 
1 million virtual processors, executing on a 16K processor CM-2 Connection 
Machine. Interface modules (i.e., that map simulated visual/verbal input to 
learning/memory subsystems) are parallel, array-processing (non-neural) pro
cedures, while internal processing/memory modules themselves are modeled 
as highly structured neural networks modules (termed katamic memory) with 
each composed of novel neural elements. 

Like a child, DETE must be taught incrementally. In a series of learning 
experiments DETE was first taught the names of blobs by being given scenes of 
blobs with a single shape, but with varying colors, sizes, locations and motions. 
As a result, DETE extracts what is invariant (i.e., shape) and forms the strongest 
associations between verbal input (e.g., "circle") and its internal representations 
for size, shape, etc. DETE next learned the meanings of words for color, size 



Connectionist Natural Language Processing: A Status Report 415 

and location with respect to center of the VS (e.g., "above," "right," "in-
center," "far," etc.). DETE then learned single words for actions/events. Such 
words include: "moves," "accelerates," "turns," "bounces," and "shrinks" (i.e., 
change in blob size). Once these words were learned, DETE was tested by 
presenting it with verbal input only, and DETE indicates its comprehension by 
generating internal representations of this visual behavior. DETE's syntactic 
ability is currently limited to extracting word preference order (e.g., that size 
terms come before color terms) and the most complex sentences it has learned 
are of the sort: "big red ball moves diagonally down ... bounces .. . moves 
diagonally up." 

In DETE all visual/motor input is mapped (by non-neural interface routines) 
to regions of active neurons over a set of Feature Planes (FPs). The 5 visual 
FPs are: Shape (SEP), Size (ZFP), Color (CEP), Location (LFP) and Motion 
(MFP). Each FP is composed of a 2-D array of 16 x 16 (256) neurons. Different 
active regions within a Feature Plane represent different values for that feature. 
An active neuron is one that oscillates, i.e., it fires periodically (with output 
1) and is silent the rest of the time (with output 0). FPs have either a raster-
linear or topographic layout. For instance, the LFP and MFP have topographic 
layouts. If a blob is in the lower right corner of the VS, then its position will 
be represented by a region of active neurons in the lower right corner of the 
LFP. On the MFP, the speed of a blob is represented by distance from the 
center, with stationary objects at the center and more rapidly moving objects 
toward the periphery. There are also FPs for FINGER and EYE dynamics. 
Figure 6 shows a (simplified) sequence of images on the VS, along with the 
visual representations that are produced (by array processing procedures) over 
a subset of the Feature Planes. 

DETE makes use of phase locking to handle the "feature binding problem." 
For example, if both a big-region and small-region of the size FP are active 
and also both a square-region and circular-region of the shape FP, then how is 
DETE to distinguish whether what is being represented is: (a) a small circle and 
a large square or (b) a small square and large circle? DETE solves this feature-
binding problem by breaking down its basic processing cycle into phases and 
assigning a distinct phase to each blob. Thus, if it is a small circle and large 
square that is on the VS, the active small-region and active circular-region 
will both be firing with the same phase. This phase difference is represented 
pictorially in Figure 6 as distinct textures (with active regions for the same 
blob containing the same texture across all FPs). Whenever DETE looks at a 
given blob with its EYE, it assigns to the EYE the same phase as that blob. 
This temporally based binding of attention makes sure that DETE only learns 
to associate verbal sequences with visual sequences of those blobs to which it 
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Figure 6 Visual Screen (VS) and Location (LFP), Motion (MFP), Size 
(ZFP) and Shape (SFP) Feature Planes (color, FINGER and EYE FPs are 
not shown here). Three blobs are moving on the VS. The oval blob is 
moving left; the square blob is growing and the triangular blob is moving 
diagonally upward toward the right. As blobs move/change on the VS, 
their active regions on the FPs are updated. Similar texture of active 
regions (small squares) indicates that these regions are firing in phase. 
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is attending. The use of multiple objects requires DETE to address the issue 
of attention. In contrast, Regier's model only contains 1 moving object, so it 
does not need to face this feature binding problem. 

Feature Planes (FPs) are used as representational constructs for three rea
sons: (1) Neuropsychological and Neurophysiological Support: FPs corre
spond roughly to known neurophysiological and neuropsychological studies 
(Kandel, 1985) indicating both topographic mappings and that shape, posi
tion, etc. are processed in different regions of the brain and then reintegrated. 
(2) Spatial Representational Analog: Topographic layouts supply simplified, 
yet direct analogs for spatial features, and thus make representing space and 
motion easier. For example, a word like "up" can be represented by activity 
anywhere in the upper area of the Location Feature Plane. A word like "moves" 
be represented by activity anywhere away from the center of the MFP while 
directions of motion termed "diagonal" can be represented simply by activity 
anywhere in the diagonal regions of the MFP. FPs also support smooth gener
alization. If an object near the center of the MFP is moving slowly then objects 
mapped near to it will tend to be moving at about the same speed/direction. (3) 
Combinatorial Learning and Generalization Capability: Blob relationships 
and motions can be represented as a pattern of activity distributed over all FPs 
as they change sequentially in time. For example, the word "accelerate" can 
be represented and learned as a sequence of changing active regions, moving 
from the MFP's center toward its periphery. The use of separate/independent 
FPs also supports immediate generalization to novel combinations of known 
words. For instance, colors are mapped to one feature plane (i.e., CFP) while 
shapes are mapped to another (i.e., the SFP). As a result, once DETE has 
learned color terms and shapes (each separately), it can immediately under
stand novel combinations of these (e.g., "green ball," "green box," "red ball," 
etc.) — i.e., by activating an appropriate region of each distinct Feature Plane. 

Each pattern sequence (i.e., of multiple active, changing regions over a given 2-
D Feature Plane) is fed as input to a corresponding Feature Memory (FM). Each 
FM consists of a katamic memory composted of a 2-D array of novel neural 
elements, termed predictions and recognitions. Predictions learn to predict 
the next input and recognitions sample their neighbors' outputs. For each 
cell of a given Feature Plane there is a corresponding prediction/recognition 
within the associated Feature Memory. Each prediction contains a linear 
sequence of dendritic compartments (DCs) in which information is propagated, 
in a pipeline fashion, toward the body (soma) of the prediction. Thus, each 
prediction acts as a temporal delay line. This shifting property is somewhat 
analogous to that of Time-Delay Neural Networks (TDNNs) (Waibel, 1989). In 
addition, each prediction samples information spatially (i.e., from neighboring 
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predictrons) and temporally (i.e., from earlier stages in the pipeline of DCs of 
other predictrons). Katamic memory has both novel processing and learning 
capabilities. Figure 7 shows a simplified picture of katamic memory. 

Experiments on katamic memory, reported in (Nenov, 1991; Nenov and Dyer 
in press-a, c), show that it has the following very useful properties: (1) Rapid 
learning: On average, only 4-6 exposures to a pattern sequence are sufficient 
for learning a novel sequence. This is 3-4 orders of magnitude improvement 
over recurrent PDP networks (Elman, 1990). (2) Flexible memory capacity: 
Multiple sequences of different lengths can be stored and the model is easily 
scalable to larger input patterns and/or sequences of greater length. (3) Se
quence completion!recall: A short sequence (i.e., cue) is sufficient to discrimi
nate and retrieve a previously recorded sequence. (4) Fault and noise tolerance: 
Missing bits can be tolerated and the memory can interpolate/extrapolate from 
existing data. {5) Integrated learning and performance: The katamic memory 
predictron can switch automatically from learning mode to performance mode. 
Thus, a katamic module can switch from learning to performance on a bit-by-
bit and/or pattern-by-pattern basis. Also, whenever each predictron learns it 
uses positive evidence as a weak negative evidence for all other patterns. This 
allows DETE to learn, like Regier's model, from positive examples only. 

10 F U T U R E D I R E C T I O N S 

The Regier and DETE systems are only first steps in grounding language 
learning in perceptual/motor experiences. Future directions in the area of 
representing perceptual experiences include: (a) extending the representations 
to 3-D objects, (b) representing composite objects with multiple motions — 
e.g., a set of hinged blobs could represent a boy versus a dog, or the more 
complex actions of eating (e.g., by movements of the lips with a shrinking 
blob in front of them) and (c) representing abstract concepts. At this point, 
no matter how much DETE sees one blob, say, attached to another, it will not 
really be learning the abstract concept of OWNERSHIP (since it is just seeing 
physical attachment). Almost by definition, abstractions are never observed 
directly and appear to have some innate basis in human brains (otherwise 
animals could learn such concepts as RESPONSIBILTY simply by observing 
irresponsible actions). Thus there is a need to build connectionist systems that 
unite perceptually-based language learning with the existence of mental states, 
such as plans, goals, themes and emotions (Dyer, 1983). At this point, only 
symbolic systems, e.g., (Dyer, 1983; Wilensky, 1983), are able to manipulate 
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Figure 7 (Simplified) katamic memory, with only three predictrons (P), 
Recognitions (R) and Bi-Stable Switches (BSS). Each BSS determines 
whether a prediction's Dendritic Compartments (DCs) get their input from 
the external environment or from internally generated outputs. Thus, 
BSSs are used for controlling when DETE attempts to perform sequence 
completion. Here, each prediction has only 4 DCs, illustrated as a train 
of squares above each prediction. Information about the input at a given 
region in a FP is shifted along the DCs in a pipeline fashion and is 
decayed over time (arrows of different thickness within each DC). Each 
recognition here has two of its own dendritic compartments (RDCs), 
shown here as thin rectangles. These RDCs are used to sample the output 
of both its associated prediction and its neighbors (sampling of only one 
neighbor to-the-right shown here). Small vertical ovals indicate strength 
of input (via shading) to a predictiones DC, arriving from neighboring 
predictions predictions (via lateral lines). In DETE, a typical katamic 
memory module will contain 256 predictions with 64 DCs per prediction. 
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such constructs and in such systems these constructs are engineered by hand. 
The only distributed connectionist NLP system I am aware of that even attempts 
a goal/plan analysis of narrative text is the DYNASTY system (Lee, 1991; Lee 
and Dyer in press). DYNASTY'S goal/plan analysis capabilities are extremely 
limited and one critical component (i.e., working memory) are implemented 
via symbol manipulation. 

In general, we need only look at recent symbolic NLP models to find a wide 
variety of systems that exhibit different and important aspects of high-level rea
soning — aspects not yet achieved by any connectionist model. For instance, 
the symbolic system OCCAM (Pazzani and Dyer, 1989; Pazzani, 1990) per
forms explanation-based learning (EBL) and thus can learn when given only 
a single example. EBL is not yet possible in connectionist models and Paz
zani and Dyer (1987) have shown that backpropagation learning does concept 
formation in a way different than people (who have already built up some 
knowledge of the world). The symbolic story invention system MINSTREL 
(Turner 1992) not only creates new characters and events whose plot satisfies 
a theme, but it has both (a) analogical rules of invention, that map and adapt 
events from one domain to another, and (b) procedures that examine the ap
propriateness of a chain of events that have been created by a given heuristic 
rule. Within the connectionist paradigm, this chain-examination capability 
might be like having one network "examine" how well (or poorly) activation 
has spread along paths within another network. The symbolic system OpEd 
(Alvarado, 1990; Alvarado et al., 1990a, b, c) reads a fragment of editorial 
text and constructs an "argument graph" of beliefs (concerning the efficacy of 
plans) that are linked by attack/support relationships. The argument graph is 
then traversed to answer questions. 

Barnden (1992a, b) points out the need for connectionist NLP systems that can 
build explicit representations of rules, e.g., as when one is asked to read a rule 
of the sort: "Any town that's been declared a disaster area [... ] gets federal 
aid." followed by "Rotville has been declared a disaster area." (Barnden, 
1992b, p. 29). Barnden's point is that we cannot rely on connectionist systems 
that just act as though they have rules (but without being able to access rules 
explicitly); otherwise we would not be able to build the rule and apply it, "on 
the fly," to conclude that Rotville will get disaster aid. 

Another major direction for research is to understand how global CN struc
ture might self organize — e.g., either through evolution (Werner and Dyer, 
1991) or developmental self-organization (Kohonen, 1988). Currently, the 
connectionist knowledge engineer must, ahead of time, specify all of the major 
modules and ensembles and specify their paths of intermodule connectivity. 
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In the case of a single SRN there is little global structure to engineer. Unfortu
nately, SRNs have not been able to learn to perform the kinds of tasks achieved 
by CNs with multiple modules, such as DISCERN or DYNASTY. What the 
global structure of a connectionist network should be and how it might come 
about automatically is largely an open research issue. 

11 CONCLUSIONS 

What general morals can we take away with us, as the result of this overview? 
Here are a few: (a) There is no free lunch — clearly, complex knowledge-level 
architectures are needed — i.e., the mere existence of connectionist techniques 
is not going to eliminate the need for designing such architectures. General 
learning of complex cognitive tasks without preexisting network structure will 
always be intractable. Thus, some kind of "biasing" is required. NLP appears 
to be as complex as vision processing, so the structures needed may be as 
complex (or even more complex) as those in vision, (b) Time/space trade
offs will always exist — e.g., we see this with the trade-off between many 
fine-grain modules and a few coarse-grain modules. In general, more modules 
allow more pieces of knowledge to be manipulated in parallel. Architectures 
with fewer modules are easier to train but take longer to do so and end up being 
more sequential at the knowledge level, (c) Limited cognitive processing 
is acceptable if it is psychologically plausible — e.g., limits on the depth 
of a stack-like memory or on the number of identical predicates instances is 
reasonable if humans exhibit difficulty in processing similar texts, (d) Classical 
AI problems will remain for the foreseeable future — e.g., humans are able 
to both construct and apply rules on the fly. (d) Solving the "perceptually 
grounded language learning" problem will not, by itself, give us sophisticated 
NLP connectionist systems — abstractions must also somehow be encoded 
and/or acquired. 

In spite of the difficulties facing connectionist NLP, it is still the case that 
great strides have been made. In the 1970s, NLP researchers built symbolic 
systems to read and answer questions about script-based stories. However, 
these systems were completely engineered. They did not learn any of their 
knowledge or processing skills. In the early 1990s, we see the arrival of, 
for instance, the DISCERN system — that can read and answer (simple) 
queries concerning restricted (i.e., single script) stories (Miikkulainen, 1993). 
However, it is important to realize that DISCERN acquires every piece of 
knowledge and every processing skill through learning — specifically, learning 
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by example. DISCERN learns the meaning of words; it learns to parse word 
sequences into vectors representing case-role information; it learns to generate 
completed script event sequences; it learns to encode scriptal (and semantic 
role) information in its modules' weights; it learns to generate word sequences 
that describe events; it learns to parse questions and generate appropriate 
retrievals and it forms episodic memories though a process of self-organization. 
The only things that are engineered in DISCERN are: (a) the global form of 
the modules, (b) how information is routed from module to module during 
learning/performance, (c) the learning algorithm itself and (d) the set up and 
presentation of the training data. It is clear that DISCERN represents quite an 
accomplishment and has provided us with major insights into novel forms of 
representation and processing. 

At one extreme there are connectionist researchers who believe that connec-
tionist models will sweep away all forms of symbol manipulation (Churchland, 
1986; Churchland and Sejnowski, 1989). At the other extreme are symboli
cally oriented researchers who claim that connectionism will never be more 
than a "mere implementation" (Pinker and Mehler, 1988) and "all of the action" 
is at the symbolic level. So far, the results are mixed. Connectionism has not 
advanced enough to offer alternative to the conveniences of symbol processing 
and thus attract away the majority of symbol pushers in traditional AI. If/when 
this happens, then connectionist processing will become preferred (since it 
offers a wide variety of nice features and potential links to brain research, etc.). 
However, existence of connectionist technologies and theories are not going 
to make knowledge representation, application of knowledge and reasoning 
issues magically disappear. Hopefully, connectionist technology and theory 
will continue developing and at some point the scales will tip in favor of con
nectionist implementations for all forms of high-level reasoning, but a need to 
understand processing at the knowledge/symbolic level will remain. 
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Appendix 

BIBLIOGRAPHY OF CONNECTIONIST MODELS WITH SYMBOLIC 

PROCESSING 

This bibliography was compiled by Ron Sun from contributions solicited from 
the research community. Especially valuable were the lists of references 
from Todd Lubert, Jim Garson, and Detlef Nauck. The selection of papers 
were based mainly on the following criterion: a paper x is included in this 
bibliography, if and only if x appears in a major conference, or x appears 
in a journal, or x appears in a well-edited book, or x is a monograph from a 
well-established publisher, or x is important and influential, and x is written 
in English. A deliberate effort was made to eliminate redundant or repetitive 
papers (but the results may still not be fully satisfactory). 

The bibliography is annotated with the following categories: 

• C — collections of papers. 

• G — general discussions and surveys. 

For technical papers, 

• A — analogical or case-based reasoning in neural networks. 

• E — expert systems and neural networks. 

• F — fuzzy logic and neural networks: hybrids and implementations. 

• J — juxtaposition and Unking of symbolic systems with neural networks. 

• L — learning of symbolic structures. 

• N — natural language, text, or speech processing. 

• R — reasoning (rule-based and the like) and variable binding. 

• S — schemas, scripts, semantic networks, or other conceptual structures, 

and 

• O — topics other than the above. 



432 APPENDIX 

Ajjanagadde, V. and Shastri, L. (1989). Efficient inference with multi-place 
predicates and variables in a connectionist system. In Proceedings of the 
Eleventh Annual Conference of the Cognitive Science Society, pp. 396-403. 
Hillsdale, NJ: Erlbaum. [R] 

Ajjanagadde, V. (1990). Reasoning with function symbols in a connectionist 
system. Proceedings of the 12th Annual Conference of the Cognitive Science 
Society. Hillsdale, NJ: Erlbaum. [R] 

Anandan, P., Letovsky, S. and Mjolsness, E. (1989). Connectionist variable 
binding by optimization. Proceedings of the 11th Cognitive Science Society. 
[O] 

Anderson, J. (1993). Data representation, neural networks, and hybrid compu
tation. In Levine, D.S. and Aparicio, M. (eds), Neural Networks for Knowledge 
Representation and Inference. Hillsdale, NJ: Lawrence Erlbaum Associates. 
[G] 

Ardizzone, E., Chella, A., Frixione, M., and Gaglio. S. (1992). Integrating 
subsymbolic and symbolic processing in artificial vision, Journal of Intelligent 
Systems. l(4):273-308. [J] 

Ballard, D. H. (1986). Parallel logical inference and energy minimization, In 
Proceedings of the 5 th National Conference on Artificial Intelligence, Philadel
phia, pp. 203-208. [R] 

Baraden, J.A. (1984). On short-term information processing in connectionist 
theories. Cognition and Brain Theory, 7(l):25-59. [R] 

Barnden, J.A. (1985). Diagrammatic short-term information processsing by 
neural mechanisms. Cognition and Brain Theory, 7(3 & 4):285-328. [R] 

Barnden, J.A. (1988). Therightof free association: relative-position encoding 
for connectionist data structures. In Proc.of 10th Annual Conference of the 
Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum. pp. 503-509. 
[R] 

Barnden, J.A. (1989). Neural-net implementation of complex symbol-
processing in a mental model approach to syllogistic reasoning. In Proc.of 
11th Int. Joint Conf. on Artificial Intelligence (Detroit, August 1989), pp. 
568-573, San Mateo, CA: Morgan Kaufmann. [R] 



Appendix 433 

Barnden, J.A. (1991). Encoding complex symbolic data structures with some 
unusual connectionist techniques. In Barnden, J.A. and Pollack, J.B. (eds.), 
Advances in Connectionist and Neural Computation Theory 1: High-level 
connectionist models (Vol. 1), pp. 180-240 Ablex, Norwood, NJ. [R] 

Barnden, J.A. (1992). Connectionism, generalization and propositional atti
tudes: a cAtalogue of challenging issues. In Dinsmore, J. (Ed.), The Symbolic 
and Connectionist Paradigms: Closing the Gap, pp. 149-178, Hillsdale, NJ: 
Lawrence Erlbaum. [G] 

Barnden, J.A, and Srinivas, K. (In Press). Overcoming rule-based rigidity and 
connectionist limitations through massively-parallel case-based reasoning. Int. 
Journal of Man-Machine Studies. [A] 

Barnden, J.A. (in press). On the connectionist implementation of analogy and 
working memory matching. To appear in Holyoak, K.J. and Barnden, J.A. 
(eds), Advances in Connectionist and Neural Computation Theory, Vol. 2: 
Analogical Connections. Norwood, NJ: Ablex Publishing Corp. [A] 

Barnden, J.A. (forthcoming). Connectionist meta-representation for proposi
tional attitudes. ./. Experimental and Theoretical Artificial Intelligence, 5(1). 
[R] 

Barnden, J.A. and Pollack, J.B. (eds). (1991). Advances in Connectionist 
and Neural Computation Theory, Vol. I: High Level Connectionist Models. 
Norwood, NJ: Ablex Publishing Corp. [C] 

Barnden, J.A. and Srinivas, K. (1991). Encoding techniques for complex infor
mation structures in connectionist systems. Connection Science, 3(3):263-309. 
[R] 

Bechtel, W. (1988). Connectionism and rules and representation systems: Are 
they compatible. Philosophical Psychology, 1(1):5-16. [R, G] 

Becraft, W.R., Lee, P.L. and Newell, R.B. (1991). Integration of neural net
works and expert systems for process fault diagnosis. In Proc. 12th Interna
tional Joint Conference on Artificial Intelligence, pp. 832-837. [J, P] 

Berenji, H.R. and Khedar, P. (1992). Learning and tuning fuzzy logic con
trollers through reinforcements. IEEE Transactions on Neural Networks, 
3(5):724-774. [F, L, C] 



434 APPENDIX 

Bever, T.G. (1991). The demons and the beast — Modular and nodular kinds 
of knowledge. InRonan, R. and Sharkey, N. (Eds.), Connectionist Approaches 
To Natural Language Processing. Lawrence Erlbaum (UK). [N, G] 

Bezdek, J. (ed.) (1992). IEEE Transaction on Neural Network, special issue 
on fuzzy neural networks. [C, F] 

Blank, D.S., Meeden, L.A., and Marshal, J.B. (1992). Symbolic manipula
tions via subsymbolic computations. In J. Dinsmore (ed.), Closing the Gap: 
Symbolic vs. Subsymbolic Processing, pp.113-149, Hillsdale, NJ: Lawrence 
Erlbaum. [G] 

Bookman, L.A. (1989). A connectionist scheme for modeling context. In D. 
Touretzky et al. (eds.) In Proc.1988 Connectionist Summer School, pp.281-
290. San Mateo, CA: Morgan Kaufmann. [N] 

Bookman, L.A. (1991). Schema recognition for text understanding: An analog 
semantic feature approach. In Barnden, J. A. and Pollack, J.B. (Eds.), Advances 
in Connectionist and Neural Computation Theory, (Vol.1). Norwood, NJ: 
Ablex. [N, J] 

Bookman, L.A. (1993). A scalable architecture for integrating associative and 
semantic memory. Connection Science, 5(3&4):243-273. [J, L] 

Bookman, L.A. (1994). Trajectories Through Knowledge Space: A Dynamic 
Framework for Machine Comprehension. Norwell, MA: Kluwer Academic 
Publishers. [J, L, N] 

Bradshaw, G., Fozzard, R, and Ceci, L. (1989). A connectionist expert system 
that actually works. In NIPS 88, pp. 248-255. [E] 

Brown, G. D. A. and Oaksford, M. (1990). The development of symbolic 
behaviour in natural and artificial neural networks. In Eckmiller, R., Hart-
mann, G., and Hauske, G. (eds), Parallel Processing in Neural Systems and 
Computers. Elsevier. [L] 

Carpenter, G.A. et al. (1992). Fuzzy ARTMAP: A neural network architecture 
for incremental supervised learning of analog multidimensional maps. IEEE 
Transactions on Neural Networks, 3(5):698-713. [F] 

Chalmers, D.J. (1990). Syntactic transformations on distributed representa
tions. Connection Science, 2(1-2):53-62. [L] 



Appendix 435 

Chalmers, D.J. (1990). Why Fodor and Pylyshyn were wrong: the simplest 
refutation. In Proc.ofthe Twelfth Annual Conference of the Cognitive Science 
Society. [L] 

Chang, E. and Sekine, M. (1991). ARENA, a rule evaluating neural assistant 
that performs rule-based logic optimization. In Proceedings of the Interna
tional Joint Conference on Neural Networks, pp.678-683, November 1991. 
[R] 

Chorayan, O.G. (1982), Identifying elements of the probabilistic neuronal 
ensembles from the standpoint of fuzzy sets theory. Fuzzy Sets and Systems, 
8(2):141-147. [F] 

Chun, H. W. and Mimo, A. (1987). A model of schemata selection using 
marker passing and connectionist spreading activation. In Proceedings of the 
Ninth Annual Conference of the Cognitive Science Society, pp. 887-896. 
Hillsdale, NJ: Erlbaum. [S] 

Cooper, R. and Franks, B. (1991). Interruptibility: A new constraint on hybrid 
systems. Artificial Intelligence and the Simulation of Behaviour Quarterly. 
Special Issue on Hybrid Systems, 78:25-30. [G, J] 

Cooper, R. and Franks, B. (1993). Interruptibility as a constraint on hybrid 
systems. Minds and Machines, 3(l):73-96. [G, J] 

Cottrell, G. (1985). Connectionist parsing. In Proceedings of the Seventh 
Annual Cognitive Science Society Conference, Irvine, CA. [N] 

Cottrell, G. (1985). Parallelism in inheritance hierarchies with exceptions. In 
Proceedings of the Eighth International Joint Conference on Artificial Intel
ligence, Los Angeles, CA. Also in Al-Asady, R. and Narayanan, A. (Eds.), 
Inheritance Networks for Artificial Intelligence. Oxford: Intellect. [S] 

Cottrell, G. and Fu-sheng Tsung (1991). Learning simple arithmetic proce
dures. In Barnden, J.A. and Pollack, J.B. (Eds.), Advances in Connectionist 
and Neural Computation Theory, Vol 1: High-level Connectionist Models, 
Norwood, NJ: Ablex. [L] 

Cottrell, G.W. and Small, S.L. (1983). A connectionist scheme for modeling 
word sense disambiguation. Cognition and Brain Theory, 6(1):89-120. [N] 



436 APPENDIX 

Das, S., Giles, C.L. and Sun, G.Z. (1992). Learning context free grammars: 
Capabilities and limitations of a neural network with an external stack memory. 
In Proceedings of The Fourteenth Annual Conference of The Cognitive Science 
Society. [L] 

Dawes, R. (1993). Quantum neurodynamics and the representation of knowl
edge. In Levine, D.S. and Aparicio, M. (eds), Neural Networks for Knowledge 
Representation and Inference. Hillsdale, N.J.: Lawrence Erlbaum Associates. 
[G] 

Derthick, M. (1990). Mundane reasoning by setting on a plausible model. 
Artificial Intelligence, 46(1-2):107-158, 1990. [R] 

Derthick, M., and Plaut, D. C. (1986). Is distributed connectionism compatible 
with the physical symbol system hypothesis? In Proceedings of the Eighth 
Annual Conference of the Cognitive Science Society. (pp. 639-644). Hillsdale, 
NJ: Erlbaum. [G] 

Diamond, J., McLeod, R., and Pedrycz, W. (1990). A fuzzy cognitive sys
tem: examination of a referential neural architecture. In International Joint 
Conference on Neural Networks 1990, 2:617-622. [F] 

Diederich, J. and Long, D.L. (1991). Efficient question answering in a hy
brid system, In Proceedings of the International Joint Conference on Neural 
Networks, pp. 479-484, November 1991. [N] 

Diederich, J. (1991). Steps towards knowledge-intensive connectionist learn
ing. In Barnden J.A. and Pollack J.B. (eds.), Advances in Connectionist and 
Neural Computation Theory, Vol.1, pp. 284-303, Norwood, NJ: Ablex. [L] 

Diederich, J. (1992). Explanation and artificial neural networks. International 
Journal of Man-Machine Studies, 37:335-355. [R] 

Dinsmore, J. (Ed.). (1992). Closing the Gap: Symbolism vs. Connectionism. 
Lawrence Erlbaum Associates, Hillsdale, NJ. [C] 

Dolan, C.P., and Dyer, M.G. (1987). Symbolic schemata, role binding and 
evolution of structure in connectionist memories. In Proceedings of the First 
International Conference on Neural Networks. [S, L] 

Dolan, C.P. and Smolensky, P. (1989). Tensor product production system: a 
modular architecture and representation, Connection Science, 1:53-68. [R] 



Appendix 437 

Dolan, C. and M.G. Dyer. (1987). Towards the evolution of symbols. In 
Proceedings of the 2nd International Conference on Genetic Algorithms and 
Their Applications. Cambridge, MA, July. [L] 

Dolan, C.R and Dyer, M.G. (1989). Parallel retrieval and application of 
conceptual knowledge. In Touretzky, D., Sejnowski, T.J. and Hinton, G. E 
(eds), Proceedings of the 1988 Connectionist Models Summer School, Morgan 
Kaufmann. [S] 

Dyer, M.G. (1990). Distributed symbol formation and processing in connec
tionist networks. Journal of Expt. Theor Artificial Intelligence , 2:215-239. 
[L] 

Dyer, M.G. (1991). Symbolic neuroengineering for natural language process
ing: A Multiple level research approach. In Barnden, J.A. and Pollack, J.B. 
(Eds.), Advances in Connectionist and Neural Computation Theory. Vol. 1, 
NJ: Ablex. [G] 

Dyer, M.G. (1991). Lexical acquisition through symbol recirculation in dis
tributed connectionist networks. In Zernik, U. (Ed.), Lexical Acquisition: 
Using On-Line Resources to Build a Lexicon. Lawrence Erlbaum Assoc. 
Hillsdale, NJ, pp. 309-337. [N, L] 

Elman, J. L. (1989). Structured representations and connectionist models. In 
Proc.of Cognitive Science Conference, pp. 17-23. [N, L] 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179-211. 
[N,L] 

Eppler, W. (1990). Implementation of fuzzy production systems with neural 
networks. In Eckmiller, R., Hartmann, G., and Hauske, G. (eds.), Parallel 
Processing in Neural Systems and Computers, pp. 249-252 Elsevier. [F] 

Fahlman, S. and Hinton, G. (1987). Connectionist architectures for artificial 
intelligence. Computer, 20:100-118. [G] 

Farringdon. J. (1992). Approximating a neural network in symbolic logic. 
Artificial Intelligence and the Simulation of Behaviour Quarterly, Special Issue 
on Hybrid Systems, 79. [O] 



438 APPENDIX 

Feldman, J. A., Fanty, M. A., Goddard, N. H., and Lynne, K. J. (1988). 
Computing with structured connectionist networks. Communications of the 
ACM, 31:170-187. [O] 

Feldman, J. A. (1989). Neural representation of conceptual knowledge. In 
Nadel, Cooper, Culicover and Harnish (eds.), Neural Connections, Mental 
Computation, Cambridge MA: MIT Press. [S] 

Fodor, J.A and Pylyshyn, Z.W. (1988). Connectionism and cognitive archi
tecture: A critical analysis, Cognition, 28:3-71. Also in: Pinker and Mehler 
(eds.) Connections and Symbols, MIT Press, Cambridge, MA. [G] 

Fu, L.M. (1991). Rule learning by searching on adapted nets. In Proc.of 
AAAF91, pp. 590-595. [R, L] 

Fu, L.M. (1990). Backpropagation in neural networks with fuzzy conjunction 
units. In International Joint Conference on Neural Networks 1990,1:613-618. 
[F,L] 

Fu, L.M. and Fu, L.C. (1990). Mapping rule-based systems into neural archi
tecture. Knowledge Based Systems, 3:48-56. [R] 

Fu, L.M. (1992). A Neural network model for learning rule-based systems. 
In Proceedings of the International Joint Conference on Neural Networks, 
1-343:1-348. [R, L] 

Gallant, S. I. (1988). Connectionist expert systems. Communications of the 
ACM, 24(2):152-169. [R, E] 

Gasser, M. and Dyer, M.G. (1988). Sequencing in a connectionist model 
of language processing. In Proceedings of 12th International Conference on 
Computational Linguistics (COUNG-88). Budapest, Hungary, August 1988. 
[N] 

Giles, C.L., Sun, G.Z., Chen, H.H., Lee, Y.C. and Chen, D. (1990). High 
order recurrent networks and grammatical inference. In Advances in Neural 
Information Processing System 2, pp. 380-387, D.S. Touretzky (ed.), Morgan 
Kaufmann, San Mateo, CA. [L] 

Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z. and Lee, Y.C. 
(1991). Second-order recurrent neural networks for grammatical inference. In 



Appendix 439 

Proceedings of International Joint Conference on Neural Networks, Vol. II, 
pp. 273-278, Seattle, Washington. [L] 

Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z. and Lee, Y.C. 
(1992). Extracting and learning an unknown grammar with recurrent neural 
networks. In Moody, J., Hanson, S., and Lippmann, R. (Eds.), Advances in 
Neural Information Processing System 4, pp. 17-324, Morgan Kaufmann, San 
Mateo, CA, 1992. [L] 

Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z. and Lee, Y.C. (1992). 
Learning and extractiing finite state automata with second-order recurrent 
neural networks. Neural Computation, Vol. 4, No. 3. [L] 

Goebel, R. (1990). Learnign symbol processing with recurrent networks. In 
Eckmiller, R., Hartmann, G. and Hauske, G. (eds.), Parallel Processing in 
Neural Systems and Computers, pp. 157-160. Elsevier. [L] 

Goebel, R. (1990). A connctionist approach to high-level cognitive modeling. 
In Proceedings of the Twelfth Annual Conference of the Cognitive Science 
Society, Cambridge, MA. [O] 

Goebel, R. (1990). Binding, episodic short-term memory, and selective atten
tion, or why are PDP models poor at symbol manipulation? In Touretzky, D.S., 
Elman, J.L., Sejnowski, T.J. and Hinton, G.E. (Eds.), Proceedings of the 1990 
Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann. 
[O] 

Golden, R. M. (1986). Representing causal schemata in connectionist systems. 
In Proceedings of the Eighth Annual Conference of the Cognitive Science 
Society, pp. 13-21. Hillsdale, NJ: Erlbaum. [S] 

Goodman, R.M. Miller, J. W. and Smyth, P. (1992). Rule-based neural net
works for classification and probability estimation. Neural Computation, 
4:781-804. [R] 

Goodman, R. M., Miller, J. W. and Smyth, P. (1989). An information theoretic 
approach to rule-based connectionist expert systems. InNIPS 88,pp. 256-263. 
[R, E] 

Greenspan, H.K. et al. (1992). Combined neural network and rule-based 
framework for probabilistic pattern recognition and discovery. In Advances in 
Neural Information Processing Systems 4, pp. 444-451. [R] 



440 APPENDIX 

Grossberg, S. and Gutowski, W. (1987). Neural dynamics of decision making 
under risk: Affective balance and cognitive-emotional interactions. Psycho
logical Review, 94(3):300-318. [R] 

Gtiesgen, H. W. and HOlldobler, S. (1992). Connectionist inference systems. 
In Fronhfer, B. and Wrightson, G. (Eds.), Parallelization in Inference Systems. 
Springer, Lecture Notes in Artificial Intelligence, pp. 82-122. [R] 

Gutknecht, M. and Pfeiffer, R. (1990). An approach to integrating expert 
systems with connectionist networks. AI Communications, 3(3): 116-127. [E] 

Hadley, R. F. (1990). Connectionism, rule following, and symbol manipula
tion. In Proc. ofAAAI-90, pp. 579-586. [G, R] 

Hall, L. O. and Romaniuk, S. G. (1990). FUZZNET: Towards a fuzzy connec
tionist expert system development tool. In IJCNN 90, Volume 2, pp. 483-486, 
Washington, DC. [E] 

Handelman, D.A., Lane, S.H., and Gelfand, J.J. (1990). Integrating 
knowledge-based system and neural network techniques for robotic skill ac
quisition. In International Joint Conference on Neural Networks, 193-198. 
Also in: Proceedings ofUCAI, pp. 193-198. [E, J] 

Harnad, S. (1990). The symbol grounding problem. Physica D, 42(l-3):335-
346. [J] 

Harnad, S. (1992). Connecting object to symbol in modeling cognition. In 
Clark, A. and Lutz, R. (eds.), Connectionism in Context. Springer. [J] 

Hawthorne, J. (1989). On the compatibility of connectionist and classical 
models. Philosophical Psychology, 2(1):5-15. [G] 

Harris, C.L. and Elman, J.L. (1989). Representing variable information with 
simple recurrent networks. In Proceedings of the Eleventh Annual Conference 
of the Cognitive Science Society, pp. 635-642. Hillsdale, NJ: Erlbaum. [O] 

Hayashi, I., Nomura, H., Yamasaki, H. and Wakami, N. (1992). Construction 
of fuzzy inference rules by neural network driven fuzzy reasoning and neural 
network driven fuzzy reasoning with learning functions. International Journal 
of Approximate Reasoning, 6(2):241-266. [F, L] 



Appendix 441 

Hayashi, Y., Krishnamraju, P.V., and Reilly, K.D. (1991). An architecture 
for hybrid expert systems. In Proc. of Inf I Joint Conf. on Neural Networks 
(UCNN'91 -Singapore), Nov. 18-21, pp. 2773-2778. [E] 

Henderson, J. (1992). A connectionist parser for structure unification grammar. 
In Proceedings of the 30th Annual Meeting of the Association for Computa
tional Linguistics, Newark, DE. [N] 

Hendler, J. (1991). Developing hybrid symbolic/connectionist models. In 
Barnden J.A. and Pollack J.B. (eds.), Advances in Connectionist and Neural 
Computation Theory, pp. 165-179. Hillsdale, NJ: Lawrence Erlbaum Assoc. 
[J] 

J. Hendler, (1987). Marker passing and microfeatures. In Proc.10th IJCAI, 
pp. 151-154, Morgan Kaufman, San Mateo, CA. [J] 

Hinton, G. E. (ed.). (1990). Special Issue on Connectionist Symbol Process
ing. Artificial Intelligence, 46. Also as Connectionist Symbol Processing. 
Cambridge, MA: Bradford Books/MIT Press. [C] 

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist 
networks. Artificial Intelligence, 46:47-76. [S] 

Hirota, K. and Pedrycz, W. (1991). Fuzzy logic neural networks: Design and 
computations. In Proceedings of the International Joint Conference on Neural 
Networks,pp. 154-157. [F] 

Horgan, T. and J. Tienson, J. (in press). Structured representations in con
nectionist systems? In Davis, S. (ed.), Connectionism: Theory and Practice. 
British Columbia. [G] 

Hollatz, J. (1992). Supplementing neural network learning with rule-based 
knowledge. In Proceedings of International Joint Conference on Neural Net
works (IJCNN 92), Beijing, III-59-III-600. [L, R] 

HOlldobler, S. (1990). A structured connectionist unification algorithm. In 
Proc.of AAAT90, pp. 587-593. [O] 

HOlldobler, S. and KurfeB, F. (1991). CHCL — A connectionist inference 
system. In Fronhflfer, B. and Wrightson, G. (eds.), Parallelization in Inference 
Systems, Lecture Notes in Computer Science. Springer. [R] 



442 APPENDIX 

Holyoak, K.J. and Baraden, J.A. (eds). (in press). Advances in Connectionist 
and Neural Computation Theory, Vol. 2: Analogical Connections. Norwood, 
NJ: Ablex Publishing Corp. [C] 

Honavar, V. and Uhr, L. (1993). Generative learning structures and processes 
for generalized connectionist networks. Information Sciences. Special Issue 
on Neural Networks and Artificial Intelligence. [L] 

Honavar, V. and Uhr, L. (Eds), (in press). Symbol processors and connec
tionist networks in artificial intelligence and cognitive modelling. New York: 
Academic Press. [C] 

Honavar, V. (in press). Connectionist learning with structured symbolic rep
resentations. In Honavar, V. and Uhr, L. (Eds.), Symbol Processors and Con
nectionist Network Models in Artificial Intelligence and Cognitive Modelling. 
New York: Academic Press. [L] 

Jagota, A. (1993). Representing discrete structures in a Hop field-style net
work. In Levine, D.S. and M. Aparicio (eds.), Neural Networks in Knowledge 
Representation and Inference, Associates. [S] 

Jang, J-S. R. (1992). Self-learning fuzzy controllers based on temporal back 
propagation. IEEE Transactions on Neural Networks, 3(5): 714-723. [F, L] 

Jang, J-S. R. (1991). Fuzzy modeling using generalized neural networks and 
kalman filter algorithm. In P roc. of the Ninth National Conference on Artificial 
Intelligence (AAAI-9I), pp. 762-767, [F] 

Jang, J-S. R. (1992). ANFIS: Adaptive-network-based fuzzy inference sys
tems. IEEE Transaction on System, Man, and Cybernetics, 23:3. [F, L] 

Jones, M.A. (1987). Feedback as a coindexing mechanism in connectionist 
architectures. In Proceedings of the Tenth International Joint Conference on 
Artificial Intelligence (IJCAI), Milan, Italy, August 1987. [N] 

Jones, M.A. and Driscoll, A.S. (1985). Movement in active production net
works. In Proceedings of the 23rd Annual Meeting of the Association for 
Computational Linguistics, Chicago, July, pp. 161-166. [N] 

Kanal, L. and Raghavan, S. (1992). Hybrid systems: A key to intelligent 
pattern recognition. In Proceedings of the International Joint Conference on 
Neural Networks, IV:177-183. [J] 



Appendix 443 

Keller, J.M. and Tahani, H. (1992). Implementation of conjunctive and dis
junctive fuzzy logic rules with neural networks. International Journal of 
Approximate Reasoning, 6(2):221-240. [F] 

Keller, J.M. and Yager, R.R. and Tahani, H., (1992). Neural network imple
mentation of fuzzy logic. Fuzzy Sets and Systems, 45:1-12. [F] 

Keller, J.M. et al. (1992). Evidence aggregation networks for fuzzy logic 
inference. IEEE Transactions on Neural Networks, 3(5):761-769. [F] 

Kentridge, R.W. (in press) Cognition, chaos and non-deterministic symbolic 
computation: The Chinese room problem solved? To appear in Think (special 
issue on Connectionism and Symbolic Artificial Intelligence). [G] 

Kosko, B. (1986). Fuzzy cognitive maps. Int. J. Man-Machine Studies, 24:65-
75. [F] 

Kuncicky, D.C. (1989). A fuzzy interpretation of neural networks. The 3rd 
IFSA Congress, pp. 113-116. [F] 

Kuncicky, D. C, Hruska, S. I., and Lacher, R. C. (1991). Hybrid systems: The 
equivalence of rule-based expert system and artificial neural network inference. 
International Journal of Expert Systems. [E] 

KurfeB, F. (1991). Unification on a connectionist simulator. In International 
Conference on Artificial Neural Networks ICANN-91, Helsinki, Finland. [O] 

Kwasny, S.C. and Faisal, K.A. (1990). Connectionism and determinism in a 
syntactic Parser. Connection Science. 2(l-2):63-82. [N] 

Lacher, R. C, Hruska, S. I., and Kuncicky, D. C. (1991). Backpropagation 
learning in expert networks. IEEE Transactions on Neural Networks. [E, L] 

Lacher, R.C. (1993). Expert networks: Paradigmatic conflict, technological 
rapprochement. Minds and Machines, 3:53-71. [E] 

Lachter, J. and Bever, T.G. (1988). The relation between linguistic structure 
and associative theories of language learning—A constructive critique of some 
connectionist learning models. Cognition, 28:195-247. [N] 



444 APPENDIX 

Lange, T. E. and Dyer, M. G. (1989). Frame selection in a connectionist model 
of high-level inferencing. In Proceedings of the Eleventh Annual Conference 
of the Cognitive Science Society, pp. 706-713. Hillsdale, NJ: Erlbaum. [R] 

Lange, T. E. and Dyer, M. G. (1989). High-level inferencing in a connectionist 
network. Connection Science, 1:181-217. [R] 

Lange, T.E. (1990). Analogical retrieval within a hybrid spreading-activation 
network. In Proceedings of the 1990 Connectionist Models Summer School, 
pp. 265-274,1990. [A] 

Lange, T.E. and Wharton C. (in press). REMIND: Retrieval from episodic 
memory by inferencing and disambiguation. To appear in Barnden, J.A. 
and Holyoak, K. (Eds.), Advances in Connectionist and Neural Computation 
Theory, Volume 2: Analogical Connections. Norwood, NJ: Ablex. [A] 

Lea, R.N. and Villareal, J. (eds.) (1991). Proceedings of the Second Joint 
Technology Workshop on Neural Networks and Fuzzy Logic. NASA Lyndon 
B. Johnson Space Center, Houston, Texas. [C, F] 

Lee, C.C. (1990). A self-learning rule-based controller employing approximate 
reasoning and neural network concepts. Int. J. Intell. Syst., 5(3). [F] 

Lee, S. and Lee, E. (1974). Fuzzy sets and neural networks. ,/. Cybern., 
4(2):83-103. [F] 

Lee, G., Rowers, M., and Dyer, M.G. (1989). A symbolic/connectionistscript 
applier mechanism. In Proceedings of the Eleventh Annual Conference of the 
Cognitive Science Society, pp. 714-721. Hillsdale, NJ: Erlbaum. [S] 

Lee, G., Rowers, M., and Dyer, M.G. (1990). Learning distributed repre
sentations of conceptual knowledge and their application to script based story 
processing. Connection Science, 2(4):313-346. [S] 

Lehnert, W.G. (1991). Symbolic/subsymbolic sentence analysis: Exploiting 
the best of both worlds. In Barnden, J.A. and Pollack, J.B. (Eds.), Advances 
in Connectionist and Neural Computation Theory. Hillsdale, NJ: Lawrence 
Erlbaum Assoc. [N] 

Levine, D.S. and Aparicio, M. (Eds). (1993). Neural Networks for Knowledge 
Representation and Inference. Hillsdale, NJ: Lawrence Erlbaum Associates. 
[C] 



Appendix 445 

Lim, J.H. et al. (1991). INSIDE: A connectionist case-based diagnostic expert 
system that learns incrementally. In Proceedings of the International Joint 
Conference on Neural Networks, pp. 1693-1698. [A, E] 

Lim, J, Lui, H., and Wang, P., (1992). A framework for integrating fault diag
nosis and increamental knowledge acquisition in connectionist expert systems. 
In Proc.ofAAAF92, pp. 159-165. [L, E] 

Lin, C.-T. and Lee, C. S. G. (1991). Neural-network-based fuzzy logic control 
and decision system. IEEE Transactions on Computers — Special Issue on 
Artificial Neural Networks, 40(12): 1320-1336. [F] 

Machado, R.J. and Rocha, A.F. (1992). A hybrid architecture for fuzzy con
nectionist expert systems. In Kandel, A. and Langholz, G. (Eds.), Hybrid 
Architectures for Intelligent Systems. CRC Press Inc. [F, E] 

Machado, R.J. and Rocha, A.F. (1992). Evolutive fuzzy neural networks. 
In Proceedings of the IEEE International Conference on Fuzzy Systems, San 
Diego, CA. [F, L] 

MacLennan, B. J. (in press). Characteristics of connectionist knowledge rep
resentation. Information Sciences. [O] 

MacLennan, B. J. (1993). Continuous symbol systems: The logic of con-
nectionism. In Levine, D.S. and Aparicio IV, M. (eds.), Neural Networks for 
Knowledge Representation and Inference. Hillsdale NJ: Lawrence Erlbaum. 
[O] 

MacLennan, B. J. (in press). Image and symbol: Continuous computation and 
the emergence of the discrete. In Honavar, V. and Uhr, L. (eds.), Integrating 
Symbolic Processors and Connectionist Networks for Artificial Intelligence 
and Cognitive Modelling. New York, NY: Academic Press. [O] 

Maclin, R. and Shavlik, J. (1993). Using knowledge-based neural networks to 
improve algorithms: Refining the Chou-Fasman algorithm for protein folding. 
Machine Learning, 11:195-215. [R, L] 

Mangold-Allwinn, R. (1990). Learning to produce discriminative object de
scriptions: On the representation of rules in a PDP net. In Eckmiller, R., 
Hartmann, G., and Hauske, G. (eds.), Parallel Processing in Neural Systems 
and Computers, pp. 487-490. Elsevier. [R] 



446 APPENDIX 

Mani, D.R. and Shastri, L. (1991). Combining a Connectionist Type Hierarchy 
with a Connectionist Rule-Based Reasoner. In Proceedings of the Thirteenth 
Conference of the Cognitive Science Society, pp. 418-423, Chicago, IL. [R, 
S] 

McClelland, J.L. and Kawamoto, A.H. (1986). Mechanisms of sentence pro
cessing: assigning roles to constituents. In McClelland, J.L. and Rumelhart, 
D.E. (Eds.), Parallel Distributed Processing: Explorations in The Microstruc-
ture of Cognition I. MIT Press, Cambridge, MA. [N, S] 

McMillan, C. et al. (1992). Rule induction through integrated symbolic 
and subsymbolic processing. In Advances in Neural Information Processing 
Systems 4, pp. 969-976. [L, R] 

McMillan, C. and Smolensky, P. (1988). Analyzing a connectionist model as 
a system of soft rules. In Proceedings of the Tenth Annual Conference of the 
Cognitive Science Society, pp. 62-68. Hillsdale, NJ: Erlbaum. [R] 

Miikkulainen, R. and Dyer, M.G. (1988). Forming global representations 
with extended backpropagation. In Proceedings of the IEEE Second Annual 
International Conference on Neural Networks (ICNN-88). San Diego, CA, 
July. [L] 

Miikkulainen, R. and Dyer, M. G. (1989). A modular neural network architec
ture for sequential paraphrasing of script-based stories. In Proc. of the Second 
Joint Conference on Neural Networks, pp. 29-56, Washington D.C. [N, S] 

Miikkulainen, R. and Dyer, M.G. (1989). Encoding input/output representa
tions in connectionist cognitive systems. In Touretzky, D.S., Hinton, G. and 
Sejnowski, T. (eds.), In Proceedings of the 1988 Connectionist Models Summer 
School. Morgan Kaufmann, San Mateo, CA. [O] 

Miikkulainen, R. and Dyer, M.G. (1991). Natural language processing with 
modular PDP networks and distributed lexicon. Cognitive Science. 15(3). [N, 
S] 

Minsky, M. (1990). Logical vs. analogical or symbolic vs. connectionist or 
neatvs. scruffy. In Frontiers ofArtificial Intelligence, Chapter 9, pp. 218-243. 
MIT Press. [G] 

Mitchell, M. and Hofstadter, D.R. (in press). The emergence of understanding 
in a computer model of concepts and analogy-making. Physica D. [A] 



Appendix 447 

Mitchell, M., and Hofstadter, D.R. (1989). The role of computational temper
ature in a computer model of concepts and analogy-making. In Proceedings 
of the Eleventh Annual Conference of the Cognitive Science Society (pp. 765-
772). Hillsdale, NJ: Erlbaum. [A] 

Moisl, H. (1992). Connectionist finite state natural language processing, Con
nection Science. 4(2):67-91. [N] 

Montgomery, GJ. and Drake, K.C. (1991). Abductive reasoning networks. 
Neurocomputing, 2(3):97-104. [R] 

Myllymaki, P., Tirri, H., Flor6en, P. and Orponen, P. (1990). Compiling high-
level specifications into neural networks. In Proceedings of the International 
Joint Conference on Neural Networks (Washington D.C., January 1990), Vol 
2: 475-478. IEEE, New York, NY. [O] 

Myllymaki, P. and Tirri, H. (1993). Bayesian case-based reasoning with neural 
networks. In Proceedings of the IEEE International Conference on Neural 
Networks, San Francisco. [A] 

Nauck, D. and Kruse, R. (1993). A fuzzy neural network learning fuzzy control 
rules and membership functions by fuzzy error backpropagation. In Proc. IEEE 
Int. Conf on Neural Networks 1993, San Francisco, pp. 1022-1027. [F] 

Oden, G. C. (1988). FuzzyProp: A symbolic superstate for connectionist 
models. In Proceedings of the IEEE International Conference on Neural 
Networks, Vol. I, 293-300. [F] 

Oden, G. C. (1992). Direct, incremental learning of fuzzy propositions. In 
Proceedings of the Fourteenth Annual Conference of the Cognitive Science 
Society, pp. 48-53. [F, L] 

Oden, G. C. (in press). Why the difference between connectionism and any
thing else is more than you might think but less than you might hope. In 
Honavar, V and Uhr, L. (eds.), Integrating Symbol Processors and Connec
tionist Networks in Artificial Intelligence and Cognitive Modeling. New York, 
NY: Academic Press. [F] 

Oliver, W.L. and Schneider, W. (1988). Using rules and task division to aug
ment connectionist learning. In Proceedings of the Tenth Annual Conference 
of the Cognitive Science Society, pp. 55-61. Hillsdale, NJ: Erlbaum. [R, L] 



448 APPENDIX 

Omlin, C.W. and Giles, C.L. (1992). Training second-order recurrent neural 
networks using hints. In Proceedings of the Ninth International Conference 
on Machine Learning, pp. 363-368, Morgan Kaufmann, San Mateo, CA. [L] 

Omlin, C.W., Giles, C.L., and Miller, C.B. (1992). Heuristics for the extrac
tion of rules from discrete-time recurrent neural networks. In Proceedings 
International Joint Conference on Neural Networks, I, 33-38. [R, L] 

Opitz, D.W. and Shavlik, J.W. (1993). Heuristically expanding knowledge-
based neural networks. In Proc. of the 1993 International Joint Conference 
on Artificial Intelligence. [R] 

Orponen, P., Flor6en, P. Myllymaki, P., and Tirri, H. (1990). A neural imple
mentation of conceptual hierarchies with bayesian reasoning. In Proceedings 
of the International Joint Conference on Neural Networks (San Diego, CA, 
June 1990), Vol 1: 297-303. IEEE, New York. [S] 

Peng, Y. and Reggia, J.A. (1989). A connectionist model for diagnostic 
problem solving. IEEE Transactions on Systems, Man, and Cybernetics, 
19(2):285-298. [E] 

Pinkas, G. (1991). Energy minimization and the satisfiability of propositional 
calculus. Neural Computation, 3(2):282-291. Also in Touretzky, D.S., Elman, 
J.L., Sejnowski, T.J. and Hinton, G.E. (eds), Proceedings of the 1990 Connec
tionist Models Summer School, pp. 23-31, San Mateo, Morgan Kaufmann. 
[R] 

Pinkas, G. (1991). Propositional non-monotonic reasoning and inconsistency 
in symmetric neural networks. In International Joint Conference on Artificial 
Intelligence (IJCAI-91). pp. 525-530. [R] 

Pinkas, G. (1992). Constructing proofs in symmetric networks. In Moody, J.E, 
Hanson, S.J., and Lipmann, R.P. (eds.), hi Advances in Information Processing 
Systems 4 (NIPS), pp. 217-224. [R] 

Pinkas, G. and Dechter, R. (1992). A new improved activation function for 
connectionist energy minimization. In Proceedings of The Tenth National 
Conference on Artificial Intelligence, pp. 434-439, San Jose, CA. [R] 

Pinker, S. and Prince, A. (1988). On language and connectionism: Analysis 
of a parallel distributed processing model of language inquisition. Cognition. 
28:73-193. [N] 



Appendix 449 

Plate, T. A. (1991). Holographic reduced representations: Convolution algebra 
for compositional distributed representations. In Proceedings of the 12th 
International Joint Conference on Artificial Intelligence, pp. 30-35, Sydney, 
Australia. Also in: Artificial Neural Networks: Concepts and Theory, IEEE 
Computer Society Press Tutorial, Mehra, P. and Wah, B.W. (eds.), pp. 126-
131, Los Alamitos, CA. [O] 

Plate, T.A. (1992). Holographic recurrent networks. In Giles, C.L., Han
son, S.J. and Cowan, J.D. (Eds.), Advances in Neural Information Processing 
Systems 5 (NIPS'92), Morgan Kaufmann, San Mateo, CA. [O] 

Pollack, J.B. (1988). Recursive auto-associative memory: Devising compo
sitional distributed representations. In Proc.of 10th Cognitive Science Society 
Conference. [O] 

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelli
gence, 46:77-105. [O] 

Riley, M. S. and Smolensky, P. (1984). A parallel model of (sequential) prob
lem solving. In Proceedings of the Sixth Annual Conference of the Cognitive 
Science Society. Hillsdale, NJ: Erlbaum. [R] 

Robins, A. V. (1992). Multiple representations in connectionist systems. Inter
national Journal of Neural Systems, 2(4):345-362. [O] 

Rose, D.E and Belew, R.K (1989). A case for symbolic/sub-symbolic hybrids. 
In Proceedings of the Eleventh Annual Conference of the Cognitive Science 
Society, Ann Arbor, MI, pp. 844-851. [J] 

Rose, D.E and Belew, R.K (1991). A connectionist and symbolic hybrid 
for improving legal research. International Journal of Man-Machine Studies, 
35:1-33. [J] 

Rose, D.E. (1990). Appropriate uses of hybrid systems. In Touretzky, D.S., 
Elman, J.L., Sejnowski, T.J. and Hinton, G.E. (eds), Proceedings of the 1990 
Connectionist Models Summer School, Morgan Kaufmann, San Mateo, CA, 
pp. 277-286. [J] 

Rumelhart, D.E. (1989). Toward a microstructural account of human rea
soning. In Vosniadou, S. and Ortony, A. (eds.), Similarity and Analogical 
Reasoning, (pp. 298-312). New York: Cambridge University Press. [A] 



450 A P P E N D I X 

Rumelhart, D.E., Smolensky, P., McClelland, J.L., and Hinton, G.E. (1986). 
Schemata and sequential thought processes in PDP models. In McClelland, 
J.L., Rumelhart, D.E. and The PDP Research Group (Eds.), Parallel Dis
tributed Processing: Explorations in the Microstructure of Cognition, (Vol. 2, 
pp. 7-57). Cambridge, MA: Bradford Books. [S] 

Rumelhart, D.E. and Todd, P.M. (in press). Learning and connectionist repre
sentations. In Meyers, D. and Kornblum, S. (Eds.), Attention and Performance, 
Cambridge, MA: MIT Press. [L] 

Samad, T. (1988). Towards connectionist rule-based systems. IEEE Interna
tional Conference on Neural Networks, Vol.2, pp. 525-532. [R] 

Schneider, W. and Oliver, W. L. (in press). An instructable connection-
ist/control architecture: Using rule-based instructions to accomplish connec
tionist learning in a human time scale. In VanLehn, K. (Ed.), Architectures for 
Intelligence. Hillsdale, NJ: Erlbaum. [R] 

Sharkey, N. E. (1991). Connectionist representation techniques. AI Review, 
(5):142-167. [O] 

Sharkey, N.E. (1992). The ghost in the hybrid: A study of uniquely connec
tionist representations. AISB Quarterly, 10-16. [O] 

Sharkey, N.E. and Sutcliffe, R.F.E. and Wobcke, W.R. (1986). Mixing binary 
and continuous connection schemes for knowledge access. In Proceedings of 
the American Association for Artificial Intelligence, pp. 262-266. [O] 

Shastri, L. and Ajjanagadde, V (1993). From simple associations to systematic 
reasoning: A connectionist representation of rules, variables and dynamic 
bindings. Behavioral and Brain Sciences, 16(3):417-494. [R] 

Shastri, L. (1988). A connectionist approach to knowledge representation and 
limited inference. Cognitive Science, 12:331-392. [R] 

Shastri, L. (1988). Semantic Networks: An Evidential Formulation and its 
Connectionist Realization. Pitman, London, UK. [S] 

Shastri, L. and Feldman, J. A. (1985). Evidential reasoning in semantic net
works: A formal theory. JnProc.ofIJCAF85,pp. 465-474. [S] 



Appendix 451 

Shavlik, J.W. and Towell, G.G. (1989). An approach to combining explanation-
based and neural learning algorithms. Connection Science, l(3):233-255. [L] 

Simpson, P.K. 1992. Fuzzy min-max neural networks: 1. Classification. IEEE 
Transaction on Neural Networks. [F] 

Simpson, P.K. 1992. Fuzzy min-max neural networks: 2. Clustering. IEEE 
Transaction on Fuzzy Systems. [F] 

Sloman, S.A. (in press). Feature-based induction. Cognitive Psychology. [O] 

Small, S.L., Cottrell, G.W., and Shastri, L. (1982). Toward connectionist 
parsing. Proceedings of the National Conference on Artificial Intelligence, 
Pittsburgh, PA. [N] 

Smolensky, P. (1987). On the connectionist reduction of conscious rule in
terpretation. In Proceedings of the Ninth Annual Conference of the Cognitive 
Science Society, pp. 187-194. Hillsdale, NJ: Erlbaum. [R] 

Smolensky, P. (1988). On the proper treatment of connectionism. The Beha-
vorial and Brain Sciences, 11(1):1—74. [O] 

Smolensky, P. (1990). Tensor product variable binding and the representation 
of symbolic structures in connectionist systems. Artificial Intelligence. 46(1-
2): 159-216. [R] 

Smolensky, P. (1991). Connectionism, constituency and the language of 
thought. In Loewer, B. and Rey, G. (Eds.), Fodor and his Critics. Black-
well, Oxford, UK. [G] 

Sohn, A. and Gaudiot, J.L. (1991). Connectionist production systems in local 
and hierarchical representation. In Bourbakis, N.G. (Ed.), Applications of 
Learning and Planning Methods, pp. 165-180, World Scientific Publishing. 
[R] 

Soucek, B. and The IRIS Group (Eds.) (1991). Neural and Intelligent Systems 
Integration. Wiley, New York, NY. [C] 

St. John, M. F. and McClelland, J. L. (1991). Learning and applying contextual 
constrains in sentence comprehension. Artificial Intelligence, 46(1-2):217-
257.[N] 



452 APPENDIX 

Stolcke, A. (1989). Unification as constraint satisfaction in structured connec-
tionist networks, Neural Computation, 1. [O] 

Stucki, D. J. and Pollack, J. B. (1992). Fractal (reconstructive analogue) mem
ory. In 14th Annual Conference of the Cognitive Science Society, Bloomington, 
IN. [O] 

Sumida, R.A., Dyer, M.G., and Flowers, M. (1988). Integrating marker passing 
and connectionism for handling conceptual and structural ambiguities. In 
Proceedings of the 10th confofthe Cognitive Science Society, Montreal. [N] 

Sumida, R.A. and Dyer, M.G. (1989). Storing and generalizing multiple 
instances while maintaining knowledge-level parallelism. In Proceedings of 
Eleventh International Joint Conference on Artificial Intelligence (UCAI-89). 
pp. 1426-1431. Morgan Kaufmann Publ. San Mateo, CA. [S] 

Sumida, R.A. and Dyer, M.G. (1992). Propagation filters in PDS networks 
for sequencing and ambiguity resolution. In Moody, J.E., Hanson, S.J., and 
Lippmann, R.P. (eds.), Advances in Neural Information Processing Systems 4, 
Morgan Kaufmann, San Mateo, CA, pp. 233-240. [S] 

Sun, R. (1989). A discrete neural network model for conceptual representation 
and reasoning. In Proceedings of the Eleventh Annual Conference of the 
Cognitive Science Society. Hillsdale, NJ: Erlbaum. [R] 

Sun, R. (1991). Connectionist models of rule-based reasoning. In Proc.l3th 
Cognitive Science Conference, pp. 437-442, Lawrence Erlbaum Associates, 
Hillsdale, NJ. [R, J] 

Sun, R. (1991). The discrete neuronal model and the probabilistic discrete neu
ronal model. In Soucek, B. (ed.), Neural and Intelligent Systems Integration, 
pp. 161-178 John Wiley and Sons, New York, NY. [L] 

Sun, R. (1992). A connectionist model for commonsense reasoning incorpo
rating rules and similarities. Knowledge Acquisition, 4:293-321. [R, J] 

Sun, R. (1992). Fuzzy Evidential logic: A model ofcausality for commonsense 
reasoning. In ProcJ4th Cognitive Science Society Conference, pp. 1134-1139, 
Lawrence Erlbaum Associates, Hillsdale, NJ. [R] 

Sun, R. (1992). On variable binding in connectionist networks. Connection 
Science, 4(2):93-124. [R] 



Appendix 453 

Sun, R. (1993). Beyond associative memories: Logics and variables in con-
nectionist networks. Information Sciences, special issue on AI and neural 
networks, 70(1,2). [R] 

Sun, R. (1993). An efficient feature-based connectionist inheritance scheme. 
IEEE Transaction on System, Man and Cybernetics, 23(2): 1-12. [S] 

Sun, R. (1993). A neural network model of causality. IEEE Transaction on 
Neural Networks. [R] 

Sun, R. (1993). Integrating Rules and Connectionism for Robust Common-
sense Reasoning. John Wiley and Sons, New York, NY. [G, R, S] 

Sun, R. (in press). Structuring knowledge in vague domains. IEEE Transaction 
on Knowledge and Data Engineering. [R, J] 

Sun, R. and Bookman, L. A. (1993). How do symbols and networks fit together? 
Artificial Intelligence magazine. [G] 

Sun, R., Bookman, L., and Shekhar, S. (eds.) (1992). The Working Notes of 
the AAAI Workshop on Integrating Neural and Symbolic Processes. American 
Association for Artificial Intelligence, Menlo Park, CA. [C] 

Sun, R. and Waltz, D.L. (1991). A neurally inspired massively parallel model 
of rule based reasoning. In Soucek, B. (ed.), Neural and Intelligent Systems 
Integration, John Wiley and Sons, New York, NY. pp. 341-381. [R] 

Sun, G.Z., Chen, H.H., Giles, C.L., Lee, Y.C., and Chen, D. (1990). Connec
tionist pushdown automata that learn context-free grammars. In Proceedings 
of International Joint Conference on Neural Networks, Vol.1, pp. 577-580, M. 
Caudill (ed.), Lawrence Erlbaum Associates, Hillsdale, New Jersey. [L] 

Sun, G.Z., Chen, H.H., Lee, Y.C., and Giles, C.L. (1990). Recurrent neural 
networks, hidden Markov models and stochastic grammars, in Proceedings of 
International Joint Conference on Neural Networks, Vol.1, pp. 729-734, San 
Diego, CA. [L] 

Suttner, C. and Ertel, W. (1991). Using back-propagation networks for guiding 
the search of a theorem prover. Int. J. of Neural Networks Research and 
Applications, 2(1):3-16. [J] 



454 APPENDIX 

Sutton, R.S. (1985). The learning of world models by connectionist networks. 
In Proceedings of the Seventh Annual Conference of the Cognitive Science 
Society, pp. 54-64. Hillsdale, NJ: Erlbaum. [L] 

Takagi, H. and Hayashi, I. (1991). Non-driven fuzzy reasoning. International 
Journal of Approximate Reasoning, 5(3): 191-212. [F] 

Tan, C.L., Quah, T.S., and Teh, H.H. (1991). A neural logic based expert 
system. In Proceedings of the Expert Systems Applications Conference, pp. 
301-306. [E] 

Taraban, R.M. and Palacios, J.M. (1993). Exempler models and weighted 
cue models in category learning. In Nakamura, G., Taraban, R., and Medin, 
D. (eds.), The Psychology of Learning and Motivation: Categorization by 
Humans and Machines, Vol.29, pp. 91-127. Academic Press, San Diego, CA. 
[S] 

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 
12(3):435-502. [O] 

Thagard, P., Holyoak, K.J., Nelson, G., and Gochfeld, D. (in press). Analog 
retrieval by constraint satisfaction. Artificial Intelligence. Also available 
as: CSL Report 41. Princeton, NJ: Princeton University, Cognitive Science 
Laboratory. [A] 

Tirri, H. (1991). Implementing expert system rule conditions by neural net
works. New Generation Computing. 10:55-71. [E] 

Todd, P.M. and Rumelhart, D.E. (in press). Feature abstraction from similarity 
ratings: A connectionist approach. In Chauvin, Y. and Rumelhart, D.E. (eds.), 
Backpropagation: Theory, Architectures, and Applications. Hillsdale, NJ: 
Erlbaum Associates. [L] 

Torras, C. (1992). Symbolic planning versus neural control in robots. In 
Rudomin, P., Arbib, M.A., and Cervantes-P6rez, P. (eds.), Natural and Artifi
cial Intelligence: A Meeting Between Neuroscience and Artificial Intelligence, 
Research Notes in Neural Computing, Vol. 4. Springer-Verlag: Berlin Heidel
berg New-York. [J] 

Touretzky, D. S. (1989). Chunking in a connectionist network. In Proceedings 
of the Eleventh Annual Conference of the Cognitive Science Society, pp. 1-8. 
Hillsdale, NJ: Erlbaum. Also Available as: Technical Report CMU-CS-89-



Appendix 455 

158. Pittsburgh, PA: Carnegie Mellon University, Computer Science Dept. 
[R] 

Touretzky, D.S. (1990). BoltzCONS: Dynamic symbol structures in a connec-
tionist network. Artificial Intelligence 46, l(2):5-46. Also In Hinton, G. E. 
(Ed.), Connectionist Symbol Processing, Bradford Book, pp. 5-46. MIT Press, 
Cambridge, MA. [S] 

Touretzky, D.S., and Hinton, G.E. (1988). A distributed connectionist produc
tion system. Cognitive Science, 12(3):423-466. [R] 

Touretzky, D. S. and Geva, S. (1987). A distributed connectionist representa
tion for concept structures. In Proceedings of the Eighth Annual Conference 
of the Cognitive Science Society. [S] 

Touretzky, D.S. and Hinton, G.E. (1985). Symbols among the Neurons: De
tails of a Connectionist Inference Architecture. In Proceedings of the Ninth 
Inter national!oint Conference on Artificial Intelligence, pp. 239-243. [R] 

Touzet, C. and Giambiasi, N. (1991). Application of connectionist models to 
fuzzy inference systems. In Parallelization in Inference Systems, pp. 303-317. 
Springer Verlag. [F] 

Towell, G. and Shavlik, J.W. (1992). Using symbolic learning to improve 
knowledge-based neural networks. In AAAV92, pp. 177-182. [L, R] 

Towell, G. G., Shavlik, J. W., and Noordewier, M. O. (1990). Refinement 
of approximate domain theories by knowledge-based neural networks. In 
AAAI-90, pp. 861-866. Morgan Kaufmann. [L, R] 

Towell, G.G. and Shavlik, J.W. (1993). The extraction of refined rules from 
knowledge-based neural networks. Machine Learning, 13(1):71-101. [L, R] 

Tresp, V., Hollatz, L. and Ahmad, S. (1993). Network structuring and training 
using rule-based knowledge. In Giles, C.L, Hanson, S.J., and Cowan, J.D. 
(eds.), Advance in Neural Information Processing Systems 5. San Mateo, CA: 
Morgan Kaufmann Publishers. [L, R] 

Ultsch, A., Hannuschka, R., Hartmann, U., and Weber, V. (1990). Learning 
of control knowledge for symbolic proofs with backpropagation networks. In 
Eckmiller, R., Hartmann, G., and Hauske, G., (Eds), Parallel Processing in 
Neural Systems and Computers, pp. 499-502. Elsevier. [L, R] 



456 APPENDIX 

van Gelder, T. (1989). Compositionality and the explanation of cognitive 
processes. In Proceedings of the Annual Conference of the Cognitive Science 
Society, pp. 34-41. [O] 

van Gelder, T. (1990). Compositionality. Cognitive Science. 14:355-384. [O] 

Wald, J., Farach, M., Tagamets, M., and Reggia, J.A. (1989). Generating 
plausible diagnostic hypotheses with self-processing causal networks. Journal 
of Experimental and Theoretical Artificial Intelligence, 2:91-112. [E] 

Waltz, D.L. and Feldman, J.A. (eds.) (1988). ConnectionistModels andTheir 
implications, Ablex. Norwood, NJ. [C] 

Waltz, D.L. and Pollack, J.B. (1985). Massively parallel parsing: A strongly 
interactive model of natural language interpretation. Cognitive Science, 9:52-
74. [N] 

Ward, N. (1993). A Connectionist Language Generator. Norwood, NJ: Ablex. 
[N] 

Werbos, P. J. (1992). Neurocontrol and fuzzy logic: Connections and designs. 
International Journal of Approximate Reasoning, 6(2): 185-220. [F] 

Wermter, S. (1989). Integration of semantic and syntactic constraints for 
structural noun phrase disambiguation. In Proc. of Eleventh International 
Joint Conference on Artificial Intelligence, Detroit, USA. [N, J] 

Wermter S. and Lehnert W.G. (1992). Noun phrase analysis with connectionist 
networks. In Reilly R. and Sharkey N. (eds.), Connectionist Approaches to 
Language Processing, Hilsdale, NJ: Erlbaum. [N, J] 

Whitson, G., Wu, C, and Taylor, P. (1990). Using an artificial neural system to 
determine the knowledge base of an expert system. In Levine, D. and Aparicio, 
M. (Eds.), Neural Networks for Knowledge Representation and Inference. [E] 

Yamaguchi, T. and Imasaki, N. and Haruki, K.. (1990). Fuzzy rule realization 
on associative memory system. IJCNN90-2, p. 720-723. [F] 

Yang, Q. and Bhargava, V. (1990). Building expert systems by a modified 
perception network with rule-transfer algorithms. In Proc.of International 
Joint Conference on Neural Networks, VoL2, pp. 77-82. [L, E] 



Author Index 

A 
Abelson, R.P., 76, 78, 83,154, 397 
Afshartous, N., 53, 298 
Ahmad, S., 208 
Aizawa, K., 226 
Ajjanagadde, V, 5, 23, 73, 81, 91, 

103,110,289,365,376 
Allen, R.B, 156 
Almasi, G.S., 372, 376 
Alterman, R., 289,296,300 
Alvarado, S.J., 397, 421 
Anderson, J.R., 80 
Anderson, R.C., 284 
Annaswamy, A.M., 353 
Aparicioiv, M., 353, 357, 378 
Arbib, M.A., 352, 360, 365, 371 

B 

Baddeley, A.D., 180 
Bailey, C.H., 369, 374 
Baldwin, A., 236 
Ballard, D.H., 6,53,298,312,369, 

376 
Bara, B.G., 22-23, 26,28-29, 39 
Barnden, J.A., 4,22-23,26,30-32, 

38, 41, 45, 49, 53-55, 65, 
81-82,371,376,408,421 

Bartell, B., 202,213,221 
Barto, A.G., 180 
Baylis, G.C., 312 
Beckwith, R., 289 
Berg, G., 155,158 
Berrey, L.V., 292 
Bezdek, J., 3 

Bickhard, M.H., 359 
Blank, D.S., 31, 164 
Boden, M., 361 
Booker, L.E., 370, 377 
Bookman, L.A., 5,53,81,288-290, 

292-294, 296, 298-300, 306, 
308-309,312,353,357,371, 
376, 378 

Brown, C, 376 
Bruja, I., 321 
Buchanan, B.G., 130, 369 
Burr, D., 9, 371 
Byrne, J., 373 
Byrne, R.M.J., 22-23, 26,28 

C 

Caramazza, A., 177 
Carpenter, G., 370, 376-377 
Chalmers, D.J., 31,156, 164,224 
Chandrasekaran, B., 355 
Charniak, E., 23,77,287,296,311 
Chellappa, R., 321 
Chen, C, 365, 370, 376 
Chrisman, L., 31, 156,164 
Chun, H.W.,53,298, 311 
Churchland, P.M., 191,220 
Churchland, P.S., 355, 357, 373, 

423 
Cleeremans, A., 156, 376 
Cohen, D., 356 
Collins, A., 225 
Cook, W.A., 156 
Cooper, E.D., 355 
Cosic, C, 156 

457 



458 AUTHOR INDEX 

Cottrell, G.W., 5,80,193,202,213, 
221 

Cowan, N., 180 
Cowan, W.B., 180 
Cui, Y., 320, 325 
Cullingford, R, 397 

D 

Dagli, C.H., 139 
Davis, L., 208 
Desimone, R., 312 
Detweiler, M., 180 
Dharmavaratha, D., 54 
Dickens, L., 320, 322, 324-325, 

329,333 
Dietterich, T.G., 369 
Dolan, C.P., 79,162, 226, 365 
Dreyfus, H., 1 
Dreyfus, S., 1 
Duda, R.O., 353, 376 
Dunker, J., 322, 324 
Dyer, M.G., 4-5, 9, 23, 72, 74, 76, 

78, 81, 83, 85, 91, 93, 106, 
109-110, 154, 156-157, 161, 
289, 296, 319, 371, 376-377, 
393, 397, 401-406, 409-410, 
414-415, 419, 421 

D 

Eiselt, K.P., 77, 287 
Elman, J.L., 155-156,197,202-203, 

211,226,397,400,419 

F 

Fahlman, S., 296,313 
Fang, W.Z., 139-140 
Fano, R.M., 293 
Fasolo, M., 289 
Feigenbaum, E.A., 352 
Feldman, J.A., 6,53,298,312,369, 

410,414 

Fellbaum, C, 289 
Fillmore, C.J., 156,284,291 
Flowers, M, 156, 401, 403-404, 

421 
Fodor, J.A., 3,9, 30,193,225-227, 

354, 367 
Forbus, K., 82 
Forgy, C.L., 368 
Franke, J.L., 130 
Freeman, W.J., 122 
Fukunaga, K., 353, 377 
Funahashi, K.I., 141 
Fu, K.S., 353, 369, 376 

G 

Gallant, S.I., 311, 376-377 
Garnham, A., 24 
Geist, G.A., 118 
Gelfand, J.J., 321-322, 324 
Genesereth, M.R., 358, 365 
Gentner, D., 82 
Giarratano, J., 129-130,134 
Giles, C.L., 376 
Ginsberg, M., 353, 361 
Gochfeld, D., 82 
Goldberg, D.E., 353 
Goldfarb, L., 370, 376 
Goodman, R.M., 321 
Goonatilake, S., 353, 378 
Gottlieb, A., 372, 376 
Granger, R.H., 77, 287 
Greenough, W.T., 369, 374 
Greenspan, H.K., 321 
Grossberg, S., 53, 352, 369-370, 

374, 376-377 
Gross, D., 289 
Grzywacz, 53 

H 

Hadley, R., 10 
Halgren, E., 285, 305 



Author Index 459 

Hall, L.O., 321 
Hammond, K., 82 
Handelman, D.A., 321-322, 324 
Hanson, S.J., 9, 368, 371 
Harmon, P., 130 
Hamad, S., 1,364,368,414 
Hart, P.E., 353, 376 
Hasselmo, M.E., 312 
Haupt, H., 202, 213, 221 
Haykin, S., 353-354, 369 
Heit, G., 305 
Hendler, J., 3,5,77, 311,320, 322, 

324-325, 329, 333,376 
Hertz, J., 122 
Hewitt, C, 368 
Higgins, CM., 321 
Hillis, D., 368 
Hinton, G.E., 4, 31, 78-79, 154, 

167,225-226,292,408 
Hirsch, M.W., 122 
Hirst, G., 292 
Hofstadter, D., 81 
Holbrook, J.K., 77 
Holland, J.H., 352-354, 368, 370, 

377 
Hollatz, J., 208 
Holldobler, S., 81, 398 
Holyoak, K.J., 82 
Honavar, V., 353, 357, 360-361, 

363, 365, 369-370, 374-376, 
378 

Hopfield, J.J., 122, 363 
Hornik, K., 141 
Hruska, S.I., 118, 127, 130, 134, 

139-140 
Huang, M.S., 177 

J 
Jackson, S.J., 367 
Jacobs, R.A., 180,376 
Jain, A.J., 155,158,180 

Johnson-Laird, P.N., 22-24, 26, 
28-29, 39, 373,408 

Jordan, M.I., 180,198,215 
Josephson, S.G., 355 

K 

Kanal, L., 322-323 
Kandel, E.R., 2, 359,418 
Kawamoto, A.H., 78,109,155-156, 

161 
Khebbal, S., 353, 378 
Kintsch, W., 80 
Kitano, H., 77 
Klinger, A., 376 
Klir, G.J., 352-353 
Kohonen, T., 406, 421 
Kolodner, J.L., 82,154, 407 
Kosslyn, S., 376 
Kowalski, R.A., 365 
Koza, J., 353 
Kozminsky, E., 284 
Krogh, A., 122 
Kuffler, S.W., 360, 374 
Kuncicky, D.C., 118,127,134,139 
Kung, S.Y., 353-354, 369 

L 

Lacher, R.C., 118, 122, 126-127, 
134,139-140,370,377 

Laird, J.E., 154 
Lakoff, G., 414 
Lane, S.H., 321-322, 324 
Lange, T.E., 4-5, 9, 72, 74, 77, 

79-83, 85, 91, 93-94, 102, 
109,289,296, 393, 409 

Leake, D.B., 82 
Lebowitz, M., 154 
Lee, G., 156,403-405,421 
Legendre, G., 376 
Lehnert, W.G., 154 
Levine, D.S., 353, 357, 378 



460 AUTHOR INDEX 

Levin, L., 77 
Lin, C, 376 
Lippmann, R.R., 53 
Li, L., 312 
Logan, G.D., 180 
Lubin, J., 368 
Lytinen, S., 74, 84 

M 

Maclennan, B.J., 365-367 
Mahoney, J.J., 140 
Marshall, J.B., 31,164 
Martin, A.R., 360, 374 
Martin, C. E., 77 
McAvoy, T., 320, 325 
McClelland, J.L., 4, 78, 109, 127, 

155-157, 161, 167, 190, 194, 
197-198,202,204,209,211, 
213, 216, 292, 353-354, 376, 
390, 397,400, 408 

McCulloch, W., 4, 352, 355 
McDermott, D., 240 
McKenna, X, 374 
Mead, C, 366 
Medsker, L., 376 
Meeden, L.A.,31,164 
Mehler, J., 423 
Metcalfe, J., 221 
Michalewicz, Z., 353 
Michalski, R.S., 189, 360, 370 
Miclet, L., 353, 369, 376 
Miikkulainen, R., 4, 78, 81, 110, 

155,157,161-162,168,173-174, 
178,288,371,376,397,403-404, 
407,409-410,422 

Miller, E.K., 312 
Miller, G.A., 289 
Miller, J.W., 321 
Miller, K., 289 
Minsky, M.r 352, 354, 365, 371, 

402 

Mitchell, M., 81 
Miyata, Y., 376 
Mjolsness, E., 376 
Mooney, R.J., 140 
Morris, J., 292 
Munro, R, 156 

N 

Nalwa, V, 312 
Narendra, K.S., 353 
Narita, K., 134 
Neisser, U., 352 
Nelson, G., 82 
Nenov, V.I., 414-415, 419 
Newell, A., 154, 352, 354, 359 
Nguyen, K.D., 370, 377 
Nicholls, J.G., 360, 374 
Nigam, S., 370, 376 
Nilsson, N.J., 358, 365 
Noordweier, M.O., 321 
Norman, D.A., 180, 352 
Norvig, P., 77, 288-289, 296, 311, 

365, 371 

O 

Oakhill, J.V., 24 
Oden, G.C., 371 
Oi, T., 122 
Omlin, W.C., 376 

P 

Palmer, R.G., 122 
Pazienza, M.T., 289 
Pazzani, M.J., 421 
Pearl, J., 362, 373 
Pichert, J.W., 284 
Pinkas, G., 363 
Pinker, S., 415, 423 
Pitts, W., 4, 352, 355 
Plate, T., 31 



Author Index 461 

Pollack, J.B., 5, 31, 80, 158, 163, 
167, 226, 236, 289, 292, 296, 
365,400 

Port, 367 
Posner, I., 180 
Pylyshyn, Z.W., 3, 9, 30, 193, 367 

Q 
Quillian, M.R., 313, 365, 371 

R 

Raghavan, S., 322-323 
Rajaraman, V., 366 
Rashevsky, N., 352, 355 
Ray, W.H., 321 
Regier, T., 414 
Reilly, R., 3 
Riecken, M.E., 156 
Riesbeck, C, 77, 82 
Riley, G., 129-130,134 
Riolo, R.L., 370, 377 
Rolls, E.T., 312 
Romaniuk, S.G., 321 
Rosenberg, C.R., 323 
Rosenbloom, P.S., 154 
Rumelhart, D.E., 4, 78, 127, 156, 

167, 190, 194, 197-198, 209, 
211,216,226,285,292,353-354, 
390, 397,400, 408 

S 

Salzgeber, M.J., 130 
Santos, E., 23 
Schank, R.C., 76, 78, 82-83, 106, 

154, 285, 397 
Scherer, A., 322, 324 
Schlageter, G., 322, 324 
Schneider, W., 180, 352 
Schwartz, J., 2, 359 
Scott, G.M., 321 

Sejnowski, T.J., 323,355,357,373, 
423 

Selfridge, O.G., 352 
Servan-Schreiber, D., 156, 376 
Shallice, T., 180 
Sharkey, J.C., 155, 158, 164 
Sharkey, N.E., 367, 3, 5, 155, 158, 

164,223-224, 226, 228,237 
Shastri, L., 5, 23, 73, 81, 91, 103, 

110,289,296,365,376 
Shavlik, J.W., 321, 369-370, 376 
Shaw, J.C., 352 
Shekhar, S., 5 
Shepherd, G.M., 355, 374 
Shiffrin, R.M., 180 
Shipp, S., 360, 374 
Shortliffe, E.H., 130 
Simmons, R.F., 162,296,313 
Simon, H.A., 154, 352 
Simpson, R., 82 
Skarda, C, 122 
Small, S., 80 
Smith, M.E., 305 
Smolensky, P., 1, 10, 23, 79, 154, 

162, 319, 365, 376 
Smyth, P., 321 
Snyder, C.R, 180 
Sowa, J.F., 296,313,371 
Srinivas, K., 22-23, 30, 38, 54-55, 

65, 82, 408 
St. John, M.F., 78, 155, 157, 178, 

202,204,211,213,288,397 
Stacey, R., 139 
Stinchcomb, M., 141 
Stolcke, A., 31,155,158-159,398, 

414 
Sumida, R.A., 180,410 
Sunderam, VS., 118 
Sun, R, 3, 5, 9, 13, 81, 91, 140, 

289-290, 296, 353, 357, 365, 
376, 378, 393 

Su, H., 320, 325 



462 

Sycara, K., 82 Winston, P.H., 353, 361 
Wu, D., 31 

Tabasko, M., 156 
Tanimoto, S.L., 376 
Tecuci, G., 189 
Thagard, P., 82 
Thorndike, P.W., 284 
Tomabechi, H., 77 
Touretzky, D.S., 4,23, 63,79,154, 

156,178,408 
Towell, G.G., 321 
Tresp, V., 208 
Tsang, E., 368 
Tsung, R, 193,213,221 
TUving, E., 406 
Hiring, A.M., 352 
T\irner, S.R., 421 

U 

Uhr, L., 352-353, 357, 360-361, 
363, 368-370, 372, 374-378 

Ulug, M.E., 322-323 

Yager, R.R., 373 
Yekovich, F.R., 284 
Yuille, A.L., 53 
Yu, Y, 162 

Zadeh, L.A., 373 
Zeidenberg, M., 353-354 
Zeki, S., 360, 374 
Zurif, E.B., 177 

Van Gelder, T., 224,226, 228, 367 
Velardi, P., 289 

W 

Waibel, A., 418 
Waltz, D.L., 80,289,292-293,296 
Wang, Y.A., 401 
Waterman, D.A., 365, 369 
Wechsler, H., 376 
Werbos, P., 127 
Werner, G.M., 421 
Wharton, C, 72, 82, 94,102 
White, H., 141 
Wilensky, R., 76, 419 
Wilkins, D.C., 369 
Williams, R.J., 156,226 



A 

Activation space 
dynamics, 121, 123, 125-126, 

147,191 
patterns, 13, 81, 85-87,166,193, 

408 
representation, 50-51, 189,242, 

397,401,405,411 
trajectories, 191 

Adder networks, 198,201,203, 
205,208,217,221 

Adjacency matrix notation system, 
125 

successor notation, 126 
Aggregation 

local computations, 119 
AINET-2, 311 
Analog parameters, 118, 144 
Analog semantic features, see 

ASFs 
Analog topographic layouts, 418 
Analogical remindings, 83 
Anaphora resolution, 156 
Arbitration network, 54 
Artificial neural networks, 2-4, 10, 

202, 207 
gaussian distribution, 123, 127 
symmetric distributions, 123 

ASF closeness, 290, 305, 308 
ASF space, 286, 299, 302, 305, 

308 
ASFs, 284, 286, 292 

case role patterns, 308 
constellations, 302, 312 

Subject Index 

how they are chosen, 292 
reactive patterns, 309-310, 313 
temporal association, 312 

Associational mapping behavior, 
201 

mechanisms, 218 
Associative memory, 2, 158, 317, 

426, 428 
Associative retrieval, 78, 390,408 
Asymmetric conclusion formation, 

45-46 
Asymmetric conclusion formation, 

see Symmetric conclusion 
formation 

Asynchronous equilibrium 
computation, 122 

Attractor based memory model, 
220 

Attractors, 122, 191-192 
articulated, 191 
bowl, 191,220 

Autoassociative encoder network, 
401,411 

Average conditional mutual 
information, 290, 309 

B 

Background frame knowledge, 14, 
283-286, 294-295, 298, 303, 
310-311 

background frame similarity, 
306-307 

Backpropagation computational 
network, 117,129, 144 



464 SUBJECT INDEX 

Backpropagation, 6-7, 9, 12,14, 
110,117-118,156-158,174, 
190,198,201,226,230, 
232-233, 240, 275, 280, 323, 
401,403-404,406,415,421 

feed-forward, 209 
time varying behaviors, 219 

Baseline summary 
summary strength, 300-301 

Basic level, 15 
Beliefs, 32, 72,289, 421 
Binding 

dynamic, 15, 69,80, 115,318, 
392, 429 

logical constraints, 110 
propagate bindings, 80, 394 
role bindings, 80, 84-85, 87-88, 

92,97,176,311,393,395, 
397, 407 

synchrony, 23 
units, 86-89, 95,103-108 

Biological neural networks, 2,118 
firing functions, 122-123 

value of, 131,138 
synaptic transmission, 122 

C 

Case-based reasoning, 65, 67, 82, 
111,252,275,281 

Certainty factors, 118,131, 
133-134,144, 147 

Chain rule, 127 
Children's information-processing 

abilities, 317 
Classical view of mind, 223 
Classical view of mind, see also 

Connectionist view of mind 
Clause transitions, 166,169-170 
CLAUSES, 13,155-160, 162, 

165, 168,174-175, 177,180, 

184,250,286,288,299,304, 
401,408-409 

Clustering, 229, 290 
CN-region, 298 
Coarse knowledge, 118, 144 
Coarse-coded, 408 
Coarse-grain properties 

baseline summary, 285, 289, 300 
computing importance, 301 

Cognitive psychology, xiv, xvi, 22 
Combinatorial learning, 418 
Combined subset training, 198, 

213,221 
Committee model, 123 
Commonsense reasoning, 3, 

xiii-xiv, 18, 115,248-250, 
256,270,282,318 

Competitive inhibition 
mechanism, 101 

Compositional semantics, 115, 
187,190 

Compositional structure, 226 
Comprehension 

coarse-grain view, 283 
deep reading, 283 
expectation, 51, 76, 285, 303, 

311 
fine-grain view, 283 
viewed as a dynamic system, 313 

Compressed representations, 158 
Computational networks, 124 

acyclic topology, 123, 126 
asynchronous activation, 120 
centrally managed computation 

scheduler, 120 
combining function, 119,123, 

126,128,132,135-138 
continuous time, 121-124, 144, 

147 
data types 

analog data, 119, 123-124, 
126,144 



Subject Index 465 

digraph topology, 123 
evidence value, 131,138 
forward activation, 127 
influence factor, 127-128 
method of timekeeping, 119 
recurrent topology, 124 
synaptic function, 120,125-126 
update equations, 125 

Concept level, 253, 276 
Concept refinement, 74 
Concept refinement, see 

Knowledge refinement 
Conceptual knowledge 

associational knowledge, 283, 
288, 296 

relational knowledge, 294-295 
Conceptual root analysis, 285-286 
Configuration matrix, 34, 36,50 
Connection weights, 85,139, 208, 

395, 397 
Connectionist circuitry, 23, 32, 49 
Connectionist networks 

distributed representation, 5, 
8-9, 14, 157,168, 179, 190, 
192, 224-225, 227, 230, 243, 
273, 404-405, 426 

hybrid representation, 334 
localist representation, 4, 10,14, 

392-393, 397-399, 403, 406, 
409,411 

partial programming, 208 
realization, 32,49, 52 
scaling, 78 
subnet, 50 
symbol processing, 22 

Connectionist view of mind, 224, 
242 

Conposit, 408 
activation of gating nodes, 31 
array of active registers, 34 
chains of identity links, 25 
class register, 41, 58 

clump, 35-36, 38, 40-42, 49, 55, 
57 

command signals, 47-50 
connection paths, 31, 50 
enabling condition, 44 
highlighting condition, 48, 

50-51,54-55 
highlighting flags, 35, 48-49 
highlighting state, 34-35, 42, 

47-48, 59 
instance register, 41 
LM register, 46, 53 
parallel implementation, 53 
recruitable registers, 55 
super free registers, 49 
ultra free registers, 49 
unclassified tokens, 42, 46, 

58-62 
Constraint relaxation, 80 
Constraint satisfaction, 71,81, 

273, 280, 429 
evidential, 81,83 

CONSYDERR, 253, 272-275 
Contextual constraints, 80, 186, 

222,428 
Convergence, 8,123, 173-174, 

404 
COPYCAT, 81, 113 
Counterfactual propositions, 32 
Crosstalk, 31, 104,396 

D 

DCAIN 
ensembles, 395, 410-413, 421 
filters, 312, 410-413, 429 

selectors, 412 
Decision boundaries, 232-233, 

235, 238-242 
Decision line, 230, 232 
Decision space, 14, 224, 228-230, 

232,235-239,241-242 



466 SUBJECT INDEX 

Demons, 76, 402 
Dempster-Shaffer theory, 133 
Description generation 

subnetwork, 204, 206 
DETE, 415-416, 418-420, 427 

feature planes, 416-418 
regions of active neurons, 416 

Dictionary trees, 293 
Digital signal processor, 322 
Directed acyclic network, 53 
Disambiguation, 11,71-72, 74-78, 

182,271,311,316,390 
ambiguity in general, 74, 79, 81, 

114,429 
DISCERN, 81, 171, 407, 409-410, 

422-423 
Discrete mapping, 210-213, 217 
Discrete time computational 

networks, 124,126 
DISPAR, 397-398, 404, 407, 410 
Distributed representations, 5, 

67-69, 156-157, 161, 178, 
182-183,185,223-224,390, 
402-403,413,427-428 

fault tolerance, 7,190-191 
hidden units, 79,197,292 
superposition, 226 

Distributed semantic 
representations, 405,427 

DUAL, 132, 145,205,253, 
401-403,405 

Dynamic inferencing, 71,178, 
181,187,429 

proper inferences, 104 
Dynamic reinterpretation, see 

Interpretation 
DYNASTY, 405, 421-422 

E 

Elman network, see Simple 
recurrent network 

Emergent properties, 80 
Engineering applications, 4, xvii, 

320, 348 
Episodic memory, 13, 70, 72, 75, 

81,103,111-112, 114,154, 
406-408 

Error correction learning, 212 
Euclidean distance, 207, 224, 234, 

236 
Event driven computation, 122 
Event shape diagrams, 318 
Evidential activation, 80, 87-93, 

95-96,101,104-105,108 
Expert behavior, 118,144 
Expert network backpropagation, 

118,133,139,144,146 
Expert network, 117 

of sub-symbolic processors, 118 
system of inference, 117 

Expert reasoning, 17, 82, 320, 347 
Expert system, 15, 117-118, 123, 

129-130, 133-135, 139, 
144-148, 320-324, 330, 
332-335,341,343-348 

Explanation-based learning, 321, 
421 

Extended backpropagation, see 
FGREP 

F 

Feature memory, 418 
Feed-forward neural network, 323 
Feedback training technique, 205 

error feedback, 206, 212-213 
error history, 206 
prediction feedback, 206-207 

FGREP, 157,161,168, 174, 178, 
403-405 

Fine-grain knowledge, 118,144 
Finite state automata 

state transitions, xiv, 199 



Subject Index 467 

Finite state grammar, 156 
Fixed size input, 195 
Fixed time delay computation, 122 
Fixed-size representation, 158 
Formation of semantic memories, 

406 
Forward chaining, 332 
Frame selection, 17, 74-75, 81, 

280, 426 
instantiation, 56, 74 

Frame semantics, 316 
Fuzzy logic, 3, 249, 282 

inference, 130,134 

G 

Generalization 
capability of, 159,418 
curve, 141 
error, 141-143 
inductive mechanisms, 188-189 

Gestalt layer, 115,157, 186, 
203-204,207,211,213,318 

Global network computation, 117, 
119-120,144 

equilibrium, 121 
Granularity spectrum, 409 
Grounding problem, 17, 426 

H 

Hard connections, 135 
Hebbian learning, 191 
Hidden layer 

activation vectors, 199 
trajectories, 199 

Hierarchical organization 
connectivity constraints, 118 
symbolic/sub-symbolic, 117 
topological, 118,145 

High-level cognitive processes, 
3-4,8 

High-level connectionism, 3, 22 

High-level inferencing, 13, 70, 72, 
74-77,81,83,88,114,317, 
426-427 

Holistic computation, 68, 121, 
182,224 

Horn clauses, 250-251 
Human checking, 326 
Human memory 

inferior temporal cortex, 312, 
317 

limitations of processing, 165 
memory trace, 14, 58, 176 
neurophysiological evidence, 

284,312,418 
Human syllogizers, 28-29 
Hybrid shell, 320 
Hybrid systems, 14-15, 179, 319, 

321-322,324,326,333-334 
symbolic connectionist systems, 

221 

I 

ID + content vectors, 395, 398 
Image processing identification, 

320 
Immediate propagation strength, 

309 
Inductive learning mechanism 

limitations, 201 
Inference engine, 117, 129,132, 

134,144 
Inferencing circuitry, 31 
Information processing theories, 

22 
Information-theoretic methods, 14, 

296 
Instructable connectionist systems, 

188-189, 191,193,195,197, 
199,201,203,205,207,209, 
211,213,215,217,219,221 

activation state modification, 219 



468 SUBJECT INDEX 

behavior 
systematicity, 219 

compilation, 219 
domain inputs, 208-209, 211 
instruction inputs, 208-209 
instruction sequences 

encoding, 192-193,208-209, 
217 

giving advice, 209-213, 217 
represented as temporal 

sequences, 193,196,203, 
209-212 

limitations, 201 
partial instructions, 213 

Instruction channels 
environmental interaction, 188 
learning channel, 188 
linguistic channel, 188,191 
programmer channel, 188 

Intelligent filter, 326 
Internal representations, 156,179, 

185,199,202,207,219, 
415-416 

Interpolation, 179 
Interpretation graph 

cover, 250, 252 
node coverage, 253,265, 276 
weighted semantic graph, 283, 

305 
Interpretation trajectories, 303 
Interpretation 

activated, 92 
graded, 291, 311 
plausible, 81,83 
quantitative analysis, 303 
reinterpretation, 70, 290, 391 
strength of, 303, 305 

Intuitive inference, 154 
Intuitive thinking, 1 
Iterative memorization, 219 

Johnson Laird theory, 22-24, 26, 
28-30,32,41,55 

Katamic memory, 415, 418-420 
Knowledge acquisition, 188, 266, 

282 
of rules or productions, 188 
of sentential logical expressions, 

188 
strategies, xiii, 121,147, 170, 

180,183,208,215,219-220, 
390-391, 426 

Knowledge refinement, 118, 133, 
147,149 

Kohonen feature map, 406 

Language of thought, 227, 243 
Language understanding, xvi, 32, 

70-72,74-83,91,93, 
102-103, 111-112,270,394, 
426 

Learning curves, 214 
Learning rate, 128, 174,206, 211, 

216 
Learning 

algorithms, 5-6, 9,13, 190,220, 
249 

recruitment, 49, 410-411 
simple programming constructs, 

194 
simple symbolic arithmetic 

procedures, 192 
unsupervised, 312 

LeMICON 
activation level, 174, 190, 197, 

210-211,215 
case role buffer, 296 
computation 

J 



Subject Index 469 

activation of relevant 
knowledge, 311-312 

computing what's new, 311 
fluid decision making, 312 
formal analysis, 308 
hysteresis effects, 312-313 
local computation, 310 

input buffer, 295 
learning 

at the ASF level, 302 
at the relational level, 299, 308 

memory architecture, 283, 287, 
289 

post-processing reasoning, 275 
psychological experiments, 249 
reactive buffer, 296 

Lexical chains, 292 
Lexical disambiguation, 78, 

80-81,182,271,390 
commit-and-backtrack, 390 
delay strategy, 391 
every-possible meaning, 

390-391 
Lexical semantics, 428 
Linear threshold functions, 120 
Linearly separable, 232 
Linguistic meaning, 202 

temporal activation patterns, 202, 
219,284,322,333 

Linguistics, xiv, 114,184, 227, 
316-318 

Localist encoding, 211,215 
Location matrices, 56 
Logic-based approaches 

deduction, 24, 68 
Long-term memory, 401 
Long-term procedural knowledge, 

189 
as numerical weight values, 189 

M 

Manipulation profiles, 32 
Marker passing 

networks, 77, 79 
processes, 35 
signatures, 23, 81,393 

Membrane channels, 122-123 
Memory 

confusions, 81 
degradation, 13,155,174, 181 

Mental model theory, 22-23, 26 
Metaknowledge, 118,145 
Metcalfe's CHARM model, 221 
Microfeature level, 253, 276 
Microfeatures, 86,113, 225, 

253-256,261,264-265, 
270-271,273,276-277 

Molecules, 119,122 
Momentum, 128, 174,206, 211 
Movie description network 

movie image, 203 
visual images, 202 

Multiplicative connections, 167, 
216-217,396 

Mutually exclusive relations, 84 

N 

Negation symbols 
use of, 28 

NETtalk, 323, 327, 348 
Neural circuitry, 22 
Neural networks, xii-xvii, 67-68, 

117,154-155,189,244,250, 
280,282,316,321-324 

generalization, 155,163,165, 
179,198,210,413 

intraconnected nets, 118 
output, 324 
techniques, 320 

NEXUS, 289 
Non-concatenative 

compositionality, 224, 228 



470 SUBJECT INDEX 

Nonsystematic knowledge, 283, 
292 

O 

OCCAM, 421 
OpEd,421 

P 

Parallel distributed processing, 17, 
114-115,117-118,143,149, 
184-185,222,281,317,426, 
428 

Parallel distributor, 50-55 
Parallel production system, 7 
Parallel virtual machine, 117-118, 

123, 143 
Parsing, see SPEC 
Partial matching, 7 
Partial programming, 208 
Partial recall, 102 
Pattern association, 194 
Pattern recognition, 1-2, 194, 

319-322, 324-325, 332-334, 
347-348 

Pattern transformation, 169 
Pattern transport, 160 
Perception subnetwork, 204-206 
Perceptual tasks, 319 
Perceptually-based representation, 

414 
Perceptually-grounded language 

learning, 414, 427 
Phase synchronization, 5, 393 
Physical symbol hypothesis, 1 
Plan layer, 211,213, 215-216, 220 
Plan vector, 211 
Plan/goal analysis, 71, 75, 95, 99 
Plausible inferences, 14, 251,257, 

311 
Post-synaptic input, 125-127, 

136-139 

Principal components analysis, 199 
Procedural control, 30, 58 
Propagation filter, 410-411 
Propositional embedding, 38 

Q 
Quasi-linguistic sequences, 

201-202,208-209 
event description, 204 

Question answering, 204 

R 

RAAM, 67,158-160, 163-165, 
181-182,236,400-401,405, 
408-409 

Rational thinking, 1-3 
Reasoning tasks, 72, 179, 193, 

256, 319 
Recency effects, 81 
Recurrent backpropagation, 201, 

203 
Recurrent networks, 78, 156, 158, 

183,185-186,198-199,203, 
205,219-221 

Reduced representations, 31, 65, 
69 

Reflexive reasoning, 73 
Register recruitment, 49 
Reinforcement methods, 133 
Reinterpretation, 70-71, 73, 75, 

77,91-92,101,103, 111, 
114,290,391 

Relational closeness, 308-309 
propagation strengths, 309 
relational distance, 309 

Relational level, 290, 299, 308 
Relational novelty, 308, 311 
Relational tier 

as weighted network, 299 
systematic relationships, 3,14, 

29-30,67,69,115,192-194, 



Subject Index All 

199,201,208,210,212, 
217-220, 223-224, 226-227, 
229, 241-242, 266, 289, 292, 
318,429 

Relative-position-encoding, 16, 
22, 32, 55, 65, 408 

REMIND, 70, 72, 82-83, 93 
Reminding, 71, 82, 95,100, 

102-103,114 
episodic, 100 
inexpert, 82 

Representation space, 229,239 
ROBIN, 70, 72, 81-83, 85, 87-91, 

93-94,101,103,105-108, 
110-112,409 

Role binding, 56, 72 
Role registers, 35 
Rule enablement, 46, 49 
Rule representation 

action parts, 34 
condition parts, 34 

Rule-based systems, 22, 76-77, 
79,130,146,275 

S 

Scheduling, 119-120, 123 
SCRuFFY, 320-326, 333, 335 

control decisions, 323-324 
encapsulating expert knowledge, 

319 
neural network phase, 327 
symbolic component, 320, 325 

Second-order connections, see 
Multiplicative connections 

Second-order methods, 217 
Selectional restrictions, 83-84, 91, 

104-105,108,110 
Self-organizing feature maps, 406 
Semantic closeness, 290 
Semantic constraints, 155,177, 

181,183,297 

Semantic features, 157, 225, 
283-285, 288, 292-293, 297, 
310 

representation, 78 
encoding, 161 

Semantic interpretation, 70, 
156-157 

Semantic memory 
associational tier, 14, 283-284, 

293,296,313 
relational tier, 283, 285, 289 
trace, 289 

Semantic networks, 77, 79, 83, 
187,288,429 

serial evaluation, 289-290 
Sensor information, 325 
Sentence processing, 114, 

154-156, 160, 174,184 
Serial path evaluator, 93 
Short-term memory, 401-402 

internal state, 119,125-127, 136, 
196,219 

Short-term state knowledge, 189 
Sigma-pi connections, 216 
Sigmoidal functions, 120 

sigmoid, 204, 210 
Sign propagation, 5 
Signatures, 23, 81, 85-89, 93, 95, 

103-112, 393-394, 398-399, 
409 

units, 86 
Similarity, 5, 14,22,32,55, 

64-65,110,113,132, 
223-224, 228-229, 232, 240, 
242, 248-249, 252-253, 
255-258, 262-265, 268, 
272-273, 275-279, 281-282, 
284, 287, 289, 293, 303, 
305-306, 402, 408 

background frame similarity, 
306-307 

semantic overlap, 94,285, 290 



472 SUBJECT INDEX 

Simple feed forward network, 196 
Simple recurrent network, 

156-160,163, 180,197,199, 
203,211,215,400,404, 
409-410,422 

Jordan network, 197,199 
sequential behaviors, 198 

Smoothing, 330-331, 333 
Soft connections, 135,138-139 
Spatial representational analog, 

418 
Spatial structure, 224,228 
SPEC, 409 

case-role vectors, 162,179 
center embeddings, 155-156, 

163,165,170, 174-176, 181 
embedded structures, 154,165, 

427 
limitations, 175 
network 

output assemblies, 161, 174 
parse tree, 158 
parser, 67,114, 155,158-166, 

169-170,173-178, 180, 182 
recursive clause structure, 160 
segmentation, 169,179,181, 201 
segmenter, 159-160,163, 

165-167,169-170, 173-174, 
179-180,409 

stack network, 159,163-164 
tail embedding, 162 
top level center embedding, 170 

Spreading activation, 13,70, 72, 
77,79-83,94-95,101-102, 
111,113,311,316,390-391, 
393,408-409 

SSS, 289, 300-301 
Statistically-based NLP 

co-occurrence statistics, 288, 
290-291 

Stereotypical situations, 70 

Structured connectionist model, 
8-9, 288,290 

Structured pattern matching, 398 
Subconceptual representation, 1, 

10-11 
Subconfiguration detection 

module, 34, 46-47, 49, 52 
Subsymbolic case role 

representation, 157 
Summary strength, 300-301 
Superpositional representations, 

230 
continuously valued vectors, 226 
storage, 224 

Superstructure, 118,145 
Supervised learning, 118,144 
Surface semantics, 70, 72, 78, 80 
Syllogism propositions, 34, 37 
Syllogistic reasoning, 4, 13, 

22-23, 29, 38, 66, 69,408 
Symbol broadcasting, 51,53 
Symbol processing, i, 3-17,22-23, 

25,27,29,31,33,35,37,39, 
41,43,45,47,49,51,53,55, 
57,59,61,63,65,67,69,72, 
80-81,194,250,391-392 

Symbol recirculation, 425 
Symbol representations 

properties 
efficiency, 64, 142,190,251 
memorability, 290 

Symbol sharing, 38,48, 52,57 
Symbolic level, xvii, 118, 

143-145,423 
Symbolic markers, 77 
Symbolic production system, 80 
Symbolic supervisor, 155,167,181 
Symmetric conclusion formation, 

45,59 
Synchronous equilibrium 

computation, 121 
activation, 120,122 
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fixed point, 121 
Syntactic role assignment, 157 
Systematicity, 9, 30, 67,193,195, 

219,224,227,229,239-243, 
424 

T 

Temporal difference, 133 
Temporal pattern matcher, 320, 

322-324, 329-330, 332-333, 
335, 344-346 

Temporal simulation, 274 
Temporal-Winner-Take-All, 

48-49, 53, 65, 67 
Temporary propositions, 30 
Tensor products, 226, 395 

encoding, 162 
Terminal activation state, 126-127, 

129 
Tightly coupled organization, 7 
Time delay neural networks, 418 
Time varying streams, 201 
Training regime 

deterministic method, 206 
minimum average sum-squared 

error, 206 
prediction average sum-squared 

error rates, 206 
random method, 206 
self-supervised training signal, 

205 
supervised error signal, 205,211 
training set accuracy, 215-216 
training sets, 140,178, 198 
unsupervised error signal, 205 
unsupervised prediction error 

signal, 207 
Trajectory, 189,199,205,285, 

289,308,313 
time-directed, 285,299, 302 

Transiently localist, 13,22, 63,424 

Truth maintenance, 391 
Two-level architecture, 249, 251, 

253,255-257,259,261,263, 
265,267,269,271,273,275, 
277,279,281 

Two-level architecture, see also 
Semantic memory and 
SCRuFFY 

U 

Unification 
occur check, 398 
term layer, 398 
unification layer, 398 

V 

Vague domains, 250 
Variable binding, 5, 11, 13, 18, 23, 

30, 55, 57-58, 69, 72-73, 
80-81,85,91,103,111,150, 
186,255-256,392,429 

Variable binding, see Binding 
Variable sized input 

arbitrarily long digit sequences, 
195 

Vector space, 189-190 
Verbal-to-visual/motor association, 

415 
Vertical concept assembly, 308 

case role slots, 296-298 
Vocabulary, 168,210, 241,292, 

299 

W 

Weight modifications, 205, 
212-213 

Widrow-Hoff delta rule, 128 
Winner-take-all structures, 298 
WordNet,317 
Working memory, 23, 30, 32, 34, 

55-56,65,182,185, 
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288-289,294-295, 302-313, 
408,421 

trace, 289 

X 

XRAAM, 403-405 
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