

SOFTWARE
ENGINEERING

PROCESSES
Principles and Applications

Yingxu Wang, Prof., Ph.D.
Graham King, Prof., Ph.D.

Boca Raton London New York Washington, D.C.
CRC Press

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2000 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140501

International Standard Book Number-13: 978-1-4822-7454-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To MY PARENTS Y.W.
 To MY WIFE AND DAUGHTERS G.A.K.

“ Deal with the difficult
 while it is still easy.
 Solve large problems
 when they are still small.
 Preventing large problems
 by taking small steps
 is easier than solving them.
 By small actions
 great things are accomplished.”

– /DR 7]X (604-531 BC)

“ Then there is a metatheoretic level where you study
the whole structure of a class of problems. This is the
point of view that we have inherited from logic and
computability theory.”

 – 5LFKDUG .DUS (Turing Award Winner, 1985)

This page intentionally left blankThis page intentionally left blank

v

Contents
Summary

Part I
Fundamentals of the
Software Engineering
Process

19
Review
and
Perspectives

Part II
Software Engineering
Process System
Modeling

Part III
Software Engineering
Process System
Analysis

Part V
Software Engineering
Process
Assessment

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

Part IV
Software Engineering
Process
Establishment

Part VI
Software Engineering
Process
Improvement

vi Contents

Part I. Fundamentals of the Software Engineering Process
1. Introduction
2. A Unified Framework of the Software Engineering Process
3. Process Algebra
4. Process-Based Software Engineering

Part II. Software Engineering Process System Modeling
5. The CMM Model
6. The ISO 9001 Model
7. The BOOTSTRAP Model
8. The ISO/IEC TR 15504 (SPICE) Model
9. The Software Engineering Process Reference Model: SEPRM

Part III. Software Engineering Process System Analysis
10. Benchmarking the SEPRM Processes
11. Comparative Analysis of Current Process Models
12. Transformation of Capability Levels between Current Process Models

Part IV. Software Engineering Process Establishment
13. Software Process Establishment Methodologies
14. An Extension of ISO/IEC TR 15504 Model

Part V. Software Engineering Process Assessment
15. Software Process Assessment Methodologies
16. Supporting Tools for Software Process Assessment

Part VI. Software Engineering Process Improvement
17. Software Process Improvement Methodologies
18. Case Studies in Software Process Improvement

19. Review and Perspectives

Bibliography

Appendixes
A. Mathematical Symbols and Notations
B. Abbreviations
C. Mapping between Current Process Models
D. Benchmarks of the SEPRM Software Engineering Processes
E. SEPRM Process Assessment Templates
F. ISO/IEC 12207 Software Life Cycle Processes
G. ISO/IEC CD 15288 System Life Cycle Processes

Index

Contents vii

Table of Contents

Contents Summary v

Table of Contents vii

Preface xxvii
Acknowledgments xxxvi
Trademarks and Service Marks xxxvii
About the Authors xxxviii

Part I Fundamentals of the Software Engineering Process 1

1 Introduction 3

 1.1 Overview 4
 1.2 The Nature of Software Engineering 6
 1.3 A Perspective on the Foundations of Software Engineering 8
 1.3.1 Philosophical Foundations of Software Engineering 9
 1.3.1.1 Virtualization vs. Realization 9
 1.3.1.2 Problem Domains: Infinite vs. Limited 9
 1.3.1.3 Design-Intensive vs. Repetitive-Production 10
 1.3.1.4 Process Standardization vs. Product
 Standardization

10

 1.3.1.5 Universal Logic Description vs. Domain-Specific
 Description

10

 1.3.1.6 Software-Based Products vs. Physical Products 11
 1.3.2 Theoretical Foundations of Software Engineering 11
 1.3.3 Managerial Foundations of Software Engineering 13
 1.4 Approaches to Software Engineering 15
 1.4.1 Programming Methodologies 16
 1.4.2 Software Development Models 16
 1.4.3 Automated Software Engineering 17
 1.4.4 Formal Methods 18
 1.4.5 The Software Engineering Process 19

1.5 The Process Approach to Software Engineering 20

viii Contents

 1.5.1 Review of History of the Software Engineering Process 21

 1.5.2 Current Software Engineering Process Methods and
 Models

22

 1.5.2.1 CMM 22

 1.5.2.2 ISO 9001 23

 1.5.2.3 BOOTSTRAP 23

 1.5.2.4 ISO/IEC TR 15504 (SPICE) 24
1.6 Issues in Software Engineering Process Research and
 Practices

25

 1.6.1 Problems and Open Issues Identified 25

 1.6.1.1 Problems in Process Modeling 25

 1.6.1.2 Problems in Process Analysis 26

 1.6.1.3 Problems in Model Validation 27

 1.6.2 Methods and Approaches of This Work 28

 1.6.2.1 Methods in Process System Modeling 29

 1.6.2.2 Methods in Process System Analysis 29

 1.6.2.3 Methods for Process Model Integration 30

 1.6.2.4 Methods for Process Model Validation 30
 1.7 Summary 30
 Annotated References 33
 Questions and Problems 35

2 A Unified Framework of the Software Engineering Process 37

 2.1 Introduction 38
2.2 Domain of Software Engineering Process Systems 39

 2.2.1 Software Process System Modeling 39

 2.2.2 Software Process System Establishment 41

 2.2.3 Software Process System Assessment 42

 2.2.4 Software Process System Improvement 42

 2.2.5 Software Process System Standardization 43

 2.2.5.1 Software Engineering Process Standards 43

 2.2.5.2 Software Quality Standards 44
 2.3 A Fundamental View of Software Engineering
 Process Systems

46

 2.3.1 A Generic Model of Software Development Organizations 46

 2.3.2 Process System Architecture in a Software Development
 Organization

49

 2.4 Fundamentals of Software Process System Modeling 51
 2.4.1 Process Model 52

 2.4.1.1 Taxonomy of Software Process Systems 52

 2.4.1.2 The Domain of a Process Model 53

 2.4.2 Process Assessment Model 54

 2.4.2.1 Process Capability Model 54

Contents ix

 2.4.2.2 The Process Capability Determination Method 58

 2.4.3 Process Improvement Model 61
 2.5 Fundamentals of Software Process System Analysis 62
 2.5.1 Analysis of Software Process Models 62

 2.5.1.1 Compatibility between Process Models 63

 2.5.1.2 Correlation between Process Models 64

 2.5.2 Analysis of Software Process Attributes 66

 2.5.2.1 Mean Weighted Importance 67

 2.5.2.2 Ratio of Significance 67

 2.5.2.3 Ratio of Practice 68

 2.5.2.4 Ratio of Effectiveness 68

 2.5.2.5 Characteristic Value (Usage) 69
 2.6 Summary 69
 Annotated References 72
 Questions and Problems 74

3 Process Algebra 77

 3.1 Introduction 78
 3.2 Process Abstraction 79
 3.2.1 Event 79

 3.2.2 Process 80

 3.2.3 Meta-Processes 80

 3.2.3.1 System Dispatch 80

 3.2.3.2 Assignment 80

 3.2.3.3 Get System Time 81

 3.2.3.4 Synchronization 81

 3.2.3.5 Read and Write 81

 3.2.3.6 Input and Output 82

 3.2.3.7 Stop 82
 3.3 Process Relations 82
 3.3.1 Sequential Process 82

 3.3.1.1 Serial 83

 3.3.1.2 Pipeline 83

 3.3.2 Branch Process 83

 3.3.2.1 The Event-Driven Choice 83

 3.3.2.2 The Deterministic Choice 84

 3.3.2.3 The Nondeterministic Choice 84

 3.3.3 Parallel Process 84

 3.3.3.1 The Synchronous Parallel 84

 3.3.3.2 Asynchronous Parallel – Concurrency 85

 3.3.3.3 Asynchronous Parallel – Interleave 85

 3.3.4 Iteration Process 85

 3.3.4.1 Repeat 86

x Contents

 3.3.4.2 While-Do 86

 3.3.5 Interrupt Process 86

 3.3.5.1 Interrupt 86

 3.3.5.2 Interrupt Return 87

 3.3.6 Recursion Process 87
 3.4 Formal Description of Process Systems 89
 3.4.1 Role of Process Combination 89

 3.4.2 Formal Description of Software Processes 90

 3.4.2.1 System Level Description 90

 3.4.2.2 Process Level Description 91
 3.5 Summary 92
 Annotated References 95
 Questions and Problems 96

4 Process-Based Software Engineering 97
 4.1 Introduction 98
 4.2 Software Engineering Process System Establishment 100
 4.2.1 Procedure to Derive a Software Project Process Model 100

 4.2.1.1 Select and Reuse a Process System Reference
 Model at Organization Level

101

 4.2.1.2 Derive a Process Model at Project Level 101

 4.2.1.3 Apply the Derived Project Process Model 102

 4.2.2 Methods for Deriving a Software Project Process Model 103

 4.2.2.1 Process Model Tailoring 103

 4.2.2 2 Process Model Extension 103

 4.2.2.3 Process Model Adaptation 103
 4.3 Software Engineering Process System Assessment 104
 4.3.1 Process Assessment Methods from the Viewpoint of
 Reference Systems

105

 4.3.1.1 Model-Based Assessment 105

 4.3.1.2 Standard-Based Assessment 105

 4.3.1.3 Benchmark-Based Assessment 106

 4.3.1.4 Integrated Assessment 106

 4.3.2 Process Assessment Methods from the Viewpoint of
 Model Structures

107

 4.3.2.1 Checklist-Based Assessment 108

 4.3.2.2 1-D-Process-Based Assessment 108

 4.3.2.3 2-D-Process-Based Assessment 108

 4.3.3 Process Assessment Methods from the Viewpoint of
 Assessor Representative

109

 4.3.3.1 First-Party Assessment 109

 4.3.3.2 Second-Party Assessment 109

 4.3.3.3 Third-Party Assessment 110

Contents xi

 4.3.3.4 Authorized Assessment 110

 4.3.4 Usage of Current Process Models in Process Assessment 110
 4.4 Software Engineering Process System Improvement 111
 4.4.1 Software Process Improvement Philosophies and
 Approaches

111

 4.4.2 Software Process System Improvement Methodologies 113

 4.4.2.1 Model-Based Improvement 114

 4.4.2.2 Standard-Based Improvement 114

 4.4.2.3 Benchmark-Based Improvement 114

 4.4.2.4 Integrated Improvement 114

 4.4.3 Usage of Current Process Models in Process Improvement 115
 4.5 Summary 115
 Annotated References 117
 Questions and Problems 118

Part II Software Engineering Process System Modeling 121

5 The CMM Model 125

 5.1 Introduction 126
 5.2 The CMM Process Model 128
 5.2.1 Taxonomy of the CMM Process Model 128

 5.2.2 Framework of the CMM Process Model 129

 5.2.3 Formal Description of the CMM Process Model 131

 5.2.3.1 The Structure of CMM Process Model 131

 5.2.3.2 Definitions of CMM Processes 132
 5.3 The CMM Process Assessment Model 136
 5.3.1 The CMM Process Capability Model 136

 5.3.1.1 Practice Performance Scale 136

 5.3.1.2 Process Capability Scale 137

 5.3.1.3 Process Capability Scope 138

 5.3.2 The CMM Process Capability Determination
 Methodology

138

 5.3.2.1 Practice Performance Rating Method 139

 5.3.2.2 Process Capability Rating Method 139

 5.3.2.3 Process Capability Determination Method 140

 5.3.2.4 Organization Capability Determination Method 140
 5.4 The CMM Algorithm 140
 5.4.1 Description of the CMM Algorithm 141

 5.4.2 Explanation of the CMM Algorithm 143

 5.4.3 Analysis of the CMM Algorithm 144
 5.5 A Sample CMM Assessment 145

xii Contents

 5.5.1 KP Performance Rating in CMM 146

 5.5.2 Process Capability Determination in CMM 147

 5.5.3 Project Capability Determination in CMM 148
 5.6 Applications of CMM 149
 5.6.1 CMM for Software Process System Establishment 149

 5.6.2 CMM for Software Process System Assessment 150

 5.6.3 CMM for Software Process System Improvement 150
 5.7 Summary 151
 Annotated References 155
 Questions and Problems 155

6 The ISO 9001 Model 159

 6.1 Introduction 160
 6.2 The ISO 9001 Process Model 162
 6.2.1 Taxonomy of the ISO 9001 Process Model 162

 6.2.2 Framework of the ISO 9001 Process Model 163

 6.2.3 Formal Description of the ISO 9001 Process Model 164

 6.2.3.1 The Structure of the ISO 9001 Process Model 165

 6.2.3.2 Definitions of the ISO 9001 Processes 166
 6.3 The ISO 9001 Process Assessment Model 170
 6.3.1 The ISO 9001 Process Capability Model 170

 6.3.1.1 Practice Performance Scale 170

 6.3.1.2 Process Capability Scale 170

 6.3.1.3 Process Capability Scope 172

 6.3.2 The ISO 9001 Process Capability Determination
 Methodology

172

 6.3.2.1 Practice Performance Rating Method 172

 6.3.2.2 Process Capability Rating Method 172

 6.3.2.3 Organization Capability Determination Method 173
 6.4 The ISO 9001 Algorithm 173
 6.4.1 Description of the ISO 9001 Algorithm 174

 6.4.2 Explanation of the ISO 9001 Algorithm 175

 6.4.3 Analysis of the ISO 9001 Algorithm 176
 6.5 A Sample ISO 9001 Assessment 177
 6.5.1 MI Performance Rating in ISO 9001 177

 6.5.2 Process Capability Determination in ISO 9001 179

 6.5.3 Organization Capability Determination in ISO 9001 180
 6.6 Applications of ISO 9001 180
 6.6.1 ISO 9001 for Software Process System Establishment 181

 6.6.2 ISO 9001 for Software Process System Assessment 181

 6.6.3 ISO 9001 for Software Process System Improvement 182
 6.7 Summary 182
 Annotated References 186

Contents xiii

 Questions and Problems 187

7 The BOOTSTRAP Model 191

 7.1 Introduction 192
 7.2 The BOOTSTRAP Process Model 193
 7.2.1 Taxonomy of the BOOTSTRAP Process Model 194
 7.2.2 Framework of the BOOTSTRAP Process Model 194
 7.2.3 Formal Description of the BOOTSTRAP Process Model 197
 7.2.3.1 The Structure of the BOOTSTRAP Process Model 197
 7.2.3.2 Definitions of BOOTSTRAP Processes 198
 7.3 The BOOTSTRAP Process Assessment Model 204
 7.3.1 The BOOTSTRAP Process Capability Model 204
 7.3.1.1 Practice Performance Scale 204
 7.3.1.2 Process Capability Scale 205
 7.3.1.3 Process Capability Scope 206
 7.3.2 The BOOTSTRAP Process Capability Determination
 Methodology

206

 7.3.2.1 Practice Performance Rating Method 206
 7.3.2.2 Process Capability Rating Method 207
 7.3.2.3 Project Capability Determination Method 207
 7.3.2.4 Organization Capability Determination Method 208
 7.4 The BOOTSTRAP Algorithm 209
 7.4.1 Description of the BOOTSTRAP Algorithm 209
 7.4.2 Explanation of the BOOTSTRAP Algorithm 212
 7.4.3 Analysis of the BOOTSTRAP Algorithm 213
 7.5 A Sample BOOTSTRAP Assessment 214
 7.5.1 QSA Performance Rating in BOOTSTRAP 214
 7.5.2 Process Capability Determination in BOOTSTRAP 215
 7.5.3 Project Capability Determination in BOOTSTRAP 215
 7.6 Applications of BOOTSTRAP 217
 7.6.1 BOOTSTRAP for Software Process System
 Establishment

217

 7.6.2 BOOTSTRAP for Software Process System Assessment 218
 7.6.3 BOOTSTRAP for Software Process System Improvement 219
 7.7 Summary 219
 Annotated References 223
 Questions and Problems 223

8 The ISO/IEC TR 15504 (SPICE) Model 227

 8.1 Introduction 228
 8.2 The ISO/IEC TR 15504 Process Model 229
 8.2.1 Taxonomy of the ISO/IEC TR 15504 Process Model 230
 8.2.2 Framework of the ISO/IEC TR 15504 Process Model 230

xiv Contents

 8.2.3 Formal Description of the ISO/IEC TR 15504 Process
 Model

232

 8.2.3.1 The Structure of the ISO/IEC TR 15504 Process
 Model

232

 8.2.3.2 Definitions of ISO/IEC TR 15504 Processes 233
 8.3 The ISO/IEC TR 15504 Process Assessment Model 239
 8.3.1 The ISO/IEC TR 15504 Process Capability Model 239

 8.3.1.1 Practice Performance Scale 239

 8.3.1.2 Process Capability Scale 240

 8.3.1.3 Process Capability Scope 242

 8.3.2 The ISO/IEC TR 15504 Process Capability
 Determination Methodology

242

 8.3.2.1 Base Practice Performance Rating Method 243

 8.3.2.2 Process Capability Rating Method 243

 8.3.2.3 Project Capability Determination Method 245

 8.3.2.4 Organization Capability Determination Method 245
 8.4 The ISO/IEC TR 15504 Algorithm 246
 8.4.1 Description of the ISO/IEC TR 15504 Algorithm 246

 8.4.2 Explanation of the ISO/IEC TR 15504 Algorithm 251

 8.4.3 Analysis of the ISO/IEC TR 15504 Algorithm 252
 8.5 A Sample ISO/IEC TR 15504 Assessment 253
 8.5.1 BP Performance Rating in ISO/IEC TR 15504 253

 8.5.2 Process Attribute Rating in ISO/IEC TR 15504 254

 8.5.3 Process Capability Determination in ISO/IEC TR 15504 258

 8.5.4 Project Capability Determination in ISO/IEC TR 15504 258
 8.6 Applications of ISO/IEC TR 15504 259
 8.6.1 ISO/IEC TR 15504 for Software Process System
 Establishment

260

 8.6.2 ISO/IEC TR 15504 for Software Process System
 Assessment

260

 8.6.3 ISO/IEC TR 15504 for Software Process System
 Improvement

261

 8.7 Summary 261
 Annotated References 266
 Questions and Problems 267

9 The Software Engineering Process Reference Model: SEPRM 269

 9.1 Introduction 271
 9.1.1 Overview 271

 9.1.2 Foundations of the Software Engineering Process
 Reference Model

273

 9.1.3 Practical Requirements for a Software Engineering
 Process Reference Model

273

Contents xv

 9.2 The SEPRM Process Model 275
 9.2.1 Taxonomy of the SEPRM Process Model 276
 9.2.2 Framework of the SEPRM Process Model 276
 9.2.3 Formal Descriptions of the SEPRM Process Model 279
 9.2.3.1 The Structure of the SEPRM Process Model 280
 9.2.3.2 Definitions of SEPRM Processes 281
 9.3 The SEPRM Process Assessment Model 291
 9.3.1 The SEPRM Process Capability Model 292
 9.3.1.1 Practice Performance Scale 292
 9.3.1.2 Process Capability Scale 292
 9.3.1.3 Process Capability Scope 294
 9.3.2 The SEPRM Process Capability Determination
 Methodology

295

 9.3.2.1 Practice Performance Rating Method 295
 9.3.2.2 Process Capability Rating Method 296
 9.3.2.3 Project Capability Determination Method 296
 9.3.2.4 Organization Capability Determination Method 297
 9.4 The SEPRM Algorithm 297
 9.4.1 Description of the SEPRM Algorithm 297
 9.4.2 Explanation of the SEPRM Algorithm 302
 9.4.3 Analysis of the SEPRM Algorithm 303
 9.5 A Sample SEPRM Assessment 304
 9.5.1 BPA Performance Rating in SEPRM 304
 9.5.2 Process Capability Determination in SEPRM 305
 9.5.3 Project Capability Determination in SEPRM 308
 9.6 Applications of SEPRM 309
 9.6.1 SEPRM for Software Process System Establishment 309
 9.6.2 SEPRM for Software Process System Assessment and
 Improvement

310

 9.7 Summary 310
 Annotated References 313
 Questions and Problems 315

Part III Software Engineering Process System Analysis 319

10 Benchmarking the SEPRM Processes 323

 10.1 Introduction 324
 10.2 Methods for Characterizing Software Process 325
 10.2.1 Characterizing BPAs by Attributes 326
 10.2.2 Benchmarking Software Process by Characteristic 326

xvi Contents

 Curves
 10.2.3 Plot and Illustration of Process Benchmarks 327
 10.3 Benchmarks of the Organization Processes 327
 10.3.1 Benchmarks of the Organization Structure Process
 Category

328

 10.3.1.1 The Organization Definition Process 328

 10.3.1.2 The Project Organization Process 329

 10.3.2 Benchmarks of the Organization Process Category 329

 10.3.2.1 The Organization Process Definition 329

 10.3.2.2 The Organization Process Improvement 329

 10.3.3 Benchmarks of the Customer Service Process
 Category

330

 10.3.3.1 The Customer Relations Process 330

 10.3.3.2 The Customer Support Process 330

 10.3.3.3 Software/System Delivery Process 331

 10.3.3.4 The Service Evaluation Process 331

 10.3.4 General Characteristics of the Organization Process
 Subsystem

331

 10.4 Benchmarks of the Development Processes 333
 10.4.1 Benchmarks of the Software Engineering
 Methodology Process Category

334

 10.4.1.1 The Software Engineering Modeling Process 334

 10.4.1.2 The Reuse Methodologies Process 334

 10.4.1.3 The Technology Innovation Process 335

 10.4.2 Benchmarks of the Software Development Process
 Category

335

 10.4.2.1 The Development Process Definition 335

 10.4.2.2 The Requirement Analysis Process 336

 10.4.2.3 The Design Process 336

 10.4.2.4 The Coding Process 336

 10.4.2.5 The Module Testing Process 337

 10.4.2.6 The Integration and System Testing Process 337

 10.4.2.7 The Maintenance Process 337

 10.4.3 Benchmarks of the Software Development
 Environment Process Category

338

 10.4.3.1 The Environment Process 338

 10.4.3.2 The Facilities Process 338

 10.4.3.3 The Development Support Tools Process 339

 10.4.3.4 The Management Support Tools Process 339

 10.4.4 General Characteristics of the Development Process
 Subsystem

339

 10.5 Benchmarks of the Management Processes 341
 10.5.1 Benchmarks of the Software Quality Assurance 342

Contents xvii

 Process Category
 10.5.1.1 The SQA Procedure Definition Process 342

 10.5.1.2 The Requirement Review Process 343

 10.5.1.3 The Design Review Process 343

 10.5.1.4 The Code Review Process 343

 10.5.1.5 The Module Testing Audit Process 344

 10.5.1.6 The Integration and System Test Audit
 Process

344

 10.5.1.7 The Maintenance Audit Process 344

 10.5.1.8 The Audit and Inspection Process 345

 10.5.1.9 The Peer Review Process 345

 10.5.1.10 The Defect Control Process 345

 10.5.1.11 The Subcontractor’s Quality Control
 Process

346

 10.5.2 Benchmarks of the Project Planning Process Category 346

 10.5.2.1 The General Project Plan Process 346

 10.5.2.2 The Project Estimation Process 346

 10.5.2.3 The Project Risk Avoidance Process 347

 10.5.2.4 The Project Quality Plan Process 347

 10.5.3 Benchmarks of the Project Management Process
 Category

347

 10.5.3.1 Process Management 348

 10.5.3.2 Process Tracking 348

 10.5.3.3 The Configuration Management Process 348

 10.5.3.4 The Change Control Process 349

 10.5.3.5 The Process Review 349

 10.5.3.6 The Intergroup Coordination Process 349

 10.5.4 Benchmarks of the Contract and Requirement
 Management Process Category

350

 10.5.4.1 The Requirement Management Process 350

 10.5.4.2 The Contract Management Process 350

 10.5.4.3 The Subcontractor Management Process 350

 10.5.4.4 The Purchasing Management Process 351

 10.5.5 Benchmarks of the Document Management Process
 Category

351

 10.5.5.1 The Documentation Process 351

 10.5.5.2 The Process Database/Library 352

 10.5.6 Benchmarks of the Human Resource Management
 Process Category

352

 10.5.6.1 The Staff Selection and Allocation Process 352

 10.5.6.2 The Training Process 352

 10.5.7 General Characteristics of the Management Process
 Subsystem

353

xviii Contents

 10.6 The Highlights of Process Characteristics 354
 10.6.1 The Most/Least Significant Processes 356
 10.6.2 The Most/Least Practical Processes 356
 10.6.3 The Most/Least Effective Processes 357
 10.6.4 The Most/Least Useful Processes 358
 10.7 Summary 358
 Annotated References 362
 Questions and Problems 363

11 Comparative Analysis of Current Process Models 365

 11.1 Introduction 366
 11.1.1 Domains of BPAs of Current Process Models 367
 11.1.2 Compatibility between Current Process Models 367
 11.1.3 Correlation between Current Process Models 368
 11.2 The ISO/IEC TR 15504 Model 368
 11.2.1 Compatibility of ISO/IEC TR 15504 to Other Models 368
 11.2.2 Correlation of ISO/IEC TR 15504 with Other Models 370
 11.2.2.1 ISO/IEC TR 15504 vs. SEPRM 371
 11.2.2.2 ISO/IEC TR 15504 vs. CMM 371
 11.2.2.3 ISO/IEC TR 15504 vs. BOOTSTRAP 371
 11.2.2.4 ISO/IEC TR 15504 vs. ISO 9001 371
 11.3 The CMM Model 372
 11.3.1 Compatibility of CMM to Other Models 372
 11.3.2 Correlation of CMM with Other Models 373
 11.3.2.1 CMM vs. SEPRM 374
 11.3.2.2 CMM vs. ISO/IEC TR 15504 374
 11.3.2.3 CMM vs. BOOTSTRAP 374
 11.3.2.4 CMM vs. ISO 9001 375
 11.4 The BOOTSTRAP Model 374
 11.4.1 Compatibility of BOOTSTRAP to Other Models 375
 11.4.2 Correlation of BOOTSTRAP with Other Models 376
 11.4.2.1 BOOTSTRAP vs. SEPRM 377
 11.4.2.2 BOOTSTRAP vs. ISO/IEC TR 15504 377
 11.4.2.3 BOOTSTRAP vs. CMM 377
 11.4.2.4 BOOTSTRAP vs. ISO 9001 378
 11.5 The ISO 9001 Model 378
 11.5.1 Compatibility of ISO 9001 to Other Models 378
 11.5.2 Correlation of ISO 9001 with Other Models 379
 11.5.2.1 ISO 9001 vs. SEPRM 380
 11.5.2.2 ISO 9001 vs. ISO/IEC TR 15504 380
 11.5.2.3 ISO 9001 vs. CMM 380
 11.5.2.4 ISO 9001 vs. BOOTSTRAP 380
 11.6 The SEPRM Model 381

Contents xix

 11.6.1 Compatibility of SEPRM to Other Models 381

 11.6.2 Correlation of SEPRM with Other Models 382

 11.6.2.1 SEPRM vs. ISO/IEC TR 15504 383

 11.6.2.2 SEPRM vs. CMM 384

 11.6.2.3 SEPRM vs. BOOTSTRAP 384

 11.6.2.4 SEPRM vs. ISO 9001 384
 11.7 Overview of Interrelationships between Current
 Process Models

384

 11.7.1 Configuration Orientation of Current Process Models 385

 11.7.2 Compatibility between Current Process Models 386

 11.7.3 Correlation between Current Process Models 387
 11.8 Summary 389
 Annotated References 394
 Questions and Problems 395

12 Transformation of Capability Levels between Current Process

 Models

397

 12.1 Introduction 398
 12.2 A Comparative Assessment Case Study 399
 12.2.1 The SEPRM Assessment Result 399

 12.2.2 The ISO/IEC TR 15504 Assessment Result 401

 12.2.3 The CMM Assessment Result 401

 12.2.4 The BOOTSTRAP Assessment Result 402

 12.2.5 The ISO 9001 Assessment Result 402
 12.3 Transformation of Process Capability Levels 403
 12.4 Robustness of Current Process Models 405
 12.4.1 Case A – Biased Overrating 405

 12.4.2 Case B – Biased Underrating 406

 12.4.3 Case C – A Normal Case 406
 12.5 Estimation of Assessment Effort for Different Process
 Models

406

 12.6 Summary 408
 Annotated References 411
 Questions and Problems 412

Part IV Software Engineering Process Establishment 413

13 Software Process Establishment Methodologies 417

 13.1 Introduction 418

xx Contents

 13.2 Methods for Software Engineering Process
 Establishment

419

 13.2.1 Process Model Reuse 420
 13.2.2 Process Model Tailoring 421
 13.2.3 Process Model Extension 422
 13.2.4 Process Model Adaptation 423
 13.3 A Parallel Process Model for Software Quality
 Assurance

424

 13.3.1 Software Engineering Models vs. Software
 Development Models

424

 13.3.2 Structure of the PPM Model 425
 13.3.3 Implementation of the PPM Model 426
 13.3.3.1 Parallel Process 1: Development Process
 Definition vs. SQA Process Definition

426

 13.3.3.2 Parallel Process 2: Requirement Analysis vs.
 Requirement Review

427

 13.3.3.3 Parallel Process 3: Design vs. Design
 Review

428

 13.3.3.4 Parallel Process 4: Coding vs. Code Review 428
 13.3.3.5 Parallel Process 5: Module Testing vs.
 Module Testing Audit

429

 13.3.3.6 Parallel Process 6: Integration and System
 Testing vs. System Testing Audit

429

 13.3.3.7 Parallel Process 7: Maintenance vs.
 Maintenance Audit

429

 13.4 A Software Project Management Process Model 430
 13.4.1 A Derived Process Model for Software Project
 Management

430

 13.4.2 Project Planning Processes 431
 13.4.2.1 Project Plan Process 431
 13.4.2.2 Project Estimation Process 432
 13.4.2.3 Project Risk Avoidance Process 433
 13.4.2.4 Project Quality Plan Process 434
 13.4.3 Project Management Process 434
 13.4.3.1 Process Management 435
 13.4.3.2 Process Tracking 435
 13.4.3.3 Configuration Management Process 436
 13.4.3.4 Change Control Process 436
 13.4.3.5 Process Review 437
 13.4.3.6 Intergroup Coordination Process 437
 13.5 A Tailored CMM Process Model 438
 13.5.1 Motivation for T-CMM 438
 13.5.2 Method for Tailoring CMM 439

Contents xxi

 13.5.3 The T-CMM Process and Capability Models 439

 13.5.4 Relationships between T-CMM and ISO/IEC TR
 15504

440

 13.6 Summary 441
 Annotated References 446
 Questions and Problems 447

14 An Extension of ISO/IEC TR 15504 Model 449
 14.1 Introduction 450
 14.2 Establishment of the PULSE Acquisition Process Model 452
 14.2.1 The PULSE Process Reference Model 452

 14.2.2 The PULSE Process Assessment Model 453

 14.2.3 The PULSE Process Assessment Method 453
 14.3 Extension of the ISO/IEC TR 15504 Process Dimension 454
 14.3.1 The Acquisition Process Category 455

 14.3.2 The Support Process Category 456

 14.3.3 The Management Process Category 456

 14.3.4 The Organization Process Category 456

 14.3.5 Definitions of the Acquisition Processes 456

 14.3.5.1 ACQ.1 – Acquisition Needs Process 457

 14.3.5.2 ACQ.2 – Requirement Definition Process 459

 14.3.5.3 ACQ.3 – Contract Award Process 462

 14.3.5.4 ACQ.4 – Contract Performance Process 464
 14.4 Extension of the ISO/IEC TR 15504 Capability
 Dimension

466

 14.4.1 The PULSE Process Capability Model 466

 14.4.2 Capability Transformation between PULSE and
 ISO/IEC TR 15504

468

 14.5 The PULSE Process Assessment Method 468
 14.6 Summary 470
 Annotated References 473
 Questions and Problems 474

Part V Software Engineering Process Assessment 475

15 Software Process Assessment Methodologies 479
 15.1 Introduction 480
 15.2 Model-Based Process Assessment 481
 15.2.1 SEPRM Assessment Preparation Phase 482

 15.2.1.1 Define Assessment Purpose 482

xxii Contents

 15.2.1.2 Define Assessment Scope 483

 15.2.1.3 Appoint Assessment Team 484

 15.2.1.4 Prepare Assessment Confidentiality
 Agreement

484

 15.2.1.5 Plan Schedule and Resources 485

 15.2.1.6 Map Organization’s Process onto the
 SEPRM Reference Model

485

 15.2.1.7 Specify Processes to be Assessed and Target
 Capability Levels

486

 15.2.2 SEPRM Assessment Phase 486

 15.2.2.1 Development Assessment Brief 487

 15.2.2.2 Data Collection, Validation, and Rating 487

 15.2.2.3 Derive Process Ratings and Capability
 Profile

488

 15.2.2.4 Strengths and Weaknesses Analysis 489

 15.2.3 SEPRM Assessment Output Phase 489
 15.3 Benchmark-Based Process Assessment 490
 15.3.1 A New Approach to Benchmark-Based Software
 Process Assessment

491

 15.3.2 SEPRM Benchmarks of Software Engineering
 Processes

492

 15.3.3 Benchmark-Based Assessment Method 494

 15.3.3.1 Adopt a Benchmarked Process Model 494

 15.3.3.2 Conduct a Baseline Assessment 494

 15.3.3.3 Plot Process Capability Profile onto the
 Benchmarks

494

 15.3.3.4 Identify Gaps between a Process Profile and
 the Benchmarks

495

 15.4 Summary 496
 Annotated References 499
 Questions and Problems 499

16 Supporting Tools for Software Process Assessment 501
 16.1 Introduction 502
 16.2 Template-Supported Process Assessment 503
 16.2.1 Template 1 – Assessment Purpose 504

 16.2.2 Template 2 – Assessment Scope 505

 16.2.3 Template 3 – Assessment Team and Responsibilities 508

 16.2.4 Template 4 – Assessment Confidentiality Agreement 509

 16.2.5 Template 5 – Assessment Schedule and Resources 510

 16.2.6 Template 6 – Processes to be Assessed and Target
 Capability Levels

512

 16.2.7 Template 7 – Assessment Brief 514

Contents xxiii

 16.2.8 Template 8 – Process Strengths and Weaknesses
 Analysis

516

 16.3 Tool-Supported Process Assessment 520
 16.3.1 Overview of Process Assessment Tools 520

 16.3.1.1 SPICE 1-2-1 520

 16.3.1.2 PULSE 520

 16.3.1.3 BootCheck 521

 16.3.1.4 The SEAL Process Assessment Tool 521

 16.3.1.5 S:PRIME 522

 16.3.1.6 Japanese Process Assessment Support Tools 522

 16.3.2 Functions of Tools for Supporting Assessment 523

 16.3.2.1 Process Dimension 523

 16.3.2.2 Process Capability Dimension 523

 16.3.3 Functions of Tools for Process Capability
 Determination

525

 16.4 Summary 525
 Annotated References 528
 Questions and Problems 529

Part VI Software Engineering Process Improvement 531

17 Software Process Improvement Methodologies 535
 17.1 Introduction 536
 17.2 Model-Based Process Improvement 539
 17.2.1 Examining the Needs for Process Improvement 539

 17.2.2 Conducting a Baseline Process Assessment 640

 17.2.3 Identifying Process Improvement Opportunities 541

 17.2.3.1 Identifying Weak Processes 541

 17.2.3.2 Determining Improvement Aims and
 Priorities

541

 17.2.3.3 Deriving an Improvement Action Plan 542

 17.2.4 Implementing Recommended Improvements 542

 17.2.5 Reviewing Process Improvement Achievement 543

 17.2.6 Sustaining Improvement Gains 543
 17.3 Benchmark-Based Process Improvement 544
 17.3.1 A New Philosophy of Relative Process Improvement 544

 17.3.2 Method for Benchmark-Based Process Improvement 545
 17.4 Template-Based Process Improvement 547
 17.5 Summary 550
 Annotated References 554

xxiv Contents

 Questions and Problems 554

18 Case Studies in Software Process Improvement 557
 18.1 Introduction 558
 18.2 Benefits of Software Process Improvement 559
 18.2.1 Measurements for Benefits of Software Process
 Improvement

559

 18.2.2 Statistics Data on Benefits of Software Process
 Improvement

561

 18.2.3 Industry Comments on Software Process
 Improvement

562

 18.3 Software Process Improvement Case-1 564
 18.3.1 Background 564
 18.3.2 Approach to Process Improvement 565
 18.3.3 Lessons Learned 566
 18.4 Software Process Improvement Case-2 567
 18.4.1 Background 567
 18.4.2 Approach to Process Improvement 567
 18.4.3 Lessons Learned 570
 18.5 Software Process Improvement Case-3 572
 18.5.1 Background 572
 18.5.2 Approach to Process Improvement 572
 18.5.3 Lessons Learned 577
 18.5 Summary 578
 Annotated References 581
 Questions and Problems 583

19 Review and Perspectives 585
 19.1 Overview 586
 19.2 Review of Advances in Process-Based Software
 Engineering

587

 19.3 Perspectives on Future Development 593
 19.3.1 Trends in Software Engineering Research 593
 19.3.2 Trends in Software Process Standardization 597
 19.3.3 Trends in the Software Industry 598
 19.4 Concluding Remarks 600
 Annotated References 602

Bibliography 605

Contents xxv

Appendixes 633
 A. Mathematical Symbols and Notations 635
 B. Abbreviations 637
 C. Mapping between Current Process Models 639
 D. Benchmarks of the SEPRM Software Engineering
 Processes

657

 E. SEPRM Process Assessment Templates 671
 F. ISO/IEC 12207 Software Life Cycle Processes 689
 G. ISO/IEC CD 15288 System Life Cycle Processes 693

Index 699

This page intentionally left blankThis page intentionally left blank

xxvii

Preface

oftware engineering is a discipline of increasing importance
in computing and informatics. The nature of problems in software
engineering arise from the inherent complexity and diversity, the

difficulty of establishing and stabilizing requirements, the changeability or
malleability of software, the abstraction and intangibility of software
products, the requirement of varying problem domain knowledge, the
nondeterministic and polysolvability in design, the polyglotics and
polymorphism in implementation, and the interactive dependency of
software, hardware, and human being.

A new approach for dealing with the difficulties of large-scale software
development emerged in the last decade. It sought to establish an
appropriate software engineering process system. A software engineering
process system is a set of empirical and best practices in software
development, organization, and management which serves as an reference
model for regulating the process activities in a software development
organization.

Research into the software engineering process is a natural extension of
scope from that of the software development methodologies necessary
to meet the requirement for engineering large-scale software
development. Conventional software development methodology studies
cover methods, models, approaches, and phases of software development.
The software engineering process, then, covers not only software
development methodologies but also engineering methodologies and
infrastructures for software corporation organization and project
management.

As the scale of software increases continually and at an ever faster rate,
greater complexity and professional practices become critical. Software
development is no longer solely a black art or laboratory activity; instead, it
has moved inexorably toward a key industrialized engineering process. In
software engineering, the central role is no longer that of the programmers;

S

xxviii Preface

project managers and corporate management have critical roles to play. As
programmers use programming technologies, software corporation
managers seek organizational and strategic management methodologies, and
project managers seek professional management and software quality
assurance methodologies. These developments have resulted in a modern,
expanded domain of software engineering which includes three important
aspects: development methodology, organization and infrastructure, and
management.

Understanding the need to examine the software engineering process
follows naturally from the premise that has been found to be true in other
engineering disciplines, that is, that better products result from better
processes. For the expanded domain of software engineering, the existing
methodologies that cover individual subdomains are becoming inadequate.
Therefore, an overarching approach is sought for a suitable theoretical and
practical infrastructure to accommodate all the modern software engineering
practices and requirements. An interesting approach, which is capable of
accommodating the complete domain of software engineering, has been
recognized and termed the “software engineering process”. Research into
and adoption of the software engineering process paradigm will encompass
all the approaches to software engineering.

To model the software engineering processes, a number of software
process system models such as CMM, ISO 9001, BOOTSTRAP, ISO/IEC
15504 (SPICE) have been developed in the last decade. The variety and
proliferation of software engineering process research and practices
characterize the software engineering process as a young subdiscipline of
software engineering that still needs integration and fundamental research.
Studies in the software process reflect a current trend that shifts from
controlling the quality of the final software product to the
optimization of the processes that produce the software. It is also
understood that the software engineering process, rather than the software
products themselves, can be well established, stabilized, reused, and
standardized.

A comprehensive and rigorous textbook is needed to address the unified
and integrated principles, foundations, theories, frameworks, and best
practices in software engineering process establishment, assessment, and
improvement. This book is the first textbook intending to address both
practical methodologies for process-based software engineering and the
fundamental theories and philosophies behind them. This book covers broad
areas of the new discipline of process-based software engineering such as
software process foundations, modeling, analysis, establishment, assessment,
and improvement.

Preface xxix

The Aims of this Book

This book has emphasis on establishing a unified software engineering
process framework integrating current process models, and developing a
rigorous approach to process-based software engineering.

The aim is to investigate the philosophical, mathematical, and
managerial foundations of software engineering; to establish a unified
theoretical foundation for software engineering process modeling, analysis,
establishment, assessment, and improvement; to explore the feature,
orientation, interrelationship, and transformability of current process
models; and to integrate the current process models and methodologies into
a unified process framework–the software engineering process reference
model (SEPRM).

Using a unified process framework, important current software process
models are analyzed comparatively. The process frameworks and process
capability determination methods of current models are formally described.
As a means of introducing engineering rigor to process modeling, the
algorithms of current process models are formally elicited. The ideas for
mutual comparison between current models, the avoidance of ambiguity in
application, and the simplification of manipulation for practitioners are
addressed systematically.

The SEPRM is developed to show how to solve the problems of different
process domains, orientations, structures, taxonomies, and methods. A set of
process benchmarks has been derived that are based on a series of worldwide
surveys of software engineering process practices. Based on the overarching
SEPRM model and the unified process theory, this book demonstrates that
for the first time, current process models can be integrated and their
assessment results can be transformed from one to another. This has
practical significance for those who are facing a requirement of multiple
certifications, or to those who are pondering the implications of capability
levels in different process models.

The Features of this Book

This book is characterized both as a comprehensive reference text for
practitioners and as a vade mecum for students. The features of this book are
that it:

xxx Preface

• Investigates the philosophical, mathematical, and managerial
foundations of software engineering

• Provides a unified software engineering process framework and
an overarching software engineering process reference model
(SEPRM)

• Develops a rigorous and practical approach to process-based
software engineering

• Furnishes a detailed guide and case studies for practitioners in the
industry

• Summarizes research findings, new methodologies, and applications
in the discipline of software process engineering

Supplementary to the main body of text presented in this book, a number of
reading aids is specially prepared for readers. A brief description of purposes
is provided in front of each chapter, with a discussion of background of the
chapter and its relationships to other parts and chapters of the book. A brief
summary and a sidebar of knowledge structure are developed for each
chapter which extract key knowledge and major achievements in each
chapter. Annotated references are provided, helping readers to find related
knowledge and/or alternative approaches in the literature, and to get
familiar with the research and practices in the entire discipline of process-
based software engineering.

The Structure of this Book

Software engineering process systems provide a fundamental infrastructure
for organizing and implementing software engineering. The software
engineering process discipline studies theories and foundations, modeling,
analysis, establishment, assessment, improvement, and standardization of
software processes. Viewing the knowledge structure of the software
engineering process discipline as shown below, this book explores and
investigates each topic systematically:

Preface xxxi

Part I
Fundamentals of the
Software Engineering
Process

19
Review
and
Perspectives

Part II
Software Engineering
Process System
Modeling

Part III
Software Engineering
Process System
Analysis

Part V
Software Engineering
Process
Assessment

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

Part IV
Software Engineering
Process
Establishment

Part VI
Software Engineering
Process
Improvement

Part I – Fundamentals of the Software Engineering Process

The first part of this book investigates fundamentals of the software
engineering process, and explores basic theories and empirical practices
developed in this new discipline. A systematic and rigorous approach is
taken in order to build a unified software engineering process framework.

The knowledge structure of this part, fundamentals of the software
engineering process systems, is as follows:

• Chapter 1. Introduction
• Chapter 2. A Unified Framework of Software Engineering Process
• Chapter 3. Process Algebra
• Chapter 4. Process-Based Software Engineering

Based on the fundamental studies developed in this part, we will reach a key
conclusion that software engineering is naturally a process system, and
perhaps the most unique and complicated process system in all existing
engineering disciplines.

Part II – Software Engineering Process System Modeling

Software engineering process system modeling explores a complete domain
of software engineering processes, its architectures, and the fundamental
framework. This part investigates current process models and contrasts them
with the unified process framework developed in Part I. Comparative
analyses of their interrelationships will be presented in Part III.

The knowledge structure of this part, software engineering process
system modeling, is as follows:

xxxii Preface

• Chapter 5. The CMM Model
• Chapter 6. The ISO 9001 Model
• Chapter 7. The BOOTSTRAP Model
• Chapter 8. The ISO/IEC 15504 (SPICE) Model
• Chapter 9. The Software Engineering Process Reference Model:
 SEPRM

Part II adopts the unified process system framework developed in Part I as a
fundamental common architecture in presenting the current process system
models. A key conclusion of this part is that SEPRM is a superset paradigm
of the current process models and the unified software engineering process
framework. It is also demonstrated that the current process models
can be fit within the unified framework of the software engineering process
systems.

Part III – Software Engineering Process System Analysis

One of the most frequently-asked questions in the software industry is “what
are the interrelationships between current process models?” In the previous
part we presented formal views on individual process models. Part III
explores the interrelationships between them via quantitative analysis, and
investigates practical foundations of the software engineering process via
benchmarking.

The knowledge structure of this part, software engineering process
system analysis, is as follows:

• Chapter 10. Benchmarking the SEPRM Processes
• Chapter 11. Comparative Analysis of Current Process Models
• Chapter 12. Transformation of Capability Levels between Current

 Process Models

A rigorous and quantitative approach is adopted in order to analyze the
characteristic attributes of process, the compatibility and correlation of
process models, and the interrelationships and transformability of capability
levels in different process models. Objective views on features and
orientations of current process models are obtained from the analyses.

Part IV – Software Engineering Process Establishment

Software engineering process system establishment is the first important
step in process-based software engineering because reliance is placed on
both process assessment and improvement theories and practices. Working
on the common foundation of a systematically established process system,

Preface xxxiii

this part explores methodologies and approaches to software engineering
process system establishment such as process model reuse, tailoring,
extension, and adaptation. The relationships of these methodologies with the
theories and unified process framework developed in previous parts are
discussed. Examples and case studies such as a parallel process model for
software quality assurance, a minimum process model for software project
management, a tailored CMM model, and an extension of ISO/IEC TR
15504 model are provided for demonstrating the applications of the process
establishment methodologies.

The knowledge structure of this part, software engineering process
establishment, is as follows:

• Chapter 13. Software Process Establishment Methodologies
• Chapter 14. An Extension of ISO/IEC TR 15504 Model

In this part we adopt a pragmatic view on software engineering process
system establishment, assessment, and improvement. Systematic process
establishment is recognized as the foundation for process assessment and
improvement. A software engineering process system reference model,
SEPRM, is viewed as the central infrastructure for process-based software
engineering.

Part V – Software Engineering Process Assessment

Here we explore how the theories and algorithms of process assessment
developed in Part I and Part II are applied in real world process system
assessments. Three practical process assessment methodologies, the model-
based, the benchmark-based, and the template-based, are developed. These
assessment methodologies provide a step-by-step guide to carry out a process
assessment, and show the applications of the unified software engineering
process framework and SEPRM in the software industry.

The knowledge structure of this part, software engineering process
assessment, is as follows:

• Chapter 15. Software Process Assessment Methodologies
• Chapter 16. Supporting Tools for Software Process Assessment

In this part process assessment is recognized as the basic measure for
process improvement. Software process system assessment methodologies
are presented in a phase-by-phase and step-by-step manner. Especially, a set
of practical templates is developed to support an assessment according to the
SEPRM reference model.

xxxiv Preface

Part VI – Software Engineering Process Improvement

Part VI examines philosophies and generic approaches to software
engineering process improvement. Three process improvement
methodologies, the model-based, the benchmark-based, and the template-
based, are developed. These improvement methodologies provide step-by-
step guides on how to carry out a process improvement in accordance with
the SEPRM process framework and methodologies. A set of case studies of
real-world process improvement is provided, and key successful factors and
benefits in process improvement are analyzed. Roles, prerequirements, and
techniques of software process improvement that provide a useful guide for
implementing process improvement according to the SEPRM reference
model are described.

The knowledge structure of this part, software engineering process
improvement, is as follows:

• Chapter 17. Software Process Improvement Methodologies
• Chapter 18. Case Studies in Software Process Improvement

These chapters recognize process improvement as a complicated, systematic,
and highly professional activity in software engineering that requires theory
and models, skilled technical and managerial staff, and motivated top
management commitment. A system engineering perception on software
process improvement is adopted rather than the all-too-prevalent philosophy
of “fire-fighting”. A new approach of benchmark-based process
improvement is developed based on the philosophy that not all processes at
Level 5 are the best and most economic solutions in process improvement.
Instead, a software organization may play its hand so that its process
capability is aimed at an optimizing profile which is better than that of its
competitors in the same area.

In conclusion Chapter 19 presents a review and perspectives on the
discipline of software engineering in general, and the software engineering
process in particular.

The Audience for this Book

The readership of this book is intended to include graduate, senior-level
undergraduate students, and teachers in software engineering or computer
science; researchers and practitioners in software engineering; and software
engineers and software project and organization managers in the software
industry.

Preface xxxv

This book provides a comprehensive and rigorous text addressing
unified and integrated principles, foundations, theories, frameworks,
methodologies, best practices, alternative solutions, open issues for further
research, and plentiful resources in software engineering process
establishment, assessment, and improvement. Readers in the following
categories will find the book adds value to their work and pursuits:

• Software corporation executives seeking strategic solutions in
software engineering and wishing to avoid not seeing the forest for
the trees

• Software project managers seeking cutting-edge technologies, best
practices, and practical aids for improving process capabilities

• Software engineers and practitioners seeking empirical process
repositories and classical process paradigms, and who want to
optimize their roles in the software engineering process systems

• Software engineering researchers seeking state-of-the-art theories,
approaches and methodologies, representative process paradigms,
and open issues for further studies in software engineering and
software engineering processes

• Teachers and trainers in software engineering seeking a systematic
textbook on principles and applications of software engineering
processes with a unified theoretical framework, comparative and
critical analyses, a well-organized body of knowledge, in-depth
comments, and questions and answers (in separate volumes)

• Students and trainees in software engineering seeking a systematic
textbook providing academic views, clear knowledge structures,
critical analyses, and plentiful annotated references

• System analysts seeking an insight into current process models and
standards and their strengths and weaknesses; and wishing to mine
a plentiful set of data surveyed in the software industry

• Software process assessors seeking theoretical and empirical
guides, relationships and process capability transformation between
current process models, as well as practical templates and
supporting tools

• Software tool developers seeking an insight into process system
framework structures, methodologies, algorithms, and
interrelationships

xxxvi Preface

This book is self-contained and only basic programming experience and
software engineering concepts are required. This book is designed and
expected to appeal to developers, scholars, and managers because software
engineering methodologies and software quality issues are leading the
agenda in the light of the information era.

Acknowledgments

This work was carried out in collaboration with the ISO/IEC JTC1/SC7,
IEEE Technical Council on Software Engineering (TCSE) and Software
Engineering Standard Committee (SESC), European Software Institute, the
BSI Expert Panel ITS15-400 on Software Engineering, BCS, and IBM
(Europe). The authors would like to acknowledge their support.

The authors sincerely thank our colleagues Ian Court, Margaret Ross,
Geoff Staples, Alec Dorling, and Antony Bryant for many enjoyable
discussions, debates, and proofreadings. We would like to acknowledge the
inspiration from the work of C.A.R. Hoare, Watts Humphrey, Victor Basili,
Barry Boehm, David L. Parnas, Jeff Kramer, Ian Sommerville, Manny
Lehman, Wilhelm Schafer, Geoff Dromey, Ali Mili, Terry Rout, Mark
Paulk, David Kitson, Khaled El Emam, Richard Messnarz, Pasi Kuvaja, Taz
Duaghtrey, and Dilip Patel.

The authors would also like to thank the professional advice,
practical assistance, or valuable help of Ron Powers, William Heyward,
Dawn Mesa, Saba Zamir, Dawn Sullivan, Suzanne Lassandro, Jan-Crister
Persson, Paula Kökeritz, Håkan Wickberg, Christine King, Huiling Yang,
and Siyuan Wang.

Yingxu Wang
Graham King

Preface xxxvii

Trademarks and Service Marks

BootCheck is a trademark of the BOOTSTRAP Institute

BOOTSTRAP is a service mark of the BOOTSTRAP Institute

CMM is a service mark of SEI

ISO 9000 is an international standard of ISO

ISO 9001 is an international standard of ISO

ISO/IEC 12207 is an international standard of ISO and IEC

ISO/IEC CD 15288 is a draft international standard of ISO and IEC

ISO/IEC TR 15504 is an international standard of ISO and IEC

PSP is a service mark of SEI

PULSE is a service mark of the PULSE Consortium

SEPRM (the unified Software Engineering Process Reference Model) is
 a service mark owned by the authors

TRILLIUM is a trademark of Northern Bell

TSP is a service mark of SEI

xxxviii Preface

About the Authors

Yingxu Wang is Professor of Computer Science, and project manager with
the Center for Software Engineering at IVF, Gothenburg, Sweden. He was a
visiting professor in Computing Laboratory at Oxford University during
1995. He was awarded a PhD in software engineering by The Nottingham
Trent University / Southampton Institute, UK.

Dr. Wang is a member of IEEE TCSE/SESC, ACM, and ISO/IEC
JTC1/SC7, and is Chairman of the Computer Chapter of IEEE Sweden.
He has accomplished a number of European, Swedish, and industry-
funded research projects as manager and/or principal investigator, and
has published over 100 papers in software engineering and computer
science. He has won a dozen research achievement and academic
teaching awards in the last 20 years. He can be reached at
Yingxu.Wang@acm.org, Y.X.Wang@ieee.org, or
http://msnhomepages.talkcity.com/CerfSt/DrYWang/ .

Graham King is Professor of Computer Systems Engineering at
Southampton Institute, UK. He heads a research center which has a strong
interest in all aspects of software engineering. He was awarded a PhD in
architectures for signal processing by the Nottingham Trent University and
has authored two previous books, and nearly 100 academic papers.

Dr. King is a member of the British Computer Society and the IEEE,
and has been principal investigator for a number of research council and
industry-funded projects. He can be reached at king_g@ieee.org.

1

PART I

FUNDAMENTALS OF
THE SOFTWARE

ENGINEERING
PROCESS

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

 1.
 Introduction

2.
A Unified Framework of
the SE Process

4.
Process-Based
Software Engineering

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

3.
Process Algebra

2 Part I Fundamentals of the Software Engineering Process

The software engineering process is a set of sequential activities for software
engineering organization, implementation, and management, which are
functionally coherent and reusable. The first part of this book investigates
fundamentals of the software engineering process and explores basic theories
and empirical practices developed in this new discipline.

The knowledge structure of this part is as follows:

• Chapter 1. Introduction – The Nature of Software Engineering

• Chapter 2. A Unified Framework of the Software Engineering
 Process

• Chapter 3. Process Algebra

• Chapter 4. Process-Based Software Engineering

This part sets up the basic theories, a systematic and rigorous approach to the
building of a unified software engineering process framework, and a set of
defined and consistent terminology for the discipline of software engineering
process and the practice of process-based software engineering.

Chapter 1 explores the philosophical, mathematical, and managerial
foundations of software engineering. Chapter 2 establishes the theoretical
foundations of process-based software engineering through investigating the
generic software development organization model, process model, capability
model, capability determination method, and process assessment/
improvement methods in software engineering. A formal process notation
system, process algebra, is introduced in Chapter 3, followed by Chapter 4,
which provides a generic view of methodologies of process-based software
engineering.

The unified process theories and framework will be applied in the
remaining parts of the book. The fundamental process theories will also be
used as guidelines to organize the empirical best practices and processes that
are found useful in the software industry.

Based on the fundamental studies developed in this part, we will reach a
key conclusion that software engineering is perhaps the most unique
discipline and the most complicated process system in almost all existing
engineering disciplines.

3

Chapter 1

INTRODUCTION

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

 1.
 Introduction

1.1 Overview 1.5 The process approach to software engineering
1.2 The nature of software engineering 1.6 Issues in SE process research and practices
1.3 A perspective on the foundations of SE 1.7 Summary
1.4 Approaches to software engineering Annotated references

2.
A Unified Framework of
SE Process

4.
Process-Based
Software Engineering

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

3.
Process Algebra

4 Part I Fundamentals of the Software Engineering Process

1.1 Overview

Software engineering is an increasingly important discipline that studies
large-scale software development methodologies and approaches. Recently,
software engineering has shifted from a laboratory-oriented profession to a
more industry-oriented process. This trend reflects the needs of the software
industry moving toward integrating software development techniques with
organization and management methodologies to form a process-based
software engineering environment.

Historically, software engineering has focused on programming
methodologies, programming languages, software development models, and
tools. From the domain coverage point of view, these approaches have
concentrated on purely technical aspects of software engineering. Areas now
thought critical to software engineering – organizational and management
infrastructures – have been largely ignored.

As software systems increase in scale, issues of complexity and
professional practices become critical. Software development is no longer
solely an academic or laboratory activity; instead, it has become a key
industrialized process. In the software industry, the central role is no longer
that of the programmers because project managers and corporate
management also have critical roles to play. As programmers require
programming technologies, the software corporation managers seek
organization and strategic management methodologies, and the project
managers seek management and software quality assurance methodologies.
These needs have together formed the modern domain of software
engineering which, to summarize, includes three important aspects:
development methodology and infrastructure, organization, and
management.

For this expanded domain of software engineering, the existing
methodologies that cover individual subdomains are becoming inadequate.
Therefore, an overarching approach is sought for a suitable theoretical and
practical infrastructure in order to accommodate the full range of modern
software engineering practices and requirements. An interesting approach,
which is capable of subsuming most of these domains of software
engineering, is the process-based software engineering methodology.
Research into, and adoption of, the software engineering process
approach may be made to encompass all the existing approaches to software
engineering.

Chapter 1 Introduction 5

In defining a software engineering process system it is natural to think
of a set of empirical practices in software development, organization, and
management which comprises an abstract model of the entire set of activities
within software development organizations. It is a case of standing back and
seeing the bigger picture. Over and above the traditional aspects such as
methods, models, approaches, and phases of software development, the
software engineering process also covers engineering methodologies
suitable for large-scale software development, organization, and
management.

To model the software engineering processes, a number of software
engineering process system models such as CMM, ISO 9001, BOOTSTRAP,
and ISO/IEC TR 15504 (SPICE) have been developed in the last decade.
Hereafter, a software engineering process system model will be shortly
referred to as a process model. It is noteworthy that the term process model
is different from the conventional lifecycle model. The latter consists of
“phases” and is oriented on software development while the former consists
of processes and covers all practices in large-scale software project
organization, management, and development.

The variety and proliferation in software engineering process research
and practices characterize the software engineering process an emerging
discipline in software engineering that still needs integration and
fundamental study. Studies in the software process reflect a current trend
[Humphrey, 1995; Kugler and Rementeria, 1995; and Pfleeger, 1998] that
shifts from controlling the quality of the final software product to the
optimization of the processes that produce the software. It is also understood
that, although almost all application software development are one-off
projects, the software engineering process can be well-established, stabilized,
reused, and standardized.

This book aims to investigate the philosophical, mathematical, and
managerial foundations of software engineering. It intends to establish a
unified theoretical foundation for software engineering process modeling,
analysis, establishment, assessment, and improvement, and to explore the
orientation, interrelationship, and transformability of current process
models. It demonstrates one way forward in the drive to integrate the current
process models and methodologies into a super reference model.
 To achieve this, current software engineering process models are
comparatively analyzed. Their process frameworks and process capability
determination methods are rigorously described, and algorithms are formally
elicited. This rigorous approach enables the mutual comparison between
current process models, the avoidance of ambiguity in description, and the
simplification of manipulation in applications.

A software engineering process reference model (SEPRM) is developed
[Wang et al., 1996a/97a/98a/99e] for using as a vehicle with which to solve

6 Part I Fundamentals of the Software Engineering Process

the problems of different process-domains, orientations, structures,
frameworks and methods. A set of process benchmarks has been derived that
is based on a series of worldwide surveys of software process practices
[Wang et al., 1998a/99c], and these are used to support validation of the
SEPRM model. Using the SEPRM approach, current process models can be
integrated and their assessment results can be transformed from one to
another for the first time.

In this chapter, the theoretical foundations of software engineering are
explored. Then, existing approaches to software engineering in general and
the process approach in particular are investigated. Based on the
examination of the problems identified in software process research and
practices, a systematic and algorithmic approach to software engineering
process system modeling, analysis, establishment, assessment, and
improvement is introduced.

1.2 The Nature of Software Engineering

The term software engineering was first reported in a European conference
in 1968 [Naur and Randell, 1969; Bauer, 1976]. In this conference, Fritz
Bauer introduced software engineering as:

The establishment and use of sound engineering principles in order
to obtain economical software that is reliable and works efficiently
on real machines.

Since then, research on software engineering methodologies has been one of
the major interests in computing science.

The nature of problems in software engineering has been addressed by
Brooks (1975), McDermid (1991), and Wang et al. (1998b). A summary of
fundamental characteristics of software engineering is listed below:

• Inherent complexity and diversity

• Difficulty of establishing and stabilizing requirements

• Changeability or malleability of software

• Abstraction and intangibility of software products

Chapter 1 Introduction 7

• Requirement of varying problem domain knowledge

• Nondeterministic and polysolvability in design

• Polyglotics and polymorphism in implementation

• Dependability of interactions between software, hardware, and
human being

Along with the research and practices of software engineering, and the
speedy development of the software industry, the definition of software
engineering has further evolved. McDermid (1991) provided an extended
definition of software engineering as follows:

Software engineering is the science and art of specifying, designing,
implementing and evolving – with economy, timeliness and
elegance – programs, documentation and operating procedures
whereby computers can be made useful to man.

This is representative of the second-generation definitions of software
engineering.

Comparing the two definitions of software engineering, it can be seen
that the former perceived software engineering as a method for software
development while the latter implied that software engineering is both
science and art for programming. Bearing in mind that the intention is to
better represent trends and to recognize software engineering as an
engineering discipline based on computer science while deemphasizing the
uncontrollable and unrepeatable aspects of programming as an art, the
authors [Wang et al., 1998b] offer a definition of software engineering as
follows:

Definition 1.1 Software engineering is a discipline that adopts
engineering approaches such as established methodologies, processes, tools,
standards, organization methods, management methods, quality assurance
systems, and the like to develop large-scale software with high productivity,
low cost, controllable quality, and measurable development schedules.

In order to analyze the differences between the three generations of
definition, a comparison of the implications and extensions of them is listed
in Table 1.1. The table shows how the understanding of software
engineering can be greatly improved by contrasting the perceived nature of
software engineering as well as its means, aims, and attributes.

8 Part I Fundamentals of the Software Engineering Process

Table 1.1
Analysis of Representative Definitions of Software Engineering

No. Nature Means Aims Attributes of Aims

1 A method Generic engineering
Principles

Software - economy
- reliability
- efficiency

2 The science
and art

Life cycle methods:
- specification
- design
- implementation
- evolving

Program and
document

- economy
- timeliness
- elegance

3 An engineering
discipline

Engineering approaches:
- methodologies
- processes
- tools
- standards
- organizational methods
- management methods
- quality assurance systems

Large scale
software

- productivity
- quality
- cost
- time

It is noteworthy that the perceived nature, means, and aims together with the
attributes of their definitions have developed over time. The first-generation
definition proposed software engineering as a method or approach to
software development; the second-generation definition focused on scientific
methods and art for programming; and the third-generation definition
portrays software engineering as an engineering discipline for large-scale
software development in an industrialized context.

1.3 A Perspective on the Foundations
 of Software Engineering

Having provided an improved understanding of the implications and
extensions of software engineering as in Section 1.2, this section attempts to
briefly investigate the foundations of software engineering from the
perspectives of philosophy, theory and mathematics, and management
science.

Chapter 1 Introduction 9

1.3.1 PHILOSOPHICAL FOUNDATIONS OF
 SOFTWARE ENGINEERING

Software engineering is a unique discipline that relies on special
philosophical foundations at the top level. By contrasting the nature of
software engineering with other engineering disciplines, it is clear that there
are a number of interesting fundamental differences between them, as
described below.

1.3.1.1 Virtualization vs. Realization

Given manufacturing engineering as an exemplar of conventional
engineering, the common approach moves from abstract to concrete, and the
final product is the physical realization of an abstract design. However, in
software engineering, the approach is reversed. It moves from concrete to
abstract. The final software product is the virtualization (coding) and
invisible representation of an original design that expresses a real world
problem. The only tangible part of a software product is its storage media or
its run-time behaviors. As illustrated in Figure 1.1, this is probably the most
unique and interesting feature of software engineering.

-100% -50% 0% 50% 100%

Software engineering

Abstraction <------------------------------- Design --------------------------------> Realization

Manufacturing engineering

Figure 1.1 Difference between software engineering and other manufacturing
engineering

1.3.1.2 Problem Domains: Infinite vs. Limited

The problem domain of software engineering encompasses almost all
domains in the real world, from scientific problems and real-time control to
word processing and games. It is infinitely larger when compared with the
specific and limited problem domains of the other engineering disciplines.
This stems from the notion of a computer as a universal machine, and is a
feature fundamentally dominating the complexity in engineering
implementation of large-scale software systems.

10 Part I Fundamentals of the Software Engineering Process

1.3.1.3 Design-Intensive vs. Repetitive-Production

As demonstrated in Figure 1.2, software development is a design-intensive
process rather than a mass production process. In Figure 1.2 the design
activities include specification, design, implementation, test, and
maintenance; the production activities consist of duplication and package.

0% 20% 40% 60% 80% 100%

Mass production effort

Software development effort

Design Production

Figure 1.2 Effort distribution in software development and mass production

1.3.1.4 Process Standardization vs. Product Standardization

Directly related to the fact that software engineering is design intensive, it is
recognized that the development of specific application software is
characterized as mainly a one-off activity in design and production. This is
because there are fewer standard software applications or products that can
be mass produced save a few kinds of system software or general utilities.

Thus, for the design-intensive software development, the only element
that can possibly be standardized and reused significantly are mainly the
software engineering processes, not the final products themselves as in other
manufacturing engineering disciplines.

1.3.1.5 Universal Logic Description vs. Domain-Specific Description

Software engineering adopts only a few fundamental logical structures, for
example: sequence, condition, iteration, recursion, and concurrency.
However, these provide a powerful descriptive and abstractive capability for
dealing with the real-world problems.

By contrast, in other engineering disciplines, domain-and-application-
specific notations have to be adopted that have limited descriptivity.

Chapter 1 Introduction 11

1.3.1.6 Software-Based Products vs. Physical Products

The creation as software of conventional physical products by the use of
programmable and reconfigurable parts is a new and quiet industrial
revolution. The 19th Century industrial revolutions were oriented on mass
production by machinery and standardized process and components
[Marshall, 1938]. The development of soft systems is a revolution that
transforms the information processing and intelligent parts of the
conventional physical products into software.

Based on the above discussion it might be argued that software engineering
has become a discipline that is at the root of the knowledge structure of most
engineering disciplines. The philosophical considerations explored in this
subsection have attempted to clarify a set of fundamental characteristics of
software engineering. These considerations also provide a basis for judging
the soundness or unsoundness of specific technical solutions for software
engineering, while not losing the sight of the woods for the trees.

1.3.2 THEORETICAL FOUNDATIONS OF
 SOFTWARE ENGINEERING

In theoretical computer science, the mathematical, logical, algebraic, and
functional foundations of software engineering and programming
methodologies have been studied. An outline structure of the theoretical and
mathematical foundations of software engineering is described in Table 1.2.

Table 1.2
Structure of the Mathematical Foundations of Software Engineering

No. System Category Branch
1 Applied mathematics

1.1 Discrete mathematics

1.1.1 Set theory

1.1.2 Mathematical logic

1.1.3 Functions

1.1.4 Relations

1.2 Advanced mathematics

1.2.1 Abstract algebra

1.2.2 Process algebra

1.2.3 Category theory

1.2.4 Domain theory

1.3 Relevant mathematics

1.3.1 Numerical methods

12 Part I Fundamentals of the Software Engineering Process

1.3.2 Probability theory

1.3.3 Graph theory

1.3.4 Queuing theory

1.3.5 Fuzzy logic

1.3.6 Statistics
2 Theoretical computing

2.1 Classical theory

2.1.1 Automata theory

2.1.2 Formal language theory

2.1.3 Computability theory

2.1.4 Algorithm complexity

2.1.5 Abstract data structures

2.2 Formal methods

2.2.1 Algebraic specification

2.2.2 Process algebra (eg., CSP, CCS)

2.2.3 Model-oriented specification
(eg., Z, VDM)

2.2.4 Refinement

2.2.5 Formal implementation

2.2.6 Verification and correction proof

2.2.7 Concurrent processing

3 Relevant theories

3.1 Systems theory

3.2 Information theory

3.3 Measurement theory

3.4 Cognitive theory

3.5 Artificial intelligence

In Table 1.2, the basic discrete mathematics (1.1) [Grassman and Tremblay,
1995] and classical theory of computing (2.1) [Hoare, 1969/89; Dijkstra,
1965/68/72; Knuth, 1974; Liskov and Zilles, 1974; Stoy, 1977; Gersting,
1982; Lewis and Papadimitriou, 1988; Bovet and Crescenzi, 1994] are
assumed essential for software engineers. The formal methods (2.2)
[Dijkstra, 1976; Gries, 1981; Hoare, 1985/95; Spivey, 1988; Dawes, 1991]
are likely to influence the fundamental programming methods of the future,
so that long term thinking engineers and managers will need to be aware of
these topics. The relevant mathematics (1.3) [Hays, 1963; Waerden, 1969;
Mathews, 1992; Grassman and Tremblay, 1995] and relevant theories (3)
[Kolmogorov, 1933; Turing, 1936; MaCulloch and Pitts, 1943; Shannon,
1948; SSI, 1950, Ellis and Fred, 1962; Lindsay and Norman, 1972; Hartnett,
1977; Roberts, 1979; Kyburg, 1984; and Harvey, 1994] are optional for
particular domain applications. The advanced mathematics (1.2) [Maclane,
1971; Hoare, 1985/86] are topics for long-term basic research in both
software engineering and computer science.

Chapter 1 Introduction 13

1.3.3 MANAGERIAL FOUNDATIONS OF SOFTWARE
 ENGINEERING

Although the managerial foundations of software engineering have often
been ignored in software engineering research and education, management
sciences have, in fact, strongly influenced the formation of software
engineering as a discipline. In tracing the history of software engineering,
it has been found that many of the important concepts of software
engineering, such as specification, requirement analysis, design, test,
process, and quality, were borrowed or inspired by the methods and practices
developed in management sciences and related engineering disciplines.

The managerial foundations of software engineering were cross-
fertilized by the research in management science, systems theory, and
quality system principles. A number of leading institutions, such as ISO
TC176 and ASQ, are actively studying management theories and quality
principles, as well as their application to software engineering. A brief
structure of the management foundations of software engineering is
summarized in Table 1.3.

Table 1.3
Structure of Managerial Foundations of Software Engineering

No. Category Subcategory
1 Basic theories

1.1 Sociology

1.2 Anthropology

1.3 Semiotics

1.4 Linguistics

1.5 Psychology

2 Systems theory

2.1 General systems theory

2.2 System design and analysis

2.3 System modeling and simulation

3 Management science

3.1 Strategic planning

3.2 Operational theory

3.3 Decision theory

3.4 Organization methods

3.5 Management economics

4 Quality system principles

4.1 Total quality management (TQM)

4.2 Business process reengineering

4.3 The Deming circle: Plan-Do-Check-Act (PDCA)

14 Part I Fundamentals of the Software Engineering Process

The fundamental theories of management are listed in Table 1.3(1). In this
listing, sociology concerns organizational theory, anthropology addresses
organizational culture, semiotics relates to the theories of communication
and knowledge, linguistics studies language theory, and psychology
concerns human behavior and learning.

As shown in Table 1.3(2), systems theory is used as a basis for
management science and many other engineering disciplines. Systems
theory was founded by Ludwig von Bertalanffy in the 1920s [SSI, 1950] in
order to establish unified principles in both the natural and social sciences.
Since then, books and articles on systems theory have proliferated [Ellis and
Fred, 1962; Hall, 1967; Klir, 1972; Hartnett, 1977; Checkland and Peter,
1981]. Systems theory has provided interdisciplinary and strategic solutions
that are qualitative and quantitative, organized and creative, theoretical and
empirical, and pragmatic for a wide range of problems.

Management science, as shown in Table 1.3(3), is a scientific
approach to solving system problems in the field of management. It includes
operational theory [Fabrycky et al. 1984], decision theory [Keen and
Morton, 1978; Steven, 1980], organization methods [Radnor, 1970; Kolb,
1970], strategic planning [Anthony, 1965; Khaden and Schultzki, 1983;
William, 1991] and management economics [Richardson, 1966].
Management science provides management with a variety of decision aids
and rules.

Three quality system principles, as listed in Table 1.3(4), have been
developed during the 1970s and 1980s. The important quality management
philosophies that are applicable to software engineering organization and
management are TQM [Deming, 1982a/b/c; EFQM, 1993; Dunn and
Richard, 1994], business process reengineering [Schein, 1961; Johansson et
al., 1993; Thomas, 1994] and the Deming Circle [Deming, 1982a].

Studies of organization and management have, over time, covered
methodologies for project management, project estimation, project
planning, software quality assurance, configuration management,
requirement/ contract management, document management, and human
resource management. Table 1.4 provides a summary of the software
engineering organization and management methodologies in practice.

The above review demonstrates that software engineering is a unique
discipline with philosophical, mathematical, and managerial foundations
based on interdisciplinary knowledge. Clearly it has borrowed from other
disciplines and these discipline strands have combined to form the whole.

Chapter 1 Introduction 15

Table 1.4
Classification of Software Engineering

Organization and Management Methodologies

No. Category Typical Methods

1 Project management
methods

Methods of metric-based, productivity-oriented, quality-oriented,
schedule-driven, standard process models, benchmark analysis,
checklist / milestones, etc.

2 Project estimation/
planning methods

Methods of KLOC metric, COCOMO model, the function-points,
program evaluation and review technique (PERT), critical path
method (CPM), Gantt chart, etc.

3 Software quality
assurance methods

Methods of quality manual / policy, process review, process audit,
peer review, inspection, defect prevention, subcontractor quality
control, benchmark analysis, process tracking, etc.

4 Configuration
management methods

Methods of version control, change control, version history record,
software component library, reuse library, system file library, etc.

5 Requirement/contract
management methods

Methods of system requirement management, software requirement
management, standard contractual procedure, subcontractor
management, purchasing management, etc.

6 Document management
methods

Methods of document library, classification, access control,
maintenance, distribution, etc.

7 Human resource
management methods

Methods of position criteria, career development plan, training,
experience exchange, domain knowledge development, etc.

1.4 Approaches to Software Engineering

As discussed in Section 1.4, software engineering is a discipline that has
emerged from computer science and engineering and is based on inter-
disciplinary theoretical and empirical methodologies. Initial approaches
developed thus far have concentrated on technical aspects of software
engineering such as programming methodologies, software development
models, automated software engineering, and formal methods. While a
cutting-edge approach, the software engineering process has been developed
in the last decade for addressing the modern domain of software
engineering. Each of these approaches will now be analyzed and examined.

16 Part I Fundamentals of the Software Engineering Process

1.4.1 PROGRAMMING METHODOLOGIES

A set of fundamental principles has been developed to cope with the
complexity of problem specification and solution. Some of the important
principles are abstraction, information hiding, functional
decomposition, modularization, and reusability.

In tracing the history of programming methodologies, it can be seen that
functional decomposition has been adopted in programming since the 1950s
[McDermid, 1991]. In the 1970s the most significant progress in
programming methodologies was structured programming [Hoare, 1972;
Dijkstra, 1965/68/72] and abstract data types (ADTs) [Liskov and Zilles,
1974]. These methods are still useful in programming and software system
design.

Since the 1980s object-oriented programming (OOP) [Stroustrup,
1986; Snyder, 1987] has been broadly adopted. Object-orientation
technologies have inherited the merits of structured programming and
ADTs, and have represented them in well-organized mechanisms such as
encapsulation, inheritance, reusability, and polymorphism. The most
powerful feature of OOP is the supporting of software reuse by inheriting
code and structure information at object and system levels. It has been found
that a built-in-test (BIT) method for OOP enables tests to be reused as that
of code by extending the standard structures of object and object-oriented
software to incorporate the BITs [Wang et al., 97c/98c/99b/d].

Along with the development of the Internet, and inspired by hardware
engineering approaches, a new concept of programming, known as
component-based programming, has been proposed. This approach is
based on the “plug-in” and “add-on” software framework structure, and the
broad availability of “commercial off-the-shelf (COTS)” software
components.

1.4.2 SOFTWARE DEVELOPMENT MODELS

Programming methodologies have been mainly oriented on the conceptual
and theoretical aspects of software engineering. A number of software
development models have been introduced, among these are: the Waterfall
[Royce 1970], Prototype [Curtis et al., 1987], Spiral [Boehm, 1988], the V
[GMOD, 1992], Evolutionary [Lehman, 1985; Gilb, 1988; Gustavsson,
1989], and Incremental [Mills et al., 1980] models.

Supplementary to the above development models, a variety of detailed
methods have been proposed for each phase of the development models.
For instance, for just the software design phase, a number of design methods

Chapter 1 Introduction 17

have been in existence, typically flowcharts, data flow diagrams, Nassi-
Shneiderman charts, program description languages (PDLs), entity-
relationship diagrams, Yourdon methods, and Jackson system development.
Of course, some of these methods can also be used in other phases of
software development.

The software development model approach attempts to provide a set of
guidelines for the design and implementation of software at system and
module levels. However, this approach has been focused on technical aspects
of software development lifecycles. Detailed descriptions and applications of
existing software development models may be referred to in classical
software engineering books [McDermid, 1991; Pressman, 1992;
Sommerville, 1996; and Pfleeger, 1998].

1.4.3 AUTOMATED SOFTWARE ENGINEERING

The programming methodologies and software development models
described above provide theoretical and technical approaches for software
design and implementation. In order to support the methodologies and
models, an automated software engineering approach has been sought
through the adoption of computer and system software as supporting tools.

The applications of artificial intelligence and knowledge-based
techniques in software development have been a key focus in this approach.
Two categories of software engineering tools, computer-aided software
engineering (CASE) and the unified modeling language (UML) tools,
have been built for automatic implementation of different software
development phases. A review of a variety of software engineering support
tools is listed in Table 1.5.

In recent years, the development of the UML tool set [Rumbaugh et al.,
1998] has been one of the major achievements in automated software
engineering. The UML tools enable many phases in software development to
be fully or largely automated, such as in the phases of system design,
software design, and code generation. Although reports of industry
application experiences of UML in large-scale software development are still
expected, encouraging progress towards automated software engineering is
being made.

The main technical difficulties in automating software development are
requirement acquisition and specification, application domain knowledge
representation, and implementation correctness proof. As discussed in the
philosophical considerations (a) and (b) in Section 1.3.1, all of these
problems need further fundamental study. This has led to attention being
paid to formal methods as described in the next section.

18 Part I Fundamentals of the Software Engineering Process

Table 1.5
Classification of Software Engineering Supporting Tools

No. Category Subcategory Tool Coverage

1 System analysis
tools

Requirement analysis, acquisition,
specification, prototyping, modeling,
interface generation, framework generation,
etc.

2 Software
development tools

2.1 Requirement
analysis/specification
tools

Requirement analysis, domain knowledge
representation, specification, etc.

2.2 Programming tools Compilers, debuggers, code generators, reuse
support systems, object-banks, programming
environment, etc.

2.3 Testing tools Module, integration, system, acceptance,
prototype, object, and interface testing, etc.

2.4 Maintenance tools Reverse engineering, re-engineering, reuse
library, static analysis, dynamic analysis, etc.

3 CASE tools UML, ClearCase, Analysts Toolkit,
Automate+, Bachman Set, Excelerator, IEW,
LBMS, Maestro, Oracle CASE, Select,
System architect, Top CASE, Unix SCCS,
Yourdon ADT, etc.

1.4.4 FORMAL METHODS

Formal methods are a set of mathematics and logic-based methodologies and
theoretical principles for software development. The logical, algebraic, and
functional foundations of programming have been studied in formal
methods. A number of applications of formal methods in safety-critical
system design and program correctness proof have been reported [Hayes,
1987; Schneider, 1989]. The category theory developed in pure mathematics
science has been found useful for establishing a unified foundation of formal
methods [Hoare, 1995].

As structured programming and object-oriented programming solved
many problems in software development in the 1970s and 1980s, formal
methods now attempt to dig deeply into the nature of programming and to
provide new solutions for rigorous and correction-provable software
development. A knowledge structure of the formal approach to software
engineering has been described in Table 1.2 (Part 2.2). Although our
knowledge about the nature of programming has been greatly improved by
the studies of formal methods, only a few of them, such as Z and SDL, have
been directly applied in real-world software engineering.

Chapter 1 Introduction 19

Along with the fast growth of the Internet and the Internet-based
programming environment in the 1990s, there has been evidence that the
software engineering agenda has been driven by the industry and users.
Technical innovations in everyday software engineering practices have been
a major force in industrialized software engineering progress in recent years,
but many new gaps have been found that require theoretical study in the
overall software engineering fabric.

Table 1.6
Domain Coverage of the Approaches to Software Engineering

Coverage of SE ProblemsNo. Approach Description
Technique Organization Management

1 Programming
methodologies

- functional decomposition
- structural programming
- object-oriented
 programming
- component-based
 programming

H L L

2 Software
development
models

- life cycle model
- waterfall model
- spiral model
- rapid prototype model
- other combined models

H M L

3 Automated
software
engineering

- CASE tools
- UML tool
- other tools

H L L

4 Formal methods - CSP
- SDL
- Z
- Clean room
- other

H L L

5 Software
engineering
processes

- CMM
- Trillium
- BOOTSTRAP
- ISO/IEC 15504
- SEPRM
- other

H H H

 Notes: H – High, M – Medium, L – low

1.4.5 THE SOFTWARE ENGINEERING PROCESS

The software engineering facets described in Sections 1.4.1 through 1.4.4
have mainly concentrated on the aspects of software engineering as
summarized in Table 1.6. Important areas of software engineering such as
the organization and management infrastructures have been left untouched.
Further, the systems processes by which software is created are so far

20 Part I Fundamentals of the Software Engineering Process

unaddressed. This draws attention to the emergence of a system process
approach to software engineering.

The software engineering process approach concerns systematical,
organizational, and managerial infrastructures of software engineering. It is
necessary to expand the horizons of software engineering in this way
because of the rapidly increasing complexity and scale demanded by
software products. The need to improve software quality is also a driving
force for managers.

In a view of domain coverage it is recognized that the conventional
approaches, methodologies, and tools that cover individual subdomains of
software engineering are inadequate. Thus, it makes sense to think in terms
of an overarching set of approaches for a suitable theoretical and practical
infrastructure that accommodates both new demands and improves on
existing methodologies. An interesting way forward, which is capable of
accommodating the full domain of modern software engineering, is that of
the software engineering process.

1.5 The Process Approach to
 Software Engineering

The software process was originally studied as a software management
method [Gilb, 1988; Humphrey, 1989], a quality assurance approach [Evans
and Marciniak, 1987; ISO, 1991], or as a set of software development
techniques [Curtis, 1987; Fayad, 1997a]. The reorientation of the software
process to the software engineering process reflects recent trends in seeking
an ideal means for organizing and describing the whole process framework
of software engineering.

Two events in 1987, the development of CMM and of ISO 9000, marked
the full emergence of the software engineering process as a new discipline.
The software engineering process deals with foundations, modeling,
establishment, assessment, improvement, and standardization of software
processes. Generally, a process may be described as a set of linked activities
that take an input and transform it to create an output. The software
engineering process as a system is no different; it takes a software
requirement as its input, while the software product is its output.

Chapter 1 Introduction 21

Definition 1.2 The software engineering process is a set of sequential
practices that are functionally coherent and reusable for software
engineering organization, implementation, and management. It is usually
referred to as the software process, or simply the process.

Studies of the software process require an interdisciplinary theoretical and
empirical basis. It is interesting to note that the term “software process” was
inspired by management sciences [Eskiciogla and Davies, 1981; Bignell et
al., 1985; Johansson et al., 1993]. Thus, the concept of a software process is
more general than that of the conventional term “process” as developed in
computer science where process is defined as “an execution of a subroutine
[Brinch, 1973; Milenkovic, 1992].”

This section reviews the historical evolution of the process approach to
software engineering, introduces the current process system models, and
investigates problems identified in the process approach.

1.5.1 REVIEW OF HISTORY OF THE SOFTWARE
 ENGINEERING PROCESS

There are two main historical threads in tracing the emergence of the
software engineering process approach. They are software engineering itself
and management science. Research into the engineering processes and
management principles in management sciences began in the 1960s [Simon,
1960; Schein, 1961; Ellis and Fred, 1962; Juran et al., 1962; Anthony, 1965;
Richardson, 1966; Hall, 1967]. In the 1970s and 1980s, management
science was well established in almost all branches as shown in Table 1.3
[Radnor, 1970; Grayson, 1973; Hartnett, 1977; Keen and Morton, 1978;
Crosby, 1979; Brech, 1980; Juran and Gryna, 1980; Deming, 1982a/b/c;
Khaden and Schultzki, 1983; Fabrycky et al., 1984; Leavitt, 1988]. Worthy
of particular note are Crosby, Juran and Deming who developed the
approach of quality conformity to requirements and specifications [Crosby,
1979; Juran, 1980; Deming, 1982a] and proposed a number of agendas that
must be carried out in order to deliver total quality. These concepts have
largely influenced software development processes and software quality
assurance technology. In 1982, the Deming Circle, Plan-Do-Check-Act
(PDCA), was proposed in management science studies [Deming, 1982a] and
has drawn much interest in software process modeling and analysis. Then, a
project designated ISO TC176 in 1987 to develop an international standard
for quality systems [ISO 9000, 1991/93/94] that are applicable to a wide
range of engineering systems including software engineering [ISO 9001,
1989/94] was implemented.

22 Part I Fundamentals of the Software Engineering Process

In the software engineering sector, research into the software
engineering process can be traced to as early as 1965 in Weinwurm and
Zagorski’s work. However, interest in the software process was initiated in
the 1970s after the so called “software crisis” [Naur and Randell, 1969;
Baker, 1972; Brooks, 1975; Hoare, 1975]. The software process as a
recognized branch of software engineering was formed in the 1980s
following the work of Basili (1980), Aron (1983), Agresti (1986), Evans
(1987), Boehm (1981/86/87), Gilb (1988), Humphrey (1987/88/89).
These works led to the development of the capability maturity model (CMM)
[Humphrey, 1987; Paulk et al., 1993a/b/c] and several other models, such as
the IEEE Software Engineering Standards [IEEE, 1983] and British
Standard BS 5750 [BSI, 1987] in the late 1980s. Since then the software
engineering process has attracted much interest and recognition in software
engineering research and practices.

1.5.2 CURRENT SOFTWARE ENGINEERING
 PROCESS METHODS AND MODELS

A number of software process models have been developed in the last decade
such as TickIT [DTI, 1987; TickIT, 1987/92], ISO 9001 [ISO 9001,
1987/94], CMM [Paulk et al., 1993a/b/c/95a; Humphrey, 1987/88/89],
BOOTSTRAP [BOOTSTRAP team, 1993], ISO/IEC 12207 [ISO/IEC
12207, 1995]; ISO/IEC TR 15504 (SPICE) [ISO/IEC 15504, 1997/98], and
a number of regional and internal models [BSI, 1987; Trillium, 1992/94].
According to a recent worldwide survey [Wang et al., 1998a/99c], the ISO
9000 serial models are the most popular, followed by CMM and ISO/IEC
TR 15504. Some regional, internal, and industry sector process models, such
as Trillium, also share a significant part of application in the software
industry. A previous survey of the distribution of the models in 1996 [Kugler
and Rementeria, 1995] had shown a similar trend to that of the above
distribution.

Based on the statistics and historical and theoretical significance, this
book selects the four most used models for analysis. They are: CMM, ISO
9001, BOOTSTRAP, and ISO/IEC TR 15504 (SPICE), where SPICE is a
synonym or the international project name of ISO/IEC TR 15504 during its
development.

1.5.2.1 CMM

The SEI Capability Maturity Model (CMM) was initially developed as an
assessment model for software engineering management capabilities
[Humphrey, 1987/88]. As such it was expected that it would provide useful

Chapter 1 Introduction 23

measures of organizations bidding or tendering for software contracts. It was
soon found that the concept of “process” for software engineering has more
utility than that of capability assessment, and that software development
organizations may use the capability model for internal process
improvement. As a result of this deeper understanding, new practices in
process-based software engineering have been emerging in the last decade.
This is to be considered as one of the important inspirations arising from
CMM and related research.

CMM modeled 18 key practice areas and 150 key practices [Paulk et al.,
1993a/b/c]. These key practices and key practice areas were grouped into a
5-level process capability scale known as the initial, repeatable, defined,
managed, and optimizing levels. Detailed description of CMM will be
provided in Chapter 5, but what is significant is the systematic breakdown of
software engineering activities, and the analytical judgement that the model
allows.

1.5.2.2 ISO 9001

From another angle of management science looking at software engineering,
ISO 9001 (1989/94) and ISO 9000-3 (1991) were developed within the
suite of ISO 9000 international standards for quality systems [ISO 9000,
1991/93/94]. ISO 9001 (Quality Systems – Model for Quality Assurance in
Design, Development, Production, Installation, and Servicing) and ISO
9000-3 (Quality Management and Quality Assurance Standards Part 3 –
Guidelines for the Application of ISO 9000 to the Development, Supply, and
Maintenance of Software) are important parts of ISO 9000, and are designed
for software engineering.

ISO 9001 modeled a basic set of requirements for establishing and
maintaining a quality management and assurance system for software
engineering. It identified 20 main topic areas and 177 management issues,
and categorized them into three subsystems known as management, product
management, and development management. Perhaps because of its
simplicity, ISO 9001 has been the most popular process model that is
adopted in the software industry [Mobil Europe, 1995; Wang et al., 1998a].
Detailed description of ISO 9001 will be provided in Chapter 6, but an
important characteristic of ISO 9001 is the underlying notion of a threshold
standard and pass/fail criteria.

1.5.2.3 BOOTSTRAP

BOOTSTRAP [BOOTSTRAP team, 1993; Koch, 1993; Haase et al., 1994;
Kuvaja et al., 1994], released in 1993, was an extension of the CMM model

24 Part I Fundamentals of the Software Engineering Process

that was customized to European ideas. A number of new technology
processes and a flexible and precise rating method had been developed in
BOOTSTRAP. In BOOTSTRAP, more technical and methodological
process activities were tackled and, when an attempt was made add these
process activities into the CMM capability model, a mixture of process and
capability in a single dimension was produced. This was thought unhelpful
and it began to be understood that there was a need to distinguish process
(the software engineering activities) from capability (the measurement of the
software engineering activities). The concept of a two-dimensional process
model evolved from this work.

BOOTSTRAP modeled 3 process categories, 9 attributes, and 201
quality system attributes. These attributes are rated against 5 capability
levels identical to that of CMM. However, intermediate process attributes
were introduced to measure the differences between the defined capability
levels. A main feature, then, is a more precise capability measure rounded to
a quarter of a capability level. Detailed description of BOOTSTRAP will be
provided in Chapter 7.

1.5.2.4 ISO/IEC TR 15504 (SPICE)

In 1992, the ISO/IEC JTC1 software engineering committee recognized a
need to develop a new international standard for software process
assessment and improvement [ISO/IEC 1992]. Then, after a six-year
international collaborative project (SPICE) within the ISO/IEC
JTC1/SC7/WG10, an ISO 15504 Technical Report suite was completed.

Inspired by BOOTSTRAP, ISO/IEC 15504 has recognized the value
inherent in separating the “process” dimension from the “capability”
dimension for a software engineering process model. As a result, a true two-
dimensional process system model was developed for the first time.
However, what is interesting is that in the ISO/IEC TR 15504 model, the
activities for the process dimension and the attributes for the capability
dimension at some points overlap. This means that there is still a need to
further distinguish the process activities and the measurement attributes and
indicators in the two dimensions.

ISO/IEC TR 15504 modeled 5 process categories, 35 processes, and 201
base practices. The processes are measured at 6 levels with 9 attributes. As a
new 2-dimensional process model, the rating method of ISO/IEC 15504 is
quite complicated. Detailed description of ISO/IEC 15504 will be provided
in Chapter 8.

Chapter 1 Introduction 25

1.6 Issues in Software Engineering
 Process Research and Practices

As software engineering process study is at an early stage in its
development, there are still debates concerning it. A number of criticisms
have been raised about the process approach in general and CMM in
particular. In a paper entitled “A Critical Look at Software Capability
Evaluation,” Bollinger and McGowan (1991) investigated the subjectivity
and inaccuracy of the CMM process model and the process assessment
methodology. Brodman and Johnson (1994) pointed out the need to tailor
CMM for small software organizations, and the fact that there was no such
mechanism available.

Further, a series of criticisms in a special column in Communications of
the ACM was published recently entitled, “Software Development Process:
the Necessary Evil?” [Fayad et al., 1997a] and “Process Assessment:
Considered Wasteful” [Fayad, 1997b]. Although this column was mainly
focused on CMM, it has triggered a lot of interesting discussion on both
progress and problems inherent in the process approach and current process
models.

1.6.1 PROBLEMS AND OPEN ISSUES IDENTIFIED

Generally, problems identified in the software engineering process debate
may be traced to three root causes:

• Lack of formal description

• Chaotic interrelationships

• Deficiency of validation

This subsection describes the problems in the three categories. Solutions for
these problems will be sought systematically throughout this book.

1.6.1.1 Problems in Process Modeling

Currently, it is seen as necessary to simplify the diversity of process models
and to give legitimacy to modeling and analysis by creating a unified theory
and integrated framework, and by introducing formal and algorithmic
description.

26 Part I Fundamentals of the Software Engineering Process

(a) Basic requirements for process models

A variety of international, regional, and internal process models have been
developed with various sizes, purposes, orientation, and structures. These
models need to be summarized in terms of their methodologies, usage, and
applications. More importantly, the following issues have to be tackled:

• What are the basic requirements for a process model?

• What should be essentially covered by a process model?

• What is the complete view of the software engineering process
system?

These issues are investigated in Chapter 2.

(b) Classification of process models

The existing process models have been developed using various approaches
such as checklists, independent models, derived models, empirical models,
or descriptive models. Classifying the existing models from the viewpoints
of model frameworks and methodologies is addressed in Chapter 2.

(c) Formal description of process models

Almost all existing process models are empirical-and-descriptive models.
These models lack rigorous and formal description of model structure,
process framework, adequacy rating scale, capability rating scale, and
capability determination algorithm. Problems of ambiguity, instability, too
much subjectivity, and inaccuracy in process assessment and application
were identified in existing process models.

In Chapters 5 - 9, the frameworks of the major current models will be
formally described. Their capability determination methods will be
systematically elicited in order to create the algorithms for the current
models. The formal approach will be demonstrated as being particularly
useful for process designers, analysts, users, assessors, and tool developers,
and will enable them to understand the current process system models.

1.6.1.2 Problems in Process Analysis

In analyzing current process models, one cannot avoid problems of different
orientation, incompatibility, and nontransformability. This subsection briefly

Chapter 1 Introduction 27

describes the problems in process system analysis. A detailed exploration is
provided in Chapters 10 through 12.

(a) Orientation

The current process models exhibit different orientations in software process
modeling. Divisions between current process models cause many problems
in comparative analysis and modeling. In order to integrate the existing
models and to create a complete view of the software engineering process,
this book will develop a new reference model approach in which the process
systems of current models are treated as subsets of a super reference model –
the SEPRM [Wang et al., 1996a/97a/98a/99e]. This will be explored in
Chapter 9.

(b) Compatibility

Ensuring system compatibility is a proven successful practice in the software
and computer industry. However, the compatibility of the current process
models and their assessment results are found to be quite limited. By treating
the current process models as subsets of SEPRM in Chapters 10 – 12, the
compatibility problem can be solved without the cost of changing the
existing models.

(c) Transformability

Comparability and transformability between models are fundamental
requirements for a mature scientific discipline. By relating the assessment
results of process capability levels between the current process models, a
software development organization can avoid being assessed several times as
required by different process models at very high cost. However,
transformability between the current process models has never been studied
and it seems quite a hard problem for the conventional one-to-one mapping
approach. By treating current models as subsets of SEPRM and by
establishing quantitative transformability, the capability transformation
problem will be solved in Chapter 12.

1.6.1.3 Problems in Model Validation

Current process models have only provided some informal discussions on
rationales at the middle (process) level. The validation of a process system
both at the highest (organization) and lowest (attribute) levels are
conspicuous by their absence. At the top level, a least-complete set of
fundamental process categories of a software development organization has

28 Part I Fundamentals of the Software Engineering Process

to be identified and modeled. At the bottom level, the attributes of a
complete set of process practices should be identified and benchmarked.
These points are expanded as follows:

(a) Functional process organization in a software development
 organization

It is observed that some models organize processes at a number of fixed
capability levels, some models group processes into different management
topic areas, and some models categorize processes according to life-cycle
practices. This poses the question: what is the best approach for modeling
the software process system at the highest level? A structure of process
systems with the organization, development, and management subsystems
will be investigated in Chapter 2.

(b) Benchmark of process attributes

Quantitative analysis and benchmark of process attributes are other
foundations needed to validate a model at the lowest level. Reports of
benchmarks for the current models are rarely to be found in literature.
Therefore, a series of worldwide surveys on a superset of processes has been
conducted [Wang et al., 1998a/99c]. A set of benchmarks on process
attributes, such as mean weighted importance and ratios of significance,
practice, and effectiveness, have been derived to validate the SEPRM
reference model, and to support the analysis of the current models. The
benchmarks and their applications will be addressed in Chapter 10.

1.6.2 METHODS AND APPROACHES OF THIS WORK

There should be a systematic solution to the class of the problems identified
in Section 1.6.1, and this would enable a unified software engineering
process system framework. To achieve this it is necessary to adopt a new set
of approaches, as shown in Table 1.7, which includes a comparison with
conventional methods.

The rationales of the methods and approaches adopted or developed in
this book are described below.

Chapter 1 Introduction 29

Table 1.7
Methods and Approaches to Software Engineering Process Modeling

Aspect Methods Used in Existing Work Methods Developed in This Book
Modeling - empirical-and-descriptive

 modeling
- natural language description

- formal-and-descriptive modeling
- a formal and rigorous approach

Analysis - one-to-one
- qualitative
- unidirectional mapping

- many-to-many
- quantitative
- bidirectional mapping

Model
Coverage

- individual aspects and orientation
- varying overlaps

- unified fundamental framework
- overarching superset model

Model
Validation

- post-industry trials - studies of theoretical foundations
- characterize BPAs by quantitative
 attribute benchmarking
- pre-industry survey of practical
 foundations of practices and attributes

1.6.2.1 Methods in Process System Modeling

Potential modeling techniques for software engineering process systems can
be empirical/formal, descriptive/prescriptive, and qualitative/quantitative.
The current process system models such as ISO/IEC TR 15504, CMM, ISO
9001, and BOOTSTRAP are empirical-and-descriptive models. These
models use natural language to describe the process system models, which
creates redundancy, ambiguity, and difficulty in quantification. Instead of
the descriptive “what to do” for a process model, a prescriptive approach
may be taken to model “how to do” in a process system. However, this is not
the main goal of system modeling because it diverges from the abstraction
principles used in modeling a complicated process system.

A formal and algorithmic approach is adopted in this book. The
rigorous approach is suitable for describing the methodologies of existing
and new process system models because it offers less ambiguity, increases
accuracy, and enables quantification and tool support.

1.6.2.2 Methods in Process System Analysis

Conventional analysis methods for the process systems are mainly one-to-
one, qualitative, and unidirectional. The one-to-one approach is difficult to
use in exploring the whole picture of the major process system models, and
the complexity in pairwise analysis of n models is found to be of an
explosive exponential order. The qualitative approach is carried out at high
levels of a process system, which is quite subjective and sometimes leads to
contradiction between different authors. The single directional mapping
from one model to another describes only one side of a coin, because the

30 Part I Fundamentals of the Software Engineering Process

mapping between models has been recognized as being asymmetric [Wang
et al., 1997a/99e].

These are the reasons why a many-to-many, quantitative, and
bidirectional approach is used to enable efficient, less subjective, and
complete mapping and analysis of current process system models.

1.6.2.3 Methods for Process Model Integration

Existing process system models cover different areas of software engineering
activities with varying orientation and overlaps. Generally, these models
focus on different aspects of an entire software engineering process system
domain. To incorporate the current process system models as member
subsystems, a unified process system framework is needed. To achieve this,
an overarching software process system reference model is developed in
Chapter 9.

1.6.2.4 Methods for Process Model Validation

The validation of process models may be pre or postrelease. The postrelease
option is less satisfactory. This is because lessons learned can only be
internalized by changes to the model which, being late in the development
cycle, will be costly. It is far better to validate the model prerelease, and to
do this it is necessary to base the validation on quantitative methods and on
large-scale surveys of the effectiveness of existing models.

1.7 Summary

In this chapter we have seen that the process approach to software
engineering is a significant trend that has been recognized by both
academics and the software industry.

Software engineering has been defined as a discipline that adopts
engineering approaches to develop large-scale software with high
productivity, low cost, controllable quality, and measurable development
schedules.

Engineering approaches to large-scale software development have been
identified as established methodologies, processes, tools, standards,
organization methods, management methods, and quality assurance systems.

Chapter 1 Introduction 31

The software engineering process is a set of sequential practices,
which are functionally coherent and reusable, for software engineering
organization, implementation, and management. It is usually referred to as
the software process, or simply the process.

For the newly expanded domain of software engineering, the existing
methodologies covering individual subdomains are becoming inadequate.
Therefore, an overarching approach is sought for a suitable theoretical and
practical infrastructure capable of accommodating the full range of modern
software engineering practices and requirements. The whole domain of
software engineering is potentially covered by the process-based software
engineering methodology. Research into, and adoption of, the software
engineering process approach may be made to encompass all the existing
approaches to software engineering.

The basic knowledge structure of this chapter is as follows:

Chapter 1. Introduction

• General
 − Purposes of this chapter

 − To investigate the nature and philosophical, mathematical,
 and managerial foundations of software engineering

 − To review existing approaches to software engineering

 − To explore the new approach of process-based software
 engineering and related issues in research and practices

• The nature of software engineering
− Evolvement of definitions of software engineering

 − A programming method
 − A scientific branch and art
 − An engineering discipline

 − Fundamental characteristics of software engineering
 − The inherent complexity and diversity

 − The difficulty of establishing and stabilizing requirements
 − The changeability or malleability of software
 − The abstraction and intangibility of software products
 − The requirement of varying problem domain knowledge
 − The nondeterministic and polysolvability in design
 − The polyglotics and polymorphism in implementation

 − The dependability of interactions between software,
 hardware, and human being

32 Part I Fundamentals of the Software Engineering Process

• A perspective on the foundations of software engineering
− Philosophical foundations of software engineering

− Theoretical foundations of software engineering
 − Applied mathematics

 − Theoretical computing
 − Relevant theories

− Managerial foundations of software engineering
 − Basic theories
 − System theory

 − Management science
 − Quality system principles

• Approaches to software engineering
− Programming methodologies
− Software development models

 − Automated software engineering
− Formal methods
− The software engineering process

 • The process approach to software engineering
− History and interdisciplinary background

 − Current software process models
 − CMM

 – ISO 9001
 − BOOTSTRAP

 − ISO/IEC TR 15504
 − SEPRM

• Issues in software engineering process research and practices
− Problems identified

 − Problems in process modeling
 − Problems in process analysis
 − Problems in model validation

 − Methods and approaches of this work
 − Methods in process system modeling
 − Methods in process system analysis
 − Methods for process model integration
 − Methods for process model validation

Chapter 1 Introduction 33

The above sidebar is designed for review of the subject topics and their
relations developed in this chapter.

With the understanding of the structure of theoretical foundations of
software engineering and the identification of the problems in the process
approach, it is necessary to develop a unifying process infrastructure through
Part I to Part III in this book. The unified process framework will
accommodate and integrate existing process models, and solve a large
proportion of the problems identified so far in software engineering process
research and practices. The unified theory and process framework will be
applied in Parts IV to VI to derive practical methodologies of process system
establishment, assessment, and improvement for practitioners.

The main aim of this book is to advocate a systematic and rigorous
approach to process-based software engineering. It is expected that by this
approach, existing chaotic problems in current process models can be solved,
and a unifying process approach to software engineering can be established
with fully investigated foundations and integrated methodologies.

It is also expected that this approach will help process system analysts
and developers to mutually compare multimodels; practitioners to better
understand existing models; assessors to easier manipulate current models
with less ambiguity; and tool developers to accurately implement supporting
tools.

Annotated References

The term software engineering was first advocated by Bauer in 1968 [Naur
and Randell, 1969]. Many good textbooks on generic software engineering
have been published in the 1990s. McDermid (1991) edited an academic
reference book covering almost every aspect of software engineering and
related science branches. Sommerville (1996) presented a more formal
approach to software engineering. Pressman (1992) wrote a popular text for
practitioners. Pfleeger (1998) published an easy reading text describing the
latest development with informative resources.

Software engineering methodologies have evolved over the following
orientations, and all the methodologies developed in the last three decades
have shown effectiveness and broad usability:

34 Part I Fundamentals of the Software Engineering Process

– Programming methodologies: see Dijkstra, 1968/76; Knuth, 1974;
Liskov and Zilles, 1974; Hoare, 1969/72/86; and Gries, 1981.

– Software development models: see Waterfall (Royce, 1970),
Prototype (Curtis et al., 1987), Spiral (Boehm, 1988), V (GMOD,
1992), Evolutionary (Lehman, 1985; Gilb, 1988; Gustavsson, 1989),
and Incremental (Mills et al., 1980).

– Case tools and automated software engineering: see Boehm et al.,
1986; Wasserman, 1990; Bandinelli, 1992; Barghouti and
Krishnamurthy, 1993; and Rumbaugh et al., 1998.

– Formal methods: see Dijkstra, 1976; Gries, 1981; Hoare, 1985/95;
Milner, 1989; Hayes, 1987; Spivey, 1988; Dawes, 1991; and
Bandinelli, 1992.

– Software processes: Weinwurm and Zagorski (1965) was
recognized as the first article that discussed software process. Note
that the process concept for software development was initiated
earlier than the term “software engineering” [Bauer, 1968, in Naur
and Randell, 1969]. For further development, see Basili, 1980;
Aron, 1983; Agresti, 1986; Evans, 1987; Boehm, 1986/94;
Humphrey, 1987/88/89/99; Gilb, 1988. On process-based software
engineering, see Barghouti and Krishnamurthy, 1993; Garg and
Jazayeri, 1995; Wang et al., 1997a/99c/e.

On computer science foundations for software engineering processes, see
Dijkstra, 1965/68/72/76; Weinberg, 1971; Baker, 1972; Knuth, 1974; Liskov
and Zilles, 1974; Brooks, 1975/87/95; Hoare, 1969/72/75/85/86/89/95; Stoy,
1977; Boehm, 1976/81/88; Gries, 1981; Gersting, 1982; Lewis and
Papadimitriou, 1988; Spivey, 1988; Dawes, 1991; Harvey, 1994; and Bovet
and Crescenzi, 1994.

On mathematical foundations for software engineering processes: see
Hays, 1963; Waerden, 1969; Maclane, 1971; Hoare, 1986; Mathews, 1992;
Grassman and Tremblay, 1995.

On managerial science foundations for software engineering processes,
see:

– Systems theory (SSI, 1950)

– Operational theory (Fabrycky et al., 1984)

– Decision theory (Keen and Morton, 1978; Steven, 1980)

– Organization methods (Radnor et al., 1970; Kolb et al., 1970)

Chapter 1 Introduction 35

– Strategic planning (Anthony, 1965; Khaden and Schultzki,
1983; William, 1991)

– Management economics (Richardson, 1966)

– Quality system principles (Shewhart, 1939; Juran,
1962/80/88/89; Crosby, 1979; Deming, 1982a/b/86; Imai, 1986;
Buckland et al., 1991).

A variety of software process models, international, regional, and internal,
have been developed in the last decade. See TickIT [DTI, 1987, TickIT,
1987/92], ISO 9001 [ISO 9001, 1989/94], CMM [Paulk et al.,
1991/93a/b/c/1995a; Humphrey, 1987/88/89], Trillium [Trillium, 1992/94],
BOOTSTRAP [BOOTSTRAP team, 1993], ISO 12207 [ISO 12207, 1995],
ISO/IEC TR 15504 (SPICE) [ISO/IEC 15504, 1992/93/96/97/98], and
SEPRM [Wang et al., 1996a/97a/98a/99c/e].

Questions and Problems

1.1 What is the nature of software engineering? Is software engineering
unique or special in relation to the other engineering disciplines?

1.2 Software engineering is dependent on interdisciplinary foundations.
Can you identify any of these disciplines that software engineering
is based on?

1.3 There is an argument that programming has no scientific foundations
because both professionals and amateurs can write programs. Do you
agree with this observation? Why?

1.4 What are the advantages of adopting a formal and algorithmic approach
to process system modeling and description?

1.5 What are the advantages of adopting a formal and quantitative
approach to process system analysis?

36 Part I Fundamentals of the Software Engineering Process

1.6 In Section 1.2 eight fundamental characteristics of software engineering
were identified. Choose one of them and explain its impact on the
engineering of software development.

1.7 Why it is considered that software engineering has shifted from a
laboratory-oriented profession to an industry-oriented process?

1.8 Explain what the modern domain of software engineering is.

1.9 Software engineering methodologies have been evolved from
programming methods, software development models, CASE tools, and
formal methods to the software engineering process. Referring to Table
1.6, try to analyze the advantages and disadvantages of each approach
to software engineering.

1.10 The software engineering process is considered as originating from two
sources. Can you identify and briefly describe the sources of
technologies that lead to the development of the software engineering
process?

1.11 What is your reaction to the observation of the phenomenon that a
variety of software engineering process models currently exist? Choose
one of the following and explain:

(a) Complain that we already have enough models; no more are
needed.

(b) Try to analyze their differences and similarity.
(c) Try to understand the usability of those process models.
(d) Demand standardization of process models.
(e) Support integration of process models.
(f) Explore innovative processes that have not been covered by

current process models.

1.12 Analyze what software engineering can learn from the other
engineering disciplines.

1.13 May software engineering methodologies and approaches be borrowed
and applied to the other engineering disciplines? Can you provide an
example?

37

Chapter 2

A UNIFIED FRAMEWORK OF
THE SOFTWARE ENGINEERING

PROCESS

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

 1.
 Introduction

2.1 Introduction 2.5 Fundamentals of software process system
2.2 Domain of SE process systems analysis
2.3 A fundamental view of SE process systems 2.6 Summary
2.4 Fundamentals of software process system modeling Annotated references

2.
A Unified Framework of
SE Process

4.
Process-Based
Software Engineering

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

3.
Process Algebra

38 Part I Fundamentals of the Software Engineering Process

This chapter intends to develop a unified framework of the software
engineering process. The domain of software engineering processes is
explored in order to gain a general view and a whole picture of the
discipline. Fundamental methodologies and techniques in process system
modeling and analysis are described, and an integrated theoretical and
empirical foundation of process system paradigms is developed.

The objectives of this chapter are as follows:

• To develop a unified software engineering process framework

• To show fitness of current process models as subset paradigms of
the unified process framework

• To pave the way for developing an integrated software engineering
process reference model (SEPRM)

• To enable quantitative analysis of process characteristics of
significance, practice, and effectiveness

2.1 Introduction

Organizing and implementing software engineering through software
processes is a strategically important approach in the software industry
[Humphrey, 1995; Pfleeger, 1998]. The concept of the software engineering
process and the process approach to software engineering were addressed in
Chapter 1. This chapter develops a unified framework for software
engineering process systems, and investigates fundamental architectures and
requirements for software engineering process modeling and analysis.

Modeling of an integrated software engineering process system starts
from the analysis of the functionality of a generic software development
organization, and by identifying its software engineering requirements.

A software development organization is defined as follows:

Definition 2.1 A software development organization is an independent
organization, or a department or unit within an organization, which is
responsible for development, maintenance, operation, and/or service of
software or software-intensive systems.

Chapter 2 A Unified Framework of the Software Eng. Process 39

A software engineering process system shall be elicited and abstracted
systematically from the basic technical activities to the high-level
administration practices in a software development organization. Building
upon this, a fundamental structure of a generic process system may be
derived.

The purpose of this chapter is to completely identify the software
engineering process domain and its architecture. A unified framework of
software engineering process systems will be developed which lays a
theoretical and structural foundation for the remainder of the book. We will
use this framework for formal description and analysis of current process
models and methodologies, and for development of new process reference
models.

 Applying the unified process framework, unexpected gaps and
omissions in current process models may be identified. Essential areas in
process establishment, deployment, implementation, modeling, analysis,
assessment and improvement may not have been covered by current process
models, especially the lack of an abstract software development organization
model, a complete process system model, and process benchmarks for
characterizing the empirical attributes of the practices in processes.

2.2 Domain of Software Engineering
 Process Systems

The term “software engineering process system” was introduced by
Definition 1.2 in Section 1.5. The term “domain” refers to the complete
range of studies concerned by a system. This section investigates the domain
of the software engineering process system, and the areas of interest in the
discipline.

2.2.1 SOFTWARE PROCESS SYSTEM MODELING

According to systems theory, a software engineering process system is a
dynamic, discrete, distributed, and nondeterministic system. In dealing with
such a complicated system, a model of a software process system can be
empirical or formal from the viewpoint of modeling techniques, and can be
descriptive or prescriptive from the viewpoint of modeling purposes. Using

40 Part I Fundamentals of the Software Engineering Process

the modeling techniques and purposes as defined below, software process
models can be categorized and identified.

Definition 2.2 An empirical process model is a model that defines an
organized and benchmarked software process system and best practices
captured and elicited from the software industry.

Definition 2.3 A formal process model is a model that describes the
structure and methodology of a software process system with an algorithmic
approach or by an abstractive process description language.

Definition 2.4 A descriptive process model is a model that describes
“what to do” according to a certain software process system.

Definition 2.5 A prescriptive process model is a model that describes
“how to do” according to a certain software process system.

In practice there are four types of combinatory process models according to
different modeling purposes and techniques as defined in Definitions 2.2 –
2.5. They are:

(a) Empirical and descriptive

(b) Empirical and prescriptive

(c) Formal and descriptive

(d) Formal and prescriptive

In accordance with these definitions, almost all current process system
models fall into Category a, the empirical and descriptive models. Plenty of
formal description languages designed for describing the software process
have been reported [Saeki et al., 1991; Bandinelli, 1993; Finkelstein, 1994;
Sutton and Osterweil, 1997], but there are still no complete formal process
models. An empirical and prescriptive process model seems impractical
because it would be superfluous and diverge from the principle of abstraction
in system modeling. Based on the same rationale, we would not expect an
emergence of a formal and prescriptive process model in the near future.

Current empirical-and-descriptive process models are designed to
contribute answers for the following frequently asked questions in software
engineering process system modeling and analysis:

• What are the best practices in software engineering?

Chapter 2 A Unified Framework of the Software Eng. Process 41

• What are the successful experiences of the software development
organizations in their processes?

• How is a software engineering process system established?

• How are the status and performance of an implemented process
system controlled?

• How is an existing software engineering process system improved?

Improving current empirical-and-descriptive process system models for
completeness and rigor requires a formal and descriptive process model with
algorithmic and quantitative methodologies. These measures offer the best
way to describe well-founded systems without ambiguity.

2.2.2 SOFTWARE PROCESS SYSTEM
 ESTABLISHMENT

Process system establishment is a precondition in a software development
organization for implementing process-based software engineering.
Although organizations that have experience in software development
should have some sort of procedure – whether ad hoc or defined, informal or
formal – the software engineering process as an infrastructural system needs
to be formally and systematically established.

Definition 2.6 Software process establishment (SPE) is a systematic
procedure to select and implement a process system by model tailoring,
extension, and/or adaptation techniques.

Definition 2.6 indicates it usually might not be wise to develop an
independent software engineering process system from scratch. It is better to
refer to some existing and well-established process models or standards, then
try to select the one that is most suitable to the organization’s purposes and
that could give more flexibility for future development. Because process
system establishment is a costly organizational reengineering procedure, at
the top of the agenda should be to investigate the usability and suitability of
the candidate process models.

When a process system reference model is selected, the next step is to
tailor and adapt the process model to make it fit with the organization’s
environment and culture. It is worth knowing that there is no process model
that would fit a specific organization 100 percent. This is why there is a
need to explore process system establishment methodologies.

42 Part I Fundamentals of the Software Engineering Process

2.2.3 SOFTWARE PROCESS SYSTEM ASSESSMENT

Process assessment enables software development organizations to find
weaknesses and improvement opportunities in their process systems, and to
provide would-be customers with assured confidence in their abilities and
capabilities. Software process assessment is usually carried out in two steps:
(a) process assessment, and (b) process capability determination.

The first step in process assessment is an on-site investigation and
evaluation of the performance of a software organization’s current process
system. Software process assessment can be defined as follows:

Definition 2.7 Software process assessment (SPA) is a systematic
procedure to investigate the existence, adequacy, and performance of an
implemented process system against a model, standard, or benchmark.

The second step in process assessment is process capability determination.
This can be carried out on-site or processed in the office after an assessment.
The term “process capability determination” is defined as follows:

Definition 2.8 Process capability determination is a systematic procedure
to derive a capability level for a process, project, and/or an organization
based on the evidence of existence, adequacy, and performance of the
required practices defined in a software engineering process system.

Although process capability determination is one of the important outcomes
of a formal process assessment, it is not the main goal of assessment. The
usual main goal of process assessment is to diagnose the current process
system applied in an organization in order to improve it. However, a trend in
which a software process capability level is used as a commercial weapon
has evolved in order to win software contracts or to promote software
products in the competitive software industry.

2.2.4 SOFTWARE PROCESS SYSTEM IMPROVEMENT

As described above, process assessment is the means for process
improvement; process improvement is the final goal of process assessment.
Software process improvement can be defined as follows:

Definition 2.9 Software process improvement (SPI) is a systematic
procedure to improve the performance of an existing process system by
changing the current processes or updating new processes in order to correct

Chapter 2 A Unified Framework of the Software Eng. Process 43

or avoid problems identified in the old process system by means of a process
assessment.

Process improvement is thus a procedure that follows process assessment.
The relationship between process assessment and improvement forms a
repetitive Deming Circle, plan-do-check-act, until a software engineering
process system is optimized in a given organization.

2.2.5 SOFTWARE PROCESS SYSTEM
STANDARDIZATION

Standardization is an attempt to integrate, regulate, and optimize existing
best practices and theories in research and in the industry. Considering that
a variety of software process models have been developed by international,
national, professional, and industrial institutions in the last decade,
standardization is a timely strategic action in this discipline. Standards are
often arrived, however, at as the result of trade-offs between cutting-edge
development and existing ones that are widely accepted as good practices.

Some active international standardization bodies in areas of software
engineering, software process, and software quality are The International
Organization for Standardization (ISO), The International Electrotechnical
Commission (IEC), and The Institute of Electrical and Electronics
Engineers (IEEE). In the following we introduce these standardization
bodies and related international standards on software engineering and
software quality.

2.2.5.1 Software Engineering Process Standards

In 1987 a Software Engineering Subcommittee (SC7) was established by the
ISO/IEC Joint Technical Committee-1 (JTC1) in order to recognize the
importance and requirements for a set of software engineering standards.
Since then, a dozen working groups (WGs) have been founded to cover
specific software engineering areas such as:

• WG1: Open distributed processing (ODP) – Frameworks and
components

• WG2: System software documentation

• WG3: Open distributed processing (ODP) – enterprise language

• WG4: Tools and environment

• WG5: Open distributed processing (ODP) – quality of service

• WG6: Evaluation and metrics

44 Part I Fundamentals of the Software Engineering Process

• WG7: Life cycle management

• WG8: Support of software life cycle processes

• WG9: Software integrity

• WG10: Software process assessment

• WG11: Software engineering data definition and representation

• WG12: Functional size measurements

• WG13: Software measurement framework

• WG14: Enhanced LOTOS

The list of JTC1/SC7 working groups is still expanding. As software
engineering theory, methodologies, and practices evolve, we may expect
more areas to be covered in software engineering standardization, such as
system requirement definition, domain knowledge infrastructure, software
architecture and frameworks, and software engineering notations.

A related standard developed in ISO/IEC JTC1/SC7 recently has
been ISO/IEC 12207 (1995) – Software Life Cycle Processes. Others under
development are ISO/IEC TR 15504 (1997/98) – Software Process
Assessment, and ISO/IEC CD 15288 (1999) – System Life Cycle Processes.

A recent trend of ISO/IEC TR 15504 is to align its process dimension to
ISO/IEC 12207. In addition, extension for ISO/IEC TR 15504 has been
proposed to cover some system life cycle processes such as acquisition
processes and broader system environment processes [Dorling and Wang et
al., 1999a/b].

2.2.5.2 Software Quality Standards

Software quality system standardization is covered by the research inherent
in the ISO Technical Committee 176 on quality management and quality
assurance. ISO TC176 was initiated in 1979 with subcommittees working on
generic quality systems and supporting technologies.

A major serial standard developed by ISO TC176 is ISO 9000 (1987/91/
93/94). ISO 9000 was published in 1987 and revised in 1994. ISO 9000 has
been recognized worldwide for establishing quality systems. It is designed
for quality management and assurance, and specifies the basic requirements
for development, production, installation, and service at system and product
levels. Within ISO 9000, ISO 9001 (1989/1994) and ISO 9000-3 (1991) are
applicable to software quality systems for certifying the processes, products,
and services within a software development organization according to the
ISO 9000 model.

Chapter 2 A Unified Framework of the Software Eng. Process 45

Another related international software quality standard is ISO 9126 –
Software Product Evaluation – Quality Characteristics and Guidelines for
Their Use [ISO 9126 1991]. ISO 9126 extends principles of quality control
to software and summarizes the major characteristics and attributes of
software quality. An overview of ISO 9126 software quality model is
shown in Table 2.1.

Table 2.1
ISO 9126 Software Quality Model

No. Quality characteristics Quality attribute
1 Functionality

1.1 Suitability

1.2 Accuracy

1.3 Interoperability

1.4 Security

2 Reliability

2.1 Maturity

2.2 Fault tolerance

2.3 Recoverability

3 Usability

3.1 Understandability

3.2 Learnability

3.3 Operability

4 Efficiency

4.1 Time behavior

4.2 Resource behavior

5 Maintainability

5.1 Analyzability

5.2 Changeability

5.3 Stability

5.4 Testability

6 Portability

6.1 Adaptability

6.2 Installability

6.3 Conformance

6.4 Replaceability

ISO 9126 adopted a philosophy of the black-box that represents the user’s
view of software products and systems. Recent investigations [Dromey,
1996; Pfleeger, 1998] argued that the ISO 9126 model has been focused only
on the external attributes of software quality. Substantial internal attributes
of software quality, such as of architecture, reuse description, coding styles,
test completeness, run-time efficiency, resource usage efficiency, and

46 Part I Fundamentals of the Software Engineering Process

exception handling, have not been modeled. Therefore, we consider that the
internal quality attributes of software will be characterized by the software
engineering process-oriented standards and models. This observation
explores an interesting connection between software engineering process
standardization and software product quality standardization described in
this section.

2.3 A Fundamental View of Software
 Engineering Process Systems

This section identifies the professionals involved in a software development
organization and their roles, interactions, and relationships. Meta
subsystems of software engineering processes for regulating the professional
roles’ functionality and interactions will be derived in the context of a
software development organization in the software industry.

2.3.1 A GENERIC MODEL OF SOFTWARE
 DEVELOPMENT ORGANIZATIONS

The professional roles in a software development organization could form a
long list. Principally, as shown in Table 2.2, they are: senior manager,
project manager, customer solution analyst, system analyst, system architect,
software engineer, programmer, testing engineer, software quality assurance
(SQA) engineer, maintenance engineer, customer supporting engineer,
internal support staff, and so on.

Software engineering roles can be categorized into three functional
parties: the developers, the managers, and the customers. Beginners in
software engineering, such as students, tend to ignore the third party –
customers – because in their learning context there are often no defined
customers, or the programmers are virtual customers themselves. However,
customers are a significant part of software engineering. This is the reason
why almost programming models, from the waterfall and prototyping to
spiral, have had defined roles for customers.

Chapter 2 A Unified Framework of the Software Eng. Process 47

Table 2.2
Roles in Industrial-Oriented Software Engineering

No. Category Roles
1 Software engineering

organization
1.1 Software development organization manager

1.2 Organizational software engineering process designer

1.3 Software engineering environment and tools maintainer

1.4 Delivered systems manager

1.5 Maintenance engineer

1.6 System service evaluator

1.7 User problems and requirements analyst

1.8 User system solutions provider

1.9 User development coordinator

1.10 User testing coordinator

1.11 User technical supporter

1.12 Technical menus and help files author

1.13 Technical trainer

2 Software development
2.1 Software engineering environment and tools manager

2.2 Software engineering methodology designer

2.3 System analyst

2.4 Domain engineer

2.5 Customer solution consultant

2.6 Requirements capture engineer

2.7 System architect

2.8 Algorithm developer

2.9 Programmer

2.10 Software testing engineer

2.11 System integration and configuration engineer

3 Software engineering
project management

3.1 Project manager

3.2 Project-level process designer

3.3 Project planning and estimation engineer

3.4 Project contract and requirements manager

3.5 System requirement specification analyst

3.6 Quality engineer

3.7 Project configuration and document manager

3.8 Project team coordinator

If one just concentrated on the functionality and interactions among the
three parties, software engineering activities in an organization would still
be informal and uncontrollable. To regulate the human activities and
interactions within a software development organization, the environment of

48 Part I Fundamentals of the Software Engineering Process

a software engineering process system should be based on the identification
and modeling of the three parties’ practices in a process context. As shown
in Figure 2.1, three process subsystems, known as organization,
development, and management, have been identified. The regulation of
human activities in a process-based software engineering environment forms
a generic high-level model of a software development organization.

Definition 2.10 A generic model of the software development
organization is a high-level process model of an organization which is
designed to regulate the functionality and interactions between the roles of
developers, managers, and customers by a software engineering process
system.

 Developement Developers
 processes

 Customers

 Management Managers
 processes

 Organization processes

Figure 2.1 A generic high-level software development organization model

The generic software organization model depicted in Figure 2.1 identifies a
least-complete set of process subsystems in a software development
organization. The three process subsystems are considered complete and
minimal to model a software engineering process system. It is complete
because all the software engineering professionals and their roles identified
in Table 2.2 can be fit in these processes; it is minimal because no
subsystems can be merged into the others. The completeness, minimum
property, and high-level abstraction of a software engineering model is
essential to clarify the interrelationships and interactions between the main
software engineering process streams, and is helpful for reducing the
complexity of synchronization between process activities in the concurrent
process subsystems in a software development organization.

Chapter 2 A Unified Framework of the Software Eng. Process 49

In the generic software development organization model, as shown in
Figure 2.1, the organization processes regulate the top-level activities that
are generally practiced in a software development organization above project
level. Beneath the organization process subsystem are the development
process subsystem and corresponding management process subsystem that
are interactive in parallel at project level. The former is the producer of
software product and the object of the management processes; the latter is
the supporter and controller of the development processes by means of
schedule, quality, resources, and staff.

All professional roles, including the developers, managers, and
customers, can fit in the generic process model as shown in Figure 2.1 and
communicate with each other. In the following chapters, this generic model
will be extracted into a comprehensive software engineering process model.

2.3.2 PROCESS SYSTEM ARCHITECTURE IN
A SOFTWARE DEVELOPMENT ORGANIZATION

For modeling a process system, processes are elicited and integrated from
the bottom, up. Processes in the development subsystem are first analyzed
and then modeled. Corresponding to the development processes, the
management processes are then deployed as measures to support and control
the development processes. The third step is to design the organization
processes, which are the top-level management processes oriented to the
whole software development organization, and which are applicable to all
software engineering projects within the organization.

It is generally considered that there would be a number of parallel
development and management processes for individual projects within a
software development organization. For the purpose of controlling a
process system, software engineering processes are implemented and
practiced top down, from the organization level to the project level.
Therefore, the relationship between the organization, management, and
development processes can be further refined as in Figure 2.2.

Figure 2.2 shows the common practices in organizing a software
engineering process system. It is noteworthy that there is only one
organization process subsystem in a software development organization,
which will be based on the organization’s process reference model (OPRM).
At project level, a number of parallel development and management
processes may exist based on the individual project’s tailored process model
(PTPM) and which are derived models of the OPRM reference model. In
Figure 2.2 the process reference model, OPRM, is the key for empirical
process-based software engineering. If an OPRM is well established in an
organization, the PTPMs at project level can easily be derived.

50 Part I Fundamentals of the Software Engineering Process

 Organization’s
 Organization process reference
 process model
 (OPRM)

 organization bus

 process bus

 Management Management Management
 Project’s process 1 Project’s process 2 Project’s process n
 tailored tailored tailored
 process process process
 model 1 Development model 2 Development model n Development
 (PTPM 1) process 1 (PTPM 2) process 2 (PTPM n) process n

 Project 1 Project 2 Project n

Figure 2.2 Process organization and implementation in a software
development organization

Definition 2.11 A process reference model is an established, validated,
and proven software engineering process model that consists of a
comprehensive set of software processes and reflects the benchmarked best
practices in the software industry.

At the top level, a software development organization may adopt an existing
international standard or an established process model as its OPRM; or, it
can develop a specific organization-oriented OPRM based on the existing
models and the organization’s own practices and experiences in software
engineering. The OPRM plays a crucial rule in the regulation and
standardization of an organization’s software engineering practices.

At project level, the OPRM reference model could, and usually should,
be tailored or adapted to a specific project according to the nature of the
project, taking into account application domain, scope, complexity,
schedule, experience of project team, reuse opportunities identified and/or
resources availability, and so on. For a PTPM of an individual project, the
management and development processes should be one-to-one designed and
synchronized. Tailoring of a PTPM from a comprehensive OPRM makes the
software project leaders’ tasks dramatically easier. Using this approach,
project organization and conduct can be performed well within an
organization’s unified software engineering process infrastructure.

Chapter 2 A Unified Framework of the Software Eng. Process 51

2.4 Fundamentals of Software Process
 System Modeling

For objective, accurate, stable, nonambiguous and effective modeling,
analysis, assessment, and improvement of a software engineering process
system, the following fundamental aspects need to be investigated. They are
the process model, the process assessment model, and the process
improvement model as shown in Figure 2.3. This section describes a unified
framework of the software engineering process system and its requirements
in accordance with the structure provided in Figure 2.3.

 Process system
 modeling

 Process Process assessment Process improvement
 model model model

 Organization Development Management Process Process Model - Benchmark -
 process process process capability capability based based
 subsystem subsystem subsystem model determination improvement improvement
 (PCM) (PCD) method model model

 Practice Process Process Process Project Organization
 performance capability capability capability capability capability
 scale scale scope determination aggregation aggregation

Figure 2.3 Fundamental structure of software process system modeling

52 Part I Fundamentals of the Software Engineering Process

2.4.1 PROCESS MODEL

A process model is a blueprint of how to organize, implement, conduct, and
manage software engineering processes in an organization with an
established, validated, and proven process system and good practices.

Definition 2.12 A process model is a model of a process system that
describes process organization, categorization, hierarchy, interrelationship,
and tailorability.

2.4.1.1 Taxonomy of Software Process Systems

A bottom up taxonomy of software process systems is: practice, process,
process category, process subsystem, and process system. Terms in the
process taxonomy are formally described as follows.

Definition 2.13 A practice is an activity or a state in a software
engineering process that carries out a specific task of the process.

A practice is the minimum unit that can be modeled in a process system. In
this book, a practice will henceforth be referred to as a base process activity
(BPA).

Definition 2.14 A process is a set of sequential practices (or BPAs) which
are functionally coherent and reusable for software project organization,
implementation, and management.

Definition 2.15 A process category is a set of processes that are
functionally coherent and reusable in an aspect of software engineering.

Definition 2.16 A process subsystem is a set of process categories that
are functionally coherent and reusable in a main part of software
engineering.

A process subsystem is the second-highest-level structure in a process
system. As described in the generic model of software development
organizations in Section 2.3, a least-complete set of process subsystems
covers organization, development, and management in software
engineering.

Definition 2.17 A process system is an entire set of structured software
processes described by a process model.

Chapter 2 A Unified Framework of the Software Eng. Process 53

Hierarchically, a process system can be divided into subsystems, categories,
processes, and practices (BPAs) as defined in Definitions 2.13 – 2.16,
respectively. The usage of a process taxonomy is to enable process system
modeling and analyses to be carried out at the same level, and to avoid
comparison of apples with pears among varying process models.

2.4.1.2 The Domain of a Process Model

Corresponding to the hierarchical structure of a process system described
above, the domain of a process model can be introduced below.

Definition 2.18 A domain of a process model is a set of ranges of
functional coverage that a process model specifies at different levels of the
process taxonomy.

The domain of a process model determines what to describe and check, and
what is important at different hierarchical levels in a software process
system. For example, we can describe the domain of a process category as
being the number of processes and the domain of a process as being the
number of practices (BPAs).

At the highest level of the process taxonomy, the domain of a process
system covers three process subsystems: organization, development, and
management, as shown in Figure 2.1. The formal definitions of these
subsystems are developed below.

Definition 2.19 Organization processes are processes that belong to a top-
level administrative process subsystem, which are practiced above project
level within a software development organization.

Definition 2.20 Development processes are processes that belong to a
technical process subsystem, which regulate the development activities in
software design, implementation, and maintenance.

Definition 2.21 Management processes are processes that belong to a
supporting process subsystem, which control the development processes by
means of resource, staff, schedule, and quality.

A comparison of the domains of current process models (refer to Chapters
5 – 9) in accordance with the taxonomy is shown in Table 2.3. It is
noteworthy that current process models adopt different terms in each level of
the process taxonomy. For instance, at the process level, CMM uses “key
practice areas”, and ISO 9001 prefers “main topic areas”. Only ISO/IEC TR
15504 and SEPRM adopt the term “processes”.

54 Part I Fundamentals of the Software Engineering Process

Table 2.3
Taxonomy and Domains of Current Software Process Systems

Domain
level

CMM Bootstrap ISO/IEC
TR 15504

ISO 9001 SEPRM

System CMM Bootstrap ISO/IEC TR
15504

ISO 9001 SEPRM

Sub-system - Process areas
[3]

- Subsystems
[3]

Subsystems
[3]

Category Process levels

[5]

Process
categories
[9]

Process
categories
(PCs) [5]

- Process
categories
[12]

Process Key practice
areas (KPAs)
[18]

Processes

[32]

Processes
(PRs)
[35]

Main topic
areas (MTAs)
[20]

Processes

[51]

Practice Key
Practices
(KPs)
[150]

Quality system
attributes
(QSAs)
[201]

Base
practices
(BPs)
[201]

Management
issues
(MIs)
[177]

Base process
activities
(BPAs)
[444]

In Table 2.3, the numbers in the squared brackets indicate the sizes of
domains at different hierarchical levels. For example, at the process level,
the sizes of domain of CMM, ISO/IEC TR 15504, and SEPRM are 18, 35,
and 51, respectively; at the practice level, their sizes of domain are 150, 201,
and 444, respectively.

2.4.2 PROCESS ASSESSMENT MODEL

As shown in Figure 2.3, a process assessment model consists of a process
capability model and a process capability determination method. The former
is a yardstick for process capability measurement; the latter is a method
describing how to use the yardstick in measuring a given process model.

2.4.2.1 Process Capability Model

A process capability model is the kernel of a process assessment model. It
provides a set of scales for quantitatively evaluating a software development
organization’s capabilities at process, project, and entire organization levels.
A process capability model can be defined as follows:

Definition 2.22 A process capability model (PCM) is a measurement
scale of software process capability for quantitatively evaluating the
existence, adequacy, effectiveness, and compatibility of a process.

Chapter 2 A Unified Framework of the Software Eng. Process 55

Attempting to quantitatively measure a complicated software engineering
process system is a hard problem. The following subsections introduce basic
scales of practice performance and process capability in a process capability
model, and analyze scopes of process capabilities at different hierarchical
levels in a process model.

(a) Practice performance scale

As described in Definition 2.13 and the taxonomy of a process system (Table
2.3), the practice is the basic unit of a process system. The performance of a
practice can be assessed using a number of confidential degrees for its
existence, adequacy, and effectiveness in process. Typical practice
performance scales adopted in current process models (refer to
Chapters 5 – 9) are contrasted in Table 2.4.

Table 2.4
Modeling of Practice Performance Rating Scales

Model Practice Performance Rating Scale

CMM Yes No Doesn’t apply don’t know

BOOTSTRAP Complete/extensive largely satisfied Partially satisfied Absent/poor

ISO/IEC TR 15504 Fully achieved largely achieved Partially achieved not achieved

ISO 9001 Satisfied not satisfied

SEPRM Fully adequate largely adequate Partially adequate not adequate

(b) Process capability scale

The process capability scale is commonly measured by a set of process
capability levels (PCLs). Most of the current process models (refer to
Chapters 5 – 9) adopt a five- or six-level scale as shown in Table 2.5, where
Level 5 is at the top and Level 0 or 1 is at the bottom.

Table 2.5
Modeling of Process Capability Scales

Capability
Level

CMM BOOTSTRAP ISO/IEC
TR 15504

ISO 9001 SEPRM

0 - - Incomplete Fail Incomplete

1 Initial Initial Performed - Loose

2 Repeated Repeated Managed - Integrated

3 Defined Defined Established - Stable

4 Managed Managed Predictable - Effective

5 Optimizing Optimizing Optimizing Pass Refined

56 Part I Fundamentals of the Software Engineering Process

The terms used in describing process capability levels vary as shown in
Table 2.5. However, these capability scales defined in current process
models can be grouped into three categories:

• The pass/fail threshold scale such as that of ISO 9001

• The management-oriented scale such as those of CMM,
BOOTSTRAP, and ISO/IEC TR 15504

• The process-oriented scale such as that of SEPRM

Detailed description of the three categories of process capability scales is
provided below.

i. Pass/fail threshold capability scale

The pass/fail threshold capability scale is the simplest measurement of
process capabilities and is practical in general areas. The disadvantages of
this scale are:

• Lack of precise discrimination between the capability levels for all
those software development organizations that have passed the
threshold

• Not suitable for step-by-step process improvement

For example, the authors have found that the capability levels of the ISO
9001-registered software development organizations would be mainly
located between the CMM levels two and three, with a few exceptionally
higher [Wang et al., 1996c/97a]. Thus, application of this type of capability
scale would not differentiate the capabilities of software development
organizations that have passed the ISO 9001 capability threshold.

ii. Management-oriented capability scale

The capability scales of BOOTSTRAP and ISO/IEC TR 15504 are mainly
inherited from the CMM [Humphrey, 1987/88/89; Paulk, 1991/93a/b/c].
This category of capability scales is relatively process management-
capability-oriented. All three models have defined 0/1 ~ 5 scales for rating
process capability levels. However, the different terms associated with
respective capability levels are found not to be straightforward or literally
independent.

For instance, it is difficult to answer the following questions without
referring to Table 2.5:

Chapter 2 A Unified Framework of the Software Eng. Process 57

• Which capability level would be lower and should be implemented
earlier in a process system, the defined or the repeated processes?

• Would the managed processes need to be implemented in earlier
stages, say, at least from Level 2, in order to establish a basis for the
performance of the other capability levels?

The design of the ISO/IEC TR 15504 capability scale has considered the
logical issues mentioned above to some extent. However, there is still an
argument as to whether all the capability levels need to be managed rather
than that only at Level 2 in ISO/IEC TR 15504 or at Level 4 in CMM and
BOOTSTRAP. This argument leads to the development of a third category
of capability scale, the process-oriented capability scale, as described below.

iii. Process-oriented capability scale

For measuring processes by straightforward process capability levels rather
than the management levels of processes as discussed in Category ii, a third
type of direct process-oriented capability scale has been developed [Wang et
al., 1997a/99e]. The process-oriented capability scale measures a process’
capability from the bottom up and defines levels of incomplete, loose,
integrated, stable, effective, and refined. This scale is designed to avoid the
contradiction found in the Categories i and ii capability scales. The direct
process-oriented capability scale has been adopted in the SEPRM model
(refer to Chapter 9) as shown in Table 2.5.

(c) Process capability scope

The process capability scales described above can be applied to measure
software process practices and performances within different scopes, such as
in the scopes of a process, a project or an organization. Generally, a larger
scope of capability can be aggregated from the smaller scopes contained in
it. The process capability scopes are defined from the bottom up as follows:

Definition 2.23 A process capability scope is an aggregation of all the
performance ratings, such as existence, adequacy, and effectiveness, of the
practices (BPAs) which belong to the process.

Definition 2.24 A project process capability scope is an aggregation of
all process capability levels of processes conducted in a project.

Definition 2.25 An organization process capability scope is an
aggregation of the process capability levels from a number of sampled
projects carried out in a software development organization.

58 Part I Fundamentals of the Software Engineering Process

Definition 2.25 indicates that an organization’s capability level is dependent
on more than one project’s capabilities carried out within the software
development organization.

The capability scopes and their representations in current process
models (refer to Chapters 5 – 9) are shown in Table 2.6.

2.4.2.2 The Process Capability Determination Method

The process capability determination method is a bridge connecting the
process models with the process capability models as described in Sections
2.4.1 and 2.4.2.1. A definition of the process capability determination
method is given below.

Table 2.6
Modeling of Process Capability Scopes

Capability
scope

CMM BOOTSTRAP ISO/IEC TR
15504

ISO 9001 SEPRM

Practice Performance
Rating

Performance
Rating

Performance
Rating

Fulfillment Performance
Rating

Process Performance
Rating

Performance
Rating

Capability level
with attributes

Fulfillment Capability
level

Project - - Process
capability
profile

- Capability
level +
process
capability
profile

Organization Capability
Level

Capability level
with
quadruples

- Pass/Fail Capability
level +
process
capability
profile

Definition 2.26 A process capability determination (PCD) model is an
operational model that specifies how to apply the process capability scales to
measure a given process system described by a process model.

As described in Definitions 2.7 and 2.8, process assessment and capability
determination are two linked procedures to evaluate process activities in
practice, process, project, and organization scopes. In conventional, natural
language-described process models, process capability determination has
been found difficult to carry out accurately and reliably because the informal
and empirical capability determination methods are too dependent on the
subjective judgments of individual assessors at each level of aggregation of
the process scopes.

Chapter 2 A Unified Framework of the Software Eng. Process 59

For implementing quantitative, stable, and less subjective process
assessment, this book develops a formal and algorithmic capability
determination method. In the algorithmic approach, the assessor-dependent
factor of process capability determination is limited to the lowest scope – the
practice scope, while the higher-level capabilities are required to be derived
according to a suite of rigorously described methods and a set of expressions
as follows.

Although a manual data collection phase for rating the performance of a
practice (the minimum element in process) cannot be avoided, a 4-level
detailed rating scale is provided for assessors, as shown in Expression 2.1, to
accurately derive their evaluation of the basic elements of a process.
Experience shows (refer to Section 12.7) that a +/-10% variation in ratings
between different assessors in the elementary practice scope will not result in
significant differences in the higher scopes of process capability
determination. This is one of the advantages of the algorithmic approach to
process capability determination. This approach has been adopted in the
SEPRM model and implemented in the SEPRM process assessment
algorithm, which will be described in Chapter 9.

(a) Practice performance rating

Definition 2.27 Practice performance, PP(i), is rated by the maximum
adequacy degrees among fully (F, 90 – 100%), largely (L, 60 – 89%),
partially (P, 25 – 59%), and not (N, 10 – 24%) achieved, i.e.:

 PP(i) = max { F | L | P | N }
 = max { 5 | 3 | 1 | 0 } (2.1)

where i is the index number of a practice.

In Expression 2.1, a set of numerical values is assigned for the fully (5),
largely (3), partially (1), and not (0) adequacy of practice performance
ratings. These values will be used in manually or automatically calculating
process capability levels in later chapters.

Definition 2.28 Assume a process, p, consists of mp practices. An average

practice performance of the practices in a process, PP (p), can be derived
by:

 PP (p) = 1
mp

i

mp

=
∑

1

 PP(i) (2.2)

60 Part I Fundamentals of the Software Engineering Process

(b) Process capability determination

Definition 2.29 A process’ capability level, PCLproc(p), is an aggregation

of the mean performance of mp practices, PP (p), which belong to the
process p, i.e.:

 PCLproc(p) = PP (p)

 = 1
mp

i

mp

=
∑

1

 PP(i) (2.3)

Expression 2.3 is designed to provide a precise decimal process capability
level between 0 – 5.0.

(c) Project capability aggregation

Project capability can be aggregated from the PCLs of all processes
conducted in a project.

Definition 2.30 A project’s process capability level, PCLproj(j), is an
aggregation of all capabilities of the k processes, PCLproc(p), conducted in
project j, i.e.:

 PCLproj (j) = 1
k

p

k

=
∑

1

 PCLproc (p) (2.4)

A precise decimal project capability level between 0 – 5.0 can be derived by
Expression 2.4.

(d) Organization capability aggregation

Organization capability is an aggregation of all capabilities of a number of
sampled projects assessed in a software development organization.

Definition 2.31 An organization’s process capability level, PCLorg, is an
aggregation of n projects’ capability levels, PCLproj(p), sampled and assessed
in a software development organization, i.e.:

 PCLorg = 1

1
n

p

n

=
∑ PCLproj (p) (2.5)

Chapter 2 A Unified Framework of the Software Eng. Process 61

Expression 2.5 indicates that more than one projects’ capabilities should be
obtained to derive an organization’s capability level. A recommended
minimum number, n, is three. Expression 2.5 can be used to reflect the
historical experience that a software organization has accumulated in
various software development projects. A precise decimal organization
capability level between 0 – 5.0 can be derived by the expression.

2.4.3 PROCESS IMPROVEMENT MODEL

In Section 2.4.2 a set of quantitative measurements and method have been
developed to help understand the baseline of a process system by process
assessment. Based on awareness of the status and performance of a process
system, improvement can be designed and carried out. This subsection
describes alternative approaches that may be taken for software process
improvement. A process improvement model can be defined as follows:

Definition 2.32 A process improvement model (PIM) is an operational
model that provides guidance for improving a process system’s capability by
changing, updating, or enhancing existing processes based on the findings
provided in a process assessment.

As shown in Figure 2.3, process improvement models can be classified into
two categories: model-based and benchmark-based improvement.

(a) Model-based improvement

Definition 2.33 A model-based process improvement model is an
operational model that describes process improvement methods based on
model- or standard-based assessment results.

(b) Benchmark-based improvement

Definition 2.34 A benchmark-based process improvement model is an
operational model that describes process improvement methods based on
benchmark-based assessment results.

Detailed process improvement methodologies will be discussed in Chapter 4
and Part VI.

62 Part I Fundamentals of the Software Engineering Process

2.5 Fundamentals of Software Process
 System Analysis

Conventional analyses of software engineering process models and systems
were mainly qualitative and one-to-one mapping. In moving towards more
accurate, objective, and stable analysis, this section develops a set of
quantitative methods for analyzing software process models and process
attributes which are suitable for all one-to-one, one-to-many, and many-to-
one analysis areas.

2.5.1 ANALYSIS OF SOFTWARE PROCESS MODELS

In software engineering process system analysis, it is necessary to consider
the following issues:

• What is the core process concept represented in current process
models?

• What are the common features modeled in current process models?

• What are their special orientations?

• What are the interrelationships between current process models?

• How can we measure the relationships between current process
models?

Relations between multiprocess models can be described by terms of
compatibility and correlation. By analyzing the degree of compatibility and
the level and ratio of correlation, the orientation of current process models
and the relationships between them can be clarified, and a fundamental
knowledge structure can be elicited and established.

This subsection introduces definitions and describes quantitative
methods for analyzing compatibility and correlation between process
models. Applications of these methods and related analysis results will be
addressed in Chapter 11.

Chapter 2 A Unified Framework of the Software Eng. Process 63

2.5.1.1 Compatibility between Process Models

A major issue identified in software engineering process analysis and
application is that of partial overlaps between the domains of current process
models. A term compatibility between a set of process models, as illustrated
in Figure 2.4, is introduced to describe the problem.

Definition 2.35 Compatibility between a set of process models is defined as
the degree of the joint domain coverage, which is determined by the sets of
BPAs of the models.

In the definition, the suggestion is that it is appropriate to analyze process
system compatibility at the basic unit, BPA, level because analyses at higher
levels can be fairly subjective and inaccurate.

 1

 2 2
 CMM 3 ISO 9001

 4 4
 3 5 3
 4 4

 Bootstrap 3 ISO 15504
 2 2

 1

 SEPRM

Figure 2.4 Compatibility between current process models

According to Definition 2.35, for k existing models, the compatibility
degree, Ck , can be described at k levels. Referring to Figure 2.4, where
k=5, the five compatibility levels can be specified by:

• C1 : BPAs that are only defined in a specific model

 • C2 : Shared BPAs identified in two of the models

 • C3 : Shared BPAs identified in three of the models

 • C4 : Shared BPAs identified in four of the models, and

 • C5 : BPAs shared by all five models

Thus, the compatibility of a process model M to other k-1 models, ck (M),
can be determined by:

64 Part I Fundamentals of the Software Engineering Process

 ck (M) = #{BPAi | BPAi ∈ Ck }, k=1,2,...,5 and i = 1 ... n

 =
i

n

=
∑

1

{ 1 | BPAi ∈ Ck }, k=1,2,...,5 (2.6)

where n (n=444) is the total number of BPAs identified in the entire joint
domain of all models; # is a cardinal calculus for counting the numbers of
elements in a set.
 The BPAs with higher compatibility, such as those at C5 and C4,
indicate the key practices in software engineering processes. The BPAs with
C1 and C2 show the special orientation of a process model in some specific
aspects. Applications of this subsection and detailed analysis will be
provided in Chapter 10.

2.5.1.2 Correlation between Process Models

In this subsection, definitions of relation and mapping between a pair of
process models are introduced respectively. Then a formal definition of
correlation is derived.

(a) Relation

Definition 2.36 The domain of a process model, X, can be described as a
relation, R(X), according to relational algebra:

 R(X) = R(x1, x2, ..., xn) (2.7)

where x1, x2, ..., xn is the n BPAs identified in model X.

(b) Mapping

Definition 2.37 For two process models, R(X) = R(x1, x2, ..., xn) and S(Y) =
S(y1, y2, ..., yk), a mapping between them, m(R, S), is defined as:

 m(R, S) = {xi | xi ∈ R∩S ∧ 1≤ i ≤ n} (2.8)
and similarly,

 m(S, R) = {yj | yj ∈ S∩R ∧ 1≤ j ≤ k}

Note the number of elements in two mapped sets, m(R, S) and m(S, R), are
identical but the sequences of the elements may be different. Thus, we
consider that m(R, S) ≠ m(S, R) in a bidirectional mapping between two
models.

Chapter 2 A Unified Framework of the Software Eng. Process 65

(c) Correlation

The concept of mapping can be applied to explore correlation between a set
of process models. Pairwise mappings of current process models have been
reported in the literature and attracted much interest in the software industry
[Koch, 1993; Paulk, et al. 1994/95b; Jarvinen, 1994; Kugler and Messnarz,
1994; Kitson, 1996]. The approaches of existing mappings were mainly
conducted at high levels (such as at the process or process category levels),
in single direction (e.g., from CMM to ISO/IEC TR 15504, or from ISO
9001 to CMM), and nonquantitative. Some of the mapping results were
argued to be fairly subjective, and in some aspects were even contradictory.

For enabling quantitative, objective, and bidirectional mapping between
current process models, a new approach – quantitative correlation analysis –
needs to be developed. To achieve the aims of quantitative, objective, and
bidirectional analysis, correlation analyses are suggested at the BPA level.
As described in Definition 2.13, BPA (practice) is the fundamental element
in a process for describing the base activities and the implication of a
process. BPAs are usually specific and single actions in a process. A BPA’s
implication and extension are much clearer than that of a process or a
process category. Analysis at the BPA level is also helpful to distinguish
possible differences between the literal identical or similar processes while
consisting of different BPAs underneath. Although working at the BPA level
requires much more effort in analysis, it is fundamental for deriving less
subjective and more accurate correlation pictures between current process
models.

For modeling the correlation between two process models, an absolute
and a relative measurement may be considered. The former represents a
level of correlation, and the latter a ratio of correlation.

Definition 2.38 The correlation level between two process models is
defined as the number of identical or equivalent BPAs identified in both
domains of a pair of process models.

The correlation level between two process models R and S, r(R, S), can be
measured by applying the cardinal calculus # of set to, or by simply
counting, the BPAs commonly identified in a pair of models, i.e.:

 r(R, S) = # { xi | xi ∈ m(R, S)}

 =
i

n

=
∑

1

{ 1 | xi ∈ m(R, S)}

 =
i

n

=
∑

1

{ 1 | xi ∈ R ∩ S)} (2.9)

where n is the number of BPAs in R.

66 Part I Fundamentals of the Software Engineering Process

According to Definition 2.38, it is intuitive that r(R, S) = r(S, R). This
means that values of the correlation level between two models are
symmetrical.

Definition 2.39 The correlation ratio of a process model R against a model
S, ρ(R,S), is a relative degree of identity or equivalency that model R
compares to S.

The correlation ratio can be quantitatively calculated by:

 ρ(R,S) = r R S

R

(,)

#
%

 = r R S

n

(,)
% (2.10)

where #R is the number of elements (BPAs), n, identified in model R.
Note that ρ (R,S) ≠ ρ (S,R) according to Definition 2.39. This means that

the correlation ratio is dependent on both the correlation level and the size of
the model that it is analyzing.

The correlation derived at the BPA level can be aggregated to process
and system levels. The former deals with detailed mapping between
processes of different models while the latter provides an overall view for
correlation between a pair of process models.

2.5.2 ANALYSIS OF SOFTWARE PROCESS
ATTRIBUTES

In Section 2.5.1 we described quantitative measurements for relations
between software process models. This subsection seeks useful process
attributes to quantitatively evaluate practical characteristics of software
processes and practices of current process models.

In comparative analysis of current process models, it is found that a
number of basic questions need to be raised for software engineering process
modeling, such as:

• What are the criteria needed to include or drop a BPA in a process?

• How are a BPA and a process characterized?

• How is a process model valid at the fundamental BPA level?

To answer these questions, five process attributes are developed to serve as
the criteria for BPA characterization, evaluation, and validation. The five
process attributes are mean weighted importance; ratios of significance, of

Chapter 2 A Unified Framework of the Software Eng. Process 67

practice, and of effectiveness; and the characteristic value of the BPA.
Practical values of the attributes for each BPA have been derived from
worldwide surveys in the software industry [Wang et al., 1997a/98a/99c].

2.5.2.1 Mean Weighted Importance

Definition 2.40 Given the importance weight of a BPA, wi, in a scale [0, 1,
..., 5], a statistical mean weighted importance of a BPA is defined as a
mathematical average of the empirical weighting values obtained from the
survey samples, i.e.:

 W =

w i

n

i
i

W

*
=
∑

0

5

 (2.11)

where nW is the total number of samples in a survey.

2.5.2.2 Ratio of Significance

The importance weighting for a BPA, wi, is defined within [0 ... 5]. The
numbers of heavy (3 ≤ wi ≤ 5) and light (0 ≤ wi ≤ 2) weights for the
significance of BPAs in the total samples nW, nw plus n

w
, are categorized

by:

 nw = # { wi | wi ≥ 3 ∧ wi ≤ 5 }

 =
i

nW

=
∑

1

{ 1 | wi ≥ 3 ∧ wi ≤ 5 } (2.12)

and
 n

w
= # { wi | wi ≥ 0 ∧ wi ≤ 2 }

 =
i

nW

=
∑

1

{ 1 | wi ≥ 0 ∧ wi ≤ 2 } (2.13)

respectively.

Definition 2.41 Based on Expressions 2.12 and 2.13, the ratio of
significance of a BPA, rw, which is heavily weighted in a set of survey
samples can be defined as:

68 Part I Fundamentals of the Software Engineering Process

 rw =
n

n n
w

w w
+

* 100% (2.14)

and similarly, the ratio of nonsignificance of a BPA, r
w

, is defined by:

 r
w

 =
n

n n
w

w w
+

* 100%

 = 1 - rw (2.15)

2.5.2.3 Ratio of Practice

Definition 2.42 Assuming that np and n
p

 are numbers of evaluation for

characterizing a BPA practical or nonpractical, respectively, the ratio of
practice for a BPA, rp , is defined as:

 rp =
n

n n
p

p p
+

* 100% (2.16)

and the ratio of nonpractice of a BPA, r
p

, is:

 r
p

 =
n

n n
p

p
p

+
* 100%

 = 1 - rp (2.17)

2.5.2.4 Ratio of Effectiveness

Definition 2.43 Assuming that ne and n
e

 are numbers of evaluation for

characterizing a BPA effective or noneffective, respectively, the ratio of
effectiveness for a BPA, re , is defined as:

 re =
n

n n
e

e e
+

* 100% (2.18)

and the ratio of noneffectiveness of a BPAs, r
e

, is:

Chapter 2 A Unified Framework of the Software Eng. Process 69

 r
e

 =
n

n n
e

e e
+

* 100%

 = 1- re (2.19)

2.5.2.5 Characteristic Value (Usage)

Practical characteristics of the BPAs, or usage, in a process system can be
combinatorially represented by the last three attributes, the ratios of
significance, practice, and effectiveness, as follows:

Definition 2.44 A characteristic value, or usage, of a BPA, ϕ, can be
determined by a production of the ratios of significance (rw), practice (rp),
and effectiveness (re), i.e.:

 ϕ = (rw* rp* re) * 100% (2.20)

The characteristic value ϕ provides a combined indication of a BPA’s
significance, practice, and effectiveness in process, or simply usage. The
higher the value of ϕ, the more important and effective the BPA in practice,
and vice versa. Therefore, ϕ can be used to index the importance and
effectiveness of a BPA in practice.

The process system relations and process attributes developed in this section
will be applied in the following chapters for describing and analyzing
current software engineering process models, especially the SEPRM model.

2.6 Summary

In this chapter, a whole picture of the software engineering process domain
and its architecture have been presented. Taking this view, a unified
framework of software engineering process systems has been developed.
Formal approaches have been introduced into software engineering process
system modeling and analysis with the intention of avoiding ambiguity and
improving accuracy in understanding and applying the existing and new
process methodologies.

70 Part I Fundamentals of the Software Engineering Process

The basic knowledge structure of this chapter is as follows:

Chapter 2. A Unified Framework of the Software Engineering
 Process

• General
− Purpose of this chapter

 − To develop a unified software engineering process
 framework

 − To show fitness of current process models as subset
 paradigms of the unified process framework
 − To pave the way for developing an integrated software
 engineering process reference model (SEPRM)
 − To enable quantitative analysis of process characteristics of
 significance, practice, and effectiveness

− A discipline of the software engineering process
 − Foundations
 − Common features
 − Alternative approaches

• Domain of software engineering process systems
− Modeling and analysis

 − Empirical vs. formal
 − Descriptive vs. prescriptive

− Establishment
 − SPE
 − Selection of a process system reference model
 − Customization of the reference model

− Assessment
 − SPA
 − Process capability determination

− Improvement
 − SPI
 − Relations to SPA

− Standardization
 − Software process – internal view of software artifacts
 − Software quality – external view of software artifacts

Chapter 2 A Unified Framework of the Software Eng. Process 71

• A fundamental view of software engineering process systems
− The generic model of software development organizations
− The process system architecture
− Basis concept: regulating software engineering roles and
 interactions via a process system
− The role of a process system reference model
− Derived process models at project level

• Architecture of software process system modeling
− Process model

− Taxonomy
− Domain
− Reference model
− Project model
− Comparison between current process systems

− Process assessment model
− Process capability model
 − Practice performance scale
 − Process capability scale
 − Process-oriented capability scale
 − Pass/fail threshold
 − Managerial process capability scale
 − Direct process capability scale
− Process capability determination model
 − Rating scopes: process, project, organization
 − Rating methods
 − Approaches to measure process capability
 − Pass/fail threshold
 − Managerial process maturity level
 − Direct process capability level
− Comparison between current process systems

− Process improvement model
− Assessment-based
− Benchmark-based

• Approaches to software process system analysis
− Process system relations

− Compatibility
− Correlation
− Mapping

72 Part I Fundamentals of the Software Engineering Process

− Process attributes
− Mean weighted importance
− Ratio of significance
− Ratio of practice
− Ratio of effectiveness
− Characteristic value (Usage)

A set of fundamental concepts has been developed in this chapter for
software engineering process system modeling, analysis, and applications.
Some of these, which set the stage for the remainder of this book, are as
follows:

• A fundamental view of software engineering process systems

• Domain of software engineering process framework

• The generic model of software development organizations

• Process organization in software engineering

• Description and analysis of process relations between process
systems

• Characterizing and analysis of process attributes

The process system framework developed in this chapter lays a foundation of
software engineering process theory. The unified process framework will
serve as a high-level conceptual model for the studies in the rest of this
book.

Annotated References

Software engineering process system modeling deals with process
framework modeling, process capability modeling, and process capability
determination.

– On process framework modeling, Humphrey (1987/88/89) and
Paulk et al. (1991/93a/b/c/95a) developed the first set of software
processes that covered 18 key practice areas and 150 key practices.
The BOOTSTRAP team (1993) and ISO/IEC TR 15504
(1997/1998) extended the process domain to 32 processes, 201

Chapter 2 A Unified Framework of the Software Eng. Process 73

quality-system-attributes, 35 processes, and 201 base practices,
respectively. In developing a comprehensive software engineering
process reference model (SEPRM), Wang et al.
(1996a/97a/98a/99c/e) developed a superset of process domain that
covered 51 processes and 444 base process activities. A number of
sub-domain process models were developed that covered specific
process areas in software engineering; see Bate et al. (1993); Boehm
and Bose (1994); Sommerville and Sawyer (1997); Humphrey
(1996/97/98); and Jacobson et al. (1998).

– On process capability modeling, Humphrey (1987/88/89) and Paulk
et al. (1991) developed the first capability maturity model and
revealed that software engineering process can be measured by the
process capability maturity levels. The BOOTSTRAP team (1993)
and ISO/IEC TR 15504 (1997/1998) extended the capability level
measurements to more precise rating scales with a set of capability
attributes. In observing that the existing process capability
measurement were mainly rated process management capability
levels rather than the processes themselves, Wang et al.
(1997a/b/99e) developed a direct process rating scale with a set of
process capability levels: incomplete, loose, integrated, stable,
effective, and refined.

– On process capability determination methodologies, conventional
process models provided only operational guidance on how the
capability rating scales may be used in process assessment and
measurement [Paulk et al., 1991/93a/b/c/95a; ISO 9001, 1989/94;
BOOTSTRAP team, 1993; ISO/IEC TR 15504, 1997/1998]. Wang
et al. developed a set of formal and algorithmic process capability
determination methods [Wang et al., 1997b/99e/h] and elicited the
algorithms of current process models, which had been described by
natural language.

Software engineering process system analysis explores framework structures,
theories, orientations, domain coverage, usability, and characteristics of
existing software process models. Conventional approaches were mainly
focused on single directional, qualitative, and pairwise analysis between two
models [Koch, 1993; Paulk et al., 1994/95b; Jarvinen, 1994; Kugler and
Messnarz, 1994; Kitson, 1996]. Wang et al. (1997a/b/99e) developed a
framework for systematically characterizing and quantitatively analyzing
software engineering process systems with the following formal attributes:

– Compatibility
– Correlation

74 Part I Fundamentals of the Software Engineering Process

– Characteristic attributes of processes (mean weighted importance,
 ratios of significant/practice/effectiveness, and usage)

– Benchmarking of process characteristic attributes

Wang et al. (1997a/b) found that a software process and process system can
be described by a relation using set theory, so that mapping between process
systems becomes a problem of mapping of relational sets. Based on this
formalization, it was further found [Wang et al., 1997a/b] that mappings
between process systems were asymmetry, that is, for seeking the whole
relational picture between a pair of process models, the mapping should be
carried out bidirectionally.

Studies into formal description of process systems and various process
description languages may be referred to Saeki et al. (1991), Bandinelli
(1993), Finkelstein (1994), and Sutton and Osterweil (1997).

Questions and Problems

2.1 Software engineering process models can be categorized into empirical,
formal, descriptive, and prescriptive models. What are the type(s) of
current process models, such as CMM, ISO/IEC TR 15504? What are
the type(s) of process models this book is aimed at developing?

2.2 Using your own words, describe what software process system
modeling is.

2.3 Compare the concept of software process establishment (SPE),
assessment (SPA), and improvement (SPI), and explain their inter-
relationships.

2.4 Analyze the software quality attributes as described in Table 2.1 and
explain what attributes are unique for software quality that are not
required for conventional products.

2.5 Comparing conventional programmers with the roles of software
engineering professions as described in Table 2.2, explain why an
engineering approach to software development has been adopted in the
industry.

Chapter 2 A Unified Framework of the Software Eng. Process 75

2.6 Describe the generic approach to software engineering organization and
implementation.

2.7 What are the roles of a software engineering process system reference
model?

2.8 What is the taxonomy of software engineering process systems adopted
in this book? What are the equivalent terms used in other major process
models?

2.9 Compare and explain the software process capability scales modeled in
current process models.

2.10 What is the classification of types of process capability scales? Explain
the advantages and disadvantages of each type of process capability
scale.

2.11 What is the compatibility between process models? How is process
system compatibility measured?

2.12 What is mapping between process models? How is process system
mapping carried out?

2.13 What is the correlation between process models? How are process
system correlation levels and ratios measured?

2.14 Assuming a software engineer asks you why a process model includes a
certain process but another doesn’t, what is your explanation? What are
your criteria to include or drop a process in a software engineering
process model?

2.15 What kinds of process attributes can be modeled? How are the process
attributes measured?

2.16 Do you think the current empirical researches have exhausted the
search for useful processes and practices in software engineering
modeling? Can you suggest any more?

2.17 Figure 2.3 presents a generic structure of the unified software
engineering process system framework. Assuming a new process model
consists of a questionnaire and ten processes, analyze what needs to be
added in order to be a complete process system model.

This page intentionally left blankThis page intentionally left blank

77

Chapter 3

 PROCESS ALGEBRA

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

1.
Introduction

3.1 Introduction 3.4 Formal description of process systems
3.2 Process abstraction 3.5 Summary
3.3 Process relations Annotated references

2.
A Unified Framework of
SE Process

4.
Process-Based
Software Engineering

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

3.
Process Algebra

78 Part I Fundamentals of the Software Engineering Process

This chapter introduces notations and formal methods for description of
software engineering processes and their relationships. A paradigm of
process algebra, Communicating Sequential Processes (CSP), is adopted for
process system description, modeling, and analysis.

The objectives of this chapter are as follows:

• To investigate formal methods for process description and modeling

• To study the approaches for process abstraction

• To introduce a paradigm of process algebra – CSP

• To demonstrate how process patterns, relationships, and interactions
are formally described by process algebra

3.1 Introduction

Algebra is a form of mathematics that simplifies difficult problems by using
symbols to represent constants, variables, and calculations. Algebra is also
the basis for mathematical expression of abstract entities and their relations.
Algebra enables complicated problems to be expressed and investigated in a
formal and rigorous way.

If it is considered that numbers are the first degree of human abstraction
in mathematics for representing real-world entities and their attributes,
algebra, then, is the second degree of abstraction over numbers, which
represent both real-world and abstract entities, attributes, and relations
between unknown (variables) and known numbers (constants).

Boole (1815-1864) found that logic, the rules of thought, could be
represented by binary algebra. This led to the establishment of a branch of
modern algebra – Boolean algebra. Further, Hoare (1985) and Milner (1989)
developed a way to represent computer communicating and concurrent
processes by algebra, known as process algebra. In his book,
Communicating Sequential Processes (CSP), Hoare wrote:

The great advantage of mathematics is that the rules are much simpler
than those of a natural language, and the vocabulary is much smaller.
Consequently, when presented with something unfamiliar, it is possible

Chapter 3 Process Algebra 79

to work out a solution for yourself by logical deduction and invention
rather than by consulting books or experts.

…

This is why mathematics, like programming, can be so enjoyable. …
So one must learn to concentrate attention on the cold, dry text of the
mathematical expressions and cultivate an appreciation for their
elegant abstraction. In particular, some of the recursively defined
algorithms have something of the breathtaking beauty of a fugue
composed by J. S. Bach.

Process algebra is a set of formal notations and rules for describing algebraic
relations of software processes. Process algebra developed by Hoare’s CSP
and Milner’s CCS (the Calculus of Communicating Systems) provides a
foundation and powerful tool for formally describing software engineering
process and process systems.

This chapter introduces fundamentals of process algebra and extensions
of CSP to real-time system description. In order to pave the way for the
formal description of current process models in Part II, the emphasis will be
put on how the CSP-like process algebra is applied in software engineering
process system description and modeling.

3.2 Process Abstraction

Process abstraction and formal description are important in software
engineering process modeling and analysis. This section introduces the
concept of event, process, and a set of meta-processes. Algebraic expressions
of the meta-processes are developed using CSP-like notations and syntax.

3.2.1 EVENT

Definition 3.1 An event, e, is any internal or external signal, message,
variable, scheduling, conditional change, or timing that is specified in
association with specific activities in a process.

Typical events in a system are a timing event, I/O event, system
hardware/software event, process event, and interrupt event.

80 Part I Fundamentals of the Software Engineering Process

Definition 3.2 An event set, E, is the domain of events (or the alphabet as in
CSP) that can be handled by a process P, i.e.:

E � αP
 = {e1, e2, …, en} (3.1)

3.2.2 PROCESS

Definition 3.3 A generic process, P, is defined as a set of activities
associated with a set of events E, i.e.:

 ei → P, if ei ÉE (3.2)

Expression 3.2 shows that event ei can trigger process P, or process P can
handle event ei, if ei is defined in P’s event set E.

3.2.3 META-PROCESSES

This subsection describes a set of meta-processes where “meta” means the
elementary and primary processes in a system. Complex processes can be
derived, as shown in the following sections, from the meta-processes by a set
of process combinatory roles.

3.2.3.1 System Dispatch

Definition 3.4 System dispatch is a meta-process that acts at the top level of
a process system for dispatching and/or executing a specific process
according to system timing or a predefined event table.

A system dispatch process, SYSTEM, can be denoted by:

 SYSTEM � { ti ⇒ Pj ∨ ei ⇒ Pj }, i,j = 1, 2, 3, … (3.3)

where ti ⇒ Pj means a system timing ti triggers a process Pj , and ei ⇒
Pj means an event ei triggers the process Pj.

3.2.3.2 Assignment

Definition 3.5 Assignment is a meta-process that assigns a variable x with a
constant value c, i.e.:

x := c (3.4)

Chapter 3 Process Algebra 81

3.2.3.3 Get System Time

Definition 3.6 Get system time is a meta-process that reads the system clock
and assigns the current system time ti to a system time variable t.

A get-system-time process, @T, can be denoted by:

 @T � t:= ti (3.5)

3.2.3.4 Synchronization

Synchronization between processes can be classified into two types: time
synchronization and event synchronization.

Definition 3.7 Time synchronization is a meta-process that holds a process’s
execution until moment t of the system clock.

A time synchronization process, SYNC-T, can be denoted by:

SYNC-T � @(t) (3.6)

Definition 3.8 Event synchronization is a meta-process that holds a process’s
execution until event e occurs.

An event synchronization process, SYNC-E, can be denoted by:

SYNC-E � @(e) (3.7)

3.2.3.5 Read and Write

Definition 3.9 Read is a meta-process that gets a message from a memory
location or system port.

A read process, READ, which gets a message m from a memory or port
location l can be denoted by:

READ � l ? m (3.8)

Definition 3.10 Write is a meta-process that puts a message into a memory
location or system port.

A write process, WRITE, which puts a message m into a memory or port
location l can be denoted by:

82 Part I Fundamentals of the Software Engineering Process

WRITE � l ! m (3.9)

3.2.3.6 Input and Output

Definition 3.11 Input is a meta-process that receives a message from a
system I/O channel which connects the system to other systems.

An input process, IN, which receives a message m from channel c can be
denoted by:

IN � c ? m (3.10)

Definition 3.12 Output is a meta-process that sends a message to a system
I/O channel which connects the system to other systems.

An output process, OUT, which sends a message m to a channel c can be
denoted by:

OUT � c ! m (3.11)

3.2.3.7 Stop

Definition 3.13 Stop is a meta-process that terminates a system’s operation.
A stop process is denoted by STOP.

3.3 Process Relations

This section develops a set of relational operations for describing
relationships between processes. The relational operators, such as of
sequential, branch, parallel, iteration, interrupt, and recursion, define the
rules to form combinatorial processes from simple and meta-processes.

3.3.1 SEQUENTIAL PROCESS

The sequential relation is the simplest relation between processes. This
subsection discusses two types of sequential processes: serial and pipeline
processes.

Chapter 3 Process Algebra 83

3.3.1.1 Serial

Definition 3.14 Serial is a process relation in which a number of processes
are executed one by one.

A relational operator “;” is adopted to denote the serial relation between
processes. Assuming two processes, P and Q, are serial, their relation can be
expressed as follows:

P ; Q (3.12)

Expression 3.12 reads, “P followed by Q.”

3.3.1.2 Pipeline

Definition 3.15 Pipeline is a process relation in which a number of processes
are interconnected to each other, and a process takes the output of the other
process(es) as its input.

A relational operator, », is adopted to denote the pipeline relation between
processes. Assuming two processes, P and Q, are pipelined, their relation
can be expressed as follows:

P » Q (3.13)

Expression 3.13 reads, “P output to Q.”

3.3.2 BRANCH PROCESS

The branch relation describes the selection of processes based on a
conditional event. This subsection discusses three types of branch processes:
the event-driven choice, the deterministic choice, and the nondeterministic
choice.

3.3.2.1 The Event-Driven Choice

Definition 3.16 The event-driven choice is a process relation in which the
execution of a process is determined by the event corresponding to the
process.

A relational operator, | , is adopted to denote an event-driven choice between
processes. Assuming process P accepts event a as input, and Q accepts b, an
event-driven choice can be expressed as follows:

84 Part I Fundamentals of the Software Engineering Process

 (a → P | b → Q) (3.14)

Expression 3.14 reads, “a then P choice b then Q.”

3.3.2.2 The Deterministic Choice

Definition 3.17 The deterministic choice is a process relation in which a set
of processes are executed in an externally determinable order.

A relational operator, [] , is adopted to denote the relation of deterministic
choice between processes. Assuming two processes, P and Q, are related to
each other by deterministic choice, their relation can be expressed as
follows:

P [] Q (3.15)

Expression 3.15 reads, “P choice Q.”

3.3.2.3 The Nondeterministic Choice

Definition 3.18 The nondeterministic choice is a process relation in which a
set of processes are executed in a nondetermined or random order dependent
on run-time conditions.

A relational operator, H, is adopted to denote the relation of
nondeterministic choice between processes. Nondeterministic choice is also
known as “or”. Assuming two processes, P and Q, are related to each other
by nondeterministic choice, their relation can be expressed as follows:

P H Q (3.16)

Expression 3.16 reads, “P or Q,” or “P nondeterministic choice Q.”

3.3.3 PARALLEL PROCESS

Parallel describes the simultaneous and concurrent relation between
processes. This subsection discusses three types of parallel processes: the
synchronous parallel, the concurrency, and the interleave processes.

3.3.3.1 The Synchronous Parallel

Definition 3.19 The synchronous parallel is a process relation in which a set
of processes are executed simultaneously according to a common timing
system.

Chapter 3 Process Algebra 85

A relational operator, ||, is adopted to denote a synchronous parallel relation
between processes. Assuming two processes, P and Q, are synchronous
parallel between each other, their relation can be expressed as follows:

P || Q (3.17)

Expression 3.17 reads, “P in parallel with Q.”

3.3.3.2 Asynchronous Parallel – Concurrency

Definition 3.20 Concurrency is an asynchronous process relation in which a
set of processes are executed simultaneously according to independent
timing systems, and each such process is executed as a complete task.

A relational operator, áâ, is adopted to denote a concurrent relation between
processes. Assuming two processes, P and Q, are concurrent between each
other, their relation can be expressed as follows:

P áâ Q (3.18)

Expression 3.18 reads, “P concurrent with Q.”

3.3.3.3 Asynchronous Parallel – Interleave

Definition 3.21 Interleave is an asynchronous process relation in which a set
of processes are executed simultaneously according to independent timing
systems, and the execution of each such process would be interrupted by
other processes.

A relational operator, |||, is adopted to denote an interleave relation between
processes. Assuming two processes, P and Q, are interleave-related between
each other, their relation can be expressed as follows:

P ||| Q (3.19)

Expression 3.19 reads, “P interleave Q.”

3.3.4 ITERATION PROCESS

The iteration relation describes the cyclic relation between processes. This
subsection discusses two types of iterative processes: the repeat and the
while-do processes.

86 Part I Fundamentals of the Software Engineering Process

3.3.4.1 Repeat

Definition 3.22 Repeat is a process relation in which a process is executed
repeatedly for a certain times.

A relational operator, ()n, is adopted to denote the repeat relation for iterated
processes. Assume a process, P, is repeated for n times, the combinatorial
process can be expressed as follows:

(P)n (3.20)

where n ∈ ², n ≥ 0, and P can be a simple process or a combinatorial
process. Expression 3.20 reads, “repeat P for n times.”

3.3.4.2 While-Do

Definition 3.23 While-Do is a process relation in which a process is executed
repeatedly when a certain condition is true.

A relational operator, *, is adopted to denote the while-do relation for
iterated processes. Assuming a process, P, is iterated until condition γ is not
true, the while-do process can be expressed as follows:

γ * P (3.21)

where P can be a simple process or a combinatorial process. Expression 3.21
reads, “while γ do P.”

3.3.5 INTERRUPT PROCESS

The interrupt relation describes execution priority and control-taking-over
between processes. This subsection discusses interrupt and interrupt return
processes.

3.3.5.1 Interrupt

Definition 3.24 Interrupt is a process relation in which a running process is
temporarily held before termination by another process that has higher
priority, and the interrupted process will be resumed when the high priority
process has been completed.

Chapter 3 Process Algebra 87

A relational operator, Ê, is adopted to denote the interrupt relation between
processes, and between processes and the system. Assuming process P is
interrupted by process Q, the interrupt relation can be expressed as follows:

 P Ê Q (3.22)

A special case of interrupt is between a process P and the system
environment SYSTEM, i.e.:

P Ê SYSTEM (3.23)

In such a case, process P is interrupted by the system dispatcher, SYSTEM,
and will not automatically return from the interruption, except the system
invokes P for a new mission.

Expressions 3.22 and 3.23 read, “P interrupted by Q,” or “P interrupted
by SYSTEM”, respectively.

3.3.5.2 Interrupt Return

Definition 3.25 Interrupt return is a process relation in which an interrupted
process resumes its running from the point of interruption.

A relational operator, Ì, is adopted to denote an interrupt return between
processes. Assuming the running condition of an interrupted process P is
regained from process Q, the interrupt return relation can be expressed as
follows:

Q Ì P (3.24)

Expression 3.24 reads, “Q interrupt returned to P.”

3.3.6 RECURSION PROCESS

Recursive technology is frequently used in programming to simplify
procedure structure. For example, a simple recursive procedure is given
below.

88 Part I Fundamentals of the Software Engineering Process

Example 3.1 A recursive procedure.

 ProcedureA (x: integer): integer;
 Var
 x, y: integer;

 begin
 while x <= 10 do
 begin
 y := x + 2;

 Print(x, y);
 ProcedureA(y);
 end;

end;

When given x=1 as the input to ProcedureA, the output of this recursive
procedure is: 1, 3; 3, 5; 5, 7; 7, 9; 9, 11.

In software engineering process modeling, recursive processes can be
represented in a similar way. For example, assume a simple everlasting
clock, CLOCK, which does nothing but tick, i.e.

αCLOCK � {tick} (3.25)

behaves sequentially as follows:

CLOCK � tick → tick → tick →… (3.26)

Using recursive expression, the endless process CLOCK can be defined as
simply as follows:

 CLOCK � tick → CLOCK (3.27)

Expression 3.27 represents a CLOCK that first emits a single tick, then it
works with the same behavior as that of the CLOCK defined in
expression 3.26.

Definition 3.26 A process, X, that begins with a prefix, x, which belongs to
its alphabet, αX, is said to be guarded, i.e.:

 X = F(X) � x → X (3.28)

is a guarded process.

In the remainder of this chapter, we will use F(X) to refer to the guarded
process X.

Chapter 3 Process Algebra 89

Definition 3.27 A generic recursive process, P, is defined as:

P � µX • F(X) (3.29)

where µX indicates a recursion of a local variable X that represents the given
process P; and F(X) is a guarded expression of process X.

Example 3.2 A generic recursive representation of CLOCK defined in
Expression 3.27 can be given as follows:

CLOCK � µX • F(X)
 = µX • (tick → X)

A set of algebraic laws governing the relations of processes has been
developed in CSP. These laws provide foundations for understanding and
predicting algebraic properties and behaviors of combinatorial processes and
process systems. Interested readers may refer to Hoare (1985).

3.4 Formal Description of Process
 Systems

In the previous sections the meta-processes and relations for building
combinatorial processes have been described. This section explores the
approach to formally describe software engineering process systems using
process algebra.

3.4.1 ROLE OF PROCESS COMBINATION

So far, a set of 11 notations of process relations has been defined. A process
relation set, R, can be summarized below:

 R � {;, », | , [] � H� ||, áâ, |||, µX • F(X), ()n, γ*P} (3.30)

90 Part I Fundamentals of the Software Engineering Process

Adopting the CSP-like process notations and process relations introduced in
previous sections, a generic software engineering process, P, can be formally
described as follows:

P � (process Ri process)n , Ri ∈ R (3.31)

where Ri is a relation that belongs to the set of process relations described
by Expression 3.30, and n is the number of iteration of the processes
described in the brackets.

Example 3.3 Given r = ||, derive P � (P1 r P2)
2 and explain the physical

meaning of process P.

According to the definitions of process relations, the following expression of
P can be obtained:

 P � (P1 r P2)
2

 = (P1 || P2)
2

 = (P1 || P2); (P1 || P2)

The physical meaning of process P is to execute subprocesses P1 and P2 in
parallel two times.

Note that in Expression 3.31 a process can be a combined process, so that
flexible process expressions may be derived from this expression.

3.4.2 FORMAL DESCRIPTION OF SOFTWARE
 PROCESSES

Applying the extended CSP process algebra developed in this chapter,
readers are able to describe a software engineering process model in a formal
way. The formal description is useful for providing precise and accurate
definitions of the structure and interrelationships of a process model, and to
avoid any ambiguity inherent in the conventional natural language
descriptions.

3.4.2.1 System Level Description

System level description provides a formal expression of the structure of a
software engineering process system. Observing the example below, it can
be seen that the process algebra is capable and flexible enough to describe a
given process system.

Chapter 3 Process Algebra 91

Example 3.4 The CMM process model, CMM-PM, can be formally
described as shown in Expression 3.32. Expression 3.32 shows that the
high-level structure of the CMM model is sequential with five process
capability levels (CL1 – CL5).

 CMM-PM � CL1 __ Initial

 ; CL2 __ Repeated

 ; CL3 __ Defined

 ; CL4 __ Managed

 ; CL5 __ Optimizing (3.32)

It is noteworthy that, in the algebraic process expression, comments can be
provided after // to include additional information or explanation.

An illustration of Expression 3.32 can be derived in Figure 3.1 using the
process diagram. Obviously there is one-to-one correspondence between
the algebraic process description and the visual illustration of process
diagram.

The CMM Process Model

 CL1 CL2 CL3 CL4 CL5

 Initial Repeated Defined Managed Optimising

Figure 3.1 A process diagram of the structure of the CMM process model

3.4.2.2 Process Level Description

CSP-like process algebra can also be used to describe more detailed process
configuration and more complicated process relations.

Example 3.5 The parallel feature between the development processes and
management processes in software engineering has been identified in
Chapter 2. A formal description of the parallel software development process
model, PPM, using process algebra is as follows:

92 Part I Fundamentals of the Software Engineering Process

PPM � DP; // Development process category
 || MP // Management process category

 = (DP1 || MP1� // Requirement analysis/requirement review
 ; (DP2 || MP2� // Design/design review
 ; (DP3 || MP3� // Coding/code review

; (DP4 || MP4� // Module testing/module test review
; (DP5 || MP5� // Integration and system test/integration and
 system test review
; (DP6 || MP6� // Design/design review (3.33)

A process diagram corresponding to Expression 3.33 is shown in Figure 3.2.
It indicates how each development process is supported and monitored by a
counterpart of the management processes. Detailed discussions of this PPM
model will be provided in Chapter 13.

DP.1
Requirement
analysis

DP.2
Design

A Parallel Software Development Process Model

DP.3
Coding

DP.4
Module
testing

DP.6
Maintenance

DP.5
Integration/
system test

MP.1
Requirement
review

MP.2
Design
review

MP.3
Code
review

MP.4
Module
test
review

MP.5
Integration/
system test
review

MP.6
Maintenance
audit

Figure 3.2 A process diagram of parallel software development processes

3.5 Summary

This chapter has introduced CSP as a paradigm of the process algebra. The
capability of CSP has been extended to cover important real-time system
behaviors such as system dispatching, timing, and interrupt. The extended
CSP has been used to describe sample software engineering process models
at system and process levels.

Chapter 3 Process Algebra 93

The basic knowledge structure of this chapter is as follows:

Chapter 3. Process Algebra

• General
 − Purposes of this chapter
 − To investigate formal methods for process description and
 modeling

 − To study the approaches for process abstraction
 − To introduce a paradigm of process algebra – CSP
 − To demonstrate how process patterns, relationships, and
 interactions are formally described by process algebra

 − Advantages of process algebra in formal description of
 software engineering process systems.

• Process abstraction
− Basic concept

− Event
− Process
− Meta-process

− Meta-processes
− System dispatcher: SYSTEM � { ti ⇒ Pj ∨ ei ⇒ Pj }
− Assignment: x := c
− Get system time: @T � t:= tI

− Time synchronous: SYNC-T � @(t)
− Event synchronous: SYNC-E � @(e)
− Read: READ � l ? m
− Write: WRITE � l ! m
− Input: IN � c ? m
− Output: OUT � c ! m
− Stop: STOP

• Process relations
 − Serial: P ; Q
 − Pipeline: P » Q
 − Event-driven choice: (a → P | b → Q)
 − Deterministic choice: P [] Q
 − Nondeterministic choice: P H Q
 − Synchronous parallel: P || Q

94 Part I Fundamentals of the Software Engineering Process

 − Concurrency: P áâ Q
 − Interleave: P ||| Q
 − Repeat: (P)n

 − While-do: γ * P
 − Interrupt: P Ê Q
 − Interrupt return: Q Ì P
 − Recursion: P � µX • F(X)

• Formal description of software engineering processes
− Roles of process combination

P � (process R process)n

 R � {;, », | , []� H� ||, áâ, |||, µX • F(X), ()n, γ*P}

− Formal description of software engineering processes
 − Algebraic process expression
 − Process diagram
 − Applications

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• This chapter has extended the application of process algebra to
describe software engineering process systems, and has explored its
relationship to process diagrams.

• The CSP process algebra paradigm has been extended to timing,
interrupt, read/write, I/O, etc., to make it suitable for real-time
software engineering process system description.

• The advantages of the algebraic approach to process description are
that the process algebra enables complicated problems to be
expressed and investigated in a formal and rigorous way.

• Boole found that logic, the rules of thought, could be represented by
algebra. Hoare and Milner developed a way to represent computer
communication and concurrent processes by process algebra. This
chapter has intended to introduce process algebra, particularly CSP,
to the software engineering process description by extending CSP to
cover real-time processes and their relations.

Chapter 3 Process Algebra 95

• Process abstraction and formal description is important in software
engineering process modeling and analysis. A set of relational
operators for describing relationships between processes, and roles
to form combinatorial processes from simple and meta-processes,
have been developed.

An extended CSP-like process algebra and process diagrams will be used to
formally describe the structures and process configurations of current
process models throughout the book, especially in Part II.

Annotated References

Algebra as a term was first introduced by Muhammad al-Khwarizmi (780 –
850), known as “al-jabr” in Hindu 1200 years ago. However, it can be traced
to the ancient Egyptians more than 3500 years ago. In the 17th century,
Rene Descartes (1596 – 1650) discovered that geometric structures could be
converted into algebraic equations. Then, 200 years later, George Boole
(1815 – 1864) found that logic, the rules of thought, can be represented by
algebra. This is one of the foundations of modern computer science and
software engineering.

In theoretical computing, Hoare (1985) and Milner (1989) developed a
way to represent communicating processes by algebra. In the same period,
SDL (CCITT Specification and Description Language) [CCITT, 1988] and
LOTOS [ISO 8807, 1988; Yasumoto et al., 1994] were developed within
ITU (former CCITT) and ISO, respectively. Reed and Roscoe (1986)
partially extended CSP theory and application into real-time systems, known
as the timed CSP (T-CSP). Spivey, Bowen, Hayes, etc. developed the Z
notation [Spivey, 1988/90/92; Hayes, 1987; Bowen et al., 1998].

Osterweil (1987) asserted that “software processes are software too”, and
discussed enactability of software processes. Milner (1989) demonstrated
that computer communication and concurrency processes can be described
by CCS and Petri Nets. Curtis and his colleagues (1992) identified a series
of objectives for software process modeling such as communication,
improvement, management, automatic guidance, and automatic execution
(enacting). Bandinelli and his colleagues (1992) perceived software process
as real-time systems and used Petri Nets to describe the software processes.

96 Part I Fundamentals of the Software Engineering Process

Haeberer (1999) reviewed algebraic methodology and software technology in
Lecture Notes in Computer Science, Vol. 1548.

Studies into formal description of process systems and various process
description languages may be referred to Saeki et al. (1991), Bandinelli
(1993), Finkelstein (1994), and Sutton and Osterweil (1997).

Questions and Problems

3.1 Explain what the advantages of algebraic expression of problems and
relations between entities are.

3.2 What is process algebra? What are the existing paradigms of process
algebra?

3.3 What is a meta-process? List the meta-processes and their expressions
as defined in Section 3.2.

3.4 How many process relations are introduced in this chapter? List the
process relations and the relational operators.

3.5 What are the differences between deterministic and nondeterministic
choice?

3.6 Contrast the synchronous parallel, concurrency, and interleave process
relations and explain what differentiates them from each other.

3.7 What is the usage of recursive processes? What is the generic
expression of recursive processes in process algebra?

3.8 Assume r = ;, P1 =coding, and P2 = test. Describe P � (P1 r P2)
1,

and explain the physical meaning of process P.

3.9 Assume r1 = ; , r2 = || , P1 = design, P2 = coding, and P3 =
test. Derive P � (P1 r1 (P2 r2 P3)

 1)1.

3.10 Draw process diagrams for Ex.3.8 and Ex.3.9, respectively.

97

Chapter 4

PROCESS-BASED
 SOFTWARE ENGINEERING

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

1.
Introduction

4.1 Introduction 4.4 SE process system improvement
4.2 Software process system establishment 4.5 Summary
4.3 SE process system assessment Annotated references

2.
A Unified Framework of
SE Process

4.
Process-Based
Software Engineering

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

3.
Process Algebra

98 Part I Fundamentals of the Software Engineering Process

This chapter describes important concepts of process-based software
engineering. Key methodologies in process-based software engineering are
introduced for process system establishment, assessment, and improvement.

The objectives of this chapter are as follows:

• To introduce the concept of process-based software engineering

• To describe basic process methodologies for software engineering

• To describe software process system establishment procedures and
methods

• To describe software process system assessment methods and their
classification

• To describe software process system improvement philosophies and
methodologies

4.1 Introduction

In the literature of software engineering process research, it has been
assumed that a process system already existed in software development
organizations so a process assessment and improvement project could be
carried out directly. However convenient this assumption is, it is not true
that the majority of software organizations have formal, definable processes.

In reality, a process assessment project starts by the mapping of a
software organization’s existing processes to a process model that has been
chosen for the assessment. The usual cases are that a software development
organization has only some loose and informal practices, rather than a
defined and coherent process system. Assessors have found that the
following conversation is typical in the first phase of an assessment:

Assessor(s): Now, let’s look at process X. What are your evidences
of its performance?

Assessees: Sorry, we’re afraid we don’t have such a process.

Chapter 4 Process-Based Software Engineering 99

Assessor(s): Really? You’ve just completed project Y. If you have no
process X, how could you get the software developed?

Assessees: Well, yes. Of course we had certain practices for this.
But, unfortunately, we don’t have a defined process of
the kind you are expecting.

Assessor(s): … ?!

This scenario leads to the observation that rigorous process-based software
engineering has to start from process establishment rather than process
assessment in a software development organization. Therefore, the right
order of events in creating software engineering process excellence in an
organization is first, process establishment; second, process assessment; and
then process improvement as shown in Figure 4.1.

Process system
improvement

Process system assessment

Process system
establishment

A software engineering
process reference model

An optimized
software engineering

 process system

Figure 4.1 Process-based software engineering

With the fundamental architectures and requirements for software
engineering process models described in Chapter 2, a software engineering
process framework can be systematically established in the organization,
development, and management areas at all levels.

100 Part I Fundamentals of the Software Engineering Process

4.2 Software Engineering Process
 System Establishment

Conventional theories and practices in process-based software engineering
were mainly focused on software process system assessment and
improvement. While an initial, fundamental step, process system
establishment, was perhaps widely overlooked. This phenomenon might
reflect an intention of the software industry that it was demanding instant
effect from the process technology in software engineering.

However, considering that a large proportion of the software industry is
still immature as shown in the scenario given in Section 4.1, an initial focus
has to be put on software process system establishment. When a process
system is established and experienced, improvement can be initiated
effectively via process assessment and benchmarking.

A typical software process establishment (SPE) approach and a set of
SPE methods identified so far are shown in Table 4.1. This subsection
describes the procedure of SPE and introduces the main methodologies
for SPE. Full development of the SPE methodologies will be explored in
Part IV.

Table 4.1
Software Process System Establishment Procedure and Methods

No. SPE Procedure SPE Method

1 Select and reuse a process system reference model
at organization level

Tailoring of a reference model

2 Derive a process model at project level Extension of a reference model

3 Apply the derived project process model as a
software engineering platform

Adaptation of a reference model

4.2.1 PROCEDURE TO DERIVE A SOFTWARE
PROJECT PROCESS MODEL

This subsection explores the three basic steps, as shown in Table 4.1, for
deriving a software project process model.

Chapter 4 Process-Based Software Engineering 101

4.2.1.1 Select and Reuse a Process System Reference Model at
Organization Level

The most efficient way for establishing a process system is to reuse a
standard or well-accepted process model. As shown in Figure 2.2, in
selecting an existing process model as an organization’s reference model,
one of the key issues is that the reference model should be reasonably
comprehensive in order to enable an easy derivation of working process
models at project level. The other key issue is that the reference model
should able to serve many purposes in software engineering such as multi-
type process assessment, improvement, training, and internal
standardization. The third issue is the flexibility of the reference model, i.e.,
the selected reference model should allow incorporation of the host
organization’s experience and special needs into the reference model and
derived models.

When an organization’s process system is determined, the next step is to
keep it as the organization’s official and unified software engineering
platform. Based on this, various process models should be derived for
different projects.

4.2.1.2 Derive a Process Model at Project Level

After commencing a new project, the first thing that a project manager
needs to do is to derive the project’s process model. The project process
model will serve as a blueprint for organizing all activities that are going to
be enacted within the scope of the project, including technical, managerial,
organizational, customer, and supporting activities.

A checklist of factors for consideration in deriving a project process
model from the reference model is shown in Table 4.2. When all factors are
weighted by high (H), Medium (M), or low (L), a rating for what kind of
project process model is needed can be determined according to Expressions
4.1 and 4.2.

Assume that Si is the ith weight for factor i and n is the number of total
factors; the average score, S, or the level of requirement for a derived model
is defined as:

S = 1/n
i

n

=
∑

1

Si (4.1)

According to the average score S, the type of derived model determined by
the weighted factors can be estimated as follows:

102 Part I Fundamentals of the Software Engineering Process

> 3, the need is for a complete project process model
S = 3, the need is for a medium project process model (4.2)

< 3, the need is for a light project process model

For instance, applying Expression 4.1 to the weights of the ten factors as
shown in Table 4.2 results in an estimated average score S = 3.6. According
to Expression 4.2, the project process model has to be a relatively complete
model which covers more related process areas modeled in the reference
model. This requirement provides a good representation of the nature of this
project characterized in Table 4.2.

Table 4.2
Determining Type of Derived Process Models for a Project

No. Project Factor Weight
 H M L

Score

1 Importance � S1 = 5

2 Difficulty � S2 = 1

3 Complexity � S3 = 5

4 Size � S4 = 3

5 Domain knowledge requirement � S5 = 3

6 Experience requirement � S6 = 5

7 Special process needed � S7 = 1

8 Schedule constraints � S8 = 3

9 Budget constraints � S9 = 5

10 Other process constraints � S10 = 5

Total 25 9 2 S = 3.6

 Note: H = High (5), M = Medium (3), L = Low (1).

Note the factors shown in Table 4.2 are examples for demonstrating how the
type of project process model can be determined in a formal way. It is by no
means exhaustive. Therefore, readers may add, delete, and/or modify the
factors in order to make them suitable for their specific projects.

4.2.1.3 Apply the Derived Project Process Model

When a project process system model is derived, the next step is to accept, as
a common platform, the process model at both project and individual levels
and apply the project process model to all activities within the project scope.
Guidance for how to perform the technical and managerial activities
specified in a project process model is outside of the scope of this book;
readers may refer to Humphrey (1995) and Pressman (1992).

Chapter 4 Process-Based Software Engineering 103

It can be seen that the reference model approach to implement software
engineering provides project managers with a means to consistently derive
and organize a project process model. It also provides software engineers
and others in a software project with a clear picture of their roles,
interaction, and relationship to each other.

4.2.2 METHODS FOR DERIVING A SOFTWARE
PROJECT PROCESS MODEL

In establishing a process model for a software project, three types of
methodologies may be identified. They are process model tailoring,
extension, and adaptation, ordered increasingly according to their technical
difficulty in applications.

4.2.2.1 Process Model Tailoring

Definition 4.1 Tailoring is a model customization method for making a
process model suitable for a specific software project by deleting unnecessary
processes.

Model tailoring is the simplest method to derive a project process model
from a comprehensive organizational process reference model. The only
technique is to delete what is not needed in order to execute a specific
software project based on one’s understanding of both the reference model
and the nature of the project.

4.2.2.2 Process Model Extension

Definition 4.2 Extension is a model customization method for making a
process model suitable for a specific software project by adding additional
processes.

Model extension requires a project manager capable of integrating new
processes adopted from either process models or best practices repositories
into the current project process model or organizational process reference
model. When new processes are introduced, a validation phase is needed for
monitoring their fitness and performance.

4.2.2.3 Process Model Adaptation

Definition 4.3 Adaptation is a model customization method for making a
process model suitable for a specific software project by modifying,
updating, and fine-tuning related processes.

104 Part I Fundamentals of the Software Engineering Process

Model adaptation is useful when a project manager is experienced in a
process reference model and prepared to monitor the performance of adapted
processes during a project life span.

All three approaches for process model derivation and establishment can be
used individually or together to result in an excellent project process model
for software engineering. Detailed process system establishment
methodologies and related case studies will be provided in Part IV of this
book.

4.3 Software Engineering Process
 System Assessment

If one cannot measure a process system, one cannot improve it. Therefore,
software process assessment (SPA) is at the heart of process improvement.
Various methodologies of SPA have been developed in the last decade. The
SPA methodologies can be classified as shown in Table 4.3.

Table 4.3
Categorization of Software Process System Assessment Methods

No. Category SPA Method

1 From the viewpoint of reference system

1.1 Model-based assessment

1.2 Standard-based assessment

1.3 Benchmark-based assessment

1.4 Integrated assessment
(Model + Benchmark)

2 From the viewpoint of model structure

2.1 Checklist-based assessment

2.2 1-D process-based assessment

2.3 2-D process-based assessment

3 From the viewpoint of assessor’s party

3.1 First-party assessment

3.2 Second-party assessment

3.3 Third-party assessment

3.4 Authorized assessment

Chapter 4 Process-Based Software Engineering 105

This section describes the integrated SPA framework as shown in Table 4.3,
and demonstrates that current process models, such as CMM, ISO 9001,
BOOTSTRAP, ISO/IEC TR 15504, and SEPRM, can be perfectly fitted into
this framework.

4.3.1 PROCESS ASSESSMENT METHODS FROM THE
VIEWPOINT OF REFERENCE SYSTEMS

From the viewpoint of reference systems there are four types of assessment
methods. They are: model-based, standard-based, benchmark-based, and
integrated (model-and-benchmark-based) assessment.

4.3.1.1 Model-Based Assessment

Definition 4.4 Model-based assessment is an SPA method by which a
software development organization is evaluated against a specific process
and capability model, and according to a specific capability determination
method provided in the model.

Model-based assessment is a kind of absolute assessment approach. Using
this approach, a software development organization is evaluated against a
fixed process framework and a defined capability scale. The assessment
result reports a regressed capability level of a software development
organization in the capability scale of the model. CMM (see Chapter 5) and
BOOTSTRAP (see Chapter 7) are examples of model-based assessment
methodologies.

4.3.1.2 Standard-Based Assessment

Definition 4.5 Standard-based assessment is an SPA method by which
a software development organization is evaluated against a specific process
and capability model defined by a standard, and according to a specific
capability determination method provided in the standard.

Standard-based assessment is a special type of model-based assessment
method. It also provides an absolute assessment approach by which a
software development organization’s process capability is rated against a
defined capability scale. ISO/IEC TR 15504 (see Chapter 8) and partially
ISO 9001 (see Chapter 6) are examples of standard-based assessment
methodologies.

106 Part I Fundamentals of the Software Engineering Process

4.3.1.3 Benchmark-Based Assessment

Prior to defining benchmark-based assessment, it was necessary to introduce
the concept of a software process benchmark. A benchmark of a software
engineering process system can be described as follows:

Definition 4.6 A benchmark of a software process system is a set of
statistical reference data that represents all processes’ average performance
in software engineering.

Based on the definition of a software process benchmark, a new type of SPA
methodology can be developed.

Definition 4.7 Benchmark-based assessment is an SPA method by which a
software development organization is evaluated against a set of benchmarks
of software processes, and according to a specific capability determination
method.

Benchmark-based assessment is a kind of relative assessment approach. By
this approach a software development organization is evaluated against a set
of benchmarks. Thus, the assessment result associated with a software
development organization’s capability level may be presented in three
relative levels: below, equal, or above the benchmarks of each process.

IBM has developed a benchmark of a selected set of software practices
in Europe [IBM, 1996] which contains 66 benchmarked practices. Having
carried out a series of worldwide surveys, the authors have established a
superset of benchmarks on 444 practices in 51 processes according to the
SEPRM model (refer to Chapters 9, 10, and Appendix D) [Wang et al.,
1998a/1999c]. Further work on benchmark based SPA has been reported by
Wang et al. (1999f) on the establishment of a national software engineering
practices benchmark, and a comparison between that national benchmark
and the European benchmark.

4.3.1.4 Integrated Assessment

Definition 4.8 Integrated assessment is a kind of composite model- and
benchmark-based SPA method in which a software development
organization is evaluated against both benchmarked process model and a
capability model, and according to a specific capability determination
method provided in the model.

The integrated assessment method inherits the advantages of both absolute
and relative SPA methods as described in this section. Using the integrated

Chapter 4 Process-Based Software Engineering 107

assessment method, a software development organization can be evaluated
against both a benchmark and an absolute capability scale at the same time.
The SEPRM model (see Chapter 9) is such an integrated SPA model.

Another advantage of the integrated assessment method is its ability for
quantitative software process improvement. This feature will be described in
Section 4.4.

4.3.2 PROCESS ASSESSMENT METHODS FROM THE
 VIEWPOINT OF MODEL STRUCTURES

From the viewpoint of model framework structures, there are three types of
assessment methods. They are: checklist-based assessment, 1-D process-
based assessment, and 2-D process-based assessment, as illustrated in
Figure 4.2.

 PCL
k 2 1
...
5
4
3 C
2
1
0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 i ... m
 process
 Note: 1 -- 1-D, 2 -- 2-D, C -- checklist, P C L -- process capability level

Figure 4.2 Process assessment methods according to different model
structures

Figure 4.2 illustrates that a two-dimensional (2-D) process model allows all
processes to be performed and rated at any process capability level. A one-
dimensional (1-D) process model is a special case of 2-D models, where a
group of processes are defined and rated at a certain capability level. For
example, according to the 1-D process model, processes 7 – 13 in Figure 4.2
can only be performed, and therefore rated at level 3 and below. Similarly,
the checklist-based process model is a simpler 1-D process model, where all
processes are defined and rated at a single level with the same importance.

108 Part I Fundamentals of the Software Engineering Process

4.3.2.1 Checklist-Based Assessment

Definition 4.9 Checklist-based assessment is an SPA method that is based
on a pass/fail checklist for each practice and process specified in a process
model.

A checklist-based assessment model is the simplest assessment methodology.
This kind of method is only suitable for SPA. It is not much help in step-by-
step process improvement. The ISO 9001 model provides a checklist-based
assessment method.

4.3.2.2 One-Dimension Process-Based Assessment

Definition 4.10 1-D process assessment is an SPA method that determines
a software development organization’s capability from a set of processes in a
single process dimension.

The 1-D assessment is an extension of the checklist-based assessment. This
type of model is suitable for process improvement in project or organization
scopes while, at the same time, being relatively weak in detailed process
scope simply because processes have been grouped and preallocated at
specific capability levels as shown in Figure 4.2. CMM and BOOTSTRAP
are examples of 1-D assessment models.

An issue present in such methods is that there are no widely accepted
criteria prescribing how a set of software processes are grouped and mapped
onto different capability levels. In principle, the processes defined in a model
would be practiced at any capability level. That is, software processes in
practice have no inherited capability levels; only the software development
organization and the people who are implementing and performing the
processes can be measured by capability levels.

4.3.2.3 Two-Dimension Process-Based Assessment

Definition 4.11 2-D process assessment is an SPA method that employs
both process and capability dimensions in a process model, and derives
processes’ capability by evaluating the process model against the capability
model.

The 2-D assessment method enables every process in the process dimension
to be performed and evaluated against the capability dimension at all levels.
This is a flexible approach to software process assessment although effort
spent in a 2-D process assessment would be much higher than that of a 1-D
or checklist assessment. This type of model is suitable for process

Chapter 4 Process-Based Software Engineering 109

improvement from process scope to project and organization scopes because
it provides precise measurement for every process at all the capability levels.
ISO/IEC TR 15504 (Chapter 8) and SEPRM (Chapter 9) are examples of 2-
D assessment models.

Conventionally, 1-D methods were considered to have provided a
process dimension in process assessment. By comparing this with the 2-D
assessment methods described above and in Figure 4.2, it may be predicted
that another kind of 1-D process assessment model which implements only
the capability dimension while leaving the process dimension open for a
software development organization or the process model providers to design
and implement. This would provide a level of flexibility in software process
assessment and standardization.

4.3.3 PROCESS ASSESSMENT METHODS FROM THE
 VIEWPOINT OF ASSESSOR REPRESENTATIVE

From the viewpoint of assessor’s representative, there are four types of
assessment methods. They are: first-party, second-party, third-party, and
authorized assessment.

4.3.3.1 First-Party Assessment

Definition 4.12 First-party assessment is a kind of internal assessment that
is conducted by a software development organization itself and applies an
independent or internal SPA model or standard.

A first-party assessment is an important quantitative management method to
help a software development organization to understand the current status,
problems, strengths, weaknesses, trends, and effectiveness of its software
engineering activities. A first-party assessment can be adopted to prepare for
an authorized or other-parties assessment. It is also useful in a self-
motivational software process improvement scheme.

4.3.3.2 Second-Party Assessment

Definition 4.13 Second-party assessment is a kind of independent
assessment conducted by a primary party for evaluation of an associate
party’s software process capability against a specific SPA model or standard.

110 Part I Fundamentals of the Software Engineering Process

Examples of this kind of assessment can be a supplier assessment by a
purchaser, or a subcontractor assessment by a main contractor. Supplier
assessment may be carried out against an independent process standard or a
mutually recognized process model. Subcontractor assessment may be
carried out with the same process model or standard that the main contractor
uses, either internal or independent.

4.3.3.3 Third-Party Assessment

Definition 4.14 Third-party assessment is a kind of independent
assessment that employs assessor(s) from the third-party and uses
independent process models or standards.

For example, a CMM-certified assessment is a third-party assessment
leading to the recognition of a CMM software capability maturity level.

4.3.3.4 Authorized Assessment

Definition 4.15 Authorized assessment is a special kind of third-party
assessment against an independent standard and leads to registration or
certification by the standardization organization.

A conformance assessment for ISO 9001, for example, is an authorized
assessment leading to a registration to ISO 9001 certification.

4.3.4 USAGE OF CURRENT PROCESS MODELS IN
 PROCESS ASSESSMENT

As a conclusion of the discussions on process assessment methodologies in
this section, and by referring to the unified software engineering process
assessment framework developed in Section 2.4, a summary of the features
of current process models is listed in Table 4.4

In practice, one or combined process assessment models and
methodologies may be adopted. Detailed process system assessment
methodologies and case studies will be provided in Part V for exploring the
model-based, benchmark-based, template-based, and tool-based software
process assessments.

Chapter 4 Process-Based Software Engineering 111

Table 4.4
Categorization of Current Models for Process Assessment

Method CMM Bootstrap ISO 15504 ISO 9001 SEPRM
By system of
reference

Model-
Based

Model-based Standard-based Standard-
based

Model-based, and
Benchmark-based

By structure of
model

1-D 1-D 2-D 1-D 2-D

By party of
assessor

P1, P2,
P3

P1, P2, P3 A, P1, P2, P3 A, P1, P2,
P3

A✝, P1, P2, P3

Notes: A – authorized assessment, P1 – first-party assessment, P2 – second-party assessment,
and P3 – third-party assessment; ✝ Based on the capability transform function of
SEPRM, a capability level of SEPRM can be quantitatively transferred into a
correspondent ISO/IEC TR 15504 or ISO 9001 level (see Chapter 12).

4.4 Software Engineering Process
 System Improvement

Software engineering process system improvement is the goal of process
assessment, acting on the issues found in an assessment and enhancing the
processes that are proven effective in the process system. This section
attempts to describe major philosophies in software process improvement
(SPI) and alternative SPI methodologies.

4.4.1 SOFTWARE PROCESS IMPROVEMENT
 PHILOSOPHIES AND APPROACHES

There are various philosophies underpinning software process improvement.
Key categories of SPI philosophy are as follows:

• Goal-oriented process improvement

• Operational process improvement

• Continuous process improvement

112 Part I Fundamentals of the Software Engineering Process

This subsection discusses the philosophies behind the process improvement
methodologies. The usability of the SPI approaches and their relationships
are also commented upon.

Definition 4.16 Goal-oriented process improvement is an SPI approach by
which a process system’s capability is improved by moving towards a
predefined goal, usually a specific process capability level.

This approach is simple, and is the most widely adopted philosophy in
software engineering. For example, ISO 9001 provides a pass/fail goal with
a basic set of requirements for a software process system. CMM, ISO/IEC
TR 15504, and SEPRM provide a 5/6-level capability scale which enables
software development organizations to set more precise and quantitative
improvement goals.

Definition 4.17 Operational process improvement is an SPI approach by
which a process system’s capability is improved by moving towards an
optimum combined profile rather than a maximum capability level.

This is a realistic and pragmatic philosophy for process improvement. It is
argued that in order to maintain sufficient competence, a software
organization does not need to push all its software engineering processes to
the highest level because it is not necessary and not economic. The
philosophy provides alternative thinking to the idea “the higher the better
for process capability” as is presented in the goal-oriented process
improvement approach.

Using the operational improvement approach, an optimized process
improvement strategy identifies a sufficient (the minimum required) and
economic target process profile, which provides an organization with
sufficient margins of competence in every process. It does not necessarily set
them all at the highest level of a capability scale.

Definition 4.18 Continuous process improvement is an SPI approach by
which a process system’s capability is required to be improved all the time,
and toward endless higher capability levels.

This is considered an oriental philosophy that accepts no top limits or
discrete goals because “ideal” standards are continuously changing. It is this
assumption that change is normal that is in tune with modern management
theory. Continuous process improvement has been proven effective in
engineering process optimization and quality assurance. Using this
approach, SPI is a continuous, spiral-like procedure. The Deming Circle,
plan-do-check-act, is a typical component of this philosophy.

Chapter 4 Process-Based Software Engineering 113

In continuous process improvement there is no end for process
optimization, and all processes are supposed to be improved all the time.
There is argument that the goals for improvement are not explicitly stated in
this philosophy. Therefore, when adopting continuous process improvement,
top management should make clear the current goals, as well as the short,
middle, and long-term ones.

Generally, goal-oriented methodologies will still constitute the mainstream
in SPI. While 2-D process models provide more precise process assessment
results, and the benchmark-based process models provide empirical
indications of process attributes, operational process improvement,
especially benchmark-based improvement, will gain wider application. Also,
the continuous process improvement approach will provide a basis for
sustainable long-term strategic planning.

4.4.2 SOFTWARE PROCESS SYSTEM IMPROVEMENT
METHODOLOGIES

The above discussion on the philosophies for process improvement yields the
basis of an investigation of possible software process improvement
methodologies. As shown in Table 4.5, there are two basic SPI methods –
assessment-based and benchmark-based process improvement. These have
been introduced in Section 2.5.3. The former improves a process system
from a given level in a defined scale to a next higher level; the latter
provides improvement strategies by identifying gaps between a software
development organization’s process system and a set of established
benchmarks. In addition, a combined approach may be adopted.

Table 4.5
Categorization of SPI Methods

No. SPI Method
1 Assessment-based improvement

1.1 Model-based improvement

1.2 Standard-based improvement

2 Benchmark-based improvement

3 Integrated (assessment-and-benchmark-based
improvement

In Table 4.5, it is shown that assessment-based process improvement can be
further divided into model-based and standard-based process improvement.
In addition, there is an integrated method that combines both assessment-
and benchmark-based methods.

114 Part I Fundamentals of the Software Engineering Process

4.4.2.1 Model-Based Improvement

Definition 4.19 Model-based improvement is an SPI method by which a
process system can be improved by basing its performance and capability
profile on a model-based assessment.

Using this idea, the processes inherent in a software development
organization are improved according to a process system model with step-
by-step suggestions. CMM and BOOTSTRAP are examples of such a model-
based process improvement methodology.

4.4.2.2 Standard-Based Improvement

Definition 4.20 Standard-based improvement is an SPI method in which a
process system can be improved by basing its performance and capability
profile on a standard-based assessment.

Using this approach, the processes inherent in a software development
organization are improved according to a standardized process system
model. ISO/IEC 15504 provides a standard-based improvement method.
However, it is noteworthy that ISO 9001 is probably not suitable because it
lacks a process improvement model and a step-by-step improvement
mechanism as analyzed in Section 4.3.

4.4.2.3 Benchmark-Based Improvement

Definition 4.21 Benchmark-based improvement is an SPI method in which
a process system can be improved by basing its performance and capability
profile on a benchmark-based assessment.

Benchmark-based improvement is a kind of relative improvement approach.
Using this approach, the processes inherent in a software development
organization are improved according to a set of process benchmarks. As
described in Section 4.3, benchmark-based process improvement is
supported by the operational process improvement philosophy. It should
provide an optimized and economical process improvement solution.
SEPRM is the first benchmarked model for enabling benchmark-based
process improvements [Wang et al., 1998a/99e].

4.4.2.4 Integrated Improvement

Definition 4.22 Integrated improvement is a combined model- and
benchmark-based SPI method in which the process system can be improved
by basing its performance and capability profile on an integrated model- and
benchmark-based assessment.

Chapter 4 Process-Based Software Engineering 115

The integrated process improvement method inherits the advantages of both
absolute and relative SPI methods. Using the integrated improvement
method, the processes of a software development organization are improved
according to a benchmarked process system model. SEPRM is designed to
support integrated model- and benchmark-based process improvement
[Wang et al., 1999e].

4.4.3 USAGE OF CURRENT PROCESS MODELS IN
PROCESS IMPROVEMENT

A summary of the usage of current process models for process improvement
is listed in Table 4.6. Detailed process system improvement methodologies
in software engineering and case studies will be addressed in Part VI.

Table 4.6
Categorization of Current Models for Software Process Improvement

Methodology CMM Bootstrap ISO 15504 ISO 9001 SEPRM

Model-/standard-
based improvement

� � � � �

Benchmark-based
improvement

�

Integrated
improvement

�

4.5 Summary

This chapter has extended the unified process theory to cover methodologies
for process-based software engineering such as process system
establishment, assessment, and improvement.

The basic knowledge structure of this chapter is as follows:

116 Part I Fundamentals of the Software Engineering Process

Chapter 4. Process-Based Software Engineering

• General
 − Purposes of this chapter

 − To introduce the concept of process-based software
 engineering

 − To describe basic process methodologies for software
 engineering

 − To describe software process system establishment
 procedures and methods

 − To describe software process system assessment methods
 and their classification

 − To describe software process system improvement
 philosophies and methodologies

 • Process system establishment
− Procedure

− To select a process reference model for the organization
− To derive a process model for a project
− To apply the derived project process model as a
 software engineering platform

− Methods
− Tailoring
− Extension
− Adaptation

• Process system assessment
− Structures of process assessment model

− Checklist process model
− 1-D process model
− 2-D process models
− Relationships and features

− Method of process system assessment
− Model-based assessment
− Benchmark-based assessment
− Usage of current process models for system assessment

Chapter 4 Process-Based Software Engineering 117

• Process system improvement
− Approaches to process system improvement

− Goal-oriented process improvement
− Benchmark-based process improvement
− Continuous process improvement

− Method of process system improvement
− Model-based improvement
− Benchmark-based improvement
− Usage of current process models for system Improvement

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• The differences between checklist, 1-D, and 2-D process models and
their features

• The need for a focus on process system establishment

• Three philosophies for software process improvement

• Classification of software process assessment

A framework structure of process-based software engineering has been built
in this chapter. Main concepts, definitions, and methodologies introduced in
this chapter will be applied in the remainder of the book.

Extended descriptions and case studies for process-based software
engineering will be provided in Parts IV – VI, which cover software process
system establishment, assessment, and improvement, respectively.

Annotated References

Work leading to the wide acceptation of the concept and techniques of
software process were developed by Weinwurm and Zagorski, 1965; Basili,
1980; Aron, 1983; Agresti, 1986; Evans, 1987; Boehm, 1986/94; Humphrey,
1987/88/89/95/99; Gilb, 1988; and Lehman, 1991.

118 Part I Fundamentals of the Software Engineering Process

The scope of software engineering process research was extended and
methodologies were refined by Paulk and his colleagues, 1991/93c; ISO
9001, 1994; Dorling, 1993/95; Kuvaja et al., 1994; Rout, 1995; El Eman et
al., 1997; ISO/IEC TR 15504, 1998; Wang et al., 1996a/97a/b/98a/b/99c/e/f;
and Zahran, 1998.

On concept and approaches to process-based software engineering, see
Barghouti and Krishnamurthy, 1993; Garg and Jazayeri, 1995; and Wang et
al., 1996a/97a/b/99e. On empirical foundations of software process and
survey report of benchmarks of software engineering processes and best
practices, see Wang et al. (1998a/99c).

Questions and Problems

4.1 What are the roles of processes in software engineering?

4.2 What are the differences between the checklist, 1-D, and 2-D process
models?

4.3 What are the advantages and disadvantages of the checklist, 1-D,
and 2-D process models?

4.4 How did this chapter classify the methods of process system
establishment?

4.5 Can you suggest any additional approach(es) for process system
establishment based on the literature?

4.6 How did this chapter classify the methods of process system
assessment?

4.7 Can you suggest any novel approach(es) for process system assessment
based on the literature?

4.8 How did this chapter classify the methods of process system
improvement?

4.9 Can you suggest any additional approach(es) for process system
improvement based on the literature?

Chapter 4 Process-Based Software Engineering 119

4.10 What are the purposes of a self-assessment for an organization’s
software process system?

4.11 What are the different philosophies behind software process
improvement?

4.12 What is a benchmark of a software process system? What are the
approaches to help you establish a benchmark for an empirical
research topic?

4.13 If an organization asks you to provide a software process assessment
with the aim of working toward a widely recognized certification, what
process model would you choose? What is/are the reason(s) behind
your choice?

4.14 What key methodologies should a software process improvement plan
include for a newly established software development organization?
What should be included for a well-established software organization
that has many years of successful software development experience?

4.15 Assuming a software organization needs help for establishing a small
part of the processes presented in a process model, what do you need to
know in order to recommend the priority of processes that would be
implemented in the organization?

This page intentionally left blankThis page intentionally left blank

121

PART II

SOFTWARE
ENGINEERING

PROCESS SYSTEM
MODELING

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

5.
The CMM
Model

6.
The ISO 9001
Model

7.
The BOOTSTRAP
Model

9.
The SEPRM
Model

8.
The ISO/IEC 15504
(SPICE) Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

122 Part II

Software engineering process system modeling explores the complete
domain of software engineering processes, architectures, and the underlying
framework. This part investigates current process models, and contrasts them
with the unified process framework developed in Part I.

The knowledge structure of this part is as follows:

• Chapter 5. The CMM Model

• Chapter 6. The ISO 9001 Model

• Chapter 7. The BOOTSTRAP Model

• Chapter 8. The ISO/IEC TR 15504 (SPICE) Model

• Chapter 9. The Software Engineering Process Reference Model:
 SEPRM

The philosophies implied in each process system model are as shown in
Table II.1. It is obvious that historically and technically the current process
models represent various design orientation and philosophical views of
software engineering. Thus, an overarching process system model, the
Software Engineering Process Reference Model (SEPRM), will be developed
in order to integrate current process models according to the unified process
framework developed in Part I.

Table II.1
Philosophies and Background Orientations of

Current Software Engineering Process Models

Chronology Model Philosophy or Background Orientation
1987 CMM To present a software project contractor’s perception on the

organizational and managerial capacity of a software
development organization.

1991 ISO 9001 To present a generic quality system perception on software
development.

1993 BOOTSTRAP To present a combined view of software lifecycle processes
and quality system principles.

1998 ISO/IEC TR
15504 (SPICE)

To present a set of structured capability measurements for all
software lifecycle processes, and for all parties such as
software developers, acquirers, contractors, and customers.

1998 SEPRM To present a comprehensive and integrated process system
reference model, with sound foundations and process
benchmark support, for process-based software engineering.

The current process models analyzed in this part (except SEPRM) were
originally described using natural language. Neither formal descriptions nor
quantitative algorithms were adopted. This part introduces a formal and
algorithmic approach to the description of current process models for the first
time, intended:

Software Engineering Process System Modeling 123

• To enable mutual comparison between multimodels

• To avoid ambiguity in application

• To simplify manipulation in assessment

• To support implementation of computer-aided software process
assessment and improvement tools based on the formal models and
algorithms

Using the unified process system framework developed in Part I as
fundamental architecture, structures and methods of current software process
models such as CMM, ISO 9001, BOOTSTRAP, and ISO/IEC TR 15504 are
examined. Algorithms of these models are elicited and formalized. The
usability of current process models for software engineering process system
establishment, assessment, and improvement are analyzed. In order to present
both sides of the coin for each model in this part, the features and limitations
of these models in particular aspects of software engineering applications are
discussed using the repository of empirical and theoretical studies.

SEPRM is developed as a superset of the paradigms found in current
process models, and used to demonstrate the advantages of the unified
process framework and what a complete picture of a software engineering
process system may look like based on the improved understanding that
results.

In this part it is also demonstrated that current process models can be fit
very well within the unified process framework. To demonstrate this, a bit
repetition is employed in order to unify the style of representations for all
models.

This page intentionally left blankThis page intentionally left blank

125

Chapter 5

THE CMM MODEL

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

5.
The CMM
Model

5.1 Introduction 5.5 A sample CMM assessment
5.2 The CMM process model 5.6 Applications of CMM
5.3 The CMM process assessment model 5.7 Summary
5.4 The CMM algorithm Annotated references

6.
The ISO 9001
Model

/.
The BOOTSTRAP
Model

9.
The SEPRM
Model

8.
The ISO/IEC TR
15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

126 Part II Software Engineering Process System Modeling

CMM was the first process methodology that tried to model software
engineering process systems. This chapter describes the CMM model,
including its process model, process capability model, and process capability
determination methodology.

To avoid any ambiguity and redundancy in conventional natural
language description of CMM, this chapter adopts a formal and algorithmic
approach. A CMM algorithm will be elicited and a sample assessment will be
provided in order to demonstrate how a CMM-based process assessment is
carried out in practice. The usability of CMM is discussed on the basis of
empirical experience in the software industry and research reports in the
literature.

The objectives of this chapter are as follows:

• To review the history and background of CMM development

• To describe the CMM process model and taxonomy

• To describe the CMM capability model and capability determination
methodology

• To develop an approach to formally describe the CMM process
model, and to algorithmically describe the CMM process capability
determination method

• To develop a CMM algorithm for software process assessment

• To explain how the CMM algorithm can be used in process
assessment and how its algorithm complexity is estimated

• To demonstrate a case study of a practical CMM assessment by
using the CMM algorithm

• To discuss the usability of CMM in process establishment,
assessment, and improvement in software engineering

5.1 Introduction

The capability maturity model (CMM) [Paulk et al., 1991; Humphrey et al.,
1987/88/89] was initially developed in the Software Engineering Institute
(SEI) at Carnegie-Mellon University in 1987. The current version of CMM
(Version 1.1) was released in 1993 [Paulk et al., 1993a/b/c/95a].

Chapter 5 The CMM Model 127

In order to understand the background of the development of CMM and
its philosophy, it is helpful to review technical developments in the computer
industry and market requirements in the 1980s through which a software
industry was enabled and demanded.

Software vendors have existed since the first stored-program-controlled
computer was invented in 1946, but an application explosion occurred with
the advent of the microprocessor in the 1970s. After the invention of the first
microprocessor by Intel in 1971, and the development of first-generation
personal computers (PCs) by Apple in 1977, and by IBM in 1982 with MS-
DOS, programming approaches have changed dramatically from a
laboratory-based and machine-dependent activity to an individual-enabled
and common-platform-based activity. That technical development created a
chance to enable a software industry to emerge in the 1980s as an
independent sector providing system and application software for the
computer and other traditional industries, as well as for personal computing
needs.

Along with the technical development, the major industrial sectors, such
as telecommunications, banking, defense, and personal computing, had been
the important customers of the emerging software industry. Since the
software industry was still relatively young, it contained professionals and
amateurs, experienced software development organizations and those newly
established. Therefore, ways of distinguishing and selecting software
providers had been a critical problem.

This requirement led to the development of the SEI method for assessing
software project contractors [Humphrey, 1988/89] and the SEI capability
maturity model (CMM) for software [Paulk et al., 1991/1993a/b/c]. A set of
important concepts and successful experience, such as process, quality, and
management techniques, have been introduced into software engineering
from management science and engineering, especially from the work of
Walter Shewhart (1939), Joseph Juran (1962/80/88/89), W. Edwards Deming
(1982a/b, 1986), and Philip Crosby (1979), as reviewed in Chapter 2.

However, in addition to the initial goals of CMM for software
engineering management capability modeling and software organization
maturity measurement, researchers and the software industry soon realized
that the concept of software process introduced in CMM is a universal model
for organizing software engineering. This led to studies in process-based
software engineering environment and the development of a number of new
software process models.

This chapter provides a formal description of CMM in accordance with
the unified process system framework developed in Part I. A framework and
taxonomy of the CMM process model are introduced in Section 5.2. The
CMM capability model and process capability determination method are
described in Section 5.3. Based on this, a CMM process assessment
algorithm is elicited, and an example of CMM assessment is provided in

128 Part II Software Engineering Process System Modeling

Sections 5.4 and 5.5, respectively. Finally, the usability of CMM is
discussed in Section 5.6.

5.2 The CMM Process Model

This section describes the CMM process taxonomy and framework. The
terms and process structure of CMM are introduced using the original form
of expression, and are contrasted with the unified software process system
framework developed in Part I.

5.2.1 TAXONOMY OF THE CMM PROCESS MODEL

Referring to the generic process taxonomy defined in Chapter 2, the CMM
process hierarchy and domains are listed in Table 5.1.

Table 5.1
Process Hierarchy and Domains of the CMM Process Model

Taxonomy Subsystem Category Process Practice

Process scope - Capability levels

(CLs)

Key practice areas

(KPAs)

Key practices
(KPs)

Size of domain - 5 18 150

Identification - CL[i] KPA[i, k] KP[i, k, j]

Table 5.1 defines the configuration of the CMM process model. As shown,
the KPs and KPAs used in CMM are equivalent to the practices and
processes, respectively, as defined in the unified process system framework.

In order to provide a formal identification for each entity defined at
various levels of coverage known as process scopes, the indexing of CL,
KPA, and KP are described using a naming convention as shown in Table
5.1. In the table, i is the number of CL, k the number of KPA at ith CL, and j
the number of KP in kth KPA at CLi.

Chapter 5 The CMM Model 129

5.2.2 FRAMEWORK OF THE CMM PROCESS MODEL

CMM models a software process system at 5 capability levels, in 18 key
practice areas, and 150 key practices. A hierarchical structure of the CMM
framework is shown in Table 5.2.

Table 5.2
The CMM Process Model

ID. Level Key Practice
Area (KPA)

Identified
KPs

Purpose of KPA

CL1 Initial 0 –

CL2 Repeated 62

KPA2.1 Requirement
management

3 To establish a common understanding
between the customer and the software
project of the customer’s requirements that
will be addressed by the software project.

KPA2.2 Software project
planning

15 To establish reasonable plans for
performing the software engineering and
for managing the software project.

KPA2.3 Software project
tracking and
oversight

13 To establish adequate visibility into actual
progress so that management can take
effective actions when the software
project’s performance deviates
significantly from the software plans.

KPA2.4 Software
subcontract
management

13 To select qualified software subcontractors
and manage them effectively.

KPA2.5 Software quality
assurance

8 To provide management with appropriate
visibility into the process being used by the
software project and of the products being
built.

KPA2.6 Software
configuration
management

10 To establish and maintain the integrity of
the products of the software project
throughout the project’s software life cycle.

CL3 Defined 50

KPA3.1 Organization
process focus

7 To establish the organizational
responsibility for software process
activities that improve the organization’s
overall software process capability.

KPA3.2 Organization
process
definition

6 To develop and maintain a usable set of
software process assets that improve
process performance across the projects
and provide a basis for cumulative, long-
term benefits to the organization.

KPA3.3 Training
program

6 To develop the skills and knowledge of
individuals so that they can perform their
roles effectively and efficiently.

130 Part II Software Engineering Process System Modeling

KPA3.4 Integrated
software
management

11 To integrate the software engineering and
management activities into a coherent,
defined software process that is tailored
from the organization’s standard software
process and related process assets, which
are described in KPA 3.2.

KPA3.5 Software
product
engineering

10 To consistently perform a well-defined
engineering process that integrates all the
software engineering activities to produce
correct, consistent software products
effectively and efficiently.

KPA3.6 Intergroup
coordination

7 To establish a means for the software
engineering group to participate actively
with the other engineering groups so that
the project is better able to satisfy the
customer’s needs effectively and
efficiently.

KPA3.7 Peer reviews 3 To remove defects from the software work
products early and efficiently.

CL4 Managed 12

KPA4.1 Quantitative
process
management

7 To control the process performance of the
software project quantitatively.

KPA4.2 Software quality
management

5 To develop a quantitative understanding of
the project’s software products and achieve
specific quality goals.

CL5 Optimizing 26

KPA5.1 Defect
prevention

8 To identify the cause of defects and
prevent them from recurring.

KPA5.2 Technology
change
management

8 To identify beneficial new technologies
(i.e., tools, methods, and processes) and
transfer them into the organization in an
orderly manner, as is described in KPA5.3.

KPA5.3 Process change
management

10 To continually improve the software
processes used in the organization with the
intent of improving software quality,
increasing productivity, and decreasing the
cycle time for product development.

In Table 5.2 the descriptions of purpose of each KPA are provided [Paulk et
al., 1993a]. By referring to Table 5.2 readers may find that CMM processes
mainly emphasize management issues of software engineering processes such
as organization, software development management, project planning, project
management processes, etc.

In Table 5.2, the number of defined KPs for each KPA is provided. The
definitions of the KPs are listed in Appendix C where, in the column of
CMM, a jth KP of KPA k at capability level i, KP [i,k,j], is represented by:

Chapter 5 The CMM Model 131

 KP[i,k,j] = KPi.k..j

= BPAi’.k’.r’.j’ (5.1)

where i’, k’, r’, and j’ are the index numbers of subsystem, category, process,
and practice, respectively, as defined in the unified process system
framework and SEPRM.

For example, in Appendix C, readers can identify KP[2,5,4] as:

 KP[i,k,j] = KP[2,5,4]
= QSA2.5.4

 = BPA3.1.8.1

= BPA244

= ‘Audit software development activities’

5.2.3 FORMAL DESCRIPTION OF THE CMM
PROCESS MODEL

By using the CSP-like process algebra introduced in Chapter 3, we are able to
formally describe the CMM process model and its processes in this
subsection. The formal description is useful for providing precise and
accurate definitions of the structure and interrelationships of the CMM
processes, and to avoid the ambiguity inherent in conventional natural
language description. Following methods based on theory, the rigorous
approach is also a necessary exercise for problem abstraction, which is
important in software engineering.

5.2.3.1 The Structure of the CMM Process Model

A formal description of the high-level structure of the CMM process model,
CMM_PM, is shown in Expression 5.2 and illustrated in Figure 5.1.
Basically, this is a sequential process model at the system level.

 CMM_PM � CL1 __ Initial

 ; CL2 __ Repeated

 ; CL3 __ Defined

 ; CL4 __ Managed

 ; CL5 __ Optimizing (5.2)

132 Part II Software Engineering Process System Modeling

The CMM Process Model

 CL1 CL2 CL3 CL4 CL5

 Initial Repeated Defined Managed Optimizing

Figure 5.1 The CMM process model

In the CMM process model, all process capability levels except Level 1 can
be extended to a number of parallel processes (KPAs) as shown in
Expression 5.3. Further, each KPA can be extended to a number of KPs in a
similar way.

CL1 � Å

CL2 � KPA2.1 || KPA2.2 || KPA2.3 || KPA2.4 || KPA2.5 || KPA2.6

CL3 � KPA3.1 || KPA3.2 || KPA3.3 || KPA3.4 || KPA3.5 || KPA3.6 || KPA3.7

CL4 � KPA4.1 || KPA4.2

CL5 � KPA5.1 || KPA5.2 || KPA5.3 (5.3)

There is no defined KPA or KP at Level 1 since this level is treated as the
baseline for an initial software development organization according to CMM.

5.2.3.2 Definitions of CMM Processes

The CMM processes, known as KPAs at each capability level, can be
formally defined by Expressions 5.4 – 5.7 and are illustrated in Figures
5.2 – 5.5.

 CL2 � KPA2.1 // Requirement management
|| KPA2.2 // Software project planning
|| KPA2.3 // Software project tracking and oversight
|| KPA2.4 // Software subcontract management
|| KPA2.5 // Software quality assurance
|| KPA2.6 // Software configuration management (5.4)

A process diagram corresponding to the six processes at CMM Level 2 as
defined in Expression 5.4 is shown in Figure 5.2.

Chapter 5 The CMM Model 133

CMM CL2

Repeated Processes

KPA2.1

Requirement
management

KPA2.2

Software project
planning

KPA2.3

Software project
tracking and oversight

KPA2.6

Software configuration
management

KPA2.5

Software quality
assurance

KPA2.4

Software subcontract
management

Figure 5.2 CMM Level 2 processes – the repeated KPAs

A process diagram corresponding to the seven processes at CMM level 3, as
defined in Expression 5.5, is shown in Figure 5.3.

 CL3 � KPA3.1 // Organization process focus
|| KPA3.2 // Organization process definition
|| KPA3.3 // Training program
|| KPA3.4 // Integrated software management
|| KPA3.5 // Software product engineering
|| KPA3.6 // Intergroup coordination
|| KPA3.7 // Peer reviews (5.5)

134 Part II Software Engineering Process System Modeling

CMM CL3

Defined Processes

KPA3.1

Organization
process focus

KPA3.2

Organization
process definition

KPA3.3

Training
program

KPA3.6

Intergroup
coordination

KPA3.5

Software product
engineering

KPA3.4

Integrated software
management

KPA3.7

Peer
reviews

Figure 5.3 CMM Level 3 processes – the defined KPAs

A process diagram corresponding to the two processes at CMM Level 4, as
defined in Expression 5.6, is shown in Figure 5.4.

 CL4 � KPA4.1 // Quantitative process management
|| KPA4.2 // Software quality management (5.6)

Chapter 5 The CMM Model 135

CMM CL4

Managed Processes

KPA41
Quantitative process
management

KPA42
Software quality
management

Figure 5.4 CMM Level 4 processes – the managed KPAs

A process diagram corresponding to the three processes at CMM Level 5, as
defined in Expression 5.7, is shown in Figure 5.5.

 CL5 � KPA5.1 // Defect prevention
|| KPA5.2 // Technology change management
|| KPA5.3 // Process change management (5.7)

CMM CL5

Optimizing Processes

KPA51
Defect
prevention

KPA52
Technology change
management

KPA53
Process change
management

Figure 5.5 CMM Level 5 processes – the optimizing KPAs

136 Part II Software Engineering Process System Modeling

Detailed practices of each KPA at KP level, which are documented in
Appendix C, can be described in the same way as above. Extending the
formal CMM process model onto KP level can be taken as an exercise for
readers.

5.3 The CMM Process Assessment
 Model

The CMM process model has been systematically introduced in Section 5.2.
This section explores the CMM process capability model and process
capability determination method. Both of the above form the CMM process
assessment model.

5.3.1 THE CMM PROCESS CAPABILITY MODEL

As introduced in Section 2.4.2, a process capability model is a yardstick for
process assessment. This section describes the CMM process capability
model, which includes a practice performance scale, a process capability
scale, and a process capability scope definition.

5.3.1.1 Practice Performance Scale

A practice performance rating scale for the KPs in CMM is defined in Table
5.3. It employs a kind of yes/no evaluation for the KPs’ existence and
performance, with Option 2 adding some extent of tailorability for the
domain of the specified KPs. In Table 5.3, the rating thresholds provide a set
of quantitative measurements for rating a KP’s performance with the scale.

Table 5.3
Practice Performance Scale of the KPs

Scale Description Rating threshold

4 Yes ≥ 80%

3 No < 80%

2 Doesn’t apply -

1 Don’t know -

Chapter 5 The CMM Model 137

In Table 5.3, Scale 1 is usually treated as equivalent to 3 in assessment,
because “don't know” implies no such practice in the assessed software
development organization.

5.3.1.2 Process Capability Scale

CMM develops a five-level software process capability model as shown in
Table 5.4 [Paulk et al., 1993a]. Each capability level is defined in the table
with supplemental description of capability performance indicators in the last
column.

Table 5.4
The CMM Process Capability Model

Capability
level

(CL[i])

Title Description Performance

Indicator

CL[1] Initial At this level, the software process is
characterized as ad hoc, and
occasionally even chaotic. Few
processes are defined, and success
depends on individual effort.

Schedule and cost
targets are typically
overrun.

CL[2] Repeated At this level, basic project management
processes are established to track cost,
schedule, and functionality. The
necessary process discipline is in place
to repeat earlier successes on projects
with similar applications.

Plans based on past
performance are more
realistic.

CL[3] Defined At this level, the software process for
both management and engineering
activities is documented, standardized,
and integrated into a standard software
process for the organization. All
projects use an approved, tailored
version of the organization’s standard
software process for developing and
maintaining software.

Performance improves
with well-defined
processes.

CL[4] Managed At this level, detailed measures of the
software process and product quality
are collected. Both the software process
and products are quantitatively
understood and controlled.

Performance continues
to improve based on
quantitative under-
standing of process and
product.

CL[5] Optimizing At this level, continuous process
improvement is enabled by quantitative
feedback from the process and from
piloting innovative ideas and
technologies

Performance contin-
uously improves to
increase process
efficiency, eliminate
costly rework, and
allow development time
to be shortened.

138 Part II Software Engineering Process System Modeling

Based on the software process capability model, a CMM process capability
scale is described in Table 5.5. For each capability level i, the number of
identified KPs (NKP[i,j]) and the minimum required number of KPs for
satisfying an assessment (PKP[i,j]) are listed, respectively.

Table 5.5
The CMM Process Capability Scale

Capability Level
(CL[i])

Description Identified KPs
(NKP[i.j])

Pass Threshold
(PKP[i,j])

CL[1] Initial NKP1 = 0 PKP1 = 0

CL[2] Repeated NKP2 = 62 PKP2 = 50

CL[3] Defined NKP3 = 50 PKP3 = 40
CL[4] Managed NKP4 = 12 PKP4 = 10

CL[5] Optimizing NKP5 = 26 PKP4 = 21

Total 5 150 121

Contrasting Tables 5.5 and 5.2, it may be observed that the capability levels
are used for both capability scales as in the CMM capability model, and
process group names as in the CMM process model. The overlap in the
process and capability dimensions is a particular feature of a 1-D process
system model.

5.3.1.3 Process Capability Scope

The CMM process capability scopes are shown in Table 5.6. Comparing
Table 5.6 with Table 2.3 in Chapter 2, it is clear that CMM assesses process
capability at the levels of KP, KPA, project, and organization scope from the
bottom, up.

Table 5.6
Process Capability Scope of CMM

Capability Scope Practice Process Project Organization
CMM terms KPs KPAs / levels Project Organization

CMM methods Performance
rating

Performance
rating

Capability level Capability level

5.3.2 THE CMM PROCESS CAPABILITY
DETERMINATION METHODOLOGY

Using the formal definitions of the CMM process model and process
capability model developed in Sections 5.2 and 5.3.1, we can now consider
how to apply the CMM capability model to the process model for the
assessment of process capability at practice, process, project, and
organization levels.

Chapter 5 The CMM Model 139

5.3.2.1 Practice Performance Rating Method

Let rKP[i,j] be a rating of performance of the jth KP at the ith capability level.
Then rKP[i,j] can be rated according to the practice performance scale as
defined in Table 5.3, i.e.:

 r KP[i,j] = 4, if the KP’s performance is at least 80% satisfied

 = 3, if the KP’s performance is less than 80% satisfied

 = 2, if the KP does not apply in the assessment

 = 1, if the answer for the KP is “don’t know” in assessment (5.8)

5.3.2.2 Process Capability Rating Method

The number of satisfied KPs at a level i, SATKP[i], is assessed according to
the following formula:

 SATKP[i] = # { KP[i,j] | Passed }, i = 1, 2, …, 5

= # { KP[i,j] | rKP[i,j] =4 ∨ rKP[i,j] =2}

 =
j

N KPi

=
∑

1

{ 1 | rKP[i,j] =4 ∨ rKP[i,j] =2} (5.9)

where # is a cardinal calculus that counts the numbers of KPs that satisfy or
that do not apply in the assessment, and NKPi is the number of defined KPs at
level i.

A pass threshold, PKP[i], for a capability level, i, in CMM is defined as:

PKP[i] = NKP[i] * 80% (5.10)

This means that 80% of the KPs defined at a level should be satisfied for
fulfilling the requirements of process capability at this level, i.e.:

 SATKP[i] ≥ PKP[i]

 ≥ NKP[i] * 80% (5.11)

The pass thresholds at each capability level have been defined in Table 5.5
for reference.

The CMM capability levels and their related KPAs and KPs are
predefined and fixed according to the CMM model. CMM evaluates the
process capability from the bottom level (Level 1), and does not concern the
practices at higher levels if a lower level is inadequate. Therefore, a software
development organization cannot win a higher level until it has fulfilled the
requirements for the level(s) lower than that.

140 Part II Software Engineering Process System Modeling

5.3.2.3 Project Capability Determination Method

A CMM process capability level for a project p in a software development
organization, PCLproj[p], can be defined as the maximum integer level, i, the
software development organization achieved, i.e.:

 PCLproj[p] = max {i | SATKP[i] ≥ PKP[i]}, i = 1,2, ..., 5 (5.12)

where PKP[i] is the pass threshold for Level i as defined in Table 5.5.

5.3.2.4 Organization Capability Determination Method

A CMM process capability level for an organization is defined as a
mathematical mean of those of n assessed projects, i.e.:

 PCLorg = 1

1
n

p

n

=
∑ PCL proj [p] (5.13)

where x means “round x to the nearest lower integer.”
Expression 5.13 indicates that an established software organization and

its successful experience in the project scope can be cumulatively taken into
account when determining the organization’s process capability level.

It is noteworthy that CMM has not suggested how many project
assessment results are sufficient to derive the organization’s process
capability level. Generally, it is expected that n≥3 is a valid aggregation of
an organization’s process capability level based on the projects that are
carried out in the organization.

5.4 The CMM Algorithm

So far we have explored the CMM process model, process capability model,
and capability determination method. Using the models and method we are
already able to manually assess and calculate a software project’s or an
organization’s process capability in CMM.

Chapter 5 The CMM Model 141

In order to describe the CMM methodology precisely, and to enable
mutual comparison and tool implementation, this section extends the CMM
process capability determination methodology into a formal CMM algorithm.

5.4.1 DESCRIPTION OF THE CMM ALGORITHM

The CMM capability determination method as defined in Expressions 5.8 –
5.12 up to the scope of project can be formally described in the following
algorithm. An organization’s process capability level can be easily
aggregated according to Expression 5.13, when multiple projects have been
assessed.

Algorithm 5.1 The CMM process capability determination algorithm

Assume: KP[i,j] - the jth KP defined at level i, i = 1,2,3,4,5
 NKPi - number of KPs at level i
 SATKP[i] - number of KPs satisfied at level i
 PCL - process capability level
 PCLproj[p] - process capability level of project p
Input: Sample indicators of KPs and KPAs’ existence and performance
Output: PCLproj[p]

Begin

 // Step 1: Initialization

 NKP[1] := 0; // Assign numbers of defined KPs at each level
 NKP[2] := 62;
 NKP[3] := 50;
 NKP[4] := 12;
 NKP[5] := 26;

 // Step 2: KP performance rating

 // 2.1 Assess KPs at Level 2
 level := 2;
 SATKP[level]:=0;
 for j:=1 to NKP[2] do
 begin
 // Rate performance of KP[j] according to the practice
 // performance scale defined in Table 5.3
 if (KP[level, j] = 4) ∨ (KP[level, j] = 2)

142 Part II Software Engineering Process System Modeling

 then // the KP is satisfied
 SATKP[level] := SATKP[level] + 1;
 // else, it is not satisfied, skip
 end;

 // 2.2 Assess KPs at Level 3
 level := 3;
 SATKP[level]:=0;
 for j:=1 to NKP[3] do
 begin
 // Rate performance of KP[j] according to Table 5.3
 if (KP[level, j] = 4) ∨ (KP[level, j] = 2)
 then // the KP is satisfied
 SATKP[level] := SATKP[level] + 1;
 // else, it is not satisfied, skip
 end;

 // 2.3 Assess KPs at Level 4
 level := 4;
 SATKP[level]:=0;
 for j:=1 to NKP[4] do
 begin
 // Rate performance of KP[j] according to Table 5.3
 if (KP[level, j] = 4) ∨ (KP[level, j] = 2)
 then // the KP is satisfied
 SATKP[level] := SATKP[level]+ 1;
 // else, it is not satisfied, skip
 end;

 // 2.4 Assess KPs at Level 5
 level := 5;
 SATKP[level]:=0;
 for j:=1 to NKP[5] do
 begin
 // Rate performance of KP[j] according to Table 5.3
 if (KP[level, j] = 4) ∨ (KP[level, j] = 2)
 then // the KP is satisfied
 SATKP[level] := SATKP[level]+ 1;
 // else, it is not satisfied, skip
 end;

 // Step 3: Process capability determination

 if SATKP[2] < (NKP[2] * 80%) // According to Expression 5.11
 then // Initial

Chapter 5 The CMM Model 143

 PCL := 1
 else if SATKP[3] < (NKP[3] * 80%)
 then // Repeatable
 PCL := 2
 else if SATKP[4] < (NKP[4] * 80%)
 then // Defined
 PCL :=3
 else if SATKP[5] < (NKP[5] * 80%)
 then // Managed
 PCL :=4
 Else // Optimizing
 PCL :=5;
 PCLproj[p] := PCL; // According to Expression 5.12

End Í

5.4.2 EXPLANATION OF THE CMM ALGORITHM

A CMM assessment according to Algorithm 5.1 is carried out in three steps:

• Step 1: Initialization

• Step 2: KP performance rating

 • Step 3: Process capability determination

This subsection explains the main functions of Algorithm 5.1 for a CMM
process assessment.

5.4.2.1 Initialization

This step is designed to specify the numbers of KPs defined in CMM. For
obtaining a detailed configuration of KPs in the CMM process model,
readers may refer to Table 5.2 and Appendix C.

5.4.2.2 KP Performance Rating

In this step, all KPs for each KPA at each capability level are rated according
to Expressions 5.8 and 5.9, using the definitions of practice performance
scale listed in Table 5.3.

144 Part II Software Engineering Process System Modeling

The rating methods for all KPs at levels 2 – 5 are identical as shown in
algorithm Steps 2.1 – 2.4, except that at each level the number of KPs,
NKP[i], are different as initialized in Step 1. The basic function for KP rating
at each level is to count the number of satisfied KPs by increasing
SATKP[level] by one if the examined KP is rated as 4 or 2 according to
the rating scale in Table 5.3.

It is suggested that each KP at all levels should be rated, even when there
is an early indication that a software project would only achieve a certain
level lower than 5.

5.4.2.3 Project Process Capability Determination

This step derives the maximum aggregated process capability level for an
assessed software project based on the KP ratings obtained in Step 2. The
capability level of a project is determined by Expression 5.12, or by
checking with Table 5.7 for the minimum required numbers of KPs level-by-
level. This means that a project should satisfy all lower levels before it can
satisfy a certain level i, i = 1, 2, …, 5.

Table 5.7
The CMM Process Capability Scale

Capability Level

(CL[i])

Description Minimum
Satisfied KPs

Maximum
Satisfied KPs

CL1 Initial - -

CL2 Repeated 50 62

CL3 Defined 90 112

CL4 Managed 100 124

CL5 Optimizing 121 150

5.4.3 ANALYSIS OF THE CMM ALGORITHM

The effort expended in conducting a CMM assessment depends on its
algorithm complexity. By examining the complexity of an algorithm, the time
spent in a CMM assessment can be estimated quite accurately.

Reviewing the CMM algorithm, it may be observed that the algorithm
complexity of CMM, c(CMM), is mainly determined by the number of KPs,
NKP, which need to be rated individually in a CMM assessment according to
Algorithm 5.1, Step 2, i.e.:

Chapter 5 The CMM Model 145

 c(CMM) = O(NKP)

 = NKP

 =
i=
∑

1

5

NKP[i] (5.14)

where O(x) means in the order of number x; NKP[i] is the KPs at level i, 1 ≤ i
≤ 5. The unit of the algorithm complexity is “times of KP ratings”, or of
practice ratings.

As given in CMM, NKP[1]=0, NKP[2]=62, NKP[3]=50, NKP[4]=12, and
NKP[5]=16. Thus, the total rating cost, or the algorithm complexity, for
determining a capability level of project scope in CMM is:

 c(CMM) = O(NKP)

 = NKP

 =
i=
∑

1

5

NKP[i]

 = 0 + 62 + 50 + 12 +16

 = 150 [times of KP ratings]

There is a certain range of rates between the algorithm complexity and the
person-days needed for an assessment. Empirical data for relating the
algorithm complexity to person-days expended in a CMM process assessment
will be discussed in Chapter 12.

5.5 A Sample CMM Assessment

The capability rating framework and the capability determination algorithm
of CMM have been formally described in Sections 5.3 and 5.4. This section
demonstrates how to apply the CMM expressions and algorithm to
quantitatively determine a sample software development organization’s
process capability level in CMM.

146 Part II Software Engineering Process System Modeling

5.5.1 KP PERFORMANCE RATING IN CMM

A set of detailed ratings of the 150 KPs has been listed in Appendix C, where
the raw data rating {4,3,2,1} corresponds to the CMM KP rating scale
{Y(4),Y(4),N(3),N(3)}. By referring to Table 5.3, a mapping between the
rating scales of the raw data and the CMM KP is defined in Table 5.8.

Table 5.8
Mapping between Raw Data in Assessment onto CMM Rating Scale

Raw Data Rating Scale
(in Appendix C)

CMM KP
 Rating Scale

Description in CMM

4 4 Yes

3 4 Yes

2 3 No

1 3 No

Processing the raw data of the KPs’ performance ratings according to Table
5.8 and then applying Expression 5.8 allows the number of satisfied KPs at a
level i, SATKP[i], to be derived by:

 SATKP[i] = # { KP[i,j] | Passed }
 = # { KP[i,j] | rKP[i,j] =4 ∨ rKP[i,j] =2}

 =
j

N KPi

=
∑

1

{ 1 | rKP[i,j] =4 ∨ rKP[i,j] =2}

For example, KPA5.1, defect prevention, has eight KPs rated:

 KPA5.1 = {KP5.1.1, KP5.1.2, KP5.1.3, KP5.1.4, KP5.1.5, KP5.1.6, KP5.1.7, KP5.1.8}
 = {2,2,4,4,4,4,4,2},

respectively in Appendix C.

Mapping the raw data onto CMM scale according to Table 5.8, the KP ratings
are as follows:

 KPA[5,1] = {N, N, Y, Y, Y, Y, Y, N}
 = {3,3,4,4,4,4,4,3}

Thus, according to Expression 5.8, the number of satisfied KPs for KPA5.1

are:

SATKP[5] = # { KP5.1.3, KP5.1.4, KP5.1.5, KP5.1.6, KP5.1.7}
 = 5,

Chapter 5 The CMM Model 147

and the rest, KP5.1.1, KP5.1.2, KP5.1.8, are those of unsatisfied KPs in KPA5.1.

A summary of the 18 KPA capability ratings in CMM is listed in Table 5.9.

Table 5.9
Summary Assessment Record in CMM

CLi Key Practice Areas
(KPA[i,j])

Identified
KPs

(NKP[i,j])

Pass
Threshold
(PKP[i,j])

Assessment Result
(SATKP[i,j])

4 | 3 | 2 | 1

CL5 Optimizing NKP[5]=26 PKP[5]=21 SATKP[5] = 16

KPA5.1 Defect prevention 8 5 | 3 | 0 | 0

 KPA5.2 Technology change management 8 4 | 4 | 0 | 0

KPA5.3 Process change management 10 7 | 3 | 0 | 0

CL4 Managed NKP[4]=12 PKP[4]=10 SATKP[4] = 7

KPA4.1 Quantitative process management 7 3 | 4 | 0 | 0

KPA4.2 Software quality management 5 4 | 1 | 0 | 0

CL3 Defined NKP[3]=50 PKP[3]=40 SATKP[3] = 44

KPA3.1 Organization process focus 7 5 | 2 | 0 | 0

KPA3.2 Organization process definition 6 6 | 0 | 0 | 0

KPA3.3 Training program 6 5 | 1 | 0 | 0

KPA3.4 Integrated software management 11 11 | 0 | 0 | 0

KPA3.5 Software product engineering 10 10 | 0 | 0 | 0

KPA3.6 Intergroup coordination 7 4 | 3 | 0 | 0

KPA3.7 Peer reviews 3 3 | 0 | 0 | 0

CL2 Repeated NKP[2]=62 PKP[2]=50 SATKP[2] = 56

KPA2.1 Requirement management 3 3 | 0 | 0 | 0

KPA2.2 Software project planning 15 15 | 0 | 0 | 0

KPA2.3 Software project tracking and oversight 13 10 | 3 | 0 | 0

KPA2.4 Software subcontract management 13 10 | 3 | 0 | 0

KPA2.5 Software quality assurance 8 8 | 0 | 0 | 0

KPA2.6 Software configuration management 10 10 | 0 | 0 | 0

CL1 Initial NKP[1]=0 PKP[1]=0 KPsat[1] = 0

5.5.2 PROCESS CAPABILITY DETERMINATION IN
CMM

Using the assessment result listed in Table 5.9, a process capability profile of
the software development organization in CMM can be derived as shown in
Figure 5.6.

148 Part II Software Engineering Process System Modeling

0

2

4

6

8

10

12

14

16

No. of KPs

1 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 3,7 4,1 4,2 5,1 5,2 5,3

Not satisfied

Satisfied

 CL1 CL2 CL3 CL4 CL5

 Process

Figure 5.6 Process capability profile of a software project in CMM

5.5.3 PROJECT CAPABILITY DETERMINATION
 IN CMM

The process capability level for a project p, PCLproj[p], in CMM has been
defined as the maximum integer level, i, which a software project fulfilled as
in Expression 5.12.

Applying Expression 5.12 to the ratings of the 18 KPAs and 150 BPs
ratings summarized in Table 5.9, the capability level of the project can be
determined. Considering that:

(SATKP[2] = 56) > (PKP[2]= 50)

(SATKP[3] = 44) > (PKP[3]= 40)

(SATKP[4] = 7) < (PKP[4]= 10)

the capability level of the sample software project is calculated as:

 PCLproj[p] = max {i | SATKP[i] ≥ PKP[i]}, i = 1,2, ..., 5

 = max {3 | SATKP[3] ≥ PKP[3]}

 = 3

Thus, the project of the software development organization is assessed to be
at Level 3, the defined process capability level, in CMM.

Chapter 5 The CMM Model 149

5.6 Applications of CMM

In the previous sections we have explored the CMM theory and methodology
for process system modeling and assessment. This section analyzes the
usability of CMM in software engineering process system establishment,
assessment, and improvement. In order to present both sides of the coin, the
limitations of CMM in some aspects of software engineering applications are
discussed using the body of empirical and theoretical studies on CMM.

5.6.1 CMM FOR SOFTWARE PROCESS SYSTEM
ESTABLISHMENT

In the CMM model, a capability level and its related KPAs and KPs are
predefined and fixed. For process system establishment, CMM models
process capability from the bottom level and would not concern the
performances of processes at higher levels if those in the lower level were
inadequate. The merits of this approach are straightforward and concentrate
on limiting the focus.

However, this implies that CMM requires a software development
organization to implement the processes modeled by the KPAs and KPs
level-by-level. This would be suitable for a new software organization to plan
and establish its process system step-by-step from Level 2 toward Level 5
while, for an established software organization, this approach may lead to its
concentrating only on the KPAs at the current targeted level (and those lower
than it) because the KPAs associated with the levels higher than the target
may be ruled out by the organization to achieve the planned level.

Thus, fundamentally, the 1-D process model, like CMM, has inherited
limitations in theory and application. An argument on the logic of the 1-D
process model was whether we would recommend only a subset of a whole
process system for an organization if all processes are considered essential
for producing quality software? It is also found that, from a structural view,
the modeled priority level of the KPAs in CMM and the practical priority in a
software development organization would not be easily matched. For
example, the defect prevention KPA with eight KPs in CMM are preallocated
at Level 5 while a software development organization at lower levels may
need to introduce these processes earlier in their practices. Therefore,
practices in software engineering process establishment require the CMM

150 Part II Software Engineering Process System Modeling

approach to provide more flexibility and tailorability in order to allow only
the process capability degrees, rather than a collection of KPA processes
being divided into different levels. Using this approach, the CMM model may
be made more adaptable to the various requirements of different software
development organizations in practical software engineering process
establishment.

5.6.2 CMM FOR SOFTWARE PROCESS SYSTEM
 ASSESSMENT

With regard to the unified software process system framework developed in
Part I, CMM is suitable for the first-, second-, and third-party assessment for
a software engineering process system in a software development
organization.

The CMM 1-D process methodology is oriented to software process
assessment at project level while it is relatively less focused on process and
practice levels because a CMM assessment does not present the intermediate
KPA level assessment result in the assessment outcomes.

According to the CMM methodology, a software development
organization could not win a higher CMM level of recognition even if it has
fulfilled the requirements for that level but lacks practices at the lower
level(s). It seems that the CMM capability determination methodology needs
to consider the higher level practices of software organizations and their
impact on process assessment results in order to allow the process merits to
be taken into account in an organization’s final capability level.

5.6.3 CMM FOR SOFTWARE PROCESS SYSTEM
 IMPROVEMENT

The CMM model is applicable for stepwise process improvement according
to a group of predefined processes associated with specific capability levels.
In a CMM-based process improvement scheme, CMM evaluates an
organization’s process capability from the bottom, up. An organization’s
software engineering practices and merits at higher capability levels could
not be taken into account if those at the lower level were inadequate.

This approach may lead an established software development
organization to concentrate on limited KPAs at a targeted level (and those
lower than it), and to postpone application of some existing higher level
processes because those could not be reflected in the process improvement
results according to the CMM approach. Based on these concerns, it seems
that more flexibility needs to be introduced into the CMM process

Chapter 5 The CMM Model 151

improvement approach. Thus, it would be perfect if CMM allows the
organizations to determine their priority to improve which process(es) rather
than a prescribed order for process improvement.

From the discussion in this section it may be understood that there is no
perfect model for such a complicated software engineering process system.
There is an argument that says perhaps the earlier a model is developed, the
more imperfect the model would be. This is because the more applications a
model has gained, the deeper the imperfections are found to be. These
comments also apply to all other process models that will be presented in the
following chapters.

Therefore, to be aware of and to use the advantages of a process model in
practice while avoiding disadvantages is desirable. It is one of the important
purposes of this book to improve process model integration and evolution in
process-based software engineering research and practices.

5.7 Summary

This chapter has introduced a formal and rigorous approach into the
description of CMM. CSP-like process algebra has been adopted for
presenting the CMM process model, and mathematical and algorithmic
methods have been applied for presenting the CMM process capability
determination methodology. Using these formal techniques, CMM has been
systematically described and analyzed by contrasting with the unified process
system framework developed in Part I. An empirical case study has been
provided for demonstrating the method and approach in conducting a CMM
assessment.

The basic knowledge structure of this chapter is as follows:

Chapter 5. The CMM Model

• General
 − Purposes of this chapter

 − To review the history and background of CMM
 development

152 Part II Software Engineering Process System Modeling

 − To describe the CMM process model and taxonomy

 − To describe the CMM capability model and capability
 determination methodology

 − To formally describe the CMM process model, and to
 algorithmically describe the CMM process capability
 determination method

 − To develop a CMM algorithm for software process
 assessment

 − To explain how the CMM algorithm can be used in
 process assessment and how its algorithm complexity is
 estimated

 − To demonstrate a case study of a practical CMM
 assessment by using the CMM algorithm

 − To discuss the usability of CMM in process
 establishment, assessment, and improvement in software
 engineering

 − Historical demand from/for the software industry
 − To model the software engineering process capability
 − To measure the maturity level of a software development
 organization
 − To provide a process framework for organizing and
 implementing software engineering

 • The CMM process model
− Taxonomy of the CMM process model

− Process scopes
− Size of domain of each scope

 − Framework of the CMM process model
− Structure of the CMM process model
− Definitions of KPAs in CMM

 − Formal description of the CMM process model
− CMM abstract process patterns
− CMM process diagrams
− Interpretation and illustration of the process algebra
 expressions

• The CMM process assessment model

Chapter 5 The CMM Model 153

− The CMM process capability model
− Configuration
 − 5 process capability levels (CLs)
 − 18 processes (KPAs)
 − 150 practices (KPs)
− Definitions of the 5 process capability levels
− The KP rating scale
− The process rating scale

− The CMM process capability determination method
 − Formal description of CMM capability determination
 methodology
 − Meanings of expressions and their operations

 − Common features with the methodology developed in the
 unified process framework in Part I
 − Differences from the methodology developed in the unified
 process framework in Part I

• The CMM algorithm
− Algorithm 5.1: CMM process assessment
− Explanation of Algorithm 5.1
− Relation between Algorithm 5.1 and the capability
 determination expressions in Section 5.3.2
− The CMM algorithm complexity and the main factor affecting it

 • A sample CMM process assessment
− Understanding assessment data documented in Appendix C

 − Manual process assessment in CMM
 − Algorithm-based assessment in CMM

− Interpretation of assessment results

• Usability of CMM
− Merits and demerits in process system establishment

 − Merits and demerits in process system assessment
 − Merits and demerits in process system improvement

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• The design philosophy behind CMM is a software project
contractor’s perception on the organizational and managerial

154 Part II Software Engineering Process System Modeling

capacity of a software development organization. It has noted,
however, that the interpretations of CMM have been shifted from the
original second-party point of view to the third-party and first-party-
oriented applications in the software industry.

• Despite the fact that programming had been a profession for almost
half a century, it is a shock to realize that the software industry is
still relatively young. The discipline of software engineering is still
being built. Because of the formalism and systematism of CMM, the
process-based approach is widely accepted by researchers in
software engineering and practitioners in the software industry.

• Process algebra, introduced in Chapter 3, is found useful in software
engineering process system modeling and analysis. This finding is
also helpful to explain the foundations of software engineering and
software engineering processes.

• CMM has developed a straightforward and stepwise software
engineering process assessment and improvement methodology. It is
relatively easy in application and has intensive adoption in the
software industry worldwide.

• A CMM algorithm has been elicited in order to precisely and
systematically interpret the CMM methodology, and to quantitatively
compare the complexity of the CMM method with others.

• The 1-D process model, like CMM, has inherited limitations in
theory and applications. There were structural arguments about
whether CMM provided a process dimension or a capability
dimension in process system modeling. There were also logical
arguments about whether we would recommend only a subset of a
whole process system for an organization if all processes were
considered essential for producing quality software.

This chapter has established a basis for understanding and analyzing CMM as
a paradigm of the unified software engineering process system framework.
Relationships of CMM with other process system models will be discussed in
Part III of this book. Applications of CMM in process-based software
engineering and case studies will be provided in Parts IV – VI.

Chapter 5 The CMM Model 155

Annotated References

CMM (V.1.1) was developed by Paulk and his colleagues (1993a) with the
supplement of a set of detailed key practices in Paulk et al. (1993b), and a
questionnaire in Zubrow et al. (1994). Paulk et al. (1993c) describes the
CMM V.1.1 and its features as more consistent in wording and easier to use.
A summary of differences between Version 1.0 [Paulk et al. 1991] and
Version 1.1 is also presented.

For more background and related work that led to the development of
CMM, see Humphrey and his colleagues (1987/88/89). As described by
Paulk et al. (1993c), the framework of CMM for software process was
inspired by the principles of product quality in management science espoused
by Walter Shewhart (1939), W. Edwards Deming (1982a/b/86), Joseph Juran
(1962/80/88/89), and Philip Crosby (1979).

Applications and case studies of CMM were reported in Humphrey et al.
(1991b), Kitson and Masters (1992), and Saiedian and Kuzara (1995). There
are annual Software Engineering Process Group Conferences (SEPG) and
annual conferences on Software Technology and Engineering Practice
(STEP) sponsored by SEI.

For looking at relationships of CMM with other process models, see
Paulk et al. (1994/95b), Kitson (1996), Wang et al. (1997a/b/99e), and IEEE
Software Process Newsletter, No.4, Fall (1997).

Some critics of CMM may be referred to Bollinger and McGowan
(1991), Brodman and Johnson (1994), and Fayad and Laitinen (1997a/b).
Readers may also be interested in reading the counterpoint comments on
Bollinger and McGowan’s article by Humphrey and Curtis (1991a).

Questions and Problems

5.1 Explain the design philosophy behind the development of CMM.

5.2 Using your own words, briefly describe the structure of the CMM
process model and its taxonomy.

156 Part II Software Engineering Process System Modeling

5.3 Use process algebra to derive a formal CMM process model
based on the process diagrams given in Figures 5.1 – 5.5. (Try not
to copy Expressions 5.2 – 5.7 before you finish.)

5.4 Briefly describe the CMM process capability model and capability
determination methodology using your own words.

5.5 Can you repeat the sample CMM assessment based on the data
provided in Appendix C and derive the same capability level as that of
the example shown in Section 5.5?

5.6 Try to conduct a CMM exercise assessment for a software project or
organization with which you are familiar, according to the formal
approach presented in this chapter.

5.7 Consider what the CMM capability level is if an organization has
achieved all Level 5 and Level 4 processes (KPAs) but has a lack of
Level 2 practices?

5.8 Are there any significant differences between an organization that is
newly established and operating in ad hoc ways (at CMM Level 1) and
an organization as described in Ex.5.7? What are the differences in their
derived capability levels according to CMM methodology?

5.9 Most of the established software development organizations are
currently considered to be located between CMM Level 2 and Level 3.
Observing the CMM process model, do you think those organizations
could produce reasonably good software? Why?

5.10 Try to organize a small software project with at least three persons.
Then do a self-assessment for this project and report your capability
level in CMM.

5.11 Try to write a CMM assessment report for Exs. 5.6 or 5.10 and describe
the following:

• Purpose(s) of the CMM assessment
• The CMM model and methodology you adopted
• The input of the CMM assessment
• The procedure of the CMM assessment
• The output of the CMM assessment
• The effort you spend for the CMM assessment

 • Experience you gained in the CMM assessment
 • Conclusions

Chapter 5 The CMM Model 157

5.12 Try to write a CMM process improvement plan based on the assessment
report developed in Ex.5.11. In the process improvement plan,
describe the following:

• Purpose(s) of the CMM process improvement plan
• Brief introduction of the CMM assessment results
• Analyze the strengths of the organization’s process capability

according to CMM
• Analyze the weaknesses of the organization’s process capability

according to CMM
• Recommend a process improvement plan to address the process

weaknesses or for moving to a higher CMM capability level
• Explain what is the benefit of implementing this process

improvement plan and how well your plan will meet the
organization’s business goal

 • Estimate the costs of this process improvement effort
 • Predict the risks for executing the process improvement plan that

you have suggested
 • Conclusions

5.13 What is the usage of CMM in software engineering process
establishment, assessment, and improvement?

This page intentionally left blankThis page intentionally left blank

159

Chapter 6

THE ISO 9001 MODEL

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

5.
The CMM
Model

6.1 Introduction 6.5 A sample ISO 9001 assessment
6.2 The ISO 9001 process model 6.6 Applications of ISO 9001
6.3 The ISO 9001 process assessment model 6.7 Summary
6.4 The ISO 9001 algorithm Annotated references

6.
The ISO 9001
Model

7.
The BOOTSTRAP
Model

9.
The SEPRM
Model

8.
The ISO/IEC TR
15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

160 Part II Software Engineering Process System Modeling

ISO 9001, a part of the ISO 9000 series of international standards for quality
system management, is widely accepted for software engineering process
system assessment and improvement. This chapter describes the ISO 9001
methodology by interpreting its process model, process capability model, and
process capability determination methodology.

This chapter adopts a formal and algorithmic approach to describe ISO
9001. An ISO 9001 algorithm will be elicited and a sample assessment will
be provided in order to demonstrate how an ISO 9001-based process
assessment is carried out in practice. The usability of ISO 9001 is discussed
on the basis of empirical experience in the software industry and research
reports in the literature.

The objectives of this chapter are as follows:

• To review the history and background of ISO 9001 development

• To describe the ISO 9001 process model and taxonomy

• To describe the ISO 9001 capability model and capability
determination methodology

• To formally describe the ISO 9001 process model, and to
algorithmically describe the ISO 9001 process capability
determination method

• To develop an ISO 9001 algorithm for software process assessment

• To explain how the ISO 9001 algorithm can be used in process
assessment and how its algorithm complexity is estimated

• To demonstrate a case study of a practical ISO 9001 assessment by
using the ISO 9001 algorithm

• To discuss the usability of ISO 9001 in process establishment,
assessment, and improvement in software engineering

6.1 Introduction

In Chapter 5 we reviewed the background of CMM development by using
the thread of the software project contractor’s management requirements for
a software development organization. In this chapter we will explore the

Chapter 6 The ISO 9001 Model 161

background of ISO 9000 in general, and ISO 9001 in particular, with a
thread of quality system principles.

Generic quality system principles in management science were
considered to benefit from the contributions of Walter Shewhart (1939),
Joseph Juran (1962/80/88/89), Philip Crosby (1979), W. Edwards Deming
(1982a/b/86), and others. The fundamental quality system principles are:

• Statistical quality control

• Total quality management (TQM)

• Continuous improvement

In his work Statistical Methods from the Viewpoint of Quality Control,
Shewhart (1939) established the statistical foundations of a generic quality
control system. He developed the concept of “plan-do-check-act” iteration.
The statistical quality control approach has largely influenced today’s
software process capability modeling and software metrics studies. As a
proof of this, almost all major current process models require systematic data
collection and recommend quantitative process improvement.

Deming’s work (1982a/b/86) drew the attention of researchers and
industrial practitioners to both quality and productivity. He proposed the
approach to TQM. TQM is a management philosophy for achieving quality
improvement by creating a quality culture and attitude throughout the entire
organization’s commitment and involvement. This approach has been
widely accepted in the manufacturing industry, information systems
[Buckland et al., 1991], and has been presented in the ISO 9000 standards.

Both statistical quality control and TQM have been extensively applied
in the Japanese manufacturing industry. Based on these a KAIZEN method
was developed in the 1980s in Japan (Imai, 1986; Huda and Preston, 1992).
Imai (1986) proposed the term KAIZEN as the key to Japan’s competitive
success in its manufacturing industries. KAIZEN is actually two Chinese
characters (Gai-Shan). ZEN means good, satisfactory, or perfect; KAI means
change, update, or reform. Therefore, KAI-ZEN simply means to make
better, while its internal philosophy implies gradual and continuous
improvement and/or attaining perfection. This is perhaps the most
influential philosophy that has been widely accepted as one of the important
quality principles together with those of statistical quality control and TQM.
All of these principles form the foundation of ISO 9000.

ISO 9000 [ISO 1991/93/94] is a set of international standards for quality
systems. It is designed for quality management and assurance, and specifies
the basic requirements for the development, production, installation, and
servicing at system level and product level. ISO 9000 provides a

162 Part II Software Engineering Process System Modeling

management organization approach, a product management system, and a
development management system based on quality system principles. ISO
9000 was first published in 1987 and revised in 1994.

Within the ISO 9000 suite, ISO 9001 [ISO 1989/94] and ISO 9000-3
[ISO, 1991] are applicable to the software process and quality systems for a
software development organization. ISO 9001 aims to set minimum
requirements for a general quality management system. The ISO 9001
model is generic, simple, and it has been accepted and supported worldwide.
According to recent surveys [Wang et al., 1998a; Mobil Europe, 1995] the
ISO 9001 model is still the most popular process system model in the
software industry.

This chapter provides a formal description of ISO 9001 in accordance
with the unified process system framework developed in Part I. A framework
and taxonomy of the ISO 9001 process model are introduced in Section 6.2.
The ISO 9001 capability model and process capability determination method
are described in Section 6.3. Based on this, an ISO 9001 process assessment
algorithm is elicited and an example of ISO 9001 assessment is provided in
Sections 6.4 and 6.5, respectively. Finally, the usability of ISO 9001 is
discussed in Section 6.6.

6.2 The ISO 9001 Process Model

This section describes the ISO 9001 process taxonomy and framework. The
terms and process structure of ISO 9001 are introduced using the original
form of expression, and are contrasted with the unified software process
system framework developed in Part I.

6.2.1 TAXONOMY OF THE ISO 9001 PROCESS
MODEL

Referring to the generic process taxonomy defined in Chapter 2, the ISO
9001 process hierarchy and domains are listed in Table 6.1.

Chapter 6 The ISO 9001 Model 163

Table 6.1
Process Hierarchy and Domains of the ISO 9001 Process Model

Taxonomy Subsystem Category Process Practice

Process level Subsystems
(SSs)

- Main topic areas
(MTAs)

Management issues
(MIs)

Size of domain 3 - 20 177

Identification SS[i] - MTA[i,k] MI[i,k,j]

Table 6.1 defines the configuration of the ISO 9001 model. As shown in
Table 6.1, the MIs and MTAs used in ISO 9001 are equivalent to the
practices and processes, respectively, as defined in the unified process
system framework.

In order to provide a formal identification for each entity defined at
various levels of coverage known as process scopes, the indexing of SS,
MTA, and MI are described using a naming convention as shown in Table
6.1. In the table, i is the number of SS; k, the number of MTA in ith SS; and
j, the number of MI in kth MTA and ith SS.

6.2.2 FRAMEWORK OF THE ISO 9001 PROCESS
MODEL

ISO 9001 models a software process system in 3 process subsystems, 20
main topic areas, and 177 management issues [ISO, 1994; Jenner, 1995]. A
hierarchical structure of the ISO 9001 framework is shown in Table 6.2.

Table 6.2
The ISO 9001 Process Model

ID. Subsystem
(SSi)

Main Topic Area
(MTA[i,k])

Identified MIs
(NMI[i,k])

SS1 Organization
Management

53

MTA1.1 Management responsibility 15

MTA1.2 Quality system 7

MTA1.3 Document and data control 8

MTA1.4 Internal quality audits 6

MTA1.5 Corrective and preventive action 6

MTA1.6 Quality system records 7

MTA1.7 Training 4

SS2 Product
Management

 31

MTA2.1 Product management 4

164 Part II Software Engineering Process System Modeling

MTA2.2 Control of customer-supplied product 4

MTA2.3 Purchasing 8

MTA2.4 Handling, storage, packaging, preservation,
and delivery

 9

MTA2.5 Control of nonconforming product 6

SS3 Development
Management

93

MTA3.1 Contract reviews 9

MTA3.2 Process control 23

MTA3.3 Design and development control 30

MTA3.4 Inspection and testing 11

MTA3.5 Inspection and test status 2

MTA3.6 Control of inspection, measuring, and test
equipment

12

MTA3.7 Statistical techniques 2

MTA3.8 Servicing and software maintenance 4

Total 3 20 177

In Table 6.2 the number of defined MIs for each MTA is provided. The
definitions of the MIs are listed in Appendix C where, in the column of ISO
9001, a jth MI of MTA k in process subsystem i, MI[i,k,j], is represented by:

 MI[i,k,j] = MIi.k.j

 = BPAi’.k’.r’.j’ (6.1)

where i’, k’, r’, and j’ are the index numbers of subsystem, category,
process, and practice, respectively, as defined in the unified process system
framework and SEPRM.

For example, in Appendix C, readers can identify MI[3,2,21] as:

 MI[i,k,j] = MI[3,2,21]
= MI3.2.21

 = BPA3.1.8.1

= BPA244

= “Audit software development activities”

6.2.3 FORMAL DESCRIPTION OF THE ISO 9001
PROCESS MODEL

By using the CSP-like process algebra introduced in Chapter 3, we are able
to formally describe the ISO 9001 process model and its processes in this
subsection. The formal description is useful for providing precise and
accurate definitions of the structure and interrelationships of the ISO 9001

Chapter 6 The ISO 9001 Model 165

processes, and to avoid ambiguity inherent in conventional natural language
description.

6.2.3.1 The Structure of the ISO 9001 Process Model

A formal description of the structure of the ISO 9001 process model,
ISO9001_PM, is shown in Expression 6.2 and illustrated in Figure 6.1.
Basically, this is a parallel process model with three subsystems at the
system level.

 ISO9001_PM � SS1 // Organization management
 || SS2 // Product management
 || SS3 // Development management (6.2)

The ISO 9001
Process Model

SS1

Organization
Management

SS2

Product
Management

SS3

Development
Management

Figure 6.1 The ISO 9001 process model

In the ISO 9001 process model, each process subsystem can be extended to a
number of parallel processes (MTAs) as shown in Expression 6.3. Further,
each MTA can be extended to a number of MIs in a similar way.

166 Part II Software Engineering Process System Modeling

 SS1 � MTA1.1 || MTA1.2 ||MTA1.3 || MTA1.4 || MTA1.5 || MTA1.6 || MTA1.7

 SS2 � MTA2.1 || MTA2.2 || MTA2.3 || MTA2.4 || MTA2.5

 SS3 � MTA3.1 || MTA3.2 ||MTA3.3 || MTA3.4 || MTA3.5

 || MTA3.6 || MTA3.7 || MTA3.8 (6.3)

6.2.3.2 Definitions of the ISO 9001 Processes

The ISO 9001 processes, known as MTAs, in each process subsystem can be
formally defined by Expressions 6.4 – 6.6 and are illustrated in
Figures 6.2 – 6.4.

 SS1 � MTA1.1 // Management responsibility

|| MTA1.2 // Quality system

|| MTA1.3 // Document and data control

|| MTA1.4 // Internal quality audits

|| MTA1.5 // Corrective and preventive action

|| MTA1.6 // Quality system records

|| MTA1.7 // Training (6.4)

A process diagram corresponding to the seven processes of ISO 9001
subsystem SS1, as defined in Expression 6.4, is shown in Figure 6.2.

A process diagram corresponding to the five processes of ISO 9001
subsystem SS2, as defined in Expression 6.5, is shown in Figure 6.3.

SS2 � MTA2.1 // Product management

|| MTA2.2 // Control of customer-supplied product

|| MTA2.3 // Purchasing

|| MTA2.4 // Handling, storage, packaging,

 // preservation, and delivery

|| MTA2.5 // Control of nonconforming product (6.5)

Chapter 6 The ISO 9001 Model 167

ISO 9001 SS1

Organization Management

MTA1.1

Management
responsibility

MTA1.2

Quality
system

MTA1.3

Document and
Data control

MTA1.6

Quality system
records

MTA1.5

Corrective and
Preventive action

MTA1.4

Internal quality
audits

MTA1.7

Training

Figure 6.2 ISO 9001 Subsystem 1 processes – the organization
management MTAs

168 Part II Software Engineering Process System Modeling

ISO 9001 SS2

Product Management

MTA2.1

Product
management

MTA2.2

Control of customer-
supplied product

MTA2.3

Purchasing

MTA2.5

Control of non-
conforming product

MTA2.4

Handling, …,
and delivery

Figure 6.3 ISO 9001 Subsystem 2 processes – the product management
MTAs

A process diagram corresponding to the eight processes of ISO 9001
subsystem SS3 , as defined in Expression 6.6, is shown in Figure 6.4.

 SS3 � MTA3.1 // Contract review

|| MTA3.2 // Process control

|| MTA3.3 // Design and development control

|| MTA3.4 // Inspection and testing

|| MTA3.5 // Inspection and test status

|| MTA3.6 // Control of inspection, measuring, and

 // test equipment

|| MTA3.7 // Statistical techniques

|| MTA3.8 // Servicing and software maintenance (6.6)

Chapter 6 The ISO 9001 Model 169

ISO 9001 SS3

Development Management

MTA3.1

Contract
review

MTA3.2

Process
control

MTA3.3

Design and deve-
lopment control

MTA3.6

Control of
inspection, …

MTA3.5

Inspection and
test status

MTA3.4

Inspection and
testing

MTA3.7

Statistical
techniques

MTA3.8

Servicing and s/w
maintenance

Figure 6.4 ISO 9001 Subsystem 3 processes – the development
management MTAs

Detailed practices of each MTA at the MI level, which are documented in
Appendix C, can be described in the same way as above. Extending of the
formal ISO 9001 process model onto the MI level can be taken as an
exercise for readers.

170 Part II Software Engineering Process System Modeling

6.3 The ISO 9001 Process Assessment
 Model

The ISO 9001 process model was systematically introduced in Section 6.2.
This section explores the ISO 9001 process capability model and process
capability determination method. Both of the above form the ISO 9001
process assessment model.

6.3.1 THE ISO 9001 PROCESS CAPABILITY MODEL

In this section we intend to interpret the ISO 9001 model and methodology
in accordance with the unified process system framework. We will elicit the
ISO 9001 process capability model, which includes a practice performance
scale, a process capability scale, and a process capability scope definition.

6.3.1.1 Practice Performance Scale

A practice performance rating scale for the MIs in ISO 9001 is defined in
Table 6.3. It employs a kind of yes/no checklist for the MIs’ existence and
performance. The rating thresholds provide a set of quantitative
measurements for rating a MI’s performance with the scale.

Table 6.3
Practice Performance Scale of the MIs

Scale Description Rating threshold

1 (Y) Satisfied -

0 (N) Not-satisfied -

ISO 9001 requires that all 177 MIs have to be checked, without any option
or tailorability. There is no rating threshold specified in the ISO 9001
model, so the assessors have room to determine if an MI has satisfied the
requirements for ISO 9001 based on their experience and judgment.

6.3.1.2 Process Capability Scale

Using the practice performance scale of MIs defined in Section 6.3.1.1, an
ISO 9001 process capability scale is described in Table 6.4. For each

Chapter 6 The ISO 9001 Model 171

MTA[i,k], the number of identified MIs (NMI[i,k]) and the required number
of MIs for satisfying an assessment (PMI[i,k]) are listed respectively.

Table 6.4
The ISO 9001 Process Capability Scale

ID. Subsystem
(SS[i])

Main Topic Area
(MTA[i,k])

Identified
MIs

(NMI[i,k])

Pass
Threshold
(PMI[i,k])

SS[1] Organization
Management

53 53

MTA1.1 Management responsibility 15 15

MTA1.2 Quality system 7 7

MTA1.3 Document and data control 8 8

MTA1.4 Internal quality audits 6 6

MTA1.5 Corrective and preventive action 6 6

MTA1.6 Quality system records 7 7

MTA1.7 Training 4 4

SS[2] Product
Management

 31 31

MTA2.1 Product management 4 4

MTA2.2 Control of customer-supplied product 4 4

MTA2.3 Purchasing 8 8

MTA2.4 Handling, storage, packaging,
preservation, and delivery

 9 9

MTA2.5 Control of nonconforming product 6 6

SS[3] Development
Management

93 93

MTA3.1 Contract reviews 9 9

MTA3.2 Process control 23 23

MTA3.3 Design and development control 30 30

MTA3.4 Inspection and testing 11 11

MTA3.5 Inspection and test status 2 2

MTA3.6 Control of inspection, measuring, and
test equipment

12 12

MTA3.7 Statistical techniques 2 2

MTA3.8 Servicing and software maintenance 4 4

Total 3 20 177 177

Observing Table 6.4, it may be found that the condition of an MTA’s
satisfaction at process level is that all MIs contained in it have to be
satisfied. Therefore, the capability rating scale of ISO 9001 is relatively
straightforward. It is a go/no-go checklist assessment based on the
philosophy of providing an essential (minimum) set of requirements for
quality management systems.

172 Part II Software Engineering Process System Modeling

6.3.1.3 Process Capability Scope

The ISO 9001 process capability scopes are shown in Table 6.5. Comparing
Table 6.5 with Table 2.3 in Chapter 2, it is clear that ISO 9001 assesses
process capability at the levels of MI, MTA, and organization scope from the
bottom, up.

Table 6.5
Process Capability Scope of ISO 9001

Capability Scope Practice Process Project Organization

ISO 9001 terms MIs MTAs - Organization

ISO 9001 methods Fulfillment check Fulfillment check - Pass/Fail

6.3.2 THE ISO 9001 PROCESS CAPABILITY
DETERMINATION METHODOLOGY

Using the formal definitions of the ISO 9001 process model and process
capability model developed in Sections 6.2 and 6.3.1, we can now consider
how to apply the ISO 9001 capability model to the process model for the
assessment of process capability at practice, process, and organization levels.

6.3.2.1 Practice Performance Rating Method

Let rMI[i,k,j] be a rating of performance of the jth MI in the kth process
(MTA[i,k]) and ith process subsystem (SS[i]). Then rMI[i,k,j] can be rated
according to the practice performance scale as defined in Table 6.3, i.e.:

 r MI[i,k,j] = 1 if the MI exists and its performance is satisfied

 = 0 otherwise (6.7)

6.3.2.2 Process Capability Rating Method

The number of satisfied MIs in a process subsystem (SS[i]), SATMI[i], is
assessed according to the following expression:

 SATMI[i] = # { MI[i,j] | Passed }, i = 1, 2, 3

= # { MI[i,j] | rMI[i,j] =1}

=
j

N MIi

=
∑

1

{ 1 | rMI[i,j] =1} (6.8)

Chapter 6 The ISO 9001 Model 173

where rMI[i,j] is a rating value of the jth MI’s performance in SS[i] process
subsystem based on the definition in Table 6.3, and NMIi is the number of
identified MIs in the process subsystem.

As described in Section 6.3.2.1, the pass threshold, PMI[i,j], for a
process subsystem SS[i] in ISO 9001 is defined as:

PMI[i,j] = NMI[I,j] (6.9)

This means that every MI defined in an MTA and an SS should fulfill the
requirements of process capability at the MTA and SS levels, i.e.:

 SATMI[i,j] = PMI[i,j]

 = NM[i,j] (6.10)

The pass thresholds for each MTA and SS have been defined in Table 6.4
for reference.

6.3.2.3 Organization Capability Determination Method

As shown in Table 6.5, ISO 9001 has not defined a capability scope at
project level. An ISO 9001 process capability level for a software
development organization, PCLorg, can be determined by:

 PCLorg = pass, if SATMI = PMI

 = fail, otherwise (6.11)

where SATMI is the total number of satisfied MIs in an ISO 9001 assessment,
and PMI is the total pass threshold for the assessed MIs defined in ISO 9001
(PMI = 177).

6.4 The ISO 9001 Algorithm

So far, we have explored the ISO 9001 process model, process capability
model, and capability determination method. Using the models and method
we are already able to manually assess and calculate a software
organization’s process capability in ISO 9001.

In order to describe the ISO 9001 methodology precisely, and to enable
mutual comparison and tool implementation, this section extends the ISO

174 Part II Software Engineering Process System Modeling

9001 process capability determination methodology into a formal ISO 9001
algorithm.

6.4.1 DESCRIPTION OF THE ISO 9001 ALGORITHM

The ISO 9001 capability determination method as defined in Expressions
6.7 – 6.11 can be formally described in the following algorithm.

Algorithm 6.1 The ISO 9001 process capability determination algorithm

Assume: NMI - Total number of MIs defined in ISO 9001
 SATMI - Number of satisfied MIs in assessment
 MI[i,k,j] - The ith MI in MTA[i,k] of SS[i]

 NMI[i,k] - Number of defined MIs in MTA[i,k] of SS[i]
 NMI[i] - Number of defined MIs in SS[i]

 PCLorg - Process capability level of an organization
Input: Sample indicators of processes’ existence and performance
Output: PCLorg

Begin

 // Step 1: Initialization

 NMI[1]:= 3; //Assign numbers of defined MTAs in each subsystem (SS)
 NMI[2] := 5;
 NMI[3] := 8;

 NMI[1,1]:=15; //Assign numbers of defined MIs in each process (MTA)
 NMI[1,2] := 7;
 NMI[1,3] := 8;
 NMI[1,4] := 6;
 NMI[1,5] := 6;
 NMI[1,6] := 7;
 NMI[1,7] := 4;

 NMI[2,1] := 4;
 NMI[2,2] := 4;
 NMI[2,3] := 8;
 NMI[2,4] := 9;
 NMI[2,5] := 6;

 NMI[3,1] := 9;

Chapter 6 The ISO 9001 Model 175

 NMI[3,2] := 23;
 NMI[3,3] := 30;
 NMI[3,4] := 11;
 NMI[3,5] := 2;
 NMI[3,6] := 12;
 NMI[3,7] := 2;
 NMI[3,8] := 4;

 // Step 2: MI performance rating

 NMI :=177;
 for i:=1 to 3 do // Check 3 process subsystems
 for k:= 1 to NMI[i] do // Check all MTAs in a subsystem
 for j:= 1 to NMI[i,k] do // Check all MIs in an MTA
 begin
 // evaluate MI[i,k,j] according to the rating scale
 // defined in Table 6.3
 if MI[i,k,j]=1
 then // It is satisfied
 SATMI := SATMI + 1 // increase number of
 // satisfied MIs
 // else, it is not satisfied, skip
 end;

 // Step 2: Process capability determination

 if SATMI = NMI // According to Expression 6.11
 then // The ISO 9001 assessment passed
 PCLorg := ‘passed’;
 else // The ISO 9001 assessment failed
 PCLorg := ‘failed’;

End Í

6.4.2 EXPLANATION OF THE ISO 9001 ALGORITHM

An ISO 9001 assessment according to Algorithm 6.1 is carried out in three
steps:

• Step 1: Initialization

• Step 2: MI performance rating

 • Step 3: Process capability determination

176 Part II Software Engineering Process System Modeling

This subsection explains the main functions of Algorithm 6.1 for an ISO
9001 process assessment.

6.4.2.1 Initialization

This step is designed to specify the numbers of MIs defined in ISO 9001. For
obtaining a detailed configuration of MIs in the ISO 9001 process model,
readers may refer to Table 6.2 and Appendix C.

6.4.2.2 MI Performance Rating

In this step, all MIs for each MTA and then for each SS are rated according
to Expressions 6.7 and 6.8 using the definitions of practice performance
scale listed in Table 6.3.

The rating methods for all MIs at MTA level and SS level are identical
as shown in the algorithm Step 2, except that for each MTA and SS the
numbers of MIs, NMI[i,k] and NMI[i], are different as initialized in Step 1.
The basic function for MI rating in the kernel of the iteration in Step 2 is to
count the number of satisfied MIs by increasing SATMI by one if the
examined MI is rated as 1 according to the rating scale in Table 6.3.

It is suggested that each MI for all MTAs and SSs should be rated, even
when there is an early indication that a software organization would fail an
assessment.

6.4.2.3 Organization Process Capability Determination

This step derives the maximum aggregated process capability level for an
assessed software organization based on the MI ratings obtained in Step 2.
The capability level of an organization is determined by Expression 6.11.
This means that a software development organization should satisfy all 177
required MIs before it can pass an ISO 9001 assessment.

6.4.3 ANALYSIS OF THE ISO 9001 ALGORITHM

The effort expended in conducting an ISO 9001 assessment depends on its
algorithm complexity. By examining the complexity of an algorithm, the
time spent in an ISO 9001 assessment can be estimated quite accurately.

Reviewing the ISO 9001 algorithm in Subsection 6.4.1, it may be
observed that the algorithm complexity of ISO 9001, c(ISO9001), is mainly
determined by the number of MIs, NMI, that need to be rated individually in
an ISO 9001 assessment according to Algorithm 6.1, Step 2, i.e.:

Chapter 6 The ISO 9001 Model 177

 c(ISO9001) = O(NMI)

 = NMI (6.12)

where the unit of the algorithm complexity is “times of MI ratings,” or of
practice ratings.

As given in ISO 9001, NMI = 177. Thus the total rating cost, or the
algorithm complexity, for determining a capability level for the project scope
in ISO 9001 is:

 c(ISO9001)= O(NMI)

 = NMI

= 177 [times of MI ratings]

There is a certain range of rates between the algorithm complexity and the
person-days needed for an assessment. Empirical data for relating the
algorithm complexity to person-days expended in an ISO 9001 process
assessment will be discussed in Chapter 12.

6.5 A Sample ISO 9001 Assessment

The capability rating framework and the capability determination algorithm
of ISO 9001 were formally described in Sections 6.3 and 6.4. This section
demonstrates how to apply the ISO 9001 expressions and algorithm to
quantitatively determine a sample software development organization’s
process capability level in ISO 9001.

6.5.1 MI PERFORMANCE RATING IN ISO 9001

A set of detailed ratings of the 177 MIs have been listed in Appendix C,
where the raw data rating {4,3,2,1} corresponds to the ISO 9001 MI rating
scale {Y(1), Y(1), N(0), N(0)}. By referring to Table 6.3, a mapping
between the rating scales of the raw data and the ISO 9001 MI is defined in
Table 6.6.

178 Part II Software Engineering Process System Modeling

Table 6.6
Mapping between Raw Data in Assessment onto

the ISO 9001 Rating Scale

Raw Data Rating Scale
(in Appendix C)

ISO 9001 MI
Rating Scale

Description in
ISO 9001

4 1 Yes

3 1 Yes

2 0 No

1 0 No

Processing the raw data of the MIs’ performance ratings according to Table
6.6 and then applying Expression 6.7 allows the number of satisfied MIs in
the 20 MTAs, SATMI[i,k], to be derived by:

 SATMI[i,k] = # {MI[i,k,j] | Passed }

 = # {MI[i,k,j] | rMI[i,k,j] = 1}

 =
j

N MIi

=
∑

1

{ 1 | rMI[i,k,j] = 1}

For example, MTA1.1, management responsibility, has 15 MIs rated:

 MTA1.1 = {MI1.1.1, MI1.1.2, …, MI1.1.15}
 = {4,4, …, 4},

respectively in Appendix C.

Mapping the raw data onto the ISO 9001 scale according to Table 6.6, the
MI ratings are as follows:

 MTA[1,1] = {Y, Y, …,Y}
 = {1,1, …, 1}

Thus, according to Expression 6.7, the number of satisfied MIs for
MTA[1,1] is:

 SATMI[1,1] = # { MI1.1.1, MI1.1.2, …, MI1.1.15}
 = 15

A summary of the 20 MTA capability ratings in ISO 9001 is listed in
Table 6.7.

Chapter 6 The ISO 9001 Model 179

Table 6.7
Summary Assessment Record in ISO 9001

No. Subsystem
(SS[i])

Main topic area
(MTA[i,k])

Pass
Threshold

(PMI[i,k] =
 NMI[i,k])

Assessment
Result

(SATMI[i,k])

SS1 Organization
Management

53 53

MTA1.1 Management responsibility 15 15

MTA1.2 Quality system 7 7

MTA1.3 Document and data control 8 8

MTA1.4 Internal quality audits 6 6

MTA1.5 Corrective and preventive action 6 6

MTA1.6 Quality system records 7 7

MTA1.7 Training 4 4

SS2 Product
Management

 31 31

MTA2.1 Product management 4 4

MTA2.2 Control of customer-supplied product 4 4

MTA2.3 Purchasing 8 8

MTA2.4 Handling, storage, packaging,
preservation, and delivery

 9 9

MTA2.5 Control of nonconforming product 6 6

SS3 Development
Management

93 93

MTA3.1 Contract reviews 9 9

MTA3.2 Process control 23 23

MTA3.3 Design and development control 30 30

MTA3.4 Inspection and testing 11 11

MTA3.5 Inspection and test status 2 2

MTA3.6 Control of inspection, measuring, and
test equipment

12 12

MTA3.7 Statistical techniques 2 2

MTA3.8 Servicing and software maintenance 4 4

Total 3 20 177 177

6.5.2 PROCESS CAPABILITY DETERMINATION IN
ISO 9001

Using the assessment result listed in Table 6.7, a process capability profile of
the software development organization in ISO 9001 can be derived as shown
in Figure 6.5.

180 Part II Software Engineering Process System Modeling

0

5

10

15

20

25

30

N o. o f
M I s

1,1 1,2 1,3 1,4 1,5 1,6 1,7 2,1 2,2 2,3 2,4 2,5 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

Not satisfied

Satisfied

organization product development

 Process

Figure 6.5 Process capability profile of a software organization in ISO 9001

6.5.3 ORGANIZATION CAPABILITY
DETERMINATION IN ISO 9001

The process capability level of an organization, PCLorg , in ISO 9001 has
been defined as complete fulfillment of the requirements of the 177 MIs as
shown in Expression 6.11:

PCLorg = pass, if SATMI = PMI

 = fail, otherwise

Analyzing the rating record in Table 6.7, it can be seen that all of the 177
MIs have satisfied the requirements for an ISO 9001 assessment. Therefore,
based on Expression 6.11, the assessment result is:

 PCLorg = pass, since SATMI = PMI = 177

The sample software development organization has passed the assessment of
the ISO 9001 requirements.

6.6 Applications of ISO 9001

In the previous sections we explored the ISO 9001 theory and methodology
for process system modeling and assessment. This section analyzes the

Chapter 6 The ISO 9001 Model 181

usability of ISO 9001 in software engineering process system establishment,
assessment, and improvement. In order to present both sides of the coin, the
limitations of ISO 9001 in some aspects of software engineering
applications are discussed using the body of empirical and theoretical studies
on ISO 9001.

6.6.1 ISO 9001 FOR SOFTWARE PROCESS SYSTEM
ESTABLISHMENT

ISO 9001 is a one-dimensional, checklist-based process assessment method
used for the first-, second-, third-party, and authorized assessment of a
software engineering process system in a software development
organization.

The ISO 9000 framework was not originally designed for the software
engineering environment. ISO 9001 is a modification and enhancement of
an ISO 9000 model biased toward a software development organization.
ISO 9001 treats software development processes in the same as any mass
manufacturing system. However, as analyzed in Chapter 1, software
development is a creative and design-intensive process rather than a
repetitive manufacturing process. Thus, awareness of this limitation of ISO
9001 is helpful in ISO 9001-based process system establishment.

The capability rating scale in ISO 9001 is quite straightforward. It is a
go/no-go assessment based on the philosophy of providing an essential
(minimum) set of requirements for quality systems. Because ISO 9001 is the
lightest weight process model among the current process models presented
in this part of the book, it would be suitable for an organization initiating a
software engineering process system from scratch. For a much more mature
software development organization, it is recommended that a staged process
model be chosen, and that there be an adoption of a continuous process
improvement strategy in a long-term plan.

6.6.2 ISO 9001 FOR SOFTWARE PROCESS
SYSTEM ASSESSMENT

For software process assessment, ISO 9001 provides the weakest process
maturity requirements among all major process models, because it is
designed as a minimum requirement checklist.

The ISO 9001 capability determination methodology for a software
organization’s quality system is a set of essential check points. All the 177
sample points should be satisfied for readiness for an ISO 9001 registration.

182 Part II Software Engineering Process System Modeling

However, it is a minimum set of requirements and lacks a step-by-step
capability determination system. All software development organizations
above the threshold hold the same certification. Therefore, maturity
differences may be lost among the ISO 9001 registered software
development organizations. This might well affect the motivation of an
organization in pursuing continuous process improvement as analyzed in the
following subsection.

6.6.3 ISO 9001 FOR SOFTWARE PROCESS SYSTEM
IMPROVEMENT

It may be understood via Algorithm 6.1 that the ISO 9001 methodology is
suitable for basic process assessment. It is not suitable for process
improvement because it lacks a process system that supports staged
capability determination and improvement, and the important concept of
continuous process improvement is not effectively reflected in the ISO 9001
approach.

6.7 Summary

This chapter introduced a formal and rigorous approach into the description
of ISO 9001. CSP-like process algebra has been adopted for presenting the
ISO 9001 process model, and mathematical and algorithmic methods have
been applied for presenting the ISO 9001 process capability determination
methodology. Using these formal techniques, ISO 9001 has been
systematically described and analyzed by contrasting it with the unified
process system framework developed in Part I. An empirical case study has
been provided for demonstrating the method and approach in conducting an
ISO 9001 assessment.

The basic knowledge structure of this chapter is as follows:

Chapter 6. The ISO 9001 Model

• General
 − Purposes of this chapter

 − To review the history and background of ISO 9001

Chapter 6 The ISO 9001 Model 183

 development

 − To describe the ISO 9001 process model and taxonomy

 − To describe the ISO 9001 capability model and capability
 determination methodology

 − To formally describe the ISO 9001 process model, and to
 algorithmically describe the ISO 9001 process capability
 determination method

 − To develop an ISO 9001 algorithm for software process
 assessment

 − To explain how the ISO 9001 algorithm can be used in
 process assessment and how its algorithm complexity is
 estimated

 − To demonstrate a case study of a practical ISO 9001
 assessment by using the ISO 9001 algorithm

 − To discuss the usability of ISO 9001 in process
 establishment, assessment, and improvement in software
 engineering

 − ISO 9001 philosophy and background
 − Quality system principles
 − Statistical quality control
 − TQM
 − Continuous improvement
 − Orientation to quality system management for a software
 development organization
 − Difference between software engineering and
 conventional mass manufacturing industry

 • The ISO 9001 process model
− Taxonomy of the ISO 9001 process model

 − Process scopes
 − Size of domain of each scope

 − Framework of the ISO 9001 process model
 − Structure of the ISO 9001 process model
 − Definitions of MTAs in ISO 9001

 − Formal description of ISO 9001 process model

184 Part II Software Engineering Process System Modeling

− ISO 9001 abstract process patterns
− ISO 9001 process diagrams
− Interpretation and illustration of the process algebra
 expressions

• The ISO 9001 process assessment model
− The ISO 9001 process capability model

− Configuration
 − 3 process subsystems (SSs)
 − 20 processes (MTAs)
 − 177 practices (MIs)
− MI rating scale
− Process rating scale

− The ISO 9001 process capability determination method
 − Formal description of ISO 9001 capability determination
 methodology
 − Meanings of expressions and their operation

 − Common features with the methodology developed in the
 unified process framework in Part I
 − Differences from the methodology developed in the
 unified process framework in Part I

• The ISO 9001 algorithm
− Algorithm 6.1: ISO 9001 process assessment
− Explanation of Algorithm 6.1
− Relation between Algorithm 6.1 and the capability

 determination expressions in Section 6.3.2
− The ISO 9001 algorithm complexity and the main factors that
 affect it

• A sample ISO 9001 process assessment
− Understand assessment data documented in Appendix C

 − Manual process assessment in ISO 9001
 − Algorithm-based assessment in ISO 9001

− Interpretation of assessment results

• Usability of ISO 9001
− Merits and demerits in process system establishment

 − Merits and demerits in process system assessment
 − Merits and demerits in process system improvement

Chapter 6 The ISO 9001 Model 185

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• The design philosophy behind ISO 9001 is a generic quality system
perception on software development. Although this philosophy has
been proven successful in the conventional manufacturing industry,
there is still a need for supporting evidence of its effectiveness and
impact on the design-intensive software engineering and
nonconventional software industries.

• As discussed in Section 1.3 on the foundations of software
engineering, we are expecting further research on the common
features and differences between conventional mass manufacturing
and software development. It appears likely that software
engineering will prove to be sufficiently unique as an engineering
discipline in that it relies upon special foundations and applies a
different philosophy.

• ISO 9001 has developed a straightforward checklist-based process
methodology for a quality management system of a software
development organization. Because of its simplicity, ISO 9001 has
been widely accepted and applied in the software industry.

• An ISO 9001 algorithm has been elicited in order to precisely and
systematically interpret the ISO 9001 methodology, and to
quantitatively compare the complexity of the ISO 9001 method with
others.

• ISO 9001 is the weakest process model among the current models
for software engineering process system modeling, assessment, and
improvement. It lacks a staged process capability framework for
software engineering process assessment and improvement.

This chapter has established a basis for understanding and analyzing ISO
9001 as a paradigm of the unified software engineering process system
framework. Relationships of ISO 9001 with other process system models
will be discussed in Part III of this book. Applications of ISO 9001 in
process-based software engineering and case studies will be provided in
Parts IV – VI.

186 Part II Software Engineering Process System Modeling

Annotated References

A structure of the ISO 9000 standards suite is as follows:

• ISO 9000:

• ISO 9000-1 (1994): Quality Management and Quality
Assurance Standards (Part 1) - Guidelines for Selection and
Use.

• ISO 9000-2 (1994): Quality Management and Quality
Assurance Standards (Part 2) – Generic Guidelines for
Application of ISO 9001, ISO 9002, and ISO 9003.

• ISO 9000-3 (1991): Quality Management and Quality
Assurance Standards (Part 3) – Guidelines to Apply ISO
9001 for Development, Supply, and Maintenance of Software.

• ISO 9000-4 (1993): Quality Management and Quality System
(Part 4) – Guidelines for Dependability Program Management.

• ISO 9001 (1994): Quality Systems – Model for Quality Assurance in
Design, Development, Production, Installation, and Servicing.

• ISO 9002 (1994): Quality Systems – Model for Quality Assurance in
Production, Installation, and Servicing.

• ISO 9003 (1994): Quality Systems – Model for Quality Assurance in
Final Inspection and Test.

• ISO 9004:

• ISO 9004-1 (1994): Quality Management and Quality System
Elements (Part 1) – Guidelines.

• ISO 9004-2 (1991): Quality Management and Quality System
Elements (Part 2) – Guidelines for Services.

• ISO 9004-4 (1993): Quality Management and Quality System
Elements (Part 4) – Guidelines for Quality Improvement.

Chapter 6 The ISO 9001 Model 187

There are a number of derived versions of ISO 9000 standards adopted by
national or regional standardization bodies, such as: ANSI/ASQC 9001 in
the USA, EN29001 in Europe, BS/EN29001 in the UK, and AS/NZS 9001
in Australia and New Zealand. Some variation or extension of ISO 9000
standards also exist, such as IEEE 1298 (IEEE 1998) and TickIT (TickIT
1987/92).

In Jenner’s work (1995), a set of 177 management issues (MIs) was
identified in the ISO 9001 conformance checklist for assessors based on the
ISO 9001 revised version in 1994.

For further details on quality system principles such as statistical quality
control, TQM, and continuous improvement, read Shewhart (1939), Juran
(1962/80/88/89), Crosby (1979), Deming (1982a/b, 1986), Imai (1986),
Feigenbaum (1991), Feigenbaum (1991), and Buckland et al. (1991).

Wang et al. (1997a/b/99e) presented a series of comparative analyses of
relationships and mutual mappings between the major process models
including ISO 9001. According to Wang et al. (1996c), those organizations
that can pass the threshold of ISO 9001 assessment are equivalent to CMM
capability levels 2 – 3. Referring to Zubrow’s statistics (1997), this implies
that about 38% of those CMM-assessed organizations are technically at or
above the ISO 9001 requirement level.

Seddon (1997) set out 10 arguments against ISO 9000. He argued that
the command-and-control ethos that pervades the ISO 9000 way of thinking
– an inflexible compliance to a rigid set of written rules – is precisely what
most companies do not need. In its place, he showed how real quality can be
achieved by viewing the organization as a system and focusing on
continuous improvement as the best means to create higher quality products
and services.

A number of related international standards on generic quality systems
have been developed, such as ISO 8258 – Shewhart Control Charts (1991),
ISO 10011 – Guidelines for Auditing Quality Systems (1988), and ISO
10013 – Guidelines for Developing Quality Manuals (ISO 1992).

Questions and Problems

6.1 Explain the design philosophy behind the development of ISO 9001.

6.2 Using your own words, briefly describe the structure of the ISO 9001
process model and its taxonomy.

188 Part II Software Engineering Process System Modeling

6.3 Using process algebra, derive a formal ISO 9001 process model based
on the process diagrams given in Figures 6.1 – 6.4. (Try not to copy
Expressions 6.2 – 6.6 before you finish.)

6.4 Briefly describe the ISO 9001 process capability model and capability
determination methodology using your own words.

6.5 Can you repeat the sample ISO 9001 assessment based on the data
provided in Appendix C and derive the same capability level as that of
the example shown in Section 6.5?

6.6 Try to conduct an ISO 9001 exercise assessment for an organization
with which you are familiar according to the formal approach presented
in this chapter.

6.7 Consider how to distinguish the following ISO 9001 registered software
organizations’ capability levels:

(a) Organization A is ISO 9001 registered and at CMM Level 4;
(b) Organization B is at CMM Level 2.

6.8 Are there any significant differences between an organization that is
newly established based on the ISO 9001 quality system, and an
organization that is experienced in software development but has just
updated and reoriented its processes onto the ISO 9001 model? Could
both of these organizations be registered for ISO 9001?

6.9 What are the possible different impacts of implementing the ISO 9001
requirements on small- and large-sized software development
organizations?

6.10 Try to organize a small software project with at least three persons.
Then, do a self-assessment for this project and report your capability
level in ISO 9001.

6.11 Try to write an ISO 9001 assessment report for Exs. 6.6 or 6.10 and
describe the following:

• Purpose(s) of the ISO 9001 assessment
• The ISO 9001 model and methodology you adopted
• The input of the ISO 9001 assessment
• The procedure of the ISO 9001 assessment
• The output of the ISO 9001 assessment
• The effort you spend for the ISO 9001 assessment

Chapter 6 The ISO 9001 Model 189

 • Experience you gained in the ISO 9001 assessment
• Conclusions

6.12 Try to write an ISO 9001 process improvement plan based on the
assessment report developed in Ex. 6.11. In the process improvement
plan, describe the following:

• Purpose(s) of the ISO 9001 process improvement plan
• Brief introduction of the ISO 9001 assessment results
• Analyze strengths of the organization’s process capability according

to ISO 9001
• Analyze weaknesses of the organization’s process capability

according to ISO 9001
• Recommend a process improvement plan to address the process

weaknesses or to pursue continuous process improvement
• Explain the benefit of implementing this process improvement plan

and how well your plan will meet the organization’s business goal
 • Estimate the costs of this process improvement effort

 • Predict the risks for executing the process improvement plan that
 you have suggested

 • Conclusions

6.13 What is the usage of ISO 9001 in software engineering process
establishment, assessment, and improvement?

This page intentionally left blankThis page intentionally left blank

191

Chapter 7

THE BOOTSTRAP MODEL

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

5.
The CMM
Model

7.1 Introduction 7.5 A sample BOOTSTRAP assessment
7.2 The BOOTSTRAP process model 7.6 Applications of BOOTSTRAP
7.3 The BOOTSTRAP process assessment model 7.7 Summary
7.4 The BOOTSTRAP algorithm Annotated references

6.
The ISO 9001
Model

7.
The BOOTSTRAP
Model

9.
The SEPRM
Model

8.
The ISO/IEC TR
15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

192 Part II Software Engineering Process System Modeling

BOOTSTRAP is a European enhanced and adapted process methodology for
software engineering process system assessment and improvement. This
chapter describes the BOOTSTRAP model, including its process model,
process capability model, and process capability determination methodology.

This chapter adopts a formal and algorithmic approach to describe
BOOTSTRAP. A BOOTSTRAP algorithm will be elicited and a sample
assessment will be provided in order to demonstrate how a BOOTSTRAP-
based process assessment is carried out in practice. The usability of
BOOTSTRAP is discussed on the basis of empirical experience in the
software industry and research reports in the literature.

The objectives of this chapter are as follows:

• To review the history and background of BOOTSTRAP
development

• To describe the BOOTSTRAP process model and taxonomy

• To describe the BOOTSTRAP capability model and capability
determination methodology

• To formally describe the BOOTSTRAP process model and to
algorithmically describe the BOOTSTRAP process capability
determination method

• To develop a BOOTSTRAP algorithm for software process
assessment

• To explain how the BOOTSTRAP algorithm can be used in process
assessment and how its algorithm complexity is estimated

• To demonstrate a case study of a practical BOOTSTRAP assessment
by using the BOOTSTRAP algorithm

• To discuss the usability of BOOTSTRAP in process establishment,
assessment, and improvement in software engineering

7.1 Introduction

We have perceived in previous chapters that CMM and ISO 9001 presented
the contractors’ and quality managers’ view, respectively, for a software
engineering process system. The philosophy of BOOTSTRAP is to present

Chapter 7 The BOOTSTRAP Model 193

the developers’ technical view on software processes. With this view as a
main thread in this chapter, we will explore the BOOTSTRAP methodology
and usability.

BOOTSTRAP [Koch, 1993; Haase et al., 1994; and Kuvaja et al.,
1994a] was developed in a research project sponsored by the European
ESPRIT program during 1990 – 1993 [ESPRIT, 1991]. After completion
of the project, a BOOTSTRAP Institute based in Finland was founded to
maintain and apply the model. BOOTSTRAP has gained significant
recognition in the European software industry. This chapter describes
BOOTSTRAP V.2.3.

The BOOTSTRAP model has relatively great similarity to CMM. New
features developed in the BOOTSTRAP model are that: (a) a process
assessment result is represented by both a capability level and a process
profile; (b) a refined process capability scale exists with quartiles between
two levels; and (c) there is an improved practice rating scale with four
adequate measurements. BOOTSTRAP identified and addressed the
following features specific to the European software industry:

• A high degree of adaptation to international standards, such as those
of ISO 9001, ESA PSS-05-0 (ESA 1991)

• Existence of a large portion of small- and medium-sized enterprises
(SMEs), which could not afford a heavy overhead process approach

• Emphases on software process improvement via process assessment

This chapter provides a formal description of BOOTSTRAP in accordance
with the unified process system framework developed in Part I. A framework
and taxonomy of the BOOTSTRAP process model are introduced in Section
7.2. The BOOTSTRAP capability model and process capability
determination method are described in Section 7.3. Based on this, a
BOOTSTRAP process assessment algorithm is elicited and an example of
BOOTSTRAP assessment is provided in Sections 7.4 and 7.5, respectively.
Finally, the usability of BOOTSTRAP is discussed in Section 7.6.

7.2 The BOOTSTRAP Process Model

This section describes the BOOTSTRAP process taxonomy and framework.
The terms and process structure of BOOTSTRAP are introduced using the

194 Part II Software Engineering Process System Modeling

original form of expression, and are contrasted with the unified software
process system framework developed in Part I.

7.2.1 TAXONOMY OF THE BOOTSTRAP PROCESS
 MODEL

Referring to the generic process taxonomy defined in Chapter 2, the
BOOTSTRAP process hierarchy and domains are listed in Table 7.1.

Table 7.1
Process Hierarchy and Domains of the BOOTSTRAP Process Model

Taxonomy Subsystem Category Process Practice

Process scope Process areas
(PAs)

Process categories
(PCs)

Processes
(PRs)

Quality system attributes
(QSAs)

Size of domain 3 9 32 201

Identification PA[i] PC[i,k] PR[i,k,r] QSA[i,k,r,j]

Table 7.1 defines the configuration of the BOOTSTRAP model. As shown,
the QSAs, PRs, PCs, and PAs used in BOOTSTRAP are equivalent to the
practices, processes, category, and subsystem, respectively, as defined in the
unified process system framework.

In order to provide a formal identification for each entity defined at
various levels of coverage known as process scopes, the indexing of PA, PC,
PR, and QSA are described using a naming convention as shown in Table
7.1. In the table, i is the number of PA; k, the number of PC in ith PA; r, the
number of PR in kth PR and in ith PA; and j, the number of QSA in rth PR,
kth PC, and ith PA.

7.2.2 FRAMEWORK OF THE BOOTSTRAP PROCESS
 MODEL

The fundamental concept of BOOTSTRAP is a set of 201 QSAs. Based on
this premise, BOOTSTRAP claims it is an attribute-based method for
process assessment and improvement [Koch, 1993; Kuvaja et al., 1994a].
The QSAs of BOOTSTRAP are classified in two ways: functional and
measurable technology [BOOTSTRAP Institute, 1994]. According to the
functional classification, the QSAs are categorized into three process areas
known as organization, methodology, and technology. According to the
measurable classification, for process assessment, BOOTSTRAP specifies
the QSAs at different capability levels similar to those of CMM.

Chapter 7 The BOOTSTRAP Model 195

From the functional organization point of view, BOOTSTRAP models a
software process system in 3 process areas (PAs), 9 process categories (PCs),
32 processes (PRs), and 201 quality system attributes (QSAs). A hierarchical
structure of the BOOTSTRAP framework is shown in Table 7.2.

Table 7.2
The BOOTSTRAP Process Model

ID. PA PC PR Description No. of QSAs

1 PA1 Organization 21
1.1 PC1.1 Quality system 14

1.1.1 PR1.1.1 Quality system 14

1.2 PC1.2 Resource management 7

1.2.1 PR1.2.1 Resource needs and work environment 3

1.2.2 PR1.2.2 Personnel selection and training 4

2 PA2 Methodology 131
2.1 PC2.1 Process-related functions 34

2.1.1 PR2.1.1 Process description 11

2.1.2 PR2.1.2 Process measurement 6

2.1.3 PR2.1.3 Process control 17

2.2 PC2.2 Life cycle-independent functions 48

2.2.1 PR2.2.1 Project management 11

2.2.2 PR2.2.2 Quality management 11

2.2.3 PR2.2.3 Risk avoidance and management 8

2.2.4 PR2.2.4 Configuration and change management 11

2.2.5 PR2.2.5 Subcontractor management 7

2.3 PC2.3 Life cycle functions 49

2.3.1 PR2.3.1 Develop cycle model 1

2.3.2 PR2.3.2 Special purpose systems 11

2.3.3 PR2.3.3 User requirements 2

2.3.4 PR2.3.4 Software requirements 3

2.3.5 PR2.3.5 Architecture design 3

2.3.6 PR2.3.6 Detailed design and implementation 8

2.3.7 PR2.3.7 Testing 3

2.3.8 PR2.3.8 Integration 2

2.3.9 PR2.3.9 Acceptance testing and transfer 7

2.3.10 PR2.3.10 Operation and maintenance 9

3 PA3 Technology 49
3.1 PC3.1 Technology innovation 4

3.1.1 PR311 Technology innovation 4

3.2 PC3.2 Technology for life cycle-independent
functions

11

3.2.1 PR3.2.1 Communication 2

3.2.2 PR3.2.2 Project management 2

3.2.3 PR3.2.3 Quality management 4

196 Part II Software Engineering Process System Modeling

3.2.4 PR3.2.4 Configuration and change management 3

3.3 PC3.3 Technology for life cycle functions 29
3.3.1 PR3.3.1 User requirements 2

3.3.2 PR3.3.2 Software requirements 3

3.3.3 PR3.3.3 Architecture design 2

3.3.4 PR3.3.4 Detailed design and implementation 6

3.3.5 PR3.3.5 Testing 3

3.3.6 PR3.3.6 Integration 4

3.3.7 PR3.3.7 Acceptance testing and transfer 3

3.3.8 PR3.3.8 Operation and maintenance 6

3.4 PC3.4 Tool integration 5
3.4.1 PR3.4.1 Tool integration 5

Total 3 9 32 201

From Table 7.2 it may be observed that BOOTSTRAP processes are a
combination of quality system techniques and software development lifecycle
techniques. In BOOTSTRAP, the process area of technology is modeled as a
counterpart of methodology, where the methodology processes refer to the
procedures in applying the organization framework at project level while the
technology processes define the implementation of methodologies with
particular tools.

In Table 7.2, the number of defined QSAs for each process, in a process
category and a process area, is provided. The definitions of the QSAs are
listed in Appendix C where, in the column of BOOTSTRAP, a jth QSA of
process r in process category k in process area i is represented by:

QSA[i,k,r,j] = QSAi.k.r.j

= BPAi’.k’.r’.j’ (7.1)

where i’, k’, r’ and j’, are the index numbers of subsystem, category,
process, and practice, respectively, as defined in the unified process system
framework and SEPRM.

For example, in Appendix C, readers can identify QSA[2,1,3,3] as:

QSA[i,k,r,j] = QSA[2,1,3,3]
= QSA2.1.3.3

 = BPA3.1.8.1

= BPA244

= “Audit software development activities”

Chapter 7 The BOOTSTRAP Model 197

BOOTSTRAP has developed a functional framework for the QSAs as shown
in Table 7.2. It is a technical advance on CMM that moves toward
developing an independent process dimension in process system modeling.
However, BOOTSTRAP has not fully separated the dimensions of process
and its capability measurement because the capability levels, as described in
the next section, are still dependent on a configuration of the same set of
QSAs. This dependability between capability levels and a subset of practices
(QSAs) characterizes that BOOTSTRAP is still a 1-D process system model.
We will further discuss this feature in Section 7.3.

7.2.3 FORMAL DESCRIPTION OF THE BOOTSTRAP
PROCESS MODEL

By using the CSP-like process algebra introduced in Chapter 3, we are able
to formally describe the BOOTSTRAP process model and its processes in
this subsection. The formal description of the BOOTSTRAP process model
provides precise and accurate definitions of the structure and
interrelationships of the BOOTSTRAP processes, and avoids ambiguity
inherent in conventional natural language description.

7.2.3.1 The Structure of the BOOTSTRAP Process Model

A formal description of the structure of the BOOTSTRAP process model,
BOOTSTRAP-PM, is shown in Expression 7.2 and illustrated in Figure 7.1.
Basically, this is a parallel process model at the system level.

 BOOTSTRAP-PM � PA1 // Organization

 || PA2 // Methodology

 || PA3 // Technology (7.2)

In the BOOTSTRAP process model, each process area can be extended to a
number of parallel PCs as shown in Expression 7.3. Further, each PC can be
extended to a number of QSAs in a similar way.

PA1 � PC1.1 || PC1.2

PA2 � PC2.1 || PC2.2 || PC2.3

PA3 � PC3.1 || PC3.2 || PC3.3 || PC3.4 (7.3)

198 Part II Software Engineering Process System Modeling

The BOOTSTRAP
Process Model

PA1

Organization

PA2

Methodology

PA3

Technology

Figure 7.1 The BOOTSTRAP process model

7.2.3.2 Definitions of BOOTSTRAP Processes

The BOOTSTRAP processes, known as PRs, at each capability level can be
formally defined by Expressions 7.4 – 7.6 and are illustrated in Figures
7.2 – 7.4.

 PA1 � PC1.1 // Quality system

 || PC1.2 // Resource management

 � PR1.1.1 // Quality system

 || (PR1.2.1 // Resource needs and work environment

 || PR1.2.2 // Personnel selection and training

) (7.4)

A process diagram corresponding to the two process categories and three
processes in BOOTSTRAP PA1 as defined in Expression 7.4 is shown in
Figure 7.2.

Chapter 7 The BOOTSTRAP Model 199

BOO TSTRAP PA1

Organization Processes

PC 1.1

Quality
system

PR 1.1.1

Quality
system

PC 1.2

Resource
management

PR 1.2.2 Personnel
selection and
train ing

PR 1.2.1

Resource needs and
work environment

Figure 7.2 BOOTSTRAP process area-1 – the organization PRs

A process diagram corresponding to the three process categories and 18
processes in BOOTSTRAP PA2 , as defined in Expression 7.5, is shown in
Figure 7.3.

 PA2 � PC2.1 // Process related functions

 || PC2.2 // Life cycle-independent functions

 || PC2.3 // Life cycle functions

 � (PR2.1.1 || PR2.1.2 || PR2.1.3)

 || (PR2.2.1 || PR2.2.2 || PR2.2.3 || PR2.2.4 || PR2.2.5)
 || (PR2.3.1 || PR2.3.2 ||

 (PR2.3.3 ; PR2.3.4 ; PR2.3.5 ; PR2.3.6 ; PR2.3.7 ; PR2.3.8 ;

 PR2.3.9 ; PR2.3.10)
 (7.5)

200 Part II Software Engineering Process System Modeling

BOOTSTRAP PA2

Methodology Processes

PC2.1

Process-related
functions

PR2.1.1

Process
description

PR2.1.3

Process
control

PR2.1.2

Process
measurement

PC2.3

PR2.2.1

Project
management

PC2.3

Life cycle
functions

PC2.2

Life cycle-
independent func.

PR2.2.5

Subcontractor
management

PR2.2.4

Configuration and
change mgmt.

PR2.2.3

Risk avoidance
and management

PR2.2.2

Quality
management

Figure 7.3 BOOTSTRAP process area-2 – the methodology processes

Chapter 7 The BOOTSTRAP Model 201

BOOTSTRAP PA2

Methodology Processes (Cont’d)

PR2.3.1

Develop cycle
model

PR2.3.3
User
requirements

PR2.3.2

Special purpose
system

PC2.3

PR2.3.4
Software
requirements

PR2.3.6 Detailed
design and
implementation

PR2.3.7

Testing

PR2.3.5
Architecture
design

PR2.3.8

Integration

……

PR2.3.9
Acceptance test
and transfer

PR2.3.10
Operating and
maintenance

Figure 7.3 (Cont’d) BOOTSTRAP process area-2 – the methodology
processes

202 Part II Software Engineering Process System Modeling

A process diagram corresponding to the four process categories and 14
processes in BOOTSTRAP PA3, as defined in Expression 7.6, is shown in
Figure 7.4.

 PA3 � PC3.1 // Technology innovation
|| PC3.2 // Tech. for life cycle-independent functions
|| PC3.3 // Technology for life cycle functions
|| PC3.4 // Tool integration

 � PR3.1.1

 || (PR3.2.1 || PR3.2.2 || PR3.2.3 || PR2.2.4)
 || (PR3.3.1 || PR3.3.2 || PR3.3.3 || PR3.3.4 || PR3.3.5 || PR3.3.6

 || PR3.3.7 || PR3.3.8)
 || PR3.4.1

 (7.6)

B O O TS TRA P P A 3

Techno logy P rocesses

PC 3.1

T echnolog y
inno vation

PR 3.1 .1

T echnolog y
inno vation

PR 3.2 .2

P ro ject
m an agem ent

PR 3.2 .1

C om m unication

PC 3.3

PR 3.2 .3

Q uality
m an agem ent

PC 3.3

T echnolog y fo r life
cycle fu nctions

PR 3.4 .1

T ool
in tegration

PR 3.2 .4

C onfiguration and
change m gm t.

PC 3.2 T echnology
for lifec ycle-
inde pendent fun c.

PC 3.4

T ool
in tegration

Figure 7.4 BOOTSTRAP process area-3 – the technology processes

Chapte 7 The BOOTSTRAP Model 203

BOOTSTRAP PA3
Technology Processes (Cont’d)

PR3.3.1

User
requirements

PC3.3

PR3.3.2
Software
requirements

PR3.3.4 Detailed
design and
implementation

PR3.3.5

Testing

PR3.3.3
Architecture
design

PR3.3.5

Integration

……

PR3.3.7
Acceptance
test and transfer

PR3.3.8

Operating and
maintenance

Figure 7.4 (Cont’d) BOOTSTRAP process area-3 – the technology
processes

Detailed practices of each PR at QSA level, which are documented in
Appendix C, can be described in the same way as above. Extending the
formal BOOTSTRAP process model onto the QSA level can be taken as an
exercise for readers.

204 Part II Software Engineering Process System Modeling

7.3 The BOOTSTRAP Process
 Assessment Model

The BOOTSTRAP process model was systematically introduced in Section
7.2. This section explores the BOOTSTRAP process capability model and
process capability determination method. Both of the above form the
BOOTSTRAP process assessment model.

7.3.1 THE BOOTSTRAP PROCESS CAPABILITY
MODEL

This section describes the BOOTSTRAP process capability model, which
includes a practice performance scale, a process capability scale, and a
process capability scope definition.

7.3.1.1 Practice Performance Scale

A practice performance rating scale for the QSAs in BOOTSTRAP is
defined in four (plus one) levels as described in Table 7.3. In Table 7.3, the
rating thresholds provide a set of quantitative measurements for rating a
QSA’s performance with the scale.

Table 7.3
Practice Performance Scale of the QSAs

Scale Description Rating threshold

4 Complete / extensive ≥80%

3 Largely satisfied 66.7% - 79.9%

2 Partially satisfied 33.3% - 66.6%

1 Absent / poor ≤33.2%

0 Doesn’t apply -

The supplementary scale 0 in Table 7.3, doesn’t apply, is designed to
increase the tailorability and flexibility of the BOOTSTRAP process model.
In BOOTSTRAP QSA rating, a score 0 is usually treated as equivalent to 4.

Chapter 7 The BOOTSTRAP Model 205

7.3.1.2 Process Capability Scale

As shown in Table 7.4, process capability in BOOTSTRAP [Koch, 1993;
Haase, 1994; Kuvaja et al., 1994a/b] is determined by a five-level process
capability scale, which is identical to that of CMM as defined in Table 5.4.
A refinement of the capability scale in BOOTSTRAP is that quartiles are
added to each capability level to enable further precise assessment of the
process capability.

Table 7.4
The BOOTSTRAP Process Capability Model

Capability Level
(CL[i])

Quartiles
Between CLs

Description Identified QSAs
(NQSA[i])

Pass Threshold
(PQSA[i])

CL[1] Initial NQSA[1] = 0 PQSA[1] = 0

CL[2] Repeated NQSA[2] = 40 PQSA[2] = 32

CL2.1

CL2.2

CL2.3

CL2.4

CL[3] Defined NQSA[3]= 81 PQSA[3]= 65

CL3.1

CL3.2

CL3.3

CL3.4

CL[4] Managed NQSA[4] = 27 PQSA[4]= 22

CL4.1

CL4.2

CL4.3

CL4.4

CL[5] Optimizing NQSA[5] = 53 PQSA[5]= 53

CL5.1

CL5.2

CL5.3

CL5.4

Total 5 201 162

In Table 7.4, the different distances (number of QSAs) between two adjacent
levels indicate the various difficulties in capability improvement from the
current level to the next higher level according to the model.

It may be observed from Table 7.4 that, for process assessment,
BOOTSTRAP adopted the same approach to pre-assign the 201 QSAs into
different capability levels. In Section 7.2.2 we have analyzed that
BOOTSTRAP has not fully separated the dimensions of process and of its
capability measurement because the capability levels are still dependent on
different architectures of the same set of QSAs. Although BOOTSTRAP

206 Part II Software Engineering Process System Modeling

overlaps the process and capability dimensions at the practice (QSA) level,
CMM overlaps the two dimensions at the process (KPA) level. This means
that BOOTSTRAP pre-allocates and determines the process capability levels
by different QSAs while CMM does the same by different KPAs. So in
BOOTSTRAP we may say that a capability level is determined by a certain
subset of its practices (QSAs); while that of CMM is determined by a certain
subset of its processes (KPAs).

7.3.1.3 Process Capability Scope

The BOOTSTRAP process capability scope is shown in Table 7.5.
Comparing Table 7.5 with Table 2.3 in Chapter 2, it is obvious that
BOOTSTRAP assesses process capability at the levels of QSA, PR, project,
and organization scope from the bottom, up.

Table 7.5
Process Capability Scope of BOOTSTRAP

Capability Scope Practice Process Project Organization
Bootstrap terms QSAs PRs / levels Project Organization

Bootstrap method Performance
rating

Performance
rating

Capability level
with quartiles

Capability level
with quartiles

7.3.2 THE BOOTSTRAP PROCESS CAPABILITY
DETERMINATION METHODOLOGY

Using the formal definition of the BOOTSTRAP process model and process
capability model developed in Sections 7.2 and 7.3.1, we can now consider
how to apply the BOOTSTRAP capability model to the process model for
the assessment of process capability at practice, process, project, and
organization levels.

7.3.2.1 Process Performance Rating Method

Let rQSA[i,j] be a rating of performance of the jth QSA at the ith process
capability level. Then rQSA[i,j] can be rated according to the practice
performance scale as defined in Table 7.3, i.e.:

 rQSA[i,j] = 4, if the QSA’s performance is at least 80% satisfied
 = 3, if the QSA’s performance adequacy is between 66.7-79.9%

 = 2, if the QSA’s performance adequacy is between 33.3-66.6%
 = 1, if the QSA’s performance adequacy is less than 33.2%
 = 0, if the QSA doesn’t apply in this assessment (7.7)

Chapter 7 The BOOTSTRAP Model 207

7.3.2.2 Process Capability Rating Method

The number of satisfied QSAs at a level i, SATQSA[i], is assessed according
to the following expression:

 SATQSA[i] = # { QSA[i,j] | Passed }
 = # { QSA[i,j] | rQSA[i,j] � � ∨ rQSA[i,j] =0}

 = ∑
=

QSAiN

j 1

{ 1 | rQSA[i,j] � � ∨ rQSA[i,j] =0} (7.8)

where NQSAi is the number of defined QSAs at level i.

Expression 7.8 indicates that the number of the satisfied QSAs at a
capability level can be obtained simply by counting the QSAs that satisfy or
do not apply in the assessment.

A pass threshold, PQSA[i], for a capability level, i, in BOOTSTRAP is
defined as:

 PQSA[i] = NQSA[i] * 80% (7.9)

This means that 80% of the QSAs defined at a level should be satisfied for
fulfilling the requirements of process capability at this level, i.e.:

 SATQSA[i] ≥ PQSA[i]
 ≥ NQSA[i] * 80% (7.10)

The pass thresholds at each capability level have been defined in Table 7.4
for reference.

BOOTSTRAP capability levels and their related QSAs are predefined
and fixed according to its methodology, as is the case for CMM. However,
BOOTSTRAP allows an organization’s practices at higher levels to be taken
into account in the final capability determination. This feature will be
explained in the next subsection.

7.3.2.3 Project Capability Determination Method

BOOTSTRAP adopts a dynamic capability scale for process assessment.
BOOTSTRAP assesses a project’s capability by taking account of the
practices (QSAs) at all levels. The higher level practices within an
organization which, at the level(s) higher than the maximum fulfilled
capability level, are treated as merits in capability determination.

The total score for a project – the number of QSAs satisfied at all levels,
NQSA – is a sum of the QSAs satisfied at each level, i.e.:

208 Part II Software Engineering Process System Modeling

NQSA =
i=
∑

1

5

SATQSA[i] (7.11)

Thus, the process capability level of a project, PCL, is calculated by two
items in BOOTSTRAP: a base score and an additional technical merit score
gained by practices at higher levels as described below:

 PCL = Base + Additional

 = max {i | SAT'QSA[i] ≥ P'QSA[i] } +

 (SAT'QSA[5] - SAT'QSA[i]) / ∑
+=

5

1ij

NQSA[j] (7.12)

where SAT'QSA[i] and N'QSA[i] represent the ith accumulated score and
threshold up to level i, respectively. The latter can be derived based on the
individual pass thresholds defined in Table 7.4 as {P'QSA[1], P'QSA[2],
P'QSA[3], P'QSA[4], P'QSA[5] } = {0, 32, 97, 119, 162}.

When a PCL obtained by Expression 7.12 is neither an integer nor a
quartile, a quarterly rounded capability level, PCLr , needs to be derived
according to the following expression:

 PCLr = PCL 1
4

 (7.13)

where x 1
4

 means round x to the nearest lower quarter. For example,

1.80 1
4

= 1.75, 3.23 1
4

= 3.0, and 4.5 1
4

= 4.5.

Thus, a project’s capability level in BOOTSTRAP can be obtained by
substituting Expression 7.12 into 7.13:

 PCLproj[p] = PCLr

 = PCL 1
4

 = max { i | SAT'QSA[i] ≥ P'QSA[i]} +

 (SAT'QSA[5] - SAT'QSA[i]) / ∑
+=

5

1ij

NQSA[j] 1
4

 (7.14)

7.3.2.4 Organization Capability Determination Method

A BOOTSTRAP process capability level for an organization is defined as a
quarterly rounded average of n assessed projects, i.e.:

Chapter 7 The BOOTSTRAP Model 209

PCLorg = 1

1
n

p

n

=
∑ PCLrroj[p] 1

4

 (7.15)

Expression 7.15 indicates that an established software organization and its
successful experience in the project scope can be taken into account
cumulatively when determining the organization’s process capability level.

BOOTSTRAP does not suggest how many project assessments are
sufficient to derive an organization’s capability level. Generally, it is
recommended that n≥3 for a valid aggregating of an organization’s process
capability level based on the projects carried out in the organization.

7.4 The BOOTSTRAP Algorithm

So far we have explored the BOOTSTRAP process model, process capability
model, and capability determination method. Using the models and method
we are already able to manually assess and calculate a software project’s or
an organization’s process capability in BOOTSTRAP.

In order to describe the BOOTSTRAP methodology precisely, and to
enable mutual comparison and tool implementation, this section extends the
BOOTSTRAP process capability determination methodology into a formal
BOOTSTRAP algorithm.

7.4.1 DESCRIPTION OF THE BOOTSTRAP
ALGORITHM

The BOOTSTRAP capability determination method as defined in
Expressions 7.7 - 7.14 up to the scope of project can be formally described in
the following algorithm. An organization’s process capability level can be
aggregated according to Expression 7.15, when multiple projects have been
assessed.

210 Part II Software Engineering Process System Modeling

Algorithm 7.1 The BOOTSTRAP process capability determination
algorithm

Assume: NQSAi - number of QSAs at level i,
 i = 1,2,3,4,5
 QSA[i, j] - the jth QSA at level i
 SATQSA[I] - number of QSAs satisfied at level i
 rQSA[i, j] - rate of QSA j at level i
 Nsat - number of QSAs satisfied at all levels
 PCL - process capability level
 PCLr - a rounded process capability level
 PCLproj[p] - process capability level of project p
Input: Sample indicators of BPA and processes’ existence and

performance
Output: PCLproj[p]

Begin

 // Step 1: Initialization

 N QSA[1] := 0; // Assign number of defined QSAs at each level
 N QSA[2] := 40;
 N QSA[3] := 81;
 N QSA[4] := 27;
 N QSA[5] := 53;

 P’QSA[1] := 0; // Assign cumulated pass thresholds at each level
 P’QSA[2] := 32;
 P’QSA[3] := 97;
 P’QSA[4] := 119;
 P’QSA[5] := 162;

 // Step 2: QSA performance rating

 // 2.1 Assess each QSA at every level
 for i :=1 to 5 do // Assess all QSAs at each level
 begin
 for j:=1 to NQSA[i] do
 begin
 // Rate each QSA[i, j] according to Expression 7.7 and
 // Table 7.3
 if (rQSA[i, j] ≥ 3 ∨ rQSAli, j]= 0)

Chapter 7 The BOOTSTRAP Model 211

 then QSA[i, j]:=1 // The QSA is satisfied
 else QSA[i, j]:=0;
 end;

 SAT’QSA[i] : =
j

NQSAi

=
∑

1

QSA[i, j];

 end;

 // 2.2 Count total satisfied number of QSAs at all levels

 Nsat :=
i=
∑

1

5

SAT’QSA[i];

 // Step 3: Process capability determination

 if (Nsat < P’QSA[2])
 then // Initial
 PCL := 1 + (Nsat / (NQSA[2]+NQSA[3]+NQSA[4]+NQSA[5]))
 // According to Expression 7.14
 else if (Nsat < P’QSA[3])
 then // Repeatable
 PCL := 2 + ((Nsat - SAT’QSA[2]) /
 (NQSA[3]+NQSA[4]+NQSA[5]))
 else if (Nsat < P’QSA[4])
 then // Defined
 PCL := 3 + ((Nsat - SAT’QSA[3]) /
 (NQSA[4]+NQSA[5]))
 else if (Nsat < P’QSA[5])
 then // Managed
 PCL := 4 + ((Nsat - SAT’QSA[4]) /
 NQSA[5]);
 else // Optimized
 PCL := 5;
 PCLr = PCL 1

4

; // Rounded to the nearest lower quarter

 // according to Expression 7.13
 PCLproj[p]:= PCLr ; // Expression 7.14

End Í

212 Part II Software Engineering Process System Modeling

7.4.2 EXPLANATION OF THE BOOTSTRAP
ALGORITHM

A BOOTSTRAP assessment according to Algorithm 7.1 is carried out in
three steps:

• Step 1: Initialization

• Step 2: QSA performance rating

 • Step 3: Process capability determination

This subsection explains the main functions of Algorithm 7.1 for a
BOOTSTRAP process assessment.

7.4.2.1 Initialization

This step is designed to specify the numbers of QSAs defined in
BOOTSTRAP. For obtaining a detailed configuration of QSAs in the
BOOTSTRAP process model, readers may refer to Table 7.2 and
Appendix C.

7.4.2.2 QSA Performance Rating

In this step, all QSAs for each PR at each capability level are rated
according to Expressions 7.7 and 7.8 using the definitions of the practice
performance scale listed in Table 7.3.

The rating methods for all QSAs at Levels 2 – 5 are identical, as shown
in algorithm Step 2.1, except that at each level i the number of QSAs,
NQSA[i], are different as initialized in Step 1. The basic function for QSA
rating at each level is to count the number of satisfied QSAs by increasing
SATQSA[level] by one if the examined QSA is rated as 4, 3, or 0
according to the rating scale in Table 7.3.

Step 2.2 counts the total number of satisfied SQAs at all levels in order
to obtain Nsat or SAT�QSA[5] as defined in Expression 7.12.

According to the BOOTSTRAP algorithm, every QSA at all levels
should be rated in order to derive the final process capability for a project,
which would take the higher level(s) practices into account as additional
merits.

7.4.2.3 Project Process Capability Determination

This step derives the maximum aggregated process capability level for an
assessed software project based on the QSA ratings obtained in Step 2. The
capability level of a project is determined by Expression 7.14.

Chapter 7 The BOOTSTRAP Model 213

7.4.3 ANALYSIS OF THE BOOTSTRAP ALGORITHM

The effort expended in conducting a BOOTSTRAP assessment depends on
its algorithm complexity. By examining the complexity of an algorithm, the
time spent in BOOTSTRAP assessment can be estimated quite accurately.

Reviewing the BOOTSTRAP algorithm in Subsection 7.4.1, it may be
observed that the algorithm complexity of BOOTSTRAP, c(BOOTSTRAP),
is mainly determined by the number of QSAs, NQSA, that need to be rated
individually in a BOOTSTRAP assessment according to Algorithm 7.1,
Step 2, i.e.:

 c(BOOTSTRAP) = O(NQSA)

 = NQSA

 =
i=
∑

1

5

NQSA[i] (7.16)

where NQSA[i] is the QSAs at level i, 1 ≤ i ≤ 5. The unit of the algorithm
complexity is “times of QSA ratings,” or of practice ratings.

As given in BOOTSTRAP, NQSA[1]=0, NQSA[2]=40, NQSA[3]=81,
NQSA[4]=27, and NQSA[5]=53. Thus, the total rating cost, or the algorithm
complexity, for determining a capability level of project scope in
BOOTSTRAP is:

 c(BOOTSTRAP) = O(NQSA)

 = NQSA

 =
i=
∑

1

5

NQSA[i]

 = 0 + 40 + 81 + 27 + 53

 = 201 [times of QSA ratings]

There is a certain range of rates between the algorithm complexity and the
person-days needed for an assessment. Empirical data for relating the
algorithm complexity to person-days expended in a BOOTSTRAP process
assessment will be discussed in Chapter 12.

214 Part II Software Engineering Process System Modeling

7.5 A Sample BOOTSTRAP
 Assessment

The capability rating framework and the capability determination algorithm
of BOOTSTRAP have been formally described in Sections 7.3 and 7.4. This
section demonstrates how to apply the BOOTSTRAP expressions and
algorithm to quantitatively determine a sample software development
organization’s process capability level in BOOTSTRAP.

7.5.1 QSA PERFORMANCE RATING IN BOOTSTRAP

A set of detailed ratings of the 201 QSAs have been listed in Appendix C,
where the raw data rating {4,3,2,1} corresponds to the BOOTSTRAP QSA
rating scale {4,3,2,1}. By referring to Table 7.3, a mapping between the
rating scales of the raw data and the BOOTSTRAP QSA is defined
in Table 7.6.

Table 7.6
Mapping between Raw Data in Assessment onto BOOTSTRAP Rating Scale

Raw Data Rating Scale
(in Appendix C)

BOOTSTRAP QSA
 Rating Scale

Description in
BOOTSTRAP

4 4 Complete / extensive

3 3 Largely satisfied

2 2 Partially satisfied

1 1 Absent / poor

Processing the raw data of the QSAs performance ratings according to Table
7.6 and then applying Expression 7.8 allows the number of satisfied QSAs at
a level i, SATQSA[i], to be derived by:

 SATQSA[i] = # { QSA[i,j] | Passed }
 = # { QSA[i,j] | rQSA[i,j] � � ∨ rQSA[i,j] =0}

 =
j

NSQAi

=
∑

1

{ 1 | rQSA[i,j] � � ∨ rQSA[i,j] =0}

Chapter 7 The BOOTSTRAP Model 215

For example, there are 40 QSAs at Level 2, CL2, in BOOTSTRAP which are
identified by a subscript “2” for the QSAs in Appendix C. Only five of the
Level-2 QSAs, {QSA2.1.3.13, QSA2.2.4.4, QSA2.2.4.11, QSA2.3.1.10, QSA2.3.1.29},
are rated unsatisfied (below 3) in Appendix C. Thus, according to
Expression 7.8, the number of satisfied QSAs for CL2 are:

 SATQSA[2] = 40 - #{QSA2.1.3.13,QSA2.2.4.4,QSA2.2.4.11,QSA2.3.1.10,QSA2.3.1.29}
 = 40 - 5
 = 35

A summary of the ratings of the 201 QSAs at 5 capability levels in
BOOTSTRAP is listed in Table 7.7. In the last two columns, P'QSA[i] and
SAT'QSA[i] represent the ith accumulated threshold and the ith accumulated
score at level i, respectively.

Table 7.7
Summary Assessment Record in BOOTSTRAP

Capability level
(CL[i])

Description Identified QSAs
(NQSA[i])

Pass threshold
(PQSA[i] | P'QSA[i])

Assessment result
(SATQSA[i] | SAT'QSA[i])

CL5 Optimizing 53 43 | 162 19 | 134

CL4 Managed 27 22 | 119 14 | 115

CL3 Defined 81 65 | 97 66 | 101

CL2 Repeated 40 32 | 32 35 | 35

CL1 Initial 0 0 | 0 0 | 0

7.5.2 PROCESS CAPABILITY DETERMINATION IN
BOOTSTRAP

Using the assessment result listed in Table 7.7, a process capability profile of
the software development organization in BOOTSTRAP can be derived as
shown in Figure 7.5. The data shown in the CLi� columns are the
accumulated scores up to Level i.

7.5.3 PROJECT CAPABILITY DETERMINATION IN
BOOTSTRAP

The capability maturity level for a project p, PCLproj[p], in BOOTSTRAP
has been defined as the maximum integer level, i, plus the quartile(s) a
software development organization fulfilled as in Expression 7.14.

216 Part II Software Engineering Process System Modeling

0

50

100

150

200

250

No. of
QSAs

CL1 CL1' CL2 CL2' CL3 CL3' CL4 CL4' CL5 CL5'

Not satisfied

Satisfied

 Process

Figure 7.5 Process capability profile of a software organization in
BOOTSTRAP

Applying Expression 7.14 to the ratings of the 201 QSAs at the five levels
summarized in Table 7.7, the capability level of the software development
organization can be determined. Considering that:

(SAT�QSA[2] = 35) > (P�QSA[2]= 32)
(SAT�QSA[3] =101) > (P�QSA[3]= 97)
(SAT�QSA[4] =115) < (P�QSA[4]= 119)
(SAT�QSA[5] =134) < (P�QSA[4]= 162)

This indicates that the base score in BOOTSTRAP is 3. According to
Expression 7.14, the capability level of the software development
organization in BOOTSTRAP can be calculated as:

 PCLproj[p] = PCLr

 = PCL 1
4

 = max { i | SAT'QSA[i] ≥ P'QSA[i]} +

 (SAT'QSA[5] - SAT'QSA[i]) / ∑
+=

5

1ij

NQSA[j] 1
4

 = 3 + (134 - 101) / 80 1
4

 = 3 + 0.41 1
4

 = 3.25

The score shows that the project of the software development organization
has fulfilled the capability Level 3, the defined process capability level, with
a plus of one quartile above this level in BOOTSTRAP.

Chapter 7 The BOOTSTRAP Model 217

7.6 Applications of BOOTSTRAP

In the previous sections we explored the BOOTSTRAP theory and
methodology for process system modeling and assessment. This section
analyzes the usability of BOOTSTRAP in software engineering process
system establishment, assessment, and improvement. In order to present
both sides of the coin, the limitations of BOOTSTRAP in some aspects of
software engineering applications are discussed using the body of empirical
and theoretical studies on BOOTSTRAP.

7.6.1 BOOTSTRAP FOR SOFTWARE PROCESS
 SYSTEM ESTABLISHMENT

BOOTSTRAP was developed based on the inspiration and experience of
CMM, ISO 9001, and other regional and internal models. The advantages of
BOOTSTRAP methodology in process system modeling are as follows:

• Improved practice rating scale from simple “Yes/No” to four
adequate scales.

• In addition to an aggregated process capability level, it presented
assessment results as a process profile. This is considered the
initial idea for 2-D process system modeling.

• Considered process – product correlation in a software development
organization.

Some open issues identified in research and practices for BOOTSTRAP are
as follows:

• Compared to the CMM model, the BOOTSTRAP process model
lacks detailed description except for a generic questionnaire.

• As an adoption of a 1-D process model, BOOTSTRAP inherited the
same difficulty of rationale for the preassignment of the practices
(QSAs) into capability levels.

• Details of BOOTSTRAP methodology are based and documented on
a number of internal reports. Researchers and practitioners outside
were unable to independently apply and evaluate this methodology.

218 Part II Software Engineering Process System Modeling

In Section 7.2.2 we discovered that BOOTSTRAP has not fully separated the
dimensions of process and its capability measurement. This is because the
capability levels are still dependent on a preassigned configuration of the
same set of QSAs. However, it is interesting that BOOTSTRAP overlapped
the process and capability dimensions at the practice (QSA) level while
CMM overlapped the two dimensions at the process (KPA) levels. That is,
BOOTSTRAP pre-allocates and determines the process capability levels by
different QSAs while CMM does the same by different KPAs. So in
BOOTSTRAP we may say that a capability level is determined by a certain
subset of its practices (QSAs), while in CMM that is determined by a certain
subset of its processes (KPAs).

Thus, fundamentally, BOOTSTRAP is still a 1-D process model, even
though it introduced the process profile for interpreting the assessment
results in a 2-D manner for the first time. Readers may refer to Section 5.6.1
for detailed analysis of the limitations and possible improvement approaches
to 1-D process models.

7.6.2 BOOTSTRAP FOR SOFTWARE PROCESS
SYSTEM ASSESSMENT

BOOTSTRAP is suitable for the first-, second-, and third-party assessment
of a software engineering process system in a software development
organization.

BOOTSTRAP assesses a project’s capability by taking account of the
practices (QSAs) at all levels. The higher level practices, which are at a
level higher than the maximum fulfilled capability level, are treated as
merits in capability calculation. This enables technical innovations (scores at
higher levels) of a software development organization to be taken into
account in the final capability determination. This is an improvement and an
advantage over CMM in the methodology of capability determination.

In the BOOTSTRAP process capability model, a capability level and its
related QSAs are predefined and fixed in the same way as that of CMM. In
practical software engineering, the modeled priority level of the QSAs in
BOOTSTRAP and the practical priority in a software development
organization would be difficult to reconcile. Thus, a completely independent
process dimension from the capability dimension is required in practice.
This inspiration leads to development towards 2-D process system modeling
methodologies, which will be introduced in the following chapters of this
part.

Chapter 7 The BOOTSTRAP Model 219

7.6.3 BOOTSTRAP FOR SOFTWARE PROCESS
SYSTEM IMPROVEMENT

BOOTSTRAP has put more emphasis on process improvement via process
assessment. It is a basic philosophy and intends to assist understanding in a
software organization and to find its strengths and weaknesses by process
assessment. Then the target process profile is decided, and the process
improvement plan can be set up. After a period of improvement according to
the recommendation, another process assessment would be conducted in
order to test the current status of the process system and to fine-tune the
improvement activities.

However, because BOOTSTRAP has not provided a precisely defined
and publicly available process model as discussed in the above subsection,
the implementation and effectiveness of an improvement plan would be
affected.

7.7 Summary

This chapter has introduced a formal and rigorous approach to the
description of BOOTSTRAP. CSP-like process algebra has been adopted for
presenting the BOOTSTRAP process model, and mathematical and
algorithmic methods have been applied for presenting the BOOTSTRAP
process capability determination methodology. Using these formal
techniques, BOOTSTRAP has been systematically described and analyzed
by contrasting with the unified process system framework developed in Part
I. An empirical case study has been provided for demonstrating the method
and approach in conducting a BOOTSTRAP assessment.

The basic knowledge structure of this chapter is as follows:

Chapter 7. The BOOTSTRAP Model

• General
 − Purposes of this chapter

 − To review the history and background of BOOTSTRAP
 development

 − To describe the BOOTSTRAP process model and

220 Part II Software Engineering Process System Modeling

 taxonomy

 − To describe the BOOTSTRAP capability model and
 capability determination methodology

 − To formally describe the BOOTSTRAP process model, and
 to algorithmically describe the BOOTSTRAP process
 capability determination method

 − To develop a BOOTSTRAP algorithm for software process
 assessment

 − To explain how the BOOTSTRAP algorithm can be used
 in process assessment and how its algorithm complexity is
 estimated

 − To demonstrate a case study of a practical BOOTSTRAP
 assessment by using the BOOTSTRAP algorithm

 − To discuss the usability of BOOTSTRAP in process
 establishment, assessment, and improvement in software
 engineering

 − BOOTSTRAP philosophy and background
 − An enhanced and European-adapted CMM
 − A technical view of software development life cycles
 − An assessment-based process improvement approach

 − An integration of CMM with ISO 9001 quality system
 processes

 • The BOOTSTRAP process model
− Taxonomy of BOOTSTRAP process model

 − Process scopes
 − Size of domain of each scope

 − Framework of BOOTSTRAP process model
 − Structure of BOOTSTRAP process model
 − Definitions of QSAs in BOOTSTRAP

 − Formal description of BOOTSTRAP process model
− BOOTSTRAP abstract process patterns
− BOOTSTRAP process diagrams
− Interpretation and illustration of the process algebra
 expressions

Chapter 7 The BOOTSTRAP Model 221

• The BOOTSTRAP process assessment model
− BOOTSTRAP process capability model

− Configuration
 − 3 process subsystems (SSs)
 − 9 process categories (PCs)
 − 32 processes (PRs)
 − 201 practices (QSAs)
− QSA rating scale
− Process rating scale

− BOOTSTRAP process capability determination method
 − Formal description of BOOTSTRAP capability
 determination methodology
 − Meanings of expressions and their operation

 − Common features with the methodology developed in the
 unified process framework in Part I
 − Differences from the methodology developed in the
 unified process framework in Part I

• The BOOTSTRAP algorithm
− Algorithm 7.1: BOOTSTRAP process assessment
− Explanation of Algorithm 7.1
− Relation between Algorithm 7.1 and the capability

 determination expressions in Section 7.3.2
− The BOOTSTRAP algorithm complexity and the main factors
 affecting it

 • A sample BOOTSTRAP process assessment
− Understand assessment data documented in Appendix C

 − Manual process assessment in BOOTSTRAP
 − Algorithm-based assessment in BOOTSTRAP

− Interpretation of assessment results

• Usability of BOOTSTRAP
− Merits and demerits in process system establishment

 − Merits and demerits in process system assessment
 − Merits and demerits in process system improvement

Major achievements and issues for further research suggested by this chapter
are highlighted below:

222 Part II Software Engineering Process System Modeling

• The design philosophy behind BOOTSTRAP is to present a
combined view of software life cycle processes and quality system
principles. BOOTSTRAP’s philosophy features in two approaches:
(a) Adopting the quality system principles in modeling the
organization process subsystem, and (b) Enhancing CMM processes
by significant development process orientation.

• Major contributions of BOOTSTRAP are as follows:

– A process assessment result is represented by both a capability
level and a process profile.

– A refined process capability scale with quartiles between two
levels.

– An improved practice rating scale from simple “Yes/No” to
four adequate measurements.

– An assessment-based software process improvement approach.

• Major open issues of BOOTSTRAP are as follows:

– The BOOTSTRAP process model lacks a detailed description
and definition. It is basically a hierarchical diagram and a
generic questionnaire.

– The BOOTSTRAP model has relatively greater similarity to
CMM. The BOOTSTRAP capability model is almost identical
with that of CMM.

– BOOTSTRAP inherited the same difficulty for the pre-
assignment of the practices (QSAs) into capability levels.

• A BOOTSTRAP algorithm has been elicited in order to precisely
and systematically interpret the BOOTSTRAP methodology, and to
quantitatively compare the complexity of the BOOTSTRAP method
with the others.

• BOOTSTRAP’s development, along with other models, has
provided important theoretical and experimental preparation and
inspiration for the development of the emerging international
standard – ISO/IEC 15504 (SPICE) – for software process system
modeling and assessment.

This chapter has established a basis for understanding and analyzing
BOOTSTRAP as a paradigm of the unified software engineering process
system framework. Relationships of BOOTSTRAP with other process system

Chapter 7 The BOOTSTRAP Model 223

models will be discussed in Part III of this book. Applications of
BOOTSTRAP in process-based software engineering and case studies will
be provided in Parts IV – VI.

Annotated References

Koch (1993) highlighted two aspects of major interest: the idea behind
BOOTSTRAP and perspectives on future improvement of the BOOTSTRAP
methodology. Haase and his colleagues (1994) presented the technical
aspects of BOOTSTRAP, two short case studies, and how the BOOTSTRAP
method could be used to determine readiness for ISO 9001 certification. The
BOOTSTRAP Team (1993), Huber (1993), and Kuvaja and Bicego (1994b)
provided technical insight of BOOTSTRAP.

Kuvaja and his colleagues (1994a) provided a broader view of
BOOTSTRAP on software process assessment and improvement. The
background of BOOTSTRAP development and its relations with CMM and
ISO 9001 was described in detail.

The BOOTSTRAP Institute (1994) released a Technical Report of the
BOOTSTRAP Global Questionnaire (V.2.3). This report provided details of
the BOOTSTRAP methodology. This questionnaire played an important role
in implementing the BOOTSTRAP methodology, and in understanding the
BOOTSTRAP methodology.

Wang et al. (1997a/b/99e) presented a series of comparative analyses of
relationships and mutual mappings between major process models including
BOOTSTRAP.

Questions and Problems

7.1 Explain the design philosophy behind the development of
BOOTSTRAP.

7.2 Using your own words, briefly describe the structure of the
BOOTSTRAP process model and its taxonomy.

224 Part II Software Engineering Process System Modeling

7.3 Using process algebra, derive a formal BOOTSTRAP process model
based on the process diagrams given in Figures 7.1 – 7.4. (Try not to
copy Expressions 7.2 – 7.6 before you finish.)

7.4 Briefly describe the BOOTSTRAP process capability model and
capability determination methodology using your own words.

7.5 Can you repeat the sample BOOTSTRAP assessment based on the data
provided in Appendix C and derive the same capability level as that of
the example shown in Section 7.5?

7.6 Try to conduct a BOOTSTRAP exercise assessment for an
organization with which you are familiar, and according to the formal
approach presented in this chapter.

7.7 Consider the BOOTSTRAP capability level of an organization that has
achieved all Level 3 and Level 4 processes (PRs) but lacked Level 2
practices?

7.8 Are there any significant differences between an organization that is
newly established and operating in ad hoc and an organization as
described in Ex.7.7? What are the differences in their derived
capability levels according to BOOTSTRAP methodology?

7.9 Most of the established software development organizations are
currently considered to be located at BOOTSTRAP Level 2. Observing
the BOOTSTRAP process model, do you think those organization
could produce reasonably good software? Why?

7.10 Try to organize a small software project with at least three persons.
Then do a self-assessment for this project and report your capability
level in BOOTSTRAP.

7.11 Try to write a BOOTSTRAP assessment report for Exs. 7.6 or 7.10 and
describe the following:

• Purpose(s) of the BOOTSTRAP assessment

• The BOOTSTRAP model and methodology you adopted

• The input of the BOOTSTRAP assessment

• The procedure of the BOOTSTRAP assessment

• The output of the BOOTSTRAP assessment

Chapter 7 The BOOTSTRAP Model 225

• The effort you spent for the BOOTSTRAP assessment

• Experience you gained in the BOOTSTRAP assessment

• Conclusions

7.12 Try to write a BOOTSTRAP process improvement plan based on the
assessment report developed in Ex.7.11. In the process
improvement plan, describe the following:

• Purpose(s) of the BOOTSTRAP process improvement plan
• Brief introduction of the BOOTSTRAP assessment results
• Analyze strengths of the organization’s process capability according

to BOOTSTRAP
• Analyze weaknesses of the organization’s process capability

according to BOOTSTRAP
• Recommend a process improvement plan to address the process

weaknesses or to pursue continuous process improvement
 • Explain the benefit of implementing this process improvement plan

and how well your plan will meet the organization’s business goal
 • Estimate the costs of this process improvement effort

 • Predict the risks for executing the process improvement plan that
 you have suggested

 • Conclusions

7.13 What is the usage of BOOTSTRAP in software engineering process
establishment, assessment, and improvement?

This page intentionally left blankThis page intentionally left blank

227

Chapter 8

THE ISO/IEC TR 15504
(SPICE) MODEL

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

5.
The CMM
Model

8.1 Introduction 8.5 A sample ISO/IEC TR 15504 assessment
8.2 The ISO/IEC TR 15504 process model 8.6 Applications of ISO/IEC TR 15504
8.3 The ISO/IEC TR 15504 process assessment model 8.7 Summary
8.4 The ISO/IEC TR 15504 algorithm Annotated references

6.
The ISO 9001
Model

7.
The BOOTSTRAP
Model

9.
The SEPRM
Model

8.
The ISO/IEC TR
15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

228 Part II Software Engineering Process System Modeling

ISO/IEC TR 15504 is an emerging international standard for software
engineering process system assessment and improvement. SPICE, software
process improvement and capability determination, is the name of the
international project for the development of this standard. This chapter
describes the ISO/IEC TR 15504 model, including its process model, process
capability model, and process capability determination methodology.

This chapter adopts a formal and algorithmic approach to describe
ISO/IEC TR 15504. An ISO/IEC TR 15504 algorithm will be elicited and a
sample assessment will be provided in order to demonstrate how an ISO/IEC
TR 15504-based process assessment is carried out in practice. The usability
of ISO/IEC TR 15504 is discussed on the basis of empirical experience in
the software industry and research reports in the literature.

The objectives of this chapter are as follows:

• To review the history and background of ISO/IEC TR 15504
development

• To describe the ISO/IEC TR 15504 process model and taxonomy

• To describe the ISO/IEC TR 15504 capability model and capability
determination methodology

• To formally describe the ISO/IEC TR 15504 process model and to
algorithmically describe the ISO/IEC TR 15504 process capability
determination method

• To develop an ISO/IEC TR 15504 algorithm for software process
assessment

• To explain how the ISO/IEC TR 15504 algorithm can be used in
process assessment and how its algorithm complexity is estimated

• To demonstrate a case study of a practical ISO/IEC TR 15504
assessment by using the ISO/IEC TR 15504 algorithm

• To discuss the usability of ISO/IEC TR 15504 in process
establishment, assessment, and improvement for software
engineering

8.1 Introduction

The philosophy of ISO/IEC TR 15504 may be interpreted as aiming to
develop a set of structured capability measurements for total software life
cycle process evaluation. In this chapter we will formally describe the
ISO/IEC TR 15504 model with this view.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 229

ISO/IEC TR 15504 [ISO/IEC DTR 15504.1 – 15504.9, 1997; ISO/IEC
TR 15504.1 – 15504.9, 1998] is being developed within the ISO/IEC
JTC1/SC7 software engineering subcommittee with the intention of it being
a future international software process assessment standard. The
international project SPICE was initiated in 1991 [ISO/IEC JTC1/SC7,
1992/93a/b; Dorling, 1993/95]. An ISO/IEC 15004 technical report (TR)
was released in 1998 [ISO/IEC TR 15504.1 – 15504.9, 1998] as a final
step before publishing as an international standard. Now ISO/IEC TR
15504 is in the third phase of user trials.

ISO/IEC TR 15504 is a result of an international collaborative effort
working towards developing an ISO software process assessment standard.
ISO/IEC TR 15504 has incorporated experience and the improved
understanding of software engineering processes gained in the development
of CMM, BOOTSTRAP, ISO 9001, Trillium [Bell Canada, 1992/94], and
other models.

ISO/IEC TR 15504 develops a 2-D process capability assessment model
with a process and a process capability dimension based on the technology
advances, and a more software engineering orientation. ISO/IEC TR 15504
assesses a software development organization at the process dimension
against the process attributes at the capability dimension. The 2-D
framework of ISO/IEC TR 15504 provides a refined process assessment
approach and a process improvement platform for process-based software
engineering.

This chapter provides a formal description of ISO/IEC TR 15504 in
accordance with the unified process system framework developed in Part I.
A framework and taxonomy of the ISO/IEC TR 15504 process model are
introduced in Section 8.2. The ISO/IEC TR 15504 capability model and
process capability determination method are described in Section 8.3. Based
on this, an ISO/IEC TR 15504 process assessment algorithm is elicited and
an example of ISO/IEC TR 15504 assessment is provided in Sections 8.4
and 8.5, respectively. Finally, the usability of ISO/IEC TR 15504 is
discussed in Section 8.6.

8.2 The ISO/IEC TR 15504 Process
Model

This section describes the ISO/IEC TR 15504 process taxonomy and
framework. The terms and process structure of ISO/IEC TR 15504 are
introduced using the original forms of expression, and are contrasted with
the unified software process system framework developed in Part I.

230 Part II Software Engineering Process System Modeling

8.2.1 TAXONOMY OF THE ISO/IEC TR 15504
 PROCESS MODEL

Referring to the general process taxonomy defined in Chapter 2, the
ISO/IEC TR 15504 process hierarchy and domains are listed in Table 8.1.

Table 8.1
Process Hierarchy and Domains of the ISO/IEC TR 15504 Process Model

Taxonomy Subsystem Category Process Practice
Process level - Process categories

(PCs)
Processes
(PRs)

Base practices (BPs)

Size of domain - 5 35 201

Identification - PC[i] PR[i,k] BP[i,k,j]

Table 8.1 defines the configuration of the ISO/IEC TR 15504 process model.
As shown, the BPs and PRs used in ISO/IEC TR 15504 are equivalent to the
practices and processes, respectively, as defined in the unified process
system framework.

In order to provide a formal identification for each entity defined at
various levels of coverage known as process scopes, the indexing of PC, PR,
and BP are described using a naming convention as shown in Table 8.1. In
the table, i is the number of PC; k, the number of PR in ith PC; and j, the
number of BP in kth PR of ith PC.

8.2.2 FRAMEWORK OF THE ISO/IEC TR 15504
 PROCESS MODEL

ISO/IEC TR 15504 models a software process system in 5 process
categories, 35 processes, and 201 base practices. A hierarchical structure of
the ISO/IEC TR 15504 framework is shown in Table 8.2.

Table 8.2
The ISO/IEC TR 15504 Process Model

ID. Process Category
 (PC[i])

 Process
 (PR[i,k])

Identified
BPs

CUS Customer- supplier 39

CUS.1 Acquire software product 5

CUS.2 Establish contract 4

CUS.3 Identify customer needs 3

CUS.4 Perform joint audits and reviews 6

CUS.5 Package, deliver and install software 7

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 231

CUS.6 Support operation of software 7

CUS.7 Provide customer service 4

CUS.8 Assess customer satisfaction 3

ENG Engineering 32
ENG.1 Develop system requirements 4

ENG.2 Develop software requirements 5

ENG.3 Develop software design 4

ENG.4 Implement software design 3

ENG.5 Integrate and test software 6

ENG.6 Integrate and test system 5

ENG.7 Maintain system and software 5

RRO Project 50
PRO.1 Plan project life cycle 5

PRO.2 Establish project plan 10

PRO.3 Build project teams 4

PRO.4 Manage requirements 5

PRO.5 Manage quality 6

PRO.6 Manage risks 8

PRO.7 Manage resources and schedule 5

PRO.8 Manage subcontractors 7

SUP Support 32
SUP.1 Develop documentation 5

SUP.2 Perform configuration management 8

SUP.3 Perform quality assurance 5

SUP.4 Perform problem resolution 6

SUP.5 Perform peer reviews 8

ORG Organization 48
ORG.1 Engineer the business 6

ORG.2 Define the process 13

ORG.3 Improve the process 9

ORG.4 Perform training 4

ORG.5 Enable reuse 7

ORG.6 Provide software engineering environment 4

ORG.7 Provide work facilities 5

Total 5 35 201

In Table 8.2, the number of defined BPs for each PR is provided. The
definitions of the BPs are listed in Appendix C, where, in the column of
ISO/IEC TR 15504, a jth BP of process k in category i, BP[i,k,j], is
represented by:

 BP[i,k,j] = BPi.k..j

= BPAi’.k’.r’.j’ (8.1)

232 Part II Software Engineering Process System Modeling

where i’, k’, r’, and j’ are the index numbers of subsystem, category,
process and practice, respectively, as defined in the unified process system
framework and SEPRM.

For example, in Appendix C readers can identify BP[4,3,2] as:

 BP[i,k,j] = BP[4,3,2]

= BP4.3.2

 = BPA3.1.8.1

= BPA244

= “Audit software development activities”

8.2.3 FORMAL DESCRIPTION OF THE ISO/IEC TR
15504 PROCESS MODEL

By using the CSP-like process algebra introduced in Chapter 3, we are able
to formally describe the ISO/IEC TR 15504 process model and its processes
in this subsection. The formal description is useful for providing precise and
accurate definitions of the structure and interrelationships of the ISO/IEC
TR 15504 processes, and avoiding the ambiguity inherent in conventional
natural language description.

8.2.3.1 The Structure of the ISO/IEC TR 15504 Process Model

A formal description of the structure of the ISO/IEC TR 15504 process
model, ISO15504-PM, is shown in Expression 8.2 and illustrated in Figure
8.1. Basically, this is a parallel process model of five process categories at
the system level.

 ISO15504-PM � PC1 // Customer-supplier processes
 || PC2 // Engineering processes
 || PC3 // Project processes
 || PC4 // Support processes
 || PC5 // Organization processes (8.2)

In the ISO/IEC TR 15504 process model, each process category can be
extended to a number of parallel PRs as shown in Expression 8.3. Further,
each PR can be extended to a number of BPs in a similar way.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 233

The ISO/IEC 15504
Process Model

PC1

Customer-
supplier

PC2

Engineering

PC3

Project

PC4

Support

PC5

Organization

Figure 8.1 The ISO/IEC TR 15504 process model

 PC1 � CUS1.1||CUS1.2||CUS1.3||CUS1.4||CUS1.5||CUS1.6||CUS1.7||CUS1.8

 PC2 � ENG2.1||ENG2.2||ENG2.3||ENG2.4||ENG2.5||ENG2.6||ENG2.7

 PC3 � PRO3.1||PRO3.2||PRO3.3||PRO3.4||PRO3.5||PRO3.6||PRO3.7||PRO3.8

 PC4 � SUP4.1||SUP4.2||SUP4.3||SUP4.4||SUP4.5

 PC5 � ORG5.1||ORG5.2||ORG5.3||ORG5.4||ORG5.5||ORG5.6||ORG5.7 (8.3)

8.2.3.2 Definitions of ISO/IEC TR 15504 Processes

The ISO/IEC TR 15504 processes, known as PRs, in each process category
can be formally defined by Expressions 8.4 – 8.8, and are illustrated in
Figures 8.2 – 8.6.

 PC1 � CUS1.1 // Acquire software product
|| CUS1.2 // Establish contract
|| CUS1.3 // Identify customer needs
|| CUS1.4 // Perform joint audits and reviews
|| CUS1.5 // Package, deliver, and install software
|| CUS1.6 // Support operation of software
|| CUS1.7 // Provide customer service
|| CUS1.8 // Assess customer satisfaction (8.4)

234 Part II Software Engineering Process System Modeling

A process diagram corresponding to the eight processes in the ISO/IEC TR
15504 customer-supplier (CUS) category, as defined in Expression 8.4, is
shown in Figure 8.2.

ISO/IEC 15504 PC1

Customer-Supplier Processes

CUS1.1

Acquire software
product

CUS1.2

Establish
contract

CUS1.3

Identify
customer needs

CUS1.6

Support operation
of software

CUS1.5

Package, deliver,
and install software

CUS1.4

Perform joint
audits and reviews

CUS1.7

Provide customer
service

CUS1.8

Assess customer
satisfaction

Figure 8.2 ISO/IEC TR 15504 process category 1 – the customer-supplier
(CUS) processes

A process diagram corresponding to the seven serial processes in the
ISO/IEC TR 15504 engineering (ENG) category, as defined in Expression
8.5, is shown in Figure 8.3.

 Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 235

PC2 _ ENG2.1 // Develop system requirements
; ENG2.2 // Develop software requirements
; ENG2.3 // Develop software design
; ENG2.4 // Implement software design
; ENG2.5 // Integrate and test software
; ENG2.6 // Integrate and test system
; ENG2.7 // Maintain system and software (8.5)

ISO/IEC 15504 PC2

Engineering Processes

ENG2.1
Develop system
requirements

ENG2.2
Develop software
requirements

ENG2.6
Integrate and
test system

ENG2.7.
Maintain system
and software

ENG2.3

Develop
software design

ENG2.5
Integrate and
test software

ENG2.4
Implement
software design

Figure 8.3 ISO/IEC TR 15504 process category 2 – the engineering
(ENG) processes

A process diagram corresponding to the eight processes in the ISO/IEC
TR 15504 project (PRO) category, as defined in Expression 8.6, is shown
in Figure 8.4.

236 Part II Software Engineering Process System Modeling

PC3 � PRO3.1 // Plan project life cycle
|| PRO3.2 // Establish project plan
|| PRO3.3 // Build project teams
|| PRO3.4 // Manage requirements
|| PRO3.5 // Manage quality
|| PRO3.6 // Manage risks
|| PRO3.7 // Manage resources and schedule
|| PRO3.8 // Manage subcontractors (8.6)

ISO/IEC 15504 PC3
Project Processes

PRO3.1

Plan project
life cycle

PRO3.2

Establish project
plan

PRO3.3

Build project
teams

PRO3.6

Manage
risk

PRO3.5

Manage
quality

PRO3.4

Manage
requirements

PRO3.7

Manage resources
and schedule

PRO3.8

Manage
subcontractors

Figure 8.4 ISO/IEC TR 15504 process category 3 – the project (PRO)
processes

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 237

A process diagram corresponding to the five processes in the ISO/IEC TR
15504 support (SUP) category, as defined in Expression 8.7, is shown in
Figure 8.5.

PC4 � SUP4.1 // Develop documentation

|| SUP4.2 // Perform configuration management

|| SUP4.3 // Perform quality assurance

|| SUP4.4 // Perform problem resolution

|| SUP4.5 // Perform peer reviews (8.7)

ISO/IEC 15504 PC4
Support Processes

SUP4.1

Develop
documentation

SUP4.2 Perform
configuration
management

SUP4.3

Perform quality
assurance

SUP4.5

Perform peer
reviews

SUP4.4

Perform problem
resolution

Figure 8.5 ISO/IEC TR 15504 process category 4 – the support (SUP)
processes

A process diagram corresponding to the seven processes in the ISO/IEC TR
15504 organization (ORG) category, as defined in Expression 8.8, is shown
in Figure 8.6.

238 Part II Software Engineering Process System Modeling

 PC5 � ORG5.1 // Engineer the business
|| ORG5.2 // Define the process
|| ORG5.3 // Improve the process
|| ORG5.4 // Perform training
|| ORG5.5 // Enable reuse
|| ORG5.6 // Provide software engineering environment
|| ORG5.7 // Provide work facilities (8.8)

ISO/IEC 15504 PC4

Organisation Processes

ORG5.1

Engineer the
business

ORG5.2

Define the
process

ORG5.3

Improve the
process

ORG5.6 Provide
software engineering
environment

ORG5.5

Enable
reuse

ORG5.4

Perform
training

ORG5.7

Provide work
facilities

Figure 8.6 ISO/IEC TR 15504 process category 5 – the organization (ORG)
processes

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 239

Detailed practices of each PR at BP level, which are documented in
Appendix C, can be described in the same way as above. Extending the
formal ISO/IEC TR 155504 process model onto the BP level can be taken as
an exercise for readers.

8.3 The ISO/IEC TR 15504 Process
 Assessment Model

The ISO/IEC TR 15504 process model was systematically introduced in
Section 8.2. This section explores the ISO/IEC TR 15504 process capability
model and process capability determination method. Both of the above form
the ISO/IEC TR 15504 process assessment model.

8.3.1 THE ISO/IEC TR 15504 PROCESS CAPABILITY
MODEL

This section describes the ISO/IEC TR 15504 process capability model,
which includes a practice performance scale, a process capability scale, and
a process capability scope definition.

8.3.1.1 Practice Performance Scale

A practice performance rating scale for the BPs in ISO/IEC TR 15504 is
defined in Table 8.3. Every BP is rated against each of the nine attributes as
described in Table 8.4 by using this rating scale.

Table 8.3
Practice Performance Scale of the BPs

Scale Description Rating threshold

4 (F) Fully achieved 86% - 100%

3 (L) Largely achieved 51% - 85%

2 (P) Partially achieved 16% - 50%

1 (N) Not achieved 0% - 15%

240 Part II Software Engineering Process System Modeling

8.3.1.2 Process Capability Scale

In the ISO/IEC TR 15504 capability dimension [ISO/IEC TR 15504-2
1998], a process capability scale is defined by capability levels with generic
measurement aids known as process attributes. The process attributes are
defined in ISO/IEC 15504-2 as below:

Definition 8.1: Process attributes are features of a process that can be
evaluated on a scale of achievement which provides a measure of the
capability of the process.

It is noteworthy that the process attributes are not intermediate capability
levels as are those of the quartiles in BOOTSTRAP. The process attributes
are designed as a set of generic measurements of process capability, or as
extensions of the definitions of the capability levels.

The process capability scale of ISO/IEC TR 15504 is defined at six
levels with nine process attributes as shown in Table 8.4. The ISO/IEC TR
15504 capability levels generally consist of two process attributes except
Level 1 (one attribute) and Level 0 (no attribute).

Table 8.4
The ISO/IEC TR 15504 Process Capability Model

ID. Capability
Level

(CL[i])

Process
Attribute

(PAij)

Description

CL[0] Incomplete There is general failure to attain the purpose of the
process. There are little or no easily identifiable work
products or outputs of the process.

CL[1] Performed The purpose of the process is generally achieved. The
achievement may not be rigorously planned and tracked.
Individuals within the organization recognize that an
action should be performed, and there is general agreement
that this action is performed as and when required. There
are identifiable work products for the process, and these
testify to the achievement of the purpose.

PA11 Process
performance

The extent to which the process achieves the process
outcomes by transforming identifiable input work products
to produce identifiable output work products.

CL[2] Managed The process delivers work products according to specified
procedures and is planned and tracked. Work products
conform to specified standards and requirements. The
primary distinction from the Performed Level is that the
performance of the process now delivers work products
that fulfil expressed quality requirements within defined
timescales and resource needs.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 241

PA21 Performance
management

The extent to which the performance of the process is
managed to produce work products that meet the defined
objectives.

PA22 Work product
management

The extent to which the performance of the process is
managed to produce work products that are appropriately
documented, controlled, and verified.

CL[3] Established The process is performed and managed using a defined
process based upon good software engineering principles.
Individual implementations of the process use approved,
tailored versions of standard, documented processes to
achieve the process outcomes. The resources necessary to
establish the process definition are also in place. The
primary distinction from the Managed Level is that the
process of the Established Level is using a defined process
that is capable of achieving its process outcomes.

PA31 Process
definition

The extent to which the performance of the process uses a
process definition based upon a standard process to
achieve the process outcomes.

PA32 Process
resource

The extent to which the process draws upon suitable
resources (for example, human resources and process
infrastructure) that are appropriately allocated to deploy
the defined process.

CL[4] Predictable The defined process is performed consistently in practice
within defined control limits to achieve its defined process
goals. Detailed measures of performance are collected and
analyzed. This leads to a quantitative understanding of
process capability and an improved ability to predict and
manage performance. Performance is quantitatively
managed. The quality of work products is quantitatively
known. The primary distinction from the Established
Level is that the defined process is now performed
consistently within defined limits to achieve its process
outcomes.

PA41 Process
measurement

The extent to which product and process goals and
measures are used to ensure that performance of the
process supports the achievement of the defined goals in
support of the relevant business goals.

PA42 Process
resource

The extent to which the process is controlled through the
collection, analysis, and use of product and process
measures to correct, where necessary, the performance of
the process to achieve the defined product and process
goals.

CL[5] Optimizing Performance of the process is optimized to meet current
and future business needs, and the process achieves
repeatability in meeting its defined business goals.
Quantitative process effectiveness and efficiency goals
(targets) for performance are established based on the
business goals of the organization. Continuous process
monitoring against these goals is enabled by obtaining
quantitative feedback, and improvement is achieved by
analysis of the results. Optimizing a process involves

242 Part II Software Engineering Process System Modeling

piloting innovative ideas and technologies and changing
noneffective processes to meet defined goals or objectives.
The primary distinction from the Predictable Level is that
the defined and standard processes now dynamically
change and adapt to effectively meet current and future
business goals.

PA51 Process
change

The extent to which changes to the definition,
management, and performance of the process are
controlled to achieve the relevant business goals of the
organization.

PA52 Continuous
improvement

The extent to which changes to the process are identified
and implemented to ensure continuous improvement in the
fulfillment of the relevant business goals of the
organization.

8.3.1.3 Process Capability Scope

The ISO/IEC TR 15504 process capability scopes are shown in Table 8.5.
Comparing Table 8.5 with Table 2.3, it is clear that ISO/IEC TR 15504
assesses process capability at the levels of BP, process, and project scope,
from the bottom, up against the process attributes and capability levels.

Table 8.5
Process Capability Scope of ISO/IEC TR 15504

Capability Scope Practice Process Project Organization

ISO/IEC TR
15504 terms

BPs Processes Project -

ISO/IEC TR
15504 method

Performance
rating

Capability level
with attributes

Process capability
profile

-

8.3.2 THE ISO/IEC TR 15504 PROCESS CAPABILITY
DETERMINATION METHODOLOGY

Using the formal definitions of the ISO/IEC TR 15504 process model and
process capability model developed in Sections 8.2 and 8.3.1, we can now
consider how to apply the ISO/IEC TR 15504 capability model to the
process model for the assessment of process capability at practice, process,
and project levels.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 243

8.3.2.1 Base Practice Performance Rating Method

Let rBP[PC,PR,s,i,j] be a rating of performance of the sth BP in process PR
of process category PC against attribute j at capability level i. Then
rBP[PC,PR,s,i,j] can be rated according to the practice performance scale as
defined in Table 8.3, i.e.:

 rBP[PC,PR,s,i,j] = 4, if the BP’s performance is fully satisfied
 = 3, if the BP’s performance is largely satisfied
 = 2, if the BP’s performance is partially satisfied
 = 1, if the BP’s performance is not satisfied (8.9)

Expression 8.9 indicates that BP rating against an attribute is a selection
from one of the attribute adequacy scales defined as fully, largely, partially,
or not adequate, respectively.

8.3.2.2 Process Capability Rating Method

The process capability rating method of ISO/IEC TR 15504 is relatively
complicated when compared to those of the other models. Process capability
rating in ISO/IEC TR 15504 can be described as the following steps:

• Process performance adequacy rating

• Process attribute rating

• Process capability determination

(a) Process performance adequacy rating

Assuming that PROC[PC,PR,i,j] is the adequacy of a process PR in the
category PC against the jth attribute at the ith level, process performance
adequacy can be determined by the following expression:

 PROC[PC,PR,i,j] = {ρF[PC,PR,i,j], ρL[PC,PR,i,j],
 ρP[PC,PR,i,j], ρN[PC,PR,i,j]}

 = {ρ4[PC,PR,i,j], ρ3[PC,PR,i,j],
 ρ2[PC,PR,i,j], ρ1[PC,PR,i,j]} (8.10)

where ρk[PC,PR,i,j], k=4,3,2,1, represents the corresponding summarized
percentages of process performance adequacy among the rated BPs,
NBP[PC,PR], contained in the process. The percentage of process
performance adequacy against attribute j at capability level i is defined
below:

244 Part II Software Engineering Process System Modeling

 ρF[PC,PR,i,j] = (nF[PC,PR,i,j] / NBP[PC,PR]) * 100%, k=4,3,2,1 (8.11)

where nk[PC,PR,i,j] is the number of BPs at the same performance scale k,
k= 4,3,2,1, as defined in Table 8.3, against attribute PAij.

(b) Process attribute rating

Using the distribution of process adequacy rated by Expression 8.11, a
process’s capability against the jth attribute at the ith level, PAi.j[PC,PR],
can be calculated according to the following expression:

 PAi.j[PC,PR] =
k =
∑

1

4

{k * ρk[PC,PR,i,j]} (8.12)

where … means a downward rounding of the assessment result to an
integer.

(c) Process capability determination

Process capability in ISO/IEC TR 15504, PCLproc[p], is defined as the
maximum achievement of a process’s maturity level, at which the attributes
may be largely (L, 3) or fully (F, 4) achieved, and at all lower level(s) the
attributes should be fully achieved, i.e.:

 PCLproc[p] = max {i | PAi,j ≥ 3 ∧ PAi-1, j = 4} (8.13)

where i is a capability level, i=1,2,...,5; and j a process attribute, j=1 or 2
except that jA� at Level 1.

When several process instances are assessed for the same process, an
aggregated process capability level can be derived. It is defined as a
mathematical mean of the values of the process instances. When m process
instances, m > 1, are assessed for process p, the capability level of the
process can be derived in the following way:

 PCL�proc[p] = 1

1
m

p

m

=
∑ PCLproc[p] (8.14)

where p is an index of the process instances.

The use of these expressions for ISO/IEC TR 15504 process assessment will
be demonstrated in Section 8.5 with a real-world example.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 245

8.3.2.3 Project Capability Determination Method

In the ISO/IEC TR 15504 model, assessment results at the level of project
scope are usually represented in a form of process profile, which illustrates
all processes vs. the capability levels by a 2-D chart.

To enable cross comparability and compatibility between the current
process system models, a project’s process capability level is defined as a
mathematical mean of all the process capabilities of the k, k=35, processes
defined in ISO/IEC TR 15504. That is, the capability level of a project j,
PCLproj[j], is determined by:

 PCLproj[j] = 1
k

p

k

=
∑

1

PCLproc[p] (8.15)

When the process capabilities are aggregated from m process instances, as
described in Expression 8.14, a variation of Expression 8.15 can be derived
as follows:

 PCLproj[j] = 1
k

p

k

=
∑

1

 PCL�proc[p] (8.16)

8.3.2.4 Organization Capability Determination Method

In the ISO/IEC TR 15504 model there is no defined capability level in the
scope of an organization. The rationale for this is that a 2-D process profile
is enough and might provide more details for presenting and characterizing
the process capability of a software development organization. However, to
ensure cross comparability and compatibility between the major process
system models, a method for deriving an organization’s capability level is
provided as a supplement in this subsection.

According to the method developed in Section 2.4.2.2, an organization’s
process capability level, PCLorg , can be defined as a mathematical mean of
those of n project’s capabilities derived by Expression 8.15 or 8.16, i.e.:

 PCLorg = 1

1
n

p

n

=
∑ PCLproj[p] (8.17)

Expression 8.17 indicates that the historical experience, which a software
development organization has accumulated in its practice of software
development in various projects, can be reflected into the final determination
of an organization’s process capability. It is recommended that n≥3 for a

246 Part II Software Engineering Process System Modeling

valid aggregating of an organization’s process capability level from those of
the projects that have been carried out in the organization.

Review Sections 8.2 and 8.3; it can be seen that the ISO/IEC TR 15504
develops the first 2-D process system model with fully independent process
and capability dimensions. The 2-D model completely separates a process
system and its capability measurement. This approach enables all processes
to perform at any of the process capability levels, and to be assessed against
each capability level with related attributes.

8.4 The ISO/IEC TR 15504 Algorithm

So far we have explored the ISO/IEC TR 15504 process model, process
capability model, and capability determination method. Using the models
and method we are already able to manually assess and calculate a software
project’s or an organization’s process capability in ISO/IEC TR 15504.

In order to describe the ISO/IEC TR 15504 methodology precisely, and
to enable mutual comparison and tool implementation, this section extends
the ISO/IEC TR 15504 process capability determination methodology into a
formal ISO/IEC TR 15504 algorithm.

8.4.1 DESCRIPTION OF THE ISO/IEC TR 15504
ALGORITHM

The ISO/IEC TR 15504 process capability determination method as defined
in Expressions 8.9 – 8.15 up to the scope of project can be formally
described in the following algorithm. An organization’s process capability
level can be easily aggregated according to Expression 8.17 when multiple
projects have been assessed.

Algorithm 8.1 The ISO/IEC TR 15504 process capability
 determination algorithm

Assume: PAi,j - The jth process attribute at Level i
 NPR[PC] - Number of processes in the category PC
 NBP[PC,PR] - Number of BPs in process PC.PR

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 247

 BP[PC,PR,s,i,j] - Adequacy of the sth BP in process PC.PR
 against the jth attribute at level i
 nk[PC,PR,I,j] - Number of fully/largely/partially/not
 adequate BPs of process PC.PR against
 the jth attribute at Level i
 ρk[PC,PR,i,j] - Percentage of fully/largely/partially/not

 adequate BPs of process PC.PR against
 attribute at Level i

 PA[PC,PR,i,j] - Capability level of process PC.PR of
 the jth attribute at Level i
 CL - A capability level
 PCLproc[PC,PR] - A capability level of process PC.PR
 PCLproj - A capability level of a project
Input: Sample indicators of processes’ existence and performance
Output: A process profile: PCLproc[PC,PR], and
 a project process capability level: PCLproj

Begin

// Step 1: Initialization

 // Assign numbers of processes in each category according to Table 8.2
 NPR[1] := 8;
 NPR[2] := 7;
 NPR[3] := 8;
 NPR[4] := 5;
 NPR[5] := 7;

 // Assign numbers of defined BPs in each PC.PR according to Table 8.2
 NPR[CUS, 1] := 5;
 NPR[CUS, 2] := 4;
 NPR[CUS, 3] := 3;
 NPR[CUS, 4] := 6;
 NPR[CUS, 5] := 7;
 NPR[CUS, 6] := 7;
 NPR[CUS, 7] := 4;
 NPR[CUS, 8] := 3;

 NBP[ENG, 1] := 4;
 NBP[ENG, 2] := 5;
 NBP[ENG, 3] := 4;
 NBP[ENG, 4] := 3;
 NBP[ENG, 5] := 6;

248 Part II Software Engineering Process System Modeling

 NBP[ENG, 6] := 5;
 NBP[ENG, 7] := 5;

 NBP[SUP, 1] := 5;
 NBP[SUP, 2] := 10;
 NBP[SUP, 3] := 4;
 NBP[SUP, 4] := 5;
 NBP[SUP, 5] := 6;
 NBP[SUP, 6] := 8;
 NBP[SUP, 7] := 5;
 NBP[SUP, 8] := 7;

 NBP[SUP, 1] := 5;
 NBP[SUP, 2] := 8;
 NBP[SUP, 3] := 5;
 NBP[SUP, 4] := 6;
 NBP[SUP, 5] := 8;

 NBP[ORG, 1] := 6;
 NBP[ORG, 2] := 13;
 NBP[ORG, 3] := 9;
 NBP[ORG, 4] := 4;
 NBP[ORG, 5] := 7;
 NBP[ORG, 6] := 4;
 NBP[ORG, 7] := 5;

// Step 2: Process attribute rating

 for PC:=1 to 5 do // the PCth process category
 for PR:=1 to NBP[PC,PR] do // the PC.PRth process
 begin
 for i:=1 to 5 do // the ith capability level
 for j:=1 to 2 do // the jth attribute at Level i
 begin
 if i=1 and j=2 then
 skip; // There is no defined attribute PA12

 nF[PC,PR,i,j]:= 0;
 nL[PC,PR,i,j]:= 0;
 nP[PC,PR,i,j]:= 0;
 nN[PC,PR,i,j]:=0;
 for s :=1 to NBP[PC, PR] do
 // Operation on each BP in the current
 // process PC.PR

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 249

 begin
 // 2.1 Rate each BP in PC.PR for PAij

 // (except PA12) according to the
 // performance rating scale in Table 8.3

case BP[PC,PR,s,i,j]
 // Count numbers of BPs at each
 // performance scale k, k=1,2,3,4
 4: nF[PC,PR,i,j]:= nF[PC,PR,i,j]+1;

 3: nL[PC,PR,i,j]:= nL[PC,PR,i,j]+1;
 2: nP[PC,PR,i,j]:= nP[PC,PR,i,j]+1;
 1: nN[PC,PR,i,j]:= nN[PC,PR,i,j]+1;
 end;
 end;

 // 2.2 Derive process performance adequacy
 // ratings according to Expression 8.11

 ρF[PC,PR,i,j]:= nF[PC,PR,i,j] / NBP[PC, PR];
 ρL[PC,PR,i,j]:= nL[PC,PR,i,j] / NBP[PC, PR];
 ρP[PC,PR,i,j]:= nP[PC,PR,i,j] / NBP[PC, PR];
 ρN[PC,PR,i,j]:= nN[PC,PR,i,j] / NBP[PC, PR];

 // 2.3 Calculate process attribute ratings
 // according to Expression 8.12

 PAij[PC,PR]:=
k =
∑

1

4

{ k * ρk[PC,PR,i,j};

 End;
 end;

// Step 3: Process capability determination

 for PC:=1 to 5 do
 for PR:=1 to N RP[PC] do
 begin
 if (PA11[PC,PR]= 4 ∧
 (PA21[PC,PR]= 4 ∧ PA22[PC,PR]= 4) ∧
 (PA31[PC,PR]= 4 ∧ PA32[PC,PR]= 4) ∧
 (PA41[PC,PR]= 4 ∧ PA42[PC,PR]= 4) ∧
 (PA51[PC,PR] ≥ 3 ∧ PA52[PC,PR] ≥ 3))
 then // Optimizing
 CL := 5
 else if (PA11[PC,PR]= 4 ∧

250 Part II Software Engineering Process System Modeling

 (PA21[PC,PR]= 4 ∧ PA22[PC,PR]= 4) ∧
 (PA31[PC,PR]= 4 ∧ PA32[PC,PR]= 4) ∧
 (PA41[PC,PR] ≥3 ∧ PA42[PC,PR] ≥3))

 then // Predictable
 CL := 4
 else if (PA11[PC,PR]= 4 ∧
 (PA21[PC,PR]= 4 ∧ PA22[PC,PR]= 4) ∧

 (PA31[PC,PR] ≥3 ∧ PA32[PC,PR] ≥3))
 then // Established
 CL := 3
 else if (PA 11[PC,PR]= 4 ∧
 (PA21[PC,PR] ≥3 ∧PA22[PC,PR] ≥3))
 then // Managed
 CL := 2
 else if PA11[PC,PR] ≥3
 then // Performed
 CL := 1
 else // Incomplete
 CL := 0

 // Save the capability level of process PC.PR into
 // the process profile buffer
 PCLproc[PC,PR] := CL;
 end;

// Step 4: Project capability determination

 k := 0;
 CL := 0;
 for PC:=1 to 5 do
 for PR:=1 to N PR[PC] do
 begin
 k:=k+1;
 CL:= CL + PCLproc[PC,PR]
 end;

 // Derive the capability level of the project
 PCLproj := int(CL / k); // to round the capability level to a lower integer

End Í

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 251

8.4.2 EXPLANATION OF THE ISO/IEC TR 15504
ALGORITHM

An ISO/IEC TR 15504 assessment according to Algorithm 8.1 is carried out
in four steps:

• Step 1: Initialization

• Step 2: Process attribute rating

 • Step 3: Process capability determination

• Step 4: Project capability determination

This subsection explains the main functions of Algorithm 8.1 for an
ISO/IEC TR 15504 process assessment.

8.4.2.1 Initialization

This step is designed to specify the number of BPs defined in ISO/IEC TR
15504. For obtaining a detailed configuration of BPs in the ISO/IEC TR
15504 process model, readers may refer to Table 8.2 and Appendix C.

8.4.2.2 Process Attribute Rating

This part of the algorithm can be divided into three substeps. The first
substep is to rate all BPs in each process against nine attributes in a 201 * 9
iteration. Then, the process performance adequacy ratings for each process
are derived. Finally, the process attribute ratings are calculated for the 35
processes against the nine process attributes calculated in Step 2.3.

(a) Step 2.1: BP performance rating

In this substep, all 201 BPs in 35 processes are rated against PAij, i = 1,2,
…,5 and j = 1, 2 (except PA12), according to the performance rating scale in
Table 8.3. The rating method for a group of BPs in a PC.PR against a level
attribute are identical as shown in algorithm Step 2.1, except that for
different PRs the numbers of BPs, NBP[PC,PR,Level,Attribute], may vary as
assigned in Step 1.

The basic function for BP rating for each process against an attribute is
to count the number of BPs that have the same adequacy rating of k,
k=4,3,2,1. After carrying out this substep, all 201 BPs should have been
assigned one of the four performance ratings for each of the nine attributes.

252 Part II Software Engineering Process System Modeling

(b) Step 2.2: Process performance adequacy rating

All process performance adequacy ratings are calculated in this substep
according to Expression 8.11. By doing this, we get the distributions of 4
kinds of BP performance adequacy against each attribute. This is a
preparation for deriving a process’ attribute rating by the BPs belonging to
it, as shown in the next substep.

(c) Step 2.3: Process attribute rating

All process attribute ratings are calculated in this step according to
Expression 8.12. By this step, each process’s capability against the nine
attributes at the six capability levels is determined.

8.4.2.3 Process Capability Determination

This step determines the maximum aggregated process capability level for
individual processes based on the attribute ratings obtained in Step 2. The
final capability level is determined according to Expression 8.13. When
completing this step, a process profile of all 35 processes is obtained.

8.4.2.4 Project Capability Determination

This step derives the process capability level of a project by calculating the
mathematical mean of all processes’ capabilities according to Expression
8.15. A process capability level for a project scope is an aggregation of the
process profile derived in Step 3.

8.4.3 ANALYSIS OF THE ISO/IEC TR 15504
ALGORITHM

The effort expended in conducting an ISO/IEC TR 15504 assessment
depends on its algorithm complexity. By examining the complexity of an
algorithm, the time spent in an assessment can be estimated quite accurately.

Reviewing the ISO/IEC TR 15504 algorithm in Subsection 8.4.1, it may
be observed that the algorithm complexity of ISO/IEC TR 15504,
c(ISO15504), is mainly determined by the number of BPs (NBP) and PRs
(NPR) that need to be rated individually against the nine attributes according
to Algorithm 8.1, Step 2, i.e.:

 c(ISO15504) = O((NBP+ NPR) * NPA)
 = (NBP+ NPR) * NPA (8.18)

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 253

where NBP is the number of BPs, NPR is the number of processes, and NPA

is the number of attributes. The unit of the algorithm complexity is “times
of BP/PR ratings,” or times of practice and process ratings.

As given in ISO/IEC TR 15504, NBP=201, NPR=35, and NPA= 9, the
total rating cost, or the algorithm complexity, for determining a capability
level in the project scope in ISO/IEC TR 15504 is:

 c(ISO15504) = O((NBP+ NPR) * NPA)
 = (NBP+ NPR) * NPA

 = (201 + 35) * 9
 = 2124 [times of BP/PR ratings]

This data shows that ISO/IEC TR 15504 provides the most subtle and yet
most complicated process assessment method among the current models.
There is a certain range of factors between an algorithm’s complexity and
the person-days needed for an assessment. Empirical data for relating the
algorithm complexity to person-days expended in an ISO/IEC TR 15504
process assessment will be discussed in Chapter 12.

8.5 A Sample ISO/IEC TR 15504
Assessment

The capability rating framework and the capability determination algorithm
of ISO/IEC TR 15504 have been formally described in Sections 8.3 and 8.4.
This section demonstrates how to apply the ISO/IEC TR 15504 expressions
and algorithm to quantitatively determine a sample software development
organization’s process capability level in ISO/IEC TR 15504.

8.5.1 BP PERFORMANCE RATING IN ISO/IEC
 TR 15504

A set of detailed ratings of the 201BPs has been listed in Appendix C, where
the raw rating data {4,3,2,1} is identical to the ISO/IEC TR 15504 BP
rating scale {4(F),3(L),2(P),1(N)} as defined in Table 8.3.

254 Part II Software Engineering Process System Modeling

A macro BP rating value as 4(F), 3(L), 2(P), or 1(N) can be mapped
onto the detailed BP attribute ratings as shown in Table 8.6. Alternatively,
the BP attribute ratings can be obtained by directly applying Table 8.3 for a
BP against the nine attributes.

Table 8.6
Mapping between Macro BP Rating and BP Attribute Ratings

BP Attribute Rating BP Macro Rating

(PAi.j) 4 (F) 3 (L) 2 (P) 1 (N)

PA5.2 4 2 1 1

PA5.1 4 2 1 1

PA4.2 4 3 2 1

PA4.1 4 3 2 1

PA3.2 4 4 3 1

PA3.1 4 4 3 1

PA2.2 4 4 4 1

PA2.1 4 4 4 1

PA1.1 4 4 4 1

Table 8.6 shows that in case a BP’s macro rating value is BP =3(L), its
attribute rating pattern is BP{PA1.1, PA2.1, PA2.2, PA3.1, PA3.2, PA4.1, PA4.2,
PA5.1, PA5.2} = BP{4, 4, 4, 4, 4, 3, 3, 2, 2}. When BP=2 (P), BP{PA1.1,
PA2.1, PA2.2, PA3.1, PA3.2, PA4.1, PA4.2, PA5.1, PA5.2} = BP{4, 4, 4, 3, 3, 2,
2, 1, 1}. Especially when BP=4 or BP=1, the BP attribute ratings are all 4
or 1, respectively.

8.5.2 PROCESS ATTRIBUTE RATING IN
 ISO/IEC TR 15504

With all BPs rated against the nine attributes as defined in Table 8.6, and by
Expressions 8.9 and 8.11, a process consisting of these BPs can now be rated
against the attributes as well.

For example, process ENG.1 in the ISO/IEC TR 15504 has four BPs
identified as BP[PC.PR.s]: {BP[2.1.1], …, BP[2.1.4]}. The macro rating
values of these BPs are {4, 4, 3, 2} or {F, F, L, P}, respectively in Appendix
C. By using the BP macro rating values, we can now show, via Table 8.7,
how a process capability rating be derived.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 255

Table 8.7
A Process Rating Example: ENG.1

Level BP Performance Rating Process
Adequacy Rating

Process
Attribute Rating

(PAi.j) BP[ENG,
1,1] = 4 F

BP[ENG,
1,2] = 4 F

BP[ENG,
1,3] = 3 L

BP[ENG,
1,4] = 2 P

PROC
[ENG,1,i,j]

PAi.j[ENG, 1]

PA5.2 4 4 2 1 [ρ4,ρ3,ρ2,ρ1] =
[50%,0,25%,25%]

4*50%+3*0+2*25%
+1*25%
= 2.75 = 2 (P)

PA5.1 4 4 2 1 [50%,0,25%,25%] 2.75 = 2 (P)

PA4.2 4 4 3 2 [50%,25%,25%,0] 3.25 = 3 (L)

PA4.1 4 4 3 2 [50%,25%,25%,0] 3.25 = 3 (L)

PA3.2 4 4 4 3 [75%,25%,0,0] 3.75 = 3 (L)

PA3.1 4 4 4 3 [75%,25%,0,0] 3.75 = 3 (L)

PA2.2 4 4 4 4 [100%,0,0,0] 4.0 = 4 (F)

PA2.1 4 4 4 4 [100%,0,0,0] 4.0 = 4 (F)

PA1.1 4 4 4 4 [100%,0,0,0] 4.0 = 4 (F)

Methods Table 8.6 Table 8.6 Table 8.6 Table 8.6 Expression 8.10 Expression 8.12

Referring to Algorithm 8.1, Table 8.7 shows three steps to derive a set of
attribute ratings for a process as follows:

a. To obtain the BP attribute ratings according the method described in
Table 8.6

b. To derive the process adequacy ratings by Expression 8.10

c. To calculate the process attribute ratings according to
Expression 8.12

The above steps fully correspond to Steps 2.1 through 2.3 in Algorithm 8.1.
Similarly, all 35 processes of ISO/IEC TR 15504 in the five categories

can be rated against the nine attributes as summarized below.

8.5.2.1 Customer-Supplier Process Category

The attribute ratings of the eight processes in the customer-supplier category
(CUS.1 – CUS.8) are derived as in Table 8.8.

256 Part II Software Engineering Process System Modeling

Table 8.8
Derived Process Attribute Ratings in the Customer-Supplier Category

PAi.j CUS.1 CUS.2 CUS.3 CUS.4 CUS.5 CUS.6 CUS.7 CUS.8
PA5.2 2 (P) 2 (P) 3 (L) 1 (N) 3 (L) 2 (P) 1 (N) 1 (N)

PA5.1 2 (P) 2 (P) 3 (L) 1 (N) 3 (L) 2 (P) 1 (N) 1 (N)

PA4.2 2 (P) 3 (L) 4 (F) 2 (P) 4 (F) 3 (L) 2 (P) 3 (L)

PA4.1 2 (P) 3 (L) 4 (F) 2 (P) 4 (F) 3 (L) 2 (P) 3 (L)

PA3.2 2 (P) 3 (L) 4 (F) 2 (P) 4 (F) 3 (L) 2 (P) 3 (L)

PA3.1 2 (P) 3 (L) 4 (F) 2 (P) 4 (F) 3 (L) 2 (P) 3 (L)

PA2.2 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 4 (F) 4 (F) 4 (F)

PA2.1 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 4 (F) 4 (F) 4 (F)

PA1.1 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 4 (F) 4 (F) 4 (F)

8.5.2.2 Engineering Process Category

The attribute ratings of the seven processes in the engineering category
(ENG.1 – ENG.7) are derived as in Table 8.9.

Table 8.9
Derived Process Attribute Ratings in the Engineering Category

PAi.j ENG.1 ENG.2 ENG.3 ENG.4 ENG.5 ENG.6 ENG.7
PA5.1 2 (P) 2 (P) 2 (P) 1 (N) 1 (N) 4 (F) 2 (P)

PA5.2 2 (P) 2 (P) 2 (P) 1 (N) 1 (N) 4 (F) 2 (P)

PA4.2 3 (L) 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 3 (L)

PA4.1 3 (L) 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 3 (L)

PA3.2 3 (L) 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 3 (L)

PA3.1 3 (L) 4 (F) 4 (F) 4 (F) 3 (L) 4 (F) 3 (L)

PA2.2 4 (F) 4 (F) 4 (F) 4 (F) 4 (F) 4 (F) 4 (F)

PA2.1 4 (F) 4 (F) 4 (F) 4 (F) 4 (F) 4 (F) 4 (F)

PA1.1 4 (F) 4 (F) 4 (F) 4 (F) 4 (F) 4 (F) 4 (F)

It is noteworthy that in Table 8.9 we have taken process ENG.1 as a detailed
example in Table 8.7 for demonstrating how these process attribute ratings
are derived.

8.5.2.3 Project Process category

The attribute ratings of the eight processes in the project category (PRO.1 –
PRO.8) are derived as in Table 8.10.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 257

Table 8.10
Derived Process Attribute Ratings in the Project Category

PAi.j PRO.1 PRO.2 PRO.3 PRO.4 PRO.5 PRO.6 PRO.7 PRO.8

PA5.2 3 (L) 3 (L) 1 (N) 1 (N) 2 (P) 1 (N) 2 (P) 2 (P)

PA5.1 3 (L) 3 (L) 1 (N) 1 (N) 2 (P) 1 (N) 2 (P) 2 (P)

PA4.2 4 (F) 3 (L) 2 (P) 3 (L) 4 (L) 2 (P) 4 (F) 3 (L)

PA4.1 4 (F) 3 (L) 2 (P) 3 (L) 4 (L) 2 (P) 4 (F) 3 (L)

PA3.2 4 (F) 3 (L) 2 (P) 3 (L) 4 (L) 2 (P) 4 (F) 3 (L)

PA3.1 4 (F) 3 (L) 2 (P) 3 (L) 4 (L) 2 (P) 4 (F) 3 (L)

PA2.2 4 (F) 4 (F) 4 (F) 4 (F) 4 (L) 3 (L) 4 (F) 4 (F)

PA2.1 4 (F) 4 (F) 4 (F) 4 (F) 4 (L) 3 (L) 4 (F) 4 (F)

PA1.1 4 (F) 4 (F) 4 (F) 4 (F) 4 (L) 3 (L) 4 (F) 4 (F)

8.5.2.4 Support Process Category

The attribute ratings of the five processes in the support category (SUP.1 –
SUP.5) are derived as in Table 8.11.

Table 8.11
Derived Process Attribute Ratings in the Support Category

PAi-j SUP.1 SUP.2 SUP.3 SUP.4 SUP.5

PA5-2 2 (P) 3 (L) 2 (P) 2 (P) 1 (N)

PA5-1 2 (P) 3 (L) 2 (P) 2 (P) 1 (N)

PA4-2 4 (F) 4 (F) 4 (F) 3 (L) 3 (L)

PA4-1 4 (F) 4 (F) 4 (F) 3 (L) 3 (L)

PA3-2 4 (F) 4 (F) 4 (F) 3 (L) 3 (L)

PA3-1 4 (F) 4 (F) 4 (F) 3 (L) 3 (L)

PA2-2 4 (F) 4 (F) 4 (F) 4 (F) 4 (F)

PA2-1 4 (F) 4 (F) 4 (F) 4 (F) 4 (F)

PA1-1 4 (F) 4 (F) 4 (F) 4 (F) 4 (F)

8.5.2.5 Organization Process Category

The attribute ratings of the seven processes in the organization category
(ORG.1 – ORG.7) are derived as in Table 8.12.

258 Part II Software Engineering Process System Modeling

Table 8.12
Derived Process Attribute Ratings in the Organization Category

PAi.j ORG.1 ORG.2 ORG.3 ORG.4 ORG.5 ORG.6 ORG.7

PA5.2 2 (P) 1 (N) 1 (N) 3 (L) 1 (N) 3 (L) 2 (P)

PA5.1 2 (P) 1 (N) 1 (N) 3 (L) 1 (N) 3 (L) 2 (P)

PA4.2 3 (L) 3 (L) 2 (P) 4 (F) 2 (P) 3 (L) 3 (L)

PA4.1 3 (L) 3 (L) 2 (P) 4 (F) 2 (P) 3 (L) 3 (L)

PA3.2 3 (L) 3 (L) 2 (P) 4 (F) 2 (P) 3 (L) 3 (L)

PA3.1 3 (L) 3 (L) 2 (P) 4 (F) 2 (P) 3 (L) 3 (L)

PA2.2 3 (L) 3 (L) 3 (L) 4 (F) 3 (L) 4 (F) 4 (F)

PA2.1 3 (L) 3 (L) 3 (L) 4 (F) 3 (L) 4 (F) 4 (F)

PA1.1 3 (L) 3 (L) 3 (L) 4 (F) 3 (L) 4 (F) 4 (F)

8.5.3 PROCESS CAPABILITY DETERMINATION IN
ISO/IEC TR 15504

When all process attribute ratings have been obtained as shown in Tables
8.8 through 8.12, the process capability levels of the 35 processes can then
be derived individually according to Expression 8.13.

For example, process ENG.1 can be calculated as follows:

 PCLproc[ENG.1] = max { i | PAi.j ≥ 3 ∧ PAi-1.j = 4}, j=1,2

 = max {3 | (PA3.1 = 3 ∧ PA3.2 =3) ∧
 (PA2.1 = 4 ∧ PA2.2 =4)}

 = 3

A derived process capability profile of all 35 processes in this ISO/IEC TR
15504 assessment is given in Figure 8.7.

8.5.4 PROJECT CAPABILITY DETERMINATION IN
ISO/IEC TR 15504

Substituting the individual process capability levels shown in Figure 8.6 into
Expression 8.15, the project capability of the sample software development
organization can be aggregated as follows:

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 259

0

1

2

3

4

5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 1 2 3 4 5 6 7

CUS ENG RPO SUP ORG

 Process

Figure 8.7 Process capability profile of a project in ISO/IEC TR 15504

 PCL proj [j] = 1
k

p

k

=
∑

1

 PCL proc [p]

 = 1 / 35
p=
∑

1

35

 PCL proc [p]

 = 1 / 35 * 109
 = 3.114
 = 3

Thus, the sample project’s process capability is determined to be Level 3, the
established process capability level, in ISO/IEC TR 15504.

8.6 Applications of ISO/IEC TR 15504

In the previous sections we explored the ISO/IEC TR 15504 theory and
methodology for process system modeling and assessment. This section
analyzes the usability of ISO/IEC TR 15504 in software engineering process
system establishment, assessment, and improvement. In order to present
both sides of the coin, the limitations of ISO/IEC TR 15504 in some aspects
of software engineering applications are discussed using the body of
empirical and theoretical studies of ISO/IEC TR 15504.

260 Part II Software Engineering Process System Modeling

8.6.1 ISO/IEC TR 15504 FOR SOFTWARE PROCESS
SYSTEM ESTABLISHMENT

ISO/IEC TR 15504 develops the first 2-D process system model with fully
independent process dimension and capability dimension. The 2-D model
completely separates a process system and its capability measurement. This
approach enables all processes to perform at any process capability level,
and to be assessed against each capability level with related attributes. As a
result, the processes and BPs have no longer been assigned a preallocated
and fixed priority as in the 1-D process models.

From a structural view, the interrelationships of the ISO/IEC TR 15504
processes are relatively loosely defined. How the 5 process categories are
synchronized within a software development organization is not addressed.
It is also found that the domain of the ISO/IEC TR 15504 process model
may need to be expanded significantly in order to provide a broad coverage
and, thus, to increase compatibility with the existing process models.

8.6.2 ISO/IEC TR 15504 FOR SOFTWARE PROCESS
 SYSTEM ASSESSMENT

ISO/IEC TR 15504 develops a refined process capability scale with a set of
nine generic process attributes at six capability levels. It presents a process
assessment result by a 2-D process profile. In an assessment, ISO/IEC TR
15504 rates every process individually against the attributes, and from these
the process profile and capability level are derived.

This approach can avoid the drawbacks of preassigning and grouping
processes into different capability levels as is the case for CMM and
BOOTSTRAP. This means any process can be and may be practiced at any
capability level naturally, so that a software development organization is
motivated to improve any process that has not yet achieved the expected
capability level. Therefore, the ISO/IEC TR 15504 approach provides more
flexibility and tailorability for a software development organization to
prioritize its special needs in process improvement based on its specific
circumstances.

However, in the ISO/IEC TR 15504 capability dimension, it is quite
difficult to identify a set of generic process attributes that could be
universally applicable for all the processes modeled in the process
dimension. Therefore, it is found that some process attributes in the
capability dimension are overlapped with certain processes in the process
dimension. For instance, in some cases, the assessors have to use
management and/or documentation attributes as a yardstick to measure the

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 261

activities of management and/or documentation processes. This might well
cause some logical confusion in practice.

The assessment complexity of ISO/IEC TR 15504 is quite high.
Therefore, the cost of an ISO/IEC TR 15504 assessment would be much
higher than those of the other process models.

It is noteworthy that ISO/IEC TR 15504 has not defined capability
levels for the organization scope, nor aggregated project capability levels.
This may cause some incompatibility in relating assessment results with
other models.

8.6.3 ISO/IEC TR 15504 FOR SOFTWARE PROCESS
 SYSTEM IMPROVEMENT

ISO/IEC TR 15504 adopts the same assessment-based process improvement
methodology as that of CMM and BOOTSTRAP. Based on the 2-D process
framework and the representation of process capability in a 2-D process
profile, a software engineering process system in an organization may be
precisely analyzed and measured. This enables more effective process
improvement according to the ISO/IEC TR 15504 model.

8.7 Summary

This chapter has introduced a formal and rigorous approach to the
description of ISO/IEC TR 15504. CSP-like process algebra has been
adopted for presenting the ISO/IEC TR 15504 process model, and
mathematical and algorithmic methods have been applied for presenting the
ISO/IEC TR 15504 process capability determination methodology. Using
these formal techniques, ISO/IEC TR 15504 has been systematically
described and analyzed by contrasting with the unified process system
framework developed in Part I. An empirical case study has been provided
for demonstrating the method and approach in conducting an ISO/IEC TR
15504 assessment.

The basic knowledge structure of this chapter is as follows:

262 Part II Software Engineering Process System Modeling

Chapter 8. The ISO/IEC TR 15504 Model

• General
 − Purposes of this chapter

 − To review the history and background of ISO/IEC TR
 15504 development

 − To describe the ISO/IEC TR 15504 process model and
 taxonomy

 − To describe the ISO/IEC TR 15504 capability model and
 capability determination methodology

 − To formally describe the ISO/IEC TR 15504 process model,
 and to algorithmically describe the ISO/IEC TR 15504
 process capability determination method

 − To develop an ISO/IEC TR 15504 algorithm for software
 process assessment

 − To explain how the ISO/IEC TR 15504 algorithm can be
 used in process assessment and how its algorithm
 complexity is estimated

 − To demonstrate a case study of a practical ISO/IEC TR
 15504 assessment by using the ISO/IEC TR 15504
 algorithm

 − To discuss the usability of ISO/IEC TR 15504 in process
 establishment, assessment, and improvement in software
 engineering

 − ISO/IEC TR 15504 philosophy and background
 − Philosophy
 − An innovative international process system
 assessment model
 − A set of structured capability measurement for total
 software life cycle processes
 − Main sources of thoughts absorbed in ISO/IEC TR 15504
 − Process capability rating methodology: from CMM
 − The 2-D process assessment framework: inspired from
 BOOTSTRAP attribute-based profile representation
 for process capability
 − Process dimension: from ISO 12207, CMM,

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 263

 BOOTSTRAP, Trillium, ISO 9001, etc.
 − Process capability dimension: quality system
 management principles as presented in ISO 9001 and
 CMM

 • The ISO/IEC TR 15504 process model
− Taxonomy of ISO/IEC TR 15504 process model

− Process scopes
− Size of domain of each scope

 − Framework of ISO/IEC TR 15504 process model
− Structure of ISO/IEC TR 15504 process model
− Definitions of BPs in ISO/IEC TR 15504

 − Formal description of ISO/IEC TR 15504 process model
− ISO/IEC TR 15504 abstract process patterns
− ISO/IEC TR 15504 process diagrams
− Interpretation and illustration of the process algebra
 expressions

 • The ISO/IEC TR 15504 process assessment model
− ISO/IEC TR 15504 process capability model

− Configuration
 − 5 process categories (PCs)
 − 35 processes (PRs)
 − 201 practices (BPs)
− BP rating scale
− Process rating scale

− ISO/IEC TR 15504 process capability determination
 Methodology

 − Formal description of ISO/IEC TR 15504 capability
 determination method
 − Meanings of expressions and their operation

 − Common features with the methodology developed in the
 unified process framework in Part I
 − Differences from the methodology developed in the
 unified process framework in Part I

 • The ISO/IEC TR 15504 algorithm
− Algorithm 8.1: ISO/IEC TR 15504 process assessment
− Explanation of Algorithm 8.1
− Relation between Algorithm 8.1 and the capability

264 Part II Software Engineering Process System Modeling

 determination expressions defined in Section 8.3.2
− The ISO/IEC TR 15504 algorithm complexity and the main
 factors affecting it

 • A sample ISO/IEC TR 15504 process assessment
− Understand assessment data documented in Appendix C

 − Manual process assessment in ISO/IEC TR 15504
 − Algorithm-based assessment in ISO/IEC TR 15504

− Interpretation of assessment results

 • Usability of ISO/IEC TR 15504
− Merits and demerits in process system establishment

 − Merits and demerits in process system assessment
 − Merits and demerits in process system improvement

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• The design philosophy behind ISO/IEC TR 15504 is to develop a set
of structured capability measurements for all software lifecycle
processes and for all parties, such as software developers, acquirers,
contractors, and customers. As analyzed earlier, the software
engineering process system seems to be one of the most complicated
engineering systems. The search for useful and valid processes has
much further to go, especially when considering that ISO/IEC TR
15504 has only identified 35 processes and 201 base practices in the
model.

• Major contributions of ISO/IEC TR 15504 are as follows:

– It is the first 2-D process system model with a fully independent
process dimension and capability dimension. As a result, the
processes and/or practices have no longer been assigned a pre-
allocated and fixed priority.

– A process assessment result is represented by a 2-D process
profile.

– There is a refined process capability scale with a set of nine
generic process attributes at six capability levels.

– A set of conformance criteria has been defined for enabling
process models to be compared and to meet common
requirements.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 265

• Major open issues of ISO/IEC TR 15504 are perceived as follows:

– It is found that the domain of the ISO/IEC TR 15504 processes
may need to be expanded significantly in order to provide a
broader coverage and to increase compatibility with the existing
process models.

– In ISO/IEC TR 15504 development and applications, there
were difficulties in making the nine process attributes
universally generic for all processes and BPs. As a result, it is
often found that some of the attributes used as a rating scale
were not suitable or applicable to some of the processes and BPs
in assessment.

– The capability dimension of ISO/IEC TR 15504 has grown
relatively complicated. It also introduced some extent of
overlaps with the process dimension. This indicates there is a
need to further explore the roles and relationships of the two
dimensions in process system modeling.

– The assessment complexity of ISO/IEC TR 15504 is quite high
with regard to the other process models. This means the cost of
an ISO/IEC TR 15504 assessment would be much higher than
that of the other process models.

• An ISO/IEC TR 15504 algorithm has been elicited in order to
precisely and systematically interpret the ISO/IEC TR 15504
methodology, and to quantitatively compare the complexity of the
ISO/IEC TR 15504 method with the others.

• Technically and historically, ISO/IEC TR 15504 has absorbed the
basic capability rating scale from CMM; the software engineering
process activities identified in ISO/IEC 12207, Trillium, and CMM;
the attribute-based profile representation for process capability from
BOOTSTRAP; and the general quality system management
experience from ISO 9001.

This chapter has established a basis for understanding and analyzing
ISO/IEC TR 15504 as a paradigm of the unified software engineering
process system framework. Relationships of ISO/IEC TR 15504 with other
process system models will be discussed in Part III of this book. Applications
of ISO/IEC TR 15504 in process-based software engineering and case
studies will be provided in Parts IV – VI.

266 Part II Software Engineering Process System Modeling

Annotated References

An ISO/IEC standard development is usually divided into three phases:

• DTR – draft technical report

• TR – Technical report

• STD – Formal standard

ISO/IEC TR 15504 (Parts 1 – 9) were released in 1998. The DTR 15504
(Parts 1 – 9) V.2.0 were released in 1997. The material in this chapter
relates to both TR and DTR 15504. Generally, the capability dimension of
this chapter has been aligned to TR 15504, while the process dimension of
this chapter is related to DTR 15504 for reasons of benchmarking data
compatibility. The ISO 15504 algorithm was independently developed by the
authors to be suitable for the latest version of ISO/IEC TR 15504.

Dorling (1993/95) reviewed the initiative and history of the SPICE
project and the early development phases of ISO/IEC TR 15504. Official
documents on the standard’s requirements and specifications were in
ISO/IEC JTC1/SC7 N944R (1992), N016R (1993b), and N017R (1993a).
Route (1995) highlighted the technical issues in ISO/IEC TR 15504
development. Kitson (1996) related the ISO/IEC TR 15504 framework and
ESI approach to software process assessment.

Wang et al. (1997a/b/99e) presented a series of comparative analyses of
relationships and mutual mappings between major process models including
ISO/IEC TR 15504. Wang et al. (1999g) reported a conformance analysis
case study between a tailored CMM and ISO/IEC TR 15504.

For a more experienced report on ISO/IEC TR 15504, see SPICE Phase
2 Trial Report [SPICE Project, 1998]. For the latest development of ISO/IEC
TR 15504 extensions for acquisition processes, see Dorling, Wang et al.
(1999b). This extension is based on a European research project, PULSE.

Chapter 8 The ISO/IEC TR 15504 (SPICE) Model 267

Questions and Problems

8.1 Explain the design philosophy behind the development of ISO/IEC TR
15504.

8.2 Using your own words, briefly describe the structure of the ISO/IEC
TR 15504 process model and its taxonomy.

8.3 Use process algebra to derive a formal ISO/IEC TR 15504 process
model based on the process diagrams given in Figures 8.1 – 8.6. (Try
not to copy Expressions 8.2 – 8.8 before you finish.)

8.4 Using your own words, briefly describe the ISO/IEC TR 15504 process
capability model and capability determination methodology.

8.5 Can you repeat the sample ISO/IEC TR 15504 assessment based on the
data provided in Appendix C and derive the same capability level as
that of the example shown in Section 8.5?

8.6 Try to conduct an ISO/IEC TR 15504 exercise assessment for a
software project with which you are familiar, and do so according to
the formal approach presented in this chapter.

8.7 If a project’s 35 processes have 20 processes at level 2, 10 at level 3,
and 5 at level 4, what is its ISO/IEC TR 15504 capability level?

8.8 Based on Ex. 8.7, analyze the advantages and disadvantages of the
capability level approach and process profile approach for presenting
process capability.

8.9 Most of the established software development organizations are
currently considered to be located between ISO/IEC TR 15504 Levels 1
and 3. Observe the ISO/IEC TR 15504 process model, do you think
those organizations could produce reasonably good software? Why?

8.10 Try to organize a small software project with at least three persons.
Then do a self-assessment for this project and report your capability
level in ISO/IEC TR 15504.

268 Part II Software Engineering Process System Modeling

8.11 Try to write an ISO/IEC TR 15504 assessment report for Ex. 8.6 or
8.10 and describe the following:

• Purpose(s) of the ISO/IEC TR 15504 assessment
• The ISO/IEC TR 15504 model and methodology you adopted
• The input of the ISO/IEC TR 15504 assessment
• The procedure of the ISO/IEC TR 15504 assessment
• The output of the ISO/IEC TR 15504 assessment
• The effort you spend for the ISO/IEC TR 15504 assessment

 • Experience you gained in the ISO/IEC TR 15504 assessment
• Conclusions

8.12 Try to write an ISO/IEC TR 15504 process improvement plan based on
the assessment report developed in Ex. 8.11. In the process
improvement plan, describe the following:

• Purpose(s) of the ISO/IEC TR 15504 process improvement plan
• Brief introduction of the ISO/IEC TR 15504 assessment results
• Analyze strengths of the organization’s process capability according

to ISO/IEC TR 15504
• Analyze weaknesses of the organization’s process capability

according to ISO/IEC TR 15504
• Recommend a process improvement plan to address the process

weaknesses or for moving to a higher ISO/IEC TR 15504 capability
level

• Explain the benefit of implementing this process improvement plan
and how well your plan will meet the organization’s business goal

• Estimate the costs of this process improvement effort
• Predict the risks for executing the process improvement plan that

 you have suggested
 • Conclusions

8.13 What is the usage of ISO/IEC TR 15504 in software engineering
process establishment, assessment, and improvement?

269

Chapter 9

THE SOFTWARE
ENGINEERING PROCESS

REFERENCE MODEL:
SEPRM

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

5.
The CMM
Model

9.1 Introduction 9.5 A sample SEPRM assessment
9.2 The SEPRM process model 9.6 Applications of SEPRM
9.3 The SEPRM process assessment model 9.7 Summary
9.4 The SEPRM algorithm Annotated references

6.
The ISO 9001
Model

7.
The BOOTSTRAP
Model

9.
The SEPRM
Model

8.
The ISO/IEC TR
15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

270 Part II Software Engineering Process System Modeling

In a coherent effort toward process model integration, unification, and
formalization, the Software Engineering Process Reference Model (SEPRM)
has been developed using a set of deeply investigated foundations and well-
structured framework as described in Part I of this book. SEPRM provides
an integrated and unified process system methodology for a software
development organization. This chapter describes the SEPRM model,
including its process model, process capability model, and process capability
determination methodology.

A rigorous approach is adopted in the formal description of SEPRM.
The process model of SEPRM is described by process algebra. The SEPRM
capability determination method is described by an SEPRM algorithm. A
sample assessment is provided in order to demonstrate how an SEPRM-
based process assessment is carried out in practice. The usability of SEPRM
is discussed and relations with the theoretical and empirical foundations
throughout the book are summarized.

The objectives of this chapter are as follows:

• To review the history and background of SEPRM development

• To describe the SEPRM process model and taxonomy

• To describe the SEPRM capability model and capability
determination methodology

• To formally describe the SEPRM process model and to
algorithmically describe the SEPRM process capability
determination method

• To develop an SEPRM algorithm for software process assessment

• To explain how the SEPRM algorithm might be used in process
assessment and how its algorithm complexity is estimated

• To demonstrate a case study of a practical SEPRM assessment by
using the SEPRM algorithm

• To discuss the usability of SEPRM in process establishment,
assessment, and improvement in software engineering

Chapter 9 The SEPRM Model 271

9.1 Introduction

The philosophy of SEPRM is to provide a comprehensive and integrated
process system reference model for process-based software engineering.
SEPRM is a software engineering process system model that implements the
full features of the unified process framework developed in Part I, and that
integrates the advantages of the existing process models.

This chapter provides a formal description of SEPRM in accordance
with the unified process system framework developed in Part I. The
philosophy and rationales of SEPRM are reviewed in Section 9.1. A
framework and taxonomy of the SEPRM process model are introduced in
Section 9.2. The SEPRM capability model and process capability
determination method are described in Section 9.3. Based on this, an
SEPRM process assessment algorithm is developed and an example of
SEPRM assessment is provided in Sections 9.4 and 9.5, respectively.
Finally, the usability of SEPRM is discussed in Section 9.6.

9.1.1 OVERVIEW

As analyzed in Chapters 5 – 8 and contrasted in Appendix C, the
current process models emphasize differing areas of an entire software
process domain. Comparing current models with the unified process system
framework developed in Part I, it is noteworthy that a number of essential
areas in process deployment, establishment, modeling, analysis, assessment,
and improvement have not been covered by the current models. The
following major issues have been especially identified in research and
practices:

• Lack of formalization in modeling and in description of algorithms
in order to establish solid foundations for process-based software
engineering.

• Lack of a super process model for completeness. The weak and
sparse sample points on practices and processes may result in
substantial distortion of an organization’s process capability.

• Lack of quantitative benchmarks showing empirical attributes of
processes, practices, and their selection criteria.

272 Part II Software Engineering Process System Modeling

• Lack of consideration of compatibility and transformability.

There is a strong argument demanding a process system reference model
that is designed to solve the above problems. A new software engineering
process reference model (SEPRM) will now be explored on the basis of Part
I where the foundations of the software process system have been
investigated and the unified process system framework has been developed.
The SEPRM model demonstrates a general view of what a complete process
system model should contain in accordance with the unified process
framework. SEPRM provides the means to integrate and unify the current
process models, such as CMM, ISO 9001, BOOTSTRAP, and ISO/IEC
15504, by a well-founded process framework, a benchmarked superset of
base process activities (BPAs), and a stable and mutually transformable
capability determination algorithm.

The theoretical value of SEPRM is in the way it:

• Establishes a complete set of software engineering processes and
attributes

• Develops a set of well-founded process model, process capability
model, and process assessment model

• Introduces formal and quantitative methods into this area to enable
objective and stable assessment

• Avoids preassignment and grouping of processes into different
ranges of capability levels

• Avoids high operating complexity in process capability
determination

• Offers a new approach to systematically and quantitatively compare
and transform the process capability levels between existing process
models

The practical value of SEPRM is to:

• Provide a comprehensive process reference model

• Develop a process capability determination methodology that is
relatively lower in operating complexity and easier for application in
process assessment and improvement

• Enable software development organizations to relate their
capabilities to others using different process models

Chapter 9 The SEPRM Model 273

9.1.2 FOUNDATIONS OF THE SOFTWARE
 ENGINEERING PROCESS REFERENCE MODEL

Referring to the preparations in Part I, the philosophical, mathematical, and
managerial foundations of software engineering were explored in Chapter 1.
The theoretical foundations of the process approach to software engineering
were developed in Chapter 2, which investigated the generic software
development organization model, process model, capability model,
capability determination method, and SPA/SPI methods in software
engineering. The formal process notation system, process algebra, was
introduced in Chapter 3, followed by Chapter 4 which provided a generic
view of methodologies of process-based software engineering.

The empirical foundations of software engineering processes are
summarized in Appendix D and will be analyzed in Chapter 10, which
provides quantitative characteristics of the processes and BPAs identified in
the software industry and in current process models.

In this chapter, SEPRM will be developed from the above theoretical
and practical foundations, which incorporate an improved understanding of
the nature of software engineering, the fundamental structure of software
engineering process system, and the practical experience of the software
industry. SEPRM is designed to provide a comprehensive software
engineering process reference model, with sound foundations and empirical
benchmark support, for software development organizations and software
process system researchers.

9.1.3 PRACTICAL REQUIREMENTS FOR A
 SOFTWARE ENGINEERING PROCESS
 REFERENCE MODEL

In attempting a comparative analysis of the major existing process models, it
is found that an intermediate reference model is quite useful for simplifying
the many-to-many mapping into a many-to-one projection, and for reducing
the complexity of mutual mapping of multiple models.

Existing work in one-to-one mapping among current process models is
illustrated in Figure 9.1. Usually, conventional mappings are carried out at
process level and are unidirectional. For more accurate mapping, it is
necessary that the mapping be conducted at the BPA level. Terminology
referring to the BPA differs from model to model, examples being: key
practice (KP) in CMM, management issue (MI) in ISO 9001, quality system
attribute (QSA) in BOOTSTRAP, and base practice (BP) in ISO/IEC 15504.
As described in the unified process taxonomy in Chapter 2, all these
elements of process are generally referred to as base process activities
(BPAs) in SEPRM.

274 Part II Software Engineering Process System Modeling

 ISO/IEC
 15504

 CMM ISO 9001

 Bootstrap

Figure 9.1 One-to-one mapping between current process models

Because of structural differences among the current process paradigms and
variations among their BPA domains, the comparison of two models needs
mapping twice, once in each direction. This has been described as the
mapping asymmetry between process models [Wang et al., 1997a/b].

Generally, for n models, the complexity in mutually mapping each
other, Cn, is in the order of n², i.e.:

 Cn � O(n 2)
 = n * (n-1) (9.1)

For example, for n=4 as shown in Figure 9.1, the mapping complexity is Cn

= n * (n-1) = 4*(4-1) = 12.

However, where an intermediate reference model is adopted as shown in
Figure 9.2, the complexity of mapping n models via the reference model, Cr,
can be significantly reduced to:

 Cr = O(n)
 = n (9.2)

In the case of Figure 9.2, Cr = n = 4. Obviously the efficiency has increased
by three times by the use of the reference model based approach. Generally,
the larger the n, the more effective the reference model approach.

Chapter 9 The SEPRM Model 275

 ISO / IEC Bootstrap
 15504

 CMM ISO 9001

 SEPRM
 Reference Model

Figure 9.2 The role of a software process reference model

The other reason for requiring a reference model in mutually mapping and
analyzing multiple models is that the fundamental BPAs defined in different
process models result in a partial joint domain. Thus, some of the mappings
at the BPA level would not exist, i.e., some mappings of BPAs would result
in an empty set. However, with a reference model that defines a superset of
BPAs to cover the entire process domain that all current models form, the
mapping will never be empty. This reasoning emphasizes the utility of
SEPRM in multiple model mapping.

In the rest of this chapter we formally describe and analyze the 2-D process
framework and process capability determination method of SEPRM. Then,
the SEPRM process capability determination algorithm is developed
systematically. Applications of SEPRM in process domain analysis, process
capability determination methodology analysis, and process capability
transformation will be demonstrated in Part III.

9.2 The SEPRM Process Model

The SEPRM process model identifies a superset of processes and BPAs that
cover the domains of current process models and new areas for software
engineering environment and supporting tools. This section describes the
taxonomy and framework of the SEPRM process model based on the unified
process framework developed in Part I.

276 Part II Software Engineering Process System Modeling

9.2.1 TAXONOMY OF THE SEPRM PROCESS MODEL

With reference to the process taxonomy defined in Chapter 2, the SEPRM
process hierarchy and domains are listed in Table 9.1.

Table 9.1
Process Hierarchy and Domains of the SEPRM Process Model

Taxonomy Subsystem Category Process Practice

Process scope Process
subsystems

(PS)

Process
categories

(PC)

Processes

(PROC)

Base process activities

(BPAs)

Size of domain 3 12 51 444

Identification PS[i] PC[i,k] PROC[i,k,s] BPA[i,k,s,j]

Table 9.1 defines the configuration of the SEPRM process model. As shown
in Table 9.1, the BPAs, PROCs, PC, and PSs used in SEPRM are fully
identical to the domain scopes as defined in the unified process system
framework.

In order to provide a formal identification for each entity defined at
various levels of coverage known as process scopes, the indexing of BPA,
PROC, PC, and PS are described using a naming convention as shown in
Table 9.1. In the table, i is the number of PS; k, the number of PC; s, the
number of PROC; and j, the number of BPA.

9.2.2 FRAMEWORK OF THE SEPRM PROCESS
MODEL

SEPRM models a software engineering process system in 3 process
subsystems, 12 process categories, 51 processes, and 444 base process
activities. A high-level hierarchical structure of the SEPRM framework is
shown in Figure 9.3. According to the rationale for the unified process
system framework described in Chapter 2, there are three independent
process subsystems for software engineering known as organization,
development, and management.

Chapter 9 The SEPRM Model 277

PS.1
Organization Process
Subsystem

PS.2
Development
Process Subsystem

PS.3
Management
Process Subsystem

PC2.1 Software
engineering
methodologies

The Software Engineering Process Reference Model
SEPRM

PC2.2

Software
development

PC2.3 Software
development
environment

PC1.3

Customer
service

PC1.2

Organization
process

PC1.1

Organization
structure

PC3.1

Software
quality assurance

PC3.2

Project
planning

PC3.3

Project
management

PC3.4 Contract
and requirement
management

PC3.5

Document
management

PC3.6

Human resource
management

Figure 9.3 Hierarchical structure of SEPRM

The SEPRM framework described in Figure 9.3 can be extended to the
process and BPA levels for showing the configuration of each process
category and process. A detailed structure of the SEPRM framework, broken
down to the process level, is shown in Table 9.2.

Table 9.2
The SEPRM Process Model

ID. Subsystem Category / Process Identified
BPAs

1 Organization 81

1.1 Organization structure processes 13

1.1.1 Organization definition 7

1.1.2 Project organization 6

1.2 Organization processes 26

1.2.1 Organization process definition 15

1.2.2 Organization process improvement 11

1.3 Customer service processes 39

1.3.1 Customer relations 13

1.3.2 Customer support 12

1.3.3 Software/system delivery 11

1.3.4 Service evaluation 6

2 Development 115

2.1 Software engineering methodology processes 23

2.1.1 Software engineering modeling 9

278 Part II Software Engineering Process System Modeling

2.1.2 Reuse methodologies 7

2.1.3 Technology innovation 7

2.2 Software development processes 60

2.2.1 Development process definition 12

2.2.2 Requirement analysis 8

2.2.3 Design 9

2.2.4 Coding 8

2.2.5 Module testing 6

2.2.6 Integration and system testing 7

2.2.7 Maintenance 10

2.3 Software engineering infrastructure processes 32

2.3.1 Environment 7

2.3.2 Facilities 15

2.3.3 Development support tools 4

2.3.4 Management support tools 6

3 Management 248

3.1 Software quality assurance (SQA) processes 78

3.1.1 SQA process definition 17

3.1.2 Requirement review 5

3.1.3 Design review 4

3.1.4 Code review 3

3.1.5 Module testing audit 4

3.1.6 Integration and system testing audit 6

3.1.7 Maintenance audit 8

3.1.8 Audit and inspection 6

3.1.9 Peer review 10

3.1.10 Defect control 10

3.1.11 Subcontractor’s quality control 5

3.2 Project planning processes 45

3.2.1 Project plan 20

3.2.2 Project estimation 7

3.2.3 Project risk avoidance 11

3.2.4 Project quality plan 7

3.3 Project management processes 55

3.3.1 Process management 8

3.3.2 Process tracking 15

3.3.3 Configuration management 8

3.3.4 Change control 9

3.3.5 Process review 8

3.3.6 Intergroup coordination 7

3.4 Contract and requirement management processes 42

3.4.1 Requirement management 12

Chapter 9 The SEPRM Model 279

3.4.2 Contract management 7

3.4.3 Subcontractor management 14

3.4.4 Purchasing management 9

3.5 Document management processes 17

3.5.1 Documentation 11

3.5.2 Process database/library 6

3.6 Human resource management processes 11

3.6.1 Staff selection and allocation 4

3.6.2 Training 7

Total 3 12 / 51 444

The configuration of the 444 BPAs in the SEPRM reference model is shown
in Appendix C, in which the relationships between the defined BPAs and
their counterparts in current process models are also mutually mapped. The
BPAs of SEPRM in Appendix C can be referred to in two ways – a series
number for easy indexing, and a category number for structured reference.
The information shown in the columns of CMM, ISO 9001, BOOTSTRAP,
and ISO/IEC 15504 are the identification numbers of the BPAs as defined in
corresponding models.

In Table 9.2, the number of defined BPAs for each PROC is provided.
The definitions of the BPAs are listed in Appendix C, where, in the column
of “Cat. No.,” a jth BPA in process s, category k, and subsystem i,
BPA[i,k,s,j], is represented by:

 BPA[i,k,s,j] = BPAi.k.s.j (9.3)

For example, in Appendix C, readers can identify BPA[3,1,8,1] as:

 BPA[i,k,r,j] = BPA[3,1,8,1]
 = BPA3.1.8.1 // The category number
 = BPA244 // The index number
 = “Audit software development activities”

9.2.3 FORMAL DESCRIPTION OF THE SEPRM
PROCESS MODEL

By using CSP-like process algebra as introduced in Chapter 3, we are able to
formally describe the SEPRM process model and its processes in this
subsection. This formal description is useful for providing precise and
accurate definitions of the structure and interrelationships of the SEPRM
processes, and to avoid the ambiguity inherent in natural language
description.

280 Part II Software Engineering Process System Modeling

9.2.3.1 The Structure of the SEPRM Process Model

A formal description of the structure of the SEPRM process model,
SEPRM-PM, is shown in Expression 9.4 and illustrated in Figure 9.4.
Obviously, SEPRM is a hybrid serial and parallel process system model,
with the organization process subsystem at the top level, and the
development and management process subsystems underneath.

 SEPRM-PM � PS1 __ Organization subsystem

 ; (PS2 __ Development subsystem

 || PS3) __ Management subsystem (9.4)

The SEPRM Process Model

PS3

M anagement
subsystem

PS2
Developm ent
subsystem

PS1
Organization
Subsystem

Figure 9.4 The SEPRM process model

In the SEPRM process model, each process subsystem can be extended
downwards to a number of PCs, then to a number of PROCs as shown in
Expressions 9.5 through 9.7. Further, each PROC can be extended to a
number of BPAs in a similar way.

 PS1 � PC1.1 __ Organization structure

 || PC1.2 __ Organization process

 || PC1.3 __ Customer services

 = (PROC1.1.1 || PROC1.1.2)

 || (PROC1.2.1 || PROC1.2.2)

 || (PROC1.3.1 || PROC1.3.2 || PROC1.3.3 ||PROC1.3.4) (9.5)

Chapter 9 The SEPRM Model 281

 PS2 � PC2.1 __ Software engineering methodologies

 || PC2.2 __ Software development

 || PC2.3 __ Software engineering infrastructure

 = (PROC2.1.1 || PROC2.1.2 || PROC2.1.3)

 || (PROC2.2.1 ; PROC2.2.2 ; PROC2.2.3 ; PROC2.2.4

 ; PROC2.2.5 ; PROC2.2.6 ; PROC2.2.7)
 || (PROC2.3.1 || PROC2.3.2 || PROC2.3.3 || PROC2.3.4) (9.6)

 PS3 � PC3.1 __ Software quality assurance

|| PC3.2 __ Project planning

|| PC3.3 __ Project management

|| PC3.4 __ Contract and requirement management

|| PC3.5 __ Document management

|| PC3.6 __ Human resource management

 = (PROC3.1.1||PROC3.1.2 ||PROC3.1.3 ||PROC3.1.4

 ||PROC3.1.5||PROC3.1.6||PROC3.1.7 ||PROC3.1.8

 ||PROC3.1.9||PROC3.1.10||PROC3.1.11)
 || (PROC3.2.1||PROC3.2.2||PROC3.2.3||PROC3.2.4)

|| (PROC3.3.1||PROC3.2.2||PROC3.3.3 ||PROC3.3.4

 ||PROC3.3.5||PROC3.3.6)
|| (PROC3.4.1||PROC3.4.2||PROC3.4.3 ||PROC3.4.4)
|| (PROC3.5.1||PROC3.5.2)

 || (PROC3.6.1||PROC3.6.2) (9.7)

9.2.3.2 Definitions of SEPRM Processes

The 12 SEPRM process categories, known as PC1.1 – PC1.3, PC2.1 – PC2.3,
and PC3.1 – PC3.6, can be formally defined by Expressions 9.8 – 9.19 and are
illustrated in Figures 9.4 – 9.15.

PC1.1 � PROC1.1.1 __ Organization definition

|| PROC1.1.2 __ Project organization (9.8)

A process diagram corresponding to the two processes in the SEPRM
organization structure process category, as defined in Expression 9.8, is
shown in Figure 9.5.

282 Part II Software Engineering Process System Modeling

SEPRM PC1.1
Organization Structure Processes

PROC1.1.1

Organization
definition

PROC1.1.2

Project
organization

Figure 9.5 SEPRM process category 1.1 – the organization structure
processes

A process diagram corresponding to the two processes in the SEPRM
organization process category, as defined in Expression 9.9, is shown in
Figure 9.6.

 PC1.2 � PROC1.2.1 __ Organization process definition

 || PROC1.2.2 __ Organization process improvement (9.9)

SEPRM PC1.2

Organization Processes

PROC1.2.1

Organization process
definition

PROC1.2.2

Organization process
improvement

Figure 9.6 SEPRM process category 1.2 – the organization processes

A process diagram corresponding to the four processes in the SEPRM
customer service process category, as defined in Expression 9.10, is shown
in Figure 9.7.

Chapter 9 The SEPRM Model 283

PC1.3 � PROC1.3.1 __ Customer relations

|| PROC1.3.2 __ Customer support

|| PROC1.3.3 __ Software and system delivery

|| PROC1.3.4 __ Service evaluation (9.10)

SEPRM PC1.3
Customer Service Processes

PROC1.3.1

Customer
relations

PROC1.3.2

Customer
support

PROC1.3.3

Software/system
delivery

PROC1.3.4

Service
evaluation

Figure 9.7 SEPRM process category 1.3 – the customer service processes

A process diagram corresponding to the three processes in the SEPRM
software engineering methodology process category, as defined in
Expression 9.11, is shown in Figure 9.8.

PC2.1 � PROC2.1.1 __ Software engineering modeling

|| PROC2.1.2 __ Reuse methodologies

|| PROC2.1.3 __ Technology innovation (9.11)

284 Part II Software Engineering Process System Modeling

SEPRM PC2.1
Software Engineering Methodology

PROC2.1.1

Software eng.
modeling

PROC2.1.2

Reuse
methodologies

PROC2.1.3

Technology
innovation

Figure 9.8 SEPRM process category 2.1 – the software engineering
methodology processes

A process diagram corresponding to the seven processes in the SEPRM
software development process category, as defined in Expression 9.12, is
shown in Figure 9.9.

PC2.2 � PROC2.2.1 __ Development process definition

; PROC2.2.2 __ Requirement analysis

; PROC2.2.3 __ Design

; PROC2.2.4 __ Coding

; PROC2.2.5 __ Module testing

; PROC2.2.6 __ Integration and system testing

; PROC2.2.7 __ Maintenance (9.12)

Chapter 9 The SEPRM Model 285

SEPRM PC2.2

Software Development Processes

PROC2.2.1
Development
process definition

PROC2.2.2
Requirement
analysis

PROC2.2.6
Integration and
system testing

PROC2.2.7.
Maintenance

PROC2.2.3

Design

PROC2.2.5

Module
testing

PROC2.2.4
Coding

Figure 9.9 SEPRM process category 2.2 – the software development
processes

A process diagram corresponding to the four processes in the SEPRM
software engineering infrastructure process category, as defined in
Expression 9.13, is shown in Figure 9.10.

PC2.3 � PROC2.3.1 __ Environment

|| PROC2.3.2 __ Facilities

|| PROC2.3.3 __ Development support tools

|| PROC2.3.4 __ Management support tools (9.13)

286 Part II Software Engineering Process System Modeling

SEPRM PC2.3

Software Engineering Infrastructure

PROC2.3.1

Environment

PROC2.3.2

Facilities

PROC2.3.3

Development
support tool

PROC2.3.4

Management
support tool

Figure 9.10 SEPRM process category 2.3 – the software engineering
infrastructure processes

A process diagram corresponding to the 11 processes in the SEPRM
software quality assurance process category, as defined in Expression 9.14,
is shown in Figure 9.11.

 PC3.1 � PROC3.1.1 __ SQA procedure definition

 || PROC3.1.2 __ Requirements review

|| PROC3.1.3 __ Design review

|| PROC3.1.4 __ Code review

|| PROC3.1.5 __ Module testing audit

|| PROC3.1.6 __ Integration and system testing audit

|| PROC3.1.7 __ Maintenance audit

|| PROC3.1.8 __ Audit and inspection

|| PROC3.1.9 __ Peer review

|| PROC3.1.10 __ Defect control

|| PROC3.1.11 __ Subcontractor’s quality control (9.14)

Chapter 9 The SEPRM Model 287

SEPRM PC3.1

Software Quality Assurance

PROC3.1.1

SQA procedure
definition

PROC3.1.2

Requirements review

PROC3.1.3

Design review

PROC3.1.6

Integration and
system testing audit

PROC3.1.5

Module testing audit

PROC3.1.4

Code review

PROC3.1.7

Maintenance audit

PROC3.1.11

Subcontractor’s
quality control

PROC3.1.10

Defect control

PROC3.1.8

Audit and inspection

PROC3.1.9

Peer review

Figure 9.11 SEPRM process category 3.1 – the software quality assurance
Processes

A process diagram corresponding to the four processes in the SEPRM
project planning process category, as defined in Expression 9.15, is shown
in Figure 9.12.

288 Part II Software Engineering Process System Modeling

PC3.2 � PROC3.2.1 __ Project plan

|| PROC3.2.2 __ Project estimation

|| PROC3.2.3 __ Project risk avoidance

|| PROC3.2.4 __ Project quality plan (9.15)

SEPRM PC3.2

Project Planning Processes

PROC3.2.1

Project
plan

PROC3.2.2

Project
estimation

PROC3.2.3

Project risk
avoidance

PROC3.2.4

Project quality
plan

Figure 9.12 SEPRM process category 3.2 – the project planning processes

A process diagram corresponding to the six processes in the SEPRM project
management process category, as defined in Expression 9.16, is shown in
Figure 9.13.

PC3.3 � PROC3.3.1 __ Process management

|| PROC3.3.2 __ Process tracking

|| PROC3.3.3 __ Configuration management

|| PROC3.3.4 __ Change control

|| PROC3.3.5 __ Process review

|| PROC3.3.6 __ Intergroup coordination (9.16)

Chapter 9 The SEPRM Model 289

SEPRM PC3.3

Project Management

PROC3.3.1

Process
management

PROC3.3.2
Process
tracking

PROC3.3.3

Configuration
management

PROC3.3.6
Intergroup
coordination

PROC3.3.5

Process
review

PROC3.3.4
Change
control

Figure 9.13 SEPRM process category 3.3 – the project management
Processes

A process diagram corresponding to the four processes in the SEPRM
contract and requirement management process category, as defined in
Expression 9.17, is shown in Figure 9.14.

PC3.4 � PROC3.4.1 __ Requirement management

|| PROC3.4.2 __ Contract management

|| PROC3.4.3 __ Subcontractor management

|| PROC3.4.4 __ Purchasing management (9.17)

290 Part II Software Engineering Process System Modeling

SEPRM PC3.4

Contract & Requirement Management

PROC3.4.1

Requirement
management

PROC3.4.2

Contract
management

PROC3.4.3

Subcontractor
management

PROC3.4.4

Purchasing
management

Figure 9.14 SEPRM process category 3.4 – the contract and requirement
management processes

A process diagram corresponding to the two processes in the SEPRM
document management process category, as defined in Expression 9.18, is
shown in Figure 9.15.

PC3.5 � PROC3.5.1 __ Documentation

|| PROC3.5.2 __ Process database/library (9.18)

SEPRM PC3.5
Document Management Processes

PROC3.5.1

Documentation

PROC3.5.2

Process
database/library

Figure 9.15 SEPRM process category 3.5 – the document management
processes

Chapter 9 The SEPRM Model 291

A process diagram corresponding to the two processes in the SEPRM human
resource management process category, as defined in Expression 9.19, is
shown in Figure 9.16.

PC3.6 � PROC3.6.1 __ Staff selection/allocation

|| PROC3.6.2 __ Training (9.19)

SEPRM PC3.6

Human Resource Management

PROC3.6.1

Staff selection and
allocation

PROC3.6.2

Training

Figure 9.16 SEPRM process category 3.6 – the human resource
management processes

Detailed practices of each PROC at BPA level, which are documented in
Appendix C, can be described in the same way as above. Extending the
formal SEPRM process model onto the BPA level can be taken as an
exercise for readers.

9.3 The SEPRM Process Assessment
 Model

The SEPRM process model was systematically introduced in Section 9.2.
This section explores the SEPRM process capability model and process
capability determination method. Both of the above form the SEPRM
process assessment model.

292 Part II Software Engineering Process System Modeling

9.3.1 THE SEPRM PROCESS CAPABILITY MODEL

This section describes the SEPRM process capability model, which includes
a practice performance scale, a process capability scale, and a process
capability scope definition.

9.3.1.1 Practice Performance Scale

A practice performance rating scale for the BPAs in SEPRM is defined in
Table 9.3. It employs a four-level scale for evaluating a BPA’s existence and
performance. The rating thresholds provide a set of quantitative
measurements for rating a BPA’s performance with the scale.

Table 9.3
Performance Rating Scale of the BPAs

Scale Description Rating Threshold

5 (F) Fully adequate 90% - 100%

3 (L) Largely adequate 60% - 89%

1 (P) Partially adequate 25% - 59%

0 (N) Not adequate 0 – 24%

9.3.1.2 Process Capability Scale

Referring to Chapter 2, there are three types of process capability scales: the
pass-threshold-based, process-management-oriented, and process-oriented.
The SEPRM process capability model is designed for directly rating and
characterizing the performance of a process within context, rather than to
indirectly evaluate the management maturity level for a process.

SEPRM develops a six-level software process capability model as shown
in Table 9.4, with a set of defined criteria for rating the capability of a
process. In Table 9.4, an index C[i,j] indicates a process capability criterion
of C [level, organization/project/individual] in the organization, project, or
individual context.

Table 9.4 shows that, in SEPRM, a process as an independent unit is
assessed in the organization, project, and individual contexts against the six
level process capability criteria. In order to relate the process capability
criteria to the performance of BPAs in a process, there is another criterion
for assessing a process: the average performance of the BPAs.

Chapter 9 The SEPRM Model 293

Table 9.4
The SEPRM Process Capability Model

Process Capability CriteriaCapability
Level

(CL[i])

Description

In Organization
Context

In Project
Context

In Individual
Context

CL[0] Incomplete C[0,1]
No process system
reference model

C[0,2]
No defined and
repeatable process
activities

C[0,3]
Ad hoc

CL[1] Loose C[1,1]
There are defined
processes to some
extent

C[1,2]
Three are limited
process activities defined
and conducted

C[1,3]
Varying

CL[2] Integrated C[2,1]
There is a process
system reference model
established

C[2,2]
There are relatively
complete process
activities defined and
aligned to organization’s
process reference model

C[2,3]
Generally
process-based

CL[3] Stable C[3,1]
There is a repeatable
process system
reference model

C[3,2]
There are complete
process activities
derived from
organization’s process
reference model

C[3,3]
Repeatedly
process-based

CL[4] Effective C[4,1]
There is a proven
process reference
system model

C[4,2]
- There are completed
 process activities
 derived from
 organization’s process
 reference model
- Performances of
 processes are
 monitored

C[4,3]
Rigorously
process-based

CL[5] Refining C[5,1]
There is a proven and
refined process system
reference model

C[5,2]
- There is a completed
 derived process
 model
- Performances of
 processes are
 quantitatively
 monitored and
 fine-tuned

C[5,3]
Rigorous and
optimistic
process-based

Thus, based on both the software process capability model and the BPA
performance threshold, an SEPRM process capability scale is described in
Table 9.5.

294 Part II Software Engineering Process System Modeling

Table 9.5
The SEPRM Process Capability Scale

Process Capability CriteriaCapability

Level

(CL[i])

Description

Organization
Context

Project
Context

Individual
Context

BPA

Average
Performance

Threshold

CL[0] Incomplete C[0,1]

Yes

C[0,2]

Yes

C[0,3]

Yes

C[0,4]

0 – 0.9

CL[1] Loose C[1,1]

Achieved

C[1,2]

Achieved

C[1,3]

Achieved

C[1,4]

1.0 – 1.9

CL[2] Integrated C[2,1]

Achieved

C[2,2]

Achieved

C[2,3]

Achieved

C[2,4]

2.0 – 2.9

CL[3] Stable C[3,1]

Achieved

C[3,2]

Achieved

C[3,3]

Achieved

C[3,4]

3.0 – 3.9

CL[4] Effective C[4,1]

Achieved

C[4,2]

Achieved

C[4,3]

Achieved

C[4,4]

4.0 – 4.5

CL[5] Refining C[5,1]

Achieved

C[5,2]

Achieved

C[5,3]

Achieved

C[5,4]

4.6 -- 5.0

Table 9.5 shows there are four criteria that a process has to fulfill to reach a
specific capability level. The first three are oriented to a process as whole;
the last one is oriented to BPAs contained in a process. Therefore, the
capability of a software development organization to operate a given process
is determined by the maximum level i that a process achieved for fulfilling
all four criteria for that level.

The SEPRM process assessment results are reported at the six levels
plus a decimal value. This means it has the potential to distinguish the
process capability at tenth-sublevels. This approach enables a software
development organization to fine-tune its process system in continuous
process improvement.

9.3.1.3 Process Capability Scope

The SEPRM process capability scopes are shown in Table 9.6. Comparing
Table 9.6 with Table 2.3 in Chapter 2, it is clear that SEPRM assesses
process capability at the levels of BPA, process, project, and organization
scope from the bottom, up. The SEPRM capability model provides a
complete implementation of the fundamental process framework developed
in Chapter 2.

Chapter 9 The SEPRM Model 295

Table 9.6
Process Capability Scope of SEPRM

Capability Scope Practice Process Project Organization

SEPRM term BPAs Processes Project Organization

SEPRM method Performance
rating

Capability
level

Capability level +
process capability
profile

Capability level +
process capability
profile

9.3.2 THE SEPRM PROCESS CAPABILITY
DETERMINATION METHODOLOGY

Using the formal definitions of the SEPRM process model and process
capability model developed in Sections 9.2 and 9.3.1, we can now consider
how to apply the SEPRM capability model to the process model for the
assessment of process capability at practice, process, project, and
organization levels.

9.3.2.1 Practice Performance Rating Method

Let rBPA[i] be a rating of performance of the ith BPA in a process. Then
rBPA[i] can be rated according to the practice performance scale as defined
in Table 9.3, i.e.:

rBPA[i] = 5, if the BP’s performance is fully satisfied (or does not apply)

 = 3, if the BP’s performance is largely satisfied

 = 1, if the BP’s performance is partially satisfied

 = 0, if the BP’s performance is not satisfied (9.20)

In Expression 9.20, one of the four numerical values is assigned for a BPA’s
performance. For providing flexibility and tailorability for the configuration
of BPAs, the rating of a BPA can be skipped by assigning a value of 5 if the
BPA does not apply in a project’s or organization’s context.

For a process, p, that consists of mp BPAs, an average performance of

the practices in the process, PP (p), can be derived by:

 PP (p) = 1
mp

i

mp

=
∑

1

 PP(i) (9.21)

296 Part II Software Engineering Process System Modeling

9.3.2.2 Process Capability Rating Method

According to the definitions in Table 9.5, the capability level of a process in
SEPRM can be determined as two parts: the process criteria and the BPA
criteria. The capability level of a process p, PCLproc(p), can be represented as
follows:

 PCLproc(p) = min { PCLc(p) + 0.9, PP (p) } (9.22)

where PCLc(p) represents the maximum achieved level of a process against
the process criteria, C[i,j], i = 0, …, 5, j=1,2, 3, as defined in Table
9.5, i.e.:

 PCLc(p) = max { i | (C[i,j] = fulfilled) A j=1,2,3} (9.23)

Expression 9.22 requires a process to fulfill all four criteria at a level and
those of the lower level(s) before it is considered to have achieved that
capability level. Expression 9.22 selects the minimum value obtained either
by the process criteria or BPA criteria. A compensation constant, 0.9, is
added to the score of the process criteria in order to allow the BPA criteria to
determine a precise decimal capability level.

In an assessment, assuming that the process criteria have been checked
and achieved, the determination of a process’s capability level in this case
can be simplified by calculating only the BPA criteria, the BPA mean

performance, PP (p), i.e.:

 PCLproc(p) = PP (p)

 = 1
mp

i

mp

=
∑

1

 PP(i) (9.24)

9.3.2.3 Project Capability Determination Method

A project capability can be aggregated from the capabilities of all processes
conducted within the project. Thus, a project’s process capability level,
PCLproj(j), is defined as a statistical average of all k process capabilities of
project j, i.e.:

 PCLproj(j) = 1
k

p

k

=
∑

1

 PCLproc(p) (9.25)

A precise decimal project capability level between 0 - 5.0 can be derived by
the expression.

Chapter 9 The SEPRM Model 297

9.3.2.4 Organization Capability Determination Method

An organization’s capability is an aggregation of the capability levels of a
number of sampled projects carried out in a software development
organization.

An organization’s process capability level, PCLorg, is a mathematical
mean of those of n projects, PCLproj(p), sampled in the software development
organization, i.e.:

 PCLorg = 1

1
n

p

n

=
∑ PCLproj(p) (9.26)

Expression 9.26 indicates that more than one project’s capabilities should be
obtained to derive an organization’s capability level. Generally, the more
projects assessed, the more accurate the level derived. A recommended
minimum number, n, as for all models, is three.

9.4 The SEPRM Algorithm

So far we have explored the SEPRM process model, process capability
model, and capability determination method. Using the models and method
we are already able to manually assess and calculate a software project’s or
an organization’s process capability in SEPRM.

In order to describe the SEPRM methodology precisely, and to enable
mutual comparison and tool implementation, this section extends the
SEPRM process capability determination methodology into a formal SEPRM
algorithm.

9.4.1 DESCRIPTION OF THE SEPRM ALGORITHM

The SEPRM process capability determination method as defined in
Expressions 9.20 – 9.25 can be formally described in the following
algorithm. An organization’s process capability level can be easily
aggregated according to Expression 9.26 when multiple projects have been
assessed.

298 Part II Software Engineering Process System Modeling

Algorithm 9.1 The SEPRM process capability determination
 algorithm

Assume: NPC(SUBSYS) - Number of process categories in a
 process subsystem
 NPROC(SUBSYS,PC) - Number of processes in a category
 NBPA(SUBSYS,PC,PROC) - Number of BPAs in a process
 BPA(SUBSYS,PC,PROC) - A BPA index
 CL - A capability level
 PCLproc(SUBSYS,PC,PROC) - A process capability level
 PCLproc - Capability level of a project
Input: Sample indicators of BPA and processes existence
 and performance
Output: A process profile: PCLproc[SUBSYS,PC,PROC], and
 a project process capability level: PCLproj

Begin

// Step 1: Initialization

 // Define numbers of process categories in each process subsystem
 // according to Table 9.2
 NPC[1] := 3;
 NPC[2] := 3;
 NPC[3] := 6;

 // Define numbers of processes in each category according to Table 9.2
 Nproc[1,1] := 2;
 Nproc[1,2] := 2;
 Nproc[1,3] := 4;

 Nproc[2,1] := 3;
 Nproc[2,2] := 7;
 Nproc[2,3] := 4;

 Nproc[3,1] := 11;
 Nproc[3,2] := 4;
 Nproc[3,3] := 6;
 Nproc[3,4] := 4;
 Nproc[3,5] := 2;
 Nproc[3,6] := 2;

 // Define numbers of BPAs in each PROC according to Table 9.2

Chapter 9 The SEPRM Model 299

 NBPA [1,1,1] := 7;
 NBPA [1,1,2] := 6;
 NBPA [1,2,1] := 15;
 NBPA [1,2,2] := 11;
 NBPA [1,3,1] := 13;
 NBPA [1,3,2] := 12;
 NBPA [1,3,3] := 11;
 NBPA [1,3,4] := 6;

 NBPA [2,1,1] := 9;
 NBPA [2,1,2] := 7;
 NBPA [2,1,3] := 7;
 NBPA [2,2,1] := 12;
 NBPA [2,2,2] := 8;
 NBPA [2,2,3] := 9;
 NBPA [2,2,4] := 8;
 NBPA [2,2,5] := 6;
 NBPA [2,2,6] := 7;
 NBPA [2,2,7] := 10;
 NBPA [2,3,1] := 7;
 NBPA [2,3,2] := 15;
 NBPA [2,3,3] := 4;
 NBPA [2,3,4] := 6;

 NBPA [3,1,1] := 17;
 NBPA [3,1,2] := 5;
 NBPA [3,1,3] := 4;
 NBPA [3,1,4] := 3;
 NBPA [3,1,5] := 4;
 NBPA [3,1,6] := 6;
 NBPA [3,1,7] := 8;
 NBPA [3,1,8] := 6;
 NBPA [3,1,9] := 10;
 NBPA [3,1,10] := 10;
 NBPA [3,1,11] := 5;
 NBPA [3,2,1] := 20;
 NBPA [3,2,2] := 7;
 NBPA [3,2,3] := 11;
 NBPA [3,2,4] := 7;
 NBPA [3,3,1] := 8;
 NBPA [3,3,1] := 15;
 NBPA [3,3,3] := 8;
 NBPA [3,3,4] := 9;
 NBPA [3,3,5] := 8;

300 Part II Software Engineering Process System Modeling

 NBPA [3,3,6] := 7;
 NBPA [3,4,1] := 12;
 NBPA [3,4,1] := 7;
 NBPA [3,4,3] := 14;
 NBPA [3,4,4] := 9;
 NBPA [3,5,1] := 11;
 NBPA [3,5,2] := 6;
 NBPA [3,6,1] := 4;
 NBPA [3,6,2] := 7;

// Step 2: Practice performance rating

 for SUBSYS := 1 to 3 do // the process subsystem index
 for PC := 1 to NPC(SUBSYS) do // the process category index
 for PROC :=1 to Nproc(SUBSYS, PC) do // the process index
 begin
 PP(SUBSYS, PC, PROC) := 0;

 for BPA := 1 to NBPA(SUBSYS, PC, PROC) do
 // The BPA index
 begin
 // Assess a BPA according to Expression 9.20,
 // and record performance rating in
 // BPA(SUBSYS, PC, PROC)
 case BPA(SUBSYS, PC, PROC)
 F: // Fully adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 5;
 L: // Largely adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 3;
 P: // Partially adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 1;
 N: // Not adequate
 PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 0;
 NA: // Does not apply

PP(SUBSYS, PC, PROC) :=
 PP(SUBSYS, PC, PROC) + 5;
 end;
 end;
end;

Chapter 9 The SEPRM Model 301

// Step 3: Process capability determination

 for SUBSYS := 1 to 3 do // the process subsystem index
 for PC := 1 to NPC(SUBSYS) do // the process category index
 for PROC :=1 to Nproc(SUBSYS, PC) do // the process index
 // 3.1 Assess each process against the six-level criteria
 // process criteria as defined in Table 9.5 and Exp. 9.23

 CLPROC(SUBSYS, PC, PROC) :=
 max { i | (C[i,j] = fulfilled) A j=1,2,3};

 // 3.2 Assess mean BPA performance according to
 // Expression 9.21

 CLBPA(SUBSYS, PC, PROC) := PP(SUBSYS, PC, PROC) /
 NBPA(SUBSYS,PC,PROC);

 // 3.3 Determine process capability level according to
 // Expression 9.22
 CL(SUBSYS, PC, PROC) :=
 min {CLPROC(SUBSYS,PC,PROC)+0.9,
 CLBPA(SUBSYS,PC,PROC)};

 // 3.4 Save process capability profile
 PCLproc(SUBSYS,PC,PROC) := CL(SUBSYS,PC,PROC);

// Step 4: Project capability determination

 k := 51; // Number of PROCs defined in SEPRM
 CL := 0;
 for SUBSYS := 1 to 3 do // the process subsystem index
 for PC := 1 to NPC(SUBSYS) do // the process category index
 for PROC :=1 to Nproc(SUBSYS, PC) do // the process index
 // Calculate cumulated process capability value
 CL := CL + PCLproc(SUBSYS, PC, PROC);

// Derive capability level of the project
 PCLproj := CL / k; // Calculate project capability level according
 // to Expression 9.25

End Í

302 Part II Software Engineering Process System Modeling

9.4.2 EXPLANATION OF THE SEPRM ALGORITHM

An SEPRM assessment according to Algorithm 9.1 is carried out in four
steps:

• Step 1: Initialization

• Step 2: BPA performance rating

• Step 3: Process capability determination

• Step 4: Project capability determination

This subsection explains the main functions of Algorithm 9.1 for an SEPRM
process assessment.

9.4.2.1 Initialization

This step is designed to specify the number of BPAs defined in SEPRM. For
obtaining a detailed configuration of BPAs in the SEPRM process model,
reference may be made to Table 9.2 and to Appendix C.

9.4.2.2 BPA Performance Rating

In this step, all BPAs for each process are rated according to Expression
9.20, using the definitions of practice performance scale in Table 9.3. The
basic function of this step is to count the total values of the rated BPAs
within individual processes.

9.4.2.3 Process Capability Determination

This step first derives the process capability ratings by both the process
criteria and the BPA performance criteria according Expressions 9.23 and
9.21, respectively. Next, the capability level of the process is determined by
taking the lower of the above results according to Expression 9.22. The
qualitative score obtained according to the process criteria, as shown in
algorithm Step 3.3, is compensated with 0.9 in order to allow the
quantitative BPA score to determine the decimal capability level. In Step
3.4, a process capability profile of an SEPRM assessment is created.

9.4.2.4 Project Process Capability Determination

In the final step, using the aggregation inherent in Expression 9.25, the
algorithm derives a process capability level for a software project based on
all processes’ capability levels derived in algorithm Step 3. The project

Chapter 9 The SEPRM Model 303

capability level will be reported with the addition of the process capability
profile.

9.4.3 ANALYSIS OF THE SEPRM ALGORITHM

SEPRM assesses each process against each of the six independent capability
levels defined by their capability criteria. This approach can avoid the
disadvantages of:

• Preassigning and grouping processes into different capability levels
such as in CMM and BOOTSTRAP

• Operating too high a complexity in process capability determination
such as in ISO/IEC TR 15504

• Requiring universal attributes that should be suitable for all
processes, as in ISO/IEC TR 15504.

Reviewing the SEPRM algorithm in Subsection 9.4.1, it may be observed
that the algorithm complexity of SEPRM, c(SEPRM), is mainly determined
by both the numbers of BPAs (NBPA) and processes (NPROC), which need to be
rated individually in an SEPRM assessment according to Algorithm 9.1,
Steps 2 and 3, i.e.:

 c(SEPRM) = O (NBPA+ NPROC)
 = NBPA+ 2*NPROC (9.27)

where the unit of the algorithm complexity is “times of BPA/Process
ratings.”

As given in SEPRM, NBPA=444, NPROC=51. Thus the total rating cost, or
the algorithm complexity, for determining a capability level of project scope
in SEPRM is:

 c(SEPRM) = O (NBPA+ NPROC)
 = NBPA+ 2*NPROC

 = 444 + 2*51
 = 546 [times of BPA/Process ratings]

Interestingly, although the numbers of processes and BPAs of SEPRM have
been almost doubled compared with those of ISO/IEC 15504, the algorithm
complexity of SEPRM is still reasonably low. This means that SEPRM will
be amenable to relatively easy usage by assessors and software development
organizations.

304 Part II Software Engineering Process System Modeling

There is a trade-off between an algorithm’s complexity and the person-
days needed for an assessment. Empirical data for relating the algorithm
complexity to person-days expended in an SEPRM process assessment will
be discussed in Chapter 12.

9.5 A Sample SEPRM Assessment

The capability rating framework and the capability determination algorithm
of SEPRM were formally described in Sections 9.3 and 9.4. This section
demonstrates how to apply the SEPRM expressions and algorithm to
quantitatively determine a sample software development organization’s
process capability level in SEPRM [Wang at al., 1997d/99h].

9.5.1 BPA PERFORMANCE RATING IN SEPRM

A set of detailed ratings of the 444 BPAs have been listed in Appendix C,
where the raw data rating {4, 3, 2, 1} corresponds to the SEPRM BPA
rating scale {F(5), L(3), P(2), N(0)}. By referring to Table 9.3, a mapping
between the rating scales of the raw data and the SEPRM BPA is defined in
Table 9.7.

Table 9.7
Mapping between Raw Data in Assessment onto SEPRM Rating Scale

Raw Data Rating Scale
(in Appendix C)

SEPRM BPA
 Rating Scale

Description in
SEPRM

4 5 (F) Fully adequate

3 3 (L) Largely adequate

2 1 (P) Partially adequate

1 0 (N) Not adequate

Processing the raw data of the BPAs’ performance ratings according to
Table 9.7 and then applying Expressions 9.20 and 9.21 allows the average
performance rating of the BPAs in a process to be derived.

For example, PROC[1,1,1], organization definition, has seven BPAs
rated F/F/F/L/F/N/F, respectively, in Appendix C. According to Expressions
9.20 – 9.21, the average rating of capability of the process can be
quantitatively calculated below:

Chapter 9 The SEPRM Model 305

 PP (1,1,1) = 1
mp

i

mp

=
∑

1

 PP(i) (by Exp. 9.21)

 = 1/7
i=
∑

1

7

 PP(i) (data from Appendix C)

 = {F+F+F+L+F+N+F}/ 7 (data from Appendix C)

 = {5+5+5+3+5+0+5}/7 (by Table 9.7 and Exp. 9.20)

 = 28/7

 = 4.0

Similarly, all mean ratings of processes can be determined according to
Expressions 9.20 – 9.21.

9.5.2 PROCESS CAPABILITY DETERMINATION IN
SEPRM

The derived capability levels of the 51 processes according to the process
criteria have been checked and shown to always be higher than those by
BPA criteria. Therefore, according to Expression 9.24, the capability levels
of all processes are directly determined by the average performance ratings
of BPAs within the processes. For example, using the data derived above,
the capability level of PROC[1,1,1] can be aggregated applying Expression
9.24 as follows:

 PCLproc[1,1,1] = PP (p)

 = 1
mp

i

mp

=
∑

1

 PP(i)

 = 4.0

A summary record of this SEPRM assessment is listed in Table 9.8. Based
on the assessment record in Table 9.8, process capability profiles of the
three process subsystems in SEPRM can be derived as shown in
Figures 9.17 – 9.19.

306 Part II Software Engineering Process System Modeling

Table 9.8
Summary Process Capability Rating Record in SEPRM

ID. Subsystem Category / Process Process
Capability

Level

1 Organization

1.1 Organization structure processes

1.1.1 Organization definition 4.0

1.1.2 Project organization 3.3

1.2 Organization processes

1.2.1 Organization process definition 3.1

1.2.2 Organization process improvement 2.2

1.3 Customer service processes

1.3.1 Customer relations 3.0

1.3.2 Customer support 3.2

1.3.3 Software/system delivery 4.3

1.3.4 Service evaluation 4.0

2 Development

2.1 Software engineering methodology processes

2.1.1 Software engineering modeling 3.1

2.1.2 Reuse methodologies 2.6

2.1.3 Technology innovation 2.1

2.2 Software development processes

2.2.1 Development process definition 4.5

2.2.2 Requirement analysis 3.4

2.2.3 Design 3.3

2.2.4 Coding 3.4

2.2.5 Module testing 3.3

2.2.6 Integration and system testing 3.1

2.2.7 Maintenance 2.9

2.3 Software engineering infrastructure processes

2.3.1 Environment 3.0

2.3.2 Facilities 4.2

2.3.3 Development support tools 2.5

2.3.4 Management support tools 2.2

3 Management

3.1 Software quality assurance (SQA) processes

3.1.1 SQA process definition 4.1

3.1.2 Requirement review 4.2

3.1.3 Design review 3.0

3.1.4 Code review 2.7

3.1.5 Module testing audit 2.5

Chapter 9 The SEPRM Model 307

3.1.6 Integration and system testing audit 3.7

3.1.7 Maintenance audit 2.0

3.1.8 Audit and inspection 3.7

3.1.9 Peer review 3.2

3.1.10 Defect control 3.8

3.1.11 Subcontractor’s quality control 4.2

3.2 Project planning processes

3.2.1 Project plan 2.3

3.2.2 Project estimation 3.9

3.2.3 Project risk avoidance 2.4

3.2.4 Project quality plan 4.1

3.3 Project management processes

3.3.1 Process management 2.4

3.3.2 Process tracking 3.7

3.3.3 Configuration management 4.5

3.3.4 Change control 2.8

3.3.5 Process review 3.4

3.3.6 Intergroup coordination 2.6

3.4 Contract and requirement management processes

3.4.1 Requirement management 3.3

3.4.2 Contract management 4.4

3.4.3 Subcontractor management 3.4

3.4.4 Purchasing management 3.4

3.5 Document management processes

3.5.1 Documentation 4.0

3.5.2 Process database/library 1.8

3.6 Human resource management processes

3.6.1 Staff selection and allocation 4.5

3.6.2 Training 3.6

0

1

2

3

4

5

Capability
level

1,1 1,2 2,1 2,2 3,1 3,2 3,3 3,4

 Organization process subsystem

Figure 9.17 Capability profile of organization process subsystem in SEPRM

308 Part II Software Engineering Process System Modeling

0

1

2

3

4

5

Capability
level

1 ,1 1 ,2 1 ,3 2 ,1 2 ,2 2 ,3 2 ,4 2 ,5 2 ,6 2 ,7 3 ,1 3 ,2 3 ,3 3 ,4

 Development process subsystem

Figure 9.18 Capability profile of development process subsystem in SEPRM

0

1

2

3

4

5

C
ap

ab
ili

ty

le
ve

l

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
2

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

 Management process subsystem

Figure 9.19 Capability profile of management process subsystem in
SEPRM

9.5.3 PROJECT CAPABILITY DETERMINATION IN
SEPRM

A process capability level for a project j, PCLproj[j], in SEPRM has been
defined by Expression 9.25. Applying Expression 9.25 to the ratings of the
51 process ratings summarized in Table 9.8, the capability level of the
project can be determined as:

 PCLproj (j) = 1
k

p

k

=
∑

1

 PCLproc(p) (by Expression 9.25)

= 1/51
p=
∑

1

51

PCLproc(p) (data from Table 9.8)

 = 168.3 / 51 (data from Table 9.8)
 = 3.3

Thus the software project’s process capability assessed is to be at Level 3.3,
corresponding to the stable process capability level in SEPRM.

Chapter 9 The SEPRM Model 309

9.6 Applications of SEPRM

In the previous sections we explored the theory behind SEPRM for process
system modeling and assessment. This section analyzes the usability of
SEPRM in software engineering process system establishment, assessment,
and improvement.

9.6.1 SEPRM FOR SOFTWARE PROCESS SYSTEM
ESTABLISHMENT

The philosophy of SEPRM is to provide a comprehensive and integrated
software engineering process system reference model. SEPRM is a
completely implemented paradigm of the unified process system framework
established in Part I, and a systematic attempt to solve the issues we
discussed in the previous chapters.

In comparative studies of existing process models we have gained an
improved understanding of that software process system as a key for
organization and implementing successful software engineering. The
SEPRM has been developed from deeply investigated theoretical foundations
and by industry benchmarking validation. The former was established in
Part I, while the latter will be explored in Part III.

SEPRM is a complete 2-D software engineering process system model.
Its process model is the most comprehensive, supported by a set of industry
benchmarks. Its process capability model is independently operational with a
unique process capability scale.

There were arguments as to whether there were enough process models
already, and whether the search for modeling new processes and good
practices for software engineering had been exhausted. Based on the
discussions within Part I and Part II it may be concluded that software
engineering is probably one of the most complicated engineering disciplines
in the natural sciences and modern industry. Thus, there is a long way to go
and SEPRM makes a valid contribution through its unique features and its
superset function.

310 Part II Software Engineering Process System Modeling

9.6.2 SEPRM FOR SOFTWARE PROCESS SYSTEM
ASSESSMENT AND IMPROVEMENT

The conventional approach for process assessment and improvement is
models and/or standards-based. With the support of a set of industry
benchmarks, SEPRM enables a new approach to benchmark-based process
assessment and improvement. In Part V of this book, after benchmarks of
software engineering processes and practices are described in Chapter 10,
we will demonstrate the new approach to process assessment and
improvement.

Another interesting subject is whether and how the capability levels
derived by current process models are related with each other. This is a
frequently asked question in the software industry. The application of
SEPRM in Part III will solve this problem, too.

9.7 Summary

This chapter introduced a formal and rigorous approach to the description of
SEPRM. CSP-like process algebra was adopted for presenting the SEPRM
process model, and mathematical and algorithmic methods were applied for
presenting the SEPRM process capability determination methodology. Using
these formal techniques, SEPRM has been systematically described and
analyzed by contrasting with the unified process system framework
developed in Part I. An empirical case study has been provided for
demonstrating the method and approach in conducting an SEPRM
assessment.

The basic knowledge structure of this chapter is as follows:

Chapter 9. The SEPRM Model

• General
 − Purposes of this chapter
 − To review the history and background of SEPRM
 development
 − To describe the SEPRM process model and taxonomy
 − To describe the SEPRM capability model and capability

Chapter 9 The SEPRM Model 311

 determination methodology
 − To formally describe the SEPRM process model and to
 algorithmically describe the SEPRM process capability
 determination method
 − To develop an SEPRM algorithm for software process
 assessment
 − To explain how the SEPRM algorithm can be used
 in process assessment and how its algorithm
 complexity is estimated
 − To demonstrate a case study of a practical SEPRM
 assessment by using the SEPRM algorithm
 − To discuss the usability of SEPRM in process
 establishment, assessment, and improvement in software
 engineering

 − SEPRM philosophy and background
 − Oriented to explore the entire process domain of software
 engineering
 − Provides a comprehensive and integrated process
 reference system model with sound foundations and
 benchmarked data support
 − Inspired by all current process models and the work
 within ISO/IEC JTC1/SC7/WG10

 • The SEPRM process model
− Taxonomy of SEPRM process model

 − Process scopes
 − Size of domain of each scope

 − Framework of SEPRM process model
 − Structure of SEPRM process model
 − Definitions of BPAs in SEPRM

 − Formal description of SEPRM process model
 − SEPRM abstract process patterns
 − SEPRM process diagrams
 − Interpretation and illustration of the process algebra
 expressions

• The SEPRM process assessment model
− SEPRM process capability model

 − Configuration
 − 3 process subsystems (PSs)

312 Part II Software Engineering Process System Modeling

 − 6 process categories (PCs)
 − 51 processes (PROCs)
 − 444 practices (BPAs)
 − BPA rating scale
 − Process rating scale

 − SEPRM process capability determination method
 − Formal description of SEPRM capability
 determination methodology
 − Meanings of expressions and their operation

 − Conformance with the methodology developed in the
 unified process framework in Part I

• The SEPRM algorithm
− Algorithm 9.1: SEPRM process assessment
− Explanation of Algorithm 9.1
− Relation between Algorithm 9.1 and the capability
 determination expressions in Section 9.3.2
− The SEPRM algorithm complexity and the main factors

 affecting it

 • A sample SEPRM process assessment
− Understand assessment data documented in Appendix C

 − Manual process assessment in SEPRM
 − Algorithm-based assessment in SEPRM

− Interpretation of assessment results

• Usability of SEPRM
− A comprehensive process system model identified

 51 processes and 444 best practices in software engineering
− Model-based process assessment and improvement

 − Benchmark-based process assessment and improvement
 − Capability transformation between current process models

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• The design philosophy behind SEPRM is to provide a
comprehensive and integrated process system reference model, with
sound foundations and benchmarked data support, for process-based
software engineering. SEPRM is a fully implemented paradigm of
the unified process system framework established in Part I, and a

Chapter 9 The SEPRM Model 313

systematic attempt to address the issues we discussed in the existing
process models.

• The development of SEPRM was based on the great inspiration
derived from existing process models and the research in empirical
software engineering. From this we have gained improved
understanding of the software process system as a key for
organization and implementation of successful software
engineering.

 • Theoretical foundations of SEPRM have been established in Part I.
Empirical foundations of SEPRM will be explored in Part III.
SEPRM is a complete 2-D software engineering process system
model. Its process model is the most comprehensive, which is
supported by a set of industry benchmarks. Its process capability
model is independently operational with a unique process capability
scale.

• SEPRM enables a new approach to benchmark-based process
assessment. We have introduced this concept in Chapter 2, and it
will be demonstrated in PART III.

• SEPRM enables a derived process capability level to be transformed
onto other process models; further, it allows, for the first time, the
current process models to relate their capability levels among each
other. This will be demonstrated in PART III.

This chapter has established a basis for understanding and analyzing
SEPRM as a fully implemented paradigm of the unified software
engineering process system framework. Relationships between SEPRM and
other process system models will be discussed in Part III of this book.
Applications of SEPRM in process-based software engineering and case
studies will be provided in Parts IV – VI.

Annotated References

The first version of the SEPRM reference model framework was initially
published in 1996 (Wang et al., 1996a). A series of investigations and
supporting data benchmarking and validation was reported in (Wang et al.,
1997a/b/d/98a/e/99c/e/f/h).

314 Part II Software Engineering Process System Modeling

On theoretical foundations of software engineering processes, see:

• Formal methods and formal descriptions of software processes
(Dijkstra, 1976; Gries, 1981; Hoare, 1985/95; Milner, 1989; Hayes,
1987; Spivey, 1988; Dawes, 1991; Saeki et al., 1991; Bandinelli,
1992/93; Finkelstein, 1994; and Sutton and Osterweil, 1997).

• Software process (Weinwurm and Zagorski, 1965; Basili, 1980;
Aron, 1983; Agresti, 1986; Evans, 1987; Boehm, 1986/94; Gilb,
1988; and Humphrey, 1987/88/89/95/99).

• Process-based software engineering (Barghouti and Krishnamurthy,
1993; Garg and Jazayeri, 1995; Wang et al., 1996a/97a/b/99e), and
empirical foundations of the software engineering process (Wang et
al., 1998a/99c).

• Foundations of management science

– Systems theory (SSI, 1950)

– Operational theory (Fabrycky et al., 1984)

– Decision theory (Keen and Morton, 1978; Steven, 1980)

– Organization methods (Radnor et al., 1970; Kolb et al., 1970)

– Strategic planning (Anthony, 1965, Khaden and Schultzki,
1983; and William, 1991)

– Management economics (Richardson, 1966)

– Quality system principles (Shewhart, 1939; Juran,
1962/80/88/89; Crosby, 1979; Deming, 1982a/b, 1986; Imai,
1986; and Buckland et al., 1991).

• Generic views of software engineering (McDermid, 1991; Pressman,
1992/98; Sommerville, 1996; and Pfleeger, 1998).

For comparative analyses of current process models, see Wang et al.
(1997a/b/99e). On comparative assessments by using current process
models, see Wang et al. (1999h). On benchmarking of software processes
and practices, see Wang et al. (1998a/99c).

Chapter 9 The SEPRM Model 315

Questions and Problems

9.1 Explain the roles of a process reference model in process- based
software engineering.

9.2 Assuming there are 10 process models, calculate the comparative
analysis costs in the approaches of pairwise analysis and reference-
model-based analysis, respectively.

9.3 Explain the design philosophy behind the development of SEPRM.

9.4 Using your own words, briefly describe the structure of the SEPRM
process model and its taxonomy.

9.5 Use process algebra to derive a formal SEPRM process model based on
the process diagrams given in Figures 9.4 – 9.16. (Try not to copy
Expressions 9.4 – 9.19 before you finish.)

9.5 Briefly describe the SEPRM process capability model and capability
determination methodology using your own words.

9.7 Can you repeat the sample SEPRM assessment based on the data
provided in Appendix C and derive the same capability level as that of
the example shown in Section 9.5?

9.8 Fill in Appendix C according to the SEPRM model by using the data
that you collected in Exs. 5.6, 6.6, 7.6, and 8.6, and provide additional
data for any BPAs uncovered.

9.9 Using the result of Ex. 9.8, try to derive your own process capability
level in SEPRM according to the methodology presented in this
chapter.

9.10 Try to conduct an SEPRM exercise assessment for a software project or
organization with which you are familiar and according to the formal
approach presented in this chapter.

316 Part II Software Engineering Process System Modeling

9.11 Based on Exs 9.9 or 9.10, try to analyze how to improve the process
capability by one level and which processes to give priority.

9.12 Try to compare the process profiles of yourself and one of your
colleagues based on Ex.9.9, and report the significant differences and
their meanings in SEPRM.

9.13 Most of the established software development organizations are
currently considered to be located between SEPRM Levels 1 and 3.
Observe the SEPRM process model, do you think those organizations
could produce reasonably good software? Why?

9.14 Try to organize a small software project with at least three persons.
Then do a self-assessment for this project and report your capability
level in SEPRM.

9.15 Try to write an SEPRM assessment report for Exercise 9.10 or 9.14
and include the following:

• Purpose(s) of the SEPRM assessment

• The SEPRM model and methodology you adopted

• The input of the SEPRM assessment

• The procedure of the SEPRM assessment

• The output of the SEPRM assessment

• The effort you spend for the SEPRM assessment

 • Experience you gained in the SEPRM assessment

• Conclusions

9.16 Try to write an SEPRM process improvement plan based on
the assessment report developed in Ex. 9.15. In the process
improvement plan, include the following:

• Purpose(s) of the SEPRM process improvement plan

• Brief introduction of the SEPRM assessment results

• Analyze strengths of the organization’s process capability according
to SEPRM

• Analyze weaknesses of the organization’s process capability
according to SEPRM

• Recommend a process improvement plan to address the process
weaknesses or for moving to a higher SEPRM capability level

Chapter 9 The SEPRM Model 317

• Explain the benefit of implementing this process improvement plan
and how well your plan will meet the organization’s business goal

• Estimate the costs of this process improvement effort

• Predict the risks for executing the process improvement plan that

 you have suggested

 • Conclusions

9.17 What is the usage of SEPRM in software engineering process
establishment, assessment, and improvement?

This page intentionally left blankThis page intentionally left blank

319

PART III

SOFTWARE
ENGINEERING

PROCESS SYSTEM
ANALYSIS

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

10.
Benchmarking the SEPRM
Processes

11.
Comparative Analysis of
Current Process Models

12.
Transformation of Capability Levels
between Current Process Models

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

320 Part III Software Engineering Process System Analysis

One of the most frequently-asked questions in the software industry seeks to
identify the interrelationships between current process models. In Part II we
presented formal views on individual process models. In Part III the intention
is to explore the interrelationships between them via quantitative analysis,
and to investigate the practical foundations of the software engineering
process via benchmarking.

The knowledge structure of this part is as follows:

• Chapter 10. Benchmarking the SEPRM Processes

• Chapter 11. Comparative Analysis of Current Process Models

• Chapter 12. Transformation of Capability Levels between Current
Process Models

Chapter 10 seeks to establish a set of characteristic attributes for software
engineering processes via a series of worldwide industry surveys. A basic
argument in the process modeling and analysis field was that the processes
and the practices of current process models had been selected empirically,
and their validation in practice and effectiveness was virtually absent in the
literature. To deal with this issue, SEPRM is employed as an overarching
process model with a superset of BPAs compatible with existing models such
as CMM, ISO 9001, BOOTSTRAP, and ISO/IEC TR 15504. In total, 51
processes and 444 BPAs are quantitatively characterized with attributes of
the mean weighted importance and the ratios of significance, of practice, and
of effectiveness and usage.

Chapter 11 studies the interrelationships of current process models in the
process dimension. The compatibility and correlation between current
process models are quantitatively analyzed and contrasted in a rigorous way.
The relational properties among current process models are mutually
analyzed by taking the viewpoint of each with respect to each of the others.
This chapter fulfills a prerequisite to explore process capability
transformation in the following chapter.

Chapter 12 analyzes the interrelationships between the capability levels
of current process models, and explores how a given capability level in one
model may be related to another quantitatively. This goal is achieved through
SEPRM as an overarching process model and transformable algorithm in
process capability determination. Test cases are designed to analyze the
robustness of current process models in process assessment and capability
determination. Empirical data for estimation of assessment efforts by
different process models are provided as references.

Part III 321

This part adopts a rigorous and quantitative approach in analyzing the
characteristic attributes of process, the compatibility and correlation of
process models, and the interrelationships and transformability of capability
levels in different process models. Objective views on features, orientations,
and relationships of current process models are obtained based on the
analyses.

This page intentionally left blankThis page intentionally left blank

323

Chapter 10

BENCHMARKING
THE SEPRM
PROCESSES

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

10.
Benchmarking the SEPRM
Processes

10.1 Introduction 10.5 Benchmarks of the management processes
10.2 Methods for characterizing software process 10.6 The highlights of process characteristics
10.3 Benchmarks of the organization processes 10.7 Summary
10.4 Benchmarks of the development processes Annotated references

11.
Comparative Analysis of
Current Process Models

12.
Transformation of Capability Levels
between Current Process Models

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

324 Part III Software Engineering Process System Analysis

This chapter describes characteristic attributes of BPAs and characteristic
curves of processes modeled in SEPRM using the findings from a series of
worldwide surveys. A set of benchmarks for 444 BPAs and 51 processes will
be derived in order to characterize the BPAs and processes by the
quantitative attributes: mean weighted importance, and the ratios of
significance, practice, and effectiveness. In doing this, the intention is to
illustrate the general means by which any process model might be validated.
Because of the complexity and the large number of issues to be looked at,
SEPRM is used as a vehicle demonstrating all of the aspects that need to be
covered when creating confidence in a model’s worth and validity.

The objectives of this chapter are as follows:

• To establish a foundation of practice for the validation, calibration,
and benchmarking of software process models

• To seek statistical criteria for selecting processes and BPAs in
process system modeling

• To validate the BPAs and processes modeled in SEPRM

• To enable a new approach to benchmark-based process assessment
and improvement

• To characterize a superset of processes and BPAs in order to provide
reference points for existing process models and future new process
models

10.1 Introduction

In Part I the theoretical foundations of the unified software engineering
process framework were developed. This chapter attempts to establish the
practical foundations of process models with a set of characteristic attributes
of processes and BPAs supported by a series of industry surveys.

A basic argument in process modeling and analysis is that, for the most
part, the processes and BPAs of current process models have been selected
empirically, and that the validation of the BPAs in practice has not been
carried out. To deal with this issue, the SEPRM is employed as an
overarching process model with a superset of BPAs compatible with existing
models such as CMM, ISO 9001, BOOTSTRAP, and ISO/IEC TR 15504. A
series of surveys has been designed and carried out worldwide in order to

Chapter 10 Benchmarking the SEPRM Processes 325

seek practical evaluations of BPAs and processes in the software industry,
and to quantitatively characterize them for software engineering process
modeling and analysis [Wang et al., 1998a/99c].

In this chapter a superset of processes and BPAs will be characterized
and validated. Detailed survey findings are documented in Appendix D.
Benchmarks for the software engineering process system modeled by
SEPRM will be derived. The 444 BPAs and 51 processes in the SEPRM
model are thus supported by quantitative attributes. Via the mapping
mechanism documented in Appendix C and described in Chapter 11, the
processes and BPAs of the other process models can also be characterized
indirectly by using these benchmarks.

The criteria for including processes and BPAs in a software engineering
process model were developed in Chapter 2. Four attributes, the mean
weighted importance and the ratios of significance, practice, and
effectiveness, have been used to quantitatively characterize a BPA and a
software process. This chapter establishes a set of benchmarks for these
characteristic attributes of software processes.

By using the characteristic attribute criteria, the SEPRM model is
validated by the supporting data, and its credibility is extended so that the
SEPRM can be used as a benchmark-based as well as a model-based process
assessment model. Applying the validated SEPRM software process, a
software development organization can be assessed quantitatively, and
process improvement opportunities can be identified and prioritized based
on the significance and effectiveness of the BPAs.

In the remaining part of this chapter, Section 10.2 describes the methods
for characterizing BPAs and processes, and for plotting and illustrating
process benchmarks. Sections 10.3 through 10.5 report the facts of BPAs
and characteristic curves of processes in the three process subsystems of
SEPRM found in the worldwide surveys. Section 10.6 highlights the
findings and characteristics of BPAs and processes in the derived
benchmarks.

10.2 Methods for Characterizing
Software Process

This section describes how to quantitatively characterize software
engineering processes and BPAs by statistical data obtained from industry
surveys. Attributes are used to characterize BPAs, and characteristic curves
are used to describe processes.

326 Part III Software Engineering Process System Analysis

10.2.1 CHARACTERIZING BPAs BY ATTRIBUTES

The SEPRM survey developed a set of multiple attribute questionnaires for
all BPAs and processes, enabling information to be collected in a domain
determined by a combination of attributes of significance, practice, and
effectiveness in application.

The survey questionnaire listed the BPAs and asked an organization to
give an importance weighting for each BPA (on a scale of 0 to 5), to state
whether or not they applied the BPA in practice, and whether or not they
thought it was effective in their processes.

Using the raw data, benchmarked attributes for each BPA were derived.
Data analysis and processing methods of benchmarking are formally
described in Section 2.5. For each BPA, the mean weighted importance; the
ratios of significance, practice, and effectiveness; and the characteristic
value in application were defined by Definitions 2.40 – 2.44 and Expressions
2.11 – 2.20.

Quantitative analysis results form a set of benchmarks for the attributes
of the BPAs. The benchmarks are listed in Appendix D that show, for each
BPA, the mean importance weighting (W), the percentage of organizations
rating the BPA highly (i.e., weighting ≥ 3) significant (rw), the percentage of
organizations that applied the BPA (rp) in practice, and the percentage that
rated it as effective (re) in process. The final column ϕ, the characteristic
value, uses a combination of these three percentages to provide an integrated
indication of the BPA’s usage. The higher the value of ϕ, the more
important and effective the BPA in practice, and vice versa. Therefore, ϕ
can be used to index the importance and effectiveness of a BPA in practice.

10.2.2 BENCHMARKING SOFTWARE PROCESSES BY
 CHARACTERISTIC CURVES

In searching for a way to interpret the industry survey data for process
benchmarking, it was found that the software engineering processes can be
described by a set of characteristic curves. Based on the benchmarked
curves, the most or least significant, practical, and effective BPA in each
process can be determined. The gaps between the practice curve and the
significant, effective curves, which indicate where are the process
improvement opportunities exist, can also be identified. Further, if a
software development organization plots its data onto the characteristic
curves of a process, the organization’s strengths and weaknesses with regard
to the software industry average practices in software engineering are
evident. Thus, process improvement priorities and aims for gaining a
competitive position among peers can be identified quantitatively.

Chapter 10 Benchmarking the SEPRM Processes 327

10.2.3 PLOT AND ILLUSTRATION OF PROCESS
 BENCHMARKS

Detailed characteristic curves of processes will be plotted and illustrated in
the following sections using the data documented in Appendix D. In
Appendix D there are two index numbers, the series number (No.), and the
category number (CatNo.) for each BPA. The category number, CatNo,
consists of four digits for indexing a BPA as follows:

 CatNo. � Subsys.Category.Process.Practice (10.1)

For instance, BPA1.1.1.1 means the first practice located in Subsystem 1,
Category 1, and Process 1 – “define organization structure.”

The conventions used in plot and illustration of the characteristic curves
of processes are explained as follows:

• The square-plotted curve represents the ratio of significance (rw).

• The triangle-plotted curve represents the ratio of practice (rp).

• The cross-plotted curve represents the ratio of effectiveness (re).

• The diamond-plotted curve represents the mean weighted
importance of significance (W). W is scaled 0 – 5, while it is
multiplied by 10 for plotting in proper scale.

• In each process characteristic curve, the last two indexes of a CatNo,
Process.Practice, will be provided for referring a BPA to the
definition and benchmark in Appendix D.

The same plotting and identification convention applies to all following
sections for characterizing a set of 444 BPAs in 3 subsystems, 12 categories,
and 51 processes as modeled in SEPRM.

10.3 Benchmarks of the Organization
 Processes

The structure of the software engineering organization process subsystem of
SEPRM is modeled as shown in Table 10.1. Detailed benchmarks for the
organization process subsystems are listed in Appendix D.

328 Part III Software Engineering Process System Analysis

Table 10.1
Structure of the Organization Process Subsystem

CatNo Process Category Process BPA
1.1 Organization structure 2 13
1.1.1 Organization definition 7

1.1.2 Project organization 6

1.2 Organization process 2 26
1.2.1 Organization process definition 15

1.2.2 Organization process improvement 11

1.3 Customer services 4 42
1.3.1 Customer relations 13

1.3.2 Customer support 12

1.3.3 Software and system delivery 11

1.3.4 Service evaluation 6

Total 3 8 81

10.3.1 BENCHMARKS OF THE ORGANIZATION
STRUCTURE PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the organization
structure process category based on the data listed in Appendix D,
BPA No. 1 – 13.

10.3.1.1 The Organization Definition Process

Characteristic curves of the organization definition process are derived in
Figure 10.1. The BPAs 1.1 – 1.7 are defined in Appendix D, CatNo 1.1.1.1
– 1.1.1.7.

B PA s

c h arac ter istic
v alue s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 00

1 .1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7

W *10

rw (%)

rp (%)

re (%)

Figure 10.1 Characteristic curves of the organization definition process

Chapter 10 Benchmarking the SEPRM Processes 329

10.3.1.2 The Project Organization Process

Characteristic curves of the project organization process are derived in
Figure 10.2. The BPAs 2.1 – 2.6 are defined in Appendix D, CatNo
1.1.2.1 – 1.1.2.6.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.2 Characteristic curves of the project organization process

10.3.2 BENCHMARKS OF THE ORGANIZATION
 PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the organization
process category based on the data listed in Appendix D, BPA No.14 – 39.

10.3.2.1 The Organization Process Definition

Characteristic curves of the organization process definition are derived in
Figure 10.3. The BPAs 1.1 – 1.15 are defined in Appendix D, CatNo
1.2.1.1 – 1.2.1.15.

BPAs

characteristic
values

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1O 1.11 1.12 1.13 1.14 1.15

W*10

rw (%)

rp (%)

re (%)

Figure 10.3 Characteristic curves of the organization process definition

10.3.2.2 The Organization Process Improvement

Characteristic curves of the organization process improvement are derived in
Figure 10.4. The BPAs 2.1 – 2.11 are defined in Appendix D,
CatNo 1.2.2.1 – 1.2.2.11.

330 Part III Software Engineering Process System Analysis

BP As

c ha ra cte ristic
v alues

0

2 0

4 0

6 0

8 0

1 00

2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 2 .1 2 .11

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.4 Characteristic curves of the organization process improvement

10.3.3 BENCHMARKS OF THE CUSTOMER SERVICE
 PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the customer
service process category based on the data listed in Appendix D, BPA
No. 40 – 81.

10.3.3.1 The Customer Relations Process

Characteristic curves of the customer relations process are derived in Figure
10.5. The BPAs 1.1 – 1.13 are defined in Appendix D, CatNo 1.3.1.1 –
1.3.1.13.

B P A s

c h a ra c te r is tic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

1 .1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7 1 .8 1 .9 1 .1O 1 .11 1 .12 1 .13

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.5 Characteristic curves of the customer relations process

10.3.3.2 The Customer Support Process

Characteristic curves of the customer support process are derived in Figure
10.6. The BPAs 2.1 – 2.12 are defined in Appendix D, CatNo 1.3.2.1 –
1.3.2.12.

Chapter 10 Benchmarking the SEPRM Processes 331

B P A s

c h a ra c te r is t ic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 2 .1 O 2 .1 1 2 .1 2

W * 1 0

rw (%)

rp (%)

re (%)

Figure 10.6 Characteristic curves of the customer support process

10.3.3.3 The Software/System Delivery Process

Characteristic curves of the software/system delivery process are derived in
Figure 10.7. The BPAs 3.1 – 3.11 are defined in Appendix D, CatNo
1.3.3.1 – 1.3.3.11.

BPAs

characteristic
values

0

20

40

60

80

100

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.1O 3.11

W*10

rw (%)

rp (%)

re (%)

Figure 10.7 Characteristic curves of the software/system delivery process

10.3.3.4 The Service Evaluation Process

Characteristic curves of the service evaluation process are derived in Figure
10.8. The BPAs 4.1 – 4.6 are defined in Appendix D, CatNo 1.3.4.1 –
1.3.4.6.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0

2 0

4 0

6 0

8 0

1 0 0

4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.8 Characteristic curves of the service evaluation process

10.3.4 GENERAL CHARACTERISTICS OF THE
 ORGANIZATION PROCESS SUBSYSTEM

A general view of characteristics of the 81 BPAs in the 3 organization
categories and 8 processes is shown in Table 10.2 and Figure 10.9.

332 Part III Software Engineering Process System Analysis

Table 10.2
Statistical Characteristics of the Organization Process Subsystem

BPA Characteristics Weight No. of BPAs Relative Number of BPAs (%)
5 0 0

4 14 17.3

3 62 76.5

2 5 6.2

1 0 0

Mean weighted importance
(W)

0 0 0

E 24 29.6

V 46 56.8

F 9 11.1

Ratio of significance
(rw)

N 2 2.5

E 15 18.5

V 34 42.0

F 22 27.2

Ratio of practice
(rp)

N 10 12.3

E 23 28.4

V 46 56.8

F 10 12.3

Ratio of effectiveness
(re)

N 2 2.5

 Note: E - Extremely (≥90%), V - very (70-89%), F - fairly (50-69%), and N - not (<50%)

• For the mean weighted importance of BPAs in the software
organization processes, 93.8% of the BPAs are heavily weighted,
with 76.5% at weight scale 3.0 – 3.99 and 17.3% at weight scale 4.0
– 4.99. There are only 6.2% BPAs perceived to be not very
important.

• For the ratio of significance of BPAs, 29.6% of the BPAs are
weighted extremely significant, 56.8% are very significant, 11.1%
are fairly significant, and only 2.5% are not significant.

• For the ratio of practice of BPAs, 18.5% BPAs have extremely high
application rate, 42.0% BPAs have very high application rate, and
27.2% have fairly high application rate. But it is noteworthy that
there are 12.3% BPAs which were perceived to be unused.

• For the ratio of effectiveness of BPAs, 28.4% of the BPAs are
weighted extremely effective, 56.8% are very effective, and 12.3%
are fairly effective. Only 2.5% BPAs in the set are found not
effective.

Chapter 10 Benchmarking the SEPRM Processes 333

5 4 3 2 1 0 E V F N E V F N E V F N

 W rw rp re

0
10
20
30
40
50
60
70
80

ratios
(%)

5 4 3 2 1 0 E V F N E V F N E V F N

 W rw rp re

Figure 10.9 Overview of characteristics of the organization processes

10.4 Benchmarks of the Development
 Processes

The structure of the software development process subsystem of SEPRM is
modeled as shown in Table 10.3. Detailed benchmarks for the development
process subsystems are listed in Appendix D.

Table 10.3
Structure of the Software Development Process Subsystem

CatNo Process Category Process BPA

2.1 Software engineering
methodologies

3 23

2.1.1 Software engineering modeling 9

2.1.2 Reuse methodologies 7

2.1.3 Technology innovation 7

2.2 Software development
processes

7 60

2.2.1 Development process definition 12

2.2.2 Requirement analysis 8

2.2.3 Design 9

2.2.4 Coding 8

2.2.5 Module testing 6

2.2.6 Integration and system testing 7

2.2.7 Maintenance 10

2.3 Software development 4 32

334 Part III Software Engineering Process System Analysis

environment

2.3.1 Environment 7

2.3.2 Facilities 15

2.3.3 Development support tools 4

2.3.4 Management support tools 6

Total 3 14 115

10.4.1 BENCHMARKS OF THE SOFTWARE
 ENGINEERING METHODOLOGY PROCESS

 CATEGORY

This subsection demonstrates the derived benchmarks of the software
engineering methodology process category based on the data listed in
Appendix D, BPA No. 82 – 104.

10.4.1.1 The Software Engineering Modeling Process

Characteristic curves of the software engineering modeling process are
derived in Figure 10.10. The BPAs 1.1 – 1.9 are defined in Appendix
D, CatNo 2.1.1.1 – 2.1.1.9.

0

2 0

4 0

6 0

8 0

1 0 0

1 .1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7 1 .8 1 .9

B PAs

c h a ra c te r is tic
va lu e s

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.10 Characteristic curves of the software engineering modeling
 process

10.4.1.2 The Reuse Methodologies Process

Characteristic curves of the reuse methodologies process are derived in
Figure 10.11. The BPAs 2.1 – 2.7 are defined in Appendix D, CatNo 2.1.2.1
– 2.1.2.7.

Chapter 10 Benchmarking the SEPRM Processes 335

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.11 Characteristic curves of the reuse methodologies process

9.4.1.3 The Technology Innovation Process

Characteristic curves of the technology innovation process are derived in
Figure 10.12. The BPAs 3.1 – 3.7 are defined in Appendix D, CatNo 2.1.3.1
– 2.1.3.7.

B P A s

c h a r a c te r is t i c
v a lu e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.12 Characteristic curves of the technology innovation process

10.4.2 BENCHMARKS OF THE SOFTWARE
 DEVELOPMENT PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the software
development process category based on the data listed in Appendix D, BPA
No. 105 – 164.

10.4.2.1 The Development Process Definition

Characteristic curves of the development process definition are derived in
Figure 10.13. The BPAs 1.1 – 1.12 are defined in Appendix D, CatNo
2.2.1.1 – 2.2.1.12.

336 Part III Software Engineering Process System Analysis

B P A s

c h a r a c te r is t ic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

1 .1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7 1 .8 1 .9 1 .1 O 1 .1 1 1 .1 2

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.13 Characteristic curves of the development definition process

10.4.2.2 The Requirement Analysis Process

Characteristic curves of the requirement analysis process are derived in
Figure 10.14. The BPAs 2.1 – 2.8 are defined in Appendix D, CatNo
2.2.2.1 – 2.2.2.8.

BPAs

characteristic
values

0

20

40

60

80

100

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

W*10

rw (%)

rp (%)

re (%)

Figure 10.14 Characteristic curves of the requirement analysis process

10.4.2.3 The Design Process

Characteristic curves of the design process are derived in Figure 10.15. The
BPAs 3.1 – 3.9 are defined in Appendix D, CatNo 2.2.3.1 – 2.2.3.9.

BPAs

characteristic
values

0

20

40

60

80

100

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

W*10

rw (%)

rp (%)

re (%)

Figure 10.15 Characteristic curves of the design process

10.4.2.4 The Coding Process

Characteristic curves of the coding process are derived in Figure 10.16. The
BPAs 4.1 – 4.8 are defined in Appendix D, CatNo 2.2.4.1 – 2.2.4.8.

Chapter 10 Benchmarking the SEPRM Processes 337

BPAs

characteristic
values

0

20

40

60

80

100

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

W*10

rw (%)

rp (%)

re (%)

Figure 10.16 Characteristic curves of the coding process

10.4.2.5 The Module Testing Process

Characteristic curves of the module testing process are derived in Figure
10.17. The BPAs 5.1 – 5.6 are defined in Appendix D, CatNo 2.2.5.1 –
2.2.5.6.

0

20
40

60

80

100

5.1 5.2 5.3 5.4 5.5 5.6

BPAs

characteristic
values

W*10

rw (%)

rp (%)

re (%)

Figure 10.17 Characteristic curves of the module testing process

10.4.2.6 The Integration and System Testing Process

Characteristic curves of the integration and system testing process are
derived in Figure 10.18. The BPAs 6.1 – 6.7 are defined in Appendix
D, CatNo 2.2.6.1 – 2.2.6.7.

BPAs

characteristic
values

0

20

40

60

80

100

6.1 6.2 6.3 6.4 6.5 6.6 6.7

W*10

rw (%)

rp (%)

re (%)

Figure 10.18 Characteristic curves of the integration and system testing
process

10.4.2.7 The Maintenance Process

Characteristic curves of the maintenance process are derived in Figure
10.19. The BPAs 7.1 – 7.10 are defined in Appendix D, CatNo 2.2.7.1 –
2.2.7.10.

338 Part III Software Engineering Process System Analysis

BP As

characteristic
values

0

20

40

60

80

100

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.1O

W *10

rw (%)

rp (%)

re (%)

Figure 10.19 Characteristic curves of the maintenance process

10.4.3 BENCHMARKS OF THE SOFTWARE
 DEVELOPMENT ENVIRONMENT PROCESS
 CATEGORY

This subsection demonstrates the derived benchmarks of the software
development environment process category based on the data listed in
Appendix D, BPA No. 165 – 196.

10.4.3.1 The Environment Process

Characteristic curves of the environment process are derived in Figure
10.20. The BPAs 1.1 – 1.7 are defined in Appendix D, CatNo 2.3.1.1 –
2.3.1.7.

BPAs

characteristic
values

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7

W*10

rw (%)

rp (%)

re (%)

Figure 10.20 Characteristic curves of the environment process

10.4.3.2 The Facilities Process

Characteristic curves of the facilities process are derived in Figure 10.21.
The BPAs 2.1 – 2.15 are defined in Appendix D, CatNo 2.3.2.1 – 2.3.2.15.

Chapter 10 Benchmarking the SEPRM Processes 339

BPAs

characteristic
values

0

20

40

60

80

100

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.1O 2.11 2.12 2.13 2.14 2.15

W*10

rw (%)

rp (%)

re (%)

Figure 10.21 Characteristic curves of the facilities process

10.4.3.3 The Development Support Tools Process

Characteristic curves of the development support tools process are derived in
Figure 10.22. The BPAs 3.1 – 3.4 are defined in Appendix D, CatNo
2.3.3.1 – 2.3.3.4.

B P A s

c h a ra c te r is tic
v a lu es

0

2 0

4 0

6 0

8 0

1 0 0

3 .1 3 .2 3 .3 3 .4

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.22 Characteristic curves of the development support tools process

10.4.3.4 The Management Support Tools Process

Characteristic curves of the management support tools process are derived in
Figure 10.23. The BPAs 4.1 – 4.6 are defined in Appendix D, CatNo
2.3.4.1 – 2.3.4.6.

0
2 0
4 0
6 0
8 0

1 00

4 ,1 4 ,2 4 ,3 4 ,4 4 ,5 4 ,6

B P A s

C h a ra c te r is tic
va lu e s

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.23 Characteristic curves of the management support tools process

10.4.4 GENERAL CHARACTERISTICS OF THE
 DEVELOPMENT PROCESS SUBSYSTEM

A general view of benchmarks of the 115 BPAs in the 3 development
categories and 14 processes is shown in Table 10.4 and Figure 10.2.

340 Part III Software Engineering Process System Analysis

Table 10.4
Statistical Characteristics of the Development Process Subsystem

BPA Characteristics Weight No. of BPAs Relative Number of BPAs (%)

5 0 0

4 27 23.5

3 75 65.2

2 13 11.3

1 0 0

Mean weighted importance
(W)

0 0 0

E 51 44.3

V 51 44.3

F 11 9.7

Ratio of significance
(rw)

N 2 1.7

E 11 9.6

V 47 40.9

F 41 35.6

Ratio of practice
(rp)

N 16 13.9

E 45 39.1

V 64 55.7

F 6 5.2

Ratio of effectiveness
(re)

N 0 0

 Note: E - Extremely (≥90%), V - very (70-89%), F - fairly (50-69%), and N - not (<50%)

• For the mean weighted importance of BPAs in the software
development processes, 88.7% of the BPAs are heavily weighted
with 65.2% at weight scale 3.0 – 3.99 and 23.5% at weight scale 4.0
– 4.99. Only 11.3% BPAs were perceived to be not very important.

• For the ratio of significance of BPAs, 44.3% of the BPAs are
weighted extremely significant, 44.3% are very significant, 9.6% are
fairly significant, and only 1.7% are not significant.

• For the ratio of practice of BPAs, 9.6% BPAs have extremely high
application rate, 40.9% BPAs have very high application rate, and
35.6% have fairly high application rate. There are 13.9% BPAs
perceived to be unused.

• For the ratio of effectiveness of BPAs, 39.1% of the BPAs are
weighted extremely effective, 55.7% are very effective, and 5.2% are
fairly effective. No BPA in the set is found not effective.

Chapter 10 Benchmarking the SEPRM Processes 341

5 4 3 2 1 0 E V F N E V F N E V F N

 W rw rp re

0
10
20
30
40
50
60
70

ratio s
(%)

5 4 3 2 1 0 E V F N E V F N E V F N

 W rw rp re

Figure 10.24 Overview of survey findings on the development processes

10.5 Benchmarks of the Management
 Processes

The structure of the software engineering management process subsystem of
SEPRM is modeled as shown in Table 10.5. Detailed benchmarks for the
management process subsystem are listed in Appendix D.

Table 10.5
Structure of the Software Engineering Management Process Subsystem

Category
No.

Process Category Process BPA

3.1 Software quality assurance 11 78

3.1.1 SQA procedure definition 17

3.1.2 Requirements review 5

3.1.3 Design review 4

3.1.4 Code review 3

3.1.5 Module and integration
testing

5

3.1.6 Acceptance testing 5

3.1.7 Maintenance audit 8

3.1.8 Internal audit and inspection 6

3.1.9 Peer reviews 10

3.1.10 Defect control 10

3.1.11 Subcontractor’s quality
control

5

3.2 Project planning 4 45

3.2.1 Project plan 20

3.2.2 Project estimation 7

342 Part III Software Engineering Process System Analysis

3.2.3 Project risk avoidance 11

3.2.4 Project quality plan 7

3.3 Project management 6 55
3.3.1 Process management 8

3.3.2 Process tracking 15

3.3.3 Configuration management 8

3.3.4 Change control 9

3.3.5 Process review 8

3.3.6 Intergroup coordination 7

3.4 Contract and requirement
management

4 42

3.4.1 Requirement management 12

3.4.2 Contract management 7

3.4.3 Subcontractor management 14

3.4.4 Purchasing management 9

3.5 Document management 2 17
3.5.1 Documentation 11

3.5.2 Process database/library 6

3.6 Human resource management 2 11
3.6.1 Staff selection/allocation 4

3.6.2 Training 7

Total 6 29 248

10.5.1 BENCHMARKS OF THE SOFTWARE QUALITY
 ASSURANCE PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the software quality
assurance process category based on the data listed in Appendix D, BPA No.
197 – 274.

10.5.1.1 The SQA Procedure Definition Process

Characteristic curves of the SQA procedure definition process are derived in
Figure 10.25. The BPAs 1.1 – 1.17 are defined in Appendix D, CatNo
3.1.1.1 – 3.1.1.17.

BPAs

characteristic
values

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1O 1.11 1.12 1.13 1.14 1.15 1.16 1.17

W*10

rw (%)

rp (%)

re (%)

Figure 10.25 Characteristic curves of the SQA procedure definition process

Chapter 10 Benchmarking the SEPRM Processes 343

10.5.1.2 The Requirement Review Process

Characteristic curves of the requirement review process are derived in
Figure 10.26. The BPAs 2.1 – 2.5 are defined in Appendix D, CatNo
3.1.2.1 – 3.1.2.5.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

2 . 1 2 . 2 2 . 3 2 . 4 2 . 5

W * 1 0

rw (%)

rp (%)

re (%)

Figure 10.26 Characteristic curves of the requirement review process

10.5.1.3 The Design Review Process

Characteristic curves of the design review process are derived in Figure
10.27. The BPAs 3.1 – 3.4 are defined in Appendix D, CatNo 3.1.3.1
– 3.1.3.4.

B P A s

c h a r a c te r is t i c
v a lu e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

3 .1 3 .2 3 .3 3 .4

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.27 Characteristic curves of the design review process

10.5.1.4 The Code Review Process

Characteristic curves of the code review process are derived in Figure 10.28.
The BPAs 4.1 – 4.3 are defined in Appendix D, CatNo 3.1.4.1 – 3.1.4.3.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

4 . 1 4 . 2 4 . 3

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.28 Characteristic curves of the code review process

344 Part III Software Engineering Process System Analysis

10.5.1.5 The Module Testing Audit Process

Characteristic curves of the module testing audit process are derived in
Figure 10.29. The BPAs 5.1 – 5.4 are defined in Appendix D, CatNo 3.1.5.1
– 3.1.5.4.

0

2 0

4 0

6 0

8 0

1 0 0

5 . 1 5 . 2 5 . 3 5 . 4

B P A s

c h a r a c t e r i s t ic
v a l u e s

W * 1 0

r w (%)

r p (%)

r e (%)

L i n e 5

Figure 10.29 Characteristic curves of the module testing audit process

10.5.1.6 The Integration and System Testing Audit Process

Characteristic curves of the integration and system testing audit process are
illustrated in Figure 10.30. The BPAs 6.1 – 6.6 are defined in Appendix D,
CatNo 3.1.6.1 – 3.1.6.6.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

6 . 1 6 . 2 6 . 3 6 . 4 6 . 5 6 . 6

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.30 Characteristic curves of the integration and system testing
process

10.5.1.7 The Maintenance Audit Process

Characteristic curves of the maintenance audit process are derived in Figure
10.31. The BPAs 7.1 – 7.8 are defined in Appendix D, CatNo 3.1.7.1
– 3.1.7.8.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

7 . 1 7 . 2 7 . 3 7 . 4 7 . 5 7 . 6 7 . 7 7 . 8

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.31 Characteristic curves of the maintenance audit process

Chapter 10 Benchmarking the SEPRM Processes 345

10.5.1.8 The Audit and Inspection Process

Characteristic curves of the audit and inspection process are derived in
Figure 10.32. The BPAs 8.1 – 8.6 are defined in Appendix D, CatNo 3.1.8.1
– 3.1.8.6.

B P A s

c h a r a c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

8 . 1 8 . 2 8 . 3 8 . 4 8 . 5 8 . 6

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.32 Characteristic curves of the audit and inspection process

10.5.1.9 The Peer Review Process

Characteristic curves of the peer review process are derived in Figure 10.33.
The BPAs 9.1 – 9.10 are defined in Appendix D, CatNo 3.1.9.1 – 3.1.9.10.

B P A s

c h a r a c te r is t i c
v a lu e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

9 . 1 9 . 2 9 . 3 9 . 4 9 . 5 9 . 6 9 . 7 9 . 8 9 . 9 9 . 1 O

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.33 Characteristic curves of the peer review process

10.5.1.10 The Defect Control Process

Characteristic curves of the defect control process are derived in Figure
10.34. The BPAs 10.1 – 10.10 are defined in Appendix D, CatNo 3.1.10.1 –
3.1.10.10.

B P A s

c h a ra c te r is t ic
v a lu e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 0 .1 1 0 .2 1 0 .3 1 0 .4 1 0 .5 1 0 .6 1 0 .7 1 0 .8 1 0 .9 1 0 .1 O

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.34 Characteristic curves of the defect control process

346 Part III Software Engineering Process System Analysis

10.5.1.11 The Subcontractor’s Quality Control Process

Characteristic curves of the subcontractor’s quality control process are
derived in Figure 10.35. The BPAs 11.1 – 11.5 are defined in Appendix D,
CatNo 3.1.11.1 – 3.1.11.5.

B P A s

c h a ra c te r is ti c
v a lu e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 1 .1 1 1 .2 1 1 .3 1 1 .4 1 1 .5

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.35 Characteristic curves of the subcontractor’s quality control
process

10.5.2 BENCHMARKS OF THE PROJECT PLANNING
 PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the project
planning process category based on the data listed in Appendix D, BPA No.
275 – 319.

10.5.2.1 The General Project Plan Process

Characteristic curves of the general project plan process are derived in
Figure 10.36. The BPAs 1.1 – 1.20 are defined in Appendix D, CatNo
3.2.1.1 – 3.2.1.20.

BPAs

characteristic
values

0
10
20
30
40
50
60
70
80
90

100

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

1.
1O

1.
11

1.
12

1.
13

1.
14

1.
15

1.
16

1.
17

1.
18

1.
19

1.
2O

W *10

rw (%)

rp (%)

re (%)

Figure 10.36 Characteristic curves of the general plan process

10.5.2.2 The Project Estimation Process

Characteristic curves of the project estimation process are derived in Figure
10.37. The BPAs 2.1 – 2.7 are defined in Appendix D, CatNo 3.2.2.1 –
3.2.2.7.

Chapter 10 Benchmarking the SEPRM Processes 347

B P A s

c h a r a c t e r is t ic
v a lu e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7

W * 1 0

r w (%)

r p (%)

r e (%)

Figure 10.37 Characteristic curves of the project estimation process

10.5.2.3 The Project Risk Avoidance Process

Characteristic curves of the project risk avoidance process are derived in
Figure 10.38. The BPAs 3.1 – 3.11 are defined in Appendix D, CatNo
3.2.3.1 – 3.2.3.11.

B P A s

c h a ra c te r is tic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

3 .1 3 .2 3 .3 3 .4 3 .5 3 .6 3 .7 3 .8 3 .9 3 .1 O 3 .1 1

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.38 Characteristic curves of the project risk avoidance process

10.5.2.4 The Project Quality Plan Process

Characteristic curves of the project quality plan process are derived in Figure
10.39. The BPAs 4.1 – 4.7 are defined in Appendix D, CatNo 3.2.4.1 –
3.2.4.7.

B P A s

c h a ra c t e r i s t i c
v a l u e s

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7

W * 1 0

rw (%)

rp (%)

re (%)

Figure 10.39 Characteristic curves of the project quality plan process

10.5.3 BENCHMARKS OF THE PROJECT
MANAGEMENT PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the project
management process category based on the data listed in Appendix D, BPA
No. 320 – 347.

348 Part III Software Engineering Process System Analysis

10.5.3.1 Process Management

Characteristic curves of the process-management process are derived in
Figure 10.40. The BPAs 1.1 – 1.8 are defined in Appendix D, CatNo 3.3.1.1
– 3.3.1.8.

B PAs

characteristic
values

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

W *10

rw (%)

rp (%)

re (%)

Figure 10.40 Characteristic curves of the process-management process

10.5.3.2 Process Tracking

Characteristic curves of the process-tracking process are derived in Figure
10.41. The BPAs 2.1 – 2.15 are defined in Appendix D, CatNo 3.3.2.1. –
3.3.2.15.

BPAs

characteristic
values

0

20

40

60

80

100

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.1 2.11 2.12 2.13 2.14 2.15

W*10

rw (%)

rp (%)

re (%)

Figure 10.41 Characteristic curves of the process-tracking process

10.5.3.3 The Configuration Management Process

Characteristic curves of the configuration management process are derived
in Figure 10.42. The BPAs 3.1 – 3.8 are defined in Appendix D, CatNo
3.3.3.1 – 3.3.3.8.

B P A s

c h a r a c t e r is t ic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

3 .1 3 .2 3 .3 3 .4 3 .5 3 .6 3 .7 3 .8

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.42 Characteristic curves of the configuration management process

Chapter 10 Benchmarking the SEPRM Processes 349

10.5.3.4 The Change Control Process

Characteristic curves of the change control process are illustrated in Figure
10.43. The BPAs 4.1 – 4.9 are defined in Appendix D, CatNo 3.3.4.1
– 3.3.4.9.

B P A s

c h a ra c t e r is tic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

4 .1 4 .2 4 .3 4 .4 4 .5 4 .6 4 .7 4 .8 4 .9

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.43 Characteristic curves of the change control process

10.5.3.5 Process Review

Characteristic curves of the process review process are derived in Figure
10.44. The BPAs 5.1 – 5.8 are defined in Appendix D, CatNo 3.3.5.1. –
3.3.5.8.

B P A s

ch aracter is tic
va lu es

0

20

40

60

80

100

5 .1 5 .2 5 .3 5 .4 5 .5 5 .6 5 .7 5 .8

W *10

rw (%)

rp (%)

re (%)

Figure 10.44 Characteristic curves of the process review process

10.5.3.6 The Intergroup Coordination Process

Characteristic curves of the intergroup coordination process are derived in
Figure 10.45. The BPAs 6.1 – 6.7 are defined in Appendix D, CatNo
3.3.6.1. – 3.3.6.7.

B P A s

ch aracter is tic
va lu es

0

20

40

60

80

100

6 .1 6 .2 6 .3 6 .4 6 .5 6 .6 6 .7

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.45 Characteristic curves of the intergroup coordination process

350 Part III Software Engineering Process System Analysis

10.5.4 BENCHMARKS OF THE CONTRACT AND
 REQUIREMENT MANAGEMENT PROCESS
 CATEGORY

This subsection demonstrates the derived benchmarks of the contract and
requirement management process category based on the data listed in
Appendix D, BPA No. 375 – 416.

10.5.4.1 The Requirement Management Process

Characteristic curves of the requirement management process are derived in
Figure 10.46. The BPAs 1.1 – 1.12 are defined in Appendix D, CatNo
3.4.1.1 – 3.4.1.12.

BPAs

cha racteristic
values

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1O 1.11 1.12

W *10

rw (%)

rp (%)

re (%)

Figure 10.46 Characteristic curves of the requirement management process

10.5.4.2 The Contract Management Process

Characteristic curves of the contract management process are derived in
Figure 10.47. The BPAs 2.1 – 2.7 are defined in Appendix D, CatNo 3.4.2.1
– 3.4.2.7.

B P A s

c h a r a c te r is t ic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.47 Characteristic curves of the contract management process

10.5.4.3 The Subcontractor Management Process

Characteristic curves of the subcontractor management process are derived
in Figure 10.48. The BPAs 3.1 – 3.14 are defined in Appendix D,
CatNo 3.4.3.1 – 3.4.3.14.

Chapter 10 Benchmarking the SEPRM Processes 351

BPAs

characteristic
values

0

20

40

60

80

100

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.1O 3.11 3.12 3.13 3.14

W*10

rw (%)

rp (%)

re (%)

Figure 10.48 Characteristic curves of the subcontractor management
process

10.5.4.4 The Purchasing Management Process

Characteristic curves of the purchasing management process are derived in
Figure 10.49. The BPAs 4.1 – 4.9 are defined in Appendix D, CatNo
3.4.4.1 – 3.4.4.9.

B P A s

c h a r a c t e r is t ic
v a lu e s

0

2 0

4 0

6 0

8 0

1 0 0

4 .1 4 .2 4 .3 4 .4 4 .5 4 .6 4 .7 4 .8 4 .9

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.49 Characteristic curves of the purchasing management process

10.5.5 BENCHMARKS OF THE DOCUMENT
 MANAGEMENT PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the document
management process category based on the data listed in Appendix D, BPA
No. 417 – 433.

10.5.5.1 The Documentation Process

Characteristic curves of the documentation process are derived in Figure
10.50. The BPAs 1.1 – 1.11 are defined in Appendix D, CatNo 3.5.1.1 –
3.5.1.11.

B PA s

characteristic
va lues

0

20

40

60

80

100

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1O 1.11

W *10

rw (%)

rp (%)

re (%)

Figure 10.50 Characteristic curves of the documentation process

352 Part III Software Engineering Process System Analysis

10.5.5.2 The Process Database/Library

Characteristic curves of the process database/library are derived in Figure
10.51. The BPAs 2.1 – 2.6 are defined in Appendix D, CatNo 3.5.2.1
– 3.5.2.6.

B P A s

c h arac ter is tic
v alu e s

0

2 0

4 0

6 0

8 0

1 00

2 .1 2 .2 2 .3 2 .4 2 .5 2 .6

W *1 0

rw (%)

rp (%)

re (%)

Figure 10.51 Characteristic curves of the process database/library

10.5.6 BENCHMARKS OF THE HUMAN RESOURCE
 MANAGEMENT PROCESS CATEGORY

This subsection demonstrates the derived benchmarks of the human resource
management process category based on the data listed in Appendix D, BPA
No. 434 – 444.

10.5.6.1 The Staff Selection and Allocation Process

Characteristic curves of the staff selection and allocation process are derived
in Figure 10.52. The BPAs 1.1 – 1.4 are defined in Appendix D, CatNo
3.6.1.1 – 3.6.1.4.

BP As

characteris tic
values

0

20

40

60

80

100

1.1 1.2 1.3 1.4

W *10

rw (%)

rp (%)

re (%)

Figure 10.52 Characteristic curves of the staff selection and allocation
process

10.5.6.2 The Training Process

Characteristic curves of the training process are derived in Figure 10.53.
The BPAs 2.1 – 2.7 are defined in Appendix D, CatNo 3.6.2.1 – 3.6.2.7.

Chapter 10 Benchmarking the SEPRM Processes 353

B P A s

ch aracter is tic
va lu es

0

20

40

60

80

100

2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7

W *10

rw (%)

rp (%)

re (%)

Figure 10.53 Characteristic curves of the training process

10.5.7 GENERAL CHARACTERISTICS OF THE
 MANAGEMENT PROCESS SUBSYSTEM

A general view of benchmarks of the 248 BPAs in the 6 management
categories and 29 processes is shown in Table 10.6 and Figure 10.3.

Table 10.6
Statistical Characteristics of the Management Process Subsystem

BPA Characteristics Weight No. of BPAs Relative Number of BPAs (%)
5 0 0

4 64 25.8

3 165 66.5

2 19 7.7

1 0 0

Mean weighted importance
(W)

0 0 0

E 116 46.8

V 107 43.1

F 24 9.7

Ratio of significance
(rw)

N 1 0.4

E 28 11.3

V 91 36.7

F 81 32.7

Ratio of practice
(rp)

N 48 19.3

E 82 33.1

V 138 55.6

F 28 11.3

Ratio of effectiveness
(re)

N 0 0

 Note: E - Extremely (≥90%), V - very (70-89%), F - fairly (50-69%), and N - not (<50%)

• For the mean weighted importance of BPAs in software
management processes, 92.3% of the BPAs are heavily weighted

354 Part III Software Engineering Process System Analysis

with 66.5% at weight scale 3.0 – 3.99 and 25.8% at weight scale 4.0
– 4.99. There are 7.7% BPAs perceived to be not very important.

• For the ratio of significance of BPAs in software management
processes, 46.8% of the BPAs are weighted extremely significant,
43.1% are very significant, 9.7% are fairly significant, and only
0.4% are not significant.

• For the ratio of practice of BPAs in software management processes,
11.3% BPAs have extremely high application rate, 36.7% BPAs
have very high application rate, and 32.7% have fairly high
application rate. There are 19.4% BPAs perceived to be unused.

• For the ratio of effectiveness of BPAs in software management
processes, 33.1% of the BPAs are weighted extremely effective,
55.6% are very effective, and 11.3% are fairly effective. No BPAs in
the set are found not effective.

5 4 3 2 1 0 E V F N E V F N E V F N

W rw rp re

0
10
20
30
40
50
60
70

Data
distribution

(%)

5 4 3 2 1 0 E V F N E V F N E V F N

W rw rp re

 Figure 10.54 Overview of survey findings on the management processes

10.6 The Highlights of Process
Characteristics

In Sections 10.3 – 10.5 the SEPRM benchmarks and characteristic curves of
the 51 processes in 3 process subsystems were derived. These benchmarks
enable readers to analyze which is the most or least significant, practical,
and effective BPA in each process, and to identify the gaps between the
practice curve and the significant and effective curves to point to process
improvement opportunities. The process benchmarks provide a set of

Chapter 10 Benchmarking the SEPRM Processes 355

statistical references for analyzing a software development organization’s
strengths and weaknesses, and for identifying process improvement
priorities and aims for gaining a competitive position among peers.

In this section a set of general views of the BPA attributes and process
characteristics will be summarized. Then, the most/least outstanding
processes as rated by the software industry in terms significance, practice,
and effectiveness, as well as their combinations, will be identified.

General statistical characteristics of the BPAs modeled in SEPRM are
summarized in Table 10.7 and illustrated in Figure 10.4.

Table 10.7
General Statistical Characteristics of the SEPRM Processes

BPA Characteristics Weight No. of BPAs Relative Number of BPAs (%)
5 0 0

4 105 23.7

3 302 68.0

2 37 8.3

1 0 0

Mean weighted importance
(W)

0 0 0

E 191 43.0

V 204 45.9

F 44 10.0

Ratio of significance
(rw)

N 5 1.1

E 54 12.2

V 172 38.7

F 144 32.4

Ratio of practice
(rp)

N 74 16.7

E 150 33.8

V 248 55.8

F 44 9.9

Ratio of effectiveness
(re)

N 2 0.5

 Note: E - Extremely (≥90%), V - very (70-89%), F - fairly (50-69%), and N - not (<50%)

5 4 3 2 1 0 E V F N E V F N E V F N

W rw rp re

0
10
20
30
40
50
60
70

Data
distribution

(%)

5 4 3 2 1 0 E V F N E V F N E V F N

W rw rp re

 Figure 10.55 General view of BPA attributes modeled in SEPRM

356 Part III Software Engineering Process System Analysis

According to the survey findings, process implementation and improvement
priorities can be identified based on the statistical fact that almost all of the
BPAs are evaluated effective, but 16.7% have not been practiced.

In addition to the general findings described above, the following
subsections highlight the outstanding processes in terms of most/least
significant, practical, effective, and useful.

10.6.1 THE MOST/LEAST SIGNIFICANT PROCESSES

Analyzing the ratio of significance for the BPAs in SEPRM, 43.0% of the
BPAs are weighted extremely significant, 45.9% are very significant, 9.9%
are fairly significant, and only 1.1% are not significant.

According to the survey data, more than 88% of the BPAs are highly
significant. Therefore, at the process level, almost all of the 51 SEPRM
processes are significant. While looking for details, the top 10 processes
rated most or least significant are shown in Table 10.8. The most significant
processes should be given priority in process establishment and
improvement. The least significant processes are rated by relative scores,
and, thus, by no means should they be considered “not useful” in a process
system.

Table 10.8
Top Ten Most/Least Significant Processes

Sequence Top 10 Bottom 10
1 3.6.1 Staff selection and allocation 3.5.2 Process database/library

2 3.4.1 Requirement management 2.3.4 Management support tools

3 3.3.3 Configuration management 3.3.2 Process tracking

4 2.2.5 Module testing 2.3.3 Development support tools

5 3.1.11 Subcontractor’s quality control 1.3.3 Software/system delivery

6 2.2.1 Development process definition 2.3.2 Facilities

7 3.6.2 Training 3.2.3 Project risk avoidance

8 3.2.4 Project quality plan 3.4.4 Purchasing management

9 2.1.2 Reuse methodologies 1.3.2 Customer support

10 3.2.2 Project estimation 2.3.1 Environment

10.6.2 THE MOST/LEAST PRACTICAL PROCESSES

Looking at the ratio of practice for the BPAs in SEPRM, 12.2% BPAs have
extremely high application rate, 38.7% BPAs have very high application
rate, and 32.4% have fairly high application rate. It is noteworthy that there
are 16.7% BPAs perceived to be relatively unused.

Chapter 10 Benchmarking the SEPRM Processes 357

According to the survey data, 50.9% of the BPAs are very frequently
applied, while 16.7% are less frequently used. The top 10 processes that are
rated most or least practical are shown in Table 10.9. The most practical
processes should be given priority in process establishment and
improvement. The least practical processes can be interpreted, to some
extent, as those that were applied relatively the least in the software
industry.

Table 10.9
Top Ten Most/Least Practical Processes

Sequence Top 10 Bottom 10
1 3.4.1 Requirement management 3.5.2 Process database/library

2 3.6.1 Staff selection and allocation 3.2.3 Project risk avoidance

3 2.2.1 Development process definition 3.3.1 Process management

4 3.2.1 Project plan 2.3.4 Management support tools

5 3.2.2 Project estimation 3.1.4 Code review

6 1.3.3 Software/system delivery 2.2.6 Integration and system testing

7 1.1.1 Organization definition 1.2.2 Organization process improvement

8 1.3.2 Customer support 2.1.2 Reuse methodologies

9 1.3.4 Service evaluation 3.1.2 Requirement review

10 2.1.3 Technology innovation 3.3.5 Process review

10.6.3 THE MOST/LEAST EFFECTIVE PROCESSES

For the ratio of effectiveness of the BPAs in SEPRM, 33.8% of the BPAs are
weighted extremely effective, 55.8% are very effective, and 9.9% are fairly
effective. Only 0.5% BPAs in the set are found not effective.

According to the survey data, nearly 90% of the BPAs are highly
effective. The top 10 processes that are rated most or least effective are
shown in Table 10.10. The most effective processes should be given priority
in process establishment and improvement. The least effective processes
indicate they are relatively less effective, but not necessarily of no use.

Table 10.10
Top Ten Most/Least Effective Processes

Sequence Top 10 Bottom 10
1 3.4.2 Contract management 3.2.3 Project risk avoidance

2 1.3.4 Service evaluation 3.1.4 Code review

3 2.1.3 Technology innovation 3.3.1 Process management

4 3.1.11 Subcontractor’s quality control 3.3.2 Process tracking

5 3.6.1 Staff selection and allocation 1.2.1 Organization process definition

6 1.3.2 Customer support 1.2.2 Organization process improvement

358 Part III Software Engineering Process System Analysis

7 3.2.1 Project plan 3.1.8 Internal audit

8 3.1.10 Defect control 3.3.5 Process review

9 2.2.1 Development process definition 3.5.2 Process database/library

10 3.3.4 Change control 1.3.1 Customer relations

10.6.4 THE MOST/LEAST USEFUL PROCESSES

Because of the different magnitudes according to Expression 2.20, there is
no comparability between the ratio of the combined characteristic value (or
usage) of BPAs in SEPRM and the ratios of the others as described in
previous subsections. Looking at the relative values of the characteristic
attributes, the top 10 processes that are rated most or least useful are shown
in Table 10.11.

Table 10.11
Top Ten Most/Least Useful (Combined Characteristics) Processes

Sequence Top 10 Bottom 10
1 3.4.1 Requirement management 3.2.3 Project risk avoidance

2 3.6.1 Staff selection and allocation 3.3.1 Process management

3 3.2.1 Project plan 2.3.4 Management support tools

4 1.3.4 Service evaluation 3.1.4 Code review

5 2.2.5 Module testing 1.2.2 Organization process
 improvement

6 2.2.1 Development process definition 2.3.3 Development support tools

7 2.1.3 Technology innovation 3.3.5 Process review

8 3.1.10 Defect control 3.3.2 Process tracking

9 3.3.3 Configuration management 3.1.8 Internal audit

10 3.2.2 Project estimation 3.1.5 Module testing audit

10.7 Summary

This chapter has characterized the BPAs and processes modeled in SEPRM
by industry surveys and benchmarking. Such surveys are important and yet
very difficult and costly research methods for collecting data on complicated
system modeling and validation. The worldwide survey on BPAs validating
the SEPRM software engineering process model has resulted in the
following objectives being achieved:

Chapter 10 Benchmarking the SEPRM Processes 359

• The BPAs in the software engineering processes have been
quantitatively characterized by attributes of the mean weighted
importance and the ratios of significance, practice, and
effectiveness.

• A set of benchmarks and characteristics of the attributes for all 444
BPAs has been obtained which can be used by any process owners,
researchers, and practitioners for process establishment and
improvement.

• A new approach to benchmark-based process assessment and
improvement has been enabled. This will be described in Part V and
Part VI.

• Characteristic curves for each process have been derived for
showing the distribution and trends of the BPAs within a process.

The analyses in this chapter have been based on the data documented in
Appendix D. Mining this wealth of data, readers may find new facts and
additional statistically significant regulations in process-based software
engineering.

The basic knowledge structure of this chapter is as follows:

Chapter 10. Benchmarking the SEPRM Processes

• General
 − Objectives of this chapter

 − To establish a foundation of practice for validation,
 calibration and benchmarking of software process models

 − To seek statistical criteria for selecting processes and
 BPAs in process system modeling
 − To validate the BPAs and processes modeled in SEPRM

 − To enable a new approach to benchmark-based process
 assessment and improvement
 − To characterize a superset of processes and BPAs in order
 to provide reference points for existing process models
 and future new process models

− Methods adopted in this chapter
 − Quantitative characteristic attributes

 − Industry surveys and SEPRM-based process reference

360 Part III Software Engineering Process System Analysis

 models
− Statistical analysis and benchmarking of process
 characteristics
− Survey data visualization by process characteristic curves

− Relationship between this chapter and the process analysis
 methods developed in Section 2.5

 • Methods for characterizing software processes
− BPA: Characteristic attributes

− Mean weighted importance
− Ratio of significance
− Ratio of practice
− Ratio of effectiveness
− The combined characteristic value (usage)

 − Process: Characteristic curves
− Four types of process characteristic curves

 − Interpreting a process characteristic curve

− Interpreting the benchmarking data documented in
 Appendix D

− Structure
− BPA and process indexing
− Plotting a process characteristic curve

• Benchmarks of SEPRM processes
− The organization process subsystem

− Configuration
 − 3 process categories
 − 8 processes
 − 81 BPAs
− What can be found in the process characteristic curves
− General statistic characteristics of this process subsystem

− The development process subsystem
− Configuration
 − 3 process categories
 − 14 processes
 − 115 BPAs
− What can be found in the process characteristic curves
− General statistic characteristics of this process subsystem

Chapter 10 Benchmarking the SEPRM Processes 361

− The management process subsystem
− Configuration
 − 6 process categories
 − 29 processes
 − 248 BPAs
− What can be found in the process characteristic curves
− General statistic characteristics of this process subsystem

• Derived benchmarks of process characteristics
− Analysis of process characteristics

− Top 10 most/least significant processes
− Top 10 most/least practical processes
− Top 10 most/least effective processes
− Top 10 most/least useful processes

− Applications of the process benchmarks
− Plot an organization’s data onto the process characteristic
 curves

 − Contrast and analyze process features
 − Gaps to the benchmarked characteristic curves
 − Strengths
 − Weaknesses

 − Process improvement opportunities

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• The methods used are theoretically transformable to any software
process model. The findings for the process characteristic attributes
are applicable to ISO/IEC TR 15504, CMM, ISO 9001,
BOOTSTRAP, or any new process models.

• A new approach to benchmark-based process assessment and
improvement has been enabled which will be shown as an important
alternative to the conventional model-based process assessment and
improvement methodologies.

• It is interesting to find in the survey that all BPAs modeled in
SEPRM have been proven useful and effective in process. The vast
majority of BPAs have been evaluated and found significant,
practical, and effective. Only 1.1% and 0.5% of the BPAs have been
perceived as not practical in practice or not effective.

362 Part III Software Engineering Process System Analysis

• According to Table 10.7, although almost all BPAs modeled in
SEPRM have been rated significant and effective, there were 16.7%
that are not currently common practice in the software industry.
These relatively unused practices could bear investigation, and
would indicate improvement opportunities.

• Benchmarking and characterizing BPAs and processes have been
found useful in a wide range of applications in both process
establishment and improvement. For process establishment, the
implementation priority can be put on the BPAs with higher ratios
of significance and effectiveness. For process improvement, the
priority can be put on the BPAs that have the largest gaps between
the current practices and the ratio of significance.

Benchmarking and characterizing the processes and BPAs are considered
fundamental in software engineering process modeling and analysis. The
benchmarks are useful for modeling and feature-identifying fundamental
software process activities, for evaluating a software organization’s current
practice gaps to the benchmarks, and for identifying process improvement
opportunities for an organization’s software system. Comparing the
benchmarks with current practices in an organization enables
recommendations to be given as to which specific areas need to have
processes established first, and which areas should have the highest priority
for process improvement.

Applications of the benchmarks of software engineering processes in
process establishment, assessment, and improvement will be provided in
Part IV through Part VI.

Annotated References

Software engineering process benchmarking is a new topic in research. A
European software practice benchmark was developed and maintained by
IBM (1986). A SPICE benchmark database was under development during
SPICE Trials Phase III [SPICE Project, 1998]. A Swedish national software
engineering process benchmark was developed during 1997 – 1998 and
reported in Wang et al. (1999f).

Chapter 10 Benchmarking the SEPRM Processes 363

Dutta, Kulandaiswamy, and Wassenhove (1998) reported their work on
benchmarking European software management best practices. Wang et al.
(1998a/99c/f) conducted benchmarking of the practices and processes
modeled in current process models based on a series of worldwide industry
surveys and statistical analyses.

On related quantitative analysis, Kitson and Masters (1992) reported
SEI software process assessment results during 1987-1991. Zubrow (1997)
analyzed a large number of organizations that had undergone CMM
assessment before 1997, and this was updated recently in SEI (1999).

Questions and Problems

10.1 Benchmarking is a useful quantitative research method for
characterizing complicated systems. Explain the five purposes of
process benchmarking.

10.2 List the five attributes for characterizing processes and BPAs, and
explain their definitions and expressions.

10.3 Conduct a simulated benchmarking survey of one of the SEPRM
development processes, as listed in Appendix D, within your project
team or class. Then, report your benchmarked findings on the process
you choose and provide analysis.

10.4 Compare your benchmarking results obtained in Problem 10.3 with
the SEPRM benchmarks by plotting your data onto the related
characteristic curves. Analyze your team’s process performance,
strengths, and weaknesses.

10.5 Conduct a simulated benchmarking survey of one of the SEPRM
organization processes within your project team or class, and plot your
results onto the related characteristic curves. Analyze your team’s
process performance, strengths, and weaknesses.

10.6 Repeat Problem 10.5 for a SEPRM management process.

364 Part III Software Engineering Process System Analysis

10.7 If you are a process manager in a software development organization,
the top management expects you to produce a process establishment
and improvement proposal. What can you propose based on the
process benchmarks developed in this chapter?

10.8 If you are a process model developer, how do you determine the
inclusion or elimination of a candidate process or BPA with the
support of the process benchmarks developed in this chapter?

10.9 Observing the top most/least significant processes as listed in Table
10.8, what can be found from the statistical results?

10.10 Observing the top most/least practical processes as listed in Table
10.9, what can you discover from the statistical results?

10.11 Observing the top most/least effective processes as listed in Table
10.10, what can be found from the statistical results?

10.12 Observing the top most/least useful processes as listed in Table 10.11,
what can be gleaned from the statistical results?

365

Chapter 11

COMPARATIVE ANALYSIS
OF CURRENT

PROCESS MODELS

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

10.
Benchmarking the SEPRM
Processes

11.1 Introduction 11.6 The SEPRM model
11.2 The ISO/IEC TR 15504 model 11.7 Overview of interrelationships between
11.3 The CMM model current process models
11.4 The BOOTSTRAP model 11.8 Summary
11.5 The ISO 9001 model Annotated references

11.
Comparative Analysis of
Current Process Models

12.
Transformation of Capability Levels
between Current Process Models

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

366 Part III Software Engineering Process System Analysis

This chapter analyzes the interrelationships between the process domains of
current process models. In the analysis attention is paid to both equivalency
and any special orientation of current process models.

The objectives of this chapter are as follows:

• To analyze the relationships between current process models by
using one-to-one, one-to-many, and/or many-to-one mappings

• To investigate compatibility and correlation between current process
models

• To explore features and special orientation of current process
models so that suitable or combined process models can be chosen
for a specific software development organization

• To enable the development of process capability transformations
between current process models which will be covered in the next
chapter

11.1 Introduction

One of the most frequently asked questions in the software industry is “what
are the coverages and interrelationships of current process models?” In
Chapters 5 – 9 we presented formal views of individual process models. This
chapter analyzes the interrelationships between the process domains of these
models. The definitions and methods developed in Section 2.5.1 will be used
to measure the interrelationships.

The compatibility and correlation between current process models, such
as ISO/IEC TR 15504, CMM, BOOTSTRAP, ISO 9001, and SEPRM, are
quantitatively analyzed and contrasted in this chapter. First, formal
definitions of the compatibility and correlation between the models are
described. Then, relational properties are mutually analyzed from the view-
point of each of the five process models and the others. In doing so, each
model is mapped onto the other four at system and BPA levels. To gain a
complete view of the compatibility and correlation of a specific model with
others, it is recommended that readers take a bidirectional comparison of the
results provided in this chapter.

Chapter 11 Comparative Analysis of Current Process Models 367

11.1.1 DOMAINS OF BPAs OF CURRENT PROCESS
 MODELS

The power and completeness of a process model is determined by both its
process domain and its capability determination methodology. The process
domain defined in SEPRM consists of 444 BPAs, a superset of those
identified in the other four models. The BPAs are equivalently known as the
201 base practices (BPs) in ISO/IEC TR 15504, the 150 key practices (KPs)
in CMM, the 201 quality system attributes (QSAs) in BOOTSTRAP, and the
177 management issues (MIs) in ISO 9001.

Appendix C documents detailed mappings between current process
models at the BPA level. It is noteworthy that the mappings indicate various
relationships between the BPAs identified in current models, such as one-to-
one, one-to-many, and many-to-one relationships. Analyses in the following
sections will be based on the mappings and configurations of the BPAs
defined in current models.

11.1.2 COMPATIBILITY BETWEEN CURRENT
 PROCESS MODELS

In Section 2.5.1, Definition 2.35, compatibility between a number of process
models is defined as the degree of joint domain coverage, which is
determined by the sets of BPAs of the process models. The partially
overlapped process domains and compatibility of current process models are
illustrated in Figure 2.4.

For the five process models considered as shown in Figure 2.4,
compatibility degree, Ck, can be described at five levels as follows:

• C1 : BPAs that are only defined in a specific model

 • C2 : Shared BPAs identified in two of the models

 • C3 : Shared BPAs identified in three of the models

 • C4 : Shared BPAs identified in four of the models, and

 • C5 : BPAs shared by all five models

With the above definitions, compatibility can be quantitatively measured and
analyzed according to Expression 2.6.

368 Part III Software Engineering Process System Analysis

11.1.3 CORRELATION BETWEEN CURRENT PROCESS
MODELS

In Section 2.5.1, correlation between current process models is described by
the correlation level and ratio as given in Definitions 2.38 and 2.39. The
correlation level between a pair of models is the number of identical or
equivalent BPAs in the domains of the models. The correlation ratio of a
model R against a model S is a relative degree of identity or equivalency that
R compares to S.

Analysis of correlation is based on the concept and technique of
mapping BPAs between different process models. As described in Section
2.5.1, mapping is defined as finding identical or equivalent BPAs in a pair
of process models. When a mapping is carried out between two process
models R and S, the correlation level r(R, S) and ratio ρ(R, S) can be
calculated according to Expressions 2.9 and 2.10, respectively.

This chapter quantitatively analyzes the compatibility and correlation
between the current process models based on the method developed in
Section 2.5. In the following sections, individual process models are
analyzed. Then, a summary of process configuration, compatibility, and
correlation of current process models is provided based on each one-to-many
analyzes.

11.2 The ISO/IEC TR 15504 Model

This section analyzes compatibility and correlation of ISO/IEC TR 15504
with the other four models, i.e., CMM, BOOTSTRAP, ISO 9001, and
SEPRM. Process domain and BP configuration of ISO/IEC TR 15504 are
contrasted with current process models.

11.2.1 COMPATIBILITY OF ISO/IEC TR 15504 TO
 OTHER MODELS

Applying Expression 2.6 to Appendix C, the compatibility of ISO/IEC TR
15504 to CMM, BOOTSTRAP, ISO 9001, and SEPRM is derived as shown
in Table 11.1. An illustration of ISO/IEC TR 15504’s compatibility to the
other process models is provided in Figure 11.1.

Chapter 11 Comparative Analysis of Current Process Models 369

Table 11.1
Compatibility Degree of ISO/IEC TR 15504 to Other Process Models

Compatibility Category 1
Customer-
Supplier

Category 2
Engineering

Category 3
Project

Category 4
Support

Category 5
Organization

Ck

(ISO
 15504)

C1 (ISO15504) 0 0 0 0 0 0

C2 (ISO15504) 29 15 18 12 28 102

C3 (ISO15504) 9 12 20 8 11 60

C4 (ISO15504) 1 5 12 9 5 32

C5 (ISO15504) 0 0 0 3 4 7

0

10

20

30

40

50

60

70

80

90

100

Campatibility
degree

CUS ENG PRO SUP ORG r(ISO15504,X)

c1(ISO15504) c2(ISO15504) c3(ISO15504) c4(ISO15504) c5(ISO15504)

Figure 11.1 Compatibility of ISO/IEC TR 15504 with other models

Figure 11.1 shows that there is no BP in ISO/IEC TR 15504 with
compatibility level 1, or no BP is only defined by the model itself. Generally,
about half of the process domains of ISO/IEC TR 15504 have compatibility
level 2 (C2(ISO15504)=102), meaning that those 102 BPs can only be found
in ISO/IEC TR 15504 and one of the other models, particularly SEPRM.
The BPs with compatibility level 3 in ISO/IEC TR 15504 are relatively high
(C3(ISO15504)=60). Those BPs are mainly compatible to CMM and
SEPRM. The BPs with compatibility level 4 in ISO/IEC TR 15504 are
C4(ISO15504)=32.

The seven BPs with the highest compatibility (C5(ISO15504)=7) are
those equivalent BPAs listed below:

• BPA No.18 – Document standard processes

• BPA No.31 – Identify improvement opportunities (Note this BPA
was counted twice in the many-to-one mapping from ISO/IEC TR
15504 to SEPRM)

• BPA No.244 – Audit software development activities

370 Part III Software Engineering Process System Analysis

• BPA No.343 – Establish configuration management library

• BPA No.347 – Control change requests

• BPA No.442 – Conduct technical training

The above BPAs with compatibility level 5 are located mainly within the
management processes.

11.2.2 CORRELATION OF ISO/IEC TR 15504 WITH
 OTHER MODELS

System level correlation between ISO/IEC TR 15504 and CMM,
BOOTSTRAP, ISO 9001, and SEPRM is listed in Table 11.2, where the
symbol “X” represents one of the other four models correspondingly.
Expressions 2.9 and 2.10 are used for deriving the values of correlation
levels and ratios from the data documented in Appendix C. The same
expressions apply to the following sections.

Table 11.2
Correlation: ISO/IEC TR 15504 vs. SEPRM, CMM, BOOTSTRAP,

and ISO 9001

Correlation Category

1

Customer-
Supplier

Category

2

Enginee-
ring

Category

3

Project

Category

4

Support

Category

5

Organiza
-tion

r(ISO15504,

 X)

ρ(ISO15504,

 X)

SEPRM 39 32 50 32 48 201 45.3%

CMM 0 6 23 17 18 64 42.7%

Bootstrap 3 19 14 9 14 59 29.4%

ISO 9001 13 2 20 14 10 59 32.8%

The correlation data shown in Table 11.2 are illustrated in Figure 11.2.
Generally, Figure 11.2 shows that ISO/IEC TR 15504 has the highest
correlation with SEPRM, followed closely by CMM; its correlation to
BOOTSTRAP and ISO 9001 are both at the 1/3 level. Detailed one-to-many
relationships between ISO/IEC TR 15004 and the other four process models
are analyzed below.

Chapter 11 Comparative Analysis of Current Process Models 371

0

50

100

150

200

250

Correlation
level

CUS ENG PRO SUP ORG r(SPICE,X)

SEPRM

CMM

BOOTSTRAP

ISO 9000

Figure 11.2 Correlation: ISO/IEC TR 15504 vs. SEPRM, CMM,
BOOTSTRAP, and ISO 9001

11.2.2.1 ISO/IEC TR 15504 vs. SEPRM

The correlation level between ISO/IEC TR 15504 and SEPRM is
r(ISO15504, SEPRM) = 201, and the correlation ratio is ρ(ISO15504,
SEPRM) = 45.3%. Specifically, in the customer-supplier category,
ISO15504 – SEPRM is the most correlative pair. Among the four pairs of
correlation, ISO15504 – SEPRM is the most correlative in the categories of
project and organization and is the least correlative in the categories of
engineering and support.

11.2.2.2 ISO/IEC TR 15504 vs. CMM

The correlation level between ISO/IEC TR 15504 and CMM is r(ISO15504,
CMM) = 64 and the correlation ratio is ρ(ISO15504, CMM) = 42.7%.
Specifically, among the four pairs of correlation, ISO15504 – CMM is the
most correlative in the categories of project and organization and is the least
correlative in the categories of customer – support and engineering.

11.2.2.3 ISO/IEC TR 15504 vs. BOOTSTRAP

The correlation level between ISO/IEC TR 15504 and BOOTSTRAP is
r(ISO15504, BOOTSTRAP) = 59, and the correlation ratio is ρ(ISO15504,
BOOTSTRAP) = 29.4%. Specifically, among the four pairs of correlation,
ISO15504 – BOOTSTRAP is the most correlative in the process
category of engineering and is the least correlative in the category of
customer – supplier.

11.2.2.4 ISO/IEC TR 15504 vs. ISO 9001

The correlation level between ISO/IEC TR 15504 and ISO 9001 is
r(ISO15504, ISO 9001) = 59, and the correlation ratio is p(ISO15504,
ISO 9001) = 32.8%. Specifically, among the four pairs of correlation,

372 Part III Software Engineering Process System Analysis

ISO15504 – ISO9001 is the most correlative in the category of project and is
the least correlative in the category of engineering.

Mappings from the viewpoints of the other models to ISO/IEC TR 15504
can be found in Sections 11.3 through 11.6, respectively. Detailed
distribution of the ISO/IEC TR 15504 correlation with SEPRM, CMM,
BOOTSTRAP, and ISO 9001 at the BP level can be referenced in
Appendix C.

11.3 The CMM Model

This section analyzes compatibility and correlation of CMM with the other
four models, i.e., ISO/IEC TR 15504, BOOTSTRAP, ISO 9001, and
SEPRM. Process domain and KP configuration of CMM are contrasted with
current process models.

11.3.1 COMPATIBILITY OF CMM TO OTHER MODELS

Applying Expression 2.6 to Appendix C, the compatibility of CMM to
ISO/IEC TR 15504, BOOTSTRAP, ISO 9001, and SEPRM is derived as
shown in Table 11.3. An illustration of CMM’s compatibility to the other
process models is provided in Figure 11.3.

Table 11.3
Compatibility Degree of CMM to Other Process Models

Compatibility Level 1

Initial

Level 2

Repeated

Level 3

Defined

Level 4

Managed

Level 5

Optimized

Ck(CMM)

C1 (CMM) 0 0 0 0 0 0

C2 (CMM) 0 14 22 8 9 53

C3 (CMM) 0 24 18 0 13 55

C4 (CMM) 0 21 7 4 3 35

C5 (CMM) 0 3 3 0 1 7

Chapter 11 Comparative Analysis of Current Process Models 373

Le vel 1 Le ve l 2 Le ve l 3 Le ve l 4 Le ve l 5 C k (C M M)
0

10

20

30

40

50

60

C o m p atib ility
de g re e

Le ve l 1 Le ve l 2 Le ve l 3 Le ve l 4 Le ve l 5 C k (C M M)

c1(C M M)

c2(C M M)

c3(C M M)

c4(C M M)

c5(C M M)

Figure 11.3 Compatibility of CMM with other models

Figure 11.3 shows that there is no KP in CMM with compatibility level 1, or
no KP that is defined by the model only. Generally, about 1/3 of the process
domain of CMM is at compatibility level 2 (C2(CMM)=53), meaning that
those 53 BPs can only be found in CMM and one of the other models,
especially in SEPRM. The KPs with compatibility level 3 in CMM are
C3(CMM)=55, which indicates 1/3 of the KPs in CMM have a better
compatibility relative to other models. The KPs with compatibility level 4 in
CMM are C4(CMM)=35. The seven KPs with the highest compatibility
(C5(CMM)=7) are those equivalent BPAs listed in Section 11.2.1 (with BPA
No. 31 mapped twice).

11.3.2 CORRELATION OF CMM WITH OTHER
MODELS

System level correlation between CMM and ISO/IEC TR 15504,
BOOTSTRAP, ISO 9001, and SEPRM is listed in Table 11.4, where the
symbol “X” represents one of the other four models.

Table 11.4
Correlation: CMM vs. SEPRM, ISO/IEC TR 15504, BOOTSTRAP,

and ISO 9001

Correlation Level 1
Initial

Level 2
Repeated

Level 3
Defined

Level 4
Managed

Level 5
Optimizing

r(CMM,
 X)

ρ(CMM,
 X)

SEPRM 0 62 50 12 26 150 33.8%

ISO/IEC TR
15504

0 34 18 3 9 64 31.8%

Bootstrap 0 18 19 2 10 49 24.4%

ISO 9001 0 29 8 7 7 51 28.8%

The correlation data shown in Table 11.4 are illustrated in Figure 11.4.
Generally, Figure 11.4 shows that CMM has the highest correlation with

374 Part III Software Engineering Process System Analysis

SEPRM, followed by ISO/IEC TR 15504; its correlation to BOOTSTRAP
and ISO 9001 are relatively low. Detailed one-to-many relationships
between CMM and the other four process models are analyzed below.

0
20
40
60
80

100
120
140
160

Correlation
level

Level 1 Level 2 Level 3 Level 4 Level 5 r(CMM,X)

SEPRM

ISO 15504

BOOTSTRAP

ISO 9000

Figure 11.4 Correlation: CMM vs. SEPRM, ISO/IEC TR 15504,
BOOTSTRAP, and ISO 9001

11.3.2.1 CMM vs. SEPRM

The correlation level between CMM and SEPRM is r(CMM, SEPRM) =
150, and the correlation ratio is ρ(CMM, SEPRM) = 33.8%. Specifically,
among the four pairs of correlation, CMM – SEPRM is the most correlative
at capability levels 2 and 3 and is the least correlative at capability level 4.
There is no correlation at capability level 1 because no KP has been defined
at that level.

11.3.2.2 CMM vs. ISO/IEC TR 15504

The correlation level between CMM and ISO/IEC TR 15504 is r(CMM,
ISO15504) = 64, and the correlation ratio is ρ(CMM, ISO15504) = 31.8%.
Specifically, among the four pairs of correlation, CMM – ISO15504 is
the most correlative at level 2 and is the least correlative at level 4.

11.3.2.3 CMM vs. BOOTSTRAP

The correlation level between CMM and BOOTSTRAP is r(CMM,
BOOTSTRAP) = 49, and the correctional ratio is ρ(CMM, BOOTSTRAP) =
24.4%. Specifically, among the four pairs of correlation, CMM –
BOOTSTRAP is the most correlative at level 3 and is the least correlative at
level 4.

Chapter 11 Comparative Analysis of Current Process Models 375

11.3.2.4 CMM vs. ISO 9001

The correlation level between CMM and ISO 9001 is r(CMM, ISO9001) =
51, and the correlation ratio is ρ(CMM, ISO9001) = 28.8%. Specifically,
among the four pairs of correlation, CMM – ISO9001 is the most correlative
at level 2 and is the least correlative at levels 4 and 5.

Mappings from the viewpoints of the other models to CMM can be found in
Sections 11.2, and 11.4 to 11.6, respectively. Detailed distribution of the
CMM correlation with SEPRM, ISO/IEC TR 15504, BOOTSTRAP, and
ISO 9001 at the KP level can be referenced in Appendix C.

11.4 The BOOTSTRAP Model

This section analyzes compatibility and correlation of BOOTSTRAP with
the other four models, i.e., ISO/IEC TR 15504, CMM, ISO 9001, and
SEPRM. Process domain and QSA configuration of BOOTSTRAP are
contrasted with current process models.

11.4.1 COMPATIBILITY OF BOOTSTRAP TO OTHER
MODELS

Applying Expression 2.6 to Appendix C, the compatibility of BOOTSTRAP
to ISO/IEC TR 15504, CMM, ISO 9001, and SEPRM is derived as shown in
Table 11.5. An illustration of BOOTSTRAP’s compatibility to the other
process models is provided in Figure 11.5.

Table 11.5
Compatibility Degree of BOOTSTRAP to Other Process Models

Compatibility Subsystem 1
Organization

Subsystem 2
Methodology

Subsystem 3
Technology

Ck(BOOTSTRAP)

C1 (BOOTSTRAP) 0 0 0 0

C2 (BOOTSTRAP) 7 52 43 102

C3 (BOOTSTRAP) 8 55 5 68

C4 (BOOTSTRAP) 4 20 1 25

C5 (BOOTSTRAP) 2 4 0 6

376 Part III Software Engineering Process System Analysis

Organization Methodology Technology Ck(Bootstrap)
0

20

40

60

80

100

120

Compatibility
level

Organization Methodology Technology Ck(Bootstrap)

c1(Bootstrap)

c2(Bootstrap)

c3(Bootstrap)

c4(Bootstrap)

c5(Bootstrap)

Figure 11.5 Compatibility of BOOTSTRAP with other models

Figure 11.5 shows that there is no QSA in BOOTSTRAP with compatibility
level 1, or no QSAs that are only defined by the model itself. Generally,
about 1/3 of the process domain of BOOTSTRAP is compatibility level 2
(C2(BOOTSTRAP)=102), meaning that those 102 QSAs can only be found
in BOOTSTRAP and one of the other models, especially in SEPRM. The
QSAs with compatibility level 3 in BOOTSTRAP are relatively high
(C3(BOOTSTRAP)= 68). These QSAs are mainly compatible to SEPRM
and ISO 9001. The QSAs with compatibility level 4 in BOOTSTRAP
are C4(BOOTSTRAP)=25. The six QSAs with the highest compatibility
(C5(BOOTSTRAP)=6) are those equivalent BPAs listed in Section
11.2.1.

11.4.2 CORRELATION OF BOOTSTRAP WITH OTHER
MODELS

System level correlation between BOOTSTRAP and ISO/IEC TR 15504,
CMM, ISO 9001, are SEPRM is listed in Table 11.6, where the symbol “X”
represents one of the other four models.

Table 11.6
Correlation: BOOTSTRAP vs. SEPRM, ISO/IEC TR 15504, CMM,

and ISO 9001

Correlation Subsystem 1
Organization

Subsystem 2
Methodology

Subsystem 3
Technology

r(BOOTSTRAP,
 X)

ρ(BOOTSTRAP,
 X)

SEPRM 21 131 49 201 45.3%

ISO/IEC
TR 15504

8 49 2 59 29.4%

CMM 6 41 2 49 32.7%

ISO 9001 11 58 6 75 42.4%

Chapter 11 Comparative Analysis of Current Process Models 377

0

50

100

150

200

250

C orrela tion
level

O rganiza tion M ethodo logy Techno logy r(B oo tstrap,X)

SEPR M

ISO 15504

CM M

ISO 9000

Figure 11.6 Correlation: BOOTSTRAP vs. SEPRM, ISO/IEC TR 15504,
CMM, and ISO 9001

The correlation data shown in Table 11.6 are illustrated in Figure 11.6.
Generally, Figure 11.6 shows that BOOTSTRAP has the highest correlation
with SEPRM, followed by ISO 9001; its correlation to ISO/IEC TR 15504
and CMM are relatively low. Detailed one-to-many relationships between
BOOTSTRAP and the other four process models are analyzed below.

11.4.2.1 BOOTSTRAP vs. SEPRM

The correlation level between BOOTSTRAP and SEPRM is r(BOOTSTRAP,
SEPRM) = 201, and the correlation ratio is ρ(BOOTSTRAP, SEPRM) =
45.3%. Specifically, among the four pairs of correlation, BOOTSTRAP –
SEPRM is the most correlative in the methodology subsystem and is the
least correlative in the organization subsystem.

11.4.2.2 BOOTSTRAP vs. ISO/IEC TR 15504

The correlation level between BOOTSTRAP and ISO/IEC TR 15504 is
r(BOOTSTRAP, ISO15504) = 59, and the correlation ratio is
ρ(BOOTSTRAP, ISO15504) = 29.4%. Specifically, among the four pairs of
correlation, BOOTSTRAP – ISO15504 is the most correlative in the
methodology subsystem and is the least correlative in the subsystem of
technology.

11.4.2.3 BOOTSTRAP vs. CMM

The correlation level between BOOTSTRAP and CMM is r(BOOTSTRAP,
CMM) = 49, and the correlation ratio is ρ(BOOTSTRAP, CMM) = 32.7 %.
Specifically, among the four pairs of correlation, BOOTSTRAP – CMM is
the most correlative in the methodology subsystem and is the least
correlative in the technology subsystem.

378 Part III Software Engineering Process System Analysis

11.4.2.4 BOOTSTRAP vs. ISO 9001

The correlation level between BOOTSTRAP and ISO 9001 is
r(BOOTSTRAP, ISO9001) = 75, and the correlation ratio is
ρ(BOOTSTRAP, ISO9001) = 42.4%. Specifically, among the four pairs of
correlation, BOOTSTRAP – ISO9001 is the most correlative in the
methodology subsystem and the least correlative in the technology
subsystem.

Mappings from the viewpoints of the other models to BOOTSTRAP
can be found in Sections 11.2 – 11.3 and 11.5 – 11.6, respectively.
Detailed distribution of the BOOTSTRAP correlation with SEPRM,
ISO/IEC TR 15504, CMM, and ISO 9001 at the QSA level can be
referenced in Appendix C.

11.5 The ISO 9001 Model

This section analyzes compatibility and correlation of ISO 9001 with the
other four models, i.e., ISO/IEC TR 15504, CMM, BOOTSTRAP, and
SEPRM. Process domain and MI configuration of ISO 9001 are contrasted
with current process models.

11.5.1 COMPATIBILITY OF ISO 9001 TO THE OTHER
MODELS

Applying Expression 2.6 to Appendix C, the compatibility of ISO 9001 to
ISO/IEC TR 15504, CMM, BOOTSTRAP, and SEPRM is derived as shown
in Table 11.7. An illustration of ISO 9001’s compatibility to the other
process models is provided in Figure 11.7.

Table 11.7
Compatibility Degree of ISO 9001 to Other Degree Models

Compatibility Subsystem 1
Organization
Management

Subsystem 2
Product

Management

Subsystem 3
Document

Management

Ck(ISO9001)

C1 (ISO9001) 0 0 0 0

C2 (ISO9001) 15 10 50 75

C3 (ISO9001) 20 16 29 65

C4 (ISO9001) 16 3 12 31

C5 (ISO9001) 2 1 3 6

Chapter 11 Comparative Analysis of Current Process Models 379

Organization Product Document Ck(ISO9000)
0

10
20
30
40
50
60
70

80

Compatibility
degree

Organization Product Document Ck(ISO9000)

c1(ISO9000)

c2(ISO9000)

c3(ISO9000)

c4(ISO9000)

c5(ISO9000)

Figure 11.7 Compatibility of ISO 9001 with other models

Figure 11.7 shows that there is no MI in ISO 9001 with compatibility level
1, or no MI that is only defined by the model itself. Generally, about three
quarters of the process domain of ISO 9001 have lower compatibility
(C2(ISO9001)=75 and C3(ISO9001)=65), indicating ISO 9001 is relatively
difficult to map onto other models except SEPRM. The MIs with
compatibility level 4 in ISO 9001 are C4(ISO9001)=31. The six MIs with the
highest compatibility (C5(ISO9001)=6) are those equivalent BPAs listed in
Section 11.2.1.

11.5.2 CORRELATION OF ISO 9001 WITH OTHER
MODELS

System level correlation between ISO 9001 and ISO/IEC TR 15504, CMM,
BOOTSTRAP, and SEPRM is listed in Table 11.8, where the symbol “X”
represents one of the other four models.

Table 11.8
Correlation: ISO 9001 vs. SEPRM, ISO/IEC TR 15504, CMM,

and BOOTSTRAP

Correlation Subsystem 1
Organization
Management

Subsystem 2
Product

Management

Subsystem 3
Document

Management

r(ISO9001, X) ρ(ISO9001, X)

SEPRM 53 31 93 177 39.9%

ISO/IEC TR
15504

23 12 23 58 28.9%

CMM 22 11 18 51 34.0%

Bootstrap 27 7 41 75 37.3%

The correlation data shown in Table 11.8 are illustrated in Figure 11.8.
Generally, Figure 11.8 shows that ISO 9001 has the highest correlation with
SEPRM, followed by BOOTSTRAP; its correlation to ISO/IEC TR 15504

380 Part III Software Engineering Process System Analysis

and CMM are relatively low. Detailed one-to-many relationships between
ISO 9001 and other four process models are analyzed below.

0
20
40
60
80

100
120
140
160
180

Correlation
level

Organization Product Document r(ISO9000,X)

SEPRM

ISO 15504

CMM

BOOTSTRAP

Figure 11.8 Correlation: ISO 9001 vs. SEPRM, ISO/IEC TR 15504, CMM,
and BOOTSTRAP

11.5.2.1 ISO 9001 vs. SEPRM

The correlation level between ISO 9001 and SEPRM is r(ISO9001, SEPRM)
= 177, and the correlation ratio is ρ(ISO9001, SEPRM) = 39.9%.
Specifically, among the four pairs of correlation, ISO9001 – SEPRM is
the most correlative in the document management subsystem and is the least
correlative in the product management subsystem.

11.5.2.2 ISO 9001 vs. ISO/IEC TR 15504

The correlation level between ISO 9001 and ISO/IEC TR 15504 is
r(ISO9001, ISO15504) = 58, and the correlation ratio is ρ(ISO9001,
ISO15504) = 28.9%. Specifically, among the four pairs of correlation,
ISO9001 – ISO15504 is the most correlative in the organization and
development management subsystems and is the least correlative in the
product management subsystem.

11.5.2.3 ISO 9001 vs. CMM

The correlation level between ISO 9001 and CMM is r(ISO9001, CMM) =
51, and the correlation ratio is ρ(ISO9001, CMM) = 34.0 %. Among
the four pairs of the correlation, ISO9001 – CMM is most correlative in
the organization management subsystem and is least correlative in the
product management subsystem.

11.5.2.4 ISO 9001 vs. BOOTSTRAP

The correlation level between ISO 9001 and BOOTSTRAP is r(ISO9001,
BOOTSTRAP) = 75 and the correlation ratio is ρ(ISO9001, BOOTSTRAP)

Chapter 11 Comparative Analysis of Current Process Models 381

= 37.3 %. Among the four pairs of the correlation, ISO9001 - BOOTSTRAP
is most correlative in the document management subsystem and is least
correlative in the product management subsystem.

Mappings from the viewpoints of the other models to ISO 9001 can be found
in Sections 11.2 – 11.4 and 11.6. Detailed distribution of ISO 9001
correlation with SEPRM, ISO/IEC TR 15504, CMM, and BOOTSTRAP at
the MI level can be referenced in Appendix C.

11.6 The SEPRM Model

This section analyzes compatibility and correlation of SEPRM with the other
four models, i.e., ISO/IEC TR 15504, CMM, BOOTSTRAP, and ISO 9001.
Process domain and BPA configuration of SEPRM are contrasted with
current process models.

11.6.1 COMPATIBILITY OF SEPRM TO OTHER
MODELS

According to the statistics by Wang et al. (1996a/b/97a/b), there are 729
equivalent BPAs individually identified in ISO/IEC TR 15504, CMM,
BOOTSTRAP, and ISO 9001. By filtering the overlaps and redundancy in
them, there are 407 independent BPAs elicited from the four models. These
BPAs are the main collection of the SEPRM model. In the SEPRM process
domain, there are 37 BPAs (8%) that are newly identified in the SEPRM
model, such as the processes for evaluating different software development
methodology models, the adoption of tools for software development, test,
maintenance, organization and management, and the establishment of the
database/library of software reuse, documentation, benchmark, etc.

Applying Expression 2.6 to Appendix C, the compatibility of SEPRM to
ISO/IEC TR 15504, CMM, BOOTSTRAP, and ISO 9001 is derived as
shown in Table 11.9. An illustration of SEPRM’s compatibility to the other
process models is provided in Figure 11.9.

382 Part III Software Engineering Process System Analysis

Table 11.9
Compatibility Degree of SEPRM to Other Process Models

Compatibility Subsystem 1
Organization

Subsystem 2
Development

Subsystem 3
Management

Ck(SEPRM)

C1 (SEPRM) 1 17 19 37

C2 (SEPRM) 56 70 143 269

C3 (SEPRM) 20 22 58 100

C4 (SEPRM) 2 6 24 32

C5 (SEPRM) 2 0 4 6

Organization Software eng. Management Ck(SPRM)
0

50

100

150

200

250

300

Campatibility
degree

Organization Software eng. Management Ck(SPRM)

c1(SPRM)

c2(SPRM)

c3(SPRM)

c4(SPRM)

c5(SPRM)

Figure 11.9 Compatibility of SEPRM with other models

Figure 11.9 shows that the 37 BPAs with level 1 compatibility, which are
newly identified in the SEPRM model, are mainly distributed in the
development and management subsystems as shown in Appendix C.
Generally, about a half of the process domain of SEPRM is at compatibility
level 2 (C2(SEPRM)=269), meaning that those 269 BPAs can only be found
in SEPRM and one of the other models; it also means that without SEPRM
the compatibility between the other four models could be fairly low. The
BPAs in SEPRM with a compatibility level higher than 3 are
C3(SEPRM)=55, C4(SEPRM)=35, and C5(SEPRM)=6, respectively, which
indicates approximately 1/4 of the SEPRM BPAs have a better compatibility
with other process models. Particularly, there are six BPAs with the highest
compatibility (C5(SEPRM)=6), which have been shown in Section 11.2.1.

11.6.2 CORRELATION OF SEPRM WITH OTHER
MODELS

System level correlation between SEPRM and ISO/IEC TR 15504, CMM,
BOOTSTRAP, and ISO 9001 are listed in Table 11.10, where the symbol
“X” represents one of the other four models where appropriate.

Chapter 11 Comparative Analysis of Current Process Models 383

Table 11.10
Correlation: SEPRM vs. ISO/IEC TR 15504, CMM, BOOTSTRAP,

and ISO 9001

Correlation Subsystem 1

Organization

Subsystem 2

Development

Subsystem 3

Management

r(SEPRM, X) ρ(SEPRM, X)

ISO/IEC TR
15504

61 47 93 201 100%

CMM 21 20 109 150 100%

Bootstrap 23 64 114 201 100%

ISO 9001 25 44 108 177 100%

The correlation data shown in Table 11.10 are illustrated in Figure 11.10.
Generally, Figure 11.10 shows that SEPRM is 100% correlated to all
ISO/IEC TR 15504, CMM, BOOTSTRAP, and ISO 9001, but not vice versa
according to Definition 2.39. These four models can be completely mapped
onto the SEPRM model as different subsets, although correlation in one-to-
one mappings between the four models has been low as has been analyzed in
previous sections. Detailed one-to-many relationships between SEPRM and
the other four process models are analyzed below.

0

50

100

150

200

250

Correlation
level

Organization Software eng. Management r(SPRM, X)

ISO 15504

CMM

BOOTSTRA
P
ISO 9000

Figure 11.10 Correlation: SEPRM vs. ISO/IEC TR 15504, CMM,
BOOTSTRAP, and ISO 9001

11.6.2.1 SEPRM vs. ISO/IEC TR 15504

The correlation level between SEPRM and ISO/IEC TR 15504 is r(SEPRM,
ISO15504) = 201, and the correlation ratio is ρ(SEPRM, ISO15504) =
100%. Specifically, in the organization subsystem, SEPRM – ISO15504 is
the most correlative pair. In the development subsystem, correlation of
SEPRM – ISO15504 is relatively low. In the management subsystem,
SEPRM – ISO15504 is the least correlative.

384 Part III Software Engineering Process System Analysis

11.6.2.2 SEPRM vs. CMM

The correlation level between SEPRM and CMM is r(SEPRM, CMM) =
150, and the correlation ratio is ρ(SEPRM, CMM) = 100%. Specifically, in
the organization subsystem, SEPRM – CMM is the least correlative pair. In
the development subsystem, SEPRM – CMM is also the least correlative. In
the management subsystem, correlation of SEPRM – CMM is relatively
high.

11.6.2.3 SEPRM vs. BOOTSTRAP

The correlation level between SEPRM and BOOTSTRAP is r(SEPRM,
BOOTSTRAP) = 201, and the correlation ratio is ρ(SEPRM, BOOTSTRAP)
= 100%. Specifically, in the organization subsystem, correlation of SEPRM
– BOOTSTRAP is relatively low. In the development subsystem, SEPRM –
BOOTSTRAP is the most correlative. In the management subsystem,
SEPRM – BOOTSTRAP is also the most correlative.

11.6.2.4 SEPRM vs. ISO 9001

The correlation level between SEPRM and ISO 9001 is r(SEPRM, ISO9001)
= 177, and the correlation ratio is ρ(SEPRM, ISO9001) = 100%.
Specifically, in the organization management subsystems, correlation of
SEPRM – ISO9001 is relatively high; in the development subsystem,
correlation of SEPRM – ISO9001 is relatively low.

Mappings from the viewpoints of the other models to SEPRM can be found
in Sections 11.2 – 11.5, respectively. Detailed distribution of the SEPRM
correlation with ISO/IEC TR 15504, CMM, BOOTSTRAP and ISO 9001
at the BPA level can be referenced in Appendix C.

11.7 An overview of Interrelationships
between Current Process Models

In Sections 11.2 through 11.6 we analyzed the compatibility and correlation
between current process models by the approach of one-to-many mapping.
This section summarizes the findings on configuration orientation,
compatibility, and correlation of current process models, and provides a
many-to-many perception on interrelationships between current process
models.

Chapter 11 Comparative Analysis of Current Process Models 385

11.7.1 CONFIGURATION ORIENTATION OF
CURRENT PROCESS MODELS

As described in the unified software engineering process framework in Part
I, the BPA is the fundamental element in modeling a software process. By
observing the configurations of BPAs in current process models, orientation
and emphasis of these models can be explored quantitatively and objectively.

With regard to the structure of the unified process framework developed
in Part I, configurations of the identified BPAs modeled in current process
models in the organization, development, and management subsystems are
contrasted in Figure 11.11. The various patterns of configurations of the
BPAs indicate different orientations and focuses of current process models.
It is obvious that SEPRM provides a superset of BPAs in all the three
process subsystems.

0

50

100

150

200

250

N o. o f B PA s

CM M IS O 9001 B ootstrap IS O 15504 S E P RM

O rganization Developm ent M anagem ent

Figure 11.11 Configurations of current process models

Relative BPA configurations of current process models in the organization,
development, and management process subsystems can be derived as shown
in Figure 11.12, according to the distributions of percentages of BPAs
within individual models. It is interesting to note that:

• CMM is the most management-oriented process model.

• BOOTSTRAP is the most technical-oriented process model.

• ISO/IEC TR 15504 is the most organization-oriented process model.

An average relative distribution of the BPAs in the three process systems, as
shown in the SEPRM reference model, is approximately as follows:

Organization : Development : Management = 2 : 3 : 5 (11.1)

386 Part III Software Engineering Process System Analysis

0%

20%

40%

60%

80%

100%

BPAs

CMM ISO9001 Bootstrap ISO15504 SEPRM

Management

Development

Organization

Figure 11.12 Orientation of current software process models

Expression 11.1 provides a reference ratio of process and BPA
configurations in the three software engineering process subsystems. This
expression indicates that for implementing process-based software
engineering in large-scale software development, the deployment of effort
and resources in organization, development, and management might be
considered as 20% : 30% : 50%. It is noteworthy that conventional software
development has been concentrated purely on the technical processes, while
large-scale software development requires substantial resources and effort be
put on organization infrastructures, management measures, and software
quality assurance in software engineering.

11.7.2 COMPATIBILITY BETWEEN CURRENT
PROCESS MODELS

The compatibility between current process models is summarized in Table
11.11, where the symbol “X” represents one of the other process models.
The data in Table 11.11 provide a complete view on the distributions of
compatibility degrees and relative compatibility (in the brackets) of current
process models.

The relative compatibility of the five process models is contrasted in
Figure 11.13. In the whole process domains as covered by the BPAs of
current process models, there are six BPAs (1.4%) having the highest level
of compatibility, and 37 BPAs (8.3%) are with compatibility level 1,
meaning that they are only identified in SEPRM. The most common
compatibility level is level 2 (60.6%) with more than a half of the BPAs
(269) identified in both SEPRM and one of the other four models. The rest,
nearly 1/3 of the total BPAs (132), are located at compatibility levels 3
(22.5%) and 4 (7.2%), respectively.

Chapter 11 Comparative Analysis of Current Process Models 387

Table 11.11
Compatibility Levels between Current Process Models

Compatibility SEPRM ISO/IEC TR 15504 CMM BOOTSTRAP ISO 9001
C1 (X) 37

(8.3%)
0 0 0 0

C2 (X) 269
(60.6%)

102
(50.7%)

53
(35.3%)

102
(50.7%)

75
(42.4%)

C3 (X) 100
(22.5%)

60
(29.9%)

55
(36.7%)

68
(33.8%)

65
(36.7%)

C4 (X) 32
(7.2%)

32
(15.9%)

35
(23.3%)

25
(12.5%)

31
(17.5%)

C5 (X) 6
(1.4%)

7
(3.5%)

7
(4.7%)

6
(3.0%)

6
(3.4%)

Total 444 201 150 201 177

0

50

100

150

200

250

300

Compatibility

SEPRM ISO15504 CMM Bootstrap ISO9001

C1(X) C2(X) C3(X) C4(X) C5(X)

Figure 11.13 Compatibility distribution between current process models

The above view indicates that the process domains of ISO/IEC TR 15504,
CMM, BOOTSTRAP, and ISO 9001 are relatively incompatible. Therefore,
conventional one-to-one mappings between them would be very difficult and
inaccurate. If the SEPRM reference model is adopted as an intermediate
model, the comparative analysis between current process models is enabled
on a sound foundation.

11.7.3 CORRELATION BETWEEN CURRENT PROCESS
MODELS

It has been found theoretically and practically that the mappings between a
pair of process models are asymmetrical [Wang et al., 1996b/97a].
Therefore, bidirectional mappings have been conducted in analyzing
correlation between current process models at both system and BPA levels.

388 Part III Software Engineering Process System Analysis

The correlation levels and ratios between current process models are
summarized in Table 11.12. Table 11.12 shows, for example, that ISO/IEC
TR 15504 and CMM have 64 shared BPAs, the correlation ratio of ISO/IEC
TR 15504 to CMM is 42.7% while that of CMM versus ISO/IEC TR 15504
is 31.8%. This fact demonstrates the asymmetrical feature of correlation in
process model mapping.

Considering the four major process models except SEPRM, the highest
correlation ratio is 42.7% with ISO/IEC TR 15504 versus CMM; the lowest
correlation ratio is 28.8% between CMM versus ISO 9001. The average
correlation ratio among the four process models is about one-third without
SEPRM.

Table 11.12
Correlation between Current Process Models

r(R, C)

(ρ(R, C))

ISO/IEC TR 15504 CMM BOOTSTRAP ISO 9001 SEPRM

ISO/IEC TR
15504

201

(100%)

64

(42.7%)

59

(29.4%)

58

(32.8%)

201

(45.3%)

CMM 64

(31.8%)

150

(100%)

49

(24.4%)

51

(28.8%)

150

(33.8%)

BOOTSTRAP 59

(29.4%)

49

(32.7%)

201

(100%)

75

(42.4%)

201

(45.3)

ISO 9001 58

(28.9%)

51

(34.0%)

75

(37.3%)

177

(100%)

177

(39.9%)

SEPRM 201

(100%)

150

(100%)

201

(100%)

177

(100%)

444

(100%)

 R – a related model at the Rth row; C – a related model in the Cth column

Based on the data summarized in Table 11.12, a correlation profile between
current process models is derived in Figure 11.14. The figure shows that, on
average among the four current models, correlation between one and another
is at the level of around one-third. However, as a superset of the four models,
SEPRM has achieved the highest correlation with all the other models. This
inherent characteristic forms the foundation for mutually transforming the
capability levels between current process models via SEPRM in the next
chapter.

Chapter 11 Comparative Analysis of Current Process Models 389

S

T C B I T S

C B I

C S

T B I

B S

T C I

I S

T C B

0

100

200

300

400

500

Correlation

SEPRM ISO15504 CMM BOOTSTRAP ISO9001

 S – SEPRM T – ISO/IEC TR 15504 C – CMM B – BOOTSTRAP I – ISO 9001

Figure 11.14 Correlation profile between current process models

11.8 Summary

This chapter has presented an objective view of the interrelationships
between current process paradigms. SEPRM has been shown as a super
model, developed according to the unified process framework and theory,
which possesses higher compatibility and correlation with the existing
process models.

The analyses of this chapter have been based on the data documented in
Appendix C. Mining this set of data, readers may find new facts and
additional statistically significant regulations in process-based software
engineering.

The basic knowledge structure of this chapter is as follows:

Chapter 11. Comparative Analysis of Current Process Models

• General
− Purposes of this chapter

 − To analyze the relationships between current process
 models by using one-to-one, one-to-many, and/or
 many-to-one mappings

 − To investigate compatibility and correlation between
 current process models
 − To explore features and special orientation of current

390 Part III Software Engineering Process System Analysis

 process models so that suitable or combined process
 models can be chosen for a specific software development
 organization
 − To enable the development of process capability
 transformations between current process models which
 will be covered in the next chapter.

− Analyzing methods
 − Configuration: Bidirectional mapping of BPAs

 − Compatibility
 − ck (M) = #{BPAi | BPAi ∈ Ck }, k=1,2,...,5
 and i = 1 ... n

 =
i

n

=
∑

1

{ 1 | BPAi ∈ Ck }, k=1,2,...,5 (2.6)

 − Correlation
 − r(R, S) = # { xi | xi ∈ m(R, S)} (2.9)

 − ρ(R,S) = r R S

R

(,)

#
% (2.10)

 • The ISO/IEC TR 15504 process model
− Background philosophy

To present a set of structured capability measurements for all
software lifecycle processes, and for all parties such as
software developers, acquirers, contractors, and customers

− Configuration orientation
Organization : Development : Management =

 30.3% : 23.4% : 46.3%

 − Compatibility
− C1 (ISO15504) = 0
− C2 (ISO15504) = 23.0%
− C3 (ISO15504) = 13.5%
− C4 (ISO15504) = 7.2%
− C5 (ISO15504) = 1.6%

 − Correlation
− To SEPRM: 45.3%
− To CMM: 42.7%
− To BOOTSTRAP: 29.4%
− To ISO 9001: 32.8%

Chapter 11 Comparative Analysis of Current Process Models 391

• The CMM process model
− Background philosophy

To present a software project contractor’s perception of the
organizational and managerial capacity of a software
development organization

− Configuration orientation
Organization : Development : Management =

 14.0% : 13.3% : 72.7%

 − Compatibility
− C1 (CMM) = 0
− C2 (CMM) = 11.9%
− C3 (CMM) = 12.4%
− C4 (CMM) = 7.9%
− C5 (CMM) = 1.6%

 − Correlation
− To SEPRM: 33.8%
− To ISO/IEC TR 15504: 31.8%
− To BOOTSTRAP: 24.4%
− To ISO 9001: 28.8%

• The BOOTSTRAP process model
− Background philosophy

To present a combined view of software life cycle processes
and quality system principles

− Configuration orientation:
Organization : Development : Management =

 11.5% : 31.8% : 56.7%

 − Compatibility
− C1 (BOOTSTRAP) = 0
− C2 (BOOTSTRAP) = 23.0%
− C3 (BOOTSTRAP) = 15.3%
− C4 (BOOTSTRAP) = 5.6%
− C5 (BOOTSTRAP) = 1.4%

 − Correlation
− To SEPRM: 45.3%
− To ISO/IEC TR 15504: 29.4%

392 Part III Software Engineering Process System Analysis

− To CMM: 32.7%
− To ISO 9001: 42.4%

 • The ISO 9001 process model
− Background philosophy

To present a generic quality system perception of software
 Development

− Configuration orientation
Organization : Development : Management =

 14.1% : 24.9% : 61.0%

 − Compatibility
− C1 (ISO 9001) = 0
− C2 (ISO 9001) = 16.9%
− C3 (ISO 9001) = 14.6%
− C4 (ISO 9001) = 7.0%
− C5 (ISO 9001) = 1.4%

 − Correlation
− To SEPRM: 39.9%
− To ISO/IEC TR 15504: 28.9%
− To CMM: 34.0%
− To BOOTSTRAP: 37.3%

• The SEPRM process model
− Background philosophy

To present a comprehensive and integrated process system
 Reference model, with sound foundations and benchmarked
 Data support, for process-based software engineering

− Configuration orientation
Organization : Development : Management =

 18.2% : 25.9% : 55.9%

 − Compatibility
− C1 (SEPRM) = 8.3%
− C2 (SEPRM) = 60.6%
− C3 (SEPRM) = 22.5%
− C4 (SEPRM) = 7.2%
− C5 (SEPRM) = 1.4%

Chapter 11 Comparative Analysis of Current Process Models 393

 − Correlation
− To ISO/IEC TR 15504: 100%
− To CMM: 100%
− To BOOTSTRAP: 100%
− To ISO 9001: 100%

• Summary of interrelationships between current process models
 − Average configuration orientation
 Organization : Development : Management = 2 : 3 : 5 (11.1)

 − Compatibility: Table 11.11
 − Correlation: Table 11.12

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• This chapter has developed a rigorous approach to analyzing the
interrelationships among the process domains of current process
paradigms. Quantitative and objective analysis results have been
provided for revealing the interrelationships of current process
models.

• The problems of what and how we measure in analyzing the inter-
relationships among the process domains of current process models
have been solved. Compatibility and correlation, developed in
Section 2.5.1, have been taken to quantitatively measure the inter-
relationships among current process models.

• As described in the unified software engineering process
framework, BPA is the fundamental element in modeling a process
system. By observing and analyzing the configurations of BPAs in
current process models, the orientation and emphasis of these
models can be explored quantitatively and objectively.

• For implementing process-based software engineering in large-scale
software development, the deployment of effort and resources in
organization, development, and management processes is derived as
20% : 30% : 50%. Although conventional software development has
been concentrated purely on the technical processes, large-scale
software development requires much more resources and effort for
organizational infrastructures, management measures, and quality
assurance in software engineering.

394 Part III Software Engineering Process System Analysis

• It is found that the most common compatibility level between
current process models is at level 2 (61%) with more than a half of
the BPAs (269) identified in both SEPRM and one of the other four
models. This indicates that the process domains of ISO/IEC TR
15504, CMM, BOOTSTRAP, and ISO 9001 are relatively
incompatible. Therefore, conventional one-to-one mapping between
them has encountered difficulties. If the SEPRM reference model is
adopted as an intermediate model, comparative analysis between the
current process models is enabled on a sound foundation.

• The correlation profile developed in Section 11.7.3 shows that, on
average among the four major process models except SEPRM,
correlation between one and another is at the level of around 30%.
However, as a superset of the four models, SEPRM has achieved the
highest correlation with all the other models. This inherent
characteristic forms the foundation for mutually transforming the
capability levels between current process models via SEPRM.

To enable further development of process capability transformations between
current process models, it is a prerequisite to quantitatively analyze the
compatibility and correlation between the process paradigms. Formal
description of individual process models can be referred to as follows:
Chapter 5 (CMM), Chapter 6 (ISO 9001), Chapter 7 (BOOTSTRAP),
Chapter 8 (ISO/IEC TR 15504), and Chapter 9 (SEPRM), respectively.
Comparative analysis of process capability measurements and relationships
of capability levels between current process models will be developed in the
next chapter.

Annotated Reference

A number of pairwise analyses of interrelationships between current process
models have been reported. Paulk et al. (1994/95b) revealed the
relationships between CMM and SPICE, and between CMM and ISO 9001.
Kitson (1996) related the SPICE framework with the ESI approach to
software process assessment. Koch (1993) and Jarvinen (1994) reported the
background and relationship between BOOTSTRAP and CMM. Kugler and
Messnarz (1994) described the relationships between BOOTSTRAP and ISO

Chapter 11 Comparative Analysis of Current Process Models 395

9001. Wang et al. (1999g) reported a conformance analysis case study
between a tailored CMM and ISO/IEC TR 15504.

Bidirectional, quantitative, many-to-many analyses between current
process models were found necessary. Wang et al. (1997a/b/99e/g) presented
a series of comparative analyses of relationships between current process
models: ISO/IEC TR 15504, CMM, ISO 9001, BOOTSTRAP, and SEPRM.

Wang et al. (1997a/b/99e) developed a framework for systematically
characterizing and quantitatively analyzing software engineering process
systems with a set of metrics such as compatibility, correlation,
characteristic attributes of processes, and benchmarking of these
characteristic attributes.

Questions and Problems

11.1 In Chapters 5 – 9 we explored the philosophies behind each of current
process models. To demonstrate that you understand the ethos, make a
summary and comparison of these philosophies.

11.2 Referring to Figure 11.1 and Table 11.1, what are the highest and
lowest compatibility levels between ISO/IEC TR 15504 and the other
current process models?

11.3 Observing Figure 11.2 and Table 11.2, what are the most and least
correlative models of ISO/IEC TR 15504?

11.4 Referring to Figure 11.3 and Table 11.3, what are the highest and
lowest compatibility levels between CMM and the other current
process models?

11.5 Observing Figure 11.4 and Table 11.4, what are the most and least
correlative models of CMM?

11.6 Referring to Figure 11.5 and Table 11.5, what are the highest and
lowest compatibility levels between BOOTSTRAP and the other
current process models?

396 Part III Software Engineering Process System Analysis

11.7 Observing Figure 11.6 and Table 11.6, what are the most and least
correlative models of BOOTSTRAP?

11.8 Referring to Figure 11.7 and Table 11.7, what are the highest and
lowest compatibility levels between ISO 9001 and the other current
process models?

11.9 Observing Figure 11.8 and Table 11.8, what are the most and least
correlative models of ISO 9001?

11.10 Referring to Figure 11.9 and Table 11.9, what are the highest and
lowest compatibility levels between SEPRM and the other current
process models?

11.11 Observing Figure 11.10 and Table 11.10, what are the most and least
correlative models of SEPRM, and what are the advantages of SEPRM
as a superset process model?

11.12 The correlation levels and ratios between current process models have
been summarized in Table 11.12. Explain Table 11.12 using your own
words.

397

Chapter 12

TRANSFORMATION OF
CAPABILITY LEVELS

BETWEEN
CURRENT PROCESS MODELS

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

10.
Benchmarking the SEPRM
Processes

12.1 Introduction 12.5 Estimation of assessment effort by different
12.2 A comparative assessment case study process models
12.3 Transformation of process capability levels 12.6 Summary
12.4 Robustness of current process models Annotated references

11.
Comparative Analysis of
Current Process Models

12.
Transformation of Capability Levels
between Current Process Models

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

398 Part III Software Engineering Process System Analysis

This chapter analyzes the interrelationships between the capability scales of
current process models, and investigates how a given capability level in one
model may be related to another. The stability of assessment results in
current process models is tested by three specially designed cases. Empirical
data on the time expended in process assessments using current process
models are derived and related to the unit of person-hours for estimating the
costs in process assessment.

The objectives of this chapter are as follows:

• To find out the interrelationships between the capability scales of
current process models

• To seek an approach for transforming the capability levels between
current process models

• To explore the stability of assessment for current process models

• To investigate the time and effort expended in process assessments
using current process models

12.1 Introduction

The interrelationships between the process domains of current process
models were explored in Chapter 11. This chapter analyzes the inter-
relationships between the capability domains of current process models, and
explores how a given capability level in one model be quantitatively related
to another. In the end of this chapter, the relationships of current process
models in both of the process and capability dimensions will be clarified.
This method also enables a software development organization to avoid
being assessed several times against various process models that would be
costly and time-consuming.

In the software industry and in software engineering research, it has
long been expected that the ideal of a comparative assessment result, which
applies all the current process models to the same software development
organization, could be achieved. As a result, the interrelationship and
transformability of the capability levels in different models need to be
explored. With the establishment of the unified process framework and the

Chapter 12 Transformation of Capability Levels 399

development of the algorithms of current process models presented in this
book, it is now possible to implement the ideal.

Through a comparative process assessment case study project for a
sample software development organization using the CMM, ISO 9001,
BOOTSTRAP, ISO/IEC TR 15504 (SPICE), and SEPRM methodologies,
the possibility and approach for transformability are explored. This leads to
the development of a method for transforming the capability levels between
current process models.

A case study on comparative process assessment will be reviewed in
Section 12.2. Then, a method for process capability transformation among
current process models will be developed in Section 12.3. Using the
capability transformation method, the robustness of assessment results and
the costs of assessment efforts of current process models will be analyzed in
Sections 12.4 and 12.5, respectively.

12.2 A Comparative Assessment Case
Study

In Appendix C the raw data of process performance collected from the
sample software development organization have been documented in the
column labeled “rating” against the BPAs defined in SEPRM. Individual
assessment results according to different models have been described in the
sample assessment sections of Chapters 5 through 9, respectively. This
section reviews and contrasts the assessment results as a preparation for the
discussion of capability transformation between current process models.

12.2.1 THE SEPRM ASSESSMENT RESULT

An SEPRM process assessment was carried out in Section 9.5. In order to
comparatively analyze the results of case studies in current process models, a
set of the process capability profiles of the organization, development, and
management subsystems are reproduced in Figures 12.1 – 12.3.

400 Part III Software Engineering Process System Analysis

0

1

2

3

4

5

1,1 1,2 2,1 2,2 3,1 3,2 3,3 3,4

 Process

Figure 12.1 Capability profile of organization process subsystem assessed
in SEPRM

0

1

2

3

4

5

1 , 1 1 , 2 1 , 3 2 , 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 2 , 7 3 , 1 3 , 2 3 , 3 3 , 4

 Process

Figure 12.2 Capability profile of development process subsystem in SEPRM

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1,1 1,3 1,5 1,7 1,9 1,11 2,1 2,3 3,2 3,4 3,6 4,1 4,3 5,2 6,1

Process

Figure 12.3 Capability profile of management process subsystem in
SEPRM

With the individual process capability level as shown in Figures 12.1 to
12.3, the software development organization's capability level is determined
to be Level 3.5, the stable process capability level, according to the SEPRM
algorithm developed in Chapter 9.

Chapter 12 Transformation of Capability Levels 401

12.2.2 THE ISO/IEC TR 15504 ASSESSMENT RESULT

An ISO/IEC 15504 process assessment was carried out in Section 8.5. The
process capability profile of the 35 processes in the 5 process categories is
reproduced in Figure 12.4.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 1 2 3 4 5 6 7

CUS ENG RPO SUP ORG

Process

Figure 12.4 A process capability profile in ISO/IEC 15504

With the individual process capability level as shown in Figure 12.4, the
software development organization's capability level is determined to be
Level 3, the established process capability level, according to the ISO/IEC
15504 algorithm developed in Chapter 8.

12.2.3 THE CMM ASSESSMENT RESULT

A CMM process assessment was carried out in Section 5.5. The process
capability profile of the 18 key process areas (KPAs) is reproduced in Figure
12.5.

0

2

4

6

8

10

12

14

16

1 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 3,7 4,1 4,2 5,1 5,2 5,3

Not satisfied

Satisfied

 CL1 CL2 CL3 CL4

 Process

Figure 12.5 A process capability profile in CMM

402 Part III Software Engineering Process System Analysis

With the individual process adequacy distribution as shown in Figure 12.5,
the software development organization's capability level is determined to be
Level 3, the defined process capability level, according to the CMM
algorithm developed in Chapter 5.

12.2.4 THE BOOTSTRAP ASSESSMENT RESULT

A BOOTSTRAP process assessment was carried out in Section 7.5. The
process capability profile of the 32 processes in the 5 process levels is
reproduced in Figure 12.6.

0

50

100

150

200

250

CL1 CL1' CL2 CL2' CL3 CL3' CL4 CL4' CL5 CL5'

Not satisfied

Satisfied

Process

Figure 12.6 A process capability profile in BOOTSTRAP

With the individual process adequacy distribution as shown in Figure 12.6,
the software development organization's capability level is determined to be
Level 3.25, the defined process capability level, according to the
BOOTSTRAP algorithm developed in Chapter 7.

12.2.5 THE ISO 9001 ASSESSMENT RESULT

An ISO 9001 process assessment was carried out in Section 6.5. The process
capability profile of the 20 main topic areas (MTAs) is reproduced in Figure
12.7.

With the individual process adequacy distribution as shown in Figure
12.7, the software development organization's capability level is determined
to be passed according to the ISO 9001 algorithm developed in Chapter 6.

Chapter 12 Transformation of Capability Levels 403

0

5

10

15

20

25

30

1,1 1,2 1,3 1,4 1,5 1,6 1,7 2,1 2,2 2,3 2,4 2,5 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

Not satisfied

Satisfied

 organization product development

 Process

Figure 12.7 A process capability profile in ISO 9001

By using the assessment results provided in this section, the following
sections discuss some interesting subjects in process-based software
engineering, such as process capability transformation, robustness of
assessment results, and assessment time estimation for current process
models.

12.3 Transformation of Process
Capability Levels

In Part I and Part II of this book, a formal and algorithmic capability
determination approach was developed for software engineering process
assessment based on the unified process framework and process assessment
algorithms. In this formal approach, assessor-dependent factors in process
assessment are limited to the lowest level – the practice (BPA) scope; the
higher level capabilities, such as in the scopes of process and project, should
be derived according to a set of rigorously described methods and related
formulae. The assessment results may thus be objective, accurate, and stable.

The raw rating data of BPA performance have been documented in
Appendix C for all BPAs defined in SEPRM. Because the SEPRM process
model is a superset of those of the other existing models, a single set of BPA
rating data enables multiple model-oriented process assessments based on
the mapping mechanism provided in Appendix C.

404 Part III Software Engineering Process System Analysis

By using the superset of BPA ratings, process capability levels in
ISO/IEC 15504, CMM, BOOTSTRAP, ISO 9001, and SEPRM can be
derived according to a set of algorithms. As a result, comparative and
transformable assessment results for the same software development
organization against the major process models are obtained.

In this approach the capability levels of a software development
organization can be mutually transformed for the first time between the
current models via SEPRM. This means that by providing the original raw
rating data in the practice scope and supplementing the additional BPAs in
SEPRM, a capability level in a known model among the five can now be
transformed into any of the other four models quantitatively and objectively.

For instance, as demonstrated in Section 12.2, using the same set of
BPA rating data listed in Appendix C, process capability levels of the same
organization in each of current process models have been derived as
summarized in Table 12.1.

Table 12.1
Transformation of Assessment Results between Current Process Models

Model Assessed Capability Level Description of Process

SEPRM 3.3 Stable

ISO/IEC 15504 3 Established

CMM 3 Defined

BOOTSTRAP 3.25 Defined

ISO 9001 Passed Passed

Table 12.1 shows how the capability levels of the sample organization can
be related and transformed among SEPRM, ISO/IEC 15504, CMM,
BOOTSTRAP, and ISO 9001. The finding is that the assessments by current
process models are comparable and the relationships between them are
definite for a given software development organization. Therefore, this
approach provides a practical way for mutually transforming the capability
levels among the major software process models.

 The case studies summarized in Table 12.1 are by no means suggestive
of a fixed interrelationship of the capability levels between different process
models for different software development organizations. They simply
demonstrate how the capability levels can be mutually transformed, case by
case, based on a unified superset of BPAs defined in SEPRM and the
individual algorithms. Thus, an ISO 9001-passed software development
organization could be related at CMM Level 2, ISO/IEC 15504 Level 4,
BOOTSTRAP Level 2.75, SEPRM Level 3.2, or others, depending on the
specific set of BPA rating data of the case.

Chapter 12 Transformation of Capability Levels 405

What is significant is that there is a determinable interrelationship
between the capability levels of current process models for any given case.
Thus, any software development organization can apply this method to its
own process data in order to transform a known process capability level in a
model to the others quantitatively and objectively.

12.4 Robustness of Current Process
Models

In order to test the stability or robustness of process assessment by current
process models, the following method may be utilized. The idea is to shift
the raw assessment data +/-10% randomly. This is intended to simulate the
assessors’ varying judgement differences upon performance of individual
BPAs in an assessment. The testing results of robustness of current process
models are shown in Table 12.2.

Table 12.2
Robustness of Assessment Results by Different Models

Model Case B
By –10% rated data

Case C
By original assessment data

Case A
By +10% rated data

SEPRM 3.2 3.3 3.4

ISO/IEC 15504 2 3 3

CMM 2 3 3

BOOTSTRAP 3.0 3.25 4.0

ISO 9001 Passed Passed Passed

Observing the testing results shown in Table 12.2, two worst cases (A and
B) and a normal case (C) in process assessments for investigating the
robustness of current process models are analyzed in the following
subsections.

12.4.1 CASE A – BIASED OVERRATING

Case A, as shown in Table 12.2, is a worst case of a biased overrating of the
real process performance. When an assessor intends to give higher ratings
for BPAs at +10% level, the final assessment results of all models except
BOOTSTRAP are quite stable.

406 Part III Software Engineering Process System Analysis

12.4.2 CASE B – BIASED UNDERRATING

In another worst case (Case B) as shown in Table 12.2, the assessor may
underrate the real process performance by bias. When an assessor intends to
give lower ratings for BPAs at -10% level, the final assessment results of
SEPRM and BOOTSTRAP have been kept stable, but the ISO/IEC 15504
and CMM results have been decreased from Level 3 to Level 2.

It is noteworthy that, in such a case, ISO 9001 might result in the largest
instability, which can vary from “passed” to “failed” outcomes when a small
part of BPAs are given lower ratings.

12.4.3 CASE C – A NORMAL CASE

In a normal case as shown in Table 12.2, the variety of the assessor’s rating
for BPAs would be kept at the average level that approaches the accurate
value. That is, although some of the BPAs may be rated for higher or lower
values in an assessment, the errors of the final assessment results, in the
average case, will not be worse than those of the above Cases A and B.

This case indicates that, while an individual BPA would be over- or
underrated randomly in real assessment, the average rating errors tend to
offset statistically in an assessment as a whole. Based on this observation, we
may infer that the final assessment results can still keep the tropism when
the random rating errors exceed the �10% ranges.

In analyzing Table 12.2, it can also be found that SEPRM possesses the
highest robustness in both the worst Cases A and B. This feature
demonstrates the merits of the SEPRM algorithm and its basis of the unified
software engineering process framework.

12.5 Estimation of Assessment Effort
for Different Process Models

Analyzing the algorithms of current process models established from
Chapters 5 to 9, the theoretical effort expended in an assessment is
determined exactly by the algorithm complexities of different process
models. That is, the more complex an algorithm is, the more effort will need

Chapter 12 Transformation of Capability Levels 407

to be expended in an assessment. This parallel provides the basis of
assessment effort estimation.

The algorithm complexities of the five process models in process
capability determination are summarized in Table 12.3. The numbers show
the assessment complexities in terms practice performance ratings or process
capability level ratings. For detailed discussions readers may refer to related
chapters in Part II.

Table 12.3
Operating Complexities of the Current Software Process Models

Capability
Scope

CMM BOOTSTRAP ISO/IEC 15504 ISO 9001 SEPRM

Practice 150 201 201 177 444

Process 18 9 35 18 51

Project 150 201 (201+35)*9=2124 177 444+2*51 = 546

Organization 150*n 201 * n 2124 * n 177 * n 546 * n

 Note: n – number of projects

In order to estimate the time expended in conducting an assessment using
different process models, a relationship between the algorithm complexity
and an average unit time spent on a BPA's rating have been investigated.
According to the ISO/IEC 15504 trial data and the report related to other
process models [SPICE Project, 1998; Wang et al., 1999e/h], an average rate
of unit time for the BPA rating can be calibrated as 3.0 minutes per BPA.
Using this as a reference rate and the data shown in Table 12.3, the time
expended for BPA and process rating in different models is derived as
follows:

Â SEPRM 27.2 (person-hrs)

Â ISO/IEC TR 15504 106.2 (person-hrs)

Â CMM 7.5 (person-hrs)

Â ISO 9001 9.0 (person-hrs)

Â BOOTSTRAP 10.2 (person-hrs)

In summary, the operating complexities of current software engineering
process assessment models, in person-hours, are shown in Figure 12.8.

408 Part III Software Engineering Process System Analysis

7, 5 9

10,2

27,2

106,2

0

20

40

60

80

100

120

person-
hrs

CMM I SO9001 B OOT ST R AP SE P R M I SO 15504

Figure 12.8 Operating complexities of current process models

It is noteworthy that overheads for assessment input preparation and report
generation, as well as assessor’s productivity and assessees’ involvement,
should also be taken into account. In practice, those overheads could be
significantly high in relation to the above regular assessment effort [Wang et
al., 1998f/99h].

12.6 Summary

This chapter has demonstrated that one of the important functions of
SEPRM is to enable capability level transformation between current process
models. Test cases have been designed to analyze the robustness of current
process models in process assessment and capability determination.
Empirical data for estimation of assessment efforts by different process
models have been provided as references.

The basic knowledge structure of this chapter is as follows:

Chapter 12. Transformation of Capability Levels between
 Current Process Models

• General
 − Purposes of this chapter

 − To find out the interrelationships between the capability
 scales of current process models

Chapter 12 Transformation of Capability Levels 409

 − To seek an approach for transforming the capability levels
 between current process models

 − To explore the stability of assessment for current process
 models

 − To investigate the time and effort expended in process
 assessments using current process models

 • A comparative assessment case study
− Comparative assessments

 − For the same organization and the same process system
 − Apply multiple process models and algorithms

 − Understand the comparative assessment case study
 − Data as listed in Appendix C
 − Assessment results
 − Process profiles
 − Process capability levels

 − Refer to Chapters 5 through 9 in Part II for details

• Transformation of process capability levels
− Concept of process capability transformation

 − Relate process capability levels between current process
 models
 − From a given process level in a certain model, derive
 equivalent process capability levels in the other models

 − Method for process capability transformation
 − Create a superset of BPAs which covers the domain of
 current process models
 − Establish multiple algorithms for current process
 models

 − Understand the case presented in Section 12.3

• Robustness of current process models
− The nature of BPA ratings by assessors as human beings

 − Random errors of overrating or underrating
 − Statistical offset of the errors in average

− Concept of robustness of process models
− Understand the case presented in Section 12.4

410 Part III Software Engineering Process System Analysis

• Estimation of assessment effort by different process models
− The algorithm complexity of current process models
− The calibration of the empirical reference rate of unit-time

 for a BPA rating
− The time expended in assessments by current process models
− Average time for an assessment by current process models:

 32.4 person-hours

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• This chapter has addressed two important issues in software
engineering process modeling and analysis – how to quantitatively
analyze the interrelationship of process capability levels between
current process models, and how to relate a given capability level in
a process model to the others

• The process capability levels assessed by the five process models
have been found quite correlative. Therefore, the capability levels
can be mutually transformed between each other

• The stability or robustness of current process models has been tested
by three specially designed cases. The test results have shown that
there can be confidence in the robustness of current process models,
especially SEPRM, which has the greatest robustness in both the
worst cases, A and B. This feature has demonstrated the merits of
the SEPRM algorithm and its sound basis created by the unified
software engineering process framework

• In an attempt to estimate the costs of a process assessment, the
algorithm complexities of current process models have been
calibrated to the unit of person-hours based on empirical data. As a
result, reference costs on the time expended in assessments by the
five process models have been derived

• The process capability transformation method developed in this
chapter has enabled the process capability level of a software
development organization to be transformed, for the first time,
between current process models. This means that by providing the
original raw rating data of all BPAs, a capability level in a given

Chapter 12 Transformation of Capability Levels 411

model among the five can now be transformed into any of the other
models quantitatively and objectively. In this approach, a software
development organization may avoid being assessed several times
against various process models that are costly and time-consuming

• The average time expended in assessment with current process
models, except overhead in assessment preparation and report
generation, is 32.4 (person-hrs), varying in a range from minimum
7.5 (person-hrs) in CMM to 106.2 (person-hrs) in ISO/IEC TR
15504

• Software development organizations can now assess their software
engineering process practices according to the SEPRM reference
model. Then, related process capability levels and process profiles to
the major existing process models can be derived by transformations
via SEPRM.

This chapter has extended the applications of the SEPRM reference model
from software engineering process assessment and improvement to process
capability transformation. Interrelationships of the process dimensions
between SEPRM and the other process models were analyzed in Chapter 11.
Applications of SEPRM in process-based software engineering and case
studies will be provided in Parts IV – VI.

Annotated References

Process capability transformation is a new topic in research. Koch (1993)
and Kuvaja et al. (1994a) related BOOTSTRAP capability maturity levels
with those of CMM. Dorling and Wang et al. (1999a/b) reported capability
level mapping between PULSE and ISO/IEC TR 15504.

Wang et al. (1997a/b/99e/g) carried out a series of comparative analyses of
relationships and many-to-many mappings between current process models.
Based on these works, Wang et al. (1997d/99h) reported comparative
assessments and capability transformation between current process models.

412 Part III Software Engineering Process System Analysis

Questions and Problems

12.1 Why do both practitioners and researchers expect a mechanism to
transform process capability levels between current process models?

12.2 When assessing a software development organization according to
SEPRM, using the mapping mechanism of SEPRM as shown in
Appendix C, you can obtain the capability levels in the other models
by recalculation according to their algorithms. Try to transform the
SEPRM capability level of the project you assessed in Ex.9.10 into
that of CMM and report your findings.

12.3 Section 12.4 demonstrated that the robustness of assessment results
according to current process models is reasonably good. Try to
compare your own assessment result of a SEPRM process with those
of your colleagues in the same project, and analyze what the errors
could be in an assessment for a single process.

12.4 This chapter has related the assessment efforts with the algorithm
complexities of current process models. This approach provides a
solid foundation for assessment cost estimation. Referring to Section
12.5, as well as Chapters 8 and 9, explain why SEPRM consists of the
largest sets of BPAs and processes but ISO/IEC TR 15504 requires the
highest assessment cost.

12.5 What are the overheads of process assessment costs? Could they
significantly influence the total costs of a process assessment?

12.6 Software process assessments were considered a subjective procedure
because all activities were judged by human beings. The quantitative
and algorithmic approach developed in this book provides a new way
toward objective assessment. However, one level of the assessment
still requires assessors’ personal judgment. What is this level?

413

PART IV

SOFTWARE
ENGINEERING
 PROCESS

ESTABLISHMENT

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

13.
Software Process
Establishment Methodologies

14.
An Extension of
ISO/IEC TR 15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

414 Part IV

In the first three parts of this book, a unified process system framework and
theory has been established. Using this unified process theory, current
process models have been formally described and examined, and their
relationships have been comparatively analyzed. A super SEPRM process
system reference model has been developed for integrating current process
models into a coherent framework.

In the second half of this book, the focus will be on how the unified
theory and SEPRM may be applied in a real-world environment. Practical
methodologies and guidelines will be developed for software engineering
process establishment, assessment, and improvement through Parts IV – VI.

Software engineering process system establishment is the first important
step in process-based software engineering because both process assessment
and improvement theories and practices rely on working with the common
foundation of a systematically established process system. Part IV of this
book explores methodologies and approaches to software engineering process
system establishment such as the reuse, tailoring, extension, and adaptation
of process models. Relationships of these methodologies with the theories
and unified process framework developed in previous parts are discussed.
Examples and case studies, such as a parallel process model for software
quality assurance, a minimum process model for software project
management, a tailored CMM model, and an extension of ISO/IEC TR 15504
model, are provided for demonstrating the applications of the process
establishment methodologies.

The knowledge structure of this part is as follows:

• Chapter 13. Software Process Establishment Methodologies

• Chapter 14. An Extension of ISO/IEC TR 15504 Model

Chapter 13 examines existing and new approaches to software process
establishment. This chapter develops practical methodologies for software
process establishment by reuse, tailoring, extension, and adaptation of
process models. Process establishment technologies provide support and
guidelines for building a process system at organization, project, team, or
individual levels. The process establishment methodologies enable top
management, project managers, and team leaders to describe their process
structure and functional requirements in the easiest way. Three derived
process models, a parallel process model for software quality assurance with
one-to-one matching and synchronization between development and
management processes, a minimum process model for software project
management, and a tailored CMM, are explored.

Chapter 14 describes a complete paradigm of process establishment – the
establishment of the PULSE software acquisition process model – as a
compatible plug-in process module for ISO/IEC TR 15504. PULSE extends
ISO/IEC TR 15504 to cover software and IT system acquisition process
areas. As an extended compatible process model for ISO/IEC TR 15504, the

Software Engineering Process Establishment 415

PULSE process capability levels have been designed to be transformable into
certain ISO/IEC TR 15504 capability levels. The mapping of capability and
attributes between the two models have been implemented to enable the
PULSE assessment results to be related to that of the ISO/IEC TR 15504
model.

In this part, a pragmatic view of software engineering process system
establishment, assessment, and improvement is adopted. Systematic process
establishment is recognized as the foundation for process assessment and
improvement. A software engineering process system reference model, such
as SEPRM, is viewed as the central infrastructure for process system
establishment.

This page intentionally left blankThis page intentionally left blank

417

Chapter 13

SOFTWARE PROCESS
ESTABLISHMENT

METHODOLOGIES

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

13.
Software Process
Establishment Methodologies

13.1 Introduction 13.4 A software project mgmt. process model
13.2 Methods for software process establishment 13.5 A tailored CMM process model
13.3 A parallel process model for 13.6 Summary
 software quality assurance Annotated references

14.
An Extension of
ISO/IEC TR 15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

418 Part IV Software Engineering Process Establishment

This chapter describes principles and methodologies for software process
system establishment and implementation. Examples and case studies in
derived software process models are demonstrated.

The objectives of this chapter are as follows:

• To provide practical guidance on how to establish software
engineering process systems at organization, project, and team
levels

• To develop a set of useful methodologies for software process
establishment and implementation

• To demonstrate a parallel process model for software quality
assurance, which is a lightweight project process model tailored
from SEPRM

• To demonstrate a process model for software project management,
which is a medium-weight project process model tailored from
SEPRM

• To demonstrate a case study on how CMM may be customized for
small software development organizations

13.1 Introduction

In Chapter 4 a generic procedure for deriving a software project process
model was introduced, and a number of methods for establishing software
engineering process systems were explored. This chapter looks in further
detail at software process establishment, and discusses applications and case
studies of these methodologies.

From the viewpoint of scope or coverage of software process
implementation, a software engineering process model can be classified as
complete, medium, or light. Usually, a complete process model is
established and applied in a whole organization as a reference. A medium-
or light-weighted process model can be derived from the reference model for
a specific software project according to its nature and requirements. In this
chapter, reuse methods for software engineering process systems, and
approaches to process system tailoring, adaptation, and extension are
described. Both a minimum process model and a management model at
project level are presented, deriving from the SEPRM process reference

Chapter 13 Software Process Establishment Methodologies 419

model. A tailored CMM model is explored which shows how CMM may be
customized for use in small software development organizations.

Process establishment technologies provide support and guidelines for
building a process system at organization, project, team, or individual levels.
The process establishment methodologies enable top management, project
managers, and team leaders to describe their process structure and
functional requirements in the easiest way.

In the following sections, methodologies for software engineering
process establishment are described in Section 13.2. Then, two derived
process models from the SEPRM process reference model are explored as
case studies in process establishment: (a) a parallel process model for
software quality assurance in Section 13.3, and (b) a process model for
software project management in Section 13.4. Finally, Section 13.5
describes a tailored CMM model and explores how CMM is customized for
small software development organizations.

13.2 Methods for Software Engineering
 Process Establishment

The overall procedure for establishing a software engineering process
system, as shown in Figure 13.1, was previously introduced in Section 4.2.
This section develops four types of process system establishment
methodologies for reuse, tailoring, extension, and adaptation of process
models.

Software Process System Establishment Procedure

Step 1
Select and reuse
a process system
reference model
at o rgan ization
level

Step 2
Derive
a process
model at
pro ject
level

Step 3
Apply the
derived
pro ject
process
model

Figure 13.1 Procedure for establishing a software engineering process
system

420 Part IV Software Engineering Process System Establishment

13.2.1 PROCESS MODEL REUSE

The software engineering process was defined in Definition 2.14 as a set of
sequential activities, which are functionally coherent and reusable, for
software project organization, implementation, and management. This
subsection describes the concept of process reuse and the method for
implementing process reuse.

Software development is a design-intensive process rather than a mass
production process. The development of specific application software is
characterized as mainly a one-off activity in design and production. Thus, in
the design-intensive software development, that which can possibly be
regulated, reused, and standardized are mainly the software engineering
processes rather than the products themselves, as in other manufacturing
engineering disciplines. Therefore, the software engineering processes –
a set of regular activities in software engineering which are based on
the best practices in the software industry – are highly reusable in software
development organizations.

Conventional software reuse methods have been concentrated on code
reuse. Some advances have been made in software test reuse by built-in tests
[Wang et al., 1998c/1999b/d]. This section intends to extend the range of
software reuse from code and test to the process. Reuse of established
process systems, rather than redevelopment of processes from scratch within
an organization, is a proven, efficient, and effective approach to process-
based software engineering.

A fundamental approach to software engineering process reuse is to
establish a standard software process reference system at organization level,
and require all software projects within the organization to reuse the
reference processes, tempering complementing with tailorability and
adaptability. A comprehensive process reference model at organizational
level and a tailorable mechanism of the reference model at project level are
key techniques for the establishment and reuse of a process system.

This approach reflects an improved understanding in the software
industry that higher quality software is produced by a well-defined and
stable software engineering process system. The SEPRM process reference
model, which defines a superset of processes and best practices, supports and
provides for a basis for the software engineering process reuse. Empirically
deriving a software engineering process model by tailoring a comprehensive
process model makes software project leaders’ tasks dramatically easier.
Using this approach, a large-scale software project can be well organized
and controlled by a unified, regular, and reusable software engineering
process system within a software development organization.

Chapter 13 Software Process Establishment Methodologies 421

For controlling a process system in a software development
organization, processes should be implemented and practiced top-down from
the organization level to the project level, as shown in Figure 2.2. This is a
fundamental view to successful reuse of a software engineering process
system. An organization’s process reference model plays a central role in
process model reuse because an individual project’s tailored process model
is derived from the reference model.

A process reference model is a generic and comprehensive model. It
contains a superset of processes and reflects the best practices in the
software industry. SEPRM is designed as a generic reusable process system
reference model based on the unified process framework. Adoption and
reuse of a software process reference model, such as SEPRM, as a software
organization’s process reference model at organizational and project levels
are shortcuts to organizing successful software projects in a software
development organization.

13.2.2 PROCESS MODEL TAILORING

Process tailoring, as defined in Chapter 4, is a model customization method
for making a process model suitable for a specific software project by
deleting the unnecessary processes. This means that process tailoring may be
thought of as simply ticking the processes needed in a process reference
model and crossing off all others that are not needed or not prioritized. If
there is a need to append new processes, or to reconfigure the processes, the
techniques are referred to another type of process customization method
known as process adaptation. Process adaptation methods will be discussed
in Section 13.2.4.

At the project level, a process reference model can be tailored according
to factors related to the nature of the project, such as application domain,
scope, complexity, schedule, experience of project team, reuse opportunities
identified, and/or resources availability, and so on.

 Process model tailoring is scenario-oriented. Assuming a software
development organization is relatively mature in organization and technical
processes but lacks of management and quality assurance processes, the
comprehensive SEPRM process framework would be tailored as shown in
Figure 13.2. At the lower levels, processes and BPAs contained in the
selected process categories can also be tailored.

Two derived process models arrived at by process tailoring techniques
for software quality assurance and software project management will be
developed in Sections 13.3 and 13.4.

422 Part IV Software Engineering Process System Establishment

SEPRM.1
Organization Process
Subsystem

SEPRM.2
Development Process
Subsystem

SEPRM.3
Management Process
Subsystem

PC3.4 Contract
and requirement
management

Software Engineering Process Reference Model
SEPRM

PC3.5

Document
management

PC3.6

Human resource
management

PC3.3

Project
management

PC3.2

Project
planning

PC3.1

Software
quality assurance

Figure 13.2 A scenario for tailoring SEPRM for project management

13.2.3 PROCESS MODEL EXTENSION

According to the unified software engineering process framework developed
in Part I, a software process system consists of a process model, an
assessment model, and an improvement model. Further, the assessment
model can be divided into a process capability model and a capability
determination method.

Corresponding to the above process model taxonomy, extension of an
existing process system model can be achieved with many different
emphases as shown in Table 13.1. In practice, extensions of process system
models have mainly been reported on the process domains.

Table 13.1
Extension of a Process System Model

No. Category Aspects Extension

1 Process model New processes at BPA, process, and/or
category levels

2 Assessment model

2.1 Capability model New capability rating scales and process
capability levels

2.2 Capability determination
method

New algorithms or capability mappings

3 Improvement model New process improvement methods or
measures

Chapter 13 Software Process Establishment Methodologies 423

A trend in process system extension is to adopt a technology known as
“plug-ins.” A plug-in is an extended process module that can be easily
plugged into a host process system model. A plug-in process module should
usually have an identical structure and syntax as those of the host process
model.

A paradigm of process extension, PULSE, will be described in the next
chapter. PULSE extends ISO/IEC TR 15504 to covering software and IT
system acquisition processes.

13.2.4 PROCESS MODEL ADAPTATION

Process model adaptation, as described in Section 4.2, is one of the most
demanding or professional techniques in software engineering process
system establishment and improvement. As in the case of process model
tailoring, process model adaptation is also scenario-oriented. Process model
adaptation requires not only good skills and experience, but also deep
understanding of an organization’s and project’s environment.

Process model adaptation may be implemented via one of the following
techniques or by a combination of them:

• Combining multiple processes

• Splitting a process into independent ones

• Changing the BPAs of a process

• Integrating multiple process system models

• Creating new processes for meeting special requirements and/or
purposes

Successful implementation of process model adaptation also requires
quantitative measurement and benchmarks. To achieve this, process
assessment and improvement experiments may be needed for the final
establishment of an adapted process system. A case study on process
improvement via process system adaptation may be referred to in the
discussion in Section 18.3.

424 Part IV Software Engineering Process System Establishment

13.3 A Parallel Process Model for
 Software Quality Assurance

This section develops a minimum process model for software quality
assurance. Seven pairs of concurrent development processes and
management processes are modeled by tailoring the SEPRM process
reference model. This parallel process model provides a minimum and
essential process model for software quality assurance (SQA).

13.3.1 SOFTWARE ENGINEERING MODELS VS.
 SOFTWARE DEVELOPMENT MODELS

Before establishing the parallel process model for software engineering, it is
helpful to discuss the difference between the concepts of software
engineering models and software development models.

Conventional software development models have been mainly oriented
to software technical life cycles such as the Waterfall, Prototyping, Spiral,
V, Incremental, and Evolutionary models. However, software engineering
models are dominated by processes which identify and model the sequential
or concurrent behaviors and interactions between the organization,
development, and management activities in software engineering. Therefore,
a fundamental concept is that the software engineering process models are at
a higher level than those of the software development models as shown in
Figure 13.3.

From another viewpoint, it may be interpreted that software
development models are oriented to programmers while the software
engineering process models are oriented to software corporation and project
managers and software engineers.

The parallel process model (PPM) is a lightweight software engineering
model that provides a minimum and core set of software engineering
processes for software quality assurance. The parallelism implied in the
PPM represents the key idea for process-based software engineering.

Chapter 13 Software Process Establishment Methodologies 425

 Development
(Life cycle -

based)

 Management

 Organization

 (Process - based)

 (Process - based)

Figure 13.3 Software engineering process models vs. software development
life cycle models

13.3.2 STRUCTURE OF THE PPM MODEL

In observing the SEPRM process reference model as shown in Section 9.2.2,
it is noteworthy that the concurrent processes of software development
(Processes 2.2.1 – 2.2.7) and of management (Processes 3.1.1 – 3.1.7) in
a software development organization can be represented in parallel. The
parallel structure reflects that each development process is supported and
controlled by a corresponding management or quality assurance process.
Thus, by tailoring the SEPRM model, a parallel process model (PPM) for
SQA can be derived as shown in Figure 13.4.

The PPM models seven development processes (DP1-DP7) and seven
counterpart SQA processes (MP1 - MP7). The parallel structure of the PPM
ensures each development process is supported and controlled by a
corresponding quality assurance and management process. Seven SQA
processes are deployed with 47 BPAs to control the quality and correctness
of the related development processes and their work products.

The parallelism between the 2 × 7 development and management
processes as shown in Figure 13.4 indicates an important concept of
software quality assurance in the PPM. The PPM is useful for modeling both
technical and managerial aspects of software engineering, and it shows how
regulated and structured activities can be established for SQA.

426 Part IV Software Engineering Process System Establishment

DP.1 (12)
Development
process def.

DP.2 (8)
Requirement
analysis

DP.3 (9)
Design

A Parallel Process Model (PPM) for Software Quality Assurance

DP.4 (8)
Coding

DP.5 (6)
Module
testing

DP.7 (10)
Maintenance

DP.6 (7)
Integration/
system test

MP.1 (17)
SQA
procedure
definition

MP.2 (5)
Requirement
review

MP.3 (4)
Design
review

MP.4 (3)
Code
review

MP.5 (5)
Module
test
review

MP.6 (5)
Integration/
system test
review

MP.7 (8)
Maintenance
audit

 Note: DPi – development process i, MPi – management process i,
 (n) – number of BPAs identified in a process

Figure 13.4 A parallel process model for SQA

13.3.3 IMPLEMENTATION OF THE PPM MODEL

According to the surveys of BPAs toward software engineering process
excellence as described in Chapter 10, the PPM approach is widely adopted
in practice. PPM can be used for maintaining a project’s quality standard,
and for assigning and deploying the roles of SQA engineer(s) in a software
project.

The following subsections contrast the common practices of parallel
development and SQA processes, and show interactions between the parallel
processes. A set of 47 SQA measures in 7 processes are identified and
applied to the 60 software development activities.

13.3.3.1 Parallel Process 1: Development Process Definition vs. SQA
 Process Definition

Table 13.2 contrasts the BPAs in Parallel Process 1 – development process
and SQA process definitions. The BPA numbers shown in the table are the
serial numbers as used in SEPRM and listed in Appendix D (The same
applies to Tables 13.2 through 13.8). The characteristic curves of these
processes have been shown in Figures 10.13 and 10.25.

Chapter 13 Software Process Establishment Methodologies 427

Table 13.2
Structure of the Parallel Process 1

No. BPAs in the Development Process No. BPAs in the QSA Process

105 Evaluate software development
methodologies

197 Define SQA procedure

106 Model software process 198 Define project s/w engineering standards

107 Describe activities and responsibilities 199 Document SQA system

108 Establish task sequences 200 Issue quality manual

109 Identify process relationships 201 Distribute quality policy

110 Document process activities 202 Report SQA results

111 Identify control point of project 203 Assess process quality

112 Maintain consistency across all
processes

204 Take correct actions

113 Develop software according to defined
process

205 Assign independent reviewers

114 Derive project process by tailoring
organization’s standard process

206 Define extent of inspection

115 Approval processes and equipment 207 Conduct SQA for each process

116 Identify special requirements in
developing special system: real-time/
safety-critical/etc

208 Assign qualified person(s) to special process

209 Document quality records

210 Review SQA system suitability

211 Decisional role of SQA in processes

212 Decisional role of SQA in final products

213 Adopt SQA tools

13.3.3.2 Parallel Process 2: Requirement Analysis vs. Requirement
 Review

Table 13.3 contrasts the BPAs in Parallel Process 2 - requirement analysis
and requirement review. The characteristic curves of these processes have
been shown in Figures 10.14 and 10.26.

Table 13.3
Structure of the Parallel Process 2

No. BPAs in the Development Process No. BPAs in the QSA Process

117 Analyze requirement according to
defined process

214 Specification verification

118 Specify formal requirements 215 Formal review requirements

119 Define requirements feasibility/testability 216 Review statutory requirements

120 Prevent ambiguities in specification 217 Customer accepts specifications

428 Part IV Software Engineering Process System Establishment

121 Interpret/clarify requirements 218 Adopt specification verification tools

122 Specify acceptance criteria

123 Allocate requirements for processes

124 Adopt requirements acquisition tools

13.3.3.3 Parallel Process 3: Design vs. Design Review

Table 13.4 contrasts the BPAs in Parallel Process 3 - software design and
design review. The characteristic curves of these processes have been shown
in Figures 10.15 and 10.27.

Table 13.4
Structure of the Parallel Process 3

No. BPAs in the Development Process No. BPAs in the QSA Process
125 Design system according to defined

process
219 Define design review procedure

126 Design software architecture 220 Document design review

127 Design module interfaces 221 Verify prototypes

128 Develop detailed design 222 Measure design review coverage

129 Establish document traceability

130 Specify final design

131 Define design change procedure

132 Adopt architectural design tools

133 Adopt module design tools

13.3.3.4 Parallel Process 4: Coding vs. Code Review

Table 13.5 contrasts the BPAs in Parallel Process 4 - coding and code
review. The characteristic curves of these processes have been shown in
Figures 10.16 and 10.28.

Table 13.5
Structure of the Parallel Process 4

No. BPAs in the Development Process No. BPAs in the QSA Process
134 Code according to defined process 223 Conduct code walk-through

135 Choose proper programming language(s) 224 Conduct code review

136 Develop software modules 225 Measure code review coverage

137 Develop unit verification procedures

138 Verify software modules

139 Document coding standards

140 Define coding styles

141 Adopt coding support/auto-generation
tools

Chapter 13 Software Process Establishment Methodologies 429

13.3.3.5 Parallel Process 5: Module Testing vs. Module Testing Audit

Table 13.6 contrasts the BPAs in Parallel Process 5 - module testing and
module testing audit. The characteristic curves of these processes have been
shown in Figures 10.17 and 10.29.

Table 13.6
Structure of the Parallel Process 5

No. BPAs in the Development Process No. BPAs in the QSA Process

142 Testing according to defined process 226 Measure test coverage

143 Determine test strategy 227 Estimate remaining error distribution

144 Specify test methods 228 Review test results

145 Generate test 229 Static/dynamic module test analysis

146 Conduct testing

147 Adopt module testing tools

13.3.3.6 Parallel Process 6: Integration and System Testing vs.
 System Testing Audit

Table 13.7 contrasts the BPAs in Parallel Process 6 – integration/system
testing and system testing audit. The characteristic curves of these processes
have been shown in Figures 10.18 and 10.30.

Table 13.7
Structure of the Parallel Process 6

No. BPAs in the Development Process No. BPAs in the QSA Process

148 Integration test according to defined
process

230 Identify nonconforming software/functions

149 Acceptance test according to defined
process

231 Define inspection procedure

150 System tests generation 232 Inspection against requirements

151 Test integrated system 233 Document inspection/test results

152 Adopt software integration tools 234 Static/dynamic integration test analysis

153 Adopt module cross-reference tools 235 Static/dynamic acceptance test analysis

154 Adopt system acceptance testing tools

13.3.3.7 Parallel Process 7: Maintenance vs. Maintenance Audit

Table 13.8 contrasts the BPAs in Parallel Process 7 - maintenance and
maintenance audit. The characteristic curves of these processes have been
shown in Figures 10.18 and 10.31.

430 Part IV Software Engineering Process System Establishment

Table 13.8
Structure of the Parallel Process 7

No. BPAs in the Development Process No. BPAs in the QSA Process
155 Determine maintenance requirements 236 Reinspect repaired products

156 Analyze user problems and enhancements 237 Audit nonconformance records

157 Determine modifications for next
upgrade

238 Audit nonconformance treatment

158 Implement/test modifications 239 Audit consistency with specification

159 Update user system 240 Audit consistency of system documents

160 Maintenance consistency with
specifications

241 Audit consistency of system configuration

161 Maintain nonconforming products 242 Audit user satisfaction of maintenance

162 Record nonconformance treatment 243 Review regression testing results

163 Adopt regression testing tools

164 Conduct regression testing

The PPM model described above is a core set of parallel process activities
for SQA as modeled in SEPRM. The PPM also serves as a formalization of
the best practices in the software industry.

13.4 A Software Project Management
 Process Model

When a new software project is initiated, top management will require a
project manager to conduct the project according to a given process
reference model. The project manager may tailor and adapt the specified
reference model of the organization to the specific project. This section
demonstrates a derived software project management process model by using
SEPRM as the reference model.

13.4.1 A DERIVED PROCESS MODEL FOR SOFTWARE
PROJECT MANAGEMENT

As illustrated in Figure 13.2, tailoring SEPRM by focusing on the project
management processes, a software project management process model
(PMPM) can be derived as shown in Figure 13.5. In this case the PMPM

Chapter 13 Software Process Establishment Methodologies 431

consists of 4 project planning processes with 45 BPAs, and 6 project
management processes with 55 BPAs.

13.4.2 PROJECT PLANNING PROCESSES

As shown in Figure 13.5, four processes, such as general project plan,
project estimation, project risk avoidance, and a project quality plan, can be
established in the project planning process category. What follows is a
description of the purposes, characteristic values, and implementation
priorities of these processes in project planning.

13.4.2.1 Project Plan Process

In creating a project plan it may be prudent to think about how such a plan
might be put together. The general project plan process is designed to define
the procedure for establishing a project plan and for specifying its scope.
The process consists of 20 BPAs as shown in Table 13.9 with their
benchmarks. Related characteristic curves of this process were shown in
Figure 10.36.

1.1
Project plan

2.5
Process
review

1.2
Project
estimation

1.3
Project risk
avoidance

1.4
Project quality
plan

2.4
Change
control

1.
Project Planning
Processes

2.
Project Management
Processes

A Derived Process Model for Software Engineering Project Management

2.1
Process
management

2.2
Process
tracking

2.3
Configuration
management

2.6
Intergroup
coordination

Figure 13.5 The PMPM software engineering project management process
model

In Table 13.9, as well as in the following tables in this section, the serial
number and category number are reference numbers of BPAs in SEPRM as

432 Part IV Software Engineering Process System Establishment

shown in Chapter 9 and Appendix D. Naturally, the BPAs of the process can
be tailored for a specific project if required.

Table 13.9
Benchmarks of Project Plan Process

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)
275 3.2.1.1 Assign project proposal team 3.7 100 92.9 92.3 85.7

276 3.2.1.2 Design project process structure 3.9 100 78.6 92.3 72.5

277 3.2.1.3 Determine reuse strategy 3.4 71.4 35.7 84.6 21.6

278 3.2.1.4 Establish project schedule 4.5 100 100 93.3 93.3

279 3.2.1.5 Establish project commitments 4.1 100 92.9 92.9 86.2

280 3.2.1.6 Document project plans 4.1 93.8 93.8 93.3 82.0

281 3.2.1.7 Conduct progress management reviews 3.9 100 92.9 92.3 85.7

282 3.2.1.8 Conduct progress technical reviews 3.6 92.9 76.9 84.6 60.4

283 3.2.1.9 Management commitments in planning 3.9 93.3 71.4 83.3 55.6

284 3.2.1.10 Determine release strategy 3.4 73.3 73.3 84.6 45.5

285 3.2.1.11 Plan change control 3.4 78.6 53.8 91.7 38.8

286 3.2.1.12 Defined plan change procedure 3.1 71.4 53.8 91.7 35.3

287 3.2.1.13 Plan development 4.1 100 100 92.9 92.9

288 3.2.1.14 Plan testing 4.0 92.9 92.3 84.6 72.5

289 3.2.1.15 Plan system integration 3.9 92.9 83.3 100 77.4

290 3.2.1.16 Plan process management 3.6 85.7 91.7 91.7 72.0

291 3.2.1.17 Plan maintenance 3.6 93.3 78.6 85.7 62.9

292 3.2.1.18 Plan review and authorization 3.4 85.7 61.5 83.3 44.0

293 3.2.1.19 Assign development task 3.6 78.6 92.3 92.3 66.9

294 3.2.1.20 Adopt project/process planning tools 2.9 64.3 57.1 84.6 31.1

According to the characteristic values (ϕ) shown in Table 13.9, the
implementation priority in process establishment may be to emphasize
the most significant and useful BPAs, such as BPA278 – Establish
project schedule, and BPA287 – Plan development. Similarly, less interest
can be shown in the least significant and effective BPAs such as BPA277 –
Determine reuse strategy.

Where tables accompany the section is the following text, i.e., 13.4.2.2
to 13.4.3.6. Readers are encouraged to evaluate the values attached to each
BPA and decide which are the key issues in each case.

13.4.2.2 Project Estimation Process

The project estimation process is designed to establish a procedure for
estimating project size, schedule, costs, and resources required. Project
estimation has always been one of the most difficult activities. Experience is

Chapter 13 Software Process Establishment Methodologies 433

an essential criterion but it also helps considerably to have a framework or
template for the process.

This process consists of seven BPAs as shown in Table 13.10 with their
benchmarks. The BPAs of the process can be tailored for a specific project if
required. Related characteristic curves of this process can be referred to in
Figure 10.37.

Table 13.10
Benchmarks of Project Estimation Process

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

295 3.2.2.1 Estimate project costs 3.8 87.5 92.9 84.6 68.8

296 3.2.2.2 Estimate project time 4.4 100 100 92.9 92.9

297 3.2.2.3 Estimate resources requirement 4.5 100 100 73.3 73.3

298 3.2.2.4 Estimate staff requirement 4.3 92.9 100 83.3 77.4

299 3.2.2.5 Estimate software size 3.9 86.7 69.2 81.8 49.1

300 3.2.2.6 Estimate software complexity 3.4 78.6 41.7 90.9 29.8

301 3.2.2.7 Estimate critical resources 3.8 86.7 46.2 91.7 36.7

The values placed on each aspect considered in Table 13.10 demonstrate
that time and staff are key issues in project estimation.

13.4.2.3 Project Risk Avoidance Process

The project risk avoidance process is designed to identify and quantify
risks involved in a software project. This process consists of 11 BPAs as
shown in Table 13.11 with their benchmarks. The BPAs of the process can
be tailored for specific project if required. Related characteristic curves of
this process can be referred to in Figure 10.38.

Table 13.11
Benchmarks of Project Risk Avoidance Process

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

302 3.2.3.1 Identify project risks 3.8 88.2 50.0 86.7 38.2

303 3.2.3.2 Establish risk management scope 3.3 78.6 30.8 66.7 16.1

304 3.2.3.3 Identify unstable specification-related risks 3.3 81.3 43.8 69.2 24.6

305 3.2.3.4 Identify process change-related risks 3.1 73.3 28.6 63.6 13.3

306 3.2.3.5 Identify market-related risks 3.8 93.3 64.3 83.3 50.0

307 3.2.3.6 Analyze and prioritize risks 3.4 73.3 40.0 71.4 21.0

308 3.2.3.7 Develop mitigation strategies 3.1 73.3 40.0 58.3 17.1

309 3.2.3.8 Define risk metrics for probability/impact 2.9 75.0 20.0 61.5 9.2

434 Part IV Software Engineering Process System Establishment

310 3.2.3.9 Implement mitigation strategies 3.1 78.6 28.6 63.6 14.3

311 3.2.3.10 Assess risk mitigation activities 2.9 68.6 33.3 58.3 13.4

312 3.2.3.11 Take corrective actions for identified risks 4.0 93.3 73.3 73.3 50.2

According to the characteristic values (ϕ) shown in Table 13.11, the
implementation priority in process establishment may be put on the most
significant and useful BPAs, such as BPA312 – Take correct actions for
identified risk, and BPA306 – Identify market-related risks. Relatively, the
least significant and useful BPAs in this process are BPA309 – Define risk
metrics for probability/impact.

13.4.2.4 Project Quality Plan Process

The project quality plan process is designed to plan project quality assurance
mechanism, goals, metrics, and measurements. This process consists of
seven BPAs as shown in Table 13.12 with their benchmarks. The BPAs of
the process can be tailored for a specific project if required. Related
characteristic curves of this process can be referred to in Figure 10.39.

Table 13.12
Benchmarks of Project Quality Plan Process

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

313 3.2.4.1 Plan SQA 4.1 94.1 88.2 88.2 73.3

314 3.2.4.2 Establish quality goals 4.2 100 80.0 86.7 69.3

315 3.2.4.3 Define quality quantitative metrics 3.9 88.2 75.0 81.3 53.8

316 3.2.4.4 Identify quality activities 4.1 100 78.6 85.7 67.3

317 3.2.4.5 Track project quality goals 3.8 94.1 76.5 81.3 58.5

318 3.2.4.6 SQA team participate in project
planning

3.6 86.7 57.1 84.6 41.9

319 3.2.4.7 Plan maintenance 3.3 73.3 71.4 85.7 44.9

13.4.3 PROJECT MANAGEMENT PROCESS

As shown in Figure 13.5, six processes, such as process management,
process tracking, configuration management, change control, process
review, and intergroup coordination, can be established in the project
management process category. This subsection describes the purposes,
characteristic values, and implementation priorities of these processes in
project management.

Chapter 13 Software Process Establishment Methodologies 435

13.4.3.1 Process Management

The process management process is designed to establish the collecting,
documentation, and analysis of process data. This process consists of eight
BPAs as shown in Table 13.13 with their benchmarks. The BPAs of the
process can be tailored for a specific project if required. Related
characteristic curves of this process can be referred to in Figure 10.40.

Table 13.13
Benchmarks of Process Management

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

 320 3.3.1.1 Plan quantitative process management 3.6 94.7 37.5 76.9 27.3

321 3.3.1.2 Conduct quantitative process management 3.5 89.5 29.4 64.3 16.9

322 3.3.1.3 Collect data for quantitative analysis 3.5 94.7 43.8 71.4 29.6

323 3.3.1.4 Control defined process quantitatively 3.4 94.1 37.5 64.3 22.7

324 3.3.1.5 Document quantitative analysis results 3.3 78.9 41.2 80.0 26.0

325 3.3.1.6 Benchmark organization’s baseline of
process capability

2.8 57.9 37.5 71.4 15.5

326 3.3.1.7 Manage project by defined process 3.8 94.7 66.7 88.2 55.7

327 3.3.1.8 Adopt project/process management tools 3.2 78.9 47.1 70.6 26.2

13.4.3.2 Process Tracking

The process tracking process is designed to establish project process
monitoring mechanisms such as schedule, quality, costs, and resources. This
process consists of 15 BPAs as shown in Table 13.14 with their benchmarks.
The BPAs of this process can be tailored for a specific project if
required. Related characteristic curves of this process can be referred to in
Figure 10.41.

Table 13.14
Benchmarks of Process Tacking

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

328 3.3.2.1 Track project progress 4.3 100 100 100 100

329 3.3.2.2 Track development schedule 4.2 100 94.1 100 94.1

330 3.3.2.3 Track process quality 3.7 100 72.2 66.7 48.1

331 3.3.2.4 Track software size 2.9 63.2 68.8 86.7 37.6

332 3.3.2.5 Track project cost 3.8 94.4 80.0 93.3 70.5

333 3.3.2.6 Track critical resources and performance 3.3 80.0 70.6 94.1 53.1

436 Part IV Software Engineering Process System Establishment

334 3.3.2.7 Track project risks 3.2 84.2 52.9 68.8 30.7

335 3.3.2.8 Track process productivity 2.9 68.4 37.5 61.5 15.8

336 3.3.2.9 Track system memory utilization 2.4 44.4 31.3 53.3 7.4

337 3.3.2.10 Track system throughput 2.5 55.6 46.7 66.7 17.3

338 3.3.2.11 Track system I/O channel capabilities 2.4 58.8 37.5 60.0 13.2

339 3.3.2.12 Track system networking 2.5 58.8 33.3 66.7 13.1

340 3.3.2.13 Adopt process tracking tools 2.6 55.6 25.0 50.0 6.9

341 3.3.2.14 Document project tracking data 3.1 76.5 60.0 73.3 33.6

342 3.3.2.15 Identify and handle process deviation 3.7 95.2 78.9 83.3 62.7

13.4.3.3 Configuration Management Process

The configuration management process is designed to establish a software
configuration monitoring mechanism such as configuration system
definition, maintenance, and work products identification. This process
consists of eight BPAs as shown in Table 13.15 with their benchmarks. The
BPAs of the process can be tailored for a specific project if required. Related
characteristic curves of this process can be referred to in Figure 10.42.

Table 13.15
Benchmarks of Configuration Management Process

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

343 3.3.3.1 Establish configuration management library 3.8 84.2 77.8 94.4 61.9

344 3.3.3.2 Adopt configuration management tools 3.8 93.3 53.3 84.6 42.1

345 3.3.3.3 Identify product’s configuration 4.2 100 82.4 88.2 72.7

346 3.3.3.4 Maintain configuration item descriptions 3.9 93.3 71.4 78.6 52.4

347 3.3.3.5 Control change requests 4.4 100 88.2 100 88.2

348 3.3.3.6 Release control 4.3 100 81.3 87.5 71.1

349 3.3.3.7 Maintain configuration item history 3.9 94.1 68.8 80.0 51.8

350 3.3.3.8 Report configuration status 3.6 81.3 73.3 86.7 51.6

13.4.3.4 Change Control Process

The change control process is designed to establish a change prediction,
request, and management procedure. This process consists of nine BPAs as
shown in Table 13.16 with their benchmarks. The BPAs of the process can
be tailored for a specific project if required. Related characteristic curves of
this process can be referred to in Figure 10.43.

Chapter 13 Software Process Establishment Methodologies 437

Table 13.16
Benchmarks of Change Control Process

No. Cat.
No.

BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)
351 3.3.4.1 Establish change requests/approval system 4.0 100 76.9 100 76.9

352 3.3.4.2 Control requirement change 4.1 100 71.4 85.7 61.2

353 3.3.4.3 Control design change 3.9 100 71.4 92.9 66.3

354 3.3.4.4 Control code change 3.8 93.3 78.6 92.9 68.1

355 3.3.4.5 Control test data change 3.3 73.3 57.1 84.6 35.5

356 3.3.4.6 Control environment change 3.0 78.6 53.8 81.8 34.6

357 3.3.4.7 Control schedule change 3.6 84.6 66.7 100 56.4

358 3.3.4.8 Control configuration change 3.8 82.4 73.3 86.7 52.3

359 3.3.4.9 Adopt change control tools 2.9 60.0 35.7 76.9 16.5

13.4.3.5 Process Review

The process review process is designed to establish a formal process
monitoring and review procedure with defined checking points and
requirements. This process consists of eight BPAs as shown in Table 13.17
with their benchmarks. The BPAs of the process can be tailored for a
specific project if required. Related characteristic curves of this process can
be referred to in Figure 10.44.

Table 13.17
Benchmarks of Process Review

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)

360 3.3.5.1 Review processes at milestones 3.8 93.8 80.0 84.6 63.5

361 3.3.5.2 Document project review data 3.6 80.0 64.3 69.2 35.6

362 3.3.5.3 Revise project process 3.7 80.0 57.1 85.7 39.2

363 3.3.5.4 Conduct statistical analysis of process 3.1 68.8 42.9 61.5 18.1

364 3.3.5.5 Gather process data 3.2 71.4 61.5 66.7 29.3

365 3.3.5.6 Compare actual/forecast errors 3.5 86.7 57.1 76.9 38.1

366 3.3.5.7 Compare actual/forecast schedule 4.1 100 57.1 92.9 53.1

367 3.3.5.8 Compare actual/forecast resources 4.0 100 46.2 76.9 35.5

13.4.3.6 Intergroup Coordination Process

The intergroup coordination process is designed to establish a cross team
working environment for software development and management. This
process consists of seven BPAs as shown in Table 13.18 with their
benchmarks. The BPAs of the process can be tailored for a specific project if
required. Related characteristic curves of this process can be referred to in
Figure 10.45.

438 Part IV Software Engineering Process System Establishment

Table 13.18
Benchmarks of Intergroup Coordination Process

No. Cat. No. BPAs W
[0 .. 5]

rw

(%)
rp

(%)
re

(%)
ϕ

(%)
368 3.3.6.1 Define interface between project groups 3.7 73.3 66.7 80.0 39.1

369 3.3.6.2 Plan intergroup activities 3.6 87.5 66.7 92.9 54.2

370 3.3.6.3 Identify intergroup critical dependencies 3.8 81.3 53.3 86.7 37.6

371 3.3.6.4 Handle intergroup issues 3.8 88.2 68.8 81.3 49.3

372 3.3.6.5 Technical/management representatives
coordination

3.6 94.1 75.0 93.3 65.9

373 3.3.6.6 Review last process’ output 3.1 75.0 40.0 78.6 23.6

374 3.3.6.7 Conduct intergroup representatives review 3.5 86.7 64.3 85.7 47.8

The project management process model and the parallel SQA process model
may be used together to form a medium-weighted project process model,
which covers the essential technical and managerial processes of software
engineering at project or team levels.

13.5 A Tailored CMM Process Model

When a comprehensive process model is adopted, tailoring of the selected
model to make it more suitable to organizational needs is always needed.
The question is, how is it done?

This section describes a tailored CMM model (T-CMM) by Logos
International and the tailoring methods used. T-CMM is a CMM-derived
process model for small businesses, organizations, and projects. T-CMM
was derived based on the work in Broadman and Johnson (1995/97) and has
been recognized by SEI, the originator of CMM.

13.5.1 MOTIVATION FOR T-CMM

The motivation for a tailored CMM was based on the Logos experience with
nearly 200 small organizations in software process improvement. Logos
discovered that these small organizations and projects were encountering
difficulties applying the CMM to their software process improvement effort
because the CMM largely reflects the practices of large software

Chapter 13 Software Process Establishment Methodologies 439

organizations [Broadman and Johnson, 1994]. As a result, software
organizations that are small or have small projects were experiencing vast
difficulty in implementing process improvement programs based on the
CMM and, thus, had not progressed very far on the software process
maturity scale.

The tailoring, according to Broadman and Johnson (1995/97), has been
focused on improving CMM’s usability on:

• Documentation overload

• Layered management

• Scope of reviews overkill

• Limited resources

• High training costs

• Unrelated practices

13.5.2 METHOD FOR TAILORING CMM

The strategy for the tailoring was to produce a tailored CMM that met the
demands of small organizations while maintaining the intent, structure, and
key process areas (KPAs) of the CMM model as described in Chapter 5.
Thus, only the CMM key practices (KPs) at the bottom level of the process
taxonomy were tailored and adapted for usability.

The main points in tailoring the CMM model were as follows:

• Clarification of existing practices

• Underlining the clear issues

• Introduction of alternative practices

 • Alignment of practices with the structures and resources of small
 organizations and small projects

13.5.3 THE T-CMM PROCESS AND CAPABILITY
 MODELS

Despite the fact that 82% of the CMM KPs were modified in the tailoring
process, the changes that were introduced did not radically change its
structure, especially at the KPA level and above. Therefore, the process

440 Part IV Software Engineering Process System Establishment

taxonomy and structure of the T-CMM are identical to those of CMM as
shown in Section 5.2. Also, the capability model and assessment method are
the same as those of CMM as described in Section 5.3.

13.5.4 RELATIONSHIPS BETWEEN T-CMM AND
 ISO/IEC TR 15504

Mutual mappings between T-CMM and ISO/IEC TR 15504 have been
carried out by Wang et al. (1999g). The conformance analysis of T-CMM
with ISO/IEC TR 15504 was based on the comparison and contrast of their
process and capability models, as well as their rating methods and rating
results. Because of the different process organizations in T-CMM and
ISO/IEC TR 15504, there are one-to-one, one-to-many, and many-to-one
correlations between the two models. It has been found that all T-CMM
KPAs are covered by the ISO/IEC TR 15504 processes, while, in the reverse
sense, not all ISO/IEC TR 15504 processes are matched in T-CMM.

Overall, the compliance relationship between T-CMM and ISO/IEC TR
15504 is summarized below:

• The process models of T-CMM and ISO/IEC TR 15504 are highly
correlative, especially at the KPA/process level. However, they do
represent an exception case which contradicts the ISO/IEC TR
15504 requirement that “every process should can be evaluated in
any capability levels [ISO/IEC 15504-2 1998]” since T-CMM KPAs
are assigned to separate levels.

• The capability models between T-CMM and ISO/IEC TR 15504 are
highly correlative. A minor difference in the capability models is
that ISO/IEC 15504 has nine generic attributes for all processes
while T-CMM has five common features for grouped KPAs.

• The rating method of T-CMM is a subset of ISO/IEC 15504 as
shown in Figure 13.6. In Figure 13.6, the T-CMM capability areas
of the 18 KPAs are marked by dark color. As a subset of the
ISO/IEC TR 15504 capability domain, the T-CMM rating method is
in conformance with ISO/IEC TR 15504.

• The rating results of T-CMM and ISO/IEC TR 15504 have highly
equivalent meaning. The only difference is that ISO/IEC TR 15504
results in a capability profile of a set of processes while the T-CMM
represents a single process capability level for a project or

Chapter 13 Software Process Establishment Methodologies 441

organization. A supplementary method for filling this gap was
developed in Section 8.3.2.4, which provides an aggregated
capability level at organization level from the ISO/IEC TR 15504
process capability profile.

 CL
5
4
3
2
1
0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 KPA/process

Figure 13.6 Domain of capability levels between T-CMM and
ISO/IEC TR 15504

The above analysis provides a perspective on the compliance between
the T-CMM and ISO/IEC TR 15504 models. The general finding is that,
although there are minor and historical differences, T-CMM is over 72%
compliant with ISO/IEC 15504 in process and capability dimensions, and in
their capability rating methods and results [Wang et al., 1999g].

13.6 Summary

Software process system establishment is the first important step in process-
based software engineering. This chapter has developed the methodologies
and approaches to software process establishment. Three derived process
models, the parallel process model for software quality assurance, the
minimum process model for software project management, and T-CMM,
have been explored.

The basic knowledge structure of this chapter is as follows:

442 Part IV Software Engineering Process System Establishment

Chapter 13. Software Process Establishment Methodologies

• General
 − Purposes of this chapter

 − To provide practical guidance on how to establish software
 engineering process systems at organization, project, and
 team levels

 − To develop a set of useful methodologies for software
 process establishment and implementation

 − To demonstrate a parallel process model for software
 quality assurance, which is a lightweight project process
 model tailored from SEPRM

 − To demonstrate a process model for software project
 management, which is a medium-weight project process
 model tailored from SEPRM

 − To demonstrate a case study on how CMM may be
 customized for small software development organizations

 − Process model classification from the viewpoint of model
 scope
 − A complete process model
 − A medium (partially tailored) process model
 − A lightweight (largely tailored) process model

 − Procedure for establishing a process system
 − Step 1: Select and reuse a process system reference model
 at organization level
 − Step 2: Derive a process model at project level
 − Step 3: Apply the derived project process model

 • Process system establishment methodologies
− Process model reuse
− Process model tailoring
− Process model extension

 − Extension of process model
 − Extension of assessment model
 − Extension of improvement model

 − Process model adaptation

Chapter 13 Software Process Establishment Methodologies 443

 – Combine multiple processes
 − Split a process into independent ones
 − Change BPAs of a process
 − Integrate multiple process system models
 − Create new process for special requirements and purposes

• A parallel process model for SQA
− Structure of PPM (Figure 13.4)

− Process-based software engineering models vs. life cycle-based
 software development models

− Process parallelism between the development and SQA
 processes

 − Major SQA techniques
− Review
 − Self-review
 − Peer review
 − Joint review
− Inspection
− Audit
− Testing

• A minimum process model for software project management
− Structure of PMPM (Figure 13.5)

− Project planning processes
− Purposes
− BPA configuration
− BPA benchmarks
− Identify implementation priority in process establishment

− Project management processes
− Purposes
− BPA configuration
− BPA benchmarks
− Identify implementation priority in process establishment

 • A Tailored CMM (T-CMM)
− Motivation for T-CMM

− Methods for tailoring CMM
− Clarification of existing practices

444 Part IV Software Engineering Process System Establishment

− Underlining the clear issues
− Introduction of alternative practices

 − Alignment of practices with structures and resources of
 small organizations and small projects

− Structure of T-CMM
− Process model
 − KPAs unchanged
 − KP configuration: tailored
 − Process capability model: unchanged

− T-CMM vs. ISO/IEC TR 15504
 − Process models

 − Capability models
 − Capability determination methods and algorithms
 − Assessment results

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• In this chapter, systematic software process establishment has been
recognized as the foundation for process assessment and
improvement. A software engineering process system reference
model at organization level has been viewed as the central
infrastructure for process-based software engineering.

• Process establishment technologies provide support and guidelines
for readers to build a process system at organization, project, team,
and individual levels. The process establishment methodologies
enable top management, project managers, and team leaders to
describe their process structure and functional requirements in the
easiest way.

• The scope of process systems establishment has been classified into
three categories: the complete, medium, and lightweight process
system models. Usually, a complete process model is established and
applied in a whole organization as a process system reference
model. A medium or lightweight process model is derived from the
reference model for a specific software project according to its
nature and requirements.

Chapter 13 Software Process Establishment Methodologies 445

• Conventional software reuse methods have been concentrated on
code reuse. Extension of the range of software reuse from code to
the process has been explored in this chapter. Reuse of established
process systems, rather than redevelopment of them from scratch
within a software organization, has been shown an effective and
efficient approach to process-based software engineering.

• A fundamental approach to software engineering process reuse is to
establish a standard software process reference system at
organization level, and require all software projects within the
organization to reuse the reference processes, complementing by
tailorability and adaptability. A comprehensive process reference
model at organizational level and a tailorable mechanism of the
reference model at project level are key techniques for the
establishment and reuse of a software engineering process system.

• At the project level, a process reference model can be tailored
according to the nature of the project by considering the project’s
application domain, scope, complexity, schedule, experience of
project team, reuse opportunities identified, and/or resources
availability, etc.

• According to the unified software engineering process framework
developed in Part I, a process system consists of a process model, an
assessment model, and an improvement model. Further, the
assessment model can be divided into a process capability model
and a capability determination method. Corresponding to the above
process model taxonomy, extension of an existing process system
model can be done in related aspects.

• Process model adaptation is the most professional techniques in
software engineering process system establishment and
improvement. Process adaptation is scenario-oriented. Process
adaptation requires not only good skills and experience, but also
deep understanding of an organization’s and project’s environment.

• The parallelism between the 2 × 7 development and quality
assurance processes shows an important concept of software quality
assurance in the PPM. The PPM represents a minimum requirement
for establishing regulated and structured activities for SQA.

• Conventional software development models have been oriented only
to the technical aspects of software engineering while the PPM, as a
simple paradigm of the software engineering process models, is

446 Part IV Software Engineering Process System Establishment

oriented to both technical and managerial aspects of large-scale
software development.

• When a new software project is initiated, top management may
require the project manager to conduct the project according to a
tailored SEPRM model. The project management may also adapt a
derived model to a specific project by considering the nature of the
project and any constraints existing.

This chapter has developed four practical methodologies for software
process establishment, such as process model reuse, tailoring, extension, and
adaptation. Applications of the process establishment methodologies have
been demonstrated in deriving and implementing three process models. A
complete process model extension paradigm for enhancing ISO/IEC TR
15504 will be described in Chapter 14.

Annotated References

For generic process establishment and implementation methodologies,
readers may refer to Lehman (1991), Krasner et al. (1992), Feiler and
Humphrey (1993), Kitson (1996), and ISO/IEC TR 15271 (1998), as well as
Proceedings of the International Conference on the Software Process –
ICSP1 (1991) to ICSP5 (1998).

For specific process establishment methodologies, such as process reuse,
tailoring, extension, and adaptation, readers may refer to the SPIRE Project
(1998), Curtis et al. (1988), Wang et al. (1997a/1998a/1999j), Cromer and
Horch (1999), ISO/IEC TR 15504-10 (1999), and Dorling and Wang et al.
(1999a/b).

For other related process paradigms, readers may refer to: ISO/IEC
12207 (1995), Information Technology – Software Life Cycle Processes;
ISO/IEC TR 15271 (1998), Information Technology – Guide for ISO/IEC
12207; and ISO Draft Report 15288 (1999), Information Technology – Life
Cycle Management – System Life Cycle Processes.

The Tailored CMM was developed by LOGOS International and
presented in Broadman and Johnson (1995), as well as Johnson and

Chapter 13 Software Process Establishment Methodologies 447

Broadman (1997). The initiation of this work is based on their findings on
CMM’s usability in the software industry as described in Brodman and
Johnson (1994).

In a collaborated effort, Wang, Dorling, Broadman, and Johnson
(1999g) carried out a case study on conformance analysis between the T-
CMM and ISO/IEC TR 15504. This work is based on the conformance
requirements defined in ISO/IEC TR 15504-2 that cover model purpose,
scope, elements and indicators, mapping, and capability translation.

Questions and Problems

13.1 Why is process system establishment considered an important
precondition of software process assessment and improvement?

13.2 In reviewing the classification of software process system
establishment methodologies, what can you add to this classification?

13.3 Software engineering process reuse, above code, framework, and test
reuse, is considered the highest level reuse in software development.
Explain the concept of process reuse and its impact on software
development.

13.4 Contrasting the process establishment methodologies of tailoring,
extension, and adaptation, explain their usage in software engineering
process system establishment.

13.5 Comparing the life cycle-based software development models and the
process-based software engineering models, explain their differences
and relationships.

13.6 The parallel process model (PPM) for software quality assurance as
provided in Section 13.3 is derived from SEPRM. Explain what
process establishment method is used for deriving the model and the
usage of this model.

448 Part IV Software Engineering Process System Establishment

13.7 The software project management process model (PMPM) as provided
in Section 13.4 is derived from SEPRM. Explain what process
establishment method is used for deriving the model, and the usage of
this model.

13.8 Why do small software organizations and small software projects need
a tailored CMM?

13.9 Explain the steps taken in tailoring the CMM process model.

13.10 What is the relationship between T-CMM and ISO/IEC TR 15504?

449

Chapter 14

AN EXTENSION OF
ISO/IEC TR 15504 MODEL

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

13.
Software Process
Establishment Methodologies

14.1 Introduction 14.5 The PULSE process assessment
14.2 Establishment of the PULSE acquisition process model method
14.3 Extension of the ISO/IEC TR 15504 process dimension 14.6 Summary
14.4 Extension of the ISO/IEC TR 15504 capability dimension Annotated references

14.
An Extension of
ISO/IEC TR 15504 Model

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

450 Part IV Software Engineering Process Establishment

This chapter describes a paradigm of software engineering process system
establishment, PULSE, which is an extended model and methodology of
ISO/IEC TR 15504 for conducting software acquisition process assessments.

The objectives of this chapter are as follows:

• To demonstrate a complete example of process model establishment

• To offer an approach for extending an existing process standard or
model

• To define an approach to develop plug-in process modules for a
main process reference model

• To demonstrate how an organization’s process reference model is
extended or adapted to covering new processes for special needs

14.1 Introduction

In Chapters 4 and 13 the generic methodologies in process establishment,
such as process system reuse, process model tailoring, adaptation, and
extension, were explored. This chapter describes a paradigm of process
establishment – the establishment of the PULSE software acquisition process
model – as a compatible plug-in process module for ISO/IEC TR 15504 in
order to extend its coverage to the software and IT system acquisition
process area.

The main aim of the ISO/IEC 15504 (SPICE) project was to provide an
assessment framework by which an organization may establish and
subsequently improve its process capabilities in the supply, acquisition,
development, operation, evolution, and support of software. A proposed
amendment has been accepted recently by ISO/IEC JTC1/SC7/WG10 which
revises the ISO/IEC TR 15504 model by separating the customer-supplier
process category into independent acquirer and supplier process categories,
and to extend it with an acquisition process model [ISO/IEC
JTC1/SC7/WG10, 1999; Dorling and Wang et al., 1999b]. The PULSE
acquisition process model, which is partially founded by a European
Commission research project through the SPRITE-S2 Program, has been

Chapter 14 An Extension of ISO/IEC 15504 Model 451

adopted for the extension in order to provide a sound foundation for
acquisition process assessment in a broad application area of software and
IT system procurement.

The PULSE methodology features a tool-based process assessment
method, a template-based assessment data collection method, and a
prototype for assessment report generation. Industry trials have shown the
usefulness and impact of the PULSE model and related assessment results
on improving the software and IT system acquisition processes in a wide
range of industry sectors.

The PULSE project seeks to improve the software acquisition processes
of organizations involved in the acquisition of software and IT systems. The
project combines two approaches as shown below:

• By defining and verifying a formal methodology for identifying and
assessing the processes used by such organizations for software and
system acquisition

• By identifying a set of organizational actions that improve the ways
in which acquisitions are managed, and the measurement of the
success of the software and system acquisition team

The PULSE project provides a broad set of processes to assist organizations
in improving the way that they acquire software and IT systems. The PULSE
methodology covers:

• A software and system acquisition process reference model

• A software and system acquisition process assessment model

• A software and system acquisition process assessment method

• A software and system acquisition process assessment tool

The PULSE software and system acquisition process assessment
methodology are designed to comply with the general requirements for an
extended compatible model as defined in ISO/IEC TR 15504-2 (1998), and
for performing 15504-compliant assessments as defined in ISO/IEC TR
15504-3 (1998).

452 Part IV Software Engineering Process System Establishment

14.2 Establishment of the PULSE
Acquisition Process Model

This section describes the PULSE software and system acquisition process
model, including its process reference model, assessment model, and
assessment method. The context and interrelationships of the various
components in the PULSE methodology are illustrated in Figure 14.1.

A c q u is i t io n
A s s e s s m e n t

T o o l

A c q u is i t io n
R e fe r e n c e

M o d e l

A c q u is i t io n
A s s e s s m e n t

M o d e l

A s s e s s o r
T r a in in g
S y lla b u s

C o m p e te n t
A s s e s s o rs

A s s e s s o r
C e r t i f ic a t io n

S c h e m e

A c q u is i t io n
A s s e s s m e n t

M e th o d
A s s e s s m e n t

In p u t
A s s e s s m e n t

O u tp u t

Figure14.1 Structure of the PULSE software and system acquisition
process model

14.2.1 THE PULSE PROCESS REFERENCE MODEL

 The acquisition process reference model of PULSE is developed in order to
form the basis for software and system acquisition process assessment. The
reference model defines, at a high level, the fundamental objectives that are
essential to good software and system acquisition.

The PULSE process reference model is a generic model – this means it
may be applied in a large population of acquisition types from standalone to
total systems, from small to progressive acquisitions, and from new to
enhancements or modifications of existing systems.

Chapter 14 An Extension of ISO/IEC 15504 Model 453

 This reference model is applicable to any organization wishing to
establish and subsequently improve its capabilities in the acquisition of
software products and system. The model does not presume particular
organizational structures, management philosophies, life cycle models,
technologies, or methodologies.

 The architecture of this reference model organizes the processes to help
acquisition departments understand and use them for continuous
improvement of the management of acquisition processes. Used with team
and organizational focus, it offers a sound and principled way to manage,
improve, and increase the capability of an organization to acquire the right
systems the right way.

14.2.2 THE PULSE PROCESS ASSESSMENT MODEL

 For acquisition process assessment, an assessor uses a more detailed PULSE
assessment model compatible with the above reference model, containing a
comprehensive set of indicators of process performance and process
capability, to make judgment about the capability of the processes. This may
be achieved in a particular context of acquisition, permitting judgment of the
comprehensiveness of the acquisition processes and their acquisition
capabilities.

 14.2.3 THE PULSE PROCESS ASSESSMENT METHOD

The PULSE process assessment method describes how an assessment shall
be performed in a step-by-step manner with the support of an assessment
tool. The assessment method is designed to incorporate the phases,
processes, and activities of an assessment, and to regulate the format and
contents of the output produced. As shown in Figure 14.1, the assessment
method plays a central role in a PULSE acquisition process assessment.

 The architecture of the PULSE model is made up of two dimensions:

• The process dimension, which is characterized by process purpose
statements that are the essential measurable objectives of a process

• The process capability dimension, which is characterized by a series
of process attributes, applicable to any process, which represent the

454 Part IV Software Engineering Process System Establishment

measurable characteristics necessary to manage a process and
improve its capability to perform

The following sections describe the PULSE extensions to the process
dimension and capability dimension of ISO/IEC TR 15504. The inter-
relationship between the PULSE and ISO/IEC TR 15504 models will be
addressed.

14.3 Extension of the ISO/IEC TR
15504 Process Dimension

 In the process dimension, PULSE groups 25 processes and 16 subprocesses
into four life cycle process categories according to the types of activity they
address, where a subprocess is a coherent part of a process that defines a set
of independent activities and functions in the theme of a process. A structure
of the PULSE process dimension is described in Table 14.1.

Table 14.1
PULSE Process Structure

Symbol Category Process Subprocess

ACQ Acquisition

ACQ.1 Acquisition needs

ACQ.1.1 Acquisition policy

ACQ.1.2 Acquisition strategy

ACQ.1.3 Benefits analysis

ACQ.2 Requirements definition

ACQ.2.1 Technical requirements

ACQ.2.2 Contract requirements

ACQ.2.3 Financial requirements

ACQ.2.4 Project requirements

ACQ.3 Contract award

ACQ.3.1 Invitation to tender

ACQ.3.2 Tender evaluation

ACQ.3.3 Contract negotiation

ACQ.4 Contract performance

Chapter 14 An Extension of ISO/IEC 15504 Model 455

ACQ.4.1 Supplier monitoring

ACQ.4.2 Acquisition acceptance

ACQ.4.3 Contract closure

SUP Support

SUP.1 Documentation

SUP.2 Configuration management

SUP.3 Quality assurance

SUP.4 Verification

SUP.5 Validation

SUP.6 Joint review

SUP.7 Audit

SUP.8 Problem resolution

MAN Management

MAN.1 Management

MAN.2 Project management

MAN.3 Quality management

MAN.4 Risk management

ORG Organization

ORG.1 Organizational alignment

ORG.2 Improvement

ORG.2.1 Process establishment

ORG.2.2 Process assessment

ORG.2.3 Process improvement

ORG.3 Human resource
management

ORG.4 Infrastructure

ORG.5 Measurement

ORG.6 Reuse

ORG.7 Financial management

ORG.8 Manage supplier
relationships

ORG.9 Manage user relationships

 14.3.1 THE ACQUISITION PROCESS CATEGORY

 The acquisition process category consists of 4 processes and 13 subprocesses
that directly impact the acquirer and is generally driven by the acquirer,
such as the acquisition needs, requirements definition, contract award, and
contract performance processes.

 The acquisition process category expands on the Acquirer-Supplier
basic process CUS.1 and component processes CUS.1.1 through CUS.1.4 in
ISO/IEC TR 15504-2 (1998).

456 Part IV Software Engineering Process System Establishment

14.3.2 THE SUPPORT PROCESS CATEGORY

 The support process category consists of eight processes that may be
employed by any of the other processes (including other supporting
processes) at various points in the acquisition life cycle.

 The support process category is identical to that of ISO/IEC TR 15504 -
2 (1998), with modification of wording to apply to acquisition processes as
necessary.

 14.3.3 THE MANAGEMENT PROCESS CATEGORY

 The management process category consists of processes that contain
practices of a generic nature that may be used by anyone who manages any
type of project or process within an acquisition life cycle.

 The management process category is identical to that of ISO/IEC TR
15504-2 (1998), with necessary modification or rewording to apply to
acquisition processes.

 14.3.4 THE ORGANIZATION PROCESS CATEGORY

The organization process category consists of processes that establish the
business goals of the organization and develop process, product, and
resource assets which, when used by the projects in the organization, will
help the organization achieve its business goals.

 The organization process category extended its counterpart in ISO/IEC
TR 15504-2 with three new processes ORG.7 – financial management,
ORG.8 – manage supplier relationships, and ORG.9 – manage user
relationships, as shown in Table 14.1.

14.3.5 DEFINITION OF THE ACQUISITION
 PROCESSES

 The PULSE process dimension provides a structural view of types of
activities. Each process in the PULSE model is described in terms of a
purpose statement. These statements comprise the unique functional
objectives of the process when instantiated in a particular environment. The
purpose statement includes additional material identifying the outcomes of
successful implementation of the process. Satisfying the purpose of a process
represents the first step in building process capability.

Chapter 14 An Extension of ISO/IEC 15504 Model 457

As mentioned above, the PULSE model provides ISO/IEC TR 15504 a
set of new acquisition processes. A detailed description of the extended
processes is as follows:

14.3.5.1 ACQ.1 – Acquisition Needs Process

 The purpose of the acquisition needs process is to establish the basis for
obtaining a solution that best satisfies the needs expressed by the acquirer.
For the acquirer, a common objective is to minimize the risks, costs, and
efforts in pursuit of the best solutions for acquisition.

 As a result of successful implementation of the process:

• Acquisition needs will be established.

• An acquisition policy will be established.

• An acquisition strategy will be developed providing the basis for
 planning all aspects of the acquisition.

• A cost-benefit analysis will be performed.

 ACQ.1.1 Acquisition policy

 The purpose of the acquisition policy process is to establish the common
high level goals, basis for acquisition needs, and the methods to be deployed
in the conduct of an acquisition.

 As a result of successful implementation of the process:

• The concept or the need to deploy a common acquisition policy will

be established.

• The systematic basis of or preference for technology, process,
methods, vendors, standards, and legally enforceable regulations to
optimize the acquisition will be established.

• The concept or need to ensure adequate resources for managing the
acquisition, including the contractual, technical, financial, and
project management skills of the acquirer will be established.

• The concept or need to define the standards of quality for
deliverables acceptable to the stated and implied needs of the
acquirer will be established.

458 Part IV Software Engineering Process System Establishment

• The concept or need to establish an effective and productive
relationship with the supplier and other affected groups will be
established.

 ACQ.1.2 Acquisition strategy

 The purpose of the acquisition strategy process is to ensure the products to
be acquired will comply with the mission, goals, and objectives of the
business, and to provide the basis for planning all aspects of the acquisition
project. This process involves a combination of business infrastructure
(budgetary, financial investment), acquisition methods (off-the-shelf,
customized), and common policies (acquisition strategies, schedule
determination).

 As a result of successful implementation of the process:

• A planned approach for the acquisition that meets the acquisition
policy and user/acquirer business needs will be developed.

• Specific goals (financial, contract, project, technical) and objectives
for different or alternative approaches will be identified.

• The various ways in which solutions could meet the acquirers needs
and expectations will be identified.

• The business risks, financial, technical, and resource implications
for differing or alternative approaches or solutions will be
identified.

 ACQ.1.3 Benefits analysis

 The purpose of the benefits analysis process is to establish the continuing
relevance and benefit of the acquisition in meeting the evolving and
changing needs of the acquirer’s requirements and business needs.
 As a result of successful implementation of the process:

• The critical success factors for the acquisition will be identified.

• Alignment of benefits of the acquisition to business objectives will
be analyzed.

• Capital and life cycle analysis of benefits deriving from the
investment in the acquisition will be performed.

Chapter 14 An Extension of ISO/IEC 15504 Model 459

14.3.5.2 ACQ.2 – Requirements Definition Process

 The purpose of the requirements definition process is to establish the
requirements of the system to be acquired. Successful implementation will
gather, define, and track current and evolving acquisition needs and
requirements throughout the life of the contract to establish successive
acquisition requirement baselines.

 As a result of successful implementation of the process:

• The different perspectives (e.g., financial, contractual, technical,

project) of acquisition requirements that meet the needs of the
acquirer will be defined.

• The requirements will be revised to remain consistent with
acquisition.

• The requirements and potential solutions will be communicated to
the affected groups.

• New or changed requirements will be incorporated into the
requirements baseline.

 ACQ.2.1 Technical requirements

 The purpose of the technical requirements process is to establish the product
and the technical requirements of the acquisition. This involves the
elicitation of functional and nonfunctional requirements that consider the
deployment life cycle of the products to establish a technical requirement
baseline. Successful elicitation of technical requirements will gather and
define current and evolving acquisition needs.

 As a result of successful implementation of the process:

• The requirements will be defined and developed to match the needs

and expectations of the acquirer.

• The requirements and potential solutions will be communicated to
all affected groups.

• A mechanism will be established to incorporate changed or new
requirements into the established baseline.

• A mechanism for identifying and managing the impact of changing
technology to the technical requirements will be defined.

460 Part IV Software Engineering Process System Establishment

• The requirements will be compliant with the relevant statutory and
regulatory requirements.

• The requirements will include compliance with the relevant
national and international standards.

 ACQ.2.2 Contract requirements

 The purpose of the contract requirements process is to establish the
specification and basis of contractual agreement between the acquirer and a
prospective supplier. Contract requirements will be defined which clearly
specify the awarding aspects – expectations, liabilities, legal, and other
issues, and which comply with national and international laws of contract.

 As a result of successful implementation of the process:

• A contractual approach will be defined which is compliant with

relevant national, international, and regulatory laws, guidance, and
policies.

• An agreement (contractual) terms and conditions will be defined to
describe how the supplier will meet the needs and expectations.

• Acceptance criteria and mechanisms for handling of breaches of the
fulfillment of the contract will be established.

• The rights of the acquirer to assume, modify, or evaluate, directly or
indirectly, Intellectual Property Rights will be established.

• Warranties and service level agreements will be provided for where
applicable.

• Provision for the suppliers to deliver other requirements (e.g.,
quality plan, escrow arrangements, etc.) will be defined.

• Recognized criteria for proprietary, regulatory, and other product
liability issues will be established.

 ACQ.2.3 Financial requirements

 The purpose of the financial requirements process is to specify the
requirements to prepare the infrastructure for an effective financial
management of the acquisition project.

 As a result of successful implementation of the process:

Chapter 14 An Extension of ISO/IEC 15504 Model 461

• Financial management, risks, and costs to the acquirer will be
established.

• Financial terms for costs and payments governing the acquisition
will be defined and recorded.

• Financial aspects of the contract awarding process will be traceable
to the outcome.

• Requests for financing will be used to prepare budgets for project
activities subject to authorized budgetary controls.

• Cost reporting with the supplier will be established against agreed
cost estimation model(s).

• Payments will be managed in accordance with a defined procedure
that interrelates to contract data and achievement from project
management.

 ACQ.2.4 Project requirements

 The purpose of the project requirements process is to specify the
requirements to ensure the acquisition projects are performed with adequate
planning, staffing, directing, organizing, and controlling of project tasks and
activities.

 As a result of successful implementation of the process:

• Consistency between financial, technical, contract, and project

requirements baselines will be established.

• Requirements for the organizational, management, controlling, and
reporting aspects of a project will be defined.

• Requirements for a project’s adequate staffing by a competent team
(e.g., legal, contractual, technical, project competent resources)
with clear responsibilities and goals will be defined.

• The needs for exchanging information between all affected parties
will be established.

• Requirements for the completion and acceptance of interim work
products and release of payments will be established.

• Risks associated with the project life cycle and with suppliers will
be identified.

• Requirements for ownership of interactions and relationships with
suppliers will be defined.

462 Part IV Software Engineering Process System Establishment

 14.3.5.3 ACQ.3 – Contract Award Process

 The purpose of the contract award process is to facilitate the achievement of
a binding contract or agreement between the acquirer and the supplier. The
process includes the qualification and selection of suppliers or evaluation of
products, followed by a period of consultation and negotiation leading to
contract award.

 As a result of successful implementation of the process:

• Tender documentation will be prepared.

• Potential suppliers will be qualified.

• Invitations to tender will be issued.

• Tenders will be evaluated.

• A contract will be negotiated and awarded to a supplier.

 ACQ.3.1 Invitation to tender

 The purpose of the invitation to tender process is to prepare and issue the
necessary documentation for tendering. The documentation will include, but
not be limited to, the contract, project, finance, and technical requirements
to be provided for use in the invitation to tender (ITT)/call for proposals
(CFP).

 As a result of successful implementation of the process:

• Rules will be defined for tender invitation and tender evaluation

which comply with the acquisition policy and strategy.

• The baseline technical and nontechnical requirements will be
established to accompany the ITT.

• The agreement (contractual) terms of reference and conditions for
ITT will be established.

• The financial terms of reference for costs and payments for ITT will
be defined.

• The project terms of reference for ITT will be defined.

• The technical terms of reference for ITT will be defined.

• An ITT will be prepared and issued in accordance with acquisition
policies, and which complies with relevant national, international,
and regulatory laws, requirements, and policies.

Chapter 14 An Extension of ISO/IEC 15504 Model 463

 ACQ.3.2 Tender evaluation

 The purpose of the tender evaluation process is to evaluate tendered
solutions, associated off-the-shelf (OTS) products, and suppliers of tendered
solutions in order to enter into contract negotiations.

 As a result of successful implementation of the process:

• Criteria will be established for qualifying suppliers.

• Supplier capability determination will be performed as necessary.

• Criteria will be established for qualifying OTS products where these
are offered as (part of) a tendered solution.

• OTS products will be evaluated as necessary against a defined plan
to determine the degree of fit with the acquirers needs and
expectations.

• The tendered solutions will be evaluated against the ITT
requirements.

• The supplier(s) of the successful tendered solution(s) will be invited
to enter into contract negotiation.

 ACQ.3.3 Contract negotiation

 The purpose of the contract negotiation process is to negotiate and approve a
contract that clearly and unambiguously specifies the expectations,
responsibilities, work products/deliverables, and liabilities of both the
supplier and the acquirer.

 As a result of successful implementation of the process:

• A contract will be negotiated, reviewed, approved, and awarded to a

supplier.

• Mechanisms for monitoring the capability and performance of the
supplier and for mitigation of identified risks will be reviewed and
considered for inclusion in the contract conditions.

• Tenders will be notified of the result of tender selection.

464 Part IV Software Engineering Process System Establishment

 14.3.5.4 ACQ.4 – Contract Performance Process

 The purpose of the contract performance process is to ensure successful
execution and performance of the contract using efficient and effective
management controls. The process ensures activities performed are in
accordance with contractual obligations. Clearly defined roles and points of
interactions are defined between the acquirer and supplier, and the
relationships between all affected groups are optimized to maximize the
performance of contract fulfillment.

 As a result of successful implementation of this process:

• A structure for exchanging information on progress and risks

between the supplier and acquirer will be defined and executed.

• The performance of the supplier will be monitored throughout the
contract.

• Customer acceptance will be performed.

• Contract closure will be performed.

 ACQ.4.1 Supplier monitoring

 The purpose of the supplier monitoring process is to monitor and facilitate
the integration of the supplier’s activities in the conduct of the acquisition
project in accordance with the relevant requirements and management
approaches.

 As a result of successful implementation of the process:

• Joint activities will be conducted between the acquirer and the

supplier as needed.

• Information and data on progress will be exchanged regularly with
the supplier.

• Performance of the supplier will be monitored against agreed
requirements.

• Problems will be recorded and tracked to resolution.

Chapter 14 An Extension of ISO/IEC 15504 Model 465

 ACQ.4.2 Acquisition acceptance

 The purpose of the acquisition acceptance process is to approve and accept
the constituted product based on the acceptance criteria. The process will
involve a planned and integrated approach that reduces duplication of
activities between supplier and acquirer.

 As a result of successful implementation of the process:

• Validation and/or verification will be performed against a planned
and documented acceptance strategy.

• Acceptance will be performed based on the acquisition strategy and
conducted according to agreed requirements.

• The delivered product will be evaluated against agreed
requirements.

 ACQ.4.3 Contract closure

 The purpose of the acquisition closure process is to ensure comprehensive
information pertaining to the execution and finalization of the project is
collected and coordinated across all affected groups.

 As a result of successful implementation of the process:

• Finalization of payments and scheduling of future payments will be
agreed.

• Securing or return of confidential information provided by the
supplier and acquirer will be confirmed.

• Exchange of acquisition information results among affected groups
will be effected.

• Results of contract, project, technical, and financial aspects of the
project will be assessed against original requirements and/or
objectives.

• The performance of all affected groups will be reviewed.

• Relevant project information will be archived in a manner
accessible for future acquisitions and improvements.

466 Part IV Software Engineering Process System Establishment

14.4 Extension of the ISO/IEC TR
 15504 Capability Dimension

This section describes the PULSE process capability model and its extension
to ISO/IEC TR 15504. New attributes have been introduced to make the
capability dimension suitable for the software and system acquisition
processes.

14.4.1 THE PULSE PROCESS CAPABILITY MODEL

A set of nine attributes has been identified for evaluating each process
activity described in the PULSE process model as shown in Table 14.2. The
attributes focus on important aspects of process performance and the level of
process capability supplemented by a number of evaluation aids.

Table 14.2
The PULSE Process Capability Model

Symbol Attribute Focus Evaluation Aids
Level 0 Incomplete - -
Level 1 Performed

AT1 Performed Is the task performed? • Is the scope of work defined?
• Are identifiable work products associated
 with a task produced?

Level 2 Managed
AT21 Planned and

tracked
Is the task planned and
tracked?

• Are the objectives of the task identified?
• Are key activities and milestones of the task
 defined?
• Are resources and responsibility for
 performing the task assigned?
• Is progress of the task monitored according to
 a defined plan?

AT22 Product
integrity

Are the documents
produced by the task
appropriately managed,
configured, and under
change control?

• Are requirements for the documents (e.g.,
 specifications, plans, code) defined?
• Are dependencies among the documents
 identified?
• Are documents appropriately identified?
• Are configuration and changes to the

Chapter 14 An Extension of ISO/IEC 15504 Model 467

 documents defined and controlled?
• Are the documents verified and adjusted to
 meet the defined requirements?

Level 3 Defined
AT31 Documen-

 ted
Is the task defined and
documented?

• Is a description and requirement for the task
 documented?
• Is the task documented and under
 configuration and change control?
• Is appropriate guidance for execution of the
 task defined?
• Is the task performed in accordance with its
 definition?

AT32 Quality
achieved

Are suitable
validation, verification,
review,
and auditing activities
implemented?

• Are roles and responsibilities of quality
 activities for the task assigned?
• Are quality activities carried out according to
 defined activities within the documented task
 and for any applied quality system?
• Are records maintained to demonstrate
 quality achievement?

Level 4 Established
AT41 Usage Is the usage of the task

proven, accepted, and
stable?

• Does the defined task have proven coverage
 and tailorability?
• Does the defined task have proven
 performance and capability?
• Is the defined task accepted by those who are
 impacted by it?
• Is the defined task stable?

AT42 Skills Is the task performed by
staff with appropriate
skills, competence, and
training?

• Are requisite knowledge, skills, and
 competence identified for responsible staff?
• Is a strategy established towards developing
 competent staff for the task?
• Is the scope and aim of training defined and
 planned?

Level 5 Optimized
AT51 Measured Is the performance and

capability of the task
quantitatively
measured?

• Is efficiency of the task monitored and
 evaluated?
• Is effectiveness of the task quantitatively
 analyzed?
• Are the results of reviews, audits, and
 evaluations analyzed to identify trends and
 root causes of problems?

AT52 Improved Does the task have an
optimum environment
and optimum
operational
satisfaction?

• Is the environment in which the task is
 performed regularly reviewed for potential
 improvements?
• Is the defined task refined with experience?
• Are best practices and new technologies
 regularly evaluated with a view to
 incorporating into the defined task?
• Are potential improvement actions identified,
 prioritized, planned, and implemented?

468 Part IV Software Engineering Process System Establishment

The PULSE process attribute rating scales are defined as shown in
Table 14.3.

Table 14.3
PULSE Attribute Rating Scale

Symbol Description Rating

F Fully achieved 86% to 100%

L Largely achieved 51% to 85%

P Partially achieved 16% to 50%

N Not achieved 0% to 15%

14.4.2 CAPABILITY TRANSFORMATION BETWEEN
 PULSE AND ISO/IEC TR 15504

A mapping between the PULSE capability model and ISO/IEC TR 15504
reference model is described in Table 14.4. This table provides a general
view of the equivalency of capability levels between PULSE and ISO/IEC
TR 15504.

Based on the mutual mappings between PULSE and ISO/IEC TR
15504, the PULSE process capability levels can be transformed into
ISO/IEC TR 15504. A transformation algorithm has been implemented in
the PULSE assessment tool to automatically relate the PULSE process
capability levels onto ISO/IEC TR 15504.

14.5 The PULSE Process Assessment
 Method

This section describes the PULSE process assessment method and usage of
the assessment model and reference model in PULSE assessment. A PULSE
assessment is conducted in a number of phases, each of which contains a
number of assessment processes and activities.

Chapter 14 An Extension of ISO/IEC 15504 Model 469

Table 14.4
Mapping between Capability Levels and Attributes of

PULSE and ISO/IEC TR 15504 Models

PULSE Capability Model Mapping ISO/IEC TR 15504 Reference Model
CL/PA PA PA CL/PA

CL0-
Incomplete

CL0-
Incomplete

CL1-
Performed

CL1-
Performed

PA1.1 Performed Process performance PA1.1

CL2-
Managed

CL2-
Managed

PA2.1 Planned and tracked Performance management PA2.1

PA2.2 Document, configuration,
and change control

 Work product management PA2.2

CL3-
Defined

CL3-
Established

PA3.1 Process definition Process definition PA3.1

PA3.2 Quality achievement Process resource PA3.2

CL4-
Established

CL4-
Predictable

PA4.1 Stability Process measurement PA4.1

PA4.2 Skills, competencies, and
training

Process control PA4.2

CL5-
Optimized

CL5-
Optimizing

PA5.1 Technical infrastructure Process change PA5.1

PA5.2 Efficiency / effectiveness Continuous improvement PA5.2

 Note: Major correlation; Minor correlation.

A structural view of the PULSE assessment method is shown in Table 14.5.
It describes the structure of the assessment method and general approach of
a PULSE assessment.

Table 14.5
Structure of PULSE Assessment Method

Phase Process Action
Assessment
Input

Assessment input definition

Define assessment purpose

Define acquisition requirement

Define assessment scope

470 Part IV Software Engineering Process System Establishment

Assessment
Assessment preparation

Appoint assessment team

Prepare assessment confidentiality
agreement

Plan schedule and resources

Determine assessment reference model,
assessment model, and tool

Map organizational unit processes

Define processes to be assessed and target
capability levels

Develop assessment brief

Data collection, validation, and rating

Derive ratings and capability profile

Strengths and weakness analysis

Improvement opportunities analysis

Assessment
output

Assessment report

A PULSE assessment is carried out using the support of a software tool
[Dorling, Wang, and Steinmann, 1998]. The records of a performed PULSE
assessment consist of filled-in templates and data files produced from an
assessment software tool which contains ratings, evidence, notes, and the
various generated process capability profiles.

14.6 Summary

In this chapter PULSE has been introduced as a paradigm of process model
extension and establishment. PULSE is a plug-in process model for
extending the emerging international standard ISO/IEC 15504 to cover the
software and IT system acquisition processes. A systematic methodology,
including the software acquisition process reference model, assessment
model, assessment method, and assessment tool, has been developed in the
PULSE project.

The relationship between PULSE and ISO/IEC TR 15504 has been
explored. As an extended compatible assessment model for ISO/IEC TR
15504, the PULSE process capability levels have been designed to be
transformable to certain ISO/IEC TR 15504 capability levels. The mapping

Chapter 14 An Extension of ISO/IEC 15504 Model 471

of capabilities and attributes between the two models have been
implemented to enable the PULSE assessment results to be related to those
of the ISO/IEC TR 15504 model.

The basic knowledge structure of this chapter is as follows:

Chapter 14. An Extension of ISO/IEC 15504 Model

• General
 − Purposes of this chapter

 − To demonstrate a complete example of process model
 establishment

 − To offer an approach for extending an existing process
 standard or model

 − To define an approach to develop plug-in process modules
 for a main process reference model

 − To demonstrate how an organization’s process reference
 model is extended or adapted to covering new processes for
 special needs

 • Establishment of the PULSE acquisition process model
− Structure of PULSE process model

− Process reference model (oriented to ISO/IEC TR 15504)
− Assessment model
− Assessment method
− Assessment tool

 − Relationship between PULSE and ISO/IEC TR 15504
− Process dimension
− Capability dimension

 − Approach to extend an existing model/standard
− Compatibility and conformance
− Plug-in process modules
− Transformable capability levels

• Extension of ISO/IEC TR 15504 process dimension
− The acquisition process category

− ACQ.1: Acquisition needs
− ACQ.2: Requirements definition

472 Part IV Software Engineering Process System Establishment

− ACQ.3: Contract award
− ACQ.4: Contract performance

− The organization process category
− ORG.7: Financial management
− ORG.8: Manage supplier relationships
− ORG.9: Manage user relationships

 • Extension of ISO/IEC TR 15504 capability dimension
− Same process capability levels
− Newly defined process attributes

− Defined focuses for each attribute
 − Defined evaluation aids for each attribute
− Capability transformation between PULSE and ISO/IEC TR
 15504 (Table 14.4)

• PULSE process assessment method
− Structure of PULSE assessment method (Table 14.5)
− Assessment input phase

− 1 process
 − 3 activities
− Assessment phase

− 5 processes
 − 7 activities
− Assessment output phase

 − 1 process

Major achievements and issues for further research in this chapter are
highlighted below:

• This chapter has described a paradigm of process establishment of
the PULSE software acquisition process model. PULSE has been
accepted as a compatible plug-in process module for ISO/IEC TR
15504 to extend its coverage to software and IT system acquisition
process areas.

• The PULSE methodology is featured by a tool-based process
assessment method, a template-based assessment data collection
method, and a prototype for assessment report generation. Industry
trials have shown the usefulness and impact of the PULSE model
and related assessment results on improving the software and IT
system acquisition processes in a wide range of industry sectors.

Chapter 14 An Extension of ISO/IEC 15504 Model 473

• Reviewing the experience gained in the extension project and
process models conformance analyses with ISO/IEC TR 15504, the
authors observed that as a software process system assessment
standard, it would be more flexible if the future ISO/IEC 15504
concentrates on an enhanced capability dimension and process
capability determination methodology. While for the process
dimension, the standard would provide only a plug-in mechanism, a
process schema and a set of compliant criteria for adopting different
process modules may be developed by any qualified software
processes providers

This chapter has shown the applications of the generic process establishment
methodologies developed in Chapters 4 and 13 by the development of the
PULSE software and system acquisition process model. The acceptance of
the PULSE model as a formal extension of ISO/IEC TR 15504 has proven
the feasibility of the approach taken in this part.

Annotated References

The extension of ISO/IEC TR 15504 reference model for acquirer processes
based on the PULSE model is formally documented as ISO/IEC TR 15504
Part 10 (ISO/IEC JTC1/SC7/WG10 1999). For further details, see Dorling
and Wang et al. (1999b), or http://www.iese.fhg.de/SPICE/ .

The PULSE document suite includes the following technical reports as
the main part:

• D1.1 – IT acquisition process reference model for process and
process capability, 1998

• D2.1 – IT acquisition process assessment model, 1998

• D3.1 – IT acquisition process assessment method, 1998

• D4.1 – IT acquisition process assessment tool, 1998

• D6.1 – IT acquisition process assessor training curriculum, 1998

• D6.2 – PULSE assessor certification scheme, 1998

474 Part IV Software Engineering Process System Establishment

Questions and Problems

14.1 Explain what the motivation is to extend the ISO/IEC TR 15504
process model.

14.2 What is the structure of the PULSE process paradigm and the
relationships between PULSE and ISO/ITC TR 15504?

14.3 To what extent has PULSE extended the coverage of ISO/IEC TR
15504 process model?

14.4 Compare and explain the similarity and differences between the
capability dimensions of PULSE and ISO/IEC TR 15504.

14.5 Explain what the PULSE process capability determination
methodology is.

14.6 Try to conduct a PULSE process assessment for the ACQ.2 –
requirement definition process which includes four sub-processes of
technical, contract, financial, and project requirements. Report the
process capability levels of these processes in your sample
organization.

475

PART V

SOFTWARE
ENGINEERING
 PROCESS
ASSESSMENT

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

15.
Software Process
Assessment Methodologies

16.
Supporting Tools for
Software Process Assessment

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

476 Part V

Classification of software process assessment methodologies was discussed
in Part I, and theories and algorithms of current process models were
described in Parts II and III. This part explores how the theories and
algorithms of process assessment are applied in real-world process system
assessments on the basis of established process systems as described in
Part IV.

The rationale for conducting a software process assessment may vary.
Some of the main reasons for performing a process assessment may be drawn
from one or many of the following:

• To diagnose process system status and problems

• To find the baseline of a process system in a software development
organization

• To enable process improvement for higher levels

• To evaluate the performance of a newly established process system

• To prove correctness and the satisfactory functioning of newly
updated and implemented processes

• To evaluate the capability of internal project teams

• To look for a process capability certificate or conformance
registration

• To show competence or qualification for contracting a software
project

• To use as a case study in software engineering research

Three practical process assessment methodologies, such as the model-based,
the benchmark-based, and the template-based, will be developed in this part.
These assessment methodologies provide a step-by-step guide to carrying out
a process assessment. They also demonstrate the applications of the unified
software engineering process framework and SEPRM in the software
industry.

The knowledge structure of this part is as follows:

• Chapter 15. Software Process Assessment Methodologies

• Chapter 16. Supporting Tools for Software Process Assessment

Chapter 15 examines existing and new approaches to software process
assessment. This chapter develops two practical assessment methodologies,
the model-based, and the benchmark-based process assessment. The former

Software Engineering Process System Assessment 477

is a goal-oriented and absolute process assessment methodology while the
latter is a new approach to operational and relative process assessment.

Chapter 16 explores a variety of software engineering process assessment
supporting technologies and tools, and describes the implementation and
applications of the generic process assessment methodologies developed in
Chapter 15. A classification of process assessment tools and the basic
requirements for the tools’ implementation are explored. A set of practical
templates has been developed for supporting template-based process
assessment according to the SEPRM process reference model. Applications
of the template-based and software-based assessment tools are demonstrated.

In this part, process assessment is recognized as the basic measure for
process improvement. This part bridges the SEPRM theory and algorithm
developed in Part I and Part II with practical process assessment applications
in the software industry.

This page intentionally left blankThis page intentionally left blank

479

Chapter 15

SOFTWARE PROCESS
ASSESSMENT

METHODOLOGIES

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

15.
Software Process Assessment
Methodologies

15.1 Introduction 15.4 Summary
15.2 Model-based process assessment Annotated references
15.3 Benchmark-based process assessment

16.
Supporting Tools for
Software Process Assessment

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

480 Part V Software Engineering Process Assessment

This chapter derives practical guidelines on how to apply and implement the
software process assessment models, theories, and algorithms developed so
far. A mode-based and a benchmark-based software process assessment
methodology are provided on the basis of the SEPRM reference model.

The objectives of this chapter are as follows:

• To review the scale and practices involved in software process
assessment in the worldwide software industry

• To explore a model-based software process assessment methodology

• To develop a benchmark-based software process assessment
methodology

• To demonstrate how the generic SEPRM process assessment
methodology and benchmarks might be applied in the software
industry

15.1 Introduction

The classification of software process assessment methodologies was
discussed in Part I, and theories and algorithms of current process models
were described in Chapters 5 – 9. This chapter shows how to apply the
theories and algorithms in real-world process assessment by developing two
practical options: the model-based and the benchmark-based process
assessment methodologies.

Before addressing these assessment methodologies, a review of the
worldwide practices on process assessment in the software industry may
reveal an overall picture of software process engineering in the industry.
According to the statistics in the literature of software engineering process
assessment and improvement [SPICE project, 1998; Mobil Europe, 1996;
SEI, 1999; Curtis, 1992; and Zubrow, 1997], the magnitude of scales of
software process assessments in major process models is estimated as shown
in Table 15.1.

In Table 15.1, according to the Mobil Survey report (1995) conducted by
John Symonds, until the end of 1995, up to 127,389 ISO 9000/9001
registrations had been awarded in 99 countries worldwide. There was a

Chapter 15 Software Process Assessment Methodologies 481

sharp increase of 32,163 registrations and 13 new countries during March to
December 1995. One of the highlighted findings is that three-quarters of the
ISO 9000/9001-certified companies are located in Europe, with nearly half
of them in the UK.

Table 15.1
Numbers of Software Process Assessments in Major Process Models

No. Model Magnitude

1 ISO 9000/9001 127K / 42K

2 CMM (including self-assessments) 1K

3 ISO/IEC 15504 (Trials) 0.4K

4 Other (including internal models) 10K

Within the registered organizations, 33.1% of them were ISO 9001 (or
software) oriented. This figure indicates that at least 42,165 software
organizations in the world have passed the ISO 9001 assessment.

The data shown above presents a general view of the popularity of
software process assessment and improvement in the software industry. By
summarizing the large-scale industry practices, and on the basis of the
unified process framework and SEPRM, more practical, coherent, and
integrated software process assessment methodologies can be developed.

The following sections describe a model-based process assessment
methodology with formalized operations, and develop a new methodology
for benchmark-based process assessment.

15.2 Model-Based Process
Assessment

This section explores a generic model-based software engineering process
assessment method based on SEPRM. The SEPRM-based process
assessment method consists of 3 phases and 12 processes. A structural view
of the SEPRM-based process assessment method is shown in Table 15.2,
where the output work product(s) of each process are specified by the related
template(s) as shown in Appendix E.

482 Part V Software Engineering Process System Assessment

Table 15.2
Structure of SEPRM Assessment Method

No. Phase Process Work Product
1 Assessment

Preparation

1.1 Define assessment purpose Template 1

1.2 Define assessment scope Template 2

1.3 Appoint assessment team Template 3

1.4 Prepare assessment confidentiality agreement Template 4

1.5 Plan schedule and resources Template 5

1.6 Map organization’s processes onto the SEPRM reference
model

Template 6

1.7 Specify processes to be assessed and target capability levels Template 6

2 Assessment

2.1 Develop assessment brief Template 7

2.2 Data collection, validation, and rating Template 8

2.3 Derive process ratings and capability profile Template 8

2.4 Strengths and weakness analysis Template 8

3 Assessment
output

3.1 Assessment report Templates 1 – 8

In the following sections, each assessment process shown in Table 15.2 is
described in terms of purpose, input/output work products, the method
employed, and templates used. Additional notes are provided where
relevant.

15.2.1 SEPRM ASSESSMENT PREPARATION PHASE

The assessment preparation phase includes seven processes as shown in
Table 15.2. The processes of this phase are required prior to the assessment
phase, and the output of the assessment preparation phase should be agreed
to by the sponsor and the lead assessor.

15.2.1.1 Define Assessment Purpose

The purpose of this process is to define and describe the initiative,
motivation, expectation, and aims of an SEPRM process assessment.

The method for defining assessment purpose and the input/output work
products are shown in Table 15.3. A sample output of this process may be
referenced in Table 16.3 and Template 1 in Appendix E.

Chapter 15 Software Process Assessment Methodologies 483

Table 15.3
Define Assessment Purpose

Input Method Output

• Initial requirement and
 agreement;

• Identification of sponsor,
 organization, department,
 project, and product;

• Brief description of existing
 processes;

• Brief description of
 assessment motivation and
 aims.

• Specify name of organization to be assessed;

• Specify unit of organization to be assessed;

• Specify project(s) to be assessed;

• Identify sponsor of an assessment;

• Specify aims of assessment;

• Specify assessment classification;

• Describe provisional date for the assessment;

• Specify any special needs for the assessment.

Template 1:
Assessment
purpose

15.2.1.2 Define Assessment Scope

The purpose of this process is to define and describe the scope of the
organizational unit and processes to be assessed, the constraints of the
assessment, required outputs from the assessment, and the assessees and
their roles and specialties.

The method for defining assessment scope and the input/output work
products are shown in Table 15.4. A sample output of this process may be
referenced in Table 16.4 and Template 2 in Appendix E.

Table 15.4
Define Assessment Scope

Input Method Output

• Initial requirement and
 agreement;

• Assessment purpose
 (Template 1);

• Process reference model
 (SEPRM).

• Describe existing processes and/or practices and
 their identities in assessee’s terms and roughly
 classify them into related SEPRM process
 category;

• Specify which processes among the existing
 processes identified above are required to be
 assessed;

• Specify any constraints of the assessment in
 terms of resources, budget, and/or critical
 milestones;

• Describe the expected output of the assessment,
 such as process attribute ratings, process
 capability profile, process strengths and
 weaknesses analysis report, potential process

Template 2:
Assessment
scope

484 Part V Software Engineering Process System Assessment

 improvement opportunities, executive summary
 of assessment results, and/or other
 recommendations;

• Identify assessees and their roles and specialties
 in process.

15.2.1.3 Appoint Assessment Team

The purpose of this process is to define the assessment team and assign
responsibilities for their roles in assessment.

The method for appointing the assessment team and the input/output
work products are shown in Table 15.5. A sample output of this process may
be referenced in Table 16.5 and Template 3 in Appendix E.

Table 15.5
Appoint Assessment Team

Input Method Output

• Assessment
 purpose
 (Template 1);

• Assessment scope
 (Template 2).

• Specify sponsor of the assessment;

• Specify the lead assessor;

• Specify assessor(s) in the team and assign
 responsibilities;

• Specify additional team member(s), e.g.,
 management and technical representatives of the
 organization to be assessed, etc.

Template 3:
Assessment team
and responsibilities

15.2.1.4 Prepare Assessment Confidentiality Agreement

The purpose of this process is to prepare and sign a confidentiality
agreement regarding the assessment to be performed. If an assessment to be
performed is an internal self-assessment, such a confidentiality agreement
may not be necessary.

The method for preparing an assessment confidentiality agreement and
the input/output work products are shown in Table 15.6. A sample output of
this process may be referenced in Table 16.6 and Template 4 in Appendix E.

Table 15.6
Prepare Assessment Confidentiality Agreement

Input Method Output

• Assessment purpose (Template 1);

• Assessment scope (Template 2);

• Assessment team and
 responsibilities (Template 3).

An assessment confidentiality agreement
as based on the outlines in Template 4
will be completed and signed based on the
information of Templates 1 – 3 and the
initial correspondence between the lead
assessor and the sponsor.

Template 4:
Assessment
confidentiality
agreement

Chapter 15 Software Process Assessment Methodologies 485

15.2.1.5 Plan Schedule and Resources

The purpose of this process is to plan a schedule for the assessment and
allocate resources for each phase of assessment.

The method for planning schedule and resources and the input/output
work products are shown in Table 15.7. A sample output of this process may
be referenced in Table 16.7 and Template 5 in Appendix E.

Table 15.7
Plan Schedule and Resources

Input Method Output

• Assessment purpose
 (Template 1);

• Assessment scope (Template 2);

• Assessment team and
 responsibilities (Template 3);

• Assessment confidentiality
 agreement (Template 4).

A plan for the assessment schedule,
responsibilities, and resources will be specified
based on Template 5, which will cover all
assessment phases and processes.

Template 5:
Assessment
schedule
and
resources

15.2.1.6 Map Organization’s Processes onto the SEPRM
 Reference Model

The purpose of this process is to map the processes of the organization to be
assessed onto the processes defined in the SEPRM process reference model.

The method for mapping the on-site processes onto SEPRM and the
input/output work products are shown in Table 15.8. A sample output of this
process may be referenced in Table 16.8 and Template 6 in Appendix E.

Table 15.8
Map Organization’s Processes onto the SEPRM Reference Model

Input Method Output

• Assessment purpose (Template 1);

• Assessment scope (Template 2);

• Assessment team and responsibilities
 (Template 3);

• Assessment confidentiality agreement
 (Template 4);

• Assessment schedule and resources
 (Template 5).

• A detailed mapping between the
 SEPRM processes reference
 model and their correspondence
 to the existing processes in the
 organization as described in
 Template 2 will be determined;

• The mapping of processes will be
 documented in the related
 columns of Template 6.

Template 6:
(Part 1)
Processes to be
assessed and
target capability
levels

486 Part V Software Engineering Process System Assessment

15.2.1.7 Specify Processes to be Assessed and Target Capability Levels

The purpose of this process is to select the processes to be assessed, and to
define the target capability levels that the organization expects.

The method for specifying processes to be assessed and their target
capability levels and related input/output work products are shown in Table
15.9. A sample output of this process may be referenced in Table 16.8 and
Template 6 in Appendix E.

Table 15.9
Specify Process to be Assessed and Target Capability Levels

Input Method Output

• Assessment purpose
 (Template 1);

• Assessment scope
 (Template 2);

• Assessment team and
 responsibilities
 (Template 3);

• Assessment confidentiality
 agreement (Template 4);

• Assessment schedule and
 resources (Template 5);

• Mapped processes (Part 1
 of Template 6).

• All or part of the SEPRM processes suitable for
 the organization to be assessed will be selected
 for an assessment;

• The expectation of target process capability
 levels for each process selected for assessment
 will be defined in consultation with the sponsor
 (and the organizational unit to be assessed);

• Complete Template 6 by indicating processes
 selected for assessment and the target process
 capability levels according to the sponsor’s
 expectation.

Template 6:
(Part 2)
Processes to
be assessed
and target
process
capability
levels

15.2.2 SEPRM ASSESSMENT PHASE

The main phase of an SEPRM assessment includes four processes, which
are: development of assessment brief; data collection, validation, and rating;
derivation of process capability profile; and strengths and weaknesses
analysis.

Data required for evaluating the processes within the scope of the
assessment must be collected in a systematic and ordered manner, applying,
at minimum, the following:

• The strategy and techniques for the selection, collection, analysis of
data, and justification of the ratings will be explicitly identified and
must be demonstrable.

• Each process identified in the assessment scope will be assessed on
the basis of objective evidence.

Chapter 15 Software Process Assessment Methodologies 487

• The objective evidence gathered for each process assessed will be
sufficient to meet the assessment purpose and scope.

• Objective evidence that supports the assessors’ judgment of process
ratings will be recorded and maintained to provide the basis for
verification of the ratings.

15.2.2.1 Develop Assessment Brief

The purpose of this process is to develop an assessment brief which
summarizes the tasks, plan, aims, agreements, and approach of the
assessment.

The method for outlining an assessment brief and the input/output work
products are shown in Table 15.10. A sample output of this process may be
referenced in Table 16.9 and Template 7 in Appendix E.

Table 15.10
Develop Assessment Brief

Input Method Output

• Assessment purpose (Template 1);

• Assessment scope (Template 2);

• Assessment team and responsibilities
 (Template 3);

• Assessment confidentiality agreement
 (Template 4);

• Assessment schedule and resources
 (Template 5);

• Processes to be assessed and target
 capability levels (Template 6);

• The SEPRM process reference
 model.

• Specify the items listed in Template
 7 based on the output work
 products as documented in the
 completed Templates 1 – 6;

• A briefing to the organization to be
 assessed will be made, using the
 completed Templates 1 – 7.

Template 7:
Assessment
brief

15.2.2.2 Data Collection, Validation, and Rating

The purpose of this process is to collect and record data to support evidence
of process existence and performance, and to provide validated process
attribute ratings. Raw data that indicate process existence and performance
are investigated and collected for the selected processes as described in
Template 6, and against the process rating scale as defined in SEPRM.

The method for data collection, validation, rating, and the input/output
work products are shown in Table 15.11. The output of this process forms
part of Table 16.10 and Template 8 in Appendix E.

488 Part V Software Engineering Process System Assessment

Table 15.11
Data Collection, Validation, and Rating Process

Input Method Output

• Assessment purpose
 (Template 1);

• Assessment scope
 (Template 2);

• Assessment team
 and responsibilities
 (Template 3);

• Assessment schedule
 and resources
 (Template 5);

• Processes to be
 assessed and target
 capability levels
 (Template 6);

• The SEPRM process
 reference model.

• Each process and practice will be rated according to
 the SEPRM rating scale and algorithm;

• For deciding the rating for a process, related best
 practice and I/O work products will be used as
 indicators to support judgment of rating;

• Assessment rating will be performed by roundtable
 meeting and negotiation of process capability
 between assessors and assessees;

• References to objective evidence and additional
 notes will be recorded;

• Validation of ratings for process is achieved by
 roundtable rechecking between the assessors and
 assessees;

• The lead assessor will be responsible to ensure
 that the validated data sufficiently covers the
 assessment scope.

• Intermediate
 assessment
 records.

15.2.2.3 Derive Process Ratings and Capability Profile

The purpose of this process is to derive process capability levels and profile
according to SEPRM and its algorithm as developed in Chapter 9.

The method for rating processes, deriving process profile, and the
input/output work products are shown in Table 15.12. A sample output of
this process may be referenced in Figures 16.1 – 16.3.

Table 15.12
Derive Process Ratings and Capability Profile

Input Method Output

• Processes to be assessed and
 target capability levels
 (Template 6);

• Additional assessment
 record;

• Validated ratings (The
 intermediate assessment
 records);

• The SEPRM process reference
 model.

• This process will be performed by an
 assessment support tool or manually
 according to the SEPRM algorithm;

• The derived process capability levels and
 profile will be documented in Template 8
 (Part 1);

• A briefing of the assessment results will
 be provided for the assessed organization,
 and feedback from the organization will
 be considered in developing the final
 assessment report.

• Template 8:
 (Part 1)
 Assessed
 process
 capability
 levels;

• Process
 capability
 profile.

Chapter 15 Software Process Assessment Methodologies 489

15.2.2.4 Strengths and Weaknesses Analysis

The purpose of this process is to develop a quantitative report of process
strengths and weaknesses. This is a task of significance for those
organizations for which improvement is a key area.

The method for analyzing strengths and weaknesses definition, and the
input/output work products, are shown in Table 15.13. A sample
output of this process may be referenced in Table 16.10 and Template 8 in
Appendix E.

Table 15.13
Strengths and weaknesses Analysis

Input Method Output

• Processes to be

 assessed and target

 capability levels

 (Template 6);

• Process capability

 profiles as derived in

 Table 15.12;

• The SEPRM process

 reference model.

• Fill in the values of the assessed level (AL) as

 derived by the assessment tool, and the target level

 (TL) as recorded in Template 6;

• Calculate AL-TL for each process/component-

 process;

• The resultant values provide an indicator that an

 assessed process may have relative strength if the

 value is plus or relative weakness if the value

 is minus;

• The degree of strengths and weakness is in

 proportion to the value derived for a process.

Template 8:

(Part 2)

Process
strengths and
weaknesses
analysis.

15.2.3 SEPRM ASSESSMENT OUTPUT PHASE

The assessment output phase is designed to report the results of an
assessment as shown in Table 15.2. There is only one process in this phase –
assessment input. The activities after this process, such as to propose an
action plan for addressing the problems found in the assessment and for
identifying process improvement opportunities, will be discussed in
Chapters 16 and 17.

The purpose of the report process is to provide a formal assessment
report according to the input, output, and analysis of the assessment. The
method for reporting assessment results and the input/output work products
are shown in Table 15.14.

490 Part V Software Engineering Process System Assessment

Table 15.14
Assessment Report

Input Method Output

• Assessment purpose (Template 1);

• Assessment scope (Template 2);

• Assessment team and responsibilities
 (Template 3);

• Assessment confidentiality agreement
 (Template 4);

• Assessment schedule and resources
 (Template 5);

• Processes to be assessed and target
 capability levels (Template 6);

• Assessment brief (Template 7);

• Process strengths and weaknesses
 analysis (Template 8);

• Process capability profile(s);

• The SEPRM process reference model.

• Assembling of completed
 Templates 1 – 8;

• In an executive summary section,
 elicit general findings, analysis, and
 candidate actions from the
 following parts of the report, and
 highlight them with brief
 descriptions;

• In a conclusion section:
- Highlight overall findings from the

 data provided in Templates 1 – 8.
 - Describe strengths and weaknesses
 of assessed processes;
 - Propose any actions for future
 improvement;

• Provide assessment report for
 sponsor review;

• Provide presentation of assessment
 results to the organization assessed.

Assessment
report

The assessment report, particularly the analysis of strengths and weaknesses
of the organization’s process system, will be used in the light of the
organization's needs to process improvement. We will describe the
methodology of assessment-based process improvement in Part VI.

The sponsor of the assessment should report the assessment results to
top management of the organization. The results and succeeding process
improvement activities should also be made known to all departments and
staff to whom they are relevant.

15.3 Benchmark-Based Process
 Assessment

The model-based software process assessment methodology described in the
previous section provides a generic approach to practical software process

Chapter 15 Software Process Assessment Methodologies 491

assessment. This section intends to develop a new approach to benchmark-
based process assessment and to demonstrate its applications.

15.3.1 A NEW APPROACH TO BENCHMARK-BASED
SOFTWARE PROCESS ASSESSMENT

The term software process benchmark was given in Definition 4.6. Software
process benchmarking is one of the important methodologies in software
process engineering. Benchmarking is useful in both process assessment and
improvement.

By contrasting the philosophy and features of benchmark-based process
assessment with those of the model-based assessment, obtainers are given in
Table 15.15.

Table 15.15
Contrast of Philosophy and Features of

Process Assessment Methodologies

Subject Process-based Assessment Benchmark-based Assessment

Philosophy The higher the better The smaller the advantage, the better

Assessment
results

Absolute process capability levels Relative process capability gaps

Target process
capability levels

Set to absolute higher levels Set to marginally higher than benchmarks

Usage Support for virtue aims in
competition

Support for adaptive aims in competition

Advantage Widely practiced and experienced A refined methodology

Drawback Target capability level might
overshoot and not be feasible

Depend on available benchmarks

Obviously, the implementation of a benchmark-based process assessment is
dependent on the availability of established process benchmarks. To enable
this methodology, process benchmarks are required to indicate the current
levels of process capabilities in each of the individual business sectors in the
software industry.

There are a few small-scale process benchmarks, such as the European
process benchmarks developed by IBM [IBM, 1996] and the Swedish
national software engineering process benchmarks [Wang et al., 1999f].
These process benchmarks have been covered for a small set of processes.
The development of the SEPRM benchmarks as described in Chapter 10
provides a superset of 51 software engineering process benchmarks
characterized by process attributes.

492 Part V Software Engineering Process System Assessment

 For instance, the IBM benchmark on software engineering practices in
Europe contains benchmarks for 69 practices in 7 processes as shown in
Figure 15.1. A comparison between the European and the Swedish
benchmarks is also illustrated in Figure 15.1. It is interesting to find that the
Swedish national benchmarks are quite close to the European ones. The
average difference of all processes is only –0.6%. This means that the
software engineering practices in the Swedish software industry have
generally reached the European best practice level.

-6

-4

-2

0

2

4

6

8

10

Bs (Swedish benchmark) Be (European benchmark)
Gr (Relative gaps)

Figure 15.1 Comparison between the European and a national benchmark
of software engineering processes

Magnified gaps between the two benchmarks are shown by the Gr curve. As
shown in Fig.15.1, Gr indicates that, from the perspective of the European
benchmarks, the organization, quality, and measurements practices of the
Swedish software development organizations have exceeded the European
benchmark; however, the process, methods, technology, and planning
practices are below the European benchmarks.

15.3.2 SEPRM BENCHMARKS OF SOFTWARE
 ENGINEERING PROCESSES

A comprehensive set of process benchmarks for the SEPRM software
engineering processes was established in Chapter 10. The SEPRM software
engineering process benchmarks, in the form of process profile translated
from the characteristic curves of 3� are shown in Figures 15.2 –15.4. In
these figures, the capability levels of all 51 processes modeled in SEPRM are

Chapter 15 Software Process Assessment Methodologies 493

benchmarked in the organization, development, and management process
subsystems.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1.1.1 1.1.2 1.2.1 1.2.2 1.3.1 1.3.2 1.3.3 1.3.4

Process

Capability
Level

Figure 15.2 SEPRM capability benchmarks of organization processes

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2.1.1 2.1.2 2.1.3 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.3.1 2.3.2 2.3.3 2.3.4

Process

Capability
Level

 Figure 15.3 SEPRM capability benchmarks of development processes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3.1
.1

3.1
.2

3.1
.3

3.1
.4

3.1
.5

3.1
.6

3.1
.7

3.1
.8

3.1
.9

3.1
.10

3.1
.11 3.2

.1
3.2

.2
3.2

.3
3.2

.4
3.3

.1
3.3

.2
3.3

.3
3.3

.4
3.3

.5
3.3

.6
3.4

.1
3.4

.2
3.4

.3
3.4

.4
3.5

.1
3.5

.2
3.6

.1
3.6

.2

Process

Capability
Level

Figure 15.4 SEPRM capability benchmarks of management processes

494 Part V Software Engineering Process System Assessment

When a specific process system profile is obtained and plotted onto the
SEPRM benchmarked curves, an organization’s process capability can be
assessed against the benchmarks by gap analysis.

15.3.3 BENCHMARK-BASED ASSESSMENT METHOD

A formal procedure for a benchmark-based process assessment may be
carried out in four steps:

• Adopt a benchmarked process model

• Conduct a baseline assessment

• Plot process capability profile onto the benchmarks

• Identify gaps between the process profile and the benchmarks

The following describes how the above procedures are conducted in an
SEPRM benchmark-based assessment.

15.3.3.1 Adopt a Benchmarked Process Model

As described in Chapters 9 and 10, the SEPRM is the only benchmarked
software engineering process assessment model. SEPRM supports both
model-based and benchmark-based software process assessment, and
provides a comprehensive set of processes and best practices in the reference
model. Therefore, in the following subsections, when a benchmark-based
process assessment is mentioned, it implies that SEPRM and its benchmarks
are used in the assessment.

15.3.3.2 Conduct a Baseline Assessment

For conducting a baseline assessment, a process capability profile of the
assessed organization will be derived according to the adopted process
model. The method of this step is similar to those of the Phase 1
(Assessment preparation) and Phase 2 (Assessment) processes of the model-
based assessment as described in Section 15.2, except process 2.4, strengths
and weaknesses analysis, which will be replaced by following subsections.

15.3.3.3 Plot Process Capability Profile onto the Benchmarks

When an organization’s process capability profile is derived, the key
differences between the model-based and benchmark-based assessments are

Chapter 15 Software Process Assessment Methodologies 495

on selection of target capability levels and related analysis methods. Model-
based assessment usually specifies an absolute higher capability level as the
target capability level, while the benchmark-based assessment adopts a set of
relative and dynamic target capability levels, the benchmarks, in analysis.

For instance, an organization’s assessed capability levels of the 14
SEPRM development processes obtained in Subsection 15.3.3.2 can be
plotted against the benchmarks as shown in Figure 15.5. With the support of
the benchmarked curve, analysis of the assessment results is simplified as
for gap identification.

0

1

2

3

4

5

2.1.1 2.1.2 2.1.3 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.3.1 2.3.2 2.3.3 2.3.4

Process

Capability
Level

B P

 B – Benchmark curve; P – Assessed process capability curve

 Figure 15.5 Plotted process capability profile against SEPRM benchmarks

The organization and management processes modeled in SEPRM can be
plotted in the same way, by using the benchmarks provided in Figures 15.2
and 15.4, respectively.

15.3.3.4 Identify Gaps between a Process Profile and the Benchmarks

The gaps between a plotted process profile (P) and the benchmarks (B) can
be analyzed based on Figure 15.5. Using the above figure, magnified gaps
(G) between the current process capability levels and the benchmarks can be
derived as shown in Figure 15.6. Figure 15.6 indicates that the larger the
gaps below the average, the weaker the process capability shows.

An integrated process assessment approach based on both model and
benchmark can be adopted to use the advantages of both methods to their
maximum. The development of SEPRM has enabled the integrated process
assessment methodology as a combination of both approaches described in
Sections 15.2 and 15.3.

496 Part V Software Engineering Process System Assessment

-15

-10

-5

0

5

10

15

2.1.1 2.1.2 2.1.3 2.2.1 2.2.2 2.2.3 2,2,4 2.2.5 2.2.6 2.2.7 2.3.1 2.3.2 2.3.3 2.3.4

B (Benchmark) P (Profile) G (Gaps)

Figure 15.6 Capability gap analysis in a benchmark-based assessment

15.4 Summary

This chapter has developed two types of practical software process
assessment methodologies: the model-based and the benchmark-based
process assessment. These methodologies have provided step-by-step
guidance to software process assessment, and have shown how to apply and
implement the methodologies and theories developed in the unified software
engineering process framework and SEPRM in the software industry.

The basic knowledge structure of this chapter is as follows:

Chapter 15. Software Process Assessment Methodologies

• General
 − Purpose(s) of this chapter

 − To review the scale and practices involved in software
 process assessment in the worldwide software industry

 − To explore a model-based software process assessment
 methodology

Chapter 15 Software Process Assessment Methodologies 497

 − To develop a benchmark-based software process
 assessment methodology

 − To demonstrate how the generic SEPRM process
 assessment methodology and benchmarks might be applied
 in the software industry

 − Review of process assessment practices and scale in the
 software industry

 • Model-based process assessment methodology
− The input-method-output (IMO) pattern for defining software
 process assessment method

− Procedure
 − Assessment preparation phase
 − Define assessment purpose
 − Define assessment scope
 − Appoint assessment team
 − Prepare assessment confidentiality agreement
 − Plan schedule and resources
 − Map organization’s processes onto the SEPRM
 reference model
 − Specify processes to be assessed and target capability
 levels

 − Assessment phase
 − Develop assessment brief
 − Data collection, validation, and rating
 − Derive process ratings and capability profile
 − Strengths and weakness analysis

 − Assessment output phase
 − Assessment report

− Related input of each process
− Related output templates of each process

• Benchmark-based process assessment methodology
− The SEPRM process capability benchmarks

− Benchmark-based assessment method
− Adopt a benchmarked process model

498 Part V Software Engineering Process System Assessment

− Conduct a baseline assessment
− Plot process profile onto the benchmark
− Identify gaps between the process profile and the
 benchmarks

− Contrast benchmark-based assessment with that of
 model-based

− Philosophies
− Assessment results
− Target process capability levels
− Usage
− Advantages and drawbacks

 • An integrated model- and benchmark-based process assessment
− Use common assessment steps
− Apply different methods for analyzing a resulted process profile

− Absolute capability level analysis
− Benchmark-oriented analysis

Major achievements and issues suggested by this chapter for further research
are highlighted below:

• This chapter has provided a worldwide perception of software
process assessment in the software industry.

• Two generic and practical process assessment methodologies, the
model-based and benchmark-based process assessment
methodologies, have been developed using SEPRM.

• An Input-Method-Output (IMO) pattern for defining software
process assessment has been developed.

• A set of SEPRM software engineering process capability
benchmarks has been provided.

• It has been predicted that more process benchmarks of current
process models are to be expected in the future.

This chapter has explored two practical software process assessment
methodologies based on the SEPRM reference model. Applications of the

Chapter 15 Software Process Assessment Methodologies 499

process assessment methodologies with supporting tools will be
demonstrated in Chapter 16. Corresponding to the model-based and
benchmark-based assessment methodologies, related process improvement
methodologies will be developed in Part VI of this book.

Annotated References

This chapter has presented a set of generic software process assessment
methodologies based on SEPRM and the latest developments in this area.

For CMM-specific assessment methods, see Paulk et al. (1993a/c/1995a)
and Chapter 5 of this book.

For ISO/IEC TR 15504-specific assessment methods, see ISO/IEC TR
15504-3 (1998), Dorling (1993), Rout (1995), Kitson (1996), and Chapter 8
of this book.

For BOOTSTRAP-specific assessment methods, see Koch (1993), Haase
et al. (1994), Kuvaja et al. (1994), BOOTSTRAP team (1993), and Chapter
7 of this book.

For background information of development of the SEPRM software
engineering process benchmark, see Wang et al. (1996a/98a/99e).
 There is a European software practice benchmark developed and
maintained by IBM (1986). A Swedish national software engineering
process benchmark was developed during 1997 – 1998 and reported by
Wang et al. (1999f). A SPICE benchmark database was under development
during SPICE Trials Phase III. For further details see SPICE Project (1998).

Questions and Problems

15.1 What are the relationships between the algorithmic, formal
methodology developed in Chapter 9 and the practical methodologies
developed in Section 15.2?

500 Part V Software Engineering Process System Assessment

15.2 Taking your own organization or project as an example, try to
conduct a model-based process assessment according to SEPRM and
the methodology presented in Section 15.2.

15.3 Taking your own organization or project as an example, try to
conduct a benchmark-based process assessment according to SEPRM
and the methodology presented in Section 15.3.

15.4 A process assessment report can be developed by assembling all the
templates provided in Section 15.2, and by providing additional
analysis and comments. Draft an assessment report using the results
you would have produced in Ex. 15.2.

15.5 Compare the efforts spent in developing the assessment reports in
Ex.15.4 and Ex.9.15, and explain the practical advantages of the
template-based process assessment approach developed in Section
15.2.

15.6 Using the results of a benchmark-based process assessment as
produced in Ex.15.3, try to draft an assessment report for addressing
the process strengths and weaknesses that you have assessed.

15.7 An integrated approach to process assessment can be developed by
using both the model-based and benchmark-based methodologies
presented in this chapter. Consider how you may incorporate the
advantages of the model-based and benchmark-based assessment
methods into an integrated process assessment.

15.8 By comparing the model-based and benchmark-based assessment
methodologies, explain which method can help you understand a
software process system and provide you more ideas for improving it.

501

Chapter 16

SUPPORTING TOOLS FOR
SOFTWARE PROCESS

ASSESSMENT

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

15.
Software Process Assessment
Methodologies

16.1 Introduction 16.4 Summary
16.2 Template-supported process assessment Annotated references
16.3 Tool-supported process assessment

16.
Supporting Tools for
Software Process Assessment

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

502 Part V Software Engineering Process System Assessment

This chapter describes software engineering process assessment supporting
technologies and tools. A classification of process assessment tools and the
basic requirements for tools’ implementation are explored. A set of practical
process assessment templates is developed based on the SEPRM reference
model.

The objectives of this chapter are as follows:

• To review software process assessment supporting technologies and
tools

• To demonstrate how the generic assessment methodologies
described in Chapter 15 are implemented and supported by
assessment tools

• To develop a template-supported software process assessment
method based on the SEPRM reference model

• To explore a tool-supported software process assessment method
and the basic requirements for assessment tools

• To provide an insight into the practical methods used by assessors
enabling those being assessed or those seeking to implement self-
assessment to understand and reproduce a process assessment

16.1 Introduction

In Chapter 15 a set of practical process assessment methodologies was
developed. This chapter describes a variety of software process assessment
supporting tools, and shows how the assessment methodologies are
implemented and supported.

In recent years, a number of software process assessment tools have
been developed for supporting assessment data collection, storage,
processing, and process capability rating and determination. A classification
of software process assessment tools is shown in Table 16.1.

According to reports from the SPICE Project (1998) and Zubrow (1997),
assessors have mainly used the nonstructured, paper-based tools such as
checklist, questionnaire, and/or spreadsheet in software process assessment.

Chapter 16 Supporting Tools for Software Process Assessment 503

Two types of process assessment support tools have emerged, template-
based paper working tools and integrated software tools.

Table 16.1
Classification of Process Assessment Supporting Tools

Features SupportedCategory Technology
Assessment Capability Determination

Nonstructured
paper-based tool

Checklist ¥

Questionnaire ¥

Spreadsheet ¥

Structured
paper-based tool

Templates ¥

Software tool

Assessment data collection tool ¥

Capability determination tool ¥

Integrated assessment tool ¥ ¥

In addition to the process assessment tools, there are a number of
experimental process simulation and enactment tools or environments.
These tools are designed for automatically executing some of the software
engineering processes in a way analogous with operating systems for
executing software routines and procedures. Research in this area has
attempted to apply CASE and AI technologies to the software engineering
process system. Interested readers may refer to Hansen (1996), Gruhn
(1998), Derniame et al. (1999), and Donzelli and Iazeolla (1999).
Difficulties have been identified as those of human factors and management
roles in the software engineering processes, and these would be among the
fundamental differences between software routines and software engineering
processes.

In the following sections, the template-based and software-tool-based
process assessment methodologies will be explored with emphases on
assessment data collection and process capability determination.

16.2 Template-Supported Process
Assessment

Process assessment templates are a set of structured forms for regulating and
guiding the activities during a software process assessment. Template-

504 Part V Software Engineering Process System Assessment

supported assessment is a practical and easy approach to software process
assessment. A set of SEPRM-based templates as paper-working tools for
supporting software process assessment has been developed as listed in
Table 16.2. This section describes the design and layout of the templates and
samples of completed templates in an assessment. Working templates ready
for use for an SEPRM process assessment are documented in Appendix E.

Table 16.2
A Set of Templates for Process Assessment

No. Template Usage
1 Assessment purpose To define purpose(s) of an assessment

2 Assessment scope To define assessment scope, expected
output, and constraints

3 Assessment team and responsibilities To describe the assessment team, roles,
and responsibilities

4 Assessment confidentiality agreement To outline a format of an assessment
confidentiality agreement

5 Assessment schedule and resources To specify the schedule, milestones,
and resources needed in an assessment

6 Processes to be assessed and target
capability levels

To specify all processes to be assessed
and their expected capability levels

7 Assessment brief To outline a briefing report of an assessment
for the organization and
project to be assessed

8 Assessment results and process strengths
and weaknesses analysis

To analyze status of processes based on the
process profile obtained in an assessment

16.2.1 TEMPLATE 1 – ASSESSMENT PURPOSE

Template 1 is designed to define assessment purpose(s) as shown in Table
16.3. Template 1 is used for recording background information of the
assessed organization and project, aims of assessment, type of assessment
and duration, and special needs, if any. Its application in the context of
assessment can be referenced in Table 15.3.

Table 16.3
Template 1 – Assessment Purpose

 ID#: SEPRM98006 Date: - / - / -

No. Subject Remarks

1 Organization to be assessed Specify name of organization

Organization X

Chapter 16 Supporting Tools for Software Process Assessment 505

2 Department to be assessed Specify unit of organization

IT Department

3 Project(s) to be assessed Specify project name(s)

Embedded software A

4 Sponsor of the assessment Identify sponsor of the assessment

S.S.S.

5 Aims for assessment Specify aims of assessment

5.1 Process establishment

5.2 Process capability assessment ¥

5.3 Process improvement

5.4 Other (to be specified) To trial the SEPRM process model and
methodology

6 Assessment classification Specify type of assessment

6.1 Assessment conformance to a certain
model/standard

¥

6.2 Independent (third-party) assessment ¥

6.3 Second-party assessment

6.4 Self-assessment

6.5 Couched self-assessment

6.6 Other (to be specified)

7 Provisional date for assessment Describe provisional date for the assessment

- / - / -

8 Special need(s) for assessment Specify any special needs for the assessment

Digital OHP

Availability of project manager

16.2.2 TEMPLATE 2 – ASSESSMENT SCOPE

Template 2 is designed to define the assessment scope as shown in Table
16.4. Template 2 is used for recording existing processes in the
organization, processes to be assessed, constraints of assessment, required
assessment output, and description of assessees. Its application in the
context of assessment can be referenced in Table 15.4.

506 Part V Software Engineering Process System Assessment

Table 16.4
Template 2 – Assessment Scope

 ID#: SEPRM98006 Date: - / - / -

No. Subject Remarks

1 Project to be assessed

Embedded software A

2 Processes to be assessed in SEPRM All SEPRM processes are to
be assessed.

2.1 Organization process subsystem

2.1.1 Organization structure process category

2.1.1.1 Organization definition ¥

2.1.1.2 Project organization ¥

2.1.2 Organization process category

2.1.2.1 Organization process definition ¥

2.1.2.2 Organization process improvement ¥

2.1.3 Customer service process category

2.1.3.1 Customer relations ¥

2.1.3.2 Customer support ¥

2.1.3.3 Software/system delivery ¥

2.1.3.4 Service evaluation ¥

2.2 Development process subsystem

2.2.1 Software engineering methodology process category

2.2.1.1 Software engineering modeling ¥

2.2.1.2 Reuse methodologies ¥

2.2.1.3 Technology innovation ¥

2.2.2 Software development process category

2.2.2.1 Development process definition ¥

2.2.2.2 Requirement analysis ¥

2.2.2.3 Design ¥

2.2.2.4 Coding ¥

2.2.2.5 Module testing ¥

2.2.2.6 Integration and system testing ¥

2.2.2.7 Maintenance ¥

2.2.3 Software development environment process category

2.2.3.1 Environment ¥

2.2.3.2 Facilities ¥

2.2.3.3 Development support tools ¥

2.2.3.4 Management support tools ¥

2.3 Management process subsystem

2.3.1 Software quality assurance (SQA) process category

Chapter 16 Supporting Tools for Software Process Assessment 507

2.3.1.1 SQA process definition ¥

2.3.1.2 Requirement review ¥

2.3.1.3 Design review ¥

2.3.1.4 Code review ¥

2.3.1.5 Module testing audit ¥

2.3.1.6 Integration and system testing audit ¥

2.3.1.7 Maintenance audit ¥

2.3.1.8 Audit and inspection ¥

2.3.1.9 Peer review ¥

2.3.1.10 Defect control ¥

2.3.1.11 Subcontractor’s quality control ¥

2.3.2 Project planning process category

2.3.2.1 Project plan ¥

2.3.2.2 Project estimation ¥

2.3.2.3 Project risk avoidance ¥

2.3.2.4 Project quality plan ¥

2.3.3 Project management process category

2.3.3.1 Process management ¥

2.3.3.2 Process tracking ¥

2.3.3.3 Configuration management ¥

2.3.3.4 Change control ¥

2.3.3.5 Process review ¥

2.3.3.6 Intergroup coordination ¥

2.3.4 Contract and requirement management process category

2.3.4.1 Requirement management ¥

2.3.4.2 Contract management ¥

2.3.4.3 Subcontractor management ¥

2.3.4.4 Purchasing management ¥

2.3.5 Document management process category

2.3.5.1 Documentation ¥

2.3.5.2 Process database/library ¥

2.3.6 Human resource management process category

2.3.6.1 Staff selection and allocation ¥

2.3.6.2 Training ¥

3 Constraints of assessment For instance, resources,
budget, and critical
milestones

Resources availability

Time limit for 5 day

Assessment expectation: capability level 3

4 Assessment output requirements Tick and describe additional
output of assessment

508 Part V Software Engineering Process System Assessment

4.1 Project process capability level ¥

4.2 Process capability profile ¥

4.3 Process strengths and weaknesses analysis report ¥

4.4 Potential process improvement opportunities ¥

4.5 Executive summary of assessment results ¥

5 Background factors which may affect performance

At CMM level 2

ISO 9001 registered

16.2.3 TEMPLATE 3 – ASSESSMENT TEAM AND
 RESPONSIBILITIES

Template 3 is designed to define the assessment team and its responsibilities
as shown in Table 16.5. Template 3 is used for specifying the sponsor of the
assessment, assessment team leader, assessors, and others such as unit
management and technical representatives. Its application in the context of
assessment can be referenced in Table 15.5.

Table 16.5
Template 3 – Assessment Team and Responsibilities

 ID#: SEPRM98006 Date: - / - / -

No. Role [Name] Responsibility
1 Sponsor Tick specific assessment supporting responsibilities

for sponsor

S.S.S. - prepare assessment agreement
- select unit representative(s)
- organize assessment supporting activities
- review assessment report
- report to higher management

2 Lead Assessor Assessment team leader

A.A.A. - prepare assessment agreement with sponsor
- select assessor(s) with sponsor
- develop assessment brief
- organize assessment activities
- review assessment report
- present assessment report

3 Assessors Responsibilities

3.1 Assessor 1

B.B.B. - support questions

- note taking

- report writing

Chapter 16 Supporting Tools for Software Process Assessment 509

4 Others

4.1 Project Management Representative

C.C.C. Project leader

D.D.D. Quality assurance engineer

4.2 Project Technical Representative

E.E.E. System analyst

F.F.F. Software engineer

G.G.G. Test engineer

16.2.4 TEMPLATE 4 – ASSESSMENT
 CONFIDENTIALITY AGREEMENT

Template 4 is designed to define the format of an assessment confidentiality
agreement as shown in Table 16.6. Template 4 is used for specifying the
purpose and scope of an assessment, mutual agreement on confidentiality,
parties involved in the assessment, and signatures and date. Its application
in the context of assessment can be referred to Table 15.6.

Table 16.6
Template 4 – Assessment Confidentiality Agreement

Assessment Confidentiality Agreement

ID#: SEPRM98006 Date: - / - / -

1. Scope and purpose of this document

This document has been agreed to provide mutual confidentiality to all
parties involved in the assessment to be conducted at Organization X
during < -/-/- > to < -/-/- >.

2. Parties to the agreement

The parties in this agreement will be Organization X (herein referred to
as “Party A”) and Organization Y (herein referred to as “Party B”).

3. Confidentiality

Throughout the course of the assessment, and all times thereafter, the
parties are hereby bound to observe complete confidentiality as to all

510 Part V Software Engineering Process System Assessment

matters concerning the affairs of each other; and all details relating to the
assessment, now and in the future. None of the parties (including any
associated companies or subsidiaries) will disclose information regarding
the outcome of the assessment or engage in publicity pertaining to the
other party without prior agreement from the other party.

All parties hereby confirm their acceptance.

Signed for and on behalf of Party A Signed for and on behalf of Party B

Signature ……………………… Signature ………...……….…….

Full name S.S.S Full name A.A.A

(print) …………………….…… (print) …………………………..

Position Project manager Position Lead assessor

Address ………………………. Address ………….………..…...

 ………………….……
…………..……………

 ……………………….
………………..………

Date - / - / - Date - / - / -

Place ………………..……… Place …………..……………

This agreement on confidentiality would not be necessary for a self-
assessment or a cross-department internal assessment.

16.2.5 TEMPLATE 5 – ASSESSMENT SCHEDULE AND
 RESOURCES

Template 5 is designed to define the assessment schedule and resources as
shown in Table 16.7. Template 5 is used for specifying the milestones of an
assessment such as subject, responsible person(s), resources, and planned
and completed dates. Its application in the context of assessment can be
referenced in Table 15.7.

Chapter 16 Supporting Tools for Software Process Assessment 511

Table 16.7
Template 5 – Assessment Schedule and Resources

 ID#: SEPRM98006 Date: - / - / -

No. Subject Responsibility Resource Planed
date

Complete
d date

1 Initiation of an
assessment

Lead assessor/sponsor Paperwork

2 Sponsor commitment Sponsor Paperwork

3 Define assessment
purpose

Lead assessor/sponsor Paperwork

4 Define assessment scope Lead assessor/sponsor Paperwork

5 Sponsor approval of
assessment input

Lead assessor/sponsor Paperwork

6 Appoint assessment team Lead assessor/sponsor Qualified
assessors

7 Prepare assessment
confidentiality
agreement

Lead assessor/sponsor Paperwork

8 Plan schedule and
resources

Lead assessor/sponsor Paperwork

9 Determine assessment
reference model,
assessment model, and
tool

Assessors Paperwork

10 Map customer’s
processes to SEPRM
model

Assessors Paperwork

11 Define processes to be
assessed and target
capability levels

Assessors/
Sponsor

Paperwork

12 Develop assessment
brief

Lead assessor PC, MS Word,
and PowerPoint

13 Organizational unit
briefing

Lead assessor/sponsor Assessment brief,
PC, and
PowerPoint

14 Data collection Assessors/
Assessees

PC and SEPRM
tool

15 Data validation Assessors/
Assessees

PC and SEPRM
tool

16 Capability rating and
analysis

Assessors/
Assessees

PC and SEPRM
tool

17 Briefing initial
assessment results

Assessors/
Sponsor/
assessees

PC and SEPRM
tool

18 Process strengths and
 weaknesses analysis

Assessors Paperwork

19 Process improvement
opportunity analysis

Assessors Paperwork

512 Part V Software Engineering Process System Assessment

20 Develop assessment
report

Lead assessor/sponsor PC, MS Word,
and completed
templates

21 Review and presentation
of assessment report

Lead assessor/sponsor/
Assessees

PC, MS Word,
and PowerPoint

22 Action plan for process
improvement

Sponsor/
Competent assessor/
Assessees

Paperwork

23 Other (to be specified)

16.2.6 TEMPLATE 6 – PROCESSES TO BE ASSESSED
 AND TARGET CAPABILITY LEVELS

Template 6 is designed to describe the processes to be assessed as shown in
Table 16.8. Template 6 is used for mapping the existing processes at the
organization onto the standard SEPRM processes, and specifying which
processes will be assessed and what their target (expected) capability levels
are. Its application in the context of assessment can be referenced in Tables
15.8 and 15.9.

Table 16.8
Template 6 – Processes to be Assessed and Target Capability Levels

 ID#: SEPRM98006 Date: - / - / -

No. Process Selection in
Assessment

Target
Capability

Level

Corresponding
Processes
On Site

1 Organization subsystem

1.1 Organization structure category
1.1.1 Organization definition ¥ 3

1.1.2 Project organization ¥ 3

1.2 Organization process category
1.2.1 Organization process definition ¥ 3

1.2.2 Organization process improvement ¥ 3

1.3 Customer service category
1.3.1 Customer relations ¥ 3

1.3.2 Customer support ¥ 3

1.3.3 Software/system delivery ¥ 3

1.3.4 Service evaluation ¥ 3

2 Development

2.1 Software engineering methodology
category

Chapter 16 Supporting Tools for Software Process Assessment 513

2.1.1 Software engineering modeling ¥ 3

2.1.2 Reuse methodologies ¥ 3

2.1.3 Technology innovation ¥ 3

2.2 Software development category
2.2.1 Development process definition ¥ 3

2.2.2 Requirement analysis ¥ 3

2.2.3 Design ¥ 3

2.2.4 Coding ¥ 3

2.2.5 Module testing ¥ 3

2.2.6 Integration and system testing ¥ 3

2.2.7 Maintenance ¥ 3

2.3 Software development environment
category

2.3.1 Environment ¥ 3

2.3.2 Facilities ¥ 3

2.3.3 Development support tools ¥ 3

2.3.4 Management support tools ¥ 3

3 Management

3.1 Software quality assurance category
3.1.1 SQA process definition ¥ 3

3.1.2 Requirement review ¥ 3

3.1.3 Design review ¥ 3

3.1.4 Code review ¥ 3

3.1.5 Module testing audit ¥ 3

3.1.6 Integration and system testing audit ¥ 3

3.1.7 Maintenance audit ¥ 3

3.1.8 Internal audit ¥ 3

3.1.9 Peer review ¥ 3

3.1.10 Defect control ¥ 3

3.1.11 Subcontractor’s quality control ¥ 3

3.2 Project planning category
3.2.1 Project plan ¥ 3

3.2.2 Project estimation ¥ 3

3.2.3 Project risk avoidance ¥ 3

3.2.4 Project quality plan ¥ 3

3.3 Project management category
3.3.1 Process management ¥ 3

3.3.2 Process tracking ¥ 3

3.3.3 Configuration management ¥ 3

3.3.4 Change control ¥ 3

3.3.5 Process review ¥ 3

3.3.6 Intergroup coordination ¥ 3

3.4 Contract and requirement management
category

3.4.1 Requirement management ¥ 3

3.4.2 Contract management ¥ 3

514 Part V Software Engineering Process System Assessment

3.4.3 Subcontractor management ¥ 3

3.4.4 Purchasing management ¥ 3

3.5 Document management category
3.5.1 Documentation ¥ 3

3.5.2 Process database/library ¥ 3

3.6 Human resource management category
3.6.1 Staff selection and allocation ¥ 3

3.6.2 Training ¥ 3

16.2.7 TEMPLATE 7 – ASSESSMENT BRIEF

Template 7 is designed to outline an assessment brief as shown in Table
16.9. It is used for introducing the assessees for the assessment organization
as well as defining the purposes, procedures, and methods of the assessment.
Template 7 specifies what will be addressed in an assessment brief, which
may include all information defined in previous templates as well as the
assessment approach and process models on which the assessment is based.
Table 16.9 is configured as a summary of the previous templates. Its
application in the context of assessment can be referenced in Table 15.9.

Table 16.9
Template 7 – Assessment Brief

 ID#: SEPRM98006 Date: - / - / -

No. Item Remark

1 Organization Refer to Table 16.3

Organization X Template 1

2 Department to be assessed Refer to Table 16. 3

IT Department Template 1

3 Project(s) Refer to Table 16. 3

Embedded software A Template 1

4 Sponsor Refer to Table 16.3

S.S.S Template 1

5 Purpose of assessment Refer to Table 16.3

Independent (third-party) assessment; Template 1

To trial the SEPRM process model and
methodology

Chapter 16 Supporting Tools for Software Process Assessment 515

6 Scope of assessment Refer to Table 16.4

All 51 SEPRM processes Template 2

7 Constraints of assessment Refer to Table 16.4

Resources availability Template 2

Time limit for 5 day

Assessment expectation: capability level 3

8 Assessment team Refer to Table 16. 5

Sponsor: S.S.S. Template 3

Lead assessor: A.A.A.

Assessor: B.B.B.

Management representative: C.C.C., D.D.D.

Technical representative: E.E.E., F.F.F., G.G.G.

9 Resources needed Estimate amount of effort required and
type of resource

Refer to Table 16.7 (Template 5)

10 Key milestones Key milestones No. 1 – 22

Refer to Table 16.7 (Template 5)

11 Summary of process to be assessed and target
capability level(s)

Refer to Table 16.8

All 51 SEPRM processes Template 6

Target capability level: 3.0

12 Assessment approach Describe method and approach
adopted for the assessment

The assessment will be conducted according to the
assessment method defined in Chapter 9.

Refer to SEPRM reference model and
algorithm

The assessment approach includes:

 - Use of SEPRM process reference model

 - Teamwork of assessors, sponsor, and
 assessees

13 Other To be specified by assessors

516 Part V Software Engineering Process System Assessment

16.2.8 TEMPLATE 8 – PROCESS STRENGTHS AND
 WEAKNESSES ANALYSIS

The output of an assessment includes a process capability profile and a
process strengths and weaknesses analysis. A set of process capability
profiles of the organization according to SEPRM is shown in Figures 16.1 –
16.3.

0

1

2

3

4

5

1,1 1,2 2,1 2,2 3,1 3,2 3,3 3,4

 Process
Figure 16.1 Capability profile of organization process subsystem assessed
in SEPRM

0

1

2

3

4

5

1,1 1,2 1,3 2,1 2,2 2,3 2,4 2,5 2,6 2,7 3,1 3,2 3,3 3,4

 Process
Figure 16.2 Capability profile of development process subsystem in SEPRM

0

1

2

3

4

5

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��
2

�
��
�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

 Process
Figure 16.3 Capability profile of management process subsystem in SEPRM

Chapter 16 Supporting Tools for Software Process Assessment 517

Based on the process profiles, and taking into account the specific needs and
objectives of the organization, the overall strengths and weaknesses of the
organization can be identified by using Template 8.

Template 8 is designed to analyze process strengths and weaknesses as
shown in Table 16.10. Template 8 is used for recording the assessed process
levels, target process levels, and strength/weakness indications found in the
assessment. Its application in context of assessment can be referenced in
Table 15.10.

Table 16.10
Template 8 – Process Strengths and Weaknesses Analysis

 ID#: SEPRM98006 Date: - / - / -

No. Process Assessed
Level
[AL]

Targeted
Level
[TL]

Strengths(+)/
Weaknesses (-)

[AL-TL]
1 Organization

1.1 Organization structure category

1.1.1 Organization definition 4.0 3 1.0

1.1.2 Project organization 3.3 3 0.3

1.2 Organization process category

1.2.1 Organization process definition 3.1 3 0.1

1.2.2 Organization process improvement 2.2 3 -0.8

1.3 Customer service category

1.3.1 Customer relations 3.0 3 0

1.3.2 Customer support 3.2 3 0.2

1.3.3 Software and system delivery 4.3 3 1.3

1.3.4 Service evaluation 4.0 3 1.0

2 Development

2.1 Software engineering methodology category

2.1.1 Software engineering modeling 3.1 3 0.1

2.1.2 Reuse methodologies 2.6 3 -0.4

2.1.3 Technology innovation 2.1 3 -0.9

2.2 Software development category

2.2.1 Development process definition 4.5 3 1.5

2.2.2 Requirement analysis 3.4 3 0.4

2.2.3 Design 3.3 3 0.3

2.2.4 Coding 3.4 3 0.4

2.2.5 Module testing 3.3 3 0.3

2.2.6 Integration and system testing 3.1 3 0.1

2.2.7 Maintenance 2.9 3 -0.1

2.3 Software development environment
category

2.3.1 Environment 3.0 3 0

518 Part V Software Engineering Process System Assessment

2.3.2 Facilities 4.2 3 1.2

2.3.3 Development support tools 2.5 3 -0.5

2.3.4 Management support tools 2.2 3 -0.8

3 Management

3.1 Software quality assurance category

3.1.1 SQA process definition 4.1 3 1.1

3.1.2 Requirement review 4.2 3 1.2

3.1.3 Design review 3.0 3 0

3.1.4 Code review 2.7 3 -0.3

3.1.5 Module testing audit 2.5 3 -0.5

3.1.6 Integration and system testing audit 3.7 3 0.7

3.1.7 Maintenance audit 2.0 3 -1.0

3.1.8 Audit and inspection 3.7 3 0.7

3.1.9 Peer review 3.2 3 0.2

3.1.10 Defect control 3.8 3 0.8

3.1.11 Subcontractor’s quality control 4.2 3 1.2

3.2 Project planning category

3.2.1 Project plan 2.3 3 -0.7

3.2.2 Project estimation 3.9 3 0.9

3.2.3 Project risk avoidance 2.4 3 -0.6

3.2.4 Project quality plan 4.1 3 1.1

3.3 Project management category

3.3.1 Process management 2.4 3 -0.6

3.3.2 Process tracking 3.7 3 0.7

3.3.3 Configuration management 4.5 3 1.5

3.3.4 Change control 2.8 3 -0.2

3.3.5 Process review 3.4 3 0.4

3.3.6 Intergroup coordination 2.6 3 -0.4

3.4 Contract and requirement management
category

3.4.1 Requirement management 3.3 3 0.3

3.4.2 Contract management 4.4 3 1.4

3.4.3 Subcontractor management 3.4 3 0.4

3.4.4 Purchasing management 3.4 3 0.4

3.5 Document management category

3.5.1 Documentation 4.0 3 1.0

3.5.2 Process database/library 1.8 3 -1.2

3.6 Human resource management category

3.6.1 Staff selection and allocation 4.5 3 1.5

3.6.2 Training 3.6 3 0.6

Chapter 16 Supporting Tools for Software Process Assessment 519

The assessment results listed in Table 16.10 show clearly the process
strengths and weakness of the organization. The relative strengths of the
organization are highlighted, in descending magnitude, as follows:

• Organization processes
– Software and system delivery
– Organization definition
– Service evaluation

• Development processes
– Development process definition
– Facilities
– Requirement analysis
– Coding

• Management processes
– Configuration management
– Staff selection and allocation
– Contract management
– Requirement review
– Subcontractor’s quality control

The relative weaknesses of the organization are highlighted, in descending
magnitude, as follows:

• Organization processes
– Organization process improvement

• Development processes
– Technology innovation
– Management support tools
– Development support tools
– Reuse methodologies
– Maintenance

• Management processes
– Process database/library
– Maintenance audit
– Project plan
– Project risk avoidance
– Process management
– Module testing audit
– Intergroup coordination
– Code review
– Change control

520 Part V Software Engineering Process System Assessment

The weaknesses identified in the process system as shown above indicate
potential process improvement opportunities. The methodologies for process
improvement will be explored in Part VI with case studies.

16.3 Tool-Supported Process
 Assessment

A number of software tools have been developed in recent years for
supporting process assessment. This section introduces a variety of process
assessment tools and describes their assessment supporting functions.

16.3.1 OVERVIEW OF PROCESS ASSESSMENT TOOLS

In this subsection, we introduce six typical process assessment tools that
provide a wide range of functionality in software process assessment.
Models or methods that the tools have adopted and the usage of the tools are
briefly described. For further details about the tools described in this section,
see the web sites provided in the annotated references.

16.3.1.1 SPICE 1-2-1

SPICE 1-2-1 is an ISO/IEC TR 15504-based software process assessment
tool developed by IVF and HM&S. It supports self-assessment, assessment
data collection and storage, process capability determination, and
assessment results illustration and comparison.

16.3.1.2 PULSE

PULSE is an extended process model of ISO/IEC TR 15504 as described in
Chapter 14. The PULSE assessment tool is developed by the PULSE
Consortium partially supported by the EC SPRITE S2 program. The tool is
designed to support IT system acquisition by defining a formal methodology
for identifying and assessing the acquisition processes, and by identifying a

Chapter 16 Supporting Tools for Software Process Assessment 521

set of organizational actions that improve the ways in which acquisitions are
managed and measurement is made of the success of an IT acquisition
organization.

The PULSE tool consists of two parts: assessment and analysis. The
“assessment” functions cover the assessment aids for all 41 processes
(component processes). Up to nine process attributes are assigned to each of
these processes, to which the user can assign a score from 0 to 100%,
respectively, or use a scale of N (not achieved), P (partially achieved), L
(largely achieved) or F (fully achieved). Then, process capability levels and
a visual process profile can be generated by the tool.

The “analysis” functions provide users with a number of charts for
illustrating assessment results based on various criteria and the chosen form
of display. This allows immediate, quantitative statements to be made
concerning the strengths and weaknesses of whole organizations.

16.3.1.3 BootCheck

BootCheck is a BOOTSTRAP-based software process assessment tool
developed by the BOOTSTRAP Institute and the European Software
Institute. BootCheck supports assessment data collection, process capability
determination, and assessment report generation. Its data collection adopts a
questionnaire-driven approach.

Using BootCheck, a process assessment is conducted in the following
four steps:

• Assessment preparation

• Evaluate processes and base practices

• Derive process profile

• Generate assessment report

The assessment results by BootCheck can be used to support a
BOOTSTRAP-based process improvement program, particularly, for
baselining an organization’s process status, for seeking ISO 9001
registration, and for stepwise process improvement.

16.3.1.4 The SEAL Process Assessment Tool

The SEAL Process Assessment Tool was developed by the Software
Engineering Applications Laboratory at University of the Witwatersrand,

522 Part V Software Engineering Process System Assessment

South Africa, during 1995 to 1996. The SEAL tool supports ISO/IEC TR
15504-based assessment. It provides functions such as assessment data
collection, process capability determination, ISO 9001 mapping, and process
improvement assistant.

16.3.1.5 S:PRIME

S:PRIME is a CMM-based software process assessment tool developed by
the Applied Software Engineering Center in Montreal, Canada. It can be
used to identify and prioritize process improvement by providing risk
mitigation and an action plan.

Based on a taxonomy-oriented risk identification method and CMM, the
S:PRIME method is designed to meet the process metrology needs of small-
and medium-size projects and organizations in software development and
maintenance. A set of seven risk categories can be diagnosed by S:PRIME as
follows:

• Contractual requirements

• Design and production

• Development environment

• Development processes

• Management

• Personnel

• External constraints

The S:PRIME tool uses two complementary questionnaires adapted to the
context of a project or an organization to identify process-related risks and
potential areas. Based on the identified risks, a remedial action plan can be
produced by the tool.

16.3.1.6 Japanese Process Assessment Support Tools

A Process Assessment Support System and Modeling Framework was
developed by Osaka University and the Nara Institute of Science and
Technology in Japan [Matsushita et al., 1999]. It is a hypertext-supported
SPICE software process assessment tool.

Omto et al. (1995) reported another process assessment tool known as
the Software Process Assessment Support System (SPATS). It is a generic
Windows-based software process assessment tool.

Chapter 16 Supporting Tools for Software Process Assessment 523

The development of software process assessment tools is a new and highly
desirable potential area in software process assessment and improvement.
More reports covering comparative evaluation and industry application
experiences of using the existing and emerging assessment tools are
expected.

16.3.2 FUNCTIONS OF TOOLS FOR SUPPORTING
ASSESSMENT

A number of basic assessment support facilities, such as process
explanation, assessment focus, evaluation aids, rating scale, and a notepad
for recording evidence and findings, are provided to support the model-
based assessment activities described in Chapter 15. This section describes
the functions of tools in both the process and capability dimensions.

16.3.2.1 Process Dimension

For an example of the process dimension of the assessment tools, we look at
the SPICE 1-2-1 process screenshot as shown in Figure 16.4. Assume we are
assessing the ISO/IEC TR 15504 process ENG.1.3 – software design
process. The process definition is displayed in the right-hand side tab, with
the purpose of the process and the focus of the process for assessment.
Additional assessment aids and what evidences the assessors need to look
for may also be implemented in a pop-up menu.

16.3.2.2 Process Capability Dimension

A screenshot of the SPICE 1-2-1 capability dimension is shown in Figure
16.5. Rating scales for scoring the nine process attributes defined in
ISO/IEC TR 15504 is shown on the left-hand side on the screen. The
process attributes are explained in the right-hand side tabs, indicating
required practices for achieving a process attribute that it is currently rating.

524 Part V Software Engineering Process System Assessment

Figure 16.4 The process dimension facilities of an assessment tool

Figure 16.5 The capability dimension facilities of an assessment tool

Chapter 16 Supporting Tools for Software Process Assessment 525

Using the scales, a process can be rated against each of the attributes by
“Fully/Largely/Partially/Not achieved” or by a continued “0 – 100%” rating.
During an assessment, the assessor can shift freely between the process
dimension and the capability dimension in looking for the definition of a
process and its focuses, and/or in considering the requirements and rating
for a specific process attribute.

When all processes selected have been assessed, a process capability
profile can be produced, and an assessment report for the assessment can be
generated which includes illustrations of the assessment results and analysis
of the process profile of the assessed organization.

The supporting functions of other model-based process assessment tools
would be similar to those of the above example, while the implementation
technology and platform that the tool is based on can be variable.

16.3.3 FUNCTIONS OF TOOLS FOR PROCESS
CAPABILITY DETERMINATION

The kernel of a process assessment tool is the process capability
determination algorithm. An algorithm determines the correctness and
robustness of a software tool. In Chapters 5 – 9 we developed a set of
algorithms for current process models with formal descriptions.
Understanding and applying those algorithms will help build good software
process assessment and improvement tools in the future.

16.4 Summary

This chapter has described the software process assessment supporting
technologies and tools. Classification of process assessment tools has been
explored. A set of practical process assessment templates has been developed
based on the SEPRM reference model. The basic requirements for tools’
implementation have been investigated.

The basic knowledge structure of this chapter is as follows:

526 Part V Software Engineering Process System Assessment

Chapter 16. Supporting Tools for Software Process Assessment

• General
 − Purposes of this chapter
 − To review software process assessment supporting
 technologies and tools

 − To demonstrate how the generic assessment methodologies
 described in Chapter 15 are implemented and supported by
 assessment tools

 − To develop a template-supported software process
 assessment method based on the SEPRM reference model

 − To explore a tool-supported software process assessment
 method and the basic requirements for assessment tools

 − To provide an insight into the practical methods used by
 assessors to enable those being assessed or those seeking to
 implement self-assessment to understand and reproduce a
 process assessment

 − Classification of process assessment tools
 − Paper-based tools
 − Template-based tools
 − Software tools

 • Template-supported process assessment
− Templates for process assessment

− Assessment purpose
− Assessment scope
− Assessment team and responsibilities
− Assessment confidentiality agreement
− Assessment schedule and resources
− Processes to be assessed and target capability levels
− Assessment brief
− Assessment results and process strengths and weaknesses
 analysis

 − Understand the completed templates in the sample assessment

• Tool-supported process assessment
− Basic requirements for assessment tools

Chapter 16 Supporting Tools for Software Process Assessment 527

− Process dimension
 − Process definition
 − Process explanation
 − Assessment focus

− Capability dimension
 − Rating scale
 − Rating explanation
 − Evaluation aids
 − A notepad

− A defined capability determination algorithm
 (Refer to Chapters 5 – 9)

− Features of existing process assessment tools

− Research in software process assessment simulation and
 enacting tools and environments

 − For automatically executing some selected software
 engineering processes

 − Compare these tools with operating systems for
 executing software routines and procedures

 − Identify issues in software process enacting: human
 factor simulation, management activities, and project
 parameters estimation

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• This chapter has developed a classification of process assessment
tools, and identified a set of basic requirements for them.

• A set of generic templates has been developed for supporting
template-based process assessment according to the SEPRM process
reference model.

• The basic requirements for a model-based process assessment tool
have been identified in this chapter. Windows-based and web-based

528 Part V Software Engineering Process System Assessment

technologies will be the main approaches to implement the software
process assessment tools.

• The kernel of a process assessment tool is the process capability
determination algorithm. A set of algorithms for current process
models was developed in Part II of this book.

• A number of software tools have been developed in recent years for
supporting process assessment. It is predicted that more and more
process modeling, assessment, and improvement tools will emerge
in process-based software engineering. More comparative evaluation
reports and industry application experience about the existing
software process assessment and improvement tools are also
expected.

• Some experimental process simulation and enacting tools or
environments have been developed to automatically execute some
selected software engineering processes. However, difficulties have
been identified for these tools as to simulation of human factors and
management activities in the software engineering processes.

This chapter has demonstrated the implementation and applications of the
generic process assessment methodologies developed in Chapter 15. For
formal description of process models and algorithms, readers may refer to
Chapters 5 – 9. Process improvement methodologies and case studies will be
described in Chapters 17 – 18 in Part VI of this book.

Annotated References

For further details of the process assessment support tools described in this
chapter, see the following web sites:

• SPICE 1-2-1: http://www.ivf.se/cse/

• PULSE: http://www.ivf.se/cse/ or
http://msnhomepages.talkcity.com/CerfSt/

 DrYWang/

Chapter 16 Supporting Tools for Software Process Assessment 529

• BootCheck: http://www.bootstrap-institute.com/

• SEAL: http://www.seal.ac.za/

• S:PRIME: http://www.crim.ca/.cgla/english/
 sprime.html

For topics on software process simulation and enacting environments,
interested readers may refer to Hansen (1996), Gruhn (1998), Derniame et
al. (1999), and Donzelli and Iazeolla (1999).

Questions and Problems

16.1 What is the classification of support tools for process assessment and
their usage in supporting software process assessment?

16.2 The template-based process assessment tool developed in this chapter
provided a practical step-by-step support for software process
assessment. Explain what the relationship is between the template tool
and software tools.

16.3 Try to conduct a template-based software process assessment for your
project by filling in each of the eight templates as provided in
Appendix E.

16.4 Analyze the process strengths and weaknesses assessed as shown in
Table 16.10, and explain what improvement opportunities you can
identify from the strengths/weaknesses analysis.

16.5 Analyze the functions of existing process assessment tools as provided
in Section 16.3 explain which tool you prefer to choose for a software
process assessment, and why.

16.6 Describe the basic requirements for a software process assessment
tool.

16.7 What are the purposes of software process simulation and enactment?
What issues affect the implementation of software engineering process
enactment and simulation?

This page intentionally left blankThis page intentionally left blank

531

PART VI

SOFTWARE
ENGINEERING
 PROCESS

IMPROVEMENT

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

17.
Software Process
Improvement Methodologies

18.
Case Studies in
Software Process Improvement

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

532 Part VI

This part examines philosophies and generic approaches to software
engineering process improvement. Three alternative improvement
methodologies reflecting the technologies used in assessment as described in
Part V are explored. These methodologies provide step-by-step guides to
carry out a process improvement in accordance with the SEPRM process
framework and methodologies. A set of case studies of real-world process
improvement is provided, and key successful factors and benefits of process
improvement are analyzed. Roles, prerequirements, and techniques of
software process improvement are described that intend to provide a useful
guide for implementing process improvement according to the SEPRM
reference model.

The knowledge structure of this part is as follows:

• Chapter 17. Software Process Improvement Methodologies

• Chapter 18. Case Studies in Software Process Improvement

Chapter 17 presents a system engineering perception of software process
improvement rather than the conventional philosophy of “fire-fighting”
oriented process improvement. This chapter develops a set of rules and a
generic approach to software process improvement. Three practical
methodologies for process improvement, based on the SEPRM reference
model, are explored. They are: model-based, benchmark-based, and template-
based software process improvement.

Chapter 18 demonstrates how the software process improvement
methodologies developed in Chapter 17 are applied in the software industry
individually or in combination. Commonly recognized success factors and
benefits of process improvement and their measurements are described.
Three case studies are reported in order to show the practical approaches,
experience, and lessons learned in process improvement in the software
industry.

In this part, process improvement is recognized as a complicated,
systematic, and highly professional activity in software engineering that
requires theory and models, skilled technical and managerial staff, and
motivated top management commitment. A system engineering perception on
software process improvement is adopted. A new approach to benchmark-
based process improvement provides that, instead of aiming for all Level 5, a
software organization may simply try to have a better profile than the
competition in the same area of interest.

By observing the industry case studies in software process improvement,
readers may recognize that in the real environment, practical strategy in
software process engineering is to view in the large and to implement in the
small. The former means that if there is no strategic vision of a complete
picture of the software engineering process system, the direction of

Software Engineering process Improvement 533

improvement would be wrong. The latter indicates that software process
improvement is naturally a graduated step-by-step program of accretion that
incrementally improves the situation. If an improvement action plan is too
ambitious or too fast, it would be unlikely succeed quite as planned due to
inherent organizational resistance to changes, the human habit of inertia, and
learning curves.

This page intentionally left blankThis page intentionally left blank

535

Chapter 17

SOFTWARE PROCESS
IMPROVEMENT

METHODOLOGIES

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

17.
Software Process Improvement
Methodologies

17.1 Introduction 17.4 Template-based process improvement
17.2 Model-based process improvement 17.5 Summary
17.3 Benchmark-based process improvement Annotated references

18.
Industry Case Studies of
Process Improvement

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

536 Part VI Software Engineering Process Improvement

This chapter explores generic and practical software process improvement
approaches. Methodologies of model-based, benchmark-based, and
template-based software process improvement will be developed using the
SEPRM software engineering process reference model.

The objectives of this chapter are as follows:

• To explore philosophies, rules, and generic approaches to software
process improvement

• To explore a model-based software process improvement
methodology

• To develop a benchmark-based software process improvement
methodology

• To develop a template-based software process improvement
methodology

• To demonstrate how the SEPRM process model and benchmarks are
applied in process improvement

17.1 Introduction

In Chapter 4 the philosophies and generic approaches to software
engineering process improvement were described. This chapter develops
practical methodologies for software process improvement.

Software process improvement is a complicated, systematic, and highly
professional activity in software engineering that requires theory and
models, skilled technical and managerial staff, and motivated top
management commitment. Software process improvement can only be based
on established software processes, otherwise, effects will be virtual if the
process system is not defined and established.

A set of basic rules that dominate software process improvement [Wang
and King, 1999j] is as follows:

Rule 1: Software process improvement is complicated system engineering.

A process improvement program has to be thoroughly planned. There will
be little achievement if an organization attempts to improve only a part of
the many identified necessary processes in order to improve the whole
process system and its performance.

Chapter 17 Software Process Improvement Methodologies 537

Rule 2: Software process improvement itself is a goal-driven and continuous
process.

It is goal-driven because process improvement should have predetermined
goals and predesigned approaches to achieve these goals. It is a continuous
process because the track of software process improvement is spiral-like and
endless. During a software process improvement program, the goals may
aim at higher levels, organizational requirements may be dynamic, and
implement complicity may increase. Therefore, there is no absolute end for a
process improvement.

Rule 3: Software process improvement is an experimental process.

Empirical process improvement recommendations should be treated as
hypotheses. The impact and effectiveness of process improvement activities
should be monitored and checked by periodical process review and/or
assessments.

Rule 4: Software process improvement is risk-prone.

With regard directly to Rule 3, it can be seen that risks are naturally
attached to any process improvement activities. Therefore, one should
always be aware of and prepared for process change risks and potential
impacts on other processes by an improvement activity. Also, as a corollary,
risks for not implementing a required improvement for the identified
problems should be estimated.

Rule 5: Software process improvement is a time varying system.

Process improvement operates in a dynamic environment with varying
application domains and fast-changing technical platforms. This means
there is no specific model that can be completely copied, and no specific
methodology that can always be followed. Therefore, model and
methodology adaptation is always required in process improvement.

Rule 6: Software process improvement is a random system dominated
 by human factors.

Further to Rule 5, process improvement is carried out by human beings. The
main effective human factors in software engineering are flexibility and
goal-orientation.

538 Part VI Software Engineering Process Improvement

A basic assumption is that a skilled software engineer as an individual is
an intelligent unit in a software engineering team and process who would
automatically adjust activities to an optimizing goal in the system.

It is noteworthy that process improvement solutions for an identified
problem would be manifold; implementation for a recommended solution
would be achieved by multiple approaches; and time and efforts spent on
implementation of an approach would vary greatly for different individuals
or teams. All these varying human factors should be taken into account in a
plan of process improvement.

Rule 7: Software process improvement has preconditions.

Process improvement requires formally defined, established, and
experienced process systems. Process improvement on processes that are not
systematically established has been proven wasteful.

Rule 8: Process improvement is based on process system reengineering.

The basic approach to software process improvement is by process
reorganization and reengineering. Reengineering can be carried out by: (a)
enhancing a process, (b) changing a process, (c) adapting a process, (d)
canceling a process, and (e) reorganizing a process system.

Rule 9: Software process improvement achievement is cumulative.

Fortunately, having taken into account all the abovementioned technical,
organizational, and cultural costs, the benefits of process improvement
achievement can be cumulative, provided an organization continuously
pursues software process improvement in a systematic and consistent way.

A generic procedure for software process improvement can be described in
six steps as follows:

1) Examine the needs for process improvement.

2) Conduct a baseline assessment.

3) Identify process improvement opportunities.

4) Implement recommended improvement.

5) Review process improvement achievement.

6) Sustain improvement gains.

Chapter 17 Software Process Improvement Methodologies 539

In the following sections, the generic process improvement procedures are
explained and implemented through three different techniques:

• Model-based process improvement.

• Benchmark-based process improvement.

• Template-based process improvement

17.2 Model-Based Process Improvement

This section describes a method of model-based process improvement
following the six generic steps as described in Section 17.1.

17.2.1 EXAMINING THE NEEDS FOR PROCESS
 IMPROVEMENT

A software process improvement program starts with the recognition of the
organization’s needs. Typical motivations for process improvement can be
classified as follows:

• Organizational competitiveness

• Market requirements

• Contractual requirements

• International or regional regulation requirements

• Business benefits

Business benefits can be further identified and measured in terms of:

• Return on investment (ROI)

• Increment of productivity

• Reduction in time to market

540 Part VI Software Engineering Process Improvement

• Gains in pretest defect detection

• Reduction of postrelease defects

• Reduction of rework rate

• Reduction of customer problems/complaints

To enable successful software process improvement, the following pre-
requirements have to be fulfilled:

• Top-down management commitment

• Bottom-up motivation and involvement

• A dedicated process improvement team including both technical and
managerial roles

• Sufficient resources such as budgets, time, and expertise

• Preparation for continuous process improvement and reinforcement

• Preparation for extensive training in new processes and
implementation techniques for all levels of staff

When the real needs are identified, motivation is understood, and pre-
requirements are fulfilled, a process improvement program can be
progressed further to the following steps.

17.2.2 CONDUCTING A BASELINE PROCESS
 ASSESSMENT

A baseline process assessment is a diagnostic process assessment for probing
current status and performance of a process system. The purposes of a
baseline assessment are:

• To systematically examine the status of a process system

• To pinpoint the weak areas of a software process system

• To identify the process(es) that may be causal to the problems
reported

• To identify the process(es) that would contribute significantly to
meet the organization’s business goals

Chapter 17 Software Process Improvement Methodologies 541

By conducting a baseline assessment, the strengths and weaknesses of an
organization’s software process system will be understood. This enables the
improvement areas to be identified in the next step.

17.2.3 IDENTIFYING PROCESS IMPROVEMENT
 OPPORTUNITIES

The purposes of this step are to identify weak process areas based on the
process assessment results in order to determine improvement aims and
priorities, and to establish an improvement action plan.

17.2.3.1 Identifying Weak Processes

Weak areas of a process system may be identified by looking for the
following indicators:

• Processes that are required but not established or not performed

• Processes that lack some of the base process activities (BPAs)

• Processes that have not reached the required capability levels

• Processes that possess more higher capability levels than necessary;
these may indicate a waste of energy

17.2.3.2 Determining Improvement Aims and Priorities

Corresponding to the types of weaknesses identified in a process system
described above, the aims of improvement can be determined according to
the following strategies:

• Process(es) to be newly established

• Process(es) to be completely performed

• Processes to be enhanced

• Process(es) to be balanced

• Process(es) to be changed

• Process(es) to be reorganized

Then, the priorities of improvement can be decided upon according to the
processes’ degree of weakness or gaps in the required capability levels.

542 Part VI Software Engineering Process Improvement

Targets for improvement should be quantified for each priority area.
These may be target values for process effectiveness, target process
capability profiles, or combinations of the two.

17.2.3.3 Deriving an Improvement Action Plan

When the weaknesses of processes are identified and improvement aims and
priorities are determined, a process improvement action plan can be made.
A software process improvement action plan may consist of the following
items:

• Actions, purposes, and priority

• Schedule and milestones of actions

• Responsibilities for actions

• Approaches to improvement

• Success criteria

• Risks and avoidance measures

In the process improvement action plan, it is important to ensure that key
roles are clearly identified, appropriate milestones and review points are
established, adequate resources are allocated, and risks associated with the
plan are predicted and prepared.

17.2.4 IMPLEMENTING RECOMMENDED
 IMPROVEMENTS

Process improvement can be achieved by the following techniques:

• Enhancing inadequate processes

• Replacing ineffective processes

• Introducing new processes

• Reengineering process systems and interfaces

A process improvement program needs to be closely monitored according to
the improvement plan in order to ensure tasks progress as expected,
implementation is correct, and achievement is made. If any problems are
encountered, causes should be analyzed and the action plan adjusted.

Chapter 17 Software Process Improvement Methodologies 543

Clearly, implementation of process improvement often requires
organizational architectural and/or cultural changes. Therefore, it is crucial
to foster open communication and teamwork, to announce process system
updatings, and to conduct training for the updated software process system.

Detailed records should be kept for use to both confirm the
improvements and to improve the procedure of process improvement. In the
case that unseen problems are experienced, a return to the original processes
should be enabled.

17.2.5 REVIEWING PROCESS IMPROVEMENT
 ACHIEVEMENT

The purpose of this step is to confirm whether the planned improvement
goals and target capability levels have been achieved.

Measurements of process effectiveness should be used to confirm
achievement of process effectiveness targets. The possibility of undesirable
side-effects should be investigated.

A new process assessment can be employed to review the improvement
achievement. The review assessment can be either a self-assessment or a
third-party assessment. Though the review assessment may focus on the
affected processes in the improvement program, the whole process system
should be assessed in order to find the impacts of improvement on other
processes, or any possible side-effects or new imbalance of process
capability.

17.2.6 SUSTAINING IMPROVEMENT GAINS

The purposes of this step are to make permanent deployment of
improvement processes, and to sustain gains obtained in the improvement.

For a successful process improvement with proven effect, new or
enhanced processes can now be deployed across all areas or projects in the
organization where they are applicable. At the same time, the organization’s
process system reference model needs to be revised, and the updated
reference model should be made known to all project managers and related
staff.

Process improvement is a continuous pursuit; therefore, regular reviews
of performance of the enhanced process system are required. Whenever
necessary, a new round of the assessment or improvement program may be
called and conducted.

544 Part VI Software Engineering Process Improvement

17.3 Benchmark-Based Process
 Improvement

The model-based process improvement described in the previous section can
be categorized as an absolute improvement approach with a philosophy of
“the higher (the process capability level) the better.” This section presents a
new philosophy of relative process improvement, and develops a method for
benchmark-based process improvement according to a philosophy of “the
smaller the advantage, the better.” The generic procedure of process
improvement described in Sections 17.1 and 17.2 is still applicable in this
section, but differences will be highlighted.

17.3.1 A NEW PHILOSOPHY OF RELATIVE PROCESS
 IMPROVEMENT

There is a well-known Chinese story of King Qi’s horse racing about 1600
years ago. King Qi had the best horses in his kingdom. He liked horse
racing very much and he expected to win every time. However, on one
occasion he lost to Ji Tian, a wizard of that time.

The horses were categorized in three classes, i.e., for the King: K1, K2,
and K3; and for Tian: T1, T2, and T3. In the first match, they determined the
results as follows: K1 – T1, K2 – T2, and K3 – T3. Not surprisingly, the King
won, as shown in Figure 17.1, because he had the best horses in each class.

T3

K3

T2

K2

K1
T1

0

1

2

3

4

5

6

7

P e r f o r m a n c e

 Game 1 Game 2 Game 3

Figure 17.1 Example of benchmark-based decision making (1)

Chapter 17 Software Process Improvement Methodologies 545

However, in the second match, the wizard changed his strategy. Tian used
his third-class horse (T3) against King Qi’s first-class (K1), and, of course,
this allowed the King to win the first race. Then, in the following two races,
Tian used his first- (T1) and second- (K2) class horses against the King’s
second- (K2) and third- (K3) class horses, respectively. Tian won the second
three- race set and, for the first time in the history of the kingdom, defeated
the King, as shown in Figure 17.2.

T2
K3

T1
K2

T3

K1

0

1

2

3

4

5

6

7

P e r f o r m a n c e

 Game 1 Game 2 Game 3

Figure 17.2 Example of benchmark-based decision making (2)

This story provides a useful operational strategy in decision-making for
process improvement. That is, for software process improvement, an
organization does not necessarily have to get all of its processes to the
highest level to be competitive because it may not be the best, most feasible,
and most economical solution for the organization. Instead, the best solution
is just to have a marginal advantage over competitors in each process.

This inspires a new approach to software engineering process
improvement – the smaller the advantage, the better. This concept revolves
around the idea that just enough effort is all that is needed. In the light of
this philosophy, a new method of benchmark-based process improvement is
developed in the following subsections.

17.3.2 METHOD FOR BENCHMARK-BASED PROCESS
 IMPROVEMENT

The method of benchmark-based process improvement is an extension of the
method of benchmark-based process assessment developed in Section 15.3.
A benchmark-based process improvement can also be carried out in six steps
as described in the generic improvement procedure.

546 Part VI Software Engineering Process Improvement

With regard to the model-based process improvement methodology, the
features of a benchmark-based process improvement are as follows:

• The philosophy for a benchmark-based process improvement is to
“fill the gaps” rather than “the higher the better,” which is common
in model-based process improvement.

• The improvement opportunities are identified using gaps analysis
between the plotted process profile and the benchmarks.

• The improvement priorities are determined by quantifying the
magnitude of gaps between the plotted process profile and the
benchmarks.

• The improvement achievement is evaluated by checking if the gaps
have reduced, and if the process capabilities have been enhanced
marginally above the process benchmarks.

A case for demonstrating an organization’s baseline and improved capability
profiles in a benchmark-based process improvement is shown in Figure
17.3. Figure 17.3 shows that the baseline process capability profile (P) of an
organization has been improved to an adaptive process profile (R) that is
marginally above and moves along with the benchmarked curves (B).

Note in Figure 17.3 that only the development process benchmarks and
profiles are shown. Adopting the SEPRM benchmarks provided in Figures
15.2 and 15.4, the organization and management process subsystems
improvement can be carried out in the same way.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2.1.1 2.1.2 2.1.3 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.3.1 2.3.2 2.3.3 2.3.4

Process

Capability
Level

B P R

 B – Benchmark curve; P – Baseline process profile; R – Improved process profile

 Figure 17.3 SEPRM benchmark-based process improvement

Chapter 17 Software Process Improvement Methodologies 547

17.4 Template-Based Process
Improvement

This section describes another method of template-based process
improvement. It is an extension of the template-based process assessment
method developed in Section 16.2, and is designed to provide formal support
for the model-based process improvement method presented in Section 17.2.
The six-step generic procedure for conducting a software process
improvement is also applicable for template-based process improvement.

In a template-based process assessment, the assessed process profile,
and the overall strengths and weaknesses of a process system, have been
obtained in Section 16.2 from Template 1 through Template 8. Using this
analysis of the process profile and assessment findings, potential areas for
improvement and priorities can be identified following the method provided
in Table 17.1.

Table 17.1
Improvement Opportunities Analysis

Input Method Output

• Processes to be assessed
 and target capability levels
 (Template 6);

• Process capability profile as
 derived in the assessment;

• Process strengths and
 weaknesses analysis
 (Template 8);

• The SEPRM process
 reference model.

• Analysis of process improvement opportunities
 will be conducted according to the generic
 procedures as provided in Section 17.1;

• Identify improvement priorities of each
 process by evaluating the gap to the target
 capability level. The improvement priority will
 be described as high [H], medium [M], low [L],
 or No [N];

• Analyze and describe impacts, and potential
 risks that may arise in an improvement
 activity.

Template 9:
Process
improvement
opportunities
analysis.

A template of improvement opportunities analysis (see Template 9 in
Appendix E) is designed to support the method described above. For
instance, taking the output of the assessment case presented in Section 15.2
as input for the template-based process improvement produces a working
template is shown in Table 17.2.

In Table 17.2 the criteria adopted for classifying the improvement
priority, IP, can be formally derived by the following Expression:

548 Part VI Software Engineering Process Improvement

IP = H, Weakness > 1 capability level;
= M, Weakness within 1 capability level;
= L, Strength < 0.3 capability level, which would (17.1)

be sensitive when capability turbulent;
= N, The rest, which have no improvement requirement with
 regard to the specified target capability level.

Different thresholds would be defined in Expression 17.1 for a specific
process improvement case.

Table 17.2
Template 9 – Process Improvement Opportunities Analysis

 ID#: SEPRM98006 Date: - / - / -

No. Process Strengths(+)/
Weaknesses (-)

[AL-TL]

Improvement
Priority

(IP)

Remarks
and Risks

1 Organization

1.1 Organization structure category

1.1.1 Organization definition 1.0 N

1.1.2 Project organization 0.3 N

1.2 Organization process category

1.2.1 Organization process definition 0.1 L

1.2.2 Organization process improvement -0.8 M

1.3 Customer service category

1.3.1 Customer relations 0 L

1.3.2 Customer support 0.2 L

1.3.3 Software and system delivery 1.3 N

1.3.4 Service evaluation 1.0 N

2 Development

2.1 Software engineering methodology
category

2.1.1 Software engineering modeling 0.1 L

2.1.2 Reuse methodologies -0.4 M

2.1.3 Technology innovation -0.9 M

2.2 Software development category

2.2.1 Development process definition 1.5 N

2.2.2 Requirement analysis 0.4 N

2.2.3 Design 0.3 N

2.2.4 Coding 0.4 N

2.2.5 Module testing 0.3 N

2.2.6 Integration and system testing 0.1 L

2.2.7 Maintenance -0.1 M

Chapter 17 Software Process Improvement Methodologies 549

2.3 Software engineering infrastructure
category

2.3.1 Environment 0 L

2.3.2 Facilities 1.2 N

2.3.3 Development support tools -0.5 M

2.3.4 Management support tools -0.8 M

3 Management

3.1 Software quality assurance category

3.1.1 SQA process definition 1.1 N

3.1.2 Requirement review 1.2 N

3.1.3 Design review 0 L

3.1.4 Code review -0.3 M

3.1.5 Module testing audit -0.5 M

3.1.6 Integration and system testing audit 0.7 N

3.1.7 Maintenance audit -1.0 H

3.1.8 Audit and inspection 0.7 N

3.1.9 Peer review 0.2 L

3.1.10 Defect control 0.8 N

3.1.11 Subcontractor’s quality control 1.2 N

3.2 Project planning category

3.2.1 Project plan -0.7 M

3.2.2 Project estimation 0.9 N

3.2.3 Project risk avoidance -0.6 M

3.2.4 Project quality plan 1.1 N

3.3 Project management category

3.3.1 Process management -0.6 M

3.3.2 Process tracking 0.7 N

3.3.3 Configuration management 1.5 N

3.3.4 Change control -0.2 M

3.3.5 Process review 0.4 N

3.3.6 Intergroup coordination -0.4 M

3.4 Contract and requirement management
category

3.4.1 Requirement management 0.3 N

3.4.2 Contract management 1.4 N

3.4.3 Subcontractor management 0.4 N

3.4.4 Purchasing management 0.4 N

3.5 Document management category

3.5.1 Documentation 1.0 N

3.5.2 Process database/library -1.2 H

3.6 Human resource management category

3.6.1 Staff selection and allocation 1.5 N

3.6.2 Training 0.6 N

550 Part VI Software Engineering Process Improvement

Table 17.2 indicates that the processes that have the highest priority for
improvement in this case are maintenance audit and process
database/library, followed by the medium priority processes:

• Technology innovation

• Organization process improvement

• Management support tools

• Project plan

• Project risk avoidance

• Process management

• Development support tools

• Module testing audit

• Reuse methodologies

• Intergroup coordination

• Code review

• Change control

• Maintenance

The other steps in a template-based process improvement are similar to
those of the model-based process improvement. A detailed description of
model-based process improvement may be referenced in Section 17.2. Case
studies of real-world process improvement will be provided in Chapter 18.

17.5 Summary

This chapter has explored generic software process improvement
approaches. Practical methodologies for model-based, benchmark-based,
and template-based software process improvement have been provided using
the SEPRM software engineering process reference model.

The basic knowledge structure of this chapter is as follows:

Chapter 17 Software Process Improvement Methodologies 551

Chapter 17. Software Process Improvement Methodologies

• General

− Purposes of this chapter
 − To explore philosophies, rules, and generic approaches to
 software process improvement

 − To explore a model-based software process improvement
 methodology

 − To develop a benchmark-based software process
 improvement methodology

 − To develop a template-based software process
 improvement methodology

 − To demonstrate how the SEPRM process model and
 benchmarks are applied in process improvement

− Generic software process improvement procedure
 1) Examine the needs for process improvement

 2) Conduct a baseline assessment

 3) Identify process improvement opportunities

 4) Implement recommended improvement

 5) Review process improvement achievement

 6) Sustain improvement gains

 • Basic rules of software process improvement
 − Rule 1: Process improvement is complicated system
 engineering

 − Rule 2: Process improvement itself is a goal-driven and
 continuous process

 − Rule 3: Process improvement is an experimental process

 − Rule 4: Process improvement is risk-prone

 − Rule 5: Process improvement is a time-varying system

 − Rule 6: Process improvement is a random system
 dominated by human factors

552 Part VI Software Engineering Process Improvement

 − Rule 7: Process improvement has preconditions

 − Rule 8: Process improvement is based on process system
 reengineering

 − Rule 9: Process improvement achievement is cumulative

• Model-based process improvement methodology
− Philosophy of absolute relative process improvement: “the
 higher the better”

− How to implement the six-step generic approach in
 model-based process improvement?

 − Motivations to software process improvement:
− Organizational competitiveness
− Market requirements
− Contractual requirements

 − International or regional regulation requirements
 − Business benefits

− Prerequirements for software process improvement:
− Top-down management commitment
− Bottom-up motivation and involvement

 − A dedicated process improvement team
− Sufficient resources

 − Prepared for continuous process improvement
− Prepared for extensive training for new processes

− Software process improvement technologies:
− Enhancing inadequate processes
− Replacing ineffective processes

 − Introducing new processes
− Reengineering process system and interfaces between
 processes

• Benchmark-based process improvement methodology
− Philosophy of relative process improvement: “the smaller the
 advantage, the better,” or “to fill the gaps”

− How to implement the six-step improvement in benchmark-
 based improvement

− Differences between benchmark-based and model-based
 software process improvement:

Chapter 17 Software Process Improvement Methodologies 553

− Philosophy
− Improvement opportunities identification

 − Improvement priorities determination
− Improvement achievement evaluation

 • Template-based process improvement methodology
− A support tool for model-based software process improvement

− Criteria for determining improvement priorities
 (Expression 17.1)

− Template and how to work out it (Template 9)

− How to interpret a completed improvement template?
 (Table 17.2)

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• This chapter has presented a system engineering perception on
software process improvement. This is different from the
conventional philosophy of “fire-fighting”-oriented process
improvement.

• A set of basic rules has been provided for understanding the nature
of process improvement.

• A six-step generic procedure for software process improvement has
been developed which is suitable for implementing process
improvement according to any established process models,
particularly the SEPRM reference model.

• Motivations, prerequirements, purposes, weakness indicators, and
techniques of software process improvement have been described in
this chapter that provide a set of useful guidelines for implementing
process improvement according to the SEPRM reference model.

• Based on the generic process improvement procedure, three
practical methodologies for conducting software process
improvement – model-based, benchmark-based, and template-based
improvement – have been developed.

Applications of the process improvement methodologies in the software
industry will be demonstrated by case studies in Chapter 18.

554 Part VI Software Engineering Process Improvement

Annotated References

Software process improvement concepts and methodologies were largely
inspired by the work in management science, particularly in quality system
principles and enterprise reengineering research. Shewhart (1939)
developed the concept of the “plan-do-check-act” iteration. Later, this
concept was extensively applied in the Japanese manufacturing industry
known as the “KAIZEN method” [Imai 1986], and was extended and
interpreted by Deming (1982b/86) and known as the “Deming cycle.”

On generic software process improvement literature, readers may refer
to Humphrey (1988), Paulk and his colleagues (1993a), Curtis (1992),
Basili (1993), Peterson and Radice (1994), and Wang et al.
(1997a/98a/99e/h).

On model-based software process improvement, see Paulk and his
colleagues (1995), Kuvaja and his colleagues (1994), Herbsleb (1994), El
Eman and his colleagues (1993), ISO/IEC TR 15504 – 7 (1998), and the
SPICE Project (1998).

On benchmark-based software process improvement, see IBM (1996)
and Wang et al. (1998a/1999d/e). The work on SEPRM benchmark-based
software process improvement was reported in [Wang et al., 1999e/j]. For
template-based process improvement technology, see Wang et al. (1998f).

Basili and his colleagues (1994), Pfleeger and Rombach (1994), and
Solingen and Berghout (1999) developed a “Goal/Question Metric Method”
for software process improvement. For more articles on this technology, see
Perry, Staudenmayer, and Votta (1994), Khoshgoftaar and Oman (1994),
and Fenton and Pfleeger (1996).

Questions and Problems

17.1 Referring to the SPI Rules 1 and 7, analyze what the preconditions of
software process improvement are.

17.2 Referring to the SPI Rule 6, explain what key human factors may
influence the effect of software process improvement.

Chapter 17 Software Process Improvement Methodologies 555

17.3 What is the generic procedure for implementing software process
improvement in a software development organization?

17.4 By contrasting the model-based and benchmark-based process
improvement options, summarize the common and different aspects.

17.5 Identify the improvement areas and their priorities using the model-
based assessment results obtained in Ex.15.2.

17.6 Identify the improvement areas and their priorities using the
benchmark-based assessment results obtained in Ex.15.3.

17.7 Using the analysis results of Ex.17.5, develop a model-based process
improvement action plan according to SEPRM and the methodology
presented in Sections 17.2 and 17.4.

17.8 Using the analysis results of Ex.17.6, develop a benchmark-based
process improvement action plan according to SEPRM and the
methodology presented in Section 17.3.

17.9 In Section 17.1 nine rules for software process improvement were
presented. Explain which rule(s) you think most significant. Can you
add any additional rules by your reading of this book?

17.10 Software process improvement can be conducted at organization,
project (team), and/or individual levels. What level do you think the
improvement priority should be given to? Why?

This page intentionally left blankThis page intentionally left blank

557

Chapter 18

CASE STUDIES IN
SOFTWARE PROCESS

IMPROVEMENT

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establishment

V
SE Process
Assessment

17.
Software Process Improvement
Methodologies

18.1 Introduction 18.5 Software process improvement Case-3
18.2 Benefits of Software Process Improvement 18.6 Summary
18.3 Software process improvement Case-1 Annotated references
18.4 Software process improvement Case-2

18.
Case Studies in Software
Process Improvement

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

558 Part VI Software Engineering Process System Improvement

This chapter demonstrates empirical software process improvement
approaches by means of real-world case studies in the software industry.

The objectives of this chapter are as follows:

• To review a broad picture of software process improvement in the
software industry

• To investigate the benefits and common goals of software process
improvement in industry

• To explore a generic approach to assessment model-based software
process improvement

• To demonstrate process improvement by the adaptation and
integration of external and internal standards and models

18.1 Introduction

In Chapter 17 practical technologies of software process improvement were
explored. These technologies can be applied in software development
organizations individually or collectively. This chapter describes benefits
accruing from process improvement and its measurement, and demonstrates
three industry case studies on empirical process improvement.

Software process improvement has gained wide acceptance in the
software industry. A worldwide software process improvement network
(SPIN) was formed in the last decade. According to Curtis (1992) and Koch
(1993), distributions of the CMM capability levels of 332 software
development organizations in the USA, Japan, and Europe up to 1992/93
are shown in Table 18.1. The average data shown in Table 18.1 indicate that
nearly 90% of the organizations were at CMM Level 1, and no organization
was graded at Levels 4 and 5 as of 1992/93.

Comparing the data with Zubrow’s survey in 1997, which has also been
shown in Table 18.1, it can be found that, for those software development
organizations that underwent CMM assessment before 1997, 27.3%
improved from Level 1, and especially 2% have achieved Level 4 or 5. This
was significant because more than a quarter of the software organizations
were improved in a period of five years.

Chapter 18 Case Studies in Software Process Improvement 559

Table 18.1
Trends in Software Process Improvement in the Software Industry

CMM Capability LevelsYear Sample
Size

Region
Level 1 Level 2 Level 3 Level 4 Level 5

1992 (Curtis) 113 USA 86.0% 13.0% 1.0% 0 0

1992 (Curtis) 196 Japan 96.0% 3.0% 1.0% 0 0

1993 (Koch) 23 Europe 47.9% 52.1% 0 0 0

Average 332 Global 89.3% 9.8% 0.9% 0 0
1997 (Zubrow) - Global 62.0% 36.0% 2.0%

Improvement
in 5 (4) years

1997 -27.3% 25.3% 2.0%

According to Wang et al. (1996c), CMM Levels 2 – 3 are equivalent to those
organizations that would pass the threshold of ISO 9001 assessment. This
implies that about 38% (as in 1997) and 10.7% (as in 1992/93) of those
CMM-assessed organizations are technically at or above the ISO 9001 pass
level.

In the following sections, we will discuss the benefits of software
process improvement and how they are measured. We will present empirical
process improvement experience and approaches by case studies in the
software industry in Sections 18.3 through 18.5.

18.2 Benefits of Software Process
Improvement

Before presenting the case studies in software process improvement, we
discuss what might be expected in process improvement benefits, and how
they are measured both quantitatively and qualitatively.

18.2.1 MEASUREMENTS FOR BENEFITS OF
SOFTWARE PROCESS IMPROVEMENT

Seven areas in software process improvement – budget, cycle time,
development cost, maintenance cost, quality, innovation, and customer
satisfaction – have been identified for assessing industry expectation for
process improvement [Wang et al., 1999f]. Figure 18.1 shows the numbers

560 Part VI Software Engineering Process System Improvement

of the software organizations that rate the importance of each area as
“none/low/medium/high/very high,” respectively. The rightmost bar in each
area shows a weighted total value of significance of an area in process
improvement.

As shown in Figure 18.1, the aspects of software process improvement
considered most important are development budget, customer satisfaction,
and quality, while relatively less important areas are development and
maintenance costs.

According to the above work and the description in Section 17.2.1, a set
of metrics of software process improvement benefits can be derived as
shown in Table 18.2. There are seven quantitative and seven qualitative
benefits identified, respectively. Detailed discussions on the benefit
measurement metrics of process improvement will be provided in the
following subsections.

0
50

100
150
200
250
300
350

None Low Medium High Very high Weighted total

Figure 18.1 Areas of importance in software process improvement for the
software industry

Table 18.2
Metrics of Benefit of Software Process Improvement

No. Quantitative Measurement Qualitative Measurement
1 Return on investment (ROI) Organization efficiency

2 Increment of productivity Project management efficiency

3 Reduction in time to market Organization competitiveness

4 Gain of pretest defect detection Individual competitiveness

5 Reduction of postrelease defects Organization image

6 Reduction of rework rate Establishment of business goal for pursuing
improvement

7 Reduction of customer problems/complaints Customer satisfaction

Chapter 18 Case Studies in Software Process Improvement 561

A number of leverages of software process improvement for business success
have been identified in Messnarz and Tully (1999). They are financial,
operating, production, marketing, and human leverages, which indicate that
software process improvement is effective to almost all areas in a software
development organization.

18.2.2 STATISTICS DATA ON BENEFITS OF
 SOFTWARE PROCESS IMPROVEMENT

Herbsleb (1994) reported a number of cases that benefit from CMM-based
software process improvement, such as:

• Hewlett Packard has dropped its software defect rate from 0.4
defect/KLOC to 0.11 defect/KLOC.

• Texas Instruments has reduced the find-fix time for defects from 8
hours each to 11 minutes.

• Schlumberger has improved its planning slippage from 50% to 5%.

• Raytheon has gained $7.80 avoidance of rework costs for every
$1.00 invested in process improvement.

In a European project on business benefits of software engineering best
practices, the ESSI Office (1996) reported the following achievements in
software process improvement in Europe by surveying more than 200
software companies and projects since 1993:

• Engineering I&I S.P.A., a large Italian software house, has
improved its project estimation accuracy by reducing by 60% the
average estimation errors.

• PROFit S.A., a medium-sized Spanish software house, has obtained
a six-fold productivity gain in software reengineering and
maintenance by efficient migration of applications.

• CLAAS KGaA, a German manufacturer acquiring embedded
software, has gained millions of ECU boost to sales by specification
and software management rethinking.

• ENEL S.P.A., a large Italian electricity supplier, has gained up to an
18% cost reduction by formal specification method.

562 Part VI Software Engineering Process System Improvement

• Datamat S.P.A., a large Italian systems integration company, has
gained a competitive edge in turnkey software projects by the
introduction of configuration management.

• B&K Measurements A/S, a Danish embedded software company,
has gained a 75% reduction in the number of error reports by
introducing systematic unit testing procedures and software quality
assurance processes.

Based on the achievements listed above, ESSI has concluded that “the good
news was that all these companies reported clear business benefits in
software process improvement.”

More sophisticated data on the benefits of software process improvement
reported by Herbsleb (1994) at ESI is given in Table 18.3. Table 18.3 shows
that return on investment in software process improvement is quite high in
the financial context. In technical terms, this means software process
improvement is a worthwhile pursuit for the software industry.

Table 18.3
Benefits of Software Process Improvement

No. Parameter Range Median
1 Return on investment (ROI) 4.0 – 8.8 5.0

2 Productivity gain per year 9% – 67% 35%

3 Reduction in time to market 15% – 23% 19%

4 Pretest defect detection gain per year 6% – 25% 22%

5 Yearly reduction of postrelease defects 10% – 94% 39%

From Table 18.3 it is also found that the most outstanding benefit of process
improvement is in software quality (reduction of defects), followed by
productivity increment and design quality (pretest defect detection)
improvement.

18.2.3 INDUSTRY COMMENTS ON SOFTWARE
 PROCESS IMPROVEMENT

The quantitative measurement of benefits in software process improvement
having been demonstrated, now the qualitative benefits of process
improvement as listed in Table 18.2 may be reviewed.

Although the qualitative benefits may be independent of direct financial
gains, they, to some extent, are widely considered more beneficial in the
software industry, and generate long-term impacts on the architecture and
efficiency of a software development organization.

Chapter 18 Case Studies in Software Process Improvement 563

In a national benchmarking survey on software engineering practices
[Wang et al., 1999f], almost all software development organizations that
participated believe that software process improvement is important for the
organizations’ future success. In evaluating the responses, the following
three themes emerged:

• Software process improvement is essential for the future success of a
software development organization (T1).

• By applying software process improvement, an organization can
significantly increase timeliness of project schedules and thereby
reduce costs (T2).

• The organization is aware of software process improvement
benefits, however it lacks the knowledge and skills to kick off the
improvement activities (T3).

Statistical weightings on the themes are shown in Figure 18.2.

0

10

20

30

40

50

60

% of samples

Strongly support Agree Disagree Strongly disagree N/A

T1

T2

T3

Figure 18.2 Views on software process improvement

Figure 18.2 indicates that almost all software organizations participating in
the survey view software process improvement as an important basis for
their software development projects. Most of the organizations believe that,
via software process improvement and with adoption of the best practices
and processes in software engineering, their ability to compete has been
enhanced to the international standard.

Similarly and interestingly, Coch (1993) reported a set of positive user
responses on BOOTSTRAP assessment and improvement in Europe. Some
of them are quite generic, representing the view of the software industry on
software process improvement and are as cited below:

• They point to fundamental software engineering problems and to
good approaches for improvements.

564 Part VI Software Engineering Process System Improvement

• They enforce the capability for improvement by constructive
suggestions, for instance, through action plans.

• They motivate individuals’ thoughts about their own working
methods and environment, and thereby stimulate new ideas on how
to improve.

• They give a good picture of our software development practices in a
very short time.

• They received a high degree of acceptance.

• They touch essential points of daily work.

• They should be prepared every two years in order to constantly
follow organizational upgrades.

In the following sections we will describe three real-world process
improvement cases in the software industry to show the generic approaches
to and the valuable lessons learned from software process improvement.

18.3 Software Process Improvement
 Case-1

This case study describes Cromer and Horch’s work (1999) on software
process improvement in a small and dynamic software development
company, Organization A, with varied project types and multiple successful
approaches to software development.

18.3.1 BACKGROUND

Organization A is a small software company with fewer than 75 software
developers operating on a multinational business base and a multicultural
experience base. It has a diversity of project types ranging from real-time
embedded software, hardware/software integrated systems, database
manipulation software, and modeling and simulation software to

Chapter 18 Case Studies in Software Process Improvement 565

management information systems. It has adopted multiple development
approaches from international, national, IEEE, and in-house process
standards, and has applied multiple processes in software engineering.

18.3.2 APPROACH TO PROCESS IMPROVEMENT

The organization successfully registered for ISO 9001 and achieved CMM
Level 3 in recent years. An integrated and applicable organization’s process
standard has been set up to support the applications of both CMM and ISO
9001 process models.

The initiative of the process improvement program in Organization A
was motivated by all typical internal and external business needs: customer
satisfaction, software quality, company reputation, and better profit.

The task of pursuing process integration and improvement stumbled
over unforeseen obstacles such as gaps in knowledge, overlaps of different
models, and existence of project-specific approaches. When selecting
suitable process models for the organization, it was realized there were
many standards and many choices.

Eventually, a suitable solution was adopted in order to integrate the
organization’s internal processes with ISO 9001 procedures and CMM key
process areas up to Level 3. To achieve the strategic goal, the team carried
out the following crucial activities:

• Identified costs for process improvement

• Obtained management cognizance and commitment

• Obtained staff support

• Secured a budget

Then, the team addressed the plethora of standards to find a map for process
improvement. They surveyed process standards sources, categorized
standards as broad application or project-specific, and categorized process
requirements by varying processes.

Adaptation and integration of process standards were designed for the
establishment of a process system for the entire organization. Subsets of
broad applicable standards were selected and adapted for all projects.
Project-specific standards and processes were selected and adapted for
distinct project requirements. All selected standards were codified into an

566 Part VI Software Engineering Process System Improvement

integrated organizational process system with project-specific extensions or
replacements.

With the establishment of the organization’s process standards, progress
was monitored. First, the team applied the integrated process standard to
various types of software projects. Then, they measured the results of process
performance. With the feedback and measurement, the team modified and
updated the process standards as metrics and experience dictated.

So far, the process improvement team in Organization A has applicable
industry standards identified, in-house standards codified, and project
categories well defined. The applications of the organizational standard
process to projects are underway. As a result, ISO 9001 registration has been
accomplished, and CMM Level 3 has been achieved.

In the next phase process of improvement, the goals of the organization
are to apply standard-effectiveness metrics to projects and manage projects
based on process metrics.

18.3.3 LESSONS LEARNED

In this successful software process improvement program, Cromer and
Horch reported that Organization A has learned:

• To choose good directions such as ISO 9001 and CMM as well as
project team involvement in task planning

• To accept that errors have been made such as underestimated
diversity of projects, overestimated staff readiness for changes,
potential alternative routes of pursuing CMM in concert with
project and standards categorization, and seeking CMM assessment
before ISO 9001 registration

• To suggest company-wide and cross-section communications in
order to enable everyone to have his or her position heard and to
consent to the overall decision

In conclusion of their pursuit of software process improvement, they found
“there is no viable (acceptable) alternative in today’s marketplace.”

Chapter 18 Case Studies in Software Process Improvement 567

18.4 Software Process Improvement
 Case-2

This section describes a case study in software process improvement in
Organization B, a software component and system acquirer, by using the
extended ISO/IEC TR 15504 model on software acquisition processes.

18.4.1 BACKGROUND

The PULSE process model, an extension of ISO/IEC TR 15504 as described
in Chapter 14, was adopted in Organization B to improve its software
acquisition processes.

18.4.2 APPROACH TO PROCESS IMPROVEMENT

In Chapter 17 we established the generic approach to model-based process
improvement. This case study demonstrates how the generic improvement
methodology is applied to bring an organization’s process system capability
to a targeted level.

18.4.2.1 Examining the Needs for Process Improvement

Organization B has experienced a number of problems in its software
acquisition projects, especially on requirement specification and change
management, deliverables acceptance, and risk management. Projects were
frequently delayed due to the late discovery of problems and the high rate of
reworks.

A process improvement plan was set to improve the acquisition,
management, and organization processes to capability level 2 in order to
solve the current problems.

18.4.2.2 Conducting a Baseline Assessment

To systematically examine the status and performance, and to analyze the
strengths and weaknesses of the organization’s process system, a baseline
assessment was conducted.

568 Part VI Software Engineering Process System Improvement

The organization has aligned its processes to the extended ISO/IEC TR
15504 software and system acquisition process model as described in
Chapter 14. According to the extended process model, the assessment scope
was tailored and assessment results were derived as shown in Figure 18.3.

Process
ID.

Process/
Subprocess

CL1
Performed

CL2
Managed

CL3
Define

d

CL4
Established

CL5
Optimized

ACQ Acquisition
ACQ.1.1 Acquisition policy
ACQ.1.2 Acquisition strategy
ACQ.1.3 Benefits analysis
ACQ.2.1 Technical requirements
ACQ.2.2 Contract requirements
ACQ.2.3 Financial requirements
ACQ.2.4 Project requirements
ACQ.3.1 Invitation to tender
ACQ.3.2 Tender evaluation
ACQ.3.3 Contract negotiation
ACQ.4.1 Supplier monitoring
ACQ.4.2 Acquisition acceptance
ACQ.4.3 Contract closure
SUP Support
SUP.1 Documentation
SUP.2 Configuration mgmt.
SUP.3 Quality assurance
SUP.4 Verification
SUP.5 Validation
SUP.6 Joint review
SUP.7 Audit
SUP.8 Problem resolution
MAN Management
MAN.1 Management
MAN.2 Project management
MAN.3 Quality management
MAN.4 Risk management
ORG Organization
ORG.1 Organizational alignment
ORG.2 Improvement
ORG.2.1 Process establishment
ORG.2.2 Process assessment
ORG.2.3 Process improvement
ORG.3 Human resource mgmt.
ORG.4 Infrastructure
ORG.5 Measurement
ORG.6 Reuse
ORG.7 Financial management
ORG.8 Manage supplier

relationship
ORG.9 Manage user relationship

Figure 18.3 Assessed process profile of Organization B

Chapter 18 Case Studies in Software Process Improvement 569

18.4.2.3 Identifying Process Improvement Opportunities

According to the baseline assessment, a process profile and process
strengths and weaknesses of the organization were derived as shown in
Table 18.4. The findings of this assessment showed that the relative
strengths of the organization’s practices were the processes of ACQ1.1 –
acquisition policy; ACQ2.1 – technical requirement; ACQ2.2 – contract
requirement; and ACQ2.3 – financial requirement. The weakest
processes were ACQ4.1 – supplier monitoring and MAN.4 – risk
management.

Table 18.4
Process Strengths/Weaknesses Analysis and Improvement Opportunities

Process Assessed Process Assessed
Level
(AL)

Target
Level
(TL)

Strengths(+)/
Weaknesses(-)

[AL-TL]

Improvement
Priority

[H | M | L]
ACQ Acquisition processes

ACQ.1.1 Acquisition policy 3 2 1 L

ACQ.2.1 Technical requirement 2 2 0 L

ACQ.2.2 Contract requirement 2 2 0 L

ACQ.2.3 Financial requirement 2 2 0 L

ACQ.2.4 Project requirement 1 2 -1 M

ACQ.3.1 Invitation to tender 1 2 -1 M

ACQ.3.2 Tender evaluation 1 2 -1 M

ACQ.3.3 Contract negotiation 1 2 -1 M

ACQ.4.1 Supplier monitoring 0 2 -2 H

ACQ.4.2 Acquisition acceptance 1 2 -1 M

MAN Management processes

MAN.2 Project management 1 2 -1 M

MAN.3 Quality management 1 2 -1 M

MAN.4 Risk management 0 2 -2 H

ORG Organization processes

ORG.8 Manage supplier
Relationships

1 2 -1 M

They analyzed the gaps between the weak processes identified above and
determined the target capability levels, improvement opportunities, and
priorities. The following key areas were recommended as the highest
priority for process improvement in the organization:

• The supplier monitoring process within the acquisition category

• The risk management process within the management process
category

570 Part VI Software Engineering Process System Improvement

18.4.2.4 Implementing Recommended Improvement

The processes that would provide the highest benefit for improvement
within the organization had been identified as the processes of supplier
monitoring and risk management, followed by project requirement,
invitation to tender, tender evaluation, contract negotiation, acquisition
acceptance, project management, quality management, and manage supplier
relationships.

According to the recommendations, adoption and improvement of the
two high- and eight medium-prioritized processes were emphasized in all
projects within the organization, and their performance was closely
monitored at project and organization levels.

18.4.2.5 Reviewing Process Improvement Achievement

After a year of improvement in Organization B, a review assessment was
carried out to confirm progress in process improvement. The results of the
review assessment, as shown in Figure 18.4, indicated that the organization
had successfully achieved the target of capability level 2.

With the defined processes in place, especially the enhancement of the
technical requirements, supplier monitoring, and risk management
processes, Organization B was able to solve the problems of requirement
clarification and change negotiation with the developers in a much earlier
phase. By improving the supplier monitoring process, the organization could
find problems before a system was delivered. By adoption of the risk
management process the organization has learned how to prevent rework
and project delays from taking place.

With this updated status of process system as a new baseline, a higher-
level process capability was targeted. Then, a similar iteration of process
improvement as described in Sections 18.4.2.1 through 18.4.2.5 was begun
for continuous process improvement.

18.4.3 LESSONS LEARNED

The most important thing learned in this case study is that software
engineering processes are fundamental to the smooth running and success of
a growing company.

Chapter 18 Case Studies in Software Process Improvement 571

Process
ID.

Process/
Subprocess

CL1
Performed

CL2
Managed

CL3
Define

d

CL4
Established

CL5
Optimized

ACQ Acquisition
ACQ.1.1 Acquisition policy
ACQ.1.2 Acquisition strategy
ACQ.1.3 Benefits analysis
ACQ.2.1 Technical requirements
ACQ.2.2 Contract requirements
ACQ.2.3 Financial requirements
ACQ.2.4 Project requirements
ACQ.3.1 Invitation to tender
ACQ.3.2 Tender evaluation
ACQ.3.3 Contract negotiation
ACQ.4.1 Supplier monitoring
ACQ.4.2 Acquisition acceptance
ACQ.4.3 Contract closure
SUP Support
SUP.1 Documentation
SUP.2 Configuration mgmt.
SUP.3 Quality assurance
SUP.4 Verification
SUP.5 Validation
SUP.6 Joint review
SUP.7 Audit
SUP.8 Problem resolution
MAN Management
MAN.1 Management
MAN.2 Project management
MAN.3 Quality management
MAN.4 Risk management
ORG Organization
ORG.1 Organizational alignment
ORG.2 Improvement
ORG.2.1 Process establishment
ORG.2.2 Process assessment
ORG.2.3 Process improvement
ORG.3 Human resource mgmt.
ORG.4 Infrastructure
ORG.5 Measurement
ORG.6 Reuse
ORG.7 Financial management
ORG.8 Manage supplier

relationship
ORG.9 Manage user relationship

Figure 18.4 Improved process profile obtained by a review assessment

Software requirements in particular are critical elements of software
acquisition, and having an efficient, consistent, and cost-effective means of
handling these is of paramount importance.

572 Part VI Software Engineering Process System Improvement

Close monitoring of entire development processes against functional
requirements, quality criteria, and schedules enabled a software system
acquirer to find problems earlier and to avoid risks of project delay and
intensive postdelivery maintenance.

18.5 Software Process Improvement
 Case-3

This section describes a case study in software process improvement in
Organization C, an embedded software developer, by using the ISO/IEC TR
15504 process model.

18.5.1 BACKGROUND

Organization C is an established software developer providing embedded
software for laboratory instrument systems. This case study reports ISO/IEC
TR 15504-based process improvement experience gained in a pilot software
process improvement project carried out in the organization.

18.5.2 APPROACH TO PROCESS IMPROVEMENT

In Chapter 17 we established the generic approach to model-based process
improvement. This case study demonstrates how the generic improvement
methodology is applied in the software industry for addressing identified
problems in an organization’s software engineering process system. The
ISO/IEC TR 15504 process model was adopted in the organization to
implement systematic process improvement.

18.5.2.1 Examining the Needs for Process Improvement

In Organization C’s practice, there was not a complete software engineering
process system. For software development there was no formal testing
process; instead, software was tested by peer programmers acting as users.

Chapter 18 Case Studies in Software Process Improvement 573

For software project management there were no defined software quality
assurance processes; instead, a customer problems report and maintenance
team had been established as fire fighters.

As a result, the more systems they developed and sold, the worse the
maintenance situations. This was a crucial problem that had been troubling
the management and quality assurance engineers in Organization C.

To satisfy customers’ demands and to keep the market share of the
software systems developed in Organization C, all the managers and
developers realized that a formal software engineering process system was
urgently needed. The need for establishing software requirement
specification, software testing and software quality assurance (SQA)
processes were especially emphasized.

A preliminary process improvement plan was set up to concentrate on
defect reduction as a major goal of the organization.

18.5.2.2 Conducting a Baseline Assessment

As a starting point of the improvement program, it was decided to undertake
a baseline process assessment to get a better picture of the current situation.
An assessment team was appointed which included an experienced software
process assessor (the mentor), a software quality assurance engineer, and
representatives of software engineers and managers. The assessees included
all technical, managerial, and support staff who had a role in the sampled
projects.

The purpose of the baseline assessment was to pinpoint the status of
current software processes and practices, and to identify the processes that
contributed significantly to the inclusion of defects in the software products.
The assessment scope was decided as all the ISO/IEC TR 15504 engineering
processes (ENG.1 – ENG.7) and seven of the eight project processes (PRO.1
– PRO.7) as shown in Table 18.5.

All project staff were briefed about the purposes of the assessment, the
ISO/IEC TR 15504 process model, mapping of the organization’s processes
onto the ISO/IEC TR 15504 processes, and a plan of the assessment.

Table 18.5
Assessment Scope of the ISO/IEC TR 15504 Processes

ID. Process Category Process Selected
CUS Customer- supplier

CUS.1 Acquire software product

CUS.2 Establish contract

CUS.3 Identify customer needs

574 Part VI Software Engineering Process System Improvement

CUS.4 Perform joint audits and reviews

CUS.5 Package, deliver, and install software

CUS.6 Support operation of software

CUS.7 Provide customer service

CUS.8 Assess customer satisfaction

ENG Engineering

ENG.1 Develop system requirements ¥

ENG.2 Develop software requirements ¥

ENG.3 Develop software design ¥

ENG.4 Implement software design ¥

ENG.5 Integrate and test software ¥

ENG.6 Integrate and test system ¥

ENG.7 Maintain system and software ¥

RRO Project

PRO.1 Plan project life cycle ¥

PRO.2 Establish project plan ¥

PRO.3 Build project teams ¥

PRO.4 Manage requirements ¥

PRO.5 Manage quality ¥

PRO.6 Manage risks ¥

PRO.7 Manage resources and schedules ¥

PRO.8 Manage subcontractors N/A

SUP Support

SUP.1 Develop documentation

SUP.2 Perform configuration management

SUP.3 Perform quality assurance

SUP.4 Perform problem resolution

SUP.5 Perform peer reviews

ORG Organization

ORG.1 Engineer the business

ORG.2 Define the process

ORG.3 Improve the process

ORG.4 Perform training

ORG.5 Enable reuse

ORG.6 Provide software engineering environment

ORG.7 Provide work facilities

After a two-week assessment according to the method and algorithm defined
in Chapter 8 as well as the assessment approach described in Section 15.2,
an assessment report was finally produced with a process profile as shown in
Figure 18.5.

Chapter 18 Case Studies in Software Process Improvement 575

18.5.2.3 Identifying Process Improvement Opportunities

Process improvement opportunities could be one of the following: (a)
enhancing inadequate processes, (b) replacing ineffective processes, or (c)
introducing new processes.

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 1 2 3 4 5 6 7

 ENG PRO

Ca p a b i l i t y
l e v e l

Figure 18.5 Process profile produced by the baseline assessment

Analyzing the assessment results as shown in Figure 18.5, it has been found
that software was being developed without a clear understanding of
requirements, so that the software engineers spent a lot of time going back
and making corrections once they understood the requirements. A
conclusion was that last-minute changes had the potential to introduce
defects into the software. In addition, system test activities were not
performed in a systematic way.

Detailed analysis showed that there was a satisfactory situation in the
area of project management because most of the processes were at capability
level two, and some at capability level 3 with no significant weaknesses
except PRO.4 – management requirements. Software design and mainte-
nance processes seemed to be satisfactory: ENG.3, ENG.4, and ENG.7 were
all at level 2.

The problem areas appeared to be related to requirement definition and
management (ENG.1, ENG.2, and PRO.4) and system testing (ENG.5 and
ENG.6).

The assessment team decided to address these weak processes as keys
for the improvement program. The team recommended that Organization C
target the five prioritized processes at ISO/IEC TR 15504 capability level 2.

576 Part VI Software Engineering Process System Improvement

18.5.2.4 Implementing Recommended Improvement

The pinpointed process strengths and weaknesses and identified
improvement areas were documented in a process improvement action plan,
which included:

• Establishment of an organizational mechanism to monitor the
implementation of the improvement program

• Detailed procedure and schedule for achieving the improvement

• Definition of criteria of achievement of the process improvement

• Resources required for the process improvement

• The main actions for improving the weak processes were
recommended:

– The introduction of a systematic approach to the collection and
analysis of customer needs

– The definition of a clearer interface between staff supporting the
customer and staff developing software products

– The introduction of a systematic approach to system and
acceptance testing

– The introduction of formal reviews to be held on completion of
each of these processes

– The launch of a training program for all staff involved in
software development, management, and support

The team made an interim presentation to senior management about the
improvement action plan that was well-received. Management approved the
updated process improvement program, including the action plan, schedule,
budget, and resources. Thus, process improvement activities were formally
started at Organization C according to the action plan.

18.5.2.5 Reviewing Process Improvement Achievement

After acting throughout a completed project life cycle as planned in the
process improvement program, a review assessment was carried out to
confirm the improvement and benefits. An improved process profile was
obtained by the review assessment as shown in Figure 18.6. The new process

Chapter 18 Case Studies in Software Process Improvement 577

profile indicated that almost all processes had achieved the targeted
capability levels except PRO.4.

The changes introduced in the process improvement program were
carefully reviewed and documented. Those processes and practices that had
proven benefits were distributed to all units to be used as references to plan
their own improvement projects.

A new phase of process improvement was planned based on the review
assessment. It was another iteration of the procedures as described thus far.

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Baseline Review Target

 ENG PRO

Ca p a b i l i t y
l e v e l

Figure 18.6 Model-based software process improvement

18.5.2.6 Sustaining Improvement Gains

A permanent process engineering team was appointed to monitor process
improvement progress. Practical and effective processes were regulated at
organizational and project levels. Advanced technology and new best
practices were introduced into the process systems. Regular meetings were
called to review process status and performance, identify problems
occurring, find solutions for problems, and improve processes for preventing
the causes of problems. Regular assessments of processes were conducted to
reinforce the software engineering process system within Organization C,
and to set new goals in continuous process improvement.

18.5.3 LESSONS LEARNED

With this process improvement case study the following important
experiences were gained:

• The process improvement pattern, “baseline-assessment – action of
improvement – review-assessment,” adopted in this case study
provides a practical and effective approach to process improvement.

578 Part VI Software Engineering Process System Improvement

• Process improvement should be set as one of the important business
goals at the organizational level.

• Senior management initiative and involvement are among the keys
to success.

• Sufficient resources for process improvement, including budget,
qualified improvement team and consultant, and suitable process
model and improvement approach, need to be made available.

• Provision of intensive training of staff is one of the most crucial
activities for the adoption and effective operation of new processes
in process improvement.

18.6 Summary

This chapter has reviewed the scale and trends of worldwide software
process improvement in the software industry, and explored direct and
indirect benefits as well as commonly recognized success factors in software
process improvement. Three case studies were reported in order to show the
practical approaches to process improvement in the software industry, and to
summarize the experience and lessons learned.

The basic knowledge structure of this chapter is as follows:

Chapter 18. Case Studies in Software Process Improvement

• General
 − Purposes of this chapter
 − To review a broad picture of software process improvement
 in the software industry

 − To investigate the benefits and common goals of software
 process improvement in industry

 − To explore a generic approach to assessment model-based

Chapter 18 Case Studies in Software Process Improvement 579

 software process improvement

 − To demonstrate process improvement by the adaptation and
 integration of external and internal standards and models

 • Benefits of software process improvement
− Quantitative measurement
− Qualitative measurement

 − Key success factors in software process improvement
 – Main barriers to software process improvement

• Software process improvement Case-1
– Organization type: multiple application software developer
− Main approach: improvement by establishing integrated
 internal process standards based on CMM,
 ISO 9001, and in-house process models

 − Key lessons learned: adaptation of software process standards
 and models to organizational needs

• Software process improvement Case-2
– Organization type: software components and systems acquirer
− Main approach: extended ISO/IEC TR 15504 model- and
 assessment-based process improvement

 − Key lessons learned: software process are fundamental to the
 smooth running and success of a software
 company

• Software process improvement Case-3
– Organization type: an embedded software developer
− Main approach: ISO/IEC TR 15504 model- and assessment-

 based process improvement
 −Key lessons learned: a pattern for process improvement:
 baseline-assessment, action of
 improvement, and review-assessment

• A generic software process improvement approach
– Examine the needs for process improvement

 − Conduct a baseline assessment
 − Identify process improvement opportunities
 − Implement recommended improvement
 − Review process improvement achievement
 − Sustain improvement gains

580 Part VI Software Engineering Process System Improvement

Major achievements and issues for further research suggested by this chapter
are highlighted below:

• Observing the industry case studies in software process
improvement, it is learned that in the real-world environment,
practical strategy in software process engineering is to view in the
large and to implement in the small. The former indicates that if
there is no strategic vision of the complete picture of a software
engineering process system, the direction of improvement would be
wrong. The latter shows that software process improvement is
naturally a graduated and step-by-step pursuing program. If an
improvement action plan is too ambitious and too fast, it would not
likely be achieved as planned.

• The most significant benefits of process improvement in software
engineering have been commonly recognized as follows:

– Improvement of organization competitiveness

– Improvement of software quality

– Increment of software productivity

– Reduction of time to market

• Some commonly recognized success factors in software process
improvement are as follows:

– Senior management involvement

– Defined, well-received improvement goals

– Established organizational roles and responsibilities for process
improvement

– Adaptation of international standards and established process
models

– Planed resources for process establishment and improvement

– Staff training for adoption of new processes in a software
engineering process system

– Sustained improvement achievement by regulation of software
process system, organization’s quality policy, and staff training

– Pursuit of continuous process improvement

Chapter 18 Case Studies in Software Process Improvement 581

• Some commonly recognized barriers and counterproductive
practices in software process improvement are as follows:

– Lack of senior management support

– Lack of resources and qualified software process engineers

– Lack of knowledge of software engineering process systems and
best practices

– Staff nonawareness of process improvement goals and
procedures

– Starting process improvement before a defined process system
has been established in an organization

– Pursuit of overly ambitious improvement goals in one step

– Pursuit of one-off improvement or certification rather than
continuous process improvement

• The new approach to benchmark-based process improvement
provides an interesting research and experiment subject in software
process engineering.

This chapter has shown an encouraging picture of software engineering
process establishment, application, and improvement in the industry.
Considering that more and more software development organizations have
adopted software process systems as the key architectural framework for
implementing and improving software engineering, we may expect more
and more software organizations to seek to improve in the same ways.

Annotated References

The European Systems and Software Initiative (ESSI) was launched by the
European Commission in 1993, and aimed at promoting the adoption of
software best practices in European software development organizations.
ESSI has sponsored a number of programs for software assessment and

582 Part VI Software Engineering Process System Improvement

improvement projects and an experience repository. For details see:
http://www.cordis.lu/esprit/src/stessi.htm.

Within ESSI programs, a VASIE process improvement experiments
(PIEs) repository, maintained by the European Software Institute, is available
at http://www.esi.se/VASIE. A number of case studies drawn from
ESSI PIEs project process improvement experiences is documented at
http://www.cordis.lu/espit/src/stessi.htm. The SPIRE project
process improvement case studies are reported at
http://www.cse.dcu.ir/spire.

In Curtis’ (1992) and Zubrow’s (1997) studies, a large number of
organizations that have undergone CMM assessment before 1997 have been
surveyed. The distributions of capability levels and motivations for process
improvement have been revealed. Goldenson and Herbsleb (1995) carried out
a follow-up survey on 61 CMM-assessed organizations and reported a
number of factors that may affect process improvement success.

The SPICE Project (1998) and Herbsleb et al. (1994) have also studied
the benefits of software process improvement with a set of statistics data.
Messnarz and Tully (1999) identified the financial, operating, production,
marketing and human leverages of software process improvement for
business success.

Humphrey, Snyder, and Willis (1991b) reported a success story of
software process improvement at Hughes Aircraft. Fitzgerald and O’Kane
(1999) studied a software process improvement effort over time and revealed
how Motorola’s Cellular Infrastructure Group progressed to CMM Level 4,
and what the critical success factors are in software process improvement.

Cromer and Horch (1999) reported their path to process standardization
and improvement in the IEEE 4th International Software Engineering
Standards Symposium. In the same proceedings, Wang et al. (1999f)
reported the establishment of a national benchmark of software engineering
practices, and the positive attitude and comments of the Swedish software
industries on software process improvement.

There were arguments on the benefits of software process improvement.
Jones (1996) reported a negative record with cases that had not obtained
tangible benefits accruing. Based mainly on the CMM model, Fayad and
Laitinen (1997) considered process assessment to be wasteful. Seddon (1997)
listed a number of side-effects of ISO 9000.

Chapter 18 Case Studies in Software Process Improvement 583

Questions and Problems

18.1 According to the SEPRM process framework as described in Table
9.2, log your project effort distribution in each of the software
engineering process and process categories. Try to record the effort
(time and/or budget) you spend according to Table 9.2 and report the
average ratio of effort of your project(s) in forms of:

<organization>% : <development>% : <management>%

18.2 According to the average ratio of effort distribution of your
organization as derived in Ex.18.1, you may deploy your project team
and assign software engineering roles on a sound basis. Assuming an
average ratio of effort distribution is: <organization>% :
<development>% : <management>% = 1 : 6 : 3, try to configure a
putative software project team and assign the roles of the staff in it.

18.3 Describe what you can learn from process improvement Case Study
One presented in Section 18.3.

18.4 Describe what you can learn from process improvement Case Study
Two presented in Section 18.4.

18.5 Describe what you can learn from process improvement Case Study
Three presented in Section 18.5.

18.6 In Section 18.2 the metrics of benefits of process improvement have
been provided. Explain which of the top three quantitative and
qualitative measurements you would apply in your software
improvement project.

This page intentionally left blankThis page intentionally left blank

585

Chapter 19

REVIEW
AND

PERSPECTIVES

I
Fundamentals
of the SE
Process

VI
SE Process
Improvement

II
SE Process
System
Modeling

III
SE Process
System
Analysis

IV
SE Process
Establish-
 ment

V
SE Process
Assessment

19.1 Overview 19.3 Perspectives on future development
19.2 Review of advances in process-based 19.4 Concluding remarks
 software engineering Annotated references

 19. Review and Perspectives

Principles and Applications of Software Engineering Processes
– A Unified Process Framework and a Rigorous Approach

586 Chapter 19

19.1 Overview

Within the modern domain of software engineering, professional roles have
extended from conventional programmers to a dramatically long list. As
shown in Table 2.2, there are 13 software engineering organizational roles,
11 software development roles, and 8 managerial roles that have been
identified in the software industry. They are typically listed as: senior
manager, project manager, customer solution analyst, system analyst, system
architect, software engineer, programmer, testing engineer, software quality
assurance (SQA) engineer, maintenance engineer, customer supporting
engineer, internal supporting staff, etc.

Using a rough estimation of the current scale of the global software
industry, readers may recognize the tremendous development speed of the
industry. Two decades ago, programmers and software professionals were
mainly academics and researchers working in universities, research
institutions and industry laboratories. In 1999, as reported by Jones (1999),
there were 2,383,500 software development and software engineering
professionals in the USA. In Asia, Bagchi (1999) reported that India’s 338
universities and 48 engineering colleges produce 67,785 programmers who
join the software industry every year. This implies that in the last decade
India has graduated more than 0.67 million software engineers. Japan’s and
China’s output of software engineers is considered about two to three times
of that of India. Putting these data together and assuming an even
distribution among the regions of North America, Europe, and Asia-Pacific,
it is estimated conservatively, that there are more than 6 million software
engineering professionals in the software industry all over the world.

Observing the amazingly fast development of the software industry,
readers may make a comparison between the software industry today and the
telecommunication industry half a century ago. After Alexander Graham
Bell (1847 – 1922) invented the telephone in 1876, there was a peak for
demand of telephony in many countries during the 1930s and the 1940s.
Because telephone switching was carried out manually on exchange boards,
an operator could not manage more than a couple dozen lines at that time.
Therefore, people had predicted that to fulfil the demand of a telephonic
society, almost all housewives would have to work at the exchange offices
eventually. Inventions and development of the electromagnetic relay and
then computer-controlled automatic switching systems met the demand.

Review and Perspectives 587

Now the software industry has found that software development is brain-
power-intensive. Furthermore, every application is not routine and repetitive
work, so that software engineering and automation are not good bedfellows
for implementation. By observing the nature of software development, many
thought there would be no “silver bullet” [Brooks, 1975/87/95] and,
inevitably, the software industry is and will continue to expand
exponentially.

However, an optimistic aspect of software engineering as shown in this
book is that there is an element of repeatability in software development –
the software engineering process – that can be identified more and more
precisely and be reused and even automated more and more via software
engineering. Thus, it is the principle aim of process-based software
engineering to identify precisely what are the repeatable and reusable
processes in large-scale software development, and to support, regulate and
automate as many processes as possible while leaving as little as possible for
mental-intensive work. This book has attempted to document the basic
research and industry best practices towards this fundamental aim of the
discipline of process-based software engineering.

In the rest of this chapter, a brief review of progress and important
findings of this book in process-based software engineering are provided in
Section 19.2. Perspectives on future development in this discipline are
provided in Section 19.3. These are followed by a summary and closing
remarks.

19.2 Review of Advances in Process-
Based Software Engineering

This book has addressed the fundamental theories, methodologies, and
applications of the new discipline of process-based software engineering.
The authors have investigated the philosophical, mathematical, and
managerial foundations in order to establish a unified software engineering
process framework, to develop a rigorous and practical approach to process-
based software engineering, and to furnish a detailed guide and case studies
for practitioners in the industry.

The proliferation of research into the software engineering process in
the last decade has formed a new discipline. However, it may be argued that
the characteristics of a mature discipline are that there is a theoretical

588 Chapter 19

framework and a rigorous, formal, and quantitative methodology. This work
has intended to review the progress and summarize the experience of
research, practices, and standardization in the software engineering process
discipline, and to help the young discipline further evolve away from chaos
and toward order in its foundations and, from largely empirical methods,
toward formalization. This implies a move from the qualitative to
quantitative in approach and in measurement.

In this book a variety of theories in process establishment, assessment,
and improvement have been unified, and fundamental architectures and
requirements for software engineering process modeling and analysis have
been clarified. The unified framework developed in this book has attempted
to lay a coherent theoretical and structural foundation for software process
modeling and analysis. This framework and SEPRM have been validated by
a set of process benchmarks and the successful mutual transformation of
capability levels between current process models.

The delivered subjects and important progress in this book are
summarized in Table 19.1.

 Table 19.1
Review of the Work Developed in This Book

Chapter Subject Area Key Progress or Problems Solved
Part I Fundamentals of

the Software
Engineering Process

1 Introduction • Investigated the nature and philosophical, mathematical,
 and managerial foundations of software engineering
• Reviewed existing approaches to software engineering
• Explored the new approach of process-based software
 engineering and related issues in research and practices

2 A unified framework of
software engineering
process

• Developed a unified software engineering process
 framework
• Showed fitness of current process models as subset
 paradigms of the unified process framework
• Paved the way for developing an integrated software
 engineering process reference model (SEPRM)
• Enabled quantitative analysis of process characteristics of
 significance, practice, and effectiveness

3 Process algebra • Investigated formal methods for process description and
 modeling
• Studied the approaches for process abstraction
• Introduced a paradigm of process algebra – CSP
• Demonstrated how process patterns, relationships, and
 interactions are formally described by process algebra

4 Process-based software
engineering

• Introduced the concept of process-based software
 engineering
• Described basic process methodologies for software
 engineering

Review and Perspectives 589

• Described software process system establishment
 procedures and methods
• Described software process system assessment methods
 and their classification
• Described software process system improvement
 philosophies and methodologies

Part II Software Engineering
Process System
Modeling

5 The CMM model • Reviewed the history and background of CMM
 development
• Described the CMM process model and taxonomy
• Described the CMM capability model and capability
 determination methodology
• Developed an approach to formally describe the CMM
 process model, and to algorithmically describe the CMM
 process capability determination method
• Developed a CMM algorithm for software process
 assessment
• Explained how the CMM algorithm can be used in
 process assessment and how its algorithm complexity is
 estimated
• Demonstrated a case study of a practical CMM
 assessment by using the CMM algorithm
• Discussed the usability of CMM in process establishment,
 assessment, and improvement in software engineering

6 The ISO 9001 model • Reviewed the history and background of ISO 9001
 development
• Described the ISO 9001 process model and taxonomy
• Described the ISO 9001 capability model and capability
 determination methodology
• Developed an approach to formally describe the ISO 9001
 process model, and to algorithmically describe the ISO
 9001 process capability determination method
• Developed an ISO 9001 algorithm for software process
 assessment
• Explained how the ISO 9001 algorithm can be used in
 process assessment and how its algorithm complexity is
 estimated
• Demonstrated a case study of a practical ISO 9001
 assessment by using the ISO 9001 algorithm
• Discussed the usability of ISO 9001 in process
 establishment, assessment, and improvement in software
 engineering

7 The BOOTSTRAP
model

• Reviewed the history and background of BOOTSTRAP
 development
• Described the BOOTSTRAP process model and
 taxonomy
• Described the BOOTSTRAP capability model and
 capability determination methodology
• Developed an approach to formally describe the
 BOOTSTRAP process model, and to algorithmically
 describe the BOOTSTRAP process capability
 determination method

590 Chapter 19

• Developed a BOOTSTRAP algorithm for software
 process assessment
• Explained how the BOOTSTRAP algorithm can be used
 in process assessment and how its algorithm complexity is
 estimated
• Demonstrated a case study of a practical BOOTSTRAP
 assessment by using the BOOTSTRAP algorithm
• Discussed the usability of BOOTSTRAP in process
 establishment, assessment, and improvement in software
 engineering

8 The ISO/IEC TR
15504 model

• Reviewed the history and background of ISO/IEC TR
 15504 development
• Described the ISO/IEC TR 15504 process model and
 taxonomy
• Described the ISO/IEC TR 15504 capability model and
 capability determination methodology
• Developed an approach to formally describe the ISO/IEC
 TR 15504 process model and to algorithmically describe
 the ISO/IEC TR 15504 process capability determination
 method
• Developed an ISO/IEC TR 15504 algorithm for software
 process assessment
• Explained how the ISO/IEC TR 15504 algorithm can be
 used in process assessment and how its algorithm
 complexity is estimated
• Demonstrated a case study of a practical ISO/IEC TR
 15504 assessment by using the ISO/IEC TR 15504
 algorithm
• Discussed the usability of ISO/IEC TR 15504 in process
 establishment, assessment, and improvement for software
 engineering

9 The SEPRM model • Reviewed the history and background of SEPRM
 development
• Described the SEPRM process model and taxonomy
• Described the SEPRM capability model and capability
 determination methodology
• Developed an approach to formally describe the SEPRM
 process model and to algorithmically describe the
 SEPRM process capability determination method
• Developed an SEPRM algorithm for software process
 assessment
• Explained how the SEPRM algorithm can be used
 in process assessment and how its algorithm complexity is
 estimated
• Demonstrated a case study of a practical SEPRM
 assessment by using the SEPRM algorithm
• Discussed the usability of SEPRM in process
 establishment, assessment, and improvement in software
 engineering

Part III Software Engineering
Process
Establishment

10 Benchmarking the
SEPRM processes

• Established a foundation of practice for the validation,
 calibration and benchmarking of software process models

Review and Perspectives 591

• Sought statistical criteria for selecting processes and
 BPAs in process system modeling
• Validated the BPAs and processes modeled in SEPRM
• Enabled a new approach to benchmark-based process
 assessment and improvement
• Characterized a superset of processes and BPAs in order
 to provide reference points for existing process models
 and future new process models

11 Comparative analysis of
current process models

• Analyzed the relationships between current process
 models by using one-to-one, one-to-many, and/or
 many-to-one mappings
• Investigated compatibility and correlation between
 current process models
• Explored features and special orientation of current
 process models so that suitable or combined process
 models can be chosen for a specific software development
 organization
• Enabled the development of process capability
 transformations between current process models

12 Transformation of
capability levels
between current process
models

• Found out the interrelationships between the capability
 scales of current process models
• Sought an approach for transforming the capability levels
 between current process models
• Explored the stability of assessment for current process
 models
• Investigated the time and effort expended in process
 assessments using current process models

Part IV Software Engineering
Process
Establishment

13 Software process
establishment
methodologies

• Provided practical guidance on how to establish software
 engineering process systems at organization, project, and
 team levels
• Developed a set of useful methodologies for software
 process establishment and implementation
• Demonstrated a parallel process model for software
 quality assurance which is a lightweight project process
 model tailored from SEPRM
• Demonstrated a process model for software project
 management which is a medium-weight project process
 model tailored from SEPRM
• Demonstrated a case study on how CMM may be
 customized for small software development
 organizations

14 An extension of
ISO/IEC TR 15504
model

• Demonstrated a complete example of process model
 establishment
• Offered an approach for extending an existing process
 standard or model
• Defined an approach to develop plug-in process modules
 for a main process reference model
• Demonstrated how an organization’s process reference
 model is extended or adapted to cover new processes
 for special needs

Part V Software Engineering

592 Chapter 19

Process Assessment
15 Software process

assessment
methodologies

• Reviewed the scale and practices involved in software
 process assessment in the worldwide software industry
• Explored a model-based software process assessment
 methodology
• Developed a benchmark-based software process
 assessment methodology
• Demonstrated how the generic SEPRM process
 assessment methodology and benchmarks might be
 applied in the software industry

16 Supporting tools for
software process
assessment

• Reviewed software process assessment supporting
 technologies and tools
• Demonstrated how the generic assessment methodologies
 described in Chapter 15 are implemented and supported
 by assessment tools
• Developed a template-supported software process
 assessment method based on the SEPRM reference
 model
• Explored a tool-supported software process assessment
 method and the basic requirements for assessment tools
• Provided an insight into the practical methods used by
 assessors to enable those being assessed or those seeking
 to implement self-assessment to understand and reproduce
 a process assessment

Part VI Software Engineering
Process Improvement

17 Software process
improvement
methodologies

• Explored philosophies, rules, and generic approaches to
 software process improvement
• Explored a model-based software process improvement
 methodology
• Developed a benchmark-based software process
 improvement methodology
• Developed a template-based software process
 improvement methodology
• Demonstrated how the SEPRM process model and
 benchmarks are applied in process improvement

18 Case studies in software
process improvement

• Reviewed a broad picture of software process
 improvement in the software industry
• Investigated the benefits and common goals of software
 process improvement in industry
• Explored a generic approach to assessment model-based
 software process improvement
• Demonstrated process improvement by the adaptation and
 integration of external and internal standards and models

19 Review and
Perspectives

• Reviewed research and practices in the discipline of
 software engineering and software engineering process
• Reviewed advances in this work toward a well-
 founded software engineering process system discipline
• Provided perspectives on future development

Review and Perspectives 593

This work has been part of the international effort for building a well-
founded discipline of process-based software engineering. The integrated
theories, methods, models, frameworks, and benchmarks of software
engineering processes developed in this book have been found in a wide
range of applications in software engineering.

19.3 Perspectives on Future
Development

An idiom says that one can “gain new knowledge by reviewing the past.” In
this section the authors intend to present perspectives on future development
in the discipline of process-based software engineering. The authors attempt
to predict the trends in software engineering research, standardization, and
the software industry. Some areas for future research are suggested which
the authors consider significant and worthy of being explored in order to
build on the results of this book.

19.3.1 TRENDS IN SOFTWARE ENGINEERING
RESEARCH

Major trends in the research of software engineering in general, and of
software engineering processes in particular, have been considered as
follows.

19.3.1.1 Comparative Studies of Software Engineering and Other
 Engineering Disciplines

In tracing the history of software engineering, it has been found that many
of the important concepts such as specification, requirement analysis,
design, testing, process, and quality were borrowed or inspired by the
methods and practices developed in other engineering disciplines.
Therefore, comparative studies in the interdisciplinary areas of software
engineering from a wide perspective of the engineering disciplines could be
quite inspirational and useful for understanding how software engineering
differs from other engineering disciplines, and how software engineering
may be cross- fertilized from other disciplines.

594 Chapter 19

For example, software design-review and inspection are popular
techniques that were recently introduced into software quality assurance
[Fagan, 1976/86; Gilb and Graham, 1993; Runeson and Wohlen, 1998], the
personal software process (PSP) [Humphrey, 1997], and the team software
process (TSP) [Humphrey, 1999]. These concepts are directly inspired by
universal quality system practices and principles. It is reported that for
ensuring the quality of a new model of a car there may be up to 10K
inspection points in the checklists of the entire development process. If
software inspection had identified the checking points and conducted
inspections and tests at that magnitude, the quality of software would have
reached levels of excellence.

Historically, the development of generic quality system technologies has
evolved in three generations known as post, intermediate, and preventive
quality assurance technologies:

• The first generation technology: Post production quality check

There are no processes and intermediate quality checks. Quality
control actions focus on inspection and test of the final products
after defects have been injected.

• The second generation technology: Intermediate quality check

A whole development or manufacturing procedure is divided into a
series of processes so that intermediate quality checks are enabled
and defects can be found earlier after they are injected.

• The third generation technology: Defect prevention

 This is a modern quality assurance technology that emphasizes
actions that may prevent problems from happening via TQM and
problem causal analysis. The former provides a precise process and
quality assurance system; the latter identifies the causes of defect
injection and pinpoints locations of the causes in processes in order
to take measures that address the roots of the problems.

On the basis of the above classification of generic quality system principles,
it is noteworthy that some of the current software engineering technologies
are experiencing the early stage of generic quality system maturity.

Software engineering models and methodologies have very much
adopted and followed mass manufacturing processes. Based on the improved
understanding of the nature of software engineering as discussed in
Chapter 1, researchers and practitioners may need to pay attention to
innovative software composition and authoring processes rather than
conventional mass production processes.

Review and Perspectives 595

On the other hand, software engineering is probably the most
complicated and mental-work-intensive engineering discipline. Its generic
software process approach and inherent formal and rigorous methods have
significantly influenced the other engineering disciplines. In recent years, a
number of enterprise process models [Bignell et al., 1985], the workflow
[Marshak, 1993; Schael, 1998], and business process reengineering
methodologies [Johansson et al., 1993; Gruhn, 1994; Wastell et al., 1994]
have been developed by using the software engineering process technologies.

19.3.1.2 Process-Based Software Engineering

In this book the software engineering process system has been presented as a
fundamental infrastructure for software engineering. Process-based
development has been proven a successful approach not only in software
engineering, but also in other, long matured engineering disciplines.

A trend in software engineering process system modeling is to adopt an
operating system technology known as “plug-ins.” A plug-in is an extended
process module that can be easily adapted to a host process system
infrastructure. The plug-in process module usually has a conformant
structure and identical syntax as those of the host process system model.

19.3.1.3 Process Reengineering

Process reengineering is a technology to adapt and reorganize an existing
software engineering process system. Process reengineering has been found
benefit-providing in the software industry.

For instance, in one of the pilot projects the authors advised a software
organization to shift its test design process from postcoding to parallel with
system specification and design processes. The simple reengineering of the
processes has been proven beneficial. A large proportion of the requirement
specification gaps and system design defects are found long before the
software implementation processes begin. As a result, the postcoding defect
rate has been reduced dramatically.

Further, and much more significantly, the project showed that the
defects injected and revealed in different processes were not equivalent in
terms of significance, scope of impact, and/or the costs to removal. Almost
all of the defects found in the reengineered test design process were
significant problems that would impact all following processes if they had
not been removed at an early stage.

596 Chapter 19

19.3.1.4 Software Engineering Process Model Integration and
 Innovation

As mentioned in Chapter 5, although the term “software engineering” has
been introduced around 30 years since Bauer (1968), industrialized software
engineering started from the widespread use of personal computers in the
1980s. Considering that the process models of other engineering disciplines
such as electronic and mechanical engineering have developed and matured
over several decades, or even centuries in the case of civil engineering,
continuous improvement of current software process models themselves are
the responsibility of both the model developers and the practitioners.

Software engineering process model integration and unification is a
primary route toward software engineering process model excellence. Some
practitioners may have thought that we have obtained enough process
models with various orientations, therefore, the attempts at unification or
integration would be natural. Both integration of existing processes and
exploration of innovative processes are mutually complementary actions in
process-based software engineering.

19.3.1.5 Software Engineering Process Data Mining

Data mining is a technology that seeks facts, trends, and regulations from a
large-scale databank. In Appendix D we have documented a large set of
survey data on attributes of industrial practices in software engineering.
These data have been systematically analyzed in Chapter 10 using statistical
techniques and benchmarking. Readers may find new facts and statistically
significant regulations with this set of valuable data, or may use the same
methods to gather, analyze, and measure their own data in order to find new
results.

19.3.1.6 Internet-Based Software Engineering

With the Internet and Intranet as the backbone of an organization’s
information and software engineering environment, there is a trend that
more and more software vendors and developers will become application
service providers; and more and more software purchasers will become
software renters.

As a result, current distributed computing and applications would
become more or less centralized computing plus distributed applications.
However, practitioners will not care where an application is implemented
and run as long as they get a conventional system interface and the expected
services and results. This trend will eventually influence the future software
engineering process and deserves some prior thought and investigation.

Review and Perspectives 597

19.3.2 TRENDS IN SOFTWARE PROCESS
STANDARDIZATION

Major trends in software engineering process standardization have been
considered to integrate the existing process-related standards and models,
but standardization may also cover new process areas in software
engineering.

19.3.2.1 Integration of Process-Related Standards

A number of process-related standards have been developed or are under
development within the international and professional standardization
organizations such as the ISO/IEC JTC1/SC7 software engineering
subcommittee and the IEEE. Significant standards coming forward are, inter
alia: ISO/IEC 12207 (1995) on software life cycle processes, ISO/IEC CD
15288 (1999) on system life cycle processes, and ISO/IEC TR 15504 (1998)
on software process assessment and capability determination. The last has
been extensively analyzed in this book; the structures of ISO/IEC 12207 and
ISO/IEC CD 15288 are documented in Appendixes F and G.

A recent trend of ISO/IEC TR 15504 is to align its process dimension to
ISO/IEC 12207. In addition, extension for ISO/IEC TR 15504 has been
proposed to cover more of the system life cycle, such as the acquisition
processes and broader system environment processes.

Part of a structural evolution of ISO/IEC TR 15504 is the shift from a
self-contained software process and process assessment model to a standard
software process assessment model with an open infrastructure for
incorporating any existing or future process models with unified definitions
and descriptions. This would mean that the future ISO/IEC 15504 might
only provide a standard process assessment methodology and defined
compliance requirements for any external software processes. Therefore, the
existing and/or innovative software engineering processes compliant to the
standard will be defined and developed by any process model providers who
so wish.

19.3.2.2 Requirements for New Standards

The list of ISO/IEC JTC1/SC7 working groups is continuously expanding.
As the evolution of software engineering theories, methodologies, and
practices gets faster, more and more areas are expected be covered by efforts
in software engineering standardization. Candidate examples, as the authors
forecast, might be standards for system requirement definition, domain
knowledge infrastructure, software architecture and frameworks, software
engineering notations, reference software design samples, and so on.

598 Chapter 19

19.3.2.3 Standardization of Software Engineering Notations

Almost all mature science and engineering disciplines have a common
notation system. A requirement for establishing standard software
engineering notations independent of languages and methodologies is
beneficial to mainstream software development efforts.

Various software notations have been developed and adopted in software
engineering, from graphical to symbolic notations, and from visual to
mathematical (formal) notations. The existing software notations can be
classified into five categories: the formal notations, state-machine-based
notations, data-flow-based notations, object-oriented notations, and process
notations.

The international standardization community is now investigating the
feasibility of developing and unifying software engineering notations. The
central concept of this effort is to develop a notation standard that is a
primary independent entity built on a life cycle-based framework for the
description of software archetypes. Archetypes may be described in different
languages or meta-languages using the same core set of notations and a
limited set of its extensions. The standard notation should be flexible enough
to accommodate recent languages and implementations as well as those of
the future.

19.3.3 TRENDS IN THE SOFTWARE INDUSTRY

Trends in the software industry are identified as being in the following
areas: development of subdomain process models, benchmarking current
process models, and software process diagnosis.

19.3.3.1 Subdomain Process Models

Chapter 1 explained that software engineering is a discipline requiring
inter-disciplinary domain knowledge. A number of subdomain process
models have been developed recently in order to provide a more detailed
process methodology for a specific application and/or process area in
software engineering. Examples of subdomain process models are the
process models of requirement engineering processes [Sommerville and
Sawyer, 1997], system engineering processes [Bate et al., 1993], software
and IT acquisition processes [Dorling and Wang et al., 1999a/b], the Spiral
software processes [Boehm and Bose, 1994], and the Rational software
development processes [Jacobson et al., 1998]. For details, readers may wish
to consult the references.

Review and Perspectives 599

19.3.3.2 Benchmarking Current Process Models

The fundamental process benchmarks of SEPRM developed in Chapter 10
have enabled a new approach for benchmark-based process assessment and
improvement. Periodical updating of the benchmarks is useful for finding
new trends of software process performances and practices in software
engineering and in the software industry.

Dutta and his colleagues (1998) reported a European benchmark on
software management practices. IBM (1996) developed a European
benchmark on software development practices. A benchmark database for
the ISO/IEC TR 15504 (SPICE) process model is under construction which
will derive worldwide software process benchmarks based on the three-phase
trails of the ISO/IEC TR 15504 model and methodologies. Quantitative
benchmarks for the other current process models are likely to be developed
in order to provide more measurability.

19.3.3.3 Software Process Diagnosis and Software Process Analyst

Throughout this book key terms of software process modeling (SPM),
analysis (SPAN), establishment (SPE), assessment (SPA), and improvement
(SPI) have been used. In overviewing the discipline and its entire structure,
it is predicted that a new practice, software process diagnosis (SPD), might
be required in order to identify process problems, to provide causal analysis,
and to recommend improvement opportunities and plans for an established
software engineering process system.

SPD is a new concept that is different from SPA. The latter has been
oriented to measure a current process system and to prove conformance of
the system to a specific process model or standard. The former is aimed at
finding problems, causes, and improvement opportunities in software
process systems that may apply standard, tailored, integrated, external, or
internal process models. SPD would be a flexible, practical and useful
complement to current practices of SPA and SPI in process-based software
engineering.

To conduct SPD, a new role is demanded, that of process system
analyst. Process system analysts are those who are responsible for providing
SPD services and to consult in process-based software engineering.

600 Chapter 19

19.4 Concluding Remarks

The software process was recognized as a valid element of software
engineering only a few years ago. This book has attempted to show that the
software engineering process as a system is an ideal means and a
powerful tool for infrastructuring the entire framework of software
engineering. Therefore, developing from the structured, model-based, and
object-oriented software engineering methodologies, process-based software
engineering provides a new focus on overarching architectures of software
engineering.

The reorientation from the software process to the software
engineering process is quite similar to that of category theory in the
history of mathematics. Before the 1970s, category theory was treated only
as a branch of pure mathematics. However, mathematicians soon realized
that category theory was an ideal means for organizing and describing the
whole mathematical framework and for redescribing most other branches of
mathematics. Even computer scientists have recently found that category
theory is a powerful and expressive tool for computing.

This analogy can be extended to apply to the software engineering
process. For the expanded domain of software engineering, the existing
methodologies that cover individual subdomains are becoming inadequate.
Therefore, an overarching approach has been sought for a suitable
theoretical and practical infrastructure accommodating the full range of
modern software engineering practices and requirements. An interesting
approach, which is capable of accommodating most of these domains of
software engineering, is the methodologies of process-based software
engineering. Research into, and adoption of, the software engineering
process approach may be made to encompass all the existing approaches to
software engineering.

The software industry has grown rapidly to become one of the most
important labor-intensive industries. It is quite encouraging to see that more
and more software development organizations have adopted software
process systems as the key architectural frameworks for implementing and
improving software engineering. It is sure that we can expect more and
more software development organizations and projects operating at higher
capability levels in process-based software engineering.

Review and Perspectives 601

The message is that as long as fast development of software engineering
methodologies remaining viable, software engineering process models will
need to evolve as quickly. However, what will be kept stable are the
philosophies, principles, theories, and the unified framework behind these
software engineering process models.

In concluding this book the authors would like to quote Richard Karp in
his Turing Award interview in 1985 [Ashenhurst and Graham, 1987]:

There are three levels of problems. There is the level of
solving a very specific instance … . That is the level closest
to the practitioners. Then there is the level of studying the
problem in general, with emphasis on methodology for
solving it That is one level up because you are not
interested just in a specific instance. Then there is a
metatheoretic level where you study the whole structure of a
class of problems. This is the point of view that we have
inherited from logic and computability theory.

602 Chapter 19

Annotated References

Fifteen years ago, C.A.R. Hoare, a leading British theoretical computer
scientist, made the following prediction: “I don't know what the
programming language of the year 2000 will look like, but I know that it
will be named FORTRAN [Hoare, 1989].” Here, “FORTRAN” meant
“formula transformation” or implied the formal approach to programming.

Fuggetta and Wolf (1996) and Rubin (1997) provided useful resources
and predictions for future trends in the software engineering process. Many
good generic software engineering textbooks, such as Pressman (1992),
Humphrey (1995), Sommerville (1996), and Pfleeger (1998), may help
readers understand the entire domain of software engineering. In addition,
readers may refer to some of the classical essays or books on software
engineering, such as Hoare (1989), McDermid (1991), Brooks (1995), and
Wasserman (1996).

Work on important individual or subdomain process models has been
reported recently. The work covers specific process areas in software
engineering, and would be useful references related to this book. Bate and
his colleagues (1993) derived a system engineering process model based on
CMM. Boehm and Bose (1994) extended the spiral software development
model to a collaborative spiral software development process. Sommerville
and Sawyer (1997) developed a requirement engineering process model
based on a set of sixty-six “good practices.” Humphrey (1996/97/98)
developed a set of individual- and team-oriented software engineering
processes known as the personal software process (PSP) and the team
software process (TSP). Jacobson and his colleagues (1998) focused on the
technical subsystem of the software engineering process system, and
developed a unified software development process based on a use-case
driven, architecture-centric, and incremental iterative approach. Zahran
(1998) provided an informative and practical guidebook for software process
improvement. Marshak (1993) and Schael (1998) proposed a workflow
approach to generic process organization.

Jones (1999) and Bagchi (1999) reported the statistics of the numbers of
software engineering professionals in the USA and India, respectively.
These data provide a basis for estimating a global picture of the size of the
software industry. Jones (1999) also classified a set of 29 roles in software
engineering, while Noack and Schienmann (1999) identified 20 kinds of
roles.

Review and Perspectives 603

It is found that the process technologies have been cross-fertilized
between software engineering and other engineering disciplines. Warboys et
al (1999) adopted a process approach to business system development and
showed an application of software engineering process system technology in
the design of information systems. Gruhn (1994) reported software process
applications in business process reengineering and organization on process
modeling, analysis, simulation, enactment, measurement, assessment, and
improvement. Johansson and McHugh (1993) explored business process
reengineering and modeling.

For further repositories of research reports and industry experiences,
readers may refer to the archives of IEEE Software, IEEE Transactions on
Software Engineering, ACM Transactions on Software Engineering and
Methodologies, the International Journals of Empirical Software
Engineering, and Annals of Software Engineering. International conference
series on software engineering and software process are documented by the
Proceedings of the International Conference on Software Engineering
(ICSE19, 1997; ICSE20, 1998; ICSE21, 1999), Proceedings of the
International Conference on the Software Process (ICSP1, 1991 – ICSP5,
1998), Proceedings of International Software Process Workshop (ISPW5,
1989 – ISPW11, 1998), and Proceedings of the European Workshop on
Software Process Technology (EWSPT1, 1992 – EWSPT6, 1998).

This page intentionally left blankThis page intentionally left blank

605

Bibliography

Agresti, W. W. (1986), New Paradigms for Software Development, IEEE
Computer Society Press, Los Alamitos, CA.

Alberts, D. S. (1976), The Economics of Software Quality Assurance,
Proceedings of National Computer Conference, Vol.45, AFIPS Press,
Montvale, NJ, pp. 433-442.

Anthony, R. N. (1965), Planning and Control Systems: A Framework for
Analysis, Harvard University Graduate School of Business Administration,
Cambridge, MA.

Armenise, P., et al. (1992), Software Process Representation Languages:
Survey and Assessment, Proceedings of the 4th IEEE International
Conference on Software Engineering and Knowledge Engineering, Capri,
Italy.

Aron, J, D. (1983), The Program Development Process, Part 2 – The
Programming Team, Addison-Wesley, Reading, MA.

Ashenhurst, R.L. and Graham, S. (1987), ACM Turing Award Lectures, The
First Twenty Years: 1966 - 1985, Anthology Series, ACM Press, Addison-
Wesley Publishing Company, New York, pp. 458 - 466.

Aujla, S., Bryant, A. and Semmens, L. (1994), Applying Formal Methods
within Structured Development, IEEE Journal on Selected Areas in
Communications, February, IEEE.

Bagchi, S. (1999), India’s Software Industry: The People Dimension, IEEE
Software, Vol.16, No.3, May/June, pp.62-65.

Baker, F. T. (1972), Chief Programmer Team Management of Production
Programming, IBM Systems Journal, Vol.11, No.1, pp.56-73.

Bandinelli, S., Fuggetta, A., and Ghezzi, C. (1992), Software Processes as
Real-Time Systems: A Case Study using High-Level Petri Nets, Proceedings

606 Bibliography

of the International Phoenix Conference on Computers and
Communications, Arizona, April.

Bandinelli, S. et al. (1993), Computational Reflection in Software Process
Modelling: the SLANG Approach, Proceedings of the 15th International
Conference on Software Engineering, IEEE Computer Society Press, Los
Alamitos, CA, pp.144-154.

Bandinelli, S., Fuggetta, A. and Ghezzi, C. (1993), Software Process Model
Evolution in the SPADE Environment, Special Issue on Process Model
Evolution, IEEE Transactions on Software Engineering, Dec., pp.1128-
1144.

Barghouti, N.S. and Krishnamurthy, B. (1993), An Open Environment for
Process Modeling and Enactment, Proceedings of 8th International Software
Process Workshop, IEEE Computer Society Press, Los Alamitos, CA.

Bartlett, F. C. (1932), Remembering, Cambridge University Press,
Cambridge, UK.

Basili, V. (1980), Models and Metrics for Software Management and
Engineering, IEEE Computer Society Press, Los Alamitos, CA.

Basili, V. and Rombach, D. (1988), The TAME Project: Towards
Improvement-Oriented Software Environments, IEEE Transactions on
Software Engineering, Vol.14, No.6, June, pp.758-773.

Basili, V. (1993), The Experience Factory and Its Relationship to Other
Improvement Paradigms, Proceedings of 4th European Software
Engineering Conference, LNCS 717, Springer-Verlag, Berlin, pp. 68-83.

Basili, V.R., Caldiera, C., Rombach, H.D. (1994), Goal Question Metric
Paradigm, in Encyclopedia of Software Engineering (Marciniak, J.J. ed.),
Vol.1, John Wiley & Sons, New York.

Bate, R. et al. (1993), A System Engineering Capability Maturity Model,
Version 1.1, CMU/SEI-95-MM-03, Software Engineering Institute,
Pittsburgh, PA, 841993.

Bauer, F. L. (1976), Software Engineering, in Ralston, A. and Meek, C. L.
(eds.), Encyclopedia of Computer Science, Petrocelli/Charter, New York.

Bell Canada (1992), TRILLIUM - Telecom Software Product Development
Capability Assessment Model, Draft 2.1, July.

Bibliography 607

Bell Canada (1994), TRILLIUM - Model for Telecom Product Development
and Support Process Capability (Internet ed.), Release 3.0, December, pp. 1-
118.

Benedicenti, L. et al. (1999), An Experience Report on Decoding,
Monitoring and Controlling the Software Process, Proceedings of
International Conference on Product focused Software Process
Improvement (Profes’99), VTT, Oulu, Finland, pp. 345-362.

Bignell, V.D. et al. (eds.) (1985), Manufacturing Systems: Context,
Applications and Techniques, Basil Blackwell Ltd., Oxford, UK.

Boehm, B. W., Brown, J. R. and Lipow M. (1976), Quantitative Evaluation
of Software Quality, Proceedings of 2nd International Conference on
Software Engineering, ACM, IEEE and National Bureau of Standards, pp.
592-605.

Boehm, B. W., Brown, J. R., Lipow M., Macleod, G. J. and Merritt, M. J.
(1978), Characteristics of Software Quality, North-Holland, NY.

Boehm, B. W. (1981), Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, NJ.

Boehm, B.W., Penedo, M.H. et al. (1986), A Software Development
Environment for Improving Productivity, IEEE Computer, Vol. 17, No. 6,
pp.30.

Boehm, B.W. (1987), Improving Software Productivity, IEEE Computer,
Vol. 20, No. 9, pp.43.

Boehm, B. W. (1988), A Spiral Model for Software Development and
Enhancement, IEEE Computer, Vol. 21, No. 5, May, pp.61-72.

Boehm, B.W. (1991), Software Risk Management: Principles and Practices,
IEEE Software, Jan., pp.32-41.

Boehm, B. and Bose, P. (1994), A Collaborative Spiral Software process
Moderl based on Theory W, Proceedings of 3rd International Conference on
the Software Process, IEEE Computer Society Press, Reston, VA, October,
pp.59-68.

Bollinger, T.B. and McGrowan, C. (1991), A Critical Look at Software
Capability Evaluations, IEEE Software, July, pp. 25-41.

BOOTSTRAP Institute (1994), BOOTSTRAP Global Questionnaire, V.2.3,
Technical Report of BOOTSTRAP Project, pp. 1- 28, Oulo, Finland.

608 Bibliography

BOOTSTRAP Team (1993), BOOTSTRAP: Europe’s Assessment Method,
IEEE Software, May, pp.93-95.

Bovet, D. P. and Crescenzi, P. (1994), Introduction to the Theory of
Complexity, Prentice-Hall International, Englewood Cliffs, NJ.

Bowen, J.P., Fett, A. and Hinchey, M.G. (eds.) (1998), Proceedings of the Z
Formal Specification Notation, Lecture Notes in Computer Science, Vol.
1493, Springer-Verlag, Berlin.

Brech, E. F. L. (1980), The Principles and Practice of Management (2nd
ed.), Longman, London.

Brinch, H. P. (1973), Operating System Principles, Prentice-Hall,
Englewood Cliffs, NJ.

Brodman J.G. and Johnson D.L. (1994), What Small Business and Small
Organization Say about the CMM, Proceedings of the 16th International
Conference on Software Engineering (ICSE16), pp.331-340.

Broadman, J. G. and Johnson, D. L (1995), The LOGOS Tailored
CMM[SM] for Small Businesses, Small Organizations and Small Projects
(V.1.0), LOGOS International Inc., August, USA, pp. 1-26.

Broadman, J.G. and Johnson, D.L. (1997), A Software Process Improvement
Approach Tailored for Small Organizations and Small Projects, Proceedings
of 19th International Conference on Software Engineering, ACM Press,
Boston, pp.661-662.

Brooks, F. P. (1975), The Mythical Man Month, Addison-Wesley.

Brooks, F. P. (1987), No Silver Bullet: Essence and Accidents of Software
Engineering, IEEE Computer, Vol.20, No.4.

Brooks, F.P. (1995), The Mythical Man-Month: Essays on Software
Engineering, Addison Wesley Longman, Reading, MA.

Bruynooghe, R.F., Parker, J.M. and Rowles, J.S. (1991), PSS: A System for
Process Enactment, Proceedings of the first International Conference on the
Software Process, Manufacturing Complex Systems, IEEE Computer Society
Press, Los Alamitos, CA.

Bryant, A. (1989), Better Professionals for the Tools, in G.X. Ritter (ed.),
Information Processing 89, Proceedings of IFIP.

Bibliography 609

Bryant, A. (1992), A Framework for Methods Integration and Systems
Quality, Introduction to Proceedings of Leeds Workshop on Methods
Integration, Leeds, UK.

BSI (1987), BS 5750: Quality Systems, BSI, London.

Buckland, J.A. et al. (1991), Total Quality Management in Information
Systems, QED Information Sciences, Wellesley, Dedham, MA.

CCITT (1988), Recommendation Z.100 – Specification and Description
Language SDL, Blue Book, Volume VI.20 – Vol.24, ITU, Geneva.

Checkland and Peter (1981), Systems Thinking and Systems Practice, John
Wiley, New York.

Corradini, A. et al. (1996), The Category of Typed Graph Grammars and
Their Adjunction with Categories of Derivations, in 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, LCNS 1073,
pp. 56-74.

Cromer, T. and Horch, J. (1999), From the Many to the One – One
Company’s Path to Standardization, Proceedings of 4th IEEE International
Software Engineering Standards Symposium (IEEE ISESS’99), IEEE CS
Press, Brazil, May, pp.116-117.

Crosby, P. B. (1979), Quality is Free, McGraw Hill, New York.

Curtis, B. et al. (1987), On Building Software Process Models under the
Lamppost, Proceedings of the 9th International Conference on Software
Engineering, IEEE Computer Society Press, Monterey, CA., pp.96-103.

Curtis, B., Krasner, H. and Iscoe, N. (1988), A Field Study of the Software
Design Process for Large Systems, Communications of the ACM, Vol.31,
pp.1268-1287.

Curtis, B. (1992), Good Motivations for Process Improvement
Programmers, Software Process Improvement Seminar for Senior
Executives, Software Engineering Institute, Pittsburgh.

Curtis, B., Kellner, M.I., and Over, J. (1992), Process Modeling,
Communications of the ACM, Vol.35, No.9, pp.75-90.

Cusumano, M. (1991), Japan’s Software Factories, Oxford University Press,
Oxford, UK.

Davis, A.M. (1994), Fifteen Principles of Software Engineering, IEEE
Software, Nov., pp.94-96.

610 Bibliography

Dawes, J. (1991), The VDM-SL Reference Guide, Pitman, Marshfield, MA.

Deming, W. E. (1982a), Methods for Management of Productivity and
Quality, George Washington University, Washington, D.C.

Deming, W. E. (1982b), Quality, Productivity and Competitive Position,
Massachusetts Institute of technology Press, Center for Advanced
Engineering Study, Cambridge, MA.

Deming, W. E. (1986), Out of the Crisis, Massachusetts Institute of
Technology Press, Cambridge, MA.

Derniame, J.-C., Kaba, B.A. and Wastell, D. (ed.) (1999), Software Process:
Principles, Methodology, and Technology, Lecture Notes in Computer
Science, Vol. 1500, Springer-Verlag, Berlin.

Diaz, M. and Sligo, J. (1997), How Software Process Improvement Helped
Motorola, IEEE Software, Sept/Oct., pp.89-96.

Dijkstra, E. W. (1965), Programming Considered as a Human Activity, in
W. A. Kalenich (ed.), Proceedings of IFIP Congress 65, Spartan Books,
Washington, D.C.

Dijkstra, E. W. (1968), The GOTO Statement Considered Harmful,
Communications of the ACM, Vol.11, No.3, March, pp. 147-148.

Dijkstra, E. W. (1972), The Humble Programmer, Communications of the
ACM, Vol.15, No. 10, Oct., pp. 895-866.

Dijkstra, E. W. (1976), A Discipline of Programming, Prentice-Hall,
Englewood Cliffs, NJ.

Dion, R. (1992), Elements of a Process-Improvement Programme, IEEE
Software, July, pp.83-85.

Donzelli, P. and Iazeolla, G. (1999), A Software Process Simulator for
Software Product and Process Improvement, Proceedings of International
Conference on Product Focused Software Process Improvement
(PROFES’99), Oulu, Finland, June, pp.525-538.

Dorling, A. (1993), SPICE: Software Process Improvement and Capability
Determination, Information and Software Technology, Vol.35, No.6/7,
June/July.

Dorling, A. (1995), History of the SPICE Project, Proceedings of the 2nd
International SPICE Symposium, Brisbane, Australia, pp. 1-7.

Bibliography 611

Doring, A., Wang, Y. and Steinmann, C. (1998), PULSE D.4.1 – 1998, IT
Acquisition Process Assessment Tool, European Commission SPRITE S2
Research Project 97/501155 PULSE Technical Report.

Dorling, A., Wang, Y., Kirchhoff, U., Sundmaeker, H., Maupetit, C., Pitette,
G., Pereira, J. and Hansen, S. (1999a), ICT Acquisition Process Assessment
Methodology, The PULSE Consortium, March, pp.1-87.

Dorling, A., Wang, Y., et al. (1999b), Reference Model Extensions to
ISO/IEC TR 15504-2 for Acquirer Processes, ISO/IEC JTC1/SC7/WG10,
Curitiba, Brazil, May, pp. 1-34.

DTI (1987), The TickIT Guide, Department of Trade and Industry, London.

Dunn R. H. and Richard S. U. (1994), TQM for Computer Software (2nd
ed.), McGraw-Hill, Inc., New York.

Dutta, S., Kulandaiswamy, S., and Wassenhove, L.V. (1998), Benchmarking
European Software Management Best Practices, Comm. ACM, Vol. 41,
No.6, June, pp.77-86.

Dutta, S., Lee, M., and Wassenhove, L.V. (1999), Software Engineering in
Europe: A Study of Best Practices, IEEE Software, Vol. 16, No.3, May/June,
pp.82-90.

EFQM (1993), Total Quality Management - the European Model for Self-
Appraisal 1993, Guidelines for Identifying and Addressing Total Quality
Issues, European Foundation for Quality Management, Brussels, Belgium.

El Eman, K., Madhavji, N.H. and Toubache, K. (1993), Empirically Driven
Improvement of Generic Process Models, Proceedings of 8th International
Software Process Workshop (ISPW’8), IEEE Computer Society Press, Los
Alamitos, CA.

El Eman, Drouin, J.N. and Melo, W. (eds.) (1997), SPICE: The Theory and
Practice of Software Process Assessment and Capability Determination,
IEEE Computer Society Press, Los Alamitos, CA.

Ellis, D. O. and Fred, J. L. (1962), Systems Philosophy, Prentice-Hall,
Englewood Cliffs, NJ.

ESA (1991), Software Engineering Standard PSS-05-0, Issue 2, European
Space Agency (ESA), Paris, Feb.

Eskiciogla, H. and Davies, B. J. (1981), Interactive Process Planning System
for Prismatic Parts (ICAPP), International Journal of Machine Tool Design
and Research, Vol.21, No.19, pp. 193.

612 Bibliography

ESPRIT Programme (1991), Project 5441: BOOTSTRAP, SPU Assessment
Report, Assessment Questionnaire, BOOT/II-ETNO/RL-AR/3.91/
Questionnaire/IE, European Commission, Brussels, Belgium, March.

ESSI Office (1996), The Business Benefits of Software Best Practice: Case
Studies, pp. 1-40.

Evans M.W. and Marciniak J. J. (1987), Software Quality Assurance and
Management, Wiley-Interscience, New York.

EWSPT’92 (1992), Derniame, J.-C. ed., Proceedings of the First European
workshop on Software Process Technology (EWSPT’92), Trondheim,
Norway, September, LNCS 635, Springer-Verlag, Berlin.

EWSPT’94 (1994), Warboys ,B.C. ed., Proceedings of the 3rd European
workshop on Software Process Technology (EWSPT’94), Villard-de-Lans,
France, Feb., LNCS 772, Springer-Verlag, Berlin.

EWSPT’95 (1995), Schafer, W. ed., Proceedings of the 4th European
Workshop on Software Process Technology (EWSPT’95), Noordwijkerhout,
Netherlands, April, LNCS 913, Springer-Verlag, Berlin.

EWSPT’96 (1996), Montangero, C. ed., Proceedings of the 5th European
Workshop on Software Process Technology (EWSPT’96), Nancy, France,
October, LNCS 1149, Springer-Verlag, Berlin.

EWSPT’98 (1998), Gruhn, V. ed., Proceedings of the 6th European
Workshop on Software Process Technology (EWSPT’98), Weybridge, UK,
September, LNCS 1487, Springer-Verlag, Berlin.

Fabrycky, W. J., Ghare, M. and Torgersen, P. E. (1984), Applied Operations
Research and Management Science, Prentice-Hall, NJ.

Fagan, M.E. (1976), Design and Code Inspections to Reduce errors in
Program Development, IBM Systems Journal, Vol.15, No.3, pp.182-210.

Fagan, M.E. (1986), Advantages in Software Inspections, IEEE
Transactions on Software Engineering, Vol.12, No.7, pp.744-751.

Fayad, M.E. (1997a), Software Development Process: the Necessary Evil?
Communications of the ACM, Vol.40, No.9, Sept.

Fayad, M.E. and Laitinen, M. (1997b), Process Assessment: Considered
Wasteful, Communications of the ACM, Vol.40, No.11, Nov.

Feigenbaum, A.V. (1991), Total Quality Control, 14th Anniversary edition,
McGraw Hill, New York.

Bibliography 613

Feiler, P.H. and Humphrey, W.S. (1993), Software Process Development
and Enactment, Proceedings of 2nd International Conference on the
Software Process, IEEE Computer Society Press, Berlin, pp.28-40.

Fenton, N.E. (1991), Software Metrics: A Rigorous Approach, Chapman &
Hall, London.

Fenton, N. E. and Pfleeger, S.L. (1997), Software Metrics – A Rigorous and
Practical Approach, 2nd ed., PWS Publishing, London.

Finkelstein, A. et al. (eds.) (1994), Software Process Modeling and
Technology, John Wiley & Sons Inc., New York.

Fitzgerald, B. and O’Kane, T. (1999), A Longitudinal Study of Software
Process Improvement, IEEE Software, Vol. 16, No.3, May/June, pp.37 – 45.

Fuggetta, A. and Ghezzi, C. (1994), State of the Art and Open Issues in
Process-Centered SEE, Journal of Systems and Software, Vol.26, No.1.

Garg, P.K. and Jazayeri, M. (eds.) (1995), Process-Centered Software
Engineering Environments, IEEE Computer Society Press, Los Alamitos,
CA.

Gersting, J. L (1982), Mathematical Structures for Computer Science, W.
H. Freeman & Co., San Francisco.

Gilb, T. (1988), Principles of Software Engineering Management, Addison-
Wesley, Reading, MA.

Gilb, T. and Graham, D. (1993), Software Inspection, Addison-Wesley,
Reading, MA.

GMOD (1992), V-Model: Software Lifecycle Process Model, General
Report No. 250, German Ministry of Defense.

Goldenson, D. and Herbsleb, J. (1995), After the Appraisal: A Systematic
Survey of Process Improvement, its Benefits, and Factors that Influence
Success, Software Engineering Institute, CMU/SEI-95-TR-009, 1995.

Grassman, W. and Tremblay, J. P. (1995), Logic and Discrete Mathematics:
A Computer Science Perspective, Prentice-Hall International, Englewood
Cliffs, NJ.

Grayson, C. J. (1973), Management Science and Business Practice, Harvard
Business Review, Vol.51, No.4, July, pp.41-48.

Gries, D. (1981), The Science of Programming, Spinger-Verlag, Berlin.

614 Bibliography

Gruhn, V. (1994), Software Process Management and Business Process Re-
Engineering, Proceedings of the 3rd European workshop on Software
Process Technology, LNCS 772, Springer-Verlag, Villard-de-Lans, France,
Feb., pp.250-253.

Gruhn, V. (ed.) (1998), Proceedings on Software Process Technology,
Lecture Notes in Computer Science, Vol. 1487, Springer-Verlag, Berlin.

Gustavsson, A. (1989), Maintaining the Evaluation of Software Objects in
an Integrated Environment, Proceedings of 2nd International Workshop on
Software Configuration Management, ACM, Princeton, NJ, October,
pp.114-117.

Haase, V., Messmarz, R., Koch, G., Kugler, H.J. and Decrinis, P. (1994),
BOOTSTRAP Fine-Tuning Process Assessment, IEEE Software, July,
pp.25-35.

Haeberer, A.M. (ed.) (1999), Algebraic Methodology and Software
Technology, Lecture Notes in Computer Science, Vol. 1548, Springer-
Verlag, Berlin.

Hall, A. D. (1967), A Methodology for Systems Engineering, Van Nostrand
Reinhold, New York.

Hansen, G.A. (1996), Simulating Software Development Processes, IEEE
Computer, January, pp. 73-77.

Hartnett, W. E. (1977), Systems: Approaches, Theories and Applications, D.
Reidel Publishing Co., Dordrecht and Boston.

Harvey, R. L. (1994), Neural Network Principles, Prentice-Hall
International, Englewood Cliffs, NJ.

Hayes, I.J. (ed.) (1987), Specification Case Studies, Prentice-Hall, London.

Hays, W. L. (1963), Statistics, Holt, Rinehart & Winston, New York.

Herbsleb, J. et al. (1994), Benefits of CMM-Based Software Process
Improvement: Initial Results, Software Engineering Institute, CMU/SEI-94-
TR-13, August.

Hoare, C. A. R. (1969), An Axiomatic Basis for Computer Programming,
CACM, Vol. 12.

Hoare, C.A.R., E-W. Dijkstra and O-J. Dahl (1972), Structured
Programming, Academic Press, New York.

Bibliography 615

Hoare, C.A.R. (1975), Software Engineering, Computer Bulletin, Dec.,
pp.6-7.

Hoare, C. A. R. (1985), Communicating Sequential Processes, Prentice-Hall
International, Englewood Cliffs, NJ.

Hoare, C.A.R. (1986), The Mathematics of Programming, Clarendon Press,
Oxford, UK.

Hoare, C.A.R. and Jones, C.B. (eds.) (1989), Essays in Computing Science,
Prentice-Hall, Englewood Cliffs, NJ.

Hoare, C.A.R., (1995), Unified Theory of Computing Science, OUCL
Technical Monograph, Oxford University Computing Laboratory.

Horowitz, E. (ed.) (1975), Practical Strategies for Developing Large
Software Systems, Addison-Wesley, Reading, MA.

Huber, A. (1993), A Better Way to Represent BOOTSTRAP Data, IEEE
Software, Sept., pp.10.

Huda, F. and Preston, D. (1992), KAIZEN: The Applicability of Japanese
Techniques to IT, Software Quality Journal, No.1, pp.9-26, Chapman &
Hall, Boca Raton.

Humphrey, W.S. and Sweet, W.L. (1987), A Method for Assessing the
Software Engineering Capability of Contractors, Technical Report
CMU/SEI-87-TR-23, Software Engineering Institute, Pittsburgh, PA.

Humphrey, W.S. (1988), Characterizing the Software Process: A Maturity
Framework, IEEE Software, March, pp.73-79.

Humphrey, W.S. (1989), Managing the Software Process, Addison-Wesley
Longman, Reading, MA.

Humphrey, W.S. and Curtis, B. (1991a), Comment on ‘a Critical Look’,
IEEE Software, Vol.8, No.4, pp.42-47.

Humphrey, W.S., Snyder, T.R. and Willis, R.R. (1991b), Software Process
Improvement at Hughes Aircraft, IEEE Software, July, pp.11-23.

Humphrey, W. S. (1995), A Discipline for Software Engineering, SEI Series
in Software Engineering, Addison-Wesley, Reading, MA.

Humphrey, W. (1996), Using a defined and Measured Personal Software
Process, IEEE Software, May, pp. 77-88.

616 Bibliography

Humphrey, W. (1997), Introduction to the Personal Software Process,
Addison Wesley, Reading, MA.

Humphrey, W. (1999), Introduction to the Team Software Process, Addison
Wesley, Reading, MA.

IBM (1996), Software Development Performance and Practices in Europe: A
Benchmark of Software Development in Europe – Self Assessment
Questionnaire, V.2.0, IBM Eurocoordination, pp.1-11.

ICSE19 (1997), Proceedings of 19th International Conference on Software
Engineering, Boston, IEEE Computer Society Press, Los Alamitos, CA.

ICSE20 (1998), Proceedings of 20th International Conference on Software
Engineering, Kyoto, IEEE Computer Society Press, Los Alamitos, CA.

ICSE21 (1999), Proceedings of 21th International Conference on Software
Engineering, Los Angeles, IEEE Computer Society Press, Los Alamitos,
CA.

ICSP1 (1991), Proceedings of the First International Conference on the
Software Process, Redondo Beach, CA, IEEE Computer Society Press, Los
Alamitos, CA..

ICSP2 (1993), Proceedings of the 2nd International Conference on the
Software Process, Berlin, Germany, IEEE Computer Society Press, Los
Alamitos, CA.

ICSP3 (1994), Proceedings of the 3rd International Conference on the
Software Process, Reston, VA, IEEE Computer Society Press, Los Alamitos,
CA.

ICSP4 (1996), Proceedings of the 4th International Conference on the
Software Process, Brighton, UK, IEEE Computer Society Press, Los
Alamitos, CA.

ICSP5 (1998), Proceedings of the 5th International Conference on the
Software Process, IEEE Computer Society Press, Los Alamitos, CA.

IEEE (1983), Software Engineering Standards, 1983 Collection, IEEE
Computer Society Press, Los Alamitos, CA.

IEEE (1988), Software Engineering Standards, 1988 Collection, IEEE
Computer Society Press, Los Alamitos, CA.

Imai, M (1986), KAIZEN: The Key to Japan’s Competitive Success,
Random House, New York.

Bibliography 617

ISO 8258 (1991): Shewhart Control Charts, International Organization for
Standardization, Geneva.

ISO 8807 (1988): LOTOS – A Formal Description Technique Based on the
Temporal Ordering of Observational Behavior, Geneva.

ISO 9000-1 (1994): Quality Management and Quality Assurance Standards
(Part 1) - Guidelines for Selection and Use, International Organization for
Standardization, Geneva.

ISO 9000-2 (1994): Quality Management and Quality Assurance Standards
(Part 2) – Generic Guidelines for Application of ISO 9001, ISO 9002 and
ISO 9003, International Organization for Standardization, Geneva.

ISO 9000-3 (1991): Quality Management and Quality Assurance Standards
(Part 3) - Quality Management and Quality Assurance Standards (Part 3) -
Guidelines to Apply ISO 9001 for Development, Supply and Maintenance of
Software, International Organization for Standardization, Geneva.

ISO 9000-4 (1993): Quality Management and Quality System (Part 4) -
Guidelines for Dependability Programme Management, International
Organization for Standardization, Geneva.

ISO 9001 (1989): Quality Systems - Model for Quality Assurance in Design,
Development, Production, Installation, and Servicing, International
Organization for Standardization, Geneva.

ISO 9001 (1994): Quality Systems - Model for Quality Assurance in Design,
Development, Production, Installation, and Servicing, Revised Edition,
International Organization for Standardization, Geneva.

ISO 9002 (1994): Quality Systems - Model for Quality Assurance in
Production, Installation and Servicing, International Organization for
Standardization, Geneva.

ISO 9003 (1994): Quality Systems - Model for Quality Assurance in Final
Inspection and Test, International Organization for Standardization,
Geneva.

ISO 9004-1 (1994): Quality Management and Quality System Elements
(Part 1) – Guidelines, International Organization for Standardization,
Geneva.

ISO 9004-2 (1991): Quality Management and Quality System Elements
(Part 4) - Guidelines for Quality Management and Quality Systems
Elements for Services, International Organization for Standardization,
Geneva.

618 Bibliography

ISO 9004-4 (1993): Quality Management and Quality System Elements
(Part 2) - Guidelines for Quality Improvement, International Organization
for Standardization, Geneva.

ISO 9126 (1991): Information Technology – Software Product Evaluation –
Quality Characteristics and Guidelines for their Use, International
Organization for Standardization, Geneva.

ISO 10011 (1988): Guidelines for Auditing Quality Systems, International
Organization for Standardization, Geneva.

ISO 10013 (1992): Guidelines for Developing Quality Manuals,
International Organization for Standardization, Geneva.

ISO/IEC 12207 (1995): Information Technology - Software Life Cycle
Processes, International Organization for Standardization, Geneva.

ISO/IEC (1991), Proposal for a Study Period on Process Management,
JTC1/SC7 N872, International Organization for Standardization, Geneva.

ISO/IEC (1992), The Need and Requirements for a Software Process
Assessment Standard, Study Report, Issue 2.0, JTC1/SC7 N944R,
International Organization for Standardization, Geneva.

ISO/IEC (1993a), Requirements Specification for a Software Process
Assessment Standard, Version 1.00, JTC1/SC7/N017R, International
Organization for Standardization, Geneva.

ISO/IEC (1993b), Product Specification for a Software Process Assessment
Standard, Version 1.00, JTC1/SC7/N016R, International Organization for
Standardization, Geneva.

ISO/IEC CD 15288 (1999): Information Technology – Life Cycle
Management – System Life Cycle Processes, ISO/IEC JTC1/SC7 N2184,
Geneva, pp.1-42.

ISO/IEC DTR 15504-1 (1997): Software Process Assessment - Part 1:
Concept and Introduction Guide, ISO/IEC JTC1/SC7/WG10, pp.1 - 16.

ISO/IEC DTR 15504-2 (1997): Software Process Assessment - Part 2: A
Reference Model for Processes and Process Capability, ISO/IEC
JTC1/SC7/WG10, pp. 1 - 38.

ISO/IEC DTR 15504-3 (1997): Software Process Assessment - Part 3:
Performing an Assessment, ISO/IEC JTC1/SC7/WG10, pp. 1 - 7.

Bibliography 619

ISO/IEC DTR 15504-4 (1997): Software Process Assessment - Part 4: Guide
to Performing Assessments, ISO/IEC JTC1/SC7/WG10, pp. 1 - 36.

ISO/IEC DTR 15504-5 (1997): Software Process Assessment - Part 5: An
Assessment Model and Indicator Guidance, ISO/IEC JTC1/SC7/WG10,
pp.1-138.

ISO/IEC DTR 15504-6 (1997): Software Process Assessment - Part 6:
Guide to Qualification of Assessors, ISO/IEC JTC1/SC7/WG10, pp. 1 - 31.

ISO/IEC DTR 15504-7 (1997): Software Process Assessment - Part 7:
Guide for Use in Process Improvement, ISO/IEC JTC1/SC7/WG10, pp. 1 -
47.

ISO/IEC DTR 15504-8 (1997): Software Process Assessment - Part 8:
Guide for Use in Determining Supplier Process Capability, ISO/IEC
JTC1/SC7/WG10, pp.1 - 25.

ISO/IEC DTR 15504-9 (1997): Software Process Assessment - Part 9:
Vocabulary, ISO/IEC JTC1/SC7/WG10, pp.1 - 9.

ISO/IEC JTC1/SC7/WG10 (1997), Software Process Assessment - Part 5:
An Assessment Model and Indicator Guidance (V.2.0), International
Organization for Standardization, Geneva.

ISO/IEC JTC1/SC7/WG10 (1999), Reference Model Extension for Acquirer
Processes, WG10, N254, May, Geneva, pp.1-4.

ISO/IEC SPICE Project (1998), SPICE Phase 2 Trial Report, V.1.1, SPICE
Project, ISO/IEC JTCI/SC7/WG10, July, pp.40-41.

ISO/IEC TR 15271 (1998): Information Technology – Guide for ISO/IEC
12207 (Software Life Cycle Processes), International Organization for
Standardization, Geneva.

ISO/IEC TR 15504-1 (1998): Information Technology – Software Process
Assessment – Part 1: Concept and Introduction Guide, ISO/IEC, Geneva,
pp.1 - 11.

ISO/IEC TR 15504-2 (1998): Information Technology – Software Process
Assessment – Part 2: A Reference Model for Processes and Process
Capability, ISO/IEC, Geneva, pp. 1 - 39.

ISO/IEC TR 15504-3 (1998): Information Technology – Software Process
Assessment – Part 3: Performing an Assessment, ISO/IEC, Geneva, pp.
1 - 4.

620 Bibliography

ISO/IEC TR 15504-4 (1998): Information Technology – Software Process
Assessment – Part 4: Guide to Performing Assessments, ISO/IEC, Geneva,
pp. 1 - 18.

ISO/IEC TR 15504-5 (1998): Information Technology – Software Process
Assessment – Part 5: An Assessment Model and Indicator Guidance,
ISO/IEC, Geneva, pp.1-132.

ISO/IEC TR 15504-6 (1998): Information Technology – Software Process
Assessment – Part 6: Guide to Qualification of Assessors, ISO/IEC, Geneva,
pp. 1 - 23.

ISO/IEC TR 15504-7 (1998): Information Technology – Software Process
Assessment – Part 7: Guide for Use in Process Improvement, ISO/IEC,
Geneva, pp. 1 - 36.

ISO/IEC TR 15504-8 (1998): Information Technology – Software Process
Assessment – Part 8: Guide for Use in Determining Supplier Process
Capability, ISO/IEC, Geneva, pp.1 - 17.

ISO/IEC TR 15504-9 (1998): Information Technology – Software Process
Assessment – Part 9: Vocabulary, ISO/IEC, Geneva, pp.1 - 11.

ISPW5 (1989), Perry, D. ed. Proceedings of 5th International Software
Process Workshop, Kennebunkport, ME, October, IEEE Computer Society
Press, Los Alamitos, CA.

ISPW6 (1990), Katayama, T. ed., Proceedings of 6th International Software
Process Workshop, Hokkaido, Japan, IEEE Computer Society Press, Los
Alamitos, CA.

ISPW7 (1991), Thomas, I. ed., Proceedings of 7th International Software
Process Workshop, Yountville, CA., October, IEEE Computer Society Press,
Los Alamitos, CA.

ISPW8 (1993), Schafer, W. ed., Proceedings of 8th International Software
Process Workshop, IEEE Computer Society Press, Los Alamitos, CA.

ISPW9 (1994), Ghezzi, C. ed., Proceedings of 9th International Software
Process Workshop, Airlie, VA, IEEE Computer Society Press, Los Alamitos,
CA.

ISPW10 (1996), Proceedings of 10th International Software Process
Workshop, Dijon, France, June, IEEE Computer Society Press, Los
Alamitos, CA.

Bibliography 621

ISPW11 (1998), Proceedings of 11th International Software Process
Workshop, Illinois, USA, June, IEEE Computer Society Press, Los Alamitos,
CA.

Jacobson, I., Booch, G. and Rumbaugh, J. (1998), The Unified Software
Development Process, Addison Wesley Longman, Reading, MA.

James, W.M. (1998), Software Engineering Standards: A User’s Road Map,
IEEE Computer Society Press, Los Alamitos, CA.

Jarvinen, J. (1994), On Comparing Process Assessment Results:
BOOTSTRAP and CMM, Software Quality Management, pp.247-262.

Jenner, M.J. (1995), Software Quality Management and ISO 9001, John
Wiley & Sons, Inc., New York.

Johansson, H. J. and Mchugh, P. et al. (1993), Business Process
Reengineering, John Wiley & Sons Ltd., London.

Johnson, D. L and Broadman, J. G. (1992), Software Process Rigors Yield
Stress, Efficiency, Signal Magazine, August.

Johnson, D. L and Broadman, J. G. (1997), Tailoring the CMM for Small
Businesses, Small Organizations, and Small Projects, Software Process
Newsletter, No.8, pp. 1-6.

Jones, C. (1996), The Pragmatics of Software Process Improvement, IEEE
Software Newsletter, No.5, Winter, pp.1-4.

Jones, C. (1999), The Euro, Y2K, and the US Software Labor Shortage,
IEEE Software, Vol.16, No.3, May/June, pp.55-61.

Juran, J. M., Seder, L. A. and Gryna, F. M. (eds.) (1962), Quality Control
Handbook (2nd ed.), McGraw-Hill, New York.

Juran, J.M. and Gryna, F.M. (1980), Quality Planning and Analysis,
McGraw-Hill, New York.

Juran, J. M. (1988), Juran on Planning for Quality, Macmillan, New York.

Juran, J. M. (1989), Juran on Leadership for Quality, The Free Press, New
York.

Keen, P. G. and Morton, M. S. (1978), Decision Support Systems: An
Organizational Perspective, Addison-Wesley, Reading, MA.

Khaden, R. and Schultzki, A. (1983), Planning and Forecasting Using a
Corporate Model, Managerial Planning, Jan./Feb.

622 Bibliography

Khoshgoftaar, T.M. and Oman, P. (1994), Special Issues on Software
Metrics, IEEE Computer, Vol.27, No.9, September, pp.13-81.

Kitson D.H. and Masters, S. (1992), An Analysis of SEI Software Process
Assessment Results: 1987-1991, Technical Report CMU/SEI-92-TR-24,
Software Engineering Institute, Pittsburgh.

Kitson, D.H. (1996), Relating the SPICE Framework and SEI Approach to
Software Process Assessment, Proceedings of International Conference on
Software Quality Management (SQM’96), MEP Press, London, pp. 37-49.

Klir, G. J. (ed.) (1972), Trends in General Systems Theory, John Wiley, New
York.

Knuth, D. E. (1974), Structured Programming with GOTO Statements,
ACM Computing Surveys, Vol. 6, No. 4, December, pp. 261 - 302.

Koch, G.R. (1993), Process Assessment: The ‘BOOTSTRAP’ Approach,
Information and Software technology, Vol.35, No.6/7, Butterworth-
Heinemann Ltd., Oxford, June/July, pp.387-403.

Kolb, D. A. and Frohman, A. L. (1970), An Organization Development
Approach to Consulting, Sloan Management Review, Vol.12, No.1, Fall,
pp.51-65.

Kolmogorov, A. N. (1933), Foundations of the Theory of Probability,
Chelsea Publishing Company, New York.

Krasner, H. et al. (1992), Lessons Learnt from a Software Process Modeling
System, Communications of the ACM, Boston, Vol.35, Vol.9, September,
pp.91-100.

Kugler, H.J. and Messnarz, R. (1994), From the Software Process to
Software Quality: BOOTSTRAP and ISO 9000, Proceedings of the First
Asia-Pacific Software Engineering Conference, Tokyo, Japan, IEEE
Computer Society Press, pp. 174-182.

Kugler H.J. and Rementeria, S. (1995), Software Engineering Trends in
Europe, ESI Research Report, Spain, pp.1-5.

Kuhn, T. (1970), The Structure of Scientific Revolutions, The Univ. of
Chicago, Chicago, 1970.

Kuvaja, P., Simila, J., Kizanik, L., Bicego, A., Koch, G. and Saukkonen, S.
(1994a), Software Process Assessment and Improvement: The BOOTSTRAP
Approach, Blackwell Business Publishers, Oxford, UK.

Bibliography 623

Kuvaja, P. and Bicego, A. (1994b), BOOTSTRAP – A European Assessment
Methodology, Software Quality Journal, June.

Kyburg, H. E. (1984), Theory and Measurement, Cambridge University
Press, Cambridge, UK.

Leavitt, H. J. and Whisler, T. L. (1988), Management in the 1980s, Harvard
Business Review, Vol.36, No.6, pp.41-48.

Lehman, M.M. (1985), Program Evolution: Processes of Software Change,
Academic Press, London.

Lehman, M.M. (1991), Software Engineering, the Software Process and
Their Support, Software Engineering Journal, September.

Lewis, H. R. and Papadimitriou, C. H. (1988), Elements of the Theory of
Computation, Prentice-Hall International, Englewood Cliffs, NJ.

Lindsay, P. H. and Norman, D. A. (1972), Human Information Processing,
Academic Press, New York.

Liskov, B. and Zilles, S (1974), Programming with Abstract Data Types,
ACM SIGPLAN Notices, Vol.9, pp.50-59.

Liu, L. and Horowitz, E. (1989), A Formal Model for Software Project
Management, IEEE Transactions on Software Engineering, Vol.15, No.10,
October, pp.1280-1293.

Maclane, S. (1971), Categories for the Working Mathematicians, Springer-
Verlag, New York.

MaCulloch, W. S. and Pitts, W. (1943), A Logic Calculus of the Ideas
Imminent in Nervous Activity, Bull. Math. Biophysics, Vol. 5, pp.115-133.

Marshak, R.T. (1993), Workflow White Paper – An Overview of Workflow
Software, International Workflow Coalition.

Marshall, A. (1938), Principles of Economics, The Macmillan Co., London.

Mathews, J. (1992), Numerical Methods for Mathematics, Science and
Engineering (2nd ed.), Prentice-Hall International, Englewood Cliffs, NJ.

Matsushita, M., Iida, H. and Inoue, K. (1999), Modeling Framework and
Supporting System for Process Assessment Documents, Proceedings of
International Conference on Product Focused Software Process
Improvement (PROFES’99), Oulu, Finland, June, pp.412-423.

624 Bibliography

Mazza, C. et al. (1994), Software Engineering Standards, Prentice-Hall,
Englewood Cliffs, NJ.

McCabe, T.A. (1983), A Cyclomatic Complexity Measure, IEEE
Transactions on Software Engineering, Vol.9.

McDermid, J. A., ed. (1991), Software Engineer’s Reference Book,
Butterworth-Heinemann Ltd., Oxford, UK.

Messnarz, R. and Tully, C. (eds.) (1999), Better Software Practice for
Business Benefit, IEEE Computer Society Press, Tokyo.

Milenkovic, M. (1992), Operating Systems: Concepts and Design (2nd ed.),
McGraw-Hill, New York.

Mills, H.D., O’Neill, D., Linger, R.C., Dyer, M. and Quinnan, R.E. (1980),
The Management of Software Engineering, IBM System Journal, Vol.24,
No.2, pp.414-477.

Mills, H.D., Dyer, M. and Linger, R.C. (1987), Cleanroom Software
Engineering, IEEE Software, Vol.4, No.5, Sept., pp.19-25.

Milner, R. (1989), Communication and Concurrency, Prentice-Hall,
Englewood Cliffs, NJ.

Mobil Europe Ltd. (1995), The Mobil Survey of ISO 9000 Certificates
Awarded Worldwide (4th Cycle), Quality System Update, Vol.5, No.9.

Naur, P. and Randell, B. (eds.) (1969), Software Engineering: A Report on a
Conference Sponsored by the NATO Science Committee, NATO.

Noack, J. and Schienmann, B. (1999), Introducing OO Development in a
large Banking Organization, IEEE Software, Vol.16, No.3, May/June,
pp.71-81.

Omto, N., Komiyama, T. and Fujino, K. (1995), Software Process
Assessment Support System SPATS, IPSJ Technical Journal, 95-SE-102-
28, pp. 159-164.

Osterweil, L.J. (1987), Software Processes are Software Too, Proceedings of
the 9th International Conference on Software Engineering, March, pp.2-13.

Paulk, M.C., Curtis, B., Chrissis, M.B. et al. (1991), Capability Maturity
Model for Software, Version 1.0, Software Engineering Institute, CMU/SEI-
91-TR-24, August.

Bibliography 625

Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C.V. (1993a),
Capability Maturity Model for Software., Version 1.1, Software Engineering
Institute, CMU/SEI-93-TR-24, February.

Paulk, M.C., Weber, C.V., Garcia, S., Chrissis, M.B. and Bush, M. (1993b),
Key Practices of the Capacity Maturity Model, Version 1.1, Technical
Report CMU/SEI-93-TR-25, Software Engineering Institute, Pittsburgh, PA.

Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C.V. (1993c),
Capability Maturity Model, Version 1.1, IEEE Software, Vol.10, No.4, July,
pp.18-27.

Paulk, M.C., Konrad, M.D. and Garcia, S.M. (1994), CMM Versus SPICE
Architectures, Software Process Newsletters, Spring , pp.7-11.

Paulk, M.C., Weber, C.V. and Curtis, B. (1995a), The Capability Maturity
Model: Guidelines for Improving the Software Process, SEI Series in
Software Engineering, Addison-Wesley.

Paulk, M.C. (1995b), How ISO 9001 Compares with the CMM, IEEE
Software, January, pp.74-83.

Perry, D., Staudenmayer, N. and Votta, L. (1994), Finding Out What Goes
on in a Software Development Organization, Special Issue on Measurement
Based Process Improvement, IEEE Software, Vol.11, No.4, July.

Peterson, B. and Radice, R. (1994), IDEAL: An Integrated Approach to
Software Process Improvement (SPI), SEI Symposium, Pittsburgh, August.

Pfleeger, S.L. and Rombach, H.D. (1994), Special Issue on Measurement
Based Process Improvement, IEEE Software, Vol.11, No.4, July, pp. 8-11.

Pfleeger, S.L. (1998), Software Engineering: Theory and Practice, Prentice-
Hall, Englewood Cliffs, NJ.

Pressman, R.S. (1988), Making Software Engineering Happen, Prentice-
Hall, Englewood Cliffs, NJ.

Pressman, R. S. (1992), Software Engineering: A Practitioner’s Approach
(3rd ed.), McGraw-Hill International Editions, New York.

Pulford, K., Combelles, A.K. and Shirlaw S. (1996), A Quantitative
Approach to Software Management: The AMI Handbook, Addison-Wesley,
Reading, MA.

626 Bibliography

Radnor, M. et al. (1970), Implementation in Operations Research and R&D
in Government and Business Organization, Operations Research, Vol.18,
No.6, pp.976-991, Nov./Dec.

Reed, G.M. and Roscoe, A.W. (1986), A Timed model for Communicating
Sequential Processes, Proceedings of ICALP’86, LNCS 226, Springer-
Verlag, Berlin.

Richardson, A. R. (1966), Business Economics, Macdonald & Evans,
Braintree, MA.

Roberts, F. S. (1979), Measurement Theory, Encyclopedia of Mathematics
and its Application, Vol.7, Addison-Wesley, Reading. MA.

Rout, T. (1995), SPICE: A Framework for Software Process Assessment,
Software Processes: Improvement and Practice, Vol.1, No.1.

Royce, W. W. (1970), Managing the Development of Large Software
Systems: Concepts and Techniques, Proceedings of WESCON, August,
USA.

Rubin, H.A. (1997), Worldwide IT Trends and Benchmark Report, META
Group, Stamford, Conn., http://www.metagroup.com.

Rumbaugh, J. Jacobson, I, and Booch, G. (1998), The Unified Modeling
Language Reference Manual, ACM Press, New York.

Runeson, P. and Wohlen, C. (1998), An Experimental Evaluation of an
Experince-Based Capture-Recapture Method in Software Code Inspections,
Empirical Software Engineering, Vol.3, pp.381-406.

Saeki, M., Kaneko, T. and Sakamoto, M. (1991), A Method for Software
Process Modeling and Description using LOTUS, in Proceedings of the 1st
International Conference on the Software Process, IEEE CS Press, pp. 90-
104.

Saiedian, H. and Kuzara, R. (1995), SEI Capability Maturity Model’s
Impact on Contractors, IEEE Computer, Vol.28, No.1, pp.16-26.

Schael, T. (1998), Workflow Management Systems for Process
Organizations, Second Edition, Lecture Notes in Computer Science, Vol.
1096, Springer-Verlag, Berlin.

Schafer, W. (1993), Proceedings of 8th International Software Process
Workshop, IEEE Computer Society Press, Los Alamitos, CA.

Bibliography 627

Schein, E. H. (1961), Management Development as a Process at Influence,
Industrial Management Review, Vol.2, No.2, Spring, pp.59-77.

Schneider, S.A. (1989), Correctness and Communication in Real-Time
Systems, D. Phil. Thesis, Oxford University.

Seddon, J. (1997), In Pursuit of Quality: The Cases Against ISO 9000, Oak
Tree Press, Oxford, UK.

SEI (1999), Process Maturity Profile of the Software Community 1999
Update, SEI Technical Report SEMA 3.99, Carnegie-Mellon University,
Pittsburgh, March, pp. 1-33.

Shannon, C. E. (1948), A Mathematical Theory of Communication, Bell
System Technical Journal, Vol. 27, p.379-423.

Shewhart, W.A. (1939), Statistical Method from the Viewpoint of Quality
Control, The Graduate School, George Washington University, Washington,
D.C.

Shooman, M. (1975), Software Reliability: Measurements and Models,
Proceedings of 1975 Annual Reliability and Maintainability Symposium,
IEEE Cat. No. 75CH0918-3RQC, pp.485-491.

Simon, H. A. (1960), The New Science of Management Decision, Harper &
Row, New York.

Snyder, A. (1987), Inheritance and the Development of Encapsulated
Software Components, in Research Directions in Object-Oriented
Programming, (Shriver and Wagner, eds.), MIT Press, Cambridge, MA,
pp.165-188.

Solingen, R.V. and Berghout, E. (1999), The Goal/Question Metric Method
– A Practical Guide for Quality Improvement of Software Development,
McGraw Hill, New York.

Sommerville, I. (1996), Software Engineering (5th edition), Addison-
Wesley, Reading MA.

Sommerville, I. and Sawyer, P. (1997), Requirements Engineering – A Good
Practice Guide, John Wiley & Sons, New York.

SPICE Project (1998), SPICE Phase II Trials Interim report, ISO/IEC
JTCI/SC7/WG10, pp. 1-175.

628 Bibliography

SPIRE Project (1998), The SPIRE Handbook: Better, Faster, Cheaper
Software Development in Small Organizations, The European Commission,
Dublin, Ireland.

Spivey, J. M. (1988), Understanding Z: A Specification Language and It
Formal Semantics, Cambridge University Press, Cambridge, UK.

Spivey, J. M. (1990), Specifying a Real-Time Kernel, IEEE Software, Vol.7,
No.5, pp.21-28.

Spivey, J. M. (1992), The Z Notation: A Reference Manual (2nd ed.)
Prentice-Hall, London.

SQPL (1990), SQPA: Software Quality and Productivity Analysis at Hewlett
Packard, Hewlett Packard Software Quality and Productivity Laboratory, HP
Report.

SSI (1950), General Systems: Yearbook of the Society for General Systems
Research, Systems Science Institute, University of Louisville.

Steven, A. (1980), Decision Support Systems: Current Practice and
Continuing Challenges, Addison-Wesley, Reading, MA.

Stoy, J. (1977), Denotational Semantics, MIT Press, Cambridge, MA.

Stroustrup, B. (1986), The C++ Programming Language, Addison-Wesley,
Reading, MA.

Sutton, S. M. and Osterweil, L. J. (1997), The Design of a Next-Generation
Process Language, in Jazayeri, M. and Schauer, H. (eds.), LNCS 1301,
Springer-Verlag, Berlin, pp. 142-158.

Thomas, I. (1994), Software Processes and Business Processes, Proceedings
of 3rd International Conference on Software Processes (ICSP3), Reston,
VA, Oct.

TickIT Project Office (1987), Guide to Software Quality Management
System Construction and Certification using EN29001, Issue 1.0, UK
Department of Trade and Industry and BCS, UK.

TickIT Project Office (1992), Guide to Software Quality Management
System Construction and Certification using EN29001, Issue 2.0, UK
Department of Trade and Industry and BCS, UK.

Tully, C. (1995), The Software Process and the Modeling of Complex
Systems, Proceedings of the 4th European Workshop on Software Process

Bibliography 629

Technology, Noordwijkerhout, Netherlands, April, LNCS 913, Springer-
Verlag, Berlin.

Turing, A. M. (1936), On Computable Numbers with an Application to the
Entscheidungs Problem, Proceedings of London Math. Soc., Vol. 2, pp.230-
265.

VASIE Project (1997), VASIE Best Practice Repository, The European
Commission, Brussels, Belgium. http://www.esi.es/VASIE.

Waerden, B. L. (1969), Mathematical Statistics, George Allen & Unwin,
London.

Wang, Y., Chouldury, I., Patel, D., Patel, S., Dorling, A., Wickberg, H. and
King, G. (1999a), On the Foundations of Object-Oriented Information
Systems, The French Journal of the Object (L’Object: Logiciel Bases de
Donnees Reseaux), Vol.5, No.1, Feb., pp.9-27.

Wang, Y., King, G., Patel, D., Patel, S. and Dorling, A. (1999b), On Coping
with Software Dynamic Inconsistency at Real-Time by the Built-in Tests,
International Journal of Annals of Software Engineering, Vol.7, Baltzer
Science Publishers, Oxford, UK, pp.283-296.

Wang Y., King, G., Dorling, A., Ross, M., Staples, G., and Court, I.
(1999c), A Worldwide Survey on Best Practices Towards Software
Engineering Process Excellence, ASQ Journal of Software Quality
Professional, Vol.2, No.1, December, pp. 34-43.

Wang Y., King, G., Fayad, M., Patel, D., Court, I., Staples, G., and Ross, M.
(1999d), On Built-in Tests Reuse in Object-Oriented Framework Design,
ACM Journal on Computing Surveys, Vol.32, No.1, March, 2000, New
York.

Wang Y., King, G., Doling, A. and Wickberg, H. (1999e), A Unified
Framework of the Software Engineering Process System Standards and
Models, Proceedings of 4th IEEE International Software Engineering
Standards Symposium (IEEE ISESS’99), IEEE CS Press, Brazil, May,
pp.132-141.

Wang Y., Wickberg, H. and Dorling, A. (1999f), Establishment of a
National Benchmark of Software Engineering Practices, Proceedings of 4th
IEEE International Software Engineering Standards Symposium (IEEE
ISESS’99), IEEE CS Press, Brazil, May, pp.16-25.

Wang, Y., Dorling, A., Brodman, J, and Johnson, D. (1999g), Conformance
Analysis of the Tailored CMM with ISO/IEC 15504, Proceedings of

630 Bibliography

International Conference on Product Focused Software Process
Improvement (PROFES’99), Oulu, Finland, June, pp. 237-259.

Wang Y., Doling, A., Wickberg, H. and King, G. (1999h), Experience in
Comparative Process Assessment with Multi-Process Models, Proceedings
of IEEE European Micro Conference (IEEE EuroMicro’99), Vol. II, IEEE
CS Press, Milan, September, pp.268-273.

Wang Y., Wickberg, H. and King, G. (1999i), A Method for Built-in Tests
in Component-based Software Maintenance, Proceedings of 3rd IEEE
International Conference on Software Maintenance and Reengineering
(IEEE CSMR’99), IEEE CS Press, Amsterdam, March, pp.186-189.

Wang Y. and King, G. (1999j), Philosophies and Approaches to Software
Process Improvement, Proceedings of European Software Process
Improvement (EuroSPI’99), ISBN 952-9607-29-6, Pori, Finland, October,
pp.7.24 – 7.38.

Wang Y., King, G., Dorling, A., Patel, D., Court, I., Staples, G. and Ross,
M. (1998a), A Worldwide Survey on Software Engineering Process
Excellence, Proceedings of IEEE 20th International Conference on Software
Engineering (ICSE’98), Kyoto, April, IEEE Press, pp.439-442.

Wang Y., Bryant A. and Wickberg, H. (1998b), A Perspective on Education
of the Foundations of Software Engineering, Proceedings of 1st
International Software Engineering Education Symposium (SEES’98),
Scientific Publishers OWN, Poznan, pp.194-204.

Wang Y., King, G., Patel, D., Court, I., Staples, G., Ross, M. and Patel, S.
(1998c), On Built-in Test and Reuse in Object-Oriented Programming,
ACM Software Engineering Notes, Vol. 23, No.4, pp.60-64.

Wang, Y., Chouldury, I., Patel, D., Patel, S., Dorling, A. and Wickberg, H.
(1998d), A Perspective on Foundations of Object-Oriented Information
Systems, Proceedings of International Conference on Object-Oriented
Information Systems (OOIS’98), Springer-Verlag, Paris, 1998, pp.491-496.

Wang Y., Wickberg, H., Dorling, A. and King, G. (1998e), On Software
Engineering Process Reuse in the Software Development Organizations,
Proceedings of 11th International Conference on Software Engineering and
Its Applications (ICSEA’98), Vol. II, Paris, December, pp.S6.1-8.

Wang, Y. and Dorling, A. (1998f), PULSE D3.1 – IT Acquisition Process
Assessment Method, PULSE Project Technical Report, Reviewed by
European Commission SPRITE S2 Research Project 97/501155, pp.1-61.

Bibliography 631

Wang, Y., I. Court, M. Ross, G. Staples, G. King and A. Dorling (1997a),
Quantitative Analysis of Compatibility and Correlation of the Current SPA
Models, Proceedings of The IEEE International Symposium on Software
Engineering Standards (IEEE ISESS’97), USA, June, pp. 36-56.

Wang, Y., I. Court, M. Ross, G. Staples, G. King and A. Dorling (1997b),
Quantitative Evaluation of the SPICE, CMM, ISO9000 and BOOTSTRAP,
Proceedings of the IEEE International Symposium on Software Engineering
Standards (IEEE ISESS’97), USA, June, pp. 57-68.

Wang Y., King, G., Court, I., Ross, M. and Staples, G. (1997c), On Testable
Object-Oriented Programming, ACM Software Engineering Notes (SEN),
July, Vol. 22, No.4, pp.84-90.

Wang, Y., I. Court, M. Ross, G. Staples and A. Dorling (1997d),
Comparative Assessment of a Software Organization with the CMM and
SPICE, Proceedings of the BCS International Conference on Software
Quality Management (SQM’97), Vol. II, Bath, UK, March, pp. S4 (1-11).

Wang, Y. and Ogawa, Y. (1997e), SUP.9 – Measurement Process, in
ISO/IEC DTR 15504-5, Information Technology - Software Process
Assessment Part 5: An Assessment Model and Indicator Guidance, 1998,
pp.1-121.

Wang, Y. and Ogawa, Y. (1997f), SUP.10 – Reuse Process, in ISO/IEC DTR
15504-5, Information Technology - Software Process Assessment Part 5: An
Assessment Model and Indicator Guidance, 1998, pp.1-121.

Wang, Y., I. Court, M. Ross and G. Staples (1996a), Towards a Software
Process Reference Model (SPRM), Proceedings of International Conference
on Software Process Improvement (SPI’96), Brighton, UK, November,
pp.145-166.

Wang, Y. (1996b), A New Sorting Algorithm: Self-Indexed Sort, ACM
SIGPLAN, Vol.31, No.3, March, USA, pp. 28-36.

Wang, Y., Z. He, M. Ross, G. Staples and I. Court (1996c), Quantitative
Analysis and Mutual Mapping between ISO 9001 and CMM, Proceedings of
the 1st International Conference on ISO 9000 and TQM (ICIT’96),
Leicester, UK, April, pp.83-90.

Warboys, B.C. et al (1999), Business Information Systems: A Process
Approach, McGraw-Hill, New York.

632 Bibliography

Wasserman, A. (1990), Tool Integration in Software Engineering
Environments, in Long, F. (ed.), Software Engineering Environments,
Springer-Verlag, Berlin, pp.138 – 150.

Wasserman, A. (1996), Towards a Discipline of Software Engineering,
IEEE Software, Nov., pp.23-31.

Wastell, D.G., White, P. and Kawalek, P. (1994), A Methodology for
Business Process Redesign: Experiences and Issues, Journal of Strategic
Information Systems, Vol.3, No.1, pp.23-40.

Weinberg, G. M. (1971), The Psychology of Computer Programming, Van
Nostrand Reinhold, New York.

Weinwurm, F. G. and Zagorski, H.J. (1965), Research into the Management
of Computer Program: A Transition Analysis of Cost Estimation
Techniques, TM-27, 1/100/00m, System Development Cop., Santa Monica,
CA.

William, B. (1991), Creating Value for Customers: Design and
Implementing a Total Corporate Strategy, John Wiley & Sons, New York.

Yasumoto, K., Higashino, T., and Taniguchi, K. (1994), Software Process
Description using LOTOS and Its Enaction, Proceedings of 16th
International Conference on Software Engineering (ICSE’16), IEEE
Computer Society Press, Sorrento, Italy, pp.169-178.

Zahran, S. (1998), Software Process Improvement: Practical Guidelines for
Business Success, Addison-Wesley, London, UK.

Zubrow, D., Hayes, W., Siegel, J. and Goldenson, D. (1994), Maturity
Questionnaire – Empirical Methods, V.1.1, Software Engineering Institute,
CMU/SEI-94-SR-7, June.

Zubrow, D. (1997), The Software Community Process Maturity Profile,
Software Engineering Institute, Pittsburgh.

633

APPENDIXES

A. Mathematical Symbols and Notations

G. ISO/IEC CD 15288 System Life Cycle Processes

B. Abbreviations

C. Mapping between Current Process Models

D. Benchmarks of the SEPRM Software Engineering Process

E. SEPRM Process Assessment Templates

F. ISO/IEC 12207 Software Life Cycle Processes

This page intentionally left blankThis page intentionally left blank

635

Appendix A

MATHEMATICAL SYMBOLS
AND NOTATIONS

Symbol Description
Cardinal calculus, number of elements in a set

φ Empty set

∃ Existential quantifier, there exists

∀ Universal qualifier, for all, or for every

∪ Union of sets

∩ Intersection of sets

∧ Logical and

∨ Logical or

¬ Logical negative

⇒ Implication

∑ Summary calculus

⊃ Contained

∈ Is member of set

 Bottom of a decimal, nearest minimum integer

 Ceiling of a decimal, nearest largest integer

ρ Relative correlation, ratio of correlation

r Correlation

W Mean weighted importance

rw Ratio of significance

rp Ratio of practice

re Ratio of effectiveness

ϕ Character value

O() Order of complexity

This page intentionally left blankThis page intentionally left blank

637

Appendix B

ABBREVIATIONS

Abbreviation Description

1-D One dimension(al)

2-D Two dimension(al)

ACM Association of Computing Machinery

ADT Abstract Data Types

AI Artificial Intelligence

ASQ American Society of Quality

BCS British Computer Society

BIT Built-In Test

BP Base Practice

BPA Base Process Activity

CASE Computer-Aided Software Engineering

CCITT International Telegraph and Telephone Consulting Committee (now ITU)

CCS The Calculus of Communicating Systems

CMM Capability Maturity Model

COCOMO Constructive Cost Model

COTS Commercial Off-The-Shelf (software components)

CPM Critical Path Method

CSCW Computer-Supported Cooperative Work

CSP Communicating Sequential Processes

DOS Disk Operating System

DSS Decision Support System

ESI The European Software Institute

ESSI European Systems and Software Initiative

IEC The International Electrotechnical Commission

IEE The Institute of Electrical Engineers

IEEE The Institute of Electrical and Electronics Engineers

ISO The International Organization for Standardization

IT Information Technology

ITU International Telecommunication Union

638 Appendix B Abbreviations

KP Key Practice

KPA Key Practice Area

MI Management Issue

MIS Management Information System

MTA Main Topic Area

OOP Object-Oriented Programming

OPRM Organization’s Process Reference Model

PC Personal Computer

PCD Process Capability Determination

PCL Process Capability Level

PCM Process Capability Model

PDCA Plan-Do-Check-Act, the Deming circle

PERT Program Evaluation and Review Technique

PIE Process Improvement Experiment

PIM Process Improvement Model

PSP Personal Software Process

PTPM Project’s Tailored Process Model

QSA Quality System Attribute

SDL Specification and Description Language

SDO Software Development Organization

SEI The Software Engineering Institute at Carnegie-Mellon University

SESC IEEE Software Engineering Standard Committee

SME Small and Medium-sized Enterprises

SPA Software Process Assessment

SPD Software Process Diagnosis

SPE Software Process Establishment

SPM Software Process Modeling

SPI Software Process Improvement

SPICE Software Process Improvement and Capability dEtermination

SPIN Software Process Improvement Network

SEPRM Software Engineering Process Reference Model

SQA Software Quality Assurance

TCSE IEEE Technical Council on Software Engineering

TQM Total Quality Management

TSP Team Software Process

UML Unified Modeling language

639

Appendix C

MAPPING BETWEEN
CURRENT PROCESS MODELS

No. Cat.
No.

BPA (in SEPRM) Rating CMM ISO
9001

Bootstrap ISO
15504

1 Organization subsystem

1.1 Organization structure
processes

1.1.1 Organization definition

1 1.1.1.1 Define organization structure 4 1.1.6 2.2.1.42

2 1.1.1.2 Establish business strategy 4 5.1.1/2

3 1.1.1.3 Define management responsibilities 4 1.1.2/3 1.1.12 5.2.11

4 1.1.1.4 Establish organization’s general
quality policy

3 5.1.3

5 1.1.1.5 Assign project managers 4 1.1.23

6 1.1.1.6 Define career plans 1 5.1.5/6

7 1.1.1.7 Review projects periodically 4 1.1.142

1.1.2 Project organization

8 1.1.2.1 Define project teams 4 3.3.1/5.1
.4

9 1.1.2.2 Define project management
responsibilities

3 3.3.2

10 1.1.2.3 Assign SQA personnel or team 4 1.1.11 1.1.52

11 1.1.2.4 Maintain project team interactions 2 3.3.3

12 1.1.2.5 Management commitment on
quality

4 1.1.12 1.1.103

13 1.1.2.6 Assign system analyst to
management team

2 2.3.1.83

640 Appendix C

1.2 Organization processes
1.2.1 Organization process definition

14 1.2.1.1 Define process goals 3 5.2.1

15 1.2.1.2 Identify current
activities/responsibilities

2 5.2.2

16 1.2.1.3 Identify inputs/outputs of process 3 5.2.3

17 1.2.1.4 Establish organization’s standard
process

4 2.2.1.24

18 1.2.1.5 Document standard process 4 3.2.2/3 3.2.23 2.1.1.13 5.2.10

19 1.2.1.6 Report standard process 4 3.2.1 5.2.13

20 1.2.1.7 Define tailorability of standard
process

3 3.2.4 2.1.1.23

21 1.2.1.8 Organization level process
coordination

3 3.1.3

22 1.2.1.9 Define entry/exit criteria of
processes

3 5.2.4

23 1.2.1.10 Define control points/milestones 3 2.2.2.93 5.2.5

24 1.2.1.11 Identify external interfaces 3 2.2.1.113 5.2.6

25 1.2.1.12 Identify internal interfaces 2 5.2.7

26 1.2.1.13 Define quality records 4 5.2.8

27 1.2.1.14 Define process measures 3 5.2.9

28 1.2.1.15 Establish performance expectations 1 5.2.12

1.2.2 Organization process
improvement

29 1.2.2.1 Plan process improvement 2 3.1.2/
5.3.1/3

30 1.2.2.2 Assess current process periodically 3 3.1.1 2.1.3.144 5.3.3

31 1.2.2.3 Identify improvement opportunities 4 5.3.5 3.3.10 2.1.1.94 5.3.1/4

32 1.2.2.4 Define scope of improvement
activities

2 5.3.2

33 1.2.2.5 Prioritize improvement 3 5.3.5

34 1.2.2.6 Define measures of impact 1 5.3.6

35 1.2.2.7 Change process for improvement 2 5.3.2/4 5.3.7

36 1.2.2.8 Pilot trial of new process 2 5.3.7 2.1.3.165

37 1.2.2.9 Assess new process 3 3.1.5

38 1.2.2.10 Document improved process 4 3.1.7/
5.3.8/9

5.3.8

39 1.2.2.11 Report/train new process 2 3.1.6/5
.3.6/
5.3.10

5.3.9

1.3 Customer service
processes

Mapping between Current Process Models 641

1.3.1 Customer relations

40 1.3.1.1. Obtain customer requirements 4 2.3.8 1.3.1

41 1.3.1.2 Document customer requirements 3 3.3.1.15 /25

42 1.3.1.3 Define service procedures 4 2.4.8/3.
8.1

43 1.3.1.4 Understand customer expectation 3 1.3.2

44 1.3.1.5 Define customer responsibility 4 1.1.14

45 1.3.1.6 Keep customers informed 4 1.3.3

46 1.3.1.7 Establish joint audits/reviews 1 1.4.1

47 1.3.1.8 Prepare for customer
audits/reviews

1 1.4.2

48 1.3.1.9 Conduct joint management reviews 3 1.4.3

49 1.3.1.10 Conduct joint technical reviews 3 1.4.4

50 1.3.1.11 Support customer acceptance
review

4 3.8.2 1.4.5

51 1.3.1.12 Perform joint process assessment 2 1.4.6

52 1.3.1.13 Regular interchange with
customers

2 2.2.4.112

1.3.2 Customer support

53 1.3.2.1 Identify operational risks 2 1.6.1

54 1.3.2.2 Support software installation 4 1.5.6

55 1.3.2.3 Perform operational testing 3 1.6.2

56 1.3.2.4 Demonstrate software operation 4 1.6.3

57 1.3.2.5 Resolve operational problems 4 1.6.4

58 1.3.2.6 Handle user requests 4 1.6.5

59 1.3.2.7 Document temporary workaround 2 1.6.6

60 1.3.2.8 Monitor system capacity and
service

3 1.6.7

61 1.3.2.9 Train customer 3 1.7.1

62 1.3.2.10 Establish product support 2 1.7.2

63 1.3.2.11 Monitor performance 2 1.7.3

64 1.3.2.12 Install product upgrades 4 1.7.4

1.3.3 Software/system delivery

65 1.3.3.1 Define software replication
procedure

3 2.3.1.363

66 1.3.3.2 Define installation procedure 4 2.3.1.372

/392

67 1.3.3.3 Define delivery procedure 4 2.3.1.383

68 1.3.3.4 Identify installation requirements 3 1.5.1

69 1.3.3.5 Prepare site for installation 3 1.5.2

70 1.3.3.6 Pack software package 4 1.5.3

71 1.3.3.7 Deliver after conformance verified 4 2.4.2/

642 Appendix C

3.4.3/10

72 1.3.3.8 Document acceptance of software 3

73 1.3.3.9 Deliver software on time 4 2.4.7 1.5.4

74 1.3.3.10 Verify correct receipt 4 3.4.5 1.5.5

75 1.3.3.11 Provide handling and storage
procedures

4 2.4.4-6 1.5.7

1.3.4 Service evaluation

76 1.3.4.1 SQA review with customers 4 2.5.8 1.6.7/3.
4.6

77 1.3.4.2 Feedback customer information 4 3.8.3

78 1.3.4.3 Determine customer satisfaction
level

4 1.6.3 1.8.1

79 1.3.4.4 Compare with competitors 2 1.8.2

80 1.3.4.5 Review customer satisfaction 3 1.8.3

81 1.3.4.6 Record customer failure reports 4 1.5.3 2.3.1.494

2 Development subsystem

2.1 Software engineering
methodology processes

2.1.1 Software engineering modeling

82 2.1.1.1 Aware of state-of-the-art in
software engineering

4 3.1.15

83 2.1.1.2 Survey methodologies/
technologies adopted externally

2 3.1.25

84 2.1.1.3 Evaluate life cycle model 3

85 2.1.1.4 Evaluate prototype model 4

86 2.1.1.5 Evaluate OOP model 4

87 2.1.1.6 Evaluate combined model 2

88 2.1.1.7 Evaluate CASE model 1

89 2.1.1.8 Integrate methodologies and tools
into process

3 3.3.2.15 /25

90 2.1.1.9 Distinguish development category:
system prototype/new
system/improved version

4 2.1.1.82

2.1.2 Reuse methodologies

91 2.1.2.1 Determine organizational reuse
strategy

3 5.5.1

92 2.1.2.2 Identify reusable components 4 2.3.1.483 5.5.2

93 2.1.2.3 Develop reusable components 2 2.3.1.284 5.5.3

94 2.1.2.4 Establish reuse library 2 5.5.4

95 2.1.2.5 Certify reusable components 1 2.3.1.274 5.5.5

96 2.1.2.6 Integrate reuse into life cycle 3 5.5.6

Mapping between Current Process Models 643

97 2.1.2.7 Propagate change carefully 4 5.5.7

2.1.3 Technology innovation

98 2.1.3.1 Plan technology change 3 5.2.1

99 2.1.3.2 Identify processes needed in
technology change

3 5.2.2/4

100 2.1.3.3 Identify/replace obsolete
technology/ process

2 3.1.45

101 2.1.3.4 Select new technology 4 5.2.5

102 2.1.3.5 Introduce new
technology/metrics/process

2 5.2.3 3.1.35

103 2.1.3.6 Pilot trial of new technology 2 5.2.6

104 2.1.3.7 Incorporate trialed technology into
current process

2 5.2.7/8

2.2 Software development
processes

2.2.1 Development process definition

105 2.2.1.1 Evaluate software development
methodologies

4 3.2.17 3.1.1

106 2.2.1.2 Model software process 3 2.2.5 2.3.1.13 3.1.2

107 2.2.1.3 Describe activities and
responsibilities

4 1.1.7/9
/3.3.6/7

3.1.3

108 2.2.1.4 Establish task sequences 4 1.1.5/1.
2.1/
2.4.1

3.1.4

109 2.2.1.5 Identify process relationships 4 1.1.8

110 2.2.1.6 Document process activities 4 1.2.2 3.1.5

111 2.2.1.7 Identify control point of project 4 2.2.8 3.3.17

112 2.2.1.8 Maintain consistency across all
processes

3 3.5.10

113 2.2.1.9 Develop software according to
defined process

4 3.5.1

114 2.2.1.10 Derive project process by tailoring
organization’s standard process

4 3.4.1/3 2.1.1.53

115 2.2.1.11 Approval of processes and
equipment

4 3.2.16/1
9

116 2.2.1.12 Identify special requirements in
developing special system: real-
time/safety-critical/etc

3 2.3.1.2-73 /
2.3.1.123

2.2.2 Requirement analysis

117 2.2.2.1 Analyze requirement according to
defined process

3

118 2.2.2.2 Specify formal requirements 4 3.3.1/3

119 2.2.2.3 Define requirements 4 3.3.5

644 Appendix C

feasibility/testability

120 2.2.2.4 Prevent ambiguities in specification 4 3.3.2

121 2.2.2.5 Interpret/clarify requirements 4 3.3.12 2.3.1.202 3.4.4

122 2.2.2.6 Specify acceptance criteria 4 3.3.15/
3.4.11/3
.6.3

2.3.1.343

123 2.2.2.7 Allocate requirements for processes 3 3.5.2

124 2.2.2.8 Adopt requirements acquisition
tools

2 3.3.2.35

2.2.3 Design

125 2.2.3.1 Design system according to defined
process

4 3.5.3

126 2.2.3.2 Design software architecture 4 2.3.1.182 /
193

2.3.1

127 2.2.3.3 Design module interfaces 3 1.1.133 2.3.2

128 2.2.3.4 Develop detailed design 3 2.3.1.212 2.3.3

129 2.2.3.5 Establish document traceability 4 3.3.13 2.3.1.223 2.3.4

130 2.2.3.6 Specify final design 4 3.3.14

131 2.2.3.7 Define design change procedure 4 3.3.24

132 2.2.3.8 Adopt architectural design tools 2 3.3.3.15 /25

133 2.2.3.9 Adopt module design tools 3 3.3.4.15 /65

2.2.4 Coding

134 2.2.4.1 Code according to defined process 4 3.5.4

135 2.2.4.2 Choose proper programming
language(s)

4 3.3.4.25

136 2.2.4.3 Develop software modules 4 2.4.1

137 2.2.4.4 Develop unit verification
procedures

3 2.4.2

138 2.2.4.5 Verify software modules 3 2.4.3

139 2.2.4.6 Document coding standards 4 3.3.25/
30

2.3.1.243 /
3.3.4.45

140 2.2.4.7 Define coding styles 4 3.3.29 2.3.1.253

/262

141 2.2.4.8 Adopt coding support/auto-
generation tools

2 3.3.4.35

2.2.5 Module testing

142 2.2.5.1 Testing according to defined
process

4 3.5.5 2.3.1.313

143 2.2.5.2 Determine test strategy 3 2.3.1.302 2.5.1

144 2.2.5.3 Specify test methods 2 2.3.1.292 2.5.2/3

145 2.2.5.4 Generate test 3 2.5.5

146 2.2.5.5 Conduct testing 4 2.5.4

Mapping between Current Process Models 645

147 2.2.5.6 Adopt module testing tools 3 3.3.5.15

2.2.6 Integration and system testing

148 2.2.6.1 Integration test according to
defined process

4 3.5.6 2.3.1.322/
333

2.6.1-3

149 2.2.6.2 Acceptance test according to
defined process

4 3.5.7 2.3.1.352

150 2.2.6.3 System tests generation 4 2.6.4

151 2.2.6.4 Test integrated system 4 2.5.6/2.6
.5

152 2.2.6.5 Adopt software integration tools 2 3.3.5.35 /
3.3.6.15/45

153 2.2.6.6 Adopt module cross-reference tools 2 3.3.6.25

154 2.2.6.7 Adopt system acceptance testing
tools

1 3.3.7.15 /35

2.2.7 Maintenance

155 2.2.7.1 Determine maintenance
requirements

4 2.7.1

156 2.2.7.2 Analyze user problems and
enhancements

3 2.7.2

157 2.2.7.3 Determine modifications for next
upgrade

2 2.7.3

158 2.2.7.4 Implement/test modifications 3 2.7.4

159 2.2.7.5 Update user system 4 2.7.5

160 2.2.7.6 Maintenance consistency with
specifications

4 3.8.4

161 2.2.7.7 Maintain nonconforming products 4 2.5.3

162 2.2.7.8 Record nonconformance treatment 4 2.5.5

163 2.2.7.9 Adopt regression testing tools 2 3.3.8.15 /25

164 2.2.7.10 Conduct regression testing 2 2.3.1.443

2.3 Software development
environment processes

2.3.1 Environment

165 2.3.1.1 Identify environment requirements 4 5.6.1

166 2.3.1.2 Establish computer-supported
cooperative work (CSCW)
environment

2 3.2.1.25

167 2.3.1.3 Provide software engineering
environment

4 3.2.15 3.4.55 5.6.2

168 2.3.1.4 Provide development supporting
tools

2 3.3.8.45 /
3.4.25 /45

169 2.3.1.5 Provide management supporting
tools

2 3.4.15 5.6.3

170 2.3.1.6 Provide interactive communication 3 3.2.1.15

646 Appendix C

environment

171 2.3.1.7 Maintain software engineering
environment

4 5.6.4

2.3.2 Facilities

172 2.3.2.1 Plan required resources 4 1.2.1.12

173 2.3.2.2 Identify specialized facilities 4 3.2.3

174 2.3.2.3 Acquire resources 4 1.1.10 1.2.1.22 3.7.1

175 2.3.2.4 Check resources availability 4 3.3.8

176 2.3.2.5 Provide productive workspace 3 1.2.1.32 5.7.1

177 2.3.2.6 Provide data backup 4 5.7.3

178 2.3.2.7 Provide building facilities 3 5.7.4

179 2.3.2.8 Provide remote access facility 2 5.7.5

180 2.3.2.9 Adopt software design tools 3

181 2.3.2.10 Adopt software testing tools 3 3.4.35

182 2.3.2.11 Ensure data integrity 4 5.7.2

183 2.3.2.12 Register/maintain test equipment 4 3.6.1/5

184 2.3.2.13 Control customer-supplied
equipment

4 3.6.2

185 2.3.2.14 Record equipment condition 4 3.6.4

186 2.3.2.15 Ensure equipment availability 4 3.6.6-12

2.3.3 Development support tools

187 2.3.3.1 CASE tools 2

188 2.3.3.2 Software requirements acquisition
tools

3

189 2.3.3.3 Software design tools 4

190 2.3.3.4 Software testing tools 4

2.3.4 Management support tools

191 2.3.4.1 SQA management tools 2

192 2.3.4.2 Software requirements review tools 1

193 2.3.4.3 Software design review tools 2

194 2.3.4.4 Software testing analysis tools 3

195 2.3.4.5 Software configuration
management tools

3

196 2.3.4.6 Software documentation processing
tools

4

3 Management subsystem

3.1 Software quality assurance
(SQA) processes

3.1.1 SQA process definition

Mapping between Current Process Models 647

197 3.1.1.1 Define SQA procedure 4 1.2.6

198 3.1.1.2 Define project s/w engineering
standards

4 1.2.3 2.1.1.103 4.3.1

199 3.1.1.3 Document SQA system 4 1.2.5/1.
3.1

2.1.1.63

200 3.1.1.4 Issue quality manual 4 1.1.1/1.
2.4

1.1.93/
2.2.2.13

201 3.1.1.5 Distribute quality policy 4 1.1.4

202 3.1.1.6 Report SQA results 3 2.5.6 1.1.43 4.3.4

203 3.1.1.7 Assess process quality 3 3.5.5

204 3.1.1.8 Take correct actions 3 2.5.2 3.5.6

205 3.1.1.9 Assign independent reviewers 4 1.4.6/3.
3.21

206 3.1.1.10 Define extent of inspection 4 3.4.1

207 3.1.1.11 Conduct SQA for each process 2 2.1.1.74

208 3.1.1.12 Assign qualified person(s) to
special process

4 3.2.22

209 3.1.1.13 Document quality records 4 1.1.13/
1.6.1/2

210 3.1.1.14 Review SQA system suitability 4 1.1.15 1.1.33 /123

211 3.1.1.15 Decisional role of SQA in
processes

3 1.1.73

212 3.1.1.16 Decisional role of SQA in final
products

4 1.1.63

213 3.1.1.17 Adopt SQA tools 2 3.2.3.25

3.1.2 Requirement review

214 3.1.2.1 Specification verification 4 3.3.23/3
.4.2

2.2.2.114

215 3.1.2.2 Formal review requirements 4 3.3.11

216 3.1.2.3 Review statutory requirements 4 3.3.16

217 3.1.2.4 Customer accepts specifications 4 2.5.4/3.
3.4

218 3.1.2.5 Adopt specification verification
tools

2

3.1.3 Design review

219 3.1.3.1 Define design review procedure 4 3.3.18/2
0/22

2.2.2.23 /34

220 3.1.3.2 Document design review 4 3.3.19

221 3.1.3.3 Verify prototypes 2 2.1.1.114

222 3.1.3.4 Measure design review coverage 2 2.1.2.14 /
2.1.3.44 /54

3.1.4 Code review

223 3.1.4.1 Conduct code walk-through 4 3.3.27

648 Appendix C

224 3.1.4.2 Conduct code review 4 3.3.28 2.2.2.43 /54

225 3.1.4.3 Measure code review coverage 2 2.1.2.24 /
2.1.3.63 /74

3.1.5 Module testing audit

226 3.1.5.1 Measure test coverage 4 2.1.2.34

227 3.1.5.2 Estimate remaining error
distribution

2 2.1.3.94

228 3.1.5.3 Review test results 3 2.2.2.103

229 3.1.5.4 Static/dynamic module test
analysis

2 3.3.5.25

3.1.6 Integration and system testing
audit

230 3.1.6.1 Identify nonconforming
software/functions

4 2.5.1-
2/3.4.4

3.2.3.35

231 3.1.6.2 Define inspection procedure 4 3.4.7/3.
5.1

232 3.1.6.3 Inspection against requirements 4 3.4.8

233 3.1.6.4 Document inspection/test results 4 3.4.9/3.
5.2

2.2.4.92/
2.3.1.403

234 3.1.6.5 Static/dynamic integration test
analysis

2 3.3.6.35

235 3.1.6.6 Static/dynamic acceptance test
analysis

2 3.3.7.25

3.1.7 Maintenance audit

236 3.1.7.1 Reinspect repaired products 4 2.5.6

237 3.1.7.2 Audit nonconformance records 3

238 3.1.7.3 Audit nonconformance treatment 3

239 3.1.7.4 Audit consistency with
specification

2

240 3.1.7.5 Audit consistency of system
documents

3 2.3.1.433

241 3.1.7.6 Audit consistency of system
configuration

4 2.3.1.463

242 3.1.7.7 Audit user satisfaction with
maintenance

3 2.3.1.474

243 3.1.7.8 Review regression testing results 3 2.3.1.453

3.1.8 Audit and inspection

244 3.1.8.1 Audit software development
activities

4 2.5.4 3.2.21 2.1.3.33 4.3.2

245 3.1.8.2 Audit work products 4 2.5.5 3.2.20 4.3.3

246 3.1.8.3 Audit process quality 4 1.4.2 3.5.4

247 3.1.8.4 Audit on-site activities 4 1.4.3

248 3.1.8.5 Document audit results 4 1.4.4/5

Mapping between Current Process Models 649

249 3.1.8.6 Verify representativeness of
examined samples

3 2.2.2.83

3.1.9 Peer review

250 3.1.9.1 Plan peer review 4 3.7.1

251 3.1.9.2 Select work products 3 4.5.1

252 3.1.9.3 Identify review standards 3 4.5.2

253 3.1.9.4 Establish completion criteria 4 4.5.3

254 3.1.9.5 Establish re-review criteria 2 4.5.4

255 3.1.9.6 Distribute review materials 3 4.5.5

256 3.1.9.7 Conduct peer review 4 3.7.2 4.5.6

257 3.1.9.8 Document review results 3 3.7.3

258 3.1.9.9 Take actions for review results 3 4.5.7

259 3.1.9.10 Track actions for review results 2 4.5.8

3.1.10 Defect control

260 3.1.10.1 Plan defect prevention 2 5.1.1/2 2.1.3.175

261 3.1.10.2 Defect reporting and record 4 3.5.9 4.4.1

262 3.1.10.3 Defect causal analysis 4 5.1.3 1.5.1/2 2.1.3.104 /
2.2.2.62 /74

263 3.1.10.4 Propose process change for defect
prevention

4 5.1.6/7 1.5.6 2.1.3.155

264 3.1.10.5 Track problem report 3 4.4.2

265 3.1.10.6 Prioritize problems 4 1.5.4 4.4.3

266 3.1.10.7 Determine resolutions 3 4.4.4

267 3.1.10.8 Correct defects 4 2.2.4.63 4.4.5

268 3.1.10.9 Review defect corrections 4 5.1.4/5 1.5.5

269 3.1.10.
 10

Distribute correction results 2 5.1.8 4.4.6

3.1.11 Subcontractor’s quality control

270 3.1.11.1 Subcontractor’s quantitative
quality goals

2 4.2.5

271 3.1.11.2 Assess/test quality of
subcontractor’s product

4 2.4.3 3.8.7

272 3.1.11.3 Acceptance test for subcontractor’s
software

4 2.4.12

273 3.1.11.4 Safeguard customer-supplied
products

4 2.2.1-3 2.2.4.102

274 3.1.11.5 Record customer-supplied products 4 2.2.4

3.2 Project planning processes
3.2.1 Project plan

275 3.2.1.1 Assign project proposal team 3 2.2.1

650 Appendix C

276 3.2.1.2 Design project process structure 4 2.2.2/3 3.2.1

277 3.2.1.3 Determine reuse strategy 2 3.2.4

278 3.2.1.4 Establish project schedule 4 2.2.12 3.2.9 3.2.8

279 3.2.1.5 Establish project commitments 3 3.2.9

280 3.2.1.6 Document project plans 4 2.2.6/7
/15

3.2.1 3.2.10

281 3.2.1.7 Conduct progress management
reviews

3 3.7.3

282 3.2.1.8 Conduct progress technical reviews 4 3.7.4

283 3.2.1.9 Management commitments in
planning

3 2.2.4 3.7.5

284 3.2.1.10 Determine release strategy 2 2.2.1.83 2.1.4

285 3.2.1.11 Plan change control 1 2.3.2/3

286 3.2.1.12 Define plan change procedure 1 2.3.4

287 3.2.1.13 Plan development 4 3.2.4 2.2.1.32

288 3.2.1.14 Plan testing 4 3.2.5

289 3.2.1.15 Plan system integration 4 3.2.6/12

290 3.2.1.16 Plan process management 4 3.2.7

291 3.2.1.17 Plan maintenance 4 3.2.8 2.2.1.52

292 3.2.1.18 Plan review and authorization 4 3.2.10/1
1

293 3.2.1.19 Assign development task 3 2.2.1.62

294 3.2.1.20 Adopt project/process planning
tools

1 3.2.2.15

3.2.2 Project estimation

295 3.2.2.1 Estimate project costs 4 2.2.10 2.2.1.12 3.2.5

296 3.2.2.2 Estimate project time 3

297 3.2.2.3 Estimate resources requirement 4 2.2.14 3.2.13

298 3.2.2.4 Estimate staff requirement 3

299 3.2.2.5 Estimate software size 4 2.2.9 3.3.8.55

300 3.2.2.6 Estimate software complexity 2 3.3.8.65

301 3.2.2.7 Estimate critical resources 4 2.2.11

3.2.3 Project risk avoidance

302 3.2.3.1 Identify project risks 3 2.2.13 2.2.3.13 3.2.6

303 3.2.3.2 Establish risk management scope 3 3.6.1

304 3.2.3.3 Identify unstable specification-
related risks

4 2.2.3.23 /33 3.6.2

305 3.2.3.4 Identify process change-related
risks

2 2.2.3.84

306 3.2.3.5 Identify market-related risks 2 2.2.3.43

307 3.2.3.6 Analyze and prioritize risks 4 3.6.3

308 3.2.3.7 Develop mitigation strategies 3 2.2.3.53 3.6.4

Mapping between Current Process Models 651

309 3.2.3.8 Define risk metrics for
probability/impact

1 2.2.3.64 3.6.5

310 3.2.3.9 Implement mitigation strategies 2 3.6.6

311 3.2.3.10 Assess risk mitigation activities 2 2.2.3.74 3.6.7

312 3.2.3.11 Take corrective actions for
identified risk

3 3.6.8

3.2.4 Project quality plan

313 3.2.4.1 Plan SQA 4 2.5.1/
4.2.1/2

1.2.7/3.
2.3

2.2.1.73

314 3.2.4.2 Establish quality goals 4 3.5.1

315 3.2.4.3 Define quality quantitative metrics 4 4.2.3 3.2.14/1
8

3.2.7/3.5
.2

316 3.2.4.4 Identify quality activities 3 3.5.3

317 3.2.4.5 Track project quality goals 4 4.2.4 1.4.1 3.2.2

318 3.2.4.6 SQA team participate in project
planning

3 2.5.3

319 3.2.4.7 Plan maintenance 3 2.3.1.423

3.3 Process management
processes

3.3.1 Process management

320 3.3.1.1 Plan quantitative process
management

3 4.1.1

321 3.3.1.2 Conduct quantitative process
management

2 4.1.2

322 3.3.1.3 Collect data for quantitative
analysis

2 4.1.3/4

323 3.3.1.4 Control defined process
quantitatively

3 4.1.5

324 3.3.1.5 Document quantitative analysis
results

4 4.1.6

325 3.3.1.6 Benchmark organization’s baseline
of process capability

1 4.1.7

326 3.3.1.7 Manage project by defined process 4 3.4.4

327 3.3.1.8 Adopt project/process management
tools

2 3.2.2.25 /
3.2.3.45

3.3.2 Process tracking

328 3.3.2.1 Track project progress 4 2.3.1/1
2
/3.4.11

2.1.3.13 3.7.2

329 3.3.2.2 Track development schedule 4 2.3.8/9
/3.4.9

2.2.4.82

330 3.3.2.3 Track process quality 4 2.1.3.23

331 3.3.2.4 Track software size 4 2.3.5/

652 Appendix C

3.4.6

332 3.3.2.5 Track project cost 4 2.3.6/
3.4.7

333 3.3.2.6 Track critical resources and
performance

4 2.3.7/
3.4.8

2.3.1.233

334 3.3.2.7 Track project risks 3 2.3.10/
3.4.10

335 3.3.2.8 Track process productivity 4 2.1.3.114

336 3.3.2.9 Track system memory utilization 3 2.3.1.92

337 3.3.2.10 Track system throughput 2 2.3.1.102

338 3.3.2.11 Track system I/O channel
capabilities

3 2.3.1.112

339 3.3.2.12 Track system networking 3

340 3.3.2.13 Adopt process tracking tools 1 3.2.3.15

341 3.3.2.14 Document project tracking data 4

342 3.3.2.15 Identify and handle process
deviation

3 2.5.7 1.1.113 4.3.5

3.3.3 Configuration management

343 3.3.3.1 Establish configuration
management library

4 2.6.1/3 2.1.4 1.1.82 4.2.1

344 3.3.3.2 Adopt configuration management
tools

4 3.2.4.15 /35

345 3.3.3.3 Identify product’s configuration 4 2.6.4 2.1.1/3 4.2.2

346 3.3.3.4 Maintain configuration item
descriptions

3 4.2.3

347 3.3.3.5 Control change requests 4 2.6.5 1.3.5 2.3.1.413 4.2.4

348 3.3.3.6 Release control 4 2.6.7 1.3.2 4.2.6

349 3.3.3.7 Maintain configuration item
history

4 2.6.2/8 1.3.7/2.
1.2

4.2.7

350 3.3.3.8 Report configuration status 3 2.6.9 4.2.8

3.3.4 Change control

351 3.3.4.1 Establish change requests/approval
system

3

352 3.3.4.2 Control requirement change 4 2.2.4.23

353 3.3.4.3 Control design change 3 2.2.4.33

354 3.3.4.4 Control code change 2 2.2.4.42

355 3.3.4.5 Control test data change 2 2.2.4.53

356 3.3.4.6 Control environment change 3

357 3.3.4.7 Control schedule change 4

358 3.3.4.8 Control configuration change 4 2.6.6/1
0

1.3.6 4.2.5

359 3.3.4.9 Adopt change control tools 1 3.2.4.25

Mapping between Current Process Models 653

3.3.5 Process review

360 3.3.5.1 Review processes at milestones 4 2.3.13 2.2.1.102

361 3.3.5.2 Document project review data 4 2.3.11

362 3.3.5.3 Revise project process 2 3.4.2

363 3.3.5.4 Conduct statistical analysis of
process

4 3.7.1/2 2.1.3.83

364 3.3.5.5 Gather process data 4

365 3.3.5.6 Compare actual/forecast errors 3 2.1.3.124

366 3.3.5.7 Compare actual/forecast schedule 2 2.1.3.132

367 3.3.5.8 Compare actual/forecast resources 3

3.3.6 Intergroup coordination

368 3.3.6.1 Define interface between project
groups

4 3.3.9

369 3.3.6.2 Plan intergroup activities 2 3.6.3

370 3.3.6.3 Identify intergroup critical
dependencies

3 3.6.4

371 3.3.6.4 Handle intergroup issues 2 3.6.6 3.3.4

372 3.3.6.5 Technical/management
representatives
coordination

4 3.6.2 3.2.2

373 3.3.6.6 Review last process output 3 3.6.5

374 3.3.6.7 Conduct intergroup representatives
review

1 3.6.7

3.4 Contract and requirement
management processes

3.4.1 Requirement management

375 3.4.1.1 Specify system requirements 4 2.3.1.143 2.1.1

376 3.4.1.2 Design system based on
requirements

4 2.1.2 2.1.2

377 3.4.1.3 Allocate requirements 3 2.1.1 2.1.3

378 3.4.1.4 Determine operating environment
impact

3 2.3.1.173 2.2.3

379 3.4.1.5 Determine software requirements 4 2.3.1.152 2.2.1

380 3.4.1.6 Analysis of software requirements 4 2.2.2

381 3.4.1.7 Evaluate requirements with
customer

3 3.6.1 2.3.1.132 2.2.4

382 3.4.1.8 Update requirements for next
iteration

3 2.2.5

383 3.4.1.9 Agree on requirements 4 3.4.1

384 3.4.1.10 Establish requirements standard 2 2.3.1.163 3.4.2

385 3.4.1.11 Manage requirements changes 3 2.1.3 3.4.3

386 3.4.1.12 Maintain requirements traceability 3 3.4.5

654 Appendix C

3.4.2 Contract management

387 3.4.2.1 Define contractual procedures 4 2.4.9

388 3.4.2.2 Prepare contract proposal 4 3.1.1-3

389 3.4.2.3 Review contract 4 3.1.4-6 2.1.1.32 /42 1.2.1

390 3.4.2.4 Ensure agreement of terminology 4 3.1.8 1.2.2

391 3.4.2.5 Determine interfaces to
independent agents

2 1.2.3

392 3.4.2.6 Assess contractor’s capability 4 3.1.9

393 3.4.2.7 Document contractor’s capability 4 3.1.7

3.4.3 Subcontractor management

394 3.4.3.1 Specify subcontracted development 3 2.4.1

395 3.4.3.2 Assess capability of subcontractors 3 2.2.5.33 3.8.2

396 3.4.3.3 Record acceptable subcontractors 2 2.2.5.13

397 3.4.3.4 Define scope of contracted work 4 2.4.3 2.2.5.22 3.8.1

398 3.4.3.5 Define interface of contracted work 4 2.3.2/5

399 3.4.3.6 Select qualified subcontractor 3 2.4.2 3.8.3

400 3.4.3.7 Approve subcontractor’s plan 2 2.4.4 3.8.4

401 3.4.3.8 Maintain interchanges with
subcontractors

3 2.4.8 3.8.5

402 3.4.3.9 Track subcontractor’s development
activities

2 2.4.5/6

403 3.4.3.10 Monitor subcontractor’s SQA
activities

4 2.4.10/
11

2.3.4

404 3.4.3.11 Review subcontractor’s work 4 2.4.7/9
/13

2.3.3

405 3.4.3.12 Assess compliance of contracted
product

4 3.8.6

406 3.4.3.13 Determine interfaces to
subcontractors

3 1.2.4

407 3.4.3.14 Document subcontractor’s records 4 1.6.4

3.4.4 Purchasing management

408 3.4.4.1 Identify need for purchasing 4 1.1.1

409 3.4.4.2 Define purchasing requirements 3 2.2.5.53 1.1.2

410 3.4.4.3 Prepare acquisition strategy 2 1.1.3

411 3.4.4.4 Prepare purchasing document 4 2.3.6

412 3.4.4.5 Prepare request for proposal 2 1.1.4

413 3.4.4.6 Review purchasing document 4 2.3.7 2.2.5.42

414 3.4.4.7 Select software product supplier 4 2.3.1 1.1.5

415 3.4.4.8 Verify purchased product 3 2.2.5.63

416 3.4.4.9 Manage purchased tools
configuration

3 2.2.5.73

Mapping between Current Process Models 655

3.5 Document management
processes

3.5.1 Documentation

417 3.5.1.1 Master list of project documents 4 1.3.8

418 3.5.1.2 Determine documentation
requirements

3 4.1.1

419 3.5.1.3 Develop document 4 2.2.1.93 4.1.2

420 3.5.1.4 Check document 3 4.1.3

421 3.5.1.5 Control document issue 4 1.3.3 2.2.4.13 4.1.4

422 3.5.1.6 Maintain document 4 1.3.4 4.1.5

423 3.5.1.7 Documentation according to
defined process

4 3.5.8

424 3.5.1.8 Establish documentation standards 4 1.6.5/3.
3.26

425 3.5.1.9 Safety document storage 4 1.6.6

426 3.5.1.10 Identify current versions of
documents

4 2.2.4.73

427 3.5.1.11 Adopt interactive documentation
tools

3 3.3.4.55/
3.3.8.35

3.5.2 Process database/library

428 3.5.2.1 Establish organization’s process
library

2 3.2.6

429 3.5.2.2 Establish organization’s process
database

3 3.1.4/
3.2.5/
3.4.5

2.1.2.65

430 3.5.2.3 Establish software reuse library 3

431 3.5.2.4 Establish organization’s metrics
database

2 2.1.2.43 /54

432 3.5.2.5 Establish operation manual library 3

433 3.5.2.6 Establish practice benchmark
database

1

3.6 Human resource
management processes

3.6.1 Staff selection and allocation

434 3.6.1.1 Define qualifications for positions 4

435 3.6.1.2 Define experience for positions 4

436 3.6.1.3 Assign personnel selection group 3

437 3.6.1.4 Select staff by qualification /
experience

4 1.2.2.43

3.6.2 Training

438 3.6.2.1 Plan training 3 3.3.1 1.2.2.33

439 3.6.2.2 Identify training needs 4 3.3.2/5 1.7.1 5.4.1

656 Appendix C

440 3.6.2.3 Develop training courses 3 5.4.2

441 3.6.2.4 Approval of training courses 2 3.3.4

442 3.6.2.5 Conduct technical training 4 3.3.3 1.7.2 1.2.2.23 5.4.3

443 3.6.2.6 Conduct management training 3 1.2.2.13

444 3.6.2.7 Document training records 4 3.3.6 1.7.3/4 5.4.4

657

Appendix D

BENCHMARKS OF
THE SEPRM

SOFTWARE ENGINEERING
PROCESSES

No. Cat. No. BPA W

[0 .. 5]

rw

(%)

rp

(%)

re

(%)

ϕ

(%)

1 Organization subsystem

1.1 Organization structure

1.1.1 Organization definition
1 1.1.1.1 Define organization structure 3.8 82.6 92.6 95.2 72.4

2 1.1.1.2 Establish business strategy 4.0 95.7 78.3 85.0 63.6

3 1.1.1.3 Define management responsibilities 4.2 100 76.0 95.2 72.4

4 1.1.1.4 Establish organization’s general quality
policy

4.2 91.3 73.9 66.7 45.0

5 1.1.1.5 Assign project managers 4.1 95.7 95.5 90.9 83.0

6 1.1.1.6 Define career plans 2.6 50.0 47.6 47.4 11.3

7 1.1.1.7 Review projects periodically 3.8 82.6 73.9 77.3 47.2

1.1.2 Project organization
8 1.1.2.1 Define project teams 4.0 87.5 95.7 95.2 79.7

9 1.1.2.2 Define project management responsibilities 4.2 100 73.9 86.4 63.8

10 1.1.2.3 Assign SQA personnel or team 3.8 91.7 87.5 82.6 66.3

11 1.1.2.4 Maintain project team interactions 3.8 91.3 78.3 81.8 58.5

12 1.1.2.5 Management commitment on quality 4.5 100 83.3 91.7 76.5

13 1.1.2.6 Assign system analyst to management team 2.6 56.5 28.6 57.9 9.3

658

1.2 Organization processes

1.2.1 Organization process definition
14 1.2.1.1 Define process goals 3.9 90.9 72.2 85.0 55.8

15 1.2.1.2 Identify current activities/responsibilities 3.7 81.8 73.9 81.0 49.0

16 1.2.1.3 Identify inputs/outputs of process 3.9 90.9 90.9 77.3 63.9

17 1.2.1.4 Establish organization’s standard process 3.8 90.9 85.7 85.0 66.2

18 1.2.1.5 Document standard process 3.9 87.5 87.5 73.9 56.6

19 1.2.1.6 Report standard process 3.4 89.5 66.7 70.6 42.1

20 1.2.1.7 Define tailorability of standard process 3.2 81.8 39.1 70.6 22.6

21 1.2.1.8 Organization level process coordination 3.3 82.6 50.0 66.7 27.5

22 1.2.1.9 Define entry/exit criteria of processes 3.6 83.3 68.4 72.7 41.5

23 1.2.1.10 Define control points/milestones 4.2 100 90.0 95.5 85.9

24 1.2.1.11 Identify external interfaces 3.8 90.9 69.6 81.0 51.2

25 1.2.1.12 Identify internal interfaces 3.5 81.8 71.4 84.2 49.2

26 1.2.1.13 Define quality records 3.3 81.0 68.2 68.8 37.9

27 1.2.1.14 Define process measures 3.8 86.4 42.1 70.0 25.5

28 1.2.1.15 Establish performance expectations 3.0 61.9 38.1 44.4 10.5

1.2.2 Organization process improvement
29 1.2.2.1 Plan process improvement 3.1 76.2 52.9 73.3 29.6

30 1.2.2.2 Assess current process periodically 3.8 91.3 68.2 73.7 45.9

31 1.2.2.3 Identify improvement opportunities 4.0 85.7 75.0 73.7 47.4

32 1.2.2.4 Define scope of improvement activities 3.5 76.2 42.9 60.0 19.6

33 1.2.2.5 Prioritize improvement 3.3 85.7 44.4 80.0 30.5

34 1.2.2.6 Define measures of impact 3.2 76.5 10.5 53.8 4.3

35 1.2.2.7 Change process for improvement 3.8 83.3 72.2 88.2 53.1

36 1.2.2.8 Pilot trial of new process 3.9 87.0 63.6 85.0 47.0

37 1.2.2.9 Assess new process 3.5 90.5 70.0 83.3 52.8

38 1.2.2.10 Document improved process 3.3 72.7 52.4 80.0 30.5

39 1.2.2.11 Report/train new process 3.7 78.3 69.6 76.2 41.5

1.3 Customer service

1.3.1 Customer relations
40 1.3.1.1. Obtain customer requirements 4.2 89.5 100 83.3 74.6

41 1.3.1.2 Document customer requirements 3.4 73.7 72.2 72.2 38.4

42 1.3.1.3 Define service procedures 3.4 73.3 72.2 72.2 38.4

43 1.3.1.4 Understand customer expectation 4.3 100 90.0 85.0 76.5

44 1.3.1.5 Define customer responsibility 3.9 84.2 61.1 72.2 37.2

45 1.3.1.6 Keep customers informed 3.9 84.2 84.2 89.5 63.4

46 1.3.1.7 Establish joint audits/reviews 3.4 89.5 52.6 64.7 30.5

47 1.3.1.8 Prepare for customer audits/reviews 3.2 83.3 61.1 80.0 40.7

48 1.3.1.9 Conduct joint management reviews 3.3 78.9 63.2 70.6 35.2

49 1.3.1.10 Conduct joint technical reviews 3.4 83.3 61.1 76.5 38.9

50 1.3.1.11 Support customer acceptance review 3.8 85.7 75.0 100 64.3

51 1.3.1.12 Perform joint process assessment 2.1 44.4 29.4 50.0 6.5

52 1.3.1.13 Regular interchange with customers 3.9 90.0 75.0 89.5 60.4

1.3.2 Customer support

Benchmarks of the SEPRM Software Engineering Processes 659

53 1.3.2.1 Identify operational risks 3.8 100 63.2 94.1 59.4

54 1.3.2.2 Support software installation 3.3 77.8 78.9 100 61.4

55 1.3.2.3 Perform operational testing 3.7 89.5 78.9 94.7 66.9

56 1.3.2.4 Demonstrate software operation 3.4 80.0 83.3 94.1 62.7

57 1.3.2.5 Resolve operational problems 3.9 89.5 100 94.4 84.5

58 1.3.2.6 Handle user requests 3.9 95.0 90.0 100 85.5

59 1.3.2.7 Document temporary workaround 2.7 41.2 33.3 61.5 8.4

60 1.3.2.8 Monitor system capacity and service 3.5 76.5 52.9 68.8 27.8

61 1.3.2.9 Train customer 3.7 94.4 94.1 94.1 83.7

62 1.3.2.10 Establish product support 3.9 78.9 87.5 100 69.1

63 1.3.2.11 Monitor performance 3.1 68.8 56.3 81.3 31.4

64 1.3.2.12 Install product upgrades 3.5 78.9 100 94.1 74.3

1.3.3 Software/system delivery
65 1.3.3.1 Define software replication procedure 3.1 58.8 50.0 78.6 23.1

66 1.3.3.2 Define installation procedure 3.8 88.2 87.5 87.5 67.6

67 1.3.3.3 Define delivery procedure 3.4 76.5 75.0 80.0 45.9

68 1.3.3.4 Identify installation requirements 3.7 100 93.3 93.3 87.1

69 1.3.3.5 Prepare site for installation 3.0 68.8 80.0 71.4 39.3

70 1.3.3.6 Pack software package 3.4 68.8 73.3 78.6 39.6

71 1.3.3.7 Deliver after conformance verified 3.8 93.8 93.3 92.9 81.3

72 1.3.3.8 Document acceptance of software 2.9 62.5 71.4 85.7 38.3

73 1.3.3.9 Deliver software on time 4.0 88.2 86.7 100 76.5

74 1.3.3.10 Verify correct receipt 3.3 73.3 73.3 76.9 41.4

75 1.3.3.11 Provide handling and storage procedures 3.0 64.7 62.5 83.3 33.7

1.3.4 Service evaluation
76 1.3.4.1 SQA review with customers 3.8 82.4 70.6 100 58.1

77 1.3.4.2 Feedback customer information 4.2 100 100 92.9 92.9

78 1.3.4.3 Determine customer satisfaction level 3.9 88.2 70.6 100 62.3

79 1.3.4.4 Compare with competitors 3.4 82.4 56.3 78.6 36.4

80 1.3.4.5 Review customer satisfaction 3.7 75.0 66.7 84.6 42.3

81 1.3.4.6 Record customer failure reports 4.3 94.7 94.4 100 89.5

2 Software development subsystem

2.1 Software engineering methodologies

2.1.1 Software engineering modeling
82 2.1.1.1 Aware of state-of-the-art in software

engineering
3.4 81.3 81.3 80.0 52.8

83 2.1.1.2 Survey methodologies/technologies adopted
externally

3.1 80.0 71.4 85.7 49.0

84 2.1.1.3 Evaluate life cycle model 3.4 100 71.4 92.3 65.9

85 2.1.1.4 Evaluate prototype model 3.4 93.3 73.3 84.6 57.9

86 2.1.1.5 Evaluate OOP model 3.2 85.7 53.8 75.0 34.6

87 2.1.1.6 Evaluate combined model 2.9 71.4 38.5 63.6 17.5

88 2.1.1.7 Evaluate CASE model 2.8 71.4 46.2 72.7 24.0

89 2.1.1.8 Integrate methodologies and tools into process 4.1 100 92.9 100 92.9

660 Appendix D

90 2.1.1.9 Distinguish development category: system
prototype/new system/improved version

3.6 87.5 62.5 71.4 39.1

2.1.2 Reuse methodologies
91 2.1.2.1 Determine organizational reuse strategy 3.8 93.8 56.3 80.0 42.2

92 2.1.2.2 Identify reusable components 4.2 100 73.3 86.7 63.6

93 2.1.2.3 Develop reusable components 3.9 88.2 52.9 81.3 38.0

94 2.1.2.4 Establish reuse library 3.7 81.3 43.8 81.3 28.9

95 2.1.2.5 Certify reusable components 3.9 88.2 47.1 82.4 34.2

96 2.1.2.6 Integrate reuse into life cycle 3.9 86.7 60.0 78.6 40.9

97 2.1.2.7 Propagate change carefully 4.2 100 62.5 87.5 54.7

2.1.3 Technology innovation
98 2.1.3.1 Plan technology change 3.4 81.3 68.8 93.8 52.4

99 2.1.3.2 Identify processes needed in technology
change

3.6 87.5 62.5 87.5 47.9

100 2.1.3.3 Identify/replace obsolete technology/process 3.4 76.5 68.8 93.8 49.3

101 2.1.3.4 Select new technology 3.9 100 87.5 100 87.5

102 2.1.3.5 Introduce new technology/metrics/process 3.8 94.1 88.2 87.5 72.7

103 2.1.3.6 Pilot trial of new technology 3.4 87.5 73.3 92.9 59.6

104 2.1.3.7 Incorporate trialed technology into current
process

3.8 87.5 81.3 92.9 66.0

2.2 Software development

2.2.1 Development process definition
105 2.2.1.1 Evaluate s/w development methodologies 3.9 93.8 87.5 78.6 64.5

106 2.2.1.2 Model software process 3.8 94.1 81.3 100 76.5

107 2.2.1.3 Describe activities and responsibilities 4.3 100 87.5 100 87.5

108 2.2.1.4 Establish task sequences 3.8 81.3 93.3 93.3 70.8

109 2.2.1.5 Identify process relationships 3.7 93.3 92.9 92.9 80.5

110 2.2.1.6 Document process activities 3.9 87.5 92.9 86.7 70.4

111 2.2.1.7 Identify control point of project 3.8 93.8 71.4 84.6 56.7

112 2.2.1.8 Maintain consistency across all processes 3.6 80.0 57.1 76.9 35.2

113 2.2.1.9 Develop s/w according to defined process 4.3 100 78.6 92.9 73.0

114 2.2.1.10 Derive project process by tailoring
organization’s standard process

4.3 100 72.7 92.9 67.5

115 2.2.1.11 Approval of processes and equipment 3.5 85.7 71.4 76.9 47.1

116 2.2.1.12 Identify special requirements in developing
special system: real-time /safety-critical/etc

4.3 100 85.7 93.3 80.0

2.2.2 Requirement analysis
117 2.2.2.1 Analyze requirement according to defined

process
4.1 100 84.6 83.3 70.5

118 2.2.2.2 Specify formal requirements 3.0 73.3 53.3 76.9 30.1

119 2.2.2.3 Define requirements feasibility/testability 3.8 93.3 76.9 75.0 53.8

120 2.2.2.4 Prevent ambiguities in specification 3.9 93.3 78.6 84.6 62.1

121 2.2.2.5 Interpret/clarify requirements 3.7 94.1 68.8 84.6 54.8

122 2.2.2.6 Specify acceptance criteria 3.8 87.5 100 86.7 75.8

123 2.2.2.7 Allocate requirements for processes 3.1 90.9 44.4 87.5 35.4

124 2.2.2.8 Adopt requirements acquisition tools 2.1 28.6 7.7 80.0 1.8

2.2.3 Design

Benchmarks of the SEPRM Software Engineering Processes 661

125 2.2.3.1 Design system according to defined process 3.9 93.8 78.6 84.6 62.3

126 2.2.3.2 Design software architecture 4.2 100 100 100 100

127 2.2.3.3 Design module interfaces 4.1 100 81.3 87.5 71.1

128 2.2.3.4 Develop detailed design 3.6 88.2 93.8 76.5 63.3

129 2.2.3.5 Establish document traceability 3.9 88.9 63.6 78.6 44.4

130 2.2.3.6 Specify final design 3.8 86.7 64.3 78.6 43.8

131 2.2.3.7 Define design change procedure 4.0 100 53.3 91.7 48.9

132 2.2.3.8 Adopt architectural design tools 2.9 56.3 43.8 80.0 19.7

133 2.2.3.9 Adopt module design tools 2.9 62.5 73.3 76.9 35.3

2.2.4 Coding
134 2.2.4.1 Code according to defined process 3.8 87.5 68.8 85.7 51.6

135 2.2.4.2 Choose proper programming language(s) 3.8 93.8 81.3 92.9 70.7

136 2.2.4.3 Develop software modules 4.0 93.3 100 92.3 86.2

137 2.2.4.4 Develop unit verification procedures 3.8 93.8 68.8 86.7 55.9

138 2.2.4.5 Verify software modules 4.1 100 80.0 92.9 74.3

139 2.2.4.6 Document coding standards 4.1 88.2 82.4 93.3 67.8

140 2.2.4.7 Define coding styles 3.6 82.4 56.3 66.7 30.9

141 2.2.4.8 Adopt coding support/auto-generation tools 2.9 60.0 28.6 50.0 8.6

2.2.5 Module testing
142 2.2.5.1 Testing according to defined process 4.5 100 82.4 93.8 77.2

143 2.2.5.2 Determine test strategy 4.4 100 76.5 93.8 71.7

144 2.2.5.3 Specify test methods 4.1 94.1 76.5 92.9 66.8

145 2.2.5.4 Generate test 3.8 93.8 75.0 84.6 59.5

146 2.2.5.5 Conduct testing 4.3 100 86.7 85.7 74.3

147 2.2.5.6 Adopt module testing tools 3.1 71.4 57.1 69.2 28.3

2.2.6 Integration and system testing
148 2.2.6.1 Integration test according to defined process 4.3 100 80.0 92.9 74.3

149 2.2.6.2 Acceptance test according to defined process 4.1 100 80.0 92.9 74.3

150 2.2.6.3 System tests generation 3.8 92.3 69.2 83.3 53.3

151 2.2.6.4 Test integrated system 4.1 100 84.6 91.7 77.6

152 2.2.6.5 Adopt software integration tools 2.8 53.8 16.7 63.6 5.7

153 2.2.6.6 Adopt module cross-reference tools 3.1 76.9 16.7 81.8 10.5

154 2.2.6.7 Adopt system acceptance testing tools 3.1 76.9 25.0 90.9 17.5

2.2.7 Maintenance
155 2.2.7.1 Determine maintenance requirements 4.0 92.9 78.6 92.3 67.3

156 2.2.7.2 Analyze user problems and enhancements 4.0 100 92.3 100 92.3

157 2.2.7.3 Determine modifications for next upgrade 3.7 83.3 75.0 90.9 56.8

158 2.2.7.4 Implement/test modifications 3.7 90.9 72.7 80.0 52.9

159 2.2.7.5 Update user system 3.9 90.9 50.0 77.8 35.4

160 2.2.7.6 Maintenance consistency with specifications 3.9 100 54.5 90.9 49.6

161 2.2.7.7 Maintain nonconforming products 3.5 76.9 58.3 80.0 35.9

162 2.2.7.8 Record nonconformance treatment 3.9 92.3 75.0 90.9 62.9

163 2.2.7.9 Adopt regression testing tools 3.5 84.6 33.3 81.8 23.1

164 2.2.7.10 Conduct regression testing 4.1 85.7 50.0 90.9 39.0

2.3 Software engineering infrastructure

2.3.1 Environment

662 Appendix D

165 2.3.1.1 Identify environment requirements 4.0 94.1 93.8 93.8 82.7

166 2.3.1.2 Establish computer-supported cooperative
work (CSCW) environment

3.3 62.5 50.0 84.6 26.4

167 2.3.1.3 Provide software engineering environment 3.7 84.2 68.4 100 57.6

168 2.3.1.4 Provide development supporting tools 4.1 93.8 81.3 93.3 71.1

169 2.3.1.5 Provide management supporting tools 3.4 77.8 70.6 80.0 43.9

170 2.3.1.6 Provide interactive communication
environment

3.5 75.0 56.3 84.6 35.7

171 2.3.1.7 Maintain software engineering environment 3.2 81.3 64.3 81.8 42.7

2.3.2 Facilities
172 2.3.2.1 Plan required resources 4.1 88.2 87.5 84.6 65.3

173 2.3.2.2 Identify specialized facilities 3.6 81.3 68.8 84.6 47.3

174 2.3.2.3 Acquire resources 3.7 78.9 88.9 88.2 61.9

175 2.3.2.4 Check resources availability 3.7 93.8 81.3 92.3 70.3

176 2.3.2.5 Provide productive workspace 3.6 76.5 87.5 100 66.9

177 2.3.2.6 Provide data backup 3.6 88.2 100 93.3 82.4

178 2.3.2.7 Provide building facilities 3.1 73.3 86.7 100 63.6

179 2.3.2.8 Provide remote access facility 2.7 58.8 68.8 100 40.4

180 2.3.2.9 Adopt software design tools 3.6 93.8 57.1 100 53.6

181 2.3.2.10 Adopt software testing tools 3.8 93.8 66.7 85.7 53.6

182 2.3.2.11 Ensure data integrity 3.6 82.4 66.7 100 54.9

183 2.3.2.12 Register/maintain test equipment 3.3 76.5 64.3 76.9 37.8

184 2.3.2.13 Control customer-supplied equipment 3.1 66.7 62.5 71.4 29.8

185 2.3.2.14 Record equipment condition 2.4 50.0 53.8 61.5 16.6

186 2.3.2.15 Ensure equipment availability 2.6 50.0 61.5 81.8 25.2

2.3.3 Development support tools
187 2.3.3.1 CASE tools 3.1 71.4 61.5 81.8 36.0

188 2.3.3.2 Software requirements acquisition tools 2.9 71.4 33.3 70.0 16.7

189 2.3.3.3 Software design tools 3.4 76.9 64.3 90.9 45.0

190 2.3.3.4 Software testing tools 3.6 85.7 75.0 81.8 52.6

2.3.4 Management support tools
191 2.3.4.1 SQA management tools 3.0 61.5 36.4 88.9 19.9

192 2.3.4.2 Software requirements review tools 2.5 46.2 18.2 77.8 6.5

193 2.3.4.3 Software design review tools 2.8 58.3 36.4 87.5 18.6

194 2.3.4.4 Software testing analysis tools 3.3 83.3 54.5 88.9 40.4

195 2.3.4.5 Software configuration management tools 3.7 91.7 75.0 100 68.8

196 2.3.4.6 Software documentation processing tools 3.5 92.3 66.7 81.8 50.3

3 Management subsystem

3.1 SQA

3.1.1 SQA process definition
197 3.1.1.1 Define SQA procedure 4.0 87.5 75.0 86.7 56.9

198 3.1.1.2 Define project s/w engineering standards 4.1 94.7 88.9 94.4 79.5

199 3.1.1.3 Document SQA system 4.0 88.9 83.3 87.5 64.8

200 3.1.1.4 Issue quality manual 3.9 83.3 70.6 85.7 50.4

Benchmarks of the SEPRM Software Engineering Processes 663

201 3.1.1.5 Distribute quality policy 4.1 94.1 75.0 85.7 60.5

202 3.1.1.6 Report SQA results 4.1 100 72.2 100 72.2

203 3.1.1.7 Assess process quality 4.1 100 64.7 85.7 55.5

204 3.1.1.8 Take correct actions 4.4 100 88.2 87.5 77.2

205 3.1.1.9 Assign independent reviewers 3.8 88.2 70.6 80.0 49.8

206 3.1.1.10 Define extent of inspection 3.5 94.1 43.8 92.3 38.0

207 3.1.1.11 Conduct SQA for each process 3.6 82.4 58.8 78.6 38.1

208 3.1.1.12 Assign qualified person(s) to special process 3.5 82.4 68.8 80.0 45.3

209 3.1.1.13 Document quality records 3.7 81.3 75.0 80.0 48.8

210 3.1.1.14 Review SQA system suitability 4.0 94.4 62.5 84.6 49.9

211 3.1.1.15 Decisional role of SQA in processes 3.7 88.2 56.3 78.6 39.0

212 3.1.1.16 Decisional role of SQA in final products 3.8 94.1 62.5 84.6 49.8

213 3.1.1.17 Adopt SQA tools 2.8 56.3 50.0 75.0 21.1

3.1.2 Requirement review
214 3.1.2.1 Specification verification 4.2 94.1 64.7 93.3 56.8

215 3.1.2.2 Formal review requirements 4.0 93.8 81.3 92.9 70.7

216 3.1.2.3 Review statutory requirements 3.2 83.3 61.5 81.8 42.0

217 3.1.2.4 Customer accepts specifications 3.9 92.9 64.3 81.8 48.8

218 3.1.2.5 Adopt specification verification tools 2.5 66.7 13.3 80.0 7.1

3.1.3 Design review
219 3.1.3.1 Define design review procedure 3.9 94.1 86.7 78.6 64.1

220 3.1.3.2 Document design review 4.0 93.8 87.5 85.7 70.3

221 3.1.3.3 Verify prototypes 3.6 75.0 57.1 84.6 36.3

222 3.1.3.4 Measure design review coverage 3.1 64.3 21.4 80.0 11.0

3.1.4 Code review
223 3.1.4.1 Conduct code walk-through 4.1 93.3 73.3 78.6 53.8

224 3.1.4.2 Conduct code review 3.9 88.2 76.5 76.5 51.6

225 3.1.4.3 Measure code review coverage 3.0 73.3 6.7 63.6 3.1

3.1.5 Module testing audit
226 3.1.5.1 Measure test coverage 4.1 93.8 56.3 84.6 44.6

227 3.1.5.2 Estimate remaining error distribution 2.8 62.5 37.5 61.5 14.4

228 3.1.5.3 Review test results 3.9 93.8 80.0 84.6 63.5

229 3.1.5.4 Static/dynamic module test analysis 3.2 78.6 61.5 90.9 44.0

3.1.6 Integration/system testing audit
230 3.1.6.1 Identify nonconforming software/functions 4.2 100 93.3 100 93.3

231 3.1.6.2 Define inspection procedure 3.6 85.7 69.2 75.0 44.5

232 3.1.6.3 Inspection against requirements 4.3 100 76.9 100 76.9

233 3.1.6.4 Document inspection/test results 4.1 92.9 78.6 91.7 66.9

234 3.1.6.5 Static/dynamic integration test analysis 3.0 71.4 46.2 66.7 22.0

235 3.1.6.6 Static/dynamic acceptance test analysis 3.0 69.2 45.5 80.0 25.2

3.1.7 Maintenance audit
236 3.1.7.1 Reinspect repaired products 3.6 85.7 69.2 91.7 54.4

237 3.1.7.2 Audit nonconformance records 3.5 100 69.2 90.0 62.3

238 3.1.7.3 Audit nonconformance treatment 3.4 83.3 58.3 80.0 38.9

239 3.1.7.4 Audit consistency with specification 3.8 92.3 61.5 90.9 51.6

240 3.1.7.5 Audit consistency of system documents 3.5 92.9 64.3 91.7 54.7

664 Appendix D

241 3.1.7.6 Audit consistency of system configuration 3.4 78.6 46.2 63.6 23.1

242 3.1.7.7 Audit user satisfaction with maintenance 3.4 84.6 50.0 72.7 30.8

243 3.1.7.8 Review regression testing results 3.5 85.7 50.0 90.9 39.0

3.1.8 Audit and inspection
244 3.1.8.1 Audit software development activities 3.9 93.8 75.0 80.0 56.3

245 3.1.8.2 Audit work products 3.8 92.9 60.0 71.4 39.8

246 3.1.8.3 Audit process quality 3.7 93.3 66.7 71.4 44.4

247 3.1.8.4 Audit on-site activities 3.2 84.6 46.2 72.7 28.4

248 3.1.8.5 Document audit results 3.7 92.3 69.2 83.3 53.3

249 3.1.8.6 Verify representativeness of examined
samples

3.2 83.3 41.7 72.7 25.3

3.1.9 Peer review
250 3.1.9.1 Plan peer review 3.7 88.2 64.7 85.7 48.9

251 3.1.9.2 Select work products 3.5 80.0 57.1 83.3 38.1

252 3.1.9.3 Identify review standards 3.9 100 70.6 84.6 59.7

253 3.1.9.4 Establish completion criteria 4.2 100 64.7 85.7 55.5

254 3.1.9.5 Establish re-review criteria 3.1 76.5 20.0 80.0 12.2

255 3.1.9.6 Distribute review materials 3.5 88.2 66.7 92.3 54.3

256 3.1.9.7 Conduct peer review 3.9 94.4 77.8 88.2 64.8

257 3.1.9.8 Document review results 3.6 87.5 81.3 82.4 58.5

258 3.1.9.9 Take actions for review results 4.0 94.1 75.0 86.7 61.2

259 3.1.9.10 Track actions for review results 3.8 88.2 52.9 81.3 38.0

3.1.10 Defect control
260 3.1.10.1 Plan defect prevention 3.8 83.3 52.9 78.6 34.7

261 3.1.10.2 Defect reporting and record 4.2 88.9 76.5 93.8 63.7

262 3.1.10.3 Defect causal analysis 4.1 95.0 80.0 94.7 72.0

263 3.1.10.4 Propose process change for defect prevention 4.2 89.5 61.1 80.0 43.7

264 3.1.10.5 Track problem report 4.3 100 86.7 100 86.7

265 3.1.10.6 Prioritize problems 3.9 83.3 76.5 93.8 59.7

266 3.1.10.7 Determine resolutions 3.8 88.2 81.3 93.3 66.9

267 3.1.10.8 Correct defects 4.4 100 100 100 100

268 3.1.10.9 Review defect corrections 3.6 77.8 62.5 78.6 38.2

269 3.1.10.
 10

Distribute correction results 3.6 82.4 76.5 82.4 51.9

3.1.11 Subcontractor’s quality control
270 3.1.11.1 Subcontractor’s quantitative quality goals 3.3 86.7 46.7 76.9 31.1

271 3.1.11.2 Assess/test quality of subcontractor’s product 3.9 100 68.8 92.3 63.5

272 3.1.11.3 Acceptance test for subcontractor’s software 4.1 100 73.3 100 73.3

273 3.1.11.4 Safeguard customer-supplied products 3.9 92.3 76.9 100 71.0

274 3.1.11.5 Record customer-supplied products 3.5 83.3 69.2 91.7 52.9

3.2 Project planning

3.2.1 Project plan
275 3.2.1.1 Assign project proposal team 3.7 100 92.9 92.3 85.7

276 3.2.1.2 Design project process structure 3.9 100 78.6 92.3 72.5

277 3.2.1.3 Determine reuse strategy 3.4 71.4 35.7 84.6 21.6

278 3.2.1.4 Establish project schedule 4.5 100 100 93.3 93.3

Benchmarks of the SEPRM Software Engineering Processes 665

279 3.2.1.5 Establish project commitments 4.1 100 92.9 92.9 86.2

280 3.2.1.6 Document project plans 4.1 93.8 93.8 93.3 82.0

281 3.2.1.7 Conduct progress management reviews 3.9 100 92.9 92.3 85.7

282 3.2.1.8 Conduct progress technical reviews 3.6 92.9 76.9 84.6 60.4

283 3.2.1.9 Management commitments in planning 3.9 93.3 71.4 83.3 55.6

284 3.2.1.10 Determine release strategy 3.4 73.3 73.3 84.6 45.5

285 3.2.1.11 Plan change control 3.4 78.6 53.8 91.7 38.8

286 3.2.1.12 Define plan change procedure 3.1 71.4 53.8 91.7 35.3

287 3.2.1.13 Plan development 4.1 100 100 92.9 92.9

288 3.2.1.14 Plan testing 4.0 92.9 92.3 84.6 72.5

289 3.2.1.15 Plan system integration 3.9 92.9 83.3 100 77.4

290 3.2.1.16 Plan process management 3.6 85.7 91.7 91.7 72.0

291 3.2.1.17 Plan maintenance 3.6 93.3 78.6 85.7 62.9

292 3.2.1.18 Plan review and authorization 3.4 85.7 61.5 83.3 44.0

293 3.2.1.19 Assign development task 3.6 78.6 92.3 92.3 66.9

294 3.2.1.20 Adopt project/process planning tools 2.9 64.3 57.1 84.6 31.1

3.2.2 Project estimation
295 3.2.2.1 Estimate project costs 3.8 87.5 92.9 84.6 68.8

296 3.2.2.2 Estimate project time 4.4 100 100 92.9 92.9

297 3.2.2.3 Estimate resources requirement 4.5 100 100 73.3 73.3

298 3.2.2.4 Estimate staff requirement 4.3 92.9 100 83.3 77.4

299 3.2.2.5 Estimate software size 3.9 86.7 69.2 81.8 49.1

300 3.2.2.6 Estimate software complexity 3.4 78.6 41.7 90.9 29.8

301 3.2.2.7 Estimate critical resources 3.8 86.7 46.2 91.7 36.7

3.2.3 Project risk avoidance
302 3.2.3.1 Identify project risks 3.8 88.2 50.0 86.7 38.2

303 3.2.3.2 Establish risk management scope 3.3 78.6 30.8 66.7 16.1

304 3.2.3.3 Identify unstable specification-related risks 3.3 81.3 43.8 69.2 24.6

305 3.2.3.4 Identify process change-related risks 3.1 73.3 28.6 63.6 13.3

306 3.2.3.5 Identify market-related risks 3.8 93.3 64.3 83.3 50.0

307 3.2.3.6 Analyze and prioritize risks 3.4 73.3 40.0 71.4 21.0

308 3.2.3.7 Develop mitigation strategies 3.1 73.3 40.0 58.3 17.1

309 3.2.3.8 Define risk metrics for probability/impact 2.9 75.0 20.0 61.5 9.2

310 3.2.3.9 Implement mitigation strategies 3.1 78.6 28.6 63.6 14.3

311 3.2.3.10 Assess risk mitigation activities 2.9 68.6 33.3 58.3 13.4

312 3.2.3.11 Take corrective actions for identified risk 4.0 93.3 73.3 73.3 50.2

3.2.4 Project quality plan
313 3.2.4.1 Plan SQA 4.1 94.1 88.2 88.2 73.3

314 3.2.4.2 Establish quality goals 4.2 100 80.0 86.7 69.3

315 3.2.4.3 Define quality quantitative metrics 3.9 88.2 75.0 81.3 53.8

316 3.2.4.4 Identify quality activities 4.1 100 78.6 85.7 67.3

317 3.2.4.5 Track project quality goals 3.8 94.1 76.5 81.3 58.5

318 3.2.4.6 SQA team participate in project planning 3.6 86.7 57.1 84.6 41.9

319 3.2.4.7 Plan maintenance 3.3 73.3 71.4 85.7 44.9

3.3 Project management

3.3.1 Process management

666 Appendix D

320 3.3.1.1 Plan quantitative process management 3.6 94.7 37.5 76.9 27.3

321 3.3.1.2 Conduct quantitative process management 3.5 89.5 29.4 64.3 16.9

322 3.3.1.3 Collect data for quantitative analysis 3.5 94.7 43.8 71.4 29.6

323 3.3.1.4 Control defined process quantitatively 3.4 94.1 37.5 64.3 22.7

324 3.3.1.5 Document quantitative analysis results 3.3 78.9 41.2 80.0 26.0

325 3.3.1.6 Benchmark organization’s baseline of process
capability

2.8 57.9 37.5 71.4 15.5

326 3.3.1.7 Manage project by defined process 3.8 94.7 66.7 88.2 55.7

327 3.3.1.8 Adopt project/process management tools 3.2 78.9 47.1 70.6 26.2

3.3.2 Process tracking
328 3.3.2.1 Track project progress 4.3 100 100 100 100

329 3.3.2.2 Track development schedule 4.2 100 94.1 100 94.1

330 3.3.2.3 Track process quality 3.7 100 72.2 66.7 48.1

331 3.3.2.4 Track software size 2.9 63.2 68.8 86.7 37.6

332 3.3.2.5 Track project cost 3.8 94.4 80.0 93.3 70.5

333 3.3.2.6 Track critical resources and performance 3.3 80.0 70.6 94.1 53.1

334 3.3.2.7 Track project risks 3.2 84.2 52.9 68.8 30.7

335 3.3.2.8 Track process productivity 2.9 68.4 37.5 61.5 15.8

336 3.3.2.9 Track system memory utilization 2.4 44.4 31.3 53.3 7.4

337 3.3.2.10 Track system throughput 2.5 55.6 46.7 66.7 17.3

338 3.3.2.11 Track system I/O channel capabilities 2.4 58.8 37.5 60.0 13.2

339 3.3.2.12 Track system networking 2.5 58.8 33.3 66.7 13.1

340 3.3.2.13 Adopt process tracking tools 2.6 55.6 25.0 50.0 6.9

341 3.3.2.14 Document project tracking data 3.1 76.5 60.0 73.3 33.6

342 3.3.2.15 Identify and handle process deviation 3.7 95.2 78.9 83.3 62.7

3.3.3 Configuration management
343 3.3.3.1 Establish configuration management library 3.8 84.2 77.8 94.4 61.9

344 3.3.3.2 Adopt configuration management tools 3.8 93.3 53.3 84.6 42.1

345 3.3.3.3 Identify product’s configuration 4.2 100 82.4 88.2 72.7

346 3.3.3.4 Maintain configuration item descriptions 3.9 93.3 71.4 78.6 52.4

347 3.3.3.5 Control change requests 4.4 100 88.2 100 88.2

348 3.3.3.6 Release control 4.3 100 81.3 87.5 71.1

349 3.3.3.7 Maintain configuration item history 3.9 94.1 68.8 80.0 51.8

350 3.3.3.8 Report configuration status 3.6 81.3 73.3 86.7 51.6

3.3.4 Change control
351 3.3.4.1 Establish change requests/approval system 4.0 100 76.9 100 76.9

352 3.3.4.2 Control requirement change 4.1 100 71.4 85.7 61.2

353 3.3.4.3 Control design change 3.9 100 71.4 92.9 66.3

354 3.3.4.4 Control code change 3.8 93.3 78.6 92.9 68.1

355 3.3.4.5 Control test data change 3.3 73.3 57.1 84.6 35.5

356 3.3.4.6 Control environment change 3.0 78.6 53.8 81.8 34.6

357 3.3.4.7 Control schedule change 3.6 84.6 66.7 100 56.4

358 3.3.4.8 Control configuration change 3.8 82.4 73.3 86.7 52.3

359 3.3.4.9 Adopt change control tools 2.9 60.0 35.7 76.9 16.5

3.3.5 Process review
360 3.3.5.1 Review processes at milestones 3.8 93.8 80.0 84.6 63.5

Benchmarks of the SEPRM Software Engineering Processes 667

361 3.3.5.2 Document project review data 3.6 80.0 64.3 69.2 35.6

362 3.3.5.3 Revise project process 3.7 80.0 57.1 85.7 39.2

363 3.3.5.4 Conduct statistical analysis of process 3.1 68.8 42.9 61.5 18.1

364 3.3.5.5 Gather process data 3.2 71.4 61.5 66.7 29.3

365 3.3.5.6 Compare actual/forecast errors 3.5 86.7 57.1 76.9 38.1

366 3.3.5.7 Compare actual/forecast schedule 4.1 100 57.1 92.9 53.1

367 3.3.5.8 Compare actual/forecast resources 4.0 100 46.2 76.9 35.5

3.3.6 Intergroup coordination
368 3.3.6.1 Define interface between project groups 3.7 73.3 66.7 80.0 39.1

369 3.3.6.2 Plan intergroup activities 3.6 87.5 66.7 92.9 54.2

370 3.3.6.3 Identify intergroup critical dependencies 3.8 81.3 53.3 86.7 37.6

371 3.3.6.4 Handle intergroup issues 3.8 88.2 68.8 81.3 49.3

372 3.3.6.5 Technical/management representatives
coordination

3.6 94.1 75.0 93.3 65.9

373 3.3.6.6 Review last process output 3.1 75.0 40.0 78.6 23.6

374 3.3.6.7 Conduct intergroup representatives review 3.5 86.7 64.3 85.7 47.8

3.4 Contract and requirement
management

3.4.1 Requirement management
375 3.4.1.1 Specify system requirements 4.7 100 100 94.1 94.1

376 3.4.1.2 Design system based on requirements 4.4 100 100 86.7 86.7

377 3.4.1.3 Allocate requirements 3.8 86.7 85.7 85.7 63.7

378 3.4.1.4 Determine operating environment impact 3.6 94.1 68.8 86.7 56.1

379 3.4.1.5 Determine software requirements 4.5 100 100 93.8 93.8

380 3.4.1.6 Analysis of software requirements 4.3 100 93.8 87.5 82.1

381 3.4.1.7 Evaluate requirements with customer 4.2 100 100 100 100

382 3.4.1.8 Update requirements for next iteration 3.8 81.3 80.0 80.0 52.0

383 3.4.1.9 Agree on requirements 4.3 93.8 93.8 93.3 82.0

384 3.4.1.10 Establish requirements standard 3.7 76.5 68.8 73.3 38.6

385 3.4.1.11 Manage requirements changes 4.1 94.1 75.0 87.5 61.8

386 3.4.1.12 Maintain requirements traceability 3.8 93.8 62.5 80.0 46.9

3.4.2 Contract management
387 3.4.2.1 Define contractual procedures 3.9 93.8 87.5 100 82.0

388 3.4.2.2 Prepare contract proposal 3.6 87.5 93.3 100 81.7

389 3.4.2.3 Review contract 3.9 100 70.6 85.7 60.5

390 3.4.2.4 Ensure agreement of terminology 4.0 100 56.3 93.3 52.5

391 3.4.2.5 Determine interfaces to independent agents 3.3 80.0 46.7 85.7 32.0

392 3.4.2.6 Assess contractor’s capability 3.7 87.5 50.0 92.3 40.4

393 3.4.2.7 Document contractor’s capability 3.2 75.0 50.0 91.7 34.4

3.4.3 Subcontractor management
394 3.4.3.1 Specify subcontracted development 4.0 100 85.7 92.3 79.1

395 3.4.3.2 Assess capability of subcontractors 3.9 93.8 80.0 100 75.0

396 3.4.3.3 Record acceptable subcontractors 3.5 80.0 57.1 76.9 35.2

397 3.4.3.4 Define scope of contracted work 4.0 93.8 80.0 86.7 65.0

398 3.4.3.5 Define interface of contracted work 3.9 100 92.3 100 92.3

399 3.4.3.6 Select qualified subcontractor 3.9 100 73.3 93.3 68.4

668 Appendix D

400 3.4.3.7 Approve subcontractor’s plan 3.5 80.0 50.0 84.6 33.8

401 3.4.3.8 Maintain interchanges with subcontractors 3.6 93.3 78.6 85.7 62.9

402 3.4.3.9 Track subcontractor’s development activities 3.2 78.6 41.7 72.7 23.8

403 3.4.3.10 Monitor subcontractor’s SQA activities 3.4 86.7 50.0 92.3 40.0

404 3.4.3.11 Review subcontractor’s work 3.5 93.3 78.6 92.3 67.7

405 3.4.3.12 Assess compliance of contracted product 4.2 100 85.7 100 85.7

406 3.4.3.13 Determine interfaces to subcontractors 3.5 92.3 76.9 83.3 59.2

407 3.4.3.14 Document subcontractor’s records 2.9 66.7 50.0 66.7 22.2

3.4.4 Purchasing management
408 3.4.4.1 Identify need for purchasing 3.7 93.3 92.9 92.9 80.5

409 3.4.4.2 Define purchasing requirements 3.7 87.5 93.3 93.3 76.2

410 3.4.4.3 Prepare acquisition strategy 3.0 61.5 53.8 72.7 24.1

411 3.4.4.4 Prepare purchasing document 2.9 64.3 71.4 84.6 38.9

412 3.4.4.5 Prepare request for proposal 3.1 76.9 69.2 90.0 47.9

413 3.4.4.6 Review purchasing document 3.3 73.3 66.7 84.6 41.4

414 3.4.4.7 Select software product supplier 3.8 92.9 85.7 92.3 73.5

415 3.4.4.8 Verify purchased product 4.1 100 71.4 100 71.4

416 3.4.4.9 Manage purchased tools configuration 3.0 71.4 50.0 75.0 26.8

3.5 Document management

3.5.1 Documentation
417 3.5.1.1 Master list of project documents 3.8 88.2 81.3 86.7 62.1

418 3.5.1.2 Determine documentation requirements 3.5 88.2 68.8 81.3 49.3

419 3.5.1.3 Develop document 4.2 100 86.7 93.3 80.9

420 3.5.1.4 Check document 3.9 100 78.6 85.7 67.3

421 3.5.1.5 Control document issue 3.8 89.5 66.7 82.4 49.1

422 3.5.1.6 Maintain document 3.8 94.4 87.5 82.4 68.1

423 3.5.1.7 Documentation according to defined process 3.5 76.5 81.3 82.4 51.2

424 3.5.1.8 Establish documentation standards 3.8 88.2 81.3 86.7 62.1

425 3.5.1.9 Safety document storage 3.0 62.5 60.0 66.7 25.0

426 3.5.1.10 Identify current versions of documents 4.0 94.1 86.7 87.5 71.4

427 3.5.1.11 Adopt interactive documentation tools 2.9 64.7 53.3 62.5 21.6

3.5.2 Process database/library
428 3.5.2.1 Establish organization’s process library 3.1 68.8 40.0 78.6 21.6

429 3.5.2.2 Establish organization’s process database 3.1 73.3 28.6 72.7 15.2

430 3.5.3.3 Establish software reuse library 3.3 60.0 33.3 80.0 16.0

431 3.5.4.4 Establish organization’s metrics database 3.6 70.6 43.8 80.0 24.7

432 3.5.5.5 Establish operation manual library 3.1 73.3 61.5 92.3 41.7

433 3.5.6.6 Establish practice benchmark database 2.3 50.0 0 58.3 0

3.6 Human resource management

3.6.1 Staff selection and allocation
434 3.6.1.1 Define qualifications for positions 4.1 92.3 83.3 91.7 70.5

435 3.6.1.2 Define experience for positions 3.9 92.9 78.6 85.7 62.5

436 3.6.1.3 Assign personnel selection group 3.3 92.9 76.9 92.9 66.3

437 3.6.1.4 Select staff by qualification /experience 4.1 100 85.7 92.9 79.6

3.6.2 Training

Benchmarks of the SEPRM Software Engineering Processes 669

438 3.6.2.1 Plan training 3.9 100 85.7 85.7 73.5

439 3.6.2.2 Identify training needs 4.1 100 93.8 93.8 87.9

440 3.6.2.3 Develop training courses 3.5 85.7 71.4 85.7 52.5

441 3.6.2.4 Approval of training courses 3.2 78.6 38.5 90.0 27.2

442 3.6.2.5 Conduct technical training 4.1 100 76.5 87.5 66.9

443 3.6.2.6 Conduct management training 3.7 92.9 50.0 78.6 36.5

444 3.6.2.7 Document training records 3.6 82.4 81.3 93.3 62.5

This page intentionally left blankThis page intentionally left blank

671

Appendix E

SEPRM PROCESS
ASSESSMENT TEMPLATES

Template E.1 Assessment Purpose

 ID#: Date:

No. Subject Remarks
1 Organization to be assessed Specify name of organization

2 Department to be assessed Specify unit of organization

3 Project(s) to be assessed Specify project name(s)

4 Sponsor of the assessment Identify sponsor of the assessment

5 Aims of assessment Specify aims of assessment

5.1 Process establishment

5.2 Process capability assessment

5.3 Process improvement

5.4 Other (to be specified)

6 Assessment classification Specify type of assessment

6.1 Conformance of assessment to a certain
model/standard

6.2 Independent (third-party) assessment

672 Appendix E

6.3 Second-party assessment

6.4 Self-assessment

6.5 Couched self-assessment

6.6 Other (to be specified)

7 Provisional date for assessment Describe provisional date for the assessment

8 Special need(s) for assessment Specify any special needs for the assessment

SEPRM Process Assessment Templates 673

Template E.2 Assessment Scope

 ID#: Date:

No. Subject Remarks
1 Project to be assessed

2 Processes to be assessed in SEPRM Specify processes to be
assessed

2.1 Organization process subsystem

2.1.1 Organization structure process category

2.1.1.1 Organization definition

2.1.1.2 Project organization

2.1.2 Organizational process category

2.1.2.1 Organization process definition

2.1.2.2 Organization process improvement

2.1.3 Customer service process category

2.1.3.1 Customer relations

2.1.3.2 Customer support

2.1.3.3 Software/system delivery

2.1.3.4 Service evaluation

2.2 Development process subsystem

2.2.1 Software engineering methodology process category

2.2.1.1 Software engineering modeling

2.2.1.2 Reuse methodologies

2.2.1.3 Technology innovation

2.2.2 Software development process category

2.2.2.1 Development process definition

2.2.2.2 Requirement analysis

2.2.2.3 Design

2.2.2.4 Coding

2.2.2.5 Module testing

2.2.2.6 Integration and system testing

2.2.2.7 Maintenance

2.2.3 Software development environment process category

2.2.3.1 Environment

2.2.3.2 Facilities

2.2.3.3 Development support tools

2.2.3.4 Management support tools

2.3 Management process subsystem

2.3.1 Software quality assurance (SQA) process category

674 Appendix E

2.3.1.1 SQA process definition

2.3.1.2 Requirement review

2.3.1.3 Design review

2.3.1.4 Code review

2.3.1.5 Module testing audit

2.3.1.6 Integration and system testing audit

2.3.1.7 Maintenance audit

2.3.1.8 Audit and inspection

2.3.1.9 Peer review

2.3.1.10 Defect control

2.3.1.11 Subcontractor’s quality control

2.3.2 Project planning process category

2.3.2.1 Project plan

2.3.2.2 Project estimation

2.3.2.3 Project risk avoidance

2.3.2.4 Project quality plan

2.3.3 Project management process category

2.3.3.1 Process management

2.3.3.2 Process tracking

2.3.3.3 Configuration management

2.3.3.4 Change control

2.3.3.5 Process review

2.3.3.6 Intergroup coordination

2.3.4 Contract and requirement management process
category

2.3.4.1 Requirement management

2.3.4.2 Contract management

2.3.4.3 Subcontractor management

2.3.4.4 Purchasing management

2.3.5 Document management process category

2.3.5.1 Documentation

2.3.5.2 Process database/library

2.3.6 Human resource management process category

2.3.6.1 Staff selection and allocation

2.3.6.2 Training

3 Constraints of assessment For instance, resources,
budget, and critical milestones

4 Assessment output requirements Tick and describe additional
output of assessment

SEPRM Process Assessment Templates 675

4.1 Project process capability level

4.2 Process capability profile

4.3 Process strengths and weaknesses analysis report

4.4 Potential process improvement opportunities

4.5 Executive summary of assessment results

5 Background factors which may affect
performance

676 Appendix E

Template E.3 Assessment Team and Responsibilities

 ID#: Date:

No. Role [Name] Responsibility
1 Sponsor

- prepare assessment agreement
- select unit representative(s)
- organize assessment supporting activities
- review assessment report
- report to higher management

2 Lead Assessor

- prepare assessment agreement with sponsor
- select assessor(s) with sponsor
- develop assessment brief
- organize assessment activities
- review assessment report
- present assessment report

3 Assessors

3.1 Assessor 1

4 Others

4.1 Project Management Representative

4.2 Project Technical Representative

SEPRM Process Assessment Templates 677

Table E.4 Assessment Confidentiality Agreement

Assessment Confidentiality Agreement

ID#: Date:

1. Scope and purpose of this document

This document has been agreed to provide mutual confidentiality to all
parties involved in the assessment to be conducted at Organization X
during <DD1/MM1/YY1> to <DD2/MM2/YY2>.

2. Parties to the agreement

The parties in this agreement will be Organization X (herein referred to
as “Party A”) and Organization Y (herein referred to as “Party B”).

3. Confidentiality

Throughout the course of the assessment, and all times thereafter, the
parties are hereby bound to observe complete confidentiality as to all
matters concerning the affairs of each other; and all details relating to the
assessment, now and in the future. None of the parties (including any
associated companies or subsidiaries) will disclose information regarding
the outcome of the assessment or engage in publicity pertaining to the
other party without prior agreement from the other party.

All parties hereby confirm their acceptance.

Signed for and on behalf of Party A Signed for and on behalf of Party B

Signature ……………………… Signature ………...……….…….

Full name Full name

(print) …………………….…… (print) …………………………..

678 Appendix E

Position Project manager Position Lead assessor

Address ………………………. Address ………….………..…...

 ………………….……
…………..……………

 ……………………….
………………..………

Date Date

Place ………………..……… Place …………..……………

SEPRM Process Assessment Templates 679

Table E.5 Assessment Schedule and Resources

 ID#: Date:

No. Subject Responsibility Resource Planed
date

Complete
d date

1 Initiation of an
assessment

Lead assessor/sponsor

2 Sponsor commitment Sponsor

3 Define assessment
purpose

Lead assessor/sponsor

4 Define assessment scope Lead assessor/sponsor

5 Sponsor approval of
assessment input

Lead assessor/sponsor

6 Appoint assessment team Lead assessor/sponsor

7 Prepare assessment
confidentiality
agreement

Lead assessor/sponsor

8 Plan schedule and
Resources

Lead assessor/sponsor

9 Determine assessment
reference model,
assessment model, and
tool

Assessors

10 Map customer’s
processes to SEPRM
model

Assessors

11 Define processes to be
assessed and target
capability levels

Assessors/
Sponsor

12 Develop assessment
brief

Lead assessor

13 Organizational unit
briefing

Lead assessor/sponsor

14 Data collection Assessors/
Assessees

15 Data validation Assessors/
Assessees

16 Capability rating and
analysis

Assessors/
Assessees

17 Briefing initial
assessment results

Assessors/
sponsor/
assessees

18 Process strengths and
weaknesses analysis

Assessors

19 Process improvement
opportunity analysis

Assessors

680 Appendix E

20 Develop assessment
report

Lead assessor/sponsor

21 Review and presentation
of assessment report

Lead assessor/sponsor/
assessees

22 Action plan for process
improvement

Sponsor/
competent assessor/
assessees

23 Other (to be specified)

SEPRM Process Assessment Templates 681

Table E.6 Processes to be Assessed and Target Capability Levels

 ID#: Date:

No. Process Selection in
Assessment

Target
Capability

Level

Corresponding
Processes

on Site
1 Organization subsystem

1.1 Organization structure category
1.1.1 Organization definition

1.1.2 Project organization

1.2 Organization process category
1.2.1 Organization process definition

1.2.2 Organization process improvement

1.3 Customer service category
1.3.1 Customer relations

1.3.2 Customer support

1.3.3 Software/system delivery

1.3.4 Service evaluation

2 Development

2.1 Software engineering methodology
category

2.1.1 Software engineering modeling

2.1.2 Reuse methodologies

2.1.3 Technology innovation

2.2 Software development category
2.2.1 Development process definition

2.2.2 Requirement analysis

2.2.3 Design

2.2.4 Coding

2.2.5 Module testing

2.2.6 Integration and system testing

2.2.7 Maintenance

2.3 Software development environment
category

2.3.1 Environment

2.3.2 Facilities

2.3.3 Development support tools

2.3.4 Management support tools

3 Management

3.1 Software quality assurance category
3.1.1 SQA process definition

3.1.2 Requirement review

3.1.3 Design review

3.1.4 Code review

3.1.5 Module testing audit

682 Appendix E

3.1.6 Integration and system testing audit

3.1.7 Maintenance audit

3.1.8 Audit and inspection

3.1.9 Peer review

3.1.10 Defect control

3.1.11 Subcontractor’s quality control

3.2 Project planning category
3.2.1 Project plan

3.2.2 Project estimation

3.2.3 Project risk avoidance

3.2.4 Project quality plan

3.3 Project management category
3.3.1 Process management

3.3.2 Process tracking

3.3.3 Configuration management

3.3.4 Change control

3.3.5 Process review

3.3.6 Intergroup coordination

3.4 Contract and requirement management
category

3.4.1 Requirement management

3.4.2 Contract management

3.4.3 Subcontractor management

3.4.4 Purchasing management

3.5 Document management category
3.5.1 Documentation

3.5.2 Process database/library

3.6 Human resource management category
3.6.1 Staff selection and allocation

3.6.2 Training

SEPRM Process Assessment Templates 683

Table E.7 Assessment Brief

 ID#: Date:

No. Item Remark
1 Organization Refer to Template E.1

2 Department to be assessed Refer to Template E.1

3 Project(s) Refer to Template E.1

4 Sponsor Refer to Template E.1

5 Purpose of assessment Refer to Template E.1

6 Scope of assessment Refer to Template E.2

7 Constraints of assessment Refer to Template E.2

8 Assessment team Refer to Template E.3

9 Resources needed Estimate amount of effort required and
type of resources

10 Key milestones Refer to Template E.5

11 Summary of process to be assessed and target
capability level(s)

Refer to Template E.6

684 Appendix E

12 Assessment approach Describe method and approach
adopted for the assessment

13 Other To be specified by assessors

SEPRM Process Assessment Templates 685

Table E.8 Process Strengths and Weaknesses Analysis

 ID#: Date:

No. Process Assessed
Level
[AL]

Targeted
Level
[TL]

Strengths(+)/
Weaknesses (-)

[AL-TL]
1 Organization

1.1 Organization structure category
1.1.1 Organization definition

1.1.2 Project organization

1.2 Organization process category
1.2.1 Organization process definition

1.2.2 Organization process improvement

1.3 Customer service category
1.3.1 Customer relations

1.3.2 Customer support

1.3.3 Software and system delivery

1.3.4 Service evaluation

2 Development

2.1 Software engineering methodology category
2.1.1 Software engineering modeling

2.1.2 Reuse methodologies

2.1.3 Technology innovation

2.2 Software development category
2.2.1 Development process definition

2.2.2 Requirement analysis

2.2.3 Design

2.2.4 Coding

2.2.5 Module testing

2.2.6 Integration and system testing

2.2.7 Maintenance

2.3 Software development environment
category

2.3.1 Environment

2.3.2 Facilities

2.3.3 Development support tools

2.3.4 Management support tools

3 Management

3.1 Software quality assurance category
3.1.1 SQA process definition

3.1.2 Requirement review

3.1.3 Design review

3.1.4 Code review

3.1.5 Module testing audit

3.1.6 Integration and system testing audit

686 Appendix E

3.1.7 Maintenance audit

3.1.8 Audit and inspection

3.1.9 Peer review

3.1.10 Defect control

3.1.11 Subcontractor’s quality control

3.2 Project planning category
3.2.1 Project plan

3.2.2 Project estimation

3.2.3 Project risk avoidance

3.2.4 Project quality plan

3.3 Project management category
3.3.1 Process management

3.3.2 Process tracking

3.3.3 Configuration management

3.3.4 Change control

3.3.5 Process review

3.3.6 Intergroup coordination

3.4 Contract and requirement management
category

3.4.1 Requirement management

3.4.2 Contract management

3.4.3 Subcontractor management

3.4.4 Purchasing management

3.5 Document management category
3.5.1 Documentation

3.5.2 Process database/library

3.6 Human resource management category
3.6.1 Staff selection and allocation

3.6.2 Training

SEPRM Process Assessment Templates 687

Table E.9 Process Improvement Opportunities Analysis

ID#: Date:

No. Process Strengths(+)/
Weaknesses (-)

[AL-TL]

Improvement
Priority

(IP)

Remarks
and Risks

1 Organization

1.1 Organization structure category
1.1.1 Organization definition

1.1.2 Project organization

1.2 Organization process category
1.2.1 Organization process definition

1.2.2 Organization process improvement

1.3 Customer service category
1.3.1 Customer relations

1.3.2 Customer support

1.3.3 Software and system delivery

1.3.4 Service evaluation

2 Development

2.1 Software engineering methodology
category

2.1.1 Software engineering modeling

2.1.2 Reuse methodologies

2.1.3 Technology innovation

2.2 Software development category
2.2.1 Development process definition

2.2.2 Requirement analysis

2.2.3 Design

2.2.4 Coding

2.2.5 Module testing

2.2.6 Integration and system testing

2.2.7 Maintenance

2.3 Software engineering infrastructure
category

2.3.1 Environment

2.3.2 Facilities

2.3.3 Development support tools

2.3.4 Management support tools

3 Management

3.1 Software quality assurance category
3.1.1 SQA process definition

3.1.2 Requirement review

3.1.3 Design review

3.1.4 Code review

3.1.5 Module testing audit

688 Appendix E

3.1.6 Integration and system testing audit

3.1.7 Maintenance audit

3.1.8 Audit and inspection

3.1.9 Peer review

3.1.10 Defect control

3.1.11 Subcontractor’s quality control

3.2 Project planning category
3.2.1 Project plan

3.2.2 Project estimation

3.2.3 Project risk avoidance

3.2.4 Project quality plan

3.3 Project management category
3.3.1 Process management

3.3.2 Process tracking

3.3.3 Configuration management

3.3.4 Change control

3.3.5 Process review

3.3.6 Intergroup coordination

3.4 Contract and requirement management
category

3.4.1 Requirement management

3.4.2 Contract management

3.4.3 Subcontractor management

3.4.4 Purchasing management

3.5 Document management category
3.5.1 Documentation

3.5.2 Process database/library

3.6 Human resource management category
3.6.1 Staff selection and allocation

3.6.2 Training

689

Appendix F

ISO/IEC 12207
SOFTWARE LIFE CYCLE

PROCESSES

No. Group Process Process Activity (PA) Process Task
(PT)

1 Primary
life cycle
processes

5 35 135

1.1 Acquisition 5 23
1.1.1 Initiation 9

1.1.2 Request for proposal/tender
preparation

4

1.1.3 Contract preparation and update 5

1.1.4 Supplier monitoring 2

1.1.5 Acceptance and completion 3

1.2 Supply 7 24
1.2.1 Initiation 2

1.2.2 Preparation of response 1

1.2.3 Contract 2

1.2.4 Planning 5

1.2.5 Execution and control 6

1.2.6 Review and evaluation 6

1.2.7 Delivery and completion 2

1.3 Development 13 55
1.3.1 Process implementation 5

1.3.2 System requirements analysis 2

1.3.3 System architecture design 2

1.3.4 Software requirements analysis 3

1.3.5 Software architectural design 7

1.3.6 Software detailed design 8

1.3.7 Software coding and testing 5

690 Appendix F

1.3.8 Software integration 6

1.3.9 Software qualification testing 5

1.3.10 System integration 3

1.3.11 System qualification testing 4

1.3.12 Software installation 2

1.3.13 Software acceptance support 3

1.4 Operation 4 9
1.4.1 Process implementation 3

1.4.2 Operational testing 2

1.4.3 System operation 1

1.4.4 User support 3

1.5 Maintenance 6 24
1.5.1 Process implementation 3

1.5.2 Problem and modification analysis 5

1.5.3 Modification implementation 2

1.5.4 Maintenance review/acceptance 2

1.5.5 Migration 7

1.5.6 Software retirement 5

2 Supporting
life cycle
processes

8 25 70

2.1 Documentation 4 7
2.1.1 Process implementation 1

2.1.2 Design and development 3

2.1.3 Production 2

2.1.4 Maintenance 1

2.2 Configuration
management

6 6

2.2.1 Process implementation 1

2.2.2 Configuration identification 1

2.2.3 Configuration control 1

2.2.4 Configuration status accounting 1

2.2.5 Configuration evaluation 1

2.2.6 Release management and delivery 1

2.3 Quality
assurance

4 16

2.3.1 Process implementation 6

2.3.2 Product assurance 3

2.3.3 Process assurance 6

2.3.4 Assurance of quality system 1

2.4 Verification 2 13
2.4.1 Process implementation 6

2.4.2 Verification 7

2.5 Validation 2 10
2.5.1 Process implementation 5

2.5.2 Validation 5

2.6 Joint review 3 8

ISO/IEC 12207 Software Life Cycle Processes 691

2.6.1 Process implementation 6

2.6.2 Project management reviews 1

2.6.3 Technical reviews 1

2.7 Audit 2 8
2.7.1 Process implementation 7

2.7.2 Audit 1

2.8 Problem
resolution

2 2

2.8.1 Process implementation 1

2.8.2 Problem resolution 1

3 Organization
life cycle
processes

4 14 27

3.1 Management 5 12
3.1.1 Initiation and scope definition 3

3.1.2 Planning 1

3.1.3 Execution and control 4

3.1.4 Review and evaluation 2

3.1.5 Closure 2

3.2 Infrastructure 3 5
3.2.1 Process implementation 2

3.2.2 Establishment of the infrastructure 2

3.2.3 Maintenance of the infrastructure 1

3.3 Implement 3 6
3.3.1 Process establishment 1

3.3.2 Process assessment 2

3.3.3 Process improvement 3

3.4 Training 3 4
3.4.1 Process implementation 1

3.4.2 Training material development 1

3.4.3 Training plan implementation 2

Total 3 17 74 232

This page intentionally left blankThis page intentionally left blank

693

Appendix G

ISO/IEC CD 15288
SYSTEM LIFE CYCLE

PROCESSES

No. Group Process Process Activity (PA)

1 Agreement
processes

2 12

1.1 Acquisition 7
1.1.1 Plan the acquisition

1.1.2 Prepare the request for proposal

1.1.3 Solicit supplier proposals

1.1.4 Evaluate supplier proposals

1.1.5 Negotiate the agreement

1.1.6 Monitor the agreement

1.1.7 Conclude the agreement

1.2 Supply 5
1.2.1 Plan to respond to solicitation

1.2.2 Prepare the proposal

1.2.3 Negotiate the agreement

1.2.4 Execute the proposal

1.2.5 Monitor the agreement

2 Enterprise
processes

4 32

2.1 Enterprise
management

7

2.1.1 Strategic planning

2.1.2 Tactical planning

2.1.3 Set system life cycle policy

2.1.4 Define life cycle responsibility

2.1.5 Enterprise impact assessment

2.1.6 Assess life cycles

2.1.7 Enterprise change management

694 Appendix G

2.2 Investment
management

7

2.2.1 Identify new business opportunities

2.2.2 Initiate new acquisition project

2.2.3 Initiate new supply project

2.2.4 Allocate resources for projects

2.2.5 Identify expected project outcomes

2.2.6 Identify interface between projects

2.2.7 Specify project milestones

2.2.8 Review ongoing projects

2.2.9 Project cancellation

2.3 System life cycle
processes
management

9

2.3.1 Establish standard system life cycle processes

2.3.2 Establish tailoring methods

2.3.3 Deploy standard processes in projects

2.3.4 Establish process performance metrics

2.3.5 Monitor process execution

2.3.6 Determine process improvement opportunities

2.3.7 Conduct process improvement

2.3.8 Provide project management aids

2.3.9 Control project management interfaces

2.4 Resource
management

9

2.4.1 Maintain staff resources and quality

2.4.2 Define recruitment requirements

2.4.3 Provide project with competent staff

2.4.4 Provide training for technical and managerial
personnel

2.4.5 Evaluate performance of staff

2.4.6 Establish reward mechanism

2.4.7 Define and maintain information systems

2.4.8 Provide resource infrastructure support

2.4.9 Provide working environment

3 Project
management
processes

7 44

3.1 Planning 8
3.1.1 Identify project objectives

3.1.2 Establish project scope and tasks

3.1.3 Establish project schedule

3.1.4 Establish project costs

3.1.5 Define project team

3.1.6 Define project infrastructure

3.1.7 Define project acquisitions

3.1.8 Define project communication

ISO/IEC CD 15288 System Life Cycle Processes 695

3.2 Assessment 7
3.2.1 Assess project scope and tasks

3.2.2 Assess project schedule

3.2.3 Assess project costs

3.2.4 Assess project team

3.2.5 Assess project infrastructure

3.2.6 Assess project acquisitions

3.2.7 Assess project communication

3.3 Control 8
3.3.1 Control project tasks

3.3.2 Control project schedule

3.3.3 Control project costs

3.3.4 Control project quality

3.3.5 Control project team

3.3.6 Control project infrastructure

3.3.7 Control project acquisitions

3.3.8 Control project communication

3.4 Decision management 5
3.4.1 Decision management planning

3.4.2 Problem and opportunity statement

3.4.3 Cause analysis

3.4.4 Decision resolution

3.4.5 Decision reporting

3.5 Risk management 7
3.5.1 Risk management plan

3.5.2 Define risk categories

3.5.3 Identify threats

3.5.4 Analyze risks

3.5.5 Control risk

3.5.6 Assess risk management effectiveness

3.5.7 Document risks

3.6 Configuration
management

5

3.6.1 Configuration management planning

3.6.2 Configuration identification

3.6.3 Configuration documentation

3.6.4 Configuration change control

3.6.5 Configuration status accounting

3.7 Quality management 4
3.7.1 Establish quality management infrastructure

3.7.2 Establish quality management plans

3.7.3 Performance assessment

3.7.4 Corrective actions

4 Technical
Processes

10 66

4.1 Stakeholder needs 10

696 Appendix G

definition
4.1.1 Recognize need or opportunity

4.1.2 Identify stakeholders

4.1.3 Needs elicitation

4.1.4 Context analysis

4.1.5 Human factors analysis

4.1.6 Safety factors analysis

4.1.7 Security factors analysis

4.1.8 Resolve stakeholder need conflict

4.1.9 Confirm stakeholder needs

4.1.10 Baseline the stakeholder needs

4.2 Requirements analysis 9
4.2.1 Define system functional boundaries

4.2.2 Functional analysis

4.2.3 Define performance measures

4.2.4 Human factors

4.2.5 Safety

4.2.6 Security

4.2.7 Analyze system requirements integrity

4.2.8 Requirements tracing

4.2.9 Establish requirements baseline

4.3 Architectural design 8
4.3.1 Partitioning

4.3.2 Procedure, acquire or reuse analysis

4.3.3 Component definition

4.3.4 Design trade-off

4.3.5 Interface definition

4.3.6 Review architectural design

4.3.7 Specify components

4.3.8 Baseline the architectural design

4.4 Implementation 5
4.4.1 Component specification

4.4.2 Component detailed design

4.4.3 Component fabrication

4.4.4 Component integration

4.4.5 Component verification

4.5 Integration 5
4.5.1 Integration planning

4.5.2 Receive components

4.5.3 Component acceptance

4.5.4 Integrate components

4.5.5 Document integration data

4.6 Verification 5
4.6.1 Define verification strategy

4.6.2 Plan verification

4.6.3 Detection of nonconformance and faults

ISO/IEC CD 15288 System Life Cycle Processes 697

4.6.4 Diagnosis of nonconformance and faults

4.6.5 Fault reporting and analysis

4.7 Transition 7
4.7.1 Plan transition

4.7.2 Prepare operating site

4.7.3 Deliver system product

4.7.4 Install system product

4.7.5 Accustom operators

4.7.6 Commission system

4.7.7 Record installation results

4.8 Validation 5
4.5.1 Define validation strategy

4.5.2 Plan validation

4.5.3 Detection of nonconformance

4.5.4 Diagnosis of nonconformance

4.5.5 Nonconformance reporting and analysis

4.9 Operations 6
4.9.1 System application

4.9.2 Staffing

4.9.3 Training

4.9.4 Operation management

4.9.5 Performance monitoring

4.9.6 Problem reporting and analysis

4.10 Disposal 6
4.10.1 Deactivation

4.10.2 Removal

4.10.3 Reuse

4.10.4 Storage

4.10.5 Destruction

4.10.6 Information archiving

Total 4 23 154

This page intentionally left blankThis page intentionally left blank

	Front Cover
	Dedication
	Contents Summary
	Table of Contents
	Preface
	Part I: Fundamentals of the Software Engineering Process
	Chapter 1: Introduction
	Chapter 2: A Unified Framework of the Software Engineering Process
	Chapter 3: Process Algebra
	Chapter 4: Process-Based Software Engineering

	Part II: Software Engineering Process System Modeling
	Chapter 5: The CMM Model
	Chapter 6: The ISO 9001 Model
	Chapter 7: The BOOTSTRAP Model
	Chapter 8: The ISO/IEC TR 15504 (SPICE) Model
	Chapter 9: The Software Engineering Process Reference Model: SEPRM

	Part III: Software Engineering Process System Analysis
	Chapter 10: Benchmarking the SEPRM Processes
	Chapter 11: Comparative Analysis of Current Process Models
	Chapter 12: Transformation of Capability Levels between Current Process Models

	Part IV: Software Engineering Process Establishment
	Chapter 13: Software Process Establishment Methodologies
	Chapter 14: An Extension of ISO/IEC TR 15504 Model

	Part V: Software Engineering Process Assessment
	Chapter 15: Software Process Assessment Methodologies
	Chapter 16: Supporting Tools for Software Process Assessment

	Part VI: Software Engineering Process Improvement
	Chapter 17: Software Process Improvement Methodologies
	Chapter 18: Case Studies in Software Process Improvement
	Chapter 19: Review and Perspectives

	Bibliography
	Appendixes

