
COMPUTATIONAL
ARCHITECTURES

INTEGRATING NEURAL AND
SYMBOLIC PROCESSES

A PERSPECTIVE ON THE STATE OF THE ART

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

COMPUTATIONAL
ARCHITECTURES

INTEGRATING NEURAL AND
SYMBOLIC PROCESSES

A PERSPECTIVE ON THE STATE OF THE ART

EDITED BY

Ron Sun
The University of Alabama

Tuscaloosa, AL, USA

•
Lawrence A. Bookman

Sun Microsystems Laboratories
Chelmsford, MA, USA

k4

W
KLUWER ACADEMIC PUBLISHERS

Boston/London/Dordrecht

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A C L P . Catalogue record for this book is available
from the Library of Congress.

Copyright ® 1995 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park,
Norwell, Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

Contents

List of Contributors xi

Foreword by Michael Arbib xiii

Preface xvii

1 An Introduction: On Symbolic Processing in Neural
Networks
Ron Sun 1
1 Introduction 1
2 Brief Review 4
3 Existing Approaches 5
4 Issues and Difficulties 7
5 Future Directions, Or Where Should We Go From Here? 11
6 Overview of the Chapters 12
7 Summary 15
References 16

Part I LOCALIST ARCHITECTURES 19

2 Complex Symbol-Processing in Conposit, A Transiently
Localist Connectionist Architecture
John A. Barnden 21
1 Introduction 21
2 The Johnson-Laird Theory and Its Challenges 22
3 Mental Models in Conposit 31
4 Connectionist Realization of Conposit 48

v

VI CONTENTS

5 Coping with the Johnson-Laird Challenge 54
6 Simulation Runs 58
7 Discussion 62
8 Summary 64
References 65

A Structured Connectionist Approach to Inferencing and
Retrieval
Trent E. Lange
1 Introduction
2 Language Understanding and Memory Retrieval Models
3 Inferencing in ROBIN
4 Episodic Retrieval in REMIND
5 Future Work
6 Summary
References

Hierarchical Architectures for Reasoning
R.C. Lacher and K.D. Nguyen
1 Introduction
2 Computational Networks: A General Setting for Distributed

Computations
3 Type xOO Computational Networks
4 Expert Systems
5 Expert Networks
6 Neural Networks
7 Summary
References

69
69
74
82
92

102
110
111

117
117

118
126
129
133
140
143
145

Part n DISTRIBUTED ARCHITECTURES 151

5 Subsymbolic Parsing of Embedded Structures
Risto Miikkulainen 153
1 Introduction 153
2 Overview of Subsymbolic Sentence Processing 155
3 The SPEC Architecture 158

Contents vn

4 Experiments
5 Discussion
6 Summary
References

Towards Instructable Connectionist Systems
David C. Noelle & Garrison W. Cottrell
1 Introduction
2 Systematic Action
3 Linguistic Interaction
4 Learning By Instruction
5 Summary
References

An Internal Report for Connectionists
Noel E. Sharkey & Stuart A. Jackson
1 Introduction
2 The Origins of Connectionist Representation
3 Representation and Decision Space
4 Discussion
5 Summary
References

166
177
179
180

187
187
192
200
207
217
220

223
223
225
229
240
242
243

Part i n COMBINED ARCHITECTURES 245

8 A Two-Level Hybrid Architecture for Structuring
Knowledge for Commonsense Reasoning
Ron Sun 247
1 Introduction 247
2 Developing A Two-Level Architecture 250
3 Fine-Tuning the Structure 255
4 Experiments 264
5 Comparisons with Other Approaches 274
6 Summary 275
References 278

viii CONTENTS

A Framework for Integrating Relational and
Associational Knowledge for Comprehension

10

Lawrence A. Bookman
1 Introduction
2 Overview of LeMICON
3 Text Comprehension
4 Encoding Semantic Memory
5 Representation of Semantic Constraints
6 Experiments and Results
7 Algorithm
8 Summary
References

Examining a Hybrid Connectionist/Symbolic System for
the Analysis of Ballistic Signals
Charles Lin and James Hendler
1 Introduction
2 Related Work in Hybrid Systems
3 Description of the SCRuFFY Architecture
4 Analysis of Ballistic Signals
5 Future Work
6 Conclusion
References

283
283
287
289
296
298
299
308
313
315

319
319
321
322
325
333
334
347

Part IV COMMENTARIES 349

11 Symbolic Artificial Intelligence and Numeric Artificial
Neural Networks: Towards a Resolution of the
Dichotomy
Vasant Honavar 351
1 Introduction 351
2 Shared Foundations of SAI and NANN 353
3 Knowledge Representation Revisited 356
4 A Closer Look at SAI and NANN 360
5 Integration of SAI and NANN 374
6 Summary 375

Contents ix

References 378

12 Connectionist Natural Language Processing: A Status
Report
Michael G. Dyer 389
1 Introduction 389
2 Dynamic Bindings 391
3 Functional Bindings and Structured Pattern Matching 397
4 Encoding and Accessing Recursive Structures 398
5 Forming Lexical Memories 401
6 Forming Semantic and Episodic Memories 405
7 Role of Working Memory 407
8 Routing and Control 408
9 Grounding Language in Perception 413
10 Future Directions 418
11 Conclusions 421
References 423

Appendix Bibliography of Connectionist Models with

Symbolic Processing 431

Author Index 457

Subject Index 463

About The Editors 475

Contributors XI

John A. Barnden
Computing Research Laboratory
and Computer Science Department
New Mexico State University
Las Cruces, New Mexico 88003
jbarnden@nmsu.edu

Lawrence A. Bookman
Sun Microsystems Laboratories
Chelmsford, MA 01824
lbookman@east.com.sun

Garrison W. Cottrell
Department of Computer Science
and Engineering
Institute for Neural Computation
University of California, San Diego
La Jolla,CA 92093-0114
gary@cs.ucsd.edu

Michael G. Dyer
Artificial Intelligence Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024
dyer@cs.ucla.edu

James Hendler
Department of Computer Science
University of Maryland
College Park, Maryland 20742
hendler@cs.umd.edu

Contributors

Vasant Honavar
University of Iowa
Iowa State University
Ames, Iowa 50011
honavar@cs.iastate.edu

Stuart A. Jackson
Computer Science Department
Regent Court
University of Sheffield
SI 4DP, Sheffield, UK
S.Jackson@dcs.shef.ac.uk

Chris Lacher
Department of Computer Science
Florida State University
Tallahassee, FL 32306
lacher@cs.fsu.edu

Trent Lange
Artificial Intelligence Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024
lange@cs.ucla.edu

Charles Lin
Department of Computer Science
University of Maryland
College Park, Maryland 20742
clin@cs.umd.edu

Xll

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
risto@cs.utexas.edu

David C. Noelle
Department of Computer Science
and Engineering
Institute for Neural Computation
University of California, San Diego
La Jolla,CA 92093-0114
dnoelle@cs.ucsd.edu

K.D. Nguyen
Department of Computer Science
Florida State University
Tallahassee, FL 32306
nguyen@cs.fsu.edu

Noel E. Sharkey
Computer Science Department
Regent Court
University of Sheffield
SI 4DP, Sheffield, UK
N.Sharkey@dcs.shef.ac.uk

Ron Sun
Department of Computer Science
College of Engineering
The University of Alabama
Tuscaloosa, AL 35487
rsun@cs.ua.edu

Foreword

The "Integration of Neural and Symbolic Processes" has been with us ever
since the earliest days of Computer Science, for the foundation paper of neural
networks (McCulloch and Pitts 1943) was entitled A Logical Calculus of the
Ideas Immanent in Nervous Activity. It had as its centerpiece the demonstra
tion that the control box of any Turing machine (Turing 1936), the essential
formalization of symbolic computation, could be implemented by a network of
formal neurons. Moreover, the ideas of McCulloch and Pitts influenced John
von Neumann and his colleagues when they defined the basic architecture of
stored program computing, and von Neumann (e.g., 1951, 1956) remained
intrigued with the biological dimension of computing, both in neural networks
and self-reproduction.

Why, then, more than 50 years after 1943 do we need a book on Computational
Architectures Integrating Neural and Symbolic Processes? I want to show that,
in fact, we need many such books, and this is one of them.

One possible book on "Integrating Neural and Symbolic Processes" would be
on Cognitive Neuroscience: it would use clinical data and brain imaging data
to form a high-level view of the involvement of various brain regions in human
symbolic activity, and would use single-cell activity recorded from animals en
gaged in analogous behaviors to suggest the neural networks underlying this
involvement. Such a book would integrate the work of psychologists, neu
rologists, and neurophysiologists along with the work applying computational
concepts to the analysis of biological neurons. The catch, of course, is that the
"analogous behaviors" of animals are not very analogous at all when it comes
to such symbolic activities as language and reasoning. Thus, the greatest suc
cesses in seeking the neural underpinnings of human behavior have come in
areas such as vision, memory, and motor control where we can make neural
network models of animal models of human capabilities, not in the area of
high-level symbolic reasoning. And so we come to the nature and the im
portance of the present book: it is about high-level intelligent processes — a
contribution to computer science in general, and to Artificial Intelligence in
particular, rather than to neuroscience.

xiii

XIV FOREWORD

The work of Turing, McCulloch and Pitts, and von Neumann came together
with the work of Norbert Wiener in the 1940s to create the field of Cybernetics
(Wiener 1948), "the study of control and communication in the animal and the
machine." Cybernetics was based on concepts like feedback and information,
mixing McCulloch-Pitts neural networks with the engineers' theories of com
munication and control. The volume Automata Studies, published in 1956 and
containing von Neumann's "Probabilistic logics and the synthesis of reliable
organisms from unreliable components," was a major event in the development
of the automata theory/neural networks component of cybernetics, yet in that
very same year one of this volume's editors, John McCarthy, coined the term
Artificial Intelligence (AI) at a meeting held at Dartmouth College. When in
1961 Marvin Minsky (a contributor to Automata Studies and at that time a
colleague of McCarthy's at MIT) published the article "Steps toward artificial
intelligence" which helped define the subject, cybernetic concepts and neural
nets were very much part of his formulation of AI. Yet, sadly, AI came to be
seen more and more in opposition to cybernetic concepts and neural networks.
The use of logic was seen by many as the sine qua non of intelligence, and
serial computation (careful search, one item at a time) was taken by many to
be a virtue rather than a bottleneck. Although the study of neural networks
and cybernetics continued through the 60s and 70s (the many excellent articles
in such journals as Kybernetik, later Biological Cybernetics, attest to that), it
tended to do so outside computer science departments.

(One aside which shows the interwoven nature of all this is that it was Warren
McCulloch who brought Seymour Papert to MIT in 1963, and thus laid the
basis for the book (Minsky and Papert, 1969) which many see as the major
intellectual attack on neural networks. Actually, it provided excellent contri
butions to neural network theory, and anyone who is convinced that results on
the limitations of simple perceptrons showed the inutility of neural networks
should give up the use of computers since it is also known that simple programs
without loops have limited capability!).

In the 1970s, then, most computer scientists working in AI outside such spe
cialty areas as computer vision or robotics focused exclusively on symbolic
representations of knowledge, using logic and a variety of more or less serial
search strategies to address game-playing, problem-solving, and commonsense
reasoning. However, the success of expert systems for many domains, such
as medical diagnosis (Shortliffe 1976), showed the importance of probabili
ties or levels of confidence in weighing diverse evidence rather than adhering
strictly to logical inference; while such contributions to distributed AI as the
HEARSAY speech understanding system (Lesser et al. 1975) favored a com
putational metaphor based on interacting agents rather than serial processing,

Foreword xv

a metaphor fully expressed in Minsky's (1985) "conversion" to a theory of
intelligence rooted in The Society of Mind. On the technological front, the de
velopment of VLSI made parallel computation a practical, indeed crucial, part
of computer science. And the 1980s saw an immense resurgence of interest in
neural networks, sparked in no small part by the appeal of Hopfield (1982) to
physicists; the reception of the collections edited by Rumelhart and McClelland
(1986) by cognitive psychologists and a new generation of AI workers; and by
the adoption by technologists of neural networks as "universal approximators"
with a wide range of applications; as well as by the work of many others, both
"old- timers" and newcomers too numerous to mention.

And so at last we come to the 1990s and to the long postponed answer to
the question "Why do we need a book on Computational Architectures Inte
grating Neural and Symbolic Processes!" The present book is in the domain
of cognitive psychology and AI: seeking a computational model which can
efficiently implement high-level "intelligent processes," rather than seeking
to model the detailed neural processes of the human brain. Fifty years on
we build on the legacies of Turing and McCulloch and Pitts, but much has
happened in symbolic computation since Turing. Where he spoke of general
effective procedures operating on a string of Os and Is, we have learned how
to define hierarchical, symbolic structures - whether a search tree, a relational
database, or an AI frame - which simplify the representation of data on a
given domain and make the definition of operators far more transparent than
would otherwise be possible. We have learned how to automate many of the
processes of logical inference, and have seen the creation and recreation of
vast structures of theoretical linguistics. And much has happened in neural
networks since McCulloch and Pitts. Where they showed us how to translate
logical formulas and state transitions into networks of "logical neurons," the
emphasis has now switched to artificial networks whose connection strengths
(thus the term connectionism used by many for the study of networks of "non-
biological neurons") are subject to a variety of learning rules. We have learned
how to exploit the parallelism of neural networks in a vast array of problem
domains from vision to diagnosis, and in particular have developed powerful
learning theories, both for self-organization of networks, and for their learning
in response to supervision or reinforcement. We have found tasks for which a
single neural network serves admirably, others for which an array of special
ized networks serves best, and yet other for which a hybrid of neural networks
and abstract symbol processors appears optimal. The present volume exem
plifies each of these architectures in providing fresh approaches to many of the
problems which, until a decade ago, had seemed securely and purely in the do
main of symbolic processing alone: arithmetic, commonsense reasoning, story

xvi FOREWORD

comprehension, and language processing — to convincingly demonstrate the
power of integrating neural and symbolic processes.

REFERENCES

[1] Hopfleld, J. (1982). Neural networks and physical systems with emer
gent collective computational properties. Proceedings of the National
Academy of Sciences, 79:2554-2558.

[2] Lesser, V.R., Fennel, R.D., Erman, L.D., and Reddy, D.R. (1975). Orga
nization of the HEARS AY-II speech understanding system. IEEE Trans,
on Acoustics, Speech, and Signal Processing, 23:11 -23.

[3] McCulloch, W.S. and Pitts, W.H. (1943). A logical calculus of the ideas
immanent in nervous activity. Bull. Math. Biophys., 5:115-133.

[4] Minsky, M.L. (1961) Steps toward artificial intelligence. Proc. IREy

49:8-30.

[5] Minsky, M.L. (1985). The Society of Mind. Simon and Schuster, New
York.

[6] Shortliffe, E.H. (1976). Computer-Based Medical Consultations:
MYCIN. Elsevier, New York.

[7] Turing, A.M. (1936) On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Soc. Ser. 2, 42:230-265.

[8] von Neumann, J. (1951). The general and logical theory of automata.
In L.A. Jeffress (Ed.), Cerebral Mechanisms in Behavior: The Hixon
Symposium. Wiley, pp. 1-32.

[9] von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable
organisms from unreliable components. In C.E. Shannon and J. McCarthy
(Eds.), Automata Studies. Princeton University Press, pp.43-98.

Michael A. Arbib
Center for Neural Engineering

University of Southern California
Los Angeles, CA

Preface

The focus of this book is on a currently emerging body of research — com
putational architectures integrating neural and symbolic processes. With the
reemergence of neural networks in the 1980's and its emphasis on overcoming
some of the limitations of symbolic AI, there is clearly a need to support some
form of high-level symbolic processing in connectionist networks. As argued
by many researchers, on both the symbolic AI and connectionist sides, many
cognitive tasks, e.g., language understanding and commonsense reasoning,
seem to require high-level symbolic capabilities. How these capabilities are
realized in connectionist networks is a difficult question and it constitutes the
focus of this book.

Although there has been a great deal of work in integrating neural and symbolic
processes, both from a cognitive and/or application^ viewpoint, there has been
relatively little effort in comparing, categorizing, and combining these fairly
isolated approaches. Recently, there have been many new developments,
some of which were reported at the AAA! Workshop on Integrating Neural and
Symbolic Processes (The Cognitive Dimension) that was held in July, 1992, in
association with the Eleventh National Conference of Artificial Intelligence;
and those reported in the 1993 special issue of Connection Science, Vol.5,
No.3-4. This body of work needs to be better understood, especially in terms
of its architectural approaches.

The editors of this book intend to fill this void and address the underlying
architectural aspects of this integration. In order to provide a basis for a
deeper understanding of existing divergent approaches and provide insight
for further developments in this field, the book presents (1) an examination
of specific architectures (grouped together according to their approaches),
their strengths and weaknesses, why they work, and what they predict, and
(2) a critique/comparison of these approaches. The book will be of use to
researchers, graduate students, and interested laymen, in areas such as cognitive
science, artificial intelligence, computer science, cognitive psychology, and
neurocomputing, in keeping up to date with the newest research trends. It
can also serve as a comprehensive, in-depth introduction to this new emerging

xvn

XV111 PREFACE

field. A unique feature of the book is a comprehensive bibliography at the end
of the book.

Some of the questions addressed in the book are:

1. What architectural approaches exist and what are the relative advantages
and/or disadvantages of each approach?

2. How cognitively plausible is each proposed approach?

3. Is there any commonality among various architectural approaches? Should
we try to synthesize existing approaches? How do we synthesize these
approaches?

And also, more generically,

4. What processes are natural to do at the neural and symbolic level of
description?

5. How do symbolic representation and connectionist learning schemes in
teract in integrated systems with different architectures?

6. What are the problems, difficulties and outstanding issues in integrating
neural and symbolic processes?

7. What have we achieved so far by integrating neural and symbolic pro
cesses?

The body of the book starts with an introductory chapter, which comments on
the current state of affairs and addresses what advances are necessary in order
that continued progress be made. Following that, each particular architectural
approach (i.e., localist, distributed, and integrated localist and distributed) is
described by three chapters. The final two chapters compare some of the
existing approaches. Note that we do not include work that is solely concerned
with pure learning issues, neural networks for low-level processing, and pure
engineering applications, since those topics are better covered by other existing
books.

Finally, we wish to thank all the authors who contributed to this book.

Ron Sun
Lawrence Bookman

COMPUTATIONAL
ARCHITECTURES

INTEGRATING NEURAL AND
SYMBOLIC PROCESSES

A PERSPECTIVE ON THE STATE OF THE ART

1
An Introduction: On Symbolic
Processing in Neural Networks

RON SUN

Department of Computer Science
College of Engineering

The University of Alabama
Tuscaloosa, AL 35487

1 INTRODUCTION

Various forms of life have been existing on earth for hundreds of millions of
years, and the long history has seen the development of life from single cell
organisms to invertebrates, to vertebrates, and to humans, the truly intelligent
beings. The biological organizations of various species, from the lowest to
the highest, differ in their complexities and sizes. Such differences in inter
nal complexity manifest in the differences in overt behaviors and intelligence.
Generally speaking, organizational complexities of various species are pro
portionate with capabilities displayed by respective species. However, a gap
seems to exist when one goes from high vertebrate animals to humans, in that
a conscious, rational capacity is readily available to human beings, that does
not seem to be present in any other animals, no matter how high they are on the
evolutionary hierarchy. There is a qualitative difference. Yet, strange enough,
there is no known qualitative difference between the biological make-up of hu
man brains and animal brains. So the questions are: Where does the difference
lie? What is the key to the emergence of rational thinking and intelligence?1

It is well known that human and animal brains are made up of "neural net
works", or densely interconnected special kinds of cells, namely neurons, that
possess simple "information processing" capabilities through the opening and

1 The physical symbol hypothesis attempts to answer this question. However, it is deficient in
several respects: it does not answer the question of how intelligent behaviors and their requisite
physical symbols (according to the advocates of the theory) emerge from biological systems; it
does not take into account subconceptualand intuitive thinking (see Smolensky [22] and Dreyfbs
& Dreyfus [5]) and does not address the question of how rational thinking can be coupled with
such intuitive thinking; it ignores low-level processes (such as pattern recognition) and their
interactions with high-level processes (Harnad [11]).

1

2 CHAPTER 1

Figure 1 Diagram of a neuron with ion channels.

closing of membrane ion channels (and the enabling and disenabling of ion
flows; see Figure 1) and through induced electrical spikes propagating from
neuron to neuron (roughly speaking at least; for details, see, e.g., Kandel &
Schwartz [13]). One question that naturally arises in this regard is how macro-
level information processing, such as recognizing a face or bringing back a
memory, can be accomplished with such micro-level "information process
ing" (i.e. channel opening and closing). A further question is how high-level
conscious, rational thinking, such as drawing an inference or understanding a
sentence, can emerge from networks of such low-level elements. The field of
(artificial) neural networks seems to be addressing such problems, although the
emphasis is on studying the capabilities of simplified and highly schematized
artificial "neurons" (i.e. abstract mathematical models of simple processing el
ements), rather than exploring capabilities of biological neural networks (with
the exception of a few groups of neuroscientists whose interests lie exclusively
in information processing in biological neurons and in their interconnecting
networks).

Some progress has been made to date in understanding low-level information
processing (such as pattern recognition or associative memory) in neural net
works, with highly homogeneous nodes and with regular connections among
them (see, e.g., Figure 2 for such a model). The homogeneity and regularity
enable mathematical and computational analyses of these models and thus fa
cilitate advances in this field. Given the fact that preliminary understanding of
neural networks for low-level information processing has been achieved (or at
least is well on the way of being achieved), the other question, which is much
more profound, immediately arises and cries out for answers: How can such

On Symbolic Processing 3

Figure 2 Diagram of a neural network with a regular interconnection
pattern.

simple models capture high-level cognitive processes, such as rational think
ing, natural language understanding, and logical inference? It is currently well
understood (or presupposed, according to some people) that symbolic process
ing is capable of capturing a wide range (or all, according to some others) of
rational thinking and intelligence; therefore it is of paramount importance to
be able to incorporate symbolic processing in these models, to enable them to
capture high-level cognitive processes. This is, however, especially difficult,
because such processes are mostly discrete, structured, and systematic (see
Fodor & Pylyshyn [8]), which are in sharp contrast with the characteristics of
conventional connectionist models. The research being done under the banner
of high-level connectionism and under the banner of hybrid systems, including
the work described in the present book, attempt to answer exactly the above
question, each in a partial and small way, by exploring the symbolic process
ing capability of neural network models. Note that, while the term "high-level
connectionism" tends to describe cognitively motivated research, such as nat
ural language processing (Sharkey & Reilly [21]) or commonsense reasoning
(Sun [26]), the term "hybrid systems" tends to describe engineering-oriented
approach toward incorporating symbolic processing or systems, such as fuzzy
logic based neural networks (Bezdek [3]) or neural networks preprocessors
coupled with symbolic planning (Hendler [12]). In my view, both schools are
invaluable to the endeavor of investigation into how organizations of (artificial)
neural networks can give rise to intelligence, thinking, and other high-level
cognitive capacities. Thus I will not draw the distinction any further in the
subsequent discussion.

In the following sections, I will take a brief look at high-level connectionist
models incorporating symbolic processing, and discuss the issues and difficul-

4 CHAPTER 1

ties facing this field as well as possible future directions. Then I will present
an overview of the chapters in the present book on the basis of the discussion.

2 BRIEF REVIEW

Let us look back briefly at some work in the short history of connectionist
symbolic processing models. Incorporating symbolic processes in (artificial)
neural networks is- not a new idea at all. In as early as McCulloch & Pitts
[15], it was shown that simple network models can perform some simple
logical operations easily, and thus it was conjectured that human intelligence
can be modeled with these simple logical operations (which contributed to the
invention of digital computers and later, ironically, the enormous popularity
of digital computers temporarily put an end to the fruitful research on neural
networks).

The new connectionism of 1980's had been spawned mainly by work in cog
nitive modeling, including language learning and schemata processing (see,
e.g., Rumelhart & McClelland [19]). However, the majority of work in this
field shifted quickly to focus on low-level processes of vision, speech recogni
tion, and sensory-motor control, as well as engineering applications, for these
areas are particularly amenable to modeling with regular and homogeneous
networks. Thus, high-level connectionist models (for modeling high-level
cognitive processes) started to gain a separate identity, featuring a combination
of neural network models and AI techniques in various ways.2

Work in the area of high-level connectionist models (which incorporate sym
bolic processing) includes Touretzky & Hinton [28], which first demonstrated
that neural networks can implement symbolic production systems (in their
simple form, as 3-tuples) and carry out corresponding symbolic reasoning.
Work in this area also includes Barnden [2], which described a grid-form con
nectionist network for syllogistic reasoning incorporating the mental model
approach. Work done by Dyer and associates (e.g., Dyer [6], Miikkulainen
& Dyer [16] and Lange & Dyer [14]) focused on implementing symbolic AI
ideas, especially Schankian constructs (such as scripts, schemas, and dynamic
memory), in neural network models. The 1989 Cognitive Science Conference
saw three papers on implementing rule-based reasoning in connectionist mod-

2 Since it is common knowledge that it is difficult, if not impossible, to capture high-level
cognitive processes with fully homogeneous connectionist networks, the majority of high-level
connectionist models utilizes some alternative structures, such as localist models, as will be
discussed later.

On Symbolic Processing 5

els: Ajjanagadde & Shastri [1], Lange & Dyer [14], and Sun [23], all of which
enables neural networks to carry out rule(logic)-based reasoning in some flex
ible way and handle variable binding through either phase synchronization or
sign propagation (see Appendix A for a listing of other relevant publications
in this area).

On the other hand, some researchers explored the capability of neural net
work learning algorithms, and the distributed representation they produce, for
symbolic processing. Pollack [17] and Sharkey [20] exploited the capabil
ity of distributed representation and showed how complex structures can be
processed (to some extent) with such representations. There are also various
systems for utilizing distributed representation to accomplish a variety of other
tasks, ranging from simple similarity-matching to inheritance reasoning and to
unification of logical terms (cf. Cottrell [29] and Sun [26]).

There have also been various proposals as to how to combine different types
of models, such as combining symbolic models with connectionist networks
(e.g., Bookman [4] and Hendler [12]) or combining localist and distributed
representations (e.g., Sun [26]). The goal of such combinations is generally
to enhance the symbolic processing power of respective models, by utilizing
the synergy of different types of models. In this regard, there have been some
initial successes for combined systems.

The AAAI Workshop on Integrating Neural and Symbolic Processes (The Cog
nitive Dimension), which was held in July 1992, brought together work utilizing
various approaches in developing symbolic processing connectionist models
and explored how to compare, categorize and combine various isolated models
and architectures in an effort to better understand these individual models, their
interrelations, and the state of the art of this field overall. The work presented at
the workshop was collected in [30]. The present book is the outgrowth of this
workshop, with a slightly enlarged scope (in that we are no longer exclusively
concerned with the "cognitive dimension").

3 EXISTING APPROACHES

Now let us examine what various symbolic processing connectionist models
(such as those mentioned above) have in common; in other words, we want
to categorize various models in terms of a few types in order to see emerging
trends and to identify issues and problems.

6 C H A P T E R 1

The existing architectural approaches in integrating neural and symbolic pro
cessing (that is, with respect to the internal organizations of and the repre
sentations used in respective models) can be divided into the following four
categories:

• Developing specialized, structured, localist networks for symbolic pro
cessing.

• Performing symbolic processing in distributed neural networks (in a holis
tic way).

• Combining separate symbolic and neural network modules.

• Using neural networks as basic elements in symbolic architectures (the
embedded approach).

The first approach above uses individual nodes to represent individual concepts
(and hence the term 'localist"), and the connections between nodes directly
reflect the linkage between the corresponding concepts. Such architectures
amount to directly map symbolic structures onto connectionist network struc
tures and in the process, massively parallel systems result. This approach was
formerly advocated by Feldman & Ballard [7]. (See also Chapters 3 and 4.)

The second architectural approach represents concepts as distributed patterns
(of activations) across a large number of nodes in a network (or a certain
part of a network, i.e., a "layer"). This approach is thus connectionist in its
purest form. Some connectionists believe the strong connectionist thesis that
simple networks, trained with corresponding learning algorithms (such as the
backpropagation learning algorithm), can perform the functional equivalent
of symbolic processing in a holistic and functional way. This strong thesis
is in fact quite controversial. However, most connectionists do believe that
symbolic processing can be accomplished in a holistic and functional way to
some large extent. Thus, this type of architectures remains an active subject
of connectionist symbolic processing research. (See Chapters 5, 6 and 7.)

The third architectural approach is the juxtaposition of two or more compo
nents, or "modules". Each of these modules uses a different type of repre
sentation, ranging from purely symbolic systems to distributed connectionist
systems, but together they accomplish a wide range of processes. Currently,
there are a variety of ways of organizing these modules, depending on the types
of modules used and the tasks to be accomplished. For example, the loosely

On Symbolic Processing 7

coupled organization allows communication through an interface that con
nects various modules and moderates information flows; such an organization
is prevalent in and good for (i.e., facilitating the development of) application
systems. The tightly coupled organization uses a variety of different channels
for communication, and thus allows closer interaction between modules. The
completely integrated organization has so many connections between various
modules that the distinction between modules almost vanishes, although dif
ferent representations are used in these different modules. However, in order to
be completely integrated, usually only different connectionist representations
can be used. This type of architectures is currently a highly active area of
research, for both application-oriented and theoretically-motivated work. (See
Chapters 8,9 and 10.)

The forth approach utilizes basically a symbolic architecture overall, such
as a semantic network or a parallel production system, but instead of using
symbolic components, small scale neural networks are used in their places to
enable parallel, fault-tolerant computation that is capable of partial matching.

It should be cautioned that these types are not as clear-cut as they seem to be
from the foregoing discussion. As a matter of fact, they are interrelated and
often they are mixed together in a model (that is, one model involves more
than one architectural approach). In addition, these approaches are still in the
process of evolving. Therefore, any classification scheme should be taken with
a grain of salt.

4 ISSUES AND DIFFICULTIES

There are many research issues that need to be addressed, in order to advance
this field of study, as well as, more broadly speaking, to better understand the
nature of intelligence and cognition. These issues can be addressed in technical
terms (focusing on techniques) as well as in biological terms (in relation to
biological systems). This section takes a brief look at several of these issues
from a technical perspective.

Can purely connectionist systems account for all kinds of cognitive pro
cesses and model all kinds of intelligent behaviors? Purely connectionist
systems, such as backpropagation networks, are known to be able to perform
certain types of symbolic processing; the question is how far we can push
this type of systems and how much symbolic processing that is necessary for

8 CHAPTER 1

high-level cognitive processes this type of systems can ultimately account for.
Some researchers keep on pushing the frontier in this direction, and try to
prove the sufficiency, or at least the dominant role, of such processes in mod
eling cognition and intelligent behaviors (recall the strong connectionist thesis
mentioned earlier). So far, some progress has been made, and more symbolic
processing tasks necessary for modeling high-level cognitive processes (such
as structure-sensitive operations in distributed representation) are being per
formed in these systems (see, e.g., Chapter 7). In utilizing such systems for
performing various symbolic processing tasks (such as embedding part-whole
hierarchies, language induction, and implementing production systems), better
understanding has been achieved of this type of connectionist models. How
ever, it is clear that not all kinds of cognitive processes can be captured in
such processes (at least not yet). While the aforementioned researchers are
continuing their work in this direction, other researchers look into other means
for accomplishing symbolic processing tasks (as in Chapters 3 and 8). Gen
erally, structured localist networks and semantic-network-like models (i.e.,
links represent some meaningful connection, such as is-a or part-ofy between
concepts each of which is represented by an individual node in a network)
are used to replace or supplement purely connectionist forms. Whether such
structured models can eventually be subsumed by purely connectionist models
or whether they will eventually be an alternative form, or even the prevailing
form, of connectionist systems (with purely connectionist models as special
cases) is yet to be seen. In any event, some sort of convergence of the two
approaches seems to be necessary, in that structured localist systems need
the learning capability usually associated with purely connectionist systems
and, conversely, connectionist systems need to be able to represent complex
structures somehow.

Do we need a specialized connectionist system for each kind of cognitive
processes? In other words, one system or many? It has been an acute prob
lem that in symbolic AI, for each type of tasks, a set of specialized mechanisms
are developed, which are not necessarily related to any other mechanisms for
any other tasks. This practice creates an abundance of specialized mechanisms
and limited models, but also creates a lack of uniformity and coherence. It
should be noted that it is usually not the case that once one has all the com
ponents, a whole necessarily follows. It has been a tremendous problem for
traditional AI to form a coherent system incorporating various processes; even
if a kludge (an ad hoc collection of disparate mechanisms) can be worked out,
what kinds of understanding can such a system provide us, beside the fact that
it is a kludge? It is, in some sense, an issue of long-term progress vs. short-term
expediency, since in the short term, within some limited task domains, a kludge
may indeed work better, but in the long term, fundamental principles, elegantly

On Symbolic Processing 9

and succinctly expressed, are much more desirable and much more important.
The same problem has started to emerge in connectionist research: when more
and more specialized connectionist models are proposed, a unifying theory,
explanation, or model is what is most needed. Some researchers are beginning
to address this problem, by including in a single model a range of capabilities
and by trying to propose a uniform explanation of a variety of processes (e.g.,
with a uniform mechanism encompassing many processes; cf. Sun [26]).

How can more powerful learning algorithms be developed that can ac
quire complex symbolic representation in connectionist systems, includ
ing structured localist systems? This is an important issue, in that simple
learning algorithms that build up functional mappings in typical neural net
work models are insufficient for symbolic processing connectionist networks,
because of the discrete and discontinuous nature of symbolic processes and
because of the systematicity of such processes. Newer and more powerful
learning algorithms are needed that can extract symbolic structures from data
and/or through interaction with environments. As a minimum requirement, for
example, such learning algorithms must be able to handle embedding relations
among symbolic structures (Sun [27]) and combinational composition of sym
bolic structures (Fodor & Pylyshyn [8]). However, unfortunately, currently
there is no learning algorithm that adequately meet these needs.3 Therefore,
most of the existing work on integrating neural and symbolic processes fo
cuses on representational aspects rather than learning-related aspects and the
interplay between learning and representation, although such interplay is one
main appeal of the original connectionist paradigm (cf. Hanson and Barr [10]).

One practical difficulty in developing learning algorithms for complex sym
bolic structures (such as those in Lange & Dyer [14] or in Sun [25]) lies in
the fact that neural network learning algorithms tend to be simple, numerical,
and structurally uniform (with the same, or similar, operation being applied
to all the nodes in an entire network), which is in direct contrast to the char
acteristics of symbolic representation (as in, e.g., Sun [25]), where irregular,
content-dependent connections and discrete, individuated activation functions
are commonplace. Therefore, some new kinds of learning algorithms are
needed for symbolic processing connectionist models; such algorithms, I be
lieve, should somehow incorporate some symbolic methods, as more powerful
learning algorithms will result from such incorporation.

31 did not mention the backpropagation networks using distributed representation in the
preceding discussion. Although such networks can accomplish some of the aforementioned
processing, there are various difficulties with them, such as long training time, inaccuracy in
symbolic mappings, and the inadequacy in structure-sensitive operations (although some of
them can be carried out holistically).

10 CHAPTER 1

How can the distinction between conceptual and subconceptual processes
be profitably explored in symbolic processing connectionist models? The
distinction between conceptual and subconceptual processes has been argued
for by, for example, Smolensky [22],4 and it seems intuitively very appealing
as a way of capturing the two differing styles of thinking and useful in a
theoretical understanding of the role of connectionist models in cognitive
modeling. However, this distinction needs to be qualified and made clear
and precise; connectionist models, especially high-level connectionist models,
provide the hope that this idea can be studied through computational modeling
and experimentation, with integrated connectionist systems in which both
symbolic and subsymbolic processes are captured (in either a separate or a
mixed manner). Through such experiments, a mechanistic explanation of the
distinction between conceptual and subconceptual processes may result, for
the benefit of an enhanced theoretical understanding. On the other hand, future
advances in connectionism require the understanding of the theoretical notions
and ideas in order to come up with principled solutions for problems arising in
cognitive modeling (and in other areas as well): for example, on the one side,
conscious rule application [9], explanation generation, and rule manipulation
and modification, and on the other side, intuitive, holistic, and non-verbal
(tacit) reasoning, and also their interaction in cognition (cf. Chapter 8). This
mutual dependency of theories and computational models is not uncommon
in AI and cognitive science, but in this case such dependency clearly needs
serious attention and devoted efforts to explore.

I believe that in the dichotomy of conceptual and subconceptual processes may
lie the key to achieving the fundamental understanding of the architecture of
cognition and intelligence. Specifically, I believe that conceptual processes
can be best captured by symbolic processes (in purely symbolic systems or in
localist connectionist systems), while subconceptual processes can somehow
be modeled by the (artificial) neural networks and their variants, as discussed
by Smolensky [22]. In light of the above, it is highly desirable for connec
tionist researchers to try to utilize the dichotomy in their work and place their
models in a proper place; it is also important for connectionist researchers
to address the problem of modeling both types of processes (conceptual and
subconceptual) in an integrated architecture, in order to strive for a better un-

4The conceptual processes handle knowledge that possesses the following characteristics:
(1) public access, (2) reliability, and (3) formality. The appropriateness of modeling such
knowledge by symbolic processes has been argued for by many and seems self-evident. But
on the other hand, there are different kinds of knowledge, such as skill, intuition, individual
knowledge, and so on, that are not expressible in linguistic forms and do not conform to the three
criteria prescribed above. They constitute subconceptual processes. It seems futile to model
such knowledge in symbolic forms.

On Symbolic Processing 11

demanding of the overall cognitive architecture. So far, unfortunately, there
are only a handful of models directly confronting the problem, probably due
to the lack of experimental understanding regarding this issue and the lack of
methodologies for approaching the problem, which in turn can probably be at
tributed to the long history of the dominance by rationalistic philosophies that
ignore the intuitive, subconceptual, and subconscious side of cognition. We
need to overcome such philosophical and methodological obstacles in order to
make more fundamental progress. The effort may reasonably be expected to
produce profound results. Hopefully, models addressing this issue may help to
shed some light on the puzzle concerning the difference between human and
animal intelligence (or, conceptual processes vs. subconceptual processes and
rationality vs. association; see Section 1 of this chapter), in that a mechanis
tic explanation of the distinction may be produced based on the same basic
building material, i.e., artificial neurons.

5 F U T U R E D I R E C T I O N S , O R W H E R E S H O U L D W E G O F R O M

H E R E ?

Although the outlook of this field is still murky, there are indeed several trends
discernible at this point in time. Whether they will come to full fruition in the
future, which, as usual, depends on the progress of the whole field and also
depends on the interplay of these trends, is yet to be seen.

First of all, connectionist systems being developed are becoming increasingly
more complex. They tend to encompass more and more functional aspects,
and more and more varieties of different techniques. For example, there
is little work now dealing exclusively with the variable binding problem,
or focusing only on word sense disambiguation. Instead, solutions for the
variable binding problem are being integrated into larger systems of reasoning,
possibly along with approximate matching, multiple instantiation, and type
hierarchies (implicit or explicit). By the same token, models for word sense
disambiguation are becoming part of systems for story comprehension or other
higher-level tasks. This, on the one hand, indicates in some way the maturation
of the field, in that simple, partial models and techniques have been explored
to a point that some syntheses are becoming possible or even necessary. This
maturation of the field allows the development of systems on a scale roughly
comparable to traditional "symbolic" systems; such larger-scale systems are
more useful in artificial intelligence and cognitive research, and will definitely
generate more impact for AI and cognitive science in the years to come.

12 C H A P T E R 1

On the other hand, the increasing complexity of connectionist systems entails
the necessity of integration instead of mere combination, due to the need to
manage the complexity and to avoid ad hoc-ness, as alluded to before. There
are some promising new developments in this respect (see, e.g., Chapter 8),
but more efforts are certainly needed to further the development.

Another trend is the flourishing of application-oriented system development,
as evident from recent neural networks and AJ conferences. Applications
of connectionist symbolic processing systems to real world problems are not
only beneficial to application domains, but are also important to the future
development of the field, in that such applications can provide new incentives,
new motivations, and new problems for theoretical studies. Both the theoretical
research and the practical development are worth emphasizing.

Yet another direction that is of great importance to the future of this field is the
development of a clear and concise theoretical (and/or mathematical) frame
work, one that supersedes existing models and provides directions for future
advances, in ways similar to what the backpropagation algorithm did for the
early connectionist research, or what Maxwell's equation did for the study of
electromagnetism. The advances in model building and the resulting diver
sity in perspectives, approaches, and techniques in the area of connectionist
symbolic processing models call for serious theoretical treatments to clarify
the existing ideas and to generate new thinking. A solid theoretical foundation
is what is most needed for this field. The present book itself is an attempt in
this direction, in that it provides a framework for the field, although it is not
focused on the theoretical issues per se.

6 OVERVIEW OF THE CHAPTERS

The rest of the chapters in this book can be divided into four parts. Each of the
first three parts covers a different architectural approach, in accordance with
the foregoing discussion and classification (see Section 3 of this chapter): Part
1, which includes Chapters 2, 3, and 4, covers localist architectures; Part 2,
which includes Chapters 5, 6, and 7, covers distributed architectures; Part 3,
which includes Chapters 8,9, and 10, covers combined architectures. The last
part of the book, which includes Chapters 11 and 12, is a set of commentaries
critiquing work in this field, including those reported in this book.

On Symbolic Processing 13

In Part 1, Chapter 2 (by John Barnden) describes symbol processing in a "tran
siently" localist connectionist model, with representations being constructed
on the fly. The system performs syllogistic reasoning through the manipula
tion of mental models (as proposed by Philip Johnson-Laird). Some unique
localist representational techniques are developed; the techniques predispose
the system towards random instead of pre-ordered sequencing of subtasks,
and towards associative linking of symbolic structures as opposed to explicit
linking constructs. The system is elaborate and complex — it is one of the
most complex symbolic processing problems to be tackled in connectionism.

Chapter 3 (by Trent Lange) describes a structured localist connectionist model
capable of high-level inferencing with variable binding and rule application.
In his model, variable binding is handled by distinct activation patterns that
uniquely identify the concept bound to a variable. Rules are pre-wired into
the structure of the network, resulting in a semantic network like system.
Based on such a model, he further develops a system for integrating language
understanding and episodic memory retrieval with spreading activation.

Chapter 4 (by Chris Lacher and K. D. Nguyen) presents a way of combining
expert systems and neural network learning, resulting in a localist network
model, which is termed "expert networks" by the authors. This method has the
advantage of being able to learn and adapt, unlike traditional expert systems,
and the advantage of being able to utilize pre-wired structures, in addition to
homogeneous neural network connectivity patterns. The authors also intro
duces ways of implementing each node in "expert networks" with a small scale
neural network, which is related to the embedded approach mentioned earlier
(see also [25]).

In Part 2, Chapter 5 (by Risto Miikkulainen) presents a distributed connec
tionist model for processing sentences with recursive relative clauses. The
architecture deals with the tasks of segmenting word sequence into clauses,
forming case-role representations, and keeping track of recursive embeddings.
The model is a purely distributed connectionist model, and has many usual
properties of such systems such as generalization, graceful memory degrada
tion, and statistical constraint induction.

Chapter 6 (by David Noelle and Gary Cottrell) presents an approach for dis
tributed connectionist networks to "learn by being told". While many learning
algorithms have been proposed which allow connectionist models to modify
their representation based on examples and statistical correlations in them,
this approach allows input directives to influence the behavior of a network di
rectly. Given the difficulties of connectionist learning techniques in addressing

14 CHAPTER 1

symbolic processing tasks, such an approach may go a long way to shed new
light on connectionist symbolic processing models. The authors also examine
a distributed connectionist network that performs a reverse task: generating
linguistic descriptions of time-varying scenes.

Chapter 7 (by Noel E. Sharkey and Stuart Jackson) analyzes theories of dis
tributed connectionist representation. It challenges a key assumption of such
theories: that the precise distances between distributed representations in the
hidden layer of a backpropagation network reflect systematic semantic and/or
structural similarity relations. A detailed argument is provided that utilizes
a simple decision space technique, demonstrating that this assumption is not
warranted except under special circumstances. The authors claim that the com
putational role of a distributed representation may be separated from specific
distance relations.

In Part 3, Chapter 8 (by Ron Sun) presents a connectionist architecture that
consists of two levels: one is an inference network with nodes representing
concepts and links representing rules connecting concepts (i.e., with localist
representation), and the other is a microfeature based replica of the first level
(with distributed representation). Based on the interaction between the concept
nodes and microfeature nodes in the architecture, inferences are facilitated and
knowledge not explicitly encoded in a system can be deduced via a mixture
of similarity matching and rule application. The model is for structuring
knowledge in vague and continuous domains where similarity plays a large
role in performing plausible inferences. The architecture is able to take account
of many important desiderata of plausible reasoning, and produces sensible
conclusions accordingly.

Chapter 9 (by Larry Bookman) presents a connectionist model that supports
both structured representations and non-structured representations in which
knowledge is encoded automatically using information-theoretic methods. A
two-tier structure is proposed to encode such knowledge: a relational tier (net
work) that represents a set of explicit conceptual relations, and an associational
tier (network) that encodes the associational or nonstructured knowledge. This
model supports two complementary views of text comprehension: a "coarse-
grain" view, that utilizes explicit semantic relationships to reason about the
"meaning" of a text; and a "fine-grain" view, that explores details of interac
tion between context and background knowledge.

Chapter 10 (by Charles Lin and Jim Hendler) presents an application of a
hybrid system. A hybrid system shell is developed and used in the task of
detecting certain patterns in the sensor traces of ballistic firings. The hybrid

On Symbolic Processing 15

system contains both connectionist (neural network) components and expert
system components. The chapter explains how the expert system can be used
to add to the ability of the neural network, by using expert domain knowledge.

In Part 4, Chapter 11 (by Vasant Honavar) attempts to explore questions re
garding fundamental similarities and differences between symbolic systems
and connectionist systems. A historical examination of such questions leads
to the conclusion that the two paradigms offer formally equivalent but prac
tically different models, and their integration is useful when various design
alternatives are fully explored.

Chapter 12 (by Michael Dyer) reviews the state of the art of natural language
processing with connectionist models. Specifically, he examines the following
issues in these models: (1) the creation and propagation of dynamic bindings,
(2) the manipulation of recursive, constituent structures, (3) the acquisition and
access of lexical, semantic, and episodic memories, (4) the control of multiple
learning/processing modules, and (5) the "grounding" of basic-level language
constructs in perceptual/motor experiences. The chapter indicates the current
strengths and weaknesses of various approaches.

7 SUMMARY

The present chapter presents an introduction to the field of connectionist sym
bolic processing models, reviewing its development, discussing various ap
proaches, highlighting some issues, and pointing out possible future directions.
Overall, in the field of connectionist symbolic processing models, the ground
has been broken and some foundations have been laid down. However, to
complete the skyscraper that we are aiming for on the basis of what we have
so far, a lot more hard work is still needed; the process of advancing connec
tionist symbolic processing models to the stage in which these models serve as
a dominant paradigm for AI and cognitive research still requires much inge
nuity to come up with workable new ideas and plausible innovative designs. I
believe that the enterprise of connectionist symbolic processing models holds
great promise for artificial intelligence and cognitive research, and may even
help to shed light on some deep philosophical questions; thus it is well worth
pursuing.

16 CHAPTER 1

A C K N O W L E D G E M E N T S

This work is supported in part by the RGC grant #1640 from the University of
Alabama.

REFERENCES

[1] V. Ajjanagadde and L. Shastri, Efficient Inference with Multi-place Pred
icates and Variables in a Connectionist System, Proc.11th Cognitive Sci
ence Society Conference, pp.396-403, Lawrence Erlbaum Associates,
Hillsdale, NJ. 1989

[2] J. Barnden, The right of free association: relative-position encoding for
connectionist data structures, Proc.lOth Conference of Cognitive Science
Society, pp.503-509, Lawrence Erlbaum Associates, Hillsdale, NJ. 1988

[3] J. Bezdek, (ed.) IEEE Transaction on Neural Networks, special issue on
fuzzy neural networks. 1992.

[4] L.A. Bookman, Trajectories through knowledge space: A Dynamic
Framework for Comprehension, Kluwer Academic Publishers, Norwell,
MA 1994.

[5] H. Dreyfus and S. Dreyfus, Mind Over Machine, The Free Press, New
York, NY. 1987

[6] M. G. Dyer, Distributed symbol formation and processing in connectionist
networks, Journal ofExpt. Theor Artificial Intelligence. 2, pp.215-239,
1990.

[7] J. Feldman and D. Ballard, Connectionist models and their properties,
Cogni tive Science, pp.205-254, July 1982

[8] J. A. Fodor and Z. W. Pylyshyn, Connectionism and cognitive architec
ture: A critical analysis, Cognition. 28, pp. 3-71. 1988.

[9] R. Hadley, Connectionism, rule following, and symbolic manipulation,
Proc.ofAAAI-90, Vol.2, pp.579-586. Morgan Kaufman, San Mateo, CA.
1990.

[10] S. Hanson and D. Barr, What does the connectionist model learn: learning
and representation in connectionist models, Behavior and Brain Sciences,
13(3), pp.1-54,1990

On Symbolic Processing 17

[11] S. Hamad, The symbol grounding problem. Physica D, 42(1 -3):335-346.
1990.

[12] J. Hendler, Integrating neural and expert reasoning: an example. In: Proc.
ofAISB-92.pp.109-116. 1992.

[13] E. Kandel & J. Schwartz, Principles of Neural Science, Elsevier, New
York, NY. 1984.

[14] T. Lange and M. Dyer, Frame selection in a connectionist model,
Proc.11th Cognitive Science Conference, pp. 706-713, Lawrence Erl-
baum Associates, Hillsdale, NJ. 1989

[15] W. McCulloch and W. Pitts, A Logical Calculus of the Ideas Immanent
in Nervous Activity, Bull. Math. Biophy.y 1943

[16] R. Miikkulainen and M. G. Dyer. Natural Language Processing with
Modular PDP Networks and Distributed Lexicon. Cognitive Science. 15,
3,1991.

[17] J. Pollack, Recursive distributed representations. Artificial Intelligence,
46:77-105.1990.

[18] F. Rosenblatt, Principles of Neurodynamics. Spartan Books, New York,
NY. 1962.

[19] D. E. Rumelhart, J. L. McClelland, & the PDP Research Group. Parallel
distributed processing: Explorations in the microstructure of cognition.
Cambridge, MA: Bradford Books. 1986.

[20] N. E. Sharkey, Connectionist representation techniques. AI Review,
(5):142-167.1991.

[21] N. Sharkey, & R. Reilly. (eds.) Connectionist Approaches to Natural
Language Understanding. Hillsdale, NJ: Lawrence Erlbaum Assoc. 1991.

[22] P. Smolensky, On the proper treatment of connectionism, Behavioral and
Brain Sciences, l l ,pp.l-43, 1988

[23] R. Sun, A discrete neural network model for conceptual representation
and reasoning. In: Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Erlbaum. 1989.

[24] R. Sun, The Discrete Neuronal Model and the Probabilistic Discrete
Neuronal Model, in: B.Soucek (ed.) Neural and Intelligent Systems Inte
gration, John Wiley and Sons, New York, NY. pp.161-178. 1991.

18 CHAPTER 1

[25] R. Sun, On Variable Binding in Connectionist Networks, Connection
Science, Vol.4, No.2, pp.93-124. 1992.

[26] R. Sun, Integrating Rules and Connectionism for Robust Commonsense
Reasoning, John Wiley and Sons, New York, NY. 1994.

[27] R. Sun, On Schemas, Logics, and Neural Assemblies, Applied Intelli
gence, special issue on high level connectionist models, 1994.

[28] D. Touretzky and G. Hinton, Symbols among neurons, Proc.9th IJCAI,
pp.238-243, Morgan Kaufman, San Mateo, CA. 1987.

[29] G. Cottrell, Parallelism in inheritance hierarchies with exceptions,
Proc.9th IJCAI, pp. 194-202, San Mateo, CA: Morgan Kaufman, 1985.

[30] R. Sun, L. Bookman, and S. Shekhar, (eds.) The Working Notes of the
AAAI Workshop on Integrating Neural and Symbolic Processes, American
Association for Artificial Intelligence, Menlo Park, CA. 1992.

PARTI

LOCALIST ARCHITECTURES

20

Part I: Localist Architectures

• Chapter 2 (by John Barnden) describes a localist connectionist model
with dynamically constructed representations for performing syllogistic
reasoning.

• Chapter 3 (by Trent Lange) describes a structured localist connectionist
model capable of high-level inferencing with variable binding.

• Chapter 4 (by Chris Lacher and Ky Nguyen) presents a method for com
bining expert systems and neural network learning.

2
Complex Symbol-Processing in

Conposit, A Transiently Localist
Connectionist Architecture

J O H N A. BARNDEN

Computing Research Laboratory and Computer Science Department
New Mexico State University

Las Crucesy New Mexico 88003

1 INTRODUCTION

Two unusual primitives for the structuring of symbolic information in con
nectionist systems were discussed in [9]. The primitives are called Relative-
Position Encoding (RPE) and Pattern-Similarity Association (PSA). The present
article shows that the primitives are powerful and convenient for effecting cog-
nitively sophisticated connectionist symbol processing. Specifically, it shows
how RPE and PSA are used in a connectionist implementation of Johnson-
Laird's mental model theory of syllogistic reasoning [23] [24] [25]. The
symbol processing achieved is therefore at the level of complexity to be found
in existing, detailed information-processing theories in cognitive psychology.
This system is called Conposit/SYLL, but for brevity it will often be referred
to here as Conposit. To be exact, Conposit is a general framework for imple
menting rule-based systems in connectionism, and Conposit/SYLL is just one
instance of it. (The name "Conposit" is derived from "CONnectionist POSI-
Tional encoding." Conposit/SYLL is a major extension beyond the preliminary
version described in [2]).

The Johnson-Laird theory is used here merely as a case study in the applica
tion of the Conposit framework. In particular, it is not important here whether
Johnson-Laird's theory is psychologically correct; even if it is correct, it is not
important whether Conposit is anywhere near the actual implementation of the
theory in the brain's neural circuitry. The reason for choosing to implement the
Johnson-Laird theory is that computationally it has been relatively completely
specified in the psychological literature, and presents a major implementa-
tional challenge to high-level connectionism. The nature of the challenge will
be clarified later, but, briefly, it arises from the mutability, multiplicity, and

21

22 CHAPTER 2

diversity of the working memory structures that need to be set up, and the
elaborateness of the sequences of modifications to them that should take place
during reasoning. Conposit copes easily with the challenge.

The plan of the paper is as follows. Section 2 summarizes the Johnson-Laird
theory of syllogistic reasoning, and explains the nature of the challenge it
presents to connectionism. Section 3 explains how the Johnson-Laird theory
is implemented in Conposit. The section is at a level a little above that of
connectionist circuitry. Section 4 sketches the mapping of this level down
to connectionist circuitry. Section 5 shows how the challenge described in
section 2 is met by Conposit. This section includes a discussion of variable
binding. Section 6 summarizes two simulation runs of Conposit/SYLL. Section
7 comments briefly on some other theoretical contributions of the Conposit
framework. Section 8 concludes.

The PSA and RPE primitives make Conposit distinctly different in flavor from
other connectionist systems that do symbolic processing (see, e.g., Bookman,
this volume, Lange, this volume, Sun, this volume, and [18] [31] [32] [37].)
However, the PSA technique in Conposit is closely related to Shastri and
Ajjanagadde's use of synchrony for binding [31] (see [8] and [9] for discussion),
and somewhat less so to Lange's use of signatures. A form of RPE technique
is used in [15].

2 T H E JOHNSON-LAIRD THEORY AND ITS CHALLENGES

2.1 SUMMARY OF THE JOHNSON-LAIRD THEORY

This subsection summarizes the mental model theory of syllogistic reasoning
as presented in [23] and [24], making reference also to later developments in
[25]. An example of a syllogism is

Some of the artists are beekeepers.
All the beekeepers are chemists.
[Therefore:] Some of the artists are chemists.

In general, a syllogism is an argument, expressed in natural language, con
sisting of two premises that are followed by a conclusion. Each of the three
propositions states some relationship between two sets of entities. The first

Symbol-Processing in Conposit 23

proposition is about two sets A and B, the second is about sets B and C,
and the third about A and C. The relationship is either a subset relationship
(expressed as "all the X are Y"), an intersection relationship ("some of the
X are Y"), a negated-subset relationship ("some of the X are not Y"), or a
negated-intersection relationship ("none of the X are Y"). In each of the three
propositions, the two sets can appear either way round. For example, the
second premise could be either "all the B are C" or "all the C are B." Each of
the three sets is assumed to be non-empty (in most of Johnson-Laird's work).

Of course, the actual sets chosen for a syllogism make no difference in a logical
sense.1 Also, the switching of the two sets in a premise may make no logical
difference: "some of the A are B" and "some of the B are A" are logically
equivalent, as are their negations, "none of the A are B" and "none of the B
are A." However, the Johnson-Laird theory does count the equivalent forms
as different premises. Again, the ordering of the two premises with respect to
each other makes no logical difference, but nevertheless the ordering is taken
as significant psychologically.

For a given pair of premises it may be impossible to complete the syllogism
by means of a valid conclusion that relates sets A and C by one of the four
relationships above. For example, from "some of the A are B" and "some
of the B are C" no valid conclusion can be drawn. On the other hand, for a
given pair of premises there may be more than one correct conclusion. For one
thing, a conclusion can be replaced by an equivalent proposition (cf. previous
paragraph). But there can also be non-equivalent alternatives: for instance,
the proposition "some of the A are C" is a correct deduction from "all the A
are B" and "all the B are C", granted the existence presupposition noted above.
However, a stronger conclusion is that "all the A are C". The Johnson-Laird
theory tries to generate "all the A are C" before "some of the A are C," and
similarly "none of the A are C" before "some of the A are not C," so as to
be maximally informative. Also, there is a processing order effect that helps
determines whether the model tries to generate a conclusion in A-C order or
in C-A order first, depending on the set-ordering in the premises.

The theory has it that people syllogize by constructing one or more "mental
models" conforming to the premises, and then trying to generate conclusions
from the models. One possible mental model for the above syllogism can be
drawn as follows:

1 This is not to say that they make no difference to a human reasoner — cf. the experimental
results in [27] and [28].

24 CHAPTER 2

MENTAL MODEL MM 2-1

(a) (b) = (c)
a = b = c
a = b = c

(c)

A mental model is a data structure containing atomic tokens (shown by the
letters) and identity links between tokens (shown by the equality signs). The
model contains arbitrarily selected numbers of tokens standing for artists,
beekeepers, or chemists (the occurrences of 'a', 'b ' and 'c'). Because of the
first premise of the syllogism, namely the proposition that some of the artists
are beekeepers, an arbitrarily selected non-empty subset of the artist tokens
is related by identity links to some beekeeper tokens. Similarly, because
of the second premise, namely that all of the beekeepers are chemists, all
beekeeper tokens are similarly linked to chemist tokens. The parentheses
indicate that the enclosed tokens are declared as being optional. Distinct
tokens not related directly or indirectly by identity links are taken to represent
different individuals. The tentative conclusion that some artists are chemists
would arise from the syllogizer noticing that some artist tokens are linked by
chains of identity links to chemist tokens. Notice that a mental model can
contain redundancy — the second line of MM 2-1 is not necessary. It does no
harm apart from possibly slowing the processing.

A mental model thus serves as a highly abstract description of what may be
viewed as an "example situation" conforming to the premises of the natural
language syllogism. More precisely, what is described by MM 2-1 is really
several example situations, differing on which of the optional individuals are
actually present. Naturally, the tentative conclusion read off from a model
might merely be an artifact of the particular example(s) it describes. Johnson-
Laird therefore postulates that the system attempts to construct several different
models conforming to the premises, in an attempt to falsify any particular
tentative conclusion. The attempted-falsification process would fail in our
example, but would succeed (if pushed to completion) in the variant example
obtained by changing the second premise to "some of the beekeepers are
chemists". This is because in choosing beekeeper tokens to link to chemist
tokens, it might happen that none of the chosen beekeeper tokens are linked to
artist tokens.

The process of building an initial model that conforms to the premises has two
parts: creating a model conforming to the first premise, and then extending this

Symbol-Processing in Conposit 25

by using the second premise to form a model of both premises. In the syllogism
displayed above, the first premise would lead to a model containing just a and
b tokens — perhaps the a and b portion of MM 2-1. This model would then
be extended to produce a model involving chemist tokens. A possible result is
MM 2-1.

A negative premise is handled in [24] by dividing the token set up into disjoint
subsets by means of a "negative baITier.,, Conposit does away with the barriers,
as does the later formulation of the theory in [25].

2 . 2 A D J U S T M E N T S T O T H E J O H N S O N - L A I R D T H E O R Y

The system to be presented embodies an adjusted, somewhat simplified form
of the Johnson-Laird theory, while still having the same logical power. This
section summarizes the adjustments. See [2] for a fuller discussion, with justifi
cations. Some of the adjustments to the theory are in areas where Johnson-Laird
has been unsure, not entirely consistent, or unclear. Also, some of the ma
jor changes actually make no difference from the standpoint of psychological
predictions or experiment, since they are in aspects of the theory that are not
appealed to in the presentations of the predictions and experiments. In any
case, the version implemented in Conposit preserves the interesting challenges.

The key ideas of mental models, mental model construction from premises,
derivation of tentative conclusions from mental models, and attempted falsi
fication of tentative conclusions through construction of further models have
been preserved in Conposit. On the other hand, some of the detail of the struc
ture of models has been adjusted, and the method for exploring the space of
mental models has been radically modified. The model-structure adjustments
are natural ones that are suggested by the way Conposit works and make good
sense in the terms of mental model theory as such.

The adjustments fall into two broad classes: representational and procedural.
They will be considered in that order. The procedural ones partly follow from
the representational ones.

Name Sharing instead of Identity Links

Johnson-Laird and Bara ([24], especially p. 28) imply that a line like

a = b = c

26 CHAPTER 2

in a model corresponds to an ordered list of items in their computer program
embodying the theory. Also, the left-right ordering in such a line is significant
in the processing details of the theory as such. One of our adjustments,
however, is to replace identity links by sharing of token names. Thus, instead
of

a = b

the following unordered set of tokens is used:

A:x B:x

which could just as well be written down as:

B : x A:x

The x is some arbitrary label that uniquely names the individual represented
by the token. Thus, the token set shown represents a single individual that is
in both set A and set B. On the other hand, the token set

A:x B:y

represents two distinct individuals, since x and y are different names. Alto
gether, then, model MM 2-1 now takes the following form:

MODIFIED MENTAL MODEL MM 2-2

A:x\ B:x\ C:a?i
A:x2 B:x2 C:x2

(A:x3)

(B : z 4) (C:^ 4)

(C:x 5)

Notice that because the positioning of tokens in an Conposit model is insignif
icant, it turns out that the premises "Some of the X are Y" and "Some of the
Y are X" (see next subsection) look essentially the same to Conposit. Equally,
the premises "None of the X are Y" and "None of the Y are X" look essentially
the same. The reversals may, however, affect the randomly-selected numbers
of tokens of the two sets, which in turn affects details of performance to some
extent.

Symbol-Processing in Conposit 27

Negative Premises

To indicate that a token of a set A is not in set B, it can simply be made
non-optional and unlinked to any token of class B. Thus, if the first premise is
"Some of the artists are not beekeepers," a possible model is:

A:x\
A:x2
A: x3 B:x3

B:#4

Here there are some artist tokens that definitely do not represent beekeepers.
There is also an artist token that does represent a beekeeper. The premise
"None of the artists are beekeepers" leads to a similar sort of model, but no
token representing both an artist and a beekeeper is included.

In [25], negative barriers are abandoned, and instead tokens prefixed by a
negation symbol are used. In our view, even the use of negation symbols is
unnecessary. Johnson-Laird and Byrne's use of them presumably comes from
the idea that a token that is not mentioned as not being in a given set might be
in the set nevertheless. Conposit's semantic assumption differs: it takes such
a token as definitely not being in the set.

Procedural Adjustments

In [24], Johnson-Laird and Bara hypothesize that in some cases human syllo-
gizers need to switch the order of the premises in order to allow the information
from them to be more easily integrated. This re-ordering feature is not included
in Conposit, although it would have been conceptually straightforward to in
clude it.

A conclusion produced by a syllogizer is meant to be of the form "C rel
A" or "A rel C". Sometimes the Johnson-Laird theory will first consider the
possibility of a conclusion in one of these forms and then, perhaps, consider
the other. Processing load problems may, however, cause the second order
to be neglected, resulting in the overlooking of a possible conclusion. In the
Conposit version, both orders are always tried. However, in line with the
fact that Conposit is essentially insensitive to the distinction between premises
"Some of the X are Y" and "Some of the Y are X"\ the system does not bother

28 CHAPTER 2

to produce the conclusion "Some of the C are A" as well as "Some of the A
are C." A similar point applies to "None of..." conclusions.

Given that a conclusion of the form "X rel Y" is being sought, the Johnson-
Laird theory first tries to produce a universal affirmative conclusion (all the
X are Y), and only if that fails will it consider a particular affirmative one
(some of the X are Y). There is a similar pre-empting of particular negative
conclusions (some of the X are not Y) in favor of universal negative ones (none
of the X are Y). By contrast, Conposit produces the particular versions from a
model even when the universal versions can also be produced.

In [24] (pp.38/39), Johnson-Laird and Bara present five diverse rules for mod
ifying the current mental model to get a new one that is still consistent with
the premises (but possibly falsifying a current tentative conclusion). Johnson-
Laird and Bara (p.37) doubt that human syllogizers search the space of models
"either randomly or in a totally systematic way," but their implementation of
the theory appears to be largely if not wholly systematic. Instead, Conposit
embodies a simple, random model-generation process. When one model has
been created and tentative conclusions drawn from it, another one is randomly
created, and so on. The possibility that a previous model might be re-generated
up to isomorphism, just by chance, is tolerated. This exploration method is
much simpler than that in [24], while still letting the modified theory be com
plex enough to act as a significant challenge to connectionism. Notice that
because Conposit considers only randomly many randomly-constructed mod
els, it is possible for more than one totally incorrect conclusion to survive. By
contrast, the Johnson-Laird theory never produces more than one conclusion.

Summary of the Modified Processing

The overall syllogistic reasoning process as conducted by Conposit is as fol
lows. Given a pair of premises (expressed in an internal propositional form
rather than in natural language), Conposit creates randomly many, randomly-
constructed models that are consistent with the premises. Each model is
constructed by first creating suitably linked tokens for the sets A and B in the
first premise, and then adding in some C tokens, linked to B tokens in a way
that is consistent with the second premise. From the first model constructed,
as many tentative conclusions as possible are constructed. Subsequent models
are used to eliminate tentative conclusions that do not hold in them.

Symbol-Processing in Conposit 29

2 . 3 T H E C H A L L E N G E P O S E D BY T H E J O H N S O N - L A I R D T H E O R Y

The challenge posed by the Johnson-Laird theory has three main parts:

(1) The theory requires at least two sorts of relatively complex, temporary
information structure to be rapidly created on the fly. These are the mental
models and tentative syllogism conclusions.

(la) In particular, mental models involve variable numbers of co-existing
members of each of several sets.

(lb) Similarly, at any time several temporary propositions co-exist in working
memory (two premises and possibly a conclusion, at least; and often several
tentative conclusions).

(2) The mental model processing is meant to work with any three distinct sets
in a syllogism (cf. artists, beekeepers and chemists in the above example), and
thus raises the issue of systematicity of inference [20].

(3) The theory involves complex procedural control.

These features are linked to various major, well-known difficulties for con-
nectionism. In particular, the structures in (1) are simple from the point of
view of symbolic AI, but complex in the context of connectionism, which has
a problem even with the encoding and systematic processing of quite simple
structures. The variable binding problem is a particular manifestation of (2).

A full, detailed explanation of exactly why features (1) to (3) impose significant
elaboration requirements on connectionism would be involved and lengthy. It
would have to take account of the numerous different types of connectionist
network, and would have to grapple with the fact that connectionism has no
precise, general definition. Nevertheless, detailed arguments that go a long
way towards explaining why the features are troublesome are given in [1], [5],
[6] and [9]. The following comments only give some brief indications of the
nature of the issues.

Feature (1) requires some means for rapidly putting together the components
of the information structures, where the combinations formed may be unan
ticipated in their specifics. For instance, in creating a tentative syllogism
conclusion, the system must be able to state any of the four allowed rela
tionships between any two sets A and C whatsoever (cf. feature (2)). Set A

30 CHAPTER 2

might be athletes, set C might be clouds. The system may never before have
formed any proposition that relates athletes to clouds. Furthermore, the sets
themselves could be novel. Although examples of syllogisms usually use just
plural nouns to define the sets, one could have more complex noun phrases
such as "the athletes with red hair."

The upshot is that the possible combinations are extremely numerous and
arbitrary. This calls into question, for instance, the idea of setting aside one
network unit for each possible syllogism conclusion. At the same time, the
coexistence in (lb) means that the system cannot simply light up an athletes
unit, a clouds unit, and a "some" unit to represent the proposition that some
athletes are clouds. Such a scheme would lead to the well-known problem
of crosstalk. Other suggestions include facilitating suitable connection paths
among the athletes node (unit or sub-assembly), the "some" node, the clouds
node, and a recruited node standing for the proposition as a whole. However,
this leads to considerable problems in seeing how the constructed proposition
could be used in further reasoning, such as determining that the proposition is
inconsistent with some mental model. (This is especially so if the facilitation
consists of weight changes on the connection paths as opposed to the activation
of gating nodes on the paths, but even the latter is troublesome. See especially
[1].)

A recent suggestion has been to use reduced representations (see, e.g., [22] [30]
[29]) to encode structured data. The difficulty here is (la) and (lb). Should
one overall reduced representation be formed for the entire set of tentative
conclusions, model tokens, premises, etc., or should these items be encoded as
separate reduced representations sitting in different regions of the network?

The former suggestion is conceptually very tidy, but either requires continual
expansion of reduced representations in order to extract individual propositions
(etc.) and components of them, or requires a high, and as yet unproven, degree
of ability to get the same effect by manipulating reduced representations as
wholes. A certain interesting degree of ability on this has been achieved (e.g.,
[14] [30] [16] [13] [33]), but there is a long way to go before it has been
sufficiently extended and elaborated. (Some particular obstacles are detailed
in [5] [6].)

On the other hand, if separate reduced representations are maintained, there is
an elaborate "storage management" problem. Available regions in which to
place new propositions, tokens, etc. need to be found; and either the requisite
inferencing circuitry must be replicated across the different regions, or the

Symbol-Processing in Conposit 31

system must move representations to canonical regions where they can be
subjected to inference.

As for (3), the overall process required by the Johnson-Laird theory is much
more complex than the overall processes effected by connectionist systems
heretofore. Many steps are involved, and there is important iteration and
branching. Some of the iteration has unpredictable extent — mental models
(in the modified theory) vary in size randomly, but the system must be able to
inspect all the tokens in various ways.

Any methods proposed for coping with the challenges should be extensible
beyond the Johnson-Laird theory, which is after all only being used as a
case study. But features (1) to (3) are just special, highly restricted cases
of the general point that high-level cognition involves multiple, co-existing,
complex, short-lived, rapidly-created, diverse, novel working memory items,
and complex manipulation profiles. For instance, the arbitrariness and novelty
of combination in syllogism conclusions is just a pale reflection of the fact that
natural language understanding, commonsense reasoning, and so on naturally
bring in very arbitrary combinations of concepts. This is especially so when,
for instance, mistaken beliefs, metaphor, counterfactual propositions, dreams
or children's fiction are at issue.

3 MENTAL MODELS IN CONPOSIT

This section gives a general overview of Conposit, details the way syllogisms
and mental models are realized in its working memory, and briefly sketches the
rules that manipulate the contents of working memory. Since this paper is fo
cused mainly on RPE (relative-position encoding) and PSA (pattern-similarity
association), it omits a detailed description of the nature of rules and of how
they cooperate to work a syllogism. This detail can be found in [2], which
also has an appendix detailing simulation results. A portion of those results is
included as section 6 below.

The descriptions in the present section are cast at a level of description some
what higher than that of connectionist circuitry. The connectionist realization
is sketched in section 4.

3.1 OVERALL STRUCTURE

32 CHAPTER 2

CONFIGURATION MATRIX
(CM)

the working memory:

a 2D register array holding
short-term data structures

CM command signals

" detected "
highlighting

\Z

SUBCONFIGURATION
DETECTION MODULE

LM cimmand signals

J
fasVparallel system

•' for detecting data-structure fragments

that are important in rule firing

\z.
RULES' ACTION PARTS

flowcharts whose nodes send

' 'command signals''

to the Configuration Matrix

Figure 1 Overall architecture of Conposit.

Symbol-Processing in Conposit 33

The gross architecture of Conposit (and all other previous Conposit versions)
is pictured in Figure 1. The system is more or less a conventional rule-based
system. The "Configuration Matrix" (CM) is the working memory, and is
where syllogism propositions and tokens sit. The action parts of the rules
are realized in the Action Parts module. The condition parts of the rules are
realized in the Subconfiguration Detection Module, which detects particular
data structures in the CM. On each cycle of operation of the system, one action
part is chosen randomly out of those that are enabled by the output of the
Subconfiguration Detection Module. This action part is executed, usually with
the effect of changing the state of the CM. A new cycle then starts.

Each action part can perform a major amount of processing — the rules are
quite coarse-grained. Consequently, there are only about ten rule firings per
mental model constructed during a simulation. This count includes the rule
firings for constructing the model, creating or checking tentative conclusions,
and destroying the model.

The initial state of the CM is set by the experimenter. The simulation program
contains a procedure that converts syllogism propositions expressed in a con
venient list format into data structures within the CM, but this format and the
conversion of it are not part of Conposit proper. The simulation program stops
when no rules are enabled.

3.2 CONFIGURATION MATRIX (CM)

The CM, Conposit's working memory, is a 32 x 32 array of "(active) registers."
The state of a register at any time consists of two main portions: a "symbol"
and a "highlighting state". Each register is a connectionist subnetwork. The
symbol and highlighting state in the register are activity vectors in certain
portions of the subnetwork.

Some symbols are called "constant" symbols, and permanently denote partic
ular entities. Denoted entities can be of any sort whatever, including not only
people (e.g. individual artists) and classes of people (e.g. the set of all artists),
but also situations (e.g., that of a particular artist loving a particular beekeeper),
and classes of situations. Any register can contain any symbol, and a symbol
may occur in many different registers at the same time. There is also a "null"
symbol, which never has a denotation, and a set of variable-like "unassigned
symbols," which pick up temporary denotations in a way to be described.

34 CHAPTER 2

The highlighting state is a vector of ON/OFF values for a tuple of "highlighting
flags. Each register has the same tuple of flags, but of course the values need
not be the same. Highlighting flag values serve mainly

• to help define relationships among things denoted by the symbols,

• as markers identifying current loci of attention of a rule that is executing,

• as markers in marker passing processes.

There is no in-principle restriction on how many of the highlighting flags can
be ON at once in a given register, but in fact only a small number ever are. If
a given flag is ON, the register is said to be highlighted in or with that flag.

A register not involved in a representation is said to be free. It has a "null"
symbol (all symbol-vector units OFF). It also has OFF values on all highlighting
flags except some that are used in certain housekeeping activities.

Each representation in the CM consists of one or more separate "clumps" of
registers in suitable symbol/highlighting states. A clump consists of a non-free
"head register" together with one or more non-free "role registers" immediately
adjacent to it. An idea of the nature of a clump can be obtained from Figure 2,
which shows only an arbitrary 8x8 region of the CM. The head in this case is
the register that is highlighted by a flag called instance, which is indicated by
the V sign in the figure. There are also three role registers. These are the ones
shown with a black dot, "argl" and "arg2." These three marks indicate certain
highlighting flags. The clump encodes the proposition that "all the artists are
beekeepers." The ARTISTS and BEEKEEPERS symbols denote the sets of all
conceivable artists and beekeepers respectively. The SUBSET symbol denotes
the class of all conceivable situations in which one set is a subset of another.
Further explanation of the figure will be given in a moment.

Each syllogism premise, tentative conclusion, and token in a mental model
is realized as a single clump. Different clumps are separated by free space:
that is, no register of one clump is adjacent to a register of another. The
absolute positions of the clumps in the CM are irrelevant: what is important is
the particular symbols and highlighting states within each clump, and (as will
become apparent) the way that clumps share symbols.

Also, the only important between-register relationships within a clump are
their adjacency relationships and certain combinations of highlighting states

Symbol-Processing in Conposit 35

argl

ARTISTS

V
Y

•
SUBSET

arg2

BEEKEEPERS

Figure 2 8x8 region of the Configuration Matrix, containing a possible
clump representing "All the artists are beekeepers."

in adjacent registers. The direction of adjacency is unimportant. For instance,
if a clump contains just two registers, they can be "horizontally," "vertically,"
or "diagonally" arranged in the Configuration Matrix. The arrangement makes
no difference to the way the clump is treated by rules.

Representations in the CM are modified when individual registers respond to
the "command signals" that rules send to the CM as a whole. A register's
response consists of a replacement of its symbol and/or changes to its high
lighting flag values. As a result, clumps can rapidly be modified and made to
appear and disappear.

36 CHAPTER 2

3.3 SYLLOGISM PROPOSITIONS IN CONPOSIT

In Figure 2, the register containing the SUBSET symbol is highlighted with a
flag called class, as indicated by the • sign.2 The significance of instance and
class highlighting is as follows:

Semantic Stipulation on Class Membership

If a register is currently highlighted with class and contains a symbol s denoting
a class, and is adjacent to a register that is currently highlighted in instance,
then the latter register currently denotes some (putative) member of the class
denoted by s.

Hence, the mstance-highlighted register in Figure 2 denotes some subset situ
ation.

Notice that both symbols and registers are regarded as being able to denote. In
fact, the following principle applies:

Stipulation on Denotation by Registers and Symbols

If a register currently contains a non-null symbol, then the register and the
symbol currently denote the same thing.

The three symbols mentioned so far have a fixed, permanent denotation, and
this is borrowed by any register such a symbol temporarily lies in. As will be
seen in a moment, the borrowing can go in the other direction, in the case of
unassigned symbols. In either case, however, denotation by registers is always
temporary, since the presence of a symbol in a register is only ever temporary.

There is a further semantic stipulation to the effect that if a register denotes a
subset situation and is highlighted with instance, then any neighbor highlighted
with a flag called argl denotes the subset, and any arg2 neighbor3 denotes the
superset. Highlighting with argl and arg2 is shown in Figure 2.

Set intersection relationships, such as in "some of the beekeepers are chemists,"
are encoded in a similar way, only using an INTERSECTION symbol instead

2 The flag names instance and class replace the names white and black, respectively, used in
other papers on Conposit.

3"arg2 neighbor" means the neighbor highlighted with arg2.

Symbol-Processing in Conposit 37

of SUBSET. For the proposition just quoted, the argl register would contain the
BEEKEEPERS symbol and the arg2 register would contain the CHEMISTS
symbol.

The method described here for encoding propositions is exactly the same as is
used in other Conposit versions having nothing to do with syllogistic reasoning.
For instance, in another Conposit version the proposition that John loves Mary
would be encoded by means of a clump like that in Figure 2, only using a
LOVES symbol instead of SUBSET, and JOHN and MARY symbols instead
of ARTISTS and BEEKEEPERS. Here the LOVE symbol would denote the
class of all conceivable loving situations.

A negative premise/conclusion is realized as pictured in Figure 3. The two
clumps together encode the proposition that the ARTISTS set is not a subset of
BEEKEEPERS. This involves two clumps linked by virtue of the fact that they
each include a register containing the symbol Y. Symbols Y and Z are two of
Conposit/SYLL's fifty "unassigned symbols," which have no assigned denota
tions. Unassigned symbols are regarded as picking up temporary denotations
from the registers they are in. This is by virtue of the Stipulation on Denotation
by Registers and Symbols. Consider the head register containing Y in Figure
3. That register temporarily denotes the situation S of the ARTISTS set being
a subset of the BEEKEEPERS set. This makes Y denote that situation as well.
Hence, by that same Stipulation, the register containing Y in the other clump
also denotes situation S. Hence, this clump represents the situation of S not
holding. (The assigning of denotations to unassigned symbols and registers is
entirely in our minds as observers — it is not a process performed by Conposit
itself. Conposit merely processes register states in a way which is consonant
with the theoretical assignation of denotations.)

Symbol-sharing is viewed as establishing an association between the registers
that share a symbol. Since a symbol is implemented as a connectionist activa
tion pattern, between-clump association by symbol sharing is a simple special
case of PSA. On the other hand, the association of registers within a clump is
by a simple form of RPE. Within-clump association depends only on the adja
cency of suitably-highlighted registers. (See [9] for a description of PSA and
RPE in general terms, possible instances of them diverging from Conposit's,
and relationship the two techniques bear to other connectionist work and to
computer data structuring techniques.)

Propositional embedding, as implemented through PSA, is also used in Con
posit to order the components of a syllogism, as illustrated in Figure 4. This
shows one possible encoding of the following syllogism:

38 CHAPTER 2

argl

ARTISTS

NOT

•

V
Y

V
z

•

SUBSET

argl

BEEKEEPERS

argl

Y

Figure 3 Clumps for "Some of the artists are not beekeepers" (i.e. it is
not the case that all artists are beekeepers).

(PI) All the artists are beekeepers.

(P2) Some of the beekeepers are chemists.

(I) The relationship of artists to chemists is to be
investigated.

The inclusion of this third item is a respect in which Conposit might be said
to be cheating, in that human subjects in syllogism experiments are not always
given an explicit command about what sets to relate. However, in [24] Johnson-
Laird and Bara do not give an account in their theory of how human subjects
work out what sets to relate, and in any case it would be possible to modify
Conposit so that it works this out.

Symbol-Processing in Conposit 39

argl

PI

PI

V
argl

ARTISTS

FIRST

•

SUCCESSION

•

V
X

SUBSET

•
arg2

BEEKEEPERS

V
PI

arg2

P2

P2

V
argl

BEEKEEPERS

argl

P2

INTERSECTION

•
argl

CHEMISTS

SUCCESSION

•

V
Y

argl

ARTISTS

arg2

I

INVESTIGATE

•

V
I

arg2 1

CHEMISTS

Figure 4 A possible encoding of a syllogism problem.

The proposition (PI) that all the artists are beekeepers is ordered before the
proposition (P2) that some of the beekeepers are chemists. The left-hand
SUCCESSION clump in the Figure states that whatever is represented by
unassigned symbol P2 is to be considered after whatever is represented by
PI. PI and P2 are made to denote the mentioned propositions by virtue of
their appearance in the heads of the clumps in the middle of the Figure. The
"FIRST" proposition in the Figure states that proposition (PI) is the first item
in the sequence of three propositions. A run of Conposit is initialized with a
CM state of the sort shown.

In some applications of Conposit there might be propositions with more than
seven argument places, which is a problem in view of the fact that a head
register in a clump has at most eight neighbors. In order to solve this problem,

40 C H A P T E R 2

•

ARTISTS

•

ARTISTS

•

ARTISTS

V
XI

V
X2

V
opt

X3

V
XI

V
X2

V
opt 1

X4

•

BEEKEEPERS

•

BEEKEEPERS

•

BEEKEEPERS

V
XI

V
X2

, V
opt

X4

V
opt

X5

•

CHEMISTS

•

CHEMISTS

•

CHEMISTS

•

CHEMISTS

Figure 5 Clumps for mental model MM 2-2.

Conposit allows a proposition to be separated into several clumps encoding
different aspects of the proposition [2].

3.4 REPRESENTATION OF MENTAL MODELS

An individual token is encoded by a straightforward application of the above
techniques. For instance, the encoding of an artist token consists of a in
stance/class clump, where the class register contains the ARTISTS symbol,
and the instance register contains some unassigned symbol. See the three
clumps at the left of Figure 5. The instance register in each of these three
clumps denotes some artist. So the unassigned symbol in the register also tem
porarily denotes that artist. In terms of the adjustments to the Johnson-Laird
theory that were described in section 2.3, the unassigned symbol acts as the

Symbol-Processing in Conposit 41

name of the token. The clump corresponds directly to the notation " A:x" used
there, if A stands for the artists set. A token is marked as being optional by
virtue of its head register being highlighted with a special flag called optional
(cf. opt in bottom left clump of Figure 5.)

Because mental models are randomly constructed one at a time by Conposit,
the CM never contains more than one model. The Johnson-Laird mental model
MM 2-1, which has the adjusted form MM 2-2, could in principle take the form
pictured in Figure 5. However, this arrangement is regimented for illustrative
clarity. The positioning of the clumps is, as always, irrelevant, and when they
are created they are placed in arbitrary positions in the CM. They can even be
arbitrarily placed with respect to the clumps that encode the syllogism itself
(Figure 5). That is, the CM is not divided into separate regions for propositions
and tokens.

3 . 5 C O N P O S I T ' S R U L E S

Conposit has the following rules.

Note-First

Designates the first premise as the "current" proposition by imposing a certain
highlighting state on it.

Note-Next

Transfers the "current" designation from first premise to second, when the
former has been marked as having been processed. Similarly, the rule transfers
the "current" designation from the second premise to the "to be investigated"
proposition.

Create-Unclassified-Tokens

If there are no unclassified tokens (as happens if and only if the CM contains no
mental model), and some syllogism proposition is "current," this rule creates
randomly many "unclassified" tokens. These are just like, say, ARTISTS
tokens but using the symbol THINGS rather than ARTISTS.

42 CHAPTER 2

When one of the rules below creates a proper token, say an ARTISTS one, the
token is a modified copy of an arbitrarily chosen unclassified token. The mod
ification consists of replacing the THINGS symbol by the ARTISTS symbol.

Intersection

When an intersection proposition ("Some of the X are Y") is "current" and
there are some tokens, this rule proceeds as follows.

Unless there are already some X tokens and some Y tokens, the rule assumes
the proposition is a premise and modifies the model appropriately. The modi
fications consist mainly of additions of tokens of X and/or Y (unless some X,
Y tokens, respectively, already exist), and ensuring that at least one X token
has the same name as some Y token.

On the other hand, if there are both some X tokens and some Y tokens, the
rule assumes the proposition is a tentative conclusion. In this case it deletes
the proposition if and only if it fails to hold in the model.

Subset, Not-Intersection, Not-Sub set

These three rules are analogous to Intersection, and deal with premises or
tentative conclusions of the form "All the X are Y," "None of the X are Y" and
"Some of the X are not Y" respectively.

Create-Conclusions

When the first mental model has just been created from the premises and
therefore the "to be investigated" proposition is "current," this rule creates
tentative conclusions about the end terms (the A and C sets) in the syllogism.
A tentative conclusion is encoded in just the same way as a premise except
that it has its head register highlighted with the tentative flag.

The marker passing process that organizes the conclusion creation is detailed
in section 3.6 below.

Check-Conclusions

When a mental model other than the first has just been created, and therefore
once again the "to be investigated" proposition is "current," this rule transfers

Symbol-Processing in Conposit 43

the "current" designation to the existing set of tentative conclusions, left over
from the previous models. This prepares the way for rules Intersection, Subset,
Not-Inter section ox Not-Subset to check those tentative conclusions against the
current model.

Destroy-Tokens

When tentative conclusions have just been created or checked, this rule destroys
the current mental model. The destruction consists simply of the elimination
of all tokens, returning each register involved in the clumps to the "free" state.

Remodel

When the current model has just been destroyed and there are some tentative
conclusions left, the firing of this rule makes a certain highlighting change
that causes Note-First to become enabled again. Thus, a new model will be
created.

Finish

When the current model has just been destroyed and there are some tentative
conclusions left, the firing of this rule deletes all tentative highlighting, thereby
making the surviving conclusions into definite propositions. This also causes
it to be the case that no rules are now enabled. The simulation therefore halts.

Mostly, only one of the above rules is enabled in any given CM state. There are
two exceptions to this. First, rules Remodel and Finish have exactly the same
enabling condition, and are therefore always enabled together. The system
randomly chooses which one to fire. This is tantamount to the system randomly
choosing to try out a new model or to stop. The probability of choosing one
of the rules as opposed to the other depends on Conposit parameter settings.
The second exception is that when conclusion checking is in progress, more
than one of the rules Intersection, Subset, Not-Inter section and Not-Subset can
be enabled. For instance, if there is a tentative intersection conclusion and
a tentative negated subset proposition, then rules Intersection and Not-Subset
are both enabled.

If there are two tentative subset conclusions, say, rule Subset makes an arbitrary
choice of one conclusion to work on. When the rule finishes it removes the

44 CHAPTER 2

"current" designation from this conclusion, so that another firing of the rule
will deal with a different subset conclusion.

Much more detail on how the rules work can be found in [2].

3.6 TENTATIVE CONCLUSION CREATION BY MARKER PASSING

Rule Create-Conclusions organizes its job by means of a marker passing pro
cess that is described here. The presence of a marker at a token consists
simply of the highlighting of the head register of the token with one of the
flags member-of-1, member-of-2, member-of-only-one, member-of-both. The
"sharing of token names" mentioned at the start of section 2.2.1 is simply
sharing of unassigned symbols by the head registers of tokens. (See Figure 5.)

The process has the following steps. The A and C sets are the two sets involved
in the syllogism conclusion.

Initialization

(a) Mark all A tokens with member-of-1 and all C tokens with member-of-2.
Spread these marks according to name-sharing (i.e. "identity links"). That is,
if a token is marked with member-of-1 then also mark with member-of-1 any
token with the same name; and proceed similarly with member-of-2.

(b) Put member-of-both marking on each token that is marked with both
member-of-I and member-of-2.

Symmetric Conclusion Formation

(a) If there are some tokens marked with member-of-both, construct the tenta
tive conclusion "Some of the A are C".

(b) If there are no such tokens, construct the tentative conclusion "None of the
A are C".

A-C Asymmetric Conclusion Formation

(a) Putmember-of-only-one marking on all tokens that are marked with member-
of-1 but not member-of-both.

Symbol-Processing in Conposit 45

(b) If there are some non-optional tokens marked with member-of-only-one,
construct the tentative conclusion "Some of the A are not C".

(c) If there are no tokens marked with member-of-only-one, construct the
tentative conclusion "All the A are C".

C-A Asymmetric Conclusion Formation

Prepare by deleting member-of-only-one marking. Proceed as in A-C case but
with A and C interchanged.

3 . 7 SUBCONFIGURATION DETECTION MODULE AND RULE

ENABLEMENT

The condition part of a rule consists essentially of a portion of the circuitry in
the Subconfiguration Detection Module. This module undeniably contributes
the lion's share of the circuitry in Conposit.4 It consists of a group of in
terconnected "location matrices" (LMs). Each location matrix is in charge of
detecting a particular sort of state subconfiguration within the CM. For instance,
one location matrix detects unclassified tokens (like those in Figure 5 but with
symbol THINGS in place of ARTISTS etc.). Another detects SUCCESSION
propositions that are "ready." A "ready" SUCCESSION proposition is one
whose argl register is highlighted in done. This highlighting indicates that the
proposition denoted by that register has been dealt with, and that it is time to
move on to the proposition denoted by the argl register. A further location
matrix detects current INTERSECTION propositions. An INTERSECTION
proposition is current if its head register is highlighted with current.

Notice carefully that there is only one LM that detects current INTERSECTION
propositions. This LM is insensitive to which sets (ARTISTS, etc.) are
involved. Similar comments apply to other LMs. Thus, there is no explosive
replication of circuitry within the Subconfiguration Detection Module in order
to cope with the possible trios of sets in syllogisms.

Each location matrix is a 2D matrix of the same size as the CM, and the
elements are again called registers. For present purposes the reader may take
an LM register to have just a binary state, ON or OFF. Suppose the location
matrix is the one for detecting current INTERSECTION propositions. Then

4It can be dispensed with entirely, however, at the cost of considerably slower processing.

46 CHAPTER 2

any register in it is ON if and only if thepositionally corresponding register in
the CM is

either the head register of a current INTERSECTION proposition

or a register that contains the same symbol as such a head register.

ON states in LMs arise out of the interconnections between LMs as well as
connections going from the CM to LMs.

Several rules may be enabled by the Subconfiguration Detection Module in
a given state of the CM. The choice of rule to fire is random, as governed
by probabilities provided by Conposit parameters. The enablement condition
for a rule is a logical combination of elementary conditions. Each elementary
condition is in terms of (a) the presence/absence of ON states in specific
LMs, and/or (b) the presence/absence of specific highlighting in the CM. For
instance, the enablement condition of the rule Note-Next can be paraphrased
as:

"the ready-SUCCESSION LM contains ON somewhere and
there is no current highlighting anywhere in the CM."

The "somewhere" and "anywhere" in the two elementary conditions conjoined
here illustrate the point that enablement never depends on where a specific
highlighting state occurs in the CM or where the ONness is in an LM.

3.8 COMMAND SIGNALS

Firing a rule consists largely of the rule's action part sending a sequence of
instructions called "CM command signals" to the CM. Each CM command
signal goes without modification to every register in the CM in parallel. More
over, the command signal does not contain any sort of name or address for any
register, and is therefore unable to explicitly instruct any particular, fixed regis
ter to do anything. Nevertheless, different registers may respond differently to
the signal, so that in effect the command signal does implicitly cause different
registers to do different things. The differences between registers in how they
respond to a CM command signal depend mainly on their own current states
and the highlighting states of their neighbors. (The CM therefore acts like a
grid of processors in an SIMD parallel computer.)

Symbol-Processing in Conposit 47

In a simple case, the command signal will dictate that a register is to respond
if and only if its highlighting state is as specified by the signal. The command
signal may require specific flags already to be ON and/or specific flags already
to be OFF, and allows the remaining flags to be at either setting. The register's
response then typically consists of changing its highlighting state in the way
dictated by the command signal, and/or adopting the symbol conveyed in the
command signal. The command signal may also dictate that for a register
to be able to respond at all, its neighbors must obey a highlighting condition
conveyed in the signal. More exactly, the command signal can only require
that either some or all of the register's neighbors have certain highlighting flags
ON and/or certain ones OFF.

A command signal often decrees that arbitrary selection be done — i.e., that
just one, arbitrarily chosen, member of the set of registers that obey the signal's
highlighting condition be in the response set. An example of this is when the
system makes an arbitrary choice as to which of several different tentative
conclusions to check against the mental model. The selection process is
performed by the Temporal-Winner-Take-All (TWTA) mechanism, described
in section 4.3 below.

The command signal may also decree that spread by symbol sharing is to occur
(after arbitrary selection if any). This means that any register containing the
same symbol as any register already in the response set is now put in the set as
well.

A rule action part can also send "LM command signals" that affect the CM
indirectly through the medium of LMs. An LM command signal goes to a
specific LM, whereupon every ON register in that LM sends a simple signal to
the positionally corresponding register in the CM. The CM registers receiving
these simple signals then turn on a highlighting flag called detected. For
instance, if the LM is the current-INTERSECTION one, the CM head register
of each current INTERSECTION proposition in the CM turns on its detected
highlighting. The rule that is firing may now focus its processing on those
propositions.5

5 Elsewhere, CM and LM command signals are called "direct command signals" and "indirect
command signals" respectively.

48 CHAPTER 2

3.9 REGISTER RECRUITMENT

Rules often need to create clumps, representing tokens or propositions. A rule
creates a clump by means of a short series of CM command signals. The first
command signal sets up the required symbol and highlighting values of the
clump's head register H, which is arbitrarily chosen out of the set of "ultra-
free" registers (see below). It then sets up the symbol and highlighting values
for each of the one or more required adjacent registers, choosing each register
arbitrarily out of the set of neighbors of the head register. The setting up for
each register requires either one or two CM command signals.

When choosing a free register for the head H, the system must ensure that the
completed clump will be separated by free space from every existing clump.
Let us call a free register "super-free" if it is entirely surrounded by free
registers. Let us call a super-free register "ultra-free" if it is entirely surrounded
by super-free registers. Register H is chosen arbitrarily out of the set of "ultra-
free" registers. The selection of H from among the set of ultra-free registers is
done in just the same way that arbitrary selection is done in response to CM
command signals, i.e. by another instance of the Temporal-Winner-Take-All
mechanism described below. A simple, continuously operating background
process in each register maintains two special highlighting flags indicating
respectively whether it is super-free or ultra-free. The background processes
in different registers operate in parallel with each other.

If the CM is full, i.e. there are no ultra-free registers, then the clump is simply
not created. This failure could cause a mental model to be oversimplified by
not having some tokens, or could cause a possible tentative conclusion not
to appear, but the system would be able to continue its processing. In any
case, the CM has not become full in the many simulation runs that have been
performed.

4 CONNECTIONIST REALIZATION OF CONPOSIT

This section sketches the quite straightforward way in which Conposit's Con
figuration and Subconfiguration Detection Module are realized in connectionist
circuitry. The most interesting aspect is perhaps the Temporal-Winner-Take-
All selection mechanism (section 4.3). For detail on the connectionist realiza
tion of rule enablement and action parts, see [2]. An action part is realized

Symbol-Processing in Conposit 49

as a connectionist subnet structured as a flowchart, most nodes of which send
command signals to the CM or LMs.

4.1 CONFIGURATION MATRIX, COMMAND SIGNALS, AND

PARALLEL DISTRIBUTOR

Each register in the CM is implemented as a small connectionist subnetwork.
Different registers are isomorphic as subnetworks, except for minor variations
in the registers at the edges of the CM. The symbol in a register at any given
moment is an arbitrary binary activation pattern over some group of units in
the register. Also, each highlighting flag is realized as a unit in that register
that is either ON or OFF. The symbol and highlighting units maintain their
values until changed by a CM or LM command signal.

A CM command signal sent by a rule or routine actually arrives at the CM's
"parallel distributor." This module is connected to each register in the CM,
and forwards an identical copy of the signal to each register. See Figure 6. The
signal is an activation vector, each of whose components is a binary or ternary
value. The signal therefore travels from place to place on "cables" consisting
of parallel connection paths. The vector is divided up into separate portions,
some of which are as follows.

Two portions of the command signal vector specify the symbol (if any) and
highlighting that a register must have if it is to respond to the signal. The latter,
"own-highlighting," portion has an ON, OFF or DONT-CARE value for each
highlighting flag. Another, "neighbor-highlighting" portion of the command
signal vector similarly specifies the highlighting that a register's neighbors
must have in order for the register to respond to the signal. An immediate
effect of the arrival of the command signal at a register is to turn on a "own-
condition" unit in the register if and only if it satisfies the own-highlighting
condition in the signal. Another effect is to turn on a "neighborly" unit in the
register if and only if it satisfies the neighbor-highlighting condition.

Each register is connected uniformly to each of its eight neighbors (or fewer,
at the edges of the array). These connections allow a register to sense the
highlighting states of its surrounding registers. In more detail, each register R
simply receives a connection from the "neighborly" unit of every neighboring
register, as pictured in Figure 7. These connections feed both into (a) an OR
unit and (b) into an AND unit within R. This scheme allows R to detect (a)
whether some neighboring register satisfies the neighbor-highlighting condition

50 CHAPTER 2

CONFIGURATION

MATRIX

'copies of the command signal
distributed to all registers

incoming CM command signal

Figure 6 Parallel distributor, and distribution of CM command signals.
The registers can also send certain items of information to the parallel
distributor.

in a command signal, and (b) whether all neighboring registers satisfy the
neighbor-highlighting condition in a command signal. At most one of these
decisions is used in determining whether the register should respond to the
command signal.

The ability of command signals to make register responses depend on neigh
bors ' highlighting states is part of the means whereby RPE has causal efficacy
in the system. The other part is mentioned in the next subsection.

When a certain binary component of a command signal (as an activation
vector) is ON, the signal is decreeing that each responding register broadcast
its symbol to all other registers.6 The broadcast is indirect, going via the
parallel distributor, as there is no direct connectivity between non-neighboring
registers. A broadcast symbol is simply held by the parallel distributor until the
next command signal arrives, at which time the parallel distributor forwards
the symbol to every register. The expectation is that the new command signal

6 In fact, we assume that in such a case all the responding registers contain the same symbol.
In most cases of symbol broadcasting there is only one such register.

Symbol-Processing in Conposit 51

Figure 7 The (only) connectivity between neighboring registers. The
large squares depict registers. The small squares containing 4n' depict
the "neighborly" units mentioned in the text. (The arrows ending in mid
air depict connections that go to the AND and OR units in the middle
register.)

will ordain (by means of an ON value at a certain component of the signal
vector) that every responding register take on the broadcast symbol as its new
symbol. A symbol travels between registers and parallel distributor on cables
of connections.

Broadcasting is also one method that has been used in Conposit to achieve the
spread-by-symbol-sharing capability of command signals (see section 3.8).
This capability enables the effect of a command signal to be transmitted across
the inter-register "linkages" arising from PSA.

4 . 2 SUBCONFIGURATION DETECTION MODULE

The connectionist realization of each location matrix in the Subconfiguration
Detection Module is analogous to that of the CM. However, it is considerably
simpler, since LM registers do not need to decode CM command signals and

52 CHAPTER 2

therefore, in particular, do not need to be connected to neighbors. However,
each LM register does need to receive a copy of the symbol in the correspond
ing CM register. This is to enable ONness to be consistent across positions
containing the same symbol, thus respecting PSA "linkages." The mechanism
for ensuring this involves symbol broadcasting within the LM. The broadcasts
are prevented from conflicting with each other by being arbitrarily sequenced
(see below) by a parallel distributor for the LM. This parallel distributor is also
involved in the distribution of LM command signals to the LM's registers.

A given LM register is connected to some or all of the following sorts of
register in other LMs or in the CM: (i) the positionally corresponding register
in the CM; (ii) the positionally corresponding register in another LM; (iii) the
registers neighboring the corresponding register in the CM; (iv) the registers
neighboring the corresponding register in another LM. Thus, the LM-LM
and CM-LM connectivity is "topographical" to within fan-in from immediate
neighbors. The fan-in is important part of the way in which RPE has causal
efficacy in the system. More detail of the configuration of the connections can
be found in [4].

The LM-LM connections define a directed acyclic network of LMs. Thus, LM
states are updated (whenever the CM state changes) in a single forward sweep
through the LMs, starting with those connected only to the CM. The set of LMs
taking input only from the CM consists of one "basic" LM for every constant
symbol and unassigned symbol used by the system. A register in the basic LM
for symbol s is ON if and only if the corresponding CM register contains s.
This scheme allows a very simple, fast, parallel implementation of the optional
"spreading by symbol sharing" phase of a CM register R's response to a CM
command signal.

4 . 3 CM R E G I S T E R S E L E C T I O N BY

T E M P O R A L - W I N N E R - T A K E - A L L (TWTA)

A CM command signal often decrees arbitrary selection out of some dynami
cally defined set of contending registers. TWTA is also used within LMs and
in rule circuitry, as described in [2].

TWTA is a technique for making a selection out of a set of contending com
ponents (units, sub-assemblies) of a connectionist network. It is therefore
analogous to conventional connectionist winner-take-all (WTA) mechanisms
(see, e.g., [19], [21], [26], [35]; see also [17]). Such a mechanism attempts

Symbol-Processing in Conposit 53

to select the contending component that is initially most highly active. The
selection usually amounts to driving the activations of all the other contending
components to some ignorable value (e.g. zero). By contrast, TWTA pro
ceeds on the basis of fine signal timing differences, rather than the activation
differences. TWTA is not specific to Conposit - it can be used in any type of
connectionist system that allows fine signal timing differences.

TWTA rests on a simple "race" or "first past the post" idea, as follows. Each
contending component sends a simple "ready" signal to an arbitration network.
The ready signals are generated at times among which there are small random
differences, and/or take randomly different amounts of time to travel to the
arbitration network. This subnetwork tries to declare as the winner the sender
of the ready signal that is earliest to arrive. It does this essentially by using
each incoming signal to inhibit the receipt of all the others. However, if several
earliest signals are sufficiently close together in time, the arbitration network
may not be able to distribute the inhibition fast enough. In such a case, a
new round of attempted selection must occur, though now only from among
the components whose ready signals scraped through before they could be
inhibited. Successive rounds therefore normally use smaller and smaller sets
of contenders. On average, the set of contenders is reduced to a fraction / of
what it was, where / depends on various network parameters.

By analysis and experiment [11] [12], it has been shown that the expected
number of rounds of contention is only roughly logarithmic in the number of
initially contending components; and extensive experiments suggest that the
actual number rarely exceeds twice the expected number.

In Conposit, an ON value in a certain component of a CM command signal
decrees the need for arbitrary selection. A register satisfying the highlighting
condition in the command signal sends out its first "ready" signal in an attempt
to win the TWTA contention. The arbitration network is part of the parallel
distributor. When a register wins, a special "win" highlighting flag within it
turns on.

The logarithmic relationship mentioned above, together with the various pa
rameter settings, means that even if all 1024 registers in the CM were initially
contending the number of rounds of contention would only be about seven. In
fact, in almost all selections, the number of contending registers is far lower.
The 1024 figure only arises when the system has to recruit a random regis
ter when the CM is entirely empty. After that, further recruitments are done
as close as possible to already recruited registers, so that the contending set

54 CHAPTER 2

is much smaller. Also, selection among clumps, such as tokens in a mental
model, involves small contention sets.

5 COPING WITH THE JOHNSON-LAIRD CHALLENGE

The present section will show how Conposit meets the requirements posed
by the Johnson-Laird theory, through the power provided by its versions of
Relative-Position Encoding and Pattern-Similarity Association. A major sub-
issue is the question of how Conposit solves the variable binding problem. In
[4] and [9] there is more discussion of variable binding in relation to RPE, PSA
and other representation techniques.)

Feature (1) of the challenge (see start of section 2.3) is the need to handle
multiple sorts of relatively complex, temporary information structure, where
these structures are rapidly created on the fly. Conposit's working memory is a
pool of recruitable registers. It is easy for the system to recruit however many
registers are needed (assuming enough are free) and to structure them into the
different sorts of required propositions and token representations. This ease
arises from a simple and efficient clump-creation method. All that is required is
to put a suitable collection of registers into the right states of activation, in such
a way as to achieve the desired RPE and PSA relationships among registers.
The CM command signals that achieve this do not need to be sent by rules to
any specific registers; rather, command signals are identically broadcast to all
registers, and it is the registers' individual states that dictate whether they are
to respond to the rule.

The circuitry within the CM that supports all this consist mainly of simple logic
within each register, very simple neighbor-neighbor interactions (consisting
merely of sensing whether neighbors satisfy a highlighting condition in a
CM command signal), simple TWTA arbitration circuitry within the parallel
distributor, and trivial circuitry within the parallel distributor for distributing
command signals and broadcasting symbols within the CM. The rapidity of
data structure creation is ensured in part by having an efficient register selection
mechanism (namely TWTA), and by there being an efficient means for each
register to determine for itself whether it is free, super-free or ultra-free (section
3.9). These determinations are done in parallel across all registers.

The temporariness of the data structures in the CM is ensured by the fact that
non-free registers can easily be put back into the free state, combined with the

Symbol-Processing in Conposit 55

fact that data structures in the CM have a localist quality, being separated from
each other much as symbolic structures in a computer memory are. Therefore,
data structures can be individually eliminated without affecting other ones (that
are not sub- or super-structures of the ones deleted).

This ease of data structure deletion is brought out especially by the rule that
eliminates a whole mental model. All the rule needs to do is to suitably highlight
all registers that share an unassigned symbol with a THINGS token, and then
eliminate all clumps that are headed by those just-highlighted registers. Each
of these actions requires only a couple of command signals. All the token
eliminations proceed in parallel with each other.

Feature (la) in section 2.3 is the need for connectionist systems to be able to
manipulate variable numbers of co-existing members of each of several sets.
In the Johnson-Laird case the members are the tokens and the sets are those
mentioned in the syllogism. Conposit's flexibility in this regard is ensured by
the fact that the working memory is only a pool of registers that can be used
for any representational purpose. No register is permanently dedicated to a
specific representational task, such as representing a token of a specific type.
Thus, the pool can have any mix of token types that might be necessary at any
given time. Several tokens might all be of the same type (all of type ARTIST,
say).

Similar comments apply to feature (lb), which is concerned with the co
existence of multiple propositions. Conposit thereby gets away from a narrow
view that seems to be adopted in many connectionist discussions of frame
instantiation, role-binding, etc. Such discussions often do not take explicit ac
count of the need to be able to have several instantiations of a frame, predicate,
etc. co-existing at any one time. The non-dedicatedness of registers is the key
to Conposit's handling of this issue.

A further point about the tokens is that they can, when necessary, be manipu
lated in parallel in Conposit. A simple example of this is the deletion of whole
mental models. Another important example is that each step in the marker
passing process of section 3.6 is done by manipulating tokens in parallel. Sup
pose, say, marker member-of-1 is on several token-head registers Ri, and it is
required to copy this marking to any register holding the same (unassigned)
symbol as one of the Ri. This effect is achieved by a single CM command
signal that does a "spread-by-symbol-sharing" action. What is spread is the
ONness of member-of-1 highlighting. The spreads from different registers Ri
occur in parallel, via the medium of the location matrices that correspond to
the symbols in the Ri.

56 C H A P T E R 2

Feature (2) in section 2.3 is the need for the mental model processing to work
for any three classes A, B, C that the system knows about. This is tantamount
to saying that the processing rules must have variables that can be bound to
whatever classes are involved in the presented syllogism. An idea of how this
happens in Conposit can be obtained by looking at the rule Intersection, which
was briefly described in section 3.5. Neglecting for simplicity the fact that one
thing the rule can do is check a tentative conclusion, it can in gross terms be
described as follows:

IF there is a current INTERSECTION proposition, p,

THEN modify the current mental model according to P.

In this formulation there is one variable, P, which gets bound to the intersection
premise. The form this binding takes in Conposit is the placing of detected
highlighting on the head register of the proposition's clump. In effect, variable
p is realized as detected highlighting as such. This highlighting then allows
the rule to access the registers containing the symbols SI and S2 denoting the
sets that are stated to intersect. These registers are just the argl -highlighted
and argl -highlighted registers adjacent to the detected register, i.e. the head
register. What the rule does is to place setl highlighting on the argl register, and
set2 highlighting on the arg2 register. Each of these actions is accomplished
very simply by one command signal. For instance, in the first case, this signal
just tells all registers to turn their setl flags on if their argl flags are on and
they are adjacent to a register that has its detected flag on. Also, the command
signal specifies spread-by-symbol-sharing, so the setl highlighting actually
actually goes on all registers that contain the SI symbol. Similarly for S2.
Setl and setl highlighting may now be regarded as being variables denoting
the first and second sets involved in the intersection proposition. The rule can
perform further actions involving SI and S2 by restricting command signals
to affect only those registers that are highlighted with setl or setl. (Note that
setl and setl highlighting can be used for other purposes by other rules.)

An important aspect of the variable binding by means of detected highlighting
is the method by which that highlighting is positioned by the rule. The rule's
action part is only executed when there is an ON value anywhere within the
LM that detects the presence of current intersection propositions. (These are
intersection propositions whose head registers are highlighted with current?)
Thus, the ON values can be viewed as temporarily binding the variable P
simultaneously to all the possible current intersection propositions in the CM.
The first action of the rule is to send an LM command signal (recall section
3.5) to this LM, causing all the CM registers corresponding to the ON registers

Symbol-Processing in Conposit 57

in the LM to acquire detected highlighting. The next action is a command
signal that restricts this highlighting to just one proposition head. The result is
that variable P can be regarded as being bound to just one, randomly chosen,
current intersection proposition.

It is important to realize that in this discussion the variable P is purely notional.
There is no localized circuit component in Conposit that corresponds to it. It
is an abstraction from the way ON states are positioned in LMs and of the way
particular types of highlighting are positioned in the CM. Of course, the units
that support such ON states and highlighting could be regarded as a rather
spread-out realization of the variable in the circuitry.

Conposit's variable binding has an interesting "plurality" feature that appears
not to be shared by other connectionist frameworks capable of variable binding.
Let us say that a highlighting flag that is regarded as a variable (such as the
detected flag) is a "binding flag." As was explained a moment ago, a binding
flag can get turned on at more than one place in the CM. This flagging can be
viewed as a "plural" binding.

In some circumstances plural binding allows a useful form of parallelism in
a rule's effect. A good example is provided by the deletion of the current
mental model by rule Destroy-Tokens. In order to do the deletion, all the rule
needs to do is to eliminate all the clumps acting as tokens. This it does by
putting detected highlighting on the head registers of all unclassified tokens,
and spreading the highlighting to all registers containing the same symbols.
The latter registers are the head registers of all the other, classified, tokens.
That is all done by one command signal. The highlighting now has a plural
binding to all tokens in the CM. Another command signal suffices to spread
the highlighting to the non-head, class register in each token as well. Again,
that is all parallel. Finally, a further command signal causes all the registers
that have detected highlighting to be made free, in parallel. Thus, the plural
binding of the detected highlighting has been used to achieve the in-parallel
deletion of all tokens.

Finally, feature (3) in section 2.3 is the need for complex procedural control.
This is provided by Conposit in the following way:

• Rules can create data structures and other traces, such as special high
lighting states, that affect the activities of later rules. This is illustrated
by rule Note-First transferring the "current" highlighting state from one
proposition to another (see section 3.5).

58 CHAPTER 2

• The action parts of individual rules have a complex, flowchart-like form.
For instance, rule Create-Conclusions acts according to the marker-passing
process detailed in section 3.6. This process involves several conditional
tests, implying a branching structure in the flowchart. Looping is used in
the part of rule Intersection that creates new tokens in the mental model.

• Branching and looping within action parts can be sensitive to the state
of the CM. The direction the processing takes at a branch point (which
may be a loop boundary) can be influenced by the presence of a specific
highlighting state anywhere in the CM or by specific LMs contain ON
registers (anywhere). For instance, the Symmetric Conclusion Formation
phase of the marker-passing process mentioned above tests whether any
CM register is marked with highlighting flag member-of-both.

6 SIMULATION RUNS

This section summarizes the mental model processing performed by two par
ticular runs of Conposit/SYLL, both on the same syllogism. For clarity of
illustration, mental models are displayed using identity-link notation, and to
ken names are suppressed. That is, the notation is as in MM 2-1 in Section
2.

In each run the Finish rule was disabled, in order better to show how Con
posit/SYLL can check and eliminate tentative conclusions. In each run the
probabilities of loop exits were set so as to achieve the following expected
numbers:

expected number of unclassified tokens created for each model: 8
expected number of tokens put into a set that is so far empty: 3
expected number of tokens added to a non-empty set: 2
expected number of tokens randomly chosen from a non-empty set: 1.5

Of course, the actual numbers involved on individual occasions sometimes
depart greatly from these expected values. One extreme effect is for very
few unclassified tokens, perhaps just one, to be created. In some cases this
can cause Conposit/SYLL to be unable to form a model consistent with the
premises. In these situations the model construction is aborted; the existing
tokens are destroyed and a new attempt at model construction is made.

Symbol-Processing in Conposit 59

Another extreme effect is for so many tokens to be created that the CM becomes
full. This can cause failures to generate tentative conclusions, if the model
in question is the first, or to eliminate conclusions otherwise. However, this
extreme is much less likely than the too-few-tokens extreme, and rarely occurs.

A.l: RUN1

Premises

Some of the beekeepers are artists.
All the chemists are beekeepers.

Valid Conclusions'. None.

Summary of Behavior

Conposit/S YLL produced two affirmative conclusions on the basis of the first
model, eliminated one of them because of the second model, and eliminated
the remaining one because of the third. The system therefore achieved the
correct answer by creating three models.

First Mental Model, A.l -1 (3 unclassified tokens created)

a = b = c
(b)

(a)

Tentative Conclusions Generated from First Model

Some of the artists are chemists.
All the chemists are artists.

Mental Model A.l-2 (5 unclassified tokens created)

60 CHAPTER 2

a = b = c
b = c

(a)

Conclusions Eliminated:

All the chemists are artists.

Mental Model A.l -3 (2 unclassified tokens created)

a = b
b = c

Conclusions Eliminated:

Some of the artists are chemists.

No conclusions remaining: simulation stops.

A.2: RUN 2

Premises (same as in RUN 1)

Some of the beekeepers are artists.
All the chemists are beekeepers.

Valid Conclusions: None.

Summary of Behavior

Symbol-Processing in Conposit 61

Conposit/SYLL produced three tentative conclusions, two affirmative and one
negative, on the basis of the first model. It eliminated the two affirmative ones
because of the second model, and eliminated the negative one because of the
third. The system again achieved the correct answer by creating three models.

First Mental Model, A.2-1 (20 unclassified tokens created)

a = b = c
a = b
(a)

Tentative Conclusions Generated from First Model

Some of the artists are chemists.
Some of the artists are not chemists.
All the chemists are artists.

Mental Model A 2-2 (5 unclassified tokens created)

a = b
b = c
b = c
(b)
(b)

Conclusions Eliminated:

Some of the artists are chemists.
All the chemists are artists.

Mental Model A.2-3 (15 unclassified tokens created)

62 C H A P T E R 2

a = b = c
b = c
b = c

(a)
(a)
(a)
(a)

Conclusions Eliminated:

Some of t he a r t i s t s a re not chemis t s .

No conclusions remaining: simulation stops.

7 D I S C U S S I O N

Conposit is a little difficult to locate on the localist/distributed spectrum. It is
certainly not distributed in any usual sense, but neither is it straightforwardly
localist. No register is permanently dedicated to representing any particular
thing. However, at any one time, a non-free register represents one specific
thing. In this way, Conposit could be said to be "transiently localist."

There is a danger, in considering symbolically oriented connectionist systems
such as Conposit or BoltzCONS, of thinking that that they are merely im-
plementational — that is, of thinking that the connectionist, implementational
level has no influence on the symbolic, implemented level. However, Conposit
serves as a demonstration of the implementational level affecting the nature
of the implemented level. Such bottom-up, implementing-to-implemented ef
fects have been pointed out by other connectionists, for instance by [37] in
noting that his implementation of trees in BoltzCONS allows makes it natural
to do traversal without a separate stack, whereas such traversal requires special
measures in a standard computer implementation. Conposit gets the same
effect with tree traversal, because PSA and RPE associations can be traversed
in either direction. However, there some other bottom-up effects as well.

Symbol-Processing in Conposit 63

The representational facilities of Conposit lead naturally to the idea of estab
lishing identities between tokens by means of name sharing (i.e. sharing of
unassigned symbols), rather than by separate linking elements as in Johnson-
Laird's own theory and implementation. This is significant change to the
conceptual level of the theory. Separate linking elements could have been im
plemented in Conposit - it would just have been more cumbersome. Equally,
when Johnson-Laird's theory is implemented in a standard programming lan
guage such as Lisp it is more natural to use separate linking elements (e.g., by
putting tokens into lists) than to use name sharing.

Another significant bottom-up effect in Conposit is the use of "random se
quencing." For instance, consider the task of going sequentially through a set
of representations, applying some processing to each one individually (as in
the investigation of die current set of tentative conclusions in Conposit). It is
simpler and more efficient for Conposit to select one representation at random,
process it, mark it as processed, then select another one, and so on, than to
go through the representations in the order defined by some overarching data
structure. (An interesting conjecture is that, for many if not most common-
sense cognitive tasks involving a conceptually unordered set of items, random
sequencing is all that is necessary.)

By contrast, in a standard symbolic framework a set is usually implemented as
a structure in which a linear order can naturally be discerned. (The order may
be imposed behind the scenes by the programming language implementation,
and be unknown to the programmer.) It is simpler and more efficient just to
traverse the set in that order than it is to proceed randomly. The issue here
is not the relative efficiency of getting to individual members of the set, but
rather the housekeeping that would need to be done to discipline the random
selections. For instance, suppose the set elements are the values of an array
implemented in a standard way in contiguous memory cells in the computer.
Hence, all elements can be accessed equally efficiently. Random sequencing
would require that, at any stage, a random selection of an element be done only
amongst those elements that have not yet been marked as having been selected.
But since the marked elements are in arbitrary positions in the array, a random
selection operation would have to scan through the unmarked elements, rather
than just generating a (pseudo)random number and use it to go directly to a
position in the array.

Conposit has some similarity to SIMD computer architectures, although it
differs from computer architectures in not containing any pointers or stored
instructions. (Command signals are an analogue of computer instructions,
but they are generated by fixed subnetworks in the rule networks, rather than

64 CHAPTER 2

being items that can dynamically placed in storage locations.) Also, as further
discussed in [9], RPE and PSA are highly reminiscent of basic computer tech
niques for structuring data in memory. Despite these connections to computers,
it would be a mistake to claim that Conposit is not really connectionist. It is
merely that Conposit has a level of description that can profitably be cast in
terms different from the language of connectionist units and links. However,
exactly analogous observations can be made about many more standard types of
connectionist system. Many such systems can be completely described as do
ing mathematical operations such as matrix multiplications. These operations
are at a higher level than and have no necessary connection to connectionist
units and links. Yet, the existence of this mathematical level of description
does not lead one to claim that the systems are not connectionist.

The main deficiency of the Conposit as instanced in this chapter is that there is
no provision for learning. However, this is a fault in the overall architecture,
not in the basic techniques such as RPE, PSA and TWTA. In fact, some ongoing
work on Conposit is looking at the use of these techniques in ABR-Conposit
[10] [7], a connectionist implementation of analogy-based and case-based
reasoning, with various provisions for learning. A significant modification
that has been introduced is to have the unassigned symbols be dynamically
constructed out of the symbols and highlighting states in the clumps they lie
in. The unassigned symbols thereby become somewhat like the compressed
encodings or reduced representations in other connectionist research. The use
of these encodings in rapid, parallel mechanisms for matching complex data
structures, and in mechanisms for structure-sensitive retrieval of analogues or
cases from a long-term database, is under investigation.

8 SUMMARY

Conposit copes well with the challenge to connectionism presented by a com
plex symbolic cognitive theory developed entirely independently. Conposit
gains its advantages largely from have a working memory (namely the "Con
figuration Matrix") that consists of components that can be dynamically re
cruited for any representational purpose, and that, to within resource bounds,
allows any number of highly temporary complex representations to coexist
without interference. The RPE (relative-position encoding) and PSA (pattern-
similarity association) methods are at the crux of the ability to rapidly set up
complex data structures of any required sort. The Temporal-Winner-Take-All

Symbol-Processing in Conposit 65

selection mechanism is also a useful contribution to the connectionist arsenal
of techniques.

A C K N O W L E D G E M E N T S

This work was supported in part by grant AFOSR-88-0215 from the Air Force
Office of Scientific Research, grant NAGW-1592 under the Innovative Re
search Program of the NASA Office of Space Science and Applications, and
grant CDA-8914670 under the NSF Institutional Infrastructure Program (Small
Scale). I am grateful to T. Eskridge, T.-C. Hong, H. Pfeiffer and K. Srinivas for
helpful comments and assistance with simulations and system development.
I have also benefited from contacts with R. Inder, P.N. Johnson-Laird and K.
Stenning.

REFERENCES

[1] Barnden, J.A. (1984). On short-term information processing in connec
tionist theories. Cognition and Brain Theory, 7(1), pp. 25-59.

[2] Barnden, J.A. (1989). Neural-net implementation of complex symbol-
processing in a mental model approach to syllogistic reasoning. In Procs.
11th Int. Joint Conf. on Artificial Intelligence. San Mateo, CA: Morgan
Kaufmann.

[3] Barnden, J.A. (1990). Syllogistic mental models: exercising some con
nectionist representation and control methods. Memoranda in Computer
and Cognitive Science, No. MCCS-90-204, Computing Research Labo
ratory, New Mexico State University, Las Cruces, NM 88003.

[4] Barnden, J.A. (1991). Encoding complex symbolic data structures with
some unusual connectionist techniques. In J.A. Barnden & J.B. Pollack
(Eds.), Advances in Connectionist and Neural Computation Theory, Vol
1. Norwood, N.J.: Ablex Publishing Corp.

[5] Barnden, J.A. (1992a). Connectionism, generalization and propositional
attitudes: a catalogue of challenging issues. In J. Dinsmore (ed), The
Symbolic and Connectionist Paradigms: Closing the Gap. Hillsdale, N.J.:
Lawrence Erlbaum. pp.149-178.

66 CHAPTER 2

[6] Barnden, J.A. (1992b). Connectionism, structure-sensitivity, and system-
aticity: refining the task requirements. Memoranda in Computer and
Cognitive Science, No. MCCS-92-227, Computing Research Labora
tory, New Mexico State University, Las Cruces, NM 88003.

[7] Barnden, J.A. (1993a). On using analogy to reconcile connections and
symbols. In D.S. Levine & M. Aparicio (Eds), Neural Networks for
Knowledge Representation and Inference, pp.27-64. Hillsdale, N.J.:
Lawrence Erlbaum Associates.

[8] Barnden, J. A. (1993b). Time phases, pointers, rules and embedding. Be
havioral and Brain Sciences, 16 (3), pp.451-452. Invited Commentary
(on Shastri and Ajjanagadde's "From Simple Associations to Systematic
Reasoning").

[9] Barnden, J.A. & Srinivas, K. (1991). Encoding techniques for complex
information structures in connectionist systems. Connection Science, 3
(3), pp.263-309.

[10] Barnden, J.A. & Srinivas, K. (1992). Overcoming rule-based rigidity and
connectionist limitations through massively-parallel case-based reason
ing. Int. J. Man-Machine Studies, 36, pp.221-246.

[11] Barnden, J.A. & Srinivas, K. (1993). Temporal winner-take-all networks:
a time-based mechanism for fast selection in neural networks. IEEE Trans.
Neural Networks, 4 (5), pp.844-853.

[12] Barnden, J.A., Srinivas, K. & Dharmavaratha, D. (1990). Winner-take-
all networks: time-based versus activation-based mechanisms for various
selection goals. In Procs. IEEE International Symposium on Circuits and
Systems, New Orleans, May 1990.

[13] Blank, D.S., Meeden, L.A. & Marshall, J.B. (1992). Exploring the sym-
bolic/subsymbolic continuum: a case study of RAAM. In Dinsmore, J.
(Ed.), The Symbolic and Connectionist Paradigms: Closing the Gap.
Hillsdale, N.J.: Lawrence Erlbaum. pp. 113-148.

[14] Chalmers, D.J. (1990). Syntactic transformations on distributed represen
tations. Connection Science, 2 (1 &2), pp.53-62.

[15] Charniak, E. & Santos, E. (1987/1991). A connectionist context-free
parser which is not context-free, but then it is not really connectionist
either. In Procs. 9th Annual Conference of the Cognitive Science Society.
Hillsdale, N.J.: Lawrence Erlbaum. A revised version appears in J.A.
Barnden & J.B. Pollack (Eds.), Advances in Connectionist and Neural

Symbol-Processing in Conposit 67

Computation Theory, Vol 1. Norwood, N.J.: Ablex Publishing Corp.,
March 1991.

[16] Chrisman, L. (1991). Learning recursive distributed representations for
holistic computation. Connection Science, 3 (4), pp.354-366.

[17] Chun, H.W., Bookman, L.A. & Afshartous, N. (1987). Network Regions:
alternatives to the winner-take-all structure. In Procs. Tenth Int. Joint
Conf. On Artificial Intelligence, pp.380-387. Los Altos, CA: Morgan
Kaufmann.

[18] Dyer, M.G. (1991). Symbolic NeuroEngineering and natural language
processing: a multilevel research approach. In J. A. Barnden & J.B. Pollack
(Eds.), Advances in Connectionist and Neural Computation Theory, Vol.
I. Norwood, N.J.: Ablex Publishing Corp. pp.32-86.

[19] Feldman, J. A. & Ballard, D. H. (1982). Connectionist models and their
properties. Cognitive Science, 6, pp.205-254.

[20] Fodor, J. A. & Pylyshyn, Z.W. (1988). Connectionism and cognitive archi
tecture: a critical analysis. In S. Pinker & J. Mehler (Eds.), Connections
and symbols, Cambridge, Mass.: MIT Press, and Amsterdam: Elsevier.
(Reprinted from Cognition, 28, 1988.)

[21] Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms,
and architectures. Neural Networks, 1, 17-61.

[22] Hinton, G.E. (1990). Mapping part-whole hierarchies into connectionist
networks. Artificial Intelligence, 46 (1-2), pp.47-75.

[23] Johnson-Laird, P.N. (1983). Mental models: towards a cognitive science
of language, inference and consciousness. Cambridge, Mass.: Harvard
University Press.

[24] Johnson-Laird, P.N. & Bara, B.G. (1984). Syllogistic inference. Cogni
tion, 16 (1), 1-61.

[25] Johnson-Laird, P.N. & Byrne, R.MJ. (1991). Deduction. Hove, U.K.:
Lawrence Erlbaum.

[26] Lippmann, R.R. (1987). An introduction to computing with neural nets.
IEEEASSP Magazine, 4, 4-22.

[27] Oakhill, J.V. & Johnson-Laird, P.N. (1985). The effects of belief on the
spontaneous production of syllogistic conclusions. The Quarterly J. of
Experimental Psych., 37A, pp.553-569.

68 CHAPTER 2

[28] Oakhill, J.V., Johnson-Laird, P.N., & Garnham, A. (1989). Believability
and syllogistic reasoning. Cognition, 31 (2), pp.117-140.

[29] Plate, T. (1991). Holographs reduced representations. Tech. Report CRG-
TR-91 -1, Dept. of Computer Science, University of Toronto, Canada M5S
1A4.

[30] Pollack, J.B. (1990). Recursive distributed representations. Artificial In
telligence, 46 (1-2), pp.77-105.

[31] Shastri, L. & Ajjanagadde, V. (1993). From simple associations to sys
tematic reasoning: a connectionist representation of rules, variables, and
dynamic bindings using temporal synchrony. Behavioral and Brain Sci
ences, 16 (3), pp.417-494.

[32] Smolensky, P. (1990). Tensor product variable binding and the represen
tation of symbolic structures in connectionist systems. Artificial Intelli
gence, 46 (1-2), pp.159-216.

[33] Stolcke, A. & Wu, D. (1992). Tree matching with recursive distributed
representations. TR-92-025, Computer Science Division, University of
California, Berkeley, CA 94704.

[34] Touretzky, D.S. (1990). BoltzCONS: dynamic symbol structures in a
connectionist network. Artificial Intelligence, 46 (1-2), pp. 5-46.

[35] Yuille, A.L. & Grzywacz. (1989). A winner-take-all mechanism based on
presynaptic inhibition feedback. Neural Computation, 7, pp.334-347.

3
A Structured Connectionist

Approach to Inferencing and
Retrieval

TRENT E. LANGE

Artificial Intelligence Laboratory
Computer Science Department

University of California
Los Angeles, California 90024

1 INTRODUCTION

Simple connectionist models have generally been unable to perform natural
language understanding or memory retrieval beyond simple stereotypical sit
uations that they have seen before. This is because they have had difficulties
representing and applying general knowledge rules that specifically require
variables, barring them from performing the high-level inferencing necessary
for planning, reasoning, and natural language understanding. This chapter
describes ROBIN, a structured (i.e., localist) connectionist model capable of
massively-parallel high-level inferencing requiring variable bindings and rule
application, and REMIND, a model based on ROBIN that explores the inte
gration of language understanding and episodic memory retrieval in a single
spreading-activation mechanism.

One of the most difficult parts of the natural language understanding process
is forming a semantic interpretation of the text. A reader must often make
multiple inferences to understand the motives of actors and to causally connect
actions that are unrelated on the basis of surface semantics alone. The inference
process is complicated by the fact that language is often ambiguous in multiple
ways. Even worse is that context from further input sometimes forces a
reinterpretation of a text's meaning.

A relatively unexplored fact about the language understanding process is that
it does not exist in a vacuum. As people read text or hold conversations,
they are often reminded of analogous stories or episodes in memory. The
types of memories that are triggered are influenced by context created by the
inferences and disambiguations of the understanding process. A full model

69

70 CHAPTER 3

of the language understanding and memory retrieval processes must take into
account the interaction of the two and how they affect each other.

An example of some of the inferencing and disambiguation problems of the
language understanding process can be seen in the sentence:

"John put the pot inside the dishwasher because the police were coming"
(Hiding Pot).

In this sentence, it first seems that John is trying to clean a cooking-pot. But
after reading about the police coming, it seems (to many people) that he was
instead trying to hide marijuana from the police. This reinterpretation cannot be
made without a complex plan/goal analysis of the input — an analysis requiring
the ability to make multiple inferences from general knowledge rules.

After people read stories, they are sometimes reminded of similar episodes.
For example, after reading Hiding Pot, a person might be reminded of an
analogous story that had been read earlier, such as "Billy put the Playboy under
his bed so his mother wouldn't see it and spank him." (Dirty Magazine). Both
stories involve somebody hiding something from an authority figure to avoid
punishment. This example shows how crucial the understanding process can
be to reminding, since the similarities allowing recall can only be recognized
after several necessary inferences.

These examples illustrate several of the problems of language understanding
and memory retrieval. First, people must make multiple, dynamic inferences
very rapidly to understand texts. The speed with which they do so indicates
that they probably use a parallel inferencing process to explore several possible
interpretations of a text at once. Secondly, they need to be able to integrate
multiple sources of evidence from context to disambiguate words and between
interpretations, implying that some sort of constraint satisfaction process is
used along with the inferencing process. Equally important is that the interpre
tations from these language processes affect the kinds of episodes and analogies
that people retrieve from memory. The episodes recalled from memory often
then affect the interpretation process in turn.

These problems have presented great difficulties for artificial intelligence and
connectionist models. Traditional symbolic artificial intelligence models can
perform the inferencing necessary for comprehension, but have not scaled up
well because of their lack of parallelism and their difficulties with disambigua
tion. In contrast, connectionist (or neural network) models have parallelism

Inferencing and Retrieval 71

and can perform some disambiguation, but have generally had difficulties
performing symbolic processing and inferencing.

This chapter focuses on the development of connectionist models that are able
to handle these high-level reasoning tasks in a computationally and psychologi
cally plausible manner. It describes ROBIN (Lange and Dyer [19], Lange [20])
and REMIND (Lange and Wharton [21]), two structured connectionist models
that provide a potential explanation for these abilities. Several developments
in connectionist variable binding and parallel dynamic inferencing abilities
were achieved to create ROBIN (ROle Binding and Inferencing Network),
allowing it to perform high-level inferencing and disambiguation difficult for
other connectionist and symbolic models of natural language understanding.
Using ROBIN as a base, we are also developing REMIND (Retrieval from
Episodic Memory by INferencing and Disambiguation), a model that explores
the integration of language understanding and episodic memory retrieval with
a single spreading-activation mechanism. The integration of episodic memory
retrieval with ROBIN's inferencing abilities allows REMIND to explain many
psychological memory retrieval results that retrieval-only models cannot.

The current versions of ROBIN and REMIND have had a great deal of success
handling the problems of language understanding and memory retrieval. The
extensions (in progress) to both models discussed in this chapter will improve
both of their respective capabilities and allow us to explore how well their
initially promising results scale up. These extensions should prove to be a
significant addition to the reasoning and retrieval abilities of connectionist
models in general.

1.1 LANGUAGE UNDERSTANDING AND

HIGH-LEVEL INFERENCING

The part of the natural language understanding process that this chapter con
centrates on is the problem of high-level inferencing (Lange and Dyer [19]).
High-level inferencing is the use of knowledge and rules about the world to
build new beliefs about what is true. To understand a text, a reader must often
make multiple inferences to understand the motives of actors and to causally
connect actions that are unrelated on the basis of surface semantics alone.
Complicating the inference process is the fact that language is often both lex
ically and conceptually ambiguous. As an example of some of the problems
arising in high-level inferencing, contrast Hiding Pot ("John put the pot inside
the dishwasher because the police were coming") with the following example:

72 CHAPTER 3

"John put the pot inside the dishwasher because company was coming" (Din
ner Party)

In Dinner Party, most people would infer that John transferred a Cooking-Pot
inside a dishwasher to get the Cooking-Pot clean. In Hiding Pot, however, it
seemed more likely that John was trying to hide his Marijuana from the police.
There is therefore a conflict between the interpretation suggested by the first
clause alone (that John was cleaning a cooking-pot) and the final interpretation
suggested by the first clause combined with the second clause (that John was
hiding marijuana). Even recognizing this conflict subconsciously to allow
the potential for reinterpretation clearly requires a number of inferences. For
example, Hiding Pot does not explicitly state that if the police see John's
marijuana, then they might arrest him for possessing an illegal object (II), that
John doesn't want this to happen (12), that he might therefore use a hiding plan
to stop them from seeing it (13), and that being inside an opaque dishwasher
might be acting as his plan to stop them from seeing it (14). All of these
inferences are necessary to recognize the most probable causal relationship
between the different actions. Shastri and Ajjanagadde [33] have called this
kind of processing reflexive reasoning, since the inferences must be made very
quickly, without readers necessarily even consciously noticing that they have
made them.

To understand episodes such as Dinner Party and Hiding Pot, a system must be
able to dynamically make chains of inferences and temporarily maintain them
with a variable-binding mechanism. For example, a system must know about
the general concept (or frame) of an actor transferring himself to a location
("coming"). To initially represent the phrase "police were coming" in Hiding
Pot, the system must be able to temporarily maintain a particular instantiation
of this Transfer-Self frame in which the Actor role (a variable) is bound to
Police and the Loc role is bound to some unknown location (which should
later be inferred to be the location of John). The system must also have the
general knowledge that when an actor transfers himself to a location, he ends
up in the proximity of that location, which can be represented as the rule:

Rl: (Actor X Transfer-Selfljoc Y) results-in (Actor X Proximity-Of Ob) Y)

Applying this rule to the instantiation of the police Transfer-Self would allow
the system to infer that the police will be in the proximity of John and his
marijuana. Another rule the system must have to understand Hiding Pot is
that a precondition of seeing an object is being in proximity of it:

R2: (Actor X Proximity-OfObj Y) precond-for (Actor X See-Object Obj Y)

Inferencing and Retrieval 73

Applying this rule to the new knowledge that the police will be in the proximity
of John, the system can infer that there is the potential for the police to see
John and his marijuana (II). The rest of the inferences required to understand
Hiding Pot are the result of the application of similar knowledge rules about
the world.

Even the ability to maintain variable bindings and apply general knowledge
rules of the above sort is often insufficient for language understanding and
other high-level cognitive tasks. This is because the ambiguity of language
and multiple possible explanations for actions often leads to several possible
interpretations of a text (as illustrated by Hiding Pot). A system must therefore
have some means to select between those different possible interpretations to
choose the most plausible in a given context. One of the fundamental problems
in high-level inferencing is thus that offrame selection (Lytinen [22]; Lange
and Dyer [19]). When should a system make inferences from a given frame
instantiation? And when conflicting rules apply to a given frame instantiation,
which should be selected? Only a system that can handle these problems
will be able to address the following critical subparts of the frame selection
problem:

• Word-Sense Disambiguation: Choosing the contextually-appropriate mean
ing of a word. In Dinner Party, the word "pot" refers to a Cooking-Pot,
but when Hiding Pot is presented, the evidence is that its interpretation
should change to Marijuana.

• Inferencing: Applying causal knowledge to understand the results of
actions and the motives of actors. There is nothing in Hiding Pot that
explicitly states that the police might see the pot, or even that the police
will be in proximity of it and John. Nor is it explicitly stated what the
police will do if they see he possesses Marijuana (II). Each of these
assumptions must be inferred from the surface facts of the text.

• Concept Refinement: Instantiating a more appropriate specific frame from
a general one. In Dinner Party, the fact that the pot was put inside a
dishwasher tells us more than the simple knowledge that it was put inside
a container. In contrast, the salient point in Hiding Pot is that it is inside
of an opaque object, which allows us to infer that the police will not be
able to see it (14).

• Plan/Goal Analysis: Recognizing the plan an actor is using to fulfill his
goals. In Dinner Party, John has put die pot into the dishwasher as part
of the Dishwasher-Cleaning script (a stereotypical sequence of actions)

74 CHAPTER 3

to satisfy his goal of getting the pot clean, which perhaps itself serves
as part of his plan to prepare for company coming over. In Hiding Pot,
however, it appears that John has put the pot into the dishwasher to satisfy
his sub-goal of hiding the pot from the police (13), which is part of his
overall goal of avoiding arrest (12).

High-level inferencing is complicated by the effect of additional context, which
often causes a reinterpretation to competing frames. For example, the inter
pretation of Hiding Pot can change again if the next sentence is:

P3: 'They were coming over for dinner in half an hour"

P3 provides more evidence for the possibility that John was trying to clean
the pot to prepare for dinner, perhaps causing the word pot to be reinterpreted
back to a cooking-pot, as in Dinner Party. These examples clearly point
out two sub-problems of frame selection, those of frame commitment and
reinterpretation. When should a system commit to one interpretation over
another? And if it does commit to one interpretation, how does new context
cause that interpretation to change?

2 LANGUAGE UNDERSTANDING AND MEMORY RETRIEVAL

MODELS

To perform semantic language understanding of inputs for short texts of the type
described here, a system must be able to (1) perform the high-level inferencing
necessary to create causal plan/goal analyses of the cue, (2) dynamically hold
the resulting representations' structure and bindings, and (3) perform lexical
and pragmatic disambiguation (and possible reinterpretation) to select the most
contextually-appropriate representation. In this section we discuss several
related symbolic and connectionist approaches to these language understanding
problems and give a brief overview of previous models of episodic memory
retrieval.

2.1 SYMBOLIC RULE-BASED SYSTEMS

Symbolic rule-based systems have had the most success performing the high-
level inferencing necessary for natural language understanding. A good exam-

Inferencing and Retrieval 75

pie is BORIS (Dyer [16]), a program for modeling in-depth understanding of
relatively long and complex stories. BORIS has a symbolic knowledge base
containing knowledge structures representing various actions, plans, goals,
emotional affects, and methods for avoiding planning failures. When a story
is read in, BORIS fires rules from its knowledge base to infer additional
story information. This allows BORIS to form an elaborated representation
of the story, about which it can then answer questions. Other models that
have successfully approached complex parts of the language understanding
process have all had similar types of knowledge representation and rule-firing
capabilities (cf. Schank and Abelson [31]; Wilensky [40]; Lytinen [22]).

While traditional symbolic models have demonstrated an ability to understand
relatively complex stories in limited domains, they have encountered difficulty
when trying to resolve and reinterpret ambiguous input. One solution has been
to use expectation-based conceptual analyzers, such as used in BORIS. These
systems use bottom-up or top-down requests or demons that are activated as
words are read in. A word is disambiguated when one of the request rules
fires. An example of a bottom-up request that might be used to disambiguate
the word pot would be:

If the context involves Cleaning, then interpret "pot" as a Cooking-Pot.

Once such a request is fired, the interpretation chosen is generally used through
out the rest of the inferencing process, and the word is thrown away. However,
this makes it impossible to reinterpret the word if the context changes, such
as in Hiding Pot. A partial answer might be to keep words around in case
a new context causes another disambiguation request to fire. However, this
solution creates a different problem — how to decide between conflicting dis
ambiguation rules. For example, one cannot simply specify that the "pot"
disambiguation request involving the Police context always has a higher pri
ority than the request involving the Cleaning context, because police can be in
the same place as cooking pots (e.g., if Hiding Pot was followed by "They were
coming over for dinner in half an hour") As the amount of knowledge stored
in the system grows, the number of disambiguation requests needed grows with
them, producing even more conflicts. Moreover, because rule application in
traditional symbolic models is fundamentally serial, these systems slow down
dramatically as the number of inferencing and disambiguation rules increases.

76 CHAPTER 3

2 . 2 M A R K E R - P A S S I N G N E T W O R K S

Marker-passing models operate by spreading symbolic markers in parallel
across labeled semantic networks in which concepts are represented by indi
vidual nodes. Possible interpretations of the input are formed when marker
propagation results in a path of units connecting words and concepts from the
input text. Like rule-based systems, marker-passing systems are able to per
form much of the high-level inferencing necessary for language understanding
because of the symbolic information held in their markers and networks (cf.
Charniak [5]; Riesbeck and Martin [28]; Granger, Eiselt, and Holbrook [11];
Norvig [26]; Kitano, Tomabechi, and Levin [17]). The primary advantage
of marker-passing networks over traditional symbolic, rule-based systems is
that their massively parallel marker-passing process allows them to generate
all of the different possible interpretations of a text in parallel. This becomes
particularly important for large knowledge and rule-bases needed for complex
language tasks.

Marker-passing systems have many of the same problems as traditional sym
bolic systems in performing disambiguation and reinterpretation. Because of
the generally all-or-none symbolic nature of the inference paths generated by
the marker-passing process, these systems have problems selecting the most
contextually-sensible interpretation out of all the paths that they generate. Most
marker-passing models attempt to deal with this problem by using a separate
symbolic path evaluation mechanism to select the best interpretation. Unfortu
nately, the marker-passing process generally creates an extremely large number
of spurious (i.e., unimportant or logically impossible) inference paths, which
often represent over 90 percent of the paths generated even for small networks
(Charniak [5]). As network size increases to include more world knowledge,
there is a corresponding explosion in the number of paths generated. Because
path evaluation mechanisms work serially, this substantially diminishes the ad
vantage of generating inference paths in parallel. This explosion of generated
connections and the generally all-or-none nature of marker-passing inference
paths becomes an especially difficult problem when applying marker-passing
systems to ambiguous natural language texts (Lange [20])1.

Partial solutions to these problems using hybrid marker-passing networks that include
aspects of spreading-activation have been proposed (cf. Kitano et al. [17]; Hendler [13]).

Inferencing and Retrieval 77

2.3 DISTRIBUTED CONNECTONIST NETWORKS

Distributed connectionist (or PDP) models represent knowledge as patterns
of activation within massively parallel networks of simple processing ele
ments. Distributed connectionist models have many desirable properties, such
as learning rules that allow stochastic category generalization, noise-resistant
associative retrieval, and robustness against damage (cf. Rumelhart et al. [29]).

McClelland and Kawamoto's [23] case-role assignment model provides a good
example of how distributed connectionist models have been used to model lan
guage understanding. The main task of their model is to learn to assign proper
semantic case roles for sentences. For example, given the syntactic surface
form of the sentence "The boy broke the window", their network is trained to
place the semantic microfeature representation of Boy in the units representing
the Agent role on the output layer. But when given "The rock broke the win
dow" , it is trained to place the representation of Rock in the Instrument role.
Their network is also trained to perform lexical disambiguation, for example,
mapping the pattern for the word "bat" to a Baseball-Bat for sentences such
as "The boy hit the ball with the bat", and to a Flying-Bat for sentences such
as "The bat flew." Once the input/output pairs have been learned, the network
exhibits a certain amount of generalization by mapping the case roles and per
forming lexical disambiguation for new inputs that are similar to the training
sentences.

One of the main limitations of McClelland and Kawamoto's model for language
understanding is that it can only successfully analyze direct, one-step mappings
from the input to the output. This limits the model to sentences that can be
understood and disambiguated based solely upon the surface semantics of the
input. Two distributed connectionist models that get around this limitation
are those of Miikkulainen and Dyer [25] and St. John [34]. Both models
use recurrent networks with a hidden layer of units whose activation pattern
essentially stores the state (or "gestalt") of the stories being understood. This
allows them to learn to process more complex texts based on stereotypical
scripts and script-like stories (Schank and Abelson [31]). Both models have
the lexical disambiguation abilities of McClelland and Kawamoto's model, but
are also able to infer unmentioned story events and role-fillers from the script
that has been recognized by the hidden layer.

Unfortunately, there may be significant problems in scaling distributed connec
tionist models to handle more complex language. Both the Miikkulainen/Dyer
and the St. John model work by resolving constraints from the context of the

78 CHAPTER 3

input to recognize one of their trained scripts and to instantiate it with the bind
ings of the particular input story. However, much of language understanding
involves the inference of causal relationships between events for completely
novel stories in which no script or previously trained input/output pair can be
recognized. This requires dynamic inferencing — producing chains of infer
ences over simple known rules, with each inference resulting in a potentially
novel intermediate state (Touretzky [37]). Most importantly, the problem of
ambiguity and the exponential number of potential causal connections between
two or more events requires that multiple paths be explored in parallel (the forte
of marker-passing networks). It remains to be seen whether a single blended
activation pattern across the bank of hidden units in a recurrent network can
solve this problem by simultaneously holding and making dynamic inferences
for multiple, never-before encountered interpretation chains.

Other distributed models explicitly encode variables and rules, such as the
models of Touretzky and Hinton [38] and Dolan and Smolensky [8]). Conse
quently, such rule-implementing distributed models are able to perform some
of the dynamic inferencing necessary for language understanding. However,
the types of rules they can currently encode are generally limited. More im
portantly, like traditional rule-based systems, they are serial at the knowledge
level — i.e., they can fire only one rule at a time. As previously mentioned, this
is a serious drawback for natural language understanding, particularly for am
biguous text, in which the often large number of multiple alternative inference
paths must be explored in parallel (Lange [20]).

2.4 STRUCTURED SPREADING-ACIWATION MODELS

Structured (or localist) spreading-activation models are connectionist models
that represent knowledge in semantic networks like those of marker-passing
networks, but in which the nodes are simple numeric units with weighted in
terconnections. The activation on each conceptual node generally represents
the amount of evidence available for its concept in a given context. As in
marker-passing networks, structured connectionist networks have the poten
tial to pursue multiple candidate interpretations of a story in parallel (i.e. be
parallel at the knowledge level) as each interpretation is represented by ac
tivation in different local areas of the network. A potential advantage over
marker-passing networks, however, is that the evidential nature of structured
spreading-activation networks make them ideally suited to perform lexical dis
ambiguation. Disambiguation is achieved automatically as related concepts
under consideration provide graded activation evidence and feedback to one

Inferencing and Retrieval 79

another in a form of constraint relaxation (cf. Cottrell and Small [6]; Waltz and
Pollack [39]; Kintsch [16]).

Until recently, the applicability of structured connectionist models to natural
language understanding has been severely hampered because of their difficul
ties representing dynamic role-bindings and performing inferencing. The basic
problem is that the evidential activation on structured networks' conceptual
units gives no clue as to where that evidence came from. The networks can
therefore tell which concepts are activated, but have no way of determining
which roles concepts are dynamically bound to (see discussion in Lange [20]).
More importantly, without a mechanism to represent such dynamic bindings,
they cannot propagate bindings to make the chains of inferences necessary
for understanding more complex texts. Thus, unlike marker-passing systems,
most structured connectionist models have been limited to processing simple
sentences that can be resolved on the surface semantics of the input alone (e.g.,
"The astronomer married the star", Waltz and Pollack [39]).

One way of compensating for the lack of dynamic inferencing abilities in
spreading-activation networks is to use a symbolic processing mechanism
external to the spreading-activation networks themselves to perform the vari
able binding and inferencing necessary for language understanding. Such a
spreading-activation/symbolic hybrid has been used in Kintsch's [16] construct
ion-integration model of language comprehension. This system uses a tradi
tional symbolic production system to build symbolic representations of the
alternative interpretations of a text. These representations are then used to
construct a spreading-activation network in which the different interpretations
compete to integrate contextual constraints. The integration of constraints
with spreading-activation in the network allow Kintsch's model to correctly
disambiguate and interpret input sentences. A somewhat similar approach is
taken by ACT* (Anderson [1]), a psychologically-based spreading-activation
model of language understanding, fact encoding and retrieval, and procedure
encoding and retrieval. Kintsch's and Anderson's models both illustrate many
of the impressive emergent properties of spreading-activation networks for
modeling realistic language understanding, such as their ability to model the
time course of lexical disambiguation in a way consistent with psycholog
ical evidence. However, if a mechanism internal to the networks (instead
of an external symbolic production system) could be found to construct text
inferences, the parsimony and psychological realism of structured spreading-
activation networks would be greatly increased.

Recently, a number of researchers have shown how structured connectionist
models can handle some variable binding and inferencing abilities within the

80 CHAPTER 3

networks themselves (e.g., Barnden [2]; Bookman [7]; Holldobler [26]; Shas-
tri and Ajjanagadde [33]; Sun [35]). Most of these models, however, have
no mechanisms for handling ambiguity or frame selection. An exception is
ROBIN [19], a structured spreading-activation model that propagates signa
tures (activation patterns that identify the concept bound to a role) in order
to generate all possible interpretations of an input text in parallel. At the
same time, ROBIN uses the network's evidential constraint satisfaction to per
form lexical disambiguation and selection of the contextually most plausible
interpretation. Thus, ROBIN is able to perform high-level inferencing and
disambiguation within the structure of a single network, without the need for
external symbolic processing. The following sections describe ROBIN and
the extensions we are planning to make to further its inferencing and language
understanding abilities.

2.5 MEMORY RETRIEVAL MODELS

The process of memory retrieval has generally been explored in isolation from
the process of language understanding. However, remembering and retriev
ing complex episodes requires many of the same representational, binding,
and inferencing abilities that natural language understanding does. Because
connectionist models have had difficulties handling complex structural re
lationships in general, few attempts have been made to build connectionist
retrieval models for the type of high-level episodes discussed in this paper.

Nonetheless, a few models have shown the potential value of connectionist
models for memory storage and retrieval. For example, COPYCAT (Hofs-
tadter and Mitchell [14]) uses connectionist constraint-satisfaction in solving
letter-string analogy problems. Although the retrieval portion of COPYCAT
only retrieves simple concepts and not memory episodes, it seems to exhibit
some of the fluidity of concepts and perception apparent in human analogical
reasoning. DISCERN (Miikkulainen [24]) shows how a variant of distributed
connectionist topological feature maps can be used to store and retrieve script-
based stories. Besides showing how purely-distributed connectionist models
can store and retrieve multiple-sentence episodes, DISCERN exhibits a num
ber of features of human episodic memory, such as certain kinds of memory
confusions and recency effects. Although COPYCAT and DISCERN are only
able to store and retrieve relatively simple or stereotypical episodes, they do
illustrate some of connectionist models' promise for psychologically-plausible
memory retrieval.

Inferencing and Retrieval 81

Symbolic models have had the greatest success in modeling retrieval of com
plex, high-level memory episodes. Case-based reasoning (CBR) models (cf.
Kolodner et al. [18]; Hammond [12]; Riesbeck and Schank [27]; Schank
and Leake [32]; Barnden and Srinivas [3]) form the largest class of symbolic
memory retrieval models. In CBR models, memory access is performed by
recognition of meaningful index patterns in the input that allow retrieval of
the episodes (or cases) most likely to help them solve their current problem.
An analysis phase is usually performed to determine the indices that are most
important for finding relevant cases for a particular problem, such as cases
that share similar plans, goals, enabling preconditions, or explanation failures.
In addition, CBR models are usually careful to retrieve only those cases that
will help find a solution, explicitly rejecting cases that do not. CBR models
are therefore generally models of expert reasoning within a given domain of
expertise, rather than models of general human reminding. It is quite possible
that expert memory retrieval may be satisfactorily modeled by such methods.
However, general reminding seems to be substantially messier, being affected
by not only by the sort of useful abstract indices used in CBR models, but also
by superficial semantic similarities that often lead to quite inexpert remindings.
Further, the problem of selecting and recognizing appropriate indices becomes
substantially more difficult when reading ambiguous texts outside of limited
expert domains.

General, non-expert reminding has been modeled in systems such as ARCS
(Thagard et al. [36]) and MAC/FAC (Gentner and Forbus [10]). These sys
tems model retrieval without using specific indexing methods. Instead they
retrieve episodes whose representations share superficial semantic similarities
with retrieval cues, with varying degrees of preference towards retrieval of
episodes that are also analogically similar or structurally consistent. However,
unlike most CBR models, these systems do not specify how they construct
the representation of retrieval cues from a source input or text, and so cannot
explain how inferences and comprehension affect reminding.

REMIND (Lange and Wharton [21]) is a structured spreading-activation model
of general non-expert reminding based on ROBIN in which memory retrieval
is a side-effect of the language understanding process. REMIND performs
dynamic inferencing and disambiguation to infer a conceptual representation
of its input cues, as in ROBIN. Because stored episodes are connected to
the concepts used to understand them, the spreading-activation process also
activates any memory episodes in the network that share features or knowledge
structures with the cue. After a cue's conceptual representation is formed, the
network recalls the memory episode having the highest activation. Since the
inferences made from a cue often include actors' plans and goals only implied in

82 C H A P T E R 3

a cue's text, REMIND is able to get abstract, analogical remindings that would
not be possible without an integrated understanding and retrieval model.

3 INFERENCING IN ROBIN

Our approach is to develop and explore structured connectionist networks that
build upon the advantages of spreading-activation networks and that are capa
ble of supporting the processing abilities necessary for language understand
ing. To this end, we have developed ROBIN, a structured spreading-activation
model that is capable of performing dynamic inferencing to generate multi
ple possible interpretations of an input text in parallel. At the same time,
ROBIN uses evidential constraint satisfaction within the network to allow it
to automatically disambiguate to the most plausible interpretation in a given
context. This section gives an overview of how ROBIN uses these abilities
to perform high-level inferencing and disambiguation for natural language. A
more detailed description is provided in Lange and Dyer [19] and Lange [20].

3 .1 K N O W L E D G E G I V E N T O ROBIN

ROBIN uses structured networks of simple connectionist units to encode se
mantic networks of frames representing world knowledge. Each frame has one
or more roles, with each role having selectional restrictions (i.e. expectations
or type restrictions) on its fillers. General knowledge rules used for inferenc
ing are encoded as interconnected pathways between corresponding roles. The
knowledge base of frames and rules consists of the causal dependencies relat
ing actions, plans, goals, and scripts (Schank and Abelson [31]) necessary for
understanding stories in a limited domain. The knowledge base is hand-built,
as in most structured connectionist models. However, there is no information
in the knowledge base about specific inputs (such as Hiding Pot, Dinner Party,
and Dirty Magazine) that the networks will be used to understand.

Figure 1 gives an example of how knowledge is defined in ROBIN. It defines
the conceptual frame Inside-Of, which represents the general state of one object
being inside of another. Inside-Ofhas three roles: an Object that is inside of
something (which must be a Physical-Obj), a Location that the Object is inside
of (which must be a Container-Obj), and a Planner that may have caused the
state to be reached (which must be a Human). Physical-Obj, Container-Obj',
and Human represent the role's respective selectional restrictions — the types

Inferencing and Retrieval 83

rfcol^-s- <Ob"j <Physi,C:al-0-bj 0 .05}) <Loc <Confcain-er-Obj <K3}} (P lanne r (Humaui 0,85->)
sPhx^ss (S-is-inaidcs-of—PQ 1,0 <Qtei S u b l e t } {Zoo JJirect—ObJ))
:. ItejsuLt-Gf (TransFfBr—Insi-ci© 1,0 {Ctoy Qb])• (LQG U>C) {"Planner ft.ctQT)>
:&$£infcft|x¥h*.$ (J ^ i d 6 - 0 € - i 3 ^ h v a $ ^ t 1.0 <Ob^ Ob}) (U>C i>c*C> jj£}$mft<$t Slfcftae»C^

(iTiSAXte-Qf-Opja-cjus 1,0 <Qb] Ob;}} (Loc Loc} {Planner, P l a n n e r })
(l£tfii<ie>^Df'-CaEwash 1„D <Oi>̂] QbQ} (Loe Loc) ^ l a n n e j r P l a n n e r) H

Figure 1 Simplified definition of the frame representing the state Inside-
Of

of objects that are semantically allowed to bind to them. The rest of Figure 1
defines Inside-Of s relations to other frames. The knowledge represented here
is that it is (a) directly accessed by the phrase S-is-inside-of-DO (as in 'The
fork is inside of the dishwasher"), (b) a result-of the action Transfer-Inside,
and (c) has several possible concept refinement frames: Inside-Of-Dishwasher,
Inside-Of-Opaque and Inside-Of-Carwash.

Refinements (short for concept refinements, an inverse of the is-a relation) of
frames are useful because they allow specific inferences to be made when role-
bindings are known (Lytinen [22]). For example, if the network has inferred
that a cooking utensil is inside of a dishwasher (Inside-Of-Dishwasher), a
likely inference is that it is about to cleaned. If the network has inferred
that something is inside of an opaque object (Inside-Oj"-Opaque), the network
can infer that it is blocked from sight. When multiple frames are defined
as alternatives for a given relation to a frame, as in the multiple refinements
of Inside-Of, they are defined as mutually exclusive relations which compete
for selection as the relation's instantiation at any given time. For example,
although there are multiple possible plans -for the goal of Satisfy-Hunger (e.g.,
Restaurant, Eat-At-Home, etc.), generally only one will be used as the plan
for a given instance of somebody wanting to satisfy his hunger in a particular
story.

The relations and their role correspondences shown in Figure 1 also define the
network's general knowledge rules, such as the following:

R3: (Subject X S-is-inside-of-DO DO Y) phrase (Obj X Inside-OfLoc Y)

(The phrase "X is inside ofY" means that object X is inside of object Y).

R4: (Actor X Transfer-Inside Obj Y Loc Z) results-in (Obj Y Inside-Ofhoc Z
Planner X)

84 CHAPTER 3

(When actor X transfers an object Y into location Z, then Y is inside ofZ).

Finally, the numbers in Figure 1 represent the connection weights (ranging
from 0 to 1) from each of the related concepts to Inside-Of and are chosen on
the basis of how much evidence they provide. For example, if an object has just
been transferred inside of something else (Transfer-Inside), then die network
can definitely infer that the object is Inside-Of it. Therefore, the weight from
Transfer-Inside to Inside-Of is maximal (1.0). If something that is a container
(Container-Obf) has been mentioned in a story, then there is some, though not
certain, evidence that something is inside of it, so a corresponding middling
weight of 0.3 from Container-Obj to Inside-Of % Location role is given. On the
other hand, a very small weight (0.05) is given from Physical-Ob) to Inside-
Of's Object role, since mere mention of any particular physical object does not
very strongly imply Inside-Of. The actual weights chosen are clearly arbitrary.
What is important is that they be in a range reflecting the amount of evidence
the concepts provide for their related concepts in a certain knowledge base.

3.2 STRUCTURE OF ROBIN

The knowledge given to ROBIN is used to construct the network before any
processing begins. As with other structured connectionist models, a single
node in the network represents each frame or role. Relations between concepts
are represented by weighted connections between the nodes. Activation on
frame and role nodes is evidential, corresponding to the amount of evidence
available from the current context for that concept. However, as described
earlier, simply representing the amount of evidence available for a concept
is not sufficient for complex inferencing tasks. Solving the variable binding
problem requires a way to identify the concept that is dynamically bound to a
role. Furthermore, the network's structure must allow such role-bindings to
propagate across the network to dynamically instantiate inference paths and
form an elaborated representation of the input.

3.3 VARIABLE BINDING WITH SIGNATURES

Representation of variables and role-bindings is performed in ROBIN by net
work structure that processes signatures — activation patterns that uniquely
identify the concept bound to a role (Lange and Dyer [19]). Every concept
in the network has a set of signature units that output its signature, a constant
activation pattern different from all other signatures. A dynamic binding exists

Inferencing and Retrieval 85

r i.

Figure 2 Examples of signature patterns (banks of units on top plane)
for concepts (ovals on lower plan). Actor and Location roles and of the
Transfer-Inside frame and their binding units are also shown.

when a role or variable's binding units have an activation pattern matching the
activation pattern of the bound concept's signature.

An example of signatures is shown in Figure 2, which shows the concept nodes
for the concepts Police, John, and Dishwasher (on the lower plane) and their
associated signature units (banks of units on the top plane). Here signatures are
shown as unique six-unit distributed patterns, with different levels of activation
being represented by different levels of gray. The figure also shows some of the
units for the frame Transfer-Inside and their activation values when its Actor
is bound to John. The virtual binding of Transfer-Inside's Actor role to John is
represented by the fact that its binding units have the same activation pattern as
John's signature. The binding banks for the Location role have no activation
because this role is currently unbound. The complete Transfer-Inside frame is
represented in the network by the group of units that include the conceptual
unit Transfer-Inside, a conceptual unit for each of its roles (the Object role not
shown), and the binding units for each of its roles. The same binding units
could, at another time, hold a different virtual binding, simply by having the
activation pattern of another concept's signature.

In general, signatures can be uniquely-identifying activation patterns of any
size. Ideally, signatures are distributed activation patterns (e.g., made up of
semantic microfeatures) that are themselves reduced semantic representations
of the concept for which they stand (as in Figure 2). Having the signatures
represented as distributed activation patterns carrying semantic information
may allow their future use as inputs for local distributed learning mechanisms
after inferencing (discussed later). For simplicity, however, ROBIN's sim-

86 C H A P T E R 3

Figure 3 Simplified ROBIN network segment showing parallel paths of
evidential activation (bottom plane) and signature activation (top plane).
Initial activation is shown for "John put the pot inside the dishwasher".
Signature nodes (outlined rectangles) and binding nodes (solid black cir
cles) are in the top plane. Thickness of conceptual node boundaries (ovals)
in the bottom plane represents their levels of evidential activation. Node
names do not affect the spread of activation in any way. Connections
encode rule R4 and others.

ulations currently represent signatures as unique, arbitrarily-generated scalar
values (e.g., 6.8 for Marijuana and 9.2 for Cooking-Pot).

3 .4 PROPAGATION O F S I G N A T U R E S F O R INFERENCING

The most important feature of signatures is that they can be propagated without
change across long paths of binding units to dynamically instantiate inference
chains. Figure 3 shows how the network's structure accomplishes this and
automatically propagates signatures to fire rules (such as R4). Evidential ac
tivation for disambiguation is spread through the paths between conceptual
units on the bottom plane, e.g., Transfer-Inside and its Object role. Signa
ture activation for dynamic role-bindings and inferencing is spread across the
parallel paths of corresponding binding units (solid black circles) on the top
plane. As shown here, there are actually multiple binding units per role (e.g.,
the interchangeable left and right binding units of Transfer-Insiders Object role
). This allows simultaneous propagation of ambiguous bindings, such as the
multiple meanings of the word "pot". In general, this requires that each role

Inferencing and Retrieval 87

have as many binding units as there are possible meanings of the network's
most ambiguous word.

Initially there is no activation on any of the conceptual or binding units in
the network. When input for a phrase such as "John put the pot inside
the dishwasher" (PI) is presented, the lexical concept nodes for each of the
words in the phrase are clamped to a high level of evidential activation. This
directly provides activation for the concepts John, Transfer-Inside, Cooking -
Pot, Marijuana, and Dishwasher. To represent the role-bindings given by
phrase PI, the binding units of each of Transfer-Inside's roles are clamped
to the signatures of the concepts bound to them (Actor and Location roles
not shown). For example, the binding units of Transfer-Inside's Object are
clamped to the signature activations (6.8 and 9.2) of Marijuana and Cooking -
Pot, representing the candidate bindings from the word "pot" (Figure 3)2. An
alternative input, such as "George put the cake inside the oven", would be
represented by clamping the signatures of its bindings (i.e., George, Cake, and
Oven) instead. A completely different set of inferences would then ensue.

The activation of the network's conceptual units is equal to the weighted sum
of their inputs plus their previous activation times a decay rate, similar to the
activation function of previous structured networks. However, the activation
of the binding units is equal to the maximum of their unit-weighted inputs so
that signatures can be propagated without alteration. Binding units calculate
their activation as the maximum of their inputs because this preserves their
signature input value even when the signature can be inferred from more than
one direction. The actual relative signature activation values do not matter,
because gated connections (not shown) ensure that two different signatures do
not reach the same binding node.

As activation starts to spread after the initial clamped activation values in Figure
3, Inside-Of receives evidential activation from Transfer-Inside, representing
the evidence that something is now inside of something else. Concurrently, the
signature activations on the binding units of Transfer-Inside's Object propagate
to the corresponding binding units of Inside-Of s Object (Figure 4), because
each of the binding units calculates its activation as the maximum of its inputs.
For example, Inside-Of s left Object binding unit has only one input connection,
that from the corresponding left Object binding unit of Transfer-Inside. This
unit-weighted connection allows the network to make the inference that the
Object of Inside-Of is the same as the Object ofTransfer-Inside (from rule R4).

2ROBIN does not currently address the problem of deciding upon the original syntactic
bindings, that is that pot is bound to the Object role of phrase PI. Rather, their networks are
initially given these bindings and then use them for high-level inferencing.

88 CHAPTER 3

Figure 4 Simplified ROBIN network segment showing activation mid
way through processing Hiding Pot. At this time, Cooking-Pot and
Inside-Of-Dishwasher have higher evidential activations than Marijuana
and Inside-Of-Opaque, as is illustrated by their thicker ovals.

Here, the left Object binding unit of Transfer-Inside has an activation of 6.8, so
Inside-Ofs left Object binding unit also becomes 6.8 (Marijuana's signature),
because 6.8 is its maximum (and in this case only) input. The binding of
Cooking-Pot (9.2) to Inside-Ofs right Object binding unit propagates at the
same time, as do the bindings of Inside-Ofs Planner role to the signature of
John and its Location to the signature of Dishwasher (not shown).

By propagating signature activations from Transfer-Insiders binding nodes
to Inside-Ofs binding nodes, the network has made its first inference. The
network therefore not only holds the information that something is inside of
something else (as shown by its evidential activation) — it also represents
exactly which thing is inside the other through the signatures on its binding
units.

ROBIN continues making inferences from the activations of this new knowl
edge in turn. Evidential and signature activation spreads, in parallel, from
Inside-Of to its refinements Inside-Of-Dishwasher and Inside-Of Opaque and
their corresponding binding units (see Figure 4), on through the rest of the
network3. Figure 5 shows an overview of the signature bindings in a portion of

3The reader may note that the signature for Marijuana (6.8) did not reach the left binding
unit of Inside-Of-Dishwasher in Figure 4. This is due to additional structure of gated links that

Inferencing and Retrieval 89

//"phrase <S "put" DO'"in'' IO>' " ^
' 1 Subject: "John" 1
: j Direct Ob]ect: "pot" 1
•M Indirect Object: "dishwasher" 1

\ Meaning

\ vwm
\ fiction Transfer-Inside ^
' 1 Actor: John
) 1 Object: Cooking-Pot
*• 1 Marijuana, or
\ 1 Planting-Pot
< ^ Location: Dishwasher i

J Results-In

V / s t a t e Inside-Of 1
\ 1 Planner: John
« 1 Object: Cooking-Pot
\ I Marijuana, or
* 1 Planting-Pot
V l Location: Dishwasher 1

• phrase <S "were coming "> | ;
1 Subject: "police" w*

Figure 5 Overview of a small portion of a ROBIN network showing
inferences made after clamping of inputs for the phrases of Hiding Pot.
Thickness of frame boundaries shows the amount of evidential activation
on the frames conceptual nodes. Role fillers shown are the ones dynam
ically instantiated by propagation of signature activation over the roles'
binding nodes (as in Figure 4). Darkly shaded area indicates the most
highly-activated path of frames representing the network's interpretation
of the input. Dashed area shows the discarded dishwasher-cleaning inter
pretation. Frames outside of both areas show a small portion of the rest
of the network that received no evidential or signature activation.

90 CHAPTER 3

the network after presentation of the input for the rest of Hiding Pot (''because
the police were coming") is presented and the network eventually settles. The
network has made the inferences necessary to build the correct interpretation
of the story in this domain, with most of the inferences being shown in the
figure.

3.5 DISAMBIGUATION AND ^INTERPRETATION

ROBIN 'S propagation of signature activations dynamically instantiates can
didate inference paths in parallel in much the same way as marker-passing
systems and the structured connectionist binding mechanisms of Shastri and
Ajjanagadde [33] and Sun [35]. However, natural language understanding
requires more than basic variable binding and rule-firing capabilities. It also
requires the ability to resolve ambiguities and select between the large num
ber of candidate inference paths instantiated by rule-firing. This is handled
in ROBIN by the evidential activation that spreads in parallel with signature
bindings.

If this were a marker-passing system constructing an internal representation of
Hiding Pot, it would need an external symbolic path evaluator to select between
the cleaning path and the longer hiding path connecting John's Transfer-Inside
to the Police's Transfer-Self. At the end of processing, the path evaluator would
also have to recognize that Marijuana should be selected over the Cooking-Pot
and Planting-Pot bindings throughout the network.

Such disambiguation is performed entirely within ROBIN's network without
resorting to a separate path-evaluation module. Instead, the evidential portion
of the network (e.g., the bottom plane of Figure 3) decides between the com
peting inference paths that have been instantiated by signature activation. The
connections of the network and ROBIN's global inhibition mechanism (Lange
and Dyer [19]) assure that the activations of the conceptual frame nodes are
always approximately proportional to the amount of evidence available for
them in the current context from their bindings and related frames. ROBIN's
interpretation of its input is the most highly-activated path of frame units and
their bindings when the network settles4.

encode knowledge about what kind of concepts can be bound to the roles of particular frames
— such that only concepts that are refinements of Cooking-Utensils are prototypically cleaned
as the Object in Inside-Of-Dishwasher. These selectional restrictions and their importance are
described in Lange and Dyer [19].

4 As in all connectionist models, the network's "decision" or "selection" is actually simply
the interpretation that the human modeller gives to the levels of activation present in it.

Inferencing and Retrieval 91

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 20 40 60

II • Cooking-Pot
I N Marijuana
•II * • Planting-Pot

80 100 120 140 160 180 200 220

: : : : : : : : MarijCiaha

: „**#*#*
' — % t M « I M M I i f > « |

] h •/£*** fcJ^-^*ki"'***^-» " ' *4 i Si i I i i . t i i ^ m : Planting-Pot

f i1* i i i i i i i i i i ••'
40 60 80 100 120 140 160 180 200 220

Figure 6 Evidential activations for meanings of "pot" and of competing
refinements of Inside-Of after presentation of "John put the pot inside the
dishwasher" at cycles 1 to 31 and "the police were coming" at cycles 51
to61.

Often there are multiple possible competing interpretations for a given frame.
This occurs when there are multiple meanings for a word or phrase, multiple
plans to achieve a goal, or multiple refinements for a frame (e.g., the Inside -
Of-Dishwasher and Inside-Of-Opaque refinements of Inside-Of). In these
cases, the most highly activated interpretation that has been instantiated with
compatible signature role-bindings is chosen as part of the inference path. The
alternatives having lower activation are ignored, unless future context causes
them to become more highly activated (leading to reinterpretation). Similarly,
when there are multiple possible bindings for a role, the binding chosen at
any given time is the one whose concept has the highest level of evidential
activation.

Figure 6 illustrates how evidential activation works through constraint satisfac
tion to disambiguate meanings and interpretations. The evidential activations
of the competing meanings of "pot" and refinements of Inside-Of 'change during
the processing of Hiding Pot. Initially there is more evidence for the interpre
tation that John was trying to clean a cooking pot. This is shown by the fact that

92 CHAPTER 3

after Inside-Of-Dishwasher becomes activated at about cycle 60, Cooking-Pot
becomes more highly activated than Marijuana or Planting-Pot. Input for the
second phrase of Hiding Pot ("because the police were coming") is presented
at cycles 51 through 61. The evidential activation levels shown by the thick
ness of conceptual node boundaries in Figure 4 correspond to the activations
at cycle 90. The inferences about the police propagate through Transfer-Self,
Proximity-Of See-Object, and Block-See, until they reach Inside-Of-Opaque
(see Figure 5). This occurs at about cycle 95. By about cycle 160, rein
forcement from the Blockl Seel Police-Capture path causes Inside-Of-Opaque
to become more activated than Inside-Of-Dishwasher y and Marijuana to be
come more highly activated than Cooking-Pot. Thus, ROBIN'S interpretation
of Hiding Pot is that John was trying to avoid detection of his Marijuana from
the police by hiding it inside of an opaque dishwasher. The final inference path
interpretation is shown in the darkly shaded area of Figure 5.

ROBIN's ability to use the constraint satisfaction of evidential activation in
combination with its parallel dynamic inferencing with signatures makes it a
promising approach to natural language understanding. Its automatic disam
biguation abilities through evidential activation is a primary advantage over
most symbolic marker-passing systems, which can also generate alternative
inference paths in parallel, but which must use a serial path evaluator separate
from the marker-spreading process to select the best interpretation, a significant
problem as the size of the networks increase and the number of generated in
ference paths to be evaluated increases dramatically. More details of ROBIN's
current abilities and structure are described in Lange and Dyer [19] and Lange
[20]. Future research should expand these abilities further.

4 E P I S O D I C RETRIEVAL IN REMIND

Most research in analogical and case-based memory retrieval has explored
retrieval in isolation from the comprehension process. We believe, however,
that memory retrieval and comprehension are intricately related, and that much
more can be learned by developing a model that integrates the two within a
single mechanism. Building upon our work in ROBIN, we are developing
REMIND, an inferencing-based model of memory retrieval that allows us to
explore the effects of inferencing and disambiguation on the retrieval process.
REMIND receives syntactic representations of short input texts as memory
cues. Using general knowledge stored in its long-term memory, REMIND
constructs elaborated interpretations of the cues, and then retrieves the episodes

Inferencing and Retrieval 93

that are most similar to the surface and inferred features of their interpretations.
This section provides an overview of how REMIND works. A more detailed
description can be found in Lange and Wharton [21].

REMIND uses the same simple spreading-activation mechanism as ROBIN
to encode world knowledge and perform inferencing and interpretation (see
section 3). REMIND's networks also contain representations of prior episodes,
such as "Fred put his car in the car wash before his date with Wilma" (Car
Wash) and "Billy put his Playboy under the bed so his mother wouldn't see it
and spank him" (Dirty Magazine). The representations of these episodes are
the actual plan/goal analyses (or interpretations) that the network inferred for
them earlier. These prior episodes are indexed into the comprehension network
through connections with the knowledge structure nodes of their representation.

To perform retrieval, REMIND is given a short text passage to use as a delib
erate memory cue, such as "John put the pot inside the dishwasher because
the police were coming" (Hiding Pot). Evidential and signature activation
spread through the ROBIN portion of the network to disambiguate and infer
an interpretation of the cue (as described in section 3). Because the units
representing long-term memory episodes are connected within the network, an
important side-effect of this understanding process is that episodes having con
cepts related to the elaborated cue also become highly activated. This includes
episodes related due to superficial semantic overlap with the cue (e.g., other
episodes involving police, drugs, or kitchen appliances) and episodes related
abstractly because they share similar inferred plans and goals of their actors
(e.g., episodes that share the inferences that a person was trying to Avoid-
Detection of something to avoid Punishment, such as Dirty Magazine). After
the network settles, the episode that received the most activation from the cue's
interpretation and surrounding context becomes the most highly activated, and
is therefore retrieved as the best match for the cue.

4 . 1 REPRESENTATION OF LONG-TERM EPISODES

Whereas the general world knowledge and inference rules used to initially
build REMIND's networks are hand-coded, REMIND is not given any in
formation about the particular episodes it is going to understand and store in
long-term memory. The representations used for these target episodes are cre
ated entirely by REMIND's spreading-activation understanding process. Input
for each episode's text is presented to the network, which then infers an in
terpretation of it by the spread of signature and evidential activation. Next,

94 CHAPTER 3

units and connections are added (by hand) to store the episode's entire resulting
interpretation in REMIND's long-term memory. Accordingly, each episode's
representation includes all aspects of its interpretation, from its disambiguated
surface features (such as the actors and objects in the story) to the plans and
goals that REMIND inferred that the actors were using. The units added to
encode long-term episodes' representations are added to the same network
used for the inferencing and understanding process, causing both processes to
interact with and affect each other.

As a complete example, consider how Dirty Magazine ("Billy put the Playboy
under his bed so his mother wouldn't see it and spank him") is processed and
stored in the network as a memory episode. First, signature and evidential
activations representing its phrasally-analyzed input are clamped to start the
understanding process. As described earlier for Hiding Pot, the input is
presented to the network by clamping the evidential activations of the input's
phrase and word nodes to 1 and clamping the binding units of the phrases' roles
to the signatures of their bindings' word meanings. Activation then spreads
through the network to infer and disambiguate an interpretation of the input.

As in Hiding Pot, the network infers that somebody is hiding something (Avoid-
Detection) and that it is blocked from sight (Block-See). Here, however, the
inferred signatures show that it is Billy hiding a Playboy-Magazine rather than
John hiding Marijuana. Several other knowledge structures involved in Hiding
Pot (e.g., Proximity-Of, Possess-Obj, Punishment) are also activated by Dirty
Magazine. These similarities make Dirty Magazine a likely candidate for
reminding when the network is presented with Hiding Pot as a cue. However,
there are a number of differences, e.g. frames of the Guardian-Discipline
structure are part of Dirty Magazine's interpretation, but the Police-Capture
frames are not.

Figure 7 shows an overview of the network after Dirty Magazine and sev
eral other episodes (from Figure 8) have been understood and memorized.
The frames activated as part of Dirty Magazine's interpretation are shown by
nodes that have a circled " 1 " above them in the figure. Other circled numbers
represent elements of other stored episodes' interpretations. It is important to
note that each episode's representation also includes all of the simple bridg
ing inferences that were necessary to make the plan/goal analysis. Here the
bridging inferences for Dirty Magazine include that the Playboy was Under 1
the bed, that Billy possessed the Playboy (Possess-Obj.7), that the salient re
finement of this possession was that it was possession of a naughty object
(Possess-Naughty-Obj.l), and so on.

Inferencing and Retrieval 95

Figure 7 Overview of part of a REMIND network storing the episodes
of Figure 8. Circles above frames indicate long-term instances connected
to them. Numbers within circles indicate which episode the instance is
part of. Overview is shown after activation has settled in processing of
Hiding Pot. Gray boxes around nodes represent the final level of eviden
tial activation on the frame concept nodes (darker = higher activation, no
box = no activation).

96 CHAPTER 3

| i
[T

2

3

4

5

r
7

8

i^iiwIjK^

Bitty jmrtk6jPtey&Gywi44rte $6d$o kit
•moth*? wcsttx 'tide it end sp&nk&ia.
(Drty Magaane}

Fred put k& car instfe &* c$r wa%h
$$&re ki$ date ti>25& Wb&A (Car Wfcdi)

.&»* i& or Mirk witi a Cnit-4S. H* died.

Barag$ putthefiQwer in ike pat, and rite a
wa&rad it (Flower Hinting)

Mkswas Mxgry. ffedtssox/tefisii.

Suite favad Gaorgej tv.tke dud. Tken
Biltpropazed 6 bar. Ski became sad.
(Sad di aft**)

i l l l i^

$<S ***** DQk <S BOttyJ JDQ tfigASOfc&OJ J
{<£ itwfe- DO o«, t<3> cat 1G>(£ i*btj^ <J>& <: î >»r*fc-b«> £10 *feov»)>

f < £ ftMlOfertA. DOCK <£ pl<^A*u4^-lto4^) {DO WNAIOS^J

<-s5 pu t W5 »***• JC?» <5 fc»wy> <«5 <Jw«5 it& p»b> J

$<& *c* BOX <s nix*5 (DO rish> >

Figure 8 Episodes understood and stored in the network of Figure 7.

Once the full interpretation for an episode has been determined, units and con
nections representing it are hand-coded into the network's long-term memory.
For Dirty Magazine, the units added include (a) nodes representing each instan
tiated frame of its interpretation in Figure 7 (e.g., Billy. 1, Playboy>-Magazine. 1,
Avoid-Detection.l, and Possess-Obj.1), (b) units to represent their roles, and
(c) a unit to stand as a placeholder for the entire episode (e.g., Episode.1).
These units are then connected to their corresponding local elements in the
normal evidential semantic network. They are also interconnected to encode
their role-bindings and which episode they are part of.

Figure 9 shows an example of the units and connections that are added to
the network to represent episodes. The figure shows a simplified part of the
network's evidential layer after several episodes have been understood and
added to long-term memory. The gray units in the figure are the normal
semantic conceptual units originally in the network, including the conceptual
units for frames Possess-Obj and Possess-Naughty-Obj and a number of other
frames (shown here as connected in a refinement is-a hierarchy). At this
stage, two episodes have been processed that include Possess-Obj or Possess-
Naughty-Obj as part of their interpretation: Dirty Magazine {Episode.7), and
"Betty wanted to smoke a cigarette, so she put it on top of the stove and
lit it" (Cigarette Lighting; Episode.4). Cigarette Lighting's interpretation

Inferencing and Retrieval 97

Figure 9 Encoding of Possess- Obj and Possess-Naughty- Obj instances
for Episode. 1 (Dirty Magazine) and Episode A (Cigarette Lighting). Gray
units are pre-existing conceptual nodes.

98 CHAPTER 3

includes an instance of Possess-Obj because the network inferred that Betty
must possess the cigarette to light it.

The white units in Figure 9 show some of the units added to the network
to encode Dirty Magazine and Cigarette Lighting. For each episode, there
is a single episode unit serving to represent and group all of its elements
together, such as Episode. 1 and Episode A in Figure 9. In addition, there is an
episode instance unit representing each element of the episode's interpretation.
For Dirty Magazine, there is an episode instance unit for Billy. 7, Playboy -
Magazine.7, Possess-Obj.1 and Possess-Naughty-Obj.l, along with units (not
shown) representing all of the other elements of its representation. These
episode instance units are connected both to the general semantic concept they
instantiate (e.g., Billy. 1 is connected to Billy) and to the episode unit of which
they are part (e.g., Episode.1 for Dirty Magazine's elements). Furthermore,
each episode instance is connected to units representing its roles (e.g., the
Actor and Object unit for Possess-Obj.7), which are in turn connected to the
concepts that were bound to them (e.g., Possess-Obj.1 's Actor is connected to
Billy.l, and its Object is connected to Playboy-Magazine.1). The rest of the
interpretation of each episode (e.g., in Figure 7) is encoded similarly with units
and connections that represent all of its other instantiated frames and elements.

As can be seen, REMIND's method of encoding its episodes is different from
that of many memory retrieval and case-based reasoning models. Episodes
in REMIND are not indexed under any one knowledge structure or important
groups of knowledge structures. They are instead indexed under every concept
that was an aspect in understanding them in the first place. These concepts
include both the abstract inferences that make up the plan/goal analysis of
the episode and the simple disambiguated surface semantic features of the
text (such as its direct word and phrase meanings). This fully dispersed form
of indexing has important implications for the kinds of remindings that the
model produces. Notice that more specific frames tend to have fewer episode
instances than less specific frames (see Figure 7). This is to be expected, since
specific knowledge structures pertaining to certain situations (such as a police
search or a parent disciplining a child) represent events that are less frequently
encountered than general knowledge structures about simple actions and states
(such as being inside of something, or possessing an object). As an example,
five of the episodes in Figure 7 (1,2,4,6, and 7) inferred ^Possess-Obj as part of
their interpretation, but only one episode (1) involved a Possess-Naughty-Obj
or Avoid-Detection. An important consequence of specific frames providing
activation evidence for a smaller number of instances is that specific, contentful
knowledge structures tend to be stronger reminding indices than general ones.

Inferencing and Retrieval 99

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 10 Evidential activations of episode units for eight episodes
of Figure 8 after presentation of Hiding Pot. EpisodeSs activation
reaches asymptote (1.0) at around cycle 56, but declines at around cycle
112, when Episode.2 reaches 1.0, until Episode! declines again when
Episode.1 reaches 1.0 at around cycle 124.

4 . 2 T H E P R O C E S S O F E P I S O D I C R E M I N D I N G

Retrieval in REMIND begins with presentation of an input cue to the network
to be understood. Because episode instance units are connected directly to their
corresponding concept units in the same network, they become active when
the concepts they are instantiations of become activated by the understanding
process. The more similarities an episode shares with the inferred interpretation
of a cue, the more of the episode's instance units will become active. Episodes
having a number of elements in common with the cue's interpretation therefore
tend to become highly active. After the network settles, the episode with the
most highly-activated episode unit is retrieved.

Now consider what happens when input for Hiding Pot is presented as a cue
to the network. Evidential and signature activation spread through the net
work, dynamically instantiating the competing inference paths as described
earlier. At the same time, similar episodes that are connected to those in
ferences through their episode units also become activated. Figure 10 shows
the activation levels of the eight episodes as activation spreads through the
network. As can be seen, Episode.6 ("Barney put the flower in the pot, and
then watered it") initially becomes highly active because it shares a number
of surface features with Hiding Pot. For example, both involve a Transfer-
Inside, both have humans, and Planting -Potreceives activation from the word
"pot". Similarly, Episode.2 (Car Wash) initially becomes active because of

100 CHAPTER 3

shared surface features with Hiding Pot. Episode'.2's activation continues to
climb when the Clean frame is inferred, since a Clean is part of Car Wash's
interpretation. However, as REMIND continues to process Hiding Pot, the
hiding and punishment frames are inferred and become active. Eventually,
Episode.! 's (Dirty Magazine) activation climbs and wins because it shares the
most surface and abstract features of any episode with Hiding Pofs interpreta
tion (see Figure 7). Dirty Magazine is therefore retrieved as the episode most
similar to Hiding Pot.

An explanation for why Dirty Magazine becomes the most-highly activated
of the eight episodes can be seen in Figure 7. The gray boxes around nodes
in Figure 7 indicate the final levels of evidential activation of the frames
inferred for Hiding Pot. Of the eight episodes stored in the network, Dirty
Magazine has the most instances of its interpretation shared with Hiding Pot's
final active interpretation (e.g., instantiations Avoid-Detection.7, Block-See.7,
Punishment.7, and Possess-Obj.l). It therefore eventually becomes the most
activated of the episodes.

Besides serving as an example of retrieval in REMIND, this example illus
trates a number of important points about the model. The first point to notice
is that even when the network settles, the losing episodes retain significant
activation — enough that they could potentially be recalled later. As in the
ROBIN portion of the network, this is the result of controlling episodes' ac
tivations through REMINDS global inhibition mechanism. The mutual (or
competitive) inhibition mechanism used to control the spread of activation
in many structured connectionist models drives the activation of "losing" in
terpretations down to zero, making reinterpretation difficult or impossible. In
contrast, ROBIN and REMIND use a global inhibition mechanism that inhibits
all evidential units by an equal damping factor. This allows competing frames
and episodes to retain a level of evidential activation relative to the amount of
evidence available for them, facilitating reinterpretation if warranted by later
context.

A second point of interest is that elements and episodes that are superficially
similar to the cue tend to become activated before elements and episodes that
are only abstractly related to the cue (through inferences). This is a direct result
of the spreading-activation process, since activation and signature inferences
reach closely-related concepts before they reach more distant concepts. An
example of this was seen in Figure 10, where the superficially-related Episode. 6
became activated before the more abstractly-related Dirty Magazine. As seen,
however, the early activation of superficially-similar episodes does not stop
abstractly-similar episodes from winning if the abstractly-similar episodes

Inferencing and Retrieval 101

ultimately share more features and activation with the cue. Because all episodes
retain their relative supported levels of activation, abstractly-similar episodes
such as Dirty Magazine can climb as inferences reach them and end up with
the highest level of activation when the network settles.

Another important thing to note is that retrieval in REMIND is not all-or-
nothing. As in human recall, REMIND often gets partial recall in which
only subparts of the retrieved episode are activated. Parts of the retrieved
episode distant from the current context of inferences may not become activated
initially. This is true, for example, for parts of Dirty Magazine that differ
significantly from Hiding Pot's interpretation (such as the Guardian-Discipline
and Spank structures, which are relatively distant from anything in Hiding Pot).
However, the directly similar inferences between episodes and their primary
actors and objects in episodes, such as Billy.l and Playboy-Magazine.1 in
Dirty Magazine, do tend to become active because they play a part in so
many of its roles. A final aspect to note about REMIND is how its language
understanding and retrieval processes come full circle. The episode retrieved
depends crucially on the interpretation of the cue from the spreading-activation
network's inferences. Once an episode is retrieved, it in turn primes the
activation of the evidential spreading-activation network, perhaps leading to a
different disambiguation and therefore interpretation of the next cue.

Theoretically, REMIND lies somewhere between case-based reasoning models
and general analogical retrieval models such as ARCS and MAC/FAC. Like
ARCS and MAC/FAC, REMIND is meant to be a psychologically-plausible
model of general human reminding, and therefore takes into account the preva
lence of superficial feature similarities in remindings. However, we believe
that many of the types of high-level planning and thematic knowledge struc
tures used as indices in case-based reasoning systems also have an important
effect on reminding. REMIND is thus partially an attempt to bridge die gap
between case-based and analogical retrieval models. As it turns out, this gap
is naturally bridged when the same spreading-activation mechanism is used
to both understand cues and retrieve episodes from memory. Using the same
mechanism for both processes causes retrieval to be affected by all levels that
a text was understood with. This is the case in REMIND, in which the un
derstanding mechanism is given the superficial features and actions of a text
and attempts to explain them by inferring the plans and goals being used —
causing memory episodes to be activated by both. This seems to give a more
psychologically-plausible form of reminding than previous models, because
the episodes it retrieves have varying degrees of superficial and abstract sim
ilarities to the cue (Lange and Wharton [21]; Wharton and Lange [41]), as
seems to be the case in human reminding.

102 CHAPTER 3

5 FUTURE WORK

Our initial research on developing structured connectionist models for natural
language understanding and episodic memory retrieval seems quite promising.
The use of signatures in ROBIN allows it to perform some of the variable
binding and parallel dynamic inferencing difficult for connectionist models,
while its integration within the constraint satisfaction abilities of its evidential
layer allows it to perform disambiguation and reinterpretation difficult for
traditional symbolic models. In turn, REMIND has illustrated many of the
potential computational and predictive benefits of integrating the language
understanding and episodic memory retrieval processes.

However, ROBIN and REMIND's representation and rule-firing abilities are
currently limited relative to those of traditional symbolic models, limiting the
length and complexity of the texts the model can understand and remember.
Here we discuss planned advances to ROBIN and REMIND to improve their
capabilities and allow us to explore how well their initially promising results
scale up to more complex and longer inputs and texts. These include: (1) the
ability to handle multiple dynamic instances of each frame, (2) the ability to
handle more complex rules, (3) signatures as distributed patterns of activation
to allow learning, and (4) the ability to handle more complex rules having
conjunctive terms. We plan to integrate these new inferencing abilities both
into ROBIN and REMIND and to perform a number of experiments on how
they allow the models to scale up.

5.1 MULTIPLE DYNAMIC INSTANCES

One of the main restrictions of the model as described is that there can be
only one dynamic instance of each frame at any given time, since binding
units can only hold one signature at once. Because of this, ROBIN cannot
yet represent or interpret texts involving two different seeing or eating events,
for instance. We plan on developing a solution in which each concept in the
network is actually represented by a small number of separate sub-networks
of conceptual and binding units that can each represent a single dynamic
instance of the conceptual frame with signatures. This will increase the size
of the network by a linear amount k equal to the average number of dynamic
instance sub-networks per concept, but will allow processing of inputs that
involve multiple dynamic instances of the same frame, as in a similar approach
for phase-binding networks described by Shastri and Ajjanagadde [33]. An
important issue to be resolved in this approach is how to connect and gate the

Inferencing and Retrieval 103

Btate Inside-Of 1
I Planner: John
I Object: Cooking-Pot
1 Location: Dishwasher

| t a t e Inside-Of2
Planner:
Object: Soap
Location: Cupboard

Refinements

f tate Inside-Of-Dishwasherl
Planner: John
Object: Cooking-Pot
Location: Dishwasher

ptate Inside-Of-Dishwasher2
Planner:
Object: (tate In

Plani
Obje^
Loca'

Inside-Of-Opaque 1
anner: John

Cooking-Pot
Location: Dishwasher

fctate Inside-Of-Opaque2
Planner:
Object: Soap
Location: Cupboard

Figure 11 Overview of nework handling multiple dynamic instances of
every frame. Black lines indicate paths over which signatures havepassed.
Dashed lines indicate paths ruled out because they violate the frame's
selectional restrictions. Grey lines indicate paths ruled out because a
dynamic instance already exists.

sub-networks so that the proper inferences are made, while assuring that the
parallel evidential portion of the network is immune to crosstalk.

Figure 11 illustrates this solution and some of the issues involved. It shows
an overview of a portion of the network having multiple dynamic instances
per frame. Here each frame has two separate sub-networks, each potentially
holding the signatures and evidential activation for one dynamic instance.
Inside-Of, for example, is shown with two separate dynamic instance sub
networks: Inside-Of 1 and Inside-Of2. The overview shows a hypothetical
state of the network after processing input for "John put the pot inside the
dishwasher, but the dishwasher soap was inside the cupboard'. The sub
network for Inside-Ofl holds the instance of the Cooking-Pot inside of the
Dishwasher, while Inside-Ofl holds the instance of Soap inside Cupboard.
Each dynamic instance sub-network will have the same structure of conceptual
and binding units as ROBIN does now to hold a single dynamic instance (cf.
Figure 3).

Each dynamic instance sub-network of a frame uses the same basic network
structure as is currently used for a single instance. However, there must
be additional structure for the connections between related frames as defined
by the knowledge base's general knowledge rules. This multiple instance
gating structure will be responsible for controlling the spread of activation

104 C H A P T E R 3

to particular dynamic instance sub-networks as inferences are made. The
first thing this multiple instance gating structure must do is to assure that
only one instance of a related frame receives signatures when an inference
is made. Consider what should happen in Figure 11 if there is no activation
in the network until Inside-Ofl gets activated as a Cooking-Pot Inside-Of a
Dishwasher. Signature and evidential activation should then spread to Inside-
Of-Dishwasher and Inside-Of-Opaque, since they can both be inferred from
it. However, only one dynamic instance of each should be inferred. The
multiple instance gating structure between the frames must therefore assure that
Inside-Ofl's activation only propagates to Inside-Of-Dishwasher 1 and Inside-
Of-Opaquel, respectively, and not to either Inside-Of-Dishwasher! or Inside-
Of-Opaque!. This is shown in Figure 11 by the grey (gate closed) connections
from Inside-Ofl to Inside-Of-Dishwasher! and Inside-Of-Opaque!.

The multiple instance gating structure must also assure that activation does
not propagate to instance sub-networks that already hold instances. It should
instead channel it to the first available instance sub-network. For example,
when Inside-Of! (Soap Inside-Of & Cupboard) gets activated in Figure 11, its
activation should not propagate to Inside-Of-Opaque 1 (grey arrow), which is
already filled with a Cooking-Pot inside of a Dishwasher. Its activation and
signatures should instead propagate to the first available sub-network, Inside-
Of-Opaque!. Notice that this multiple instance gating structure must interact
with the other structure in the network that enforces selectional restrictions
by stopping activation from propagating when binding constraints are vio
lated. For example, even though the Inside-Of-Dishwasher! sub-network is
free to receive activation, it should not receive activation from Inside-Of!'^
instance, since Soap inside of a Cupboard violates the constraints on Inside-
Of-Dishwasher (that a Cooking-Utensil be inside of a Dishwasher).

The actual multiple instance gating structure will be similar to the structure
currently in ROBIN for enforcing selectional restrictions (i.e. assuring that
only legal inferences are made). This will be done with the same sort of simple
units and connections to compare activations as in the rest of the model, with
additional small winner-take-all networks to break ties when two different
instances arrive at the same time.

5.2 M O R E C O M P L E X R U L E S

Using signatures of pre-existing concepts, ROBIN can create and infer novel
network instances. However, ROBIN currently only propagates signatures

Inferencing and Retrieval 105

Figure 12 Example of using the signature of a dynamically-created
instance.

of pre-existing concepts, such as of Cooking-Pot, Marijuana, or John. It
does not propagate signatures of the dynamically created instances inferred
by signatures (e.g., the dynamic instance of Cooking-Pot or Marijuana being
Inside-Ofdi Dishwasher in Figure 4). Inferences using the dynamic instances
themselves as bindings are necessary to encode most rules for general planning
knowledge or complex interactions of goals, which generally require the ability
to reason over any dynamic plan or goal instance the system might have. It
is also crucial that the network be able to encode rules using combinations
of terms (such as conjunctive terms). All of these types of rules are needed
to understand many complex texts, such as those involving abstract planning
failures or themes (cf. Schank [30]; Dyer [16]). These types of relatively
complex rules are particularly difficult problems for connectionist models.

The first thing the network must be able to do is to hold and propagate signatures
representing the dynamic instances created when sub-networks representing a
frame are instantiated with signatures. For example, in the sentence "Juliet
saw that Romeo was dead', Juliet did not see a pre-existing person or thing.
She saw a new state — that Romeo was dead. This new state instance itself
is easily represented by the signature for Romeo being placed on one of the
binding units of the Object role of the first available Dead frame instance (e.g.,
Dead!). The difficult part, however, is that the network must somehow be able
to represent and propagate new instances such as this as signatures.

A solution to this problem is to use the frames' signatures themselves to
represent the dynamic instance they hold. Figure 12 shows an example of how
this can be done. Dead2 has the activation representing the instance of Romeo
being dead. The signature of Dead! shown here is 1.12. The fact that Juliet

106 CHAPTER 3

saw this is represented by binding her signature (3.3) to one of the binding
units of Seel's Actor, and binding one of the binding units of its Object to
the signature of Dead! (1.12). The network therefore dynamically represents
the fact that Juliet sees some concept, which happens to be the instance held
by the signature of Dead! (that Romeo is dead). The same signature (1.12)
would be used during processing if at some other time Dead! held another
dynamic instance, such as that President-Hoover was dead. Using the pre
existing signature of each frame instance sub-network will allow ROBIN to
hold and propagate signatures representing dynamic instances. For example,
in this case, the network would have a rule that said that if somebody Sees
an existing state, then they Know it. The network would then infer that Juliet
Knows that Romeo is dead by propagating its signature (1.12) from Seel to
Knowl.

It is also important to extend ROBIN's network structure to handle more
complex rules that themselves create and propagate new instances that are
functions of their instances, as opposed to just the signatures themselves. In
predicate logic terms, this is the same as admitting rules with function terms.
Consider, for instance, a simple rule that says "If somebody punches somebody
else, then that person's nose will be broken," or:

R5: (Actor X Punch Object Y) results-in (Broken Object (Nose Y))

As with ROBIN's normal rules, R5 would spread activation to its consequent
frame, Broken. But instead of causing Broken's Object role to be bound to one
of the concepts that Punch's roles were bound to (i.e. X or Y), it will cause it to
be bound to a function of one of those concepts — the (Nose Y). So R5 should
cause two things to happen. First, it should cause activation to spread to create
a new instance of Nose whose Owner is Y. Second, it should make Brokers
Object role receive the signature of that new instance of Nose.

Figure 13 shows how the network will do this. It shows the evidential and
binding unit sub-networks representing one instance each of Punch (Punchl),
Broken (Brokenl), and Nose (Nosel). The Object binding units of Punchl has
connections directly to the Owner binding units of Nosel, since it is the Object
of the Punching (Y) whose nose is involved. There is then a connection directly
from the signature of Nosel to one of the Object binding units of Brokenl,
since the network can infer that Nosel will be broken. The signatures show the
network after it has propagated activation for "Juliet punched Romeo". The
network has inferred that the concept whose signature is 4.21 is broken, where
4.21 is the signature of Nosel, representing Romeo (9.2)'s nose.

Inferencing and Retrieval 107

Figure 13 Network structure encoding a rule with a function term (R5).

A number of issues need to be resolved to determine the structure needed to
allow rules with function terms. As with normal rules, signature and evidential
activation should only propagate when the selectional restrictions (binding
constraints) are not violated and when there is enough evidential activation to
support the inference. Thus, in Figure 13, the connection from the signature
unit of Nosel should have a gate that only allows the signature to propagate to
the first Object binding unit of Brokenl when the inference can be made. This
structure will have to work consistently with the structure allowing multiple
dynamic instances of every frame described in the previous section. Similarly,
connections between concepts on the evidential layer will have to be gated so
that they only propagate evidential activation when an inference can be made.

Similar changes need to be made to allow ROBIN to handle rules with con
junctive antecedents, where more than one thing must be true for the rule to
fire. For example, a rule for jealousy might be that one person (X) is jealous
of a second person (Z) if they love somebody (Y) and that person (Y) loves the
second person (Z). To encode such rules, the structure of the network must only
allow signature and evidential activation to propagate to instantiate a resulting
instance when all antecedents are active and all of their bindings meet the rules'
constraints (such as that the signature of the person that X loves is the same
as the signature of the person Y who loves somebody else). The same kind of
network structure encoding other kinds of binding constraints and comparing
signatures to the expected signatures can be simply extended to handle these
kinds of conjunctive rules.

108 C H A P T E R 3

Figure 14 Distributed signatures, where each signature is a unique pat
tern distributed over a bank of units. Here each signature or binding bank
is made up of six units, with increasing levels of activation represented
by increasing darkness of shading (ranging from white = 0 to black =1).
Shown is the (desired) state of the network after Bill's distributed signa
ture has propagated from the binding bank of Transfer-Inside" s Actor to
the binding bank of Inside-Ofs Planner, but before reaching Inside-Of-
Dishwasher and Inside-Ojf-Opaque.

5.3 DISTRIBUTED SIGNATURES

Currently, each signature is a single arbitrary scalar value that uniquely identi
fies its concept. Large models could conceivably have thousands or hundreds
of thousands of separate concepts that they could recognize (such as Mari
juana, Cooking-Pot, Catfish, Guppy, John, John-Wayne, John-Kennedy, etc.).
It is untenable to expect a single binding node to have enough precision to
accurately distinguish between such a large number of signatures5.

A better solution is that each signature be a distributed pattern of activation
which uniquely identifies its concept. As proposed in Lange and Dyer [19],
distributed signatures would be propagated for inferencing over paths of bind
ing banks in exactly the same way as scalar signatures. Figure 14 shows an
example of this. Similar concepts would have similar distributed patterns of
activation as their signatures (or reduced descriptions), so that each signature
would carry at least a limited amount of semantic content. A first pass at this
might entail the use of microfeature-like patterns, as in the distributed model
of McClelland and Kawamoto [23], but it would be preferable to have the

5The normal coding capacity of connectionist elements is usually in the range of 1-5 bits.

Inferencing and Retrieval 109

signature patterns learned over time, as done by the model of Miikkulainen
and Dyer [25].

One of the most important results of using distributed signatures would be a
simplification of the network structure calculating whether individual signature
bindings match a role's selectional restrictions (or logical binding constraints).
If signatures are distributed patterns of activation that are similar for similar
concepts, then selectional restrictions could be computed with a bank of nodes
that does a simple similarity threshold between the signature binding and the
distributed signature of the binding constraint to determine whether signatures
should be passed through. The most intriguing possibility, however, is that
the binding constraint nodes could be replaced by small distributed ensem
ble of nodes trained by backpropagation or some other distributed learning
mechanism to recognize the signatures that their roles can accept.

We will be exploring distributed signatures and their possible uses for learning
binding constraints in the future, along with other ways of using learning
based on the semantic content of signatures themselves after the network has
performed inferencing. These possibilties for applying learning techniques
with distributed signatures make for potentially the most important difference
between signatures and other parallel inferencing techniques in which the
bindings themselves convey no semantic information, such as marker-passing
models and Shastri and Ajjanagadde's [33] synchronization approach.

5 .4 E X T E N S I O N S T O REMIND

The above advances to ROBIN'S dynamic representation and inferencing abili
ties should significantly increase the types and lengths of the stories that ROBIN
will be able to disambiguate and understand. Because REMIND is based on
ROBIN, these advances should also form the basis for significantly increasing
the ability of REMIND to understand and retrieve longer and more complex
stories. We therefore plan to extend REMIND to include the advances devel
oped in ROBIN'S inferencing abilities. We will then run a number of different
simulations to test these new retrieval abilities and how REMIND compares
to other models of analogical and case-based retrieval.

Another set of simulations to be run will test how the integration of under
standing and retrieval within the single spreading-activation mechanism of
REMIND has an effect on the language understanding and disambiguation
process. Initial experiments has shown that priming from analogous episodes

110 C H A P T E R 3

(cases) activated as part of the retrieval process has a desirable effect on the
understanding process by influencing the context in which disambiguation and
interpretation of input cues takes place. Furthermore, it appears that many
of the desirable features of the explicit indexing methods of case-based rea
soning systems emerge from the dynamics of REMIND's spreading-activation
process and how episodes are learned over time. For example, one important
feature of a useful index is how unique it is. Although REMIND indexes its
episodes under all of their features, relatively unique features affect retrieval
more than common ones simply because they activate fewer episodes (com
pare Possess-Obj to the more abstract Avoid-Detection and Punishment frames
in Figure 7). Another important aspect of the spreading-activation process
is that particularly salient features receive the most activation and therefore
automatically act as stronger retrieval indices. We plan to run a number of
simulations to explore whether these initial results scale up and whether they
can show that the benefits of explicit indexing in CBR models can fall out of
the comprehension process. The effect of retrieval of analogous cases on the
interpretation process may also show another way that learning can occur in
the network.

6 SUMMARY

Our initial research on developing structured connectionist models for natural
language understanding and episodic memory retrieval is quite promising.
The use of signatures in ROBIN allows it to perform some of the variable
binding and parallel dynamic inferencing difficult for connectionist models,
while its integration within the constraint satisfaction abilities of its evidential
layer allows it to perform disambiguation and reinterpretation difficult for
traditional symbolic models. Once a connectionist model can perform some of
inferencing and disambiguation of the natural language understanding process,
it is a natural extension to have the resulting interpretations directly influence
memory retrieval, as appears to be the case in people. REMIND's integration
of ROBIN's language understanding networks with sub-networks performing
memory retrieval has illustrated many of the potential benefits of this approach.
These include several computational benefits over retrieval-only models and
the fact that it can potentially account for many psychological phenomena
involving priming and language effects on human memory retrieval.

We are currently developing a number of extensions to the inferencing and
representational abilities of ROBIN and REMIND's network structure. They

Inferencing and Retrieval 111

include: (1) the ability to handle multiple dynamic instances of each frame,
(2) the ability to handle recursive inferences and rules with function terms,
(3) the ability to handle more complex rules having conjunctive terms, and (4)
exploring the use of representing signatures as uniquely-identifying distributed
patterns of activation carrying limited semantic content (i.e. as reduced de
scriptions) for learning. We plan to integrate these new inferencing abilities
into ROBIN and REMIND, allowing us to perform a number of experiments
on how they allow the models to scale up and how they compare to cur
rent connectionist models of language understanding and to current models
of analogical and case-based retrieval. These developments should allow a
significant increase in the abilities of connectionist models' reasoning abilities
and our understanding of the processes of language understanding and episodic
memory retrieval.

A C K N O W L E D G E M E N T S

I would like to thank Michael Dyer, Ken Forbus, Keith Holyoak, and Charles
Wharton for helpful discussions on the models. I would also like to thank
Lawrence Bookman and Ron Sun for the opportunity to present this chapter
and for several useful comments and suggestions.

REFERENCES

[1] Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:
Harvard University Press.

[2] Barnden, J. (1990). The power of some unusual connectionist data-
structuring techniques. In J. Barnden and J. Pollack (eds.), Advances
in Connectionist and Neural Computation Theory. Norwood, NJ: Ablex.

[3] Barnden, J. and Srinivas, K. (1992). Overcoming rule-based rigidity and
connectionist limitations through massively-parallel case-based reason
ing. International Journal of Man-Machine Studies, 36:221-246.

[4] Bookman, L.A. (1994). Trajectories through Knowledge Space: A Dy
namic Framework for Machine Comprehension. Boston, MA: Kluwer.

112 CHAPTER 3

[5] Charniak, E. (1986). A neat theory of marker passing. In Proceedings
of the Fifth National Conference on Artificial Intelligence, Philadelphia,
PA.

[6] Cottrell, G. and Small, S. (1982). A connectionist scheme for modeling
word-sense disambiguation. Cognition and Brain Theory, 6:89-120

[7] Diederich, J. (1990). Steps toward knowledge-intensive connectionist
learning. In J. Barnden and J. Pollack (eds.), Advances in Connectionist
and Neural Computation Theory. Norwood, NJ: Ablex.

[8] Dolan, C. and Smolensky, P. (1989). Tensor product production system:
A modular architecture and representation. Connection Science, 1:53-68.

[9] Dyer, M. (1983). In-depth Understanding: A Computer Model of Inte
grated Processing for Comprehension. Cambridge, MA: MIT Press.

[10] Gentner, D. and Forbus, K. (1991). MAC/FAC: A model of similarity-
based retrieval. In Proceedings of the Thirteenth Annual Conference of
the Cognitive Science Society (pp. 504-509). Hillsdale, NJ: Lawrence
Erlbaum.

[11] Granger, R. H., Eiselt, K. P., and Holbrook, J. K. (1986). Parsing with
parallelism: A spreading activation model of inference processing during
text understanding. In J. Kolodner and C Riesbeck (eds.), Experience,
Memory, and Reasoning (pp. 227-246). Hillsdale, NJ: Lawrence Erlbaum.

[12] Hammond, K. (1989) Case-based Planning. Boston: Academic Press.

[13] Hendler, J. (1989). Marker-passing over microfeatures: Towards a hybrid
symbolic/connectionist model. Cognitive Science, 13:79-106.

[14] Hofstadter, D. and Mitchell, M. (in press). The copycat project: A model
of mental fluidity and analogy-making. To appear in J. Barnden and
K. Holyoak (eds.), Advances in Connectionist and Neural Computation
Theory, volume II: Analogical Connections. Norwood, NJ: Ablex.

[15] Holldobler, S. (1990). A structured connectionist unification algorithm. In
Proceedings of the Ninth National Conference on Artificial Intelligence,
Boston, MA.

[16] Kintsch, W. (1988). The role of knowledge in discourse comprehension:
A construction-integration model. Psychological Review, 95:163-182.

Inferencing and Retrieval 113

[17] Kitano, H., Tomabechi, H. and Levin, L. (1989). Ambiguity resolution in
DMTrans Plus. In Proceedings of the Fourth Conference of the European
Chapter of the Association of Computational Linguistics. New York, NY:
Manchester University Press.

[18] Kolodner, J., Simpson, R., and Sycara, K. (1985). A process model of
case-based reasoning in problem solving. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, p. 284-290. Los
Altos, CA: Morgan Kaufman.

[19] Lange, T. and Dyer, M. (1989). High-level inferencing in a connectionist
network. Connection Science, 1(2):181-217.

[20] Lange, T. (1992). Lexical and pragmatic disambiguation and reinterpre-
tation in connectionist networks. Interational Journal of Man-Machine
Studies, 36:191-220.

[21] Lange, T. and Wharton, C. (in press). REMIND: Retrieval from episodic
memory by inferencing and disambiguation. In J. Barnden and K. Holy oak
(eds.), Advances in Connectionist and Neural Computation Theory\ Vol
ume 3: Metaphor and Reminding. Norwood, NJ: Ablex.

[22] Lytinen, S. (1984). The organization of knowledge in a multi-lingual
integrated parser. Ph.D. thesis, Research Report 340, Yale University,
Department of Computer Science, New Haven, CT.

[23] McClelland, J. L. and Kawamoto, A. H. (1986): Mechanisms of sentence
processing: Assigning roles to constituents of sentences. In McClelland
and Rumelhart (eds.), Parallel Distributed Processing: Vol 2, p. 272-325.
Cambridge, MA: The MIT Press.

[24] Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An
Integrated Model of Scripts, Lexicon, and Memory. Cambridge: MIT
Press.

[25] Miikkulainen, R. and Dyer, M. (1991). Natural language processing
with modular PDP networks and distributed lexicon. Cognitive Science,
15:343-399.

[26] Norvig, P. (1989). Marker passing as a weak method for text inferencing.
Cognitive Science, 13:569-620.

[27] Riesbeck, C. K. and Schank, R. (1989). Inside Case-based Reasoning.
Hillsdale, NJ: Lawrence Erlbaum.

114 CHAPTER 3

[28] Riesbeck, C. K. and Martin, C. E. (1986). Direct memory access pars
ing. In J. Kolodner and C. Riesbeck (eds.), Experience, Memory, and
Reasoning, pp. 209-226. Hillsdale, NJ: Lawrence Erlbaum.

[29] Rumelhart, D. E., Hinton, G. E., and McClelland, J. L. (1986): A general
framework for parallel distributed processing. In Rumelhart and McClel
land (eds.), Parallel Distributed Processing: Vol. 7, p. 45-76. Cambridge,
MA: The MIT Press.

[30] Schank, R. (1982). Dynamic memory. NY: Cambridge University Press.

[31] Schank, R. and Abelson, R. (1977). Scripts, Plans, Goals and Under
standing. Hillsdale, NJ: Lawrence Erlbaum.

[32] Schank, R., and Leake, D. B. (1989). Creativity and learning in a case-
based explainer. Artificial Intelligence, 40:353-385.

[33] Shastri, L. and Ajjanagadde, V. (1993). From simple associations to sys
tematic reasoning: A connectionist representation of rules, variables, and
dynamic bindings using temporal synchrony. Behavioral and Brain Sci
ences, 16:417-494.

[34] St. John, M. (1992). The story gestalt: A model of knowledge-intensive
processes in text comprehension. Cognitive Science 16:271-306.

[35] Sun, R. (1993). Integrating Rules and Connectionism for Robust Com-
monsense Reasoning. New York: John Wiley and Sons, Inc.

[36] Thagard, P., Holyoak, K. J., Nelson, G., and Gochfeld, D. (1990). Analog
retrieval by constraint satisfaction. Artificial Intelligence, 46:259-310.

[37] Touretzky, D. (1990). Connectionism and compositional semantics. In
J. Barnden and J. Pollack (eds.), Advances in Connectionist and Neural
Computation Theory, Norwood, NJ: Ablex.

[38] Touretzky, D. and Hinton, G. (1988). A distributed connectionist produc
tion system. Cognitive Science, 12:423-466.

[39] Waltz, D. and Pollack, J. (1985). Massively parallel parsing: A strongly
interactive model of natural language interpretation,. Cognitive Science,
9:51-74.

[40] Wilensky, R. (1983). Planning and Understanding. Reading, MA:
Addison-Wesley.

Inferencing and Retrieval 115

[41] Wharton, C. M. and Lange, T. (1993). Case-Based Retrieval and Prim
ing: Empirical Evidence for Integrated Models. In Proceedings of the
IJCAI-93 Workshop on Reuse of Designs: An Interdisciplinary Cognitive
Approach. Chambery, France, August 1993.

4
Hierarchical Architectures for

Reasoning
R.C. L A C H E R A N D K.D. N G U Y E N

Department of Computer Science

Florida State University
Tallahassee, FL 32306-4019

1 INTRODUCTION

This chapter has a threefold purpose: (1) to introduce a general framework
for parallel/distributed computation, the computational network; (2) to expose
in detail a symbolic example of a computational network, related to expert
systems, called an expert network; and (3) to describe and investigate how an
expert network can be realized as a neural network possessing a hierarchical
symbolic!sub-symbolic architectural organization.

A computational network is essentially a directed graph in which each com
ponent (vertex or directed edge) has data processing functionality, further
endowed with a concept of global network computation. Examples of com
putational entities that admit descriptions within the computational network
model include biological neural networks, artificial neural networks, the par
allel virtual machine model of loosely coupled MIMD computation, human
collaborations such as committees, and expert networks. Many of the prin
ciples of neural network learning can be lifted to the level of computational
networks. We present a re-examination of backpropagation learning in this
context and derive the computational network backpropagation, or CNBP,
learning algorithm.

An expert network is a computational network that can be obtained from an
expert system. The architecture of the expert network is derived from the
expert system: the network topology from the rule base, the local processing
functionality of the vertices and edges from the system of inference, and
the global computation concepts from the inference engine. The process of
constructing an expert network from an expert system is reversible.

117

118 CHAPTER 4

Expert network backpropagation, or ENBP, is a learning method for expert
networks obtained as an instantiation of CNBP. ENBP has proven to be useful in
knowledge refinement, allowing an expert system builder to make the transition
from coarse knowledge, in the form of rough-draft rules, to fine knowledge,
in the form of rules with subtlety represented by analog parameters such as
certainty factors, using supervised learning and the historical record of expert
behavior as a training set.

The symbolic-level nodes of an expert network can be represented by neural
networks, which we view as computational networks of sub-symbolic pro
cessors. We investigate the optimal architectures for these representations,
which provide a realization of an expert network as a neural network with a
hierarchical topological organization: a sparsely interconnected collection of
densely intraconnected neural nets. This hierarchical sparse/dense organiza
tion is analogous to biological neural organization. It captures two levels of
knowledge: domain knowledge in the sparse superstructure and metaknowl
edge in the dense substructures. The hierarchical structural parameters are
well within the connectivity constraints found in biology, making feasible the
scaling up of neural-based expert networks to sizes comparable to those of
living systems.

2 COMPUTATIONAL NETWORKS: A GENERAL SETTING FOR

DISTRIBUTED COMPUTATIONS

A computational network is a general framework for parallel/distributed com
putation modeled on a directed graph in which the vertices and directed edges
have computational functionality and for which there is some holistic notion of
cooperative computation [32,34]. Computational paradigms that fit within the
computational network framework include biological neural networks; artifi
cial neural networks; distributed computation on a loosely coupled collection of
von-neuman machines connected to a digital communications network, as ex
emplified by Parallel Virtual Machine [54, 55]; human collaborative decision
making and problem-solving; and expert networks [31]. We return briefly to
each of these examples after introducing computational network concepts.

Hierarchical Architectures for Reasoning 119

2 .1 D E F I N I T I O N S AND NOTATION

A computational network (CN) is a directed graph together with certain at
tributes and specifications. These may be local or global, the former referring
to individual CN components (vertices or edges) and the latter to the CN itself.
In particular, to compute with a CN one must specify the types of data allowed
for (various parts of) the computation; the local functionalities associated with
digraph components; a method of timekeeping or scheduling to keep the global
computation organized; a method of aggregating the local computations into a
global network computation; and how data is to be presented to, and retrieved
from, the CN.

Data Types

The types of data with which the computational network is competent must
be specified. Depending on the setting, allowed data types may be specific
molecules, discrete or continuous numerical values, character data, or even
sounds that represent either analog data or discrete symbolic information.
Different components of the CN may require different data types, and the CN
may operate internally with data types distinct from the I/O data types.

Local Functionalities

The components of a computational network must have computational at
tributes. Thus each vertex of a CN must have an associated ability to receive
data at its incoming edges, process that data into an internal state, compute
an output value, and make this output value available to each of its outgoing
edges. Each directed edge must have an associated ability to receive data at
its initial end, compute a value, and make this value available at its terminal
end. We use the terms node and connection to mean, respectively, a vertex or
a directed edge in a CN together with its associated functionality.

Node functionality is broken down into two stages, an input or combining
stage and an output or firing stage. In the combining stage a node computes an
internal state y from its input data values x\,..., xn. We denote the function
so implied by r and call it the combining function of the node (or associated
with die vertex). After computing its internal state y9 a node must compute
an output value z. We denote this second function by <p and call it the firing
function of the node.

120 CHAPTER 4

The node combining functions of a computational network may be specified
in a number of ways, either explicitly or implicitly. For example, if time is
continuous r may be determined implicitly by a differential equation, whereas
if time is discrete r may be given by an explicit formula.

Connection functionality transforms the data received by a connection into a
transmitted signal value. The input to a connection is the output value z of the
node at its initial end. The connection computes one of the input values x for
the node at its terminal end. We denote the function making this computation
by a and call it the synaptic function of the connection.

Commonly encountered synaptic functions may be linear functions; linear
threshold functions; sigmoidal functions; or simple conduits that transmit data
unchanged except for a possible time delay.

Time

A notion of timekeeping or scheduling of the various component computations
and data transactions is required in order to give meaning to whole-network
activation and computation. The possibilities for timekeeping range intrinsic
such as self-organization to extrinsic such as management by outside expertise.

Global Activation

The local components of a CN are activated by simply applying their function
ality to whatever input they have at any given time. For global computation,
however, these local activations must be orchestrated in some way to define
a notion of global or network activation. Options include: synchronous acti
vation, in which each network component is activated simultaneously; asyn
chronous activation, in which network components are activated randomly
one at a time; event-driven activation, in which a network component acti
vates when one of its input values changes; and managed activation, in which
components activate on the command of a central scheduler or manager.

Network Computation

A computational network is intended to be used as a computer, and like a
traditional computer the computations of the various parts must be orchestrated
into a holistic whole-network computation in some way. In all cases, the global
network computation is obtained by successive global activations. The cases

Hierarchical Architectures for Reasoning 121

differ in how they determine when a network computation is completed. There
are two basic choices: either activate for a certain length of time, or activate
until the network has reached some kind of global equilibrium state.

Input and Output

A method must be prescribed whereby data values may be introduced into,
and retrieved from, a CN from outside the network. For the purposes of this
work we will assume that I/O is accomplished by specification of two subsets
of nodes (possibly overlapping), "input" nodes and "output" nodes. Data is
inserted into the CN to begin a computation by externally setting the states
y of the input nodes to the input data values. After network computation is
completed, data is retrieved from the CN by reading the outputs z of the output
nodes.

2.2 ACTIVATION DYNAMICS

The attributes which collectively define a computational network are not in
dependent. For example, the method of keeping time, the concept of holistic
computation, and the meaning of I/O are all interelated, and some choices in
one direction may preclude a possibility in another direction. A coherent set
of attributes for timekeeping, global activation, network computation, and I/O
together constitute the rules for activation dynamics of the CN. We consider
briefly some of the most often used network computation strategies.

Centrally Managed Computation

Usually used with discrete time, although possible with continuous time. A
central entity, such as an operating system or a manager, makes decisions as
to timing of local computations and routing of data. Output is read at a time
specified by the computation manager.

Synchronous Equilibrium Computation

Used with either discrete or continuous time. This method activates the local
functionalities indefinitely at each clock tic (or continuously) until a dynamic
equilibrium is reached. Output is read at equilibrium. Classically this equi
librium is assumed to be a fixed point in the space of node states, but more

122 C H A P T E R 4

general attractors are sometimes allowed [21, 10, 41, 51]. It may be quite
challenging to decide whether appropriate equilibria are always attained in a
given CN [19]. Virtually all continuous-time CNs use synchronous activation,
and most use equilibrium dynamics to define network computation.

Fixed Time Delay Computation

Used with either discrete or continuous time. The network is activated as in
synchronous activation above, but for a certain number of iterations (or length
of time) after which output is retrieved. This is often used in place of an
equilibrium rule. The time of activation is chosen so that the network will be
close to equilibrium upon completion.

Asynchronous Equilibrium Computation

This makes sense only for discrete time. There are two variations, a global
one in which a node is chosen at random and its incoming connections and the
node itself are activated, and local one in which each component chooses to
activate at random times. In either case the process continues until equilibrium
is reached. When the probability of local activation is kept small, these produce
equivalent equilibrium dynamics [18, 20].

Event Driven Computation

Again for discrete time only. Each component of the CN activates whenever
it receives a new input value, until no values change. This is equivalent to
synchronous equilibrium dynamics [32]. Expert networks and human collab
orations typically use event-driven activation, and results are generally useful
only when an equilibrium state is achieved.

2.3 EXAMPLES

In a biological neural network (BNN), the local functionalities are determined
by the extraordinarily complex biochemical processes of synaptic transmission,
membrane channels, and internal cell chemistry. The synaptic functions reflect
the type and density of transmitter molecules, together with properties of the
inbound membrane channels of the receiving cell. The combining and firing

Hierarchical Architectures for Reasoning 123

functions reflect the internal cell biochemical accrual process and the sensitivity
and other properties of the outbound membrane channels, respectively.

An artificial neural network (NN) is a mathematical analogy of a BNN. The
synaptic and firing functions are usually specified explicitly. Quite typically,
the synapses are simple linear functions. The firing functions may be of
virtually any type, but most often are sigmoidals such as logistic or hyperbolic
tangents, threshold functions (with discrete output), symmetric distributions
such as the gaussian, or some combination of these types. In discrete time
NNs, the combining function is usually given explicitly, with simple additive
accrual being the most common, while in continuous time NNs r is more often
given implicitly by constraints on its derivatives.

A typical use of parallel virtual machine (PVM) is to perform a computation
by parceling out identifiable sub-computations to various computers on a high
speed communications network. The synaptic functions are pure transmis
sions of data, with some small time delay. The node functionalities are quite
complex and determined by user programs. Global activation is event-driven
and network computation is centrally managed.

In human collaborations (HC) the synaptic functions transmitting human-
human communication are again simple conduits, albeit of very complex data.
The combining functions reflect the receiving and interpretation by one person
of the information supplied by all the others in the collaboration. The firing
functions reflect the formulation and transmission of personal information and
conclusions out to other members of the collaboration. Activation dynamics
can be a form of managed computation, for example when there is a strong
leader such as a teacher or supervisor. Often more effective is the committee
model, with event-driven activation. There is no guarantee of convergence;
convergence is a goal of the collaboration.

An expert network (EN) is a computational network derived from a rule-based
expert system (production system). The digraph topology is determined by
the domain rule base; the local functionalities are determined by the infer
ence system; and the timing mechanism is derived from the computational
scheduling method of the expert system shell. ENs typically use discrete time,
have acyclic topology, and process analog data. Expert networks are discussed
further in following sections.

124 C H A P T E R 4

Table 1 Classification of example CNs.

DD/AD
DT/CT
AT/RT

BNN NN PVM HC EN
1 x 0 x 1
1 x 0 0 0
1 x 1 1 0

2.4 CN CLASSIFICATION

There are three broad dichotomies that occur very naturally in the specification
of a CN. The five examples discussed briefly above give evidence that the
resulting categories are non-vacuous and interesting. These dichotomies, and
some notation we will use for the resulting classification, are as follows:

• DD/AD: Discrete or Analog Data

• DT/CT: Discrete or Continuous Time

• AT/RT: Acyclic or Recurrent Topology

Only when compactness of notation is convenient, we use a 3-digit binary
encoding to represent a set of choices in these three dichotomies, the left digit
representing data type, the middle digit representing time type, and the right
digit representing topology type. We also use V as a don't-care or union
of types. For example, A CN of type 101 computes with analog data using
discrete time and a recurrent topology, while type lOx has the same data and
time restrictions but does not specify whether the topology is acyclic or not.

Classification of the five examples discussed above is given in Table 1. Some
of the classification choices are arguable, but most will agree that these choices
indicate a legitimate point of view within which the paradigm may be studied
and that some choice must be made in order to focus the study.

2 . 5 D I S C R E T E T I M E COMPUTATIONAL N E T W O R K S : NOTATION

We establish some notation for updating discrete time (or "type xOx") CNs.
Similar notation is appropriate for continuous time CNs except that often
some of the local functionalities are specified implicitly through differential
equations.

Hierarchical Architectures for Reasoning 125

A CN consists of nodes and connections organized into a directed graph struc
ture. We will use an adjacency matrix notation system for the CN components
based on a labeling of the nodes: a single subscript indicates an association
with the vertex so labeled, and a double subscript indicates association with
a directed edge, with "assignment statement order" for the edge subscripts: a
subscript ji indicates association with the edge from vertex i to vertex j . In
this notation, r ; and <pj are the combining and firing function, respectively, of
node j , and crJ2 is the synaptic function of the connection from node i to node
j . We also use z to denote node output (or activation value) and y to denote
node internal state. If the ji synapse is linear, then o-jifa) - Wjizif where wj{

is the weight of the connection. We assume in this discussion that the node
labels constitute an enumeration 1,. . . , n.

The internal state of the CN at a particular time t consists of all the node states
yj(t) usually collected into a vector y(t) = (yi(t),..., yn(0)- Similarly, the
activation state of the CN at time/ is the vector z (t) = (zi(t),..., zn(t)) of local
activation values at time t. (It should be kept in mind that important properties
of these state vectors are symmetric, that is, independentof the particular vertex
ordering.) New states are calculated using the update equations

Xji := (Tji(zi) for i—l)...,n (4.1a)

yj := Tj(xju...,xjn) (4.1b)

zj : = <Pj(Vj) (4 - l c)

during three time steps (or in one time step split into three sub-steps). How
local updates are organized into network activation varies as discussed earlier.
Activation dynamics is the study of the behavior of network states as they
change over time.

One requirement not often made explicit for computational networks is sym
metry of combining functions: r ; should give output that is independent of
the labeling order of the nodes. Another system of notation that makes this
requirement more obvious is based on predecessor/successor relations in the
network topology. Define a predecessor of node j to be any node in the net
work that initiates a connection into j . The set of predecessors of j is defined
and denoted as

Pred(j) — {i\there is an edge from i to j}.

The update equations can be restated in terms of predecessors as follows. First
compute post-synaptic input for node j :

Xji :— (TjiyZi)

126 CHAPTER 4

for all i e Pred(j), where a^ is the synaptic function of the connection from %
to j . Denote the vector of all post-synaptic input for node j by XJ . This vector
has dimension \Pred(j)\, one component xj{ for each % e Pred(j), but the order
of components is not important. Next compute the internal state of node j :

Vj : = Tj(xj)

where Tj is the combining function for node j . Tj is a symmetric function of
\Pred(j)\ variables. Finally compute the activation value of node j :

ZJ '-=<pj(yj)

where <pj is the output function of node j .

We will generally stick to the simpler adjacency matrix notation of equations
4.1. This simplicity does blur certain subtleties, however, by making the
tacit assumption that computation doesn't need to distinguish between no
connection from i to j and a connection from i to j with aj{ = 0. Cases can
arise where this distinction is important. In such cases the missing connectivity
information can be maintained in a seperate adjacency matrix. If the network
is sparse, it may be appropriate to use more compact representations such as
adjacency lists that implement the predecessor/successor notation.

3 TYPE XOO COMPUTATIONAL NETWORKS

For the remainder of this chapter we restrict our attention to computational
networks of type xOO, that is, we assume discrete time and acyclic topology
but allow either discrete or analog data types both internally and as I/O.

3.1 ACTIVATION DYNAMICS

Activation dynamics of acyclic, discrete-time computational networks may
assume any of the forms discussed in Section 2.2. Synchronous, asynchronous,
and event-driven activation are all equivalent to fixed time delay (if the delay is
appropriately large) and all result in reaching a terminal activation state in finite
time [32]. In other words, given a CN of type xOO, we can activate using any
of these methods for a globally fixed amount of time, after which activation
will cease to produce changes in any of the internal states of the CN. This
activation may be component-parallel, component-distributed, or component-
serial. The type xOO CN thus becomes a (parallel/distributed) computer with

Hierarchical Architectures for Reasoning 111

a fixed number of local computations required for I/O: insert input, compute a
fixed number of local activations, then retrieve output. The local computations
consist of applying the update assignment statements given by equations 4.1
until a steady activation state {z\,..., zn) is reached. We call this the terminal
activation state of the network and refer to the component ZJ as the terminal
activation value of node j .

3.2 INFLUENCE AND ERROR

Backpropagation is one of the most widely known and successfully used con-
nectionist learning methods [57, 44]. Most often, backpropagation is applied
to layered feedforward computational networks with the kind of simple pro
cessing functionality associated with low-level, sub-symbolic networks: linear
synapses, additive combining functions, and sigmoidal or gaussian output func
tions. Many of the ingredients of backpropagation learning can be generalized
for general computational networks. For CNs, the standard algorithm requires
two changes: localize forward and backward activation to free the algorithm
of the layer structure, and decouple the process of node error assignment from
the weight correction step. The first is described previously and in [36]. The
second uses the concept of influence factor, introduced in [32]. Influence fac
tors are associated with connections and specific network input. The influence
factor Skj of the connection from node j to node k is the rate of change of
output of node k with respect to the output of node j , evaluated at the terminal
activation state: ekj = dzk/dzj(zj). Expanding this derivative using the chain
rule we obtain

£kj = tp'kiVk) x ^ ^ (a : j f e i , . . . , z j b n) x <T'kj(zj). (4.2)

Again we emphasize that influence factors are dependent on particular network
input: The derivative of <pk is evaluated at the terminal internal state of node
k9 the partial of Tk is evaluated at the terminal post-synaptic input to node
k, and the derivative of akj is evaluated at the terminal output of node j .
Influence factors are associated with connections and are calculated during
forward activation of the network.

Once influence factors have been calculated for all the connections of an
acyclic CN during forward activation, error can be assigned to all of the nodes
in the CN during a reverse activation. This reverse activation is in essence an
activation of the reverse of the CN. The reverse network topology consists of
the vertices and edges of the original network, but with all edge orientations

128 CHAPTER 4

reversed. The nodes of the reverse network use summation combining function
and the identity activation function, i.e., the nodes are linear units. The synaptic
functions are also linear with weight equal to the influence factor. Note that
the reverse network is also acyclic.

Error is assigned to each of the output nodes using equation 4.3a, where / is
ideal output, and to all non-output nodes using equation 4.3b:

ej '•- fj-Cj, (4-3a)
ej := ^Skjek. (4.3b)

k

Applying equation 4.3b recursively is an activation of the reverse network with
input given by 4.3a. The resulting terminal reverse activation state is an error
assignment throughout the network. The error assignment process works in
any acyclic CN for which the derivatives of equation 4.2 are defined.

3.3 LOCAL GRADIENT DESCENT

Once error has been distributed among the nodes in a computational network,
we can apply gradient descent learning both selectively and locally to any node
whose incoming synapses are linear. This decoupling of error assignment and
learning means we can allow more complex synaptic functionality into certain
nodes, we can have hard-wired connections into perhaps other selected nodes,
and suppress learning at any selection of sites, while maintaining a global
learning process. Local gradient descent amounts to applying the Widrow-
Hoff delta rule using local error.

Calculating the gradient of squared local error at node j with respect to synaptic
weights wji,...,wjn and taking a step in the opposite direction yields the
following learning rule:

dY-
Awji = r)ej(p

f
j(yj)-^r(xji,... ,xjn)zi + fiAw?™". (4.4)

This equation defines one learning step with learning rate r/ and momentum fi
in the direction of steepest descent of square local error.

Hierarchical Architectures for Reasoning 129

3.4 CNBP

Putting all these components together results in a learning method called Com
putational Network BackPropagation, or CNBP. CNBP applies to type xOO
CN at any nodes with linear incoming synapses. All that is required to com
plete an implementation of CNBP is calculation of the derivatives appearing
in equations 4.2 and 4.4. CNBP is summarized as follows.

Assume given a set of training exemplars (£' ,/ ') , / = 1,2,.. .consisting of input
£' = (£i > • • • > £m) ^ d ideal output / ' = (/{, . . . , Il

n). The basic learning process
goes as follows:

Initialize
present £' to input nodes

Activate
calculate terminal activation state zl- for each node
calculate influence factors ekj for each connection

Initialize error
present external error e[= l[- z[to output nodes

Reverse activate
activate the reverse network, assigning error el- to each node

Learn
change soft weights using local gradient descent

The learn step can be carried out after each exemplar presentation (on-line
learning) or accumulated and carried out at the end of an epoch (batch learning).
The entire procedure loops until error is reduced sufficiently.

4 EXPERT SYSTEMS

An expert system (ES) captures domain-specific knowledge and uses this
knowledge to reason about problems in the domain. By far the most successful
type of expert system so far has been the rule-based system [15]. A rule-based
expert system consists of an inference engine that defines and executes the rules
of inference and a rule base that comprises the domain-specific knowledge of
the system.

Rule-based expert systems have become a mature advanced technology, with
many successful software shells on the market, whether success is measured by

130 C H A P T E R 4

technical achievement or commercial viability. Three of these are particularly
pertinent to the research, development, and production discussed here: M-41,
CLIPS2, and G23. These products are all in significant use in a wide variety of
application domains by a heterogeneous user community. Commercial users
of M-4 have valuable (and proprietary) rule bases ranging in size from a few
dozen to ten thousand rules.4 CLIPS has an avid following despite its lack
of user amenities, due in part to its low cost. G2 is the most elaborate (and
costly) of the three, with commercial site licenses listing at $42,000. Many of
the worlds largest corporations have signed with Gensym for developing their
real-time expert system needs, including ASEA Brown Boveri, GE, Monsanto,
Occidental Petroleum, Boeing, DuPont, Texaco, Laf arge Coppee, and 3M [17].

These three shells each deal with uncertainty using a form of EMYCIN logical
semantics. M.4 is discussed in some detail below; Hruska and coworkers have
constructed a superset of CLIPS that uses essentially the same uncertainty
semantics as M.4 [45]; and G2 uses a classical version of fuzzy inference.

4 . 1 EMYCIN

A seminal demonstration of the efficacy of rule-based systems was a med
ical diagnosis and treatment advisory system for infectious diseases called
MYCIN[48, 1]. A natural consequence of the success of MYCIN was its
abstraction to an "expert system shell" in order to apply the same reasoning
automation in other domains. A shell is just an expert system with an empty
knowledge base and a user interface system to facilitate the insertion and mod
ification of rules. A shell that implements the MYCIN reasoning system is
called EMYCIN (for "Empty MYCIN"). M.4 is a commercially available
EMYCIN shell. The computational experiments discussed below are based on
M.4. The features of EMYCIN inferencing that are important in what follows
are the evidence accumulator and the various logical operations [49, 14].

A rule in EMYCIN has the form

IF a THEN b (cf)

where a and b are assertions and cf is a certainty factor or confidence factor
associated with the rule. The certainty factor may take on any value in the

Product of Cimflex Teknowledge Corporation.
2 Designed and Produced by NASA, distributed as shareware.
3Product of Gensym Corporation.
4Private communication from representative of Cimflex Teknowledge

Hierarchical Architectures for Reasoning 131

range - 1 < cf < 1. We use the notation cfb\a to denote the certainty value of
the implication IF a THEN b. Certainty factors are static numerical attributes of
rules. They reside in the knowledge base and do not change during inferencing.

An assertion 6 may take on an evidence value (also sometimes called a cer
tainty factor). The evidence value of an assertion is dynamically updated during
inferencing, either through assignment when a query is made or through cal
culation in terms of evidence values of other assertions previously calculated
or assigned during the inference. We denote the evidence value of assertion b
by yb. yb may range in the interval - 1 < y < 1. The dynamically calculated
evidence value of an assertion may be interpreted as a degree of confidence or
correctness of the assertion. The evidence value yb is then converted to & firing
value zb through the use of a threshold or other postprocessing criterion. The
firing value (in this version of EMYCIN) is restricted to the range 0 < z < 1.

Suppose that we have a current dynamic evidence value yb for assertion 6 and
subsequently encounter another assertion IF a THEN 6 (cf). Then EMYCIN
adjusts yb by adding an amount proportional to the firing value za for a, the
certainty factor cf - cfh\a for the rule, and the proximity of yb to its domain
limits. (When the current evidence value yb and the rule certainty factor cfb\a

have opposite signs, a mediation process is used instead.) The output value zb

for assertion b is then updated by applying the firing criterion to yb. The firing
criterion may vary somewhat from one EMYCIN shell to another. M.4 uses
the linear-threshold firing function with threshold value of 0.2.

This update process breaks naturally into three steps. First calculate the
certainty-mediated input evidence:

*b\a := Cfb\a X Za] (4.5)

then update the evidence value:

..new
Vb

[Vb + xb\a(l - yb) , if both yh and xhW are positive,
Vb + xbla(l + yh) , if both yh and xh\a are negative, (4 6)

• 1 w . g t + f ? r n , otherwise;

then recalculate the firing value:

U 6 , if 2/5 > 0.2;
6 ' ~ \ o , otherwise. { }

This firing value is then used as input to other rules of the form IF b THEN
c (cf), and so on, until all firing values are stabilized. The inference process

132 CHAPTER 4

begins with external setting of the firing values of selected rule antecedents and
spreads through the rule base under control of the inference engine. After the
inference process terminates, the values of consequents with non-zero values
constitute the conclusions of inference.

The reader will probably have noticed the similarity between the equations
above and equations 4.1 as well as a principal distinction: 4.6 represents an
accumulation process over rules with 6 as consequent, while 4.1b represents
the evaluation of a combining function over all incoming connections simul
taneously. We give a closed form version of 4.6 in the next section.

EMYCIN shells differ somewhat in their treatment of logical operations, al
though they typically use minimum and maximum for AND and OR, respec
tively, and some kind of inversion for NOT. The differences among shells
appear in the way these values are thresholded (or otherwise postprocessed),
after applying this common calculation, to determine whether the compound
assertion fires. Generally, rules are allowed to have compound antecedents
(using the defined logical operations) but compound consequents are discour
aged.

M.4 recognizes three logical operations explicitly: AND, NOT, and UNK. The
UNK (for "unknown") operation is a version of NOR (NOT following OR).5

For AND, M.4 uses the same firing function as for evidence combining, given
above by 4.7. For NOT, M.4 uses a firing function that is a strict threshold, with
threshold value 0.8, resulting in discrete values for NOT and NOR operations.

Each of the operations can be described in three functional steps analogous to
4.5, 4.6, and 4.7 above. These operations, along with the evidence accumu
lation process, provide functionality to the vertices and edges of an inference
network model of the knowledge base, resulting in a computational network.
We describe this network, along with explicit M.4 functionalities, in detail in
the next section.

5M.4 does not recognize an explicit OR operation, hence the non-standard terminology.
M.4 implicitly uses two different versions of OR - the DeMorgan dual of AND as well as the
evidence accumulator.

Hierarchical Architectures for Reasoning 133

5 EXPERT NETWORKS

Expert Network learning technology, a process developed by a group at FSU6 in
partnership with the Florida High Technology and Industry Council, provides
a means of automated knowledge refinement in rule-based expert systems. In
settings where sufficient historical data exists, expert network learning can
significantly improve both the development time and the ultimate level of
expertise captured in an expert system project.

The expert network method, at the algorithm level, is a method for knowledge
refinement in a rule-based expert system that uses uncertainty. The uncertainty
theory can be that of EMYCIN certainty factors as in M-4, fuzzy logic as
in G2, probability, Dempster-Shaffer theory, or any other theory that uses a
continuously variable value or values to define a level or degree of certainty to
implications and/or factual statements. In all such systems the role of uncer
tainty is to represent the subtle variations of knowledge that, once discovered
and captured, complete the transition from coarse novice-level knowledge to
refined expertise.

Expert networks allow these systems to make this passage from novice to expert
through neural network style learning from data rather than from laborious
human expert tinkering. The data required may be either historical records
of correct inferences, in which case the learning methods are supervised,
particularly Expert Network BackPropagation (ENBP); or the data may be in
the form of critique of the expert system's conclusions by experts, in which
case the learning methods are reinforcement methods such as Expert Network
Temporal Difference (ENTD(A)). The critical technology implementing both
of these learning methods is that of influence factors.

The expert network, or ExNet, technology consists of two major components:
Translation and Learning.

Translation

The rule base is translated into a directed graph. The vertices of this digraph
represent atomic-level factual statements or actions; these are the antecedents
and consequents of the rules. The directed edges represent implications.

The logical semantics, or rules of inference, of the expert system, including
the rules dealing with uncertainty, are used to assign information processing

Lacher, Hruska, and Kuncicky

134 CHAPTER 4

functionality to the vertices and edges. Thus the digraph becomes a computa
tional network. This is called the expert network associated with the original
expert system.

After the expert network has been modified during the learning phase (described
below), the modified expert network is translated back into expert system form,
resulting in a new, or refined, set of rules that have optimized performance with
respect to the training data. This step requires nothing more than applying the
inverse of the translation process.

Learning

Neural network learning methods are applied to the expert network. This
learning process results in changes in the parameter values for the uncertainties
in the rules, optimized for set of correct inference instances data set (i.e.,
history). There are several difficult problems to overcome to make this idea
actually work, including how to assign a local error to the nodes and how to
reduce this local error through gradient descent. We have worked out and
implemented all details of this idea in the case of EMYCIN (M-4) and for
fuzzy inference. The solutions are detailed in the papers [31, 32, 34, 39].
When the expert system uses EMYCIN certainty factors and/or fuzzy logic to
capture uncertainty, ExNet has been completely derived, proved, tested, and
covered with patents (pending). In the following treatment we restrict to the
M.4 instantiation of EMYCIN.

5.1 TRANSLATION

The network topology is constructed in two stages. First an inference network
is created from the rule base. Each vertex in this network represents an
antecedent or consequent of a rule and each directed edge represents a rule.
The certainty factor of the rule is placed on the edge as a weight. Thus a rule
of the form

IF a THEN b (cf)

where a and 6 are assertions and cf = cfb\a is the certainty or confidence factor,
defines a connection

a — • o.

At this point we have constructed an inference net in the usual sense (see [15],
page 237).

Hierarchical Architectures for Reasoning 135

The evidence accumulation process (equations 4.5, 4.6, and 4.7) of the infer
ence engine defines functionality for the vertices of this inference net, and the
edges process initial to terminal value by multiplication by cf (defining linear
synaptic functions). The resulting computational network is the first order
expert network defined by the expert system. Note that all of the nodes in this
network represent assertions; they are called regular or evidence nodes and
denoted as REG nodes.

The second stage of construction is to expand each regular node that represents a
compound antecedent statement into a subnetwork. A regular node antecedent
such as in the connection

OP(au...,ak)^Lb

expands to the subnetwork

ax -^ OP

ak -i+ OP
OP - ^ b.

Those ai that are consequents of other rules are already represented by existing
nodes. New nodes are created for the other a,-. A connection of weight 1
is added from each a* to the new OP node, and a connection of weight cf
added from the OP node to the consequent b replaces the original outgoing
connection. All connections into OP nodes have fixed weight 1 and are called
hard connections. Connections into REG nodes have weight originating as a
certainty factor of a rule and are called soft connections.

The combining function for an OP node performs the logical computation
defined by the rules of inference used by the expert system. The output
function for an OP node is the firing condition for the logical operation. The
resulting computational network is the second order expert network defined by
the expert system.

Note that there are two kinds of nodes in the second order expert network: REG
nodes representing assertions and OP nodes representing logical operations.
Note also that all synaptic functions are linear with weights as already described
above: soft connections (incoming to REG nodes) have weight cf and hard
connections (incoming to OP) have weight 1. Thus synaptic functionality is
completely specified. We now give more detailed descriptions of the node
functionalities in EMYCIN/M.4 expert networks.

136 CHAPTER 4

REG Nodes

The EMYCIN evidence accumulator given by equation 4.6 can be written in
closed form. Let b be a REG node, and suppose b has at least one predecessor
in the expert network. (In the parlance of expert systems, b is an assertion that
is consequent to at least one other assertion.) For each predecessor a of b let
xa\h denote the corresponding post-synaptic input cfb\a x za.

The positive and negative evidence values for regular node 6 are given by

yt = + 1 - I I (X-Xb\a) ™d (4.8a)

*b | a>0

*6 | a<0

respectively. Positive and negative evidence are then reconciled, yielding the
internal state of the node as the value of the REG combining function:

Vh := TH£;G(x6|1,...,^6|n) =
 b

 +
6 —. (4.9)

1 - min{yj ,-yh }
Note that TREG is a symmetric function. The only input variables which affect
the values of TREG are those labeled by predecessors of 6, and we could use
alternative notation (as described in section 2) to reflect this fact. The notation
above assumes that xh\a = 0 whenever a is not a predecessor of 6.

The output function (pREG for a regular node b is the firing function for assertions
defined by equation 4.7:

/ x _ / Vb , if 2/6 > 0.2; (.
* : = ? „ * (*) = | 0 > o t h e n v i s e . (4-10)

OP Nodes

Consider an AND node generated by the antecedent of the rule

IF ai AND a2 AND . . . AND ak THEN b (cf)

for some assertions (nodes) ax,..., ak in the expert net. Let a denote the
compound antecedent AND(ai,..., ak). Thus a is an OP node in the second
order network. To define the logical AND operation as a function of dynamic
evidence values is to define the combining and firing functions of a.

Hierarchical Architectures for Reasoning 137

The combining function for a is given by

Va := TAND(xu...,xk) = min{xi} (4.11)

where x{ = *ai is post-synaptic input. The output function is the same threshold
function used for REG nodes:

A NOT node such as generated by the antecedent of

IF NOT a THEN b (cf)

has only a single incoming connection, from a. The combining function is
given by

y :=r„ O T (*) = l - * (4.13)

(where x - za) and the output function is

, , f 1 , if y > 0.8; fA ...
z:=vNOT(y)^[^ Q ^ i s e > (4-14)

An UNK node may be generated by the antecedent of a rule such as

IF ax UNK a2 UNK . . . UNK ak THEN b (cf)

for some assertions (nodes) au . . . , ak in the expert net. Let a denote the
compound antecedent UNK(ai,..., ak). The combining function for a is given
by

ya := TUNK(x1,.. .,xk) = 1 - max{xi) (4.15)
i

where x{ = zai is post-synap tic input. The output function is the same as for
NOT:

(x _ / 1 , if ya > 0.8; fA 1CN

r.:=y» lwJ f(».) = | 0 i o t h e n v i s e (4-16)

Notwithstanding the fact that M.l does not explicitly acknowledge an OR op
eration, we could define an OR node that might be generated by the antecedent
of a rule such as

IF ax ORa2OR ... OR ak THEN b (cf)

138 CHAPTER 4

for some assertions (nodes) au . . . , ak in the expert net. As usual letting a
denote the compound antecedent OR(ai,. . . , a*), we define the combining
function for a to be

ya := TOR(xi,...,xk) = rnax{xi} (4.17)
i

where Xi = zat is post-synaptic input and the output function to be the same as
for AND:

z f l . - ^ O R (y f l) = | 0 j o t h e r w i s e . (4-18)

Given this definition of OR, it is easily verified that UNK = NOT(OR).

Logical Functions

Composing appropriate functions given above yields the following throughput
functions (from input to firing value) for logical operations in M.4:

AND(Xl,...,Xk) := |™»{*,}, J j £ ^ * 0 - 2 - (4.19a)

NOTM = {I, oth'envise; (4'19b>

TT AT T'/ \ I 1 i if max {xi] < 0.2, (. i r. .
^ A (« l l . . . , „) := (0 ; o t h e m W - (4.19c)

where as usual x is interpreted as post-synaptic input for the node (or current
evidence value during inference).

5 .2 LEARNING

An EMYCIN expert network satisfies all the requirements for CNBP learning:
an acyclic CN with linear synapses. Learning can take place only at soft
connections (connections into regular nodes), but of course all connections
must be used in the error assignment process.

Of the derivatives appearing in equations 4.2 and 4.4, a'kj is just the weight
wkj of the kj connection, and ^ is easily calculated, but may vary because of
choices of <p made during a particular implementation. If we can calculate (or
"define"7) the partial derivatives of the node combining functions then we can
implement CNBP in expert networks.

7The CNBP learning algorithm is sufficiently robust to accommodate approximations. Thus
if an approximate derivative can be devised it may work as well as a real derivative.

Hierarchical Architectures for Reasoning 139

For a REG node k the partial derivatives are given by

dT REG

dx kj
(xk)

- * k \ j

1

1
l+Xk\j

1
I l+^fe|j

• Jk

z?V. if2>it < |yJT | and arfcJ- > 0;

^ 4 , ify? > Inland**; < 0;

5£> i f ^ < \yk\mdxkj < 0

(4.20)

provided xk\j ^ ±1. Here xfc|j is c/^^ x z ;, the post-synaptic input to node k
from node j9 and y^ is given by equation 4.8. (See [36] for details.)

For AND nodes we have
dTAND _ f 1 , if xk\j = mini{xk\i}
dxkj \ o , otherwise

(4.21)

It is interesting to examine what this means for reverse error assignment: the
AND node assigns error backward through node k acting as a demultiplexer
switch to the line with lowest incoming value.

Similar results hold for NOT and UNK nodes.

5 . 3 E N B P

Having calculated the derivatives appearing in equations 4.2 and 4.4, we can
apply CNBP in the context of expert networks. This instantiation of CNBP is
called Expert Network BackPropagation, or ENBP.

ENBP has been tested on several M.4-based expert systems, including the
Wine Advisor [9] and the Control Chart Selection Advisor of Dagli and Stacey
[3, 23, 24]. A functioning expert system is used to define expert knowledge
by generating specific examples of correct reasoning. In ablation testing, a set
of soft connections is ablated by setting their connections weights to zero. In
refinement testing, all of the soft connections are initialized to the neutral value
0.5. The object of the tests is to determine whether the network can recover
the knowledge embodied in the connection weights.

In these tests, both learning and generalization have worked remarkably well.
The algorithms converge the ablated system to a knowledge state that correctly
inferences on the training set, and generalization is perfect: the new system

140 CHAPTER 4

reasons correctly on all possible inputs. Moreover, the ratio of training set
size to test set size is small. For example, as few as 22 correct inferences
are required to move a 25-connection ablation of wine advisor (a 97 node
expert network) to a system that inferences correctly on all 6,912 sensible
input queries [34]. Refinement tests have yielded 95-100% generalization
rates using training sets of 40 or more exemplars [9].

Mahoney and Mooney subsequently (but independently) developed aversion of
ENBP (which they call "CFBP") [37]. They are also developing a constructive
method using ENBP to enhance the network connectivity at the output nodes
that shows significant promise when compared to existing methods [38].

6 N E U R A L N E T W O R K S

By a neural network (NN) we mean a discrete-time computational network
with linear synapses, linear combining functions, and non-decreasing firing
functions. An expert network is a symbolic computer. The individual nodes
have externally assigned and understood meaning - either assertion or logical
operation - and the dynamically computed and transported values also have
external meaning - degrees of certainty in a conclusion. A neural net, in
contrast, is a sub-symbolic computer. The individual nodes and values have
external meaning only collectively and selectively. In most cases, an individual
node in a NN has no identifiable meaning to an outside observer.

It has been argued that an expert network can be realized as a neural network
by replacing each node in the EN with a small NN [34]. We present here some
results on the practicality of that process.

6 .1 O P T I M A L A R C H I T E C T U R E S

We are interested in finding the "optimal" sub-symbolic NN to replace a
symbolic node in an expert net. We consider here two nodes types: REG
and AND. We restrict our investigation to the class of layered feedforward
networks with one hidden layer and sigmoidal output functions, and we use
standard backpropagation to train these networks. (See [52, 53] for similar
considerations.) Thus the only architectural variable is the number of units in
the hidden layer. Our working definition of *'optimal" is as follows.

Hierarchical Architectures for Reasoning 141

Figure 1 NN for REG node.

For a given architecture we train the NN until generalization error reaches a
minimum value. Generally the generalization, or test, error reaches a minimum
and begins to increase due to the "overtraining effect". The state of the NN
at this minimum generalization error is saved as the acceptable state for that
NN. This test is repeated a number of times to obtain an average minimum
generalization error (MGE) for a given architecture. The MGE is then plotted
as a function of the architecture. As the number of units increases, this
plot can be expected to reach a minimum and begin to increase due to the
"memorization effect". The architecture that attains this minimum MGE is our
optimal architecture.

It is now well known that many functions can be approximated by neural net
works (see [12, 22] for example). In particular, all of the node combining and
output functions for EMYCIN/M.4, given section 5.1, can be approximated
with NNs. We now present some experimental results on finding these approx
imations. All of the data discussed below was generated using 50 randomly
generated training exemplars and 10 randomly generated test exemplars for
each training run on each architecture. Five such training runs were made for
each architecture, and the average training and testing error over all five runs
was used to determine MGE for each architecture.

We are investigating two methods of constructing REG nodes. The first,
shown in Figure 1, uses a parallel evidence network (labeled A) followed
by a reconciler (r). To determine an "optimal" architecture for the evidence
network we follow the process described in section 6.1 above. The results of
averaging five training trials on a 4-4-1 architecture for a 4-input y+ network
are illustrated in Figure 2. The generalization curve attains a minimum at 41
epochs with MGE = 5.6 x 1CT3. TheMGEfor4-n-l architectures, n= 2,.. ,9,
are given in Figure 3. These computations show that 4-6-1 is the optimal
architecture (in the class under consideration) for the 4-input y+ network, with
MGE = 3.9 x 10"3.

142 CHAPTER 4

O . O 4 I

O - O 3 5 - j -

O . O 3 I

i i l l I I

U~> CT3 ui~>

E Z p o o H

Figure 2 Training and generalization error for 4-4-1 y+ network (aver
age of five runs).

The second architecture we are currently testing for REG nodes is a modu
lar construction as illustrated in Figure 4. The modularity is based on the
accumulation of evidence as given in equation 4.6. Modularity allows us to
concentrate on solving the 3-input REG problem and then build more general
REG nodes using extant components. The modules labeled A and B in Figure
4 are identical 3-n-2 NNs that take three evidence values as input and give the
values y+ and y~ as output. Once the optimal 3-n-2 module is trained it can
be used in cascade fashion to build an evidence accumulator for any number
of inputs. The savings in training effort is offset by loss of parallelism in the
evidence computation. The MGE plot for 3-n-2 indicates that 3-6-2 is optimal.

We have tested the idea of replacing symbolic nodes with these subsymbolic
networks and subsequently training the EN/NN with ENBP (as in section 5.3).
For the small expert net we used for testing this experiment worked as one
would expect: the EN/NN learned with about the same efficiency as the original
EN.

We are carrying out exhaustive experiments to determine optimal architectures
for y+ ,y~ as well as "black box" REG nodes with n inputs, n = 3,4,....

y^j . w *z* —>

O . 0 2

O . O 1 5

O . O l

O . O O 5 -\

O

Hierarchical Architectures for Reasoning 143

g

3 4
N u x h b e j

5 6
> f H i d d e x

7̂ 8
N o d e s

Figure 3 Minimum generalization error x 1000 for 4-n-l y+ networks.

These should give a good picture of how parallel REG NNs scale with the
number of inputs. For models of human reasoning, however, this scaling may
be irrelevant: it seems likely that the modular architecture approach more
closely resembles human evidentiary techniques - we tend to weigh evidence
a few components at a time and "build a case" rather than process many
pieces of evidence in parallel. What even these preliminary results show is
that symbolic-level nodes in an expert network can be built with very simple
sub-symbolic neural networks and standard training techniques.

7 SUMMARY

We have defined a general framework for parallel/distributed computation, the
computational network, or CN. Examples of computational phenomena that
admit descriptions within the CN model include biological neural networks,
artificial neural networks, the parallel virtual machine model of loosely coupled
MIMD computation, human collaborations such as committees, and expert
networks. A CN is essentially a directed graph in which each component

144 CHAPTER 4

Figure 4 Modular NN for REG node.

(vertex or directed edge) has data processing functionality, further endowed
with a concept of global network computation.

A computational network can be classified according to whether it (1) processes
discrete or analog data, (2) uses discrete or continuous time, and (3) has an
acyclic or recurrent network topology. Expert networks are CNs of "type xOO",
according to this classification.

The principles of backpropagation learning are re-examined in the context
of computational networks, and a general learning method, computational
network backpropagation, or CNBP, is derived.

Expert networks, or ENs, are the focus of the remainder of the chapter. An
expert network is a symbolic-level computational network that can be derived
from an expert system (ES). The network topology of the EN is derived from
the rule base of the ES, the local processing functionality of the EN components
from the rules of inference of the ES, and the global computation concepts of
the EN from the inference engine of the ES. The process of constructing an
EN from an ES is called translation. Translation, before or after learning, is a
reversible process.

Learning methods for CNs can be instantiated for expert networks. In particu
lar, CNBP specializes to expert network backpropagation, or ENBP, a learning
method that has proven to be useful in knowledge acquisition and refinement.
ENBP allows an expert system builder to make the transition from coarse
knowledge, in the form of rough-draft rules, to fine knowledge, in the form
of rules with subtlety represented by analog parameters such as certainty fac
tors, using supervised learning and the historical record of expert behavior

Hierarchical Architectures for Reasoning 145

as a training set. This relieves the human expert whose knowledge is being
captured from specifying any parameters such as probabilities or certainties.

We conclude with an investigation of how an EN can be given the structure
of an artificial neural network. By a neural network, or NN, we mean a
computational network consisting entirely of sub-symbolic processors such as
linear/sigmoidal units. The nodes of an EN can, in principle, be represented
by small NNs, and we investigate the practicality of this theory. We show in
practice how such components can be constructed and determine optimal neural
architectures for such components. In this way an expert network is given a
realization as a neural network with a hierarchical topological organization:
a sparsely interconnected (0(n)) collection of densely intraconnected (0(n2))
neural nets.

This hierarchical sparse/dense EN/NN organization is analogous to biological
neural organization. It captures two levels of knowledge: domain knowledge
in the sparse superstructure and metaknowledge in the dense substructures. The
sparse/dense architecture also scales much more comfortably than the dense
0(n2) connectivity of, for example, feedforward NNs. Memory stability is
supported by constructive EN learning methods. Using conservative estimates
of 1010 neurons and 1013 synapses in the human cerebral cortex, and assuming
a sparse/dense topology with constant size dense subnetworks, an estimated
subnetwork size is 1,000 units. This is more than enough resource to train
complex symbolic-level components.

Research continues in this area. Projects using expert networks as a tool in
large expert system development are testing the limits of usefulness of EN
technology. Other more fundamental work investigates how dual sparse/dense
representations of expert networks may self-organize from random soup of
neural networks and may shed light on questions of the role of early learning
in cognitive development.

Computational networks are ubiquitous in the natural world and in the creations
of humankind.

REFERENCES

[1] B. G. Buchanan and E. H. Shortliffe. Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project.

146 CHAPTER 4

Addison-Wesley, Reading, MA., 1984.

[2] P. M. Churchland and P. S. Churchland. Could a machine think? Scientific
American, 262:32-39,1990.

[3] C H. Dagli and R. Stacey. A prototype expert system for selecting control
charts. Int. J. Prod. Res., 26:987-996,1988.

[4] S. P. Eberhardt, T. Daud, D. A. Kerns, T. X. Brown, and A. P. Thakoor.
Competitive neural architecture for hardware solution to the assignment
problem. Neural Networks, 4:431-442,1991.

[5] S. P. Eberhardt, T. Duong, and A. P. Thakoor. Design of parallel hardware
neural network systems from custom analog VLSI building block chips.
In Proceedings IJCNN 89 -Washington, DC, volume 2, pages 183-190,
Piscataway, NJ, 1989. IEEE.

[6] S. P. Eberhardt, T. Duong, and A. P. Thakoor. A VLSI building block chip
for hardware neural network implementations. In Proceedings Third An
nual Parallel Processing Symposium, volume 1, pages 257-267, Fuller-
ton, CA, 1989. IEEE Orange County Computer Society.

[7] R. C. Eberhart and R. W. Dobbins. Neural Network PC Tools. Academic
Press, San Diego, 1990.

[8] S. E. Fahlman and C Lebiere. The cascade correlation learning ar
chitecture. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems, volume 2, pages 524-532. Morgan Kaufmann, New
York, 1990.

[9] W.-Z. Fang, S. I. Hruska, and R. C Lacher. Expert networks: An empirical
study of expert network backpropagation learning. 1994. in preparation.

[10] W. J. Freeman. Simulation of chaotic EEG patterns with a dynamic model
of the olfactory system. Biological Cybernetics, 56:139-150,1987.

[11] L.-M. Fu and L.-C Fu. Mapping rule-based systems into neural archi
tecture. In Knowledge Based Systems, volume 3, pages 48-56. 1990.

[12] K.-I. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183-192, 1989.

[13] S. I. Gallant. Connectionist expert systems. Communications of the
Association for Computing Machinery, 24:152-169,1988.

[14] J. Giarratano and G. Riley. Expert Systems: Principles and Practice.
PWS-KENT, Boston, 1989.

Hierarchical Architectures for Reasoning 147

[15] J. Giarratano and G. Riley. Expert Systems: Principles and Practice.
PWS-KENT, Boston, 1994. Second Edition.

[16] L. O. Hall and S. G. Romaniuk. Fuzznet: Toward a fuzzy connectionist
expert system development tool. In Proceedings IJCNN 90 - Washington,
DC), volume 2, pages 483-486,1990.

[17] P. Harmon. G2: Gensym's real-time expert system. Intelligent Software
Strategies, 9:1-14, 1993.

[18] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, New York, 1991.

[19] M. W. Hirsch. Convergent activation dynamics in continuous time net
works. Neural Networks, 2:331-349, 1989.

[20] J. J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings National Academy of
Sciences, USA, 79:1554-2558,1982.

[21] J. J. Hopfield. Neurons with graded responses have collective computa
tional properties like those of two-state neurons. Proceedings National
Academy of Sciences, USA, 81:3088-3092,1984.

[22] K. Hornik, M. Stinchcomb, and H. White. Multilayer feedforward net
works are universal approximators. Neural Networks, 2:359-366,1989.

[23] S. I. Hruska and D. C. Kuncicky. Application of two-stage learning to
an expert network for control chart selection. In C. Dagli, S. Kumara,
and Y. Shin, editors, Intelligent Engineering Systems Through Artificial
Neural Networks, pages 915-920. ASME Press, New York, 1991.

[24] S. I. Hruska and D. C. Kuncicky. Automated knowledge refinement for
control chart selection. Heuristics, 1992.

[25] S. I. Hruska, D. C. Kuncicky, and R. C. Lacher. Hybrid learning in expert
networks. In Proceedings IJCNN 91 - Seattle, volume 2, pages 117-120.
IEEE 91CH3049-4, July 1991.

[26] S. I. Hruska, D. C. Kuncicky, and R. C. Lacher. Resuscitation of certainty
factors in expert networks. In Proceedings IJCNN 91 - Singapore, pages
1653-1657. IEEE 91CH3065-0, November 1991.

[27] B. Kosko. Neural Networks and Fuzzy Systems. Prentice Hall, Englewood
Cliffs, NJ, 1992.

148 C H A P T E R 4

[28] D. C. Kuncicky. The transmission of knowledge between neural networks
and expert systems. In WNN-AIND 91 (Proceedings of the First Workshop
on Neural Networks), pages 311-319. Auburn University, 1990.

[29] D. C. Kuncicky. Isomorphism of Reasoning Systems with Applications to
Autonomous Knowledge Acquisition. PhD thesis, Florida State Univer
sity, Tallahassee, FL., 1991. R. C. Lacher, Major Professor.

[30] D. C. Kuncicky, S. I. Hruska, and R. C. Lacher. Shaping the behavior of
neural networks. In WNN-AIND 91 (Proceedings of the Second Workshop
on Neural Networks), pages 173-180. Auburn University, SPIE Volume
1515,1991.

[31] D. C. Kuncicky, S. I. Hruska, and R. C. Lacher. Hybrid systems: The
equivalence of expert system and neural network inference. International
Journal of Expert Systems, 4:281-297,1992.

[32] R. C. Lacher. Node error assignment in expert networks. In A. Kandel
and G. Langholz, editors, Hybrid Architectures for Intelligent Systems,
pages 29-48. CRC Press, London, 1992.

[33] R. C. Lacher. The symbolic/sub-symbolic interface: Hierarchical network
organizations for reasoning. In R. Sun, editor, Integrating Neural and
Symbolic Processes. AAAI-92 Workshop, 1992.

[34] R. C. Lacher. Expert networks: Paradigmatic conflict, technological rap
prochement. Minds and Machines, 3:53-71, 1993.

[35] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky. Expert networks: A neural
network connection to symbolic reasoning systems. In M. B. Fishman,
editor, Proceedings FLAIRS 91, pages 12-16, St. Petersburg, FL, 1991.
Florida AJ Research Society.

[36] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky. Backpropagation learning
in expert networks. IEEE Transactions on Neural Networks, 3:62-72,
1992.

[37] J. J. Mahoney and R. J. Mooney. Combining connectionist and symbolic
learning to refine certainty-factor rule-bases. Connection Science, 5:339-
364,1993.

[38] J. J. Mahoney and R. J. Mooney. Modifying network architectures for
certainty-factor rule-base revision. In Proceedings International Sym
posium on Integrating Knowledge and Neural Heuristics 1994, pages
75-84, Gainesville, FL 32609-3476,1994. University of Florida DOCE.

Hierarchical Architectures for Reasoning 149

[39] K. Narita and R. C. Lacher. The FEN learning architecture. In Proceedings
IJCNN 93 - Nagoya, pages 1901-1905, Washington, DC, 1993. Institute
of Electrical and Electronic Engineers.

[40] K. D. Nguyen, K. S. Gibbs, R. C. Lacher, and S. I. Hruska. A con
nection machine based knowledge refinement tool. In M. B. Fishman,
editor, FLAIRS 92, pages 283-286, St. Petersburg, 1992. Florida Artificial
Intelligence Research Symposium.

[41] T. Oi. Chaos dynamics executes inductive inference. Biological Cyber
netics,57r:47-56, 1987.

[42] R. Ratliff. Continuous vs discrete information processing: Modelling the
accumulation of partial information. Psychological Review, 95:238-255,
1988.

[43] R. R. Rocker. An event-driven approach to artificial neural networks.
Master's thesis, Florida State University, Tallahassee, FL., 1991. S. I.
Hruska, Major Professor.

[44] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing.
MIT Press, Cambridge, MA., 1986.

[45] M. J. Salzgeber, J. L. Franke, and S. I. Hruska. Managing uncertainty
in clips: A system level approach. In M. B. Fishman, editor, FLAIRS
93, pages 142-146, St. Petersburg, 1993. Florida Artificial Intelligence
Research Symposium.

[46] J. R. Searle. Is the brain's mind a computer program? Scientific American,
262:26-31,1990.

[47] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to
pronounce english text. Complex Systems, 1:145-168,1987.

[48] E. H. Shortliffe. Computer-Based Medical Consultations: MYCIN. Else
vier, New York, 1976.

[49] E. H. Shortliffe and B. G. Buchanan. A model of inexact reasoning
in medicine. In Rule-Based Expert Systems, pages 233-262. Addison-
Wesley, New York, 1985.

[50] P. K. Simpson. Artificial Neural Systems. Pergamon Press, New York,
1990.

[51] C. Skarda and W. J. Freeman. How brains make chaos in order to make
sense of the world. Behavioral and Brain Sciences, 10:161-195,1987.

150 CHAPTER 4

[52] R. Sun. A discrete neural network model for conceptual representation
and reasoning. In Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, Hillsdale, N.J., 1989. Erlbaum.

[53] R. Sun. On variable binding in connectionist networks. Connection
Science, 4:93-124, 1992.

[54] V. S. Sunderam. Heterogeneous environments for network concurrent
computing. Journal of Future Generation Computer Systems, 8:191 —
203,1992.

[55] V. S. Sunderam and G. A. Geist. Network based concurrent computing
on the pvm system. Journal of Concurrency: Practice and Experience,
4:293-311,1992.

[56] G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Refinement of
approximate domain theories by knowledge-based neural networks. In
Proceedings AAAI-90, pages 861-866, New York, 1990. Morgan Kauf-
mann.

[57] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge,
MA, 1974.

PART II

DISTRIBUTED ARCHITECTURES

152

Part II: Distributed Architectures

• Chapter 5 (by Risto Miikkulainen) presents a distributed connectionist
model for parsing recursive relative clauses.

• Chapter 6 (by David Noelle and Gary Cottrell) presents a distributed
connectionist model that learns to act in accordance with a given set of
instructions.

• Chapter 7 (by Noel Sharkey and Stuart Jackson) challenge the notion that
the precise distances between distributed representations in the hidden
layer of a backpropagation network reflect systematic semantic and/or
structural similarity relations.

5
Subsymbolic Parsing of Embedded

Structures
RlSTO MlIKKULAINEN

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

1 INTRODUCTION

Symbolic artificial intelligence is motivated by the hypothesis that symbol
manipulation is both necessary and sufficient for intelligence [34]. Symbolic
systems have been quite successful, for example, in modeling in-depth natural
language processing [13, 26, 43], episodic memory [22, 24], and problem
solving [23, 35, 36]. In such systems, knowledge is encoded in terms of
explicit symbolic structures, and processing is based on handcrafted rules that
operate on these structures.

For cognitive processes based on conscious rule application, symbol manipula
tion is a natural approach. However, the symbolic approach does not naturally
lend itself to modeling the statistical (intuitive) nature of certain cognitive
processes. In many routine tasks, such as image understanding or sentence
processing, large amounts of information about the current context and past
experience are simultaneously brought together to produce the most appropri
ate interpretation. The process occurs through associations immediately, in
parallel, and without conscious control.

Subsymbolic (i.e. distributed) neural networks represent knowledge in terms
of correlations, coded in the weights of the network. For a given input situa
tion, the network computes the most likely answer given its past training. The
process is immediate and opaque, and fits very well into modeling intuitive
inference (see also [18,54, 61]). A major motivation for subsymbolic artificial
intelligence, therefore, is to give a better account for high-level cognitive phe
nomena that are intuitive in nature. For example, the subsymbolic approach to
sentence processing has several appealing properties: it is possible to combine

153

154 CHAPTER 5

syntactic, semantic, and thematic constraints in the interpretation, generate ex
pectations automatically, generalize to new inputs, and process noisy sentences
robustly [14, 15, 28, 30, 58]. To a limited extent, it is even possible to train
such networks to process sentences with complex grammatical structure, such
as embedded relative clauses [4, 21, 29, 50, 59].

However, it has been very difficult to build subsymbolic systems that could
effectively deal with structure. Distributed neural networks are pattern trans
formers, and they generalize by interpolating between patterns on which they
were trained. They cannot make inferences by dynamically combining knowl
edge about structures that were previously associated to different contexts.
For example, a sentence processing network can be trained to form a case-role
representation of each clause in a sentence like The g i r l , who l i k e d the
dog, saw t h e boy1, and it will be able to generalize to different versions
of the same structure, such as The dog, who b i t the g i r l , chased
the cat [29]. However, such network cannot parse sentences with novel
combinations of familiar clause structures, such as The g i r l , who l i k e d
the dog, saw the boy, who chased the cat . Such a lack of gener
alization is a serious problem, given how effortlessly people can understand
sentences they may have never seen before.

This chapter describes SPEC (Subsymbolic Parser for Embedded Clauses), a
subsymbolic sentence parsing architecture that can generalize to new relative
clause structures. The basic idea is to separate the tasks of segmenting the
input word sequence into clauses, forming the case-role representations, and
keeping track of the recursive embeddings into different modules. The system
is trained with only the most basic relative clause constructs. It abstracts the
"idea" of a relative clause from these examples and is able to generalize to novel
sentences with remarkably complex structure. Importantly, although SPEC has
powerful symbolic capabilities, it is not a neural network reimplementation
of a symbol processor. It is purely a distributed system, and has the usual
properties of such systems. For example, unlike symbolic parsers, the network
exhibits plausible memory degradation as the depth of the center embeddings
increases, and its performance is aided by semantic constraints between the
constituents. Also, unlike many modular neural networks architectures, SPEC
is self-contained. During performance, SPEC controls its own execution, and
no external symbolic supervisor is needed.

aIn all examples in this chapter, commas are used to indicate clause boundaries for clarity.

Subsymbolic Parsing 155

2 OVERVIEW OF SUBSYMBOLIC SENTENCE PROCESSING

Sentence processing has been an active area of connectionist research for about
a decade. Subsymbolic models have been developed to address a variety of
issues such as semantic interpretation, learning syntax and semantics, preposi
tional phrase attachment, anaphora resolution, active-passive transformation,
and translation [1, 2, 7, 8,10, 25, 33, 61].

A good amount of work has been done showing that networks can capture
grammatical structure. For example, Servan-Schreiber et al. [46, 47] showed
how Simple Recurrent Networks (SRNs; [14]) can learn a finite state grammar.
In an SRN, the pattern in the hidden layer is copied to the previous-hidden-layer
assembly and serves as input to the hidden layer during the next step in the
sequence, thus implementing a sequence memory. The network is trained with
examples of input/output sequences, adjusting all forward weights according
to the backpropagation algorithm [42]. Servan-Schreiber et al. trained an SRN
with sample strings from a particular grammar, and it learned to indicate the
possible next elements in the sequence. For example, given a sequence of
distributed representations for elements B, T, X, X, V, and V, the network turns
on two units representing X and S at its localist output layer, indicating that in
this grammar, die string can continue with either X or S.

Elman [15, 16] used the same network architecture to predict a context-free
language with embedded clauses. The network could not learn the language
completely, but its performance was remarkably similar to human performance.
It learned better when it was trained incrementally, first with simple sentences
and gradually including more and more complex examples. The network could
maintain contingencies over embeddings if die number of intervening elements
was small. However, deep center embeddings were difficult for the network,
as they are for humans.

The above architectures demonstrated that distributed networks build meaning
ful internal representations when exposed to examples of strings in a language.
They did not address how such capabilities could be put to use in parsing
and understanding language. McClelland and Kawamoto [28] identified the
sentence case-role assigment as a good approach. Case-role representation is
a common artificial intelligence technique for describing the shallow semantic
meaning of a sentence. The idea is loosely based on the theory of thematic
case roles [17,9]. Each act is described by the main verb and a set of semantic
cases such as agent, patient, instrument, location, and recipient. The task is
to decide which constituents fill these roles in the sentence. The approach is

156 CHAPTER 5

particularly well-suited for neural networks because the cases can be conve
niently represented as assemblies of units that hold distributed representations,
and the parsing task becomes that of mapping between distributed representa
tion patterns. McClelland and Kawamoto showed that given the syntactic role
assignment of the sentence as the input, the network could assign the correct
case roles for each constituent. The network also automatically performed
semantic enrichment on the word representations (which were hand-coded
concatenations of binary semantic features), and disambiguated between the
different senses of ambiguous words.

Miikkulainen and Dyer [31, 32] showed that essentially the same task can be
performed from sequential word-by-word input by a simple recurrent network,
and, through a technique called FGREP (Forming Global Representations
with Extended backPropagation), meaningful distributed representations for
the words can be automatically developed at the same time. In FGREP, the
component values are assigned initially randomly within [0, 1] and modified
by backpropagation as part of learning the task. The final representations
reflect how the words are used in the examples, and in that sense, represent
word meanings. Systems with FGREP representations generally have a strong
representation of context, which results in good generalization properties,
robustness against noise and damage, and automatic "filling in" of missing
information.

St. John and McClelland [57, 58] further explored the subsymbolic approach
to sentence interpretation in their Sentence Gestalt model. They aimed at
explaining how syntactic, semantic, and thematic constraints are combined
in sentence comprehension, and how this knowledge can be coded into the
network by training it with queries. The gestalt is a hidden-layer representation
of the whole sentence, built gradually from a sequence of input words by
a simple recurrent network. The second part of the system (a three-layer
backpropagation network) is trained to answer questions about the sentence
gestalt, and in the process, useful thematic knowledge can be injected into the
system.

The above three parsing architectures each built a semantic interpretation of
the sentence, but they could not handle grammatically very complex sentences.
Several extensions and some completely new architectures that could do that
have been proposed. For example, the CLAUSES system [29] was an ex
tension of the SRN+FGREP case-role assignment architecture into sentences
with multiple clauses. CLAUSES read clause fragments one at a time, brought
together the separated constituents, and concatenated the case-role represen
tations into a comprehensive canonical sentence representation in its output

Subsymbolic Parsing 157

layer. CLAUSES was limited both by the rigid output representation and also
by a somewhat surprising lack of generalization into new sentence structures.
On the other hand, Stolcke [59] showed that if the output representation was
made more flexible, the network was likely to forget earlier constituents. The
conclusion from these two models is that straightforward applications of sim
ple recurrent networks are unlikely to be successful in parsing and representing
grammatical structure.

A number of researchers have proposed modular and more structured architec
tures. In Jain's [21] Structured Incremental Parser, one module was trained to
assign words into phrases, and another to assign phrases into case roles. These
modules were then replicated multiple times so that the recognition of each
constituent was guaranteed independent of its position in the sentence. In the
final system, words were input one at a time, and the output consisted of local
representations for the possible assignments of words into phrases, phrases into
clauses, phrases into roles in each clause, and for the possible relationships
of the clauses. A consistent activation of the output units represented the in
terpretation of the sentence. The system could interpret complicated sentence
structures, and even ungrammatical and incomplete input. However, it did
not build an explicit representation for the sentence meaning. The parse result
was a description of the semantic relations of the constituents; the constituents
themselves were not represented.

Berg's XERIC [4] and Sharkey and Sharkey's parser [50] were both based
on the idea of combining a simple recurrent network with a Recursive Auto-
Associative Memory (RAAM; [39]) that encodes and decodes parse trees.
RAAM is a three-layer backpropagation network trained to perform an identity
mapping from input to output. As a side effect, the hidden layer learns to form
compressed representations of the network's input/output patterns. These
representations can then be recursively used as constituents in other input
patterns. A potentially infinite hierarchical data structure, such as a parse tree,
can this way be compressed into a fixed-size representation. The structure
can later be reconstructed by loading the compressed representations into the
hidden layer and reading off the expanded representation at the output.

In Sharkey and Sharkey's model, first the RAAM network was trained to form
compressed representations of syntactic parse trees. Second, an SRN network
was trained to predict the next word in the sequence of words that make up
the sentence. Third, a standard three-layer feedforward network was trained to
map the SRN hidden-layer patterns into the RAAM parse-tree representations.
During performance, a sequence of words was first read into the SRN, its final
hidden layer transformed into a RAAM hidden layer, and then decoded into

158 CHAPTER 5

a parse tree with the RAAM network. Berg's XERIC worked in a similar
manner, except the SRN hidden layer representations were directly decoded
by the RAAM network.

All five of the above architectures can parse sentences with complex gram
matical structure, and they can generalize to new sentences where constituents
have been substituted with other familiar constituents. Unfortunately, gen
eralization into new sentence structures is limited. For example, due to
its rigid output representation and excessive context-sensitivity, CLAUSES
could not parse The g i r l , who l i k e d the dog, saw the boy, who
chased t h e ca t , even if it knew how to process The g i r l , who l i k e d
the dog, saw the boy and The g i r l saw the boy, who chased
the cat . Jain's architecture is similarly limited because of the fixed hardware
constraints; XERIC and Sharkey and Sharkey's parser because the RAAM ar
chitecture generalizes poorly to new tree structures.

The architecture described in this chapter, SPEC, was especially designed to
address the problem of generalization into new sentence structures. SPEC is a
descendant of CLAUSES. The central component is the familiar simple recur
rent network that reads distributed word representations as its input and gener
ates case-role representations as its output. SPECs generalization capability
is based on simplifying the SRN's task through three architectural innovations:
(1) training the SRN to generate a sequence of clause case-role representations
as its output (like [59]) instead of a single comprehensive representation, (2)
introducing a segmenter network that breaks the input sequence into smaller
chunks, and (3) introducing a stack network that memorizes constituents over
intervening embedded clauses. Below, the SPEC architecture is described in
detail, and its performance is demonstrated on an artificially-generated corpus
of sentences with complex relative clause structures.

3 T H E S P E C A R C H I T E C T U R E

An overview of the architecture is shown in figure 1. The system receives
a sequence of word representations as its input, and for each clause in the
sentence, forms an output representation indicating the assignment of words
into case roles. The case-role representations are read off the system and placed
in a short-term memory (currently outside SPEC) as soon as they are complete.

Subsymbolic Parsing 159

Input

Figure 1 The SPEC sentence processing architecture. The system
consists of the Parser (a simple recurrent network), the Stack (a RAAM
network), and the Segmenter (a feedforward network). The gray areas
indicate propagation through weights, the solid lines stand for pattern
transport, and the dashed lined represent control outputs (with gates).
The lines controlling propagation within the Stack have been omitted.

The collection of case-role representations constitutes the final result of the
parse. This is a canonical representation for the sentence. The recursive
clause structure is not explicitly represented, but it is implicit in the clause
representations. For example, two clauses may share the same agent, or the
agent of one clause may be the patient of another clause. The idea behind
such representation is that the recursive structure is a property of the language,
not the information itself. The canonical representation can serve as input to
higher-level cognitive processes, which can access all constituents in parallel
without being biased by the linguistic form of the information.

SPEC consists of three main components: the Parser, the Segmenter, and the
Stack. Below, each component is described in detail and the reasons for the
main architectural choices are explained.

3.1 THE PARSER

The Parser performs the actual transformation of the word sequence into the
case-role representations, and like most of the other parsers described above,
it is based on the simple recurrent network architecture (figure 2). Words are

160 CHAPTER 5

Sequence of input words

Input layer

1 g i r i

1 Agent

ran
(?)

Act

ilii
(?) |

Patient |

Previous hidden layer

Output layer

Case-role assignment

Figure 2 The Parser network. The figure depicts a snapshot of the
network after it has read the first two words The and g i r l . The activity
patterns in the input and output assemblies consist of word representations.
The input layer holds the representation for the last word, g i r l , and the
activity pattern at the output represents the (currently incomplete) case-
role assignment of the clause. At this point, it is clear that g i r l is going
to be the agent. The act and the patient are not known; the patterns in these
slots indicate expectations, that is, averages of all possible alternatives.

represented distributively as vectors of gray-scale values between 0 and 1.
The component values are initially assigned randomly and modified by the
FGREP method [30, 31, 32] as part of the learning process. FGREP is a
convenient way to form distributed representations for input/output items,
but SPEC is not dependent on FGREP. The word representations could have
been obtained through semantic feature encoding as well (as was done by e.g.
McClelland and Kawamoto [28]). SPEC will even work with random word
representations, although some of the advantages of distributed representations
(such as generalization, robustness, and context representation) would not be
as strong.

The case-role assignment is represented at the output of the Parser as a case-
role vector (CRV), that is, a concatenation of those three word representation
vectors that fill the roles of agent, act, and patient in the sentence2 (figure 2).

2The representation was limited to three roles for conciseness; more roles could be easily
included. However, each slot can represent only one constituent at any one time.

Subsymbolic Parsing 161

For example, the word sequence t h e g i r l saw the boy receives the case-
role assignment agent=girl, act=saw, patient=boy, which is represented as
the vector i g i r l saw boy I at the output of the Parser network. When the
sentence consists of multiple clauses, the relative pronouns are replaced by
their referents: The g i r l , who l i k e d the dog, saw the boy parses
into two CRVs: I g i r l l i k e d dog I and I g i r l saw boy I.

The obvious approach for representing multiple CRVs would be to concatenate
them into a single vector at the output of the Parser network. This was
the approach taken in CLAUSES [29]. Such representation has two serious
limitations:

1. The size of the output layer always poses a hard limit on the number
of clauses in the sentence. If there is space for three CRVs, sentences
with four clauses (such as The g i r l saw the boy, who chased
the c a t , who saw the g i r l , who l i k e d the dog) could not be
parsed without changing the architecture and retraining the entire network.

2. Somewhat less obviously, such representation turns out to be detrimental
to generalization. The network always has to represent the entire sentence
in its memory (in the hidden layer). Every new item in the sequence
is interpreted in the context of the entire sequence so far. CLAUSES
learned to recognize certain sequences of act fragments, and to associate a
particular interpretation to each sequence. If there ever was a novel input,
such as an additional tail embedding in the end of an otherwise familiar
sequence, the network did not know how to combine it with its current
hidden-layer representation. As a result, CLAUSES could only process
variations of those clause structures it was trained on.

The above problems can be overcome if the network is not required to form a
complete sentence representation at its output. Instead, the network generates
the CRV for each clause as soon as the information for the clause is complete.
Another network (or even a symbolic system [53]) then reads the sequence
of complete act representations as its input and builds a representation for the
whole sentence using a flexible-size representation technique, such as tensor-
product encoding [12, 55].

This is the approach taken in SPEC. The Parser receives a continuous sequence
of input word representations as its input, and its target pattern changes at
each clause boundary. For example, in reading The g i r l , who l i k e d
the dog, saw the boy, the target pattern representing I g i r l saw boy I

162 C H A P T E R 5

is maintained during the first two words, then switched to | g i r l l i k e d dogl
during reading the embedded clause, and then back to I g i r l saw boy | for
the rest of the sentence. The CRV for the embedded clause is read off the
network after dog has been input, and the CRV for the main clause after the
entire sentence has been read.

When trained this way, the network does not have to maintain information
about the entire past input sequence in its memory, making it possible in
principle to generalize to new clause structures. The early words do in fact
fade from the memory as more words are read in, but by itself this effect is
not strong enough, and needs to be enforced by an additional network (the
Segmenter, discussed in section 3.3). However, even such slight forgetting is
strong enough to cause problems with the center embeddings. After parsing
who l i k e d the dog, the network does not remember that it was t he g i r l
who saw t h e boy. The system needs a memory component external to the
parser so that the top-level parse state can be restored before reading rest of
the top-level constituents. This is the task of the Stack network.

3.2 THE STACK

The hidden layer of a simple recurrent network forms a compressed descrip
tion of the sequence so far. The Stack has the task of storing this repre
sentation at each center embedding, and restoring it upon return from the
embedding. For example, in parsing The g i r l , who l i k e d the dog,
saw the boy, the hidden-layer representation is pushed onto the stack after
The g i r l , and popped back to the Parser's previous-hidden-layer assembly
after who l i k e d the dog. In effect, the SRN can then parse the top-level
clause as if the center embedding had not been there at all.

The Stack is implemented as a RAAM network [39] trained to encode and
decode linear lists (figure 3). The input/output of the Stack consists of the
Stack's top element and the compressed representation for the rest of the stack.
Initially the stack is empty, which is represented by setting all units in the
"Stack" assembly to 0.5 (figure 3). The first element, such as the hidden-layer
pattern of the Parser network after reading The g i r l , is loaded into the "Push"
assembly, and the activity is propagated to the hidden layer. The hidden-layer
pattern is then loaded into the "Stack" assembly at the input, and the Stack
network is ready for another push operation.

Subsymbolic Parsing 163

Encoding cycle

Decoding cycle

Figure 3 The Stack network. This figure simultaneously illustrates
three situations that occur at different times during the training and the
performance of the Stack: (1) A training situation where the network
learns to autoassociate an input pattern with itself, forming a compressed
representation at the hidden layer; (2) A push operation, where a rep
resentation in the "Push" assembly is combined with the empty-stack
representation (in the "Stack" assembly) to form a compressed represen
tation for the new stack in the hidden layer; (3) A pop operation, where
the current stack representation in the hidden layer generates an output
pattern with the top element of the stack in the "Pop" assembly and the
representation for the remaining stack (currently empty) in the "Stack"
assembly.

When the Parser returns from the center embedding, the stored pattern needs to
be popped from the stack. The current stack representation is loaded into the
hidden layer, and the activity is propagated to the output layer. At the output,
the "Pop" assembly contains the stored Parser-hidden-layer pattern, which is
then loaded into the previous-hidden-layer assembly of the Parser network
(figure 1). The "Stack" assembly contains the compressed representation for
the rest of the stack, and it is loaded to the hidden layer of the Stack network,
which is then ready for another pop operation.

RAAM networks usually generalize well into encoding and decoding new
instances of familiar structures, but poorly into processing new structures
[5, 7, 8, 50]. The deeper the structure, the less accurate its representation,
because more and more information will be superimposed on the same fixed-
width vector. Fortunately, this is not a major problem for SPEC, because the
RAAM network only needs to encode one type of structure (a linear list),

164 CHAPTER 5

and there are very strong memory limitations in human processing of deep
embedded structures as well. It should be very easy to train the RAAM network
to model human memory for embedded clauses, and it should generalize well
to new instances.

3.3 THE SEGMENTER

The Parser+Stack architecture alone is not quite sufficient for generalization
into novel relative clause structures. For example, when trained with only
examples of center embeddings (such as the above) and tail embeddings (like
The g i r l saw the boy, who chased the cat) , the architecture gen
eralizes well to new sentences such as The g i r l , who l i k e d the dog,
saw the boy, who chased the cat . However, the system still fails
to generalize to sentences like The g i r l saw the boy, who the dog,
who chased the c a t , b i t . The problem is the same as with CLAUSES:
even though the Stack takes care of restoring the earlier state of the parse, the
Parser has to learn all the different transitions into the relative clauses. If it
has encountered center embeddings only at the beginning of the sentence, it
cannot generalize to a center embedding that occurs after an entire full clause
has already been read. Even though the Parser is free to "forget" the irrelevant
information in the early sequence, the hidden-layer patterns remain sufficiently
different so that its processing knowledge does not carry over.

The solution is to train an additional network, the Segmenter, to divide the input
sequence into clauses. The segmenter receives the current hidden-layer pattern
as its input, together with the representation for the next input word, and it is
trained to produce a modified hidden-layer pattern as its output (figure 4). The
output is then loaded into the previous-hidden-layer assembly of the Parser. In
the middle of reading a clause, the Segmenter passes the hidden-layer pattern
through without modification. However, if the next word is a relative pronoun,
the segmenter modifies the pattern so that only the relevant information re
mains. In the above example, after boy has been read and who is next to come,
the Segmenter generates a pattern similar to that of the Parser's hidden layer
after only The boy in the beginning of the sentence has been input.

In other words, the Segmenter (1) detects transitions to relative clauses, and (2)
changes the sequence memory so that the Parser only has to deal with one type
of clause boundary. This way, the Parser's task becomes sufficiently simple so
that the entire system can generalize to new structures. The Segmenter plays

Subsymbolic Parsing 165

1 Next:
1 who

Parser-hidden for The g i r l 1

llMlllllMIHIIIIIIIIIIIIIIIIIIIIIIIIIIlMlllllllllllllll
Hidden layer

MllllllllHIIIIIIHIIIIIIlllI

(Un)Modified Parser-hidden: The g i r l

Figure 4 The Segmenter network. The Segmenter receives the
Parser's hidden-layer pattern as its input together with the next input
word, which in this case is who. The control outputs are 1, 0, 0, indicat
ing that the Parser's hidden-layer representation should be pushed onto
the Stack, the current case-role representation is incomplete and should
not be passed on to the output of the system, and the stack should not be
popped at this point. In this case, the Segmenter output is identical to its
input, because the g i r 1 is the smallest context that the Parser needs to
know when entering a center embedding.

a central role in the architecture. The next section shows that it is very natural
to give the Segmenter a complete control over the entire parsing process.

3.4 CONTROL

At first glance, the control of execution in SPEC seems rather complicated.
The activation patterns propagate between networks in a very specific manner,
and execution of each network needs to be carefully timed with respect to
what the other networks are doing. However, it is actually very easy to train
the Segmenter to control the parsing process. The Segmenter always sees
the current state of the parse (as encoded in the hidden layer of the Parser
network) and the incoming word, and based on this information, it can control
the pathways of the system. There are five different control tasks in the SPEC
system:

1. Detecting clause transitions and modifying the sequence memory to re
move unnecessary previous context as described above.

166 CHAPTER 5

2. Recognizing the end of the sentence, indicated by "." (full stop) in the input
sequence, and subsequently clearing the previous hidden layer (which is
all-0 at the beginning of each sentence). This makes it possible for the
system to parse multiple sentences without an external "reset".

3. Deciding when to push the Parser's hidden-layer representation onto the
stack. This requires opening the pathway from the hidden layer to the
"Push" assembly of the Stack, allowing propagation to the Stack's hidden
layer, and transporting the resulting pattern back to the Stack's input
assembly.

4. Deciding when to pop the previous hidden layer from the stack; this task
involves allowing propagation from the Stack's hidden layer to its output
layer, transporting the output "Stack" pattern back to its hidden layer, and
opening the pathway from the "Pop" assembly to the Parser's previous
hidden layer.

5. Deciding when the Parser's output CRV is complete, and consequently,
opening the output pathway to the external short-term memory system.

Control is implemented through three additional units at the Segmenter 's output
(figure 4). These are called Push, Pop, and Output, corresponding to the tasks
3,4, and 5 above. These units gate the system pathways through multiplicative
connections (as described in [38, 41]). The weights on the pathways are
multiplied by the output values, so that propagation only takes place when the
output is high. The Segmenter is trained to output 1 for the desired propagation,
and 0 otherwise.

The control implementation in SPEC emphasizes an important point: although
much of the structure in the parsing task is programmed into the system ar
chitecture, SPEC is still a self-contained distributed neural network. In many
modular neural network architectures control is due to a hidden symbolic su
pervisor. SPEC demonstrates that such external control mechanisms are not
necessary: even a rather complex subsymbolic architecture can take care of its
own control and operate independently of its environment.

4 E X P E R I M E N T S

A prototype implementation of SPEC was tested with an artificially-generated
corpus of relative clause sentences. The purpose was to evaluate the soundness

Subsymbolic Parsing 167

s
NP
VP
RC
N
V
DET

- •

- +

— •

- +

->
->
— •

NP VP "."
DET N | DET N RC
V NP
who VP | who NP V
boy | girl | dog I cat
chased I liked 1 saw | bit
the

Table 1 The sentence grammar.

of the basic ideas, test the cognitive plausibility of the model, and get a feeling
for the scale-up possibilities of the approach. The experiments are described
below, and some general conclusions drawn from them are presented in the
Discussion section.

4.1 DATA

The training and testing corpus was generated from a simple phrase structure
grammar depicted in table 1. This grammar generates sentences where each
clause consists of three constituents: the agent, the verb and the patient. A
relative who-clause could be attached to the agent or to the patient of the parent
clause, and who could fill the role of either the agent or the patient in the relative
clause. In addition to who, the and "." (full stop, the end-of-sentence marker
that had its own distributed representation in the system just like a word), the
vocabulary consisted of the verbs chased, l iked, saw and bi t , and the
nouns boy, g i r l , dog and cat.

A number of semantic restrictions were imposed on the sentences. A verb
could have only certain nouns as its agent and patient (see table 2). These
restrictions are not necessary to train SPEC, but they create enough differences
in the word usage so that their FGREP representations do not become identical
[32, 30]. The main motivation for the restrictions, however, was to determine
whether SPEC would be able to use the semantics to aid parsing under difficult
conditions. The grammar was used to generate all sentences with up to four
clauses, and those that did not match the semantic restrictions were discarded.
The final corpus consists of 49 different sentence structures, with a total of
98,100 different sentences (table 3).

168 CHAPTER 5

1 Verb

chased

l i k e d

saw

b i t

Case-role

Agent:
Patient:

Agent:
Patient:

Agent:
Patient:

Agent:
Patient:

Possible fillers

boy, g i r l , d o g , c a t
ca t

b o y , g i r l '
b o y , g i r l , d o g

b o y , g i r l , c a t
b o y , g i r l

dog
boy, g i r l , d o g , c a t

Table 2 Semantic restrictions.

Since the SPEC architecture divides the sentence parsing task into low-level
pattern transformation, segmentation, and memory, each component needs to
see only its own basic constructs during training. The combined architecture
then forces generalization into novel combinations of these structures. The
Parser and the Segmenter need to be able to process the following three types
of sequences:

(1) The g i r l saw t he b o y . . . (top level clause)
(2) . . . t h e g i r l , who saw the boy, . . . (who as the agent)
(3) . . . t h e g i r l , who the boy saw, . . . (who as the patient).

The Segmenter also needs to see four different types of embedded clause
transitions, such as

(1) The g i r l , who. . . (top-levelcenter)
(2) . . . t h e g i r l , who the boy, who. . . (embeddedcenter)
(3) The g i r l saw t he boy, who. . . (top-level tail)
(4) . . . t h e g i r l , who saw t he boy, who. . . (embedded tail),

and examples of the two different types of popping operations:

(1) . . . t h e g i r l , who saw the boy, l i k e d . . . (after who as agent)

Subsymbolic Parsing 169

(2) . . . the g i r l , who the boy saw, l i k e d . . . (after who as patient),

The Stack needs to handle only a very small number of different types of
patterns for pushing and popping. Either it receives a center embedding at the
top level, followed by a number of center embeddings at deeper levels, such as

(1) The g i r l , (top-level center embedding)
who the dog, (first deeper center embedding)
who the boy, (second deeper center embedding)

or it receives a number of deeper center embeddings without a preceding
top-level embedding:

(2) The g i r l saw the boy, who the c a t , (first deeper embedding)
who the dog, (second deeper embedding)

Because the Segmenter makes all the clause transitions look the same for the
Parser, the representations that are pushed on the stack are similar at all levels
of embeddings. Therefore, if the Stack is trained to encode, say, a stack
of 15 elements, it should generalize to the 16th push without any problems.
However, three levels of center embeddings is about the most that would occur
in a natural language, and as a result, the architecture cannot really make use
of the generalization capabilities of the Stack. The Stack will not generalize
to encoding and decoding a 3-element stack after it has been trained only up
to 2-element stacks, and there is little point in doing that anyway. It is quite
easy to train the Stack to up to 3 levels of embeddings and thereby guarantee
that the Stack is not going to be limiting the generalization capabilities of the
system.

4 . 2 TRAINING M E T H O D O L O G Y

There is a variety of strategies for training a modular system such as SPEC.
They usually lead to comparable results, but vary in amount of computational
and programming effort involved, final accuracy, and robustness of die trained
system.

170 CHAPTER 5

Template
l.
2.
3.

4.

5.

*6.

7.

8.

9.
10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Generates
27T"
102
528

2738

2814

544

2878

2802

106
560

2878

2962

544

2898

2814

106
544

2814

2898

560

Example sentence
The
The
The
who
The
who
The
who
The
who
The
who
The
who
The
The
who
The
who
The
who
The
who
The
who
The
who
The
The
who
The
who
The
who
The
who

girlsaw the boy.
girl saw the boy, who chased the
girl saw the boy, who chased the
saw the girl.
girl saw the boy, who chased the
saw the girl, who liked the dog.
girl saw the boy, who chased the
saw the girl, who the dog bit.
girl saw the boy, who chased the
the dog bit.
girl saw the boy, who chased the
the dog, who bit the girl, bit.
girl saw the boy, who chased the
the dog, who girl liked, bit.

cat.
cat,

cat,

cat,

cat,

cat,

cat,

girl saw the boy, who the dog bit.
girl saw the boy, who the dog,
chased the cat, bit.
girl saw the boy, who the dog,
chased the cat, who saw the girl,
girl saw the boy, who the dog,

bit.

chased the cat, who the girl chased, bit.
girl saw the boy, who the dog,
the girl liked, bit.
girl saw the boy, who the dog,
the girl, who chased the cat, liked, bit. |
girl saw the boy, who the dog,
the girl, who the cat saw, liked,
girl, who liked the dog, saw the
girl, who liked the dog, saw the
chased the cat.
girl, who liked the dog, saw the
chased the cat, who saw the girl
girl, who liked the dog, saw the
chased the cat, who the dog bit.
girl, who liked the dog, saw the
the dog bit.

(to be continued on the next page)

bit.
boy.
boy,

boy,

boy,

boy,

Table 3 The sentence structures. The total number of sentences for
each different clause structure is given together with an example sentence.
The different clause structures are referred to as "sentence templates"
below. SPEC was trained with 100 sentences from templates 6 and 40
each (with complete training of the Stack to up to three levels) and it
generalized correctly to all others. Commas are inserted in the examples
to help discern the clause boundaries; they were not part of the actual
input.

Subsymbolic Parsing 111

Template Generates Example sentence

The girl, who liked the dog, saw the boy,
who the dog, who chased the cat, bit.
The girl, who liked the dog, saw the boy,
who the dog, who the boy liked, bit.
The girl, who liked the dog, who bit the cat,
saw the boy.
The girl, who liked the dog, who bit the cat,
saw the boy, who chased the cat.
The girl, who liked the dog, who bit the cat,
saw the boy, who the dog bit.
The girl, who liked the dog, who bit the cat,
who saw the girl, saw the boy.
The girl, who liked the dog, who bit the cat,
who the boy chased, saw the boy.
The girl, who liked the dog, who the dog bit,
saw the boy.
The girl, who liked the dog, who the dog bit,
saw the boy, who chased the cat.
The girl, who liked the dog, who the dog bit,
saw the boy, who the dog bit.
The girl, who liked the dog, who the dog,
who chased the cat, bit, saw the boy.
The girl, who liked the dog, who the dog,
who the boy liked, bit, saw the boy.
The girl, who the dog bit, saw the boy.
The girl, who the dog bit, saw the boy,
who chased the cat.
The girl, who the dog bit, saw the boy,
who chased the cat, who saw the girl.
The girl, who the dog bit, saw the boy,
who chased the cat, who the dog bit.
The girl, who the dog bit, saw the boy,
who the dog bit.
The girl, who the dog bit, saw the boy,
who the dog, who chased the cat, bit.
The girl, who the dog bit, saw the boy,
who the dog, who the girl liked, bit.
The girl, who the dog, who chased the cat,
bit, saw the boy.
The girl, who the dog, who chased the cat,
bit, saw the boy, who liked the girl.
The girl, who the dog, who chased the cat,
bit, saw the boy, who the girl liked.
The girl, who the dog, who chased the cat,
who saw the boy, bit, saw the boy.
The girl, who the dog, who chased the cat,
who the boy chased, bit, saw the boy.
The girl, who the dog, who the boy liked, bit,
saw the boy.
The girl, who the dog, who the boy liked, bit,
saw the boy, who the dog bit.
The girl, who the dog, who the boy liked, bit,
saw the boy, who chased the cat.
The girl, who the dog, who the boy,
who chased the cat, liked, bit, saw the boy.
The girl, who the dog, who the boy,
who the cat saw, liked, bit, saw the boy.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

2962

2878

544

2802

2878

2814

2898

560

2878

2962

2962

2878

102
528

2738

2814

544

2878

2802

544

2814

2898

2802

2878

528

2738

2814

2814

2738

Total 98100

Table 3 (continued) The sentence structures.

172 CHAPTER 5

One possibility is to train the entire SPEC as a whole, propagating the patterns
between modules as during normal performance. For example, the output
of the Stack would be propagated into the previous-hidden-layer assembly of
the Parser as it is, even if it is highly inaccurate during early training. The
advantage is that the modules learn to compensate for each other's errors, and
final accuracy may be better. On the other hand, convergence is often slower,
because the modules have to continuously adjust to each other's changing
output representations.

If SPEC is to be trained as a whole, a set of templates from table 3 must be
selected so that all the basic constructs are included in the set of sentences. One
such set consists of templates 3,15, and 49. Indeed, trained with 100 randomly
chosen examples from each template, the network correctly generalized to all
other sentences in the entire corpus.

On the other hand, each component can be trained separately, with compatible
training data from the same set of examples but without propagating the actual
output to the input of the next network. For example, after the previous-hidden-
layer representation is obtained from the stack, it is cleaned up (i.e. replaced by
the correct representation) before actually loading it into the previous hidden
layer. This way the modules learn more independently, and converge faster.
If the Parser is trained first, the Segmenter and the Stack can be trained very
efficiently with the Parser's final hidden-layer patterns. The total training
time in CPU cycles is minimized this way. It is also possible to train the
different networks simultaneously on separate machines, thereby minimizing
the wallclock training time. In the end, after the networks have learned to
produce output close to their targets, they can be connected and they will work
well together, even filter out each other's noise [30].

Training SPEC is not computationally very intensive with this particular cor
pus, and therefore, the most convenient training strategy was selected for
the experiments reported below. All modules were trained separately and si
multaneously on a single machine, sharing the gradually evolving word and
hidden-layer representations. With this strategy, it is enough to train SPEC
only with templates 6 and 40, because they contain all the basic constructs for
the Parser and the Segmenter. Complete training data for the Stack can be
obtained from Parser's hidden layer during the course of processing sentences
6 and 40.

Subsymbolic Parsing 173

4.3 RESULTS

The word representations consisted of 12 units. Parser's hidden layer was 75
units wide, that of the Segmenter 50 units, and that of the Stack 50 units. All
networks were trained with plain on-line backpropagation with 0.1 learning rate
and without momentum. The training set consisted of 100 randomly-selected
sentences from templates 6 and 100 each. Both the Parser and the Segmenter
developed word representations at their input layers (with a learning rate of
0.001). The Stack was trained to encode and decode up to three levels of center
embeddings.

The convergence was very strong. After 400 epochs, the average error per
output unit was 0.018 for the Parser, 0.008 for the Segmenter (0.002 for the
control outputs), and 0.003 for the Stack, while an error level of 0.020 usually
results in acceptable performance in similar assembly-based systems [30]. The
training took approximately three hours on an IBM RS6000 workstation. The
final representations, developed by FGREP, reflected the word categories very
well.

SPEC'S performance was then tested on the entire corpus of 98,100 sentences.
The patterns in the Parser's output assemblies were labeled according to the
nearest representation in the lexicon. The control output was taken to be correct
if those control units that should have been active at 1 had an activation level
greater than 0.7, and those that should have been 0 had activation less than
0.3. Measured this way, the performance was excellent: SPEC did not make
a single mistake in the entire corpus, neither in the output words or in control.
The average unit error was 0.034 for the Parser, 0.009 for the Segmenter
(0.003 for control), and 0.005 for the Stack. There was very little variation
between templates and words within each sentence, indicating that the system
was operating within a safe margin.

The main result, therefore, is that the SPEC architecture successfully general
izes not only to new instances of the familiar sentence templates, but to new
templates as well, which the earlier sentence processing architectures such as
CLAUSES could not do. However, SPEC is not a mere reimplementation of
a symbol processor. As SPEC'S Stack becomes increasingly loaded, its output
becomes less and less accurate; symbolic systems do not have any such inher
ent memory degradation. An important question is, does SPEC'S performance
degrade in a cognitively plausible manner, that is, does the system have similar
difficulties in processing recursive structures as people do?

174 CHAPTER 5

There are two ways to elicit enough errors from SPEC to analyze its limitations:
(1) it can be tested during early training, or (2) its memory can be disturbed
by noise. In a sense, testing during training illustrates developmental effects,
whereas adding noise can be claimed to simulate overload, stress, cognitive im
pairment, and lack of concentration situations. Both methods produce similar
results; ones obtained with noise are reported below.

The Stack's performance was degraded by adding 30% noise in its propagation.
During encoding, the final value ht of the hidden unit i was obtained from r2,
the value after correct propagation, by the transformation

hi = 0.70rf + 0.30X, (5.1)

where X is a random variable uniformly distributed within [0, 1]. Similarly
during decoding, the output values o{ were degraded by

0i = 0.70c,-+ 0.30X, (5.2)

where c,- is the correct value of unit i. The SPEC system turned out to be
remarkably robust against such degradation. The average Parser error rose to
0.058, but the system still got 94% of its output words right, with very few
errors in control.

As expected, most of the errors occurred as a direct result of popping
back from center embeddings with an inaccurate previous-hidden-layer rep
resentation. For example, in parsing The g i r l , who the dog, who
the boy, who chased the c a t , l i k e d , b i t , saw the boy (tem
plate 48), SPEC would have trouble remembering the agents of l i k e d , b i t
and saw, and patients of l i k e d and b i t . The performance depends on the
level of the embedding in an interesting manner. It is harder for the network
to remember the earlier constituents of shallower clauses than those of deeper
clauses (figure 5). For example, SPEC could usually connect boy with l iked ,
but it was harder for it to remember that it was the dog who b i t and the g i r l
who saw in the above example.

Such behavior seems plausible in terms of human performance. It is easier
to remember a constituent that occurred just recently in the sentence than one
that occurred several embeddings ago. Interestingly, even though SPEC was
especially designed to overcome such memory effects in the Parser's sequence
memory, the same effect is generated by the Stack architecture. The latest
embedding has noise added to it only once, whereas the earlier elements in the
stack have been degraded multiple times. Therefore, the accuracy is a function
of the number of pop operations instead of a function of the absolute level

Subsymbolic Parsing 175

o 80H

First Second Third

Figure 5 Memory accuracy after return from center embeddings
(with 30% noise degradation). The percentage of correctly-remembered
agents is plotted after the first, second, and the third pop in sentence
templates 48 and 49 (represented by the words boy, dog and g i r l
in the example sentences of table 3). Each successive pop is harder and
harder to do correctly. Similarly, SPEC remembers about 84% of the
patients correctly after the first pop, and 67% after the second pop.

of the embedding. With the example data, the percentage of correct agents
after the first pop is always around 80%, whether that pop occurs after a single
embedding (as in template 16), two embeddings (as in 40), or three (as in
48/49, figure 5).

When the SPEC output is analyzed word by word, several other interesting
effects are revealed. Virtually in every case where SPEC made an error in
popping an earlier agent or patient from the stack it confused it with another
noun. In other words, SPEC performs plausible role bindings: even if the
exact agent or patient is obscured in the memory, it "knows" that it has to
be a noun. The weights of the Parser network have learned to encode this
constraint. Moreover, SPEC does not generate the noun at random. Out of all
nouns it output incorrectly, 75% had occurred earlier in the sentence, whereas
a random choice would give only 54%. It seems that traces for the earlier
nouns are discernible in the previous-hidden-layer pattern, and consequently,
they are slightly favored at the output. Such priming effect is rather surprising,
but it is very plausible in terms of human performance.

176 CHAPTER 5

One Two Three
Number of alternatives

Four

Figure 6 Effect of the semantic restrictions on the memory accuracy
(with 30% noise degradation). The percentage of correctly-remembered
agents and patients over the entire corpus is plotted against how strongly
they were semantically associated with the verb. When there was only
one alternative (such as dog as an agent for b i t or ca t as the patient
of chased), SPEC remembered 95% of them correctly. There was a
marked drop in accuracy with two, three and four alternatives.

The semantic constraints (table 2) also have a marked effect on the perfor
mance. If the agent or patient that needs to be popped from the stack is strongly
correlated with the verb, it is easier for the network to remember it correctly (fig
ure 6). The effect depends on the strength of the semantic coupling. For exam
ple, g i r l is easier to remember in The g i r l , who the dog b i t , l i k e d
the boy, than in The g i r l , who the dog b i t , saw the boy, which
is in turn easier than The g i r l , who the dog b i t , chased the ca t .
The reason is that there are only two possible agents for l iked , whereas there
are three for saw and four for chased.

A similar effect has been observed in human processing of relative clause struc
tures. Huang [19] showed that young children understand embedded clauses
better when the constituents are semantically strongly coupled. Caramazza
and Zurif [6] observed similar behavior on aphasics. This effect is often at
tributed to impaired capability for processing syntax. The SPEC experiment
indicates that it could be at least partly due to impaired memory as well. When
the memory representation is impaired with noise, the Parser has to clean it

Subsymbolic Parsing 111

up. In propagation through the Parser's weights, noise that does not coincide
with the known alternatives cancels out. Apparently, when the verb is strongly
correlated with some of the alternatives, more of the noise appears coincidental
and is filtered out.

5 DISCUSSION

SPEC is quite insensitive to configuration and simulation parameters. Many
variations were tried in the experiments, such as hidden layers with 10-75
units, training sets with 200-4,000 sentences, different templates for training,
modifying word representations in the Parser only, not modifying them at
all, fixed learning rates 0.1-0.001 for weights and representations, gradually
reducing the learning rates, training the modules together, and training them
separately. All these variations led to roughly comparable results. Such
flexibility suggests that the approach is very strong, and there should be plenty
of room for adapting it to more challenging experiments.

Several other observations also indicate that the approach should scale up well.
First, as long as SPEC can be trained with the basic constructs, it will generalize
to a very large set of new combinations of these constructs. Combinatorial
training [56] of structure is not necessary. In other words, SPEC is capable of
dynamic inferencing, previously postulated as very difficult for subsymbolic
systems to achieve [61]. Second, like most subsymbolic systems, SPEC does
not need to be trained with a complete set of all combinations of constituents for
the basic constructs; a representative sample, like the 200 out of 1088 possible
training sentences above, is enough. Finally, with the FGREP mechanism it
is possible to automatically form meaningful distributed representations for a
large number of words, even to acquire them incrementally [32, 30], and the
network will know how to process them in new situations.

The SPEC architecture was mostly motivated from the artificial intelligence
point of view, that is, by the desire to build a system that (1) would be able to
process nontrivial input like symbolic systems, and (2) makes use of the unique
properties of distributed neural networks such as learning from examples,
spontaneous generalization, robustness, context sensitivity, and integrating
statistical evidence. While SPEC does not address several fundamental issues
in connectionist natural language processing (such as processing exceptions
and representing flexible structure), it goes a long way in showing that learning

178 CHAPTER 5

and applying grammatical structure for parsing is possible with pure distributed
networks.

However, SPEC was not aimed at only generating best possible performance
without an underlying Cognitive Science philosophy. The architecture is de
cidedly not a reimplementation of a symbol processor, or even a hybrid system
consisting of subsymbolic components in an otherwise symbolic framework.
SPEC aims to model biological information processing at a specific, uniform
level of abstraction, namely that of distributed representation on modular net
works. SPEC should be evaluated according to how well its behavior matches
that produced by the brain at the cognitive level.

The most immediate direction for future work is to apply the SPEC architecture
to a wider variety of grammatical constructs and to larger vocabularies. Two
main issues need to be addressed in this work:

1. It will be necessary to develop methods for representing the final parse
result. Currently, SPEC passes the output CRVs to an unspecified short-
term memory system. This system needs to be made an explicit part of
SPEC, preferably in such a way that the sentence representation can be
used by other subsymbolic networks in processing multi-sentential text
and in various reasoning tasks.

2. It might be possible to utilize the interpolation capability and context sen
sitivity of distributed neural networks at the level of processing structure.
The current SPEC architecture generalizes to new instances of basic con
structs, but generalization to new sentence structures is built in into the
architecture. Perhaps a way can be found to generalize also at the level of
control and segmentation. This way, the system could perform more ro
bustly when the input is irregular (or ungrammatical), and contains novel
basic constructs.

The Segmenter is perhaps the most significant new feature of the SPEC archi
tecture. Most connectionist systems to date are based on simple propagation
through homogenous networks or between networks of a modular system. As
we have seen above, such systems are very good at dealing with regularities
and integrating large amounts of small pieces of evidence, but they do not
easily lend themselves to processing complex knowledge structures and un
usual and novel situations. Such systems are not "conscious" of what they
are doing, that is, they do not have representations concerning the nature of
their internal representations and processes. As a result, they cannot employ

Subsymbolic Parsing 179

high-level strategies in controlling the execution; their behavior is limited to a
series of reflex responses.

With a comprehensive high-level monitor and control system, it would be pos
sible to build much more powerful subsymbolic models. Current systems try
to process every input in exactly the same way, regardless of whether the input
makes sense or not. A high-level controller could monitor the feasibility of the
task and the quality of the output, and initiate exception processing when the
usual mechanisms fail. For example, unusual events or ungrammatical input
could be detected and then processed by special mechanisms. The monitor
could also clean up internal inaccuracies and keep the system execution on a
stable path. Sequential high-level procedures and reasoning mechanisms could
be implemented, such as comparing alternative interpretations and applying
high-level rules to conclude new information. Equipped with such mecha
nisms, subsymbolic models would be able to perform much more robustly in
the real world. Eventually, the goal would be to develop a distributed con
trol system that would act as a high-level "conscious" monitor, similar to the
central executive system in psychological and neuropsychological theories of
controlled processes [3,11,27, 37,40, 45,48, 49,51, 52].

The Segmenter is a first step toward implementing such a control system in
the connectionist framework (see also [20,21,44, 60]). This module monitors
the input sequence and the state of the parsing network, and issues I/O control
signals for the Stack memory and the Parser itself at appropriate times. The
Segmenter has a high-level view of the parsing process, and uses it to assign
simpler tasks to the other modules. In that sense, the Segmenter implements a
strategy for parsing sentences with relative clauses. Further developing such
control mechanisms in parsing and in other cognitive tasks constitutes a most
exciting direction for future research.

6 SUMMARY

SPEC is a distributed neural network architecture for parsing sentences with
relative clauses. It receives a sequence of input word representations as its
input, and generates a sequence of clause case-role representations as its output.
SPEC consists of three modules: the Parser, the Segmenter, and the Stack. The
Parser is a simple recurrent network that maps a sequence of words into a
case-role representation. The Segmenter is a feedforward network that breaks
the input sequence into clauses (so that the Parser only has to process one

180 CHAPTER 5

clause at a time) and controls the execution of the entire system. The Stack is
a RAAM network that stores the state of the parse before a center embedding
and restores it upon return from the center embedding.

By dividing the parsing task this way into transformation, segmentation and
memory, the system only needs to be trained with the most basic relative clause
constructs. During performance, SPEC generalizes not only to new instances
of familiar sentence structures, but to novel structures as well, thereby demon
strating dynamic inferencing. Importantly, SPEC is not a neural network
reimplementation of a symbol processor. It is purely a distributed system, and
has die usual properties of such systems. SPEC exhibits plausible memory
degradation as the depth of the center embeddings increases, and its perfor
mance is aided by semantic constraints between the constituents. SPEC is
also self-contained: it controls its own execution during performance, and no
external symbolic supervisor is needed. Scaling up the architecture towards
processing real-world texts, designing a representation system for the parse re
sult, and further expanding the mechanisms of connectionist high-level control
constitute the main directions for further research.

ACKNOWLEDGEMENTS

Special thanks go to Dennis Bijwaard for the initial implementation and ex
periments that led to the SPEC architecture. Most of the simulations were run
on the CRAY Y-MP 8/864 and the IBM RS6000s at the University of Texas
Center for High-Performance Computing.

REFERENCES

[1] Robert B. Allen. Several studies on natural language and back-
propagation. In Proceedings of the IEEE First International Confer
ence on Neural Networks (San Diego, CA), volume II, pages 335-341,
Piscataway, NJ, 1987. IEEE.

[2] Robert B. Allen and Mark E. Riecken. Reference in connectionist lan
guage users. In R. Pfeifer, Z. Schreter, F. Fogelman Souli6, and L. Steels,
editors, Connectionism in Perspective, pages 301-308. Elsevier, New
York, 1989.

Subsymbolic Parsing 181

[3] Alan D. Baddeley. Working Memory. Oxford University Press, Oxford,
UK; New York, 1986.

[4] George Berg. A connectionist parser with recursive sentence structure and
lexical disambiguation. In Proceedings of the Tenth National Conference
on Artificial Intelligence,pages 32-37, Cambridge, MA, 1992. MIT Press.

[5] Douglas S. Blank, Lisa A. Meeden, and James B. Marshall. Exploring
the symbolic/subsymbolic continuum: A case study of RAAM. In John
Dinsmore, editor, The Symbolic and Connectionist Paradigms: Closing
the Gap, pages 113-148. Erlbaum, Hillsdale, NJ, 1992.

[6] Alfonso Caramazza and Edgar B. Zurif. Dissociation of algorithmic and
heuristic processes in language comprehension: Evidence from aphasia.
Brain and Language, 3:572-582,1976.

[7] David J. Chalmers. Syntactic transformations on distributed representa
tions. Connection Science, 2:53-62,1990.

[8] Lonnie Chrisman. Learning recursive distributed representations for
holistic computation. Connection Science, 3:345-366,1992.

[9] Walter A. Cook. Case Grammar Theory. Georgetown University Press,
Washington, DC, 1989.

[10] Cynthia Cosic and Paul Munro. Learning to represent and understand
locative prepositional phrases. In Proceedings of the 10th Annual Con
ference of the Cognitive Science Society, pages 257-262, Hillsdale, NJ,
1988. Erlbaum.

[11] Nelson Cowan. Evolving conceptions of memory storage, selective
attention, and their mutual constraints within the human information-
processing system. Psychological Bulletin, 104:163-191,1988.

[12] Charles Patrick Dolan. Tensor Manipulation Networks: Connectionist
and Symbolic Approaches to Comprehension, Learning and Planning.
PhD thesis, Computer Science Department, University of California, Los
Angeles, 1989. Technical Report UCLA-AI-89-06.

[13] Michael G. Dyer. In-Depth Understanding: A Computer Model of Inte
grated Processing for Narrative Comprehension. MIT Press, Cambridge,
MA, 1983.

[14] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14:179-
211,1990.

182 CHAPTER 5

[15] Jeffrey L. Elman. Distributed representations, simple recurrent networks,
and grammatical structure. Machine Learning, 7:195-225,1991.

[16] Jeffrey L. Elman. Incremental learning, or The importance of starting
small. In Proceedings of the 13th Annual Conference of the Cognitive
Science Society, pages 443-448, Hillsdale, NJ, 1991. Erlbaum.

[17] Charles J. Fillmore. The case for case. In Emmon Bach and Robert T.
Harms, editors, Universals in Linguistic Theory, pages 0-88. Holt, Rine-
hart and Winston, New York, 1968.

[18] Geoffrey E. Hinton. Mapping part-whole hierarchies into connectionist
networks. Artificial Intelligence, 46:47-75, 1990.

[19] Ming S. Huang. A developmental study of children's comprehension of
embedded sentences with and without semantic constraints. Journal of
Psychology, 114:51-56,1983.

[20] Robert A. Jacobs, Michael I. Jordan, and Andrew G. Barto. Task decom
position through competition in a modular connectionist architecture: The
what and where vision tasks. Cognitive Science, 15:219-250,1991.

[21] Ajay N. Jain. Parsing complex sentences with structured connectionist
networks. Neural Computation, 3:110-120, 1991.

[22] Janet L. Kolodner. Retrieval and Organizational Strategies in Conceptual
Memory: A Computer Model. Erlbaum, Hillsdale, NJ, 1984.

[23] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An archi
tecture for general intelligence. Artificial Intelligence, 33:1-64, 1987.

[24] Michael Lebowitz. Generalization and Memory in an Integrated Un
derstanding System. PhD thesis, Department of Computer Science, Yale
University, New Haven, CT, 1980. Research Report 186.

[25] Geunbae Lee, Margot Flowers, and Michael G.Dyer. Learning distributed
representations of conceptual knowledge and their application to script-
based story processing. Connection Science, 2:313-346, 1990.

[26] Wendy G. Lehnert. The Process of Question Answering. Erlbaum, Hills
dale, NJ, 1978.

[27] Gordon D. Logan and William B. Cowan. On the ability to inhibit thought
and action: A theory of an act of control. Psychological Review, 91:295-
327,1984.

Subsymbolic Parsing 183

[28] James L. McClelland and Alan H. Kawamoto. Mechanisms of sentence
processing: Assigning roles to constituents. In James L. McClelland and
David E. Rumelhart, editors, Parallel Distributed Processing: Explo
rations in the Microstructure of Cognition, Volume 2: Psychological and
Biological Models, pages 272-325. MIT Press, Cambridge, MA, 1986.

[29] Risto Miikkulainen. A PDP architecture for processing sentences with
relative clauses. In Hans Karlgren, editor, Proceedings of the 13th In
ternational Conference on Computational Linguistics, pages 201-206,
Helsinki, Finland, 1990. Yliopistopaino.

[30] Risto Miikkulainen. Subsymbolic Natural Language Processing: An In
tegrated Model of Scripts, Lexicon, and Memory. MIT Press, Cambridge,
MA, 1993.

[31] Risto Miikkulainen and Michael G. Dyer. Encoding input/output rep
resentations in connectionist cognitive systems. In David S. Touretzky,
Geoffrey E. Hinton, and Terrence J. Sejnowski, editors, Proceedings of
the 1988 Connectionist Models Summer School, pages 347-356, San
Mateo, CA, 1989. Morgan Kaufmann.

[32] Risto Miikkulainen and Michael G. Dyer. Natural language processing
with modular neural networks and distributed lexicon. Cognitive Science,
15:343-399,1991.

[33] Paul Munro, Cynthia Cosic, and Mary Tabasko. A network for encod
ing, decoding and translating locative prepositions. Connection Science,
3:225-240,1991.

[34] Allen Newell. Physical symbol systems. Cognitive Science, 4:135-183,
1980.

[35] Allen Newell. Unified Theories of Cognition. Harvard University Press,
Cambridge, MA, 1991.

[36] Allen Newell and Herbert A. Simon. GPS: A program that simulates
human thought. In Edward A. Feigenbaum and Jerome A. Feldman,
editors, Computers and Thought. McGraw-Hill, New York, 1963.

[37] Donald A. Norman and Tim Shallice. Attention to action: Willed and
automatic control of behavior. Technical Report 99, Center for Human
Information Processing, University of California, San Diego, 1980.

[38] Jordan B. Pollack. Cascaded back-propagation on dynamic connectionist
networks. la Proceedings of the Ninth Annual Conference of the Cognitive
Science Society, pages 391-404, Hillsdale, NJ, 1987. Erlbaum.

184 CHAPTER 5

[39] Jordan B. Pollack. Recursive distributed representations. Artificial Intel
ligence, 46:77-105,1990.

[40] Michael I. Posner and C. R. Snyder. Attention and cognitive control.
In Robert L. Solso, editor, Information Processing and Cognition, pages
55-85. Erlbaum, Hillsdale, NJ, 1975.

[41] David E. Rumelhart, Geoffrey E. Hinton, and James L. McClelland. A
general framework for parallel distributed processing. In David E. Rumel
hart and James L. McClelland, editors, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Volume 1: Foundations,
pages 45-76. MIT Press, Cambridge, MA, 1986.

[42] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn
ing internal representations by error propagation. In David E. Rumelhart
and James L. McClelland, editors, Parallel Distributed Processing: Ex
plorations in the Microstructure of Cognition, Volume 1: Foundations,
pages 318-362. MIT Press, Cambridge, MA, 1986.

[43] Roger C. Schank and Robert P. Abelson. Scripts, Plans, Goals, and
Understanding: An Inquiry into Human Knowledge Structures. Erlbaum,
Hillsdale, NJ, 1977.

[44] Walter Schneider and Mark Detweiler. A connectionist/control architec
ture for working memory. In Gordon H. Bower, editor, The Psychology
of Learning and Motivation, volume 21, pages 53-119. Academic Press,
New York, 1987.

[45] Walter Schneider and Richard M. Shiffrin. Controlled and automatic
human information processing I: Detection, search, and attention. Psy
chological Review, 84:1-66,1977.

[46] David Servan-Schreiber, Axel Cleeremans, and James L. McClelland.
Learning sequential structure in simple recurrent networks. In David S.
Touretzky, editor, Advances in Neural Information Processing Systems I,
pages 643-652. Morgan Kaufmann, San Mateo, CA, 1989.

[47] David Servan-Schreiber, Axel Cleeremans, and James L. McClelland.
Graded state machines: The representation of temporal contingencies in
simple recurrent networks. Machine Learning, 7:161-194,1991.

[48] Tim Shallice. Specific impairments of planning. Philosophical Transac
tions of the Royal Society of London B, 298:199-209,1982.

[49] Tim Shallice. From Neuropsychology to Mental Structure. Cambridge
University Press, Cambridge, UK, 1988.

Subsymbolic Parsing 185

[50] Noel E. Sharkey and Amanda J. C. Sharkey. A modular design for
connectionist parsing. In Anton Nijholt Marc F. J. Drossaers, editor,
Twente Workshop on Language Technology 3: Connectionism and Natu
ral Language Processing, pages 87-96, Enschede, the Netherlands, 1992.
Department of Computer Science, University of Twente.

[51] Richard M. Shiffrin and Walter Schneider. Controlled and automatic hu
man information processing II: Perceptual learning, automatic attending,
and a general theory. Psychological Review, 84:127-190,1977.

[52] Richard M. Shiffrin and Walter Schneider. Automatic and controlled
processing revisited. Psychological Review, 91:269-276,1984.

[53] Robert. F. Simmons and Yeong-Ho Yu. Training a neural network to be a
context-sensitive grammar. In Proceedings of the Fifth Rocky Mountain
Conference on Artificial Intelligence, Las Cruces, NM, pages 251-256,
1990.

[54] Paul Smolensky. On the proper treatment of connectionism. Behavioral
and Brain Sciences, 11:1 -74, 1988.

[55] Paul Smolensky. Tensor product variable binding and the representation
of symbolic structures in connectionist systems. Artificial Intelligence,
46:159-216,1990.

[56] Mark F. St. John. The story gestalt: A model of knowledge-intensive
processes in text comprehension. Cognitive Science, 16:271-306,1992.

[57] Mark F. St. John and James L. McClelland. Applying contextual con
straints in sentence comprehension. In David S. Touretzky, Geoffrey E.
Hinton, and Terrence J. Sejnowski, editors, Proceedings of the 1988 Con
nectionist Models Summer School, pages 338-346, San Mateo, CA, 1989.
Morgan Kaufmann.

[58] Mark F. St. John and James L. McClelland. Learning and applying
contextual constraints in sentence comprehension. Artificial Intelligence,
46:217-258,1990.

[59] Andreas Stolcke. Learning feature-based semantics with simple recurrent
networks. Technical Report TR-90-015, International Computer Science
Institute, Berkeley, CA, 1990.

[60] Ronald A. Sumida. Dynamic inferencing in parallel distributed semantic
networks. In Proceedings of the 13th Annual Conference of the Cognitive
Science Society, pages 913-917, Hillsdale, NJ, 1991. Erlbaum.

186 CHAPTER 5

[61] David S. Touretzky. Connectionism and compositional semantics. In
John A. Barnden and Jordan B. Pollack, editors, High-Level Connectionist
Models, volume 1 of Advances in Connectionist and Neural Computation
Theory, Barnden, J. A., series editor, pages 17-31. Ablex, Norwood, NJ,
1991.

6
Towards Instructable

Connectionist Systems
DAVID C. NOELLE

GARRISON W. COTTRELL

Department of Computer Science and Engineering
Institute for Neural Computation

University of California, San Diego
La JollaXA 92093-0114

1 INTRODUCTION

At least three disparate channels have been used to install new knowledge into
artificial intelligence systems. The first of these is the programmer channel,
through which the knowledge in the system is simply edited to include the
desired new knowledge. While this method is often effective, it may not be
as efficient as learning directly from environmental interaction. The second
channel may be called the linguistic channel, through which knowledge is
added by explicitly telling the system facts or commands encoded as strings
of quasi-linguistic instructions in some appropriate form. Finally, there is, for
want of a better phrase, the learning channel, through which the system learns
new knowledge in an inductive way via environmental observations and sim
ple feedback information. These latter two channels are the ones upon which
we wish to focus, as they are the hallmarks of instructable systems. Most
instructable systems depend upon, or at least heavily favor, one of these two
channels for the bulk of their knowledge acquisition. Specifically, symbolic
artificial intelligence systems have generally depended upon the explicit use
of sentential logical expressions, rules, or productions for the transmission of
new knowledge to the system. In contrast, many connectionist network mod
els have relied solely on inductive generalization mechanisms for knowledge
creation. There is no apparent reason to believe that this rough dichotomy
of technique is necessary, however. Systems which are capable of receiving
detailed instruction and also generalizing from experience are both possible
and potentially very useful.

Consider an autonomous robot which is to operate in a typical office envi
ronment. It is reasonable to expect that some relevant knowledge concerning

187

188 CHAPTER 6

this environment could be extracted directly from the experience of the robot.
Navigation about the work area, avoidance of obstacles, grasping of common
objects, and similar skills could all be learned over time. However, it is un
reasonable to expect the robot to use induction to operationalize advice like "it
is best to remove the books from the shelves of a bookcase before attempting
to move it". The robot must have some means of receiving such explicit in
struction and operationalizing it. Instructability provides a way of overcoming
gaps in knowledge overlooked by the programmer and of quickly acquiring
knowledge yet to be learned by direct experience.

The integration of instruction and inductive learning may be approached from
a number of directions. It may appear reasonable to begin with a system
framework which uses a logic or some other sentential representation for
knowledge. In such a framework, "learning by being told" comes almost for
free. To the degree that a simple mapping exists between linguistic directives
and quasi-linguistic knowledge objects, instruction becomes a simple matter
of translation. Starting, then, from such an instructable framework, inductive
generalization mechanisms may be added to the system. A good deal of
research has been conducted on just this sort of integration [10] — on induction
using a sentential knowledge representation. But there is another option.

A system which is meant to exploit both detailed instruction and experiential
generalization may also be rooted in a learning framework, such as that of
connectionist networks. In this case, inductive learning comes almost for free,
since the wide array of robust connectionist learning techniques are available
at the onset. The system design task then becomes one of finding a way to
directly instruct such artificial neural networks without severely limiting their
learning mechanisms. This is the approach to be discussed here.

This approach to instructable systems does not involve the use of a sentential
knowledge representation but, like many connectionist designs, relies on the
encoding of long term procedural knowledge as numerical weight values on
connections between simple processing elements. Short term state knowledge
can also be encoded numerically, as the activation levels of those processing
elements. In other words, the knowledge that such an instructable system
possesses about the problem that it must presently face is internally represented
by a real activation vector of dimensionality equal to the number of processing
elements in the system. The "state" of such a system at any point in time may
be specified as one such activation vector, and a "computation" may be viewed
as a dynamic trajectory through the corresponding vector space. Furthermore,
the real vector knowledge encodings of such connectionist systems do not lend
themselves to semantic interpretations based on the simple decomposition

Towards Instructable Connectionist Systems 189

of concepts into primitive features corresponding to the ordinal dimensions
(i.e., the processing elements) of the activation vector space. The knowledge
representations to be used in this approach are distributed, which is to say
that the activity level of any individual processing element need not carry any
independent meaning. The state knowledge of these systems is encoded across
whole activation vectors and may not be trivially mapped into a compositional
semantics.

Such a distributed knowledge representation may seem like a handicap to an
instructable connectionist system which is expected to understand and op-
erationalize linguistic advice, but there are several key advantages to this
representational strategy. These advantages include the availability of power
ful learning algorithms, the efficient use of representational resources, and the
enhancement of fault tolerance.

First, and foremost, of these advantages is the access to powerful connectionist
learning algorithms afforded by this choice of representation. Many training
techniques for multiple layer connectionist networks, such as the well stud
ied backpropagation learning algorithm [11], tend to produce systems which
utilize distributed representations over their processing elements. Accepting
such representations opens the door to use of these powerful layered network
learning methods. Also, this focus on experiential learning lends an air of cog
nitive plausibility to this strategy in that representational features which appear
to be learned in humans may also be learned by a multiple layer connectionist
system [8].

Another advantage of such learned distributed representations involves their
relative flexibility and efficiency in distributing representational resources (i.e.,
the "meaning" of processing element activity) in a manner appropriate to the
behavioral tasks at hand. Unlike a representational strategy which assigns an a
priori meaning to the activation level of each processing element, a distributed
representation approach may semantically "carve up" the activation vector
space in any way which facilitates proper system response. For example,
features which require fine grained discrimination may be represented over a
large region of the activation vector space, utilizing a significant fraction of the
available representational resources, while less important features may be rep
resented over smaller regions. In this way, a learned distributed representation
may be automatically tailored to the domain of the system.

As an added bonus, this efficient distribution of representational resources
may also result in encodings which are robust in the face of noise and loss of
processing elements. Distributing represented information across a sufficiently

190 CHAPTER 6

large set of processing elements often results in representations which degrade
gracefully when damaged. This automatic utilization of excess resources to
enhance fault tolerance is yet another benefit of adopting a system design
strategy which involves the induction of distributed representations.

In short, representing knowledge as distributed activation space vectors
strongly supports the inductive learning aspect of instructable systems. What
is needed is an approach to incorporating linguistic advice into such a connec-
tionist learning model. Such integration is the focus of this chapter.

The basic idea of our approach is taken from an observation by Paul Church-
land [1]. Clearly, standard weight change mechanisms are too slow to account
for "learning by being told". Instead, the proper mechanism for instruction
based learning is changes in activation space. Shifts in activation occur at the
right time scale for such learning. However, for such a learning mechanism
to work, we need an activation space that consists of articulated attractors.
In other words, for a connectionist network to receive propositional knowl
edge via instruction, the activation space of that network should give rise to
a combinatorial number of possibilities for attractors, corresponding to the
propositions that may be represented. This may be envisioned as a series of
attractors for the arguments of each proposition and for each predicate. This
slavish following of logical terminology is not to be construed to mean that
we are proposing yet another connectionist implementation of predicate logic!
Rather, these terms provide the simplest way to describe what we hope will
be a much richer formalism. For example, one obvious advantage to this
kind of approach is that constraints between arguments and the predicate can
easily be encoded in connections between these attractor bowls. Distributed
representations of predicates, and thus, complicated carvings of the attractor
bowl surface in response to shades of meaning, are another consequence of
this view.

In this way, knowledge provided through the linguistic channel may be stored,
at least temporarily, in die activation space of the system. Longer term reten
tion of this knowledge may be had by allowing weight changes to deepen the
attractor wells, perhaps through Hebbian learning, so that a given pattern in
the activation space will become more likely to be reinstated in the ftiture. An
important point to take away is that the system can only "learn" by this mech
anism what it almost already knows. What we mean by this is that the attractor
space, or the activation dynamics, must contain attractor wells or activation
trajectories that are easily instantiated, and meaningful to the system as such.
The system may never have actually visited a given region of activation space

Towards Instructable Connectionist Systems 191

before being presented with some instruction, but the appropriate attractor in
this region must be relatively stable nonetheless.

Finally, it should not be forgotten that the primary goal of "learning by being
told" is improved system performance. An instructable system must be able
to demonstrate, operationally, that it has acquired the knowledge that we have
endeavored to impart. We take this to be a definitional aspect of "learning by
being told".

To summarize, an instructable system must demonstrate the three R's: rep
resent, remember, and respond. If the system cannot represent the results of
linguistic input and remember it, the system will not "learn by being told". If
it does not respond appropriately after instruction, it has not learned from that
instruction. These are rather obvious points to anyone who has studied psy
chology, but it is important for connectionists to be explicit about the possible
mechanisms that may underlie such transformations. The issue of "learning by
being told" cannot be avoided. It must be addressed if connectionist approaches
to cognition are to survive.

Connectionist "learning by being told" may be accomplished in a number of
different ways, depending on the domain. For example, a question-answering
system, after being told some facts, should be able to correctly answer ques
tions concerning those facts, whether by rote, or preferably, by demonstrating
inference from the given facts. This would typically require a system that
understands both statements and questions on the same sensory channel, and
is also capable of generating linguistic strings as answers.

Another version of this idea would be to have a two-part system in which one
part, which performs a given task, is manipulated by another part which uses
advice or instruction to alter what the first part does. In this chapter, we will
focus on this approach. Specifically, we will give a mapping network a series
of instructions on how to map inputs to outputs. Here we are most concerned
with demonstrating "proof of concept". While this demonstration system does
display systematic responses to our instruction, we have not implemented the
storage of these instructions as attractors. This is a small extension to what
we have done. This example system may also be criticized as being rather
small. In short, the models presented here should be seen as working "towards
instructable connectionist systems", and it should be recognized that there is
still a long way to go.

To motivate our ideas, we first review two independent previous systems. The
first is a network capable of learning simple symbolic arithmetic procedures for

192 CHAPTER 6

arbitrarily sized numeric inputs. This system demonstrates a useful strategy for
generating connectionist systems capable of systematic behavior. The success
of this network also shows that a learned distributed representation may be
effectively used to perform a discrete symbol manipulation task. Next, a
connectionist model is presented which learns to map complex sensory events
into temporal pattern sequences which represent descriptive linguistic strings.
This model demonstrates how temporal sequences of activation patterns may be
used to represent linguistic statements and how such sequences may come to be
naturally associated with the elements of some task domain. This system is also
used to show how distributed representational resources may be automatically
allocated in an efficient and appropriate manner.

With the techniques exemplified by these two systems in hand, some initial at
tempts towards the formulation of a connectionist model of "learning by being
told" will be discussed. Our demonstration system allows for the performance
of a systematic symbol manipulation task, modulated by instructions encoded
as temporal sequences of activation patterns. The modulation of behavior is ac
complished by allowing input instruction sequences to prejudice the activity of
a domain task network towards appropriate regions of that network's activation
space. The results of experiments involving a simple symbolic mapping task
are presented, and the application of this strategy to the problem of symbolic
arithmetic is briefly discussed.

2 SYSTEMATIC ACTION

2.1 CONNECTIONIST SYSTEMATICITY

In this section we review a simple model of procedural learning by Cottrell
& Tsung [3]. This model (among many others) demonstrates that systematic
behavior is possible in connectionist networks. Some critics of connectionism
have posited that connectionist networks are incapable of certain systematic
reasoning tasks without first implementing some sort of symbolic architecture
[6]. It is, therefore, important for the justification of the instructable network
approach being explored here to demonstrate that such networks can indeed
perform systematic symbol manipulation tasks while retaining their important
inductive learning mechanisms.

The systematic symbol manipulation task of interest here is simple addition
of arbitrarily sized natural numbers. The numbers are represented as strings

Towards Instructable Connectionist Systems 193

of digits in some radix, and the two strings are assumed to be aligned by
column, so two digits of the same magnitude (i.e., in the same "place") are
adjacent. Such an arithmetic task may be accomplished by a connectionist
network by presenting the network with one column of digits at a time. The
system is then to systematically step through the actions of addition: announc
ing the sum of the two visible digits, announcing when a carry is generated
by the addition, and requesting the next column of digits. Such systematic
behavior may be used to demonstrate that connectionist networks are capable
of learning behaviors analogous to simple programming constructs, such as
action sequences, conditional branches, and condition bounded iteration. Such
a network shows that connectionist systems are capable of systematic symbol
manipulation tasks.

2.2 ARITHMETIC

Rumelhart et al. [8] proposed that a symbol processing task, such as arithmetic
addition, may be accomplished by a connectionist system by first creating a
"physical representation" of the problem, and then modifying this representa
tion by means of a pattern association process. For example, the problem of
adding "327" and "865" may be encoded as a "physical representation" that
looks like:

327
865

A system which is given this representation (or some appropriate portion of
it) as input is now faced with a pattern recognition problem. A connectionist
network may be trained to respond to this input representation by recording a
sum and marking a carry, producing the new physical representation:

1
327
865

2

194 C H A P T E R 6

This new representation may be iteratively presented to the network to produce
the sum value for the next column. This process may continue until the
arithmetic operation is complete.

In hopes of handling arbitrarily large numbers, the addition problem of interest
here will assume some sort of rudimentary attentional process which may
segment the physical representation into "interesting" portions. Specifically,
at any given point in time, only one column of digits will be made visible to
the system, starting with the rightmost column. The system will be expected
to issue a particular output signal in order to have the next column presented.
This formulation of the problem allows a network with a fixed size input to
handle arbitrarily long digit sequences, and it also forces a successful network
to exhibit some degree of systematicity in its behavior.

Also, the system at hand will not be allowed to mark the "physical represen
tation" with carry information from one column to the next. The inputs to the
system will not include information concerning the presense of a carry in a
given column. The network will be forced to remember the state of a carry bit
as consecutive columns are processed. This means that the system must retain
some "internal state" over time.

Formally, the adder network is to be presented with an input pattern vector
consisting of three parts: the two digits in the current column, and a single bit
flag which signals the end of the digit strings to be added. The system has
four exclusive output signals which it may generate, encoded in a " 1 -out-of-N"
localist fashion: WRITE, CARRY, NEXT, and DONE. Another portion of the
network output is dedicated to an encoding of a sum digit to be written in
the result field of the current column. The system is expected to sequentially
process the columns of digits according to the following algorithm:

while (not done) do
begin

output (WRITE, low order digit of sum)
if (sum > radix) then

output (CARRY, anything)
output (NEXT, anything)

end
if (there was a carry on the last column) then

output (WRITE, "1")
output (DONE, anything)

Towards Instructable Connectionist Systems 195

1 Time Step!
I
2
3
4
5
6
7
8
9
10

1 Done?
No
No
No
No
No
No
No
No
Yes
Yes

1st Digit
7
7
7
2
2
3
3
3
0
0

2nd Digit
5 1
5
5
6
6
8
8
8
0
0

| Action ~
WRITE
CARRY
NEXT

WRITE
NEXT

WRITE
CARRY
NEXT
WRITE
DONE

Result
2
—
—
9
—
1

—
—
1

—

Table 1 An Example Addition: 327 + 865

One time step is to pass for each "output" command which is executed in this
algorithm. New inputs (i.e., the next column of digits) are presented to the
network on the time step which immediately follows any time step in which
the NEXT output is issued. Note that there is no explicit representation of
the carry bit amongst the inputs made available to this program at any given
time step. The system is expected to remember carry information between
iterations of the loop, and implicitly apply this information to the computation
of the next sum and the next carry. An example execution of this algorithm is
presented in Table 1.

2.3 T H E MODEL

A simple feed-forward network is not sufficient for this addition problem.
For a connectionist system to generate temporal sequences of actions, as is
expected here, it must have some way to remember "where it is" in the current
sequence. A typical connectionist network's only form of short-term memory
is in the form of internal activation states, so any network which is to perform
action sequences must have access to different activation states at different
points in the desired sequences. One way to allow such a network to have
distinct activation states is to introduce recurrence into the network. This
essentially involves providing as input to a network the previous activation
state of some portion of the network's processing elements. Access to this

196 CHAPTER 6

(a)

•

OUTPUT
A

/

INPUT

\

"~"\

\ i
CONTEXT

(b)

/

OUTPUT
A

/

INPUT

\

s \ \ \ \ \ \

\ I
STATE [

Figure 1 Network Architectures — (a) simple recurrent network; (b)
Jordan network

previous activation information allows a network to determine its location
in a sequence of actions, making the generation of such sequences possible.
Recurrence was used to maintain activation state in the model presented here.

Note also that this adder system is expected to remember the value of a carry
bit over multiple time steps. This means that the adder network must encode
carry information into the activation state of the processing elements which
provide recurrent inputs. By performing such an encoding, the system will be
able to modify its behavior based on the activation levels of these recurrent
inputs, thereby recalling and utilizing the required carry information.

Two basic recurrent network architectures were examined for use as adders.
Both of these architectures are shown in Figure 1. Each box in Figure 1
represents a layer of connectionist processing elements, and each solid arrow
represents full interconnection between the two given layers. The dashed
arrows correspond to fixed, one-to-one connections between layers. In both
architectures, the input layer consisted of a single binary "done" flag and two
binary encoded input digits. In all of these experiments a radix of 4 was used
for the numbers to be added, so two processing elements were used to encode
each digit. The output layer of both network types included four elements
to provide a localist code for the four possible actions — WRITE, CARRY,
NEXT, and DONE — and two more elements for a binary encoded result
digit. Various hidden layer sizes were examined, with the results reported
here originating from a network with 16 hidden units. The first of these
architectures is Elman's simple recurrent network, in which the hidden layer
provides recurrent inputs to the network [5]. As shown in the figure, this
recurrence is implemented by "unrolling the network in time" [11] for a single
time step — essentially recording previous hidden layer activation levels in a
special "context" layer which provides input on the following time step. This
is equivalent to complete interconnectivity between the processing elements

Towards Instructable Connectionist Systems 197

at the hidden layer. The second architecture is based on the work of Jordan,
and it provides recurrence from the output layer rather than from the hidden
layer [7]. This is implemented by maintaining a special "state" layer with a
decaying average of output layer processing element activation levels. In other
words, the activation level of the "state" layer at some time, t, is the sum of the
previous, time (t -1), "state" activation, attenuated by some proportion, /i, and
the activation of the output layer at time (t - 1). Both of these architectures
provide the recurrence which is needed to enact sequential behaviors, and
both may be trained using simple variations of the backpropagation learning
algorithm [11].

2 . 4 T H E TRAINING P R O C E D U R E

Both connectionist network architectures were taught to execute the addition
algorithm by repeated exposure to a training corpus of base 4 addition problems.
The problems in this corpus were restricted to contain numbers with no more
than 3 digits. Despite this restricted problem size, the resulting training set
was extremely large, and training times on the entire corpus turned out to be
prohibitive. Training sets consisting of small random subsets of the whole
training corpus were used in an attempt to decrease training times, but these
trials resulted in networks which essentially "memorized" the given training
sets and exhibited poor generalization. Clearly some non-standard training
regime was needed to prepare the adder networks properly.

The training technique which was invented to solve this problem was dubbed
combined subset training. This method involves training on a small random
subset of the entire training corpus initially, and then successively doubling the
training set size until success on the entire corpus is achieved. Training is ter
minated either when the entire corpus is presented for training and successfully
learned or when the network successfully generalizes to all of the remaining
cases in the training corpus. Combined subset training was used throughout
the adder network experiments described here.

2.5 THE RESULTS

The combined subset training procedure allowed both simple recurrent net
works and Jordan networks to successfully learn the addition algorithm. In
deed, after being exposed to only 8% of the entire training corpus, the networks
were found to generalize well to all of the remaining number pairs. Further

198 CHAPTER 6

tests were conducted to examine how well the networks generalized to numbers
with more than 3 digits. The networks were tested on random sets, consisting
of 10 problems each, involving numbers with up to 14 digits. They were found
to miss only one addition out of ten on average. In hopes of improving per
formance on the longer digit strings even further, a special "clean-up" training
procedure was tried. The networks were subjected to a series of training ses
sions, with each session consisting of 10 epochs using the set of 10 problems
which exhibited the most error. After 40 epochs of such training, the networks
successfully generalized to arbitrary addition problems containing numbers
with up to 14 digits!

Since both simple recurrent networks and Jordan networks generally behaved
similarly in these experiments, some attempts were made to find differences
between them with regard to their use in performing systematic tasks such as
addition. Both architectures were trained to emulate an alternative addition
algorithm, one which performed its output operations in a slightly different
order than the original algorithm. This new operation permutation delayed
the announcement of a carry until after the sum digit for the next column had
been written. This new algorithm resulted in a problem which was inherently
unsolvable by a Jordan network architecture. Thus, a subtle relationship
was shown between choice of network architecture and choice of symbolic
representation for a given problem.

Lastly, the learned internal representation of "state" information was investi
gated by a careful examination of hidden layer activation vectors over time.
The trajectory of the hidden layer states through activation space was tracked
in hopes of uncovering the internal representations of the learned programming
constructs. Briefly, the hidden layer activation vectors of a simple recurrent
network were recorded over the course of 10 addition problems, and a princi
pal components analysis was performed on the resulting set of vectors. The
activation vectors were then projected into the plane defined by the first two
principal components, thereby generating a two dimensional plot of the hid
den layer trajectories, focusing on the activation space dimensions of highest
variance. A cartoon summary of such a plot is shown in Figure 2. Each point
in the original diagram fell into one of the regions shown in the figure. The
regions are labeled by the output action of the network corresponding to the
given hidden layer activation. The arrows show the state transitions of the
network between these regions. Thus, the network was shown to have imple
mented a kind of finite state automata. It is interesting to note that an output
action (NEXT) may correspond to two different regions in the underlying state
space. This was necessary because carry information had to be maintained by
the network while it generated a NEXT action so that the correct sum could be

Towards Instructable Connectionist Systems 199

/ CARRY

' NEXT \

/ (AFTER CARRY) \

NEXT

WRITE

i (AFTER WRITE)

Figure 2 Cartoon Of State Space Plot

200 CHAPTER 6

computed in the next time step. This carry information was plainly recorded in
the location of the hidden layer activation state during each NEXT output. This
analysis of hidden layer trajectories indicates that the connectionist inductive
learning process successfully partitioned activation space in a manner which
allowed for the recording of needed "state" information and for the appropriate
systematic response to such information.

2.6 T H E POSSIBILITIES

These addition networks clearly demonstrate that recurrent backpropagation
networks may be trained, via an inductive learning mechanism, to perform
systematic symbol manipulation tasks. Some limitations of such an approach
should be noted, however. Since "internal state" in these networks is encoded in
a fixed size vector of activation values, it is reasonable to expect that there will
be severe limits on the length of time over which a bit of state information may
be maintained. Similarly, there should be limits on the "depth of embedding" of
implemented control constructs, such as the nesting depth of while loops. Note
also, that the success of this system depended upon the accurate segmentation
of the domain task into sequential chunks. It would have been unreasonable to
expect the network to remember all of the input digits and perform the addition
"in its head". In short, a more efficient connectionist model of memory
is needed to extend this network design strategy into the realm of complex
cognitive tasks.

Despite these limitations, the presented adder networks must be seen as strong
indications of the power of recurrent connectionist networks to perform sys
tematic tasks. It may even be possible to construct basic reasoning systems
using this kind of architecture by training "rules" into the associational mapping
behavior of a network and recording intermediate conclusions in the activation
state of recurrent layers.

3 LINGUISTIC INTERACTION

3.1 LINGUISTIC SEQUENCES

In addition to a mechanism for the generation of systematic action, an in-
structable connectionist system requires some means of receiving quasi-
linguistic input sequences and some means of translating these into some

Towards Instructable Connectionist Systems 201

modulating force on the system's behavior. The solution proposed here in
volves training connectionist networks to modify their own behaviors based
on input time-varying streams of quasi-linguistic tokens. Networks are ex
pected to learn the meanings of linguistic sequences in terms of the elements
of some domain task. Domain task experience coupled with exposure to rel
evant linguistic descriptions should allow connectionist systems to associate
linguistic tokens and constructs with corresponding behavior. In this way,
artificial neural networks may ground linguistic meaning in perception and
action. In this view, linguistic statements become temporal patterns which
appropriately trained networks may map into useful internal representations in
the form of hidden layer activation levels.

There have been a number of connectionist systems which have utilized this
view of linguistic sequences as activation patterns [5] [12],but only one such
system will be described here. The task of interest here is a description task
which involves the generation of a stream of linguistic tokens which accurately
describe a perceived time-spanning event. In essence, this is the opposite of
"learning by being told". It requires that quasi-linguistic sequences be gen
erated from the activity of some complex perception subsystem, as opposed
to the instructable network task of modulating activity in a complex action
subsystem based on perceived quasi-linguistic input. Still, the basic mech
anisms for representing linguistic statements as temporal activation patterns
and for grounding these statements in a domain will prove to be essentially
identical across these two system tasks. In order to demonstrate the viability of
this scheme, a brief overview will be provided here of a connectionist network
which is capable of performing the description task of providing "subcaptions"
to simplified "movies". This network was generated and examined by Cottrell,
Bartell, and Haupt [2].

3 .2 S U B C A P T I O N S

The problem of interest here involves generating a string of quasi-linguistic
tokens which may be reasonably interpreted as a description of some perceived
event. In order to keep the problem simple, the set of possible events shall be
quite constrained. A small visual field, 4 pixels in width and 2 in height, is to
be presented to the system as an 8 element bipolar vector. Only one object may
appear in this visual field at any given time — a single pixel sized ball, and
the location of this ball is specified by an input of 1.0 at the appropriate pixel.
Empty pixels are specified with a -1.0 input value. A temporal sequence of
visual scenes (i.e., a "movie") is to be presented to the system, depicting the

202 CHAPTER 6

ball rolling, flying, or bouncing either from left to right or from right to left.
An event consists of four such scenes, presented contiguously and delimited
by one to three scenes in which the ball does not appear at all. The job of
the system is to receive this temporal sequence of visual images and produce
a linguistic description of the perceived event. Descriptions are to take the
form of temporal sequences consisting of three linguistic tokens: a noun, a
verb, and an adverb. The only noun needed is "ball". Verbs are to include
"rolls", "flies", and "bounces", and the possible adverbs are "left" and "right".
The system is expected to output one linguistic token per time step for three
consecutive time steps, producing descriptions such as "ball bounces right".

Movies are to be presented in a continual stream to the system, delimited only
by short periods in which the visual field is empty. At any point in time it
should be possible to freeze the current movie and have the system produce a
description of it. This means that the system must essentially forget about old
movies and must focus on quickly identifying the nature of the current event.
Information concerning the type and direction of ball motion must be quickly
extracted from the scenes and must be represented internally in a manner which
will facilitate the generation of the appropriate linguistic description.

3.3 T H E MODEL

As in the adder networks, recurrence is needed in order to solve this problem.
To recognize a pattern of ball motion the system must be able to remember
information concerning previous locations of the ball. Furthermore, in order to
generate linguistic sequences over time the network needs to constantly keep
track of "where it is" in the current output sequence. As was demonstrated by
the adder networks, recurrent backpropagation networks are quite capable of
learning to record this kind of "state" information in the activation levels of
their recurrent layers.

With this in mind, the Movie Description Network was constructed by con
necting two of Elman's simple recurrent networks [5]. One simple recurrent
network was used to track ball motion in the input images, and another was
used to step through the linguistic token sequences of output descriptions. The
architecture of this network is show in Figure 3. The network was operated
by presenting one movie image at the scene input layer at every time step,
and propagating the resulting activation at least as far as the gestalt layer. It
was hoped that the activation levels of processing elements in the gestalt layer
would encode all of the information needed to generate an accurate description

Towards Instructable Connectionist Systems 203

OUTPUT I

GESTALT PREDICT

SCENE

Figure 3 The Movie Description Network

of the current movie.1 When such a description was desired, the activation
states of layers in the movie perception subnetwork were "frozen", and the
current state of the gestalt layer was used as a constant input to the description
generation subnetwork. This description subnetwork was then "reset" (i.e., the
activation levels of all of the processing elements in its recurrent hidden layer
were set to an average value — namely, zero) and clocked through three time
steps to allow it to generate a quasi-linguistic event description at its output
layer. After a description had been produced, the perception subnetwork could
continue to receive movie images, and further descriptions could be elicited.

Many experiments were conducted using this network architecture, using var
ious network layer sizes and training parameters. The experiments described
here used a network with an input scene layer size of 8 processing elements and
a linguistic token output layer also of size 8. The six possible output tokens
were sparse coded over these 8 outputs. The gestalt layer in these experiments
contained 8 processing elements, as well. The hidden layer of the perception
subnetwork was set to contain 12 elements, and the hidden layer of the de
scription subnetwork was set to contain 20. All processing element activation
levels were bounded by a sigmoid, forcing outputs to the range from -1.0 to
1.0.

lrThe name of the gestalt layer comes from the Sentence Gestalt network of St. John and
McClelland, which had a major influence on this design. The Sentence Gestalt network has
been successfully used to perform highly complex natural language question answering tasks
[12].

204 CHAPTER 6

3.4 THE TRAINING PROCEDURE

Like the adder networks, and simple recurrent networks in general, the Movie
Description Network could be trained by a variation of the backpropagation
learning algorithm using only a supervised error signal at the final output
layer. Instead, this network received error information from two different
sources, and it combined and applied this error information using standard
backpropagation techniques. A supervised training signal was indeed provided
at the linguistic output layer, specifying the correct sequence of tokens to
describe the current event, but another signal was provided exclusively to the
perception subnetwork at the predict layer. This layer was of the same size as
the input scene layer and was intended to create an output image identical to
the next image to be perceived. In other words, the predict layer was meant to
be a prediction of the next "frame" in the current movie. This means that the
perception subnetwork was shouldered with the task of understanding potential
ball motion well enough to predict the ball's trajectory across the field of view.
The error signal which was provided at the predict layer was simply generated
from the actual scene that was observed at the next time step. In essence, this
was an unsupervised (or self-supervised) training signal, since no information
beyond the normal input sequence of images was needed to generate it. The
Movie Description Network, therefore, used backpropagation to combine a
supervised error signal at the linguistic output layer with an unsupervised error
signal at the predict layer to produce weight modifications which drove the
network both to make predictions about the current movie and to linguistically
describe it.

Note that this dual feedback training technique placed the two subnetworks in
competition over the representational resources of the perception subnetwork's
hidden layer. If the perception subnetwork had been trained alone, the infor
mation encoded at this hidden layer would have included only items relevant
to the prediction task. This need not include all of the information required
for the description task. For example, when the ball was moving to the right
and was currently in the rightmost column of the field of view, no information
concerning the "type" of motion of the ball was needed to perform the pre
diction task. The next image was always the empty scene. The description
network, however, still needed to know whether the ball was flying, rolling,
or bouncing. Conversely, if no feedback had been provided at the predict
layer, the perception subnetwork's hidden layer would have been devoted to
the description task. No distinction between a bouncing ball that entered the
field of view low and a bouncing ball that entered high would have needed to
have been made, for instance. Such a distinction was critical for the prediction

Towards Instructable Connectionist Systems 205

problem, however. In short, providing both sources of error feedback pushed
the network to record a wider variety of properties of the input movies, and,
thereby, to have a richer internal representation of the perceived events.

The exact training regime for the Movie Description Network involved repeated
exposure of the network to movies and their corresponding quasi-linguistic
descriptions. Two different methods were used for selecting the next movie
to be presented to the network. First, a deterministic method was tried in
which all of the movies in a training corpus were presented repeatedly in a
fixed order. Second, a random method in which the next movie was repeatedly
selected uniformly at random from the entire training corpus was applied. In
the deterministic case, the network was trained for 8000 epochs, where an
epoch was a complete pass through the training corpus. The random method
was applied for 1.6 million individual time steps. In both cases, training
progressed by first presenting an input image to the network and then training
the perception subnetwork using prediction feedback. Then, before the next
scene was input, both subnetworks were trained using error feedback from
the entire movie description. In other words, a complete description was
solicited from the description subnetwork in between image presentations, and
error on this description was propagated back through the entire network.2

Once feedback was provided on the movie description, the next image was
presented to the network and the training procedure iterated. Throughout this
process a learning rate of 0.01 was used, along with a momentum value of 0.9.
When the maximum number of training epochs (or time steps) was reached,
the error history of the learning network was examined. The epoch at which
the network achieved a minimum average sum-squared error was identified,
and the network's weights were reset to their values at that epoch. The end
result of this training procedure was a network capable of both predicting ball
trajectories and generating event descriptions.

3.5 THE RESULTS

The trained network proved successful at both the prediction and description
tasks. When too little information was provided to identify an event, as was the
case during the very first frame of each movie, the network failed at both tasks,
as should be expected. Prediction average sum-squared error rates were on the
order of 0.24 at these times. However, whenever sufficient movie segments

2 Actually, when the random movie selection method was used, training on the output de
scription was also done randomly. Between any two scene presentations there was a 50% chance
of eliciting a description from the network and providing error feedback on it.

206 C H A P T E R 6

were presented to the network, error dropped below 0.001. The network
correctly predicted ball trajectories and correctly described each event.

An analysis of the internal representations formed at the gestalt layer and at the
perception network's hidden layer was conducted. The findings of this exam
ination supported earlier intuitions concerning the competing requirements of
the prediction and description tasks. For example, the internal representations
of two distinct events were observed — of a ball bouncing right and entering
the view low, and of a ball bouncing right and entering the view high. At the
gestalt layer these events provoked almost identical representations as activa
tion vectors. This is sensible since both events share the same description:
"ball bounces right". At the hidden layer of the perception network, how
ever, the two events generated widely different representations (as measured
by Euclidean distance). This, too, is reasonable since the two events imply
essentially opposite predictions at the predict layer. While the hidden layer
clearly encoded all of the information needed to perform both tasks, it appears
as if die gestalt layer was used by the network to cluster internal representa
tions of events in a manner which facilitated the generation of quasi-linguistic
descriptions.

Some final experiments were conducted which involved training the Movie
Description Network without use of the unsupervised prediction error signal.
It was found that this signal was not needed to achieve good performance on
the description task. While including the prediction feedback increased the
amount of information contained in the internal representations of events, such
a rich representation did not significantly affect, for better or worse, the ability
of the network to make the needed linguistic discriminations.

3.6 THE POSSIBILITIES

The success of the Movie Description Network at its description task demon
strates how recurrent connectionist networks may process linguistic informa
tion. The inductive learning mechanisms of such networks allow them to
generate their own internal representations of perceptions, actions, linguistic
tokens, and the relationships between these things. These internal representa
tions are formed to facilitate the tasks on hand. When linguistic statements are
encoded as temporal activation patterns, connectionist systems, such as this
subcaptioning network, may be trained to generate statements appropriate to a
given domain task. As the following explorations shall show, such encodings
may also make instructable artificial neural networks possible.

Towards Instructable Connectionist Systems 207

4 LEARNING B Y INSTRUCTION

4 . 1 A S Y N T H E S I S

The connectionist adders demonstrated that connectionist systems may per
form systematic symbol manipulation tasks. The Movie Description Network
showed how temporal activation patterns may be used to represent linguistic
strings and how such strings may be grounded in the elements of some domain
task. These two strategies may now be combined to produce a connectionist
network that is capable of responding appropriately to some simple instruction
sequences.

How should such an instructable network be designed? The only knowledge
available to a typical connectionist system is in the form of connection weights
and vectors of processing element activation levels, so any mechanism for in
struction following must make modifications to one of these two sets of system
variables. Some attempts to formulate techniques for the partial programming
of connectionist networks have involved approaches which compile symbolic
rules directly into connections and connection weights [4]. In some of these
techniques the weights are later refined by standard connectionist inductive
learning processes [13]. A major drawback of these "weight specification"
approaches is that advice may only be given before training begins. Standard
connectionist learning methods generally change the representational nature
of weight values (i.e., how they relate to desired behaviors and entities in the
world) in hard to predict ways, making the direct manipulation of those weights
in response to instruction quite problematic. Prohibiting all instruction once
inductive learning has begun is both cognitively unrealistic and potentially
troublesome for practical systems. If the desired system is to be instructed in
the midst of performance or if it is to learn continuously while doing its job,
then the strategy of encoding rules as initial weights will not work. There is
another option, however. Instructions may be encoded as activation patterns,
and connectionist networks may be trained to respond to certain patterns of
processing element activity as advice.

The idea is to encode instructions as network input vectors and to teach the
system to respond to those instructions appropriately. In short, the instructable
network has its set of inputs divided into two classes: domain task related
inputs and instruction inputs. The domain inputs are used to communicate task
parameters to the system, such as a column of digits in the adder networks.
The instruction inputs receive vector encoded quasi-linguistic tokens which
are to be interpreted as advice. The system produces output values which

208 CHAPTER 6

are contingent on the domain inputs, and this mapping process is modulated
by the sequence of instruction inputs which are presented. Some error cor
rection (supervised) training is used to get the network to "understand" the
instruction token encodings in terms of the domain task, but once this training
is completed the system may respond to advice immediately, without further
connection weight modification. Alternatively, weight modification using a
standard connectionist learning law may continue after the receipt of advice,
with input instructions acting in a supplementary role.

An extremely simple version of this approach could involve encoding entire
collections of advice as fixed sized real vectors which are provided as input
to a simple feed-forward backpropagation network [11]. The domain problem
of mapping domain task input vectors to some set of output vectors may be
modulated in this network by the specification of an appropriate instruction
input vector. This system design strategy transforms the problem of learning
from instruction into a straightforward mapping problem.

While the use of a fixed size advice input vector is all that is really needed to
get a feed-forward connectionist network to take advice, the encoding of whole
collections of instructions as such fixed size vectors is a somewhat awkward
process. It is easy to design a simple encoding which represents advice as
a fixed size vector, but such fixed size representations generally place a hard
limit on the size of the encoded instruction collection. A more natural way
to present advice to the system is as a temporal sequence of symbolic tokens
which form sentential recommendations, such as "rock => paper" to encode,
"if the input is rock then specify paper as the output". Ideally, we would like
to have a connectionist system which can handle arbitrarily long sequences of
such advice tokens.3

This is where the strategy which was exemplified by the Movie Description
Network may be applied to the instructable network problem. A temporal se
quence of input activation vectors encoding instructional tokens may be used
to present advice to the system, and the system may be trained using a stan
dard connectionist weight modification technique to associate such instruction
sequences with appropriate domain task behavior. Thus, the strategy of the
Movie Description Network may be used to transform input sequences of quasi-
linguistic tokens into processing element activation vectors which modulate
the behavior of a domain task subnetwork. This general approach for "learning
by being told" has been tested by application to a simple "discrete mapping"
domain.

3 i.e., advice sequences like those presented in graduate school

Towards Instructable Connectionist Systems 209

4.2 DISCRETE MAPPING

The domain task initially used to explore this strategy for the fabrication of
instructable networks was purposely kept very simple. It was an abstract
mapping problem of the following form:

Discrete Mapping - The goal of the system is to map inputs from
a finite discrete set to outputs from another finite discrete set. Advice
takes the form of temporal sequences of tokens which encode data
points in the desired mapping (e.g. "map input A to output J9" encoded
as the three token sequence "=> A 5").

In these experiments a vocabulary of three input stimuli, three output responses,
and four instruction tokens (including "=>") were used. All inputs and outputs
were specified to the networks using "1-out-of-N" localist codes.

While very simple, this domain task poses interesting problems for the con
nectionist learning algorithm which is to be employed. The behavior of the
system depends entirely on the given instructions. There are virtually no
other behavioral regularities which the network may depend upon and dis
cover during training. The system must learn the systematic task of following
any arbitrary instruction sequence. If the stream of instruction tokens specify
"=> A B => C C => B C\ then the network must map the domain input cor
responding to the "A" token to the " £ " output and must map both the "B" and
"C" domain input patterns to the "C" output pattern. If, an instant later, the in
struction sequence changes to "=> B B => A A"y the system must immediately
change its behavior to map "A" to "A" and " S " to "£", leaving the mapping
from "C" arbitrary (i.e., any output is acceptable). Any sensible instruction
sequence (i.e., one that does not require more than one output pattern for each
possible input) must be handled by the system. The way in which the dis
crete mapping problem forces the network to generalize in an exhaustive and
systematic manner over the space of instruction sequences makes the problem
difficult for the network to learn.

4.3 THE MODEL

The artificial neural network architecture which was initially used for these
discrete mapping experiments is shown in Figure 4. The activation level of
processing elements in this network was bounded, using a sigmoid, between the

210 C H A P T E R 6

values of 0.0 and 1.0. The domain task input layer consisted of three elements
for the "1-out-of-N" localist encoding of input patterns. The advice layer
contained four elements for the presentation of similarly encoded instruction
tokens — "A" through "C" and also "=>". The output was trained to be a
pattern in the same form as the domain inputs. Various sizes for the plan layer
and for the hidden layers were examined, with a 20 processing element plan
layer, a 20 element recurrent hidden layer, and a 10 element non-recurrent
hidden layer being used for the bulk of the experiments reported here.

The basic idea behind this network design is easy to describe. In short, a
simple recurrent network [5] is used to map temporal sequences of instruction
tokens into apian vector which is, in turn, provided as input to a feed-forward
mapping network. This allows input advice sequences to immediately change
the discrete mapping performed by the network to be any desired mapping. The
entire network may be trained by a version of the backpropagation learning law,
with error information being provided only for the final output layer.4 Weight
modification learning may be performed on the recurrent connections using
backpropagation by "unrolhng the network in time" for a single time step [11]
— essentially treating the recurrent connections as non-recurrent connections
leading to a "context" layer which is made to contain a copy of the hidden
layer activation levels from the previous time step [5]. Such a backpropagation
learning strategy was used in the experiments which are discussed below, with
afixed learning rate of 0.1 and no momentum. Incremental learning (i.e., "jump
every time,, or "on-line" learning) was used, causing weights to be modified
with every presentation of a supervised error signal.

The network is operated as follows. Before the network receives any input, its
recurrent hidden layer has the activation level of all of its processing elements
set to an average value (i.e., 0.5). A temporal sequence of input instruction
tokens, such as "=> ,4 £ => C C => B C'\ is then presented at the advice input
layer, one token at a time. Activation from these inputs is propagated as far
as the plan layer, but any further propagation beyond that layer is considered
unimportant. When the instruction sequence is complete, the activation levels
of the processing elements in the plan layer are "frozen" and are used as
constant modulating inputs to the mapping subnetwork. Any input patterns
then presented at the domain task input layer should result in output patterns at
the output layer which are consistent with the mapping specified by the given
instruction sequence. Furthermore, if this process is repeated and anew advice
sequence is presented to the network, the mapping behavior of the system

4Like the Movie Description Network, this architecture was inspired by and is very similar to
the Sentence Gestalt network [12]. Indeed, it may be argued that the Sentence Gestalt network
actually performs a "learning by being told" task in a complex question answering domain.

Towards Instructable Connectionist Systems 211

OUTPUT
A

INPUT

\ V
PLAN |

t (

A '

ADVICE |

o
Figure 4 An Instructable Simple Mapping Network Architecture

should immediately change to conform to the new instructions. This instructed
response is to occur as a direct result of input advice, with no additional weight
modifications required.

4.4 THE TRAINING PROCEDURE

The basic mechanisms of this instructable mapping network are fairly straight
forward, but the systematic structure of the discrete mapping problem makes
it a difficult problem for this network to solve via error correction learning.
Consider that, upon the commencement of initial training, the system will not
even be capable of adequately summarizing streams of input instruction to
kens into informative plan vectors. The network must simultaneously learn to
translate temporal sequences of instructions into useful plan vectors and learn
to make use of these plan vectors to modulate mapping behavior. And both of
these skills must be acquired using only error information given at the output
layer during individual mapping trials! It is, therefore, reasonable to expect
difficulty during the initial training of this network, and it may be considered
potentially profitable to explore non-standard training regimes.

There are many training regimes that may be applied to the network architecture
presented here. To expedite the learning process, however, a training regime
was selected which maximizes the generation of error feedback to the recurrent
plan subnetwork during the presentation of an instruction sequence. In general,
learning can be expected to be slow if error is available only at the conclusion

212 CHAPTER 6

of complete instruction sequences. Such a strategy would demand that an
appropriate set of weight modifications for the proper processing of an entire
instruction sequence be computed from a single error signal back-propagated
from the plan layer. This is a difficult "credit assignment" task which may be
partially mitigated by providing error feedback in the middle of advice token
sequences. With this in mind, the training regime examined here involved error
feedback and weight modification after every instruction token presentation
according to the following algorithm:

1. Initialize the maximum number of instructions per training session to 1.5

2. Randomly choose a number of instructions for this session.

3. Randomly generate the chosen number of instructions.

4. Present the instruction tokens to the network, one at a time. After pre
sentation of each token, freeze the plan layer and train the network on
each case for which it has seen an instruction. Alternatively, the network
may also be trained on cases for which an instruction has been partially
presented — for which the full three advice tokens have yet to be seen.
(This alternative method which includes partial instructions was used in
all of the experiments discussed here.)

5. At the end of each session (collection of consecutive instructions), collect
statistics on network performance. After each training period consisting
of some fixed number of sessions (e.g., 5000 sessions), compute an av
erage accuracy measure based on the collected statistics. If the system's
accuracy is high (above a threshold) then increment the maximum number
of instructions per training session.

6. Go to step 2.

Training is terminated when the maximum number of instructions per training
session surpasses a fixed threshold. (In the discrete mapping experiments with
three possible domain task input patterns, this threshold was three instructions
per session.) Note that this training regime is similar to that used for the Movie
Description Network [2] and to that used for the Sentence Gestalt network [12],
but this strategy includes a version of the combined subset training technique
used by the connectionist adders [3]. As much error feedback as possible is
provided to the entire network after each advice token is presented, and the

5 Alternatively, the initial maximum number of instructions may be set at some higher value.

Towards Instructable Connectionist Systems 213

Mapping Accuracy During Training

^Training
Generalization

Session x
o.oo 100.00 200.00 300.00

Figure 5 Sample Network Performance

system is given a chance to work up from shorter instruction sequences to
longer ones.6

4.5 THE RESULTS

Many training experiments were conducted using this instructable network ar
chitecture and the previously described training procedure, exploring the space
of layer sizes and learning parameters. In each experiment, the instructable
network was trained on most all those instruction sequences which provided
at most one mapping rule for each discrete input stimulus (i.e., consistent
instruction sequences). Training was not allowed, however, on elements of

6The incremental growth of instruction sequence length actually provided little advantage
for the best networks examined here. This is suspected to be a result of the small sizes of the
potential input and output sets. The initial maximum number of instructions was set to three for
the experimental runs for which learning curves are later provided.

214 C H A P T E R 6

OUTPUT
i

/ PLAN K

INPUT ADVICE

Figure 6 An Alternative Simple Mapping Network Architecture

a generalization testing set which was randomly generated and consisted of
12 instruction sessions (i.e., about 5% of all possible sessions). Instruction
sessions were selected at random for presentation to each network. The initial
maximum number of instructions per session was set to three.

The performance achieved by the best of these networks is shown in Figure 5.
Mapping accuracy was measured after the complete presentation of each in
struction session and is presented in this graph as a percentage of the number
of input/output mappings which were correctly generated by the network. For
the purpose of this measurement, the output element with the highest activation
level indicated the network's discrete output response using a "1-out-of-N" lo-
calist encoding at the output layer. Note that the network eventually achieved
on the order of 98% training set accuracy and up to 96% generalization accu
racy. Note also that good behavior generally required over 100,000 training
sessions. In short, this demonstrated the viability of this strategy, but indicated
that more efficient training strategies were required.

In hopes of reducing training time, several architectural modifications were
considered. Alternative forms of recurrence were tried, such as variations
on that used in Jordan's sequential network [7], as shown in Figure 6. In
this architecture, the activation level of the plan layer at the previous time
step is provided as input to the plan generating subnetwork's hidden layer.
This replaces the hidden layer recurrence of the previous simple recurrent
network model. Some experiments with networks of this kind showed mild
but noticeable improvements in training time, as demonstrated in Figure 7, and
pushed generalization accuracy as high as 100%.

Towards Instructable Connectionist Systems 215

Mapping Accuracy During Training

^Training
Generalization

Session x l (r
O.OO 100.00 200.00 300.00

Figure 7 Alternative Network Performance

Another considered design alternative involved the introduction of multiplica
tive connections into the network, allowing, for example, the plan layer to have
a "gating" effect on the mapping subnetwork as shown in Figure 8. Some ex
periments were conducted in which sigma-pi connections were used to provide
such a "gating" effect [11]. Briefly, each possible pair consisting of a domain
input processing element and a plan layer processing element provided the
product of their activation levels as input to the non-recurrent hidden layer,
weighted by a single trainable weight value. Experiments with such sigma-
pi networks (with a reduced learning rate of 0.05) showed slightly improved
performance, particularly with regard to generalization accuracy, as shown in
Figure 9. Note that this network was able to achieve better than 99% training
set accuracy and up to 100% testing set accuracy.

Training time remained relatively high for all of the considered alternative
network architectures. There are many options that have yet to be tried,

216 CHAPTER 6

OUTPUT

INPUT ADVICE

Figure 8 A Network Architecture With Multiplicative Connections

however, including further examination of multiplicative connections, second-
order methods, and alternative training regimes.

4 . 6 T H E P O S S I B I L I T I E S

In addition to searching for more efficient training techniques for these sorts
of instructable connectionist networks, tasks which are more complex than
simple discrete mapping should be examined. Specifically, systems which are
to perform tasks in some spatiotemporal domain should be generated. As in
the discrete mapping task, instruction sequences should be used to modulate
the behavior of die system, but the behavior in question should now have a
temporal dimension.

Experiments are currently being conducted which involve the modulation of
the systematic behavior of an arithmetic network, similar to the adder net
works, by a sequence of quasi-linguistic instructions. The architecture which
is being used for these experiments is shown in Figure 10. The system is to
perform arithmetic operations on two arbitrarily sized numbers in much the
same way that the adder network performed addition, but the exact "program"
that the system is to follow is to be specified as an input sequence of instruction
tokens. Different instruction sequences may specify different orderings for sets
of standard actions (e.g., announcing the carry before or after recording the
digit sum) or may specify completely different arithmetic operations (e.g., sub
traction rather than addition). As might be expected, training is a slow process

Towards Instructable Connectionist Systems 111

Mapping Accuracy During Training

Training
General ization

Session x
o.oo 100.00 200.00 300.00

Figure 9 Sigma-Pi Network Performance

for this network. While early experiments are successfully generating systems
capable of enacting "programs" involving several variations of addition and
subtraction, summary results are not yet available.

5 SUMMARY

Some small initial steps have been taken towards connectionist systems which
exhibit the systematic flexibility of advice following without abandoning the
power of experiential inductive generalization. Such systems, which are ca
pable of both learning from examples and "learning by being told", could
potentially help cognitive scientists explain "high level" reasoning processes
and provide insight into how such processes may emerge from more sim
ple associational mechanisms. A basic strategy for instructable connectionist
systems has been outlined, including a focus on recurrence for systematic-

218 CHAPTER 6

Figure 10 An Instructable Arithmetic Network Architecture

ity, learned temporal patterns for linguistic interaction, and activation state
modification for fast behavioral change.

Recurrent networks are necessary to generate complex systematic behavior in a
connectionist framework. Any task which requiies the iterative memorization
and retrieval of internal representations will require some form of recurrence.
Such manipulation of internal state information is common for systematically
structured domains. Fortunately, there is currently much research being con
ducted involving the dynamic properties of recurrent connectionist systems
and involving the training of such systems. The explorations that have been
conducted here have shown, however, that much can be accomplished even
with a few relatively simple network architectures. These networks, while
conceptually simple, are capable of learning complex time-varying behav
iors by leveraging the power of distributed representations generated by the
well studied backpropagation learning algorithm. Contrary to some critics
of connectionism, systems based on these distributed architectures are not
only capable of performing systematic behaviors, but they are also capable of
learning such behaviors.

Any instructable connectionist system must be able to receive and process
quasi-linguistic statements. Strategies involving the compilation of linguistic
instructions into network weights are generally too restrictive to be of use
in cases where instruction is to be more than a one shot occurrence. By
encoding linguistic statements as temporal activation patterns, and by allowing
domain task specific internal distributed representations of these patterns to
form as a result of inductive learning, connectionist systems are granted the

Towards Instructable Connectionist Systems 219

power to interact linguistically with the world and to have language interact
appropriately with their actions. As demonstrated by the simple instructable
networks which were discussed here, linguistic input may be made to modulate
a systematic behavior. It is also possible that recurrent networks performing a
systematic task may potentially be trained to explain their systematic behavior
in a quasi-linguistic fashion, thereby revealing their inner workings. Encoding
linguistic statements as time-varying distributed patterns of activation opens
the door to many opportunities.

If an instructable connectionist system is to modify its behavior immediately
in the face of advice, only two general design strategies are possible. Either
some sort of fast weight modification mechanism must be installed, or behavior
must be modulated by changes in the activation state of processing elements.
The strategy which is described here leaves the process of weight modification
in the capable hands of inductive learning algorithms and focuses instead
on encoding the receipt of instruction as motion in an inductively learned
distributed activation space. Metaphorically, "learning by being told" involves
an instruction sequence input pattern pushing a network into a new region of
activation space — a region corresponding to the desired behavior.7 Restricting
network activity to this region of activation space effectively restricts network
behavior, as well. A connectionist system which has successfully learned the
regional topology of this activation space will be capable of responding to
instruction as rapidly as activation levels can change.

While this proposed strategy for connectionist advice taking shows much
promise, it is certainly not without flaw. The main thing that is missing from
this account is, as outlined in the introduction, memory. In order to finesse
this problem, in this work we simply "froze" the network activations at the
plan layer. Adding a memory to this model should be seen as the first goal
of future work. It may be trivial to add an appropriate attractor structure to
the network, but it is more likely that such attempts will contain unforeseen
difficulties. Also, critics of a simple attractor model of memory may attack
such attempts by referring to related psychological phenomena. For example,
one can remember, albeit briefly, nonsense words like "frobitz", for which there
is no clear reason to expect an attractor bowl in our lexicon. There are several
possible responses to such criticism. First, "frobitz" is much more similar to
valid English words than "mxytlpx", which has the same number of letters but
is much less memorable. This supports an attractor based memory model in
which general phonological features help shape attractor basins. Second, it
may be necessary to add special purpose memory devices. One memory model

7Thanks are due to Paul Churchland for this observation [1].

220 C H A P T E R 6

that makes fast associations using an activation-based approach is Metcalfe's
CHARM [9] model. There is plentiful evidence to indicate that the human
memory system involves many specialized components. Can less be expected
of a connectionist cognitive model?

Another obvious problem with this approach to "learning by being told" is
the difficulty with which networks of this kind learn the needed language
interpretation skills. More efficient training techniques are needed for recurrent
networks performing systematically structured tasks if this strategy is to be
applied to reasonably sized networks. Specifically, variations on combined
subset training should be examined. Also, learning to take advice should be
factored out from the task of learning to operate in a given domain. There are
many things that could be learned in advance about the regularities of a domain
before advice is proffered. This should make the process of learning to take
the advice easier and correspondingly faster.

As these issues are resolved by further research, perhaps cognitive modelers
will not sense a need to retreat to hybrid symbolic/connectionist systems to
solve their knowledge acquisition and manipulation problems. In the end,
connectionism might be found to provide it all.

A C K N O W L E D G E M E N T S

The ideas described in this document were found in the intersection of the
work of several insightful researchers. The generation and analysis of the
adder networks which were described here was, for the most part, performed
by Fu-Sheng Tsung [3]. The Movie Description Network was the result of
work by Brian Bartell [2]. Thanks are also due to Paul Churchland for his
insights concerning the relationship between instruction sequences and regions
of network activation space.

REFERENCES

[1] Paul M. Churchland. Talk presented at the Konnektionismus In Artifi
cial Intelligence Und Kognitionsf or schung Conference. September 1990.
Salzburg, Austria.

Towards Instructable Connectionist Systems 221

[2] Garrison W. Cottrell, Brian Bartell, and Christopher Haupt. Ground
ing meaning in perception. In H. Marburger, editor, Proceedings of the
14th German Workshop on Artificial Intelligence, pages 307-321, Berlin,
1990. Springer Verlag.

[3] Garrison W. Cottrell and Fu-Sheng Tsung. Learning simple arithmetic
procedures. Connection Science, 5(l):37-58,1993.

[4] Lawrence Davis. Mapping classifier systems into neural networks. In
David S. Touretzky, editor, Advances in Neural Information Processing
Systems 1, pages 49-56, San Mateo, 1989. Morgan Kaufmann.

[5] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14:179-
211,1990.

[6] Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive
architecture: A critical analysis. In Steven Pinker and Jacques Mehler, ed
itors, Connections and Symbols, pages 3-72. The MIT Press, Cambridge,
1988.

[7] Michael I. Jordan. Serial order: A parallel distributed processing ap
proach. Technical report, Institute for Cognitive Science, UCSD, 1986.

[8] James L. McClelland, David E. Rumelhart, and the PDP Research Group.
Parallel Distributed Processing: Explorations in the Micro structure of
Cognition, volume 2. The MIT Press, Cambridge, 1986.

[9] Janet Metcalfe. Recognition failure and the composite memory trace in
CHARM. Psychological Review, 98:529-553,1991.

[10] Ryszard S. Michalski and George Tecuci, editors. Machine Learning:
A Multistrategy Approach, volume 4. Morgan Kaufmann, San Mateo,
1993.

[11] David E. Rumelhart, James L. McClelland, and the PDP Research Group.
Parallel Distributed Processing: Explorations in the Micro structure of
Cognition, volume 1. The MIT Press, Cambridge, 1986.

[12] Mark F. St. John and James L. McClelland. Learning and applying
contextual constraints in sentence comprehension. Artificial Intelligence,
46(l-2):217-257,1990.

[13] Volker Tresp, Juergen Hollatz, and Subutai Ahmad. Network structuring
and training using rule-based knowledge. In S. J. Hanson, J. D. Cowan,
and C. L. Giles, editors, Advances in Neural Information Processing
Systems 5, San Mateo, 1993. Morgan Kaufmann.

7
An Internal Report for

Connectionists
NOEL E. SHARKEY AND STUART A. JACKSON

Computer Science Department
University of Sheffield
SI 4DP, Sheffield, UK

1 INTRODUCTION

Although there is a considerable diversity of representational formalisms in the
Connectionist literature, most of the excitement about representation has been
concerned with the idea of distributed representations. Dissatisfied with the
Symbolic tradition, and in search of the new, many cognitive theorists began to
infiltrate connectionism in search of a new theory of mind. Like the Classicists,
these theorists required that a constructed, analytic theory of mind postulate
complex structured representations; it is only by having structural similarities
among representations that we can account for the systematic nature of human
thought. The Classical view is that the systematic relations between represen
tations are necessarily based on the composition of similar syntactic elements.
Likewise, some of the representational types found in the connectionist litera
ture satisfy this requirement, only by virtue of the fact that they are similar to
Classically conceived symbolic representations. For example, the structure of
complex expression may be maintained in vector frames consisting of explicit
tokens or complex expressions that are essentially passed around a net [18].
Only distributed representations offered the promise of a novel representational
scheme that could underpin a connectionist theory of cognition; a scheme that
relied upon the assumption that structural similarity relations can be captured
in a connectionist net by systematic vectorial distances between the distributed
representations created.

This very idea, that spatial (Euclidean) similarity relations could capture sys
tematic structural similarities, serves to separate the Connectionist and Classi
cal theories. For the Classical theorist, the necessary and sufficient structural
similarity relations for a representational theory of mind are syntactic, whereas

223

224 C H A P T E R 7

for the Connectionist, they are spatial (ie. given in terms of similarity of
location in a Euclidean space). Indeed, that representations can stand in non-
syntactic similarity relations is crucial to the emergence of a Connectionist
theory of mind. The current, ongoing debate between the Classical and the
Connectionist schools, regarding their different conceptions of the components
of a theory of mind, has turned precisely upon this issue, namely, upon the
nature of the requisite structural similarity relations that hold between rep
resentations. A great deal of effort has gone into devising an explanatory
framework that makes use of spatial, as opposed to syntactic, structure, as
witnessed by the explosion of descriptive terms. Thus, fully distributed repre
sentations, superpositional storage, holistic computation, non-concatenative
compositionality, and indeed, spatial structure itself, are all new terms either
invented for the purpose, or ported into Connectionism in order to distinguish
and explicate a non-symbolic theory of mind.

In this chapter, we focus, not upon the terms of the debate between the Classical
and the Connectionist schools, but on the underpinnings of the emerging con
nectionist theory of cognition. We challenge a key assumption of the proposed
connectionist representational scheme; that the precise distances between vec
tors of distributed representations, learned by a connectionist net, reflect sys
tematic semantic and/or structural similarity relations. On this understanding,
even a minute difference in the distance between one representation vector and
any of the others will change the 'meaning' of that representation (cf. [11],
[3]). The structure of our argument will proceed as follows: In Section 2,
we examine the origins of Connectionist representations, from their humble
beginnings to their most modern sophistication. Along the way, we shall see
the emergence of the key 'spatial systematicity' assumption (ie. the assump
tion that systematicity has a spatial explanation). In Section 3, we present a
detailed argument using constructive methods, drawing upon a simple decision
space technique (cf. [20]), which demonstrates that this assumption may not
be warranted except under special circumstances. We will show here that the
computational role of a, so called, distributed representation may be separated
from its specific neighbourhood distance relations (where a neighbourhood is
a group of 'close' points defined by some Euclidean distance metric). This
analysis will then be used to support an argument in favour of 'whole net'
representation. In Section 4 of the paper, we consider the implications of our
findings, and consider a possible re-orientation toward the notion of functional
representations in which the input is represented by the whole net, weights as
well as units, in terms of its computational role.

Internal Report 225

2 T H E O R I G I N S O F C O N N E C T I O N I S T R E P R E S E N T A T I O N

The term distributed representation grew out of the idea of how concepts or
representations, let us call them entities, from a descriptive language could
be recoded into binary vectors (bit vectors) such that, (a) an entity that is
described by a single term in the descriptive language is represented by more
than one element in the connectionist representation ([13]). For example, if the
lexical item 'ball' was a term in the descriptive language, then the distributed
representation would have 'bits' to represent, say, the features, or microfeatures
as they are often called, of 'ball' including 'round' and 'bouncy'; (b) each of
the elements in the distributed representation must be involved in representing
more than one entity described by a single term in the descriptive language.
For example, the (micro)feature 'round' for the item 'ball' may also be used
as part of the distributed representation for other items such as 'Edam cheese'.

These distributed binary vectors can be thought of, in a very restricted sense,
as representations with content in that each of the elements of a binary vector
stands for a content element of the entity being represented. However, despite
the use of the term microfeature instead of the Classical term feature, featural
representation had already been used extensively in the Symbolic tradition
(e.g. phonological features, and semantic features) as had the notion of dis
tance in feature space (e.g. semantic distance, [4]). There was not a lot of new
action for the representationalists. The novelty of connectionism was in the
way in which higher order relationships could be extracted from the featural
representations and how these representations could be put to work in a variety
of tasks. Most types of Connectionist representation were similar to Classi
cally conceived symbolic representations. Some of these consisted of explicit
tokens or complex expressions that are essentially passed around a net, while
others maintain the structure of complex expressions in frame vectors. This
prompted a severe and scathing attack on the idea of a new connectionist theory
of cognition from [9]. One of their main arguments was that connectionist rep
resentations are either hopelessly inadequate for the purpose of developing a
cognitive architecture, or they are merely, at best, implementations of Classical
representations.

The Fodor and Pylyshyn criticism also had a positive side. Following its
publication, all hands went to the pumps, and before long very many replies
began to emerge from the connectionist community (look at any collection
of cognitive connectionist papers between 1988 and 1992). The representa-
tionalist, in search of novelty, began to focus on the idea of fully distributed
or superpositional representations. These are vectors of continuously valued

226 C H A P T E R 7

vectors such as the 'hidden unit' vectors used by multilayer learning techniques
such as backpropagation ([17]) and its variants (e.g. [21], [54]), or the type
of superposed unit activations developed using Tensor Products ([15]). Such
representations are called superpositionalbecmse therepresentings of two dis
tinct items are superposed if they occupy the same portion of the unit resources
available for representing (a clear treatment of superposition is given in [12]).
In order to define superposition more formally, we might say, following [1],
that R is a representation of individual content items cu c2, ... cn if, (1) R
represents each a; (2) R is an amalgam of representations rx, r2, ... rn of
content items ciy c2,... cn respectively, and (3) n , r2,... rn each uses the same
unit resources in representing a given content c».

The discovery of such novel representations was cause for much excitement in
the cognitive science community because they, at last, had an alternative to the
symbolic representations of Classical AI, one that also offered a non-symbolic
alternative to the simple input/output contingencies of behaviourism. Nonethe
less, there was still considerable disquiet in the Classical camp. The main bone
of contention concerning superpositional representations was that, according
to some, they lacked compositional structure. In a critique of uniquely con-
nectionist representations, [8] argue that in order to support structure sensitive
operations, complex representations must, literally, contain explicit tokens of
the original constituent parts of the complex expression:

'...when a complex Classical symbol is tokened, its constituents are
tokened. When a tensor product or superposition vector is tokened,
its components are not (except per accidens). The implication of this
difference, from the point of view of the theory of mental processes,
is that whereas the Classical constituents of a complex symbol are,
ipso facto, available to contribute to the causal consequences of its
tokenings - in particular, they are available to provide domains for
mental processes - the components of tensor product and superposi
tions vectors can have no causal status as such.'
(Fodor & McLaughlin, 1990, p. 198.)

These criticisms forced the Connectionist community to examine more closely
what [20] have called the three horns of the representational trilemma facing
cognitive science: That is, whether distributed representations are (or could
be) compositional, whether the kinds of putative mental processes that dis
tributed representations enter into could be systematic and (to a lesser extent
for the purposes of this chapter) whether distributed representations could be

Internal Report 227

grounded. However, we must tread warily when we label a new entity in sci
ence lest we smuggle inappropriate terms and theoretical attributes behind the
guise of the label. Compositionality and systematicity are both terms borrowed
from the study of artificial and natural languages in model theoretic semantics
and linguistics, and applied to the study of the putative Language of Thought
(cf. [7]) in cognitive science. Linguistic capacities are said to be systematic,
in that the ability to understand some sentences, for example, 'Jerry likes
Connectionists', is intrinsically connected to the ability to understand certain
others, for example, 'Connectionists like Jerry'. Moreover, this capacity is
identified with the feature of all languages that its constructs (viz. sentences)
have syntactic and semantic structure. The argument translates directly to the
LoT. Thus, cognitive capacities are said to be systematic, in that the ability to
think the thought that, for example, Jerry likes Connectionists is intrinsically
connected to the ability to think certain others, for example, the thought that
Connectionists like Jerry. Moreover, this capacity is identified with the feature
of the putative LoT, that thoughts have syntactic and semantic structure. Thus,
just as there are structural similarities between the sentence 'Jerry likes Con
nectionists' and the sentence 'Connectionists like Jerry', so too there must be
structural similarities between the mental representation that Jerry likes Con
nectionists and the mental representation that Connectionists like Jerry. The
conclusion that is drawn from these examples is that mental representations,
just like the corresponding sentences, must be constituted of the same parts in
a systematic compositional manner.

So how does all of this bear on distributed representations? Well, the charge
is made (cf. [9]) that distributed representations are not compositional and
thereby they are not able to support systematic cognitive capacities. To be more
specific, the charge is made that distributed representations are not candidate
mental representations because they do not have a combinatorial syntax and
semantics. That is, distributed representations make no use of the distinction
between structurally molecular and structurally atomic representations, they do
not have tokens of constituents as literal parts and the content of a distributed
representation is not a function of the content of its literal parts together with
its constituent structure.

Since the publication of their article however, Fodor & Pylyshyn have been
shown to be a little bit premature in their conclusions. Specifically, what has
emerged from the Connectionist literature is that distributed representations
can be compositional without themselves being Classical. To recall, the pri
mary requirement of a representational theory of mind is that representations
have internal structure, or that they have a significant constituent structure.
The Classical theorist argues that such constituent structure is syntactic, re-

228 C H A P T E R 7

suiting from a concatenative method of combining constituents. However,
the insight that van Gelder ([11]) disseminated was that Connectionist repre
sentations can have internal structure, without that structure being syntactic.
What legislates for this assertion is the realization that concatenation is not the
only means available to the computational theorist for constructing complex
compounds. Thus, instead of employing a concatenative method of combining
constituents to form compounds, which then have a resultant syntactic structure
(as the Classical theory of mind asserts), the Connectionist theorist employs
a non-concatenative method of combining constituents to form compounds,
which then have a resultant spatial structure. Thus, instead of the syntactic
similarity relations that hold between Classical symbols, the Connectionist
theorist appeals to spatial similarity relations, similarities usefully understood
as similarities of location in decision space. The proposal is that it is the spe
cific distances between the representations that provides Connectionism with
a structured compositional scheme.

Much of the force of the Classical attack on Connectionism is deflected when
one realizes that it is possible to entertain the kind of qualitatively differ
ent spatial structure similarity relations that non-concatenative, as opposed
to concatenative, methods of combination provide for complex Connectionist
representations. When discussing the internal structure of vectors of activation,
it is important to be aware that, on current understanding, a compound Connec
tionist representation is not regarded as having tokens of constituents literally
present within it (as the compound Classical representation does). Rather, rep-
resentings of constituents are superposed within the compound representation
itself, as we have already discussed. x

It is these insights, of the existence of non-concatenative compositionality and
spatial structure similarity relations, which inform a fundamental assumption
of the Connectionist theory of mind. That is:

.. .the particular internal makeup of & given representation determines
how it stands to other representations. (Van Gelder, 1989)

1 The identity of constituents in fully distributed representations are destroyed in the process of
composition. Whilst not literally tokened, the constituents are still said to be causally effacacious
in computation. Indeed, Sharkey ([19]) provides a method for extracting the representations of
constituents out of holistic representations of the inputs. The implications of the current paper
for this method of extraction are not addressed here.

Internal Report 229

For van Gelder, it is the distance relationships between the representations
which is of paramount importance. Later in the same paper, he states and
re-stresses the point that:

The position of a representation in the space has a semantic signif
icance; vary its position in that space, and you automatically vary
the interpretation that is appropriate for it... Representations with
similar sets of constituency relations end up as 'neighbouring' points
in the space. The systematic nature of these spatial relations can be
discerned using sophisticated techniques for the comparison of large
groups of vectors such as cluster analysis. (Van Gelder, 1989)

In this chapter, we intend to challenge this assumption of 'spatial systematic-
ity\ by showing that neighbourhood analyses, such as hierarchical clustering
techniques, only correlate with the computational properties of a net, they do
not show the causal consequences of distance on the computation. This chal
lenge could have serious consequences for the emerging Connectionist theory
of mind, because as van Gelder says:

... all this counts for nothing unless these [distance] relationships
matter...unless the location of a given representation in the space is
such as to be of some kind of systematic semantic and computational
significance, (van Gelder, 1989)

Our purpose here is not to burn what one might call a Spatial Strawman.
Instead, we intend to show how an alternative form of systematicity might
arise in multilayer nets as a result of the interaction between the input weights
and the output weights. This is a functional form of systematicity in that it
relates the inputs, not to each other in some representational space, but to their
function on the output. We proceed with our argument by showing how the
computational role of input patterns can be separated from their similarity in
representation space.

3 REPRESENTATION AND DECISION SPACE

In order to show some of the technical problems associated with the notion of
spatial systematicity, we focus here only on nets with two weight matrices and

230 CHAPTER 7

three layers of units (input, hidden, and output) trained using the backpropaga-
tion learning rule (but the analyses applies equally well to other types of nets).
In order to avoid importing the theoretical spectacles of representationalism
into our arguments, we use the neutral term address rather than hidden unit rep
resentation, fully distributed representation, or super positional representation
to refer to a vector of hidden unit activations, h = [hi, h2>..., hn]. The elements
of the address vector are each coordinates for a point in an ^-dimensional deci
sion space (described below). This is the addressed location of an input vector.
For example, the address for the input vector [1,1], in Figure 2, is [0.05, 0.91].
Thus, for a net with two matrices of weights, there are two processing steps.
The first step is to allocate an address for a location in decision space to the
input vector. For the second step, the outputs are determined by the relation of
the addressed location to the hidden-to-output weights.

It is possible to visualise this relation using decision space analyses which
provide graphical representations of network computation. Such analyses have
been used extensively for networks with a single matrix of weights between the
inputs and outputs. These make a good starting place to explain the technique.
Before discussing multilayer nets, we first examine some simple binary nets
like those developed by McCulloch and Pitts (1943) for the basic functions: P
AND Q, P OR Q, and NOT P AND Q. The nets are shown in Figures l(a)-(c).
The output function is the Heaviside or threshold function, where an output o
= 1, if w. v > 6 (where 6 is a value between 0 and 1, w is a weight vector
and v is an input vector). The input space for the nets shown in Figure 1 is
two dimensional and can thus be described as a square with the binary inputs
arranged on its vertices. Each vertex can be thought of as a vector from the
origin. To see what the net computes, the weights to the output unit may
also be plotted as a vector from the origin. A decision line, perpendicular to
the weight vector, can then be drawn through the input space by solving the
equation, xw1 + yw2 = 6, for x and y, where w1 and w2 are the two weights, and
x and y are coordinates of the decision boundary. The line divides the square
into two decision regions that show which of the inputs will produce a +1 as
output and which will produce a zero.

Figures 1 (d)-(e) show the decision regions for the corresponding nets in Figures
l(a)-(c). The diagrams entirely determine the computation of the nets. For
example, if continuous rather than binary values were used as input to the nets,
the decision line would show the regions of generalisation of the net i.e. which
continuous valued inputs would map onto a +1 output and which would map
onto a zero output. For nets with multiple output there would be one decision
line for each output unit.

Internal Report 231

ftp)
+0.6

©
+0.6

Threshold =

(a) P and Q

©
-1.2

*

®
+1.2

©
+1.2

Threshold = +1

(c) (not P) and Q ^^^

®
+1.2

Threshold =

(b) P or Q

= +M
^W

01

00

\ ' \

0

(d) P and Q

01

11 01

10 00

x +1

0 N,

(e) P or Q

r
0

11

0 0 (f) (not P) and Q 1 0

11

10

Figure 1 Top: Three 'McCulloch-Pitts' binary nets for the three func
tions: P AND Q, P OR Q, (NOT P) AND Q, and bottom, the three decision
regions for the corresponding functions.

232 CHAPTER 7

In a network with a single matrix of weights the input points are all fixed
in advance and so training is limited to moving the decision lines around
the input space until all of the points are captured in the required regions.
Having such fixed input points restricts the functions that such a net can
compute to those in which the pattern classes are linearly separable. This is
a severe restriction since the ratio of linearly separable to linearly dependent
pattern classes rapidly approaches zero as the dimensionality of the input space
increases. For example, it is not possible to move a line around the 2D input
space to separate the regions appropriately for XOR function (11 —• 0,00 —• 0,
10—• 1,01 —• 1). One solution is to translate the input points into a new space
such that they can be separated appropriately by the decision fine. This is the
solution strategy used by backpropagation learning in multilayer nets.

Unlike training a net with a single weight matrix, a feedforward net with two
matrices is not restricted to moving decision boundaries around fixed input
points. It can move the input points as well, or at least their addressed locations.
Initially each weight in the network matrices is set to a random value (usually
between -0.1 and 0.1). Each input vector is passed through the two operations:
allocate an address and generate an output. The actual output is compared with
the required output and, if it is incorrect, an error signal is passed to the output
weights to move the decision boundaries towards addressed locations that
should be in those regions and away from locations that should not. An error
signal is then passed to the input weights so that the addresses are altered to
move the locations closer to appropriate regions and away from inappropriate
regions. A simple macroscopic description of backpropagation learning is that
the addressed locations are attracted by their appropriate decision regions and
repelled by their in appropriate regions. Likewise, the decision boundaries are
attracted and repelled by the addressed locations. During learning the decision
boundaries and the addressed locations are juggled until the input classes are
separated appropriately by the decision boundaries and the points are outside
of the sphere of influence of repellor regions.

An important point is that as soon as the net has separated the classes, as
described, the process terminates. There is no fine tuning of the individual
distances between the addressed locations. The main determinants of where
an addressed location will end up in decision space (apart from rate param
eters) are: (i) the initial addresses of the inputs; (ii) Tlie initial positions of
the decision boundaries; (iii) similarity relations in input space; and (iv) the
required similarity relations in the output space. By way of example, Figure 2
shows a decision space for a fully connected feedforward net that was trained
on the XOR task using backpropagation learning. Note how the input pat
terns have been allocated addresses in the decision space that allow them to

Internal Report 233

be separated by a line. This shows clearly that a net with two weight layers
does not necessarily implement a nearest neighbour classifier. Two addressed
locations with the same computational roles may be relatively distant as shown
for the input vectors [0,1] and [1,0] in Figure 2. The point is that being in the
same neigbourhood often correlates with being in the same decision region, but
the two are separable. It is not the distances between the addressed locations
that determines the computation, rather what the net will compute for a given
input is entirely determined by its addressed location in relation to the decision
boundaries.

Figure 2 The decision regions for a net trained on the XOR function.

This latter point will be demonstrated by working through some examples.
An address space is illustrated in Figure 3 with the coordinates of twelve
input patterns shown as numbered locations. 2 These locations are not, as
yet, labelled according to their input or class. Since the labels do not have a
causal role in the computation, their ommission enables us to look at the data
neutrally. Post hoc explanations of why, for example, 'tomato' was clustered
with 'cucumber' instead of 'apple' can be very distracting.

2Backpropagation tends to push the hidden unit vectors towards the axes of the space. It
is also possible to find instances of backpropagation learning in which some points are located
in the middle of the space, for example, where they are novel inputs patterns and they are
orthogonal (or nearly orthogonal) to the trained patterns as illustrated in the examples.

234 CHAPTER 7

Figure 3 An address space with numbered locations.

A visual inspection of Figure 3 reveals four clusters of locations in the space:
(i) 1,2,3; (ii) 4,8,9; (iii) 5,6,7; and (iv) 10,11,12. This is supported by a
Hierarchical Cluster Analysis of the squared Euclidean distance between the
points. A dendogram of the analysis, shown in Figure 4, only differs from
the visual inspection in linking two of the clusters, (ii) and (iv), in a central
superordinate cluster. We could speculate that the clusters represented types,
for example, animal, vegetable and mineral. The central (superordinate) cluster
in the dendogram could be showing that the two clusters are subordinate types
such as mammal and non-mammal. Alternatively, the clusters could represent
agents, verbs, and actions, with the verbs subdivided into transitives and
intransitives.

Internal Report

5 —l

—1

3i

1

Figure 4 A dendogram of the hierarchical cluster analysis of the data
points shown in Figure 3.

We can now use our speculations to show how a neighbourhood analysis,
such as cluster analysis, can yield quite different results from a computational
analysis. To complete the picture, the weights to each of the output units
are used to draw decision boundaries through the input space. The resulting
decision space diagram is shown in Figure 5.

Figure 5 tells us that there are three output units (because there are 3 decision
lines) and that they divide the space into a number of positive regions con
taining the addresses for points 1-4, 5-8, 9-12. This differs considerably from
the neighbourhood analysis. Since the decision space determines the compu
tational type of each of the input tokens, it shows that the interpretation of
the neighbourhood analysis was incorrect. Although the results of the cluster
analysis were correlated, to some extent, with the decision space, they did not
provide a reliable measure of the computational roles of the inputs. 3

3In this chapter we describe only the common binary output nets typical in cognitive mod
elling. With continuously valued output units we may think of each output unit as implementing
a series of boundaries each of which reflects a particular value on the output. With such a
net the outputs are fixed by the intersection of the boundaries. For example, this is how the

236 C H A P T E R 7

Figure 5 A decision space for the numbered points in Figure 4.

When cluster analyses are shown in the literature, the labels associated with
the inputs are usually shown. These labels can often provide information about
the computational role of the inputs and are, in a sense, often used in place
of a proper computational analysis, e.g. we might know that tiger should
cluster with lion rather than with comb. In Figure 5, labels are associated with
each of the address points and decision lines from Figure 3. We can see now
that the space is divided up into canines, herbivores, and birds. Each of the

non-terminals of a RAAM net ([54]; [2]) work. However, there is still a legitimate separation
between specific Euclidean distance relationships in hidden unit space and the computational
roles of the inputs. Even then, in terms of the overall functionality of a RAAM, the correlation
between distance and function arises as a result of similarities between the input terminals rather
than between structurally similar input expressions.

Internal Report 237

Figure 6 An alternative decision space for the numbered points in Figure
4.

addressed locations falls into one of these regions and thus we can say that each
of the input patterns falls into one of those types. Now, this analysis highlights
a common misconception in the literature (e.g. [18]) that the addresses are
representations of the input that contain type information. This is true only in
that the coordinates do locate the addresses within particular regions. However,
it should be very clear at this point, and must be stressed, that types are not
implemented by their specific distance relationships within neighbourhoods.

The force of this point can be seen by drawing new decision lines through
the decision space as shown in Figure 6. Three new decision lines have been
drawn through the space so that the type structure is now different than it

238 CHAPTER 7

cow

guar piy
WPfr P ° Q d l e s n a i e b i u vultmnoRrS

Figure 7 View of the decision space of Figure 6, viewed in 3D with the
addition of the z axis.

was in Figure 5. Now locations 1,3,5,6,7 share the same computational role,
distinct from the computational role shared by locations 2,4,8 and distinct from
the computational role shared by locations 10,11,12 (Location 9 has its own,
unique computational role). In other words, the type membership of a location
can change even though its vector of hidden unit activations remains constant.
It is clearly the relationship between an addressed location and the decision
boundaries that determines the (computational) type of the input.

If this argument has not convinced some readers about the vagueness of the
notion of a vector of hidden unit activations having content, then consider
the following. Figure 5 shows the label cow in the extreme upper left of the
space while condor is in the extreme lower right. Now suppose we wish to
create a type category for words beginning with the letter c. This is quite easy
in decision space. We simply add a third dimension and raise both cow and
condor on the z axis. In this case, as shown in Figure 7, we can simply slide in
a new decision boundary to separate cow and condor from the other labelled
locations in the space.

So, in what sense can it be that the vectors of hidden unit activation now contain
information that condor and cow both belong to the class of words beginning
with the letter c? OK, so we added a small value on a third dimension. This
change does not really affect the distance relationships between the addressed

Internal Report

7 '

2 —i

3 —J

1 '

4 —,

8 —' I

9 1

10 —i

12 -A

11 •

Figure 8 Cluster analysis of the 3-d space shown in Figure 8.

locations, as can be seen from the cluster analysis of the 3-d space, shown in
Figure 8, but it would affect their type relationships,

In summary, the examples in this section have shown that it is decision space
rather than representation space that indicates the similarities between the
inputs. Systematicity arises from the relationships in decision space between
each addressed location and the decision boundaries, rather than between the
addressed locations themselves. The decision space analysis clearly shows the
computational role of the input vectors. The 'meaning' of an input vector in
the system is the relation of its address to the decision boundaries of the output
units. The idea that the individual addresses share intrinsic content, is only
true insofar as inputs with similar addresses may be, depending on the task,
more likely to end up in the same region. Any point in a region will output
the same as any other point in the same region regardless of distance from the
decision boundaries. As the example in Figure 5 shows, two points, 1 and 4
are relatively distant and yet are computationally identical whereas points 4
and 8 are relatively close and computationally disparate. Moreover, we have
shown that the address can only be said to contain information about 'type'
or 'semantic information * in a vague and unreliable way. This is because the

240 C H A P T E R 7

'type' of an address can be entirely changed just by moving the decision lines,
as shown in Figure 6.

4 DISCUSSION

Our aim in this paper was to challenge one of the key assumption of an emerging
connectionist theory of mind; that of spatial systematicity. Our approach has
been to strip away some of the layers of baggage that could obscure the issue of
what and how a connectionist net is computing. This is reminiscent of a similar
purge in AI some years ago when McDermott ([15]) railed against the cavalier
use of conceptually extravagant, but ultimately meaningless, labels in artificial
intelligence work. He complained that the rich web of associations within
which each such label is buried both obscured what was really going on among
the labelled entities and also led to delusions of grandeur in the experimenters.
This hard criticism was generally accepted at the time (although not always
acted upon) by the AI community. It is suggested here that this is a healthy
step and that it may now be time for all of us 'sub-symbolists' to pay attention
to this important lesson. Although it is important not to give up all that has
been learned by the Classical tradition, it could well be a fatal distraction to
concentrate on satisfying their terminology rather than paying attention to the
phenomena that are to be explained.

In our analysis of spatial systematicity, we removed the label representation
altogether and replaced it with the more neutral terms address and addressed
location. The main problem with the idea of hidden unit distributed represen
tations is that it considers only half of what a net with two layers of weights
is doing. Popular neighbourhood analysis techniques such as cluster analysis
leave out entirely the role of the output weights. What we have argued here
is that because the computational properties of a net and the neighbourhood
distances are often correlated, one can be misled into believing that the dis
tance relations are causal in the computation. We set out to dispel this belief by
showing, in a number of examples, how the two can be analytically separated.
Indeed, it is only the relationship between each addressed location and the
collective decision boundaries that causally determines the computation of a
net.

The spatial relations between the individual hidden vectors are not a direct
analogy to the syntactic relations between Classical representations. Back-
propagation works with functional rather than distance similarity among the

Internal Report 241

input vectors. All that happens during learning is that the input and output
weights are moved until all of the addressed locations are on the correct sides
of all of the decision boundaries. Once this occurs the learning terminates
regardless of the specific distances between the points. We have shown here
that it is possible for a cluster of addressed locations to have no functional
significance for the particular task as shown by the dendogram of the points in
Figure 4. The cluster of the numbered points, 4, 8, and 9 had nothing to do
with what the net computes according to the decision spaces shown in Figures
5 and 6.

When we show the door to the spatial systematicity assumption two other
subsiduary assumptions must also be asked to leave. The first is that con-
nectionist representations (our addressed locations), as vectors of activation,
have a systematic internal structure. That is, representations which need to be
treated similarly by a given computational process, are treated similarly, by
virtue of their own internal structure. In one extreme case here (see Figure 8)
we showed that although the labels condor and cow were at extreme corners
of the space (almost as far apart as possible) their addressed locations could
be treated similarly by the computational processes simply by moving them
into a third dimension to enable a decision plane to cut them off from the other
addressed locations (yet they could be the same distance or further apart from
one another). The second subsidiary assumption is that the internal structure
of a representation, which is a function of the content of its superposed con
stituents, determines its degree of * semantic similarity' with other compound
representations, ie. compound representations with similar structures will have
similar 'contents'. Again, the condor-cow example, shows this assumption up
for what it is. And further, in Figure 5, this assumption would show, in terms of
the vocabulary of the spatial systematists, that & poodle is 'semantically more
similar' to a snail than it is to a fox, a wolf or & jackal. The decision space
analysis however, reveals a qualitatively different picture, where poodle, fox,
jackal and wolf belong to the same functional category with computational
properties distinct from snail.

Let us be absolutely clear. A proponent Qf 'spatial systematicity' may continue
to argue that mere addressed location of an input in hidden unit space is still
of paramount importance. This is wrong. It is rather the case that location is
a relative concept, and it can only be with respect to the decision boundaries
that an addressed location has computational significance. What we have
shown here is that if an input maintains its addressed location, while the
decision boundaries are changed, then that input will have a different role in
the computation of the network. Indeed, a fixed addressed location for an

242 CHAPTER 7

input may partake in many different computational roles, as a function of the
decision boundaries implemented by the output units.

Overall, the arguments presented here suggest that, contrary to the popular
practice of concentrating upon a single representational resource in isolation
(either the unit or the weight resource), connectionists would do better to adopt
a * whole net' view of representation. Analysing unit activations in isolation is
misleading, unless the theorist takes into account decision boundaries imple
mented by the output units: similarly, analysing decision boundaries without
taking into account the addressed locations they partition is meaningless. It
remains to be seen how, and in what form, the notion of 'whole net' represen
tation can be fleshed out.

The bottom line is that spatial relations of hidden unit space can be separated
analytically from the computational roles of the 'representations'. The burden
of proof that such a separation cannot occur, either in principle or in practise
in specific implementations of cognitive capacities, lies with those who are
making the claims about spatial systematicity. Our suggestion is that a more
stable cornerstone for a new connectionist theory of mind should be built up
on the foundations of decision space presented here.

5 SUMMARY

This chapter was concerned with the underpinnings of the emerging connec
tionist theory of cognition with regards to the internal workings of connectionist
nets (hence the title of the chapter). We did not reconsider the terms of the
debate between the Classical and the connectionist schools, and thus, in this
sense also, the chapter is an internal report for connectionists. Our aim was
to challenge a key assumption of the proposed connectionist representational
scheme, namely, that the precise distances between vectors of hidden unit ac
tivations, learned by a connectionist net, reflect systematic semantic and/or
structural similarity relations. We did not simply attack a Spatial Strawman in
advancing our argument because, as we have said, current understanding holds
that even a minute difference in die distance between a given activation vector
and any of the others will change the 'meaning' of that vector.

The structure of our argument was in two parts. First, in Section 2, we ex
amined the origins of the Connectionist term 'representation', and described
the key 'spatial systematicity' assumption. Second, in Section 3, we presented

Internal Report 243

a detailed argument using constructive methods, drawing upon a simple de
cision space technique which demonstrated that this assumption may not be
warranted except under special circumstances. An important aspect of the
argument was to show that the computational role of a, so called, distributed
representation may be separated from its specific neighbourhood distance rela
tions. This analysis was then used to support an argument in favour of 'whole
net' representation. It may seem to some that we are being a bit 'picky' here,
but if we do not make sure that the foundations are correct we could end up
with a tower of Babel.

A C K N O W L E D G E M E N T S

We would like to thank Lars Niklasson and Timothy van Gelder for helpful
comments on an earlier draft of this chapter.

REFERENCES

[1] Aizawa, K. (1992) Review of Philosophy and Connectionist Theory.
W.Ramsey, S.P.Stich & D.E.Rumelhart (Eds). In Mind and Language, 7.

[2] Baldwin, A. (1993) The role of connectionist representation in neces
sary inference for natural language processing. Unpublished PhD. thesis,
University of Exeter.

[3] Chalmers, D.J. (1990) Why Fodor and Pylyshyn were wrong: The sim
plest refutation. Proceedings of the Twelfth Annual Conference of the
Cognitive Science Society\ 340-347.

[4] Collins, A.M. & Quillian, M.R. (1969) Retrieval time from semantic
memory. Journal of Verbal Learning and Verbal Behavior, 8, 240-247.

[5] Dolan, C.P. & Smolensky, P. (1989) Tensor product production system: a
modular architecture and representation. Connection Science, 1.1., 53-68.

[6] Elman, J.L. (1989). Representation and structure in connectionist models.
CRL Technical Report 8903, Center for Research in Language, University
of California, San Diego, CA.

[7] Fodor, J.A. (1975) The Language of Thought. New York: Crowell.

244 CHAPTER 7

[8] Fodor, J.A. & McLaughlin, B. (1990) Connectionism and the problems
of systematicity: Why Smolensky's solution doesn't work. Cognition, 35,
183-204.

[9] Fodor, J.A., & Pylyshyn, Z.W. (1988). Connectionism and cognitive ar
chitecture: A critical analysis. Cognition, 28, 2-71.

[10] van Gelder,T.(1989) Classical questions, radical answers: Connectionism
and the structure of mental representations. Horgan,T. & TiensonJ. (Eds)
Connectionism and the Philosophy of Mind.

[11] van Gelder, T. (1990) Compositionality : A connectionist variation on a
classical theme. Cognitive Science, 14, 355-384.

[12] van Gelder, T. (1992) Defining 'Distributed Representation'. Connection
Science, 4(3,4), 175-192.

[13] Hinton, G.E. (1989) Connectionist learning procedures. Artificial Intelli
gence, 40, 184-235.

[14] McCulloch W.S. & Pitts W.H. (1943) A logical calculus of ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

[15] McDermott, D. (1976) Artificial intelligence meets natural stupidity.
SIGART Newsletter, no. 57, 4-9.

[16] Pollack, J.B. (1990) Recursive distributed representations. Artificial In
telligence, 46,11-105.

[17] Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning repre
sentations by back-propagating errors. Nature, 323, 533-536.

[18] Sharkey, N.E. (1991) Connectionist representation techniques. Al Review,
5,3, 143-167.

[19] Sharkey, N.E. (1992) The Ghost in the Hybrid: A Study of Uniquely
Connectionist Representations. AISB Quarterly. 10-16.

[20] Sharkey, N.E. & Jackson, S.A. (In press) Three horns of the representa
tional trilemma. In V. Honavar & L. Uhr (Eds) Artificial Intelligence and
Neural Networks: Steps towards Principled Integration. Volume 1: Basic
Paradigms; Learning Representational Issues; and Integrated Architec
tures. Cambridge, MA: Academic Press.

PART HI

COMBINED ARCHITECTURES

246

Part III: Combined Architectures

• Chapter 8 (by Ron Sun) presents a connectionist architecture consist
ing of two levels: one level for conceptual inference and the other for
microfeature-based similarity matching.

• Chapter 9 (by Lawrence Bookman) presents a connectionist architecture
that supports both structured and non-structured representations in which
knowledge is encoded automatically using information-theoretic methods.

• Chapter 10 (by Charles Lin and Jim Hendler) presents an application of a
hybrid system shell.

8
A Two-Level Hybrid Architecture

for Structuring Knowledge for
Commonsense Reasoning

RON SUN

Department of Computer Science
College of Engineering

The University of Alabama
Tuscaloosa, AL 35487

1 INTRODUCTION

In this chapter, a connectionist architecture for structuring knowledge in vague
and continuous domains is proposed. The architecture is hybrid in terms of
representation, and it consists of two levels: one is an inference network with
nodes representing concepts and links representing rules connecting concepts,
and the other is a microfeature-based replica of the first level. Based on the
interaction between the concept nodes and microfeature nodes in the archi
tecture, inferences are facilitated and knowledge not explicitly encoded in a
system can be deduced via a mixture of similarity matching and rule applica
tion. The architecture is able to take account of many important desiderata of
plausible commonsense reasoning, and produces sensible conclusions.

One of the most important problems in building intelligent systems (and in
modeling cognitive processes) is how to represent knowledge, that is, how to
structure knowledge in a way that facilitates common types of inferences to
be made. Most commonly, some types of logic or rule-based approaches are
adopted ([44] and [13]). However, these approaches are far from matching
the capacity and flexibility of human reasoning (see [4] and [39]). What is the
problem?

Knowledge is hard to grasp, as discovered by many, including some leading
researchers (cf. Minsky [21] and Hayes-Roth et al [13]), notwithstanding the
fact that small chunks of knowledge for a narrowly defined domain can be
extracted and structured into rule-based, frame-based, or other similar systems.

247

248 CHAPTER 8

Psychological experiments reveal that in human cognition various kinds of
knowledge exist and they are used in different ways [22]. Many different types
of inferences can be performed in commonsense reasoning, sometimes based
on the same set of knowledge [20]. In addition, most commonsense knowledge
are uncertain, fuzzy, or probabilistic (cf. [23], [41], and [6]).

In view of these problems, in order to build intelligent systems that are more
capable than the existing ones in producing flexible, plausible and useful infer
ences, there is clearly a need to sharpen up means for representing knowledge;
that is, there is a need to structure knowledge in ways that maximize the infer
ential capability while minimizing the inferential complexity (the performance
issue does need to be considered). This is a tough goal to achieve, since the
two subgoals are apparently mutually contradictory. (For some domains that
will be looked into here, a nice balance between the two subgoals is indeed
achievable.)

Some attempts at providing more flexibility to intelligent systems result in some
partially successful models for representing knowledge and/or performing rea
soning. One such model is fuzzy logic [43], which allows vague concepts and
deals with vagueness in reasoning. It envisages a concept as a set of objects
each of which belongs to the set to a certain degree, as measured by a grade of
membership. Thus, vague concepts are accommodated and objects may belong
to a particular concept partially, without the need of forcing a dichotomatical
true/false decision. (This work will adopt this view of concepts as partially
true descriptions of objects, but will not adopt the logical operations defined
on top of that, i.e. MIN/MAX, as in [43]).

Beside fuzzy logic, there are a number of other rule-based approaches, for
example, probabilistic reasoning [23], Dempster-Shafer evidential reasoning
[26], and so on, each of which is good at capturing a particular aspect of
vagueness of real world knowledge. However, they are not meant to deal with
aspects other than the one for which they are specifically designed.

Another popular approach is that of PDP models (see [25] and [1]). Using
networks of simple processing elements, typically with a global multilayer
feedforward structure and with a continuous, sigmoidal activation function in
each processing element, these models are capable of virtually any continuous
mapping [16], including dealing with flexible reasoning based on similarity as
mappings between two sets of concepts. This purely similarity-based, generic
framework can be applied to a large variety of knowledge intensive tasks,
by encoding knowledge distributively in link weights acquired from applying
learning algorithms. However, these models lack certain basic characteristics

A Two-Level Architecture 249

for flexible yet precise commonsense reasoning, namely, explanation, symbolic
processing, interaction with humans in acquiring and modifying knowledge,
interpretation of internally stored knowledge, and handling of discontinuous
cases (see [33]; more on this later).

In the discussion here, let us generally assume that knowledge in a domain
is composed of knowledge statements, such as Horn clauses, which could be
atomic propositions or rules consisting of a number of atomic propositions
expressing antecedents and consequents respectively. This is an acceptable
assumption, because almost all knowledge-based systems are in such forms
(or can be transformed into such forms, for example, frames, scripts, etc.;
see [12]). (One exception is neural networks, which encode knowledge in
a set of numerical weights, which are difficult to interpret in terms of rules.
One of the goals of this work is to show that there is an alternative to the
black-box style neural network models, and the architecture proposed here not
only serves as an alternative but also has some important advantages.) From
here on, when we discuss a domain, we will think of it as composed of a
space of primitive statements (i.e., the set of all possible primitive statements),
and the main operation in that space is match. When two statements are
deemed matching each other, inferences are enabled by associating knowledge
of one statement with the other. For example, suppose there is the following
space of primitive statements: {a,6,c,d,e,/}, and there are the following
associated compound knowledge statements: c —• d and e —• /. When
given a, matching statements are searched for. Suppose e matches a (exactly
or approximately), then the knowledge statement e —• / can be applied, and
/ can be deduced (exactly or approximately).

The present work will be mainly concerned with the vague domains. By
vague domains, it is meant the type of domains that are composed of inexact
statements (fuzzy, probabilistic, etc.), and the match between two statements
in a domain is not all-or-nothing: a continuum can be formed that ranges
from perfect (exact) match to no match (irrelevance) to the exact opposite (the
negative perfect match). The key features of such domains are (1) inexactness,
allowing partial match situations, and (2) continuity, with varying degrees of
partial match.

Given the above, it is impossible to have all the knowledge statements that can
cover all possible situations in such domains: the number of possible situa
tions can be infinite, because a continuum can exist going from one statement
(any particular statement) to the statement that is the exact opposite. Given
this infinite space, knowledge statements need to be devised and structured
economically, in ways that can cover a domain as accurately as possible within

250 C H A P T E R 8

the constraint of resources. The question of how to structure knowledge to
help to guide and facilitate reasoning in a domain also needs to be considered.

In the rest of this chapter, some discussion of vagueness will be provided, and
then a two-level structuring of knowledge for vague domains will be proposed.
Based on a particular set of requirements for plausible inferences, the parameter
values of a two-level architecture satisfying these requirements will be derived.
A set of experiments will also be presented to further illustrate the architecture.
Finally, brief comparisons and conclusions will complete the chapter.

2 D E V E L O P I N G A T W O - L E V E L A R C H I T E C T U R E

2 .1 S O M E A N A L Y S E S

Let us consider how we can better structure our knowledge, given the afore
mentioned considerations. First of all, we need to have explicit knowledge
statements in our system. This is because explicitly stored knowledge state
ments can provide clarity, modularity, human comprehensibility, and expla
nations needed for interaction. We simply choose Horn clauses as the form
of such knowledge statements (see [3]). In its simplest case, a Horn clause
just states a proposition or a concept, without any pre-conditions or possible
consequences. In more complex cases, a Horn clause is a rule consisting of
a number of antecedents, which are simple propositions/concepts, and a con
sequent, which is also a simple proposition/concept. We choose Horn clause
because of the simplicity of the formalism, its popularity in knowledge-based
systems, its expressive power, and its inferential efficiency [3].

Second, we need to have a better grasp of the various kinds of vagueness in
domains. For one thing, there should be a degree of confidence or certainty
associated with each primitive knowledge statement (or its instantiation), judg
ing how close, and/or how likely an instance of that statement is to conform
to the ideal of the concept involved (see [41]). For example, "warm areas are
suitable for rice growing" can be expressed in the rule

warm —• rice-growing

Here "warm" is not a crisp concept (knowledge statement); various degrees of
"warm" exist. We should allow a degree of confidence to be associated with
the knowledge statement. We can accept as input to a system an instance of

A Two-Level Architecture 251

the knowledge statement of a place being "warm" with an associated confi
dence degree. We then match it with an existing rule (or compound knowledge
statement), to form an instantiation of the rule. And we derive the conclusion
knowledge statement of a place being "rice-growing" with a corresponding de
gree of confidence determined by, among other things, the degree of confidence
of being warm.

We also need a way of associating a confidence value with a rule itself, deter
mining how likely it will hold. Moreover, various vague evidence leading to
the same conclusion should be summed up; that is, the degrees of confidence
of different pieces of evidence in a rule have to be accumulated in some way,
for example, by a weighted-sum. An example is as follows,

subtropical rainy flat evergreen -«flood —• rubber-producing-area

That is, an area with subtropical and rainy weather, flat terrain, and evergreen
vegetation cover but no frequent flood tends to be an rubber-producing area. If
one only knows that an area is subtropical, rainy, and without flood, one may
conclude that it could be a rubber-producing area; if one knows that an area is
subtropical, rainy, with flat terrain, and without flood, one can conclude that
it is more likely to be a rubber-producing area; if one knows all of the above
conditions, one can conclude that the likelihood is very high. A cumulative
evidentiality is in working here, which should be taken into consideration.

There is yet another type of vagueness, which can be further pinned down.
Basic concepts (or primitive knowledge statements) are similar to each other
to varying degrees. Even though something is best described by one particular
knowledge statement, other statements may also apply. Especially when there
is no inference that can be made with the best matched case, turning to other
related cases will definitely be of help. This is in a way similar to analogical
reasoning (or case-based reasoning), in that some seemingly different knowl
edge is brought together from a partial match of two chunks of knowledge.
In some sense, we need a rudimentary form of analogical reasoning capa
bility in dealing with vague domains. An example from the commonsense
geographical reasoning domain is as follows: "Columbia basin" is described
as tropical river-basin and coastland, and "Ecuador coast" is described as a
tropical, coastal lowland with rainforest cover. In order to deduce possible
agricultural products of "Columbia basin", we notice its similarity to "Ecuador
coast" in terms of their geographical features. Since the latter produces (among
other things) bananas, we can conclude that the former may produce bananas
too. For another example, "Northern Brazil" is described as a tropical, hilly
plateau with rainforest, and "Bolivia oriente rainforest area" is described as
tropical plain and lowland with rainforest. The former is a rubber-producing

252 CHAPTER 8

area. Because of the feature similarity, we might conclude that the latter is
likely to be one too.

To sum up, some precisely specified rules are needed, and in addition to such
rules, vagueness in a domain needs to be dealt with by utilizing continuous
numerical evidential combination and similarity-based inferences. Similarities
can be explored based on features (or microfeatures, as used in [25]) to provide
a fuller coverage of all possible situations in a domain.

2.2 A TWO-LEVEL ARCHITECTURE

A two-level approach for structuring knowledge to take care of the two types
of vagueness was proposed in [34]. We call this architecture CONSYDERR,
which stands for a CONnectionist SYstem with Dual-representation for Eviden
tial Robust Reasoning. One level of this architecture is the concept level, which
contains primitive knowledge statements, or concepts. This level consists of
a collection of nodes, or processing elements, for representing the concepts in
the domain. For expressing compound knowledge statements, or rules, these
nodes are connected via links from antecedents of a rule to consequents of the
rule. (This level is the top level in Figure 1.) The other level (the bottom level)
is the microfeature level, which contains nodes each of which represents a fine
grained element (a microfeature) in the meanings of the concepts represented
in the top level. Each node in the top level is connected to all the relevant
microfeature nodes in the bottom level; once a concept node is activated, the
related microfeature nodes will be activated subsequently from inter-level con
nection, and vice versa. Links in the top level are replicated diffusely in the
microfeature level by multiple links between two sets of microfeature nodes
representing an antecedent and a consequent of a rule respectively. The first
type of vagueness is handled by utilizing weighted-sum computation in each
nodes, which is a continuous mapping, accumulating evidence from different
sources (see [33, 35]), in computing its output activation. It is proven that such
a function can actually implement Horn clause logic as a special case [35]. The
second type of vagueness is handled by a similarity matching process based on
microfeatures. In this structure, similarity matching is accomplished through
the interaction between the two levels, by a top-down/settling/bottom-up cycle
(see Figure 1).

Equations for the computation of the three phases are specified as follows:

A Two-Level Architecture 253

Phase I: top-down

links enabled

Phase II: intra-level

links enabled

Phase m: bottom-up

links enabled

Figure 1 The Two Level Structure

For the top-down phase,

ACTXt(t + 1) = max(tdA * ACTA(t))
A

where ACT is the activation value of a node and A is any node in
the top level that has x2 e FA (the set of microfeatures connected to
A); td is a weight (to be determined later). That is, a microfeature
node receives activation from the corresponding concept nodes, and
chooses the largest value.

For the settling phase, in the top level

ACTc(t + 1) = J2 ri * ACTAl(i)
i

and in the bottom level

ACTy(t + 1) =] T Iwj * ACTXj{t)
3

where r's and Iw's are link weights (representing rule strengths), and
Iw's can be determined from corresponding r's (as will be shown
later); A{ 's and xi 's are the activations of nodes that are related re
spectively to C and y's by links (rules). That is, in this case, each

A
1 •

I '
/ 1

; I

/

1 / /
/ / i

/ / /
i
<L

r* nv
v / V

V

B
' — ' % \

o
d :

£wJs r*^-—-Mi

6^—-X

* v
4A
\ \ \ \

1 t •»

% \ \ x
\ \ 1 » /

1 1 /
1 1 /
1 I '

; / . I i '

t\+*A\f B

r^o /

254 C H A P T E R 8

node receives activations from other nodes at the same level (which
are related to it by rules) and does a weighted-sum for computing its
own activation.

For the bottom-up phase,

ACTc(t + l) = max(ACTc(t),] T buc * ACTVi{t))
VitFc

where C is any top level node, and yi 's are its corresponding microfea-
ture nodes (because yt e Fc)\ bu is a weight (to be determined later).
That is, a concept node receives activation from its corresponding mi-
crofeature node, and chooses the value as its activation if it is greater
than its original activation.

When applying this cycle, first some nodes in the top level get activated by
external inputs (and clamped). Then the top-down phase will activate (and
clamp) the microfeature nodes corresponding to the active concept nodes. In
the settling phase, links representing rules related to those activated nodes take
effect in both levels. Concepts may have overlapping microfeature represen
tations because they share some common microfeatures due to similarity; so
some of the microfeature representations of concepts will be partially activated
if a concept similar to them is activated (in the bottom level). Finally in the
bottom-up phase, fully or partially activated microfeature representations will
go back up to activate the corresponding nodes in the top level. The result can
be read off from the top level.1

Notice the massive parallelism in the above architecture: activations are prop
agated, in a massively parallel fashion, from all pre-link nodes to all post-link
nodes; each node receives inputs as soon as it can, and therefore fires as soon
as it can, ensuring a maximum degree of parallelism in terms of rule appli
cation. In terms of similarity matching, all similar concepts are activated (in
their microfeature representations) immediately once an original concept is ac
tivated, and simultaneously matched with the original one (through top-down
and bottom-up flows); thus the architecture is extremely efficient by employing
the two levels. The parallelism in this architecture accounts well for the similar
parallelism and spontaneity in human reasoning processes as identified in, for
example, Collins & Michalski [4] and Sun & Waltz [33].2

^ach node in the system has one or more sites (cf. [7]), each of which computes the
weighted-sum (or any other similar functions whenever needed) of the inputs. The maximum
of the values computed by all the sites is taken to be the activation value of the node.

2One problem that is not addressed here is the variable binding problem, that is, how argu
ments can be associated with predicates in inference. This is especially difficult for connectionist

A Two-Level Architecture 255

3 FINE-TUNING THE STRUCTURE

3.1 BASIC DESIDERATA

To show that the two-level architecture proposed above is versatile enough to
accommodate special requirements that are often associated with various kinds
of reasoning tasks, we will see how a set of desiderata for dealing with the
geographical commonsense reasoning tasks (see [34]) can be used to determine
the parameters of the architecture.

All of the desiderata and the requirements for some commonsense reasoning
in geographical domains are determined in [34] and they can be summarized
together as follows (divided into three categories: rule application, similarity
matching, and inheritance):

Similarity. A similarity measure SAB measures the similarity between A (the
target) and B (the source), namely, "A ~ B".3 It is needed because in vague
domains we can and must reason based on similarities of knowledge statements,
in order to reach plausible conclusions with an incomplete knowledge base.
A similarity measure has the following requirements (see [34] and references
cited therein for detailed justifications; they are too long to replicate here):

sAB OC \FA n FB\, that is, the similarity between two concepts is
proportional to the amount of their microfeature overlapping.

SAB oc J ^ T , that is, the similarity is inversely proportional to the
number of microfeatures B has, when everything else is equal.

SAB 9̂ T^T, that is, the similarity is not (inversely or not) proportional
to the number of microfeatures A has, when everything else is equal.

networks (when used as implementational means), because of the simplicity and homogeneity
of such networks. Nevertheless, such networks have been shown to handle variable binding to
a large extent (see Sun [35] for details).

3 Here similarity from A to B means that, when there is no direct knowledge about the concept
A available, the concept B, which is similar to A, can be utilized to find plausible answers. This
situation, which can also be termed similarity-based induction, is different from the generic,
context-free notion of similarity.

256 CHAPTER 8

Rules. Rules are needed for expressing precisely the knowledge that a system
does possess. Coupling such precise knowledge statements with similarities,
a lot of plausible inferences can be made. The following cases of rules and
mixed rules/similarities have respective requirements:4

(1) A —• B: if A is activated, then ACTB = rAB * ACTA, where
ACTA is the activation value of A, ACTB is the activation value of B,
and rAB is the strength of the rule between A and B (the same below);

(2) A - B, B —• C: if A is activated, then ACTB = SAB * ACTA, and
ACTC = rBC * ACTB> where sAB is the similarity between A and B
(the same below);

(3) A —• B, B - C: if A is activated, then ACTB = rAB * ACTA, and
ACTC = sBC*ACTB;

(4) A —• B, B —• C: if A is activated, then ACTB = rAB * ACTA,
and ACTC = rBC * ACTB;

(5) A —• B, B —• C, C —• D: if A is activated, then ACTB =
TAB * ACT A , ACTC = rBC * ACTBy and ACTD = rCD * ^CTC;

(6) A - B, B —• C, C —• D: if A is activated, then ACTB =
sAB * ACT A , ACTC = rBC * ^CTB , and .4CTD = rCD * ACTC\

(7) A —• B, B - C, C —• D: if A is activated, then ACTB =
rAB * ̂ C T ^ , ACTC = sBC * yiCTB, and ACTD = rCD * ^ C T C ;

(8) A —• B, B —• C, C - D: if A is activated, then ACTB =
rAB * J4CXI, ,4CTC = rBC * ACT*, and ACTD = «c/> * J4CTC ;

(9)A~B,B—>C,C~D:ifAis activated, then ACTB = sAB*ACTA,
ACTC = rBC * ACTB, and ACTD = SCD * ACTC.

Inheritance. Inheritance is inference based on knowledge (statements) asso
ciated with a superclass or a subclass of a concept. This problem is important,
because different concepts (primitive knowledge statements) may bear rela
tionships to each other as superclass/subclass. Therefore it is necessary to
consider their mutual interaction, and to organize knowledge around an inher
itance hierarchy for storage economy. Let A D B, and therefore FA C FB; that
is, the larger the extension the smaller the intension (the microfeature set); if
A is a superset of B, the intension (the microfeature set) of A is the subset

4 We only deal with rules with only a single premise here; rules with multiple premises are
just extensions of these cases (see [35] for a detailed treatment). Note also that, unlike symbolic
systems, here various sorts of chaining have to be dealt with on a one-by-one basis.

A Two-Level Architecture 257

of the intension (the microfeature set) of B (see [19] for explanations). The
following cases (taken from [36]) should be checked:

(1) A has a property value C, and B has no specified property value.
If B is activated, then C should be activated.

(2) B has a property value D, and A has no specified property value,
if A is activated, D should be activated too.

(3) A has a property value C and B has a property value D ^ C. if A
is activated, C should win over D.

(4) A has a property value C and B has a property value D ^ C. if B
is activated, D should win over C.

(5) A has a property value C which has a feature set Fc, and B has
a property value D D C (FD C FC)- If A is activated, C should win
over D.

(6) A has a property value C which has a feature set Fc, and B has
a property value D D C (FD C F C) . If B is activated, D should win
over C.

With all these constraints established, we can proceed to derive the exact
specifications of the parameters, including top-down weights (denoted as td),
bottom-up weights (denoted as bu)y and weights (denoted as lw) for finks
between two microfeature nodes which diffusely replicate the rule links r (see
Figure 2). This architecture can solve the similarity matching problem,
the rule application problem, and the inheritance problem, with the same
set of (appropriately set) parameters. 5

3.2 PARAMETERS DERIVATION

Below we will analyze the requirements and derive the parameters. For the
sake of simplifying the discussion, we assume in the following discussion that
the original rule strengths in the top level are all the same, that is, the maximum
value 1, We first direct our attention to inheritance/cancellation. Consider cases
three and four. When A is activated (but not B), we want C to be activated
more strongly than D in the bottom level. Then during the bottom-up process,

6We will use continuous activation values (for representing confidence values), approxi
mately between -1 and 1, in which 1 represents full confidence, 0 represents unknown, and -1
represents full negative confidence. We will not use thresholds for the simple reason that we
adopted continuous activation values which represents continuous confidence values.

258 CHAPTER 8

Phase I: top-down
links enabled

Phase II: intra-level

links enabled

Phase HI: bottom-up
links enabled

Figure 2 A Generic Model

these activation values will be transmitted to the corresponding concept nodes.
To make sure that C is activated more strongly than D, Iw (weights on the links
that diffusely replicate the link in the top level) should be somehow inversely
related to the size of the microfeature set of the originating concept. Assume
the original link weight is r, and the weights for links in the bottom level that
replicate (diffusely) the original link are (uniformly) lw. Let A be the source
node, and FA be its microfeature set. Similarly, let C be the destination node,
and Fc be its microfeature set.

r»

lwAC -
/(l*UI)

for any A and C, where / is a monotonic increasing function, linear or other
wise. Similarly, when B is activated (but not A), we want D to be activated
more strongly than C in the bottom level. Because the microfeature set of A
is a subset of that of B (as explained before), the total activation transmitted
to C or D should be related to the sizes of the respective microfeature sets.
Otherwise C and D will receive the same amount of activation, and therefore
it will become impossible to differentiate the two. Since the total activation
is equal to the size of the microfeature set of the originating concept times
the activation transmitted along each individual link, to make sure that D is
activated more strongly than C in this case, we must make / sublinear, so that

A Two-Level Architecture 259

the total activation transmitted will be related to the size of the microfeature
set of the originating concept.

It is easy to confirm that no matter what bu and td are used, with this lw function,
C and D in the bottom level (Fc and FD) will have the right activation in both
cases. The details follow: suppose A is activated, and A is the activation of
the microfeature nodes of A due to top-down activation, and a is the bottom-
up weight (the same for both C and D, because they both have only one
microfeature node):

ACTC = <x]T/u;AcA

ACTD = a^lwQD^

FA

so C is activated more strongly than D. In the other case, if B is activated (with
activation value A; the same for its microfeature nodes),

ACTj) — a \ J IWBD A
FB

= aWnk\)x

ACTC = <TY^IWAC\
FA

= 'lF'lnknx

so D is activated more strongly than C.

We are now ready to examine cases five and six, which are more complicated:
because Fc is embedded in FD (because C is a superclass of D, as explained
before), it is imperative that we pick the right bu function that takes into account
all effects, desirable or undesirable, of sizes of microfeature sets. Look at case
five. In order to have C activated more strongly than D,6 we have to take

6Let us assume that there is nothing going on in the top level, and all activations come
bottom-up.

260 CHAPTER 8

into account the sizes of the microfeature sets of C and D (i.e., Fc and FD)
in determining bu. And bu should be inversely related to the size of the
microfeature sets of the node in the top level with which the particular bu is
associated. Assume all microfeatures of C and D are activated to the same
degree, and Fc is embedded in FD, that is, C has fewer microfeatures than D;
if we have a uniform bu (equal to some <r)9 we will have an incorrect result (D
being more strongly activated than C):

ACTc — 2_\ buc * {acti>vati°n °f each node in Fc)

= ^2 buc X^A * 1WAC

Fc FA

= \FC\ *c r* A *rAC

provided / is the identity function, where A is the activation of the microfeature
nodes of A, which are all the same;

ACTD — /_, bun (activation of each node in Fp — Fc) -f
FD-Fc

} buj)(activation of each node in Fc)
Fc

- ^2 bUD XI ̂ * 1WBD + ^2bv,D 5ZA * 1WAC

FD — FC FA Fc FA

= \FD -FC*(T*\FA** r*J? 4- \Fc*<r*\FA** VA

I(\FB\) ' ' ° ' ' A | f(\FA\)

= a*X*rAC*\FA\(\Fc*j^

= <T**rAC(\Fc\ + \FA*\FD-Fc*T^-7)

provided that / is the identity function and rAC = rBD- Comparing the two
formulas, clearly D > C, which is wrong. On the other hand, if we make bu
to be inversely proportional to the size of the microfeature set of the CL node
with which the bu is associated, we will have C > D, which is correct. So what
we can do now is simply to have a function, #, that is faster than a constant
(with coefficients properly adjusted to guarantee that the asymptotic properties
also hold for small values), and to let

buc = ̂ k)

A Two-Level Architecture 261

for all C. Examples of such g include y/x, log xy the identity function, or other
linear functions, with coefficients equal to 1.

In case six, we want the opposite: D > C. We can perform a similar analysis.
In this case, we would rather have little or no influence from the sizes of
the microfeature sets. It is easy to see why: If we assume that bu = a (i.e.,
g(x) = i) , then, derived the same way as before,

ACTC = J2bucJ2X*lwAC

Fc FA

= \Fc\ * cr * \FA\ * A *

= \FC*(T * *rAC

and

ACTj) = YJ buo 2_] A * lwBD
FD FB

— \FD\ * <? * | F B | * A *

VAC

f(\FA\)

H\FB\)

a * A * TAC * \FB\ * \Fp\ *
f(\FB\)

= a * A * rAc * \FD\

provided / is the identity function and rAc - ^BD, where A is the activation
of the microfeature nodes of A, which are all the same. Comparing the two
formulas, clearly D > C, which is correct. But if we try to have a linear
function or a function that is faster than linear functions, it can be easily shown
that we will not get the correct result.

Combining results from the above two cases, we conclude that g, as part of
bu, has to be a function that is slower than linear functions, but faster than
constants.

Although the above derivation assumes that f(x) - xy as we have shown
before, f(x) has to be slower than linear. To right the situation, we just have to
make f(x) as close to linear functions as possible, so that the non-linearity of
f(x) will not affect the obtained relation (C > D or D > C), given the ranges
of \FA\, \FB\, \FC\, and \FD\. For example, we can choose f(x) = z9"/1000 and
g{x) = x9'10.

For the first two cases of inheritance, they can be handled by a mixture of
rule application and similarity matching. Case one can be described as B ~

262 C H A P T E R 8

A, A —• C, and can be handled as mixed rule application and similarity
matching. As will be analyzed later, if B is activated, then

ACTC = ACTB * sBA * rAC

Case two can be described as A ~ B, B —• D, and, as will be shown later, if
A is activated, then

ACTD = ACTA * sAB * rBD

Let us look into the similarity cases. Given the basic desiderata for similarity,
we can think of many different measures (cf. [38], [22], and [11]), such as

SAB = fH\FA n FB\) - f2(\FA -FB\)- fH\FB - FA\)

that is, the contrast model of Tversky [38]. Or

fi(\FAnFB\)
SAB f2(\FA - FB\) + M\FB - FA\)

that is, the ratio model of Tversky [38]. Yet others include

fi(\FAnFB\)
SAB f2(\FA\) + m\FB\)

fl(\FAnFB\)
SAB / 2 (| * U |) * / 3 (| F B |)

_ fi(\FAnFB\)
SAB - f3(\FB\)

Many more models can be constructed. However, when we measure them
against our previous desiderata, only the last one is acceptable, because it does
not involve FA.

Looking at the matter from a different perspective, considering the imple-
mentational issues, we want as simple a formula as possible, not in terms of
numbers of parameters or the time complexity of computation, but in terms
of ease of implementing it in a connectionist fashion with a set of simple, au
tonomous, locally connected nodes. We want (1) all computation to be local,
(2) only simple messages to be passed around, and (3) no extra nodes to be
added (see Feldman [7] for similar points). With these three criteria in mind,
again only the last model can be selected (details are omitted).

A Two-Level Architecture 263

Suppose A is externally activated, then because of the microfeatures shared
with A, B will later be activated: the activation of A will first go top-down
to its microfeature nodes through weights td; due to overlapping, some of the
microfeature nodes of B (in FAc\FB) will be activated; then at the bottom-up
phase, the activation of the microfeatures of B goes up to the node B in the top
level, through weights bu (= ^p^jj). According to what we derived so far,

ACTB = tdA * ACTA * \FA n FB\ *
V(\FB\)

To make B match what is obtained from a similarity measure, specifically,

\FAnFB\

we have to choose td as
tdA - 1

and we have to choose g as close to the identity function as possible, in order
to make ACTA W SAB'

 r^lus» w e determine yet another parameter.

Now we shall check to see if the parameters derived so far satisfy the re
quirements for correct rule application and mixed similarity matching/rule
application (including the first two cases of inheritance). Let us verify them:

(1) For A —• B, if A is activated, then ACTB = rAB * ACTA in the top level,
where rAB is the weight on the link between A and B (the same below), and
the bottom-up activation is

,l*Ui
rAB

ACTA * \FB\ {L
{Ff ~ rAB * ACTA

So the overall result is ACTB « rAB * ACTA;

(2) For A - B, B —• C, if A is activated, then

HFBnFA
 ACTAJ^W)

Fc ' 9(Fc)

^ ACTArBrlFBnF^

ACTB = Y.

g{Fc) 9(tB)
ACTA * SAB * I'BC

264 C H A P T E R 8

(3) For A —• B, B ~ C, if A is activated, then

ACTC = J2
FBnFc

g(Fc)

\FBnFc\ArT \FA\
-ACTArAB-~ g(Fc) ~ * AD9(FA)

« ACTA * rAB * sBc

All the other cases, (4), (5), (6), (7), (8), and (9), can be verified the same way.

4 E X P E R I M E N T S

4 . 1 R E A S O N I N G WITH G E O G R A P H I C A L K N O W L E D G E

Let us look into reasoning with geographical information. Utilizing the two-
level idea, the representation of the geographical knowledge is divided into two
categories: concepts (primitive knowledge statements), which include basic
geographical areas and regional characterizations (such as "cattle-country"),
and microfeatures, which include basic geographical descriptions of areas,
such as "highland", "mountainous", and "tropical", etc. Concepts are repre
sented in the top level, and microfeatures are represented in the bottom level.
Each area is connected to concepts describing its agricultural products by rules,
implemented as links. Each geographical area represented in the top level is
connected to its corresponding microfeatures in the bottom level, and because
of the fact that microfeatures are shared by similar concepts, the microfeature
representation is similarity-based, i.e., two concepts have overlapping micro-
feature representations if and only if the two are similar and the amount of
overlapping is proportional to the degree of the similarity between them, as
alluded to before. Thus, inferences are enabled through similarity matching,
and a fuller coverage of the domain is ensured.

Some of the data stored in the system are tabulated: Figure 3 lists some of the
geographical areas included in the system, most of which are in South America;
Figure 4 lists concepts for characterizing a geographical area in terms of its
agricultural products, such as rice-growing-area, cattle-country, etc.; Figure 5
lists microfeatures used. The fact that the system is fairly large ensures that
the experiment is meaningful.

A Two-Level Architecture 265

"Chaco"
"Uruguay-coastal"
"Mendoza"
"w-Peru"
"e-Peru"
"Bolivia-orient-rainforest"
"e-Paraguay"
"w-Paraguay-savanna"
"w-Texas"
"Guiana-hilly-country-forest"
"Guiana-plain"
"Brazil-cw"
"Brazil-saopaulo"
"Brazil-ne"
"Chile-n"
"Chile-c"
"Argentina-pampa"
"Argentina-andeanhighland"
"Columbia-e"
"Ecuador-coast"
"Venezuela-Llanos"
" Suriname-coastalplain"

"Honduras"
"Uruguay-plateau-highland"
"Llanos"
"c-Peru"
"Bolivia-orient-grassland"
"Bolivia-cordillera-occidental"
"w-Paraguay-forest"
"Panama-lowland"
"Guiana-pgs"
"Guiana-hilly-country-savanna"
"Bolivia-SW-highlands"
"Brazil-s"
"Brazil-e"
"Brazil-n"
"Chile-s"
"Argentina-ne"
"Argentina-Patagonia"
"Columbia-w"
"Columbia-basin"
"Ecuador-highlands"
"Venezuela-coastalplain"
"Suriname-plateau" |

Figure 3 Geographical Regions Included in GIRO

It should be stressed that the process of knowledge acquisition for this system
is straightforward and systematic: nothing is tuned arbitrarily just for getting
one outcome or the other. Specifically, the knowledge in the system is ob
tained from encyclopedias, such as Encyclopedia Britannica or Encyclopedia
Americana, in the form of a basic geographical region (a region with relatively
uniform characteristics), its products, and its geographical features. These
types of information is well documented and rather extensive in source books.

In extracting information from source books, there are some subtleties that
have to be taken into consideration. Each article regarding a particular region
is written by a particular researcher familiar with that region, and varies in
depth, presentation, amount of details and emphasis. This diversity inevitably
has adverse effects on the accuracy of the specification. The problem is the lack
of details on the one hand and too much detail on the other hand. When there
are not enough details from one sourcebook, we can find another sourcebook
and try to fill in what is needed. In case of too much detail, we have to be

266 CHAPTER 8

"cotton-producing-area"
"coffee-growing-area"
"wine-producing-area"
"potato-growing-area"
"rubber-producing-area"
"goats-area"
"rice-growing-area"
"wheat-growing-area"
"soybean-growing-area"
"rubber-producing-area"
"sheep-country"
"producing-banana"
"producing-tropical-fruits"
"corn-growing-area"
"sugar-producing-area"
"fruit-veg-growing-area"

Figure 4 Regional Characterization Included in the System

temperate
plateau
lowland
evergreen
densely-populated
dependable-rainfall
rainy

arctic
Mts
hill
deciduous
fertile
scrub
savanna

woodland
coastal-land
river-valley-basin
highland
infertile
farming
dry-arid

plain
lake
swamp
upland
flood
rugged
grassland

mediterrainian
tropical

rainforest
sparsely-populated

prairie
subtropical

desert

Figure 5 Geographical Features Included in the System

very careful in selecting the most important and relevant information out of the
tangled web of irrelevant descriptions. As a rule of thumb, we usually disregard
information associated with phases such as "plus", "in addition", "besides",
"although", "a small portion of, "mostly but ", etc. A problem is that
few regions are geographically homogeneous. What we want is a description
that is applicable to the largest portion of a region, expressing its essential
characteristics, without having irrelevant information or descriptions that can
only be applied to a small part of that region. There is certainly a tension
between (1) capturing important characteristics of a region, and (2) excluding
information applicable only to a small part of a region. The tradeoff between
these two aspects helps to decide what primitive geographical regions are and
what information is to be included for each such region.

A Two-Level Architecture 267

Now we are ready to describe the working of the system. Once a name of
a geographical area is given to the system, as imposing a query, the sys
tem will find out its agricultural characterization, such as "cattle-country",
"rice-growing-area", or "rubber-producing-area", through rule application or
similarity matching, or a combination of the two. For example, let us choose
to reason about "Brazil-north", which is described as "tropical rainforest hilly
plateau". We will start by giving a query: What is the main agricultural product
of "Brazil-north"? That amounts to activating the node representing "Brazil-
north". To answer this question, we let the system run to perform its reasoning.
The output is as follows:

>(consyderr 0)

TITLE: GEOGRAPHY
focusing on context AGRICULTURE : remove feature NIL
setup done
starting running
top down
cl propagating
cd propagating
bottom up

the average activation is 0.1213409896658248
(2, "cattle-country", 0.1249998807907104)
(10, "fruit-veg-growing-area", 0.1249998807907104)
(12, "producing-banana", 0.1249998807907104)
(13, "producing-tropical-fruits", 0.1249998807907104)
(20, "rubber-producing-area", 0.9999990463256836)
(29, "c-Peru", 0.125)
(32, "Bolivia-orient-rainforest", 0.125)
(40, "Guiana-pgs", 0.125)
(41, "Guiana-hilly-country-forest", 0.1666666666666667)
(42, "Guiana-hilly-country-savanna", 0.125)
(45, "Brazil-cw", 0.125)
(50, "Brazil-n", 1)
(60, "Columbia-basin", 0.16666666666666 67)
(61, "Ecuador-coast", 0.125)
(66, "Suriname-plateau", 0.125)

The result shows that it is a rubber-producing area for sure (with confidence
value equal to 0.999999), and it is similar, to a small extent, to "Guiana hilly
country" and "Bolivia orient rainforest area" etc. If we want to choose one
answer out of many, we can simply use a winner-take-all network on top of
this, but this is not an intrinsic part of the system. See Figure 6.

268 C H A P T E R 8

2
10
12
13
20
29
32
40
41
42
45
50
60
61
66

"cattle-country"
"fruit-veg-growing-area"
"producing-banana"
"producing-tropical-fruits"
"rubber-producing-area"
"c-Peru"
" Bolivia-orient-rainforest"
"Guiana-pgs"
"Guiana-hilly-coun try-forest"
"Guiana-hilly-country-savanna"
"Brazil-cw"
"Brazil-n"
"Columbia-basin"
"Ecuador-coast"
" Suriname-plateau"

0.1249998807907104
0.1249998807907104
0.1249998807907104
0.1249998807907104
0.9999990463256836
0.125
0.125
0.125
0.1666666666666667
0.125
0.125
1
0.1666666666666667
0.125
0.125

Figure 6 Output From the System: Case 1

Another example is as follows: suppose we want to know about the Ecuador
coastal area, we will give the system a query: What is the main agricultural
product of "Ecuador-coast"? by activating the node representing "Ecuador-
coast". To answer this question, we let the system run to perform its reasoning.
The output is in Figure 7. The result indicates that the area is producing banana
(with confidence value equal to 0.99999) and is very likely producing tropical
fruits and other fruits/vegetables. It is similar, in some way, to "Uruguay-
coastal", "eastern-Peru" and "Columbia-basin".

As yet another example, let us reason about "Brazil-south". We will start by
giving a query: Does "Brazil-south" produce cattle? by activating the node
representing "Brazil-south" and looking for "cattle" in the results. The output

A Two-Level Architecture 269

Different Areas

6
10
12
13
30
32
60
61

"Uruguay-coastal"
"fruit-veg-growing-area"
"producing-banana"
"producing-tropical-fhiits"
"e-Peru",
"Bolivia-orient-rainforest",
"Columbia-basin"
"Ecuador-coast"

0.1666666666666667
0.2499997615814209
0.9999990463256836
0.2499997615814209
0.1666666666666667
0.1875
0.1666666666666667
1

Figure 7 Output From the System: Case 2

is in Figure 8. The result indicates that the area does produce cattle and sheep.
Nothing else in the network fires strongly or distinguishably in this case.

4 . 2 O T H E R APPLICATIONS

Now the question is: Can this same method be applied to other domains where
no such natural division of concepts and features seems to exist? We will
show that the same approach does work for other domains. Due to the space
limitation, only some brief hints as to how this architecture can be applied to
these other domains will be provided.

Applications to Natural Language Understanding

Natural language understanding is an area in which commonsense reasoning
is crucial. For practical purposes, we can either perform a thorough domain
analysis to identify useftil microfeatures along with concepts, or use some
statistical methods to determine similarities and, based on that, construct mi-

270 CHAPTER 8

0.8 |-

I o .eL

3
0.2 I-

0 I I I I
2 11 46

D i f f e r e n t Areas

2 "cattle-country" 0.9999990463256836
11 "sheep-country" 0.9999990463256836
46 "Brazil-s" 1

Figure 8 Output From the System: Case 3

crofeature representation (see Appendix for details). Microfeatures obtained
in this way, unlike in the geography domain, are generally uninterpretable.

One simple example regarding lexical disambiguation (cf. [40] and [2]) and is
"Pot" (taken from [18]):

John put the pot inside the dishwasher, because the police are coming.

The point is that normally the word "pot" should be interpreted as "cooking
pot", but under certain circumstances, given some pertinent clues, it should be
interpreted as marijuana.

A set of situations (which are not provided in [18]) is devised to test a system's
ability: (1) John put the pot inside the dishwasher (the solution should be
"cooking pot" in this case); (2) John put the pot inside the dishwasher, because
the police are coming (the word "pot" means "marijuana" in this case); (3) John
put the pot inside the dishwasher, because the police are coming and John wants
to make the kitchen clean (the solution should be "cooking pot" in this case);
(4) John put the pot inside the dishwasher, because John wants to make the
kitchen clean (the solution should be "cooking pot" in this case); (5) John put
the pot inside the dishwasher, when the police come for the bankrobbery across
the street (the situation is pretty ambiguous, and the system could interpret it

A Two-Lev el Architecture 271

1. Pot is cooking pot.
2. Pot could be marijuana.
3. Marijuana is illegal.
4. Cleaning kitchens implies cleaning cookware.
5. Using dishwashers implies cleaning cookware.
6. If one is having marijuana and the police are coming, then the police will see it.
7. Police seeing illegal substance results someone being arrested.
8. To avoid arrests, prevent the police seeing illegal substances.
9. To prevent somebody seeing something, hide it.

10. Putting something in a dishwasher is for washing it.
11. Putting something in a dishwasher could be for hiding it.
12. If there is a bankrobbery going on and the police are coming, then they are here

to stop the bankrobbery.

Figure 9 A List of Rules (weights are omitted).

as "marijuana"); (6) John is cleaning the kitchen, putting the pot inside the
dishwasher, when the police come for the bankrobbery across the street (the
solution should be "cooking pot" in this case).

A system is constructed based on CONSYDERR, which can solve the original
problem and pass the six tests, as follows: Each of the concepts involved in the
problem description is represented by one node in the top level. Knowledge in
the form of rules is extracted from commonsense knowledge about the concepts
involved in the story, as in Figure 9. The bottom level is basically a distributed
version of the top level, which allows the sharing of microfeature nodes among
the representations of related concepts, so that continuity/similarity can be
explored. This structure is constructed using STSIS (see Appendix). The rules
are duplicated diffusely in the bottom level.

When the parameters are appropriately set, the system performs the task cor
rectly. It gives correct answers to all tests, distinguishing the often very subtle
differences through rule application and similarity matching.7

7Note that some subtle linguistic elements are not taken into account in the present imple
mentation, for example, "when the police are coming" vs. "because tht police are coming", etc.

272 CHAPTER 8

Applications to Mundane Reasoning

Mundane reasoning is another area where CONS YDERR is applicable. Mun
dane reasoning is used to refer to the type of reasoning that we do daily
regarding mundane matters, for example, which chair to sit in, when to eat,
etc. The goal of such mundane reasoning is to come up rapidly with an inter
pretation of a situation or to make a quick decision, given the current context.
In applying the two level idea, we have to identify all the concepts and rules
involved in a particular task. We also have to identify all the microfeatures
associated with the concepts.

Let us look into the "Ted" example [5]. Instead of using constraint satisfaction
(as in [5]), we perform rule-based reasoning plus similarity matching. The
problem can be stated as follows [5]:

Ted is seen walking along a pier, dressed like a sailor. Ted launched
into an excited monolog on the influence of TV programming. It
seems reasonable to conclude that Ted is a professional sailor, and
that he is interested in television. But another possibility is that Ted
is a TV tycoon and a millionaire playboy and has a hobby of sailing.

The point is that normally Ted should be taken to be a professional sailor,
but under certain circumstances, given some pertinent clues, Ted should be
interpreted as a hobby sailor.

The knowledge used for performing this type of mundane reasoning is en
coded in rules (with associated weights); see Figure 10. In the bottom level,
distributed representation is used so that similar concepts have shared nodes
in that level. It is constructed according to STSIS, and each node is vaguely
interpretable.

A set of tests is devised to verify the correctness of the system the same way as
before. The system works as expected; for example, when given the input that
"Ted is dressed up like a sailor" (in the form of activating nodes "dressed-like-
sailor"), the system will indicate that Ted is a sailor (in the form of activating
nodes "sailor" strongly); when given the input that Ted is dressed up like a
sailor but talks a lot about the TV business (in the form of activating nodes
"dressed-like-sailor" and "talk-about-TV-business"), the system will indicate
hobby sailors (in the form of activating nodes "hobby-sailor" more strongly).

When finer distinctions are needed, more nodes will have to be added into the system, along
with possibly other mechanisms, to take those elements into consideration.

A Two-Level Architecture 273

1. dressed-like-sailor talks-like-sailor walks-like-sailor—• sailor
2. talk-about-TV-business —• interested-in-TV
3. talk-about-TV-business —• in-TV-business
4. in-TV-business -/—+ sailor
5. dressed-as-sailor —• hobby-sailor
6. hobby-sailor —• rich-people
7. rich-people -/-^ sailor

Figure 10 A List of Rules (weights are omitted).

Applications to Planning

Planning is yet another area in which CONSYDERR might be applicable
(mainly of concern here are commonsensical planning activities, not formal
planning based on strict mathematical models). The most important problem
is that the sequential nature of the planning domain has to be adequately
dealt with. The planning problem is inherently sequential: a plan is formed
from a sequence of steps; moreover, steps can interfere with each other in the
form of undoing what was accomplished or disabling what should be done,
etc. Some notions of temporality have to be incorporated in order to express
sequences; and actions, conditions, and results have to be associated with
temporal measures.

CONSYDERR, by itself, is non-sequential. So other means need to be em
ployed. This is where the idea of temporal simulation comes into play. By
temporal simulation, it is meant actually carrying out plan steps temporally
inside a system when forming a plan. Since a system can deduce within a
system cycle what the next step should be and what the resulting state will be
from applying the step, when it is given the current state, then another cycle
can further deduce yet another step and the state resulting from that step, with
the previously derived state as the current one. This process can go on and on,
until reaching some desired state.

Rules and similarities are used readily in planning. Rules are used to encode
the relations between the plan step taken within the current context and the
new state after the step is performed and the relations between the current state

274 CHAPTER 8

and the next step to take. Similarities are used for matching a situation not
precisely specified in the rule sets, for reaching plausible conclusions.

5 COMPARISONS WITH OTHER APPROACHES

Comparing the present approach with PDP models [25], we notice both simi
larities and some differences. In terms of similarities, both approaches utilize
networks of simple processing elements, operate in a massively parallel fash
ion, and are capable of carrying out continuous functions for capturing flexible
reasoning in vague domains. Unlike PDP models, this architecture does not
rely exclusively on similarities - rules are implemented that can generate pre
cision as well as flexibility [28, 29, 32]. In terms of similarity matching,
instead of producing only the closest match among the (stored) training cases
(or clusters of them; as in most PDP models), all similar cases can be obtained
at once in this architecture, which facilitates comparisons, explanation genera
tions, and other post-processing. Similarities obtained are fully determined by
the similarity measure explained earlier, which is unlike most PDP models in
which generalization (based on similarity) is unpredicatable. The architecture
does not require long training time (as in case of backpropagation networks;
cf. [25]), or long settling time (as in case of Boltzmann machine; cf. [5]).

Comparing the present approach with the traditional rule-based approach (e.g.,
[44] and [13]) in constructing knowledge-based systems, we see some advan
tage: the two-level architecture is (potentially) capable of performing most
of the functionalities of traditional rule-based systems [35], and it can also
deal with similarity-based reasoning in an efficient and massively parallel way.
Comparing with some variants of rule-based reasoning, such as probabilistic
reasoning ([23] and [26]), this approach for encoding rules is computationally
simpler, but takes into account cumulative evidentiality (the ability to accu
mulate evidence) with efficient computation. The weighted-sum computation
used can be viewed as a simplification of probabilistic reasoning, under the
assumption of independence of evidence (Sun & Waltz [33]).

Comparing this approach with case-based reasoning [24], there is clearly some
similarity: both approaches utilize similarities between the current situation
and previously known situations to come up with a plausible conclusion. The
differences on the other hand are as follows: (1) rules (compound knowledge
statements) are the basic coding mechanisms for both concrete and abstract
knowledge in CONSYDERR, which allows a simple, uniform representation

A Two-Level Architecture 275

that encompasses both cases and rules; (2) unlike most case-based systems,
similarity matching (as well as rule application) is done here in a massively
parallel fashion, and thus is very efficient.

6 SUMMARY

In this chapter, an approach for structuring knowledge has been proposed that
might have wide applicability in various vague domains. The idea for the ap
proach came from the analysis of different kinds of flexibilities in reasoning in
vague domains. According to this idea, knowledge is divided into two kinds:
(1) compound knowledge statements in the form of rules and (2) microfeatures
associated with primitive knowledge statements (concepts). Thus, an architec
ture composed of two levels, the concept level and the microfeature level, has
been developed, which allows both rule application and similarity matching.
The combination of rule application and similarity matching facilitates both
efficient use of knowledge statements explicitly represented in a system and
wider coverage in a domain via plausible connections with these statements.
Several experiments have been presented that show the possibility of applying
this architecture to a wide variety of domains.

276 CHAPTER 8

APPENDIX: DETERMINING SIMILARITIES AND MICROFEATURE

REPRESENTATIONS

STSIS, or a Statistical Test-Score procedure for determining Intensional Sim
ilarity, provides an alternative way of building microfeature representations.
It is a procedure for constructing microfeature representations based only on
similarities (which are obtained through empirical means). (For similar ap
proaches, see [41].) This procedure can be applied to automatically develop
microfeatures that have no conceptual interpretation, instead of performing a
thorough domain analysis to determine conceptually interpretable microfea
tures. This is useful because not all domains have a set of microfeatures well
analyzed as in geography.

Assume there is a set of concepts c = {ci,c2,c3, ,cn}, and c is the vector
composed of all these concepts. Matrix M2 measures the pairwise similarities
between elements of the vector c, that is,

M2 = S(c x c)

where x denotes outer-product, and S is the similarity matching measure:
S([x]) = [S(x)]. (In other words, the similarity of a matrix is a matrix of the
similarities of its elements).

For each matrix element,

_Er=ifl(M) 5(a,6)
n

where S- (a, b) is an empirical measure (i.e., a subjective rating) of the similarity
between a and 6, ranging from 0 to 1. In other words, S(a, b) is obtained from
averaging a large number of subjective ratings. We can also calculate the mean
squared error:

6(a,b) =

N
£(s-s,')2

Then for higher-order similarities (those involving three or more concepts), we
have

M 3 = S(c xcxc)

and
M 4 = S(c xcxcxc)

A Two-Level Architecture 277

and so on. Ideally, we should have Sab = {£j^hi, Sahc = |Fa"£c
bpFc|, and

c _ | F a n F b n F c n F d | t

One problem with this approach is that there are too many entries to fill in each
matrix, especially in higher order ones. One way to deal with this problem is
determining which entry will be zero beforehand and thus avoiding computing
that entry; for a large number of entries in these matrices will be zero, which
can be determined by examining related entries in the lower order ones (if
one of the related entries is zero, then the entry is zero). {Related entries are
defined to be entries that contain a subset of concepts involved in the original
entry).

Another problem is when we should stop, because obviously we do not want too
many M matrices (we can produce matrices as many as the number of concepts).
There is no theoretical result for determining when to stop. However, we can
set up some empirical criteria. For example, we can limit the number of
matrices to be no more than half the number of the concepts involved.

Once the similarity matching measures are obtained, a pseudo-code description
of the algorithm for constructing microfeature representations based on the
similarity matching measures is as follows: suppose we have the following
matrices: Mi, M2, , Mm. Let the total number of nodes in the bottom level
be L. Let the number of nodes for a be U (ideally, Lz = |FCt|).

8 Define St- to
be U.

Leti=2
Repeat if i ^ m
.For each set of entries (e.g., Mi (a, b) = 5a6, and Mi (b, a) = Sba),

allocate an appropriate number of nodes shared among those con
cepts in the entries, and subtract the same number of nodes from
each of the node pools established for the related entries of the
next lower numbered matrix

.i= i+1

Here related entries mean entries consisting of a set of concepts that is a subset
of the original concept, for example, (a b c) for (a b c d). An appropriate
number of nodes mean the number of nodes proportional to the similarity
matching measure in question. For example, suppose Af,-(a,6) = Sab, and

sLt is determined based on the principle of similarity-based representation: the more general
a concept is, the fewer feature nodes there are for representing it.

278 C H A P T E R 8

Aft-(6, a) - Sba, so the appropriate number of nodes will be Sab * Lb = Sba * £fl.
According to the definition of similarities above, the equality always holds. It
is because Sab * Lb = J ^ p l * L6 = |Fa n F6|, and Sba * La - Pfffl * La =
|Fa n Fb\. However, in reality this equality may not hold: because human
similarity judgments and measurements are always error-prone, inconsistency
is inevitable. Besides, random noises alone are enough to upset the equality.
When inconsistency is encountered, we can use the average of the two instead
in the formula.

An issue is the subtraction of nodes from the node pools of the related entries
in the lower order matrices. Because of the fact that a high-order similarity is
part of some lower-order similarities, the (feature) nodes used in the high-order
similarity are part of the node pools of the lower-order similarities. When we
allocate nodes for a high-order entry, we must subtract the same number of
nodes from each of the related lower-order entries. Since we establish node
pools for similarities iteratively, from the lowest order up, each time we only
need to subtract from the related entries of the closest lower-order matrix.

The question of which nodes to remove from a pool of nodes can be an
swered partially by considering constraints we have, that is, the fact that we
have to preserve established similarities (i.e. node sharing situations). When
the constraints we have are not enough to determine a uniquely correct way
of removing nodes, we can make a tentative decision and backtrack later if
necessary, that is, performing a search over the space of all possible ways of
removing nodes, until a test shows that all similarity matching measures are
implemented correctly.

REFERENCES

[1] J. Anderson and E. Rosenfeld, (eds.) Neurocomputing, MIT Press, Cam
bridge, MA. 1988

[2] L. Bookman, A Connectionist Scheme For Modeling Context, In D.
Touretzky et al. eds. Proc.1988 Connectionist Summer School, pp.281-
290. San Mateo, CA: Morgan Kaufman, 1989

[3] C. Chang and R. C Lee, Symbolic Logic and Mechanical Theorem Prov
ing, Academic Press, San Diago, CA. 1973

[4] A. Collins and R. Michalski, The Logic of Plausible Reasoning: A Core
Theory, Cognitive Science, Vol 13, No 1, pp.1-49, 1989

A Two-Level Architecture 279

[5] M. Derthick, Mundane reasoning by parallel constraint satisfaction, TR
CMU-CS-88-182, Carnegie-Mellon University, 1988

[6] D. Dubois and H. Prade, An Introduction to Possibilistic and Fuzzy
Logics, in: P. Smets et al (eds.) Non-Standard Logics for Automated
Reasoning, Academic Press, San Diago, CA. 1988

[7] J. Feldman, Neural Representation of Conceptual Knowledge, Technical
Report 189,Department of Computer Science, University of Rochester,
1986

[8] L. Fu, Recognition of Semantically Incorrect Rules, Proc.IEAIAIE-90,
1990

[9] S. Gallant, Connectionist Expert Systems, Communication of ACM,
V.31(2),pp.l52-169,1988

[10] J. Gelfand, D. Handelman and S. Lane, Integrating Knowledge-based
Systems and Neural Networks for Robotic Skill Acquisition, Proc.IJCAI,
pp.193-198, Morgan Kaufman, San Mateo, CA. 1989

[11] S. Grossberg, The Adaptive Brain, North-Holland, New York, NY. 1987

[12] P.J. Hayes, In defence of logic, Proc.5th IJCAI, pp.559-565, Morgan
Kaufman, San Mateo, CA. 1977

[13] F. Hayes-Roth, D.A. Waterman and D.B. Lenat, eds. Building Expert
Systems, Addison-Wesley, Reading, MA. 1983

[14] J. Hendler, Marker Passing and Microfeature, ProcJOth IJCAI, pp.151-
154, Morgan Kaufman, San Mateo, CA. 1987

[15] J. Hendler, Integrating Marker Passing and Problem Solving, Lawrence
Erlbaum Associates, Hillsdale, NJ. 1988.

[16] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward net
works are universal approximators, Neural Networks, Vol.2 pp.359-366.
1989

[17] R. Lacher et al, Backpropagation learning in expert networks, IEEE Trans
actions on Neural Networks. 3, 62-72,1992.

[18] T. Lange and M. Dyer, Frame selection in a connectionist model,
Proc.llth Cognitive Science Conference, pp. 706-713, Lawrence Erl
baum Associates, 1989

[19] H. Leonard, Principle of Reasoning. Dover, New York, NY. 1967

280 CHAPTER 8

[20] R. Michalski, Two-tiered concept meaning, inferential matching, and
conceptual cohesiveness, in S. Vosniadou & J. Ortony, (eds.) Similarity
and Analogical Reasoning, Cambridge University Press, New York, NY.
1989

[21] M. Minsky, The Society of Mind, Simon and Schuster, New York, NY.
1985

[22] M. Posner, (ed.) Foundations of Cognitive Science, MIT Press, Cam
bridge, MA. 1989

[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-
mann, San Mateo, CA. 1988

[24] C Riesbeck and R. Schank, Inside Case-based Reasoning, Lawrence
Erlbaum Associate, Hillsdale, NJ. 1989

[25] J. McClelland, D. Rumelhart, and the PDP Research Group, Parallel
Distributed Processing: Explorations in the Microstructures of Cognition,
MIT Press, Cambridge, MA. 1986

[26] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, Princeton, NJ. 1974

[27] R. Sun, A discrete neural network model for conceptual representation
and reasoning, P roc J lth Cognitive Science Society Conference, pp.916-
923, Erlbaum, Hillsdale, NJ. 1989 a

[28] R. Sun, Designing inference engines based on a discrete neural network
model, ProcJEAIAIE, ACM Press, New York, NY. p. 1094, 1989 b

[29] R. Sun, Rules and Connectionism, Proc.INNC-Paris, p.545, Kluwer,
Netherlands. 1990 a

[30] R. Sun, The Discrete Neuronal Models, Proc.INNC-Paris, pp.902-907,
Kluwer, Netherlands. 1990 b

[31] R. Sun, The Discrete Neuronal Models and the Discrete Neuronal Models,
in: B. Soucek ed. Neural and Intelligent System Integration, John Wiley
& Sons, New York, NY. 1991 a

[32] R. Sun, Chunking and Connectionism, Neural Network Review, Vol.4,
No.2, pp.76-78, 1991 b

[33] R. Sun and D. Waltz, Neurally Inspired Massively Parallel Model of
Rule-Based Reasoning, in: B. Soucek ed. Neural and Intelligent System
Integration, John Wiley & Sons, New York, NY. 1991

A Two-Level Architecture 281

[34] R. Sun, A connectionist model of commonsense reasoning incorporating
rules and similarities. Knowledge Acquisition, Vol.4, 293-321, 1992

[35] R. Sun, Beyond associative memories, logics and variables in connec
tionist networks. Information Sciences, Vol.70, 1993

[36] D. Touretzky, The Mathematics of Inheritance. Morgan Kaufman, San
Mateo, CA. 1986

[37] G. Towell, J. Shavlik, and M. Noordewier, Refinement of approximate
domain theories by knowledge-based neural networks. Proc.AAAI-90,
pp.861-866. Morgan Kaufman, San Mateo, CA. 1990

[38] A. Tversky, Features of Similarity, Psychological Review, 84(4), pp.327-
352,1977

[39] S. Vosniadou & J. Ortony, (eds.) Similarity and Analogical Reasoning,
Cambridge University Press, New York, NY. 1989

[40] D. Waltz and J. Pollack, Massively Parallel Parsing, Cognitive Science,
1985

[41] L. Zadeh, Fuzzy Sets, Information and Control, 8, pp.338-353, 1965

[42] L. Zadeh, Test-score semantics for natural languages and meaning-
representation via PRUF, in: B. Rieger, (ed.) Empirical Semantics.
pp.281-349. Bochum: Brockmeyer. 1981

[43] L. Zadeh, Fuzzy Logic, Computer, Vol.21, No.4, pp.83-93, April 1988

[44] M. Waterman, An Introduction to Expert Systems. Addison-Wesley, Read
ing, MA. 1985

9
A Framework for Integrating
Relational and Associational

Knowledge for Comprehension
L A WR E N C E A. B O O K M A N

Sun Microsystems Laboratories
Chelmsford, MA 01824

1 INTRODUCTION

Two important aspects of understanding a text are the ability to skim it, ex
tracting important elements (a coarse-grain view of comprehension), and the
ability to read it "deeply" (a fine-grain view of comprehension). A compu
tational analogue that mimics skimming should include a representation of a
set of semantic relationships about the text that can be used to summarize it
and extract what is important. A computational analogue that supports a deep
reading of the text should be able to represent the background details (nonsys-
tematic relationships) associated with the concepts in the text, including the
larger frame in which the text concepts are situated.

This chapter describes a two-tier view of semantic memory that supports two
complementary views of comprehension mentioned above: a "fine-grain" view
that captures the many details of interaction between context and background
knowledge as temporal trajectories through "concept space," i.e., the semantic
features active in memory at specific points in time. Together these trajectories
represent a history of the associational knowledge of the concepts in semantic
memory activated by the input, and this activated knowledge contributes to an
understanding of the text. A second view, the "coarse-grain" view, captures in
the form of a weighted semantic graph, called an interpretation graph, a set of
explicit semantic relationships that can be used to reason about the "meaning"
of a text.

The semantic memory architecture consists of a relational and an associational
tier. The top tier, the relational tier, represents the regularities underlying the
structure of our cognitive world expressed as a set of named relationships be-

283

284 CHAPTER 9

tween concepts. The bottom tier, the association^ tier, represents the common
or shared knowledge about the concepts in the top tier, expressed as a set of
statistical associations. The associational tier encodes the background frame
(Fillmore [14]) associated with these concepts, in terms of an underlying sub
strate of semantic features. Because of the graded character of these semantic
features, I will hereafter refer to them as analog semantic features or ASFs.
The ASFs were developed from the category structure of a thesaurus.

Fillmore [14] argues that our understanding of a concept is determined by how
well the conditions of the background situation match the concept's prototype
background frame. For example, according to Fillmore, to understand the
word breakfast "is to understand the practice in our culture of having three
meals a day, at more or less conventionally established times of the day, and
for one of these meals to be eaten early in the day, after a period of sleep, and
for it to consist of a somewhat unique menu." Yet as he points out, each of
the above three conditions typically associated with it can be independently
absent, still allowing a native user to use the word. For instance, someone can
sleep through the morning, wake up at two o'clock in the afternoon, and sit
down to a meal of pancakes, bacon, and orange juice, and still call that meal
breakfast. Thus, the word breakfast can be used and understood in a variety of
different contexts, as long as the conditions of the background situation more
or less match its background frame.

By viewing comprehension as, in part, the activation of temporal patterns
through an individual's concept space, we can compare computationally the
activated background knowledge (which resides in long-term memory) and
activated context (which is activated at the moment of hearing or reading)
associated with two different text passages. If their trajectories (as generated
by the reader of the passage, e.g., the program) match, these passages will
have a similar interpretation, and hence be similarly understood; the degree
of similarity depends on the degree of match.1 Some neurophysiological
justification for this view comes from evoked-potential data recorded during
reading. For example, it is hypothesized that the sustained information-specific
firing patterns that represent primary memory potentials (observed in the frontal
lobe) indicate that contextual information is maintained between successive

1 Many issues of comprehension are beyond the scope of this book. For example, a passage
can have more than one interpretation, depending on the reader's intent, goals, and motivation,
so there can be several different time trajectories, each reflecting the reader's current state.
The reader's perspective can also influence which particulars of a story will be remembered and
understood (Anderson andPichert [3]; Kozminsky [22]). For example, consider a passage about
the physical condition of a house: if the reader is a home buyer, the physical condition of the
house is important, whereas the contents are probably of little value; if the reader is a burglar,
however, the contents are of prime importance (Thorndike and Yekovich [40]).

A Framework for Comprehension 285

words in a sentence (Halgren [17]). These temporal firing patterns can be
thought of as a set of time-directed trajectories through the concept space of
the comprehender of the text.

Comprehension is more than just a passive trace through concept space. Com
prehension is also partly driven by our expectations (Schank [32]). Incoming
information sets up a context of its own, indicating what is likely to follow.
If our expectations are met, we say we comprehend; if not, we may fail to
comprehend. Part of this expectation-driven comprehension process is cap
tured by the relational tier of semantic memory in the model. Activation of
the relations sets up an expectation of what patterns of knowledge are likely to
follow. If incoming information is consistent with these patterns (i.e., if there
is semantic overlap), these patterns are reinforced and eventually become part
of the interpretation of the text. If not, they simply decay.

As an illustration of these two complementary views of comprehension con
sider the sentence from Rumelhart [31]: "I was brought into a large white room
and my eyes began to blink because the bright light hurt them." When sub
jects were presented with this sentence and asked what scene comes to mind,
Rumelhart found that most people believed that either this was an interrogation
situation in which the protagonist is being held prisoner or, it was a hospital
scene in which the protagonist is a patient. What information suggests these
interpretations? According to Rumelhart, "was brought" is apparently the key,
as it evokes a passive situation. Details — the large white room and bright
light — further specify the passive situation. A reader attempting to understand
the meaning of this sentence would (with the semantic encoding proposed in
this chapter) activate the appropriate conceptual relations (e.g., a person is put
into a passive situation) based on the reader's and author's shared associational
(ASF) knowledge of the concepts "bring into," "large white room," and "bright
light-
Figure 1 depicts a relational "coarse-grained" view of the activated concept
space in the form of a directed graph. The figure shows the explicit semantic
relations that are needed to comprehend the interrogation interpretation of
this example. The outlined nodes, labeled "interrogation" and "bring into"
represent the conceptual roots (i.e., basic events) of the interpretation, from
which a baseline summary can be generated: I was brought into a room where
I was to be interrogated.

Figure 2 depicts an associational "fine-grain" view of the activated concept
space, showing the actual pattern of background knowledge relevant to the
given input as a trajectory of semantic features through this space. The figure

286 C H A P T E R 9

bring into

con
sequence

passive
situation'

^ flcP * *V

questioning

constrained
* 3

| interrogation |

Figure 1 A representative interpretation graph for the sentence "I was
brought into a large white room and my eyes began to blink because
the bright light hurt them" that supports the interrogation interpretation.
The outlined nodes represent the basic events or conceptual roots of the
interpretation.

Time (cycle)
activation level

A(-l to+l) hurt

began to blink

was brought into
-^ -^ ^ 7- 7« 7 ^ ^ features

health care subjection passive restraint uncomfortable

Figure 2 A set of partial time trajectories through feature (ASF) space
of the activated background knowledge that supports the interrogation
interpretation. The trajectories show what features (ASFs) are active
after the processing of each input clause. The clauses containing the
concepts "was brought into," "began to blink," and "hurt" were input
at cycles 1, 2 and 3, respectively. The figure indicates that the features
restraint, passive, uncomfortable, and subjection are strongly associated
with this interpretation, and the features health and care are less strongly
related to it.

A Framework for Comprehension 287

shows some of the details needed to support the interrogation interpretation.
For example, after processing the first input clause, "I was brought into a large
white room," the features passive, restraint and subjection become activated.
(The features health and care are minimally activated.) Processing the second
input clause, "my eyes began to blink," the feature uncomfortable becomes
activated, while the features passive, restraint and subjection remain activated.
After processing of the third clause, "because the bright light hurt them,"
the features health and care become activated. Thus, interrogations involve
restraint and subjection of the person interrogated, and are related to the care
and health of that person; furthermore, the interrogated individual is put into a
passive situation and usually made uncomfortable.

This chapter argues for an integrated architecture that supports both struc
tured and non-structured representations. Structured representations provide
explicit intelligibility and human comprehensibility. Non-structured represen
tations permit similarity-based comparisons between texts that may have some
perceived similarity, but which have no explicit connections between them.
Both types of representation are needed to support more detailed graded text
representations.

The chapter is organized as follows. Section 2 provides an overview of the
architecture and the interaction of its components. Section 3 describes the
details of the memory architecture. Sections 4 and 5 describe how knowledge
is represented in long-term memory. Section 6 analyzes the behavior of the un
derlying architecture. Section 7 describes the underlying algorithm. Section 8
concludes with a summary.

2 OVERVIEW OF LEMICON

To demonstrate the utility of the two-tier view of semantic memory, a se
ries of ablation experiments was performed on variations of two texts from
the stock market domain. The experiments were designed to explore the
model's representation of knowledge with regard to the text comprehension
task. These experiments are implemented in a computer program named
LeMICON (Learning Memory INtegrated CONtext). LeMICON is a struc
tured connectionist model2 that makes use of both connectionist and symbolic
techniques to construct plausible interpretations of text.

2 The term structured connectionist model refers to a model which represents its knowledge
over a set of named nodes. This is similar to the way knowledge is represented in marker-
passing semantic networks (e.g., Charniak [8]; Granger et al. [16]; Norvig [28]), except that

288 CHAPTER 9

Input
Clause '

Input
Buffer

New
Input

Concept

Working Memory Trajectory

<WM Trace)

Semantic
Memory

Interpretation Graph

(SM Trace)

Update Knowledge

SSS Summary

Figure 3 The flow of activation through the system.

Figure 3 depicts each of the model's components along with the flow of ac
tivation between these components. Working memory represents a history of
LeMICON's associational knowledge. This accumulated knowledge results
from the semantic feature activations from semantic memory, and the current
input to the system. The links between semantic and working memory repre
sent the bi-directional pathways from which these activations are transmitted.

The input to LeMICON is a text that has been pre-parsed into a set of clauses
that are encoded by a set of predefined semantic features extracted from the
categories of Roget's thesaurus. This encoding represents the background
frame of the clause (see Appendix): the input buffer holds the representation
of the next input clause of the text. Each input clause is encoded automatically
using co-occurrence statistics on a text corpus (see Bookman [6]). LeMICON
produces as one of its outputs an interpretation graph constructed from the
active relations (the trace from semantic memory) which reside in the relational
tier of semantic memory. (This graph is LeMICON's internal representation
of the text.) The interpretation graph is an input to the program SSS, which
produces among other things a baseline summary of the text. The other output
of LeMICON is a trajectory (the trace from working memory) that represents

the nodes in the structured connectionist networks contain simple numeric processing elements
and connections between nodes have weights that represent the strength of their connection or
relationship. Distributed connectionist models (e.g., Miikkulainen [24]; St. John [37]) represent
knowledge as patterns of activation across unnamed nodes.

A Framework for Comprehension 289

the history of active background frame details in working memory. This
trajectory is also an input to SSS, which SSS uses to compare the similarity of
interpretation of different texts.

3 TEXT COMPREHENSION

This section describes in detail the two components of LeMICON's memory
architecture, semantic memory and working memory, and the relationship
between them.

3 .1 S E M A N T I C M E M O R Y : T H E RELATIONAL T I E R

he relational tier of semantic memory represents the regularities that underlie
our cognitive world. This conceptual structure accounts for important aspects
of human communication, such as beliefs, preconditions, and knowledge of
cause-effect relations (Velardi et al. [41]). There are several ways of expressing
these systematic underlying regularities. In semantic network representations
they can be expressed as a set of named relationships between concepts (e.g.,
Alterman [1]; Miller et al. [26]; Norvig [28]; Alterman and Bookman [2]).
In such networks the meaning of a concept is represented by its position in
the network, that is, in terms of the nexus of relationships that encompass
it. However, such networks typically do not indicate the strength of the
relationship between concepts. This lack, together with a non-local node
computation, makes it difficult for these networks to handle change, or to
reinterpret data in the light of new evidence. Instead, they must include a
serial evaluation mechanism to select the most relevant interpretation from
the generated candidate interpretations. Structured connectionist models (e.g.,
Lange and Dyer [32]; Shastri [33]; Shastri and Ajjanagadde [34]; Sun [39];
Waltz and Pollack [42]) attempt to remedy this deficiency by attaching weights
to the connections between concepts and accumulating evidence local to the
node, but they do not yet have any methods for automatically generating these
strengths, or die underlying structure. In these networks, concepts are activated
based on the amount of evidence available locally, given the current context,
to the given node (concept). This obviates the need for a serial evaluation
mechanism, since each potential interpretation can be represented by activation
in different local areas, and thus can be evaluated in place, and in parallel.

290 C H A P T E R 9

As LeMICON is a structured connectionist model, it is able to handle reinterpre-
tation in the light of new evidence without the need for storing all the potential
interpretations it generates. Yet such models assume some pre-existing set of
relationships (i.e., some implicit structure) from which to generate these inter
pretations. This begs the question of how these relationships are learned in the
first place. One technique is to construct the network based on co-occurrence
statistics gathered from on-line textual corpora. Another constructs a network
based on a clustering of a concept's background frame knowledge. (Bookman
[7]) describes these techniques in more detail.)

In LeMICON's relational tier, in contrast to some of the symbolic and struc
tured connectionist models discussed above, the meaning of a concept is not
determined solely by its position in the network (i.e., physical closeness may
indicate semantic closeness, but not necessarily),3 but also by the closeness
of a concept's background frame (its ASF closeness: the degree of semantic
overlap.)4 A strong motivating force for having a relational level is that such a
structure represents the relational structure of our cognitive world, and so can
be used as a basis for reasoning about "understanding."

Figure 4 depicts a portion of the relational tier for the stock market domain
automatically constructed from an initial set of 100 concepts. These concepts
were chosen based on how representative they were for the given stock market
domain.5 To determine the relationships between these concepts, I applied a
modified form of the average conditional mutual information theoretic measure
1 (see Bookman [7]) to all possible concept pairs (i.e., word forms that represent
the concept), looking at single paragraphs of text from the Wall Street Journal
corpus for the co-occurrence of each pair of concepts.

Figure 4 depicts some of the learned relations in graphic form. It shows a
portion of semantic memory, focused about the events recession, economic
outlook, earnings outlook and market crash. As this graph shows, there are
multiple graded relationships between concepts. For example, earnings out
look is affected by and affects the events recession, inflation, poor [economic]
outlook, bright [economic] outlook and investing [in the market]. Also reces
sion is affected by inflation, slow economic growth, poor [economic] outlook,

3 Since weights between concepts are determined by co-occurrence data from actual text,
concepts can be physically close in the network but have weak semantic connections, or relatively
separated physically but with strong intermediate semantic connections.

4 The notion of semantic overlap is similar to one presented in Sun [3 8].
5A concept's representativeness for a given domain can be based on its frequency and

memorability.

A Framework for Comprehension 291

Figure 4 A learned network of relationships derived automatically from
co-occurrence statistics gathered from the Wall Street Journal corpus.
The weight, w, associated with each link represents the strength of the
relationship between concept pairs, where o < w < l.

and slump [in the market]. It is also affected by both bear market and bull
market.

3.2 SEMANTIC MEMORY: T H E ASSOCIATIONAL OR ASF TIER

The associational or ASF tier represents the common or shared knowledge
about the concepts in the relational tier. This reflects the understanding that
each of our concepts has attached to it an associational cloud of knowledge;
the tier encodes the nonsystematic knowledge associated with these concepts,
what Fillmore [14] calls their background frame, in terms of a set of analog

292 C H A P T E R 9

semantic features, called ASFs. The work described here extends the Waltz
and Pollack [42] microfeature notion.

How Are the ASFs Chosen?

The ASFs used in this research were chosen on the basis of the category struc
ture of Roget's Thesaurus [4]. The thesaurus is an extremely rich source of
knowledge and its structure may provide a clue to how our cognitive world
is carved up, i.e., what events, states, and categories we distinguish and use
to communicate. As such, it provides an initial approach to encoding detailed
knowledge (i.e., background frame knowledge) of how we represent the in
finite variety of situations in the world using a finite vocabulary. The use of
named features (ASFs) as opposed to unnamed features (such as PDP hidden
units, e.g., Hinton, McClelland, and Rumelhart [21]; cf. Hinton [20]) offers a
principled way of building in this a priori knowledge.

Another use of the thesaurus is described by Morris and Hirst [27], who show
how its structure can be used as an aid in determining underlying text structure.
For example, they compute what they call the lexical chains of a text, i.e., the
sequences of semantically related words spanning a topical unit, then show
these chains can be used as clues for indicating the intentional structure of the
text. Using the thesaurus, Morris and Hirst are able to represent nonsystematic
semantic word relationships, which are hard to represent in symbolic frame or
semantic network formalisms. For example, it would be difficult to express
the relationship between the pair of concepts "interrogation" and "bright light"
— a relationship that is essentially nonsystematic — using any fixed set of
systematic relationships.

The category structure of Roget's thesaurus can roughly be described ion terms
of eight classes: abstract relations, space, physics, matter, sensation, intellect,
volition, and affections, with each class further subdivided. The total number
of classifications in a thesaurus is extremely large, but 1042 basic classifications
form what the thesaurus builders call its backbone structure. For the LeMICON
experiments, I chose a subset of 454 of these classifications to represent the
set of ASFs. This set is listed in Bookman [7]. Underlying the use of ASFs
is the hypothesis that people have idiosyncratic but probably redundant sets of
semantic features drawn from their common experiences.

A Framework for Comprehension 293

How the ASFs Function

The work here extends the notion of microfeature to include the background
frame associated with everyday concepts and their interrelationships. For
example, suppose we are given the following list of ASFs: danger, answer,
question, opposition, resistance, security, custom, care, discharge, organiza
tion, admission, routine, procedure, payment, emergency, and purpose. This
list can be used to distinguish the background frame associated with the two
concepts, "hospital" and "interrogation." Table 1 shows a partial encoding of
these concepts. Notice that the ASFs described there are role independent.
The analog property says to what degree these ASFs discriminate these con
cepts and to what degree the ASFs indicate their similarity. The analog values
were generated automatically by computing the mutual information6 between
concept and ASF over a set of sentences from an on-line corpus. Bookman [7]
describes an extended technique for encoding ASF knowledge that attempts to
deal with the problem of small frequency counts.7

Making Fine Discriminations

Consider the following sentences (Waltz [43]):

John nibbled at his food.
John wolfed his food down.

Ideally, we would like to characterize nibble as "to bite off small amounts" and
wolf as "devour," not just as instances of "eating." ASFs allow one to make
these fine discriminations within a single word sense, in this case the concept
"eat." This is another reason for having the ASF level, as these distinctions

6The mutual information of two events x and y, I{x, y), is defined according to Fano [11]
as follows: I(x, y) = log2 Pfx)p(y) > w n e r e P(x,y) is the joint probability of events x and y, and
P(x) and P(y) are the respective independent probabilities.

7One problem that appeared in the attempt to automatically encode the associational tier
using the ASF set was low frequency counts. So, to increase the likelihood of a concept's
co-occurrence with an ASF, each ASF was associated with a dictionary tree of related words,
and the concept then matched against a set of dictionary trees. A dictionary tree encodes an
ASF with a set of words that are related in particular ways: synonymy, related to, compared
to, contrasted to, and antonymy. A sample dictionary tree for the ASF dislocation shows that
dislocation is linked via "synonymy" to the ASFs recession, depression and slump; via the
relation "related to" to the ASFs crash, decline, and drop; via "antonymy" to the ASF boom;
and via "contrasted to" to the ASFs expansion and growth; it also belongs to the sub-category
"relative space" which in turns is a member of the class "space." See Bookman [7] for further
details.

294 CHAPTER 9

Table 1 Parts of the background frames and their association with the
concepts "hospital" and "interrogation." The label / represents the mutual
information value. The higher this value, the stronger the relationship
between concept and ASF.

Interrogation
ASF

resistance
opposition
danger
security
answer
question
customs
payment
care
discharge

Mutual
Information (/)

5.4
5.4
5.3
5.3
4.2
4.2
4.0
0.0
0.0
0.0

Hospital
ASF

discharge
procedure
emergency
care
admission
routine
payment
organization
purpose
opposition

Mutual
Information (I)

4.2
3.9
3.6
3.5
3.4
3.3
3.1
2.2
2.2
1.1

are not readily expressible via logical formalisms such as first-order predicate
calculus, unless each semantic variation is explicitly represented.

3.3 WORKING MEMORY

Working memory represents a history of LeMICON's ASF knowledge. This
accumulated knowledge results from ASF activations from semantic memory
and the current input to the system. Figure 5 shows three different sets of
links connecting semantic and working memory. These links represent the bi
directional pathways through which ASF activations are transmitted between
semantic and working memory. The solid black links [4] represent the path
ways along which activated background knowledge is transmitted, the dark
grey links [3] the pathways for each case role pattern, and the light grey links
[2] the pathways for ASF relational knowledge between concepts. The case
slots for each concept (see Figure 6) represent the other part of the background
frame and are filled by the appropriate bank of ASFs in working memory by a
process described in Bookman [7].

A Framework for Comprehension

\ LEMKKEY

1 Links between relational and associational tiers that
encode each concept's background frame knowledge

Figure 5 The relationship between semantic and working memory. The
solid black links [4] represent the pathways along which activated back
ground knowledge is transmitted, the dark grey links [3] the pathways for
each case role pattern, and the light grey links [2] the pathways for ASF
relational knowledge between concepts. The case slots for each concept
(see Figure 6) represent the other part of the background frame and are
filled by the appropriate bank of ASFs in working memory.

296 CHAPTER 9

Working memory consists of three short-term buffers: (1) the input ASF buffer
accumulates ASF background knowledge patterns from both the input text and
from the associational tier superimposing the latter patterns onto the former
and storing the resulting pattern; (2) the case role ASF buffer stores the ASF
case role patterns from the input text (this buffer is flushed after an input
clause is processed); and (3) die reactive ASF buffer accumulates the ASF
encodings of the activated relations between concepts from the relational tier
by superimposing these patterns onto the patterns currently in the buffer.

The buffer that stores the case role patterns is actually segmented into 13
mini-buffers — one buffer for each of the 13 possible case slots. This sepa
ration of case slots enables LeMICON to distinguish the semantic roles in the
interpretation it constructs. Each mini-buffer holds a unique filler.

4 ENCODING SEMANTIC MEMORY

Symbolically, semantic memory can be thought of as being represented by sets
of triples of the form, (RWtJ, C;, Cj), where each triple describes a weighted
relationship, RWij, between concepts d and Cj of strength w. Attached to each
concept (node) are a set of deep cases. What distinguishes the triples from
other semantic network formalisms (e.g., see [1, 2, 8, 12, 32, 28, 33, 35, 36];
cf. [39, 42]) is their ASF encoding of associational knowledge and a method
for assigning weights between concepts.

Figure 6 provides a more detailed look at a partial ASF representation of one of
the triples in the relational tier. This triple (subclass, financial stress, inflation)
represents the relation that "inflation" is one kind of "financial stress." The
ASF representation of a triple consists of representation of (1) the background
frame of each concept, and (2) of the relation between the concepts.

The background frame of each concept is encoded from the knowledge con
tained in the associational tier of semantic memory automatically, from on-line
corpora, via information-theoretic methods as discussed in Section 3.2. This
encoding is depicted in Figure 6 by the links connecting the associational tier
of semantic memory to each concept in the relational tier of semantic mem
ory. Additionally, each concept has separate slots to hold the potential binding
information for each distinct case role filler.8 For example, Dow Jones fills

8Each concept contains 13 case slots, one for each of the 13 possible case relations known
to the system.

A Framework for Comprehension 297

Figure 6 A partial ASF representation of the semantic triple: (subclass,
financial stress, inflation). The triple consists of the two concepts "fi
nancial stress" and "inflation" linked via a subclass relationship. Each
concept consists of two parts: an ASF representation of its background
frame, and an ASF representation of its filled case role slots.

the object case slot of financial stress. Each distinct filler is represented by
a unique pattern of ASFs linked to the case role slots. Note that these ASFs
are kept separate from the ASFs that encode the concept. The ASFs provide
constraints on a concept's fillers, in addition to encoding its background frame.

The link connecting the two concepts "financial stress" and "inflation" rep
resents the ASF encoding of the subclass relation between the two concepts.
Each link is encoded as (d - Cj), i.e., the corresponding difference between
the constituent ASF concept encodings. This is intended to reflect any potential
change or difference in the relation's "knowledge state."

In LeMICON, the ASFs acting as constraints results in a soft matching capa
bility that allows concepts and the relationships between them to be activated
even though not all semantic features match.

298 CHAPTER 9

5 REPRESENTATION OF SEMANTIC CONSTRAINTS

Each concept in semantic memory contains, in addition to its ASF encod
ing, a listing of the concept's semantic roles, and any associated antonyms.
For example, Figure 7 shows a more detailed representation of the concepts
"inflation" and "believe."

CONCEPT
ASF representation:
Semantic roles:
Antonyms:

1 Inflation

stateof, object, value
| deflation, stability

Believe
•illHiiBs^llft M
agent, theme, co-theme
disbelieve

Figure 7 A description of the semantic information associated with the
two concepts "inflation" and "believe." The shaded pattern represents a
concept's ASF background knowledge.

The semantic case role slots determine what possible fillers a concept can have.
Thus, the concept "inflation" has three semantic case role slots, named stateof,
object, and value. Potential fillers of the stateof slot might be "serious," as in
"serious inflation," or "insignificant," as in "inflation was insignificant." Its
value slot might include such fillers as "no," as in "no inflation," or "5%,"
as in "5% inflation." The antonym slot is used in conjunction with the mu
tual information measure described in Bookman [7] to handle the problem of
having mutually exclusive information being active simultaneously. A CN-
region (Competitive-Normalized Regions: Chun, Bookman and Afshartous
[10]) is constructed for any relational pair of concepts that is in an antonym
relationship.9

9 A CN-region is a network structure that represents the conceptual abstraction of a collection
of nodes. The region also provides a computational mechanism for controlling the collective
competitive behavior of the nodes. For example, a region can be used to inhibit the activation of
such mutually exclusive actions as the rise and fall of the stock market. These structures allow
for smooth competitions among concepts in semantic memory, thus enabling subtle differences
in meaning to exist. These structures provide more stable competition, are more tolerant to
initial noise, and eliminate the premature "lock-in" effect of WTA (Winner-Take-All) structures
(Feldman and Ballard [13]).

A Framework for Comprehension 299

6 E X P E R I M E N T S AND R E S U L T S

In order to test the utility of the semantic memory representation and its un
derlying architecture, a series of text experiments were undertaken. These
experiments took the form of automatically constructing plausible interpreta
tions of a given set of texts.10 The constructed interpretation takes two forms:
(1) a weighted network of relations that represents a "coarse-grain" view of
the text; and (2) a set of time-directed trajectories through ASF space that
represents the activated background frame knowledge of the comprehender of
the text—a "fine-grain" view of the text.

The input to LeMICON is a text that has been pre-parsed into a set of ASF-
encoded clauses that represent the background frame of the clause. Each clause
is encoded automatically by techniques described in Section 3.2. See Figure 16
for a sample encoding.

6 .1 ANALYZING T H E O U T P U T AT T H E RELATIONAL L E V E L

Consider the texts WSJ-1 and WSJ-2 (see Figures 8 and 9):

WSJ-1: The stock market declined 50 points yesterday. Analysts blamed
the slump on the uncertainty in the economic outlook. They believed that
further increases in oil prices in conjunction with the current consumer debt
level would lead to slow economic growth.

Figure 8 The story WSJ-1.

WSJ-2: The stock market dropped 50 points yesterday. Then investors
panicked and the market plunged another 100 points. Analysts blamed
the drastic change on the uncertainty in the economic outlook. They believed
that further increases in oil prices in conjunction with the current consumer
debt level would lead to market chaos.

Figure 9 The story WSJ-2. The text highlighted in boldface indicates
the differences between this text and the text WSJ-1.

On the surface these texts appear to be similar as they use the same concept
vocabulary (e.g., blame, uncertainty, economic outlook, increases in oil prices,

10 Only two of the texts are analyzed in this chapter. The others are analyzed in Bookman [7].

300 CHAPTER 9

consumer debt level, and decline/drop appear in both texts). But the two texts
are really very different. Although forces affecting the market are the same in
both (increases in oil prices and the current consumer debt level), the decline
of the market in the text WS J-2 leads to panic on the part of investors causing a
very different situation, namely market chaos, which in concert with the other
concepts in the text could lead the reader to infer that the market has crashed.
In the text WSJ-1, similar initial conditions (the market declined 50 points in
both texts) lead to a very different interpretation, namely, the country may be
heading into a recession. The interpretation graph produced from LeMICON's
semantic memory can show how to account for some of these differences in the
text. One difference between the texts is captured by the summaries produced
from these graphs.

Applying SSS [2] to the interpretation graph in Figure 10 yields the following
summary:

Baseline summary of WSJ-1: (summary strength = 0.72)a

The stock market plunged 50 points. Analysts say inflation and
slow economic growth would lead to a recession and a poor outlook
for the stock market.

a Summary strength is a confidence measure for the summary—the higher its numeric
value, the more confidence we can have in the accuracy of the summary.

Figure 10 The interpretation graph produced by LeMICON for WSJ-1.

A Framework for Comprehension 301

Applying SSS to the interpretation graph in Figure 11 yields the following
summary:

I long-leni^^^H
outlook H

Figure 11 The interpretation graph produced by LeMICON for WSJ-2.

Baseline summary of WSJ-2: (summary strength = 0.64)

The stock market crashed. The outlook for the stock market was
poor.

A second difference in the interpretation is reflected in the important events
that can be generated from the respective graphs. Importance of a given node
in an interpretation graph is defined as the number of nodes reachable from
that node in the interpretation graph. In effect, this measure of computing
importance is based on the amount of author-emphasized detail. Tables 2 and
3 show the results of applying SSS's importance technique to the interpretation
graphs of the texts WSJ-1 and WSJ-2.

302 CHAPTER 9

Table 2 List of events in order of
decreasing importance for the text
WSJ-1. An asterisk (*) preceding
an event indicates that the event is a
conceptual root. Note the average
importance is 1.5.

Table 3 List of events in order of
decreasing importance for the text
WSJ-2. An asterisk (*) preceding
an event indicates that the event is a
conceptual root. Note the average
importance is 3.3.

Event
*plunge
inflation
Recession
*poor outlook
slump
short-term outlook

Importance
2
2
2
2
1
0

Event
*market crash
plunge
program trading
inflation
recession
*poor outlook
slump
short-term outlook
long-term outlook

Importance
7
6
5
4
3
3
2
0
0

The baseline summaries and important events that LeMICON produces from
the interpretation graphs reflect the coarse-level differences found in the texts
WSJ-1 and WSJ-2.

6.2 ANALYZING THE OUTPUT AT THE ASF LEVEL

Looking at another aspect of the system's output, the constellations of the
ASFs that form in working memory, makes it possible to further analyze the
WSJ texts. This dynamic aspect of LeMICON's behavior can be represented
as points in ASF space. ASF space here refers to an N-dimensional space
(for LeMICON N=454), where each element is a vector of length N, and each
component of the vector represents an independent ASF. The trajectories in this
space refer to the vector of ASFs active in working memory at specific points
in time (i.e., after the processing of an input clause). It is hypothesized that the
different interpretations and inferences generated (by LeMICON) reflect the
readers' associations.

A comparison of LeMICON's behavior as a result of processing the texts,
WSJ-1 and WSJ-2, reveals some of these differences. If one plots the change
in ASF activity between successive cycles of working memory (a new clause
is input on each cycle), a movie (i.e., a set of time-directed trajectories) of

A Framework for Comprehension 303

LeMICON's behavior develops. As figures 12 and 13 show, the movies for
the texts WSJ-1 and WSJ-2 are different.

These differences in understanding are reflected in the activity of the work
ing memory buffer of the two texts that hold the respective ASF background
knowledge patterns. The different peaks and valleys displayed in Figures 12
and 13 highlight these fine-grain differences. For example, Figure 12 shows
three such differences: (1) region 1 indicates that disappointment and expecta
tion underlie the input sequence of events blame, economic outlook, believe,
and slow economic growth; (2) region 2 indicates that a recession underlies
the input sequence of events economic outlook, believe, and slow economic
outlook; and region 3 indicates that a dislocation underlies the event slow eco
nomic growth. Figure 13 also shows three fine-grain differences: (1) region 1
is the same as region 1 in Figure 12, except that disappointment and expecta
tion underlie the input sequence of events plunge, blame, economic outlook,
believe, and market chaos (thus, the ASFs disappointment and expectation
are common to both texts); (2) region 2 indicates that a depression underlies
the input sequence of events blame, economic outlook, believe, and market
chaos; and (3) region 3 indicates that these same sequence of events have great
breadth, i.e., their scope is broad, as opposed to narrow. Again, the movies for
their respective buffers are different.

The above analyses show LeMICON's ability to represent knowledge at a finer
level of granularity. This finer granularity permits a deeper understanding of
the text because it enables a more detailed analysis of the background details
associated with the concepts in the text (see next section).

6.3 A QUANTITATIVE ANALYSIS OF THE OUTPUT AT THE

RELATIONAL AND ASF LEVELS

How is it computationally possible to determine if two texts are similar in
meaning, and thus will be similarly understood? First, a computational mea
sure is defined, called interpretation strength, that compares "weighted seman
tic graphs." This is a measure of the likelihood of the interpretation, or the
strength of the interpretation. Second, another computational measure called
background frame similarity is defined that compares interpretation trajec
tories, i.e., the generated dynamic "semantic" behavior associated with the
comprehension of two texts over time. This latter measure provides a more
detailed comparison of the activated background frame knowledge associated
with the reader of the text.

304 CHAPTER 9

activation level

stock perceptual ^orct: affections
roles dynamics

Figure 12 A trace of the change, between successive input cycles, in
the activity of the ASFs in working memory for the text WSJ-1. This
buffer holds the activated ASF background frame patterns for the text
WSJ-1. Note that the clauses containing the concepts blame, economic
outlook, believe, and slow economic growth were input at cycles 2-5,
respectively. Cycle 1 (decline) was input before the trace begins. The
labels along the X-axis represents the ASF range of the classes that roughly
reflect the structure of the thesaurus. The shaded regions highlight the
key background frame components.

activation level
(-lto+1)

4
l

^ 2 . 3
time (cycle) <«fS^ ^ ^

* L * .<5^ $ ^ slow economic

3 -ww...—,..— ii ' ' ' 'i •" ' \f(i r » r - jJr |iiiif"|H|r"T" W > economic outlook
L4k*»*^^^**-^>>v*W\ANAv^^'A*>v»y^ blame

growth

I I 1 M I II M I I M I M M 1 M I I I I 1 I I I 1 n I f l T M I 1 M M
11 » II 1 « H r—*• ASFs r I • • fc 1 A II » II ^ BU • / t N t t T T \ ^^

stock perceptual f o r c c affections volition intellect | space aostract
roles dynamic* sensation relations

Figure 13 A trace of the change, between successive input cycles, in the
activity of the ASFs in working memory for the text WSJ-2. This buffer
holds the activated ASF background frame patterns for the text WSJ-
2. Note that the clauses containing the concepts panic, plunge, blame,
economic outlook, believe, and market chaos were input at cycles 2-7,
respectively. Cycle 1 (drop) was input before the trace begins. The labels
along the X-axis represents the ASF range of the classes that roughly
reflect the structure of the thesaurus. The shaded regions highlight the
key background frame components.

A Framework for Comprehension 305

Definition 9.1 (Interpretation strength) The interpretation strength, IS, of a
weighted semantic graph G is

(A(fl t)+^>r (b t))

where (i?», a,-, 6t-) is the ith triple in semantic memory, A{Ri) the activation of
coherence relation Ri, A(a2) is the activation of concept a2. Similarly, for
A(bi). N is the number of triples. The IS(G) is a value between 0 < IS(G) < 1.

Definition 9.2 (Working memory closeness) Given the contents of work
ing memory, compute the average ASF closeness of the respective working
memory buffers, as measured by the cosine of the angle between the vectors.
Given two texts, Wi and Wj, ASFwm(Wi, Wj) denotes their working memory
closeness.

Definition 9.3 (ASF closeness) The ASF closeness of 2 vectors X,Y is de
fined as the cosine of the angle 0 between the vectors, where

cose(X,Y)= 4—^-
\X\\Y\

and

Intuitively, the contents of working memory represent a ' 'compressed" set of
trajectories through ASF space, since working memory represents the accumu
lation of the active ASF patterns (i.e., associations) over time. If the trajectories
generated for the two texts match, the hypothesis is, the two texts will have
a similar background frame interpretation, and hence be similarly understood,
with the degree of similarity determined by the degree of match. Evidence
from Heit et al. [18] suggests individual neurons reveal different levels of acti
vation to different events. This supports my hypothesis, since it suggests that a
part of the brain actually contributes specific information to the encoding and
subsequent recognition of some stimulus during recent memory.11

11 In one experiment, the responses of hippocampalneurons to a particular word or face were
recorded, and approximately three-quarters of the neurons tested showed visible and statistically
significant evidence for specific activation to one of 10 repeating words (Heit et al. [18]).

306 CHAPTER 9

Conjecture (Background frame similarity): Texts whose working memory
closeness is within some S are similar in meaning and generate similar sets of
inferences, and hence will be similarly understood.

Table 4 Some comparisons of background frame similarity of WSJ
texts. WSJ-3 is the text "It was reported that there was financial chaos in
the market."

Background Frame Similarity
Text

Comparison
(WSJ-l.WSJ-3)
(WSJ-2,WSJ-3)
(WSJ-l.WSJ-2)

Working Memory Closeness
[ASFwm(x,y)}°

50
43
13

% Change"
[AASFwm(x,y)]

28
24
7

"Percent change calculated against a horizontal baseline of 180°.

Table 4 compares the background frame similarities of the texts WSJ-1, WSJ-2,
and WSJ-3.12 Several observations can be made:

1. In terms of background frame similarity, the two texts, WSJ-1 and WSJ-2,
differ in meaning (A/5 = 9% [0.04/0.43] and AASFwm = 7% for this
example). Small changes in background frame similarity can lead to very
different interpretations of the text.

2. The interpretations of the texts WSJ-1 and WSJ-2 (A/5 = 9% and
AASFwm = 7%) are closer in meaning than the interpretations for WSJ-1
and WSJ-3 (A/5 = 30% and AASFwm = 28%) and the interpretations
for WSJ-2 and WSJ-3 (A/5 = 18% and AASFwm = 24%). Again, this
conclusion is in accord with our comprehension of these texts, i.e., it is the
strength of the market decline, along with some market forces, "increase
in oil prices" and "consumer debt level" which account for this finding.
These associations override the fact that the text WSJ-3 is related to both
WSJ-1 and WSJ-2 (i.e., "financial chaos" is a part of "recessions" and
"market crashes").

Table 6 compares the background frame similarity of the sentence pairs dis
cussed in Bookman [5]. These sentence pairs are reproduced in Table 5. Again,
several observations can be made:

12 An alternate way of comparing interpretations is to compute the background frame similarity
over the entire set of generated trajectories.

A Framework for Comprehension 307

Table 5 Pairs of ambiguous sentences.

Text Label Sentence pair
Party
Rev-party
Race
Talk

Prog

John went to Mary's party. He had a good time.
He had a good time. John went to Mary's party.
John ran the 500 meters yesterday. He had a good time.
John was talking to his boss. The language he used was
inappropriate.
John was programming at his computer. The language he
used was inappropriate.

1. Since the texts Party and Rev-party are in essence the same, i.e., very
similar in meaning, they should be similarly understood by LeMICON. A
comparison of the trajectories generated for these sentences indicates this
to be the case, since the difference between the trajectories as measured
by the change in background frame similarity is only 2%.

2. Although the texts Party and Race have the same second sentence, these
sentences mean different things. Again, the change in background frame
similarity (45%) indicates that a different interpretation was constructed
for each text, that corresponded to their differences in meaning. Similar
remarks apply to the texts Talk and Prog.

3. According to the background frame similarity measure the texts Prog and
Race are the most different in meaning (54%).

Table 6 Some comparisons of background frame similarity for the
sentence pairs in Table 5.

Background Frame Similarity
Text
Comparison
(prog,race)
(prog.party)
(party,race)
(prog,talk)
(party,rev-party)

Working Memory Closeness
[ASFwm(xty)}°

98
85
81
63
6

% Change
[AASFwm(x,y)]

54
47
45
35
2

308 C H A P T E R 9

7 A L G O R I T H M

A functional description of the basic algorithm is shown in Figure 14. The
input is a parsed ASF-encoded clause in case notation format. In Bookman [7]
a mathematical description and formal analysis of the algorithm is presented.
The algorithm has two basic functional components: (1) activation of semantic
memory, and (2) update of working memory, i.e., updating the context of the
active concepts and relations in semantic memory. Component 1 produces
an interpretation graph as output. Component 2 produces a trajectory which
represents a history of the active details of the background frames of those
concepts in semantic memory that have been activated by the current context.

Process next
input clause

[step 0]

Component 1: [steps 1-4]
Activate semantic memory

I— Activate assembly [step 1]

• Compare role fillers [step 2]

I Inhibit competing [step 3]
assemblies

I Compute relational [step 4]
novelty

output^ Interpretation
^ Graph

Component 2: [step 5]
Update context

Update the activations of the
reactive ASFs in working
memory

output ASF
____^Xrajectory

Figure 14 A functional description of the basic algorithm.

7.1 ACTIVATION O F S E M A N T I C M E M O R Y

As knowledge is represented in LeMICON at both the associational (ASF)
level and at the relational level, so two allied notions underlie the activation
of concepts in semantic memory — ASF closeness and relational closeness.
Component 1 of the basic algorithm activates the concepts in semantic memory
based upon each concept's ASF closeness to the ASFs in working memory and
relational closeness to the given input. These two measures of closeness are
used in steps 1 (activate concept assembly) and 4 (compute relational novelty)
of the computation.

Intuitively, ASFcloseness refers to the "semantic overlap" between two sources
of information in ASF space. For example, one source of concept activation
depends on how close the ASF representation of a concept's background frame
is to the input ASF and case role ASF patterns in working memory (step 1).
Another source of closeness depends on the ASF encoding of the relation

A Framework for Comprehension 309

between two concepts and the reactive ASF patterns in working memory (step
4).

Relational closeness refers to the "relational distance" between two concepts
in semantic memory, as measured by their propagation strengths, i.e., the
time it takes to propagate a signal between two active concepts. Intuitively,
concepts with less relational distance are semantically related and will have
greater propagation strengths. Here propagation strength is proportional to
the average conditional mutual information value (see Figure 4) — the larger
the value, the stronger the connection and hence the faster the propagation of
information. There are several ways to compute relational closeness. One way
is to assume a non-uniform weight between each concept pair (Definition 9.5).

Definition 9.4 (Immediate propagation strength) The immediate propaga
tion strength between two directly linked concepts X,Y is proportional to
the average conditional mutual information, 7(X, Y). I(X, Y) represents the
strength of the relationship between the two concepts, conditional on the con
cepts X and Y both not occurring together.13

Definition 9.5 (Relational closeness) The relational closeness between two
concepts XyY is defined to be

c (x v\ - TT (immediate propagation strengths along some
rA y) - max 11 p a t h connecting Xand Y)

all paths

That is, the maximum over all paths, of the products of the immediate
propagation strengths along some path connecting the two concepts. This
definition assumes that the immediate propagation strength is a real number
between zero and one.

For example, given the graph shown in Figure 15, the relational closeness
between nodes A and D is 0.54.14

13 See Bookman [7] for a formal definition of 7 and a method of calculating its value.
14 This value can be calculated by first computing the set of propagation strengths for all paths

connecting the nodes A and D.

1. the path ABCD = (.8* .8* .6) = 0.38

2. the path ACD = (.9 * .6) = 0.54

3. the path AD = 0.4

310 CHAPTER 9

Figure IS A weighted graph.

7.2 UPDATE WORKING MEMORY

Component 2 of the basic algorithm determines how much "knowledge" each
concept and relation in semantic memory actually contributes to the ASF pat
terns in working memory. This is the equivalent of the "credit assignment
problem" as applied to text comprehension. In this case the underlying back
ground knowledge is responsible for determining which semantic features are
relevant in the current context. As a result of this computation, the input and
reactive ASFs in working memory are updated based on the activated ASF
patterns in semantic memory, that is, the ASF encodings of the background
knowledge of its active concepts and relations.

7.3 DISTINCTIVE FEATURES OF THE ALGORITHM

There are six distinctive features of the algorithm. These are listed below along
with a discussion of why they are important.

Local computation: semantic memory, the algorithm can be efficiently per
formed by massively parallel hardware, ignoring communication and sig
nal propagation. The experiments in this chapter were computed on a

Note that in this case the shortest path, AD, is not the path that has the smallest propagation
strength. An alternative way of computing relational closeness is to assume a unit uniform
weight between each concept pair. If one assumes a unit uniform weight between relations in
semantic memory, then relational closeness can be implemented using the all pairs shortest path
algorithm which addresses the problem of determining a matrix A such that A(i,j) is the length
of a shortest path from i to j . A more complicated scheme might take into account the type of
the relation and/or the strength of connection between relations, in which case the weight would
be non-uniform. For example, Definition 9.5 takes into account the strength of the relation, but
not its type.

A Framework for Comprehension 311

Symbolics workstation using a general purpose massively parallel simu
lator called AINET-2 (Chun [9]). In addition, the computation is done
without spreading activation over (or relaxing) the nodes and links, un
like the spreading activation/marker passing algorithms described in the
literature (e.g., Charniak [8]; Hendler [19]; Norvig [28]).15

Activation of relevant knowledge: The ability to access "relevant" knowl
edge is due to the fact that LeMICON computes a dynamic context based
on whatever knowledge is active in semantic memory (i.e., the active
relations and activated background knowledge) and whatever knowledge
is "contextually active" in working memory. Working memory is a rich
source of knowledge — it contains not only the currently relevant (ac
tive) case role bindings, but also the relevant bundles of ASFs common to
LeMICON's current interpretation of the text; and since the level of acti
vation in working memory can vary smoothly, LeMICON can construct
graded interpretations and graded plausible inferences, shifting as the con
text shifts, without an explicit central interpreter, as prior interpretations
that receive little supporting evidence simply become inactive.

Case role information plays an important part in the activation of a con
cept's background frame knowledge. As shown with the Rumelhart ex
ample the details, supplied by the case roles, help further specify the given
situation: bright light signaled to the reader that the sentence probably re
ferred to an interrogation. In LeMICON, this effect is achieved by taking
the cross product of an input concept's background frame knowledge and
the background frame knowledge of its associated case roles with each
of the background frames of the concepts in semantic memory (step 1:
activate assemblies).

Computing what's new: As discussed in Section 1, our understanding is also
driven by our expectations. Part of this process is captured by the relational
tier representation of semantic memory as the activation of relations in that
tier sets up an expectation about which patterns of knowledge are likely
to follow (step 4: compute relational novelty). If incoming information is
consistent with these patterns, the patterns are reinforced and eventually
become part of the interpretation of the text (i.e., the interpretation graph);
if not, they simply decay. The computation in step 4 emphasizes what is
"new" about the effect of the current input on the relations in semantic
memory, by measuring the difference in activation between previously
active and currently active triples. If this difference is small, very little
changes. This computation is consistent with recent neurophysiological

15Gallant [15] describes a model of word sense disambiguation that also does not involve
spreading activation over many cycles.

312 CHAPTER 9

evidence that familiar, expected, or recently experienced stimuli cause
less activation than novel stimuli in parts of the brain (Miller et al. [25]).16

Fluid decision making: One additional property of the ASF substrate is its
uniform representation of knowledge, which means all ASF information
is processed alike. Again, no central executive determines which things
might change; rather the temporal association of ASFs in working memory
causes the formation of an interpretation or the generation of a set of
inferences. As these temporal associations change because of new input,
so does the interpretation. Furthermore, the process describes a kind
of unsupervised learning: by varying its ASF inputs, the system can
dynamically and automatically change the semantics for activating the
appropriate concepts and relations in semantic memory (see Bookman [7]
for a detailed discussion of this matter).

Hysteresis effects: The system exhibits hysteresis, i.e., the state of LeMICON
depends on its previous history. For example,the constellations of the reac
tive and input ASFs in working memory determines which interpretation
will get constructed. Even if LeMICON were to process the same input
(or sequence of inputs) for two given texts, it would produce different ASF
trajectories if the ASF patterns that precede the input differ. In addition,
LeMICON exhibits hysteresis effects related to learning. Bookman [6]
reports on the results of a series of five experiments that illustrate these
effects. These experiments indicate that prior experience affects what the
system learns.

Quick access to knowledge: Quick access to knowledge is also important. As
Feldman and Ballard [13] point out, humans carry out complex behaviors
in only a few hundred milliseconds. In LeMICON, the activation of
relevant knowledge is determined by computing the "ASF closeness''
between two concepts or relations. The heart of this computation is
rather simple, as it is based on computing inner products, and since all
computation is local, it can be done in parallel.

16Experiments with monkeys indicate that the formation of memories may in part consist
of the modification of synaptic weights such that familiar, expected, or recently seen stimuli
cause the least activation in the inferior temporal cortex (Miller et al. [25]). The authors suggest
that the inferior temporal neurons may be acting as "adaptive mnemonic filters that seek to
preferentially pass information about new, unexpected, or not recently seen stimuli." They state
further that such a process is a critical component of the memory storage mechanism. Although
these findings were based on experiments with monkeys, the authors state that they are consistent
with recent findings in humans. For example, the responses of some face-selective cells in the
superior temporal sulcus decline when faces are presented repeatedly (Rolls et al. [30]).

A Framework for Comprehension 313

8 SUMMARY

A weakness of traditional network relational representations of semantic mem
ory (e.g., Quillian [29]; Simmons [35]; Fahlman [12]; Sowa [36]) is their
limited ability to readily represent human or computer background frames of
knowledge. As a consequence, the systems that use such representations to
process knowledge are somewhat limited — they cannot readily process the
detailed knowledge that underlies each of our concepts, and therefore they
cannot easily interpret a text at a deep level of understanding. The architecture
described in this chapter, and its associated processing mechanisms represent
a very different view of semantic memory: memory is dynamic, it exhibits
hysteresis effects, and it represents knowledge at a finer level of granularity.
The key components of this architecture are (1) its representation of a concept's
background frame knowledge in an associational tier (long-term memory), and
(2) its representation of dynamic context via a set of reactive ASFs in working
memory.

Taken together, these two views espouse a rather novel model of comprehen
sion. In the "trajectory" view, comprehension can be viewed as a dynamic
system which changes course (and changes state) by moving to a different
point in its associational (ASF) knowledge space as the input changes. At par
ticular points in this space (e.g., after a clause is processed), an interpretation
graph can be extracted and used to explain some of the basic properties of the
current state, or an ASF trajectory can be generated and used to describe the
background details active at specific points in time, thus providing a deeper
level of knowledge about the comprehension of the text at these points.

A P P E N D I X A: S A M P L E P A R S E D INPUT T O L E M I C O N

For each story below, a symbolic description of a sample of the parsed input
to LeMICON is given. The actual input consists of this parsed input, but with
each concept and its filled case slots replaced by their respective learned ASF
encodings. For an example, see Figure 16. Each such encoding is a vector of
dimension 454.

WSJ-1: The stock market declined 50 points yesterday. Analysts blamed the
slump on the uncertainty in the economic outlook. They believed that
further increases in oil prices in conjunction with the current consumer
debt level would lead to slow economic growth.

314 CHAPTER 9

A
S
F
s

hope

disappointment-

change

measurement -

abnormality

finance -

investment

moderation -

number -

decrease

- $ -

— $ -

EE£
object concept

(stock market) (dropped)

mam
value

(50 points)

LEGEND

strong association

mild association

characteristically unrelated

mildly negatively associated

strongly negatively associated

Figure 16 A sample ASF encoding of the input clause "Hie stock
market declined 50 points."

Clause 1: (decline (OBJ stock market)
(VALUE 50 points)
(TIME yesterday))

Clause 2: (blame (AGT analysts) (THM slump))
Clause 3: (economic outlook (STATEOF uncertainty))
Clause 4: (believe (AGT they)

(THM increases in oil prices)
(COTHM consumer debt level))

Clause 5: (lead (THM slow economic growth))

WSJ-2: The stock market dropped 50 points yesterday. Investors panicked
and the market plunged another 100 points. Then investors panicked
and the market plunged another 100 points. Analysts blamed the drastic
change on the uncertainty in the economic outlook. They believed that
further increases in oil prices in conjunction with the current consumer
debt level would lead to market chaos.

Clause 1: (drop (OBJ stock market)
(VALUE 50 points)
(TIME yesterday))

A Framework for Comprehension 315

Clause 2: (panic (AGT investors))
Clause 3: (plunge (OBJ market)

(VALUE another 100 points))
Clause 4: (blame (AGT analysts) (THM drastic change))
Clause 5: (economic outlook (STATEOF uncertainty))
Clause 6: (believe (AGT they)

(THM increases in oil prices)
(COTHM consumer debt level))

Clause 7: (lead (THM market chaos))

A C K N O W L E D G E M E N T S

I would like to thank Ellen Hays for her comments on an earlier draft.

REFERENCES

[1] Alterman, R. (1985). A dictionary based on concept coherence. Artificial
Intelligence, 25:153-186.

[2] Alterman, R. and Bookman, L.A. (1992). Reasoning abut the seman
tic memory encoding of the connectivity of events. Cognitive Science,
16(2):205-232.

[3] Anderson, R.C. and Pichert, J.W. (1978). Recall of previously unre-
callable information following a shift in perspective. Journal of Verbal
Learning and Verbal Behavior, 17:1-12.

[4] Berrey, L.V. (Ed.) (1962). Roget's International Thesaurus (3rd edition).
NY: Thomas Crowell Company.

[5] Bookman, L.A. (1989). A connectionist scheme for modelling context.
In Proceedings of the 1988 Connectionist Models Summer School, pp.
281-290. San Mateo, CA: Morgan Kaufmann.

[6] Bookman, L.A. (1993). A scalable architecture for integrating associative
and semantic memory. Connection Science, 5(3&4):243-273.

[7] Bookman, L.A. (1994). Trajectories through Knowledge Space: A Dy
namic Framework for Maching Comprehension. Norwell, MA: Kluwer.

316 CHAPTER 9

[8] Charniak, E. (1986). A neat theory of marker passing. In Proceedings
of the Fifth National Conference on Artificial Intelligence, pp. 584-588,
San Mateo, CA: Morgan Kaufmann.

[9] Chun, H. (1986). AINET-2 user's manual. Technical Report CS-86-126,
Computer Science Department, Brandeis University, Waltham, MA.

[10] Chun, H.W., Bookman, L.A. and Afshartous, N. (1987). Network regions:
Alternatives to the winner-take-all structure. In Proceedings of the Tenth
International]oint Conference on Artificial Intelligence, pp. 380-387.

[11] Fano, R.M. (1961). Transmission of Information. Cambridge, MA: MIT
Press.

[12] Fahlman, S. (1979). NETL: A System for Representing and Using Real-
World Knowledge. Cambridge, MA: MIT Press.

[13] Feldman, J.A. and Ballard, D.H. (1982). Connectionist models and their
properties. Cognitive Science, 6:205-254.

[14] Fillmore, C.J. (1982). Frame semantics. In The Linguistic Society of
Korea (Ed.), Linguistics in the Morning Calm. Seoul: Hanshin Publishing
Company.

[15] Gallant, S.I. (1991). A practical approach for representing context and
for performing word sense disambiguation using neural networks. Neural
Computation, 3(3):293-309.

[16] Granger, R.H., Eiselt, K.P. and Holbrook, J.K. (1986). Parsing with par
allelism: A spreading activation model of inferencing processing during
text understanding. In J. Kolodner and C Riesbeck (Eds.), Experience,
Memory, and Reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.

[17] Halgren, E. (1990). Insights from evoked potentials into the neuropsy
chological mechanisms of reading. In A.B. Scheibel and A.F. Wechsler
(Eds.), Neurobiology of Higher Cognitive Function. NY: Guilford.

[18] Heit, G., Smith, M.E. and Halgren, E. (1988). Neural encoding of indi
vidual words and faces in the human hippocampus and amygdala. Nature,
333:773-775.

[19] Hendler, J. (1986). Integrating Marker-Passing and Problem-Solving: A
Spreading Activation Approach to Improved Choice in Planning. PhD
thesis, Brown University, Providence, RI.

A Framework for Comprehension 317

[20] Hinton, G.E. (1981). Implementing semantic networks in parallel hard
ware. In G.E. Hinton and J.A. Anderson (Eds.), Parallel Models of Asso
ciative Memory. Hillsdale, NJ: Lawrence Erlbaum Associates.

[21] Hinton, G.E., McClelland, J.L. and Rumelhart, D.E. (1986). Distributed
representations. In J.L. McClelland and D.E. Rumelhart (Eds.), Parallel
Distributed Processing: Explorations in the Microstructures of Cognition
(Vol I). Cambridge, MA: MIT Press.

[22] Kozminsky, E. (1977). Altering comprehension: The effect of biasing
titles on comprehension. Memory and Cognition, 5:482-490.

[23] Lange, T.E. and Dyer, M.G. (1989). High-level inferencing in a connec-
tionist network. Connection Science, 1(2):181-217.

[24] Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An
Integrated Model of Scripts, Lexicon, andMemory. Cambridge, MA: MIT
Press.

[25] Miller, E.K., Li, L. and Desimone, R. (1991). A neural mechanism for
working and recognition memory in inferior temporal cortex. Science,
254:1377-1370.

[26] Miller, G.A, Beckwith, R. Fellbaum, C. Gross, D. and Miller, K. (1990).
Five papers on WordNet. CSL Report 43. Cognitive Science Laboratory,
Princeton University.

[27] Morris, J. and Hirst, G. (1991). Lexical cohesion computed by thesaural
relations as an indicator of the structure of the text. Computational Lin
guistics, 17(l):21-48.

[28] Norvig, P. (1989). Marker passing as a weak method for text inferencing.
Cognitive Science, 13(4):569-620.

[29] Quillian, M.R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic
Information Processing. Cambridge, MA: MIT Press.

[30] Rolls, E.T., Baylis, G.C., Hasselmo, M.E. and Nalwa, V. (1989). The
effect of learning on the face selective responses of neurons in the superior
temporal sulcus of the monkey. Experimental Brain Research, 76(1): 153-
164.

[31] Rumelhart, D.E. (1981). Understanding understanding. In H.W. Dechert
and M. Raupach (Eds.), Psycholinguistic Models of Production, Nor
wood, NJ: Ablex Publishing.

318 CHAPTER 9

[32] Schank, R. (1982). Dynamic Memory. NY: Cambridge University Press.

[33] Shastri, L. (1988). A connectionist approach to knowledge representation
and limited inference. Cognitive Science, 12(3):331-392.

[34] Shastri, L. and Ajjanagadde, V. (1993). From simple associations to sys
tematic reasoning: A connectionist encoding of rules, variables and dy
namic bindings using temporal synchrony. Behavioral and Brain Sci
ences, 16(3):417-494.

[35] Simmons, R.F. (1973). Semantic networks: Their computation and use for
understanding english sentences. In R.C Schank and K.M. Colby (Eds.),
Computer Models of Thought and Language. San Francisco, CA: W.H.
Freeman and Company.

[36] Sowa, J.F. (1984). Conceptual Structures: Information Processing in
Minds and Machines. Reading, MA: Addison-Wesley.

[37] St. John, M.F. (1992). The story gestalt: A model of knowledge-intensive
processes in text comprehension. Cognitive Science, 16:271-306.

[38] Sun, R. (1991). Connectionist models of rule-based reasoning. In Pro
ceedings of the Thirteenth Annual Cognitive Science Conference, pp.
437-442.

[39] Sun, R. (1994). Integrating Rules and Connectionism for Robust Com
mons ens e Reasoning. New York: John Wiley.

[40] Thorndike, P.W. and Yekovich, F.R. (1980). A critique of schema-based
theories of human story memory. Poetics, 9:23-49.

[41] Velardi, P., Pazienza, M.T., and Fasolo, M. (1991). How to encode seman
tic knowledge: A method for meaning representation and computer-aided
acquisition. Computational Linguistics, 17:153-170.

[42] Waltz, D.L. and Pollack, J.B. (1985). Massively parallel parsing: A
strongly interactive model of natural language interpretation. Cognitive
Science, 9:52-1 A.

[43] Waltz, D.L. (1982). Event shape diagrams. In Proceedings of Second
National Conference on Artificial Intelligence, pp. 84-87.

10
Examining a Hybrid

Connectionist/Symbolic System
for the Analysis of Ballistic Signals

CHARLES LIN AND JAMES HENDLER

Department of Computer Science
University of Maryland

College Park, Maryland 20742

1 INTRODUCTION

The field of artificial intelligence (AI) has produced a variety of different prob
lem solving paradigms. Two of the more prominent ones are symbolic AI and
connectionism. Some researchers [4] [14] have argued that symbolism and
connectionism represent differing computational paradigms, while others have
discussed merging the differing strengths and weaknesses of these approaches,
as evidenced by the papers in this volume. The general consensus to date seems
to be been that symbolic systems are currently better at reasoning tasks and
encapsulating expert knowledge, while connectionist systems have been used
more successfully in pattern recognition and other perceptual tasks. Interest
ingly enough, the strengths of symbolic systems correspond to the weaknesses
of connectionist systems and vice versa.

To create more powerful AI systems, we must develop systems that can handle
both perceptual tasks, such as image or speech recognition, and cognitive
tasks, such as reasoning or planning. Since perceptual tasks are the forte of
connectionist systems and reasoning tasks are the forte of symbolic systems, a
simple and logical step is to combine the two systems into one hybrid system.
Ideally, a hybrid system overcomes the weaknesses of each of connectionism
and symbolic AI, while maintaining their strengths. While tighter couplings
between these approaches may be needed to provide a neurocognitively valid
model, current hybrids can be used to solve complex engineering problems
and to study what capabilities of the different approaches are most useful in
which situations.

319

320 CHAPTER 10

The ability for a single system to handle perception and expert reasoning
makes it useful for engineering applications which demand both facilities. For
example, natural language systems which use speech processing require the
conversion of sound to words, which is typically done by signal processing or
neural network techniques, need to be combined with a syntactic and semantic
processor, which are traditonally symbolic. Automated manufacturing requires
visual information to be combined with expert reasoning. In image processing,
identification of objects using a signal classifier can be improved by knowledge
of maps, a model of the object, or environmental information. Thus, these
hybrids systems hold promise for use in a wide range of problems.

In this chapter, we discuss the application of a hybrid shell called SCRuFFY1.
The SCRuFFY architecture consists of a connectionist component and a sym
bolic component (see Figure 1). Specifically, a neural network is used to
classify input signals. This classification is typically accomplished by break
ing up the signal into time segments, and classifying each segment in order.
The sequence of classifications is then processed by a temporal pattern matcher
which looks for patterns in time and creates facts which the symbolic compo
nent, an expert system, can then reason about.

An initial application for SCRuFFY was presented in [10]. In it, SCRuFFY
was used to produce diagnostic messages suggesting a course of action to
maintain the normal operating conditions of a simulated underwater robot
welder. Based on sensor signal data (taken from a real robot, and programmed
into the simulator), SCRuFFY determined the operating condition of the welder
and, if it determined that there were problems, suggested setpoint changes so
as to make corrections.

Based on the initial success of this effort, the SCRuFFY architecture was further
used in other control tasks. In [2], SCRuFFY was used in a chemical process
control problem to improve the performance of PIDs. The welding control
problem and the chemical process control problem shows that the SCRuFFY
shell can be used to design hybrid systems which handle control problems. In
this chapter, the SCRuFFY architecture will be used in a pattern recognition
problem. Doing a different type of problem not only demonstrates the broad
applicability of the SCRuFFY shell to problems which require perception and
expert reasoning, but also lets us examine features of these various problem
types viz the application of these sorts of techniques.

Signals, Connections, and Rults: Fun For everKone

Ballistic Signals 321

As the goal of this research is to examine the capabilities of the SCRuFFY
hybrid architecture, the next two sections discuss some of related work in
hybrid systems and describe the SCRuFFY architecture. Section 3 discusses
why the ballistic signal problem was selected, and examines how the hybrid
system was used to solve this problem. Sections 5 and 6 describe future work
and make concluding remarks.

2 RELATED WORK IN HYBRID SYSTEMS

While this paper presents one view of a hybrid connectionist-symbolic system,
specifically one that uses a neural network and an expert system as its two
components, other researchers have also combined neural networks and expert
systems as part of a single system. In addition to the approaches described in
papers in this volume, several other approaches have been outlined.

In combining neural networks with expert systems, some researchers have
built systems that represent expert knowledge, like expert systems do, and yet
can learn from examples, like neural networks do. In [12] , Romaniuk and
Hall describe a connectionist model which can both encode rules or learn rules
via examples. In [5] and [15] , the authors use a connectionist architecture to
encode a knowledge base, essentially making a more flexible learning system
than explanation-based learning (EBL). Goodman et al [6] [7] [8] extract
probablistic rules using information theoretic techniques and encode them in a
connectionist-style architecture.

In all of these works, connectionist architectures were used to encode rules.
Modifications were, therefore, required to the basic neural network architec
ture so that these rules could be encoded. Rather than having two distinct
components, one symbolic and one connectionist, these systems only have one
and thus are not particularly "hybrid/'

There is also research whose connectionist and symbolic components are dis
tinct. In [1], Bruja concludes that neural nets are useful tools in pattern recog
nition, including the recognition of waveforms. Though he does not implement
a knowledge-based component into his system, he discusses how such a com
ponent could be used. In [9], neural networks and rule-based expert systems
are used to control a two-link manipulator in learning to swing (as in swinging
a baseball bat). This method is modeled after human learning where certain
actions, such as swinging a bat, may be learned initially by rules, but eventually

322 CHAPTER 10

become natural, at which point the rules can then be dispensed. In [3], the
authors describe a "federative" system which is composed of connectionist and
symbolic components. Given a problem, a manager decomposes the problem
into subtasks which are then assigned to the component best suited for solving
the subtask. If the component can not solve the task, several components may
cooperate to solve the problem.

In [11], Kanal and Raghavan contend that pattern recognition systems require a
hybrid approach including one-shot classifiers, neural networks, expert systems
and other methods that have been traditionally used alone in pattern recognition,
and states that no single approach is best suited for this task. In [16], Ulug
presents a hybrid system with a neural network component which classifies
measurements of hydralic pressure over time, and then uses an expert system
to make diagnostic statements based on the classification.

SCRuFFY shares some characteristics with these hybrid systems but differs
in other ways. Unlike [9], where the neural network and the expert system
are attempting the same task—namely, swinging a bat—our hybrid system has
distinct roles for the neural network component and the expert system compo
nent. Like [11], we agree that pattern recognition problems require a hybrid
approach. Specifically, expert systems can enhance the pattern recognition
ability of neural networks by using domain knowledge. Our system is similar
to [16] but uses a temporal pattern matcher to combine the neural network to
the expert system, as described in the next section. The neural network clas
sifies consecutive segments of an input signal. The temporal pattern matcher
takes this sequence of classifications and looks for temporal patterns. This
approach adds more power than examining the entire signal at once (which
may not be possible if the signal is being examined online) which is Ulug's
approach. Essentially, Ulug's approach is the approach taken by SCRuFFY
but lacking a temporal pattern matcher which makes it less powerful and less
flexible than SCRuFFY.

3 DESCRIPTION OF THE SCRUFFY ARCHITECTURE

The system described in this paper is a direct application of the SCRuFFY
shell described in [10]. A block diagram of the hybrid architecture used for
SCRuFFY can be seen in Figure 1. To begin, the signal obtained from sensor
data is preprocessed by a signal processing stage. The digital signal processor
makes the task of classification more tractable for the neural network. For

Ballistic Signals 323

example, it can do this by eliminating the noise from the incoming signal
or by transforming it into a form where it can be more easily classified. A
backpropagation-trained feed-forward neural network then takes the processed
signal (or, more typically, a segment of the signal) and produces an output
classification.

In order to explain the next stage, the temporal pattern matcher, the neural
network needs to be briefly discussed. In particular, the neural network used
in SCRuFFY uses a method similar to that of NETtalk [13], by moving a time
window over the signal. Given an i input neural network, the time window
covers i consecutive samples of the input signal from time t to time t+i-1. This
segment of the signal is classified by the neural network. Then, the window
is moved over to sampled from time t + 1 to t + i, and that is classified by the
neural network. This process is repeated. The sequence of classifications is
presented to the temporal pattern matcher for analysis.

The NETtalk approach allows the SCRuFFY system to be used as a control
system. In control problems, it is often not possible the entire signal trace (as
in [16]) at one time because the input is being received online. Typically, the
signal comes from sensors collecting information on the current state of the
system. Using the NETtalk approach, a neural network can process the signal
as it is being received and decide the current state of the system by examining
only a part of the input signal. The expert system then makes control decisions
and monitors the effect of the decision from the changes in the input signal.

While neural networks are not the only methods of classification (see [11]
for other methods), one advantage is that (i) they can be trained, and (ii) once
trained they are quite efficient. Specialized hardware can be made to implement
neural networks which can classify much faster than traditional classification
systems using statistical methods. This can be an important consideration if
the SCRuFFY shell is to be used in real applications, such as control, where
slow classification may defeat the purpose of using a control system in the first
place.

Because the neural network used is numeric in nature—that is, it takes in
numeric data as input and produces numeric values as outputs, there is a need
to convert this numeric representation into a symbolic representation which
a rule-based expert system, or other symbolic system, can reason on. The
temporal pattern matcher provides a means for making this conversion. As
the name implies, the temporal pattern matcher does not make this conversion
based on a single output from the neural network. Rather, it looks for patterns
in the consecutive outputs of the neural network. By looking at neural network

324 CHAPTER 10

outputs over time, instead of an output at a single instant in time, the pattern
matcher can potentially provide more information to the expert system.

For example, in [10], some of the outputs of the neural network represented
normal operation of an underwater robot welder while others represented var
ious types of abnormal operation. The output with the largest value indicated
the current state of the underwater robot welder. If a normal output had the
largest value, then the robot welder was assumed to be behaving normally.
Similarly, if an abnormal output had the largest value, the robot welder was
assumed to be behaving abnormally. By looking at all neural networks out
puts over time, the temporal pattern matcher could look for some abnormal
output increasing over time, but which had not yet become the largest output
value. It could then inform the expert system of this temporal pattern. The
expert system could then take appropriate preventative actions so the potential
abnormal condition is dealt with before it becomes a problem. If the temporal
pattern matcher only provided the current state of information to the expert
system, the expert system would not have anticipated the problem, and would
only have reacted when the problem occurred.

While the expert system could have looked for patterns instead of the temporal
pattern matcher, the responsibility is given to the temporal pattern matcher for
finding the patterns while the expert system acts on the patterns. Furthermore,
the expert system is relieved of the responsibility of directly dealing with the
numeric output of the neural network. The temporal pattern matcher, therefore,
provides the link between the numeric form which neural networks typically
produces as output, and the symbolic form which expert systems typically
handle.

Finally, the rule-based expert system takes the patterns produced by the tem
poral pattern matcher, and suggests appropriate actions. In general, the rec
ommendations made by the rule-based component are domain specific. If the
hybrid system is being used as a controller, it will make control decisions. It
can then judge the effect of these decisions by looking at later patterns. Used
in pattern recognition, the expert system uses domain knowledge to improve
the recognition or classification done by the neural network.

Comparing SCRuFFY to the hybrid systems presented in the previous section,
we see that unlike some of the hybrid systems, the neural network and expert
system are distinct. Thus, standard neural network and expert system tech
niques can be immediately applied. Unlike the system presented in [3], the
neural network and expert system always work in conjunction, and unlike the
system presented in [9], the connectionist component and the symbolic com-

Ballistic Signals 325

ponent carry out different kinds of tasks based on the analysis of their relative
strengths and weaknesses.

4 ANALYSIS OF BALLISTIC SIGNALS

4.1 INTRODUCTION

The SCRuFFY shell has been previously used in control problems, [2] [10].
To show the applicability of this shell to another kind of problems, a problem
in pattern recognition was considered. Specifically, a problem from a military
domain (provided by the U.S. Army) was considered.

During the testing of experimental artillery, firing artillery can be dangerous
if certain abnormal conditions arise in a previous firing. To ensure safety, a
sensor records the pressure of the chamber as the artillery is fired. Based on
the sensor trace of the firing, an expert can determine whether the firing was
normal, and if so, the expert can recommend that it is safe to refire. If the firing
is abnormal, the expert will forbid the retiring of the gun and also classify the
kind of abnormality. In practice, it may take hours or days for the expert to
get a chance to examine the data and make this decision. Thus, long idle times
plague this testing process.

To demonstrate the applicability of the SCRuFFY shell to this kind of problem,
we use the system to makes decisions about the classification of the firings
based on sensor information, which normally requires the presence of the
human expert. However, the goal of this particular work was more to examine
the ability of the SCRuFFY shell to handle pattern recognition problems and
less to really try a hardcore application development effort on the ballistic
analysis problem. Thus, after consultation with experts, we chose to focus our
attention on a specific, difficult to analyse, abnormality called ringing, rather
than trying to recognize a wide range of different abnormalities.. In Figure
10, between sample number 2180 and 2880, there is a small, rapid oscillation.
Figure 11 shows only the oscillation. This oscillation is called ringing and is
an abnormal condition. Figure 2 shows a normal curve where no ringing has
occurred. The SCRuFFY shell has the responsibility of identifying regions of
ringing and deciding whether this ringing is of sufficient duration to require a
warning not to refire.

326 CHAPTER 10

The input to the hybrid system was an ordered set of data collected from the
sensors. The resulting output was a recommendation of whether to refire, and
the confidence factor of this recommendation. The hybrid system would also
print out the times where it had determined that ringing had occurred, thus
facilitating later human checking (in essence, SCRuFFY was more like an
intelligent filter than an expert diagnostician - due to the explosive results if
an improper refiring occured, the goal of the system was to recommend appeal
to the human if any ringing at all may have occured).

4 . 2 T H E SIGNAL P R O C E S S I N G P H A S E

Under ideal circumstances, an expert can look at an input signal segment and
classify it. With this same classification information, the neural network could
reasonably be assumed to be trainable as to make the same classification and to
make reasonable classifications for signal segments that are not in the training
set. However, sometimes the signal is either not in a form which makes it easy
to classify by the expert, or, there are difficulties in training the neural network
to make the correct classifications. Signal processing can be used to aid in
the classification done by the neural network. It can be used to remove noise,
or convert the signal into a form that is either easier to classify by the neural
network or by the expert when creating the training set.

By observing Figure 2 and Figure 10, which are graphs of normal and ringing
firings, respectively, it can be seen that the normal curve is essentially a slow-
varying curve, while the ringing curve is also a slow-varying curve, but it also
has a ringing portion (a small rapid oscillation) during times 2180 to 2880. This
ringing does not appear in the normal curve. In signal processing, it is well
known that signals which vary slowly are represented by lower frequencies,
and signals that oscillate quickly are represented by higher frequencies. By
converting the graphs from the time domain to the frequency domain, the lower
frequencies can be removed. The graph can then be converted back to the time
domain. By selecting a good cutoff frequency (done by visual inspection),
the slow varying curve can be eliminated and the oscillations kept. Thus, we
used a fourier transform of the original signal, rather than the signal itself, in
training and testing the network.

Ballistic Signals 327

4 . 3 T H E N E U R A L N E T W O R K P H A S E

The neural network used in this problem had 20 input nodes, 5 hidden layer
nodes, and 2 output layer nodes. There was also a bias node used which had
an input that was always set to 1. The output nodes produced an output within
the range of-1 to 1.

One of the output nodes represents a normal output while the other represents
the ringing output. Although there are several ways of interpreting when an
output is normal or ringing, it was decided empirically that when the ringing
output had a value that exceeded the normal output by at least 0.4, the neural
network should classify the input pattern as ringing. If the normal output
exceeded the ringing output by 0.4, the pattern was classified as abnormal.
Otherwise, it was classified as undecided. The value of 0.4 was selected so
that an appropriate level of noise could be tolerated.

Simply encoding the signal for the neural network was not viable because the
neural network would have been prohibitively large if all of the 4500 points of
data—the number of data points sampled per test firing —had been presented
as inputs. We therefore selected a smaller number of inputs, 20. This number
gave enough points to represent about one "period" of oscillation during the
ringing portion. A mentioned previously, we used a "window" method similar
to the one used in NETtalk. A vector of length 20 consisting of the data
collected from time / to time t + 19, inclusive, was used as input vectors to the
neural network. Thus, the first vector included all samples from time 1 to time
20. The second vector included all samples of data from time 2 to time 21. The
last vector consisted of samples from time 4481 to 4500, etc. The vectors were
presented in order of increasing time, and the corresponding neural network
outputs were produced in the same order.

To train the neural network, the normal curve from Figure 3 and the ringing
curve from Figure 11, were broken down into vectors of length 20. Given
that only a small percentage of the vectors were preclassified as ringing, equal
numbers of normal and ringing vectors were made by repeating the ringing
vectors until there were as many ringing vectors as normal ones. A ringing
input vector was trained to produce a 1 on the ringing output, and a -1 on the
normal output. A normal input vector was trained to produce a 1 on the normal
output and a -1 on the ringing output.

Once the training was complete, the number of correct and incorrect classifi
cations were calculated (see Tables 1-4). Tables 1 and 2 were from normal

328 C H A P T E R 10

firings — all input vectors were preclassified as normal. Tables 3 and 4 were
calculated from firings that showed ringing. The graphs that were considered
ringing (Figures 10 and 14) did not have ringing occuring throughout the entire
graph. Only the input vectors which included samples that fell in the ringing
region were preclassified as ringing. The rest of the input vectors of these
graphs were considered normal. For Figure 10, ringing was visually inspected
as occurring between times 2180 and 2880. For Figure 14, ringing was visually
inspected as occurring between times 2580 and 2880. Any input vector which
included samples taken during the times that were ringing were preclassified
as ringing, Input vectors taken from the curve in figures 3 and 11 were used to
train the neural network. The other two figures (7 and 15) were used to test
how well the neural network classified a test set of data (signal data that the
network was not trained on).

Actual classification
Preclassification
| normal

normal
97.2%

undecided
0.2%

ringing
2.6%

Table 1 Of the vectors which were preclassified as normal from Fig
ure 3 (which were all of them), the neural network produced the above
classification. The above indicates that of the input vectors which were
preclassified as normal, 97.2% were classified as normal by the neural
network.

declassification
| normal

Actual classification
normal
95.2%

undecided
0.31%

ringing
4.5%

Table 2 Of the vectors which were preclassified as normal from Fig
ure 7 (which were all of them), the neural network produced the above
classification.

Figures 4, 8,12, and 16 show the outputs of the neural network plotted versus
time. The outputs are one of three values: zero, if the input vector was
classified as normal; one-half, if the input vector was classified as undecided;
one if it was classified as ringing. While Tables 1 -4 show that the classification
was fairly good, it was not perfect. Ideally, we wanted n consecutive outputs
classified as ringing before the entire graph could be considered ringing, with
an appropriate choice of n. While we were able to get a block of consecutive

Ballistic Signals 329

Actual classification
Preclassification

normal
ringing

normal
87.3%
1.71%

undecided
0.45%
0.71%

ringing
12.3%
97.6%

Table 3 These were the results of the neural network classification of the
input vectors from Figure 11. Some of the input vectors were preclassfied
as normal, while others were preclassified as ringing. For example, of the
input vectors preclassified as normal, 12.3% were classified as ringing by
the neural network.

Actual classification
Preclassification

normal
ringing

normal
82.2%
0.80%

undecided
0.73%
0.00%

ringing
17.1%
99.2%

Table 4 The above are the classifications made by the neural network
on the input vectors from Figure 15.

neural network output classifications to be mostly ringing during the times that
were considered ringing, they were not all classified as ringing. Hence, we
had several short blocks of ringing. To make one large block of ringing, the
temporal pattern matcher was used to "smooth" out the results of the neural
network and to identify longer blocks of ringing.

4 . 4 T H E T E M P O R A L PATTERN M A T C H E R

In [10], the temporal pattern matcher was used to find patterns such as increas
ing values of an output (of the neural network) over time, or decreasing values
of an output over time. However, such patterns were not particularly useful
for this problem. The purpose of the pattern matcher, in our problem, was to
improve the expert system's ability to identify ranges of ringing by cleaning
up the data produced by the neural network.

Specifically, the pattern matcher looked at a sequence of 40 neural network
outputs (from time t to t+39, inclusive). If, in this sequence, 70% of the outputs

330 C H A P T E R 10

from the neural network were classified as ringing, then the pattern matcher
produced an output of ringing for time t. The effect of this smoothing can be
seen in Figures 5,9,13, and 17. The temporal pattern matcher produced outputs
that were only ringing or normal, using the previous criteria for ringing. The
values of 40 outputs and 70% were chosen empirically, inspecting the quality
of the results when these numbers were varied. (We did not attempt to define an
optimal choice for these parameters, but chose values that produced reasonably
good results.)

As the "smoothing'' procedure generates long blocks of time classified as
ringing, it is much easier to identify when ringing has occurred. Comparing
figure 12 to 13, there is a reduction in the amount of blocks of ringing from
a numerous amount to four. Of the four, only one block is long. Though it
can't be seen in Figure 12, the region between 2100 and 2800 is not a single
contiguous block. The smoothing operation creates one contiguous block in
Figure 4d, and eliminates many of the smaller ones.

The "smoothing" operation had an additional benefit besides creating long
blocks of ringing. It generally improved the accuracy of the classification done
by the neural network. That is, more input vectors that were preclassified as
normal were classified as normal using this smoothing technique in conjunction
with the neural network versus using the neural network alone.2 It is more
important to be able to identify a long segment of ringing because this becomes
the basis for deciding whether the abnormality is serious or not, as will be
discussed later. A long segment of ringing indicates that a significant amount
of ringing has occurred while a short segment might indicate that the ringing
is not serious enough to produce a warning. Even if smoothing were to
decrease the accuracy of identification by a small amount, as long as the
smoothing operation produced a long block of ringing in approximately the
correct location where the expert had identified ringing, then the smoothing
procedure would have accomplished its task. The results of the classification
after smoothing can be seen in Tables 5-8.

However, while the first step of the pattern matcher for this problem was to
smooth the results of the neural network,, the main purpose of the pattern
matcher is to convert the numeric output into facts which the expert system
can manipulate. In this case, it takes the graphs from Figures 5, 9, 13, and 17
and produces facts of the form, (r ing start time end time). The fact says
that every single output between the start time and the end time was classified

2The accuracy also improved for the vectors which were preclassified as ringing. However,
as the neural network had already done a fairly accurate job of classification, the improvement
in accuracy is not significant.

Ballistic Signals 331

Actual classification
Preclassification
| normal

normal
100.0%

ringing
0.0%

Table 5 This is the classification made by the "smoothing" procedure
on Figure 4. It was decided that only two classifications were needed:
normal and ringing.

Actual classification
declassification
| normal

normal
99.5%

ringing
0.5%

Table 6 This is the classification made by the "smoothing" procedure
on Figure 8.

Actual classification
Preclassification
1 normal
1 ringing

normal
94.2%
0.0%

ringing
5.8%

100.0%

Table 7 This is the classification made by the "smoothing" procedure
on Figure 12.

as ringing by the smoothing procedure. Facts are generated for all such

Actual classification
reclassification
normal
ringing

normal
97.6%
9.4%

ringing
2.4%
90.6%

Table 8 This is the classification made by the "smoothing" procedure
on Figure 16.

332 CHAPTER 10

consecutive sequences of ringing for a given graph, one fact for each block
found. If no ringing occurred in the entire graph, then the pattern matcher
produces the fact (none), indicating no ringing occurred. These facts are
passed to the expert system as they are discovered.

4 . 5 T H E E X P E R T S Y S T E M P H A S E

Since the problem of recognizing ringing in signals generated by ballistic
firings is primarily one in pattern recognition and because the authors had no
additional domain knowledge from which to work with, the expert system is
fairly simple. Its main task is to identify whether the graph of a firing has
ringing or not, to determine whether to refire the gun which produced this
graph, and to indicate the times it believes ringing has occurred. The expert
system used in our problem was written in CLIPS, which is a forward-chaining
rule-based expert system similar to OPS5, but written in C (In fact, this entire
system is written in C, and runs on a Sun Sparc station.)

As previously mentioned, the temporal pattern matcher produces facts of the
form (r ing start time end time). We call this span of time a ringing block.
The length of the ringing block is the difference between the end time and the
start time.

The expert system takes these facts and divides them into three categories.
Either the ringing block is longer than 100, between 10 and 100, or between 1
and 10. If there are blocks of length 100 or more, the expert system concludes
that there is definite evidence for ringing and advises not to refire the gun. It
also prints out the times where it believes ringing occurred. If a block of this
length is found, then any block of ringing with length less than 100 is ignored
since it has already been concluded that ringing has occurred.

If there are no blocks of ringing longer than 100, but there are ringing blocks
of length 10 to 100 or 1 to 10, then the times of the ringing blocks are again
printed. The longer the ringing, the more likely the advice is not to fire. Only
when there are no ringing blocks at all will the expert system advise that it is
safe to refire the gun. A resulting run of the CLIPS expert system for all four
curves is seen in Figures 18, 19,20, and 21.

However, this result neither showed the real power of the expert system, nor
corresponded to the real analysis in one important way. It turns out that certain
oscillations in the curve do not correspond to ringing, and should not prevent

Ballistic Signals 333

the firing of the gun. If the oscillation occured early in the firing (represented
by the original upcurve of the graphs shown previously), then the oscillation
was not really ringing. However, the fourier method and the neural network
could not easily be designed so as to recognize the difference, thus the expert
system was needed to eliminate the spurious reports of ringing.

A rule was added to the expert system which determined whether the evidence
of ringing occurred during the upslope of the curve or the downslope. If
ringing occurred on the upslope, it was considered to be less problematic, and
was ignored. By adding this rule, the expert system concluded (see Figure 22)
that it was safe to refire, whereas in Figure 19 which does not use this rule,
the expert system advises not to refire. Figures 20 and 22 are run on the same
input with the only difference being the change in rules of the expert system.
This shows that expert knowledge can be used to identify unusual cases which
would normally be incorrectly classified by the neural network.

5 FUTURE WORK

The work described in this paper was, essentially, a proof of concept for the
use of the SCRuFFY hybrid system on the ballistic analysis task. The logical
next step is to increase the difficulty of this problem. As described, only one
kind of abnormal condition—ringing—was considered. There were, however,
several other kinds of abnormal conditions. With these additional abnormal
conditions, issues such as considering whether one neural network should make
all the classifications, or whether there should be a separate neural network
for each of the different abnormalities have to be addressed. Also, the expert
system now has a more complicated task because it must decide which of
several abnormalities is occurring. How the hybrid SCRuFFY shell will scale
as the difficulty of the problem increases is still the subject of future research.

Additionally, we are pursuing research to determine what sorts of problems are
best suited to the hybrid approach discussed in this paper, and what extensions
are needed. The original temporal pattern matcher [10] was based on James
Allen's logic of temporal intervals. For the pattern recognition task, it was
clear we needed another approach, such as the smoothing procedure described
previously. We believe the temporal pattern matching approach is critical to
the success of hybrid systems, but believe more research is needed to determine
exactly what the language for the temporal patterns should be.

334 CHAPTER 10

6 CONCLUSION

To use hybrid models effectively, it is necessary to examine the kinds of
problems that connectionist and symbolic systems are suited to solving. By
identifying these tasks, we can find problems that are easily handled by hybrid
systems, while challenging the capabilities (or scaling) of either neural or
symbolic approaches. As an example, we have attempted to demonstrate that
hybrid systems can be effectively used for a combination pattern-recognition
and decision-making problem. Specifically, we used the hybrid system to
classify a signal taken from the firing of a gun as either normal or ringing.

As we have shown, hybrid systems represent one way of increasing the power
of connectionist and symbolic systems, taking advantage of each of their
strengths. When used in solving pattern classification problems, the expert
system is useful if domain knowledge is readily available and can augment
the classification work done by the neural network. For this task, a non-
hybrid approach would either have produced an inferior result or required
significantly more training (if a neural network) or significantly more rules
(if a purely rule-based approach). Expert Systems have not typically been
well-suited for performing pattern recognition for sensory inputs, one of the
reasons for the popularity of neural networks in pattern recogntion. However,
as discussed earlier, a standard connectionist system has significant trouble in
taking advantage of domain knowledge, and in making decisions such as when
ringing was significant and whether the gun should be refired. The hybrid
approach allowed us to use the strengths of both and thereby to improve the
solution.

Ballistic Signals 335

Sensor Signal

SCRuFFy

Numerical

1
Digital Signal Processing Techniques

i
Neural Network

1 r

f Temporal Pattern Matcher J

\

Symbolic

r
Expert System

\ r
Actions

Figure 1 A block diagram of the SCRuFFY system. Sensor signals
serve as the input. DSP techniques and neural networks form the nu
merical manipulation of the data. The temporal pattern matcher converts
the numeric output of the neural network to a symbolic output which the
expert system then decides on appropriate output actions.

336 C H A P T E R 10

l O I 1 1 1 1 — i 1 — i 1 1 — | 1 1 1 1 — | 1 1 1 1 1 1 r
H I

o 1000 2000 3000
t ime

4000

Figure 2 Graph of a normal firing. Neural network was trained on this
curve, x-axis refers to sample number (time), y-axis refers to pressure
measured in MPascals. No ringing occurs in this curve.

i i i I | i i i i | i i i I | i

^ h

<N

O

^ L

to^iflhW*^

-J I I I I I I I I I I—J I I 1 I — I I , I

0 1000 2000
t ime

3000 4000

Figure 3 This is curve from Figure 2 with the lower frequencies re
moved. The y-axis refers to sample number (time). Notice there are
no large oscillations (as in Figure 11) which would be an indication of
ringing.

Ballistic Signals 337

U5
* L • ' ' ' | i I I i | i i i i

to

•a ̂
to -•

O
o

o -L
0 1000 2000

t ime
3000 4000

Figure 4 The output of the neural network on Figure 3. The x-axis
refers to sample number (time). The y-axis has three discrete values. 0
means no ringing. 0.5 means uncertain. 1 means ringing.

*o
f H

1.
0

to

•E *&
tf 6

o
o

•
9<

1 r

-

-

-
-

i i

)

— i 1 1 1 i

• i i i i

1000

1 1 — 1 — 1 — 1 —

1 1 1 1 1

2000

i i i i i

• i i i i

3000

- T i | r-

. . I .

4000

"n
A

«]

J

j
~i

t ime

Figure 5 This is Figure 4 after "smoothing". The spikes that might have
indicated ringing have been removed. The axes are the same as in Figure
4.

338 CHAPTER 10

o
lO I 1 1 1 r

n r—i 1 — | 1 1 i i i — i — i — | — i — r

cd

S 2

i lO

- i _ i -
0 1000 2000

t ime
3000 4000

Figure 6 Graph of a normal firing. Neural network was not trained
on this curve, x-axis refers to sample number (time), y-axis refers to
pressure measured in MPascals. No ringing occurs in this curve.

i i—i i i i i i—i i i i i — i — | — - i — i — i — i — i i i

Tf h

<N

<N L

'^tim^mHwM* ^i^mi^vWm

- I I I I I L. -J 1 I I I I I L_

0 1000 2000
t ime

3000 4000

Figure 7 This is curve from Figure 6 with the lower frequencies re
moved. The y-axis refers to sample number (time). Notice there are
no major oscillations (as in Figure 11) which would be an indication of
ringing.

Ballistic Signals 339

1000 2000
t ime

3000 4000

Figure 8 The output of the neural network on Figure 7. The x-axis
refers to sample number (time). The y-axis has three discrete values. 0
means no ringing. 0.5 means uncertain. 1 means ringing.

J L » » ' ' • i | 1 i i i | r—i 1 1—i 1 r

•a **
8* 6

©

o 1 I l _ J ' • • I I I I I -i L

0 1000 2000
time

3000 4000

Figure 9 This is Figure 8 after "smoothing". Most of the spikes from
Figure 8 that might have indicated ringing have been removed. The axes
are the same as in Figure 8.

340 CHAPTER 10

©
10 i — 1 — ' — i — r -i 1—i 1 1 1 1 r — T — | 1 1 1 1 — | 1 i

4
^ oh

J ^ i

0 1000 2000
time

3000 4000

Figure 10 Graph of an abnormal firing. Ringing has occurred in this
curve. Neural network was trained on this curve, x-axis refers to sample
number (time), y-axis refers to pressure measured in MPascals.

-i 1 1 r—| 1 1 1 1 — | 1 1 1 1 — | 1 1 1 1 1 1 r

Tt< h

O* h

O RfyWAA«W*W»W. Vkm " ^ Vk tfhlV

<N

kMMMM^Al

J I I ' ' I I I I L-

0 1000 2000 3000
time

4000

Figure 11 This is curve from Figure 10 with the lower frequencies
removed. The y-axis refers to sample number (time). Notice there are
large spikes between times 2180 and 2880 which indicates ringing.

Ballistic Signals 341

• r—i r—T 1 1 1 i 1 1 1 1 r—T 1 1 i i i 1 1 1 rn

SP O F

©

d 0 1000 2000
t ime

i i i t i i i i i

3000 4000

Figure 12 The output of the neural network on Figure 11. The x-axis
refers to sample number (time). The y-axis has three discrete values. 0
means no ringing. 0.5 means uncertain. 1 means ringing. Notice that
between times 2000 to 3000 there is a solid range with a value of 1 which
is also the times when ringing occurs.

i c

b£

bA
i©

o
o

1©

d
- L J i L. J I L.

0 1000 2000
t ime

3000 4000

Figure 13 This is Figure 12 after "smoothing". Notice that much of the
"noise" in Figure 10 has been cleaned up. Between times 2100 and 2800,
there is one large block of ringing which the expert system will look for
to determine ringing. The axes are the same as in Figure 12.

342 CHAPTER 10

10 i i i i i I i i i i

cd

e

i i i I i 1—i 1 — | 1 r

0 1000 2000 3000
t ime

4000

Figure 14 Graph of an abnormal firing. Ringing occurs in this curve
between times 2580 and 2880. The neural network was not trained on this
curve, x-axis refers to sample number (time), y-axis refers to pressure
measured in MPascals.

n 1 1 — i — r — i 1 i i i i i I i i i i I i i

<N L

Tf< L

MMfriMMAtyM/fjl

- I I L I I I i I——I i I

o 1000 2000 3000
t ime

4000

Figure 15 This is curve from Figure 14 with the lower frequencies
removed. The y-axis refers to sample number (time). Notice there are
large oscillations between times 2580 and 2880 which indicate ringing.

Ballistic Signals 343

2000
time

3000 4000

Figure 16 The output of the neural network on Figure 15. The x-axis
refers to sample number (time). The y-axis has three discrete values. 0
means no ringing. 0.5 means uncertain. 1 means ringing. Notice that
between times 2600 to 3000 there is a solid range with a value of 1 which
is also the times when ringing occurs.

is

to

°t
O f
IS

o
J - I I I I I l_

o 1000 2000
time

3000 4000

Figure 17 This is Figure 16 after "smoothing". Notice that much of the
"noise" has been cleaned up. Between times 2400 and 2800, there is one
large block of ringing which the expert system will look for to determine
ringing. The axes are the same as in Figure 16.

344 CHAPTER 10

CLIPS> (run)
(run)
Type in file to be read ==> tt_norml.clips

You may fire. There is negligible evidence of ringing.

3 rules fired

Figure 18 This is a sample CLIPS run based on the output produced by
the temporal pattern matcher on Figure 5. No ringing has been found, so
the expert system indicates refiring is safe.

CLIPS> (run)
(run)
Type in file to be read ==> tt_norm2.clips

Don't fire without more information!
Moderate evidence of ringing between time 1645 and 1665
Length of ringing: 20

4 rules fired

Figure 19 This is a sample CLIPS run based on the output produced by
the temporal pattern matcher on Figure 9. A little ringing has been found,
so the expert system indicates a moderate warning not to reflre.

Ballistic Signals 345

CLIPS> (run)
(run)
Type in file to be read ==> tt_ring2.clips

Do not firel
High evidence of ringing between time 2148 and 2814
Length of ringing: 666

8 rules fired

Figure 20 This is a sample CLIPS run based on the output produced by
the temporal pattern matcher on Figure 13. Definite indications of ringing
has been found, so the expert system advises not to refire.

CLIPS> (run)
(run)
Type in file to be read ==> tt_ringl.clips

Do not firel
High evidence of ringing between time 2434 and 2 908
Length of ringing: 474

7 rules fired
CLIPS> (exit)
(exit)

Figure 21 This is a sample CLIPS run based on the output produced by
the temporal pattern matcher on Figure 17. Definite indications of ringing
has been found, so the expert system advises not to refire.

346 CHAPTER 10

CLIPS> (run)
(run)
Type in file to be read ==> tt_norm2.clips

Evidence of ringing between time 1645 and 1665
Being removed from consideration because it
falls during times 0 and 1700 where there should
should be no ringing.

You may fire. There is negligible evidence of ringing.

5 rules fired

Figure 22 This is a sample CLIPS run based on the output produced by
the temporal pattern matcher on Figure 9. An additional rule has been
added to discount ringing when it occurs during the upslope of a curve.
The expert system advises that refiring is safe, but also indicates that it is
ignoring ringing on die upslope.

Ballistic Signals 347

REFERENCES

[1] I. Bruja (1992). Neural Net Approach to Recognition of Waveforms,
Artificial Intelligence and Tutoring Systems for Teaching and Learning,
pp. 43-63, London: Ellis Horwood Limited.

[2] Y. Cui, J. Hendler, H. Su, and T. McAvoy. (in press). Improving PID con
trollers with a Neural Network. Tech. rep., Institute of Systems Research,
University of Maryland, 1993.

[3] J. Dunker, A. Scherer, and G. Schlageter. (1992). Integrating Neural
Networks into a Distributed Knowledge Base. In Int. Conf. on AI, Expert
Systems and Neural Language.

[4] M. Dyer. (1988). Symbolic NeuroEngineering for Natural Language Pro
cessing: A Multilevel Research Approach. Tech. Rep. UCLA-AI-88-14,
Computer Science Dept., University of California, Los Angeles.

[5] G.M. Scott, J.W. Shavlik and W.H. Ray. (1991). Refining PID Controllers
using Neural Networks, In J. Moody, S. Hanson and R. Lippmann (Eds.),
Advances in Neural Information Processing Systems 4, pp. 555-562,
Morgan Kaufmann: San Mateo, CA.

[6] R. M. Goodman, C. M. Higgins, J. W. Miller, and P. Smyth. (1992). Rule-
Based Neural Networks for Classification and Probability Estimation.
Neural Computation, No. 4, pp. 781-804.

[7] R. M. Goodman, J. W. Miller, and P. Smyth (1989). An Information The
oretic Approach to Rule-Based Connectionist Expert System, Advances
in Neural Information Processing Systems 7, pp. 256-263, San Mateo,
CA: Morgan Kaufmann.

[8] H. K. Greenspan, R. Goodman, and R. Chellappa. (1992). Combined
Neural Network and Rule-Based Framework for Probabilistic Pattern
Recognition and Discovery, Advances in Neural Information Processing
Systems 4, pp. 444-451, San Mateo, CA: Morgan Kaufmann.

[9] D. A. Handelman, S. H. Lane, and J. J. Gelfand. (1990). Integrating Neural
Networks for Intelligent Robot Control. IEEE Control System Magazine,
pp. 77-87.

[10] J. Hendler and L. Dickens. (1992). Integrating Neural Network and Expert
Reasoning: An Example. Proceedings ofAISB, pp. 109-116.

348 CHAPTER 10

[11] L. Kanal and S. Raghavan. (1992). Hybrid Systems-A Key to Intelligent
Pattern Recognition. International Joint Conference of Neural Networks,
Vol. IV of IV, June 7-11.

[12] S. G. Romaniuk and L. O. Hall. (1993). SC-net: A Hybrid Connectionist,
Symbolic System." Information Sciences.

[13] T. Sejnowski and C. R. Rosenberg. (1986). NETtalk: a parallel network
that learns to read aloud. Tech. Rep. EECS-86/01, Johns Hopkins Univ.

[14] P. Smolensky. (1990). Connectionist AI, Symbolic AI, and the Brain. AI
Review.

[15] G. G. Towell, J. W. Shavlik, and M. O. Noordweier. (1990). Refinement of
Approximate Domain Theories by Knowledge-Based Neural Networks.
In Proceedings, AAAI-90, pp. 861-866.

[16] M. E. Ulug. (1989). A Hybrid Expert System Combining AI Techniques
with a Neural-Net. In Proceedings of the Second International Conference
on Industrial and Engineering Applications of AI and Expert Systems,
pp. 305-309.

PART IV

COMMENTARIES

350

Part IV: Commentaries

• Chapter 11 (by Vasant Honavar) attempts to explore questions regarding
fundamental similarities and differences between symbolic systems and
connectionist systems.

• Chapter 12 (by Michael Dyer) reviews connectionist symbolic processing
models with respect to natural language processing.

n
Symbolic Artificial Intelligence and

Numeric Artificial Neural
Networks: Towards a Resolution of

the Dichotomy
VASANT HONAVAR

Department of Computer Science
Iowa State University

Ames, Iowa 50011

1 INTRODUCTION

The attempt to understand intelligence entails building theories and models of
brains and minds, both natural as well as artificial. From the earliest writings
of India and Greece, this has been a central problem in philosophy. The
advent of the digital computer in the 1950's made this a central concern of
computer scientists as well (Turing, 1950). The parallel development of the
theory of computation (by John von Neumann, Alan Turing, EmilPost, Alonzo
Church, Charles Kleene, Markov and others) provided a new set of tools with
which to approach this problem — through analysis, design, and evaluation of
computers and programs that exhibit aspects of intelligent behavior — such
as the ability to recognize and classify patterns; to reason from premises to
logical conclusions; and to learn from experience.

In their pursuit of artificial intelligence and mind/brain modelling, some wrote
programs that they executed on serial stored-program computers (e.g., Newell,
Shaw and Simon, 1963; Feigenbaum, 1963); Others had more parallel, brain
like networks of processors (reminiscent of today's connectionist networks) in
mind and wrote more or less precise specifications of what such a realization
of their programs mightlook like (e.g., Rashevsky, 1960; McCulloch and Pitts,
1943; Selfridge and Neisser, 1963; Uhr and Vossler, 1963); and a few took
the middle ground (Uhr, 1973; Holland, 1975; Minsky, 1963; Arbib, 1972;
Grossberg, 1982; Klir, 1985).

It is often suggested that two major approaches have emerged — symbolic
artificial intelligence (SAI) and (numeric) artificial neural networks (NANN
or connectionist networks) and some (Norman, 1986; Schneider, 1987) have

351

352 CHAPTER 11

even suggested that they are fundamentally and perhaps irreconcilably differ
ent. Indeed it is this apparent dichotomy between the two apparently disparate
approaches to modelling cognition and engineering intelligent systems that is
responsible for the current interest in computational architectures for integrat
ing neural and symbolic processes. This topic is the focus of several recent
books (Honavar and Uhr, 1994a; Goonatilake and Khebbal, 1994; Levine
and Aparicioiv, 1994; Sun and Bookman, 1994). This raises some important
questions: What exactly are symbolic processes? What do they have to do
with SAI? What exactly are neural processes? What do they have to do with
NANN? What (if anything) do SAI and NANN have in common? How (if
at all) do they differ? What exactly are computational architectures? Do SAI
and NANN paradigms need to be integrated? Assuming that the answer to the
last question is yes, what are some possible ways one can go about designing
computational architectures for this task? This chapter is an attempt to explore
some of these fundamental questions in some detail.

This chapter argues that the dichotomy between SAI and NANN is more per
ceived than real. So our problems lie first in dispelling misinformed and
wrong notions, and second (perhaps more difficult) in developing systems
that take advantage of both paradigms to build useful theories and models of
minds/brains on the one hand, and robust, versatile and adaptive intelligent
systems on the other. The first of these problems is best addressed by a criti
cal examination of the popular conceptions of SAI and NANN systems along
with their philosophical and theoretical foundations as well as their practical
implementations; and the second by a judicious theoretical and experimental
exploration of the rich and interesting space of designs for intelligent systems
that integrate concepts, constructs, techniques and technologies drawn from
not only SAI (Ginsberg, 1993; Winston, 1992) and NANN (McClelland and
Rumelhart, 1986; Kung, 1993; Haykin, 1994; Zeidenberg, 1989), but also
other related paradigms such as statistical and syntactic pattern recognition
(Duda and Hart, 1973; Fukunaga, 1990; Fu, 1982; Miclet, 1986)), control
theory (Narendra and Annaswamy, 1989) systems theory (Klir, 1969), genetic
algorithms (Holland, 1975; Goldberg, 1989; Michalewicz, 1992) and evolu
tionary programming (Koza, 1992). Exploration of such designs should cover
a broad range of problems in perception, knowledge representation and infer
ence, robotics, language, and learning, and ultimately, integrated systems that
display what might be considered human-like general intelligence.

Resolving the AI/NN Dichotomy 353

2 S H A R E D F O U N D A T I O N S O F SAI AND NANN

This section makes clear that the fundamental philosophical assumptions and
scientific hypotheses that have shaped both SAI and NANN research are iden
tical. The shared foundations of SAI and NANN guarantee that there can be
no fundamental incompatibility between the two paradigms for engineering
intelligent systems or for modelling minds/brains.

2 . 1 SAI and NANN Share the Same Working Hypotheses

The fundamental working hypothesis that has guided most of the research in
artificial intelligence as well as the information-processing school of psychol
ogy is rather simply stated: Cognition, or thought processes can, at some level,
be modelled by computation. The philosophical roots of this hypothesis can
be traced at least as far back as the attempts of Helmholtz, Leibnitz and Boole
to explain thought processes in terms of mechanical (or in modern terms, al
gorithmic or computational) processes. This has led to the functional view of
intelligence which is shared explicitly or implicitly by almost all of the work in
SAI as well as NANN. NewelTs physical symbol system hypothesis (Newell,
1980), Fodor's language of thought (Fodor, 1976), Minsky's society of mind
(Minsky, 1986), Holland's classifier systems (Holland, 1986), and most neu
ral network models (McClelland and Rumelhart, 1986; Kung, 1993; Haykin,
1994; Zeidenberg, 1989) are all specific examples of this functional view. In
this view, intelligence can be characterized abstractly as a functional capability
independent of any commitments as to the specific physical substrates that
support the functions in question.

The primary means of describing the behavior of intelligent systems (be they
natural or artificial) within the SAI paradigm is in terms of their having knowl
edge and behaving in light of that knowledge. This is the so-called knowledge-
level description (Newell, 1990). But it is important to remember that de
scriptions at the knowledge-level represent just one of the many alternatives
available. The choice of what description to use in modelling intelligence, as in
science in general, must be based on pragmatic considerations as determined by
aspects of the phenomena being modelled and the sorts of explanations being
sought. Satisfactory accounts of system behavior often make use of multiple
levels of description along with the necessary means of mapping descriptions
at one level into descriptions at adjacent levels.

354 CHAPTER 11

Perhaps not so obvious is the fact that exactly the same functional view of
intelligence is at the heart of current approaches to mimic intelligent behav
ior within the NANN paradigm, as well as the attempts to understand brain
function using the techniques of computational neuroscience and neural mod
elling. The earliest work on neural networks by Rashevsky (1960), McCulloch
and Pitts (1943) and Rosenblatt (1962)nociteros62 — from which many of to
day's NANN models are derived — illustrates this point rather well. So does
the emphasis on computational models in the recent book on this topic by
Patricia Churchland and Terrence Sejnowski (1992) suggestively titled The
Computational Brain (This is not to suggest that brain modelling can ignore
the particular biological substrates that realize the computations in question
but just that the computational characterization of what the brains do provides
a useful class of explanations and predictions of mental phenomena). It is
important to note that NANN models or theories of intelligence are stated in
terms of abstract computational mechanisms just as their SAI counterparts.
The differences (if any) from SAI are primarily in terms of the (often unstated)
preference for functional descriptions of intelligent systems at a different level
of detail using a different set of primitives.

Some have (somewhat misleadingly) used the term neural level to refer to
such descriptions. Today's NANN models are almost certainly grossly over
simplified caricatures of biological brains (Shepherd, 1989; 1990). It is far
from clear that NANN are more suited to modelling brains any more than SAI;
Descriptions in terms of rules, tokens, and automata (typically associated with
SAI systems) offer extremely useful descriptions of biological neural circuits
at the cellular and molecular levels (Cooper, 1990). (More on this later).

It should be clear from the discussion above that both SAI and NANN
paradigms essentially offer two different description languages for describ
ing systems in general and intelligent systems — minds/brains (be they natural
or artificial) — in particular. As pointed out by Chandrasekaran and Josephson
(1994), the commitment of most SAI researchers to biology in describing intel
ligence does not typically go beyond the knowledge level. Although perhaps
not as obvious is die fact that an analogous situation holds for NANN models.
NANN researchers pick out some interesting or relevant aspects of biological
phenomena, and then proceed to formulate an abstract functional model (using
abstract models of neurons) for the selected aspects of the phenomena cho
sen. The abstract descriptions in both cases are usually stated in sufficiently
general languages. One thing we know for certain is that such languages are
all equivalent (see below). This provides absolute assurance that particular
physical implementations of systems exhibiting mind/brain-like behavior can
be described using the language of SAI or NANN irrespective of the physical

Resolving the AI/NN Dichotomy 355

medium (biological or silicon or some other) that is used in such an implemen
tation. And the choice of the language should (as it usually is, in science in
general) be dictated by pragmatic considerations.

2 . 2 SAI and NANN Rely on Equivalent Models of Computation

Turing was among the first to formalize the common-sense notion of com
putation in terms of execution of what he called an effective procedure or an
algorithm. In the process, he invented a hypothetical computer — the Turing
machine. The behavior of the Turing machine is governed by an algorithm
which is realized in terms of a program or a finite sequence of instructions.
Turing also showed that there exists a universal Turing machine (essentially a
general purpose stored program computer with potentially infinite memory) —
one that can compute anything that any other Turing machine could possibly
compute — given the necessary program as well as the data and a means for
interpreting its programs. Several alternative models of computation were
developed around the same time including lambda calculus of Church and
Rosser, Post productions, Markov algorithms, Petri nets, and McCulloch-Pitts
neural networks. However, all of these models (given potentially infinite
memory) were proved exactly equivalent to the Turing Machine. That is, any
computation that can be described by a finite program can be programmed in
any general purpose language or on any Turing-equivalent computer (Cohen,
1986). (However, a program for the same computation may be much more
compact when written in one language than in some other; or it may execute
much faster on one computer than some other). But the provable equivalence
of all general purpose computers and languages assures us that any computa
tion — be it numeric or symbolic — can be realized, in principle, by both SAI
as well as NANN systems.

Given the reliance of both SAI and NANN on equivalent formal models of
computation, the questions of interest have to do with the identification of
particular subsets of Turing-computable functions that model various aspects
of intelligent behavior given the various design and performance constraints
imposed by the physical implementation media at our disposal.

356 C H A P T E R 11

3 K N O W L E D G E R E P R E S E N T A T I O N R E V I S I T E D

Knowledge representation and inference are perhaps among the most central
research issues in the integration of SAI and NANN paradigms for modelling
cognitive phenomena and engineering intelligent systems. This is evident from
the fact that almost all the recent books on the integration of SAI and NANN
paradigms (Honavar and Uhr, 1994a; Levine and Aparicioiv, 1994; Sun and
Bookman, 1994) have devoted several chapters to this topic. It is therefore
worth clarifying some basic issues about knowledge representation.

It is generally accepted in artificial intelligence and cognitive science that
knowledge has to be represented in some form in order for it to be used. This is
free of any commitment as to how a particular piece of knowledge is internally
represented. However, implicit in this view is a commitment to use some
language (e.g., first order logic, production rules, lambda calculus or LISP) to
express and manipulate knowledge. Expressions in any such language can be
syntactically transformed into any other sufficiently expressive language —
this follows from the universality of the Turing framework. This is tantamount
to saying that systems that use knowledge are simultaneously describable at
multiple levels of description. And systems (such as living brains or robots)
that exist in the physical world would have physical descriptions — just as the
behavior of a computer can be described at an abstract level in terms of data
structures and programs, or in terms of machine language operations that are
carried out (thereby making the function of the hardware more transparent)
or in terms of the laws of physics that describe the behavior of the physical
medium which is used to construct the hardware.

Note that this view is entirely consistent with that of Churchland and others
(Churchland, 1986; Churchland and Sejnowski, 1992) who have advocated the
search for explanations of cognition at multiple levels. It is also important to
not lose sight of the fact that such a system is embedded within an external
environment with which it interacts in a closed loop fashion through sensors
and effectors and its body of knowledge is about its environment, its goals, its
actions. This is the essence of grounding (see below).

3 .1 N A T U R E O F K N O W L E D G E R E P R E S E N T A T I O N

Given the central role played by knowledge representation in functional ap
proaches to understanding and engineering intelligence, the nature of represen
tation is among one the most fundamental questions in artificial intelligence

Resolving the AI/NN Dichotomy 357

and cognitive science. Some insight into this question can be obtained by
considering a concrete example. A common way to represent knowledge (at
least in SAI) is with logic (Genesereth and Nilsson, 1987). It is worth empha
sizing that logic is not the knowledge itself; it is simply a way of representing
knowledge. (However, logic can be viewed as a form of meta-level knowledge
about how to represent and reason with knowledge.) What logic enables us to
do is represent the knowledge possessed by an agent using a finite set of logical
expressions plus a process (namely, the inference rules of logic) for generating
a (potentially unlimited) set of other logical expressions that are part of the
agent's knowledge. Thus if we represented an agent's knowledge in the form
of expressions a and 6, and if a A 6 f= c, the agent has (implicit) knowledge
of c even though c was not part of the (explicit) representation. In fact, first
order logic is universal in that it is powerful enough to represent essentially
any knowledge that can be captured by a formal system. However, for certain
types of knowledge to be used for certain purposes (e.g., knowledge of the
sort that is captured by maps of some geographical region or a city), first order
logic representation may be awkward, indirect, or overly verbose.

If on the other hand, we were to choose a different way of representing knowl
edge of an agent, one which did not permit any logical deduction, then the
agent's knowledge could be limited to those expressions that were explicitly
included in the representation. Such a representation is in essence, simply
a lookup table for the expressions in question. Thus, (for lack of a better
term), the knowledge content of a representation may be limited by restricting
either the inferences allowed, the form of the expressions that may be included
(that is, limiting the expressive power), or both. Indeed, it is often necessary
to impose such limits on the power of representation in order to make their
use computationally feasible (perhaps at the expense of logical soundness,
completeness, or both).

In order for any system to serve the role of a representation (as used in most ar
tificial intelligence and cognitive science theories) it must include: an encoding
process that maps the physical state of the external environment into an internal
state; processes that map transformations of the physical state of the external
environment into appropriate (internal) transformations of the internal state; a
decoding process that maps an internal state into a physical state of the exter
nal environment — all subject to the constraint that the result of decoding the
result of application of internal transformations of an internal state (obtained
from encoding a physical state of the environment) is the same as the result of
directly transforming the physical state of the external environment. (This is
perhaps a stronger requirement than is necessary — most likely influenced by
the emphasis on logic. It is easy to see several ways of relaxing this constraint

358 CHAPTER 11

— by allowing the correspondence to be only approximate instead of exact,
or attainable only with a certain probability. It must also be mentioned that
not everyone agrees with this view of representation through encoding; See
Bickhard, 1993 for a dissenting view). In short, representations are caricatures
of selected aspects of an agent's environment that are operationally useful to
the agent. Thus, certain mental operations on the representation can be used
to predict the consequences of performing corresponding physical actions on
the environment in which the agent operates.

Note that the internal transformations may be performed using LISP programs
or production systems of S AI or by a suitably structured NANN. (Note however
that the encoding and decoding processes are not purely symbolic because they
have to deal with transduction or grounding. Also worth noting is the fact that
most systems, be they SAI or NANN only simulate transduction and hence
may lack grounding).

Newell (1990) proposes an additional requirement for representations —
namely that the application of encoding (sensing), internal transformations,
and decoding (acting) must be executable on demand to the extent required to
serve the purposes of the organism (which could be viewed essentially as the
sensed internal environment of needs, drives, and emotions).

3.2 W H E R E D O T H E REPRESENTATIONS C O M E F R O M ?

Representations may be discovered by organisms (or evolution) by identifying
the right medium of encoders (transducers) and decoders (effectors) and the
right dynamics for the transformations for specific tasks. This would lead
to a large number of task-specific analogical representations. Indeed, strong
evidence for such analogical representations are can be found in living brains:
the retinotopic maps in the visual cortex and the somatotopic maps of the
sensory-motor cortex provide good examples of analogical representations
(Kandell and Schwartz, 1985).

Alternatively, or in addition, a set of encoders and decoders may be used in
conjunction with the ability to compose whatever sequence of transformations
that may be necessary to form a representation. Most SAI systems take this
route to the design of representations — by using a sufficiently general language
(e.g., LISP) that allows the composition of whatever functions that may be
necessary to satisfy the appropriate representation laws. Most NANN systems

Resolving the AI/NN Dichotomy 359

take the same route as well — they just happen to use a different language with
a different set of primitives for composing the necessary transformations.

Irrespective of the approach chosen, the discovery of adequately powerful,
efficient, and robust representations for any non-trivial set of tasks is still a
largely unsolved problem. This is where learning and evolutionary processes
play a major role. They must build the representations that perception and
cognition utilize. One of the most informative characterizations of learning to
date is in terms of storage of results of inference in a form that is suitable for use
in the future (Michalski, 1993). Learning can clearly provide an avenue for the
discovery of the necessary compositions of transformations which is a major
aspect of representation. However, note that both SAI and NANN systems
presuppose the existence of some representation before they can discover
other useful representations. (Therefore it appears that representations cannot
come into existence without the existence of physical transducers and effectors
that connect such systems with the physical world, leading to the grounding
problem — see below). This makes the initial representation or encoding
extremely important. If it is not properly chosen (by the designer of the system
or by evolution), it places additional (and perhaps insurmountable) burdens
on the learning mechanisms (e.g., if the initial representation failed to capture
spatial or temporal relations at a level of detail that is necessary for dealing
with the problem domain).

It is far from clear that every task-specific representation ever used by the
system must be learned. Representations may be constructed as necessary
to solve specific problems and then discarded. Alternatively, some basic
(learned or evolved) representations may be adapted in real time for solving
specific problems. This is an important aspect of the schema-based approach
to modelling intelligence proposed by Arbib (1994).

As already pointed out, living brains appear to provide a rich panoply of
representations — including analogical and iconic representations in the
form of serial-parallel networks of topography-preserving projections (Kuf-
fler, Nicholls, and Martin, 1984; Zeki and Shipp, 1988; Uhr, 1986; Honavar,
1989; Honavar and Uhr, 1989a; 1989b) in the visual, auditory and motor cor
tices. Such representations have been largely ignored in today's SAI as well
as NANN models. They may very well be among the essential representa
tions grounded in the environment that form the foundation of a much larger
representational edifice that is needed for human-like general intelligence.

In short, SAI and NANN systems often differ in terms of the preferred form of
knowledge representation used although any knowledge that can be represented

360 C H A P T E R 11

in one can also be represented (albeit not as efficiently, robustly or elegantly)
in the other. The challenge for engineers and cognitive modellers is to choose
the right mix of SAI and NANN (and whatever other possibilities that exist) to
meet the needs of the problem at hand.

4 A C L O S E R L O O K AT SAI AND NANN

Given the shared philosophical and scientific roots that SAI and NANN have in
common, why the great fuss about their integration? Answering this question
entails taking a closer look at some prototypical SAI and NANN systems
followed by a critical examination of what are generally considered their
defining characteristics and much-touted advantages and disadvantages. This
examination demonstrates that despite assertions by some to the contrary, the
differences between them are less than what they might seem at first glance; and
to the extent they differ, such differences are far from being in any reasonable
sense of the term, fundamental; and that the purported weaknesses of each
can potentially be overcome through a judicious integration of techniques and
tools selected from the other (Honavar, 1990; Honavar and Uhr, 1990a; Uhr
and Honavar, 1994; Honavar and Uhr, 1994; Uhr, 1990; Boden, 1994).

4 . 1 P R O B L E M SOLVING AS S T A T E S P A C E S E A R C H

State Space Search in SAI Systems

The prototypical SAI models are more or less direct descendents of the von
Neumann stored program model of computation. The essential components
of such a model are: a storage for programs (instructions for processing
data), a processor for interpretation and execution of the program; and a
(transient) working memory for receiving inputs, and holding intermediate
results of processing. Learning programs have additional mechanisms for
self-modification (i.e., the modification of the set of programs that they use).

The dominant paradigm for problem solving in SAI is state space search
(Winston, 1992; Ginsberg, 1993). States represent snap-shots of the problem
at various stages of its solution. Operators enable transforming one state into
another. Typically, the states are represented using structures of symbols (e.g.,
lists). Operators transform one symbol structure (e.g., list, or a set of logical
expressions) into another. The system's task is to find a path between two

Resolving the AIINN Dichotomy 361

specified states in the state-space (e.g., the initial state and a specified goal, the
puzzle and its solution, the axioms and a theorem to be proved, etc.).

In almost any non-trivial problem, a blind exhaustive search for a path will
be impossibly slow, and there will be no known algorithm or a procedure for
directly computing that path without resorting to search. As a result, much
work in SAI has focused on the study of effective heuristic search procedures
(Pearl, 1984). For example, SAI systems handle games like chess as follows:
The initial board is established as the given, and a procedure is coded to
compute whether a win-state has been reached. In addition, procedures are
coded to execute legal moves and (usually) to compute heuristic assessments
of the promise of each possible move, and to combine the separate heuristic
assessments into an overall value that will be used to choose the next move.
Finally, all these are put into a total structure that applies the appropriate
heuristics, combines their results and evaluates alternative moves, and actually
makes a move, then waits for and senses the opponent's moves, uses it to
update the board (probably checking that it is indeed a legal move), and loops
back to make its own next move. (For simplicity the look-ahead with minimax
that most game-players use has been ignored, but that is essentially more of
the same.)

Knowledge-Guided Search

Search in general can be guided by the knowledge that is at the disposal of the
problem solver. If the system is highly specialized, the necessary knowledge
is usually built into the search procedure (in the form of criteria for choosing
among alternative paths, heuristic functions to be used, etc.). However, general
purpose problem solvers also need to be able to retrieve problem-specific and
perhaps even situation-specific knowledge to be used to guide the search during
problem-solving. Indeed, such retrieval might itself entail search (albeit in a
different space). Efficient, and flexible representations of such knowledge as
well as mechanisms for their retrieval as needed during problem solving are,
(although typically overlooked because most current AI systems are designed
for very specialized, narrowly defined tasks), extremely important. This is an
area where NANN or other implementations of content addressed memories
and indexing schemes are especially worth exploring.

362 C H A P T E R 11

State Space Search in NANN Systems

The NANN system (a network of relatively simple processing elements, neu
rons, or nodes) is typically presented with an input pattern or initialized in a
given starting state encoded in the form of a state vector each of whose ele
ments corresponds to the state of a neuron in the network). It is designed or
trained to output the correct response to each input pattern it receives (perhaps
after undergoing a series of state updates determined by the rules governing its
dynamic behavior). The input-output behavior of the network is a function of
the network architecture, the functions computed by the individual nodes and
parameters such as the weights.

For example, the solution of an optimization problem (traditionally solved
using search) can be formulated as a problem of arriving at a state of a suitably
designed network that corresponds to one of minimum energy (which is defined
to correspond in some natural way to the optimality of the solution being
sought). For an example of such an approach to theorem-proving, see (Pinkas,
1994). Ideally, the network dynamics are setup so as to accomplish this without
additional explicit control. However, in practice, state updates in NANN
systems are often controlled in a manner that is not much different from explicit
control (as in sequential update of neurons in Hopfield networks (Hopfield,
1982) where only one neuron is allowed to change its state on any update cycle)
to guarantee certain desired emergent behaviors). Indeed, a range of cognitive
tasks do require selective processing of information that often necessitates
the use of a variety of (albeit flexible and distributed) networks of controls
that is presently lacking in most NANN models (Honavar and Uhr, 1990b).
Many such control structures and processes are suggested by an examination
of computers, brains, immune systems, and evolutionary processes.

In short, in both SAI and NANN systems, problem-solving involves state-space
search; and although most current implementations tend to fall at one end of the
spectrum or the other, it should be clear that there exists a space of designs that
can use a mix of different state representations and processing methods. The
choice of a particular design for a particular class of problems should primarily
be governed by performance, cost, and reliability considerations for artificial
intelligence applications and psychological and neurobiological plausibility
for cognitive modelling.

Resolving the AIINN Dichotomy 363

4 . 2 S Y M B O L S , S Y M B O L S T R U C T U R E S , S Y M B O L I C P R O C E S S E S

Symbols

Knowledge representation as described earlier, generally implies the use of
symbols at some level. The standard notion of a symbol is that it stands for
something and when a symbol token appears within a symbolic expression car
ries the interpretation that the symbol stands for something within the context
that is specified by its place in the expression. In general, a symbol serves as
a surrogate for a body of knowledge that may need to be accessed and used
in processing the symbol. And ultimately, this knowledge includes semantics
or meaning of the symbol in the context in which it appears, including that
provided by the direct or indirect grounding of the symbol structure in the
external environment (Harnad, 1990).

Symbolic Processes

Symbolic processes are essentially transformations that operate on symbol
structures to produce other symbol structures. Memory holds symbol struc
tures that contain symbol tokens that can be modified by such processes. This
memory can take several forms based on the time scales at which such mod
ifications are allowed. Some symbol structures might have the property of
determining choice and the order of application of transformations to be ap
plied on other symbol structures. These are essentially the programs. Programs
when executed — typically through the conventional process of compilation
and interpretation and eventually — when they operate on symbols that are
linked through grounding to particular effectors — produce behavior. Work
ing memory holds symbol structures as they are being processed. Long-term
memory, generally speaking, is the repository of programs and can be changed
by addition, deletion, or modification of symbol structures that it holds.

Such a system can compute any Turing-computable function provided it has
sufficiently large memory and its primitive set of transformations are adequate
for the composition of arbitrarily symbol structures (programs) and the in
terpreter is capable of interpreting any possible symbol structure. This also
means that any particular set of symbolic processes can be carried out by an
NANN — provided it has potentially infinite memory, or finds a way to use its
transducers and effectors to use the external physical environment to serve as
its memory).

364 C H A P T E R 11

Knowledge in S AI systems is typically embedded in complex symbol structures
such as lists (Norvig, 1992), logical databases (Genesereth and Nilsson, 1987),
semantic networks (Quillian, 1968), frames (Minsky, 1975), schemas (Arbib,
1972; 1994), and manipulated by (often serial) procedures or inferences (e.g.,
list processing, application of production rules (Waterman, 1985), or execution
of logic programs (Kowalski, 1977) carried out by a central processor that
accesses and changes data in memory using addresses and indices.

It is often claimed that the NANN systems predominantly perform numeric
processing in contrast to SAI systems which manipulate symbol structures.

Symbolic Processes in NANN systems

As already pointed out, NANN systems represent problem states using (typi
cally binary) state vectors which are manipulated in a network of processors
using (typically) numeric operations (e.g., weighted sums and thresholds). It
is not hard to see that the numeric state vectors and transformations employed
in such networks play an essential symbolic role although the rules of trans
formation may now be an emergent property of a large number of nodes acting
in concert. In short, the formal equivalence of the various computational
models guarantees that NANN can support arbitrary symbolic processes. It is
not therefore surprising that several alternative mechanisms for variable bind
ing and logical reasoning using NANN have been discovered in recent years.
Some of these require explicit use of symbols (Shastri and Ajjanagadde, 1989);
others resort to quasi-symbols that have some properties of symbols while not
being actually symbols in their true sense (Pollack, 1990; Maclennan, 1994);
still others use pattern vectors to encode symbols (Dolan and Smolensky, 1989;
Smolensky, 1990; Sun, 1994a; Chen and Honavar, 1994). The latter approach
to symbol processing is often said to use sub-symbolic encoding of a symbol
as a pattern vectors each of whose components is insufficient in and of itself to
identify the symbol in question (see the discussion on distributed representa
tions below). In any case, most, if not all, of these proposals are implemented
and simulated on general purpose digital computers, so none of the functions
that they compute are outside the Turing framework.

4 . 3 N U M E R I C P R O C E S S I N G

Numeric processing, as the name suggests, involves computations with num
bers. On the surface it appears that most NANN perform essentially numeric
processing. After all, the formal neuron of McCulloch and Pitts computes

Resolving the AI/NN Dichotomy 365

weighted sum of its numeric inputs. And the neurons in most NANN models
perform similar numerical computations. On the other hand, S AI systems pre
dominantly compute functions over structures of symbols. But numbers are in
fact symbols for quantities; and any computable function over numbers can be
computed by symbolic processes. In fact, general purpose digital computers
have been performing both symbolic as well as numeric processing ever since
they were invented.

4 . 4 A N A L O G P R O C E S S I N G

It is often claimed that NANN perform analog computation. Analog com
putation generally implies the use of dynamical systems describable using
continuous differential equations. They operate in continuous time, gener
ally with physical entities such as voltages, currents, which serve as physical
analogs of the quantities of interest. Thus soap bubbles, servomechanisms, and
cell membranes can all be regarded as analog computers (Rajaraman, 1981).

Whether physically realizable systems are truly analog or whether analog sys
tem is simply a mathematical idealization of (extremely fine-grained) discrete
system is a question that borders on the philosophical (e.g., are matter, time
and space continuous or discrete?). However, some things are fairly clear.
Most NANN are simulated on digital computers and compute in discrete steps
and hence are clearly not analog. The few NANN models can be regarded as
analog devices — e.g., the analog VLSI circuits designed and built by Carver
Mead and colleagues (Mead, 1989) — are incapable of discrete symbolic com
putations (because of their inability to make all-or-none or discrete choices)
(Maclennan, 1994) although they can approximate such computations. (For
example, the stable states or attractors of such systems can be interpreted as
identifiable discrete states).

Analog systems can be, and often are simulated on digital computers at the
desired level of precision. However, this might involve a time-consuming
iterative calculation to produce a result that could potentially be obtained
almost instantaneously (and transduced using appropriate transducers) given
the right analog device. Thus analog processing appears to be potentially
quite useful in many applications (especially those that involve perceptual and
motor behavior). It is possible that evolution has equipped living systems with
just the right repertoire of analog devices that help them process information
in this fashion. However, it is somewhat misleading to call such processing
computation (in the sense defined by Turing) because it lacks the discrete

366 C H A P T E R 11

combinatorial structure that is characteristic of all Turing-equivalent models
of computation (Maclennan, 1994).

Whether analog processes play a fundamental role (beyond being part of
grounding of representations) in intelligent systems remains very much an
open question. It is also worth pointing out that digital computers can, and in
fact do, make use of essentially analog devices such as transistors but they use
only a few discrete states to support computation (in other words, the actual
analog value is irrelevant so long as it lies withing a range that is distinguish
able from some other range). And when embedded in physical environments,
both SAI and NANN systems do encounter analog processes through sensors
and effectors.

4 . 5 COMPOSITIONALITY AND SYSTEMATICITY OF

REPRESENTATION

It has been argued by many e.g., Fodor and Pylyshyn, 1988) that composition-
ality and systematicity (structure sensitivity) of representation are essential for
explaining mind. In their view, NANN are inadequate models of mind because
NANN representations lack these essential properties. Compositionality is the
property that demands that representations must possess an internal syntactic
structure as a consequence of a particular method for composing complex sym
bol structures from simpler components. Systematicity requires the existence
of processes that are sensitive to the syntactic structure. As argued by Sharkey
and Jackson (1994), lack of compositionality is demonstrably true only for a
limited class of NANN representations; and compositionality and systematic
ity in and of themselves are inadequate to account for cognition (primarily for
lack of grounding or semantics). Van Gelder and Port (1994) have shown that
several forms of compositionality can be found in NANN representations.

4.6 GROUNDING AND SEMANTICS

Many in the artificial intelligence and cognitive science research community
agree on the need for grounding of symbolic representations through sensory
(e.g., visual, auditory, tactile) transducers and motor effectors in the external
environment on the one hand and the internal environment of needs, drives,
and emotions of the organism (or robot) in order for such representations
(which are otherwise devoid of any intrinsic meaning to the organism or robot)

Resolving the AI/NN Dichotomy 367

to become imbued with meaning or semantics (Hamad, 1990). Some have
argued that NANN systems provide the necessary apparatus for grounding
(Harnad, Hanson, and Lubin, 1994). It is important to realize that NANN
as computational models do not provide physical grounding (as opposed to
grounding in a simulated world of virtual reality) for representations any more
than their SAI counterparts. It is only the physical systems with their physical
substrate on which the representations reside that are capable of providing such
grounding in physical reality when equipped with the necessary transducers
and effectors. This is true irrespective of whether the system in question is
a prototypical SAI system, or a prototypical NANN system, or a hybrid or
integrated system.

4 . 7 S E R I A L V E R S U S PARALLEL P R O C E S S I N G

As pointed out earlier, most of today's SAI systems are serial programs that are
executed on serial von Neumann computers. However, serial symbol manipu
lation is more an artifact of most current implementations of SAI systems than
a necessary property of SAI. In parallel and distributed computers, memory
is often locally available to the processors and even can be almost eliminated
in data flow machines which model functional or applicative programs where
data is transformed as it flows through processors or functions. Search in SAI
systems can be, and often is, parallelized by mapping the search algorithm
onto a suitable network of computers (Uhr, 1984; 1987; Hewitt, 1977; Hillis,
1985) with varying degrees of centralized or distributed control. Many search
problems that arise in applications such as temporal reasoning, resource allo
cation, scheduling, vision, language understanding and logic programming can
be formulated as constraint satisfaction problems which often lend themselves
to solution using a mix of serial and parallel processing (Tsang, 1993).

Similarly, SAI systems using production rules can be made parallel by enabling
many rules to be matched simultaneously in a data flow fashion (as in RETE
pattern matching networks (Forgy, 1982)). Multiple matched rules may be
allowed to fire and change the working memory in parallel as in parallel pro
duction systems (Uhr, 1979) and classifier systems (Holland, 1975) — so long
as whenever two or more rules demand conflicting actions, arbitration mecha
nisms are provided to choose among the alternatives or resolve such conflicts
at the sensory-motor interface. Such arbitration mechanisms can themselves
be realized using serial, parallel (e.g., winner-take-all mechanism), or serial-
parallel (e.g., pyramid-like hierarchies of decision mechanisms) networks of
processes.

368 C H A P T E R 11

NANN systems with their potential for massive fine-grained parallelism of
computation offer a natural and attractive framework for the development of
highly parallel architectures and algorithms for problem solving and inference.
Such systems are considered necessary by many researchers (Uhr, 1980; Feld-
man and Ballard, 1982) for tasks such as real-time perception. But S AI systems
doing symbolic inference can be, and often are, parallelized, and certain in
herently sequential tasks need to be executed serially. On any given class of
problems, the choice of decomposition of the computations to be performed
into a parallel-serial network of processes and their mapping onto a particular
network of processors has to be made taking the cost and performance tradeoffs
into consideration.

4 . 8 K N O W L E D G E E N G I N E E R I N G V E R S U S K N O W L E D G E

A C Q U I S I T I O N T H R O U G H LEARNING

The emphasis in some SAI systems (especially the so-called knowledge-based
expert systems (Waterman, 1985)) on knowledge engineering has led some
to claim that SAI systems are, unlike their NANN counterparts, incapable of
learning from experience. This is clearly absurd as even a cursory look at the
current research in machine learning (Shavlik and Dietterich, 1990; Buchanan
and Wilkins, 1993) and much early work in pattern recognition (Uhr, 1973;
Fu, 1982; Miclet, 1986) shows. Research in SAI and closely related systems
indeed have provided a wide range of techniques for deductive (analytical) and
inductive (synthetic) learning. Learning by acquisition and modification of
symbol structures almost certainly plays a major role in knowledge acquisition
in humans who learn and communicate in a wide variety of natural languages
(e.g., English) as well as artificial ones (e.g., formal logic, programming lan
guages). While NANN systems with their micro-modular architecture offer a
range of interesting possibilities for learning, for the most part, only the sim
plest parameter or weight modification algorithms have been explored to date
(McClelland and Rumelhart, 1986 et almr86; Kung, 1993; Haykin, 1993). In
fact, learning by weight modification alone appears to be inadequate in and of
itself to model rapid and irreversible learning that is observed in many animals.
Algorithms that modify networks through structural changes that involve the
recruitment of neurons (Greenough and Bailey, 1988; Honavar, 1989; 1990;
Honavar and Uhr, 1989a; 1989b; 1993; Kung, 1993; Grossberg, 1980) appear
promising in this regard.

A detailed discussion of learning is beyond the scope of this chapter. Suffices it
to point out that most forms of learning can be understood and implemented in

Resolving the AI/NN Dichotomy 369

terms of structures and processes for representing and reasoning with knowl
edge (broadly interpreted) and for memorizing the results of such inference in a
form that lends itself to retrieval and use at a later time (Michalski, 1993). Thus
any NANN or SAI or some hybrid architecture that is capable of performing
inference and has memory for storing the results of inference for retrieval and
use on demand can be equipped with the ability to learn. The interested reader
is referred to (Honavar, 1994) for a detailed discussion of systems that learn
using multiple strategies and representations. Additional examples of systems
that combine NANN and SAI approaches to learning can be found in (Uhr,
1973; Holland, 1975; Honavar, 1992; 1994; Honavar and Uhr, 1993; Lacher
and Nguyen, 1994; Carpenter and Grossberg, 1994; Shavlik, 1994; Goldfarb
and Nigam, 1994; Booker, Riolo, and Holland, 1994). In short, SAI systems
offer powerful mechanisms for manipulation of highly expressive structured
symbolic representations while NANN offer the potential for robustness, and
the ability to fine-tune their use as a function of experience (primarily due to
the use of tunable numeric weights and statistics).

4 . 9 ASSOCIATIVE AS OPPOSED TO ADDRESS-BASED STORAGE

AND RECALL

An often cited distinction between SAI and NANN systems is that the latter em
ploy associative (i.e., content-addressable) as opposed to the address-and-index
based storage and recall of patterns in memory typically used by the former.
This is a misconception for several reasons: Address-and-index based memory
storage and retrieval can be used to simulate content-addressable memory and
vice versa and therefore unless one had access to the detailed internal design
operation of such systems, their behavior can be indistinguishable from each
other. Many SAI systems conventional computers use associative memories in
some form or another (e.g., hierarchical cache memories). While associative
recall may be better for certain tasks, address (or location-based) recall may
be more appropriate for others. Indeed, many computational problems that
arise in symbolic inference (pattern matching and unification in rule-based
production systems or logic programming) can take advantage of associative
memories for efficient processing (Chen and Honavar, 1994).

In prototypical NANN models, associative recall is based on some relatively
simple measure of proximity or closeness (usually measured by Hamming
distance in the case of binary patterns) to the stored patterns. While this
may be appropriate in domains in which related items have patterns or codes
that are close to each other, it would be absurd to blindly employ such a

370 CHAPTER 11

simple content-addressed memory model in domains where symbols are arbi
trarily coded for storage (which would make hamming distance or a similar
proximity measure useless in recalling the associations that are really of inter
est). Establishing (possibly context-sensitive) associations between otherwise
arbitrary symbol structures based on their meanings and retrieving such as
sociations efficiently requires complex networks of learned associations more
reminiscent of associative knowledge networks, semantic networks (Quillian,
1968), frames (Minsky, 1975), conceptual structures (Sowa, 1984), schemas
(Arbib, 1994), agents (Minsky, 1986) and object-oriented programs of SAI
(Norvig, 1992) than today's simple NANN associative memory models. This
is not to suggest that such structures cannot be implemented using suitable
NANN building blocks — see (Arbib, 1994; Dyer, 1994; 1994b; Miikku-
lainen, 1994a; Bookman, 1994; Barnden, 1994a; 1994b) for some examples
of such implementations. Indeed, such NANN implementations of complex
symbol structures and symbolic processes can offer many potential advantages
(e.g., robustness, parallelism) for SAI.

4.10 DISTRIBUTED STORAGE, PROCESSING, AND CONTROL

Distributed storage, processing, and control are often claimed to be some of
the major advantages of NANN systems over their SAI counterparts. It is far
from clear as to what is generally meant by the term distributed when used in
this context (Oden, 1994).

Perhaps it is most natural to think of an item as distributed when it is coded (say
as a pattern vector) whose components by themselves are neither sufficient to
identify the item nor have any useful semantic content. Thus, the binary code
for a letter of the alphabet is distributed. Any item thus distributed eventually
has to be reconstructed from the pieces of its code. This form of distribution
may be in space, time, or both. Thus the binary code for a letter of the alphabet
may be transmitted serially (distributed in time) over a single link that can
carry 1 bit of information at a time or in parallel (distributed in space) using
a multi-wire bus. If a system employs such a mechanism for transmission
or storage of data, it also needs decoding mechanisms for reconstructing the
coded item at the time of retrieval. It is easy to see that this is not a defining
property of NANN systems as it is found in even the serial von Neumann
computers. In any event, both NANN as well as SAI systems can use such
distributed coding of symbols. And, as pointed out by Hanson and Burr (1990),
distributed coding in and of itself, offers no representational capabilities that
are not realizable using a non-distributed coding.

Resolving the AIINN Dichotomy 371

In the context of NANN, the term distributed is often used to refer to storage
of parts of an item in a unit where parts of other items also stored (for example,
by superposition). Thus, each unit participates in storage of multiple items and
each item is distributed over multiple units. (There is something disconcerting
about this particular use of the term distributed in a technical sense: Clearly,
one can invent a new name for whatever it is that a unit stores — e.g., a number
whose binary representation has a ' V in its second place. Does the system
cease to be distributed as a result?). It is not hard to imagine an analogous
notion of distribution in time instead of space but it is also fraught with similar
semantic difficulty.

The term distributed when used in the context of parallel and distributed pro
cessing, generally refers to the decomposition of a computational task into
more or less independent pieces that are executed on different processors with
little or no inter-processor communication (Uhr, 1984; 1987; Almasi and Got
tlieb, 1989). Thus many processors may perform the same computation on
pieces of the data (as in single-instruction-multiple data or SIMD computer
architectures) or each processor may perform a different computation on the
same data e.g., computation of various intrinsic properties of an image (as in
multiple-instruction-single-data or MISD computer architectures), or a com
bination of both (as in multiple-instruction-multiple-data or MIMD computer
architectures). Clearly, both NANN and SAI systems can take advantage of
such parallel and distributed processing. The reader is referred to (Almasi and
Gottlieb, 1989; Uhr, 1984; 1987) for examples.

4 . 1 1 R E D U N D A N C Y AND F A U L T T O L E R A N C E

Often the term distributed is used more or less synonymously with redundant
and hence fault-tolerant in the NANN literature. This is misleading because
there are many ways to ensure redundancy of representation, processing and
control. One of the simplest involves storing multiple copies of items and/or us
ing multiple processors to replicate the same computation in parallel, and using
a simple majority vote or more sophisticated statistical evidence combination
processes to pick the result. Redundancy and distributivity are orthogonal
properties of representations. And clearly, SAI as well as NANN systems can
be made redundant and fault-tolerant using the same techniques.

372 CHAPTER 11

4.12 STATISTICAL, FUZZY, OR EVIDENTIAL INFERENCE

It is often claimed that NANN models provide noise-tolerant and robust in
ference because of the probabilistic, fuzzy, or evidential nature of the infer
ence mechanisms used. This is largely due to combination and weighting
of evidence from multiple sources through the use of numerical weights or
probabilities. It is possible to establish the formal equivalence inference in
certain classes of NANN models with probabilistic or fuzzy rules of reasoning.
But fuzzy logic (Zadeh, 1975; Yager and Zadeh, 1993) operates (as its very
name suggests), with logical (hence symbolic) representations. Probabilistic
reasoning is an important and active area of research in SAI as well (See
Pearl, 1988 for details). Heuristic evaluation functions that are widely used
in many SAI systems provide additional examples of approximate, that is, not
strictly truth-preserving inference in SAI systems. In many SAI systems, the
requirements of soundness and completeness of inference procedures are often
sacrificed in exchange for efficiency. In such cases, additional mechanisms are
used to (after the fact) verify and if necessary, override the results of inference
if they are found to conflict with other evidence.

Much research on human reasoning indicates that people occasionally draw
inferences that are logically unsound (Johnson-Laird and Byrne, 1991). This
suggests that although people may be capable of applying sound inference pro
cedures, they probably take shortcuts when faced with limited computational
or memory resources. Approximate reasoning under uncertainty is clearly an
important tool that both SAI and NANN systems can potentially employ to
effectively make rapid, usually reliable and useful, but occasionally fallible
inferences in real time.

4.13 SAI AND NANN As MODELS OF MINDS/BRAINS

Some of the SAI research draws its inspiration from (rather superficial) analo
gies with the mind and mental phenomena and in turn contributes hypotheses
and models to the study of minds; Similarly, many NANN models draw their
inspiration from (albeit superficial) analogies with the brain and neural phe
nomena and in turn contribute models that occasionally shed light on some
aspects of brain function (Churchland and Sejnowski, 1992).

It is important to emphasize that neither today's SAI nor today's NANN have
the monopoly on modelling minds and brains. Today's NANN models are
at best, extremely simplified caricatures of biological neural networks (Shep-

Resolving the AI/NN Dichotomy 373

herd, 1989; 1990; McKenna, 1994). Biological neurons and microcircuits
of neurons provide computational primitives that are far more powerful than
simple threshold or sigmoids that are used in most NANN models (Uhr, 1994).
Brains display highly structured yet flexible organization into regions, layers,
and modules that perform specialized functions (Kuffler, Nicholls and Martin,
1984; Zeki and Shipp, 1988). Such networks may be modelled by highly
structured NANN models that organize the neurons into locally connected,
topography preserving layers that are organized in loosely hierarchical fashion
(Uhr, 1986; Honavar and Uhr, 1989a; 1989b; Honavar, 1992). Such structures
appear to organize the networks of the brain in space (in ways that reflect the
physics of the environment using networks of analog representations) and time
(through the use of feedback loops with varying amounts of delay, networks
of clocks and osciallators).

The brain appears to perform symbolic, numeric, as well as analog process
ing. The pulses transmitted by neurons are digital; the membrane voltages
are analog (continuous); The molecular level phenomena that involve clos
ing and opening of channels appears to be digital; The diffuse influence of
neurotransmitters and hormones appear to be both analog and digital.

Changes in learning appear to involve both gradual changes of the sort modeled
by the parameter changing or weight modification algorithms of todays NANN
as well as major structural changes involving the recruitment of neurons and
changes in network topology (Greenough and Bailey, 1988; Honavar, 1989;
1990; Honavar and Uhr, 1989a; 1989b; 1993). In fact, learning by weight
modification alone appears to be inadequate in and of itself to model rapid and
irreversible learning that is observed in many animals.

Also missing from most NANN models are elaborate control structures and
processes of the sort found in brains including networks of oscillators that
control timing. Perception, learning and control in brains appear to utilize
events at multiple spatial and temporal scales (Grossberg, 1982). Additional
processes not currently modelled by NANN systems include processes that
include networks of markers that guide neural development, structures and
processes that carry information that might be used to generate other network
structures, and so on (Honavar and Uhr, 1990).

Clearly, living minds/brains are among the few examples of truly versatile
intelligent systems that we have today. They are our existence proof that such
systems are indeed possible. So even those whose primary interests are in
constructing artificial intelligence systems can ill afford to ignore the insights
offered by a study of biological intelligence (McKenna, 1994). (This does not

374 C H A P T E R 11

of course mean that such an effort cannot exploit alternative technologies to
accomplish the same functions, perhaps even better than their natural counter
parts). But it is a misconception to assume that today's NANN model brains
any more than today's SAI programs model minds. In short, the processes
of the minds appear to be far less rigidly structured and far more flexible
than today's SAI systems and the brains appear to have a lot more structure,
organization, and control than today's homogeneous networks of simple pro
cessing elements which we call NAJMN. A rich space of designs that combine
aspects of both within a well-designed architecture for intelligence remains to
be explored.

5 INTEGRATION O F SAI AND NANN

It must be clear from the discussion in the previous sections that at least on the
surface it looks like SAI and NANN are each appropriate, and possibly even
necessary for certain problems, and grossly inappropriate, almost impossible,
for others. But of course each can do anything that the other can. The issues
are ones of performance, efficiency and elegance (and in cognitive modelling,
perhaps plausibility in terms of the various known constraints between different
levels — such as psychological, neurobiological, and neurochemical — at
which satisfactory explanations are sought), and not theoretical capabilities as
computational models.

This is a common problem in computing. One computer or programming
language may be extremely well-suited for some problems but awful for others,
while a second computer or language may be the opposite. This suggests
several engineering possibilities (Uhr and Honavar, 1994), including:

1. Try to re-formulate and re-code the problem to better fit the computer or
language.

2. Use one computer or language for some parts of the process and the other
for others.

3. Build a new computer or language that contains constructs from each, and
use these as appropriate.

4. Try to find as elegant as possible a set of primitives that underlie both
computers or languages, and use these to build a new system.

Resolving the AI/NN Dichotomy 375

The term hybrid is beginning to be used for systems that in some way try
to combine SAI and NANN. If any of the above is called a hybrid probably
all of the others should also. But usually hybrid refers to systems of type
[2] or [3]. lypes [3] and [4] would appear to be better than [2] (although
harder to realize), since they would probably be more efficient and more
elegant. Thus the capabilities of both SAI and NANN should be combined by
tearing them apart to the essential components of their underlying processes
and integrating these as closely as possible. Then the problem should be
re-formulated and re-coded to fit this new system as well as possible. This
restates a general principle most people are coming to agree on with respect to
the design of multi-computer networks and parallel and distributed algorithms:
the algorithm and the architecture should be designed to fit together as well as
possible, giving algorithm-structured architectures and architecture-structured
algorithms (Uhr, 1984; 1987; Almasi and Gottlieb, 1989).

6 SUMMARY

SAI and NANN each demonstrate at least one way of performing certain tasks
naturally and thus pose the interesting problem for the other of doing something
equivalent perhaps more elegantly, efficiently, or robustly than the other. It
should be clear from the discussion above that the integration of SAI and
NANN systems can be beneficially explored along several dimensions.

In the short term, hybrid architectures that use NANN and SAI modules to per
form different but well-coordinated sets of functions in specific applications
are definitely worth exploring. A partial list of examples of such integra
tion include: neural network and expert knowledge based systems (Lin and
Hendler, 1994; Shavlik, 1994; Gallant, 1993; Medsker, 1994); systems for lan
guage processing (Bookman, 1994; Dyer, 1994a; 1994b; Miikkulainen, 1994a;
1994b; Barnden, 1994b; Omlin and Giles, 1994; Smolensky, Legendre, and
Miyata, 1994; Servan-Schreiber, Cleeremans, and McClelland, 1994); systems
for visual pattern recognition and spatial reasoning (Honavar and Uhr, 1989a;
1989b; Honavar and Uhr, 1994; Honavar, 1994; Ballard and Brown, 1982; Uhr,
1987; Tanimoto and Klinger, 1980; Wechsler, 1990; Duda and Hart, 1973; Fu,
1982; Miclet, 1982; Carpenter and Grossberg, 1994; Kosslyn and Jacobs,
1994; Mjolsness, 1994); systems for symbolic inference (Sun, 1994a; 1994b;
Barnden, 1994b; Smolensky, 1990; Shastri and Ajjanagadde, 1989; Chen and
Honavar, 1994); systems for learning (Honavar and Uhr, 1989a; 1989b; 1993;
Honavar, 1992; 1994; Shavlik, 1994; Goldfarb and Nigam, 1994; Fu, 1982;

376 CHAPTER 11

Fukunaga, 1990; Gallant, 1994; Uhr, 1973; Holland, 1975; Booker, Riolo, and
Holland, 1994; Lacher and Nguyen, 1994; Carpenter and Grossberg, 1994;
Dyer, 1994a). These efforts offer a number of important insights into the de
sign and performance of such hybrid systems for cognitive modelling on the
one hand and engineering intelligent systems for practical applications on the
other (see below).

The integration of concepts, constructs, techniques and technologies drawn
from SAI and NANN as well as other closely related paradigms (includ
ing statistical pattern recognition, syntactic pattern recognition, evolutionary
computation) offers a rich and potentially very promising design space for
exploration by artificial intelligence engineers and cognitive theorists. It is be
coming increasingly obvious that this space exhibits almost infinite variety that
is characteristic of complex systems. In the long-term, a coherent theoretical
framework for analysis and synthesis of such systems has to be developed. In
order to do this, we need to start developing and refining our categorization of
such mutually inter-related systems. One way to approach this task is to seek
categorizations that capture essential underlying principles of the architecture,
alternative implementations of the architecture, and finally alternative or phys
ical realization of the candidate implementations of such systems relative to
our goals of understanding and engineering intelligence.

Because of the engineering and technological emphasis of artificial intelli
gence, most research in the area has focused on the development of algorithms
for specific tasks that appear to require intelligence if performed by humans
(e.g., diagnosis, planning, character recognition). While such efforts provide
useful technological tools in the short term, they appear to have fallen short of
providing much insight into alternative implementations and physical realiza
tions of architectures for general intelligence.

Most artificial intelligence and cognitive science theories of intelligence are
primarily about the content of knowledge or types of knowledge for some task
of interest, with minimal commitment on the choice of architecture (or equiv
alent^, the programming language that defines the virtual architecture of the
computer). Perhaps this is because it is tacitly assumed that any such architec
ture is one that is capable of supporting universal computation and that nothing
else about it is of much interest. Perhaps this is where the dichotomy between
SAI and NANN can help focus our attention on architectural issues. After
all, NANN models do (in most cases) represent architectural commitment(s)
that are different from those implicitly assumed by SAI models (e.g., lambda
calculus or production systems). However, it must be emphasized that one
architectural commitment is not necessarily better than another independent of

Resolving the AI/NN Dichotomy 377

the task for which the architecture is used. Also worth noting is the fact that
the same system may be lend itself to multiple architectural descriptions. Each
such description can potentially add to our understanding of different aspects
of the system in important ways. Furthermore, each architectural description
lends itself to multiple implementations; For example, the same architecture
can be implemented using a network of simple processors or simulated by a
program on a conventional serial computer. And each implementation lends
itself to multiple physical realizations.

Living minds/brains offer an existence proof of at least one architecture for
general intelligence. SAI and NANN paradigms together offer a wide range
of architectural choices. Each architectural choice brings with it some obvious
(and some not so obvious) advantages as well as disadvantages in the solu
tion of specific problems using specific algorithms, given certain performance
demands and design constraints imposed by the available choices of physi
cal realizations of the architecture. Together, the cross-product of the space
of architectures, algorithms, and physical realizations constitutes a large and
interesting space of possible designs for intelligent systems. Examples of sys
tems resulting from a judicious integration of concepts, constructs, techniques
and technologies drawn from both traditional artificial intelligence systems
and artificial neural networks clearly demonstrate the potential benefits of ex
ploring this space. And, perhaps more importantly, the rather severe practical
limitations of today's SAI and NANN systems strongly argues for the need for
a systematic exploration of such design space.

This suggests that it might be fruitful to approach the choice of architectures,
implememtations, and their physical realizations using the entire armamen
tarium of tools drawn from the theory and practice of computer science —
including the design of programming languages (and hence virtual architec
tures), computers, algorithms, and programs. Our primary task is to identify
subsets of Turing-computable functions necessary for general intelligence,
an appropriate mix of architectures for supporting specific subsets of these
functions, as well as appropriate realizations of such architectures in physical
devices. The hybrid or integrated SAI-NANN designs explored to date —
including those examined in several recent books on this subject (Honavar and
Uhr, 1994a; Sun and Bookman, 1994; Goonatilake and Khebbal, 1994; Levine
and Aparicioiv, 1994) are only suggestive of a much larger space of interesting
possibilities. It is almost certainly premature to pick one architecture over
another as the architecture of choice for general intelligence (of the sort at
tributed to humans), or even eliminate certain architectures from consideration
as candidates. Such choices can be made only after a careful evaluation of
possible designs.

378 C H A P T E R 11

A C K N O W L E D G E M E N T S

This work was partially supported by the Iowa State University College of
Liberal Arts and Sciences and the National Science Foundation grant IRI-
9409580. The author is indebted to Professors Leonard Uhr and Gregg Oden
for extensive discussions on the topic of this chapter. He would like to thank
Dr. Ron Sun and Dr. Larry Bookman for their invitation to him to contribute
to this book as well as their comments on an earlier draft of this chapter.

REFERENCES

[1] Almasi, G.S. and Gottlieb, A. (1989). Highly Parallel Computing. New
York: Benjamin-Cummings.

[2] Arbib, M.A. (1972). The Metaphorical Brain. New York: Wiley-
Interscience.

[3] Arbib, M.A. (1994). Schema Theory: Cooperative Computation for Brain
Theory and Distributed AI. In: Artificial Intelligence and Neural Net
works: Steps Toward Principled Integration. Honavar, V. and Uhr, L.
(Ed.) San Diego, CA: Academic Press.

[4] Ballard, D. and Brown, C. (1982) Computer Vision. Englewood Cliffs,
NJ: Prentice Hall.

[5] Barnden, J.A. (1994a). How Might Connectionist Networks Represent
Propositional Attitudes? In: Artificial Intelligence and Neural Networks:
Steps Toward Principled Integration. Honavar, V. and Uhr, L. (Ed.) San
Diego, CA: Academic Press.

[6] Barnden, J.A. (1994b). Complex Symbol Processing in a Transiently
Localist Connectionist Architecture. In: Computational Architectures In
tegrating Symbolic and Neural Processes. Sun, R. and Bookman, L.A.
(Ed.) Boston: Kluwer.

[7] Bickhard, M.H. (1993). Troubles With Computationalism. (draft)

[8] Boden, M. (1994). Horses of a Different Color? In: Artificial Intelligence
and Neural Networks: Steps Toward Principled Integration. Honavar, V.
and Uhr, L. (Ed.) San Diego, CA: Academic Press.

Resolving the AI/NN Dichotomy 379

[9] Booker, L.E., Riolo, R.L., and Holland, J.H. (1994). Learning and Rep
resentation in Classifier Systems. In: Artificial Intelligence and Neural
Networks: Steps Toward Principled Integration. Honavar, V. and Uhr, L.
(Ed.) San Diego, CA: Academic Press.

[10] Bookman, L.A. (1994). A Framework for Integrating Relational and As-
sociational Knowledge for Comprehension. In: Computational Architec
tures Integrating Symbolic and Neural Processes. Sun, R. and Bookman,
L.A. (Ed.) Boston: Kluwer.

[11] Buchanan, B.G. and Wilkins, D.C. (1993). Readings in Knowledge Ac
quisition and Learning. San Mateo, CA: Morgan Kaufmann.

[12] Carpenter, G. and Grossberg, S. (1994). Integrating Symbolic and Neural
Processes in a Self-Organizing Architecture for Pattern Recognition and
Prediction. In: Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA:
Academic Press.

[13] Chandrasekaran, B. and Josephson, S.G. (1994). Architecture of Intelli
gence: The Problems and Current Approaches to Solutions. In: Artificial
Intelligence and Neural Networks: Steps Toward Principled Integration.
Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic Press.

[14] Chen, C. and Honavar, V. (1994). Neural Networks for Inference. In
preparation.

[15] Churchland, RS. (1986). Neurophilosophy. Cambridge, MA: MIT Press.

[16] Churchland, PS. and Sejnowski, T.J. (1992). The Computational Brain.
Boston, MA: MIT Press.

[17] Cohen, D. (1986). Introduction to Computer Theory. New Tork: Wiley.

[18] Cooper, E.D. (1990). An object-oriented interpreter for symbol train pro
cessing. (Preprint).

[19] Dolan, C.P. and Smolensky, P. (1989). Tensor product production system:
A modular architecture and representation. Connection Science, 1:53-58.

[20] Duda, R.O. and Hart, P.E. (1973). Pattern Classification and Scene Anal
ysis. New York: Wiley.

[21] Dyer, M. (1994). Grounding Language in Perception. In: Artificial In
telligence and Neural Networks: Steps Toward Principled Integration.
Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic Press.

380 CHAPTER 11

[22] Feigenbaum, E. A. (1963). In: Computers and Thought. Feigenbaum, E.A.
and Feldman, J. (Ed.) New York: McGraw-Hill.

[23] Feldman, J.A. and Ballard, D.H. (1982). Connectionist models and their
properties. Cognitive Science, 6:205-264.

[24] Fodor, J. (1976). The Language of Thought. Boston, MA: Harvard Uni
versity Press.

[25] Fodor, J. and Pylyshyn, Z.W. (1988). Connectionism and cognitive archi
tecture: A critical analysis. In: Connections and Symbols. Pinker, S. and
Mehler, J. (Ed.) Cambridge, MA: MIT Press.

[26] Forgy, C.L. (1982). RETE: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem. Artificial Intelligence, 19:17-37.

[27] Fu, K.S. (1982). Syntactic Pattern Recognition and Applications. Engle-
wood Cliffs, NJ: Prentice Hall.

[28] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition.
New York: Academic Press.

[29] Gallant, S. (1993). Neural Networks and Expert Systems. Cambridge,
MA: MIT Press.

[30] Genesereth, M.R., and Nilsson, N.J. (1987). Logical Foundations of Ar
tificial Intelligence. Palo Alto, CA: Morgan Kaufmann.

[31] Ginsberg, M. (1993). Essentials of Artificial Intelligence. San Mateo, CA:
Morgan Kaufmann.

[32] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison-Wesley.

[33] Goldfarb, L. and Nigam, S. (1994). The Unified Learning Paradigm: A
Foundation for AJ. In: Artificial Intelligence and Neural Networks: Steps
Toward Principled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego,
CA: Academic Press.

[34] Goonatilake, S. and Khebbal, S. (1994). (Ed.) Hybrid Intelligent Systems.
London: Wiley.

[35] Greenough, W.T and Bailey, CH. (1988). The Anatomy of Memory:
Convergence of Results Across a Diversity of Tests. Trends in Neuro-
science 11, 142-147.

[36] Grossberg, S. (1982). Studies of Mind and Brain. Boston, MA: Reidel.

Resolving the AIINN Dichotomy 381

[37] Hanson, S.J. and Burr, D. (1990). What Connectionist Models Learn:
Learning and Representation in Connectionist Networks. Behavior and
Brain Sciences, 13:1 -54.

[38] Hamad, S. (1990). The Symbol Grounding Problem. Physica D, 42:335-
346.

[39] Hamad, S., Hanson, S.J., and Lubin, J. (1994). Learned Categorical Per
ception in Neural Nets: Implications for Symbol Grounding. In: Artificial
Intelligence and Neural Networks: Steps Toward Principled Integration.
Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic Press.

[40] Haykin, S. (1994). Neural Networks. New York: Macmillan.

[41] Hewitt, C. (1977). Viewing Control Structures as Patterns of Passing
Messages. Artificial Intelligence, 8:232-364.

[42] Hillis, D. (1985). The Connection Machine. Cambridge, MA: MIT Press.

[43] Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: University of Michigan Press.

[44] Hopfield, J.J. (1982). Neural Networks and Physical Systems With Emer
gent Collective Computational Abilities. Proceedings of the National
Academy of Sciences, 79:2554-2558.

[45] Honavar, V. (1989). Perceptual Development and Learning: From Behav
ioral, Neurophysiologicaland Morphological Evidence to Computational
Models. Tech. Rep. 818. Computer Sciences Dept, University of Wis
consin, Madison, Wisconsin.

[46] Honavar, V. (1990). Generative Learning Structures for Generalized Con
nectionist Networks. Ph.D. Dissertation. University of Wisconsin, Madi
son, Wisconsin.

[47] Honavar, V. (1992).InductiveLearningUsingGeneralized Distance Mea
sures. In: Proceedings of the SPIE Conference on Adaptive and Learning
Systems. Orlando, Florida.

[48] Honavar, V. (1994). Toward Learning Systems That Use Multiple Strate
gies and Representations. In: Artificial Intelligence and Neural Networks:
Steps Toward Principled Integration. Honavar, V. and Uhr, L. (Ed.) San
Diego, CA: Academic Press.

[49] Honavar, V. and Uhr, L. (1989a). Brain-Structured Connectionist Net
works that Perceive and Learn. Connection Science, 1:139-159.

382 CHAPTER 11

[50] Honavar, V. and Uhr, L. (1989b). Generation, Local Receptive Fields,
and Global Convergence Improve Perceptual Learning in Connectionist
Networks. In: Proceedings of the 1989 International Joint Conference on
Artificial Intelligence, San Mateo, CA: Morgan Kaufmann.

[51] Honavar, V. and Uhr, L. (1990a). Symbol Processing Systems, Connec
tionist Networks, and Generalized Connectionist Networks. Tech. Rep.
90-23. Department of Computer Science, Iowa State University, Ames,
Iowa.

[52] Honavar, V. and Uhr, L. (1990b). Coordination and Control Structures
and Processes: Possibilities for Connectionist Networks. Journal of Ex
perimental and Theoretical Artificial Intelligence, 2:277-302.

[53] Honavar, V. and Uhr, L. (1993) Generative Learning Structures and Pro
cesses for Generalized Connectionist Networks, Information Sciences,
70:75-108.

[54] Honavar, V. and Uhr, L. (1994a). (Ed.) Artificial Intelligence and Neural
Networks: Steps Toward Principled Integration. San Diego, CA.: Aca
demic Press.

[55] Honavar, V. and Uhr, L. (1994b). Toward Integrated Architectures for
Artificial Intelligence and Cognitive Modelling. In: Intelligent Hybrid
Systems. Goonatilake, S. and Khebbal, S. (Ed). London: Wiley.

[56] Johnson-Laird, P. and Byrne, J. (1991). Deduction. New York: Lawrence
Erlbaum.

[57] Klir, G.J. (1969). An Approach to General Systems Theory. New York:
Van Nostrand Reinhold.

[58] Klir, G.J. (1985). Architecture of Systems Problem Solving. New York:
Plenum.

[59] Kosslyn, S. and Jacobs, R.A. (1994). Encoding Shape and Spatial Rela
tions: A Simple Mechanism for Coordinating Multiple Representations.
In: Artificial Intelligence and Neural Networks: Steps Toward Principled
Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic
Press.

[60] Kowalski, R.A. (1977). Predicate Logic as a Programming Language.
Amsterdam: North-Holland.

[61] Koza, J. (1992). Genetic Programming. Boston, MA: MIT Press.

Resolving the AIINN Dichotomy 383

[62] Kuffler, S.W., Nicholls, J.G., and Martin, A.R. (1984). From Neuron to
Brain. Sunderland, MA: Sinaur.

[63] Kung, S. Y. (1993). Digital Neural Networks. New York: Prentice Hall.

[64] Lacher, R.C. and Nguyen, K.D. (1994). Hierarchical Architectures for
Reasoning. In: Computational Architectures Integrating Symbolic and
Neural Processes. Sun, R. and Bookman, L.A. (Ed.) Boston: Kluwer.

[65] Levine, D.S. and Aparicioiv, M. (1994). (Ed.) Neural Networks for Knowl
edge Representation. New York: Lawrence Erlbaum.

[66] Lin, C. and Hendler, J. (1994). A Study of a Hybrid Connectionist-
Symbolic System for The Analysis of Ballistic Signals. In: Computational
Architectures Integrating Symbolic and Neural Processes. Sun, R. and
Bookman, L.A. (Ed.) Boston: Kluwer.

[67] Maclennan, B.J. (1994). Image and Symbol — Continuous Computation
and the Emergence of the Discrete. In: Artificial Intelligence and Neural
Networks: Steps Toward Principled Integration. Honavar, V. and Uhr, L.
(Ed.) San Diego, CA: Academic Press.

[68] McCulloch, W.S. and Pitts, W. (1943). A Logical Calculus of the Ideas
Immanent in Neural Activity. Bulletin of Mathematical Biophysics, 5:115-
137.

[69] McClelland J., Rumelhart, D. and the PDP Research Group (1986). (Ed.)
Parallel Distributed Processing. Boston, MA: MIT Press.

[70] McKenna, T (1994). The Role of Inter-Disciplinary Research Involv
ing Neuroscience in the Design of Intelligent Systems. In: Artificial In
telligence and Neural Networks: Steps Toward Principled Integration.
Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic Press.

[71] Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley.

[72] Medsker, L. (1994). Hybrid Neural Network and Expert Systems. Boston:
Kluwer.

[73] Miikkulainen, R. (1994a). Integrated Connectionist Models: Building
AI Systems on Subsymbolic Foundations. In: Artificial Intelligence and
Neural Networks: Steps Toward Principled Integration. Honavar, V. and
Uhr, L. (Ed.) San Diego, CA: Academic Press.

384 CHAPTER 11

[74] Miikkulainen, R. (1994b). Subsymbolic Parsing of Embedded Structures.
In: Computational Architectures Integrating Symbolic and Neural Pro
cesses. Sun, R. and Bookman, L.A. (Ed.) Boston: Kluwer.

[75] Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolu
tion Programs. New York: Springer-Verlag.

[76] Michalski, R.S. (1993). Toward a Unified Theory of Learning: Multi-
Strategy Task-Adaptive Learning. In: Readings in Knowledge Acquisition
and Learning. Buchanan, B.G., and Wilkins, D.C. (Ed.) San Mateo, CA:
Morgan Kaufmann.

[77] Miclet, L. (1986). Structural Methods in Pattern Recognition. New York:
Springer-Verlag.

[78] Minsky, M. (1963). Steps Toward Artificial Intelligence. In: Comput
ers and Thought. Feigenbaum, E.A. and Feldman, J. (Ed.) New York:
McGraw-Hill.

[79] Minsky, M. (1975). A Framework for Representing Knowledge. In: The
Psychology of Computer Vision. Winston, P. H. (Ed). New York: McGraw-
Hill.

[80] Minsky, M. (1986). Society of Mind. New York: Basic Books.

[81] Mjolsness, E. (1994). Connectionist Grammars for High-Level Vision.
In: Artificial Intelligence and Neural Networks: Steps Toward Principled
Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic
Press.

[82] Narendra, K. S. and Annaswamy, A. M. (1989). Stable Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall.

[83] Newell, A. (1980). Symbol Systems. Cognitive Science, 4:135-183.

[84] Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Har
vard University Press.

[85] Newell, A., Shaw, J.C., and Simon, H. (1963). In: Computers and
Thought. Feigenbaum, E.A., and Feldman, J. (Ed.) New York: McGraw-
Hill.

[86] Norman, D. A. (1986). Reflections on Cognition and Parallel Distributed
Processing. In: Parallel Distributed Processing. McClelland, J., Rumel-
hart. D. and the PDP Research Group (Ed.). Cambridge, MA: MIT Press.

Resolving the AIINN Dichotomy 385

[87] Norvig, P. (1992). Paradigms in Artificial Intelligence Programming.
Palo Alto, CA: Morgan Kaufmann.

[88] Oden, G.C. (1994). Why the Difference Between Connectionism and
Anything Else is More Than You Might Think But Less Than You Might
Hope. In: Artificial Intelligence and Neural Networks: Steps Toward Prin
cipled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Aca
demic Press.

[89] Omlin, W.C. and Giles, C.L. Extraction and Insertion of Symbolic In
formation in Recurrent Neural Networks. In: Artificial Intelligence and
Neural Networks: Steps Toward Principled Integration. Honavar, V. and
Uhr, L. (Ed.) San Diego, CA: Academic Press.

[90] Pearl, J. (1984). Heuristics. New York: Addison-Wesley.

[91] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Palo Alto,
CA: Morgan Kaufmann.

[92] Pinkas, G. (1994). A Fault-Tolerant Connectionist Architecture for the
Construction of Logic Proofs. In: Artificial Intelligence and Neural Net
works: Steps Toward Principled Integration. Honavar, V. and Uhr, L.
(Ed.) San Diego, CA: Academic Press.

[93] Pollack, J. (1990). Recursive Distributed Representations. Artificial In
telligence, 46:77-105.

[94] Quillian, M.R. (1968). Semantic Memory. In: Semantic Information Pro
cessing. Minsky, M. (Ed.) Cambridge, MA: MIT Press.

[95] Rajaraman, V. (1981). Analog Computation and Simulation. Englewood
Cliffs: Prentice Hall.

[96] Rashevsky, N. (1960). Mathematical Biophysics. New York: Dover.

[97] Rosenblatt, F. (1962). Principles of Neurodynamics. Washington, DC:
Spartan.

[98] Schneider, W. (1987). Connectionism: Is it a paradigm shift for psychol
ogy? Behavior Research Methods, Instruments, and Computers, 19:73-
83.

[99] Selfridge, O.G. and Neisser, U. (1963). Pattern Recognition by Machine.
In: Computers and Thought. Feigenbaum, E.A. and Feldman, J. (Ed.)
New York: McGraw-Hill.

386 CHAPTER I l

[100] Servan-Schreiber, D., Cleeremans, A., and McClelland, J. (1994).
Graded State Machines: Representation of Temporal Contingencies in
Recurrent Neural Networks. In: Artificial Intelligence and Neural Net
works: Steps Toward Principled Integration. Honavar, V. and Uhr, L.
(Ed.) San Diego, CA: Academic Press.

[101] Sharkey, N. and Jackson, S.J. (1994). Three Horns of the Representa
tional Dilemma. In: Artificial Intelligence and Neural Networks: Steps
Toward Principled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego,
CA: Academic Press.

[102] Shastri, L. and Ajjanagadde, V. (1989). Connectionist System for Rule
Based Reasoning with Multi-Place Predicates and Variables. Tech. Rep.
MS-CIS-8906. Computer and Information Science Dept. University of
Pennsylvania, Philadelphia, PA.

[103] Shavlik, J.W. and Dietterich, T.G. (1990). (Ed). Readings in Machine
Learning. San Mateo, California: Morgan Kaufmann.

[104] Shavlik, J.W. (1994). A Framework for Combining Symbolic and Neural
Learning. In: Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA:
Academic Press.

[105] Shepherd, G.M. (1989). The significance of real neuron architectures for
neural network simulations. In: Computational Neuroscience. Schwartz,
E. (Ed.) Cambridge, MA: MIT Press.

[106] Shepherd, G.M. (Ed.) (1990). Synaptic Organization of the Brain. New
York, NY: Oxford University Press.

[107] Smolensky, P. (1990). Tensor Product Variable Binding and the Rep
resentation of Symbolic Structures in Connectionist Systems. Artificial
Intelligence, 46:159-216.

[108] Smolensky, P., Legendre, G., and Miyata, Y. (1994). Integrating Con
nectionist and Symbolic Computation for the Theory of Language. In:
Artificial Intelligence and Neural Networks: Steps Toward Principled
Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA: Academic
Press.

[109] Sowa, J.F. (1984). Conceptual Structures: Information Processing in
Mind and Machine. Reading, Massachusetts: Addison-Wesley.

Resolving the AI/NN Dichotomy 387

[110] Sun, R. (1994a). Logic and Variables in Connectionist Models: A Brief
Overview. In: Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA:
Academic Press.

[I l l] Sun, R. (1994b). A Two-level Architecture for Commonsense Reason
ing. In: Computational Architectures Integrating Symbolic and Neural
Processes. Sun, R. and Bookman, L.A. (Ed.) Boston: Kluwer.

[112] Sun, R. and Bookman, L.A. (1994). (Ed.) Computational Architectures
Integrating Symbolic and Neural Processes. Boston: Kluwer.

[113] Turing, A.M. (1950). Computing Machinery and Intelligence. Mind,
59:433-460.

[114] Tanimoto, S.L. and Klinger, A. (1980). Structured Computer Vision:
Machine Perception Through Hierarchical Computation Structures. New
York: Academic Press.

[115] Tsang, E. (1993). Foundations of Constraint Satisfaction. New York:
Academic Press.

[116] Uhr, L. and Vossler, C. (1963). A Pattern Recognition Program that
Generates, Evaluates, and Adjusts its Own Operators. In: Computers and
Thought. Feigenbaum, E. and Feldman, J. (Ed). New York: McGraw-Hill.

[117] Uhr, L. (1973). Pattern Recognition, Learning, and Thought. New York:
Prentice-Hall.

[118] Uhr, L. (1979). Parallel-serial production systems with many working
memories. In: Proceedings of the Fifth International Joint Conference on
Artificial Intelligence.

[119] Uhr, L. (1980). In: Structured Computer Vision. Tanimoto, S., and
Klinger, A. (Ed.) New York: Academic Press.

[120] Uhr, L. (1984). Algorithm-Structured Computer Arrays and Networks.
New York: Academic Press.

[121] Uhr, L. (1986). Toward a Computational Information Processing Model
of Object Perception. Tech. Rep. 651. Computer Sciences Dept, Univer
sity of Wisconsin, Madison, Wisconsin.

[122] Uhr, L. (1987). Multi-computer Architectures for Artificial Intelligence.
New York: Wiley.

388 CHAPTER 11

[123] Uhr, L. (1990). Increasing the Power of Connectionist Networks by
Improving Structures, Processes, Learning. Connection Science, 2:179-
193.

[124] Uhr, L. (1994). Digital and Analog Sub-Net Structures for Connectionist
Networks. In: Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration. Honavar, V. and Uhr, L. (Ed.) San Diego, CA:
Academic Press.

[125] Uhr, L. and Honavar, V. (1994). Artificial Intelligence and Neural Net
works: Steps Toward Principled Integration. In: Artificial Intelligence and
Neural Networks: Steps Toward Principled Integration. Honavar, V. and
Uhr, L. (Ed.) San Diego, CA: Academic Press.

[126] van Gelder, T. and Port, R. (1994). Beyond Symbolic: Prolegomena to
a Kama-Sutra of Compositionality. In: Artificial Intelligence and Neural
Networks: Steps Toward Principled Integration. Honavar, V. and Uhr, L.
(Ed.) San Diego, CA: Academic Press.

[127] Waterman, D.A. (1985). A Guide to Expert Systems. Reading, MA:
Addison-Wesley.

[128] Wechsler, H. (1990). Computational Vision. New York: Academic Press.

[129] Winston, P.H. (1992). Artificial Intelligence. Boston, MA: Addison-
Wesley.

[130] Yager, R.R. and Zadeh, L.A. (1994). (Ed.) Fuzzy Sets, Neural Networks,
and Soft Computing. New York: Van Nostrand Reinhold.

[131] Zadeh, L. A. (1975). Fuzzy Logic and Approximate Reasoning. Synthese,
30:407-28.

[132] Zeidenberg, M. (1989). Neural Networks in Artificial Intelligence. New
York: Wiley.

[133] Zeki, S. and Shipp, S. (1988). The Functional Logic of Cortical Con
nections. Nature, 335:311-317.

12
Connectionist Natural Language

Processing:
A Status Report

MICHAEL G. DYER

Computer Science Department
University of California, at Los Angeles

Los AngelesyCA 90024

1 INTRODUCTION

Connectionist networks (CNs) exhibit many useful properties. Their spreading
activation processes are inherently parallel in nature and support associative
retrieval of memories. The summation and thresholding of activation allows
for smooth integration of multiple sources of knowledge. CNs with distributed
representations (Rumelhart and McClelland, 1986) exhibit robustness in the
face of noise/damage and can learn to perform complex mapping tasks just from
examples. Connectionist networks are also able to dynamically reinterpret
situations as new inputs are received. These features are very useful for natural
language processing (NLP) and offer the hope that connectionist approaches
to NLP will replace the more traditional, symbolic approaches to NLP.

Consider the task of lexical disambiguation. Words may have multiple mean
ings, for instance, "pot" may refer to a cooking pot, a flower pot, or marijuana.
Traditional, symbolic approaches to disambiguation have utilized one of the
following strategies: (a) commit to a particular interpretation and then back
track if it is later shown to be incorrect, (b) delay the process of disambiguation
until enough information is gathered so that backtracking will not occur, (c)
keep track of every possible meaning, or (d) commit to an interpretation and
later execute error-correction heuristics if that interpretation is shown to be
wrong. None of these strategies is completely adequate. The commit-and-
backtrack strategy is very inefficient, because backtracking will often cause
much useful work to be thrown away. For instance, assume that the cooking-pot
meaning of "pot" is first chosen while reading sentence S1 and then subsequent
information in the sentence leads to a marijuana interpretation of "pot."

389

390 CHAPTER 12

SI: The pot, which Mary bought from John, made her cough.

Here, backtracking to reinterpret "pot" (after encountering "cough") will cause
the perfectly adequate analysis of the intervening relative clause to be thrown
away and then redone.

The delay strategy has the following general problems: (a) the analysis of
the rest of the sentence may not be able to go forward while commitment to
a meaning is delayed and (b) no matter how long disambiguation is delayed,
subsequent input may cause a reinterpretation of a given word to occur anyway
— e.g., as would occur if S2 followed SI:

S2: Mary was allergic to the flower in it.

The every-possible meaning strategy suffers from a potential combinatorial
explosion of interpretations. If there are n k-way ambiguous words in a
segment of text then there will be kn possible interpretations of that text.
The intelligent error-correction strategy requires the specification of rules to
selectively undo the harm caused by earlier commitments. As these rules
execute, they will cause other inferences to be undone, which will cause yet
other error-correction rules to execute, and so on. This approach requires either
designing sophisticated error-correction heuristics or some kind of a general
truth maintenance mechanism.

In contrast, dynamic reinterpretation is achieved as a natural side-effect of how
connectionist networks operate. Activation spreads in parallel and the nodes
with the most activation represent the current interpretation. As new inputs
are received, the most highly active nodes may drop in activation, leading to
a reinterpretation of prior inputs. Initially, the cooking-pot node will have the
most activation, but "cough" will cause the marijuana node to become more
active (through an activation path of smoking, etc.). Subsequent mention of
being allergic will send more activation to nodes representing a different reason
for coughing and, along with "flower," cause the flower-pot interpretation now
to be most preferred. Thus, spreading activation exhibits aspects of all of the
traditional strategies, but is implemented via a single, uniform, parallel and
efficient mechanism.

The long-term goal of connectionist researchers is the complete replacement of
symbolic processing models with connectionist models that exhibit efficient,
robust performance and are capable of automatically learning all of the tasks

Connectionist Natural Language Processing: A Status Report 391

that are currently programmed directly by knowledge engineers within the
field of artificial intelligence. Given die many known attractive features of
connectionist networks, why hasn't the connectionist paradigm already swept
aside the traditional, symbolic approach? The answer lies in the fact that
the symbolic processing approach retains its own attractive representational
and processing features. Connectionist models, while becoming ever more
powerful and sophisticated, have not yet been able to provide equivalent (let
alone alternative superior) capabilities to those exhibited by symbolic systems.
The rest of this paper consists of an enumeration of these symbolic capabilities,
along with a description of how current connectionist networks (both localist
and distributed) attempt to simulate these capabilities, and with what success
(or failure).

2 DYNAMIC BINDINGS

Symbolic systems are capable of binding variables to values at run time. In
symbolic systems, values may range from simple entities to complex recursive
structures of arbitrary depth. Let us first consider bindings to simple (i.e.,
unstructured) values. For instance, the knowledge that we own what we buy
might be represented by a rule something like Rl:

Rl: BUYS(personl, object, person2) —• OWNS(person2, object)

This rule will work for any object or person, as a result of the (typed) vari
ables person 1, object and person2 being bound to their appropriate values at
execution time.

2.1 BINDINGS IN LOCALIST C N S

In localist CNs, each node represents a given syntactic or semantic entity (e.g.,
a predicate, such as OWNS, or a role, such as BUYER) and the amount of
activation on the node represents how committed the network is to a given
node (or path of nodes) as the correct interpretation of the input. However,
without some kind of variable+binding mechanism, localist CNs would have to
represent, before execution, all possible binding combinations, which would
lead to a combinatorial explosion. For instance, for a network to conclude
that Mary owns a TV (or, say, a radio) because she bought it from another

392 CHAPTER 12

person (say, Fred or Joe), then there would already have to exist CN nodes for:
MARY-OWNS-TV, FRED-OWNS-TV, MARY-OWN-RADIO, etc. For just
n characters and m buyable objects, there would be nxm OWNS nodes alone
and an exponential number of mappings from BUYS to OWNS structures.
To avoid this problem, current localist CNs use either signatures or phase
synchronization to propagate simple bindings.

(1) Signatures: A signature is a unique activation value that is assigned to
a given entity and that serves as a value in a binding. For instance, the CN
node representing FRED might be assigned an activation value of 23 as its
permanent, identifying activation (or signature) while Mary is assigned 13 and
TV is assigned, say, an activation value of 7 as its signature. Signature acti
vation is then propagated in the network along separate pathways from those
used for normal spreading activation. To represent rule Rl, nodes are assigned
to each predicate (OWNS, BUYS) and to each role (i.e., BUYS:BUYER,
BUYS:SELLER, BUYS:OBJECT, OWNS:OWNER and OWNS:OBJECT)
and connections are set up between roles (e.g., from BUYS:BUYER to
OWNS:OWNER) to specify how bindings should be propagated between pred
icates. Normal activation is propagated from BUYS to OWNS to represent
a commitment to the fact that OWNS has occurred as the result of a BUYS.
At the same time, signatures are propagated along role-to-role pathways. The
weights on these pathways are normally set to 1 so that the values of the sig
natures are not altered. If the signature, say, 23 spreads from BUYS:BUYER
to OWNS:OWNER and the signature 13 spreads from BUYS:OBJECT to
OWNS:OBJECT, then the network can be interpreted as inferring that FRED's
buying a TV resulted in FRED owning a TV. Lange and Dyer (1989) and Sun
(1989,1992,1993) have both designed systems that make use of signature-style
activation to propagate simple role-bindings.

(2) Phase synchronization: In this approach, the unit time for each basic
spread-of-activation step is broken up into a few, smaller subunits of time,
termed phases. For instance, if there are seven distinct phases within each
spread-of-activation step, then a total of seven distinct bindings can be propa
gated through a localist network. In the example above, FRED, MARY and TV
might be assigned phases 1,4, and 7, respectively. The nodes in such networks
are designed so that, when they receive activation within a given phase, they
propagate it along their connections within the same phase of the next basic
spreading-activation cycle. Phase-locking (or synchronization) was originally
proposed by neuroscientists (von der Malsburg, 1981; von der Malsburg and
Singer, 1987) and has been employed by vision researchers to bind distinct
features (e.g., color and shape) when more than one object is in the visual field
(Strong and Whitehead, 1989). Shastri and Ajjanagadde (1990,1993) (Ajjana-

Connectionist Natural Language Processing: A Status Report 393

gadde and Shastri, 1989) make use of phase-locking to propagate bindings in
a localist CN used to perform deductive retrieval of information.

The signature approach has the advantage that an unbounded number of sig
natures can be propagated simultaneously along multiple pathways while the
phase-locking method is restricted to a small number of bindings. The restric
tion to just a few phases is not a problem for retrieval tasks, which rarely specify
more than 7 unbound variables in a query. However, during natural language
understanding, many new bindings can arise dynamically. For instance, within
sentence S3 there are over 10 bindings that arise.

S3: The tall, thin woman bought an expensive, red sports car from
the bald salesman.

Also, for n phases there are n subcycles required for each spread of activation
cycle, which slows down propagation rates by a factor of n. However, both
phase-locking and signature approaches suffer from the fact that only simple
values can be propagated. Consider the following, common rule — one that is
ubiquitous in story understanding systems:

R2: TELLS(personl,message,person2) —• KNOWS(person2, mes
sage)

The difference between Rl and R2 is that a message can be bound to any
arbitrarily complex structure. For instance, if John tells Mary that a purple alien
stole the hubcaps off her car, then a story understanding system should update
Mary's knowledge to know this complex fact/event. In symbolic systems,
this update feat is simple because all that has to be passed between TELLS
and KNOWS is a pointer to the instantiated STOLE structure, say STOLE3.
The STOLE3 instance will have its roles bound (i.e., that the alien is the
STOLE:STEALER and the hubcaps are the STOLE:OBJECTS, etc.) as the
result of parsing/analysis of the stole-related part of the text. But what would
be the signature (or phase) for such a complex entity? If a STOLE3 node
already exits in the network, with a unique signature preassigned, then this
signature can be propagated from TELLS to KNOWS. However, in most cases
the message is being mentioned for the first time by a story character; so the
story understanding system must infer KNOWS from TELLS at about the same
time that the stole event itself is being comprehended and incorporated into
memory. Thus, any connectionist NLP system must face the problem of both

394 C H A P T E R 12

dynamically creating instances of structured entities and propagating them for
inferencing (e.g., so that the system can infer that Mary will be upset, etc.).

The "solution" of allowing the dynamic creation of new connectionist nodes
and links at run time is not acceptable within the connectionist paradigm
because it violates known constraints from neuroscience. New neurons, axons
or dendrites simply cannot grow within the moments that pass during the
comprehension of a sentence. Also, symbolic pointers are not acceptable
because they refer to the location of a memory register and there is no evidence
that any pattern of activation in one area of the brain directly encodes the
location (address) of some other area in brain (as occurs with a von Neumann-
style pointer.)

2 . 2 B I N D I N G S IN D I S T R I B U T E D C N S

Given that new nodes and connections cannot be created "on the fly" in CNs,
structured bindings must be created dynamically either by modification of fast
synapses (modeled as connection weights in CNs) or by changes in patterns
(i.e., entire vectors) of activation over ensembles of connectionist units. Dis
tributed CNs offer such a potential, since they manipulate patterns of activation
over banks of connectionist processing units. The use of distributed patterns
supports the dynamic creation of a potentially exponential number of possible
values. Currently, two major methods have been developed for represent
ing and propagating distributed patterns of activation as role bindings: tensor
products and ID+Content vectors.

(1) Tensor Products : Tensor theory has been proposed for use in CNs by
Smolensky (1990) and implemented in (Dolan, 1989; Dolan and Dyer, 1989;
Dolan and Smolensky, 1989). Tensors result when vectors are generalized to
higher ranks (i.e., a rank-one tensor is a vector; a rank-two tensor is a matrix; a
rank-three tensor is a cube of units, etc.). Suppose an m-dimensional vector V
represents, say, a role R, and an n-dimensional vector W represents the role's
filler F. Then R and F can be bound to one another by generating the vector
outer product VW, which consists of a tensor T (in this case, a matrix) of
mxn elements (i.e., element-wise products of each V{ x Wj = T^). To extract,
for instance, the binding from the role, we perform an inverse operation,
such as calculating the dot (or inner) product T • W. This approach is not as
straightforward as it sounds, because a single tensor product representation will
contain multiple bindings overlaid on one another. For example, to represent

Connectionist Natural Language Processing: A Status Report 395

BUYS(JOHN, TV, FRED) and OWNS(FRED, TV) we would set up a rank-
three tensor (i.e., a cube of CN units) and overlay the following binding-triples:

[BUYS, ACTOR, JOHN]
[BUYS, OBJECT, TV]
[BUYS, FROM, FRED]
[OWNS, ACTOR, FRED]
[OWNS, OBJECT, TV]

Here, each dimension of the cube (i.e., position in a triple) represents a pred
icate, a role, or a role-filler. Cross-talk will result because these multiple,
rank-three outer products have been overlaid (e.g., through element-wise sum
mation) within the same tensor product. Dolan (1989) has developed various
methods for extracting bindings from tensor networks in the face of such cross
talk. For example, one method is the use of "clean-up circuits." One kind
of clean-up circuit consists of a network of pre-known bindings organized via
inhibition. Thus, the noisy output from the tensor product is mapped to the
closest matching vector (from a fixed set of possible alternatives) via a winner-
take-all process. Another method is termed "pass-thru circuits/' A path-thru
circuit basically applies additional dot-products (representing additional con
straints on what the output should look like). For example, if we are looking
for the OBJECT bought and know that it is also owned, then we can set up
pass-thru circuits that essentially find the intersection of two related queries,
such as [BUYS1, OBJECT, ?] and [OWNS, OBJECT, ?].

Tensors are mathematically elegant and can be implemented in a CN network
via conjunctive coding — i.e., multiplicative connections (Hintonet al., 1986).
However, the problems of scale-up and cross-talk can be problematic. For
n-dimensional vectors one needs n3 units to hold bindings as [predicate, role-
name, role-filler] triples. If there are numerous BUYS events, then there will
be massive cross-talk or one must encode triples that distinguish instances:

[BUYS 1, ACTOR, JOHN] ...
[BUYS2, ACTOR, JOE]
[BUYS1, ISA, BUYS]
[BUYS2, ISA, BUYS].

The problem with this approach is that, ironically, the tensor network functions
so much like a symbolic system that the nice features of distributed CNs (e.g.,
generalization) can become lost. Also, storing and access via one triple at a
time creates a system that, while parallel at the subsymbolic level, is essen
tially sequential at the knowledge level (Sumida and Dyer, 1989; Feldman,

396 C H A P T E R 12

1989) because only one triple can be accessed or manipulated at a time. In
contrast, numerous triples are activated simultaneously in a localist CN, since
the predicates and roles of each event are separately represented.

(2) ID+Content Vectors: In localist CNs, each instance (e.g., BUY3) is repre
sented by a separate node, with a connection to the general type (e.g., BUY). In
distributed CNs, BUY3 will consist of a pattern (i.e., vector) of activation with
segments of the pattern sharing similar activation values with the activation
vector representing the type. In the ID+Content approach (Miikkulainen and
Dyer, 1991), the vector is split up into two segments: (a) the Content segment,
which holds information concerning t he general type of object/action being
represented and (b) the ID segment, which holds information concerning the
specific instance. A distributed CN, such as a PDP network (Rumelhart and
McClelland, 1986), can then be trained to propagate the ID segment from one
layer to another without altering the ID segment. This is accomplished by
training the network on a random subset of ID patterns. Miikkulainen and
Dyer (1991) have shown that PDP networks can efficiently learn to propagate
novel ID patterns when trained on just a small subset of random patterns. The
networks essentially learn the identity mapping for the ID segments. Miikku
lainen and Dyer use this technique in the propagation of role bindings. Their
system, DISPAR, contains 4 recurrent PDP networks, such as those developed
by (Elman, 1990), that are connected to a lexical memory. DISPAR has the
task of learning to generate complete paraphrases from fragmentary inputs of
novel script-based stories (Schank and Abelson, 1977; Dyer et al., 1987. For
instance, given the input fragment: "Mary ordered steak at Leone's." DIS
PAR generates a complete sequence of events — e. g., that includes: "Mary
ate steak." Thus, generating paraphrases requires propagating bindings, since
DISPAR must learn (from the training data) to perform the equivalent of infer
ring:

ORDER(diner, food) —• EATS(diner, food)

A problem they encountered was that long-term knowledge (implicit in the
training set of script-based stories) would be encoded in the connection weights
and result in short-term information (from the input story) being overridden.
For example, if every story in the training set had Mary order and eat a steak at
a restaurant, then, even if (during performance) the input story contained the
sentence "Mary ordered a hamburger," DISPAR would still generate "Mary
ate a steak" as part of its paraphrase. This effect was also noticed in (St. John
and McClelland, 1990). This problem was solved in DISPAR by representing

Connectionist Natural Language Processing: A Status Report 397

"steak" and "hamburger" each as ID+Content vectors. The Content segment of
each food-type of word contained a pattern that was similar for all foods used in
the training data, while the ID segments were assigned unique patterns for each
distinct food instance (e.g., hamburger vs. steak). Thus, when "Mary ordered
hamburger." was input during performance, DISPAR passed the ID portion
to subsequent banks without alteration. DISPAR used the pattern within the
Content part (i.e., the FOOD type) to aid in processing while propagating the
instance (ID segment) without change. As a result, DISPAR could conclude
that "Mary ate hamburger." when told "Mary ordered hamburger." even
though all training set instances consisted of Mary always ordering and eating
"steak."

3 FUNCTIONAL B I N D I N G S AND S T R U C T U R E D PATTERN

M A T C H I N G

Although the above techniques (e.g., signatures, ID+Content vectors, etc.)
have greatly extended the symbolic capabilities of both localist and distributed
CNs, they are still weak when compared to the binding capabilities of symbolic
systems. The use of a heap, addressing, and pointers allows symbolic systems
to create structures like STOLE3 "on the fly." Symbolic systems support
propagation of even more complex bindings; for instance, they allow modules
to receive entire functions or procedures as data. This results in styles of
programming termed "data-driven" and "object-oriented." A simple example
of this capability is the APPLY function in LISP, in which one function Fl
applies whatever function F2 is passed to Fl as a parameter. This code-binding
and propagation capability allows one module within a symbolic system to
perform any of the operations that another module is capable of.

In addition, symbolic systems typically exhibit powerful pattern matching ca
pabilities. A prime example is that of unification, e.g., as in Prolog. Holldobler
(1990) and Stolcke (1989) have built localist CNs to perform this unification
process. Holldobler, for instance, sets up several layers of threshold units.
The term layer is a matrix of units with one side representing the terms in two
expressions to be unified and the other side representing positions where terms
may occur. The unification layer contains units that are connected in a manner
to impose unification constraints, for instance, whether two occurrences share
a common variable. The occur check layer makes sure that cycles do not occur,
such as x becoming bound to f(x).

398 CHAPTER 12

The major problems with this localist CN approach to unification are: (a) that
all of the units and their connections must be prewired for the given expressions
that are to be unified and thus are finite and non-general, and (b) only a single
solution is produced. In contrast, unification in logic programming languages,
such as Prolog, work on an infinite number of possible expressions to be
unified and can return multiple solutions when they exist. Thus, a localist CN
with any generality would require a method for recruiting and wiring up units
dynamically. In the area of distributed CNs there are no architectures, to my
knowledge, designed to attempt unification.

4 ENCODING AND ACCESSING RECURSIVE STRUCTURES

Recursive structure is essential for high-level reasoning, particularly natural
language processing. Localist networks can represent recursive structures by
connecting up the appropriate nodes in a tree-like manner. However, localist
networks that propagate phases or signatures have difficulty with propagating
multiple instances of the same type. Consider sentence S4:

S4: John told Mary that Betty told Fred that Jim went home.

Here there are two TELL structures. In localist CNs, there is usually only
one node for each type of predicate. Thus, the "John told Mary" segment can
be represented by passing signatures (or phases) over the TELL:TELLER and
TELL:RECEIVER nodes. However, the embedded "Betty told Fred" must be
represented by another TELL instance that would be dynamically bound to the
TELL:MESSAGE node of the top-level TELL. One solution to the problem
(of multiple instances of the same type) is to have n copies for each predicate
(and corresponding roles). If n = 2, then the CN network could parse and
represent one TELL instance embedded within another TELL. For instance,
if each TELL node had a pre-assigned signature, then the signature of the
embedded TELL could by propagated to the TELL:MESSAGE of the outer
TELL. This approach will always fail for sentences with embeddings greater
than n. This limit, on depth of recursion, may not be so bad, however, because
people also exhibit a limit. Consider S5:

S5: John told Mary that Betty told Fred that Sally told Frank that Jim
went home.

Connectionist Natural Language Processing: A Status Report 399

Most people, upon hearing such a sentence out loud, protest that they cannot
keep straight who is telling whom and immediately recall it as "Several people
telling other people that Jim went home.."

In the area of distributed CNs, early PDP networks lacked a recurrent layer;
as a result, the encoding of recursive structure was problematic. If a 3-layer
PDP network, for instance, had 4 banks (e.g., representing the ACT, ACTOR,
RECIPIENT, OBJECT) then a sentence like S4 could not be encoded, because
the embedded TELL required its own ACT, ACTOR, etc. This problem has
been solved by the use of distributed CNs with a recurrent layer. A number
of distinct recurrent architectures have been employed to encode recursive
structures and their constituents. Two common approaches are the Simple
Recurrent Network (SRN) of Elman (1990) and the Recursive Autoassociative
Memory (RAAM) of Pollack (1988,1989,1990). In SRNs, the hidden layer is
copied onto an added bank in the input layer (termed the "context" bank) and
then is fed back into the hidden layer at the next cycle. In contrast, RAAMs
make use of an autoassociative (or encoder) network, in which a PDP network
is trained to generate on the output layer the same pattern as that placed on
the input layer (Rumelhart and McClelland 1986). In Pollack's RAAMs, the
pattern of activation produced on the hidden layer is copied back into a bank
on both the input and output layers. Figure 1 illustrates how S4 can be encoded
in a RAAM.

(3) John told Mary PAV2

(2) Betty told Fred PAV1

(1) Jim went home NIL
I ACTOR ACT TO MESSAGE 1

PAV1,2,3 j I (2)PAV1
C~ I (3)PAV2

• _ I (4) PAV3

ACTOR ACT TO MESSAGE 1

(1) Jim went home NIL

(2) Betty told Fred PAV1

(3) John told Mary PAV2

Figure 1 Encoding of an embedded structure within a RAAM.

First, "Jim went home" is autoassociated on the RAAM's input/output layers.
The resulting pattern of activation (PAV1) in the hidden layer is then placed in

400 CHAPTER 12

the input/output banks representing the MESSAGE role. Then "Betty told Fred
PAV1" is autoassociated. The resulting pattern over the hidden layer (PAV2) is
placed in the MESSAGE bank. Now "John told Mary PAV2" is autoassociated.
The resulting hidden-layer activation vector (PAV3) now encodes the entire
recursive structure. To retrieve this recursive structure, one can place PAV3 on
the hidden layer of the same RAAM and [JOHN TOLD MARY PAV2] will be
reconstructed on the 4 banks of the output layer. Now PAV2 can then be placed
over the hidden layer and [BETTY TOLD FRED PAV1] will be reconstructed
on the output layer. When PAV1 is placed over the hidden layer, the pattern
for [JIM WENT HOME NIL] will appear in the banks on the output layer.
So a RAAM can basically function as a stack thus can encode both simple
lists and trees into a fixed-width vector. For example, Miikkulainen (in press)
makes use of a RAAM to act as a stack in a distributed CN that learns to parse
embedded relative clauses.

If a long-term memory is added, to store these hidden-layer patterns (e.g.,
PAV1, PAV2), then autoassociative networks can be used to store graphs (i.e.,
recursive structures with cycles). For instance, Dyer et al. (1992) made use
of an architecture called DUAL, which consists of a 3-layer PDP network
(labelled STM) and an autoassociative encoder network (labelled LTM) whose
hidden layer is of the same length as the input/output layers of the STM and
whose input/output layers are of a length equal to the number of weights in all
STM layers. DUAL has been used to encode a simple semantic network (i.e.,
a graph of nodes and labelled links, with cycles). For instance, each node is
defined as a number of labelled-arc-to-node pairs:

JOHN: -LOVES—• MARY
-GENDER—• MALE
- J O B — PROFESSOR

The STM's weights are set (via backpropagation learning) to associate roles
with values (e.g., LOVES on input layer and MARY on the output layer).
After learning, all of the weights in the STM network are then passed as a
single, (larger dimensional) vector of activation values (call it V-JOHN) to the
input and output layers of LTM, which is taught to autoassociate it. Thus, LTM
stores entire STM networks. To retrieve the V-JOHN STM weights, one places
V-JOHN on the LTM's hidden layer. The resulting weights (on LTM's output
layer) can then be used to reset the weights of the STM. To retrieve any piece
of information about JOHN, we now place the appropriate role representation
(e.g., JOB) on the STM input layer and its value (e.g., PROFESSOR) will

Connectionist Natural Language Processing: A Status Report 401

appear on the output layer. Now, consider the encoding of cycles. Suppose
that MARY has the following arcs:

MARY: -LOVES—• JOHN
-GENDER— FEMALE
-JOB—• DEAN

Here we have a cycle because both [JOHN -LOVES—• MARY] and [MARY -
LOVES—• JOHN]. To train STM to encode MARY, we train STM to associate
MARY's roles with the appropriate values. For instance, we place LOVES on
the STM input layer and V-JOHN on the STM output layer. After training,
the resulting STM weights (call it V-MARY) now encode all information
about MARY. However, when the JOHN network was encoded, we did not
have V-MARY as the representation for MARY (we had just whatever initial,
arbitrary representation had been selected to represent MARY). So now we
have to retrain the JOHN STM network to properly associate LOVES with
V-MARY. This encoding cycle will alter the STM weights (that encode all
properties for JOHN), resulting in a new set of weights (call this vector of
weights V-JOHN 1). As a result, the encoding for MARY must be altered
(since MARY now -LOVES—• V-JOHN1, not V-JOHN). MARY is also now
better represented by a new vector (call it V-MARY 1), and so on. Over time,
the network will find an encoding of both JOHN and MARY as their distributed
representations are recirculated through the DUAL architecture. If two nodes
Nl and N2 have similar arc/node associations, then Nl and N2 will end up
being represented by vectors that are very similar. This similarity aids in
generalization. For instance, if a country CI has n properties (where, say, one
property is [CI: -PRODUCES—> RICE] and country C2 has n-1 properties
that are the same as those of CI (but it is not known whether or not C2 produces
rice) then the similarity of the vectors formed for CI and C2 will cause DUAL
to conclude that C2 also produces rice.

5 FORMING LEXICAL MEMORIES

Natural language processing requires a lexical memory. In symbolic systems,
each word is encoded as a symbol (e.g., in ASCII) that is mapped to some frame
like structure (Minsky, 1985) with attached rules. For example, in the BORIS
story understanding and question-answering system (Dyer, 1983), the word
"eats" is mapped to an INGEST frame with a number of rules (implemented as
test/action "demons"). For instance, one of the demons searches for a FOOD
frame following the INGEST frame and if found, the demon binds the FOOD

402 CHAPTER 12

frame to the OBJECT role of the INGEST frame. Another demon searches for
an animate agent preceding the INGESTS frame and binds it to the ACTOR
role, and so on.

In such a system, the internal (ASCII) representation for the word "eats" is
arbitrary and static. In localist CNs, the node for "eats" is also static and its
connections (to other nodes representing words or frames) are specified by the
knowledge engineer. In contrast, in some recent distributed CN architectures,
methods have been developed to automatically form distributed representa
tions (i.e., activation vectors) for lexical entries. The most interesting and
useful result of these methods is that words with similar semantics end up pos
sessing very similar representations (e.g., as result in the recirculation method
in DUAL) — thus supporting generalization to novel yet related natural lan
guage texts. For instance, if "pasta" ends up forming a similar representation
to "spaghetti" then a distributed connectionist network trained on "John ate
the spaghetti" will automatically tend to correctly process "John ate the pasta"
even if it has never been trained on this particular input.

Two methods have been developed for automatically forming lexical repre
sentations: Miikkulainen's FGREP method (Miikkulainen and Dyer, 1991;
Miikkulainen, 1993) and Lee's xRAAM method (Lee, 1991; Lee et al., 1990;
Lee and Dyer in press). In the FGREP method, one PDP network (call it Ml)
is trained to map words (represented as activation vectors) or word sequences
(if the network is recurrent) from banks in the input layer to banks in output
layer. For instance, "chicken" might map from the SUBJECT input bank to
the ACTOR output bank in "The chicken ate the worm." while it might map
from the DIECT-OBJECT input bank to the RECIPIENT output bank in "The
man ate the chicken." While the weights in the M network are updated (via
backpropagation) to learn the correct mapping, at the same time, the vector
(representing "chicken") is modified. This modification is accomplished by ex
tending backpropagation learning over a set of weights representing "chicken"
in a lexical memory. All other weights (representing other words) in the lexicon
are not modified. As a result, the representation of any word W will become
altered as the network M is trained to map a word W from its input to output
layers. A single lexicon can then be linked to multiple PDP networks. As each
network learns to map words from the lexicon, those words will be altered and
their altered weight vectors are stored back into the lexicon. Thus, as each
network as trained on lexical data, the representations of the training data are
themselves undergoing alteration. Figure 2 illustrates the FGREP process on
a recurrent network.

Connectionist Natural Language Processing: A Status Report 403

>W1

^ W 2 | LEXICON

Recurrent Layer

Olltpilt
W2

ACT ACTOR etc.

Figure 2 FGREP process. Word representations are taken from the
lexicon and used to train the input/output layers of a recurrent network.
During learning, backpropagation is extended back into just that section
of the lexicon that represents the current input word and just its weights
are updated at that point. The altered representations in the lexicon can
also be used to train other networks, which will cause these words to again
undergo modification.

Interestingly, convergence to stable patterns does not take much longer than
training with static data. The reason is that the alterations in the representations
of the lexical data make the mapping tasks easier — i.e., for the networks
that are learning to map this data from their input to output layers. That
is, the network M has an easier learning task because the data being used is
being altered to support M's mapping task. Using FGREP and ID+Content
vectors, Miikkulainen and Dyer (1991) designed DISPAR, a story paraphrasing
system consisting of 4 SRN modules and a lexical memory. Each module
performs a distinct task: (a) mapping a sequence of words to a case-role event
representation, (b) mapping a sequence of events to a script representation,
(c) mapping a script back to an event sequence, and (d) mapping an event
to a sequence of words. During training, each module is trained with word
representations taken from the lexicon and modified via the FGREP method.
During performance, DISPAR is given, as input, a script-based story fragment
and generates, as output, a complete story — i.e., with all intervening actions
and roles instantiated.

In the xRAAM method (Lee, 1991; Lee et al., 1990; Dyer and Lee, in press), a
distributed representation of each word is formed by encoding all propositional

404 CHAPTER 12

information in which the word is involved. An xRAAM network is a RAAM
augmented with a lexical memory. Consider the word "milk." This word
might be represented in terms of the following (simplified) propositions:

[MILK IS WHITE]
[MILK PRODUCED-BY COWS]
[MILK CONTAINED-IN CARTONS] .. .

As each proposition is autoassociated within a RAAM (as described earlier), a
pattern of activation is formed on the hidden layer. The final pattern formed is
taken to be the representation of the word/symbol being encoded (in this case,
MILK). By cycling back through the RAAM, this propositional information
can be extracted (as described earlier for autoassociative networks). This
distributed representation (i.e., as an activation vector) is stored in a separate
lexicon. The representations for other words are formed in the same way. For
example, COW will be involved in the following propositions:

[COW PRODUCES MILK]
[COW EATS GRASS]
[COW HAS FOUR-LEGS] ...

After COW is encoded in a RAAM and its lexical representation has been
formed, we must then go back and re-encode MILK (because when [MILK
PRODUCED-BY COWS] was encoded into the RAAM, the representation for
COWS was different). Thus, the encoding process involves a recirculation of
all words (as in the DUAL and FGREP methods) in which the fact that there are
changing lexical representations cause other modules to have to be retrained
on these new lexical representations (Dyer, 1990). Lee terms the resulting
representations Distributed Semantic Representations (DSRs) because: (a)
they are distributed patterns that can be passed to a variety of CNs, (b) they
encode the propositional content of the words and this content can be extracted
by different modules (who were not necessarily involved in the learning of
the word's representation), and (c) this "symbol recirculation'' process (Dyer,
1990) results in DSRs with similar meaning having similar vectors (as with
the FGREP and DUAL methods). Using DSRs, Lee designed the DYNASTY
system (Lee, 1991; Dyer and Lee in press) — a multi-modular system of PDP
networks, SRNs, and xRAAMs — which takes simple goal/plan-based stories
as input and generates, as output, a chain of inferred goals, plans and/or sub-
goal preconditions as an explanation for actions taken by the main narrative
character.

Connectionist Natural Language Processing: A Status Report 405

6 FORMING SEMANTIC AND EPISODIC MEMORIES

Episodic memory (Tulving, 1972) consists of personal episodes or events and
is distinct from semantic memory, which consists of general world knowledge.
In symbolic systems, both semantic and episodic memories are built out of
symbols. The knowledge engineer selects the basic set of symbols to use.
Episodic memory then consists of instantiations of semantic memory symbols.
For instance, semantic memory in the BORIS system (Dyer 1983) contained an
INGEST structure in semantic memory. Specific INGEST instances were in
dexed in episodic memory as the result of reading a story involving a particular
character eating a particular food at some particular location or time.

In localist CNs, semantic memory consists of a connected network of nodes,
also specified by the knowledge engineer. The formation of episodic memories
is problematic in localist CNs because any dynamically-created instance is
represented by semantic nodes momentarily containing signature (or phase-
locked) activation. This activation must be cleared from the network before
the next sentence is read. But then how are any event instances to be stored
away for long-term retrieval? One way is to simply created new nodes and
links, but as we have seen, this approach violates a connectionist paradigm
constraint. Thus, any localist CN theory of episodic memory will require a
theory of how to "recruit" preexisting nodes and connections to form new,
long-term memories.

In distributed CNs, the formation of semantic memories is straightforward.
Semantic memory is represented in the weights of the network. These weights
undergo modified (e.g., via backpropagation) to reflect statistical features inher
ent in the training data. However, the storage and retrieval of specific episodes
is problematic because events are laid on top of one another in a distributed
connectionist network (since the same network performs multiple mappings).
This approach supports generalization but makes the retrieval of individual
events difficult. To date, the most successful approach to modeling episodic
memory has been to make use of extensions of Kohonen self-organizing fea
ture maps (Kohonen, 1988). A feature map consist of a 2-dimensional plane
of units, with each unit receiving, in parallel, the same n-dimension vector
as input along its weights. The most active unit on the map then causes its
neighboring units to modify their weight vectors so that, in the future, they
will respond more to that input. The result of this form of learning is that
similar inputs will tend to activate contiguous regions. Thus, a Kohonen fea
ture map clusters or self-organizes the input data in a 2-D space without the
need for explicit training (as in backpropagation). Feature maps have several

406 C H A P T E R 12

nice properties, including: (a) Similar events will be stored in similar regions,
thus supporting generalization, (b) Distinct vectors will be mapped to different
regions and thus be retrieved without interference from other memories. In
general, humans recall very distinct actions/objects more easily also, (c) Re
cent memories get laid on top of other and thus are more memorable. Humans
also demonstrate this kind of recency effect.

The DISCERN system (Miikkulainen, 1993) is an extension to DISPAR that
includes a question-answering module that learns to retrieve unique events
from an episodic memory. The episodic memory consists of Kohonen features
maps that are organized into a 3-level hierarchy. At the top level, different
scripts are self-organized on the map (e.g., restaurant vs. travel vs. shopping).
At the middle level are maps that self-organize distinct tracks within a given
scripts (e.g., for restaurants, the tracks are fastfood vs. cafeteria vs. snazzy
restaurant, etc.). At the bottom level are the unique bindings (e.g., within
the fastfood track of the restaurant script, the diner was Joe and the food was
steak). Hierarchical maps were employed to speed up learning because, in
Miikkulainen's task domain, the data itself is hierarchical. Another extension
Miikkulainen made was to alter feature maps so that they could store bindings.
Standard Kohonen maps simply categorize their data. Miikkulainen altered
the bottom level feature maps so that role bindings are encoded in the lateral
connections (i.e., between nearby units on the map).

How does this approach compare to that use in symbolic systems? Kolodner
(1984) developed a symbolic, computational model of human episodic mem
ory. Her system, CYRUS, modeled aspects of the episodic memory of Cyrus
Vance (when he was Secretary of State). CYRUS contained episodes described
in the press, e.g., trips to foreign countries, summit meetings, treaty negoti
ations, etc. Unlike hierarchical Kohonen maps, which have a fixed-size per
map and hierarchical depth, Kolodner's memories consisted of multi-indexed
symbolic structures of arbitrary depth. However, Kohonen maps have the
ability to encode finer regions within areas of the same map, and so can encode
hierarchical structure.

Kolodner also modeled a complex set of heuristics for generating retrieval cues
automatically — i.e., to search memory in those cases in which indices did not
exist directly. For example, CYRUS did not have an index of wives-meeting-
wives, yet it could still recall times that Vance's wife met Menachim Begin's
wife, by generating possible retrieval cues (e.g., trips to Israel in which wives
are taken along and embassy parties). No such meta-level knowledge (i.e., of
how memory is indexed) yet exists or is employed in connectionist models.
However, this lack is probably more due to the youth of the connectionist NLP

Connectionist Natural Language Processing: A Status Report 407

field, which only began to develop in the late 1980s. To my knowledge, Mi-
ikkulainen's model is the first to even attempt to model episodic memory. The
advantage of the connectionist approach is that the resulting memory exhibits
well-known connectionist features, namely, it is robust to noise/damage and
provides parallel, associative retrieval from subsymbolic cues.

7 ROLE OF WORKING MEMORY

In addition to lexical, semantic and episodic memories, there is a need for a lim
ited capacity but rapid memory — in which intermediate structures can be built
and manipulated. For example, in Touretzky and Hinton's (1988) distributed
connectionist production system (DCPS), a coarse-coded (Rumelhart and Mc
Clelland, 1986) working memory is used to store sets of triples. Production
rules are then "matched'' (via spreading activation) to determine which rule
to fire next. In Barnden's connectionist implementation of Johnson-Laird's
model of syllogistic reasoning (Barnden 1991; in press; Barnden and Srinivas,
1991; Johnson-Laird, 1983) a central component is a connectionist working
memory (termed Conposit) in which instances of predicates (representing ob
jects, events, etc.) can be rapidly represented and bound to one another. The
method, by which this rapid binding is performed, is unique. Barnden employs
a unique approach to representing transient bindings, termed relative-position
encoding. Conposit's working memory consists of a 2-dimensional matrix
where each cell in the matrix consists of a complex subnetwork capable of a
number of operations. One of these operations is to notice configurations of
activation patterns in neighboring cells. Such operations allow symbols (rep
resented as activation patterns within a given cell) to be bound simply by being
placed in any one of the 8 contiguous cells surrounding a given cell. This 8-cell
region places an upper limit on the number of symbols that can be bound into a
single structure, so Barnden employs an additional binding mechanism, termed
Pattern Similarity Association. Namely, structures are bound to one another if
they share the same symbols. Each cell of the matrix is quite complex and can
perform numerous operations. Barnden argues that such complexity is needed
to model human syllogistic reasoning.

Another situation requiring working memory is in the dynamic Unking of
recursive structures. For example, in efficiently parsing embedded relative
clauses, Miikkulainen (this volume) employs a RAAM to act as stack, in order
to push/pop clauses appropriately as they are parsed into case-role vectors.

408 C H A P T E R 12

8 R O U T I N G AND C O N T R O L

Both localist and multi-module distributed CNs require methods for controlling
the sequencing of operations and for routing information among different
modules. Localist networks must control along what pathways signatures are
to travel. For example, in the ROBIN system (Lange and Dyer, 1989; Lange,
1994), there are nodes whose connections act to control or gate connections
between other nodes. If ROBIN receives "John inhaled the pot" as input
then activation will not spread at all to the FLOWER-POT meaning of "pot,"
because gating nodes will only let through signatures within a given set (i.e.,
in this case, different types of gases). Thus, gating acts to greatly reduce
the amount of spreading activation that occurs and to impose syntactic and
semantic restrictions on inference propagation.

In most distributed CNs, control processes are specified procedurally. For
example, in DISCERN all routing of patterns between modules, and control of
when modules execute (during both learning and performance), are specified
by designer-specified procedures.

Miikkulainen (1994), however, has shown how control can be learned automat
ically. His SPEC model, designed to parse embedded relative clauses, contains
3 modules: (a) a SRN which takes as input an sentence with embedded clauses,
(b) a RAAM (which acts a stack) and (c) a three-layer PDP network, termed
the Segmenter. It is the job of the Segmenter to determine when to push or
pop the stack, based on the current state of the parse (i.e., due to encountering
clause boundaries for right branching vs. left branching vs center embedded
clauses). Miikkulainen's work shows that distributed connectionist architec
tures can be trained to control their operations instead of having to employ a
top-level, non-connectionist procedure.

With respect to all CNs, one can imagine a "granularity spectrum." At one
end of the spectrum are purely localist CNs, with potentially many thou
sands/millions of nodes, each representing an individual type or instance. Here
each single node acts as a module; the grain size is very small and the number
of modules is extremely large. At the other extreme of the granularity spectrum
lies, say, a single SRN, where each layer consists of an extremely wide vector.
Here the granularity is very coarse, with only 1 module (consisting of 3 layers
with one set of recurrent connections). The problems with the localist extreme
are: (a) a combinatorial explosion of nodes are needed to represent world
knowledge — e.g., the problem of representing all possible visual angles and
other information concerning one's grandmother via separate "grandmother

Connectionist Natural Language Processing: A Status Report 409

neurons" (Feldman, 1989), (b) the difficulty of incorporating learning, and (c)
the recruitment of neurons/connections in forming long-term memories dy
namically. The problems with the other extreme (i.e., single SRN) are: (a)
learning to set the weights (especially when performing complex task involv
ing language and higher-level reasoning) will take an impossibly long time,
and (b) all brains exhibit a lot of specialization of circuitry and modularization
(even if the modules are heavily overlapping). Miikkulainen and Dyer (1990)
have shown that breaking up the the story paraphrase task into 4 modules (each
independently trained yet communicating via a common lexicon) dramatically
reduces the overall training time. This approach is an obvious — i.e., one
of divide and conquer. But the DISPAR and DISCERN modules still lie very
much near the single module extreme of the spectrum, since they contain under
a dozen, relative large modules. Can we imagine architectures with modules
that are finer than those in DISCERN, perhaps hundreds or a few thousand, but
far fewer than those at the localist extreme? This level of granularity would
correspond more to how the brain appears to be organized.

The DCAIN system (Sumida, 1991; Sumida and Dyer, 1989,1992) lies within
this region of die spectrum. It is a distributed CN which consists of (potentially
many hundreds of) ensembles of units. The global organization between
ensembles is like that of a semantic network. Thus, these networks are termed
Parallel Distributed Semantic (PDS) networks. Each ensemble is connected to
other ensembles via multiple adaptive connections which are themselves under
the control of learnable routing ensembles, termed propagation filters (Figure
3).

selector

G^Z)
(AVVi) - ^ (o o • •)

sourcel V f l] t e r l

6^£ • o •
soured filter2 destination!

Figure 3 Propagation filter arrangement. A pattern (jagged lines) over
the selector ensemble causes one filter ensemble to go above threshold and
allows routing of a pattern from sourcel to destinationl while blocking
the propagation of other patterns. Arrows represent full connectivity.

410 CHAPTER 12

A propagation filter consists of a selector ensemble of units and a filter ensem
ble. When a particular pattern of activation occurs over the selector ensemble,
every unit in the filter group is driven above threshold, which allows an acti
vation vector to be routed (over multiple connections) from a source ensemble
to a given destination ensemble.

In DCAIN, each distinct type of semantic or syntactic information is repre
sented as an ensemble of connectionist units. Each ensemble is connected
to other ensembles based on semantic/syntactic relations between types. For
example, the predicates BUYS and OWN and their roles would be represented
each as a distinct ensemble. To represent the implication that [x BUYS y —•
x OWNS y], the roles of the BUYS ensemble are connected to the appropriate
roles of the OWNS ensemble. Thus, at the ensemble level, PDS networks
share organizational principles with localist networks. However, there are no
separate instance nodes. Instead, each instance of a type (e.g., BUYS1 — say,
that John bought a TV from Sears) is represented as a particular pattern of ac
tivation that occurs within the BUYS ensemble. Thus, an exponential number
of instances can be stored and the problem of node recruitment (at least for
representing instances) does not arise. The relationship between a predicate
ensemble and its role ensembles is similar to that of an autoassociative encoder
network. That is, there are connections from role ensembles to the predicate
ensemble and back and these connections are dynamically modified (during
learning) so that the activation pattern over the predicate ensemble will cause
the reconstruction of the correct role ensembles and vice versa. For example,
if the pattern for BUYS1 is placed in the BUYS ensemble, then that pattern
will cause the role ensembles to reconstruct (via pattern completion) die fol
lowing values: BUYER = John and FROM = Sears. Thus, unlike localist
CNs (which have relationships between role values and predicate instances
specified by hand), PDS networks learn this relationship. Also, PDS networks
can store more than one type within a given ensemble. For instance, BUYS
could be a pattern of activation over an ensemble designated to be an ACT
ensemble, while OWNS might be a pattern of activation over a more general
STATE ensemble. Thus, the ACT ensemble might hold other actions (besides
buying) and the STATE ensemble might hold other states (besides the OWN
state). Syntactic categories (e.g., SUBJECT, DIRECT-OBJECT) are also rep
resented as ensembles and a parsing analysis that, say, John is the subject of
a sentence, is represented by propagating the John pattern of activation to the
SUBJECT ensemble. Relationships among syntactic and semantic pieces of
knowledge are represented in terms of propagation filters, which determine
how patterns are propagated among ensembles. Figure 4 illustrates syntac
tic/semantic analysis of simple sentence, i.e., of the form [SUBJECT, VERB,
D-OBJECT]).

Connectionist Natural Language Processing: A Status Report 411

Notice that, in Figure 4, the pattern for "boy" controls its own routing, i.e.,
causing it to be routed to the humans ensemble (vs. the animals ensemble).
The pattern in the humans ensemble can only be routed to the subj ensemble
after the correct kind of noun-phrase pattern has arrived in the NP ensemble.
The correct pattern in the NP ensemble will cause patterns for "the" and "boy"
to be reconstructed in the DET and N ensembles. The correct pattern in the
Basic-S ensemble will cause its appropriate roles (in this case, subj = boy, verb
= hit, dir-obj = dog) to be reconstructed in its role ensembles. When "the cat"
is input, existing patterns over the NP and verb ensembles will cause "cat" to
be routed to dir-obj (vs. to subj). This part of the analysis is not shown in
the figure. Note that each predicate/roles encoder network and selector/filter
group is trained to perform its reconstruction (or routing) task.

VDFT J (N,)

at) (3_
the boy

Figure 4 A fragment of a simplified PDS network showing some of the
interaction between syntactic and semantic elements when parsing the
phrase "the boy" from the sentence "The boy hit the cat." Propagation
filters are small circles with black color indicating filters that allow allow
patterns to be propagated. Two-way arrows between predicate and role
ensembles (ovals) represent autoassociative encoder networks, with a
predicate serving as a hidden layer and the roles serving as both input and
output layers (i.e., the output layer is "folded" back onto the input layer).
Dotted lines are from ensembles (that act as selectors) to filters.

The word "hit" has different interpretations, depending on context. For ex
ample, it can mean to perform music, as in "The boy hit the note." Figure 5

412 CHAPTER 12

shows how filters propagate role bindings, based on the context within which
"hit" appears.

perform-music basic-s hit

Figure 5 Pattern-based routing to perform word disambiguation. The
pattern for boy-hit-cat appearing over the basic-s ensemble causes a filter
to open and propagate the subject of the sentence to the actor role of the
hit ensemble.

PDS networks retain many of the advantages of both localist and distributed
CNs. Training PDS networks is more rapid than training distributed CN ar
chitectures with just one (or a few) modules because each PDS subnetwork is
small and can be trained independently. In general, more modules of smaller
size will result in faster overall training when implemented over a parallel ar
chitecture. Since there are many modules in separate locations, it is possible to
pursue in parallel many distinct inference paths at the knowledge level. Novel
instances can be created dynamically by forming new patterns over existing
ensembles. Since role ensembles are connected to predicate (type) ensembles
in the manner of encoder networks, they have the ability to perform pattern
completion (i.e., roles reconstructing its predicate instance or a predicate in
stance reconstructing its roles) and to generalize to related patterns. As a
result of pattern completion, PDS networks can propagate structured bindings
— i.e., a pattern laid over a type ensemble will cause the reconstruction of
all of its role bindings in the associated role ensembles. These role patterns
can then be routed to other predicate ensembles, thus causing their roles to be
reconstructed, and so. If there is only one ensemble for a given predicate then
only one instance (e.g., only TELL1 or TELL2, but not both) can be active
at a time. However, it is possible to sequence through these instances over
time (e.g., first filling the N ensemble with "boy" and then later with "cat" in
"The boy hit the cat"). This sequencing is controlled by propagation filters.
Finally, because predicate/role ensemble groups are trained via example to act
as encoder networks, they extract statistical regularities from the training data.
Their distributed representations also allow them to exhibit robustness in the
face of noise and/or damage because the loss of a unit within an ensemble will
only degrade its performance, not destroy it. In addition, PDS networks reside

Connectionist Natural Language Processing: A Status Report 413

in a region of the "granularity spectrum" that is closer to that of the brain (i.e.,
than either purely localist or distributed CNs with just a few modules).

9 GROUNDING LANGUAGE IN PERCEPTION

Although language relies on (and manipulates) highly abstract concepts and
other forms of knowledge> it appears to be the case that children acquire early
language semantics by associating verbal utterances (e.g., from adult care
givers) with ongoing sensory/motor experiences. Consider (one meaning of)
the word "passing." After the child has learned simple objects by verbal/visual
association (e.g., "ball," "car," "dog") the child can begin to learn the meaning
of "passes" (e.g., as in "the car passes the dog") by simultaneously observing
a car moving along, coming up from behind the running dog and then outstrip
ping the dog, with both moving in the same direction. At the same time the
child hears the phrase "car passes dog" (or, in the case of deaf children, receives
a gestural sequence as visual input). By watching different size/shape/color
objects catch up to and pass one another, the child can begin to form a percep
tually based representation of the word "passes." It is unclear what a candidate
symbolic representation would be. More likely, a major part of the meaning of
"passes" consists of a generalized spatio-temporal visual experience. This per
ceptually based representation can then serve as a foundation for more abstract
representations (such as "passes" later meaning that one becomes superior to
someone else in a given cognitive skill, like playing chess, or that one "passes"
an exam, etc.).

The task of mapping the abstract symbols of language to/from perceptual/motor
experience has been called variously, the "symbol grounding task" (Harnad,
1990), "L0 language acquisition task" (Feldman et al., 1990) or "perceptually
grounded language learning task" (Nenov, 1991; Dyer and Nenov, 1993). This
task has been addressed by several connectionist researchers.

Regier (1992) developed a connectionist network that learns the meanings of
phrases by associating them with two simple objects (where one is a stationary
landmark and the other is moving relative to it in a 2-D microworld). This
research is part of the L0 Project led by Feldman (Feldman et al., 1990) at
the International Computer Science Institute at Berkeley, CA. The long-term
goal of the L0 Project is to acquire language via association with perception.
The architecture is designed to extract object features (e.g., center of mass and
major axis orientation) and spatial features (e.g., concerning the relative angle,

414 CHAPTER 12

orientation, and distance of the moving object with respect to the landmark).
These spatial features are extracted by non-neural, procedural modules. The
resulting representations consist of both feature vectors and 2D feature maps.
The feature maps are trained to produce, on the output layer, descriptions
of the motion sequences. The learning method is a variant of backpropaga-
tion learning, in which every positive instance (during training) for a given
spatial concept constitutes weak, implicit negative evidence for all other spa
tial relationships being learned. Regier argues that this modification allows
the system to learn from positive examples only. He points out that in the
child acquisition data, children acquire language apparently without the ben
efit of negative evidence (Pinker, 1989). Regier's system consists of distinct
and independent modules, each with a different connectivity arrangement and
learning/activation parameters.

The DETE system (Dyer and Nenov, 1993; Nenov and Dyer in press-a, b, c)
also learns the meanings of word sequences via association with simple moving
objects. The DETE system's microworld (called Blobs World) consists of a
simulated (64x64 "pixels") visual screen (VS) of up to five 2-D, homogeneous,
mono-colored (and possibly noisy) "blobs" of various shapes (e.g., rectangular,
circular, triangular). During learning, DETE receives also a simulated verbal
sequence describing the visual sequence. Motor sequences may also be input,
which tell DETE how to move and/or zoom in/out its single EYE. DETE also
has a FINGER which can be made to touch or push blobs. After learning, DETE
performs two tasks: (a) Verbal-to-visual/motor association — given a verbal
sequence, DETE generates the visual/motor sequence being described, (b)
Visual/motor-to-verbal association — given a visual/motor sequence, DETE
generates a verbal description of it.

The current version of DETE is a massively parallel model that consists of over
1 million virtual processors, executing on a 16K processor CM-2 Connection
Machine. Interface modules (i.e., that map simulated visual/verbal input to
learning/memory subsystems) are parallel, array-processing (non-neural) pro
cedures, while internal processing/memory modules themselves are modeled
as highly structured neural networks modules (termed katamic memory) with
each composed of novel neural elements.

Like a child, DETE must be taught incrementally. In a series of learning
experiments DETE was first taught the names of blobs by being given scenes of
blobs with a single shape, but with varying colors, sizes, locations and motions.
As a result, DETE extracts what is invariant (i.e., shape) and forms the strongest
associations between verbal input (e.g., "circle") and its internal representations
for size, shape, etc. DETE next learned the meanings of words for color, size

Connectionist Natural Language Processing: A Status Report 415

and location with respect to center of the VS (e.g., "above," "right," "in-
center," "far," etc.). DETE then learned single words for actions/events. Such
words include: "moves," "accelerates," "turns," "bounces," and "shrinks" (i.e.,
change in blob size). Once these words were learned, DETE was tested by
presenting it with verbal input only, and DETE indicates its comprehension by
generating internal representations of this visual behavior. DETE's syntactic
ability is currently limited to extracting word preference order (e.g., that size
terms come before color terms) and the most complex sentences it has learned
are of the sort: "big red ball moves diagonally down ... bounces .. . moves
diagonally up."

In DETE all visual/motor input is mapped (by non-neural interface routines)
to regions of active neurons over a set of Feature Planes (FPs). The 5 visual
FPs are: Shape (SEP), Size (ZFP), Color (CEP), Location (LFP) and Motion
(MFP). Each FP is composed of a 2-D array of 16 x 16 (256) neurons. Different
active regions within a Feature Plane represent different values for that feature.
An active neuron is one that oscillates, i.e., it fires periodically (with output
1) and is silent the rest of the time (with output 0). FPs have either a raster-
linear or topographic layout. For instance, the LFP and MFP have topographic
layouts. If a blob is in the lower right corner of the VS, then its position will
be represented by a region of active neurons in the lower right corner of the
LFP. On the MFP, the speed of a blob is represented by distance from the
center, with stationary objects at the center and more rapidly moving objects
toward the periphery. There are also FPs for FINGER and EYE dynamics.
Figure 6 shows a (simplified) sequence of images on the VS, along with the
visual representations that are produced (by array processing procedures) over
a subset of the Feature Planes.

DETE makes use of phase locking to handle the "feature binding problem."
For example, if both a big-region and small-region of the size FP are active
and also both a square-region and circular-region of the shape FP, then how is
DETE to distinguish whether what is being represented is: (a) a small circle and
a large square or (b) a small square and large circle? DETE solves this feature-
binding problem by breaking down its basic processing cycle into phases and
assigning a distinct phase to each blob. Thus, if it is a small circle and large
square that is on the VS, the active small-region and active circular-region
will both be firing with the same phase. This phase difference is represented
pictorially in Figure 6 as distinct textures (with active regions for the same
blob containing the same texture across all FPs). Whenever DETE looks at a
given blob with its EYE, it assigns to the EYE the same phase as that blob.
This temporally based binding of attention makes sure that DETE only learns
to associate verbal sequences with visual sequences of those blobs to which it

416 CHAPTER 12

Visual Screen (VS)

m

L- _J L_ A L

" ^

-J

y

IT
i

A

LFP

MFP

ZFP

SFP

E l

• E

1 •

L^L

| •

•

•

q,8

as

•

E3

•

•

• 1

•

• H l
•

time

Figure 6 Visual Screen (VS) and Location (LFP), Motion (MFP), Size
(ZFP) and Shape (SFP) Feature Planes (color, FINGER and EYE FPs are
not shown here). Three blobs are moving on the VS. The oval blob is
moving left; the square blob is growing and the triangular blob is moving
diagonally upward toward the right. As blobs move/change on the VS,
their active regions on the FPs are updated. Similar texture of active
regions (small squares) indicates that these regions are firing in phase.

Connectionist Natural Language Processing: A Status Report All

is attending. The use of multiple objects requires DETE to address the issue
of attention. In contrast, Regier's model only contains 1 moving object, so it
does not need to face this feature binding problem.

Feature Planes (FPs) are used as representational constructs for three rea
sons: (1) Neuropsychological and Neurophysiological Support: FPs corre
spond roughly to known neurophysiological and neuropsychological studies
(Kandel, 1985) indicating both topographic mappings and that shape, posi
tion, etc. are processed in different regions of the brain and then reintegrated.
(2) Spatial Representational Analog: Topographic layouts supply simplified,
yet direct analogs for spatial features, and thus make representing space and
motion easier. For example, a word like "up" can be represented by activity
anywhere in the upper area of the Location Feature Plane. A word like "moves"
be represented by activity anywhere away from the center of the MFP while
directions of motion termed "diagonal" can be represented simply by activity
anywhere in the diagonal regions of the MFP. FPs also support smooth gener
alization. If an object near the center of the MFP is moving slowly then objects
mapped near to it will tend to be moving at about the same speed/direction. (3)
Combinatorial Learning and Generalization Capability: Blob relationships
and motions can be represented as a pattern of activity distributed over all FPs
as they change sequentially in time. For example, the word "accelerate" can
be represented and learned as a sequence of changing active regions, moving
from the MFP's center toward its periphery. The use of separate/independent
FPs also supports immediate generalization to novel combinations of known
words. For instance, colors are mapped to one feature plane (i.e., CFP) while
shapes are mapped to another (i.e., the SFP). As a result, once DETE has
learned color terms and shapes (each separately), it can immediately under
stand novel combinations of these (e.g., "green ball," "green box," "red ball,"
etc.) — i.e., by activating an appropriate region of each distinct Feature Plane.

Each pattern sequence (i.e., of multiple active, changing regions over a given 2-
D Feature Plane) is fed as input to a corresponding Feature Memory (FM). Each
FM consists of a katamic memory composted of a 2-D array of novel neural
elements, termed predictions and recognitions. Predictions learn to predict
the next input and recognitions sample their neighbors' outputs. For each
cell of a given Feature Plane there is a corresponding prediction/recognition
within the associated Feature Memory. Each prediction contains a linear
sequence of dendritic compartments (DCs) in which information is propagated,
in a pipeline fashion, toward the body (soma) of the prediction. Thus, each
prediction acts as a temporal delay line. This shifting property is somewhat
analogous to that of Time-Delay Neural Networks (TDNNs) (Waibel, 1989). In
addition, each prediction samples information spatially (i.e., from neighboring

418 C H A P T E R 12

predictrons) and temporally (i.e., from earlier stages in the pipeline of DCs of
other predictrons). Katamic memory has both novel processing and learning
capabilities. Figure 7 shows a simplified picture of katamic memory.

Experiments on katamic memory, reported in (Nenov, 1991; Nenov and Dyer
in press-a, c), show that it has the following very useful properties: (1) Rapid
learning: On average, only 4-6 exposures to a pattern sequence are sufficient
for learning a novel sequence. This is 3-4 orders of magnitude improvement
over recurrent PDP networks (Elman, 1990). (2) Flexible memory capacity:
Multiple sequences of different lengths can be stored and the model is easily
scalable to larger input patterns and/or sequences of greater length. (3) Se
quence completion!recall: A short sequence (i.e., cue) is sufficient to discrimi
nate and retrieve a previously recorded sequence. (4) Fault and noise tolerance:
Missing bits can be tolerated and the memory can interpolate/extrapolate from
existing data. {5) Integrated learning and performance: The katamic memory
predictron can switch automatically from learning mode to performance mode.
Thus, a katamic module can switch from learning to performance on a bit-by-
bit and/or pattern-by-pattern basis. Also, whenever each predictron learns it
uses positive evidence as a weak negative evidence for all other patterns. This
allows DETE to learn, like Regier's model, from positive examples only.

10 F U T U R E D I R E C T I O N S

The Regier and DETE systems are only first steps in grounding language
learning in perceptual/motor experiences. Future directions in the area of
representing perceptual experiences include: (a) extending the representations
to 3-D objects, (b) representing composite objects with multiple motions —
e.g., a set of hinged blobs could represent a boy versus a dog, or the more
complex actions of eating (e.g., by movements of the lips with a shrinking
blob in front of them) and (c) representing abstract concepts. At this point,
no matter how much DETE sees one blob, say, attached to another, it will not
really be learning the abstract concept of OWNERSHIP (since it is just seeing
physical attachment). Almost by definition, abstractions are never observed
directly and appear to have some innate basis in human brains (otherwise
animals could learn such concepts as RESPONSIBILTY simply by observing
irresponsible actions). Thus there is a need to build connectionist systems that
unite perceptually-based language learning with the existence of mental states,
such as plans, goals, themes and emotions (Dyer, 1983). At this point, only
symbolic systems, e.g., (Dyer, 1983; Wilensky, 1983), are able to manipulate

Connectionist Natural Language Processing: A Status Report 419

1 0 1
(input)

0 1 1
(output)

Figure 7 (Simplified) katamic memory, with only three predictrons (P),
Recognitions (R) and Bi-Stable Switches (BSS). Each BSS determines
whether a prediction's Dendritic Compartments (DCs) get their input from
the external environment or from internally generated outputs. Thus,
BSSs are used for controlling when DETE attempts to perform sequence
completion. Here, each prediction has only 4 DCs, illustrated as a train
of squares above each prediction. Information about the input at a given
region in a FP is shifted along the DCs in a pipeline fashion and is
decayed over time (arrows of different thickness within each DC). Each
recognition here has two of its own dendritic compartments (RDCs),
shown here as thin rectangles. These RDCs are used to sample the output
of both its associated prediction and its neighbors (sampling of only one
neighbor to-the-right shown here). Small vertical ovals indicate strength
of input (via shading) to a predictiones DC, arriving from neighboring
predictions predictions (via lateral lines). In DETE, a typical katamic
memory module will contain 256 predictions with 64 DCs per prediction.

420 C H A P T E R 12

such constructs and in such systems these constructs are engineered by hand.
The only distributed connectionist NLP system I am aware of that even attempts
a goal/plan analysis of narrative text is the DYNASTY system (Lee, 1991; Lee
and Dyer in press). DYNASTY'S goal/plan analysis capabilities are extremely
limited and one critical component (i.e., working memory) are implemented
via symbol manipulation.

In general, we need only look at recent symbolic NLP models to find a wide
variety of systems that exhibit different and important aspects of high-level rea
soning — aspects not yet achieved by any connectionist model. For instance,
the symbolic system OCCAM (Pazzani and Dyer, 1989; Pazzani, 1990) per
forms explanation-based learning (EBL) and thus can learn when given only
a single example. EBL is not yet possible in connectionist models and Paz
zani and Dyer (1987) have shown that backpropagation learning does concept
formation in a way different than people (who have already built up some
knowledge of the world). The symbolic story invention system MINSTREL
(Turner 1992) not only creates new characters and events whose plot satisfies
a theme, but it has both (a) analogical rules of invention, that map and adapt
events from one domain to another, and (b) procedures that examine the ap
propriateness of a chain of events that have been created by a given heuristic
rule. Within the connectionist paradigm, this chain-examination capability
might be like having one network "examine" how well (or poorly) activation
has spread along paths within another network. The symbolic system OpEd
(Alvarado, 1990; Alvarado et al., 1990a, b, c) reads a fragment of editorial
text and constructs an "argument graph" of beliefs (concerning the efficacy of
plans) that are linked by attack/support relationships. The argument graph is
then traversed to answer questions.

Barnden (1992a, b) points out the need for connectionist NLP systems that can
build explicit representations of rules, e.g., as when one is asked to read a rule
of the sort: "Any town that's been declared a disaster area [...] gets federal
aid." followed by "Rotville has been declared a disaster area." (Barnden,
1992b, p. 29). Barnden's point is that we cannot rely on connectionist systems
that just act as though they have rules (but without being able to access rules
explicitly); otherwise we would not be able to build the rule and apply it, "on
the fly," to conclude that Rotville will get disaster aid.

Another major direction for research is to understand how global CN struc
ture might self organize — e.g., either through evolution (Werner and Dyer,
1991) or developmental self-organization (Kohonen, 1988). Currently, the
connectionist knowledge engineer must, ahead of time, specify all of the major
modules and ensembles and specify their paths of intermodule connectivity.

Connectionist Natural Language Processing: A Status Report 421

In the case of a single SRN there is little global structure to engineer. Unfortu
nately, SRNs have not been able to learn to perform the kinds of tasks achieved
by CNs with multiple modules, such as DISCERN or DYNASTY. What the
global structure of a connectionist network should be and how it might come
about automatically is largely an open research issue.

11 CONCLUSIONS

What general morals can we take away with us, as the result of this overview?
Here are a few: (a) There is no free lunch — clearly, complex knowledge-level
architectures are needed — i.e., the mere existence of connectionist techniques
is not going to eliminate the need for designing such architectures. General
learning of complex cognitive tasks without preexisting network structure will
always be intractable. Thus, some kind of "biasing" is required. NLP appears
to be as complex as vision processing, so the structures needed may be as
complex (or even more complex) as those in vision, (b) Time/space trade
offs will always exist — e.g., we see this with the trade-off between many
fine-grain modules and a few coarse-grain modules. In general, more modules
allow more pieces of knowledge to be manipulated in parallel. Architectures
with fewer modules are easier to train but take longer to do so and end up being
more sequential at the knowledge level, (c) Limited cognitive processing
is acceptable if it is psychologically plausible — e.g., limits on the depth
of a stack-like memory or on the number of identical predicates instances is
reasonable if humans exhibit difficulty in processing similar texts, (d) Classical
AI problems will remain for the foreseeable future — e.g., humans are able
to both construct and apply rules on the fly. (d) Solving the "perceptually
grounded language learning" problem will not, by itself, give us sophisticated
NLP connectionist systems — abstractions must also somehow be encoded
and/or acquired.

In spite of the difficulties facing connectionist NLP, it is still the case that
great strides have been made. In the 1970s, NLP researchers built symbolic
systems to read and answer questions about script-based stories. However,
these systems were completely engineered. They did not learn any of their
knowledge or processing skills. In the early 1990s, we see the arrival of,
for instance, the DISCERN system — that can read and answer (simple)
queries concerning restricted (i.e., single script) stories (Miikkulainen, 1993).
However, it is important to realize that DISCERN acquires every piece of
knowledge and every processing skill through learning — specifically, learning

422 CHAPTER 12

by example. DISCERN learns the meaning of words; it learns to parse word
sequences into vectors representing case-role information; it learns to generate
completed script event sequences; it learns to encode scriptal (and semantic
role) information in its modules' weights; it learns to generate word sequences
that describe events; it learns to parse questions and generate appropriate
retrievals and it forms episodic memories though a process of self-organization.
The only things that are engineered in DISCERN are: (a) the global form of
the modules, (b) how information is routed from module to module during
learning/performance, (c) the learning algorithm itself and (d) the set up and
presentation of the training data. It is clear that DISCERN represents quite an
accomplishment and has provided us with major insights into novel forms of
representation and processing.

At one extreme there are connectionist researchers who believe that connec-
tionist models will sweep away all forms of symbol manipulation (Churchland,
1986; Churchland and Sejnowski, 1989). At the other extreme are symboli
cally oriented researchers who claim that connectionism will never be more
than a "mere implementation" (Pinker and Mehler, 1988) and "all of the action"
is at the symbolic level. So far, the results are mixed. Connectionism has not
advanced enough to offer alternative to the conveniences of symbol processing
and thus attract away the majority of symbol pushers in traditional AI. If/when
this happens, then connectionist processing will become preferred (since it
offers a wide variety of nice features and potential links to brain research, etc.).
However, existence of connectionist technologies and theories are not going
to make knowledge representation, application of knowledge and reasoning
issues magically disappear. Hopefully, connectionist technology and theory
will continue developing and at some point the scales will tip in favor of con
nectionist implementations for all forms of high-level reasoning, but a need to
understand processing at the knowledge/symbolic level will remain.

ACKNOWLEDGEMENTS

I would like to thank some of my past and current graduate students (S.
Alvarado, C Dolan, T. Lange, G. Lee, R. Miikkulainen, V. Nenov, M. Pazzani,
R. Sumida, S. Turner, Y. Wang, and G. Werner) for their implementational
and research contributions to NLP areas discussed here — areas spanning
from symbolically based story invention to neurally and perceptually based
language learning.

Connectionist Natural Language Processing: A Status Report 423

REFERENCES

[1] Ajjanagadde, V. and Shastri, L. (1989). Efficient Inference with Multi-
Place Predicates and Variables in a Connectionist System. Proceedings of
the 11th Annual Conference of the Cognitive Science Society. LEA Press,
Hillsdale NJ. pp.396-403.

[2] Alvarado, S.J. (1990). Understanding Editorial Text. Kluwer, Norwell,
MA.

[3] Alvarado, S., Dyer, M.G. and M. Flowers. (1990a). Argument Represen
tation for Editorial Text. Knowledge-Based Systems, 3(2):87-107.

[4] Alvarado, S., Dyer, M.G. and M. Rowers. (1990b). Argument Com
prehension and Retrieval for Editorial Text. Knowledge-Based Systems,
3(3).

[5] Alvarado, S.J., Dyer, M. G. and M. Rowers. (1990c). Natural Language
Processing: Computer Comprehension of Editorial Text. In H. Adeli (Ed.),
Knowledge Engineering, Vol. 1, Fundamentals, pp. 286-344, McGraw-
Hill, NY.

[6] Barnden, J.A. (1991). Encoding complex symbolic data structures with
some unusual connectionist techniques. In J.A. Barnden and J.B. Pollack
(Eds.), High-Level Connectionist Models. Ablex, Norwood, NJ. pp. 180-
240.

[7] Barnden, J.A. (1992a). Connectionism, Generalization and Propositional
Attitudes: A Catalogue of Challenging Issues. In J. Dinsmore (Ed.), The
Symbolic and Connectionist Paradigms'. Closing the Gap. LEA Press,
Hillsdale NJ. pp. 149-178.

[8] Barnden, J.A. (1992b). Connectionism, Structure-Sensitivity, and Sys-
tematicity: Refining the Task Requirements. Memoranda in Computer
and Cognitive Science, No. MCCS-92-227, Computing Research Lab.,
New Mexico State University, Las Cruces NM.

[9] Barnden, J.A. (1994). Complex Symbol-Processing in a Transiently Lo-
calist Connectionist Architecture. This volume.

[10] Barnden, J. and Srinivas, K. (1991). Encoding Techniques for Complex
Information Structures in Connectionist Systems. Connection Science,
3(3):269-315.

424 CHAPTER 12

[11] Churchland, P.S. and T.J. Sejnowski. (1989). Neural Representation
and Neural Computation. In L. Nadel, L.A. Cooper, P. Culicover and
R.M. Harnish (Eds.), Neural Connections, Mental Computation. Brad
ford Book, MIT Press, Cambridge MA.

[12] Churchland, RS. (1986). Neurophilosophy: Toward a Unified Science for
Mind-Brain. MIT Press, Cambridge MA.

[13] Dolan, CR (1989). Tensor manipulation networks: Connectionist and
symbolic approaches to comprehension, learning, and planning. Ph.d.
Dissertation, Computer Science Dept. UCLA, Los Angeles, CA. (To be
published by LEA Press).

[14] Dolan, CR and Smolensky, P. (1989). Tensor product production system:
A modular architecture and representation. Connection Science, 1:53-68.

[15] Dolan, CR and M.G. Dyer. (1989). Parallel Retrieval and Application of
Conceptual Knowledge. In D. Touretzky, G. Hinton, T. Sejnowski (Eds.),
Proceedings of the 1988 Connectionist Models Summer School. Morgan
Kaufmann, pp. 273-280.

[16] Dyer, M.G. (1983). In-Depth Understanding. MIT Press, Cambridge,
MA.

[17] Dyer, M.G. (1990). Distributed Symbol Formation and Processing in Con
nectionist Networks. Journal of Experimental and Theoretical Artificial
Intelligence, 2:215-239.

[18] Dyer, M.G., Cullingford, R. & Alvarado, S. (1987). Scripts. In S. Shapiro
(Ed.), Encyclopedia of Artificial Intelligence. John Wiley & Sons, pp.
980-994.

[19] Dyer, M.G., Rowers, M. and Wang, Y.A. (1992). Distributed Symbol
Discovery through Symbol Recirculation: Toward Natural Language Pro
cessing in Distributed Connectionist Networks. In R.G. Reilly and N.E.
Sharkey (Eds.), Connectionist Approaches to Natural Language Process
ing, LEA Press, Hillsdale NJ, pp. 21-48.

[20] Dyer, M.G. and Nenov, V.I. (1993). Language Learning via Percep
tual/Motor Experiences. Proceedings of the Fifteenth Annual Conference
of the Cognitive Science Society, LEA Press, Hillsdale NJ.

[21] Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14:179-
211.

Connectionist Natural Language Processing: A Status Report 425

[22] Feldman, J.A. (1989). Neural Representation of Conceptual Knowledge.
In L. Nadel, L. A. Cooper, P. Culiver and R.M. Harnish (Eds.), Neural Con
nections, Mental Computation. Bradford book/MIT PRess, Cambridge
MA.

[23] Feldman, J.A., Lakoff, G., Stolcke, A. and Hollbach Weber, S. (1990).
Miniature Language Acquisition: A touchstone for cognitive science.
Tech. Rep. TR-90-009, ICSI, Berkeley, CA.

[24] Hamad, S. (1990). The Symbol Grounding Problem. Physica D, 42:335-
346.

[25] Hinton, G.E., McClelland, J.L. and Rumelhart, D.E. (1986). Distributed
Representation. In D.E. Rumelhart and J.L. Mcclelland (Eds.), Parallel
Distributed processing, Vol. 1, MIT Press, Cambridge MA.

[26] Holldobler, S. (1990). A structured connectionist unification algorithm. In
Proceedings of the Ninth National Conference on Artificial Intelligence,
Boston, MA.

[27] Johnson-Laird, P.N. (1983). Mental Models: Towards a Cognitive Science
of Language, Inference and Consciousness. Harvard University Press,
Cambridge MA.

[28] Kandel, E.R. (1985). Processing of Form and Movement in the Visual
System. In E.R. Kandel and J.H. Schwartz (Eds.), Principles of Neuro-
science (Second Edition), (pp. 366-383), Elsevier, NY.

[29] Kohonen, T. (1988). Self-Organization and Associative Memory.
Springer-Verlag (2nd ed.).

[30] Kolodner, J.L. (1984). Retrieval and Organizational Strategies in Con
ceptual Memory: A Computer Model. LEA Press, Hillsdale NJ.

[31] Lange, T.E. (1994). A structured connectionist approach to inferencing
and retrieval. This volume.

[32] Lange, T.E. and M.G. Dyer. (1989a). Frame Selection in a Connectionist
Model of High-Level Inferencing. Proceedings of the Eleventh Annual
Conference of the Cognitive Science Society (CogSci-89). LEA Press,
Hillsdale NJ.

[33] Lange, T. and M.G. Dyer. (1989b). Dynamic, Non-Local Role Bindings
and Inferencing in a Localist Network for Natural Language Understand
ing. In D.S. Touretzky (Ed.), Advances in Neural Information Processing
Systems 1. San Mateo, CA: Morgan Kauffman, pp. 545-552,.

426 CHAPTER 12

[34] Lange, T.E. and Dyer, M.G. (1989c). High-level inferencing in a connec-
tionist network. Connection Science, 1:181-217.

[35] Lange, T.E., Vidal, J.J. and Dyer, M.G. (1991). Artificial Neural Oscilla
tors for Inferencing. In A.V. Holden and V.I. Kryukov (Eds.), Neurocom-
puters and Attention, Vol. I, Manchester University Press.

[36] Lee, G.(1991). Distributed Semantic Representations for Goall Plan Anal
ysis of Narratives in a Connectionist Architecture. Ph.D. CS Dept. UCLA.

[37] Lee, G. and Dyer, M.G. (in press). Goal/Plan Analysis via Distributed Se
mantic Representations in a Connectionist System. Applied Intelligence.

[38] Lee, G., Flowers M. and M.G. Dyer. (1990). Learning Distributed
Representations for Conceptual Knowledge and their Application to
Script-Based Story Processing. Connection Science, 2(4):313-345. [Also
reprinted in N. Sharkey (Ed.), Connectionist Natural Language Pro
cessing: Readings from Connection Science. (Chapter 11, pp. 215-247),
Kluwer Academic Publishers, Norwell, MA. 1992.]

[39] Miikkulainen, R. and Dyer, M.G. (1991). Natural language processing
with modular PDP networks and distributed lexicon. Cognitive Science,
15(3):343-399.

[40] Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An
Integrated Model of Scripts, Lexicon and Memory, Bradford/MIT Press,
Cambridge MA.

[41] Miikkulainen, R. (1994). Subsymbolic Parsing of Embedded Structures.
This volume.

[42] Minsky, M. (1985). The Society of Mind. Simon and Schuster, NY.

[43] Nenov, VI. (1991). Perceptually Grounded Language Acquisition: A Neu
ral/Procedural Hybrid Model. Ph.D. Dissertation and Technical Report
UCLA-AJ-91-07, Computer Science Departments UCLA.

[44] Nenov, VI. and Dyer, M.G. (in press-a) Perceptually Grounded Language
Learning: Part 1 - A Neural Network Architecture for Robust Sequence
Association. Connection Science, 5(2).

[45] Nenov, VI. and Dyer, M.G. (in press-b) Perceptually Grounded Language
Learning: Part 2 - DETE: A Neural/Procedural Model. Connection Sci
ence, 5(3).

Connectionist Natural Language Processing: A Status Report All

[46] Nenov, V.I. and Dyer, M.G. (in press-c) Language Learning via Percep
tual/Motor Association: A Massively Parallel Model. In Hiroaki Kitano
(Ed.), Massively Parallel Artificial Intelligence. AAAI/MIT Press.

[47] Pazzani, M.J. (1990). Creating a Memory of Causal Relationships:
An Integration of Empirical and Explanation-Based Learning Method.
Lawrence Erlbaum Associates (LEA Press) Hillsdale, NJ, 1990.

[48] Pazzani, M.J. and M.G. Dyer. (1989). Memory Organization and
Explanation-Based Learning. International Journal of Expert Systems:
Research & Applications, 2(3):331-358.

[49] Pazzani, M. and M.G. Dyer. (1987). A Comparison of Concept Identifi
cation in Human Learning and Network Learning with the Generalized
Delta Rule. Proceedings of 10th Inaternational Joint Conference on Ar
tificial Intelligence (IJCAI-87). Morgan Kaufmann, Los Altos CA, pp.
147-150.

[50] Pinker, S. (1989). Learnability and Cognition: The Acquisition of Argu
ment Structure. MIT Press, CAmbridge MA.

[51] Pinker, S. and Mehler, J. Eds., (1988). Connections and Symbols. Brad
ford/MIT Press. Cambridge, MA.

[52] Pollack, J.B. (1988). Recursive Auto-Associative Memory: Devising
Compositional Distributed Representations. Proceedings of the Tenth An
nual Conference of the Cognitive Science Society Lawrence Erlbaum.
Hillsdale, NJ.

[53] Pollack, J.B. (1989). Implications of Recursive Distributed Representa
tions. In D. S. Touretzky (Ed.), Advances in Neural Information Process
ing i , Morgan Kaufmann Publ. San Mateo, CA, pp. 527-536.

[54] Pollack, J.B. (1990). Recursive Distributed Representations. Artificial
Intelligence, 46:77-105.

[55] Regier, T. (1992). The Acquisitionof Lexical Semantics for SpatialTerms:
A Connectionist Model of Perceptual Categorization. Ph.D. Dissertation.
University of California at Berkeley.

[56] Rumelhart, D.E. and McClelland, J.L., Eds. (1986). Parallel Distributed
Processing. Vol. 1. Bradford Books/MIT Press.

[57] St. John, M.F. and McClelland, J.L. (1990). Learning and Applying Con
textual Constraints in Sentence Comprehension. Artificial Intellgence,
46:217-257.

428 CHAPTER 12

[58] Schank, R.C. and Abelson, R.R (1977). Scripts, Plans, Goals, and Un
derstanding. Lawrence Erlbaum, Hillsdale, NJ.

[59] Shastri, L. and Ajjanagadde, V. (1990). An Optimally Efficient Limited
Inference System. Proceedings of Eighth National Conference on Artifi
cial Intelligence. AAAI Press / MIT Press, Menlo Park, CA. pp. 563-570.

[60] Shastri, L. and Ajjanagadde, V. (1993) From simple associations to sys
tematic reasoning. A connectionist representation of rules, variables and
dynamic bindings using temporal synchrony. Behavoral and Brain Sci
ences, 16(3):417-494.

[61] Smolensky, P. (1990). Tensor Product Variable Binding and the Rep
resentation of Symbolic Structures in Connectionist Systems. Artificial
Intelligence, 46:159-216.

[62] Stolcke, A. (1989). Unification as Constraint Satisfaction in Structured
Connectionist Networks. Neural Computation, l(4):559-567.

[63] Strong, G.W. and Whitehead, B.A. (1989). A solution to the tag-
assignment problem for neural networks. Behavioral and Brain Sciences,
12:381-433.

[64] Sumida, R.A. and M.G. Dyer. (1989). Storing and Generalizing Multi
ple Instances while Maintaining Knowledge-Level Parallelism. Proceed
ings of Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89). pp. 1426-1431, (Distributed by Morgan Kaufmann Publ.).

[65] Sumida, R.A. (1991). Dynamic Inferencing in Parallel Distributed Se
mantic Networks. Proceedings of Thirteenth Annual Conference of the
Cognitive Science Society. LEA Press, Hillsdale NJ. pp.913-917.

[66] Sumida, R.A. and Dyer, M.G. (1992). Propagation Filters in PDS Net
works for Sequencing and Ambiguity Resolution. In J.E. Moody, S.J.
Hanson and R.P. Lippmann (Eds.), Advances in Neural Information Pro
cessing Systems 4, Morgan Kaufmann Publ., San Mateo, CA, pp. 233-240.

[67] Sun, R. (1989). A discrete neural network model for conceptual repre
sentation and reasoning. Proceedings of the Eleventh Annual Conference
of the Cognitive Science Society. LEA Press, Hillsdale NJ.

[68] Sun, R. (1992). On Variable Binding in Connectionist Networks. Con
nection Science, 4(2):93-124.

[69] Sun, R. (1993). Integrating Rules and Connectionismfor Robust Reason
ing. John Wiley and Sons, NY.

Connectionist Natural Language Processing: A Status Report 429

[70] Touretzky, D.S. and G.E. Hinton. (1988). A Distributed Connectionist
Production System. Cognitive Science, 12(3):423-466.

[71] Tulving, E. (1972). Episodic and Semantic Memory. In E. Tulving and
W. D. Donaldson (Eds.), Organization of Memory. Academic Press, NY.

[72] Turner, S.R. (1992). MINSTREL: A Computer Model of Creativity and
Storytelling. Ph.D. Dissertation, Computer Science Dept. UCLA (to be
published by LEA Press).

[73] von der Malsburg, C. (1981). The correlation theory of brain function.
Internal Report 81-2. Dept. of Neurobiology, Max-Plank-institute for
Biophysical Chemistry.

[74] von der Malsburg, C. and Singer, W. (1988). Principles of cortical net
work organization. In P. Rakic and W. Singer (Eds.), Neurobiology of
Neocortex, (pp. 69-99). John Wiley & Sons Ltd., London.

[75] Waibel, A. (1989). Consonant recognition by modular construction of
large phonemic time-delay neural networks. In D.S. Touretzky (Ed.),
Advances in Neural Information Processing Systems I. (pp. 215-223).
Morgan Kaufman, San Mateo, CA.

[76] Werner, G. M. and M. G. Dyer. (1991). Evolution of Communication in
Artificial Organisms. In J.D. Farmer, C. Langton, S. Rasmussen and C.
Taylor (Eds.), Artificial Life IIy Addison-Wesley.

[77] Wilensky, R. (1983). Planning and Understanding: A Computational
Approach to Human Reasoning. Addison-Wesley, Reading, MA.

Appendix 431

Appendix

BIBLIOGRAPHY OF CONNECTIONIST MODELS WITH SYMBOLIC

PROCESSING

This bibliography was compiled by Ron Sun from contributions solicited from
the research community. Especially valuable were the lists of references
from Todd Lubert, Jim Garson, and Detlef Nauck. The selection of papers
were based mainly on the following criterion: a paper x is included in this
bibliography, if and only if x appears in a major conference, or x appears
in a journal, or x appears in a well-edited book, or x is a monograph from a
well-established publisher, or x is important and influential, and x is written
in English. A deliberate effort was made to eliminate redundant or repetitive
papers (but the results may still not be fully satisfactory).

The bibliography is annotated with the following categories:

• C — collections of papers.

• G — general discussions and surveys.

For technical papers,

• A — analogical or case-based reasoning in neural networks.

• E — expert systems and neural networks.

• F — fuzzy logic and neural networks: hybrids and implementations.

• J — juxtaposition and Unking of symbolic systems with neural networks.

• L — learning of symbolic structures.

• N — natural language, text, or speech processing.

• R — reasoning (rule-based and the like) and variable binding.

• S — schemas, scripts, semantic networks, or other conceptual structures,

and

• O — topics other than the above.

432 APPENDIX

Ajjanagadde, V. and Shastri, L. (1989). Efficient inference with multi-place
predicates and variables in a connectionist system. In Proceedings of the
Eleventh Annual Conference of the Cognitive Science Society, pp. 396-403.
Hillsdale, NJ: Erlbaum. [R]

Ajjanagadde, V. (1990). Reasoning with function symbols in a connectionist
system. Proceedings of the 12th Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Erlbaum. [R]

Anandan, P., Letovsky, S. and Mjolsness, E. (1989). Connectionist variable
binding by optimization. Proceedings of the 11th Cognitive Science Society.
[O]

Anderson, J. (1993). Data representation, neural networks, and hybrid compu
tation. In Levine, D.S. and Aparicio, M. (eds), Neural Networks for Knowledge
Representation and Inference. Hillsdale, NJ: Lawrence Erlbaum Associates.
[G]

Ardizzone, E., Chella, A., Frixione, M., and Gaglio. S. (1992). Integrating
subsymbolic and symbolic processing in artificial vision, Journal of Intelligent
Systems. l(4):273-308. [J]

Ballard, D. H. (1986). Parallel logical inference and energy minimization, In
Proceedings of the 5 th National Conference on Artificial Intelligence, Philadel
phia, pp. 203-208. [R]

Baraden, J.A. (1984). On short-term information processing in connectionist
theories. Cognition and Brain Theory, 7(l):25-59. [R]

Barnden, J.A. (1985). Diagrammatic short-term information processsing by
neural mechanisms. Cognition and Brain Theory, 7(3 & 4):285-328. [R]

Barnden, J.A. (1988). Therightof free association: relative-position encoding
for connectionist data structures. In Proc.of 10th Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum. pp. 503-509.
[R]

Barnden, J.A. (1989). Neural-net implementation of complex symbol-
processing in a mental model approach to syllogistic reasoning. In Proc.of
11th Int. Joint Conf. on Artificial Intelligence (Detroit, August 1989), pp.
568-573, San Mateo, CA: Morgan Kaufmann. [R]

Appendix 433

Barnden, J.A. (1991). Encoding complex symbolic data structures with some
unusual connectionist techniques. In Barnden, J.A. and Pollack, J.B. (eds.),
Advances in Connectionist and Neural Computation Theory 1: High-level
connectionist models (Vol. 1), pp. 180-240 Ablex, Norwood, NJ. [R]

Barnden, J.A. (1992). Connectionism, generalization and propositional atti
tudes: a cAtalogue of challenging issues. In Dinsmore, J. (Ed.), The Symbolic
and Connectionist Paradigms: Closing the Gap, pp. 149-178, Hillsdale, NJ:
Lawrence Erlbaum. [G]

Barnden, J.A, and Srinivas, K. (In Press). Overcoming rule-based rigidity and
connectionist limitations through massively-parallel case-based reasoning. Int.
Journal of Man-Machine Studies. [A]

Barnden, J.A. (in press). On the connectionist implementation of analogy and
working memory matching. To appear in Holyoak, K.J. and Barnden, J.A.
(eds), Advances in Connectionist and Neural Computation Theory, Vol. 2:
Analogical Connections. Norwood, NJ: Ablex Publishing Corp. [A]

Barnden, J.A. (forthcoming). Connectionist meta-representation for proposi
tional attitudes. ./. Experimental and Theoretical Artificial Intelligence, 5(1).
[R]

Barnden, J.A. and Pollack, J.B. (eds). (1991). Advances in Connectionist
and Neural Computation Theory, Vol. I: High Level Connectionist Models.
Norwood, NJ: Ablex Publishing Corp. [C]

Barnden, J.A. and Srinivas, K. (1991). Encoding techniques for complex infor
mation structures in connectionist systems. Connection Science, 3(3):263-309.
[R]

Bechtel, W. (1988). Connectionism and rules and representation systems: Are
they compatible. Philosophical Psychology, 1(1):5-16. [R, G]

Becraft, W.R., Lee, P.L. and Newell, R.B. (1991). Integration of neural net
works and expert systems for process fault diagnosis. In Proc. 12th Interna
tional Joint Conference on Artificial Intelligence, pp. 832-837. [J, P]

Berenji, H.R. and Khedar, P. (1992). Learning and tuning fuzzy logic con
trollers through reinforcements. IEEE Transactions on Neural Networks,
3(5):724-774. [F, L, C]

434 APPENDIX

Bever, T.G. (1991). The demons and the beast — Modular and nodular kinds
of knowledge. InRonan, R. and Sharkey, N. (Eds.), Connectionist Approaches
To Natural Language Processing. Lawrence Erlbaum (UK). [N, G]

Bezdek, J. (ed.) (1992). IEEE Transaction on Neural Network, special issue
on fuzzy neural networks. [C, F]

Blank, D.S., Meeden, L.A., and Marshal, J.B. (1992). Symbolic manipula
tions via subsymbolic computations. In J. Dinsmore (ed.), Closing the Gap:
Symbolic vs. Subsymbolic Processing, pp.113-149, Hillsdale, NJ: Lawrence
Erlbaum. [G]

Bookman, L.A. (1989). A connectionist scheme for modeling context. In D.
Touretzky et al. (eds.) In Proc.1988 Connectionist Summer School, pp.281-
290. San Mateo, CA: Morgan Kaufmann. [N]

Bookman, L.A. (1991). Schema recognition for text understanding: An analog
semantic feature approach. In Barnden, J. A. and Pollack, J.B. (Eds.), Advances
in Connectionist and Neural Computation Theory, (Vol.1). Norwood, NJ:
Ablex. [N, J]

Bookman, L.A. (1993). A scalable architecture for integrating associative and
semantic memory. Connection Science, 5(3&4):243-273. [J, L]

Bookman, L.A. (1994). Trajectories Through Knowledge Space: A Dynamic
Framework for Machine Comprehension. Norwell, MA: Kluwer Academic
Publishers. [J, L, N]

Bradshaw, G., Fozzard, R, and Ceci, L. (1989). A connectionist expert system
that actually works. In NIPS 88, pp. 248-255. [E]

Brown, G. D. A. and Oaksford, M. (1990). The development of symbolic
behaviour in natural and artificial neural networks. In Eckmiller, R., Hart-
mann, G., and Hauske, G. (eds), Parallel Processing in Neural Systems and
Computers. Elsevier. [L]

Carpenter, G.A. et al. (1992). Fuzzy ARTMAP: A neural network architecture
for incremental supervised learning of analog multidimensional maps. IEEE
Transactions on Neural Networks, 3(5):698-713. [F]

Chalmers, D.J. (1990). Syntactic transformations on distributed representa
tions. Connection Science, 2(1-2):53-62. [L]

Appendix 435

Chalmers, D.J. (1990). Why Fodor and Pylyshyn were wrong: the simplest
refutation. In Proc.ofthe Twelfth Annual Conference of the Cognitive Science
Society. [L]

Chang, E. and Sekine, M. (1991). ARENA, a rule evaluating neural assistant
that performs rule-based logic optimization. In Proceedings of the Interna
tional Joint Conference on Neural Networks, pp.678-683, November 1991.
[R]

Chorayan, O.G. (1982), Identifying elements of the probabilistic neuronal
ensembles from the standpoint of fuzzy sets theory. Fuzzy Sets and Systems,
8(2):141-147. [F]

Chun, H. W. and Mimo, A. (1987). A model of schemata selection using
marker passing and connectionist spreading activation. In Proceedings of the
Ninth Annual Conference of the Cognitive Science Society, pp. 887-896.
Hillsdale, NJ: Erlbaum. [S]

Cooper, R. and Franks, B. (1991). Interruptibility: A new constraint on hybrid
systems. Artificial Intelligence and the Simulation of Behaviour Quarterly.
Special Issue on Hybrid Systems, 78:25-30. [G, J]

Cooper, R. and Franks, B. (1993). Interruptibility as a constraint on hybrid
systems. Minds and Machines, 3(l):73-96. [G, J]

Cottrell, G. (1985). Connectionist parsing. In Proceedings of the Seventh
Annual Cognitive Science Society Conference, Irvine, CA. [N]

Cottrell, G. (1985). Parallelism in inheritance hierarchies with exceptions. In
Proceedings of the Eighth International Joint Conference on Artificial Intel
ligence, Los Angeles, CA. Also in Al-Asady, R. and Narayanan, A. (Eds.),
Inheritance Networks for Artificial Intelligence. Oxford: Intellect. [S]

Cottrell, G. and Fu-sheng Tsung (1991). Learning simple arithmetic proce
dures. In Barnden, J.A. and Pollack, J.B. (Eds.), Advances in Connectionist
and Neural Computation Theory, Vol 1: High-level Connectionist Models,
Norwood, NJ: Ablex. [L]

Cottrell, G.W. and Small, S.L. (1983). A connectionist scheme for modeling
word sense disambiguation. Cognition and Brain Theory, 6(1):89-120. [N]

436 APPENDIX

Das, S., Giles, C.L. and Sun, G.Z. (1992). Learning context free grammars:
Capabilities and limitations of a neural network with an external stack memory.
In Proceedings of The Fourteenth Annual Conference of The Cognitive Science
Society. [L]

Dawes, R. (1993). Quantum neurodynamics and the representation of knowl
edge. In Levine, D.S. and Aparicio, M. (eds), Neural Networks for Knowledge
Representation and Inference. Hillsdale, N.J.: Lawrence Erlbaum Associates.
[G]

Derthick, M. (1990). Mundane reasoning by setting on a plausible model.
Artificial Intelligence, 46(1-2):107-158, 1990. [R]

Derthick, M., and Plaut, D. C. (1986). Is distributed connectionism compatible
with the physical symbol system hypothesis? In Proceedings of the Eighth
Annual Conference of the Cognitive Science Society. (pp. 639-644). Hillsdale,
NJ: Erlbaum. [G]

Diamond, J., McLeod, R., and Pedrycz, W. (1990). A fuzzy cognitive sys
tem: examination of a referential neural architecture. In International Joint
Conference on Neural Networks 1990, 2:617-622. [F]

Diederich, J. and Long, D.L. (1991). Efficient question answering in a hy
brid system, In Proceedings of the International Joint Conference on Neural
Networks, pp. 479-484, November 1991. [N]

Diederich, J. (1991). Steps towards knowledge-intensive connectionist learn
ing. In Barnden J.A. and Pollack J.B. (eds.), Advances in Connectionist and
Neural Computation Theory, Vol.1, pp. 284-303, Norwood, NJ: Ablex. [L]

Diederich, J. (1992). Explanation and artificial neural networks. International
Journal of Man-Machine Studies, 37:335-355. [R]

Dinsmore, J. (Ed.). (1992). Closing the Gap: Symbolism vs. Connectionism.
Lawrence Erlbaum Associates, Hillsdale, NJ. [C]

Dolan, C.P., and Dyer, M.G. (1987). Symbolic schemata, role binding and
evolution of structure in connectionist memories. In Proceedings of the First
International Conference on Neural Networks. [S, L]

Dolan, C.P. and Smolensky, P. (1989). Tensor product production system: a
modular architecture and representation, Connection Science, 1:53-68. [R]

Appendix 437

Dolan, C. and M.G. Dyer. (1987). Towards the evolution of symbols. In
Proceedings of the 2nd International Conference on Genetic Algorithms and
Their Applications. Cambridge, MA, July. [L]

Dolan, C.R and Dyer, M.G. (1989). Parallel retrieval and application of
conceptual knowledge. In Touretzky, D., Sejnowski, T.J. and Hinton, G. E
(eds), Proceedings of the 1988 Connectionist Models Summer School, Morgan
Kaufmann. [S]

Dyer, M.G. (1990). Distributed symbol formation and processing in connec
tionist networks. Journal of Expt. Theor Artificial Intelligence , 2:215-239.
[L]

Dyer, M.G. (1991). Symbolic neuroengineering for natural language process
ing: A Multiple level research approach. In Barnden, J.A. and Pollack, J.B.
(Eds.), Advances in Connectionist and Neural Computation Theory. Vol. 1,
NJ: Ablex. [G]

Dyer, M.G. (1991). Lexical acquisition through symbol recirculation in dis
tributed connectionist networks. In Zernik, U. (Ed.), Lexical Acquisition:
Using On-Line Resources to Build a Lexicon. Lawrence Erlbaum Assoc.
Hillsdale, NJ, pp. 309-337. [N, L]

Elman, J. L. (1989). Structured representations and connectionist models. In
Proc.of Cognitive Science Conference, pp. 17-23. [N, L]

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179-211.
[N,L]

Eppler, W. (1990). Implementation of fuzzy production systems with neural
networks. In Eckmiller, R., Hartmann, G., and Hauske, G. (eds.), Parallel
Processing in Neural Systems and Computers, pp. 249-252 Elsevier. [F]

Fahlman, S. and Hinton, G. (1987). Connectionist architectures for artificial
intelligence. Computer, 20:100-118. [G]

Farringdon. J. (1992). Approximating a neural network in symbolic logic.
Artificial Intelligence and the Simulation of Behaviour Quarterly, Special Issue
on Hybrid Systems, 79. [O]

438 APPENDIX

Feldman, J. A., Fanty, M. A., Goddard, N. H., and Lynne, K. J. (1988).
Computing with structured connectionist networks. Communications of the
ACM, 31:170-187. [O]

Feldman, J. A. (1989). Neural representation of conceptual knowledge. In
Nadel, Cooper, Culicover and Harnish (eds.), Neural Connections, Mental
Computation, Cambridge MA: MIT Press. [S]

Fodor, J.A and Pylyshyn, Z.W. (1988). Connectionism and cognitive archi
tecture: A critical analysis, Cognition, 28:3-71. Also in: Pinker and Mehler
(eds.) Connections and Symbols, MIT Press, Cambridge, MA. [G]

Fu, L.M. (1991). Rule learning by searching on adapted nets. In Proc.of
AAAF91, pp. 590-595. [R, L]

Fu, L.M. (1990). Backpropagation in neural networks with fuzzy conjunction
units. In International Joint Conference on Neural Networks 1990,1:613-618.
[F,L]

Fu, L.M. and Fu, L.C. (1990). Mapping rule-based systems into neural archi
tecture. Knowledge Based Systems, 3:48-56. [R]

Fu, L.M. (1992). A Neural network model for learning rule-based systems.
In Proceedings of the International Joint Conference on Neural Networks,
1-343:1-348. [R, L]

Gallant, S. I. (1988). Connectionist expert systems. Communications of the
ACM, 24(2):152-169. [R, E]

Gasser, M. and Dyer, M.G. (1988). Sequencing in a connectionist model
of language processing. In Proceedings of 12th International Conference on
Computational Linguistics (COUNG-88). Budapest, Hungary, August 1988.
[N]

Giles, C.L., Sun, G.Z., Chen, H.H., Lee, Y.C. and Chen, D. (1990). High
order recurrent networks and grammatical inference. In Advances in Neural
Information Processing System 2, pp. 380-387, D.S. Touretzky (ed.), Morgan
Kaufmann, San Mateo, CA. [L]

Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z. and Lee, Y.C.
(1991). Second-order recurrent neural networks for grammatical inference. In

Appendix 439

Proceedings of International Joint Conference on Neural Networks, Vol. II,
pp. 273-278, Seattle, Washington. [L]

Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z. and Lee, Y.C.
(1992). Extracting and learning an unknown grammar with recurrent neural
networks. In Moody, J., Hanson, S., and Lippmann, R. (Eds.), Advances in
Neural Information Processing System 4, pp. 17-324, Morgan Kaufmann, San
Mateo, CA, 1992. [L]

Giles, C.L., Chen, D., Miller, C.B., Chen, H.H., Sun, G.Z. and Lee, Y.C. (1992).
Learning and extractiing finite state automata with second-order recurrent
neural networks. Neural Computation, Vol. 4, No. 3. [L]

Goebel, R. (1990). Learnign symbol processing with recurrent networks. In
Eckmiller, R., Hartmann, G. and Hauske, G. (eds.), Parallel Processing in
Neural Systems and Computers, pp. 157-160. Elsevier. [L]

Goebel, R. (1990). A connctionist approach to high-level cognitive modeling.
In Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society, Cambridge, MA. [O]

Goebel, R. (1990). Binding, episodic short-term memory, and selective atten
tion, or why are PDP models poor at symbol manipulation? In Touretzky, D.S.,
Elman, J.L., Sejnowski, T.J. and Hinton, G.E. (Eds.), Proceedings of the 1990
Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann.
[O]

Golden, R. M. (1986). Representing causal schemata in connectionist systems.
In Proceedings of the Eighth Annual Conference of the Cognitive Science
Society, pp. 13-21. Hillsdale, NJ: Erlbaum. [S]

Goodman, R.M. Miller, J. W. and Smyth, P. (1992). Rule-based neural net
works for classification and probability estimation. Neural Computation,
4:781-804. [R]

Goodman, R. M., Miller, J. W. and Smyth, P. (1989). An information theoretic
approach to rule-based connectionist expert systems. InNIPS 88,pp. 256-263.
[R, E]

Greenspan, H.K. et al. (1992). Combined neural network and rule-based
framework for probabilistic pattern recognition and discovery. In Advances in
Neural Information Processing Systems 4, pp. 444-451. [R]

440 APPENDIX

Grossberg, S. and Gutowski, W. (1987). Neural dynamics of decision making
under risk: Affective balance and cognitive-emotional interactions. Psycho
logical Review, 94(3):300-318. [R]

Gtiesgen, H. W. and HOlldobler, S. (1992). Connectionist inference systems.
In Fronhfer, B. and Wrightson, G. (Eds.), Parallelization in Inference Systems.
Springer, Lecture Notes in Artificial Intelligence, pp. 82-122. [R]

Gutknecht, M. and Pfeiffer, R. (1990). An approach to integrating expert
systems with connectionist networks. AI Communications, 3(3): 116-127. [E]

Hadley, R. F. (1990). Connectionism, rule following, and symbol manipula
tion. In Proc. ofAAAI-90, pp. 579-586. [G, R]

Hall, L. O. and Romaniuk, S. G. (1990). FUZZNET: Towards a fuzzy connec
tionist expert system development tool. In IJCNN 90, Volume 2, pp. 483-486,
Washington, DC. [E]

Handelman, D.A., Lane, S.H., and Gelfand, J.J. (1990). Integrating
knowledge-based system and neural network techniques for robotic skill ac
quisition. In International Joint Conference on Neural Networks, 193-198.
Also in: Proceedings ofUCAI, pp. 193-198. [E, J]

Harnad, S. (1990). The symbol grounding problem. Physica D, 42(l-3):335-
346. [J]

Harnad, S. (1992). Connecting object to symbol in modeling cognition. In
Clark, A. and Lutz, R. (eds.), Connectionism in Context. Springer. [J]

Hawthorne, J. (1989). On the compatibility of connectionist and classical
models. Philosophical Psychology, 2(1):5-15. [G]

Harris, C.L. and Elman, J.L. (1989). Representing variable information with
simple recurrent networks. In Proceedings of the Eleventh Annual Conference
of the Cognitive Science Society, pp. 635-642. Hillsdale, NJ: Erlbaum. [O]

Hayashi, I., Nomura, H., Yamasaki, H. and Wakami, N. (1992). Construction
of fuzzy inference rules by neural network driven fuzzy reasoning and neural
network driven fuzzy reasoning with learning functions. International Journal
of Approximate Reasoning, 6(2):241-266. [F, L]

Appendix 441

Hayashi, Y., Krishnamraju, P.V., and Reilly, K.D. (1991). An architecture
for hybrid expert systems. In Proc. of Inf I Joint Conf. on Neural Networks
(UCNN'91 -Singapore), Nov. 18-21, pp. 2773-2778. [E]

Henderson, J. (1992). A connectionist parser for structure unification grammar.
In Proceedings of the 30th Annual Meeting of the Association for Computa
tional Linguistics, Newark, DE. [N]

Hendler, J. (1991). Developing hybrid symbolic/connectionist models. In
Barnden J.A. and Pollack J.B. (eds.), Advances in Connectionist and Neural
Computation Theory, pp. 165-179. Hillsdale, NJ: Lawrence Erlbaum Assoc.
[J]

J. Hendler, (1987). Marker passing and microfeatures. In Proc.10th IJCAI,
pp. 151-154, Morgan Kaufman, San Mateo, CA. [J]

Hinton, G. E. (ed.). (1990). Special Issue on Connectionist Symbol Process
ing. Artificial Intelligence, 46. Also as Connectionist Symbol Processing.
Cambridge, MA: Bradford Books/MIT Press. [C]

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist
networks. Artificial Intelligence, 46:47-76. [S]

Hirota, K. and Pedrycz, W. (1991). Fuzzy logic neural networks: Design and
computations. In Proceedings of the International Joint Conference on Neural
Networks,pp. 154-157. [F]

Horgan, T. and J. Tienson, J. (in press). Structured representations in con
nectionist systems? In Davis, S. (ed.), Connectionism: Theory and Practice.
British Columbia. [G]

Hollatz, J. (1992). Supplementing neural network learning with rule-based
knowledge. In Proceedings of International Joint Conference on Neural Net
works (IJCNN 92), Beijing, III-59-III-600. [L, R]

HOlldobler, S. (1990). A structured connectionist unification algorithm. In
Proc.of AAAT90, pp. 587-593. [O]

HOlldobler, S. and KurfeB, F. (1991). CHCL — A connectionist inference
system. In Fronhflfer, B. and Wrightson, G. (eds.), Parallelization in Inference
Systems, Lecture Notes in Computer Science. Springer. [R]

442 APPENDIX

Holyoak, K.J. and Baraden, J.A. (eds). (in press). Advances in Connectionist
and Neural Computation Theory, Vol. 2: Analogical Connections. Norwood,
NJ: Ablex Publishing Corp. [C]

Honavar, V. and Uhr, L. (1993). Generative learning structures and processes
for generalized connectionist networks. Information Sciences. Special Issue
on Neural Networks and Artificial Intelligence. [L]

Honavar, V. and Uhr, L. (Eds), (in press). Symbol processors and connec
tionist networks in artificial intelligence and cognitive modelling. New York:
Academic Press. [C]

Honavar, V. (in press). Connectionist learning with structured symbolic rep
resentations. In Honavar, V. and Uhr, L. (Eds.), Symbol Processors and Con
nectionist Network Models in Artificial Intelligence and Cognitive Modelling.
New York: Academic Press. [L]

Jagota, A. (1993). Representing discrete structures in a Hop field-style net
work. In Levine, D.S. and M. Aparicio (eds.), Neural Networks in Knowledge
Representation and Inference, Associates. [S]

Jang, J-S. R. (1992). Self-learning fuzzy controllers based on temporal back
propagation. IEEE Transactions on Neural Networks, 3(5): 714-723. [F, L]

Jang, J-S. R. (1991). Fuzzy modeling using generalized neural networks and
kalman filter algorithm. In P roc. of the Ninth National Conference on Artificial
Intelligence (AAAI-9I), pp. 762-767, [F]

Jang, J-S. R. (1992). ANFIS: Adaptive-network-based fuzzy inference sys
tems. IEEE Transaction on System, Man, and Cybernetics, 23:3. [F, L]

Jones, M.A. (1987). Feedback as a coindexing mechanism in connectionist
architectures. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI), Milan, Italy, August 1987. [N]

Jones, M.A. and Driscoll, A.S. (1985). Movement in active production net
works. In Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics, Chicago, July, pp. 161-166. [N]

Kanal, L. and Raghavan, S. (1992). Hybrid systems: A key to intelligent
pattern recognition. In Proceedings of the International Joint Conference on
Neural Networks, IV:177-183. [J]

Appendix 443

Keller, J.M. and Tahani, H. (1992). Implementation of conjunctive and dis
junctive fuzzy logic rules with neural networks. International Journal of
Approximate Reasoning, 6(2):221-240. [F]

Keller, J.M. and Yager, R.R. and Tahani, H., (1992). Neural network imple
mentation of fuzzy logic. Fuzzy Sets and Systems, 45:1-12. [F]

Keller, J.M. et al. (1992). Evidence aggregation networks for fuzzy logic
inference. IEEE Transactions on Neural Networks, 3(5):761-769. [F]

Kentridge, R.W. (in press) Cognition, chaos and non-deterministic symbolic
computation: The Chinese room problem solved? To appear in Think (special
issue on Connectionism and Symbolic Artificial Intelligence). [G]

Kosko, B. (1986). Fuzzy cognitive maps. Int. J. Man-Machine Studies, 24:65-
75. [F]

Kuncicky, D.C. (1989). A fuzzy interpretation of neural networks. The 3rd
IFSA Congress, pp. 113-116. [F]

Kuncicky, D. C, Hruska, S. I., and Lacher, R. C. (1991). Hybrid systems: The
equivalence of rule-based expert system and artificial neural network inference.
International Journal of Expert Systems. [E]

KurfeB, F. (1991). Unification on a connectionist simulator. In International
Conference on Artificial Neural Networks ICANN-91, Helsinki, Finland. [O]

Kwasny, S.C. and Faisal, K.A. (1990). Connectionism and determinism in a
syntactic Parser. Connection Science. 2(l-2):63-82. [N]

Lacher, R. C, Hruska, S. I., and Kuncicky, D. C. (1991). Backpropagation
learning in expert networks. IEEE Transactions on Neural Networks. [E, L]

Lacher, R.C. (1993). Expert networks: Paradigmatic conflict, technological
rapprochement. Minds and Machines, 3:53-71. [E]

Lachter, J. and Bever, T.G. (1988). The relation between linguistic structure
and associative theories of language learning—A constructive critique of some
connectionist learning models. Cognition, 28:195-247. [N]

444 APPENDIX

Lange, T. E. and Dyer, M. G. (1989). Frame selection in a connectionist model
of high-level inferencing. In Proceedings of the Eleventh Annual Conference
of the Cognitive Science Society, pp. 706-713. Hillsdale, NJ: Erlbaum. [R]

Lange, T. E. and Dyer, M. G. (1989). High-level inferencing in a connectionist
network. Connection Science, 1:181-217. [R]

Lange, T.E. (1990). Analogical retrieval within a hybrid spreading-activation
network. In Proceedings of the 1990 Connectionist Models Summer School,
pp. 265-274,1990. [A]

Lange, T.E. and Wharton C. (in press). REMIND: Retrieval from episodic
memory by inferencing and disambiguation. To appear in Barnden, J.A.
and Holyoak, K. (Eds.), Advances in Connectionist and Neural Computation
Theory, Volume 2: Analogical Connections. Norwood, NJ: Ablex. [A]

Lea, R.N. and Villareal, J. (eds.) (1991). Proceedings of the Second Joint
Technology Workshop on Neural Networks and Fuzzy Logic. NASA Lyndon
B. Johnson Space Center, Houston, Texas. [C, F]

Lee, C.C. (1990). A self-learning rule-based controller employing approximate
reasoning and neural network concepts. Int. J. Intell. Syst., 5(3). [F]

Lee, S. and Lee, E. (1974). Fuzzy sets and neural networks. ,/. Cybern.,
4(2):83-103. [F]

Lee, G., Rowers, M., and Dyer, M.G. (1989). A symbolic/connectionistscript
applier mechanism. In Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, pp. 714-721. Hillsdale, NJ: Erlbaum. [S]

Lee, G., Rowers, M., and Dyer, M.G. (1990). Learning distributed repre
sentations of conceptual knowledge and their application to script based story
processing. Connection Science, 2(4):313-346. [S]

Lehnert, W.G. (1991). Symbolic/subsymbolic sentence analysis: Exploiting
the best of both worlds. In Barnden, J.A. and Pollack, J.B. (Eds.), Advances
in Connectionist and Neural Computation Theory. Hillsdale, NJ: Lawrence
Erlbaum Assoc. [N]

Levine, D.S. and Aparicio, M. (Eds). (1993). Neural Networks for Knowledge
Representation and Inference. Hillsdale, NJ: Lawrence Erlbaum Associates.
[C]

Appendix 445

Lim, J.H. et al. (1991). INSIDE: A connectionist case-based diagnostic expert
system that learns incrementally. In Proceedings of the International Joint
Conference on Neural Networks, pp. 1693-1698. [A, E]

Lim, J, Lui, H., and Wang, P., (1992). A framework for integrating fault diag
nosis and increamental knowledge acquisition in connectionist expert systems.
In Proc.ofAAAF92, pp. 159-165. [L, E]

Lin, C.-T. and Lee, C. S. G. (1991). Neural-network-based fuzzy logic control
and decision system. IEEE Transactions on Computers — Special Issue on
Artificial Neural Networks, 40(12): 1320-1336. [F]

Machado, R.J. and Rocha, A.F. (1992). A hybrid architecture for fuzzy con
nectionist expert systems. In Kandel, A. and Langholz, G. (Eds.), Hybrid
Architectures for Intelligent Systems. CRC Press Inc. [F, E]

Machado, R.J. and Rocha, A.F. (1992). Evolutive fuzzy neural networks.
In Proceedings of the IEEE International Conference on Fuzzy Systems, San
Diego, CA. [F, L]

MacLennan, B. J. (in press). Characteristics of connectionist knowledge rep
resentation. Information Sciences. [O]

MacLennan, B. J. (1993). Continuous symbol systems: The logic of con-
nectionism. In Levine, D.S. and Aparicio IV, M. (eds.), Neural Networks for
Knowledge Representation and Inference. Hillsdale NJ: Lawrence Erlbaum.
[O]

MacLennan, B. J. (in press). Image and symbol: Continuous computation and
the emergence of the discrete. In Honavar, V. and Uhr, L. (eds.), Integrating
Symbolic Processors and Connectionist Networks for Artificial Intelligence
and Cognitive Modelling. New York, NY: Academic Press. [O]

Maclin, R. and Shavlik, J. (1993). Using knowledge-based neural networks to
improve algorithms: Refining the Chou-Fasman algorithm for protein folding.
Machine Learning, 11:195-215. [R, L]

Mangold-Allwinn, R. (1990). Learning to produce discriminative object de
scriptions: On the representation of rules in a PDP net. In Eckmiller, R.,
Hartmann, G., and Hauske, G. (eds.), Parallel Processing in Neural Systems
and Computers, pp. 487-490. Elsevier. [R]

446 APPENDIX

Mani, D.R. and Shastri, L. (1991). Combining a Connectionist Type Hierarchy
with a Connectionist Rule-Based Reasoner. In Proceedings of the Thirteenth
Conference of the Cognitive Science Society, pp. 418-423, Chicago, IL. [R,
S]

McClelland, J.L. and Kawamoto, A.H. (1986). Mechanisms of sentence pro
cessing: assigning roles to constituents. In McClelland, J.L. and Rumelhart,
D.E. (Eds.), Parallel Distributed Processing: Explorations in The Microstruc-
ture of Cognition I. MIT Press, Cambridge, MA. [N, S]

McMillan, C. et al. (1992). Rule induction through integrated symbolic
and subsymbolic processing. In Advances in Neural Information Processing
Systems 4, pp. 969-976. [L, R]

McMillan, C. and Smolensky, P. (1988). Analyzing a connectionist model as
a system of soft rules. In Proceedings of the Tenth Annual Conference of the
Cognitive Science Society, pp. 62-68. Hillsdale, NJ: Erlbaum. [R]

Miikkulainen, R. and Dyer, M.G. (1988). Forming global representations
with extended backpropagation. In Proceedings of the IEEE Second Annual
International Conference on Neural Networks (ICNN-88). San Diego, CA,
July. [L]

Miikkulainen, R. and Dyer, M. G. (1989). A modular neural network architec
ture for sequential paraphrasing of script-based stories. In Proc. of the Second
Joint Conference on Neural Networks, pp. 29-56, Washington D.C. [N, S]

Miikkulainen, R. and Dyer, M.G. (1989). Encoding input/output representa
tions in connectionist cognitive systems. In Touretzky, D.S., Hinton, G. and
Sejnowski, T. (eds.), In Proceedings of the 1988 Connectionist Models Summer
School. Morgan Kaufmann, San Mateo, CA. [O]

Miikkulainen, R. and Dyer, M.G. (1991). Natural language processing with
modular PDP networks and distributed lexicon. Cognitive Science. 15(3). [N,
S]

Minsky, M. (1990). Logical vs. analogical or symbolic vs. connectionist or
neatvs. scruffy. In Frontiers ofArtificial Intelligence, Chapter 9, pp. 218-243.
MIT Press. [G]

Mitchell, M. and Hofstadter, D.R. (in press). The emergence of understanding
in a computer model of concepts and analogy-making. Physica D. [A]

Appendix 447

Mitchell, M., and Hofstadter, D.R. (1989). The role of computational temper
ature in a computer model of concepts and analogy-making. In Proceedings
of the Eleventh Annual Conference of the Cognitive Science Society (pp. 765-
772). Hillsdale, NJ: Erlbaum. [A]

Moisl, H. (1992). Connectionist finite state natural language processing, Con
nection Science. 4(2):67-91. [N]

Montgomery, GJ. and Drake, K.C. (1991). Abductive reasoning networks.
Neurocomputing, 2(3):97-104. [R]

Myllymaki, P., Tirri, H., Flor6en, P. and Orponen, P. (1990). Compiling high-
level specifications into neural networks. In Proceedings of the International
Joint Conference on Neural Networks (Washington D.C., January 1990), Vol
2: 475-478. IEEE, New York, NY. [O]

Myllymaki, P. and Tirri, H. (1993). Bayesian case-based reasoning with neural
networks. In Proceedings of the IEEE International Conference on Neural
Networks, San Francisco. [A]

Nauck, D. and Kruse, R. (1993). A fuzzy neural network learning fuzzy control
rules and membership functions by fuzzy error backpropagation. In Proc. IEEE
Int. Conf on Neural Networks 1993, San Francisco, pp. 1022-1027. [F]

Oden, G. C. (1988). FuzzyProp: A symbolic superstate for connectionist
models. In Proceedings of the IEEE International Conference on Neural
Networks, Vol. I, 293-300. [F]

Oden, G. C. (1992). Direct, incremental learning of fuzzy propositions. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, pp. 48-53. [F, L]

Oden, G. C. (in press). Why the difference between connectionism and any
thing else is more than you might think but less than you might hope. In
Honavar, V and Uhr, L. (eds.), Integrating Symbol Processors and Connec
tionist Networks in Artificial Intelligence and Cognitive Modeling. New York,
NY: Academic Press. [F]

Oliver, W.L. and Schneider, W. (1988). Using rules and task division to aug
ment connectionist learning. In Proceedings of the Tenth Annual Conference
of the Cognitive Science Society, pp. 55-61. Hillsdale, NJ: Erlbaum. [R, L]

448 APPENDIX

Omlin, C.W. and Giles, C.L. (1992). Training second-order recurrent neural
networks using hints. In Proceedings of the Ninth International Conference
on Machine Learning, pp. 363-368, Morgan Kaufmann, San Mateo, CA. [L]

Omlin, C.W., Giles, C.L., and Miller, C.B. (1992). Heuristics for the extrac
tion of rules from discrete-time recurrent neural networks. In Proceedings
International Joint Conference on Neural Networks, I, 33-38. [R, L]

Opitz, D.W. and Shavlik, J.W. (1993). Heuristically expanding knowledge-
based neural networks. In Proc. of the 1993 International Joint Conference
on Artificial Intelligence. [R]

Orponen, P., Flor6en, P. Myllymaki, P., and Tirri, H. (1990). A neural imple
mentation of conceptual hierarchies with bayesian reasoning. In Proceedings
of the International Joint Conference on Neural Networks (San Diego, CA,
June 1990), Vol 1: 297-303. IEEE, New York. [S]

Peng, Y. and Reggia, J.A. (1989). A connectionist model for diagnostic
problem solving. IEEE Transactions on Systems, Man, and Cybernetics,
19(2):285-298. [E]

Pinkas, G. (1991). Energy minimization and the satisfiability of propositional
calculus. Neural Computation, 3(2):282-291. Also in Touretzky, D.S., Elman,
J.L., Sejnowski, T.J. and Hinton, G.E. (eds), Proceedings of the 1990 Connec
tionist Models Summer School, pp. 23-31, San Mateo, Morgan Kaufmann.
[R]

Pinkas, G. (1991). Propositional non-monotonic reasoning and inconsistency
in symmetric neural networks. In International Joint Conference on Artificial
Intelligence (IJCAI-91). pp. 525-530. [R]

Pinkas, G. (1992). Constructing proofs in symmetric networks. In Moody, J.E,
Hanson, S.J., and Lipmann, R.P. (eds.), hi Advances in Information Processing
Systems 4 (NIPS), pp. 217-224. [R]

Pinkas, G. and Dechter, R. (1992). A new improved activation function for
connectionist energy minimization. In Proceedings of The Tenth National
Conference on Artificial Intelligence, pp. 434-439, San Jose, CA. [R]

Pinker, S. and Prince, A. (1988). On language and connectionism: Analysis
of a parallel distributed processing model of language inquisition. Cognition.
28:73-193. [N]

Appendix 449

Plate, T. A. (1991). Holographic reduced representations: Convolution algebra
for compositional distributed representations. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence, pp. 30-35, Sydney,
Australia. Also in: Artificial Neural Networks: Concepts and Theory, IEEE
Computer Society Press Tutorial, Mehra, P. and Wah, B.W. (eds.), pp. 126-
131, Los Alamitos, CA. [O]

Plate, T.A. (1992). Holographic recurrent networks. In Giles, C.L., Han
son, S.J. and Cowan, J.D. (Eds.), Advances in Neural Information Processing
Systems 5 (NIPS'92), Morgan Kaufmann, San Mateo, CA. [O]

Pollack, J.B. (1988). Recursive auto-associative memory: Devising compo
sitional distributed representations. In Proc.of 10th Cognitive Science Society
Conference. [O]

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelli
gence, 46:77-105. [O]

Riley, M. S. and Smolensky, P. (1984). A parallel model of (sequential) prob
lem solving. In Proceedings of the Sixth Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Erlbaum. [R]

Robins, A. V. (1992). Multiple representations in connectionist systems. Inter
national Journal of Neural Systems, 2(4):345-362. [O]

Rose, D.E and Belew, R.K (1989). A case for symbolic/sub-symbolic hybrids.
In Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, Ann Arbor, MI, pp. 844-851. [J]

Rose, D.E and Belew, R.K (1991). A connectionist and symbolic hybrid
for improving legal research. International Journal of Man-Machine Studies,
35:1-33. [J]

Rose, D.E. (1990). Appropriate uses of hybrid systems. In Touretzky, D.S.,
Elman, J.L., Sejnowski, T.J. and Hinton, G.E. (eds), Proceedings of the 1990
Connectionist Models Summer School, Morgan Kaufmann, San Mateo, CA,
pp. 277-286. [J]

Rumelhart, D.E. (1989). Toward a microstructural account of human rea
soning. In Vosniadou, S. and Ortony, A. (eds.), Similarity and Analogical
Reasoning, (pp. 298-312). New York: Cambridge University Press. [A]

450 A P P E N D I X

Rumelhart, D.E., Smolensky, P., McClelland, J.L., and Hinton, G.E. (1986).
Schemata and sequential thought processes in PDP models. In McClelland,
J.L., Rumelhart, D.E. and The PDP Research Group (Eds.), Parallel Dis
tributed Processing: Explorations in the Microstructure of Cognition, (Vol. 2,
pp. 7-57). Cambridge, MA: Bradford Books. [S]

Rumelhart, D.E. and Todd, P.M. (in press). Learning and connectionist repre
sentations. In Meyers, D. and Kornblum, S. (Eds.), Attention and Performance,
Cambridge, MA: MIT Press. [L]

Samad, T. (1988). Towards connectionist rule-based systems. IEEE Interna
tional Conference on Neural Networks, Vol.2, pp. 525-532. [R]

Schneider, W. and Oliver, W. L. (in press). An instructable connection-
ist/control architecture: Using rule-based instructions to accomplish connec
tionist learning in a human time scale. In VanLehn, K. (Ed.), Architectures for
Intelligence. Hillsdale, NJ: Erlbaum. [R]

Sharkey, N. E. (1991). Connectionist representation techniques. AI Review,
(5):142-167. [O]

Sharkey, N.E. (1992). The ghost in the hybrid: A study of uniquely connec
tionist representations. AISB Quarterly, 10-16. [O]

Sharkey, N.E. and Sutcliffe, R.F.E. and Wobcke, W.R. (1986). Mixing binary
and continuous connection schemes for knowledge access. In Proceedings of
the American Association for Artificial Intelligence, pp. 262-266. [O]

Shastri, L. and Ajjanagadde, V (1993). From simple associations to systematic
reasoning: A connectionist representation of rules, variables and dynamic
bindings. Behavioral and Brain Sciences, 16(3):417-494. [R]

Shastri, L. (1988). A connectionist approach to knowledge representation and
limited inference. Cognitive Science, 12:331-392. [R]

Shastri, L. (1988). Semantic Networks: An Evidential Formulation and its
Connectionist Realization. Pitman, London, UK. [S]

Shastri, L. and Feldman, J. A. (1985). Evidential reasoning in semantic net
works: A formal theory. JnProc.ofIJCAF85,pp. 465-474. [S]

Appendix 451

Shavlik, J.W. and Towell, G.G. (1989). An approach to combining explanation-
based and neural learning algorithms. Connection Science, l(3):233-255. [L]

Simpson, P.K. 1992. Fuzzy min-max neural networks: 1. Classification. IEEE
Transaction on Neural Networks. [F]

Simpson, P.K. 1992. Fuzzy min-max neural networks: 2. Clustering. IEEE
Transaction on Fuzzy Systems. [F]

Sloman, S.A. (in press). Feature-based induction. Cognitive Psychology. [O]

Small, S.L., Cottrell, G.W., and Shastri, L. (1982). Toward connectionist
parsing. Proceedings of the National Conference on Artificial Intelligence,
Pittsburgh, PA. [N]

Smolensky, P. (1987). On the connectionist reduction of conscious rule in
terpretation. In Proceedings of the Ninth Annual Conference of the Cognitive
Science Society, pp. 187-194. Hillsdale, NJ: Erlbaum. [R]

Smolensky, P. (1988). On the proper treatment of connectionism. The Beha-
vorial and Brain Sciences, 11(1):1—74. [O]

Smolensky, P. (1990). Tensor product variable binding and the representation
of symbolic structures in connectionist systems. Artificial Intelligence. 46(1-
2): 159-216. [R]

Smolensky, P. (1991). Connectionism, constituency and the language of
thought. In Loewer, B. and Rey, G. (Eds.), Fodor and his Critics. Black-
well, Oxford, UK. [G]

Sohn, A. and Gaudiot, J.L. (1991). Connectionist production systems in local
and hierarchical representation. In Bourbakis, N.G. (Ed.), Applications of
Learning and Planning Methods, pp. 165-180, World Scientific Publishing.
[R]

Soucek, B. and The IRIS Group (Eds.) (1991). Neural and Intelligent Systems
Integration. Wiley, New York, NY. [C]

St. John, M. F. and McClelland, J. L. (1991). Learning and applying contextual
constrains in sentence comprehension. Artificial Intelligence, 46(1-2):217-
257.[N]

452 APPENDIX

Stolcke, A. (1989). Unification as constraint satisfaction in structured connec-
tionist networks, Neural Computation, 1. [O]

Stucki, D. J. and Pollack, J. B. (1992). Fractal (reconstructive analogue) mem
ory. In 14th Annual Conference of the Cognitive Science Society, Bloomington,
IN. [O]

Sumida, R.A., Dyer, M.G., and Flowers, M. (1988). Integrating marker passing
and connectionism for handling conceptual and structural ambiguities. In
Proceedings of the 10th confofthe Cognitive Science Society, Montreal. [N]

Sumida, R.A. and Dyer, M.G. (1989). Storing and generalizing multiple
instances while maintaining knowledge-level parallelism. In Proceedings of
Eleventh International Joint Conference on Artificial Intelligence (UCAI-89).
pp. 1426-1431. Morgan Kaufmann Publ. San Mateo, CA. [S]

Sumida, R.A. and Dyer, M.G. (1992). Propagation filters in PDS networks
for sequencing and ambiguity resolution. In Moody, J.E., Hanson, S.J., and
Lippmann, R.P. (eds.), Advances in Neural Information Processing Systems 4,
Morgan Kaufmann, San Mateo, CA, pp. 233-240. [S]

Sun, R. (1989). A discrete neural network model for conceptual representation
and reasoning. In Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Erlbaum. [R]

Sun, R. (1991). Connectionist models of rule-based reasoning. In Proc.l3th
Cognitive Science Conference, pp. 437-442, Lawrence Erlbaum Associates,
Hillsdale, NJ. [R, J]

Sun, R. (1991). The discrete neuronal model and the probabilistic discrete neu
ronal model. In Soucek, B. (ed.), Neural and Intelligent Systems Integration,
pp. 161-178 John Wiley and Sons, New York, NY. [L]

Sun, R. (1992). A connectionist model for commonsense reasoning incorpo
rating rules and similarities. Knowledge Acquisition, 4:293-321. [R, J]

Sun, R. (1992). Fuzzy Evidential logic: A model ofcausality for commonsense
reasoning. In ProcJ4th Cognitive Science Society Conference, pp. 1134-1139,
Lawrence Erlbaum Associates, Hillsdale, NJ. [R]

Sun, R. (1992). On variable binding in connectionist networks. Connection
Science, 4(2):93-124. [R]

Appendix 453

Sun, R. (1993). Beyond associative memories: Logics and variables in con-
nectionist networks. Information Sciences, special issue on AI and neural
networks, 70(1,2). [R]

Sun, R. (1993). An efficient feature-based connectionist inheritance scheme.
IEEE Transaction on System, Man and Cybernetics, 23(2): 1-12. [S]

Sun, R. (1993). A neural network model of causality. IEEE Transaction on
Neural Networks. [R]

Sun, R. (1993). Integrating Rules and Connectionism for Robust Common-
sense Reasoning. John Wiley and Sons, New York, NY. [G, R, S]

Sun, R. (in press). Structuring knowledge in vague domains. IEEE Transaction
on Knowledge and Data Engineering. [R, J]

Sun, R. and Bookman, L. A. (1993). How do symbols and networks fit together?
Artificial Intelligence magazine. [G]

Sun, R., Bookman, L., and Shekhar, S. (eds.) (1992). The Working Notes of
the AAAI Workshop on Integrating Neural and Symbolic Processes. American
Association for Artificial Intelligence, Menlo Park, CA. [C]

Sun, R. and Waltz, D.L. (1991). A neurally inspired massively parallel model
of rule based reasoning. In Soucek, B. (ed.), Neural and Intelligent Systems
Integration, John Wiley and Sons, New York, NY. pp. 341-381. [R]

Sun, G.Z., Chen, H.H., Giles, C.L., Lee, Y.C., and Chen, D. (1990). Connec
tionist pushdown automata that learn context-free grammars. In Proceedings
of International Joint Conference on Neural Networks, Vol.1, pp. 577-580, M.
Caudill (ed.), Lawrence Erlbaum Associates, Hillsdale, New Jersey. [L]

Sun, G.Z., Chen, H.H., Lee, Y.C., and Giles, C.L. (1990). Recurrent neural
networks, hidden Markov models and stochastic grammars, in Proceedings of
International Joint Conference on Neural Networks, Vol.1, pp. 729-734, San
Diego, CA. [L]

Suttner, C. and Ertel, W. (1991). Using back-propagation networks for guiding
the search of a theorem prover. Int. J. of Neural Networks Research and
Applications, 2(1):3-16. [J]

454 APPENDIX

Sutton, R.S. (1985). The learning of world models by connectionist networks.
In Proceedings of the Seventh Annual Conference of the Cognitive Science
Society, pp. 54-64. Hillsdale, NJ: Erlbaum. [L]

Takagi, H. and Hayashi, I. (1991). Non-driven fuzzy reasoning. International
Journal of Approximate Reasoning, 5(3): 191-212. [F]

Tan, C.L., Quah, T.S., and Teh, H.H. (1991). A neural logic based expert
system. In Proceedings of the Expert Systems Applications Conference, pp.
301-306. [E]

Taraban, R.M. and Palacios, J.M. (1993). Exempler models and weighted
cue models in category learning. In Nakamura, G., Taraban, R., and Medin,
D. (eds.), The Psychology of Learning and Motivation: Categorization by
Humans and Machines, Vol.29, pp. 91-127. Academic Press, San Diego, CA.
[S]

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences,
12(3):435-502. [O]

Thagard, P., Holyoak, K.J., Nelson, G., and Gochfeld, D. (in press). Analog
retrieval by constraint satisfaction. Artificial Intelligence. Also available
as: CSL Report 41. Princeton, NJ: Princeton University, Cognitive Science
Laboratory. [A]

Tirri, H. (1991). Implementing expert system rule conditions by neural net
works. New Generation Computing. 10:55-71. [E]

Todd, P.M. and Rumelhart, D.E. (in press). Feature abstraction from similarity
ratings: A connectionist approach. In Chauvin, Y. and Rumelhart, D.E. (eds.),
Backpropagation: Theory, Architectures, and Applications. Hillsdale, NJ:
Erlbaum Associates. [L]

Torras, C. (1992). Symbolic planning versus neural control in robots. In
Rudomin, P., Arbib, M.A., and Cervantes-P6rez, P. (eds.), Natural and Artifi
cial Intelligence: A Meeting Between Neuroscience and Artificial Intelligence,
Research Notes in Neural Computing, Vol. 4. Springer-Verlag: Berlin Heidel
berg New-York. [J]

Touretzky, D. S. (1989). Chunking in a connectionist network. In Proceedings
of the Eleventh Annual Conference of the Cognitive Science Society, pp. 1-8.
Hillsdale, NJ: Erlbaum. Also Available as: Technical Report CMU-CS-89-

Appendix 455

158. Pittsburgh, PA: Carnegie Mellon University, Computer Science Dept.
[R]

Touretzky, D.S. (1990). BoltzCONS: Dynamic symbol structures in a connec-
tionist network. Artificial Intelligence 46, l(2):5-46. Also In Hinton, G. E.
(Ed.), Connectionist Symbol Processing, Bradford Book, pp. 5-46. MIT Press,
Cambridge, MA. [S]

Touretzky, D.S., and Hinton, G.E. (1988). A distributed connectionist produc
tion system. Cognitive Science, 12(3):423-466. [R]

Touretzky, D. S. and Geva, S. (1987). A distributed connectionist representa
tion for concept structures. In Proceedings of the Eighth Annual Conference
of the Cognitive Science Society. [S]

Touretzky, D.S. and Hinton, G.E. (1985). Symbols among the Neurons: De
tails of a Connectionist Inference Architecture. In Proceedings of the Ninth
Inter national!oint Conference on Artificial Intelligence, pp. 239-243. [R]

Touzet, C. and Giambiasi, N. (1991). Application of connectionist models to
fuzzy inference systems. In Parallelization in Inference Systems, pp. 303-317.
Springer Verlag. [F]

Towell, G. and Shavlik, J.W. (1992). Using symbolic learning to improve
knowledge-based neural networks. In AAAV92, pp. 177-182. [L, R]

Towell, G. G., Shavlik, J. W., and Noordewier, M. O. (1990). Refinement
of approximate domain theories by knowledge-based neural networks. In
AAAI-90, pp. 861-866. Morgan Kaufmann. [L, R]

Towell, G.G. and Shavlik, J.W. (1993). The extraction of refined rules from
knowledge-based neural networks. Machine Learning, 13(1):71-101. [L, R]

Tresp, V., Hollatz, L. and Ahmad, S. (1993). Network structuring and training
using rule-based knowledge. In Giles, C.L, Hanson, S.J., and Cowan, J.D.
(eds.), Advance in Neural Information Processing Systems 5. San Mateo, CA:
Morgan Kaufmann Publishers. [L, R]

Ultsch, A., Hannuschka, R., Hartmann, U., and Weber, V. (1990). Learning
of control knowledge for symbolic proofs with backpropagation networks. In
Eckmiller, R., Hartmann, G., and Hauske, G., (Eds), Parallel Processing in
Neural Systems and Computers, pp. 499-502. Elsevier. [L, R]

456 APPENDIX

van Gelder, T. (1989). Compositionality and the explanation of cognitive
processes. In Proceedings of the Annual Conference of the Cognitive Science
Society, pp. 34-41. [O]

van Gelder, T. (1990). Compositionality. Cognitive Science. 14:355-384. [O]

Wald, J., Farach, M., Tagamets, M., and Reggia, J.A. (1989). Generating
plausible diagnostic hypotheses with self-processing causal networks. Journal
of Experimental and Theoretical Artificial Intelligence, 2:91-112. [E]

Waltz, D.L. and Feldman, J.A. (eds.) (1988). ConnectionistModels andTheir
implications, Ablex. Norwood, NJ. [C]

Waltz, D.L. and Pollack, J.B. (1985). Massively parallel parsing: A strongly
interactive model of natural language interpretation. Cognitive Science, 9:52-
74. [N]

Ward, N. (1993). A Connectionist Language Generator. Norwood, NJ: Ablex.
[N]

Werbos, P. J. (1992). Neurocontrol and fuzzy logic: Connections and designs.
International Journal of Approximate Reasoning, 6(2): 185-220. [F]

Wermter, S. (1989). Integration of semantic and syntactic constraints for
structural noun phrase disambiguation. In Proc. of Eleventh International
Joint Conference on Artificial Intelligence, Detroit, USA. [N, J]

Wermter S. and Lehnert W.G. (1992). Noun phrase analysis with connectionist
networks. In Reilly R. and Sharkey N. (eds.), Connectionist Approaches to
Language Processing, Hilsdale, NJ: Erlbaum. [N, J]

Whitson, G., Wu, C, and Taylor, P. (1990). Using an artificial neural system to
determine the knowledge base of an expert system. In Levine, D. and Aparicio,
M. (Eds.), Neural Networks for Knowledge Representation and Inference. [E]

Yamaguchi, T. and Imasaki, N. and Haruki, K.. (1990). Fuzzy rule realization
on associative memory system. IJCNN90-2, p. 720-723. [F]

Yang, Q. and Bhargava, V. (1990). Building expert systems by a modified
perception network with rule-transfer algorithms. In Proc.of International
Joint Conference on Neural Networks, VoL2, pp. 77-82. [L, E]

Author Index

A
Abelson, R.P., 76, 78, 83,154, 397
Afshartous, N., 53, 298
Ahmad, S., 208
Aizawa, K., 226
Ajjanagadde, V, 5, 23, 73, 81, 91,

103,110,289,365,376
Allen, R.B, 156
Almasi, G.S., 372, 376
Alterman, R., 289,296,300
Alvarado, S.J., 397, 421
Anderson, J.R., 80
Anderson, R.C., 284
Annaswamy, A.M., 353
Aparicioiv, M., 353, 357, 378
Arbib, M.A., 352, 360, 365, 371

B

Baddeley, A.D., 180
Bailey, C.H., 369, 374
Baldwin, A., 236
Ballard, D.H., 6,53,298,312,369,

376
Bara, B.G., 22-23, 26,28-29, 39
Barnden, J.A., 4,22-23,26,30-32,

38, 41, 45, 49, 53-55, 65,
81-82,371,376,408,421

Bartell, B., 202,213,221
Barto, A.G., 180
Baylis, G.C., 312
Beckwith, R., 289
Berg, G., 155,158
Berrey, L.V., 292
Bezdek, J., 3

Bickhard, M.H., 359
Blank, D.S., 31, 164
Boden, M., 361
Booker, L.E., 370, 377
Bookman, L.A., 5,53,81,288-290,

292-294, 296, 298-300, 306,
308-309,312,353,357,371,
376, 378

Brown, C, 376
Bruja, I., 321
Buchanan, B.G., 130, 369
Burr, D., 9, 371
Byrne, J., 373
Byrne, R.M.J., 22-23, 26,28

C

Caramazza, A., 177
Carpenter, G., 370, 376-377
Chalmers, D.J., 31,156, 164,224
Chandrasekaran, B., 355
Charniak, E., 23,77,287,296,311
Chellappa, R., 321
Chen, C, 365, 370, 376
Chrisman, L., 31, 156,164
Chun, H.W.,53,298, 311
Churchland, P.M., 191,220
Churchland, P.S., 355, 357, 373,

423
Cleeremans, A., 156, 376
Cohen, D., 356
Collins, A., 225
Cook, W.A., 156
Cooper, E.D., 355
Cosic, C, 156

457

458 AUTHOR INDEX

Cottrell, G.W., 5,80,193,202,213,
221

Cowan, N., 180
Cowan, W.B., 180
Cui, Y., 320, 325
Cullingford, R, 397

D

Dagli, C.H., 139
Davis, L., 208
Desimone, R., 312
Detweiler, M., 180
Dharmavaratha, D., 54
Dickens, L., 320, 322, 324-325,

329,333
Dietterich, T.G., 369
Dolan, C.P., 79,162, 226, 365
Dreyfus, H., 1
Dreyfus, S., 1
Duda, R.O., 353, 376
Dunker, J., 322, 324
Dyer, M.G., 4-5, 9, 23, 72, 74, 76,

78, 81, 83, 85, 91, 93, 106,
109-110, 154, 156-157, 161,
289, 296, 319, 371, 376-377,
393, 397, 401-406, 409-410,
414-415, 419, 421

D

Eiselt, K.P., 77, 287
Elman, J.L., 155-156,197,202-203,

211,226,397,400,419

F

Fahlman, S., 296,313
Fang, W.Z., 139-140
Fano, R.M., 293
Fasolo, M., 289
Feigenbaum, E.A., 352
Feldman, J.A., 6,53,298,312,369,

410,414

Fellbaum, C, 289
Fillmore, C.J., 156,284,291
Flowers, M, 156, 401, 403-404,

421
Fodor, J.A., 3,9, 30,193,225-227,

354, 367
Forbus, K., 82
Forgy, C.L., 368
Franke, J.L., 130
Freeman, W.J., 122
Fukunaga, K., 353, 377
Funahashi, K.I., 141
Fu, K.S., 353, 369, 376

G

Gallant, S.I., 311, 376-377
Garnham, A., 24
Geist, G.A., 118
Gelfand, J.J., 321-322, 324
Genesereth, M.R., 358, 365
Gentner, D., 82
Giarratano, J., 129-130,134
Giles, C.L., 376
Ginsberg, M., 353, 361
Gochfeld, D., 82
Goldberg, D.E., 353
Goldfarb, L., 370, 376
Goodman, R.M., 321
Goonatilake, S., 353, 378
Gottlieb, A., 372, 376
Granger, R.H., 77, 287
Greenough, W.T., 369, 374
Greenspan, H.K., 321
Grossberg, S., 53, 352, 369-370,

374, 376-377
Gross, D., 289
Grzywacz, 53

H

Hadley, R., 10
Halgren, E., 285, 305

Author Index 459

Hall, L.O., 321
Hammond, K., 82
Handelman, D.A., 321-322, 324
Hanson, S.J., 9, 368, 371
Harmon, P., 130
Hamad, S., 1,364,368,414
Hart, P.E., 353, 376
Hasselmo, M.E., 312
Haupt, H., 202, 213, 221
Haykin, S., 353-354, 369
Heit, G., 305
Hendler, J., 3,5,77, 311,320, 322,

324-325, 329, 333,376
Hertz, J., 122
Hewitt, C, 368
Higgins, CM., 321
Hillis, D., 368
Hinton, G.E., 4, 31, 78-79, 154,

167,225-226,292,408
Hirsch, M.W., 122
Hirst, G., 292
Hofstadter, D., 81
Holbrook, J.K., 77
Holland, J.H., 352-354, 368, 370,

377
Hollatz, J., 208
Holldobler, S., 81, 398
Holyoak, K.J., 82
Honavar, V., 353, 357, 360-361,

363, 365, 369-370, 374-376,
378

Hopfield, J.J., 122, 363
Hornik, K., 141
Hruska, S.I., 118, 127, 130, 134,

139-140
Huang, M.S., 177

J
Jackson, S.J., 367
Jacobs, R.A., 180,376
Jain, A.J., 155,158,180

Johnson-Laird, P.N., 22-24, 26,
28-29, 39, 373,408

Jordan, M.I., 180,198,215
Josephson, S.G., 355

K

Kanal, L., 322-323
Kandel, E.R., 2, 359,418
Kawamoto, A.H., 78,109,155-156,

161
Khebbal, S., 353, 378
Kintsch, W., 80
Kitano, H., 77
Klinger, A., 376
Klir, G.J., 352-353
Kohonen, T., 406, 421
Kolodner, J.L., 82,154, 407
Kosslyn, S., 376
Kowalski, R.A., 365
Koza, J., 353
Kozminsky, E., 284
Krogh, A., 122
Kuffler, S.W., 360, 374
Kuncicky, D.C., 118,127,134,139
Kung, S.Y., 353-354, 369

L

Lacher, R.C., 118, 122, 126-127,
134,139-140,370,377

Laird, J.E., 154
Lakoff, G., 414
Lane, S.H., 321-322, 324
Lange, T.E., 4-5, 9, 72, 74, 77,

79-83, 85, 91, 93-94, 102,
109,289,296, 393, 409

Leake, D.B., 82
Lebowitz, M., 154
Lee, G., 156,403-405,421
Legendre, G., 376
Lehnert, W.G., 154
Levine, D.S., 353, 357, 378

460 AUTHOR INDEX

Levin, L., 77
Lin, C, 376
Lippmann, R.R., 53
Li, L., 312
Logan, G.D., 180
Lubin, J., 368
Lytinen, S., 74, 84

M

Maclennan, B.J., 365-367
Mahoney, J.J., 140
Marshall, J.B., 31,164
Martin, A.R., 360, 374
Martin, C. E., 77
McAvoy, T., 320, 325
McClelland, J.L., 4, 78, 109, 127,

155-157, 161, 167, 190, 194,
197-198,202,204,209,211,
213, 216, 292, 353-354, 376,
390, 397,400, 408

McCulloch, W., 4, 352, 355
McDermott, D., 240
McKenna, X, 374
Mead, C, 366
Medsker, L., 376
Meeden, L.A.,31,164
Mehler, J., 423
Metcalfe, J., 221
Michalewicz, Z., 353
Michalski, R.S., 189, 360, 370
Miclet, L., 353, 369, 376
Miikkulainen, R., 4, 78, 81, 110,

155,157,161-162,168,173-174,
178,288,371,376,397,403-404,
407,409-410,422

Miller, E.K., 312
Miller, G.A., 289
Miller, J.W., 321
Miller, K., 289
Minsky, M.r 352, 354, 365, 371,

402

Mitchell, M., 81
Miyata, Y., 376
Mjolsness, E., 376
Mooney, R.J., 140
Morris, J., 292
Munro, R, 156

N

Nalwa, V, 312
Narendra, K.S., 353
Narita, K., 134
Neisser, U., 352
Nelson, G., 82
Nenov, V.I., 414-415, 419
Newell, A., 154, 352, 354, 359
Nguyen, K.D., 370, 377
Nicholls, J.G., 360, 374
Nigam, S., 370, 376
Nilsson, N.J., 358, 365
Noordweier, M.O., 321
Norman, D.A., 180, 352
Norvig, P., 77, 288-289, 296, 311,

365, 371

O

Oakhill, J.V., 24
Oden, G.C., 371
Oi, T., 122
Omlin, W.C., 376

P

Palmer, R.G., 122
Pazienza, M.T., 289
Pazzani, M.J., 421
Pearl, J., 362, 373
Pichert, J.W., 284
Pinkas, G., 363
Pinker, S., 415, 423
Pitts, W., 4, 352, 355
Plate, T., 31

Author Index 461

Pollack, J.B., 5, 31, 80, 158, 163,
167, 226, 236, 289, 292, 296,
365,400

Port, 367
Posner, I., 180
Pylyshyn, Z.W., 3, 9, 30, 193, 367

Q
Quillian, M.R., 313, 365, 371

R

Raghavan, S., 322-323
Rajaraman, V., 366
Rashevsky, N., 352, 355
Ray, W.H., 321
Regier, T., 414
Reilly, R., 3
Riecken, M.E., 156
Riesbeck, C, 77, 82
Riley, G., 129-130,134
Riolo, R.L., 370, 377
Rolls, E.T., 312
Romaniuk, S.G., 321
Rosenberg, C.R., 323
Rosenbloom, P.S., 154
Rumelhart, D.E., 4, 78, 127, 156,

167, 190, 194, 197-198, 209,
211,216,226,285,292,353-354,
390, 397,400, 408

S

Salzgeber, M.J., 130
Santos, E., 23
Schank, R.C., 76, 78, 82-83, 106,

154, 285, 397
Scherer, A., 322, 324
Schlageter, G., 322, 324
Schneider, W., 180, 352
Schwartz, J., 2, 359
Scott, G.M., 321

Sejnowski, T.J., 323,355,357,373,
423

Selfridge, O.G., 352
Servan-Schreiber, D., 156, 376
Shallice, T., 180
Sharkey, J.C., 155, 158, 164
Sharkey, N.E., 367, 3, 5, 155, 158,

164,223-224, 226, 228,237
Shastri, L., 5, 23, 73, 81, 91, 103,

110,289,296,365,376
Shavlik, J.W., 321, 369-370, 376
Shaw, J.C., 352
Shekhar, S., 5
Shepherd, G.M., 355, 374
Shiffrin, R.M., 180
Shipp, S., 360, 374
Shortliffe, E.H., 130
Simmons, R.F., 162,296,313
Simon, H.A., 154, 352
Simpson, R., 82
Skarda, C, 122
Small, S., 80
Smith, M.E., 305
Smolensky, P., 1, 10, 23, 79, 154,

162, 319, 365, 376
Smyth, P., 321
Snyder, C.R, 180
Sowa, J.F., 296,313,371
Srinivas, K., 22-23, 30, 38, 54-55,

65, 82, 408
St. John, M.F., 78, 155, 157, 178,

202,204,211,213,288,397
Stacey, R., 139
Stinchcomb, M., 141
Stolcke, A., 31,155,158-159,398,

414
Sumida, R.A., 180,410
Sunderam, VS., 118
Sun, R, 3, 5, 9, 13, 81, 91, 140,

289-290, 296, 353, 357, 365,
376, 378, 393

Su, H., 320, 325

462

Sycara, K., 82 Winston, P.H., 353, 361
Wu, D., 31

Tabasko, M., 156
Tanimoto, S.L., 376
Tecuci, G., 189
Thagard, P., 82
Thorndike, P.W., 284
Tomabechi, H., 77
Touretzky, D.S., 4,23, 63,79,154,

156,178,408
Towell, G.G., 321
Tresp, V., 208
Tsang, E., 368
Tsung, R, 193,213,221
TUving, E., 406
Hiring, A.M., 352
T\irner, S.R., 421

U

Uhr, L., 352-353, 357, 360-361,
363, 368-370, 372, 374-378

Ulug, M.E., 322-323

Yager, R.R., 373
Yekovich, F.R., 284
Yuille, A.L., 53
Yu, Y, 162

Zadeh, L.A., 373
Zeidenberg, M., 353-354
Zeki, S., 360, 374
Zurif, E.B., 177

Van Gelder, T., 224,226, 228, 367
Velardi, P., 289

W

Waibel, A., 418
Waltz, D.L., 80,289,292-293,296
Wang, Y.A., 401
Waterman, D.A., 365, 369
Wechsler, H., 376
Werbos, P., 127
Werner, G.M., 421
Wharton, C, 72, 82, 94,102
White, H., 141
Wilensky, R., 76, 419
Wilkins, D.C., 369
Williams, R.J., 156,226

A

Activation space
dynamics, 121, 123, 125-126,

147,191
patterns, 13, 81, 85-87,166,193,

408
representation, 50-51, 189,242,

397,401,405,411
trajectories, 191

Adder networks, 198,201,203,
205,208,217,221

Adjacency matrix notation system,
125

successor notation, 126
Aggregation

local computations, 119
AINET-2, 311
Analog parameters, 118, 144
Analog semantic features, see

ASFs
Analog topographic layouts, 418
Analogical remindings, 83
Anaphora resolution, 156
Arbitration network, 54
Artificial neural networks, 2-4, 10,

202, 207
gaussian distribution, 123, 127
symmetric distributions, 123

ASF closeness, 290, 305, 308
ASF space, 286, 299, 302, 305,

308
ASFs, 284, 286, 292

case role patterns, 308
constellations, 302, 312

Subject Index

how they are chosen, 292
reactive patterns, 309-310, 313
temporal association, 312

Associational mapping behavior,
201

mechanisms, 218
Associative memory, 2, 158, 317,

426, 428
Associative retrieval, 78, 390,408
Asymmetric conclusion formation,

45-46
Asymmetric conclusion formation,

see Symmetric conclusion
formation

Asynchronous equilibrium
computation, 122

Attractor based memory model,
220

Attractors, 122, 191-192
articulated, 191
bowl, 191,220

Autoassociative encoder network,
401,411

Average conditional mutual
information, 290, 309

B

Background frame knowledge, 14,
283-286, 294-295, 298, 303,
310-311

background frame similarity,
306-307

Backpropagation computational
network, 117,129, 144

464 SUBJECT INDEX

Backpropagation, 6-7, 9, 12,14,
110,117-118,156-158,174,
190,198,201,226,230,
232-233, 240, 275, 280, 323,
401,403-404,406,415,421

feed-forward, 209
time varying behaviors, 219

Baseline summary
summary strength, 300-301

Basic level, 15
Beliefs, 32, 72,289, 421
Binding

dynamic, 15, 69,80, 115,318,
392, 429

logical constraints, 110
propagate bindings, 80, 394
role bindings, 80, 84-85, 87-88,

92,97,176,311,393,395,
397, 407

synchrony, 23
units, 86-89, 95,103-108

Biological neural networks, 2,118
firing functions, 122-123

value of, 131,138
synaptic transmission, 122

C

Case-based reasoning, 65, 67, 82,
111,252,275,281

Certainty factors, 118,131,
133-134,144, 147

Chain rule, 127
Children's information-processing

abilities, 317
Classical view of mind, 223
Classical view of mind, see also

Connectionist view of mind
Clause transitions, 166,169-170
CLAUSES, 13,155-160, 162,

165, 168,174-175, 177,180,

184,250,286,288,299,304,
401,408-409

Clustering, 229, 290
CN-region, 298
Coarse knowledge, 118, 144
Coarse-coded, 408
Coarse-grain properties

baseline summary, 285, 289, 300
computing importance, 301

Cognitive psychology, xiv, xvi, 22
Combinatorial learning, 418
Combined subset training, 198,

213,221
Committee model, 123
Commonsense reasoning, 3,

xiii-xiv, 18, 115,248-250,
256,270,282,318

Competitive inhibition
mechanism, 101

Compositional semantics, 115,
187,190

Compositional structure, 226
Comprehension

coarse-grain view, 283
deep reading, 283
expectation, 51, 76, 285, 303,

311
fine-grain view, 283
viewed as a dynamic system, 313

Compressed representations, 158
Computational networks, 124

acyclic topology, 123, 126
asynchronous activation, 120
centrally managed computation

scheduler, 120
combining function, 119,123,

126,128,132,135-138
continuous time, 121-124, 144,

147
data types

analog data, 119, 123-124,
126,144

Subject Index 465

digraph topology, 123
evidence value, 131,138
forward activation, 127
influence factor, 127-128
method of timekeeping, 119
recurrent topology, 124
synaptic function, 120,125-126
update equations, 125

Concept level, 253, 276
Concept refinement, 74
Concept refinement, see

Knowledge refinement
Conceptual knowledge

associational knowledge, 283,
288, 296

relational knowledge, 294-295
Conceptual root analysis, 285-286
Configuration matrix, 34, 36,50
Connection weights, 85,139, 208,

395, 397
Connectionist circuitry, 23, 32, 49
Connectionist networks

distributed representation, 5,
8-9, 14, 157,168, 179, 190,
192, 224-225, 227, 230, 243,
273, 404-405, 426

hybrid representation, 334
localist representation, 4, 10,14,

392-393, 397-399, 403, 406,
409,411

partial programming, 208
realization, 32,49, 52
scaling, 78
subnet, 50
symbol processing, 22

Connectionist view of mind, 224,
242

Conposit, 408
activation of gating nodes, 31
array of active registers, 34
chains of identity links, 25
class register, 41, 58

clump, 35-36, 38, 40-42, 49, 55,
57

command signals, 47-50
connection paths, 31, 50
enabling condition, 44
highlighting condition, 48,

50-51,54-55
highlighting flags, 35, 48-49
highlighting state, 34-35, 42,

47-48, 59
instance register, 41
LM register, 46, 53
parallel implementation, 53
recruitable registers, 55
super free registers, 49
ultra free registers, 49
unclassified tokens, 42, 46,

58-62
Constraint relaxation, 80
Constraint satisfaction, 71,81,

273, 280, 429
evidential, 81,83

CONSYDERR, 253, 272-275
Contextual constraints, 80, 186,

222,428
Convergence, 8,123, 173-174,

404
COPYCAT, 81, 113
Counterfactual propositions, 32
Crosstalk, 31, 104,396

D

DCAIN
ensembles, 395, 410-413, 421
filters, 312, 410-413, 429

selectors, 412
Decision boundaries, 232-233,

235, 238-242
Decision line, 230, 232
Decision space, 14, 224, 228-230,

232,235-239,241-242

466 SUBJECT INDEX

Demons, 76, 402
Dempster-Shaffer theory, 133
Description generation

subnetwork, 204, 206
DETE, 415-416, 418-420, 427

feature planes, 416-418
regions of active neurons, 416

Dictionary trees, 293
Digital signal processor, 322
Directed acyclic network, 53
Disambiguation, 11,71-72, 74-78,

182,271,311,316,390
ambiguity in general, 74, 79, 81,

114,429
DISCERN, 81, 171, 407, 409-410,

422-423
Discrete mapping, 210-213, 217
Discrete time computational

networks, 124,126
DISPAR, 397-398, 404, 407, 410
Distributed representations, 5,

67-69, 156-157, 161, 178,
182-183,185,223-224,390,
402-403,413,427-428

fault tolerance, 7,190-191
hidden units, 79,197,292
superposition, 226

Distributed semantic
representations, 405,427

DUAL, 132, 145,205,253,
401-403,405

Dynamic inferencing, 71,178,
181,187,429

proper inferences, 104
Dynamic reinterpretation, see

Interpretation
DYNASTY, 405, 421-422

E

Elman network, see Simple
recurrent network

Emergent properties, 80
Engineering applications, 4, xvii,

320, 348
Episodic memory, 13, 70, 72, 75,

81,103,111-112, 114,154,
406-408

Error correction learning, 212
Euclidean distance, 207, 224, 234,

236
Event driven computation, 122
Event shape diagrams, 318
Evidential activation, 80, 87-93,

95-96,101,104-105,108
Expert behavior, 118,144
Expert network backpropagation,

118,133,139,144,146
Expert network, 117

of sub-symbolic processors, 118
system of inference, 117

Expert reasoning, 17, 82, 320, 347
Expert system, 15, 117-118, 123,

129-130, 133-135, 139,
144-148, 320-324, 330,
332-335,341,343-348

Explanation-based learning, 321,
421

Extended backpropagation, see
FGREP

F

Feature memory, 418
Feed-forward neural network, 323
Feedback training technique, 205

error feedback, 206, 212-213
error history, 206
prediction feedback, 206-207

FGREP, 157,161,168, 174, 178,
403-405

Fine-grain knowledge, 118,144
Finite state automata

state transitions, xiv, 199

Subject Index 467

Finite state grammar, 156
Fixed size input, 195
Fixed time delay computation, 122
Fixed-size representation, 158
Formation of semantic memories,

406
Forward chaining, 332
Frame selection, 17, 74-75, 81,

280, 426
instantiation, 56, 74

Frame semantics, 316
Fuzzy logic, 3, 249, 282

inference, 130,134

G

Generalization
capability of, 159,418
curve, 141
error, 141-143
inductive mechanisms, 188-189

Gestalt layer, 115,157, 186,
203-204,207,211,213,318

Global network computation, 117,
119-120,144

equilibrium, 121
Granularity spectrum, 409
Grounding problem, 17, 426

H

Hard connections, 135
Hebbian learning, 191
Hidden layer

activation vectors, 199
trajectories, 199

Hierarchical organization
connectivity constraints, 118
symbolic/sub-symbolic, 117
topological, 118,145

High-level cognitive processes,
3-4,8

High-level connectionism, 3, 22

High-level inferencing, 13, 70, 72,
74-77,81,83,88,114,317,
426-427

Holistic computation, 68, 121,
182,224

Horn clauses, 250-251
Human checking, 326
Human memory

inferior temporal cortex, 312,
317

limitations of processing, 165
memory trace, 14, 58, 176
neurophysiological evidence,

284,312,418
Human syllogizers, 28-29
Hybrid shell, 320
Hybrid systems, 14-15, 179, 319,

321-322,324,326,333-334
symbolic connectionist systems,

221

I

ID + content vectors, 395, 398
Image processing identification,

320
Immediate propagation strength,

309
Inductive learning mechanism

limitations, 201
Inference engine, 117, 129,132,

134,144
Inferencing circuitry, 31
Information processing theories,

22
Information-theoretic methods, 14,

296
Instructable connectionist systems,

188-189, 191,193,195,197,
199,201,203,205,207,209,
211,213,215,217,219,221

activation state modification, 219

468 SUBJECT INDEX

behavior
systematicity, 219

compilation, 219
domain inputs, 208-209, 211
instruction inputs, 208-209
instruction sequences

encoding, 192-193,208-209,
217

giving advice, 209-213, 217
represented as temporal

sequences, 193,196,203,
209-212

limitations, 201
partial instructions, 213

Instruction channels
environmental interaction, 188
learning channel, 188
linguistic channel, 188,191
programmer channel, 188

Intelligent filter, 326
Internal representations, 156,179,

185,199,202,207,219,
415-416

Interpolation, 179
Interpretation graph

cover, 250, 252
node coverage, 253,265, 276
weighted semantic graph, 283,

305
Interpretation trajectories, 303
Interpretation

activated, 92
graded, 291, 311
plausible, 81,83
quantitative analysis, 303
reinterpretation, 70, 290, 391
strength of, 303, 305

Intuitive inference, 154
Intuitive thinking, 1
Iterative memorization, 219

Johnson Laird theory, 22-24, 26,
28-30,32,41,55

Katamic memory, 415, 418-420
Knowledge acquisition, 188, 266,

282
of rules or productions, 188
of sentential logical expressions,

188
strategies, xiii, 121,147, 170,

180,183,208,215,219-220,
390-391, 426

Knowledge refinement, 118, 133,
147,149

Kohonen feature map, 406

Language of thought, 227, 243
Language understanding, xvi, 32,

70-72,74-83,91,93,
102-103, 111-112,270,394,
426

Learning curves, 214
Learning rate, 128, 174,206, 211,

216
Learning

algorithms, 5-6, 9,13, 190,220,
249

recruitment, 49, 410-411
simple programming constructs,

194
simple symbolic arithmetic

procedures, 192
unsupervised, 312

LeMICON
activation level, 174, 190, 197,

210-211,215
case role buffer, 296
computation

J

Subject Index 469

activation of relevant
knowledge, 311-312

computing what's new, 311
fluid decision making, 312
formal analysis, 308
hysteresis effects, 312-313
local computation, 310

input buffer, 295
learning

at the ASF level, 302
at the relational level, 299, 308

memory architecture, 283, 287,
289

post-processing reasoning, 275
psychological experiments, 249
reactive buffer, 296

Lexical chains, 292
Lexical disambiguation, 78,

80-81,182,271,390
commit-and-backtrack, 390
delay strategy, 391
every-possible meaning,

390-391
Lexical semantics, 428
Linear threshold functions, 120
Linearly separable, 232
Linguistic meaning, 202

temporal activation patterns, 202,
219,284,322,333

Linguistics, xiv, 114,184, 227,
316-318

Localist encoding, 211,215
Location matrices, 56
Logic-based approaches

deduction, 24, 68
Long-term memory, 401
Long-term procedural knowledge,

189
as numerical weight values, 189

M

Manipulation profiles, 32
Marker passing

networks, 77, 79
processes, 35
signatures, 23, 81,393

Membrane channels, 122-123
Memory

confusions, 81
degradation, 13,155,174, 181

Mental model theory, 22-23, 26
Metaknowledge, 118,145
Metcalfe's CHARM model, 221
Microfeature level, 253, 276
Microfeatures, 86,113, 225,

253-256,261,264-265,
270-271,273,276-277

Molecules, 119,122
Momentum, 128, 174,206, 211
Movie description network

movie image, 203
visual images, 202

Multiplicative connections, 167,
216-217,396

Mutually exclusive relations, 84

N

Negation symbols
use of, 28

NETtalk, 323, 327, 348
Neural circuitry, 22
Neural networks, xii-xvii, 67-68,

117,154-155,189,244,250,
280,282,316,321-324

generalization, 155,163,165,
179,198,210,413

intraconnected nets, 118
output, 324
techniques, 320

NEXUS, 289
Non-concatenative

compositionality, 224, 228

470 SUBJECT INDEX

Nonsystematic knowledge, 283,
292

O

OCCAM, 421
OpEd,421

P

Parallel distributed processing, 17,
114-115,117-118,143,149,
184-185,222,281,317,426,
428

Parallel distributor, 50-55
Parallel production system, 7
Parallel virtual machine, 117-118,

123, 143
Parsing, see SPEC
Partial matching, 7
Partial programming, 208
Partial recall, 102
Pattern association, 194
Pattern recognition, 1-2, 194,

319-322, 324-325, 332-334,
347-348

Pattern transformation, 169
Pattern transport, 160
Perception subnetwork, 204-206
Perceptual tasks, 319
Perceptually-based representation,

414
Perceptually-grounded language

learning, 414, 427
Phase synchronization, 5, 393
Physical symbol hypothesis, 1
Plan layer, 211,213, 215-216, 220
Plan vector, 211
Plan/goal analysis, 71, 75, 95, 99
Plausible inferences, 14, 251,257,

311
Post-synaptic input, 125-127,

136-139

Principal components analysis, 199
Procedural control, 30, 58
Propagation filter, 410-411
Propositional embedding, 38

Q
Quasi-linguistic sequences,

201-202,208-209
event description, 204

Question answering, 204

R

RAAM, 67,158-160, 163-165,
181-182,236,400-401,405,
408-409

Rational thinking, 1-3
Reasoning tasks, 72, 179, 193,

256, 319
Recency effects, 81
Recurrent backpropagation, 201,

203
Recurrent networks, 78, 156, 158,

183,185-186,198-199,203,
205,219-221

Reduced representations, 31, 65,
69

Reflexive reasoning, 73
Register recruitment, 49
Reinforcement methods, 133
Reinterpretation, 70-71, 73, 75,

77,91-92,101,103, 111,
114,290,391

Relational closeness, 308-309
propagation strengths, 309
relational distance, 309

Relational level, 290, 299, 308
Relational novelty, 308, 311
Relational tier

as weighted network, 299
systematic relationships, 3,14,

29-30,67,69,115,192-194,

Subject Index All

199,201,208,210,212,
217-220, 223-224, 226-227,
229, 241-242, 266, 289, 292,
318,429

Relative-position-encoding, 16,
22, 32, 55, 65, 408

REMIND, 70, 72, 82-83, 93
Reminding, 71, 82, 95,100,

102-103,114
episodic, 100
inexpert, 82

Representation space, 229,239
ROBIN, 70, 72, 81-83, 85, 87-91,

93-94,101,103,105-108,
110-112,409

Role binding, 56, 72
Role registers, 35
Rule enablement, 46, 49
Rule representation

action parts, 34
condition parts, 34

Rule-based systems, 22, 76-77,
79,130,146,275

S

Scheduling, 119-120, 123
SCRuFFY, 320-326, 333, 335

control decisions, 323-324
encapsulating expert knowledge,

319
neural network phase, 327
symbolic component, 320, 325

Second-order connections, see
Multiplicative connections

Second-order methods, 217
Selectional restrictions, 83-84, 91,

104-105,108,110
Self-organizing feature maps, 406
Semantic closeness, 290
Semantic constraints, 155,177,

181,183,297

Semantic features, 157, 225,
283-285, 288, 292-293, 297,
310

representation, 78
encoding, 161

Semantic interpretation, 70,
156-157

Semantic memory
associational tier, 14, 283-284,

293,296,313
relational tier, 283, 285, 289
trace, 289

Semantic networks, 77, 79, 83,
187,288,429

serial evaluation, 289-290
Sensor information, 325
Sentence processing, 114,

154-156, 160, 174,184
Serial path evaluator, 93
Short-term memory, 401-402

internal state, 119,125-127, 136,
196,219

Short-term state knowledge, 189
Sigma-pi connections, 216
Sigmoidal functions, 120

sigmoid, 204, 210
Sign propagation, 5
Signatures, 23, 81, 85-89, 93, 95,

103-112, 393-394, 398-399,
409

units, 86
Similarity, 5, 14,22,32,55,

64-65,110,113,132,
223-224, 228-229, 232, 240,
242, 248-249, 252-253,
255-258, 262-265, 268,
272-273, 275-279, 281-282,
284, 287, 289, 293, 303,
305-306, 402, 408

background frame similarity,
306-307

semantic overlap, 94,285, 290

472 SUBJECT INDEX

Simple feed forward network, 196
Simple recurrent network,

156-160,163, 180,197,199,
203,211,215,400,404,
409-410,422

Jordan network, 197,199
sequential behaviors, 198

Smoothing, 330-331, 333
Soft connections, 135,138-139
Spatial representational analog,

418
Spatial structure, 224,228
SPEC, 409

case-role vectors, 162,179
center embeddings, 155-156,

163,165,170, 174-176, 181
embedded structures, 154,165,

427
limitations, 175
network

output assemblies, 161, 174
parse tree, 158
parser, 67,114, 155,158-166,

169-170,173-178, 180, 182
recursive clause structure, 160
segmentation, 169,179,181, 201
segmenter, 159-160,163,

165-167,169-170, 173-174,
179-180,409

stack network, 159,163-164
tail embedding, 162
top level center embedding, 170

Spreading activation, 13,70, 72,
77,79-83,94-95,101-102,
111,113,311,316,390-391,
393,408-409

SSS, 289, 300-301
Statistically-based NLP

co-occurrence statistics, 288,
290-291

Stereotypical situations, 70

Structured connectionist model,
8-9, 288,290

Structured pattern matching, 398
Subconceptual representation, 1,

10-11
Subconfiguration detection

module, 34, 46-47, 49, 52
Subsymbolic case role

representation, 157
Summary strength, 300-301
Superpositional representations,

230
continuously valued vectors, 226
storage, 224

Superstructure, 118,145
Supervised learning, 118,144
Surface semantics, 70, 72, 78, 80
Syllogism propositions, 34, 37
Syllogistic reasoning, 4, 13,

22-23, 29, 38, 66, 69,408
Symbol broadcasting, 51,53
Symbol processing, i, 3-17,22-23,

25,27,29,31,33,35,37,39,
41,43,45,47,49,51,53,55,
57,59,61,63,65,67,69,72,
80-81,194,250,391-392

Symbol recirculation, 425
Symbol representations

properties
efficiency, 64, 142,190,251
memorability, 290

Symbol sharing, 38,48, 52,57
Symbolic level, xvii, 118,

143-145,423
Symbolic markers, 77
Symbolic production system, 80
Symbolic supervisor, 155,167,181
Symmetric conclusion formation,

45,59
Synchronous equilibrium

computation, 121
activation, 120,122

Subject Index 473

fixed point, 121
Syntactic role assignment, 157
Systematicity, 9, 30, 67,193,195,

219,224,227,229,239-243,
424

T

Temporal difference, 133
Temporal pattern matcher, 320,

322-324, 329-330, 332-333,
335, 344-346

Temporal simulation, 274
Temporal-Winner-Take-All,

48-49, 53, 65, 67
Temporary propositions, 30
Tensor products, 226, 395

encoding, 162
Terminal activation state, 126-127,

129
Tightly coupled organization, 7
Time delay neural networks, 418
Time varying streams, 201
Training regime

deterministic method, 206
minimum average sum-squared

error, 206
prediction average sum-squared

error rates, 206
random method, 206
self-supervised training signal,

205
supervised error signal, 205,211
training set accuracy, 215-216
training sets, 140,178, 198
unsupervised error signal, 205
unsupervised prediction error

signal, 207
Trajectory, 189,199,205,285,

289,308,313
time-directed, 285,299, 302

Transiently localist, 13,22, 63,424

Truth maintenance, 391
Two-level architecture, 249, 251,

253,255-257,259,261,263,
265,267,269,271,273,275,
277,279,281

Two-level architecture, see also
Semantic memory and
SCRuFFY

U

Unification
occur check, 398
term layer, 398
unification layer, 398

V

Vague domains, 250
Variable binding, 5, 11, 13, 18, 23,

30, 55, 57-58, 69, 72-73,
80-81,85,91,103,111,150,
186,255-256,392,429

Variable binding, see Binding
Variable sized input

arbitrarily long digit sequences,
195

Vector space, 189-190
Verbal-to-visual/motor association,

415
Vertical concept assembly, 308

case role slots, 296-298
Vocabulary, 168,210, 241,292,

299

W

Weight modifications, 205,
212-213

Widrow-Hoff delta rule, 128
Winner-take-all structures, 298
WordNet,317
Working memory, 23, 30, 32, 34,

55-56,65,182,185,

474

288-289,294-295, 302-313,
408,421

trace, 289

X

XRAAM, 403-405

About the Editors

Ron Sun is currently an assistant professor of computer science at the Univer
sity of Alabama. He received his Ph.D. in computer science from Brandeis
University in 1991. Dr. Sun's research interest centers around the studies of
intellegence and cognition, especially in the areas of reasoning, learning and
connectionist models. He is the author of 40+ papers, and has written, edited
or contributed to 8 books, including the recent monograph: Integrating Rules
and Connectionism for Robust Commonsense Reasoning, published by John
Wiley and Sons. He chaired the symposium on rationality at the 1991 An
nual Conference of Society for Psychology and Philosophy. He organized and
chaired the AAA! Workshop on Integrating Neural and Symbolic Processes,
1992. He has also been on the program committees of many national and
international conferences, such as National Conference on Artificial Intelli
gence (AAAJ-93), International Two-Stream Conference on Expert Systems
and Neural Networks, International Symposium for Integrating Knowledge
and Neural Heuristics, and has been an invited/plenary speaker for some of
them. He was the guest editor of the special issue of Connection Science on
architectures for integrating neural and symbolic processes. For his paper on
integerating rule-based reasoning and connectionist models, he received the
1991 David Man* Award from Cognitive Science Society.

Lawrence A. Bookman is a post-doctoral research scientist at Sun Microsys
tems Laboratories in Chelmsford, MA. He received his Ph.D. in computer
science from Brandeis University in 1992. His research centers on computa
tional models for understanding text, and connectionist and neural models of
cognition. He is the author of Trajectories through Knowledge Space: A Dy
namic Framework for Machine Comprehension published in 1994 by Kluwer
Academic Publishers. He was the guest editor of the special issue of Con
nection Science devoted to architectures that integrate neural and symbolic
processes, and was co-organizer and co-chair of the AAAJ-92 Workshop on
Integrating Neural and Symbolic Processes: The Cognitive Dimension.

475

