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What is different about this probability and statistics book from the seemingly
endless supply of other introductory texts available? Simply put, our main objective
was to develop an elementary statistics text for and about the growing number of
people who have (quite wisely) chosen to make careers in the fields of forestry, forest
products, conservation and other natural sciences. Our approach is unique in that we
have used methods, examples and exercises that are particularly relevant to these
increasingly important fields.

Notably, there have been several previous attempts at books aimed at these
disciplines: Experimental Design and Analysis in Forest Research (1959) by J. Jeffers;
Forest Biometrics (1961) by M. Prodan; and F. Freese’s series, Elementary Statistical
Methods for Foresters (Handbook, 1974), Elementary Forest Sampling (Handbook,
1962) and Linear Regression Methods for Forest Research (Handbook, 1964). Each
of these texts has made an important contribution to the field, but they are outdated,
specialized and limited from a pedagogical point of view. To the best of our
knowledge, our book is unique in that it is designed for and well suited to a one-
semester introductory probability and statistics course in forestry and natural
sciences. This book also serves as a useful reference and it is hoped that students,
practitioners and researchers will use it to understand and appreciate the important
role of statistics in their respective disciplines.

The book starts with the usual topics found in any introductory statistics text – the
use of descriptive statistics and a basic introduction to probability, random variables
and probability distributions. We use this as the foundation for discussing some of the
more commonly used inferential tools in statistics – estimation, hypothesis testing,
analysis of variance, goodness-of-fit, test of independence, regression and correlation
analyses. Unlike many other introductory texts, we have also provided discussions of
statistical topics that are commonplace in a forestry context – design of experiments,
sampling methods, non-parametric tests and statistical quality control. It is our
opinion that a good background in high-school algebra is sufficient for reading and
understanding the material presented here. We have made every attempt to use
examples and exercises from the disciplines of forestry, wood science and
conservation. However, we have also incorporated some everyday examples (like coin
flipping and dice tossing) to make it more readable and understandable, especially
where probability theories are concerned.

This book did not occur in isolation and we owe a debt of gratitude to a number of
people, most notably our families, friends, peers and co-workers. We would also like
to acknowledge everyone who has assisted us in the development of this book. We are
particularly grateful to Patsy Quay, Jamie Myers and Denise Allen for their help in the
preparation of the several versions of the manuscript. We also appreciate the
insightful comments provided by Dr Lisa Zabek and the dozens of Forestry 231
(Introduction to Biometrics and Business Statistics) students at the University of
British Columbia on one of the earlier drafts. Last, but certainly not least, the many

Preface
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concepts, ideas, thoughts and examples in this book were inspired by and originated
from several other texts. These are listed in the Bibliography and the contributions
made by these authors within the domain of probability and statistics are very much
appreciated.
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In this chapter we define the term statistics. We also discuss data, the building blocks
of statistics, and introduce data collection procedures and measurement scales.

1.1 What is Statistics?

When most people think of statistics, they imagine percentages, averages and rates of
change, which are displayed in tables, graphs and charts. Statistics give us information
about debits and credits, incomes and taxes, births and deaths, home prices, daily
temperatures, smokers’ mortality rates and so on. In sports, such as hockey, the term
statistics refers to the records kept on each player’s performance, such as the number of
goals, number of shots on goal and number of penalty minutes. 

Similarly, in forestry, statistics are collected to summarize tree heights, diameters,
volumes, seedling survival rates, bark beetle infestation costs and much more. In
sawmills, tables and charts are compiled to indicate the quality of the products
produced, such as the distribution of lumber by grade, the strength of the lumber and
other important quality characteristics.

We offer two definitions for statistics in this book.

● Statistics is the science of collecting, organizing, analysing and interpreting
information (in this case, statistics is singular).

● Statistics are numbers calculated from information (in this case, statistics can be
singular or plural).

The study of statistics is generally subdivided into two distinct fields: descriptive
statistics and statistical inference.

Consider a large body of information, such as 5000 measurements of tree height
collected from a forest management unit. Ordinarily, it is almost impossible to look at a
large listing of numbers like this and draw any meaningful conclusions. Using descriptive
statistics, we can describe this information with tables, summary numbers, charts and
graphs. In this way, an observer (e.g. the forest manager) can very easily and quickly
characterize, summarize and communicate the attributes of the forest management unit
being measured (tree heights) since it is generally easier to understand the information
when it is presented in the form of tables, charts, graphs or summary numbers, the latter
often being referred to as statistics. The organization or tabulation of such large bodies of
information has become a necessary skill for people employed in the forestry sector, from
conservation biologists to foresters to wood products manufacturers.

Descriptive statistics deals with the collection, organization and presentation
of information and the calculations of some measures (statistics) that describe
the information.

© CAB International 2008. Introductory Probability and Statistics: Applications for 1
Forestry and Natural Sciences (A. Kozak, R.A. Kozak, C.L. Staudhammer and S.B. Watts)
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2 Introductory Probability and Statistics

We may also want to use the information on hand to make predictions about the future
or make statements about the larger body of information from which our data were
taken. Statistical inference, or inferential statistics, uses information contained in a
sample to reach conclusions about one or more characteristics of the whole population.

A population is the entire collection of items/subjects possessing certain
common characteristics about which information is being sought. The
characteristics of a population are called parameters and are usually denoted
with Greek letters (e.g. µ, �).

A sample is a portion or subset of the population. The characteristics of a sample
are called statistics and are usually denoted with Roman letters (e.g. x, p).

It would be ideal if we could obtain information from every item (subject) in a
population. However, populations are quite often very large (e.g. all possible trees in
a forest type) and, therefore, it is simply not practical, or even possible, to collect the
desired information from each item of the population. In other cases, such as the
testing of modulus of rupture (strength) in 2 × 4s, it is not tenable to observe every
item in the population because the item being observed is destroyed in the gathering
of this information.

In these situations, we must collect the desired information from a sample. This
portion, or subset, of the population is used to draw conclusions (inferences) concerning
the whole population. This type of generalization, based on an incomplete set of
information, involves a certain amount of risk. Therefore, in studying and using
inferential statistics, a considerable amount of time is spent quantifying the associated
risk. Some theories in probability will help us to properly quantify these risks.

Inferential statistics or statistical inference is concerned with generalizing from
the information obtained in a sample to an entire population. This
generalization involves estimation, hypothesis testing, determining relationships
and prediction.

1.2 Data

Pieces of information collected on subjects or items from a population form the building
blocks of statistics and are called data (data is the plural of datum, a piece of
information). Data can be collected, organized, analysed and summarized. Table 1.1
shows an example data set, which contains information collected from 50 trees. The
trees here are the elements (or items or subjects) on which the data were collected. A
variable is a characteristic of an element that we want to study. Seven variables were
recorded in this data set: (i) tree identification number; (ii) date of measurement; (iii)
species; (iv) crown class; (v) number of neighbouring trees (growing within a 5 m radius);
(vi) diameter at breast height (dbh, which is measured at a height of 1.3 m in Canada, or
4.5 ft in the USA); and (vii) height.

Usually, a variable takes on different values from element to element, hence the name.
In general, variables whose values are determined by chance are referred to as random
variables. A set of measurements (such as the seven variables seen in Table 1.1) collected
for one element is called an observation, and thus Table 1.1 contains 50 observations.



Statistics and Data 3

Table 1.1. A data set for 50 trees

Number of Diameter at 
Tree Date of Crown neighbouring breast Total 

number measurementa Speciesb classc treesd height (cm) height (m)

1 12 F C 4 15.3 14.78
2 12 F D 3 17.8 17.07
3 9 C D 5 18.2 18.28
4 9 H S 4 9.7 8.79
5 7 H I 6 10.8 10.18
6 10 C I 3 14.1 14.90
7 10 C C 2 17.1 15.34
8 12 C D 2 20.6 17.22
9 16 F C 4 18.2 15.15

10 14 F I 5 16.1 14.66
11 8 H D 3 14.2 17.43
12 5 H D 6 14.8 17.45
13 12 F I 2 19.1 14.18
14 5 C I 2 16.7 13.40
15 12 C S 4 18.9 10.40
16 20 H S 3 12.4 11.52
17 15 H C 0 17.3 14.61
18 20 F D 1 22.7 21.46
19 15 C C 4 15.1 17.82
20 14 C I 3 17.7 11.38
21 14 C S 5 13.4 8.50
22 13 C I 4 16.2 12.80
23 14 F D 1 18.5 18.71
24 20 F I 4 15.0 14.48
25 21 F C 2 18.8 14.81
26 5 H I 4 15.8 12.01
27 2 H I 3 16.1 11.70
28 22 C C 3 15.4 16.03
29 22 C I 0 17.8 14.46
30 18 C S 1 18.5 8.47
31 16 C I 3 14.1 11.22
32 16 C C 5 14.8 12.34
33 17 F C 4 15.5 16.79
34 17 F I 6 13.8 16.06
35 18 F S 4 13.0 13.20
36 20 H C 2 18.2 14.30
37 22 H C 0 22.3 16.84
38 20 H I 3 17.8 13.84
39 17 C I 4 13.1 11.31
40 17 C I 6 12.8 13.20
41 16 C C 3 13.3 13.75
42 23 F C 3 15.6 14.60
43 23 H C 4 16.6 12.56
44 22 C I 5 13.0 10.88
45 24 C I 4 10.2 13.93
46 23 F I 3 14.4 12.68
47 24 C S 6 7.7 10.00
48 25 C S 5 9.9 8.69
49 25 H D 1 20.4 16.73
50 24 H D 3 20.9 16.25

a Day of the month (March, 2006). b C, western red cedar; F, Douglas-fir; and H, western
hemlock. c D, dominant; C, codominant; I, intermediate; and S, suppressed. d Trees within
a 5 m radius of the subject tree.



Variables can be classified as either qualitative or quantitative. Qualitative
variables are also known as categorical variables because they can be placed into
distinct categories according to some characteristic. Species and crown class (Table
1.1) are qualitative variables. Other examples of categorical variables include gender,
forest type, level of insect infestation (low, medium and heavy) and field of study
(Forestry, Engineering, Agriculture, Education, Arts, Science).

Quantitative variables are numerical and can indicate ‘how many’ or ‘how much’
or ‘how big’ on a numeric scale. For example, dbh, height and number of neighbouring
trees (Table 1.1) are quantitative variables. Quantitative variables can be further
subdivided into discrete and continuous variables. Discrete variables, which take on
whole numbers only, usually result from counting something such as the number of
neighbouring trees (Table 1.1). Continuous variables are those which can take on ‘all
possible values’ over a specific interval and are generally measured, e.g. height and dbh
(Table 1.1). Often, ‘all possible values’ exist only in theory since measurement
processes are limited to the precision of measurement devices. For example, current
measurement techniques only allow dbh to be measured to the nearest 0.1 cm and tree
height to the nearest 0.01 m. This means that a recorded dbh of 15.2 cm includes all
possible values between 15.15 and 15.25 cm (not including trees with 15.25 cm dbh).

1.3 Measurement Scales

In analysing variables, the scale of measurement refers to the amount of information
contained within the variable and indicates what types of statistical analyses are
appropriate. Four common scales are used for measurements: nominal, ordinal,
interval and ratio.

Nominal scale data can be quantitative or qualitative and are used mainly for
identification and classification of items. Examples of quantitative nominal scale data
include the tree numbers listed in Table 1.1, numbers on hockey jerseys, zip codes in
the USA and telephone numbers (note that the use of numbers here is for
identification purposes only). Examples of qualitative nominal scale data are the
species identified in Table 1.1, gender, marital status and postal codes in Canada (e.g.
V6S 1B9). Even if a variable is quantitative, arithmetic operations (addition,
subtraction, multiplication and division) and/or ranking the items by their values are
not meaningful for nominal scale data.

The ordinal scale is similar to the nominal scale, but in an ordinal scale, the order
or rank of the values is valid. For example, crown class (Table 1.1) is in an ordinal
scale, as it is known that the dominant trees are taller than the codominant trees
within a stand. Again, ordinal scale data can be qualitative or quantitative. Examples
of qualitative ordinal scale data are letter grades, levels of insect infestation (light,
medium and heavy) and ranking of food quality (excellent, good, medium and poor).
Examples of quantitative ordinal scale data are addresses in a block on one side of a
street and numeric quality rankings (e.g. 1 for excellent, 2 for good, …, 5 for poor).
While the ranking of items in an ordinal scale is valid and meaningful in interpreting
data, arithmetic operations (addition, subtraction, multiplication and division) are
not.

The interval scale has the same properties as the ordinal scale, but interval scale
data are always quantitative and differences between data values are meaningful.
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Examples of interval scale data are temperature (in Celsius or Fahrenheit), Scholastic
Aptitude Test (SAT) scores and measurement date (Table 1.1). When using an interval
scale, zero does not indicate an absence of measurement. For instance, zero degrees is
set as the icing point on a Celsius temperature scale; however, zero degrees does not
indicate an absence of temperature. Similarly, if the temperature on a given day was
20°C in Vancouver and 10°C in Toronto, the difference of 10°C is meaningful.
However, it does not mean that it is twice as warm in Vancouver as in Toronto.

The ratio scale is similar to the interval scale, but with two main differences. In the
ratio scale, zero means ‘none’ and, therefore, the ratio of two variables becomes
meaningful. Height, dbh and number of neighbouring trees (Table 1.1) are measured in
a ratio scale; other examples are weight, distance, height and cost. All arithmetic
operations (addition, subtraction, multiplication and division) are valid with ratio scale
data. For example, we can say that a 20 m tree is twice as tall as a 10 m tree.

1.4 Data Collection

Data can be collected in many ways. Sometimes, data required for a particular
application are available from government or company offices where operational data
sets have been historically maintained. Data on forest inventory levels, production
quantities and imports and exports are often collected by organizations, such as the
United Nations Food and Agriculture Organization (UN/FAO). Employment rates,
wage rates and other labour force information can usually be obtained from various
government agencies.

If the required data are not available from existing sources, we can turn to some
well-known statistical tools for data collection, namely experimental designs or
sampling designs (or a combination of the two). These two techniques are frequently
referred to as experimental and observational studies, respectively, and are discussed
in more detail in Chapter 13 of this volume.

In experimental studies, one or more factors affecting the variable(s) of interest
are controlled. The objectives of the study are to investigate how these controlled
factors affect the variable(s) of interest. For example, to investigate the effect of
seeding date on burnt and unburnt seedbeds, the dates and preparation of the
seedbeds are controlled and the effects on germination are studied.

In observational studies (sampling), no attempt is made to control the variables of
interest; we merely observe a given situation. The main purpose of sampling is to
collect data from a subset of the population and to use this data to make predictions
or inferences about the entire population. For example, if we would like to estimate
the average height of a lodgepole pine plantation, we could randomly select 40 trees
from the stand, measure their heights and estimate (with some degree of error) the
unknown population average of height. These sorts of sampling designs are often
referred to as sample surveys.
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Exercises

Section 1.1

1.1. Define the word ‘statistics’.

1.2. Give three examples of how descriptive statistics can be used in your field of
interest.

1.3. Give an example in forestry, conservation or wood science where inferential
statistics can be applied.

1.4. Two summer students are sent out to measure the dbh and height of 75
randomly selected trees in an experimental plantation, where each of the 10,753 trees
in the plantation has been labelled with a number. Seventy-five random numbers
between 1 and 10,753 were generated to indicate the trees to be measured. 

a. Describe the population.
b. Describe the sample.
c. Will the students be using descriptive statistics, inferential statistics or both

in this study?

1.5. A wood science student is working for a particleboard mill during her co-op
term. She is asked to pull a single board every 15 min as it comes off the production
line and to measure its thickness. These observations will be used to study the quality
of the boards being produced as part of a programme for statistical quality control.

a. Describe the population.
b. Describe the sample.
c. Will she be using descriptive statistics or inferential statistics in this study?

Section 1.2

1.6. Classify each of the following variables as qualitative or quantitative:

a. Number of trees per hectare.
b. Colour of Douglas-fir flowers.
c. Number of leaders on a weevil-infested Sitka spruce seedling.
d. Outside bark diameter at breast height of a cork oak tree.
e. Fire hazard classification (low, moderate or severe).
f. Thickness of plywood.
g. Grade of lumber (No 1, No 2 or defective).
h. Length of a piece of dimensional lumber.
i. Age of a ponderosa pine tree determined from the number of annual rings.
j. Species.
k. Daily low and high temperatures measured in degrees Celsius.
l. Annual wage (in dollars) earned by 20 foresters working for a large

company.
m. Phone number of each of the above 20 foresters.
n. Date when each of the above 20 foresters began working for the company.

1.7. Classify the quantitative variables in Exercise 1.6 as discrete or continuous.
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Section 1.3

1.8. Classify the variables listed in Exercise 1.6 by their scale of measurement
(nominal, ordinal, interval or ratio).

Section 1.4

1.9. The effect of chemical treatment on the modulus of rupture of 30 pieces of
oriented strandboard was studied. Ten boards were treated with chemical A, 10
boards were treated with chemical B and 10 were left untreated. After the treatment,
the 30 pieces were tested and their moduli of rupture were measured. Identify and
briefly describe the data collection method used in this study.

1.10. Identify and describe the data collection method used in Exercise 1.4.

1.11. Modify the study described in Exercise 1.9 so that both experimental design
and sampling design are used to obtain the required information.
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In order to adequately monitor and manage natural resources, such as forests and
rangelands, many very large data sets are compiled. The objective of this chapter is to
explore the tools used to make data sets more comprehensible. By organizing
variables into tables, charts and graphs, and by calculating numbers that best describe
the characteristics of a variable of interest, managers can quickly get information
about the natural resources for which they are responsible.

2.1 Tables

Data, such as those presented in Table 1.1 (see Chapter 1), are called raw data. Even
considering only one variable (e.g. diameter at breast height, or dbh), it is difficult to
assess this listing of 50 observations of unprocessed data, let alone a larger data set of
5000 or more data points. One of the simplest ways to organize variables is to rank
them in ascending or descending order. Ranking observations, as shown with the
50 dbh observations in Table 2.1, does not reduce the size of the data set and is usually
used to describe data sets with smaller numbers of observations only.

When the number of observations is large, a more powerful tool, known as the
frequency distribution, is used to describe a variable. In frequency distributions,
observations are grouped into classes, and the frequency of observations in each class
are tallied and presented in tabular form. Depending on the nature of the variable
being grouped, we distinguish between three types of frequency distributions:
categorical, ungrouped and grouped frequency distributions.

Categorical frequency distributions are used to place qualitative, ordinal or
nominal level variables into specific categories. Table 2.2 shows the frequency of the
trees from Table 1.1 (see Chapter 1) by crown class. Since crown class is a categorical
variable, four discrete classes are used and the number of trees in each class is tallied.
The relative frequency of each class can be calculated by dividing its frequency (fj) by
the total frequency (n, the number of observations):
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2 Descriptive Statistics
Making Sense of Data

Table 2.1. Ranked dbh measurements (in cm) of 50 trees.

7.7 9.7 9.9 10.2 10.8 12.4 12.8 13.0 13.0 13.1
13.3 13.4 13.8 14.1 14.1 14.2 14.4 14.8 14.8 15.0
15.1 15.3 15.4 15.5 15.6 15.8 16.1 16.1 16.2 16.6
16.7 17.1 17.3 17.7 17.8 17.8 17.8 18.2 18.2 18.2
18.5 18.5 18.8 18.9 19.1 20.4 20.6 20.9 22.3 22.7



where j denotes the class.
Often, relative frequencies are expressed as percentages:

Ungrouped frequency distributions are used to summarize discrete quantitative
variables. Table 2.3 shows the frequencies of the number of neighbouring trees from
Table 1.1 (see Chapter 1). Because the variable could only take on integer values of 0,
1, …, 6, seven discrete classes were used and their frequencies and relative frequencies
are displayed in Table 2.3.

To summarize continuous (ratio scale) variables, grouped frequency distributions
are generally used. For grouped frequency distributions, we divide the total range of
the observations into a number of classes and tally the number of observations that
fall into each class. Table 2.4 is a grouped frequency distribution for the 50 dbh
measurements from Table 1.1 (see Chapter 1), recorded to the nearest 0.1 (one-tenth)
cm. Seven class intervals have been used: 7.6–9.8, 9.9–12.1, …, 19.1–21.3 and
21.4–23.6. The class limits are the smallest and largest possible values that can fall
into a given class. For the second interval, 9.9–12.1, the lower class limit is 9.9 and
the upper class limit is 12.1.

As the dbh values were recorded to the nearest tenth of a centimetre, the three
trees in the second class interval must all be greater than 9.85 cm and less than
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Table 2.2. Categorical frequency distribution of 50 trees by crown class.

Crown class fj (frequency) Rj (relative frequency)

Dominant 9 0.18
Codominant 14 0.28
Intermediate 19 0.38
Suppressed 8 0.16
Total 50 1.00

Table 2.3. Ungrouped frequency distribution of 50 trees by
number of neighbouring trees.

Number of Rj (relative
neighbouring trees fj (frequency) frequency)

0 3 0.06
1 4 0.08
2 6 0.12
3 13 0.26
4 13 0.26
5 6 0.12
6 5 0.10
Total 50 1.00



12.15 cm. These values, halfway between the upper class limit of one interval and the
lower class limit of the next interval, are known as the class boundaries (Table 2.5).
Class limits always have the same precision as the original observations. Conversely,
class boundaries are always carried to one more decimal place than the original
observations (unless, for example, a measuring device has 0.02 mm precision) and are
halfway between the upper class limit of one interval and the lower class limit of the
next interval (in most cases ending with the digit 5). In this way, no observation can
fall on a class boundary and every observation can be uniquely classified into only one
class.

The number of observations falling within a particular class is called the class
frequency (fj). The class width (w) is defined as the difference between the upper and
lower class boundaries of a given class. It is convenient to have equal class widths for
all classes, as in Table 2.5, although sometimes variable widths are used. It is also
sometimes necessary to have open classes for the first or last class to accommodate a
very few (one or two) extreme observations in the data set. In our example, the first
class could be labelled as ‘9.8 and below’ (≤ 9.8) or the last class as ‘21.4 and above’
(≥ 21.4).

The class midpoint or class mark is defined as the average of the upper and lower
class limits or the midpoint between the upper and lower boundaries of a class. When
calculating the class midpoints for open classes, it is assumed that they have the same
class width as the other classes in the distribution. If the first class is open, a ‘false’
lower class boundary is estimated by subtracting the class width from the upper class
boundary of the first class, and the midpoint is calculated by averaging the two class
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Table 2.4. Grouped frequency distribution of 50 dbh measurements (in cm).

Class limits Class midpoint Frequency Relative frequency

7.6–9.8 8.7 2 0.04
9.9–12.1 11.0 3 0.06

12.2–14.4 13.3 12 0.24
14.5–16.7 15.6 14 0.28
16.8–19.0 17.9 13 0.26
19.1–21.3 20.2 4 0.08
21.4–23.6 22.5 2 0.04

Table 2.5. Expanded grouped frequency distribution of 50 dbh measurements.

Relative
Relative Inverse inverse 

Class Class Relative Cumulative cumulative cumulative cumulative 
Class limits boundaries mark Frequency frequency frequency frequency frequency frequency

7.6–9.8 7.55–9.85 8.7 2 0.04 2 0.04 50 1.00
9.9–12.1 9.85–12.15 11.0 3 0.06 5 0.10 48 0.96

12.2–14.4 12.15–14.45 13.3 12 0.24 17 0.34 45 0.90
14.5–16.7 14.45–16.75 15.6 14 0.28 31 0.62 33 0.66
16.8–19.0 16.75–19.05 17.9 13 0.26 44 0.88 19 0.38
19.1–21.3 19.05–21.35 20.2 4 0.08 48 0.96 6 0.12
21.4–23.6 21.35–23.65 22.5 2 0.04 50 1.00 2 0.04



boundaries. Similarly, if the last class is open, the upper class boundary is estimated in
the same manner. The class midpoint plays a very important role in the calculation of
various statistics from grouped frequency distributions, as each observation in a
frequency class is represented by its class midpoint.

The following is a step-by-step procedure for classifying observations into a
grouped frequency distribution. Note that this is not the only way of creating a
grouped frequency distribution, but the reader cannot go wrong following these
guidelines. Our example uses data from the continuous variable dbh listed in Table
1.1 (see Chapter 1).

1. Decide on the number of classes (c). Usually, the number of classes is set between
5 and 20. The choice depends on the number of observations in the data set. Too
many or too few classes limit the usefulness of the frequency distribution to
adequately describe the shape or pattern of the data sets. Although there is no definite
method for selecting the number of classes, a rough estimate can be obtained by
applying Sturges’ Rule:

c = 3.3 log10 (n) + 1

where n is the number of observations in the data set. In our example:

c = 3.3 log10(50) + 1 ≈ 6.6066 ≅ 7

(we round the calculated number to the nearest whole number.)

2. Determine the class width. Dividing the range by the number of classes (rounded)
produces an approximate class width:

w = Range/c = (22.7 – 7.7)/7 ≈ 2.143.

The class width should be rounded to the same precision as the measurements and the
class limits. Whenever possible, the class width should be rounded up to avoid open
frequency classes at the extremes of the data set. Some statisticians round up so that
the last digit of the class width is an odd number. This ensures that the class mark will
always have the same precision as the observations, the class limits and the class
width. In our example, this suggests using 2.3 as the class width.

3. Determine the lower class limit and boundary of the first class. Unless an open
class is used, the lower class limit of the first class should be less than or equal to the
smallest observation. For our example, our lower class boundary should be less than
or equal to 7.7 (the smallest value in our data set) and, therefore, we select 7.6. To
obtain the lower class boundary of the first class, we subtract half of the precision
(0.1/2 = 0.05 in our example) from the lower class limit (7.6 – 0.05 = 7.55).

4. Calculate remaining class limits and boundaries. First, we calculate the upper class
boundary for the first class by adding the class width to the lower class boundary
(7.55 + 2.3 = 9.85). The upper class limit of the first class is obtained by subtracting
half of the precision (0.05) from the upper class boundary of the first class (9.85 –
0.05 = 9.8). The second class limits and boundaries are calculated by adding the class
width to each of the lower and upper class limits and boundaries of the first class. The
remaining class limits and boundaries are calculated from their preceding classes in a
similar manner. Note that the upper class boundary of one class should be identical to
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the lower class boundary of the subsequent class. This does not present a problem in
placing each point in a unique class because the precision of the class boundaries is
one decimal more than the raw data.

5. Calculate the class midpoint for each class. The class mark (midpoint) is calculated
as the average of either the upper and lower class limits or the average of the upper
and lower class boundaries. For example, our first class midpoint (m1) is:

m1 = (7.6 + 9.8)/2 = (7.55 + 9.85)/2 = 8.7.

6. Tally the observations. One practical way to count the number of observations in
each class is to consider each observation in turn and make a ‘tally mark’ in the class
where each observation falls. Table 2.6 shows the tally marks which add up to the
frequency in each dbh class of our example.

Table 2.4 is the most common way of presenting grouped frequency distributions.
If required, it can be extended to have more descriptive capabilities by including
further information such as relative frequency, cumulative frequency, relative
cumulative frequency, inverse cumulative frequency and relative inverse cumulative
frequency (Table 2.5).

While the frequency gives us the number of observations that fall within a
particular class, we may be interested in how many observations fall above or below
a particular class. The cumulative frequency is the frequency of all observations less
than the upper class boundary of a given class. It answers the question, ‘How many
observations fall within a certain class or lower?’, and is often referred to as the ‘less
than frequency’. Conversely, the inverse cumulative frequency represents the
frequency of all values greater than the lower class boundary of a given class. It
answers the question, ‘How many observations fall within a certain class or higher?’,
and is often referred to as the ‘more than frequency’.

Table 2.7 shows how the cumulative and the inverse cumulative frequencies are
calculated. For the cumulative frequency, the frequency of each class is added to the
number of observations that fall below that class, starting with the first class. The
same logic is applied to the inverse cumulative frequency, but starting with the last
class. Both cumulative frequencies can be expressed as percentages (or proportions) of
the total frequencies and, in these cases, are called relative cumulative frequencies and
inverse relative cumulative frequencies, respectively.

We may also be interested in categorizing data from Table 1.1 (see Chapter 1) in
terms of the pattern or shape of two variables. Table 2.8 shows a bivariate frequency
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Table 2.6. Preparation of grouped frequency distribution of 50 dbh
measurements.

Class boundaries Tally Frequency

7.55–9.85 // 2
9.85–12.15 /// 3

12.15–14.45 ////  ////  // 12
14.45–16.75 ////  ////  //// 14
16.75–19.05 ////  ////  /// 13
19.05–21.35 //// 4
21.35–23.65 // 2



distribution, which gives the distribution of trees by species and number of
neighbouring trees. In constructing Table 2.8, we use a categorical frequency
distribution in one direction and an ungrouped frequency distribution in the other.
Any combination of the three frequency distributions (categorical, ungrouped and
grouped) can be combined to form bivariate frequency distributions.
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Table 2.7. Preparation of cumulative and inverse cumulative frequency distributions of 50
dbh measurements.

Cumulative Inverse cumulative 
Class limits Class mark Frequency frequency frequency

7.6–9.8 8.7 2 0 + 2 = 2 48 + 2 = 50
9.9–12.1 11.0 3 2 + 3 = 5 45 + 3 = 48

12.2–14.4 13.3 12 5 + 12 = 17 33 + 12 = 45
14.5–16.7 15.6 14 17 + 14 = 31 19 + 14 = 33
16.8–19.0 17.9 13 31 + 13 = 44 6 + 13 = 19
19.1–21.3 20.2 4 44 + 4 = 48 2 + 4 = 6
21.4–23.6 22.5 2 48 + 2 = 50 0 + 2 = 2

Table 2.8. Bivariate frequency distribution of 50 trees.

Neighbouring trees Cedar Douglas-fir Hemlock Total

0 1 0 2 3
1 1 2 1 4
2 3 2 1 6
3 5 3 5 13
4 5 5 3 13
5 5 1 0 6
6 2 1 2 5
Total 22 14 14 50

When the data are grouped to form univariate or bivariate frequency
distributions, we gain very valuable descriptive information and we can begin to see
the pattern or the ‘shape’ of the data. On the other hand, this information is gained
at a price; we lose the ‘identity’ of the original observations. For example, Table 2.7
tells us that there are three observations in the class identified as 9.9–12.1, but we do
not know the original or ‘measured’ values of these observations. It is always good to
keep this in mind when we present data in frequency distributions and use the
graphical tools introduced in the next section.

2.2 Graphical Tools

Often, a graphic presentation of data can display the essential features of a frequency
distribution more readily and comprehensively than a table. Pictorial representation
of the information in graphic form often makes the important characteristics of the
data more apparent. In this book, we will present several common graphical tools:
bar graphs, histograms, pie charts, frequency polygons and ogives.

Bar graphs are used to present information summarized in categorical frequency
distributions or ungrouped frequency distributions created for discrete variables. In bar



graphs, the horizontal axis is not a continuous random variable and, consequently, the
bars do not touch each other. Figure 2.1 presents a bar graph of the categorical variable
crown class (from Table 2.2). Figure 2.2 shows a specific type of bar graph – a stick
graph of the discrete variable number of neighbouring trees (from Table 2.3). With a
stick graph, the ‘bars’ associated with a given number (label) have meaning only at that
number. For example, the stick at two neighbouring trees refers to six occurrences of
exactly two neighbouring trees and has no other meaning between one and three. This
is why these graphs, done properly, are made using ‘sticks’ instead of ‘bars’.

Histograms are used to present grouped frequency distributions for continuous
variables. Therefore, they should not contain spaces between bars. The middle of each
bar must be the class midpoint, and the bars touch at the class boundaries. Class
boundaries are used because this allows for the graph to be ‘continuous’ since the
upper class boundary of one class is the same as the lower class boundary of the
subsequent class. Figure 2.3 presents the frequency distribution of dbh from Table 2.4.

Each of Figs 2.1, 2.2 or 2.3 can be plotted using relative frequencies (in per cent
or as a proportion) on the vertical axis instead of actual frequencies. For example, Fig.
2.4 shows the frequency distribution of dbh measurements using relative frequencies.
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Fig. 2.1. Bar graph for crown class data.

Fig. 2.2. Stick graph for number of neighbouring trees.



In some cases, the presentation of a variable is best conveyed relative to a totality.
Here, pie charts are used in place of bar charts. In the pie chart for crown class data
(Fig. 2.5), the circle is divided into sections representing each category’s frequency
proportional in size to the total. In pie charts, frequencies or proportions for each
class can be given.

Grouped frequency distributions can also be graphically presented with a
frequency polygon. Frequency polygons are constructed by plotting class frequencies
(or relative frequencies) against class marks and then joining each point by a sequence
of line segments. To close the polygon, we add an ‘imaginary’ class midpoint with zero
frequency to both ends of the distribution (e.g. 8.7 – 2.3 and 22.5 + 2.3). Figure 2.6
shows the frequency polygon for the dbh data.

Cumulative or inverse cumulative frequency graphs are called ogives and are
plotted in a similar manner to polygons. When cumulative frequency graphs are
prepared, the cumulative frequencies are plotted against the upper class boundaries
and joined by line segments. To close the ogive at the lower end, the graph is extended
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Fig. 2.3. Histogram for dbh data.

Fig. 2.4. Histogram for dbh data (relative frequencies).
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Fig. 2.5. Pie chart for crown class data.

Fig. 2.6. Frequency polygon for dbh data.

to the lower bound of the first class boundary and given a frequency of zero because
no points fall below this boundary (Fig. 2.7). This graph indicates the frequency of
observations below a given class boundary. For example, in our data set, there are 31
trees below 16.75 cm dbh.

When inverse cumulative graphs are prepared, the inverse cumulative frequencies
are plotted against the lower class boundaries and joined by line segments. To close
this graph, the upper class boundary of the last class is graphed versus a frequency of
zero. The inverse cumulative frequency graph indicates the frequency of observations
above a given class boundary. For example, Fig. 2.8 shows that there are 33 trees
above 14.45 cm dbh.

Earlier, it was stated that one of the main purposes of frequency distributions and
histograms was to show the ‘shape’ of the distribution of the data. Related to this, we
introduce some terms that are frequently used in statistics. In general, distributions
can be classified as either symmetric or skewed. A distribution is said to be symmetric
if a vertical axis at the ‘centre’ of the distribution separates the distribution into two



identical (mirror image) or near-identical parts. A distribution is skewed if it lacks
symmetry with respect to this central vertical axis. Figure 2.9 presents two drastically
different, but symmetric, distributions.

Figure 2.10 shows a positively skewed and a negatively skewed distribution. A
distribution is positively skewed if it has a long right tail (Fig. 2.10a) and negatively
skewed if it has a long left tail (Fig. 2.10b). The shapes of distributions will be
discussed further in later chapters.

When constructing any of the charts discussed here, keep in mind that the number
of classes has a direct effect on the shape of the distribution. If too many frequency
classes are used, the histograms or bar charts do not satisfactorily reflect the shape of
the distribution, as too few observations will fall into each class. On the other hand,
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Fig. 2.7. Cumulative frequency graph (ogive) for dbh data.

Fig. 2.8. Inverse cumulative frequency graph (ogive) for dbh data.



if too few classes are used, each class will have a high number of observations and,
again, the pattern of the distribution is lost. The practitioner should be careful to use
appropriately constructed classes in making these graphs, bearing in mind that it is
easy to interpret graphs in different ways and potentially obscure their true meanings.

2.3 Measures of Central Location

Variables can be described using a range of statistical measures. Perhaps the best place
to start is with some measure or measures of central location. Measures of central
location are used to define, in some sense, the centre of a set of measurements. The
most commonly used measures of central location are the mean, median, mode and
midrange.

The mean is a statistic that is often referred to as the average or arithmetic
average. To calculate this, we simply divide the sum of the measurements by the
number of measurements. For a brief introduction to symbols and summation
notation, see Appendix B. Since the calculation of the mean could be required for
several variables, it is customary to use different symbols to represent each variable
(such as x, y and z for dbh, height and biomass, respectively). The number of values
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Fig. 2.9. Symmetric distributions.

Fig. 2.10. Skewed distributions.



in a sample is usually denoted by n and the number of values in a population by N.
Individual values in a sample or population are symbolized by x1, x2, … and xn or xN.

The sample mean (for a variable, x) is calculated as:

(2.1)

with the mean of variables y or z being symbolized by y– or z–.

The population mean is calculated as:

(2.2)

Example 2.1. The height measurements of the first 5 Douglas-fir trees in Table 1.1 (see
Chapter 1) are 14.78, 17.07, 15.15, 14.66 and 14.18 m. If these observations constitute a
sample, then the sample mean height is:

In general, ‘mean’ refers to the arithmetic mean. However, in some disciplines,
statisticians may be concerned with the geometric mean (used for ratio data like
population growth, rates of change, economic indicators, etc.) and the harmonic
mean (used for data where one element remains constant but another changes, like
equal monthly contributions to a pension plan that varies in value). Since the use of
these means is restricted, by and large, to special situations, they will not be discussed
further in this book.

A weighted mean is often used when we wish to average a number of values by
attaching more importance to some numbers than to others. This is done by assigning
different weights (w1, w2, …, wn) to the n observations, where these weights represent
measures of their relative contribution to the overall average. The weighted mean (x–w)
is then calculated as:

(2.3)

Example 2.2. If the costs of 3 models of chainsaw are US$487, US$596 and US$759, and
a company purchased 5, 9 and 11 of these saws, respectively, the average cost of chainsaws
using a weighted mean can be calculated as:

A special application of this weighting procedure is used when finding the overall
mean of several data sets when they are combined and the mean of each individual set
is known. The equation to calculate the grand mean from k individual means is:
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(2.4)

where k = number of means to combine.

Example 2.3. Based on sample sizes of 14, 22 and 14 trees, the sample means of tree
heights for Douglas-fir, western red cedar and western hemlock are 15.62 m, 12.94 m and
13.87 m, respectively (see Table 1.1, Chapter 1). The mean of the combined data (50
observations) is the weighted mean of the individual means, weighted by their corresponding
observations:

Another application of the weighting procedure is for the calculation of the mean
from a grouped frequency distribution (Table 2.4). In this case, since each individual
observation has lost its identity (the value of the original observations), each
observation is represented by its class midpoint. In the process of calculating the
mean, the class midpoints (mj) are weighted by class frequencies (fj):

(2.5)

where c = number of frequency classes; mj = class midpoints; fj = class frequencies.

Example 2.4. Using the information given in Table 2.4, we can calculate the mean of the dbh
measurements as:

Interestingly, the mean in Example 2.4 (15.738 cm) is different from the mean
calculated from the raw data in Table 1.1 (see Chapter 1). Using Eqn 2.1 with all 50
dbh observations, we get a mean of 15.794 cm. This difference stems from the fact
that, in Eqn 2.5, we have replaced the original measurements with class midpoints
(representations or proxies of the original data points). In other words, the true value
of the mean is 15.794 cm but, using the grouped frequency distribution, we get
15.784 cm – a close approximation.

Apart from the fact that the mean is easy to calculate and it is a statistic that is
familiar to most people, it also has some desirable properties that make it an
invaluable tool for the interpretation of data sets (other desirable properties of the
mean will be explored in later chapters). For instance, it is a reliable indicator of the
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centre of the values of a variable and it does not fluctuate much from one sample to
another. On the other hand, its value is sensitive to extreme (very small or very large)
values. In cases where very small or large values are apparent, the so-called trimmed
mean can be used, which is the mean calculated after removing the upper and lower
5% of the ranked data.

The preferred measure of central location in the presence of extreme values is the
median. The median is the middle value when a set of n measurements is arranged in
increasing or decreasing order of magnitude. When n is odd, the median is the middle
value of the ranked items. When n is even, the median is the mean of the two middle
values of the ranked items. We usually use x– or m as symbols for the median.

Example 2.5. Consider the following two sets of dbh measurements (ranked):

12.4, 13.5, 13.5, 15.8, 15.9, 18.2, 19.1
and

14.8, 16.3, 17.2, 17.2, 17.4, 18.3, 18.3, 19.4

The median of the first set is 15.8, or the fourth point in the ranked set of 7. The median for the
second set is the average of the fourth and fifth points in the ranked set of 8, or (17.2 + 17.4)/2
= 17.3.

Although there are arithmetic procedures available to approximate the median from
grouped frequency distributions, these procedures are beyond the scope of this book.
The main advantage of the median over the mean is that it is not affected by extreme
values. For symmetrical distributions, the mean and the median are equal.

Another measure of the central location is the mode, which is the most frequently
occurring value in a sample or a population. A data set will not necessarily possess a
mode, e.g. when all observations occur with the same frequency. Other data sets may
have more than one mode, such as when several values occur with the greatest
frequency. A population or sample with two modes is referred to as bimodal, while
one with more than two modes is referred to as multimodal. The first set of data in
Example 2.5 has one mode (13.5 occurs twice) and the second set has two modes
(17.2 and 18.3 each occur twice). The use of the mode is advantageous in that it does
not require any calculations and it can be used to study qualitative, as well as
quantitative, variables. For example, the mode of the crown class observations in
Tables 1.1 (see Chapter 1) and 2.2 is the intermediate trees, which occur with the
highest frequency (19).

The midrange is another measure of central tendency and is defined as the sum of
the minimum and maximum values divided by two. Like the average, its main
disadvantage is that it is affected by the occurrence of extreme observations.

Because of its desirable properties, the mean (specifically, the arithmetic average)
is the most commonly used measure of central location in statistics. It uses all
observations, is easy to calculate and does not change much from one sample to
another (taken from the same population). More importantly, when means are
calculated from repeated samples from a population, a clear relationship between the
sample mean and population mean emerges. Because of this relationship, the sample
mean is a good estimator of the population mean. This very important characteristic
of the sample mean will be discussed in more detail in later chapters.



2.4 Measures of Variation

An important characteristic of observations is that they are not exactly alike (hence
the name random variable). The variation or spread of the observations has important
properties in statistics. Although the measures of central location discussed in Section
2.3 are important, they do not provide a complete picture of the nature of the data.
For example, each of the five Douglas-fir dbh measurements below, taken from
natural regeneration and plantation stands, have exactly the same mean: 15.8 cm.

Natural 12.4, 14.5, 15.2, 17.8, 19.1

Plantation 14.8, 15.0, 15.9, 16.5, 16.8

While these two data sets have the same central location, they are very different. The
dispersion or spread of the observations from natural regeneration appears to be
higher than from the plantation stand. If you were the manager of a sawmill, which
stand of trees would you prefer to deal with, all things being equal? For a more
complete description of observations, it is often useful to provide some measure of the
spread of the data in addition to a measure of the central location. Several such
measures, namely the range, mean deviation, variance, standard deviation and
coefficient of variation, will be discussed in this section.

Range, the simplest measure of variation, is the difference between the highest
and lowest values in the data sets.

Range = highest value – lowest value, or
R = max(xi) – min(xi).

Example 2.6. Douglas-fir measurements below, taken from natural regeneration and
plantation stands, have exactly the same mean: 15.8 cm.

Natural 12.4, 14.5, 15.2, 17.8, 19.1

Plantation 14.8, 15.0, 15.9, 16.5, 16.8

The range of the natural regeneration dbh data is 19.1 – 12.4 = 6.7 cm, while that of the
plantation is 16.8 – 14.8 = 2.0 cm. These numbers confirm that the spread, at least in terms
of range, is higher for the natural regeneration stand. In fact, it is more than three times
higher.

Although the range is easy to calculate, it usually does not provide a satisfactory
measure of spread. Because its calculation involves only two of the observations, it is
considered a rough estimate only. Furthermore, the range is affected by the number of
observations, as well as by outliers (extreme values). As the number of observations
increases, the range tends to increase because the chance that the data contains
outliers also increases.

Unlike the range, the mean deviation, MD, utilizes all of the observations. It is
calculated as the average of the absolute values of the deviations (Fig. 2.11) of each of
the observations from the mean (sample or population).

(2.6)
MD
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Note that this equation uses the absolute value of the deviations because, by
definition, the summation of all deviations (positive and negative) would equal
zero.

Although the mean deviation is a better descriptor of the variation than the range,
its application in practical statistics is limited because theoretical interpretation is
difficult. To overcome this disadvantage, another measure of spread was created, the
sum of squares of the deviations from the mean. These sums of squares can be
computed for sample data (SS), or for an entire population (SSp):

(2.7)

(2.8)

The sum of squares of the deviations from the mean is also referred to as the corrected
sum of squares, as each observation is subtracted from, or ‘corrected for’, the mean
before it is squared. Since our natural regeneration and plantation data (above) are
samples, we use Eqn 2.7 to compute the sums of squares (note that the units will be in
squared terms, i.e. cm2):

Natural (12.4 – 15.8)2 + (14.5 – 15.8)2 + (15.2 – 15.8)2 + (17.8 – 15.8)2 +
(19.1 – 15.8)2 = 28.5

Plantation (14.8 – 15.8)2 + (15.0 – 15.8)2 + (15.9 – 15.8)2 + (16.5 – 15.8)2 +
(16.8 – 15.8)2 = 2.14

It is clear that the sum of squares reflects the measure of spread, but its size is entirely
dependent on the number of observations in the sample. Thus, samples of differing sizes
cannot be directly compared. To overcome this, the average sum of squares can be
calculated by dividing the sum of squares by the number of observations (N) for
populations, or by the number of observations minus one (n – 1) for samples. The term
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(n – 1) is known as degrees of freedom and is defined as the number of unrestricted
observations used to calculate a statistic. Since the same observations are used to calculate
the sample mean and the sample sum of squares, and since the sample mean is part of the
equation to calculate the sample sum of squares, one of the n observations is not
independent. In other words, in the equation for the sample sum of squares, the sample
mean defines one of the observations and this must be accounted for. Many readers may
find this concept difficult to grasp and so a simple example is provided for clarification.

Assume there are three observations from which a sample mean is calculated: 12,
14 and 16. The sum of these observations is Σxi = 42 and therefore the mean is 14
(42/3). Let us assume now that we know the mean, the number of observations and
the sum of the observations, but we do not know exactly what the observations are.
Working backwards to determine the values of the observations, we soon discover
that they could be any set of three numbers that add up to 42. When we think about
it a little more, we come to the further realization that actually we are free to choose
only two out of three observations because the three observations must add up to 42.
In other words, if we know that the sum of the observations must be 42 and we
choose two of the observations, say 12 and 16, we know that the third observation
must be 14 in order for the three observations to sum to 42. Thus, in this case, the
degrees of freedom (the number of observations that are free to vary) are 3 – 1 = 2.

In most instances involving the sample mean, the degrees of freedom are n – 1.
That is the case in calculating the sum of squares from a single variable data set where
we can choose only n – 1 observations freely. However, the reader should be cautioned
that there are many types of sum of squares used in statistics and each has its own
associated degrees of freedom. We will give the appropriate degrees of freedom with
any new sum of squares as it arises.

The sum of squares divided by its degrees of freedom is called the variance or, less
commonly, the mean square. Using the sum of squares, the sample and population
variances, s2 and σ2, are respectively calculated as follows:

(2.9)

(2.10)

Note that the population variance is divided by N instead of N – 1, because the
population mean is a parameter, not an estimated statistic. Using Eqn 2.9, we can now
calculate the variances for the two samples (note that the units are in squared terms):

Natural s2 = 28.5/(5 – 1) = 7.125 cm2

Plantation s2 = 3.14/(5 – 1) = 0.785 cm2

Eqns 2.9 and 2.10 are the theoretical equations to calculate variances. If pocket
calculators are used to calculate the variance, the following equations – algebraically
equivalent to 2.9 and 2.10 – provide the results much more efficiently, but are perhaps
more complicated to conceptualize. These are referred to as ‘computational’ or
‘working’ or ‘machine’ equations:
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(2.11)

(2.12)

where

Using Eqn 2.11, we first compute the uncorrected sums of squares:

Natural 12.42 + 14.52 + 15.22 + 17.82 + 19.12 = 1276.70 cm2

Plantation 14.82 + 15.02 + 15.92 + 16.52 + 16.82 = 1251.34 cm2

Then, the sample variances:

Natural s2 = (1276.70 – 792/5)/(5 – 1) = 7.125 cm2

Plantation s2 = (1251.34 – 792/5)/(5 – 1) = 0.785 cm2.

As also indicated by the range, the variance of dbh from natural regeneration
Douglas-firs is considerably higher than that of the plantation. Thus, the spread of
observations is higher for the natural regeneration stand than for the plantation stand.

Although the variance has a number of desirable theoretical characteristics, the
standard deviation, which is the square root of the variance, has more descriptive
power, mainly because the standard deviation is in the same units as the original
observations (and the mean). From above, the standard deviations are 2.669 cm and
0.886 cm for natural regeneration and plantation stands, respectively.

The standard deviation holds unique properties for describing the spread of a data
set. From our two examples of natural and plantation forests, it should be clear that the
standard deviation is small if the values cluster closely around their mean, and the
standard deviation is large if the values are widely dispersed around their mean. This
observation was formalized by the Russian mathematician, P.L. Chebyshev, in
Chebyshev’s Theorem. This theorem, which can be applied to samples or populations of
any kind, states that at least the fraction (1 – 1/k2) of the observations must lie within k
standard deviations of the mean, regardless of the shape of the distribution of the data
set (where k is any constant greater than one). For instance, using k = 2, we can say that
at least 75% of the observations lie within two standard deviations of the mean.

If the data has a symmetrical, bell-shaped distribution (this will be called the
normal distribution later on in this volume), the variability of the data can better be
described by the Empirical Rule, which states that approximately 68%, 95% and
99.7% of the observations will lie within one, two or three standard deviations of the
mean, respectively (Fig. 2.12).
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Although the Empirical Rule is more powerful, it is much less robust than
Chebyshev’s Theorem and should be applied only to distributions that exhibit the
normal bell shape. Chebyshev’s Theorem will work for any type of distribution (bell-
shaped or not), and is thus a much more conservative way to interpret data.

Example 2.7. The mean and the standard deviation of the 50 dbh measurements in Table
1.1 are 15.8 cm and 3.2 cm, respectively. At least what fraction of the trees should be within
two and three standard deviations of the mean?

Using Chebyshev’s Theorem, at least 75% [(1–1/22)100] of the trees should be within
9.4 cm and 22.2 cm, and at least 89% [(1–1/32)100] of the trees should be within 6.2 cm and
25.4 cm. However, if we assume that the distribution is symmetrical and bell-shaped, we can
say that 95% of the data will lie within 9.4 cm and 22.2 cm, and 99.7% will lie within 6.2 cm
and 25.4 cm.

When it is appropriate to calculate a weighted mean as a measure of central tendency,
then it is also appropriate to calculate a weighted standard deviation. Equations 2.13 and
2.14 give the theoretical and working equations, respectively, for the weighted sample
variance. The standard deviation is computed by taking the square root as above:

(2.13)

(2.14)
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A special application of the weighting procedure is used to calculate the variance and
standard deviation from a grouped frequency distribution (Table 2.4). In the process
of calculating the weighted variance, the class midpoints (mj) are weighted by the class
frequencies (fj). The theoretical and working equations for the variance from a
grouped frequency distribution are given in Eqns 2.15 and 2.16, respectively:

(2.15)

(2.16)

where

Example 2.8. We can now calculate the variance and standard deviation of the dbh
measurements from the grouped frequency distribution given in Table 2.3 as:

Σfjmj
2 = (2)(8.72) + (3)(11.02) + … + (4)(20.22) + (2)(22.52) = 12,854.09 cm2

Σfjmj = 786.9, as in Example 2.4.

s2 = (12,854.09 – 786.92/50)/(50 – 1) = 9.589 cm2

s = 3.097 cm.

As in the calculation of the mean, the observations in a grouped frequency
distribution have lost their identity and therefore each observation is represented by
its class midpoint. Thus, this estimate is not as exact as one computed from raw data
(Eqns 2.9 and 2.11). Using the raw data and Eqn 2.9 or 2.11, the variance and the
standard deviation were 10.414 and 3.227, respectively, compared to 9.589 and
3.097 above. We can say that the former values are correct, while the latter values are
rough, but acceptable, approximations.

We now return to the hypothetical example of 5000 dbh measurements
introduced in the beginning of the chapter. Let us assume that we know the mean of
these measurements is 24.0 cm, the standard deviation is 4.0 cm and that the
histogram shows a symmetrical, bell-shaped distribution. We can draw several
conclusions very quickly. First of all, the centre of the distribution is 24.0 cm. Second,
using the Empirical Rule, about 3400 (68%) of the trees are between 20.0 and
28.0 cm and about 4750 (95%) of the trees are between 16.0 and 32.0 cm.

When two data sets have the same units of measurement, the variances and
standard deviations are comparable. For example, the standard deviation of the 50
dbh measurements in Table 1.1 (3.23 cm – see Chapter 1) and our hypothetical
example (4.0 cm) are directly comparable, as they are both given in centimetres. Thus,
it can be concluded that the 50 dbh measurements are less variable than those of our
hypothetical example. On the other hand, if we compare the standard deviations of
the height measurements (2.91 m) and dbh measurements (3.23 cm) of Table 1.1 (see
Chapter 1), we could come to the wrong conclusion because the units are different. In
cases like this, it is appropriate to use the coefficient of variation (CV).
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The coefficient of variation is the standard deviation expressed as a percentage of
the mean:

(2.17)

Thus, the CV is a standardized measure, meaning that variables measured in different
units are directly comparable.

Example 2.9. The mean and standard deviation of the 22 western red cedar heights are
12.92 m and 2.92 m, respectively. The mean and standard deviation of the 22 western red
cedar dbh measurements are 14.94 cm and 3.20 cm, respectively. The coefficients of
variation are therefore:

Height: CV = 100(2.92/12.92) = 22.6%

Dbh: CV = 100(3.20/14.94) = 21.4%.

This means that the relative variation (relative to the mean) of the dbh measurements is
somewhat less than the relative variation of height measurements.

The coefficient of variation can be very informative; however, some caution should be
exercised with its use. Like percentages, the coefficient of variation can be misused.
Specifically, as the mean of a set of observations approaches zero, the coefficient of variation
approaches infinity. Therefore, coefficients of variation calculated for samples having a mean
near zero should be avoided.

2.5 Measures of Position

Measures of position, such as standard scores and percentiles, are used to make
statements about the relative position of an observation or observations within a
particular set of data.

The relative position of an observation can be expressed in terms of the mean and
standard deviation by calculating a standard score. Standard scores can be computed
either for samples or for populations using the following:

(2.18)

(2.19)

A z-score indicates how many standard deviations an observation is above or below
the mean value. With z-scores, items can be compared from two samples, regardless
of the units of measurement or the relative variation of the two samples. It should be
noted that the z-value is unitless and, if all the observations in a sample are
transformed into z-scores, they will have a mean of 0.0 and a standard deviation (or
variance) of 1.0. We will discuss z-scores in much more detail in later chapters.

Example 2.10. A student obtained grades of 65% in English and 85% in mathematics. The
mean grade of all of the students in the English class was 60% with a standard deviation of
6% and the mean grade of all of the students in the mathematics class was 80% with a
standard deviation of 8%. The z-scores corresponding to the student’s grades are therefore:
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English: z65 = (65 – 60)/6 = 0.833

Mathematics: z85 = (85 – 80)/8 = 0.625

Because the two z-scores are above zero, we know the student’s performance was above the
class average in both classes. Comparing these two z-scores enables us to say that, in a
relative sense, the student performed better in English (the score is 0.833 standard
deviations above the mean) than in mathematics (the score is only 0.625 standard deviations
above the mean).

Percentiles indicate the position of an observation within a data set, but they are not
the same as percentages. Assume a student scored 76 out of 100 possible points in a
test (a score of 76%). This score could be the lowest, or the highest, or somewhere in
the middle in the class. However, if the score of 76 corresponds to the 82nd percentile,
then he or she performed better than 82% of the students in the class. In general, the
pth percentile is the value such that p per cent of the items in the data set fall at or
below that value:

p = 100(number of items in the data set below that value + 0.5)/n (2.20)

Some commonly used percentile values are:

● deciles divide the distribution into ten equal groups and correspond to the 10th,
20th, …, and 90th percentiles;

● quartiles divide the distribution into four equal groups and correspond to the 25th,
50th and 75th percentiles, and

● the median divides the distribution into two equal groups and corresponds to the
50th percentile.

2.6 Computers and Statistical Software

Computers can be used for data organization, statistical analyses and arithmetic
calculations. In most cases, they provide efficient and numerically accurate results.
Recently, the general availability of computers and user-friendly software packages
has had a tremendous impact on statistics. Most of the data manipulation and
statistical analyses discussed in this book could be carried out with little or no
difficulty using some of the more popular programs such as MINITAB, SPSS, BMDP,
SAS, R or SYSTAT. Many statistical problems can also be solved in popular
spreadsheet programs, like Microsoft Excel. We purposely do not cover computer
packages in this book because we strongly believe that solving the exercises presented
in this text by pocket calculators will help students to understand and learn the theory
and applications of statistical techniques. However, most of the exercises and
examples in this book can be duplicated using the above packages. If you are
interested in doing so, we have included a few excellent references in the References
section at the end of this volume that should help to familiarize you with one or more
of these packages. Upon completion of your first statistics course, we would
encourage you to explore these software packages – along with knowledge of the
theory underlying statistics, they will become powerful tools in your careers.
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Exercises

Section 2.1

2.1. The number of accidents per month in a sawmill for the last 20 months are as
follows:

0 1 0 2 2 1 4 3 0 1
5 1 2 3 4 0 1 1 3 4

Construct a frequency table and calculate the relative frequencies.

2.2. The tree species in a permanent sample plot on the west coast of British
Columbia were recorded as follows (F = Douglas-fir, H = western hemlock, C =
western red cedar and A = red alder).

F H F C F A H F
H C A C F H H H
F H A C F H H F

Construct a frequency table and calculate the relative frequencies of each species.

2.3. In a commercial timber cruise, the number of trees per plot were recorded as
follows:

5 6 5 5 4 5 4 5 3 6 4 5 6 2 7
2 3 5 5 6 7 8 2 3 4 5 6 4 3 2

Construct a frequency table and calculate the relative frequencies.

2.4. Construct a frequency table using the 50 height measurements given in Table 1.1
(see Chapter 1). Show the class limits, class boundaries, class midpoint, relative
frequencies, cumulative frequencies, relative cumulative frequencies, inverse
cumulative frequencies and relative inverse cumulative frequencies.

2.5. The following are the amounts, in parts per million (ppm), of a nitrogen
compound found in 60 soil samples.

3.6 3.2 3.3 3.6 2.7 3.4 4.5 3.3 2.8 5.4
6.1 3.4 2.9 2.7 4.1 4.7 5.1 4.7 3.2 3.6
5.1 2.6 3.6 3.8 3.8 3.1 3.7 5.5 3.2 3.7
4.2 4.5 4.3 3.7 3.6 3.9 3.5 4.4 2.8 3.3
3.9 4.4 5.1 4.6 3.4 2.6 4.5 3.1 2.5 3.1
3.7 3.4 4.1 2.7 5.7 3.5 4.7 4.4 4.4 5.0

Construct a frequency table and show the class limits, class boundaries, class midpoint,
relative frequencies, cumulative frequencies, relative cumulative frequencies, inverse
cumulative frequencies and relative inverse cumulative frequencies.

2.6. Consider the following grouped frequency distribution of tree crown lengths (in
metres) of trees collected in a young stand.
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a. What is the precision of the measurements?
b. Calculate the class boundaries.
c. Calculate the class widths.
d. Calculate the class midpoints.
e. Describe the first class.
f. Find the number of trees with less than 12.45 m crown length.
g. What percentage of trees has a crown length of less than 8.45 m?
h. What percentage of trees has a crown length of more than 6.45 m?
i. Find the number of trees with a crown length greater than 8.45 m.
j. Would you have used six frequency classes for these data?

Section 2.2

2.7. Construct a ‘stick graph’ for Exercise 2.1.

2.8. Construct a bar graph for Exercise 2.2.

2.9. Construct a pie chart for Exercise 2.2.

2.10. What graph or chart would you recommend for Exercise 2.3? Construct your
recommended graph.

2.11. Construct a histogram and a frequency polygon for Exercise 2.6.

2.12. Construct a relative histogram and a relative frequency polygon for Exercise
2.5.

2.13. Construct a cumulative frequency graph and an inverse cumulative frequency
graph for Exercise 2.4.

2.14. The following frequency distribution was constructed for log lengths (in feet)
from trees bucked on a landing:
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Class limits Frequency

< 4.4 2
4.5–6.4 7
6.5–8.4 11
8.5–10.4 13
10.5–12.4 8
12.5–14.4 4

Class limits Frequency

12.1–14.0 6
14.1–16.0 23
16.1–18.0 44
18.1–20.0 27

20.1≤ 4

Construct a frequency histogram and a frequency polygon.



Section 2.3

2.15. The specific gravity (density) of each of eight coniferous tree species was
measured as follows:

0.682 0.357 0.412 0.582 0.556 0.576 0.368 0.381

Find the mean, median and mode of specific gravity.

2.16. The following are the minimum temperatures (in Celsius) of seven cities in
Canada recorded on 14 January 2006. Calculate the mean, median and mode of these
temperatures.

–12 –5 2 2 0 –3 5

2.17. Find the mean, median and mode for the number of accidents given in Exercise
2.1.

2.18. Find the mean, median and mode for the number of trees per plot given in
Exercise 2.3.

2.19. From the data in Table 1.1 (see Chapter 1), calculate the mean of the dbh
measurements by species (i.e. separately for Douglas-fir, western hemlock and western
red cedar).

a. Find the median and mode of the dbh measurements for western red cedar
trees.

b. Calculate the weighted mean of the dbh measurements for all three species.

2.20. Assume that a cutblock consists of three forest types, A, B and C, and their
areas are 420, 350 and 210 ha, respectively. If the average volume per ha (in m3/ha)
for each of the three types are 450, 480 and 620, respectively, what is the average
volume for the cutblock?

2.21. Find the mean from the ‘raw’ data and from the grouped frequency distribution
you constructed for the 60 soil samples given in Exercise 2.5. Compare the two
means.

Section 2.4

2.22. Find the range, mean deviation, variance and standard deviation for the data
given in Exercises 2.15 and 2.16.

2.23. Find the variance and standard deviation for the data given in Exercise 2.1.

2.24. Find the range, mean deviation, variance and standard deviation for the data
given in Exercise 2.3.

2.25. If it is known that the mean (x–) of 12 observations is 12.5 and the uncorrected
sum of squares (Σxi

2) is 2000, calculate the variance and standard deviation for the
observations.

2.26. Calculate the variance and standard deviation from the raw data and from the
frequency distribution that you constructed in Exercise 2.5. Compare the results.
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a. Apply Chebyshev’s Theorem with k = 2. Are the results consistent with the
theorem? Hint: at least 75% of the observations should be within two
standard deviations of the mean.

b. Using the Empirical Rule, find the proportion of the observations within one
and two standard deviations of the mean. Does this theory apply? Why or
why not?

2.27. Calculate the coefficients of variation from the means that you obtained in
Exercises 2.15 and 2.16 and the standard deviations that you obtained in Exercise
2.22. Compare the two coefficients of variation and draw some conclusions.

2.28. What does it mean if the standard deviation of a particular data set is zero?

Section 2.5

2.29. Using the data given in Exercise 2.5, find:

a. The standard score for soil samples with 4.5 and 3.7 ppm, respectively:
interpret the results.

b. The 75th percentile.
c. The percentile rank for soil samples with 4.5 and 3.7 ppm, respectively.
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We use statistical information every day to qualify statements and to help us make
decisions. For example, we may hear statements like:

● There is an 80% chance of rain today.
● The odds are one in 13 million that you will win the lottery.

Or we may be confronted with questions like:

● What is the likelihood of receiving an A on the first exam in this course?
● What is the chance that the Vancouver Canucks will win the next Stanley Cup?

Statistical inference, the generalization from a sample to a population, involves
drawing a conclusion about a population on the basis of available, but incomplete,
information. Hence, statistical inference involves a certain amount of uncertainty, and
statisticians should not base decisions on statistical inference unless the risk of
uncertainty can be reduced to a tolerable minimum.

Problems involving ‘uncertainty’, ‘chance’, ‘likelihood’, ‘odds’ and other such factors
require an understanding and application of the theory of probability. Probability is the
branch of mathematics that incorporates the most important set of concepts used in the
field of statistics. The purpose of this chapter is to introduce the basic theories of
probability that are required to appreciate and understand many of the concepts of
statistical inference.

3.1 Sample Space and Events

In statistics, we define an experiment as a process that produces some data. In Chapter
1, we described an experiment to study the effects of seeding date and seedbed
preparation on germination. A wood scientist could be interested in studying the effect
of temperature and applied pressure on the strength properties of plywood. Experiments
such as tossing a coin, rolling a die, or drawing a card from an ordinary (52 cards) deck
of cards will also produce some data. In this chapter, we will deal with some simple
experiments in order to make the concept of probability easier to understand.

In most cases, the outcome of an experiment (real or simplified) will depend on
chance, and the outcome cannot be predicted with certainty. All possible outcomes of
an experiment are called the sample space and are represented by the symbol S. A
single outcome of an experiment is called an element or sample point of the sample
space. When sample spaces are finite, their elements can be listed. The general practice
is to list the elements separated by commas and enclosed in brackets. Some examples
of sample spaces are:
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Tossing a coin S = {H, T} Two possible outcomes where H =
heads and T = tails.

Tossing two coins S = {HH, HT, TH, TT} Four possible outcomes.
Rolling a fair die S = {1, 2, 3, 4, 5, 6} Six possible outcomes where the values

indicate the number rolled.

In other cases, it is easier to describe sample points rather than list them. When we
draw a card from an ordinary deck of cards, the sample space contains all possible 52
cards, 13 of each of 4 suits: hearts (�), clubs (�), diamonds (�) and spades (�).
Each suit contains nine ‘numbered’ cards (numbered from 2 to 10), three ‘face’ cards
(jack, queen and king) and one ace. This sample space can be described as:

S = {1 of 52 possible cards}.

Sample spaces can also be described with coded numbers such as 1 for heads and 0 for
tails, or by some other characteristic of the sample points. For example:

Tossing a coin S = {1, 0}
Rolling a die S = {even, odd}.

A sample space can also be described or qualified in general terms. For example, the
sample space of all trees of species that are native to British Columbia can be
described as:

S = {all trees of species y | y is a species native to British Columbia},

where the vertical bar ‘|’ is read as ‘such that’ or ‘given’.
Within a sample space, we may be concerned with the occurrence of a particular

subset of all possible elements. An event is defined as a subset or portion of the
elements of a sample space. Events are usually represented by capital letters. A might
be the event that we have one head in an experiment of tossing two coins; B might be
that we have the ‘same’ outcomes for the two coin tosses; and C might be that we have
at least one tail.

A = {HT, TH} B = {TT, HH} C = {HT, TH, TT}

We could describe three events from a deck of cards such as:

A = {the card is black (clubs or spades)}
B = {the card is a ‘face’ card}
C = {the card is an ace of clubs or an ace of spades}.

We can distinguish four types of events:

● a sample space contains all possible outcomes;
● a simple event contains only one element;
● a compound event contains more than one element; and
● a null space contains no elements.

The usual symbol for the null space is �. Readers should note that, in some
textbooks, compound events are also referred to as unions and intersections of events.
This definition is ambiguous, as it is possible that unions or intersections of two or
more events might not contain more than one element!

In approaching probability problems, it is oftentimes useful and informative to
draw a picture or Venn diagram of events as they relate to each other within the
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sample space. This is especially useful where compound (multiple) events are
concerned. In a Venn diagram, the sample space is shown as the interior of a rectangle.
Events are identified (often as circles) as specified regions inside the rectangle. Figure
3.1 shows the three events A, B and C from the sample space of cards discussed above.
It shows that there is some overlap, or intersection, between A and B, indicating some
common elements in the two events. Also, since C is completely contained within A,
we can see that all the elements in C belong to A as well.

Using events, mathematical operations, known as unions and intersections, can
be carried out and they play an important role in the theory of probability. In this
book, we will deal with unions and intersections of two events; however, the
procedures can easily be extended to three or more events. Before looking at unions
and intersections, the complement of an event should be defined. The complement of
an event, B, is the event containing all the elements of the sample space that are not
contained in B. The complement of B is denoted by B� (the shaded area in Fig. 3.2)
and is discussed further in Section 3.3.

The union of two events A and B is the event that contains all the elements in A or
B, including elements common to both. It is denoted by A ∪ B. The shaded area in the
Venn diagram in Fig. 3.3 shows the union of two events.
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Fig. 3.1. Venn diagram of sample space and
events.

Fig. 3.2. Complement of event B.

Fig. 3.3. Union of two events, A and B.

Example 3.1. Two trees are chosen at random from a stand of southern pine, where some
trees are infested with southern pine bark beetle. Event A is that the first tree chosen is not
infested. Event B is that the same outcome occurs on two consecutive trees. What is the
union of these two events?

A = {NN, NI} B = {NN, II} where N = not infested and I = infested
A ∪ B = {NN, NI, II}.

Note that NN, the common element, is not listed twice.
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Fig. 3.4. Intersection of two events, A and B.

Fig. 3.5. Mutually exclusive events.

Example 3.2. In an experiment of rolling a die, event A is the even numbers and event B is
the numbers less than 3. What is the union of these two events?

A = {2, 4, 6} B = {1, 2} A ∪ B = {1, 2, 4, 6}.

The intersection of two events A and B is the event that contains all the elements
common to both A and B. It is denoted by A ∩ B. Figure 3.4 shows the Venn diagram
of the intersection of two events.

Example 3.3. The intersection (common element) of the two events from Example 3.1 is:

A ∩ B = {NN}.

Example 3.4. The intersection of the two events from Example 3.2 is:

A ∩ B = {2}.

If A ∩ B = ∅, A and B are said to be mutually exclusive; that is, they have no common
elements. Figure 3.5 shows two mutually exclusive events.

Example 3.5. If event C contains all the spades and event D contains all the clubs from a
deck of cards, they are mutually exclusive, as they do not have a single common element.

C ∩ D = ∅.

Conversely, if all of the elements in event C are also elements of event A (see Fig. 3.1), event
C is said to be a subset of event A (C ⊂ A).



It is easy to verify the following statements on unions and intersections using
Venn diagrams or simple logical arguments:

1. (A�)� = A 5. A ∩ A� = ∅
2. ∅� = S 6. A ∪ ∅ = A
3. S� = ∅ 7. A ∩ ∅ = ∅
4. A ∪ A� = S 8. (A ∩ B)� = A� ∪ B�

3.2 Counting Techniques

The concept of sample and event spaces is essential to understanding classical probability
because oftentimes we must list and count the numbers of elements in a sample space and
in various events to calculate the chances of those events occurring. Sometimes,
determining the number of elements in an event and sample space is simple (e.g. a coin
toss), but other times it is more complex (see below). In general, the probability of an
event, E, is calculated as:

where f = number of ways an event can occur; n = total number of outcomes in the
sample space; and P(E) = probability of event E occurring.

There are two ways to find the number of outcomes in a sample space and in an
event. One is listing and then counting all of the elements in both the sample space and
the event. In these cases, a tree diagram is a simple tool for listing and counting
outcomes. A second method is to use mathematical techniques to calculate the number
of ways something can happen. In these generally more complex cases, we can apply the
multiplication rule and/or use permutations and combinations. Many times, we must
use more than one mathematical technique to determine the number of elements.

A tree diagram is a systematic procedure for listing all possible outcomes in a
sample space or an event. Example 3.6 illustrates the construction of a tree diagram.

Example 3.6. Assume that we are carrying out a
quality control check in a particleboard mill and we
have to select 3 sheets from the production line, 1
piece at a time. The mill produces either defective
(D) or defect-free (N) boards. Figure 3.6 shows the
construction of a tree diagram for sequentially
selecting 3 boards, with every choice of board having
two paths, either D or N. When all the sheets have
been selected (3 in our case), we can list and count
all the possible outcomes represented by each path.
Generally, tree diagrams move from left to right,
following the logical sequence of time.

Our sample space has eight possible outcomes
(the number of terminal branches on the tree):

S = {DDD, DDN, DND, DNN, NDD, NDN, NND,
NNN}

Once the sample space is identified, listing a given

P E
f
n

( ) =
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Fig. 3.6. Tree diagram for selecting 3
boards.
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Fig. 3.7. Tree diagram for flipping a coin and rolling a die.

event is also simple. For instance, we can now define an event A as selecting only 1 defective
board. Event A has three outcomes:

A = {DNN, NDN, NND}.

It should be fairly intuitive to the reader that the probability of selecting 1 defective board in a
sample of 3 is 3/8. We will discuss this result more formally in the subsequent section.

Tree diagrams can be much more complicated with increasing numbers of outcomes.
In some situations, tree diagrams can have a different number of choices (branches) for
each successive step.

Example 3.7. We construct an experiment where we first flip a coin. If the outcome is a head
(H), we then roll a die. If the outcome is a tail (T), we flip the coin again. This random
experiment results in an asymmetric set of branches (Fig. 3.7). The sample space has eight
outcomes.

S = {H1, H2, H3, H4, H5, H6, TH, TT}.

The total number of outcomes for a sample space in a tree diagram can generally also
be calculated by what is known as the multiplication rule. This mathematical counting
rule states that if a random experiment has a sequence of two steps, in which there are
n1 possible outcomes for the first step and n2 for the second, the total number of
outcomes is the product of the two numbers (n1 × n2).

Example 3.8. If a restaurant offers 2 soups and 4 main courses on the lunch menu, we can
order (2)(4) = 8 unique lunches.

The above definition for the multiplication rule can easily be extended to more than
two steps. That is, if a random experiment has a sequence of k steps, in which there
are n1 possible outcomes for the first step, n2 for the second step, and so on (to nk
possible outcomes on the kth step), then the total number of outcomes is
(n1)(n2)…(nk).

Example 3.9. In a home centre, wooden decks can be made using four kinds of wood. Each
deck can be stained with 5 types of stain and put together with 3 different types of hardware
fasteners. How many different kinds of decks can a customer buy?

(4)(5)(3) = 60.



A further extension of the multiplication rule occurs when each step of the experiment
has an equal number of possible outcomes. In these cases, the total number of outcomes
is nk, where n is the number of outcomes in each step and k is the number of steps.

Example 3.10. How many outcomes are possible if we choose 5 trees from a stand infested
by southern pine bark beetle, each time noting whether or not the tree is infested?

25 = 32 ; or
(2)(2)(2)(2)(2) = 32.

Note that for the above two examples, a tree diagram will give exactly the same
results.

Another way to calculate the number of outcomes in sample spaces and events
is by using a permutation, which is the number of arrangements of all or part of a
set of n distinct objects. The number of permutations of n objects taken r at a time
is:

(3.1)

Equation 3.1 can be derived from the multiplication rule, as

nPr = (n)(n – 1)(n – 2)..............(n – (r – 1)) (3.2)

meaning that the first object can be selected (n) ways and, as one object has been
taken, the second object can be selected (n – 1) ways, and so on until the rth object,
which can be selected (n – (r – 1)) ways (since (r – 1) objects have been taken already).
Equation 3.2 can then be algebraically simplified to Eqn 3.1 using factorial notation.
By way of example, n! is expressed in factorial notation and indicates the product of
consecutive numbers from 1 to n. Most statistical calculators have these functions
built in, which allow for the easy computation of factorials like 5! = (1)(2)(3)(4)(5) =
120. Note that 0! is, by definition, equal to 1, although the proof of this is beyond the
scope of this text.

Example 3.11. We can plant 4 trees in a row at the front of a house. If we have 6 trees, all
different species, how many ways can we plant them in a row?

Example 3.12. If we have 3 unique paintings, how many ways can we hang 2 of them side-
by-side in a room?

If we label the paintings from Example 3.12, A, B and C, these six permutations can
easily be listed as AB, AC, BA, BC, CA and CB. This should clearly show that, in a
permutation, the order is important. Permutations ‘AB’ and ‘BA’ are considered two
distinct arrangements.

When the permutations of all n objects are considered (in other words, we are not
taking r objects at a time), Eqn 3.1 can be simplified as:

3 2
3

3 2
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nPn = n! (3.3)

Since r = n, we have nPn = n!/(n – n)! = n!/0!. Because 0! = 1, nPn = n!.

Example 3.13. In how many ways can we plant all 6 of the trees from Example 3.11 in a row
at the front of a house?

6P6 = 6! = 720.

A special case of a permutation is the circular permutation. Consider the problem of
seating 5 people at a round table. Their arrangement is not considered different if they
each move seats one place to the right or to the left because they are in a connected
circle and not a disconnected line. The solution to this problem is to fix the position
of one person and find the number of permutations for the remaining 4 persons; that
is, 4! = 24. In general, the number of permutations of n distinct subjects in a circle is
denoted Pc and is calculated as:

Pc = (n – 1)! (3.4)

Another special case of a permutation is the permutation of similar objects. This
occurs when some of the objects, among the n objects, are not distinguishable. For
example, if we have 3 Douglas-fir, 2 birch and 4 oak seedlings, we may assume that
we cannot distinguish between the trees within each species (i.e. we cannot tell the 2
birches apart). In general, out of n objects, if n1 objects are of one kind that are
indistinguishable, n2 are of a second kind and so on until nk, the number of
permutations of similar objects, Ps, is:

(3.5)

Example 3.14. The number of ways the above 9 trees can be planted in a row is:

Oftentimes, we are not concerned with the order in which r objects are selected from
n distinct objects. If, for instance, in Example 3.11 we were merely selecting paintings
as opposed to arranging them on a wall, we would not need to distinguish between
outcomes ‘AB’ and ‘BA’ because they are made up of the same objects. If order is not
important, we use combinations of the objects to describe the number of possible
outcomes. The number of combinations of n distinct objects, taken r at a time is:

(3.6)

Another common notation for combinations is and is often stated as ‘n choose r’.

Notice that Eqn 3.6 can be obtained by dividing the number of permutations (Eqn
3.1) by r!, since the same objects appear together r! times. For instance, in the painting
example (Example 3.12), the two permutations ‘AB’ and ‘BA’ are considered to be
only one combination. Thus, if order is not important, we can derive the number of
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combinations by dividing the number of permutations (six, from Example 3.12) by r!
(2! in this case) for a total of three combinations.

Example 3.15. Using the 6 species of trees in Example 3.11, how many ways can we
randomly select 4 out of the 6 trees (i.e. order is unimportant)?

Using the combination equation above, we can see that there are 15 ways to select 4
out of 6 trees without regard to order. However, if we instead planted or arranged the
trees, a certain order is implied for each of the 15 combinations and the problem
becomes one of permutations. In fact, each of the 15 combinations of 4 trees can be
lined up (or arranged) in 24 (4!) distinct ways. In other words, the total number of
permutations equals 360 (15 combinations × 24 ways that each combination can be
arranged), which agrees with Example 3.11. This example should again illustrate the
difference between considering the number of combinations and the number of
permutations of objects. However, the reader should also be cautioned that it is
sometimes difficult to distinguish between combination and permutation problems.
Often, in counting problems, statements about order are not explicitly made, but are
implied. We recommend practising these sorts of problems as much as possible.

Example 3.16. How many ways can we select 3 students out of 5 to sit on a university
committee? If we have not assigned any ‘positions’ (chair, secretary, treasurer) to the
individuals, the question can be answered by considering the number of combinations.

Using the combination equation, we see that there are 10 different committees of 3
that can be set up from 5 students. However, if we look at assigning positions on the
committee, the problem becomes one of permutations. Again, the importance of order
here is not explicitly stated but implied, and we must recognize that a committee
consisting of Black (chair), Jones (secretary) and Smith (treasurer) is different from
one consisting of Jones (chair), Black (secretary) and Smith (treasurer). The number of
ways that 3 students can be picked from 5 if each student is to have a distinct position
then becomes the permutation:

Considering the result of the combination above, this means that every 3-person
committee selected can actually form 6 different committees when positions are
assigned.

Example 3.17. We have a bag of 9 seedlings, 3 of which are stunted in growth. How many
ways can we select 4 seedlings such that exactly 1 out of the 4 selected is stunted? Using the
combination equation, consider first how many ways that a normally growing seedling can be
selected:

6C3 = (6!)/[(3!)(6–3)!] = 20 ways.
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Now consider the number of ways that a stunted one can be selected:

3C1 = (3!)/[(1!)(3–1)!] = 3 ways.

Then, using the multiplication rule, multiply the combinations of normal and stunted seedlings
together for a total of (20)(3) = 60 ways.

3.3 Probability

Probability is the measure of likelihood of the occurrence or non-occurrence of an
event. As defined earlier, an event is usually symbolized by a capital letter, say A, and
its probability is symbolized by P(A). Mathematically, a scale ranging from 0 to 1 is
used to evaluate the likelihood of occurrence of an event. If an event is very likely to
occur, it is assigned a probability close to 1. If an event is very unlikely to occur, it is
assigned a probability close to 0. It follows, then, that an event that is ‘certain’ to
occur has a probability of 1, while an event that is ‘impossible’ has a probability of 0.
The probability of the event that the sun will rise tomorrow is 1. The probability of
the event that a tossed coin will not land anywhere (stays in the air) is 0. In practical
applications, probabilities are often converted to percentages, with the possible values
ranging from 0% to 100%, and are frequently referred to as chances. For example, a
weather forecaster may say that, ‘The chance of showers tomorrow is 80%,’ meaning
that the probability of rain tomorrow is 0.8.

There are three kinds of probabilities: classical, empirical and subjective.
Classical probability is calculated from the knowledge of the sample space and an

event from a random experiment. It is so named because it was the first type of
probability studied by mathematicians in the 17th century. As we discussed in Section
3.2, the probability of an event, A, can be calculated from the total number of
outcomes in a sample space, n, and the number of ways that event A can occur, f.

(3.7)

In other words, f is the number of outcomes in event A, whereas n is the number of
total outcomes in the entire sample space. Equation 3.7 assumes the total number of
outcomes, n, is equally likely; that is, they all have exactly the same probability of
occurring.

Example 3.18. Two dice, one red and the other green, are rolled. What is the probability of
event A, defined as having the number of dots totalling 7, occurring? All of the 36 outcomes
in this sample space are listed, with the event A defined in boldface:

1–1 1–2 1–3 1–4 1–5 1–6
2–1 2–2 2–3 2–4 2–5 2–6
3–1 3–2 3–3 3–4 3–5 3–6
4–1 4–2 4–3 4–4 4–5 4–6
5–1 5–2 5–3 5–4 5–5 5–6
6–1 6–2 6–3 6–4 6–5 6–6

A = {1–6, 2–5, 3–4, 4–3, 5–2, 6–1}

Since n = 36 and f = 6,                                            . P A( ) = = ≈6
36

1
6

0 16667.

P A
f
n

( ) = .
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Empirical probabilities are based on experiments for which the possible outcomes and
the number of outcomes favouring an event are not known exactly, but generally have
been observed. If an experiment is repeated n times and f out of the n trials favours
event B, the probability can be calculated as:

(3.8)

Here, f is called the frequency of event B. The symbol ≈ means that the probability is
approximately equal to the theoretical value that would be expected (i.e. the classical
probability). Empirical probabilities change from one experiment to another for the
same event, while classical probabilities remain the same. Take the example of flipping
a coin 500 times. Classical probability tells us that the probability of getting a head
would be 0.5 and, thus, we would expect 250 of the flips to be heads. In reality,
however, this is unlikely to occur. We may get 240 heads in a 500-flip experiment and,
thus, the empirical (observed) probability would be 240/500 = 0.48, a value that is
close, but not exactly equal to 0.5.

The relative frequencies in frequency distributions are empirical probabilities if
the distributions are created from samples. These relative frequencies change if we
take a different sample from the same population. Table 2.2 (see Chapter 2) shows the
frequency distribution of crown classes for 50 trees taken from a stand. Since 14
codominant trees and 9 dominant trees were observed, the empirical probabilities of
trees being codominant and dominant are 0.28 and 0.18, respectively. If we took
another sample of 50 trees from the same stand (independently from the first), these
two probabilities would very likely change.

Subjective probabilities are based on a person’s experiences, or ‘educated guesses’.
For example, an avian biologist may say that, ‘If we log this area, there is a 15%
chance that cavity-nesting birds may never return,’ or a forester may note that, ‘If we
plant this logged-over area next spring, 80% of the seedlings will survive.’ These
statements are not substantiated by exact scientific evidence and are based solely on
an individual’s experience.

Subjective probabilities are often seen in gambling, sporting events and horse
racing, where the term ‘odds’ is generally used in lieu of probability. However, before
defining what ‘odds’ means precisely, it is necessary to state some properties of
probabilities.

The properties of probability can be summarized as follows:

1. For a given event A, 0 ≤ P(A) ≤ 1 (i.e. the probability of an event must be between
complete uncertainty and complete certainty).
2. The sum of the probabilities of all possible simple events in a sample space must
equal 1.
3. For a given event A,

P(A) + P(A�) = 1,

where A� is called the complement of A and represents an event defined by A not
occurring. Thus,

P(A�) = 1 – P(A) and P(A) = 1 – P(A�).

4. For a given event A, P(A) is the sum of the probabilities of all simple events

P B
f
n

( ) ≈ .
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corresponding to A. That is, if A consists of several simple events, the sum of the
probabilities of all these events will sum to P(A).

Now that we know the mathematical meaning of an event’s complement, we can
define the term ‘odds’. The odds in favour of an event A are:

Again, odds are often used in gaming events involving subjective probabilities, but
this is not always the case. Take, for example, an experiment where two coins are
tossed and the sample space is defined as S = {HH, HT, TH, TT}. The odds in favour
of obtaining at least one head are computed as follows (note that the denominator
term is the probability of not obtaining at least one head):

The way to state these odds is to say, ‘there are 3 to 1 odds in favour of obtaining at
least one head.’ It can also be written as a ratio, 3:1. Alternatively, we may state that
‘there are 1 in 3 odds against not obtaining at least one head.’

Odds of a:b can be converted back to a probability as follows:

For example:

3.4 Rules for Probabilities

Two basic and commonly used rules for operations with probabilities are the addition
rule and the multiplication rule.

The addition rule is based on the probability of the union of events. For two
events A and B, the addition rule is:

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) (3.9)

The union of the two events above represents the probability of either event A or
event B occurring. It is represented by all of the sample points found in A or B. As
shown in Fig. 3.8, as we add P(A) and P(B), we are double-counting the intersection
space P(A ∩ B) because it is included in both events A and B. Hence, to arrive at
P(A ∪ B), we must subtract (once) the probability of the intersection from the sum of
probabilities of the two events.

Again, the addition rule should be interpreted as the probability of the occurrence
of A or B. This is why in several texts, the notation of P(A or B) is used in place of
P(A ∪ B). In situations where events A and B are mutually exclusive or disjoint (that
is, they do not have any common intersecting elements), Eqn 3.9 simplifies to:

P at leastonehead .( ) =
+

=3
3 1

3
4

P A
a

a b
( ) =

+
.

odds(at least one head) = =
3
4
1
4

3

odds
'

.A
P A

P A
( ) =

( )
( )
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P(A ∪ B) = P(A) + P(B), (3.10)

since

P(A ∩ B) = 0.

Equation 3.10 can be extended for k mutually exclusive events, such as A1, A2, … and
Ak:

P(A1 ∪ A2 ∪ … ∪ Ak) = P(A1) + P(A2) + … + P(Ak). (3.11)

Equation 3.9 can also be extended to more than two events. However, the inclusion
of multiple intersections creates a rather complicated equation and is beyond the
scope of this book.

Example 3.19. What is the probability of getting a total of 3 or 7, when two dice are rolled?
Let event B be the total of 3 and event A the total of 7. From Example 3.18, we already know
that

Examining the elements in the two events, we quickly realize that they do not have any
common elements. We can therefore say that they are mutually exclusive events and we
apply Eqn 3.10:

It is good practice to work out the meaning of probabilities like 0.222 to get a sense
of what they imply for the question in hand. The practical interpretation of 0.222 is
that, if we roll the two dice several times, the total of ‘3 or 7’ will occur a little more
than one out of five times.

Example 3.20. Assume now that we roll a single die, what is the probability that event A or B
occurs? Where

A = {< 3} = {1, 2}
B = {odd} = {1, 3, 5}.

P A B∪( ) = + = = ≈6
36

2
36

8
36

2
9

0 222. .

P A P B B( ) = ( ) = − −{ }6
36

2
36

1 2 2 1,  and we can work out that ,  since =  , .
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From here

and

We can see that A and B are not mutually exclusive events because they have one common
element: 1 (see Fig. 3.8). The probability of the intersection of A and B (rolling a ‘1’) is then:

To answer the question about the probability of either event A or B occurring, we must
consider the union of two events using Eqn 3.9:

If we roll the die several times, a roll of 3 or less or an odd number should occur about twice
in every three rolls.

When required, Eqn 3.9 can be rearranged so that the probability of the intersection
of two events can be readily calculated:

P(A ∩ B) = P(A) + P(B) – P(A ∪ B).

Often, the occurrence of one event will influence the probability of another event. For
example, it is well known that drinking alcohol before driving affects the chance of
having a car accident, and applying fertilizer affects the height growth of seedlings. In
such cases, we are dealing with conditional probabilities.

We will introduce the concept of conditional probability by further exploring
Example 3.17. In this example, rolling two dice (a red one and a green one) produced
36 outcomes, which are listed below.

1–1 1–2 1–3 1–4 1–5 1–6
2–1 2–2 2–3 2–4 2–5 2–6
3–1 3–2 3–3 3–4 3–5 3–6
4–1 4–2 4–3 4–4 4–5 4–6
5–1 5–2 5–3 5–4 5–5 5–6
6–1 6–2 6–3 6–4 6–5 6–6

Consider event A to be that the total is an even number (in boldface in the list above)
and event B to be that the total is greater than or equal to 9 (in italics in the list above).
Note that some of the sample points meet the criteria of both events (shown in
boldface-italic). After counting the outcomes for these two events, we can calculate
the probability, of each event as:

and

An example of a conditional probability problem here would be asking the question, ‘If
two dice are rolled, what is the probability that the outcome is even if we already know
that the outcome is greater than or equal to 9?’ In this situation, we know that event B
has occurred and we are interested in understanding the effect of this information on the
probability of event A. We symbolize the conditional probability of event A given that

P B( ) = ≈10
36

0 278. .

P A( ) = =18
36

0 5.

P A B∪( ) = + − = = ≈2
6

3
6

1
6

4
6

2
3

0 667. .

P A B∩( ) = 1
6

.

P B( ) = 3
6

.P A( ) = 2
6
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event B has occurred as P(A|B). The conditional probability represents a redefined
sample space. In our example, out of the 36 outcomes (original sample space) only ten
qualify for the new sample space, as ten outcomes have a total greater than or equal to
nine (italics), and four out of these ten outcomes are even (boldface-italics). By intuition,
the conditional probability should then be:

It is interesting to note that the probability of A changed from 0.5 (unconditional) to
0.4 (conditional) with the additional information. The general equation to calculate
conditional probabilities is:

(3.12)

It is also true that

(3.13)

Example 3.21. We draw a card from a deck of 52 cards. Event A is that the card is a spade
and event B is that the card is a face card (jack, queen, king). Since 13 cards are spades, 12
cards are face cards and 3 cards are both spade and face cards, the probabilities are:

If we are told that the outcome is a spade, what is the probability that it is also a face card?
This can be calculated using Eqn 3.12:

On the other hand, if we are told that the outcome is a face card, what is the probability that
it is also a spade?

Interestingly, the conditional probabilities in the previous example for both A and B
are the same as the unconditional probabilities. In cases like these, we refer to the
events A and B as independent. Two events are said to be independent if the
probability of one event is not affected by the occurrence or non-occurrence of the
other event.

If two events, A and B, are independent, then:

P(A) = P(A|B) and P(B) = (B|A).

Either of these equalities can be used to prove or disprove the independence of two
events.

To extend the idea of conditional probability, we will study a research example
with empirical probabilities. A forest scientist has studied the germination of white
pine and yellow pine seeds. The results are summarized in the following table.

P AB( ) = = =
3

52
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52

3
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52
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52

.
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Consider the two events; G, that a seed has germinated and Y, that a seed is
yellow pine. The following probabilities can be calculated from the frequencies above:

We can also compute the conditional probability that a seed germinates given that it
is yellow pine using Eqn 3.12:

This conditional probability can also be calculated by using intuition. Consider the
redefined sample space of 70 yellow pine seeds. In this new sample space, 60 seeds
germinated. Therefore, the conditional probability is:

A point that confuses first-time readers is the distinction between a conditional
probability and an intersection between two events. A conditional probability refers
to the probability of one event occurring, given that another has already occurred,
while an intersection refers to the probability of two events occurring simultaneously.
This is discussed in further detail below.

Equations 3.12 and 3.13 can be rearranged such that the intersection of two
events can be calculated:

(3.14)

(3.15)

Equations 3.14 and 3.15 are referred to as the multiplication rule, which enables us to
calculate the probability that two events both occur. Several books use the notation,
P(A and B), rather than P(A ∩ B), indicating the probability of both A and B
occurring simultaneously.

The multiplication rule simplifies for independent events, since P(A|B) = P(A) and
P(B|A) = P(B):

(3.16)

Equation 3.16 can be restated in words as: the probability that two independent
events will both occur (or the probability of the intersection of two independent
events) is the product of their corresponding probabilities.

Equation 3.16 can also be extended for k independent events, A1, A2, …, Ak.

P P P P PA B B A A B∩ = =( ) ( ) ( ) ( ) ( ).

P P P

P P P

A B B AB

A B A BA

∩ =

∩ =

( ) ( ) ( )

( ) ( ) ( )
and

.

P GY( ) = ≈60
70

0 857. .

P GY( ) = ≈0 40
0 467

0 857
.

.
. .

P G P Y P G Y( ) = ≈ ( ) = ≈ ∩( ) = =125
150

0 833
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150
0 467
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150

0 40. , . , . .
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Germinated Not germinated Total

Yellow pine 60 10 70
White pine 65 15 80
Total 125 25 150
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(3.17)

Similarly, Eqns 3.14 and 3.15 can be extended to more than two events but, because
they take on complicated forms, these equations will not be discussed in this text.

Example 3.22. In a lumber remanufacturing plant, 8 spare parts are kept for a planing machine.
It is known that 2 of these spare parts are defective. If the mechanic randomly selects 2 of these
8 spare parts, what is the probability that the 2 spare parts are both functional? Let D represent
the event that a defective part is chosen, and N represent the event that a non-defective part is
chosen.

Note that this problem introduces a very important statistical concept, sampling without
replacement. Let N1 be the event that the first part selected by the mechanic is functional
and N2 be the event that the second part selected is functional. The probability of the first
choice being functional is simply the proportion of non-defective parts:

However, the probability of the second choice is conditional. Since the first choice was a
functional part, then only 5 functional parts remain out of a new total of 7 parts:

But if the first choice was a defective one, 6 functional parts still remain out of the 7 parts:

Since the problem relates to 2 functional parts being selected in sequence, we need not
worry about the latter probability. The multiplication rule is used to answer this question:

Example 3.23. Assume that we are drawing 2 cards from a deck of 52 cards. Cards can be
drawn with or without replacement and this affects the probabilities of each subsequent draw.
In this case, sampling with replacement means that after a card is drawn and observed, it
is put back into the deck before the next card is drawn. Sampling without replacement means
that after the first card is drawn, it is set aside from the deck when the subsequent card is
drawn. We can compute the probability of drawing two spades (our event) for both situations.

When the sampling is done without replacement, the case follows the logic in Example
3.22.

From the multiplication rule, the probability of the intersection, that is, that both cards drawn
are spades, is:

However, when sampling is done with replacement, the respective probabilities are:
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When sampling with replacement, the two events S1 and S2 are independent because the
probability of drawing one spade is the same as the probability of drawing a second spade,
given that one has already been drawn. Therefore, the probability of the intersection can be
more simply calculated as:

This example serves two purposes. It demonstrates the difference between sampling with
replacement and sampling without replacement. It also demonstrates the application of
the multiplication rule when two events are dependent or independent.

Example 3.24. One box contains 3 US dimes and 5 Canadian dimes and another box
contains 4 US dimes and 2 Canadian dimes. One dime is picked from Box 1 and transferred
into Box 2, unseen. Once this is done, what is the probability that a dime that is picked from
Box 2 is Canadian?

Tree diagrams (Fig. 3.9) can be very helpful in
conceptualizing conditional problems like this. Note how
the branches of the tree follow the temporal (time) order
of the problem (picking dimes from two boxes, one at a
time), which serves to illustrate how each subsequent
branch is actually a conditional probability. Based on the
information provided in the problem, a tree diagram can
be constructed; however, one needs to be mindful of
how the conditional probabilities will change along every
path. A quick test is to make sure that the probabilities for
each set of branches (representing all of the choices at
any given step) add up to 1.

Let us define U as the event of picking a US dime and
C as the event of picking a Canadian dime. Subscript 1
indicates that a dime was picked from Box 1, while
subscript 2 indicates that it was picked from Box 2.

By following the tree diagram, it can be seen that there
are two possible ways of picking a Canadian dime from
the second box – one in which the first pick was a US dime and the other in which the first
pick was a Canadian dime. Thus, this is actually a union problem and the probability is
computed as follows:

It is worth noting that this problem is actually a union of two intersecting events. Again, the
difference between intersecting probabilities and conditional probabilities should be
considered, and tree diagrams are useful in this regard. Note that conditional probabilities
occur within the tree at each subsequent branching. In this case, there are four conditional
probabilities. There are also four possible intersections, but they are not conveyed directly on
the tree diagram. Rather, they can be obtained by multiplying through all of the probabilities
for each final outcome (branch).
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Fig. 3.9. Tree diagram for
selecting US and Canadian
dimes.



3.5 Bayes’ Theorem

The conditional probabilities that we have seen thus far have followed a logical,
temporal order. For example, if we had enough information, it would be possible to
work out the conditional probabilities for a student to break a leg given that he or she:
(i) went skiing; or (ii) went hiking; or (iii) played soccer; or (iv) stayed at home to
study for the statistics midterm. These are referred to as prior probabilities, since they
are based on previously observed frequencies for the four activities.

Sometimes, though, conditional probabilities can be reversed. For instance, if a
student walked into the classroom with a broken leg, we could also work in the
reverse order and calculate the probabilities that he or she: (i) went skiing; or (ii)
went hiking; or (iii) played soccer; or (iv) stayed at home to study for the statistics
midterm. These are referred to as posterior probabilities, since they are based on the
fact that the student already has a broken leg. Bayes’ Theorem is used to work out
posterior probabilities. This theorem is introduced with a simplified practical
example.

Example 3.25. Assume that logs arrive by truck to a sawmill from 3 cutblocks. The
probabilities are 0.60, 0.25 and 0.15 that the logs are from cutblocks A1, A2 and A3,
respectively. Note that the events for Bayes’ Theorem must be mutually exclusive (disjoint)
and collectively exhaustive. These two conditions are met if the following are true:

1. When one event occurs, the others cannot (the events are mutually exclusive).
2. The sum of the probabilities for all the possible events (three in our example) equals 1 (the
events are collectively exhaustive).

Let us further assume that only two species, Douglas-fir and western hemlock, are logged on
each of the 3 cutblocks and that the two species are sorted and transported on separate logging
trucks. The following table shows the proportions (probabilities) of occurrence for the two species
by cutblock.

Figure 3.10 shows the sample space with events A1, A2, A3 and B, where Ai refers to the ith
cutting block and B is the event that the species is Douglas-fir. If we observe that a truck has
arrived with a load of Douglas-fir logs, we can work out the probabilities that it originated from
any 1 of the 3 possible cutting blocks by applying Bayes’ Theorem:

(3.18)

(3.19)

i = 1, 2 … k.

Equations 3.18 and 3.19 are given for k mutually exclusive and collectively exhaustive events
assuming a prior knowledge of event B. This equation is essentially the same formulation as
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Cutblock

Species A1 A2 A3

Douglas-fir 0.50 0.40 0.30
Western hemlock 0.50 0.60 0.70
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Fig. 3.10. Venn diagram for events A1, A2, A3 and B.

the conditional probability Eqns 3.12 and 3.13, as the denominator function, when expanded,
simply reduces to P(B).

The Venn diagram (Fig. 3.10), a tree diagram (Fig. 3.11) and the following algebraic steps
demonstrate the derivation of Eqns 3.18 and 3.19. In order to define event B (Douglas-fir),
we can use the Venn diagram (Fig. 3.10) to show that it is actually a union of three mutually
exclusive events, each defined by an intersection:

Since the intersections are disjointed, we can see from Fig. 3.11 that:

Using the multiplication rule (Eqn 3.14) and Fig. 3.10, the probability of B can be calculated
as:

P B P A P B A P A P B A P A P B A( ) = ( ) ( ) + ( ) ( ) + ( ) ( )1 1 2 2 3 3 .

P B A B A B A B( ) = ∩( ) + ∩( ) + ∩( )P P P1 2 3 .

B A B A B A B= ∩( ) ∪ ∩( ) ∪ ∩( )1 2 3 .

Fig. 3.11. Tree diagram for Bayes’ Theorem (F = Douglas-fir and H = western hemlock).
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It can be seen from Fig. 3.11 that the ratio of P(A1)P(B|A1) divided by P(B) is the probability
that a known Douglas-fir load is from cutblock A1. Numerically,

Similarly, the probabilities can be calculated for A2 and A3 as well.

These steps can also be used to verify Eqns 3.18 and 3.19.
Note that in using Bayes’ Theorem, the numerator term will appear somewhere in the

denominator term. This is a useful check, but it also makes the probability easier to
conceptualize. In the first case, the conditional probability is defined by one intersection (a
load of trees being both Douglas-firs and from cutblock 1) being divided by the sum of all the
intersections (which works out to be the total probability of a load being Douglas-firs). In this
light, Bayes’ Theorem, like all probabilities, is just a proportion. It should also be noted that
some statisticians question the validity of Bayes’ Theorem because it is disputed whether
prior probabilities can reasonably be assigned. However, this debate is beyond the scope of
this text.

Exercises

Section 3.1

3.1. Assume a random experiment in which a balanced die is rolled and then a
balanced coin is tossed.

a. List the elements in the sample space and count the total number of possible
outcomes.

b. Let event A be that the outcome on the die is an even number. List the elements
corresponding to event A.

c. Let event B be that the outcome on the coin toss is a head. List the elements
corresponding to event B.

d. Draw a Venn diagram of the sample space with events A and B.
e. List the elements in the intersection of events A and B.
f. List the elements in the union of events A and B.
g. List the elements in A�.
h. List the elements in B�.
i. Define a simple event in this random experiment.
j. Define a compound event in this random experiment.

3.2. Suppose that we have 5 cards numbered 0, 1, 2, 3 and 4. Two cards are drawn
in such a way that after the first card is drawn, we put the card aside and draw the
second card from the remaining 4 (sampling without replacement).

a. List the elements in the sample space.
b. Let event A be that the total on the 2 cards is odd. List the elements

corresponding to event A.
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c. Let event B be that the total on the 2 cards is even. List the elements
corresponding to event B.

d. Draw a Venn diagram of the sample space and events A and B.
e. Let event C be that the total on the 2 cards is less than 3. List the elements

corresponding to event C.
f. Draw a Venn diagram of the sample space and events A, B and C.
g. List the elements in A ∩ B, A ∩ C, B ∩ C, A ∪ B, A ∪ C and B ∪ C.

3.3. Consider the following sample space and events.

S = {Douglas-fir, cedar, hemlock, alder, maple, spruce, birch}
A = {Douglas-fir, hemlock, cedar}
B = {cedar, spruce}
C = {alder, maple, birch}

List the elements corresponding to the following events:

a. A ∩ B.
b. A ∪ B.
c. A� ∩ B.
d. B ∩ C� ∩ A.
e. (A� ∪ B) ∩ (A� ∩ C�).

3.4. Three seeds are drawn from a bag of mixed Douglas-fir and ponderosa pine
seeds.

a. List the elements in the sample space.
b. Let event A be that all 3 seeds are ponderosa pine. List the elements in event A.
c. What kind of event is A?
d. Let event B be that the first seed drawn is a Douglas-fir. List the elements in

event B.
e. What kind of event is B?
f. Describe the relationship between A and B.

Section 3.2

3.5. Find the total number of outcomes in the random experiment described in
Exercise 3.2 using:

a. A tree diagram.
b. The multiplication rule.
c. Permutations.

3.6. Find the total number of outcomes in the random experiment described in
Exercise 3.4 using:

a. A tree diagram.
b. The multiplication rule.

3.7. Find the total number of outcomes in the random experiment described in
Exercise 3.1 using:

a. A tree diagram.
b. The multiplication rule.



3.8. A natural resources conservation student can select his or her second year
elective course from a choice of 2 courses, a third year elective from a choice of 4
courses, and a fourth year (final year) elective from a choice of 2 courses. How many
ways can the student select electives in the last 3 years of the programme?

3.9. A test consists of 6 multiple-choice questions in which the first 3 questions have
3 possible answers and the last 3 questions have 2 possible answers. If only 1 answer
can be selected per question, how many ways can the student choose answers to the
questions?

3.10. In how many ways can a true–false test consisting of 12 questions be answered
(assuming only 1 answer per question)?

3.11. A telephone company is adding 4 new exchanges to its service area. The 7-digit
telephone numbers for these new exchanges must begin with 2, 3, 4 or 5. How many
new phone numbers can be created by the company?

3.12. Assuming no ties in a 5 km race with 8 runners, how many ways can medals be
awarded for first, second and third place?

3.13. A company that makes tags for trees in research plots produces tags with 3-
digit codes. In doing this, they draw from 6 digits, 0 to 5 inclusive, each digit can be
used only once and the codes cannot begin with 0.

a. How many 3-digit tags can be formed from these numbers?
b. How many are even numbers?
c. How many numbers are less than 240?

3.14. Three married couples have purchased 6 seats in one row for a play. How many
different ways can they be seated:

a. With no restrictions?
b. If each couple sits together?
c. If all the men sit together to the left of all the women?

3.15. In how many ways can a forester select 4 out of 7 available technicians to form
a field crew?

3.16. In how many ways can 6 people be seated around a circular table?

3.17. The library’s reserve shelf contains 3 copies of a maths textbook, 4 copies of a
biology textbook, 2 copies of a chemistry textbook and 3 copies of a physics
textbook. How many ways can the librarian arrange these 12 textbooks on a shelf?

3.18. How many ways can the ABC Forestry Company hire 3 co-op students from 7
equally qualified applicants?

3.19. From an ordinary deck of 52 playing cards, how many ways can a poker hand
(5 cards) be selected:

a. With no restrictions?
b. With 2 kings, 2 aces and 1 other card (other than a king or an ace)?
c. With a full house (3 cards of one value and 2 cards of another value)?

3.20. A committee of 3 is selected from 4 women and 3 men. How many selections
are possible, if the committee consists of:

Probability 57



a. All women?
b. One man and 2 women?
c. Two men and 1 woman?
d. Any combination of men and women?

Section 3.3

3.21. Calculate the probability for events A, B, A� and B� in Exercise 3.1.

3.22. In LOTTO 6/49®, players choose 6 numbers from 1 to 49. On each draw day,
6 randomly generated winning numbers from 1 to 49 are selected.

a. How many different ways can the 6 numbers be generated (the sample space)?
b. What is the probability of winning the jackpot (matching all the 6 winning

numbers) if you select one set of 6 numbers?

3.23. The American roulette wheel contains 38 sections: 1 to 36, 0 and 00. Out of
these, the 0 and 00 sections are green, while 18 of the 36 remaining sections are black
and the other 18 are red. A ball is spun in the direction opposite to the wheel’s motion
and bets are made on the numbers or colours where the ball stops. Assume that the
wheel is balanced (fair).

a. What is the probability that the ball stops in a green section?
b. What is the probability that the ball stops in a red section?
c. What is the probability the ball stops on an even number (ignoring 0 and 00)?
d. What is the probability that the ball stops on a black section?
e. What are the odds against the ball stopping on a black section?

3.24. If the weather forecast states that the odds of rain tomorrow are 6 to 11:

a. What is the probability that it will rain tomorrow?
b. What is the probability that it will not rain tomorrow?

3.25. If the forecast is that the chance for rain tomorrow is 60%:

a. What are the odds in favour of rain?
b. What are the odds against rain?

3.26. A survey indicated that last Sunday 20 out of 75 visitors to a provincial park
were German citizens.

a. What is the probability that a park visitor is a German citizen?
b. What kind of probability is this?
c. Will this probability be the same if the survey is repeated on another day?

Section 3.4

3.27. A permanent sample plot contains 15 Douglas-fir, 10 western hemlock and 3
red alder trees. If a tree is selected at random:

a. What is the probability that it is either Douglas-fir or red alder?
b. What is the probability that it is not western hemlock?

3.28. In a forest stand, the probability that a tree is a Douglas-fir is 0.65, the
probability that a tree is infested by bark beetles is 0.18 and the probability that a tree
is a Douglas-fir and is infested by bark beetles is 0.15. If a tree is selected at random,
what is the probability that it is a Douglas-fir or it is infested by bark beetles?
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3.29. For a small ski resort to operate, at least 1 of their 2 chair lifts must be
functioning. Given the following information, what is the probability of a
shutdown?

P(lift 1 works) = 0.90
P(lift 2 works) = 0.85
P(both lifts work) = 0.765.

3.30. If 2 cards are drawn from an ordinary deck of 52 playing cards, what is the
probability of getting 2 kings, if:

a. Cards are drawn with replacement?
b. Cards are drawn without replacement?

3.31. In a certain mill, 20% of the lumber cut is grade No 1, 45% is grade No 2 and
35% is grade No 3.

a. What is the probability that a piece selected at random will be grade No 1?
b. What is the probability that a piece selected at random will not be grade No 1?
c. If it is known that a piece selected at random is not grade No 1, what is the

probability that it is not grade No 2 either?

3.32. If a student guesses on all 8 questions on a true–false exam, what is the
probability that he or she will get them all correct?

3.33. Suppose that a balanced coin is independently tossed twice. List the elements in
the following events and their associated probabilities:

A = head appears on the first toss;
B = head appears on the second toss; and
C = both tosses yield the same outcome.

Prove whether:

a. A and B are independent.
b. A and C are independent.
c. All of the three events are independent.

3.34. List the elements in the following events and their associated probabilities if a
balanced die is rolled:

A = the outcome is even;
B = the outcome is odd; and
C = the outcome is less than 3.

Prove whether:

a. A and B are independent.
b. A and C are independent.
c. B and C are independent.
d. Make a general statement about A|B and B|A when A and B are mutually

exclusive (disjoint) events.

3.35. In a forest stand, the trees were classified by species and insect infestation. The
results were:
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a. If P is the event that a tree is pine and I is the event that a tree is infested, are P
and I independent? Prove why or why not.

b. If F is the event that a tree is Douglas-fir and N is the event that a tree is not
infested, are F and N independent? Prove why or why not.

3.36. Two balanced dice are rolled. What is the probability that both show a 6? Show
which equation you used to calculate P(6 ∩ 6).

3.37. A forest district has 3 helicopters for firefighting. The probability that any one
of them is available when needed is 0.95.

a. What is the probability that none of them is available?
b. What is the probability that all of them are available?
c. What is the probability that only one is available?

3.38. Two manufacturers supply a certain filter used in measuring river
sedimentation. Manufacturer A supplies 65% and manufacturer B supplies 35%. It is
known that 5% of the filters supplied by A are defective and 10% of the filters
supplied by B are defective.

a. What is the probability that a filter selected at random is defective?
b. Given that a filter is defective, what is the probability that manufacturer B

supplied it?
c. Given that a filter is not defective, what is the probability that it was supplied by

manufacturer A?

Section 3.5

3.39. A small sawmill is supplied with 30%, 25% and 45% of its logs by logging
companies A, B and C, respectively. It is known that red stain (a pathological defect)
is present in 20% of the logs supplied by A, in 5% supplied by B and in 15% supplied
by C.

a. Find the probability that a randomly selected log contains red stain.
b. If it is known that a log came from company A, what is the probability of it

containing red stain?
c. What is the probability of randomly selecting a log that is both from company

A and contains red stain?
d. What is the probability of selecting either a log from company A or a log that

contains red stain?
e. If it is known that a log contains red stain, what is the probability that it was

supplied by logging company A?
f. If it is known that a log contains red stain, what is the probability that it was

supplied by logging company B?
g. If it is known that a log contains red stain, what is the probability that it was

supplied by logging company C?
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Like the theory of probability, random variables and their probability distributions play
an important role in statistical inference. The main objectives of this chapter are to show
how outcomes of random experiments can be described in real (numerical) terms and
how probabilities can be assigned to these real numbers. Numerical descriptions of
outcomes and their respective probabilities form what are known as probability
distributions or probability density functions. We can use these distributions to compute
the means and the variances of the random variables that they describe. All of these tools
are useful in helping to provide further information for describing populations.

4.1 Random Variables

In Chapter 3 (this volume), we discussed the concepts of random experiments, sample
spaces and outcomes. Some random experiments produce outcomes that can be
described by letters, symbols or just general descriptions. Other experiments produce
outcomes in numerical terms, such as: the number of heads that could occur when a
coin is tossed three times; the total number of dots observed when rolling a pair of dice;
the number of plants in a 100 m2 area; or the number of seeds that germinate in a
seedbed. A random variable is a well-defined numerical description of the outcomes in
the sample space of a random experiment. We will denote random variables by capital
letters, such as X, Y or Z, while small letters, such as x, y or z (usually with subscripts),
will denote individual values or outcomes for that random variable.

A sample space associated with a random experiment can be classified as discrete
or continuous. A discrete sample space is one that contains a finite number of elements,
such as the eight possible outcomes from tossing a coin three times. A discrete sample
space can also be unending, but countable, such as the sample space associated with
tossing a coin until a head appears (the number of tosses necessary to meet this
condition is the set of all possible positive whole numbers). Discrete random variables
always take the form of data that are counted, such as the number of infested trees or
the number of accidents per month in a logging camp.

A continuous sample space is one that contains an infinite and uncountable number
of outcomes. Any random variable obtained by measurements, like the time to
germination, the weight of salmon, the distance between forest dependent communities,
or the volume of a tree, can theoretically take on any value in a measurement interval.
For instance, for any two given merchantable tree volumes, e.g. 3.1 m3 and 3.2 m3, one
can always find another value that occurs between them (e.g. 3.17 m3). Theoretically,
this could go on infinitely if measurement instruments were precise enough.
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Random variables defined over discrete sample spaces are called discrete random
variables, while random variables defined over continuous sample spaces are called
continuous random variables.

4.2 Probability Distributions

A discrete random variable can be described by the probabilities that each of its
individual values takes on when the random experiment is carried out. The list of all
possible numerical outcomes and their associated probabilities is called the
probability distribution of the random variable. For example, the probability
distribution for the number of heads that occur when a coin is tossed three times is as
follows (note that the random variable, number of heads, is denoted with an X, while
the individual outcomes are denoted with an x):

Often, it is possible and more convenient to express the outcomes and the probabilities in
an equation, called a probability function. These equations can often be worked out
intuitively using the permutation, combination and multiplication rules from the previous
chapter (see Chapter 3); however, their derivation at this time is not as important as the
knowledge that probabilities can oftentimes be expressed mathematically. The above
probability distribution can be expressed in the following function:

where x = 0, 1, 2, 3.

This function can easily be generalized for any number of coins, n.

where x = 0, 1, 2, … n.

In these two equations, probability is a function of x, a specific value of the
random variable, X. We will denote the probability functions by f(x) or g(y), which
can also be expressed in probability terms as f(x) = P(X = x). Numerically, from
above, f(2) = P(X = 2) = 3/8.

Example 4.1. Consider Example 3.17 (see Chapter 3). We have 9 seedlings, 3 of which are
stunted in growth. If we randomly select 4 seedlings without replacement and count the
number of normally growing seedlings, we will observe the probability distribution of selecting
x normally growing seedlings to be:
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The probability function can be worked out intuitively by using combinations and the
multiplication rule (this equation will be generalized in Chapter 5):

where x = 1, 2, 3, 4.

Using either the probability function or the probability distribution, one can work out
various probabilities for selecting normally growing seedlings:

It should be noted that this probability function does not have an outcome of x = 0, because
we have only 3 stunted seedlings – it is impossible not to take a normally growing seedling if
4 seedlings are selected without replacement.

It is often helpful to present probability distributions graphically. In many statistics
books, these graphs are incorrectly presented as histograms. For discrete random
variables, the probability function and/or histogram should not take on any value
between two whole numbers. Stick graphs are more appropriate. Figure 4.1
represents the above probability distribution.

Finally, it should be noted that correctly constructed discrete probability distri-
butions should have a clearly defined domain. In other words, discrete probability
distributions must meet two conditions:

1. The probabilities of all possible outcomes must sum to 1.
2. The probabilities of individual outcomes must each be 0 ≤ P(X = x) ≤ 1.

With continuous random variables, the probability of any exact value, for example
P(x = 2), is always zero. Because of this, it is impossible to construct a table similar to
the one that we constructed for discrete random variables showing probabilities
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Fig. 4.1. Stick graph of the probability distribution for stunted and normally growing seedlings (from
Example 4.1).



associated with individual outcomes. Although an exact value has a zero probability,
the probabilities associated with intervals, such as:

P(1.9 ≤ X ≤ 2.1),

are possible to calculate. These probabilities must be greater than or equal to 0 and less
than or equal to 1. When probabilities are graphed for continuous random variables,
they take the form of continuous curves (Fig. 4.2), and are called probability densities.
From these curves, probabilities for statements like the one above can be obtained by
finding the area under the curve between the two limits. From the discussion above, we
can verify that:

P(1.9 ≤ X ≤ 2.1) = P(1.9 < X < 2.1)

since

P(X = 1.9) = 0 and P(X = 2.1) = 0.

For straight-line continuous distributions, the area under the ‘curve’ can be divided
into well-known geometric forms (squares, rectangles, trapezoids and triangles), and
the total area can be calculated. For other shapes, probabilities can be determined by
integral calculus. These methods are not discussed in this book because easy-to-use
tables are available to determine probabilities for the most important continuous
functions used in statistics.
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Fig. 4.2. Examples of probability densities.

Fig. 4.3. Probability density for the time it takes a
tree planter to plant a seedling.

Example 4.2. Suppose that the
probability of the time (in minutes) it
takes a tree planter to plant a
seedling can be described by a
continuous probability function as:

where

3 ≤ x ≤ 5 and x = time in minutes.

f x
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For this function, the plotted probability density curve is a straight line (Fig. 4.3). If we are
interested in finding the probability that a tree planter will take between 4 and 5 min to plant a
seedling, the area under the curve between x = 4 and x = 5 can be calculated using the
equation of the area of a trapezoid:

Continuous random variables with well-defined domains have properties similar to
those of discrete random variables:

1. The total area under the curve between the limits of the domain (the lowest and
highest possible outcomes) must add to 1.
2. The probabilities between any two limits, x1 and x2, must be 0 ≤ P(x1 ≤ x ≤ x2) ≤ 1.

Often, it is desirable to study simultaneous outcomes of several random variables. For
two discrete random variables, X and Y, a table listing all possible values of x and y
with their associated probabilities is called a joint probability distribution (also
known as a bivariate distribution). It is possible to create joint probability
distributions for more than two discrete or continuous random variables, but these
are complicated and will not be discussed in this book. If joint probabilities are
expressed as functions of x and y, they are called joint probability functions. Here,
f(x,y) represents the probability that a discrete random variable X assumes the value
x and, at the same time, another discrete random variable Y assumes the value y. We
will demonstrate the construction of a joint probability distribution and joint
probability function by modifying Example 4.1.

Example 4.3. Recall that in Example 3.17 (see Chapter 3) we had 9 seedlings, 3 of which were
stunted and 6 of which were growing normally. Suppose further that the 6 normally growing
seedlings are comprised of 4 spruce and 2 pine seedlings. If we select 3 seedlings at random
from the 9 in total, we can construct a joint probability distribution such that X represents the
number of normal spruce seedlings and Y represents the number of normal pine seedlings. Table
4.1 shows the tabulated form of the joint probability distribution. Note that since only 3 seedlings
are selected, some outcomes, e.g. 2 normal seedlings of each species, are impossible.

The probabilities associated with each combination of (x,y) outcomes can also be found by
using the following equation, which is the joint probability function for this particular example:

where x = 0, 1, 2, 3, y = 0, 1, 2 and x + y ≤ 3.
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This function can be derived using logic similar to that of Examples 4.1 and 3.17 (see Chapter
3). The denominator is found by calculating the number of ways that 3 seedlings out of 9 can
be selected, which is the number of combinations of 9 objects taken 3 at a time. The
numerator is found by multiplying together the number of combinations of the 4 spruce
seedlings taken x at a time, the number of combinations of the 2 pine seedlings taken y at a
time, and the number of combinations of the 3 stunted seedlings taken (3-x-y) at a time. The
product of these three combinations (multiplication rule) produces the total number of ways x
spruces, y pines and (3-x-y) stunted seedlings can be taken. The probability is found simply
by dividing the number of ways an event of interest can occur (the numerator) by the total
number of outcomes in the sample space (the denominator).

Table 4.1 shows the sum of the probabilities for the rows (pines), h(y), and the sum of the
probabilities for the columns (spruces), g(x). These are referred to as marginal
probabilities. If we were to construct discrete probability distributions for X and Y
independently, the result would be these one-dimensional marginal probabilities.

From the joint probability distribution, the conditional distributions for each of X and Y
can also be stated as:

These equations can be related to the conditional probability Eqn 3.12 (see Chapter 3), A|B,
since f(x,y) can be viewed as the intersection of two events, i.e. P(A ∩ B). For example, f (x |y
= 1) can be calculated as:

Sometimes, it is difficult to interpret the exact meaning of a conditional probability. In the case
above, f(x|y = 1) is a function that describes the probabilities of x given the occurrence of y
(1 pine seedling being selected). For example, P(2|1) is the probability that 2 spruce
seedlings are selected, given (if known) that 1 pine seedling has already been selected.

4.3 Mean of a Random Variable

The mean of a random variable can be derived from its probability distribution. It is
defined as the weighted average of all possible outcomes of the random variable,
where the weights are the probabilities of the respective outcomes. For example, from
the probability distribution for the number of heads obtained by tossing 3 coins,
where the probability distribution is:
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Since the weights (probabilities) always sum to 1, the denominator in this weighted
mean equation can always be omitted.

The above mean is symbolized by the Greek letter µ, or µX, and is treated as the
population mean of the random variable X. It is the theoretical mean of a probability
distribution and is often referred to as the expected value or the mathematical
expectation of the random variable X. The expression ‘expected value’ can be
misleading, as oftentimes the value is not expected at all. For example, 1.5 heads in
the example above is an impossible outcome. Similarly, the ‘expected value’ of the
random variable describing the number of dots appearing when rolling a die
(outcomes are 1, 2, 3, 4, 5 and 6, with a probability of 1/6 each) is 3.5 (see Example
4.4 below). Mathematically, the expected value of a random variable, symbolized as
E(X), is the weighted measure of the centre, or weighted mean of all the possible
values of a random variable. It is interpreted as the long-term average of the outcomes
that are ‘expected’ if the experiment is conducted repeatedly.

The mean of a discrete random variable is a summation computed as:

(4.1)

where x1, x2, …, xn are all possible values of the random variable, X; and f(xi) are
their respective probabilities.

Example 4.4. If we would like to find the mean of the number of outcomes when a die is
rolled, we first construct the probability distribution for all possible x values.

Then we calculate the mean as:

Example 4.5. In Example 4.1, we randomly selected 4 seedlings from 6 normally growing
seedlings and 3 stunted seedlings. The probability distribution of the number of normally
growing seedlings and the mean are as follows:

Again, the expected (or mean) value of 2.67 is an impossible outcome for this random variable
(seedlings must occur in whole numbers). To logically interpret this value, we must say that, if
we randomly selected 4 seedlings repeatedly and recorded the number of normally growing
seedlings for each trial, the average of these recorded numbers would approach 2.67.
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Mathematical expectations can be applied to several practical problems, from
computing how much an insurance firm should charge for its premiums to how
much a casino should pay out in a game of chance. Expectations are particularly
useful in the latter case and can be used to determine the degree to which a gambling
game is ‘fair’ (the mathematical expectation will always be in the house’s favour).
We will demonstrate these applications with a couple of simplified examples.

Example 4.6. You invite a friend to play a game using a deck of 52 cards. Your friend draws a
card. You pay US$10 if it is an ace and US$5 if it is a face card, but your friend pays you US$3
if any other card is drawn. What is the expected dollar loss/pay-off for your friend? Before
answering this question, ask yourself: Would you play this game? Would you play it once?
Would you play it 100 times in a row? Let us define X as the amount of money that your friend
earns. Note that the negative number represents a negative earning (loss) for your friend. We
can now set up the following probability distribution and compute the expected value.

The expected value of US$–0.15 indicates that, on average, your friend will lose 15 cents per
game. Again, it is impossible to lose 15 cents in a single game as it is played. However, a
practical interpretation of this result would be that, if you played this game 1000 times, your
friend would lose about (1000)(US$0.15) = US$150. Note that you can estimate the
mathematical expectation either for your friend or for yourself. In the latter case, the
mathematical expectation is equal to US$+0.15 per game, meaning that the game is in your
favour. A fair game refers to one in which the mathematical expectation is zero.

Example 4.7. An insurance company would like to insure a particular type of car, the value
of which is US$30,000. The company estimates that a total (100%) loss will occur with a
0.001 probability, a 50% loss with a 0.02 probability and a 25% loss with a 0.1 probability.
How much should the company charge (the insurance premium) if they would like to make a
30% profit on each insured vehicle? First, we set up the probability distribution and then we
calculate the expected value (mean):

Note that, even though a US$0 loss (i.e. no accident) is not explicitly mentioned in the
problem, it must be included in the probability distribution since the probabilities of all
outcomes must sum to 1. Since the insurance company expects to lose US$1080 per insured
vehicle, they would charge US$1404 (US$1080 � 1.30) in order to make a 30% profit. The
reader should note that this is an oversimplified example. In real life, loss is a continuous
random variable and insurers would cover losses ranging from 0% to 100%. Therefore, a
continuous probability density function would be more realistic for this problem.

For continuous random variables, the mathematical expectation or the mean can be
obtained by integral calculus only. The general equation is:
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where

Since problems of this type are beyond the scope this book, no examples are given.
The equation for the expectation can also be applied to many discrete probability

problems to find the expectation of some function of the random variable. For
example, given a discrete random variable X with a probability function f(x), the
expected value of g(X), which is a function of X, is:

(4.3)

Example 4.8. Let the function g(X) = 4x + 3, where X is the number of heads (0, 1, 2, 3)
when 3 coins are tossed. The expected value of g(X) is:

The concept of expectation can also be extended to several variables. The mean of a
function of two variables uses their joint probability distribution. The mean of the function of
g(X,Y) is calculated as:

(4.4)

where xi = x1, x2…xm and yj = y1, y2…yn.

Example 4.9. Find the expected value of g(X,Y) in Example 4.3.

For joint probability distributions, the mean values of x and y, �x and �y, can be obtained
from the marginal probability distributions as:

(4.5)

(4.6)

The means of X and Y from Example 4.9 are then:
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These two averages indicate that, if the process of randomly selecting 3 seedlings is
repeated many times over and the numbers of spruce and pine seedlings are recorded
each time, on average we could see 1.333 spruce seedlings and 0.667 pine seedlings.
These results look reasonable, since there are twice as many spruce seedlings as pine
seedlings to select from.

4.4 Variance of a Random Variable

Like observed data sets, random variables can be described by a centre (the mean or
expected value) as well as by a spread or variance. The variance of a random variable
or the variance of the distribution of a random variable is the weighted average of the
squares of the differences between the mean and each of the possible outcomes of the
random variable, where the weights are the probabilities of the outcomes. For the
example of tossing 3 coins, the mean number of heads observed is 1.5. The variance
is computed as:

σ2 = (0 – 1.5)2(1/8) + (1 – 1.5)2(3/8) + (2 – 1.5)2(3/8) + (3 – 1.5)2(1/8) = 6/8 = 0.75.

The notation σ2 or σx
2 is used to denote the variance of a random variable. The

Greek letter σ2 is used to indicate that it is the population or theoretical variance of
the random variable, X.

In general, the variance of a discrete random variable is:

(4.7)

where f(xi) is the probability of xi.
With some algebraic manipulation, Eqn 4.7 can be modified to:

(4.8)

This equation is called the ‘computing’, ‘working’ or ‘machine’ equation for the
variance and is similar to Eqn 2.11 (see Chapter 2). While it is not as easy as Eqn 4.7
to grasp conceptually, it is much easier and quicker to use with a pocket calculator.
The standard deviation is the square root of the variance and is denoted by σ or σx.
As with many sample and population standard deviations, the appropriate way to
interpret standard deviations for random variables is by using the more conservative
Chebyshev’s Theorem (see Chapter 2) because, typically, distributions of random
variables are not bell-shaped and symmetrical. Using probability theory, Chebyshev’s
Theorem can be re-stated as:

This expression means the probability that a random variable takes on a value within
k standard deviations of the mean is at least (1 – 1/k2).
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Example 4.10. Using Eqn 4.8, find the variance and standard deviation of the number of
dots showing when rolling a die.

Example 4.11. In Example 4.5, we randomly selected 4 seedlings from a group of 9, where 3
were stunted. We then counted the number of normally growing seedlings in our sample of
three. Find the variance and the standard deviation of the number of normally growing
seedlings.

Like the mean, the equation to calculate the variance for continuous random variables
requires an understanding of integral calculus. The equation is given here for
reference; however, an example is not given, as it is beyond the scope of this book.

(4.9)

As in Eqn 4.3 with the mean, we can compute the variance of a function of a random
variable. If g(X) is a function of a random variable, X, which has a probability
function of f(x), the variance of g(X) is:

(4.10)

and its working formula is:

(4.11)

Example 4.12. In Example 4.8, X was a random variable describing the number of heads
counted when tossing 3 coins and g(X) was defined as 4x + 3. Find the variance and the
standard deviation of g(X).

In the case of joint probability distributions, the measure of joint variation between
two random variables is called the covariance. If the covariance between two random
variables is zero, the two random variables are said to be independent. A positive
covariance between two random variables means that as the value of one variable
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increases, the value of the other variable also increases. If the covariance is negative,
as the value of one variable increases, the value of the other variable decreases.
Covariances can be calculated from joint probability distributions or joint probability
functions as:

(4.12)

where xi = x1, x2…xm, and yj = y1, y2…yn.

Example 4.13. Using Example 4.3, the covariance between the number of spruce seedlings
and the number of pine seedlings is:

Our negative covariance indicates that, as the number of spruce seedlings increases in the
sample of three, the number of pine seedlings decreases.

4.5 Rules of Mathematical Expectations Related to the Mean
and Variance

In probability distributions, there are several rules of mathematical expectations that
allow for the manipulation of means and variances of random variables. Three
important rules for means are:

1. E(aX ± b) = aµX ± b.
2. E(X ± Y) = µX ± µY.
3. E(XY) = µXµY, if X and Y are independent.

1. In the derivation of Rule 1, it is assumed that a and b are constants and that X is a
random variable with a known probability function, f(x). By applying the equation of
the expectation of a function, the proof is as follows:
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Since the first summation above is our definition of µ and the second summation
equals 1, we get:

Setting a = 0, we see that µb = b. Setting b = 0, we see that µax = aµ.

2. In the derivation of Rule 2, it is assumed that X and Y are two random variables
with a known joint probability function f(x,y):

(from Eqns 4.5 and 4.6)

3. In the derivation of Rule 3, it is assumed that X and Y are independent random
variables with a known joint probability function, f(x,y):

Since X and Y are independent, we can state that:

where g(x) and h(y) are the marginal probability distributions of X and Y,
respectively. Hence:

(from Eqns 4.5 and 4.6)

There are also three important rules for variances of random variables:

1. σ2
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2.
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2 ± 2abσXY, where σXY = COV(X,Y).

1. In the derivation of Rule 1, it is assumed that b is a constant and X is a random
variable with a known probability function, f(x):
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2. In the derivation of Rule 2, it is assumed that a is a constant and X is a random
variable with a known probability function, f(x):

3. In the derivation of Rule 3, it is assumed that a and b are constants and X and Y
are random variables with a known joint probability function of f(x,y):

The above rules regarding the means and variances of random variables are frequently
used both in statistical analyses and descriptive statistics. For instance, Rule 1 (for the
means) and Rule 2 (for the variances) are used when measurement units have been
changed. Consider the case of 1500 dbh measurements that were taken in inches in
1957, where the mean, variance and other descriptive measures are currently
available. Our task may be to compare these measurements to some current
observations in centimetres. According to the rules above, we can very easily convert
the mean and variance from inches to centimetres simply by multiplying the mean by
2.54 and multiplying the variance by 2.542.
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In another example, we may want to measure the weight of some pulped wood,
but the only way to do so in a laboratory setting is in a small container. In other
words, to obtain the exact weight of the pulp samples, the weight of the container
would need to be subtracted from each measurement. Instead, we can calculate the
mean and the variance of the combined weights of the pulp and the container, and
subtract the weight of the container from the mean. We do not have to change the
variance since, from Rule 1, we know that the variance does not change if we add (or
subtract) a constant to (from) the observations.

Exercises

Section 4.1

4.1. Give five examples of a random variable.

4.2. Give three examples of a discrete random variable.

4.3. Give three examples of a continuous random variable.

4.4. Classify the following random variables as discrete or continuous:

a. Number of pathological indicators on a standing tree.
b. Volume of a standing tree.
c. Length of a plywood panel.
d. Number of salmon in a stream.
e. Height of a tree.
f. Number of insects found in a pine cone.
g. Number of seeds in a pine cone.
h. Length of a pine cone.

Section 4.2

4.5. Assume that 2 balanced dice (one green and one red) are rolled. Construct the
probability distribution and graphs for the random variables described as:

a. x = the sum of the number of dots showing.
b. y = the difference (red minus green) of the number of dots showing.

4.6. A random experiment consists of tossing a coin 4 times. Let the random variable,
X, be the number of tails.

a. Construct the probability distribution.
b. Construct a probability graph.
c. Find P(X < 2); P(X ≤ 2); P(2 < X < 4).

4.7. Five cards are drawn without replacement from an ordinary deck of 52 playing
cards (a poker hand). Construct the probability distribution for the number of aces
that can be drawn (X).

a. Find P(X < 3).
b. Find P(X = 0).
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4.8. From the following examples, decide if P(X = x) represents a probability
distribution. If not, why not?

4.9. A coin is tossed until a tail occurs. List the possible outcomes with up to 10
tosses and construct the probability distribution (X = the number of tosses). Find:

a. P(X = 1).
b. P(1 ≤ X ≤ 4).

4.10. It is known that the probability of a ponderosa pine seed germinating is 0.75.
Three such seeds are tested and X = number of seeds that germinated is observed.
Construct the probability distribution of the random variable, X, and, if possible,
derive the probability function of the random variable. Find:

a. P(X < 2).
b. P(X = 2).
c. P(1 < X ≤ 3).

4.11. Out of 5 logs, 2 contain ambrosia beetle damage. Three logs are selected at
random to take inside the mill. Construct the probability distribution of the random
variable, X, representing the number of infested logs inside the mill. Express your
results graphically and in an equation. Find:

a. P(X = 2).
b. P(X ≤ 2).

4.12. A logging contractor can make a profit ranging from US$5000 to US$7000 on
a project, depending on several unexpected problems. Let the random variable, X,
represent the contractor’s profit in thousands of dollars, with the following
probability density function:

Find the probability that the contractor will make:

a. More than US$6000 profit.
b. Between US$5500 and US$6500 profit.
c. Less than US$5700 profit.

4.13. A nursery has 3 Douglas-fir, 2 white pine and 3 birch seedlings. Four of these
are selected at random without replacement. If X is the number of Douglas-fir and Y
is the number of white pine seedlings, find:
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a. The joint probability distribution of X and Y.
b. P(X ≤ 2, Y = 1).
c. P(X > 2, Y ≤ 1).
d. P(Y > 2).
e. The marginal distribution of X.
f. The marginal distribution of Y.

Section 4.3

4.14. Find the mean of each of the random variables described in Exercises 4.5–4.7,
4.10 and 4.11. Explain the meaning of the mean in each case.

4.15. Find the means of the random variables, X and Y, described in Exercise 4.13.

4.16. In a game of chance, 2 dice are rolled and the value of the sum of the dots is
paid in dollars when the outcomes are the same (e.g. 1,1 = US$2; 2,2 = US$4; 3,3 =
US$6; 4,4 = US$8; 5,5 = US$10; or 6,6 = US$12).

a. How much should a player pay for each roll in order to make the game fair?
b. How much should a player pay for each roll if the ‘house’ would like to make a

15% profit on average?

4.17. By investing US$100,000 in a certain mutual fund, a person can make a
US$10,000 profit with probability 0.62 or lose US$14,000 with probability 0.38.
What is the person’s expected gain/loss for this investment?

4.18. A customer purchases a US$400,000 fire insurance policy. According to past
information, homes in the area sustain total loss with a probability of 0.0008 and
50% loss with a probability of 0.001. Ignoring all other partial losses, what premium
should the insurance company charge for a policy in order to make a 15% profit over
and above the break-even point?

4.19. A logging equipment sales person can contact either 1 or 2 customers per day,
depending on the distances between customers. The probability of 1 customer contact
is 0.3, the probability of 2 customer contacts is 0.7. Each contact will result in either
no sale or a US$60,000 sale, with probabilities of 0.9 and 0.1, respectively. What is
the expected value of the sales person’s daily sales? Hint: you may want to start with
a tree diagram.

4.20. Find the expected value of the random variable, g(X) = (2X + 1)2, where X has
the probability distribution described in Exercise 4.6.

4.21. Let X be the sum of the dots in Exercise 4.16. If the payment is g(X) = 2X –
US$2 (instead of X dollars):

a. How much should a player pay for each roll to make the game fair?
b. How much should a player pay if the house would like to make a 15% profit on

average?
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Section 4.4

4.22. Find the variance and the standard deviation of each of the random variables
described in Exercises 4.5–4.7, 4.10 and 4.11. Explain the meaning of each standard
deviation using Chebyshev’s Theorem with k = 1.5 and k = 2.

4.23. Find the variance and the standard deviation of each of the random variables
described in Exercises 4.16, 4.17 and 4.18.

Section 4.5

4.24. Find the covariance of the two random variables X and Y described in Exercise
4.13 and explain its meaning.

4.25. Find the variance and standard deviation for g(X) in Exercises 4.20 and 4.21.

4.26. Calculate the variance for the random variable of daily sales described in
Exercise 4.19. Now assume that each visit can result in either no sale or a sale of
US$130,000 and find the mean, variance and the standard deviation for this new
random variable. Hint: use the values for means and variances from Exercise 4.19.
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Observations generated by different experiments, games and natural processes often
show similar general behaviours and can be described by a particular probability
distribution or probability function. In fact, most discrete random variables can be
classified into one of about half a dozen of these distributions. This chapter introduces
common discrete probability distributions for describing many random events
encountered in practice.

Some students may find these types of problems challenging when exposed to
them for the first time. The mathematics underlying them are simple; it is a question
of being able to recognize what type of discrete distribution we are dealing with and
which equation to apply. We strongly recommend practising as many of these types of
problems as possible.

5.1 Uniform Distribution

The discrete uniform distribution describes a process whereby the probability of every
outcome is the same. For a process with k possible outcomes, the probability function
is given by:

(5.1)

The notation of f(x;k) denotes that the probability function of observed x values is
defined by one parameter, k, the number of possible outcomes.

Example 5.1. Suppose that we have 8 pieces of
wood in a box, numbered from 1 to 8. We select
1 piece at random. The probability of selecting a
particular piece of wood follows a uniform
distribution with k = 8 and, therefore, the
probability function is:

In other words, the probability of each outcome
(x = 1, 2,…, 7, 8) is 1/8. Figure 5.1 shows the
graphical presentation of the probability distribu-
tion for Example 5.1. All uniform distributions will
follow this type of flat shape.
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5.1 (randomly selecting from 8 wood
pieces).



If we define the random variable, X, as the number of seeds that will germinate, the
probability distribution of X is:
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Outcome x Probability

NNN 0 (0.2)(0.2)(0.2) = (0.8)0(0.2)3

GNN 1 (0.8)(0.2)(0.2) = (0.8)1(0.2)2

NGN 1 (0.2)(0.8)(0.2) = (0.8)1(0.2)2

NNG 1 (0.2)(0.2)(0.8) = (0.8)1(0.2)2

GGN 2 (0.8)(0.8)(0.2) = (0.8)2(0.2)1

GNG 2 (0.8)(0.2)(0.8) = (0.8)2(0.2)1

NGG 2 (0.2)(0.8)(0.8) = (0.8)2(0.2)1

GGG 3 (0.8)(0.8)(0.8) = (0.8)3(0.2)0

x f(x)

0 (0.8)0(0.2)3

1 (3)(0.8)1(0.2)2

2 (3)(0.8)2(0.2)1

3 (0.8)3(0.2)0

In the process of creating this probability distribution, we used the multiplication
rule, e.g. the probabilities for a given outcome, such as NGG is P(N) × P(G) × P(G) =
(0.2)(0.8)(0.8). Also implicit in the above probability distribution is that we used the
addition rule. For example, to find the probability that one seed germinated, we
added probabilities such as GNN + NGN + NNG (we actually multiplied by three,
since they are numerically the same). This is possible because these outcomes are
mutually exclusive (disjoint).

From the probability distribution above, we can derive a generalized probability
function for these experimental trials as:

Example 5.2. A standard 6-sided die is tossed once. The random variable describing the
number of dots showing, x, will follow a uniform distribution with k = 6:

5.2 Binomial and Multinomial Distributions

Consider an experiment with two possible outcomes that is repeated several times.
For example, we conduct a germination trial with 3 Douglas-fir seeds. Assume that
we know from previous experiments that the probability that a seed will germinate
(G) is 0.8 and the probability that it will not germinate (N) is 0.2. If we also assume
that the trials are independent (i.e. the same seeds are not used twice) and that the
germination of one seed does not affect the germination of another (i.e. it is not a
conditional probability), we can expect the eight possible outcomes (permutations)
with the following probabilities:

f x x; , for , , , , , .6 1
6

1 2 3 4 5 6( ) = =



In this case, we use two parameters to define the probability function. For this
example, the 3 represents the number of trials, and the 0.8 represents the probability
that a seed will germinate. Since there are only two possible outcomes, the probability
that a seed does not germinate equals 1 – 0.8 = 0.2 and does not have to be explicitly
stated. Again, on the right hand side of the equation, we see evidence of both the
multiplication rule and the addition rule. We multiply together the probability of
germination, 0.8, x times, with the probability of no germination, 0.2, 3 – x times.
The expression (33

x) indicates the number of arrangements (ways) that x seeds can
germinate out of the 3 seeds being tested.1

This kind of experiment is called a binomial experiment because it produces a
binomial random variable (i.e. two outcomes). All binomial experiments have the
following properties:

1. The experiment consists of a fixed number of trials, n, with each trial resulting in
one of two kinds of outcomes: success or failure.
2. The probability of success, p, is the same for each trial.
3. The trials are independent.

The above formula can be generalized for n trials, with probability of success, p, and
probability of failure, q = 1 – p. The term, x, refers to the random variable of interest.

(5.2)

One needs to be very careful with the names given to the two kinds of outcomes, as
the expressions of ‘success’ and ‘failure’ could be misleading. A general rule is that p
applies to the probability in question or the probability of interest. If the question is,
‘What is the probability that a seed will not germinate?’, then the ‘success’ is actually
the outcome that a seed will not germinate, even though this outcome is clearly not a
success from a forester’s perspective.

Example 5.3. Let us reconsider the above seed germination experiment with 8 seeds. In
other words, we have n = 8 trials and p is still 0.8.

a. What is the probability that exactly 7 seeds will germinate?
b. What is the probability that more than 6 seeds will germinate?

Example 5.4. Five per cent of the furniture components made by a secondary manufacturer
are defective. If we randomly select 10 components from the assembly line:

a. What is the probability that exactly 2 are defective?
b. What is the probability that less than 2 are defective?
c. What is the probability that more than 1 and less than 5 are defective?

a.
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1 Although this equation looks like the number of combinations of three items, it is actually the number
of permutations of three items where x are of one kind and (3 – x) are of a second kind (see Eqn 3.5,
permutations for similar objects). When there are only two kinds of similar objects, the equation for their
permutations is mathematically the same as the equation for their combinations.



In this example, we chose to define ‘success’ as selecting a defective furniture component,
though this is hardly a success from the manufacturer’s point of view. Although we could
have defined ‘success’ as selecting a non-defective component, we took our cues from the
wording of the questions. The questions ask for the probabilities of defective pieces and
making these events ‘successes’ made our calculations easier.

The calculations of binomial probabilities, f(x; n, p), are tabulated for selected p
and n values in Table A.1 (see Appendix A). To demonstrate the use of Table A.1, the
following probabilities for Example 5.3a and b and Example 5.4a, b and c can be
found from the table as functions of p, n and x. All probabilities are from Table A.1.

The discrepancies between solutions calculated by equations and by table are due to
rounding errors in Table A.1 and are usually negligible.

One other short cut that is worth noting requires the knowledge that all of the
probabilities of the random variables for a given p and n will sum to 1. This is a helpful
time-saving measure in so much as it sometimes allows us to compute probabilities
using fewer computations by applying the complement law. Take Example 5.4, where
we are randomly drawing 10 furniture components. If we were to pose a question
around the probability of obtaining more than 1 defective component, we would need
to figure out the individual probabilities of drawing 2, 3,  … , 9, 10 components (either
using Eqn 5.2 or Table A.1). Rather than going through all of these calculations, we
can simply use the complement law to determine the probability of obtaining 0 and 1
defective pieces and subtract these two values from 1.

The term binomial originates from the binomial expansion of (q + p)n for x = 0,
1, 2, …, n:
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By applying some algebraic manipulations and some of the rules of expectation (see
Section 4.5 in Chapter 4), it can be shown that the mean and variance of a binomial
random variable are:

µ = np and σ2 = npq.

Example 5.5. Calculate the mean, variance and standard deviation of the binomial random
variable defined in Example 5.3 (recall that there were n = 8 trials, with the probability of
success, p = 0.8):

µ = (8)(0.8) = 6.4, σ 2 = (8)(0.8)(0.2) = 1.28 and σ ≈ 1.131.

In other words, if we repeated this experiment over and over again, we would expect an
average of 6.4. Because this is not a bell-shaped distribution, we need to apply Chebyshev’s
Theorem to interpret the standard deviation. We will arbitrarily choose k = 2 to find the range
where at least 75% of the values of X fall:

To verify, we look at the closest approximation to this range in Table A.1 (see Appendix A),
which shows that P(4 < X < 9) = 0.99, a value much greater than 0.75.

Example 5.6. Calculate the mean, variance and standard deviation for the binomial random
variable in Example 5.4 (recall n = 10 and p = 0.05):

µ = (10)(0.05) = 0.5, σ 2 = (10)(0.05)(0.95) = 0.475 and σ ≈ 0.689.

When more than two outcomes are possible from each trial, the equation for
probabilities associated with binomial experiments can be extended to what is known
as a ‘multinomial’ experiment. Here, a given trial from a random experiment can
result in k possible outcomes, x1, x2, …, xk, with associated probabilities of p1, p2, …,
pk, such that:

The resultant distribution is referred to as a multinomial distribution, for which the
probability function is:

(5.3)

The properties of a multinomial random variable are similar to the ones listed for a
binomial random variable, with one modification: each trial can result in more than
two outcomes.
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Example 5.7. On the production line of a particular sawmill, it is known that lumber is
classified into grade A, B and cull, in the following proportions: 1/5, 3/4 and 1/20. If we take 6
pieces randomly from the production line, what is the probability that 2 pieces will be grade A,
3 will be grade B and 1 will be a cull?

Intuitively, we would expect this probability to be very small. It is indeed a very tall order to
obtain exactly two pieces of one grade, three of another, and one of a third. In fact, this is the
case for many discrete probability distributions and in answering these sorts of questions, you
would be well advised to ask yourself if the result makes sense.

5.3 Hypergeometric and Multivariate Hypergeometric
Distributions

The hypergeometric distribution, like the binomial distribution, has two kinds of
outcomes. However, it is different from the binomial distribution in its underlying
assumptions: the probability of success from trial to trial is not constant and the
successive trials are not independent. Hypergeometric trials are made without
replacement from a finite population and thus the binomial distribution does not give
correct probabilities. To illustrate the difference between binomial and
hypergeometric distributions, we will turn back to Example 3.21 (see Chapter 3). We
drew 2 cards from a deck of 52 cards and calculated the probability that they were
both spades. As described in Chapter 3, this experiment can be conducted with or
without replacement. In an experiment with replacement, a card is drawn, observed
and then put back into the deck, which is shuffled before a second card is drawn. This
is a binomial experiment, since the probability of drawing a spade in the first draw is
the same (13/52 = 1/4) as in the second draw, and the outcome in the second draw is
independent of the first. In an experiment without replacement, one card is drawn,
observed, put aside and then the second card is drawn from the remaining 51 cards.
This is a hypergeometric experiment, since the probability of the second outcome is
affected by the first outcome. The probability that the second draw (from only 51
cards) is a spade depends on whether or not the first card (drawn from a full deck of
52 cards) is a spade. In this example, and in all hypergeometric experiments, the
probabilities for the second draw are conditional probabilities. The probabilities
associated with drawing 2 cards that are spades (S) or non-spades (N) are illustrated
in Fig. 5.2. To calculate the probabilities associated with the hypergeometric
experiment, a tree diagram is used; for the binomial experiment, Eqn 5.2 is used.
These are tabulated below.

Binomial probabilities Hypergeometric probabilities calculated from 
Outcomes (with replacement) tree diagram below (without replacement)

SS 0.0625 0.0588
SN 0.1875 0.1912
NS 0.1875 0.1912
NN 0.5625 0.5588
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Let N denote the total number of possible outcomes from an experiment, with k of
these N possible outcomes labelled a ‘success’. If there are two possible outcomes,
then (N – k) is the total number of possible outcomes that are ‘failures’. The
probability function for a random variable, X, representing the number of successes
in n trials, follows a hypergeometric distribution and can be written as:

(5.4)

for x = 0, 1, 2, …, n successes in n samples.

Example 5.8. A technician is sent out to measure 4 Douglas-firs in a sample plot that
contains 10 Douglas-firs and 12 western hemlock trees. Unfortunately, the technician has not
had a dendrology course and is not very good at distinguishing between species, so he
randomly chooses 4 trees to measure (note that while it is not explicitly stated, this is
sampling without replacement as he would never choose the same tree twice). What is the
probability that exactly 3 of the 4 trees are Douglas-firs?

The mean and the variance of a hypergeometric distribution are given by the
following equations, which relate to the mean and variance equations for binomial
distributions (proof not given here):
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Fig. 5.2. Tree diagram for drawing 2 cards from a deck of 52 cards (without replacement, S = spades
and N = other card).



Example 5.9. Calculate the mean, variance and standard deviation for Example 5.8:

If the technician in Example 5.9 selects 4 random trees over and over again and
records the number of Douglas-firs in each selection, on average there would be 1.82
Douglas-fir trees. Chebyshev’s Theorem could then be used to interpret the meaning
of the standard deviation (0.92) and draw conclusions about the spread of the
outcomes relative to this mean value.

When N is large relative to n, the probabilities in the successive draws do not change
much and the hypergeometric distribution approaches the binomial distribution. In this
case, the probability of success approaches a constant and, for all practical purposes,
can be estimated by p = k/N. This approximation is reliable when n < 0.05N and
probabilities can reasonably be approximated by Eqn 5.2, or looked up in Table A.1.

Example 5.10. Forty out of 200 logs in a log sort are infested with bark beetles. If 10 logs are
selected at random, what is the probability that 2 logs are infested? The exact probability is:

However, since 0.05N > 10, the binomial approximation should be adequate. Using 

Table A.1(see Appendix A) with we obtain f (x = 2;10,0.2) = 0.302, which 

is close to 0.3098 from above.

The hypergeometric distribution can be extended to describe experiments with more
than two outcomes. For instance, Example 5.8 could be modified so that the sample plot
contains 3 species: 10 Douglas-firs, 12 western hemlocks and 6 western red cedars. If all
possible elements, N, in an experiment can be partitioned into k distinct groups with a1,
a2, …, ak possible elements in each group, the probability distribution of a sample of size
n, taken without replacement, where x1 are the first kind, x2 are the second kind, … and
xk are kth kind, is referred to as a multivariate hypergeometric distribution:

(5.5)

Example 5.11. An experimental sample plot contains 10 Douglas-firs, 12 western hemlocks and
6 western red cedars, as stated above. What is the probability that, in a sample of 4 randomly
selected trees, 1 is a Douglas-fir, 2 are western hemlocks and 1 is a western red cedar?
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5.4 Geometric and Negative Binomial Distributions

In binomial experiments, the random variable, X, represents the number of successes
in a fixed number of trials (n). Geometric experiments possess all the properties of
binomial experiments, except that the trials are repeated until the first ‘success’
occurs. The geometric random variable, X, represents the number of repeated
independent trials required to produce the first success, the probability of which is p.
As in binomial experiments, the probability of failure is q = 1 – p. The probability
function of the geometric distribution is defined by only one parameter p, as:

(5.6)

Example 5.12. A bag contains several thousand white pine seeds, 10% of which are empty.
What is the probability of finding the first empty seed the fifth time we cut a seed open?

An extension of the geometric distribution occurs when trials are repeated until a
fixed number of successes, k, occurs. Such a random experiment is called a negative
binomial experiment and its probabilities are described by the negative binomial
distribution. Like a geometric experiment, a negative binomial experiment possesses
all the properties of a binomial experiment except that the number of trials is not
fixed. The negative binomial random variable, X, represents the number of
independent trials required to produce k successes, where p is the probability of
success and q = 1 – p is the probability of failure. In developing a general equation,
consider that to obtain the kth success on the xth trial, the kth success must be
preceded by k – 1 successes and x – k failures. The probability of k – 1 successes and
x – k failures can be arranged in the following number of ways:

The probability of pkqx–k is multiplied by the number of possible arrangements2 to
obtain the probability of the kth success. The general form of the negative binomial
probability distribution function is:

(5.7)

The parameters p and k define the negative binomial distribution. Note that, when 
k = 1, the above equation reduces to the geometric distribution because the number of
arrangements of one success preceded by x – 1 failures is simply 1. In other words, the
geometric distribution can be said to be a special case (where k = 1) of the negative
binomial distribution.
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2 Again, notice that it looks like we are using the number of combinations here. In fact, we are using the
number of permutations of two kinds of objects.



Example 5.13. Consider the white pine seeds described in Example 5.12. What is the
probability that the third empty seed will be found when cutting open the tenth seed?

Example 5.14. An automated lumber grading system is known to be incorrect 15% of the
time. What is the probability that the second incorrect grade will occur when grading the
twelfth piece?

5.5 Poisson Distribution
Experiments where a number of events occur in a fixed time or region (space) with a
known average rate are called Poisson experiments. The probability distribution of
the number of events in the fixed time (or space), X, is referred to as a Poisson
distribution. The properties of a Poisson experiment are:
1. The probability that an outcome will occur in a small region or during a short time
interval is proportional to the size of the region or length of the time.
2. The occurrence of outcomes in a specified space or time interval is independent of
the occurrence of outcomes in all other regions or time intervals.
3. The probability that more than one outcome will occur in a small region or in a
short time interval is negligible.
For outcomes occurring in a specified space or specified time interval, the probability
function is:

(5.8)

where e = 2.71828, base of the natural logarithm, and µ = the average number of
outcomes in a specified region or a given time interval.

One parameter, µ, defines the Poisson distribution, and it can be shown that 
σ2 = µ for Poisson random variables (the proof is not given here). Table A.2 (see
Appendix A) can be used to look up Poisson probabilities as a function of µ and x.

Example 5.15. On average, a logging contractor reports 3 accidents per year:

a. What is the probability that exactly 2 accidents will occur in any given year?
b. What is the probability that less than 2 accidents will occur in any given year?
c. Using Chebyshev’s Theorem, construct an interval where we expect to find 75% of the

occurrences of the number of accidents per year.

This means that at least 75% of the time, the number of accidents per year will be between 0
and 7. This can be verified with a quick look-up on Table A.2 (see Appendix A):
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P(0 < x <7) = 0.9881 (which exceeds 75%).

If n is large and p is small, probabilities associated with binomial distribution can be
approximated with the Poisson distribution (Eqn 5.8). The same holds true when n is
large and p is close to 1, but the success and failure probabilities must be exchanged.
For practical purposes, these approximations are reasonable if

n ≥ 100 and np < 10.

Example 5.16. From Example 5.4, we know that 5% of a particular secondary manufac-
turer’s furniture components are graded as defective. If 200 furniture components are
selected at random, what is the probability that 8 are defective?

If we consider this question in exact terms with a binomial distribution, we use Eqn 5.2 and get:

To use the Poisson distribution, we assume that the number of defective furniture components
occurs over a fixed time at an average rate of 5%. Using the number of trials and the equation for
the average number of ‘successes’ from the binomial distribution, we can calculate the average
number of defective components per time period:

Then, using the equation for a Poisson distribution, the probability of 8 defective components is:

This example shows that even when µ = 10, the Poisson distribution gives a good
approximation of the binomial distribution. It is advantageous to use this approximation when
n is large, as nCx can be very difficult to calculate.

Exercises

Section 5.1

5.1. A special kind of roulette wheel is divided into 20 equal sections numbered from
1 to 20. Find the equation for the probability distribution of the random variable, X,
which describes the number chosen when the wheel is spun. Also find:

a. P(2 < X < 6).
b. P(X > 15).

5.2. A fair die is rolled. Let X be the number of dots showing on the die after it is
rolled.

a. Find the equation for the probability distribution of X.
b. Calculate the expected value of the random variable, X.
c. Derive the general equation to calculate the mean of a uniform distribution.
d. Derive the general equation to calculate the variance of a uniform distribution.

Section 5.2

5.3. In a certain sawmill, the probability of a clear grade A board is 0.2. Eight boards
are randomly pulled from the green chain. If X = the number of clear grade A boards,
use the binomial equation to find the probability that:
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a. P(X < 2).
b. P(1 < X < 3).
c. P(X ≤ 4).

5.4. Verify the probabilities in Exercise 5.3a, b and c using Table A.1 (see Appendix
A).

5.5. Find the mean, variance and standard deviation of the random variable, X,
described in Exercise 5.3. Explain the meaning of the standard deviation using
Chebyshev’s Theorem with k = 1.5 and k = 2.

5.6. A survey showed that 20% of seedlings died within one year of planting on a
given site. Assume that the random variable describing the number of seedlings that
survived, X, is a binomial random variable. If 12 seedlings are examined, use the
binomial equation to find the probability that:

a. P(X > 10).
b. P(9 ≤ X ≤ 12).
c. P(X ≤ 10).
d. Verify the probabilities in a, b, and c using Table A.1.
e. Find the mean, variance and standard deviation of the random variable, X.
f. What is the meaning of the mean?

5.7. A multiple-choice test is given with 3 choices for each of 10 questions. At least 6
out of 10 correct answers are required to pass the test. If a student guesses on each
question, find the probability that the student will pass the test.

5.8. The probability that a logging truck will have no violations, one violation, or
two or more violations when it is given a safety inspection is 0.35, 0.42 and 0.23,
respectively. If 5 trucks are inspected, what is the probability that 2 will have no
violations, 2 will have one violation and 1 will have two or more violations?

5.9. Logs at a sort yard have ambrosia beetle infestation, red stain, or are free of
infestation with probabilities of 0.05, 0.07 and 0.88, respectively. If 10 logs are
selected at random, what is the probability that 1 will have beetle infestation, 1 will
have red stain and 8 will be free of infestation?

Section 5.3

5.10. In a shipment of 25 pieces of furniture, 5 pieces are checked. The shipment is
rejected if 1 or more pieces are found to be scratched. Assume that the shipment has
8 scratched pieces.

a. Find the probability that the shipment will be rejected.
b. Find the mean, variance and standard deviation of the random variable for the

number of scratched pieces.

5.11. A committee of 3 is selected from 4 foresters and 2 conservation biologists to
conduct an environmental impact assessment on logging near a riparian zone. Assume
that the members are randomly chosen and the random variable of interest is the
number of foresters selected.
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a. Find the probability that exactly 2 foresters will be selected.
b. Find the mean and standard deviation of the random variable.
c. Use Chebyshev’s Theorem to describe the variability in the number of foresters

selected with k = 1.5 and k = 2.

5.12. In a plantation, there are 400 spruce and 100 pine trees. If a random sample of
8 trees is selected:

a. Find the probability that exactly 3 are pine, using the hypergeometric equation.
b. Find the probability that exactly 3 are pine, using the binomial approximation.
c. Compare the results obtained in a and b.
d. Is the condition required for binomial approximation satisfied?

5.13. A bag contains 10 Douglas-fir, 8 white pine and 6 ponderosa pine seeds. In a
random sample of 5 seeds, find the probability that 2 Douglas-fir, 2 white pine and 1
ponderosa pine seeds are selected.

Section 5.4

5.14. The probability that a loaded logging truck will get a flat tyre on its way to the
mill is 0.03. Find the probability that a new driver will have his or her first flat tyre
during the:

a. First trip.
b. Fifth trip.
c. Twentieth trip.
d. Discuss the results of a, b and c.

5.15. The probability that a log transported to a particular sawmill is infested by
ambrosia beetles is 0.1. Find the probability that:

a. The first infested log is the fifth one checked.
b. The second infested log is the fifth one checked.
c. The third infested log is the fifth one checked.

5.16. A fair die is rolled. Find the probability that:

a. The first 6 occurs on the first roll.
b. The first 6 occurs on the sixth roll.
c. The second 6 occurs on the sixth roll.
d. The second 6 occurs on the twelfth roll.

5.17. On any summer day, 12% of the hikers in the Garibaldi Provincial Park in
British Columbia are European visitors. If a summer student stationed at the park
randomly selects hikers for interviews, find the probability that:

a. The third European visitor is found on the seventh interview.
b. The second European visitor is found on the seventh interview.
c. The first European visitor is found on the seventh interview.
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Section 5.5

5.18. In a lodgepole pine stand infested by bark beetles, an average of 2.2 beetle
larvae are found under a 10 × 10 cm2 sample of bark taken at 1.3 m height from the
ground. Find the probability that a randomly selected bark sample has:

a. Exactly 3 larvae.
b. Less than 3 larvae.
c. More than 3 larvae.
d. Find the standard deviation of the random variable for the number of larvae and

evaluate Chebyshev’s Theorem for k = 1.5 and k = 2.
e. Use Table A.2 to check the probabilities you calculated in a, b and c.

5.19. A luthier (guitar manufacturer) receives, on average, 3.12 orders per day. Find
the probability that on a given day they receive:

a. Exactly 4 orders.
b. Less than 4 orders.
c. More than 4 orders.
d. Find the standard deviation of the variable for the number of orders.

5.20. A young lad in a forestry school is quite popular with his classmates. On
average, he receives 2.74 phone calls every night. What is the probability that
tomorrow night, the number of calls he receives will:

a. Exceed 4.
b. Be exactly 3.
c. Be less than 3.
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Continuous sample spaces produce continuous random variables. When we deal with
quantities measured on continuous scales, such as weights, heights, volumes, time
intervals and so on, their probability functions are described by continuous
distributions called probability density functions. Like discrete probability
distributions, there are several kinds of continuous distributions that describe the
numerous sets of data that occur in nature, industry and research. The most important
of these continuous distributions is the normal distribution, which is a symmetric bell-
shaped curve that extends to infinity on both the negative and positive sides. Much of
the theory surrounding statistical inference is based on this distribution. The normal
distribution will be discussed in this chapter, along with two other continuous
distributions: the uniform distribution and the exponential distribution.

6.1 Uniform Distribution

The uniform distribution has both a discrete and a continuous form. For example, the
number of dots showing when a single die is tossed (1, 2, …, 6) is a discrete uniform
random variable (see Chapter 5). A continuous uniform random variable is similar,
but it can take on any real numbered value. It is described by the uniform probability
distribution and, like its discrete form, the continuous uniform random variable is the
simplest description of a continuous random variable. Its probability density function
is a horizontal line between two points, a and b:

(6.1)

Figure 6.1 shows the probability density function for a uniform distribution. If x is
not between a and b, f(x) = 0, i.e. there is a probability of zero outside the region
between a and b. Probabilities between two given values, x1 and x2, that are in the
region between a and b can be calculated as:

where x2 ≥ x1, a ≤ x1 ≤ b and a ≤ x2 ≤ b.

The mean and variance of the uniform distribution can be calculated as:
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(6.3)

For any continuous probability distribution, the area under its curve sums to 1, which is
to say that the probabilities associated with all possible values for the random variables
must sum to 1. In the case of the uniform distribution, the area under the horizontal line
segment between a and b is equal to 1. In addition, for any continuous random variable,
the probability of an exact x value is 0. For example, P(x = 1.25) = 0. Hence,

P(x1 < x < x2) = P(x1 ≤ x ≤ x2).

Equation 6.1 is more completely stated as:

Example 6.1. Consider a random variable that represents a logging truck’s travelling time
from the log sort yard to the highway. The variable can take on any value between 20 and 30
min with equal probabilities and it is therefore represented by a uniform distribution. What is
the probability that the truck will get to the highway in more than 22 min and less than 27 min?
Calculate the mean, variance and standard deviation of the distribution.

It follows that probability associated with a uniformly distributed random variable is
proportional to the length of the interval it covers.
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Example 6.2. Suppose that the length of a 10 ft piece of dimensional lumber can be trimmed
to any length of between 9.9 ft and 10.1 ft with equal probabilities. Therefore, the actual
lumber length is described by a uniform distribution. What is the probability that a piece of
lumber selected at random is between 9.9 ft and 9.95 ft?

6.2 Exponential Distribution

The exponential distribution is the continuous counterpart to the Poisson distribution
and both depend on the mean. As we learned in Chapter 5, the Poisson distribution is
often useful to describe time-related events. While the Poisson distribution describes
the probability of events occurring within a time interval, the exponential distribution
describes the elapsed times between occurrences of consecutive events. Some examples
of exponential distributions are:

• The lifespan of an increment borer.
• Times between arrivals of customers to a supermarket cashier.
• Times between hurricanes in a certain region.
• Times between breakdowns of a woodworking machine centre.
• Time required to load a logging truck.

Suppose that X is a random variable that follows an exponential distribution. Its
probability density function is:

(6.4)

Some typical exponential density functions are shown in Fig. 6.2. As indicated in Eqn
6.4, these functions are defined by µ, the mean of the distribution. The variance of the
distribution is a function of the mean, with σ2 = µ2 (proof not given here).

Since the exponential distribution is continuous, probabilities associated with

f x e x
x

; ,where: , and .µ
µ

µµ( ) = > >
−1

0 0

P X9 9 9 95 9 95 9 9
1

10 1 9 9
0 25. . . .

. .
.< <( ) = −( )

−
=

Continuous Distributions and the Normal Distribution 95

Fig. 6.2. Probability density functions for some exponential distributions.



intervals of the random variable are determined by calculating the area under the density
function curve over that interval. The cumulative probability function of the exponential
density function can be derived from its probability density function and is given as:

(6.5)

The cumulative density function is used to calculate probabilities between 0 and a
given x value.

Example 6.3. Suppose that the time to machine a kitchen cabinet door follows an
exponential distribution with a mean of 7 min.

a. What is the probability that a door will be completed in less than 4 min?
b. What is the probability that a door will be completed in more than 4 min and less than

8 min?

6.3 Normal Distribution

Abraham de Moivre (1667–1754), a French mathematician, derived the mathematical
equation of the normal distribution in 1733. Later, Pierre Laplace (1749–1827) and
Karl Gauss (1777–1855) further studied and explored the properties of the normal
curve. Because of their independent contributions, the normal curve is often called the
Gaussian distribution, or in France, the Laplacian distribution. Since its discovery
more than 360 years ago, it has become the most important distribution, not only in
statistics, but in almost every branch of science. This is because the frequency
distributions of many real, natural events follow a normal distribution. It is also
because many of the most important theories in statistical inference are based on the
normal distribution. We will begin discussing this in detail in Chapter 7.

A normal distribution is a symmetric, bell-shaped or mound-shaped distribution
(Fig. 6.3), and the general equation of its probability density function is given as:

(6.6)

where π = 3.14159 … and e = 2.71818…

As shown in Eqn 6.6, the probability function is defined by the mean, µ, and the
variance, σ2 (or standard deviation, σ). The two parameters, µ and σ, respectively
specify the position and the shape (or spread) of a normal distribution. To illustrate
the effect of the position parameter (µ), Fig. 6.4 shows two normal curves with
different means (10 and 30), but identical standard deviations (5). To illustrate the
effect of the shape parameter (σ), Fig. 6.5 shows two normal curves with the same
means (10), but with different standard deviations (3 and 5). Figure 6.6 illustrates the
effect of both the shape and position parameters by showing two normal curves with
different means (10 and 15) and different standard deviations (5 and 3).

When the means are different and the standard deviations are the same, the curves
have the same spread, but are centred at different places (Fig. 6.4). When the means
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Fig. 6.3. Probability density function for a normal distribution.

Fig. 6.4. Normal curves for µ1 ≠ µ2 and σ1 = σ2.

Fig. 6.5. Normal curves for µ1 = µ2 and σ1 ≠ σ2.

Fig. 6.6. Normal curves for µ1 ≠ µ2 and σ1 ≠ σ2.



are the same and the variances are different, the curves are centred at the same
position, but have different spreads (Fig. 6.5). When both the means and standard
deviations are different, the two curves are entirely different, centred at different
places and having different degrees of spread (Fig. 6.6).

A normal curve has four important properties:

1. The mode, median and mean all coincide at the same point, where the curve is at
its maximum.
2. The curve is symmetric around the vertical axis drawn through the mean.
3. The curve is asymptotic to the x-axis in both the positive and negative directions.
In other words, in theory, it never touches the x-axis and extends from −∞ to +∞.
4. The total area under the curve, from −∞ to +∞, is equal to 1.

Other bell-shaped curves may also possess the above properties; however, not all such
curves are normal curves. To judge whether or not a frequency distribution is actually
normal requires a statistical test for normality (introduced in Chapter 10).

As illustrated with the exponential probability distribution, the various
probabilities of any continuous density function can be calculated as the area under the
curve between two bounds. Figure 6.7 illustrates this concept with bounds x1 and x2.

As shown in Figs 6.4 through 6.7, the area under the curve between two fixed
bounds depends on both the standard deviation and on the relative positions of the
bounds to the mean.

To obtain probabilities between two bounds, the probability density function
(Eqn 6.6) must be integrated to obtain its cumulative probability density function.
However, because a closed-form expression for the integral of Eqn 6.6 does not exist,
other procedures are required to determine the area under the curve. Fortunately, we
can rely on tabular values to estimate the value of the cumulative density function.
Thousands upon thousands of normal distributions occur in nature, business and
science. So that we need use only one table for any normal distribution, we must first
transform a normal random variable, X, into another normal random variable, Z,
which will always possess two properties: the mean is 0 and the variance is 1. This
normal distribution is called the standardized normal distribution and is described by:

(6.7)

Note that Eqn 6.7 is similar to the standard scores that we introduced briefly in Section
2.5 (see Chapter 2). This equation provides us with z-scores, and their meaning can be
interpreted in exactly the same way. A transformed z-score means that the point in
question (from the original distribution of the random variable, X) is z standard

Z
X= − µ

σ
.
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deviations away from the mean. The values of z-scores can be either positive or negative,
meaning that they are either on the left or the right side of the mean value of 0.

Using the rules of mathematical expectations, it can be shown that the mean of Z
is zero:

Using the rules of variances, it can be shown that the variance of Z is 1:

With a normal curve, the general procedure for finding the area (i.e. the probability)
of a bounded occurrence, X, between two bounds, x1 and x2, is to transform x1 and
x2 into standard scores or z-values, z1 and z2, respectively. These z-values are then
used to look up the probabilities in a z-table, which are called p-values and are
generated by numerical integration (see Table A.3 in Appendix A). It can be shown
that the area under the standardized normal curve is the same as the area under the
original (not standardized) curve (Fig. 6.8). That is:

P(x1 < X < x2) = P(z1 < Z < z2).

Table A.3 (see Appendix A) gives the area under the standardized normal curve for
P(Z < z) for values of z from –3.49 to 3.49. This range of values covers the
probabilities required for most practical purposes, and the areas under the curve
outside of –3.49 and 3.49 are negligible. It is a cumulative probability distribution,
which is similar to a cumulative relative frequency distribution. It provides the
probability that the standardized normal variable Z will be less than a given z-value.

To demonstrate the use of Table A.3, let us find the probability that the standard
normal variable, Z, is less than 1.58, i.e. P(Z < 1.58). The table is laid out with
increments of z in tenths in the leftmost column, and increments in hundredths added
to these values across the rows. For z = 1.58, first we find the value of 1.5 in the first
column under z, then we move across the row to the column 0.08, where we read the
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p-value 0.9429. This means that the probability that a z-value is less than 1.58 is
0.9429. Since the total area under the curve is equal to 1, we could easily find the
probability that the standard normal variable Z is greater than 1.58, i.e. P(Z > 1.58).
In this case, we look up the value as before (Fig. 6.9) and, using the rule of
complements, subtract the p-value from 1:

P(Z > 1.58) = 1 – 0.9429 = 0.0571.
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Fig. 6.9. P(Z < 1.58) and P(Z > 1.58).

In Table A.3 (see Appendix A), the values of z can be located for numbers from –3.49
to +3.49 with two decimal places, e.g. 1.58. If a z-value with more than two decimals
is required, linear interpolation of the p-values will result in a reasonable
approximation (e.g. to find the probability that Z < 1.585, we would find the value
halfway between P(Z < 1.58) and P(Z < 1.59)). The application of the Z
transformation changes depending on the context of the probability question being
posed. This is demonstrated in the following example.

Example 6.4. Assume that the heights of young Sitka spruce trees in a plantation have a
mean of 10 m with a standard deviation of 2.5 m, and that the heights are normally distributed.
If you randomly select a single tree, what is the probability of finding a tree that is:

a. Shorter than 6 m?
b. Taller than 12 m?
c. Between 6 m and 12 m in height?
d. Between 12 m and 14 m in height?

Drawing a picture before attempting to solve problems like these is very helpful, and highly
recommended (see Figs 6.10 to 6.13). A clear picture of the normal curve will indicate
whether the probability may be looked up directly, or needs further mathematical
manipulation as a result of the z-table showing only probabilities less than a given z-score.
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Fig. 6.10. a. P(X < 6).

Fig. 6.11. b. P(X > 12).

Fig. 6.12. c. P(6 < X < 12).

Fig. 6.13. d. P(12 < X < 14).
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A word of caution is in order regarding the use of Table A.3 (see Appendix A). This
table is not the only kind of standardized normal probability table in common use.
Because of the symmetrical nature of the standardized normal curve, some textbooks
present only the p-values associated with the positive half of the z-table, expecting the
reader to make additional mathematical manipulations when computing probabilities.
It is advisable to read the instructions on the use of z-tables prior to solving any
problems and, again, a diagram is always a useful starting point.

Another use for z-tables is for solving probability problems in reverse. For
example, we may be interested in knowing where a particular value of a random
variable lies in terms of its probability distribution.

Example 6.5. The life of a motor for a chainsaw is a normal random variable with an
average of 8 years and a standard deviation of 2.25 years. It is the manufacturer’s policy to
replace all motors that fail while under guarantee. How long a guarantee should they offer if
they are prepared to replace:

a. 2% of all motors that they sell?
b. 4% of all motors that they sell?

Note that this problem is not explicitly about probabilities but, nonetheless, 2% and 4% refer to
areas under the curve and follow the exact same logic. In this example, the areas are on the left
side of the normal distribution because this side represents lifespans that are below average.

Fig. 6.14. a. Replace motor with guarantee 2% of the time. b. Replace motor with guarantee 4% of
the time.

a. Looking at the p-values in Table A.3 (see Appendix A), we find 0.0202, which corresponds
to a z-value of –2.05. We also find 0.0197, which corresponds to a z-value of –2.06. We
approximate that the z-value corresponding to a probability of 0.02 lies halfway between, at
–2.055, i.e. P(Z > –2.055) ≈ 0.02. Now solving for xi using the Z transformation:
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Since guarantees usually occur in 1-year or 6-month increments, the company could
guarantee the motors for 3 or 3.5 years. A guarantee of 3 years would replace less than 2%
of the motors, while a guarantee of 3.5 years would replace a little more than 2%.

b. This time, we find the p-value 0.0401 at z = –1.75, which is very close to 0.04. We then use
this z-value to solve for xi :

A guarantee of 4 years would replace about 4% of the motors.

Recall that we stated and briefly discussed the Empirical Rule in Section 2.4, Fig. 2.12
(see Chapter 2). Using the normal distribution and a Z transformation, the Empirical
Rule can be verified by working out the probabilities within one, two and three standard
deviations of the mean. Using Example 6.5 for one standard deviation, we get:

The Empirical Rule states that approximately 68% of all observations will be within
one standard deviation of the mean, and 0.6826 is very close to 0.68 (68%). Note that
any example would give you the same answer, since:

The reader should repeat the above calculations for two and three standard deviations
to verify and clearly understand the Empirical Rule.

Sometimes, it is known that a continuous random variable is measured and
rounded to a certain precision. For example, the heights of the trees in Example 6.4
were measured to the nearest one-tenth of a metre. In order to improve the probability
estimations from the z-table for these cases, the random variable is treated as a
‘discrete’ variable by applying a continuity correction, which is equal to one half of
the precision of the measurements. Under these conditions, probabilities associated
with ‘less than’ and ‘less than or equal to’ symbols are treated differently:

This also means that the probability for a single measurement can be estimated. For
instance, if heights were measured to the nearest 0.1 m, then h = 0.05 m. Thus, the
probability of randomly selecting a tree of height 9.2 m is:
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Example 6.6. Find the probabilities for Example 6.4a and b, if it is known that measurement
precision was to the nearest 0.1 m.

In comparison, we found this probability to be 0.0548 in Example 6.4a.

In comparison, we found this probability to be 0.2119 in Example 6.4b.

Now, let us reconsider Example 6.4a and b by changing ‘shorter than’ to ‘shorter
than or equal to’ and ‘taller than’ to ‘taller than or equal to’. These small changes in
wording result in small changes in the probabilities:

All this said, if the precision is reasonably small, these continuity corrections usually
do not introduce significant changes to probability values. Thus, they are usually not
applied in practical problems. In the above example, the changes are fairly sizeable
because 0.1 m rounding is not very precise. The usual practice in forestry is to
measure tree heights to the nearest 0.01 m, in which case a continuity correction is
generally not necessary.

6.4 Normal Approximation to the Binomial Distribution

As discussed in Chapter 5, binomial probabilities can be difficult and laborious to
calculate when n is large. In Chapter 5, we suggested using an approximation with the
Poisson distribution. However, under certain circumstances, the normal distribution
may yield a better approximation. Consider a binomial distribution with n = 500, p =
0.4 and the task of finding P(180 < X ≤ 200).

Since tables are not readily available beyond n = 20, the following would have to be
solved 20 times, with x = 181, 182, …, 200 in order to find P(180 < X ≤ 200):

Evaluating the above expression with a pocket calculator is not only very time-
consuming, but it can lead to large rounding errors. In fact, most calculators cannot
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compute combinations of this magnitude! When n is large and p is not too far from
0.5, the normal distribution is much easier to use and provides us with a close
approximation to the binomial distribution. In other words, binomial probabilities
can be estimated from the standard normal distribution in certain instances. Figure
6.15 shows histograms for p = 0.5 and n = 2, 10 and 20. As n increases, these
histograms take on the symmetrical bell-shape characteristic of a normal distribution.
For practical purposes, the rule of thumb is that the approximation is said to be
acceptable if both np and nq are greater than 5.

In the process of estimating binomial probabilities using the standardized normal
distribution, the binomial random variable, X, is transformed using its mean and
variance. Recall that the mean and variance of the binomial distribution are np and
npq, respectively and thus the transformation is:

(6.8)

Since the binomial random variable is discrete, we should always use a continuity
correction to find the normal approximation to the binomial probability. Given that
the binomial distribution describes counts or whole numbers, a continuity correction
of 0.5 is used. For example, the number 7 should be represented by the interval 6.5 to
7.5. This means that the transformations indicated above should be carried out as:

Example 6.7. Find the exact probability of getting 8 heads in 20 flips of a balanced coin using
the binomial equation. Then, use the standardized normal distribution to approximate this
probability.

In order to use the normal approximation to the binomial distribution, we must first check to
see if the conditions for a binomial approximation are met. Indeed, both np (20 × 0.5) and nq
(20 × 0.5) exceed 5 and thus the normal distribution should provide a good approximation of
this binomial probability.

It can be seen from this example that the approximation is very good, even for n as low as 20.

Example 6.8. Suppose that a Douglas-fir seedling planted in a given area has a 0.7
probability of surviving its first year after planting. Find the probabilities that out of 200
seedlings checked:

a. More than 150 survived.
b. More than 150 but, at most, 155 survived.
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Fig. 6.15. Binomial probabilities for n = 2, 10 and 20, p = 0.5.



For cases where either the normal or Poisson approximations (see Chapter 5) can be
used, the Poisson approximation is recommended when probabilities associated with
single values of the binomial random variable are required (e.g. Example 6.7 with 
X = 8), whereas the normal approximation is recommended for intervals of the
binomial random variable (e.g. Example 6.8 with 150 < X ≤ 155). This
recommendation is based largely on the amount of work required by the two different
procedures and does not have any theoretical basis.

Exercises

Section 6.1

6.1. Suppose that annual rainfall is uniformly distributed with values ranging from
400 mm to 700 mm. Find the probability that, for a randomly selected year, the
annual rainfall will be:

a. Less than 500 mm.
b. Greater than 500 mm.
c. Between 500 mm and 600 mm.

6.2. The time it takes to completely assemble a kitchen cabinet in a wood products
factory is uniformly distributed between 15 min and 22 min. Find the probability that
assembly for the next cabinet will take:

a. More than 20 min.
b. Between 18 min and 20 min.
c. Less than 16 min.

6.3. Find the mean, variance and the standard deviation for the random variables
described in Exercises 6.1 and 6.2.

6.4. Assume a function f(x) = (5/6)x for 2 < X < b. If f is a probability density function
for the random variable, x, find the value of b.

Section 6.2

6.5. Suppose the operating time (in years) of an industrial battery is exponentially
distributed with a mean life of 2.5 years.

a. Find the probability that a randomly selected battery of this type will have an
operating time of:
i. Less than 2 years.
ii. Longer than 3 years.
iii. Between 2 and 3 years.
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b. Find the standard deviation of the random variable for operating time and
evaluate Chebyshev’s Theorem for k = 1.5 and k = 2. Why is it preferable to use
Chebyshev’s Theorem in this case?

6.6. A manufacturer of weather station anemometers wants to determine the
warranty period for one type of anemometer they make. Assume that the lifetimes of
these anemometers are exponentially distributed with a mean of 4.1 years.

a. Find the warranty period (to the nearest month) if they are prepared to replace:
i. 5% of the anemometers.
ii. 2% of the anemometers.

b. Find the standard deviation of the random variable for anemometer lifetimes.

6.7. A system used in a pulpmill for quality control contains 8 integrated circuits.
Each circuit has a lifespan that is exponentially distributed with a mean of 7.2 years.
Can we assume that at least 2 will still be working after 10 years?

6.8. The time in minutes between successive logging truck arrivals at a government
weigh station is exponentially distributed with a mean of 27 min. Find the probability
that a truck will arrive within 5 min of another.

Section 6.3

6.9. The number of hours that forestry students study per week is normally
distributed with a mean of 20 h and a standard deviation of 6 h.

a. What percentage of the students study:
i. Less than 10 h?
ii. More than 25 h?
iii. At least 25 h?
iv. Between 10 h and 25 h?

b. How many students in a class of 120 will study more than 25 h?

6.10. The widths (X) of a dimensional lumber product are normally distributed with
a mean of 8.9 cm and a standard deviation of 0.2 cm. Find:

a. P(X < 8.8).
b. P(8.7 < X < 9.1).
c. P(X ≥ 9.2).

6.11. In a very young plantation, tree heights, X, are normally distributed with a
mean of 2.20 m and a standard deviation of 0.42 m.

a. Find the following probabilities:
i. P(X ≤ 1.8).
ii. P(X < 3.0).
iii. P(2.8 ≤ X < 3.1).

b. Find the probabilities in part a if it is known that the trees are measured to the
nearest 0.01 m precision.

6.12. The diameter at breast height (dbh) measurements in a Douglas-fir stand are
normally distributed with a mean of 25 cm and a standard deviation of 4 cm.
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a. If a forest products company wishes to buy 45% of the biggest trees (as
measured by dbh), what is the minimum diameter that the company should
specify in its purchase contract?

b. The above forest products company uses its excess chips and sawdust as furnish
for the manufacture of particleboard. The particleboard plant has a variable
forming machine that discharges furnish in amounts that are normally
distributed with a standard deviation of 2.57 kg. The mean, µ kg, is set by the
user. The company wishes to use the forming machine to fill a forming belt that
holds a maximum of 200 kg of furnish and wants to overfill the forming belt
only 1% of the time. What value of µ should the company set for its forming
machine?

6.13. The lifespan of a certain type of feller buncher is normally distributed with a
mean of 6.2 years and a standard deviation of 1.6 years. Find the time (to the nearest
month) before 95% of these feller bunchers fail.

6.14. Verify the Empirical Rule for 1, 2 and 3 standard deviations around the mean.

Section 6.4

6.15. Of the red cedar seedlings planted, 90% survive their first year. Three hundred
red cedar seedlings are examined.

a. If x denotes, the number of seedlings that survive, find the probabilities that:
i. P(X ≤ 280).
ii. P(X < 280).
iii. P(265 < X < 275).
iv. P(265 ≤ X ≤ 275).

b. Find the probability associated with the area within one standard deviation of
the mean and evaluate how well the Empirical Rule applies to a binomial
random variable.

6.16. It is known that 5% of manufactured particleboard panels are defective and
marked as rejects. If 200 of these boards are examined, and X denotes the number of
defective boards, what is the probability that:

a. P(X < 12).
b. P(X < 6).
c. P(6 < X < 12).
d. P(6 ≤ X ≤ 12).
e. P(X = 6), using the binomial equation.
f. P(X = 6), using normal approximation for a binomial variable.

6.17. On any given summer day, 40% of the visitors in a certain provincial park in
British Columbia are from outside the province of British Columbia. If 250 visitors
are interviewed on a summer day and X denotes the number of non-British
Columbian residents, find:

a. P(X < 90).
b. P(X > 120).
c. P(90 ≤ X ≤ 120).
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As discussed earlier, one of the main purposes of statistics is to obtain information
about a population by looking at partial or incomplete evidence that is provided by a
subset of the population. It is simply too costly and time-consuming to consider every
element of a population. Thus, we usually estimate one or more unknown
characteristics (parameters) of the population by observing only a subset of the
population (a sample) and by computing the appropriate statistics for characterizing
the population from this sample. Since a sample is only a portion of a population,
sample values (statistics) will change from sample to sample. In other words, the value
of any statistic calculated from a sample is expected to vary. Despite this uncertainty,
generalizations from a sample statistic to an unknown population parameter can be
made with confidence if the probability distribution of the sample statistic is known.
In this chapter, we will study the sampling distributions of means, proportions,
differences of two means, differences of two proportions, variances and ratios of
variances. These distributions will provide the basic tools to understand subsequent
chapters of this book in which we will be dealing with the two most important
practical applications of statistics: estimation and hypothesis testing.

7.1 Sampling and Sampling Distributions

Most statisticians agree that statistics calculated from simple random sampling usually
provide sound, logical and reliable generalizations about population parameters. We
will provide a formal definition of simple random sampling shortly, but for all intents
and purposes, it can be thought of as randomly drawing sample elements from a hat.
For reasons of simplicity, most procedures discussed in this book will be based on simple
random sampling. However, it should be noted that in many practical situations, simple
random sampling is not the preferred procedure; in fact, it is oftentimes undesirable. A
brief discussion of common sampling techniques, such as systematic sampling, stratified
random sampling and two-stage sampling, is provided in Chapter 13.

Prior to introducing the concept of sampling distributions, it is important to
understand that two types of error can occur when sample values (statistics) are used
to estimate population characteristics (parameters): sampling error and non-sampling
error. Sampling error is a natural consequence of taking samples. As different
elements of a population appear in different samples, a sample statistic calculated
from one sample will not be the same as those calculated from other samples. This
tendency of values to deviate from one sample to another is called sampling error.
Sampling error is closely associated with sampling distributions and will be discussed
in more detail later.
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Faulty equipment, poor measurement techniques and incorrect methods of
sampling are all causes of what is referred to as non-sampling error. Such errors could
consistently under or overestimate real parameter values and, in these instances,
estimations are said to be biased. Biased estimation occurs, for example, when
equipment used for recording measurements is not calibrated properly. Non-sampling
error could also occur if diameter at breast height (dbh) is consistently measured at
less than 1.3 m height from the ground, or if sample plots are selected so that most are
close to roads or are at the base of a slope. Non-sampling errors can usually be
minimized and/or completely avoided with proper care of equipment and a random
selection of sample elements.

In sampling, we must also distinguish between finite and infinite populations.
Finite populations consist of a fixed number of elements which can be counted and, if
necessary, listed. Examples of finite populations include: the number of trees in a
permanent sample plot, the number of students registered at a university for the
2007/08 academic year, the number of 2 × 4s coming off the production line in a
specified shift, the number of salmon spawning in a stream on a given day, or the
number of logging trucks travelling on a section of a logging road during a specified
time period. A population is called infinite if, in theory, there is no limit to the number
of possible observations (or measurements). In sampling, the word ‘infinite’ is used
rather loosely and, if a population has a large number of possible measurements, it is
usually referred to as an infinite population. In light of this definition, some examples
of infinite populations include: the number of lodgepole pine trees in British
Columbia, the number of trout in a large lake, or the number of Douglas-fir seeds
produced in a large forested area.

As we have seen in previous chapters, samples from both finite and infinite
populations can be selected either with replacement or without replacement. If a
sample is selected with replacement, each element of the population can appear in the
sample as often as it is selected. If a sample is selected without replacement, each
element can be selected only once. A simple random sample of size n from a finite
population of size N is a sample chosen randomly, such that each possible sample of
size n has the same probability of being chosen (we cannot say the same thing of
infinite populations, simply because N cannot be defined). If a sample is selected
without replacement (a more commonly used method), there are NCn possible
samples. On the other hand, if a sample is selected with replacement (something rarely
used in practice with finite populations), there are Nn possible samples.

Example 7.1. If we randomly select 4 trees (a sample) out of 10 possible trees (the
population) without replacement, there are 10C4 = 210 possible samples. If the selection is
made with replacement, there are 104 = 10,000 possible samples. In the latter case (sampling
with replacement), the multiplication rule is used to calculate the number of all possible
samples: for each of the 4 trees selected, there are 10 trees available to choose from. One
correct approach for randomly selecting one sample from the 210 or 10,000 possible samples
would be to list each one of the 210 or 10,000 samples on identical pieces of paper, mix the
papers up and then randomly draw one. As N and/or n increases, this process becomes more
cumbersome and practically impossible.

The above process can be simplified for most practical situations by incorporating the
use of random numbers. At any stage of sampling, it is vital that the selection of one
sampling unit is independent of the selection of other units. This can be accomplished
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by assigning a number to each sampling unit in the population and then drawing n
random numbers from a table of random numbers, such as Table A.4 (see Appendix
A). Random numbers can also be generated by using a random number generator,
which is available in many computer software packages. A segment of Table A.4 is
reproduced in Table 7.1. Ten possible digits consisting of 0, 1, 2, …, 8 and 9 are
roughly equally (randomly) distributed in this table. It is simple to generate a table
like this; one need only write the ten digits on ten slips of paper, mix the pieces
thoroughly and then randomly select slips with replacement. After recording the first
digit, the slip of paper is replaced before the next digit is selected (sampling with
replacement). This process is repeated until the desired number of digits is obtained.
For convenience, these digits are grouped in columns of five digits, but other tables
may be set up differently. The use of the table of random numbers is demonstrated in
Example 7.2.
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Table 7.1. Partial table of random numbers.

10480 15011 01536 02011 81647 91646 69179 14194 62590 36207 20969 99570 91291 90700
22368 46573 25595 85393 30995 89198 27982 53402 93965 34095 52666 19174 39615 99505
24130 48360 22527 97265 76393 64809 15179 24830 49340 32081 30680 19655 63348 58629
42167 93093 06243 61680 07856 16376 39440 53537 71341 57004 00849 74917 97758 16379
37570 39975 81837 16656 06121 91782 60468 81305 49684 60672 14110 06927 01263 54613
77921 06907 11008 42751 27756 53498 18602 70659 90655 15053 21916 81825 44394 42880
99562 72905 56420 69994 98872 31016 71194 18738 44013 48840 63213 21069 10634 12952
96301 91977 05463 07972 18876 20922 94595 56869 69014 60045 18425 84903 42508 32307
89579 14342 63661 10281 17453 18103 57740 84378 25331 12566 58678 44947 05584 56941
85475 36857 43342 53988 53060 59533 38867 62300 08158 17983 16439 11458 18593 64952
28918 69578 88231 33276 70997 79936 56865 05859 90106 31595 01547 85590 91610 78188
63553 40961 48235 03427 49626 69445 18663 72695 52180 20847 12234 90511 33703 90322

Example 7.2. A permanent sample plot contains 82 trees, numbered 1 through 82. Our task
is to randomly select 6 trees without replacement. To do so, we will need to select six 2-digit
numbers from Table 7.1 (or Table A.4 – see Appendix A) because 82 is a 2-digit number. First,
we must decide on a starting place within the table, perhaps by pointing to a number on the
table without looking. We then take a series of 2-digit numbers starting from that point, row-
wise or column-wise (both rows and columns are randomly generated numbers). In our
example, the starting point 5 is boxed in Table 7.1 in row 10 and column 4. By following a row-
wise selection of 2-digit numbers, we would generate the following sequence:

53 98 85 30 60 59 53 33 88 67

We have chosen more than six numbers because we can use only 53, 30, 60, 59, 33 and 67
(numbers greater than 82 or less than 01 are ignored). Additionally, because sampling is
done without replacement, 53 cannot be used twice, even though it occurred twice in our
generated sequence. In general, it can be stated that n (the required sample size) distinct
numbers must be selected within the range of numbers used to identify the items in the
population. If our task had been to select the trees with replacement, the following numbers
would have been selected: 53, 30, 60, 59, 53 and 33 (thereby using the observation for tree
No. 53 twice).

For infinite populations, where the items in a population cannot be counted, listed or
numbered, the definition of a simple random sample is modified such that each item



selected is independent. Establishing reliable random samples from infinite
populations can be a difficult task. For example, allocating n plots randomly in a large
forested area is accomplished by drawing a pair of random numbers, which serve as a
random point in a two-dimensional coordinate system (i.e. a grid system made up of
column and row numbers superimposed on a map of the forest). If we want to take
random samples over a period of time (e.g. taking a sample of minutes within 8-h
shifts over a period of 30 working days), we could again do so by generating random
pairs of numbers. The first random number would define the day and the second one
would define the minute within the 8-h shift.

There are many random samples available from any given population and since
the elements included in each of these samples are different, every statistic (mean,
median, variance, proportion, etc.) will vary from sample to sample, even though they
are all estimates of a single population parameter. This means that a statistic is a
random variable, because its value depends on the elements included in the sample.
Consequently, on the rare occasion when we talk about a statistic in general, we
denote it with a capital letter. More commonly, we refer to a given value from a
number of possible statistics and we denote this by a lower case letter. For instance,
we use X

–
to talk about the mean in general terms, whereas we use x– when we refer to

a single occurrence of the mean from a given sample.
Table 7.2 presents the most important statistics and the parameters that they

estimate. These will be discussed in detail in the following sections. However, one
important point is worth noting. Since these statistics are random variables, there will
be a probability distribution associated with each of them. The probability
distribution of a statistic is called the sampling distribution of the statistic. For
example, the probability distribution describing means is called the sampling
distribution of the mean. These sampling distributions vary in different ways and the
spread of the random variable can be described by a standard deviation. However, as
a convention in statistics, the standard deviation of a sampling distribution is called
the standard error of the statistic. It follows, then, that the standard deviation of the
sampling distribution of the mean is called the standard error of the mean. In practice,
it is a common mistake to use the term ‘standard error’ by itself when referring to the
‘standard error of the mean’. The term ‘standard error’ should be qualified by
indicating the standard error ‘of what’.
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Table 7.2. Parameters and statistics.

Population Random Sample 
parameter variable statistic

Mean � X� x�

Difference of means �1– �2 X�1– X�2 x�1– x�2

Proportion P P̂ p̂

Difference of proportions P1 – P2 P̂1 – P̂2 p̂1 – p̂2

Mean of differences of paired observations �d D� d�

Variance �2 S2 s2

Ratio of variances �1
2/�2

2 S1
2/S2

2 s1
2/s2

2



7.2 Sampling Distribution of the Mean

As discussed in Chapter 2, the mean has favourable characteristics that make it the
most common measure of central tendency in samples and populations. In order to
understand the relationship between the sample mean and the population mean, let us
assume that we take a sample from a small population of 0, 2, 4 and 6. Figure 7.1
graphically shows the probability distribution for this uniform population. The mean,
variance and the probability distribution of this small population are:
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Fig. 7.1. Probability distribution of the population 0, 2, 4 and 6.

Now let us assume that we are taking samples n = 2 from this population. Table 7.3
lists all possible samples of size 2 taken with replacement (4 × 4 = 16), while Table 7.4
lists all possible samples of size 2 taken without replacement (4C2 = 6). In either case,
the respective means of each sample are also given.

Beginning with the case of sampling with replacement, the mean and the variance
of all possible sample means from Table 7.3 are:
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Figure 7.2 illustrates the frequency distribution for all of these possible means. From
the results above, it can be seen that:

1. The mean of the sample means is equal to the population mean.
2. The variance of the sample means is equal to the population variance divided by
the size of the sample, σ2/n (here, 5/2).
3. The probability distribution of all possible means has a symmetrical (approaching
a bell) shape.

If we sampled with replacement from the above population at a higher rate of n = 3,
there would be 64 possible means, with the probability distribution seen in Fig. 7.3
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Table 7.3. All possible samples of size 2 taken
with replacement and their means.

Sample x� Sample x�

0,0 0.0 4,0 2.0
0,2 1.0 4,2 3.0
0,4 2.0 4,4 4.0
0,6 3.0 4,6 5.0
2,0 1.0 6,0 3.0
2,2 2.0 6,2 4.0
2,4 3.0 6,4 5.0
2,6 4.0 6,6 6.0

Table 7.4. All possible samples of size 2 taken
without replacement and their means.

Sample x� Sample x�

0,2 1.0 2,4 3.0
0,4 2.0 2,6 4.0
0,6 3.0 4,6 5.0

Fig. 7.2. Probability distribution of all possible means from sampling with replacement (n = 2).



(samples and individual means are not shown here). Note that this distribution is
much closer to being bell-shaped than the distribution for sample size 2.

Moving to the case of sampling without replacement, the mean and the variance
of all possible sample means from Table 7.4 are computed as:

Figure 7.4 shows the probability distribution of the means from Table 7.4. From the
results above we can see that, like the case of sampling with replacement, the mean of
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Fig. 7.3. Probability distribution of all possible means from sampling with replacement (n = 3).

Fig. 7.4. Probability distribution of all possible means from sampling without replacement (n = 2).



all possible sample means is equal to the population mean. However, the variance of
all possible sample means in this case is computed from the population variance
somewhat differently:

Also, the probability distribution shown in Fig. 7.4 is neither normal nor bell-shaped.
However, if the population size was larger, and larger samples were taken, the
probability distribution of the means taken from sampling without replacement
would be very similar to the one seen in Fig. 7.3 (sampling with replacement).
To summarize sampling with replacement and without replacement:

(7.1)

The standard error of the sample means is:

(7.2)

(7.3)

As defined earlier, the standard error of the mean is the standard deviation describing
the sampling distribution of the means for a given sample size. In practice, the 
finite population correction factor (fpc) above is omitted when n ≤ 0.05N (since
(N – n)/(N – 1) → 1 as N gets larger); that is, if the sample size is less than 5% of the
population, we can omit the fpc. Therefore, if n ≤ 0.05N, Eqn 7.3 reverts to Eqn 7.2.
For infinite populations, Eqn 7.2 always applies, regardless of the sampling
procedure.

At this stage, we need to introduce the Central Limit Theorem to formalize the
relationship between a specific parameter of a population and its estimate (statistic).
This is, by far, the most important theorem in statistics. It will be introduced in
relation to the sample mean, but it will be reiterated for several other statistics. While
definitions of the Central Limit Theorem vary, for the purposes of this book it will be
defined by the following four points:

1. The sample mean (X
–

) is a random variable since its value changes from sample to
sample.
2. The mean of all possible sample means is equal to the population mean, which can
be expressed as an expectation: E(X

–
) = µ.

3. The spread of all possible sample means,                                                     is the

standard error of the mean. Note that there are two ways to compute the standard
error, depending on whether or not the finite population correction factor is included.
4. The probability distribution of all possible sample means is normal when the
parent population is normally distributed, or is approximately normal when the
sample size (n) is sufficiently large (n ≥ 30). Regardless of the distribution of the parent
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Fig. 7.5. Areas for Example 7.3.

population, as n approach infinity, the probability distribution of all possible means
becomes normal.

So, why is the Central Limit Theorem so important? Simply stated, this theorem
makes it possible to make inferences about a population mean, µ. This is true even
when the shape of the population distribution is unknown, as probabilities associated
with the statistic, X

–
, can be easily obtained by standardizing particular values of the

sample mean (x–) using the equation:

(7.4)

Example 7.3. In a large plantation of trees, dbh measurements are normally distributed with
a mean of 12 cm and a standard deviation of 1.6. If n = 16 trees are selected without
replacement, what is the probability that their sample mean is greater than 12.7 cm?

This example is very similar to examples we discussed in Chapter 6. Since the parent
population is normally distributed (Fig. 7.5), we assume that the means follow a normal
distribution, regardless of the size of the sample, and the probability is simply computed
using a Z transformation (standardized normal distribution). The only difference here is that
the random variable is the sample mean instead of an individual observation. Also, rather
than using the standard deviation, we use the standard error of the mean – which is, of
course, a standard deviation. In this case, it is the standard deviation of all possible sample
means.
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Using the z-table, the resulting probability of 0.04 indicates that there is a small
chance (4%) that a sample of 16 trees will have a sample mean of greater than
12.7 cm. In the solution above, we have omitted the finite population correction
factor because it was assumed that the number of trees (N) in the stand was very
large, so that n < 0.05N. Some textbooks suggest using the continuity correction (see
Chapter 6), depending on the number of decimals used to calculate the sample means.
We have not used this correction in our example, as it is unnecessary in most practical
applications (the gain in precision will be negligible).

It should be noted that the standard deviation of a population is an inherent
characteristic of the spread of the observations within that population. It cannot be
manipulated or changed. Although the standard error of the mean is related to the
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Fig. 7.6. Areas for Example 7.5.

population standard deviation, and behaves in exactly the same way, the size of the
standard error of the mean can be manipulated by changing the sample size. The
standard error of the mean, which is usually referred to as the sampling error, can be
reduced by increasing the sample size, n. When we have 30 or more samples, we can
apply the Empirical Rule to the standard error of the mean. As such, we know that 68%
of all possible means from a given sample size will lie within one standard error of the
mean, and 95% of all possible means will lie within two standard errors of the mean.

Example 7.4. Suppose that we have only 50 trees in the population (N = 50) from Example
7.3. As before, samples of size = 16 are taken without replacement. Since the sample size of
16 is much higher than 5% of the population size, we must use the finite population
correction factor.

The finite population correction factor essentially serves to ‘correct’ the standard error
downwards as a result of having more information about the population. In other words, when a
sample makes up a sizeable portion of a population, the distribution of sample means is less
dispersed. Notice that the spread of the probability distribution of the means is much smaller
here than in Example 7.3, because more information is available from the population (32% of the
population is included in the sample). Consequently, the probability of obtaining a very high or
very low sample mean is much lower.

Example 7.5. The specific gravity for green Douglas-fir wood pieces is claimed to be 0.45,
with a standard deviation of 0.082. What is the probability that the mean specific gravity of 35
randomly selected Douglas-fir wood specimens is less than 0.435, if the samples are
selected without replacement?

The distribution of data and corresponding Z transformation are shown in Fig. 7.6. A
probability of 0.14 means that about one in every seven samples of size 35 will have an
average specific gravity that is less than 0.435. In this example, there was no statement
given about the distribution of the parent population; however, since n ≥ 30, no such
statement was necessary.
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In most real life situations, the population variance (σ2) is not known (nor is any
population parameter for that matter). However, when n is larger than or at least
equal to 30, σ2 can be replaced by its sample value, s2, in Eqn 7.4. In such cases, s2 is
a good estimate of σ2, as it does not fluctuate much from one sample to another and
the Central Limit Theorem applies.

On the other hand, if the sample size is small (n < 30), s2 varies considerably from
sample to sample and Eqn 7.4 does not provide a reasonable standard normal distri-
bution. Instead, Eqn 7.5 is used to transform (standardize) the sample means into
another value, the so-called ‘t’ statistic, computed as follows:

(7.5)

where is the standard error of the mean (based on the sample variance), and

ν = degrees of freedom.

The probability distribution of the t statistic is often referred to as Student’s t
distribution, a somewhat cryptic name given that it was derived in 1908 by British
chemist, W.S. Gosset. Gosset used the pseudonym ‘Student’ because he was forbidden
to publish by his employer, a popular Irish brewery.

Like the standard normal curve, the t distribution is a symmetrical (about zero),
bell-shaped curve. Its standard deviation depends on the sample size and will always
be somewhat higher than 1:

From the equation above, it can be seen that as n gets larger, σt approaches 1, and thus
the distribution of t approaches the standard normal distribution (Z). As shown in
Fig. 7.7, the spread of the t distribution is a function of the degrees of freedom, which
in turn is a function of sample size (ν = n – 1; for a formal definition, see Chapter 2).

Like the standard normal curve, the probability that a random variable results in
a t-value falling between any two specified values is equal to the area under the curve
between those two values. A table similar to Table A.3 (see Appendix A) could be
produced for every degree of freedom. However, even if we considered only 1 to 30
degrees of freedom, this would result in 30 pages of tables. To save space and simplify
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Fig. 7.7. Distribution of t for 5, 10 and ∞ degrees of freedom.

∞



matters, only the most frequently used t-values and their probabilities are generally
listed (see Table A.5 in Appendix A).

Table A.5 (Appendix A) looks somewhat different from the normal distribution
table (see Table A.3, Appendix A). The first column gives the degrees of freedom,
while the first row specifies cumulative probabilities below a specified t-value. Only
positive t-values are listed inside the table. In most t-tables, unless otherwise specified,
tα represents the t-value below which (from −∞ to tα) the area under the curve is equal
to α. This makes problems like P(t9 < 1.83) easy to solve with a simple look-up on the
top row of Table A.5 (0.95). But what about the case of P(t9 > 1.83)? Our knowledge
that the total area under a probability distribution curve is equal to 1 means that we
can solve this problem by taking the complement of the probability: 1 – 0.95 = 0.05.
Additionally, because the curve is symmetrical around zero, negative t-values which
occur below the mean need not be listed. Their cumulative probabilities can again be
found based on our knowledge that the distribution is symmetrical. For example,
P(t9 < –1.83) is equal to (t9 > +1.83), both of which equal 0.05.

Because the values of t do not change much between 30 and ∞ degrees of freedom,
many tables found in other textbooks do not provide values for more than 30 degrees
of freedom. To further complicate matters, many t-tables are organized differently; the
reader should be cognizant of this when using other textbooks. The following example
demonstrates the use of the t-table presented in this textbook.

Example 7.6. Suppose that the standard deviation of the population in Example 7.3 is not
known, but is estimated from the 16 observations to be 2.09 cm.

a. Find the probability that a mean based on 16 observations will be greater than
12.7 cm.

b. Find the probability that a mean based on 16 observations will be less than 11.55 cm.

The distribution of data and corresponding t transformation are shown in Fig. 7.8.
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Fig. 7.8. Areas for Example 7.6.

Because of limited entries in the t-table, linear interpolation is often required to
obtain proper results. Failing that, estimates based on the proximity to the t-values
should suffice. Note that in Example 7.6b, we had to find the probability below a
negative t-value. To do this, we used our knowledge of the symmetry of the t



distribution to find the equivalent probability above its positive equivalent. In other
words, P(T(15) < –0.861) = P(T(15) > 0.861) = 1 – P(T(15) < 0.861).

7.3 Sampling Distribution of the Sample Proportion

Statistical investigators are often interested in being able to draw conclusions about the
proportion of objects that possess some specified characteristics in a population, e.g.
the proportion of seedlings surviving 2 years after planting, the proportion of defective
components in a production line, the proportion of a certain species in a stand, or the
proportion of logs infested by ambrosia beetles in a log storage area. Usually, the object
that possesses the specified characteristic or property is referred to as a ‘success’, and
the object that does not possess this property is labelled a ‘failure’. In other words, we
are describing a binomial random variable, and the population follows a binomial
distribution (see Chapter 5). In order to make inferences about the usually unknown
population proportion, p, the relationship between the proportion based on samples,
p̂, and the population proportion must be understood.

If n observations are selected from a binomial population and a value of 1 is
assigned to each observation (xi) called a success, while a value 0 is assigned to each
observation called a failure, the mean of these observations will be the sample
proportion:

The variance, σ2, of a population consisting of zeros and ones can be found, using
mathematical expectation, as:

σ2 = p(1 – p) = pq.

It turns out that a distribution of sample proportions behaves in exactly the same way
as a distribution of sample means. The general equations for the sample proportion
and the standard error of the proportion are:

(7.6)

(7.7)

(7.8)

Again, if N is large (n < 0.05N), or if samples are taken with replacement, the finite
population correction factor is omitted and Eqn 7.8 reduces to Eqn 7.7.

The rules for the sampling distribution of all possible proportions, based on n
observations, are as follows:

1. Since the sample proportion, P̂, changes from sample to sample it is a random
variable.
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2. The mean of all possible sample proportions is equal to the true population
proportion, p, which can be expressed as an expectation: E(P̂) = p.
3. The spread of all possible proportions, or standard error of the proportion, can be
calculated from the parameters of the binomial distribution and the sample size:

4. As the sample size (n) increases, the sampling distribution of all possible
proportions approaches the normal distribution and, if n ≥ 30, the sampling
distribution is approximated by the normal curve.

Probabilities associated with the random variable, P̂, can be obtained by standardizing
specific values of p̂using a Z transformation such that:

(7.9)

If the parameter, p, is unknown, as is most often the case, the population variance will
also be unknown and the standard error term (as stated in Eqn 7.9) in the
denominator cannot be computed. It would make sense to use the t distribution in
cases like this, but this is not recommended because the parent population is generally
not normal. In other words, the Z transformation is used almost exclusively when 
n > 30 for computing probabilities associated with sample proportions (see Examples
7.7 and 7.8). When p is unknown, therefore, the standard error of the proportion is
calculated using the following approximation:

(7.10)

Example 7.7. The proportion, p, of defective components for a given product is 0.04. What
is the probability that, in a sample of 45 components taken without replacement, the
proportion of defectives will be greater than 0.07?

The distribution of data and corresponding Z transformation are shown in Fig. 7.9.
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Fig. 7.9. Areas for Example 7.7.
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Fig. 7.10. Areas for Example 7.8.

Since a sample proportion can easily be converted into a binomial random variable,
X � np̂, Examples 7.7 and 7.8 could be solved using the procedures described in
Section 6.4: Normal Approximation of the Binomial Distribution (see Chapter 6).
For Example 7.8, we need to find the probability that the number of defects, x, is less
than np̂ � (150) (0.86) � 129:

Since the product of np̂ is a whole number, the two solutions are not exactly the same.
Although small discrepancies exist in some cases, we usually do not use the continuity
correction for proportions, as this degree of accuracy is not warranted in most real life
situations. Note that this procedure is valid only when both np and nq are greater than 5.

7.4 Sampling Distribution of the Differences between Two Means

Oftentimes, we are concerned with comparing means from two different populations
in order to answer questions like, ‘Is the strength of one species greater than another?’
or, ‘Do the readings from one measuring instrument vary significantly from another?’
In order to answer such questions, we need to discuss two cases of sampling
distributions of the differences between two means: (i) from independent populations
and (ii) from dependent populations.

Independent populations

In this section, we will examine samples from two independent populations, with
known population means, µ1 and µ2, and variances, σ2

1 and σ2
2, respectively.
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Example 7.8. A forester tells you that the rate of seedling survival in a particular plantation
is 0.9. If a sample of 150 seedlings is taken from this population, how likely would it be to
obtain a survival rate of less than 0.86?

The distribution of data and corresponding Z transformation are shown in Fig. 7.10.
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Suppose that two sets of all possible sample means are calculated based on samples of
size n1 drawn from the first population and size n2 from the second population. The
sample means from the two populations are random variables, X

–
1 and X

–
2, and their

two sampling distributions behave in exactly the same way as we discussed in Section
7.2. The theory discussed here applies for both finite and infinite populations and for
both sampling with and without replacement.

It can be shown that, by calculating all possible differences of x–1 � x–2 between the
two sets of independent sample means, a new random variable, X

–
1 � X

–
2, is created. This

new random variable, describing differences between sample means, has a distribution
called the sampling distribution of the differences between two means.

In order to calculate all possible differences, each sample mean from population
2 is subtracted from each sample mean from population 1 (we can also work the other
way if we wish). Suppose that all possible samples of size 2 are taken from a finite
population of size 3 (a total of 32 samples) and all possible samples of size 2 are taken
from another population of size 4 (a total of 42 samples). While it would be
cumbersome, all possible differences can be calculated for a total of (32)(42) = 144
differences. A careful examination of the resulting sampling distribution of the
differences between two means would lead us to the following conclusions:

1. Since the difference of two sample means, X
–

1 � X
–

2, changes from sample to sample,
it is a random variable.
2. The mean of all possible differences is equal to the difference of the two population
means, which can be expressed as an expectation: E(X

–
1 � X

–
2) = µ1 – µ2.

3. The spread of all possible differences, or the standard error of the differences of
means, is:

(7.11)

4. As the sample sizes, n1 and n2, increase, the sampling distribution of all possible
differences approaches the normal distribution. If both n1 and n2 are greater than 30,
the sampling distribution is well approximated by the normal curve.

Figures 7.11a and b show a few points of the sampling distributions of the means for
two distinct populations (1 and 2), while Fig. 7.11c shows the distribution of the
differences between two means for four arbitrarily selected points from Fig. 7.11a and b.

As before, the random variable, X
–

1 � X
–

2, can be transformed into a standard
normal variable, Z, allowing probability statements to be made about the differences
of two sample means.

(7.12)

The mean and variance of the differences between two means can be derived by using
some of the rules covered in Section 4.5 (see Chapter 4) regarding means and
variances. Using Rule 2 for means, the mean of the differences between independent
sample means is:

Using Rule 3 for variances, the variance of the differences of independent sample
means is:
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If finite population correction factors are required, the standard error of the difference
between two means changes to:

(7.13)

If necessary, the correction factor can be used for only one of the two populations.
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Fig. 7.11. Sampling distribution of the differences between two means.



Example 7.9. The population mean dbh in one forested area is 16.5 cm with a standard
deviation of 0.9 cm, while the population mean dbh in another forested area is 16.0 cm with a
standard deviation of 1.2 cm. If samples of size 32 and 36 trees are taken randomly from the
two populations, what is the probability that the sample mean from the first stand will be less
than the sample mean from the second stand? The information can be summarized as follows:

Population 1 Population 2

�1 = 16.5 �2 = 16.0
�1 = 0.9 �2 = 1.2
n1 = 32 n2 = 36

Note that we can assume infinite populations in this case. Thus, a finite population correction
factor need not be applied in computing the standard error. As shown in Fig. 7.12, the difference
in sample means is set to 0 because we are merely asking whether the mean dbh of one species
is less than another (i.e. we are not specifying a difference between the two species).
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Fig. 7.12. Areas for Example 7.9.

Like before, if the population variances, �2
1 and �2

2, are unknown, and if samples are
taken from two approximately normal populations, Eqn 7.12 is replaced by a t
distribution and Eqn 7.14:

(7.14)

where standard error of the difference between two means, calculated from

sample variances based on n1 and n2 observations and ν = degrees of freedom.
For cases where the population variances are unknown, things become a little more

complicated in that there are three distinct cases for which the standard error of the
difference between two means and the degrees of freedom are computed differently.

Case 1. Both n1 and n2 ≥ 30 (large samples).

(7.15)

and ν = ∞.
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Note that with large sample sizes, sample variances are good estimates of the
population variances. In such cases, Eqn 7.14 is equivalent to Eqn 7.12, as the degrees
of freedom approach infinity and the probability distribution of t approaches the
probability distribution of Z. In other words, a Z distribution can be used in place of
a t distribution.

Case 2. n1 or n2 or both < 30 (small samples) and it can be assumed that � 2
1 � � 2

2.

(7.16)

(7.17)

and ν = n1 + n2 – 2.
Later on, we will cover a ‘statistical test’ that tells us whether or not we can

assume � 2
1 � � 2

2. In the above equation, s2
p is the pooled variance and can be thought

of as a ‘weighted’ variance term for both populations. The pooled variance has 
n1 + n2 – 2 degrees of freedom, two less than the total number of independent
observations. Because two statistics, x–1 and x–2, are used in the calculation, we lose two
degrees of freedom (see Section 2.4 in Chapter 2 for a review of degrees of freedom).

Case 3. n1 or n2 or both < 30 (small samples) and we assume that � 2
1 ≠ � 2

2.

(7.18)

(7.19a)

or
ν = the smaller of n1 – 1 and n2 – 1. (7.19b)

Note that Eqns 7.15 and 7.18 are the same. However, for Case 1, probabilities can be
looked up using the z-table (or in the last line of the t-table) but, for Case 3, only the
t-table can be used with the specified degrees of freedom. Note also that there are two
ways of obtaining degrees of freedom for Case 3. While both Eqns 7.19a and b result
in appropriate degrees of freedom, Eqn 7.19a (a more complicated method) will give
a more reliable result. When using Eqn 7.19a, the nearest whole number should be
used for degrees of freedom.

Example 7.10. Suppose that the population standard deviations in Example 7.9 are not
known, but have been estimated to be 1.1 cm and 0.9 cm from two respective samples of
size 32 and 36. Because the sample sizes are both greater than 30, Eqn 7.15 and infinite
degrees of freedom (Case 1) can be used to determine if the sample mean from the first
stand will be less than the sample mean from the second stand.
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The distribution of data and corresponding Z transformation are shown in Fig. 7.13. As
expected, the results from Examples 7.9 and 7.10 are similar.
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Fig. 7.13. Areas for Example 7.10.

Example 7.11. As stated in Example 7.5, the average specific gravity of green Douglas-fir
grown in British Columbia is 0.45. Suppose that it is also known that the average specific
gravity for green western red cedar grown in British Columbia is 0.36. Assume that the
variances of the two populations are unknown but equal. A sample of 8 Douglas-fir
specimens is taken and a sample of 10 western red cedar specimens is taken, and their
specific gravities are measured. The sample standard deviations are estimated to be 0.076
for Douglas-fir and 0.068 for western red cedar. What is the probability that the sample mean
of Douglas-fir will be greater than the sample mean of western red cedar by at least 0.12?
Because our samples sizes are each less than 30 and we have assumed that �2

1 � � 2
2
, Case

2 is used. Our information can be summarized as follows:

Douglas-fir Western red cedar

�1 = 0.45 �2 = 0.36
S1 = 0.076 S2 = 0.068
n1 = 8 n2 = 10

One should be mindful of the fact that, in this question, we are not asking whether one
species will have a higher or lower specific gravity than the other (in other words, the
probability of the differences in sample means being less than or greater than 0). Here, we
are asking whether the mean specific gravity of one species exceeds the other by at least
0.12 and it is this value that should be included in the t transformation.

The distribution of data and corresponding t transformation are shown in Fig. 7.14.
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Example 7.12. The mean annual biomass production of spruce seedlings under normal
lighting is 4.52 g, while it is 2.61 g under artificial lighting. Suppose that the population variances
are unknown. Twelve randomly selected seedlings were exposed to normal lighting and ten
were exposed to artificial lighting, resulting in sample standard deviations of 1.2 g and 0.5 g,
respectively. What is the probability that the mean biomass of the seedlings grown under normal
light exceeds the mean biomass of those grown under artificial light by at least 1.40 g if we
assume that the population variances are not equal? Summarizing the information, we get:

Normal Artificial

�1 = 4.52 �2 = 2.61
S1 = 1.20 S2 = 0.50
n1 = 12 n2 = 10

Because we assume � 2
1 ≠ � 2

2 we use Case 3. The distribution of data and corresponding t
transformation are shown in Fig. 7.15.

If we used the simpler procedure for estimating degrees of freedom (the minimum of n1 – 1 or
n2 – 1), the result would be a more ‘conservative’ estimate of the probability as
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Fig. 7.14. Areas for Example 7.11.

Fig. 7.15. Areas for Example 7.12.



Dependent populations

The sampling distribution for the differences between two means varies when samples
come from two different populations that are not independent. Samples are
considered dependent when the observations occur in pairs, or when the objects are
matched by some special characteristics. Take the example of measuring the heights of
15 trees in a particular stand. Pairing or matching occurs if their heights are measured
on two separate occasions (say 1 year apart) or by two different people, or if two
different instruments are used. Such observations are obviously related (i.e.
dependent) as each tree is measured twice.

From the examples above, consider the case when the same trees are measured on
two separate occasions. The differences, di, between the two corresponding
measurements for each tree become the individual values of a new random variable,
D. In other words, we create a new population comprised of the elements, di, which
are calculated as the differences of the two sets of corresponding elements of two
random variables, X1 and X2, from two populations. This new single population has
a mean of µd (it can be shown that µd = µ1 – µ2) and a variance of σd

2, and the means
of all possible samples of size n from this population produce the statistic, D

–
, which

behaves in exactly the same way as the sample mean, X
–
, discussed in Section 7.2.

Specifically, four observations are worth noting:

1. Since its value changes from sample to sample, the mean of paired observations, D
–
,

is a random variable.
2. The mean of all possible means of sample size n is equal to the population mean,
which can be expressed as an expectation: E(D

–
) � �d � �1 � �2.

3. The spread of all possible means, or the standard error of differences, is

4. The probability distribution of all possible means is normal when the parent
population is normally distributed or is approximately normal when the sample size
(n) is sufficiently large (n ≥ 30), regardless of the distribution of the parent population.
As n approaches infinity, the probability distribution of all possible means becomes
normal.

Like the previous cases of sampling distributions of means, the probability distribu-
tion of D

–
can be standardized as:

(7.20)

where

(7.21)

(7.22)
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Example 7.13. Suppose that we ask two students to measure the heights of 5 young trees
in a plantation. Even if the population means are unknown, under normal circumstances, 
µd = 0.0 m. Assuming that σd = 0.15 m, what is the probability that the mean of
measurements taken by student A will be at least 0.1 m higher than the mean of
measurements taken by student B?

The distribution of data and corresponding Z transformation are shown in Fig. 7.16.
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Fig. 7.16. Areas for Example 7.13.

When the population variance for paired observations is unknown, the t distribution
can be used to calculate probabilities of d

–
:

(7.23)

(7.24)

(7.25)

Example 7.14. If the variance (standard deviation) is unknown in Example 7.13, we can
estimate it from the raw data:

Student A Student B di

12.5 12.3 0.2
18.4 18.5 –0.1
11.1 10.8 0.3
12.6 12.6 0.0
15.8 15.7 0.1

What is the probability that the mean of measurements by student A will be at least 0.15 m
higher than the mean of measurements by student B?

The distribution of data and corresponding t transformation are shown in Fig. 7.17.
Using the data above and applying Eqns 7.24 and 7.25:
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Fig. 7.17. Areas for Example 7.14.

It can be shown that the variance of D
–

for paired observations is less than the variance
of x–1 � x–2 for independent samples from two populations. This can be an effective
way of obtaining more precise results in experiments where pairing is applied.

7.5 Sampling Distribution of the Differences between Two
Proportions

It is shown in Section 7.3 that the sampling distribution of proportions behaves in a
similar manner to that of the mean. This is because when zeros and ones are assigned
to the two kinds of outcomes of the binomial random variable, the proportion of the
‘successes’ can be calculated in the same way as a sample mean. It follows, then, if
independent samples of size n1 and n2 are drawn from two binomial populations, the
differences of the two sample proportions, P̂1 � P̂2, will behave very much like
differences between two sample means, x–1 � x–2. As such, the sampling distribution of
the differences of proportions can be summarized as follows:

1. Since the difference of two sample proportions, P̂1 � P̂2, changes from sample to
sample, it is a random variable.
2. The mean of all possible differences of two proportions is equal to the difference
of the two population proportions, which can be expressed as an expectation:
E(P̂1 � P̂2) � p1 � p2.
3. The spread of all possible differences, or the standard error of the differences of 

two proportions, is 

4. As the sample sizes of n1 and n2 increase, the sampling distribution of all possible
differences approaches the normal distribution and, if both n1 and n2 are greater than
30, the sampling distribution is well approximated by the normal curve.

The random variable, P̂1 � P̂2, can be transformed into the standard normal variable,
Z, for making probability statements about the differences of two sample
proportions. Note that the two populations from which sample proportions are
obtained are assumed to be independent.

σ ˆ ˆ .p p
p q
n

p q
n1 2

1 1

1

2 2

2
− = +



(7.26)

The mean and the variance of the differences between two proportions can be derived
by using the rules for means and variances covered in Section 4.5 (see Chapter 4).
Using Rule 2 for the means, the mean of the differences of independent sample
proportions is:

Using Rule 3 for the variances, the variance of the differences of independent sample
proportions is:

The covariance between p̂1 and p̂2 is zero, since the two samples are independent. If
finite population correction factors are required, they are applied in the same way as
shown in Eqn 7.13 for the differences between two means.

Example 7.15. The proportions of reject pieces of dimensional lumber in two sawmills (A and
B) are 0.05 and 0.07, respectively.

a. If 50 pieces are inspected in mill A and 70 in mill B, what is the probability that the
proportion of rejects in mill A will exceed the proportion in mill B?

b. If 150 pieces are inspected at each mill, what is the probability that the proportion in
mill A will exceed the proportion in mill B?

The distribution of data and corresponding Z transformation are shown in Fig. 7.18.
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Fig. 7.18. Areas for Example 7.15a.

Note how the probability is considerably smaller as the sample sizes increases from
Example 7.15a to 7.15b. This is because higher sample sizes result in smaller standard
errors, which in turn decrease the probability in the tail(s) of the sampling distribution.



If the population variance is not known for the sampling distribution of the
differences between two proportions, it can be estimated from the sample
proportions.

(7.27a)

(7.27b)

Note that the pooled or combined proportion in the calculation is essentially the
proportion of successes taking both samples into account.

Although the standard error of the difference between two proportions can be
estimated using Eqns 7.27a or b, replacing Eqn 7.26 by the t distribution is not
recommended unless the parent populations can be considered normal (see Section
6.4 in Chapter 6).

7.6 Sampling Distribution of the Variance

The sample variance, s2, is used to draw inferences about the unknown population
variance, σ2. Like the sample mean, the sample variance is calculated from elements
included in a subset of the population and therefore changes from sample to sample.
In this section, we will study the relationship between sample variances and the
population variance.

Suppose sample variances, s2, are calculated from random samples of size n
selected repeatedly from a population with a variance, σ2. Using the different sample
variances, the probability distribution of the random variable, S2, can be constructed
(Fig. 7.19a). Unlike a normally shaped sampling distribution of means, though, the
sampling distribution of S2 is actually positively skewed, stretching from zero to
infinity with a mean of σ2.

The sampling distribution of the random variable, S2, has the following
characteristics:

1. Since the sample variance, S2, changes from sample to sample, it is a random
variable.
2. The mean of all possible sample variances of size n is equal to the population
variance, which can be expressed as an expectation: E(S2) = σ2.
3. If s2 is the variance from a random sample of size n taken from a normally
distributed population with variance σ2, it will follow what is known as an χ2

distribution (chi-squared) with ν = n – 1 degrees of freedom:

(7.28)

The χ2 curve is positively skewed (but approaching a normal distribution at larger
sample sizes) and describes the sampling distribution of the variances (Fig. 7.19a), as
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indicated in Fig. 7.19b. The χ2 curve starts at zero and extends (in theory) to infinity,
with a mean of n – 1. Its mathematical formula is rather complicated and beyond the
scope of this book. However, it is known that the total area under the curve is one,
and areas between any two χ2-values, which provide probabilities between these two
values, can be obtained by integration. For our convenience, however, cumulative
probabilities of χ2-values are listed in Table A.6 (see Appendix A). Like the t-table, the
first column of Table A.6 contains the degrees of freedom (ν); the first row shows the
cumulative probabilities up to a specified χ2-value, and the table entries are the χ2-
values. For example, for nine degrees of freedom, the probability (area) from 0 to the
χ2-value of 16.9 is 0.95. It follows then that the probability between 16.9 and ∞ is
1.0 – 0.95 = 0.05. Like the t distribution, not every probability can be shown in the
χ2-table. Unlike the t distribution, however, the χ2 distribution is not symmetric.
Therefore, the χ2

v-value corresponding to a probability of 0.05 cannot be directly
found using a probability of 0.95; it must be looked up in the table. A handy feature
of the χ2 distribution is that, for each probability listed, its corresponding complement
is also listed: a piece of information to keep in mind for future chapters. One of the
main purposes of the χ2 transformation is to make probability statements about
sample variances obtained with a random sampling procedure. However, as we shall
see in future chapters, it is also a commonly occurring distribution for several
important statistical tests.

Example 7.16. The breaking loads of a certain type of wood beam are normally distributed
with a standard deviation of 60 PSI. If a random sample of 12 beams is tested, what is the
probability that the standard deviation will be greater than 75 PSI? What is the probability that
the standard deviation will be less than 32 PSI?

Since we do not have a sampling distribution for standard deviations, the standard
deviations must be changed to variances and then transformed into χ2 units in order to solve
these problems (Fig. 7.20).
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Fig. 7.19. Probability distribution of (a) sample variances and (b) some χ2 curves.
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Fig. 7.20. Areas for Example 7.16.

Fig. 7.21. Sampling distribution of (a) the ratio of variances and (b) the F distribution.

7.7 Sampling Distribution of the Ratios of Two Variances

If repeated independent samples of size n1 and n2 are taken from normal populations
with variances, �2

1 and �2
2, and the sample variances of s2

1 and s2
2 are computed, then

all possible ratios of these sample variances form a random variable in the form of a
ratio, s2

1/s
2
2. The probability distribution of s2

1/s
2
2 is known as the sampling distribution

of the ratios of two variances (Fig. 7.21a).
The most important characteristics of the sampling distribution of the ratios of

variances can be summarized as:

1. Since the ratio of two variances, s2
1/s

2
2, changes from sample to sample, it is a

random variable.
2. If s2

1 and s2
2 are sample variances from independent samples of size n1 and n2 from

two normal populations with variances of �2
1 and �2

2, the ratio of the two sample
variances can be transformed into an F distribution (see Fig. 7.21b) using Eqn 7.29:

(7.29)

where ν1 = n1 – 1 and ν2 = n2 – 1.
In its transformed or standardized form (using Eqn 7.29), the F distribution

(named after British statistician, Ronald Fisher) is one of the most important
distributions in applied statistics and is used in many of the statistical tests that we
will see in later chapters. Theoretically, the F distribution can be defined as the ratio
of two independent χ2-values, where each is divided by its degrees of freedom:
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This is a complicated distribution to visualize for many reasons, not the least of which
is that we are dealing with two sets of degrees of freedom! For each set of ν1 and ν2
degrees of freedom, there is a different curve (Fig. 7.22), which is positively skewed and
extends from zero to infinity. The total area under each of these curves is equal to one.
Their mathematical form, the integration of which would provide probabilities between
two specified F-values, is beyond the scope of this book. Table A.7 (see Appendix A),
however, lists F-values as a function of degrees of freedom, ν1 and ν2, and inverse
cumulative probabilities. The degrees of freedom associated with the sample variance in
the numerator for Eqn 7.29 are always stated first, followed by the degrees of freedom
associated with the sample variance in the denominator. In Table A.7 (see Appendix A),
the first row contains the degrees of freedom for the numerator, while the first column
contains the degrees of freedom for the denominator. The second column shows the
probabilities, and the F-values are in the body of the table. Note that it can be shown
that E(F) = ν2/(ν2 – 2), which approaches 1 as ν2 approaches ∞ (see Fig. 7.21b).

In contrast to Table A.6 (see Appendix A), Table A.7 contains inverse cumulative
probabilities; that is, it shows only those probabilities on the right tail of the
distribution, where f > 1.0. For values of f < 1.0, on the left tail of the distribution,
probabilities can be calculated by applying the following equation:

(7.30)

The above equation can be verified by taking the reciprocal of Eqn 7.29, which, by
convention, requires an exchange of position of the degrees of freedom. If f > 1 in Eqn
7.29, then f < 1.0 from Eqn 7.30 (or the other way round) and the probability will
change from α to 1 – α (Fig. 7.23). It may be worth noting at this point that it is
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Fig. 7.22. Typical F curves.

Fig. 7.23. The two tails of the F distribution.



common practice in dealing with these sorts of problems to put the higher variance in
the numerator. As we shall see in future chapters, this makes the need for this
reciprocal calculation unnecessary and simplifies matters greatly.

Example 7.17. In a study of tree diameter measurements, sample sizes of n1 = 10 and 
n2 = 8 were taken from forest types I and II, respectively. Assume that we know the population
variance of the two forest types: σ1

2 = 36 cm2 and σ2
2 = 25 cm2.

a. Find the probability that the ratio of sample variances (S1
2/S2

2) will exceed 5.3.
b. Find the probability that the ratio of sample variances (S1

2/S2
2) will be less than 0.26.

In order to solve this probability problem, we must first transform the ratio of variances into an
F distribution (Fig. 7.24).
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Fig. 7.24. Areas for Example 7.17.

Since table look-ups for F-values can be rather complicated, it is highly recommended
that readers practice looking up various values from the F-table. In comparison to the
other (Z, t and χ2) tables, the entries in the F-table are even more limited. However,
entries provided in Table A.7 (see Appendix A) are sufficient for most practical
applications. A general rule of thumb for using the F-table: if the degrees of freedom
for either the numerator or the denominator are not listed in the table, take the next
lowest degree of freedom (in either case), as this will give a slightly more conservative
result.

7.8 Some Concluding Remarks about Sampling Distributions

One of the main purposes of this chapter is to introduce the student to different
sampling distributions and the methods used to solve probability problems associated
with these sampling distributions. Four tables for solving these probability problems
are introduced. In some ways, the methods for solving these probability problems
may seem ‘backward’ compared to how we will be applying them in later chapters,
where we will typically be using the probabilities from the tables in various
formulations, as opposed to solving them. That said, it is important to understand the
elements that comprise these tables, and this is another main purpose of this chapter.



Exercises

Section 7.1

7.1. A random sample of 15 trees is selected from a permanent sample plot of 148
trees, numbered from 1 to 148. Using Table A.4 (see Appendix A), list the tree
numbers you would select for:

a. Sampling with replacement.
b. Sampling without replacement.

7.2. A random sample of 4 soil types is to be selected from a population of 12 soil
types. Indicate the number of all possible samples, if the sampling is to be carried out:

a. With replacement.
b. Without replacement.

7.3. A random sample of 25 pieces of lumber is to be selected without replacement
from the green chain in a sawmill. Boards come off the green chain every 0.5 min and
the samples will be selected from production during the next 10 working days
between 8:00 am and 4:00 pm. Use Table A.4 (see Appendix A) to indicate when
(both day and time within day) the 25 samples are to be taken.

7.4. Describe how you would randomly allocate 32 fixed radius (r = 5 m) plots in a
20 ha natural forest. Assume that a map is available for the area and that the sampling
is done without replacement.

Section 7.2

7.5. List all possible samples of size 2 taken with replacement from the population of
1, 3, 5, 7 and 9. Calculate the population mean and population standard deviation
and compare these to the mean of all possible sample means and the standard
deviation of all possible sample means. Construct the probability distribution for the
population and for the sample means and draw some conclusions. What would
happen to the sample mean and the standard deviation of the sample means if the
sample size increased from 2 to 3?

7.6. Repeat Exercise 7.5 for the case of sampling without replacement.

7.7. Determine whether the application of the finite population correction factor is
required for the following cases:

a. n = 20, N = 420.
b. n = 32, N = 150.
c. n = 15, N = 2768.
d. n = 5, N = 420.
e. n = 40, N = 12,000.

7.8. The annual precipitation in a certain part of British Columbia is normally distributed
with a mean of 850 mm and a standard deviation of 95 mm. Assume that the population
is infinitely large and that the next n years can be considered a random sample.

a. What is the probability that the average annual rainfall over the next 12 years
will be between 700 mm and 825 mm?
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b. What is the probability that the average annual rainfall over the next 20 years
will be between 700 mm and 825 mm?

c. What is the probability that the average annual rainfall over the next 12 years
will be greater than 650 mm?

d. Assume that the population standard deviation is unknown but has been
estimated as 91 mm based on the past 10 years’ observations. What is the proba-
bility that the average annual rainfall over the past 10 years exceeded 830 mm?

e. Calculate the standard error of the mean based on 7.8d and explain its meaning.

7.9. What sample size should be taken from a normal population with a mean of 15
and a variance of 48 to ensure that the probability of the sample mean exceeding 20
will be less than 0.05 (5%)?

7.10. The specified weight limit of an elevator in an office building is 1800 kg. If the
mean weight of all people (N = 200) ever to use this elevator is 68 kg with a standard
deviation of 12 kg, what is the probability that 25 people selected at random will
exceed the weight limit? Can this sampling be done with replacement? Calculate the
standard error of the mean and explain its meaning.

7.11. Solve Exercise 7.10 for the case when the population standard deviation is
unknown but estimated to be 10.3 kg from the 25 randomly selected people.

Section 7.3

7.12. Thirty per cent of all the trees in a certain lodgepole pine stand (N is very large)
are attacked by mountain pine beetles.

a. If 50 trees are randomly selected from this stand, what is the probability that
more than 41% of the trees are infested? Calculate the standard error of the
proportion and discuss its meaning.

b. If 50 trees are randomly selected from this stand, what is the probability that
more than 20 trees are infested?

c. How many trees should we sample so that the probability of more than 41% of
the trees being infested will be 0.05 or less? Discuss your results.

d. Compare a and b.

7.13. The proportion of grade A pieces in a particleboard plant is 0.15. Based on a
random sample of 40 boards, find the probability that:

a. The proportion is less than 0.1.
b. The proportion is greater than 0.25.
c. The proportion is between 0.1 and 0.25.

Calculate the standard error of the proportion and discuss its meaning.

7.14. In a kitchen cabinet plant, 4% of the doors cut to a certain size are defective.
Find the probability that a random sample of 55 doors will have:

a. More than 1.8% defectives.
b. Less than 3.6% defectives.

Calculate the standard error of the proportion and explain its meaning.
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Section 7.4

7.15. The service lives of two types of logging truck tyres are normally distributed.
Brand A tyres have a mean service life of 85,000 km with a standard deviation of
8000 km. Brand B tyres have a mean service life of 90,000 km with a standard
deviation of 10,000 km. If samples of 12 and 16 tyres are respectively selected from A
and B at random and tested for service life, what is the probability that the difference
of two means (x–A – x–B) is:

a. Greater than 2000 km?
b. Greater than 0 km?
c. Less than –2000 km?

Find the standard error of the differences of means, and explain its meaning.

7.16. In Exercise 7.15, assume that the population variances are unknown but equal.
The variances were estimated to be 10,200 km2 and 9800 km2 by testing 12 and 16
tyres for brands A and B, respectively. What is the probability that:

a. The mean of brand A will exceed the mean of brand B?
b. The mean of brand B will exceed the mean of brand A by at least 2850 km?

Find the standard error of the difference between two means and explain its meaning.

7.17. To test the effect of controlled grazing versus continuous grazing on weight
gain, 13 and 12 steers were treated for a period of time. The scientists assumed that
the mean difference between the two grazing treatments was zero (µ1 – µ2 = 0). Since
the population variances were unknown, they estimated the standard deviations of
weight gain and obtained 25 lbs for controlled grazing and 17 lbs for continuous
grazing. Based on these estimates, the scientists assumed that the population variances
were different. What is the probability that:

a. The mean weight of the cows subjected to controlled grazing will be 15 lbs
higher than the mean weight of the cows subjected to continuous grazing?

b. The mean weight of the cows subjected to controlled grazing will be 18 lbs less
than the mean weight of the cows subjected to continuous grazing?

Calculate the standard error of the difference between two means and explain its
meaning.

7.18. The population means of the tensile strength of dimensional lumber is 3200 lbs
per square inch (psi) for Douglas-fir and 3000 psi for western hemlock. The
population standard deviations are not available for these species but were estimated
to be 400 psi and 370 psi from 35 and 40 specimens of Douglas-fir and western
hemlock, respectively. If these specimens are tested, what is the probability that the
sample mean of western hemlock will exceed the sample mean of Douglas-fir?
Calculate the standard error of the difference between two means and explain its
meaning.

7.19. The volume (m3/ha) in a mature Sitka spruce stand was observed independently
by two crews on each of 10 plots. Their observations were:
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What is the probability that the average difference between the two sample means is:

a. Greater than 40 m3/ha?
b. Less than –66 m3/ha?

Calculate the standard error of the difference between two means and explain its
meaning.

Section 7.5

7.20. Two microprocessor manufacturers, A and B, claim that the proportion of
defectives they produce are 0.07 and 0.05, respectively. If a sample of 100
microprocessors are tested from each manufacturer, what is the probability that:

a. The sample proportion of defectives from manufacturer B will exceed the
sample proportion of defectives from manufacturer A?

b. The sample proportion of defectives from manufacturer A will exceed the
sample proportion of defectives from manufacturer B?

c. The sample proportion of defectives from manufacturer A will exceed the
sample proportion of defectives from manufacturer B by at least 0.1?

Calculate the standard error of the difference between two proportions and explain its
meaning.

7.21. In two forest types, I and II, 25% and 30% of the trees are infested by bark
beetles, respectively. If we examine a sample of 40 trees from forest type I and 50 trees
from forest type II, what is the probability that:

a. The proportion of infested trees from forest type II exceeds the proportion of
infested trees from forest type I?

b. The proportion of infested trees from forest type II exceeds the proportion of
infested trees from forest type I by at least 0.15?

Calculate the standard error of the difference between two proportions and explain its
meaning.

Section 7.6

7.22. In Exercise 7.8 we observed that the annual precipitation in a certain part of
British Columbia is normally distributed with a mean of 850 mm and a standard
deviation of 95 mm. Based on a sample size of 10, what is the probability that:

a. The standard deviation will be greater than 120 mm?
b. The standard deviation will be less than 58 mm?
c. The standard deviation will be between 58 mm and 120 mm?
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Plot 1 2 3 4 5 6 7 8 9 10

Crew 1 875 959 475 589 925 1200 971 421 892 728
Crew 2 910 878 480 495 1021 980 1002 410 850 620



7.23. The variance of length of dimensional lumber cut to 10-ft lengths is 0.25 ft2. If
16 randomly selected 10-ft pieces are measured, what is the probability that the
variance will be:

a. Less than 0.15 ft2?
b. Greater than 0.38 ft2?
c. Between 0.15 and 0.42 ft2?

Section 7.7

7.24. For an F distribution find:

a. f0.05 with ν1 = 8 and ν2 = 10.
b. f0.025 with ν1 = 7 and ν2 = 11.
c. f0.1 with ν1 = 11 and ν2 = 10.
d. f0.005 with ν1 = 15 and ν2 = 28.

7.25. Let s1
2 and s2

2 represent the variances of two independent random samples of
size n1 = 10 and n2 = 16, taken from two normal populations with variances s11

2 = 20
and s22

2 = 15.

a. What is the probability that s1
2 > 32?

b. What is the probability that s2
2 < 6?

c. Find the ratios of s1
2/s2

2 outside of which on each side you will find:
i.   2.5% of all ratios of the two variances.
ii.  1.0% of all ratios of the two variances.

d. What is the probability that: 
i. s1

2/s2
2 > 3.458.

ii. s1
2/s2

2 < 0.249.

7.26. Referring back to Exercise 7.15, if two independent random samples of size 12
and 16 are taken for brands A and B, respectively, and the sample variances, sA

2 and
sB

2, are calculated, what is the probability that:

a. sA
2/sB

2 < 0.235.
b. sA

2/sB
2 > 1.32.

Sampling Distributions 145



This page intentionally left blank 



Statistical inference is the process of drawing a conclusion about a population
parameter from information obtained in a sample. We can make decisions concerning
the value of a parameter or we can estimate the value of a parameter. Decision making
or tests of hypothesis will be introduced in Chapter 9. Statistical estimation, which
can be classified as either point estimation or interval estimation, is discussed in this
chapter. A point estimate is a single numeric value calculated from the information in
a sample. An interval estimate yields two numeric values, between which we can
reliably expect to find the target parameter.

8.1 Point Estimation

A point estimate of a given population parameter is numeric: our ‘best guess’ of the
true value. For instance, the point estimate of the population mean, µ, is x– (the sample
mean), which is the sample value of the statistic X

–
computed from a sample of size n

from the population. The statistic X
–

is called an estimator and the single value, x–, is
called an estimate. For example, if the mean height of a sample of 10 western hemlock
trees is 15.6 m, 15.6 is the point estimate of the unknown population mean. Similarly,
the sample proportion, P̂, is an estimator of the population proportion, p, while p̂ (the
sample proportion) is an estimate. The sample variance, S2, is the estimator of the
population variance, σ2, while s2 is the estimate.

For any population parameter θ, the quality of a point estimator (θ̂ ) is judged
according to the following characteristics:

1. The estimator should be unbiased. In other words, the mean of the sampling
distribution is equal to the population parameter. Thus, when we sample, on average
we expect to estimate the true population parameter:

E(θ̂ ) = θ.

Based on the Central Limit Theorem (discussed in Chapter 7), we can conclude that
the sample mean, sample proportion and sample variance are all unbiased estimators.
Although the sample standard deviation, s, is not an unbiased estimator, if the sample
size, n, is greater than 30, the bias is negligible (the mathematical proof for this is
beyond the scope of this text).
2. The estimator should be efficient. When there are several unbiased estimators of a
given parameter, θ, the one with the smallest variance is called the most efficient
estimator. The relative efficiency of one estimator versus another is calculated as:
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(8.1)

For example, it is known that the variance of the median is about 1.57 times
larger than the variance of the sample mean. From this, we can calculate the relative
efficiency of the sample median compared to the sample mean:

This means that the sample median is only 64% as efficient as the sample mean in
estimating the population mean based on the same number of observations.
3. The estimator should be consistent. This means that as the sample size, n,
approaches infinity, the value of the estimator approaches the value of the population
parameter. Therefore, an unbiased estimator is consistent if:

Even if an estimator is unbiased, efficient and consistent, it will not estimate the
population parameter without error unless n approaches infinity. As discussed in
Chapter 7, based on a reasonable sample size, it is unlikely that the numeric value of
an estimate will exactly match the population parameter. For this reason, we should
keep in mind that point estimates have their limitations. They do not reveal anything
about the potential size of their errors, and they do not tell us how much information
they are based on. Due to these limitations, it is generally more desirable and even
more effective to determine not just a point estimate, but an interval within which we
would expect to find the unknown population parameter. This process is referred to
as interval estimation, and the interval is called the interval estimate.

8.2 Interval Estimation

If θ̂ is a point estimate of θ, then |θ̂ – θ | is the sampling error (see Chapter 7), or error
of estimate. Since we usually do not know the true value of a population parameter,
the actual size of the sampling error is unknown. However, we can make probability
statements, expressed as ‘confidence’, concerning the error of estimate. For instance,
we can construct an interval, from some lower bound to an upper bound, where the
probability of finding the true parameter is set at some value between 0 and 1:

(8.2)

We call these lower and upper bounds confidence limits. The LCL refers to the lower
confidence limit and the UCL refers to the upper confidence limit. The value 1 – α is
the probability (between 0 and 1) that we will find the true population parameter
lying somewhere between LCL and UCL. Thus, Eqn 8.2 is read and interpreted as the
probability of finding the unknown population parameter between LCL and UCL is
1 – α. If the sampling distribution of θ̂ is symmetric, this implies that the maximum
error of estimate, E, is:
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E = (UCL – LCL)/2.

E is sometimes called the maximum allowable margin of error. The interval between
LCL and UCL is called the (1 – α)100% confidence interval. The quantity (1 –
α)100% is called the confidence level or degree of confidence. By convention, the most
frequently used values of α are 0.10, 0.05 and 0.01, resulting in 90%, 95% and 99%
confidence intervals, respectively. The correct interpretation of confidence intervals is
sometimes tricky and is discussed in detail in the next section.

8.3 Estimating the Mean

The most frequently used point estimator of the population mean, µ, is the sample
mean, X

–
, and the point estimate is the numeric value of the sample mean, x–, which is

unbiased, efficient and consistent.
We can derive an equation for the interval estimate of the unknown population

mean, µ, based on the Central Limit Theorem, if the sample is selected from a normal
population or if the sample size n is greater than 30. Having more than 30 samples
allows us to assume that X

–
is approximately normally distributed with a mean and

standard deviation of:

Let us assume that we are working with a population with a known variance, σ2.
Using the notation in Fig. 8.1, we describe an interval between �zα/2 and zα/2, where
the probability of finding Z is 1 – α:

X
–

is normally distributed with mean, µ, and standard deviation, σ/��n. Therefore, we
can substitute the transformation of X

–
into a standard normal distribution, Z:

Rearranging the inequality inside the parentheses, we have:
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Replacing the estimator, X
–
, with the estimate, x–, the final equation is:

(8.3)

Equation 8.3 gives the (1 – α)100% confidence interval for the unknown population
mean, µ, with known variance, σ2. The LCL and UCL are therefore:

and the margin of error is then

Note that, if samples are taken without replacement, the standard error of the mean
can be multiplied by the finite population correction factor (see Chapter 7).

For given values of α/2 and n and a known σ, the margin of error is constant.
However, since x– is a random variable, LCL and UCL are both random variables
whose values are a function of x–. In other words, if we repeatedly draw n observations
taken from a population with a mean, µ, and standard deviation, σ, the values for the
LCL and UCL will vary randomly. In Fig. 8.2 we made 20 such draws, each time
calculating the 95% confidence interval for µ. Most (19 out of 20) of the intervals
contain or bound the population mean, µ. In general, (1 – α)100% of the means will
be within x– 	 z
/2σ/��n and, therefore, (1 – α)100% of the intervals will contain µ.
Restated, the meaning of a 95% confidence interval is that, if 100 samples of size n
are taken and intervals are constructed around each of the 100 sample means, then
95% of the intervals will contain the true population parameter, µ (or 19 out of 20
samples). Likewise, in a 99% confidence interval, only 1 out of 100 intervals
constructed would not contain µ (implying that the 99% confidence intervals must be
wider than the 95% confidence intervals).

Example 8.1. In a large plantation, diameter at breast height (dbh) measurements are
normally distributed with σ = 1.6 cm. A random sample of 16 trees was selected without
replacement and measured. The sample mean of these measurements was 12.6 cm. Find
the 95% and 99% confidence intervals for the unknown population mean dbh and their
associated margins of error.

There is a 0.95 probability that the unknown population mean of all possible dbhs will be
found between 11.82 cm and 13.38 cm.
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Fig. 8.2. 95% confidence intervals calculated from 20 sample means.

There is a 0.99 probability that the unknown population mean of all possible dbhs will be
found between 11.57 cm and 13.63 cm.

Note from the solutions that a wider interval is required for a higher degree of
confidence. For a given sample, the width is the function of α. As the value of α
decreases, the value of zα/2 increases and so does the level of confidence. In other
words, there is a trade-off between the degree of confidence and the margin of error.



In order to have a higher confidence level for a population estimate, one must sacrifice
precision in the form of a wider confidence interval.

In the previous discussion and example, the population variance, σ, was known.
However, for most practical problems, σ is unknown and, therefore, Eqn 8.3 is not
applicable. When the original population values, xi (not x–i), are approximately
normally distributed, the confidence interval can be calculated from the t distribution.
However, this is a somewhat restrictive assumption and it can be shown that t
distribution works well for many non-normal populations.

Using the notation in Fig. 8.3, our confidence limits are now constructed using
values from the t distribution:

X
–

has a t distribution with mean µ and sample standard deviation S/√n.� Therefore, we
can substitute the transformation of X

–
into a standard Student’s T:

Rearranging the inequality inside the parentheses, we have:

Replacing the estimator, X
–
, with the estimate, x

_
, the final equation is then:

(8.4)

Equation 8.4 is structurally very similar to Eqn 8.3. There are two differences: the
population standard deviation is replaced by the sample standard deviation and the 
z-values are replaced by t-values with n – 1 degrees of freedom (see Chapter 2 for
further explanation). The meaning and interpretation of the confidence intervals
calculated from Eqn 8.4 are identical to those discussed in reference to Eqn 8.3.
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Example 8.2. Suppose that in Example 8.1, the population standard deviation for dbh is
unknown, but is estimated to be 2.09 cm using the 16 observations taken. Find the 95% and
99% confidence intervals for the unknown population mean dbh and the associated margins
of error.

Based on a sample of 16 trees, there is a 0.95 probability that the unknown population mean
of all possible dbhs will be found between 11.49 cm and 13.71 cm.

There is a 0.99 probability that the unknown population mean of all possible dbhs will be
found between 11.06 cm and 14.14 cm.

Again, notice that the confidence interval is wider for the 99% level of confidence. As
the size of α decreases, we create wider confidence limits and therefore have more
confidence in our interval estimates. The 95% confidence interval from a t
distribution is also wider than that derived from a Z distribution (see Example 8.1),
simply because, in the latter case, we have more information at our disposal (in this
case, the population variance).

In general, the size of the margin of error for the estimation of the population
mean depends on three factors:

• the population or sample standard deviation;
• the level of confidence (1 – α), which determines the size of the z and t; and
• the sample size, n, which affects the size of the standard error of the mean and the

size of t.

Of these, we can control only the level of confidence and the sample size, since the
standard deviation (population parameter or sample statistic) is a natural
characteristic of the population. It can be seen from the equation that the margin of
error decreases if we increase the sample size. Hence, a required sample size can be
calculated if the desired margin of error (E), the level of confidence and the
population/sample standard deviation are known.

If we know the population standard deviation, we start with the equation for
margin of error from Eqn 8.3: 

Algebraically rearranging terms to isolate n, we have an expression for the sample size
necessary to achieve a desired margin of error when σ is known:
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Example 8.3. We want to be 95% confident that the margin of error used to estimate the
confidence interval around the population mean, µ, in Example 8.1 is 0.6 cm (in other words,
µ is bounded by an interval that is ±0.6). How large a sample is required from this stand?

E = 0.6; σ = 1.6; z0.025 = 1.96

We should take 27 or 28 samples (rounding up will give a more conservative, but costly,
result).

Since we rarely know the population standard deviation for most practical problems,
we cannot use Eqn 8.5 in these situations. If we do not know the population standard
deviation, we start with Eqn 8.4:

Rearranging terms to isolate n, we have an expression for the sample size necessary to
achieve a desired margin of error when σ is unknown:

(8.6)

Use of Eqn 8.6 is more complicated because there are two unknowns in the equation:
n and tα/2(n-1). Furthermore, t is a function of n, which creates a circular equation. To
overcome this, iteration is used to find the required sample size, beginning with the
first iteration: n1 = infinity. This is best illustrated by an example.

Example 8.4. We would like to be 95% confident that the margin of error used to estimate
the confidence interval around the population mean, µ, in Example 8.2 is 0.8 cm (in other
words, µ is bounded by an interval that is ±0.8). How large a sample is required from this
stand? Repeat the calculation for E = 0.6.

Recall s = 2.09. We start with n1 = ∞ degrees of freedom and therefore 
t0.025(∞) = z0.025 = 1.96 (using either the z-table or the t-table).

Using Eqn 8.6, we have:

We then recalculate Eqn 8.6 using n1 = 26. This means that we use 26 – 1 = 25 degrees of
freedom and t0.025(25) = 2.06 (we must use the t-table because we do not have infinite degrees
of freedom):

Now, we recalculate Eqn 8.6 using n2 = 29. This means that we use 29 – 1 = 28 degrees of
freedom and t0.025(28) = 2.05:

We can stop at this iteration because convergence has been reached in two consecutive
solutions: the n-value input into this equation matches the n-value output by it. For a
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confidence interval that has a margin of error of 0.8 cm on either side of the population mean,
a sample size of 29 is required.

For E = 0.6, we again start with n1 = ∞ and therefore t0.025(∞) = z0.025 = 1.96:

Because the t-values do not change considerably between 30 and ∞ degrees of freedom (see
Table A.5 in Appendix A), we do not need to continue iterating and conclude that the required
sample size is 47. In general, when the input to Eqn 8.6 is ∞ and the output is > 30, we stop
the iteration process. Of course, if the calculated sample size is not economically feasible,
either the desired margin of error or the level of confidence – or both – must be manipulated.

Although more complicated, Eqns 8.5 and 8.6 can also be derived for cases of
sampling without replacement from a finite population.

(8.5a)

(8.6a)

where N = size of the finite population.
As a final note on sample size calculation, sometimes it is the case that we do not

know the population standard deviation. Moreover, we do not have an estimate of the
sample standard deviation. In these cases, the sample standard deviation can be
crudely approximated as (range)/4, provided that the distribution of the population is
not too skewed. One can also look to previous research on the variable in question to
come up with a reasonable estimate of the standard deviation.

8.4 Estimating Proportions

The point estimator of the unknown population proportion, p, is the statistic, P̂, and
the point estimate is the numeric value of a sample proportion, p̂ = x/n, where x is the
number of successes in n trials in a binomial experiment. An interval estimator of the
unknown population proportion, p, can be derived from the sampling distribution of
the proportions, provided that n is greater than 30 and that p is not very close to 0 or
1. In Chapter 7, we gave the equations for the mean and variance of proportions from
a binomial experiment:

Using the notation in Fig. 8.1, the confidence interval for a standard Z variable is:

From Chapter 7, we know that when n is greater than 30, the binomial distribution
approaches the normal distribution. The normal transformation, therefore, is:
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Rearranging the inequality inside the parentheses and replacing the estimator, P̂, with
the sample proportion, p̂, we have:

When p and q are unknown (which is usually the case), we use their estimates, p̂and
q̂. This gives a good approximation and the final equation is:

(8.7)

Example 8.5. In a random sample of 60 panels in a plywood mill, 27 are grade B. Find the
90% and 95% confidence intervals for the unknown population proportion of grade B panels
in production.

z0.05 = 1.645 z0.025 = 1.96

There is a 0.90 probability that the unknown population proportion of all plywood panels
graded B will be found between 0.344 and 0.556.

There is a 0.95 probability that the unknown population proportion of all plywood panels
graded B will be found between 0.324 and 0.576.

The sample size necessary for a desired margin of error and a specified level of
confidence can be calculated in the same manner as the sample mean.

From Eqn 8.7, the margin of error is:
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Rearranging terms to isolate n, we have an expression for the sample size necessary to
achieve a desired margin of error when sampling for proportions:

(8.8)

This equation implicitly assumes that we have a sample, n ≥ 30. In practice, this is
usually the case for proportions.

Example 8.6. We want to be 99% confident that the margin of error used to estimate the
confidence interval around the population proportion, p, in Example 8.5 does not exceed 0.1.
How large a sample is required? Note that in this problem, we use the phrase, ‘does not
exceed’, which is tantamount to an equality in the context of sample size problems.

For p̂ and q̂  we use our estimates from Example 8.5 and z0.005 = 2.58.

We should take 165 samples to maintain a maximum margin of error of 0.1 with a 0.99
confidence level.

For Eqn 8.8, we must have an estimate of p̂, the sample proportion. In some
situations, it may be very difficult, or impossible, to obtain an estimate of p̂. In these
cases, a value of p̂ = 0.5 can be used to provide a conservative estimate, but may
overestimate n, since the product of p̂ q̂ is maximized when p̂ = q̂ = 0.5.

8.5 Estimating the Difference between Two Means

Independent samples

The point estimator of the difference between two unknown population means, 
µ1 – µ2, is the statistic, X

–
1 � X

–
2. The estimate is the numeric value of the difference of

two sample means, x–1 � x–2, calculated from two independent samples of sizes n1 and
n2, respectively, from the two populations.

If the independent samples are selected from normal populations with known
population variances (σ2

1 and σ2
2), the interval estimator or confidence interval can be

derived from the sampling distribution of the differences between two sample means.
Again, using the notation in Fig. 8.1, a confidence interval for a standard Z random
variable is:

X
–

1 � X
–

2 is normally distributed with mean, µ1 – µ2, and standard deviation,

We can, therefore, substitute in the transformation of X
–
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2

into a standard normal distribution, Z:

Substituting for Z:
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Rearranging the inequality inside the parentheses and substituting the estimate,
x–1 � x–2, for the estimator, X

–
1 � X

–
2, we get the final equation:

(8.9)

Since Eqn 8.9 contains the two population variances, its practical application is very
limited. Instead, the confidence interval for the difference of two unknown population
means, µ1 – µ2, is generally calculated using the sample variances and the t
distribution.

Starting with the notation from Fig. 8.3, the confidence interval for a standard T
random variable is:

In this case, X
–

1 � X
–

2 has a t distribution with mean, µ1 – µ2, and standard deviation,
sX

–
1 � X

–
2
. We can therefore substitute the transformation of X

–
1 � X

–
2 into a Student’s t

distribution, T:

Rearranging the inequality inside the parentheses and substituting the estimate, 
x–1 � x–2, for the estimator, X

–
1 � X

–
2 we get the final confidence interval formula for the

difference between two means when the population variances are unknown:

(8.10)

To use Eqn 8.10 above, we must distinguish between three cases, which vary
according to sample sizes and our assumptions regarding the equality of the two
population variances (see Chapter 7). For each case, the standard error of the
difference of two means and the degrees of freedom are calculated differently. As a
reminder, the three cases are:

Case 1. Both n1 and n2 ≥ 30 (large sample sizes).

and ν = ∞.

Case 2. n1 or n2 or both < 30 (small sample sizes) and it is assumed that σ2
1 = σ2
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Case 3. n1 or n2 or both < 30 (small sample sizes) and it is assumed that σ2
1 ≠ σ2

2.

b. ν = smaller of n1 – 1 or n2 – 1.

Again, the calculation in a is the more precise alternative; however, b suffices for most
practical applications.

Example 8.7. Sawmill managers are interested in knowing the dimensions of logs arriving at
their mills. Of particular interest are the diameters of the butt and top ends of the logs. A study
of the top diameter on two lots of logs was carried out and the measurements from 42
randomly selected logs in Lot 1 and 36 in Lot 2 are summarized below. Find the 95%
confidence interval for the difference of the two unknown population means.

We use Case 1, since n1 and n2 > 30.

There is 0.95 probability that the unknown difference of the two population means is between
–4.10 and –1.30. The practical interpretation of this result is as follows. Since zero is not
included in the interval, we can conclude that µ1 ≠ µ2 with 95% confidence. Also, since the
intervals are negative, we can conclude that µ1 < µ2 with 95% confidence.
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Example 8.8. From the two lots analysed above, log volume was measured on a subset of
samples. The mean volume of 12 sample logs from Lot 1 was 1.72 m3 with a standard
deviation of 0.56 m3, and the mean volume of 8 sample logs from Lot 2 was 1.93 m3 with a
standard deviation of 0.61 m3. Find the 90% and the 95% confidence interval for the
difference between the two unknown population means.

Since n1 and n2 < 30, we either use Case 2 or Case 3. Let us assume that σ1
2 = σ2

2 (this
assumption will be confirmed in Example 8.13) and, therefore, we use Case 2.

There is a 0.90 probability that the unknown difference of the two population means is
between –0.668 and 0.248.

There is a 0.95 probability that the unknown difference of the two population means is
between –0.767 and 0.347.

Since zero is included in both intervals, we can conclude that µ1 = µ2 with 90% (or 95%)
confidence.

Example 8.9. In Example 7.12 (see Chapter 7), we described a study where biomass
production was measured on groups of seedlings under normal and artificial lighting. The
observations are summarized below. Find the 95% confidence interval for the difference
between the two unknown population means.

Since n1 and n2 < 30, we either use Case 2 or Case 3. Let us assume that σ1
2 ≠ σ2

2 (this
assumption will be confirmed in Example 8.14) and, therefore, we use Case 3.

Using the simpler procedure for determining degrees of freedom, (b): ν = 9, the smaller of 12
– 1 and 10 – 1. Then,
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Since zero is not included in the interval, we can conclude that µ1 ≠ µ2 with 95% confidence.
Furthermore, since the difference between µ1 and µ2 is positive, we can conclude that 
µ1 > µ2 with 95% confidence.

The meaning and interpretation of confidence intervals for the difference of two
population means are very similar to those for one population mean and for one
population proportion. The width of the confidence interval depends on three factors
that we can control: the level of confidence and the two sample sizes, n1 and n2.
Although sample size equations can be derived from the desired margin of error, they
are much more complicated than those for single means and proportions and,
therefore, are not discussed here.

Dependent samples

In Chapter 7, we discussed a special case of the sampling distribution of the
differences of two means, where the samples taken from two populations are not
independent. Samples are considered to be dependent when observations occur in
pairs or are matched by some special characteristic. As a result, the topic is discussed
under the heading paired observations in some basic statistics books.

In the case of paired or dependent observations, the point estimator of the
difference of two unknown population means, �1 � �2, is D

–
, and the point estimate

is the numeric value, d
–
, calculated from the two dependent samples (see Chapter 7).

Since we are dealing with one random variable, D
–

, the derivation of the
confidence interval is identical to that of the population mean from one population.
The final equation to calculate a confidence interval for the difference of two means
from dependent populations, where �d

– is known or n ≥ 30, is:

(8.11)

If n < 30 or �d
– is not known, the equation is as follows:

(8.12)

where n = number of pairs.
Because the population variance is hardly ever known, Eqn 8.11 has mainly

theoretical value. Thus, we present an example for Eqn 8.12 only.

Example 8.10. A study was conducted to find out whether there is a systematic difference
in the dry weights (in grams) of seedlings measured with two different scales. Eight seedlings
were weighed:

Seedling Scale 1 Scale 2 di

1 12.15 12.17 –0.02
2 9.34 9.35 –0.01
3 14.23 14.26 –0.03
4 10.16 10.21 –0.05
5 16.87 16.92 –0.05
6 11.15 11.13 0.02
7 16.15 16.23 –0.08
8 22.60 22.66 –0.06
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Find the 99% confidence interval for the difference of the two unknown population means.
From Eqns 7.24 and 7.25 (see Chapter 7), we have:

Since zero is included in the interval, we can conclude that there is 0.99 probability that the
two unknown population means are equal. In other words, the accuracy of the two scales is
the same.

8.6 Estimating the Difference of Two Proportions

The point estimator of the differences of two unknown independent population
proportions, p1 – p2, is the statistic, P̂1 � P̂2. The point estimate is the numeric value of
the difference between two independent sample proportions taken from the two
binomial populations, p̂1 � p̂2 with sample sizes of n1 and n2, respectively.

Like the difference between two population means, the interval estimator of the
difference between two unknown population proportions, p1 – p2, can be derived
from the sampling distribution of the differences between two sample proportions,
provided that both n1 and n2 are greater than 30 and that both p1 and p2 are not very
close to 0 or 1.

Using the notation in Fig. 8.1, the confidence interval for a standard Z variable is:

From Chapter 7, we know that when both n1 and n2 are greater than 30, the
difference of two binomial variables is approximately normal. We also know, from
Chapter 7, the equations for the mean and variance of the difference of two
proportions:

Rearranging the inequality inside the parentheses and replacing the estimator, P̂1 � P̂2,
with the estimate, p̂1 � p̂2 the final equation is:
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(8.13)

Example 8.11. We would like to compare two stands of mixed forest, in terms of the
proportion of western hemlock trees present. In stand 1, 15 out of 60 trees are western
hemlock, while in stand 2, 10 out of 50 trees examined are western hemlock. Find the 99%
confidence interval for the difference between the two unknown population proportions of
western hemlock trees.

There is a 0.99 probability that the difference of the two unknown population proportions is
between –0.157 and 0.257. Since zero is included in the interval, we can conclude that the
difference between the two unknown population proportions is likely equal to zero.

The meaning and interpretation of the confidence interval for the difference of two
population proportions is very similar to that of the difference between two
population means. Its width depends on three factors that we can control: the level of
confidence and the two sample sizes, n1 and n2. Although a sample size equation can
be derived from the margin of error, it is more complicated than the ones used for
single means and proportions. Therefore, it is not discussed in this book.

8.7 Estimating the Variance

The point estimator of the unknown population variance, σ2, is the statistic, S2, and
the point estimate is the numeric value of the sample variance, s2.

An interval estimator of the unknown population variance can be derived from
the sampling distribution of the sample variances (see Chapter 7) and its standardized
form, the χ2 (chi-squared) distribution (Fig. 8.4).

Using the notation in Fig. 8.4, the confidence interval for a standard χ2 variable
is:

From Chapter 7 (see Example 8.12), we know that S can be transformed into a
standard χ2 random variable with the following equation:
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(8.14)

Example 8.12. The sample standard deviation of the 16 dbh measurements described in
Example 8.2 is 2.09 (s2 ≈ 4.37). Find the 90% and 95% confidence intervals for the unknown
population variance.

s2 ≈ 4.37 χ2
0.05(15) = 25.0 χ2

0.95(15) = 7.26

χ2
0.025(15) = 27.5 χ2

0.975(15) = 6.26

There is a 0.90 probability that the unknown population variance is between 2.62 and 9.03.

There is a 0.95 probability that the unknown population variance is between 2.38 and
10.47.
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hence,  substituting for ,  we have:

Rearranging the inequality inside the parentheses, we have:
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Fig. 8.4. The χ2 distribution.



The meaning of the confidence interval is that there is a (1 – α) probability that the
unknown population variance is contained in the interval between the LCL and UCL.
In other words, if the sample variance is calculated from repeated samples of size n
from a population with an unknown variance, σ2, and the (1 – α)100% confidence
interval is calculated using Eqn 8.14, then (1 – α)100% of the intervals will contain σ2.

Since the χ2 distribution is not symmetric like the Z or t distributions, the margin
of error and the sample size calculation for estimating the population variance are not
readily available and will not be discussed in this book.

8.8 Estimating the Ratio of Two Variances

The point estimator of the ratio of two unknown population variances, σ1
2/σ2

2, is the
statistic, S1

2/S2
2. The point estimate is the numeric value of the ratio of two sample

variances, s1
2/s2

2, based on n1 and n2 samples from the two populations, respectively.
To derive the confidence interval for σ1

2/σ2
2, we use the sampling distribution of

the ratio of two variances and its standardized form (Fig. 8.5), the F distribution (see
Chapter 7).

Using the notation in Fig. 8.5, the confidence interval for a standard F variable is:

From Chapter 7, we know that S1
2/S2

2 can be transformed into a standard F random
variable with the following equation where:

Hence, substituting for F and rearranging the inequality inside the parentheses we
have:
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Replacing the estimator, S2
1/S

2
2, with the ratio of two sample variances, s2

1/s
2
2 the final

equation is:

(8.15)

Example 8.13. In Example 8.8, the variances of log volumes from two lots were s1
2 ≈ 0.314

and s2
2 ≈ 0.372, based on n1 = 12 and n2 = 8 observations. Find the 95% confidence interval

for the ratio of the two unknown population variances, σ1
2/σ2

2.

n1 = 12 s1
2= 0.314 F0.025(7, 11) = 3.76

n2 = 8 s2
2 = 0.372 F0.025(11, 7) = 4.72 (by interpolation)

There is a 0.95 probability that the ratio of the two unknown population variances is between
0.179 and 3.174. Since 1.0 is included in the interval, we can conclude that σ1

2 = σ 2
2 with a

probability 0.95 and that the assumption that we made regarding the equality of variances in
Example 8.8 is correct. Note that, to make this determination, we relate the interval to 1
instead of 0 (as in the previous cases), because we are now dealing with a ratio and not
differences.

Example 8.14. In Example 8.9, the variances of biomass production under two types of lighting
were s1

2 = 1.44 and s2
2 = 0.25, based on n1 = 12 and n2 = 10 observations. Find the 90% and

95% confidence intervals for the ratio of the two unknown population variances, σ1
2/σ2

2.

n1 = 12 s1
2 = 1.44 F0.025(9, 11) = 3.59 F0.025(11, 9) = 3.82 (by interpolation)

n2 = 10 s2
2 = 0.25 F0.05(9, 11) = 2.90 F0.05(11, 9) = 3.10 (by interpolation)

There is a 0.95 probability that the ratio of the two unknown population variances is between
1.508 and 20.678.
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There is a 0.90 probability that the ratio of the two unknown population variances is between
1.858 and 16.704. Since 1.0 is not included in either the 95% or 90% confidence intervals, we
can conclude that σ1

2 ≠ σ2
2 with a probability of 0.95 (or 0.90) and that the assumption that we

made regarding the inequality of variances in Example 8.9 is correct. Note that the 95%
interval is wider than the 90% interval, which means we have more confidence, but have
traded this off against a larger range.

The meaning of the confidence interval is that there is a (1 – α) probability that the
ratio of the two unknown population variances, σ1

2/σ2
2, is contained in the interval

between the LCL and UCL. In other words, if the sample variances are calculated
from repeated samples of sizes n1 and n2 from two populations with unknown
variances, and the (1 – α)100% confidence interval is calculated from each ratio, 
(1 – α)100% of these intervals will contain the real ratio, σ1

2/σ2
2.

Like the χ2 distribution, the F distribution is not symmetric as in the cases of the
Z or t distributions. Therefore, the margin of error and the sample size calculations
are not readily available and will not be discussed in this book.

Exercises

Section 8.1

8.1. From the sampling distribution constructed in Exercise 7.5 (see Chapter 7),
show that X

–
is an unbiased estimator of µ.

8.2. From the information given in Exercise 7.5 (see Chapter 7), show that S2 is an
unbiased estimator of σ2.

8.3. If s�2 is calculated as:

use the procedure in Exercise 8.2 to show that E(s�2) ≠ σ2. What can you conclude
from this?

8.4. Repeat Exercise 8.2 for the standard deviation, S. Can you conclude that S is an
unbiased estimator of σ?

Section 8.2

8.5. A certain type of light bulb has a normally distributed life length with a known
standard deviation of 45 hours. A test of 25 randomly selected bulbs resulted in a
mean life length of 975 hours.

a. Calculate the 95% and 99% confidence intervals for the unknown population
mean and compare the two intervals.

b. Calculate and compare the margins of error in Exercise 8.5a.
c. How large a sample is required if we want to be 95% confident that the sample

mean will be within 15 h of the true mean?
d. Assume that the sample size of light bulbs is increased from 25 to 50. Find the

95% confidence interval and compare it to the 95% confidence interval found in
Exercise 8.5a.
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8.6. Prices per thousand board feet of spruce–pine–fir lumber are normally
distributed. A random sample of 15 prices was taken from the past year:

492 621 521 561 518
571 594 629 603 608
538 562 546 532 576

a. Find the 90% and 95% confidence intervals for the unknown population mean
of the price per thousand board feet. Compare the two intervals.

b. Calculate the margins of error in the two intervals calculated in Exercise 8.6a.
c. How large a sample should we take to be 99% confident that the sample mean

will not differ from the true mean by more than US$10?

8.7. The population of diameter at breast height (dbh) measurements in a certain
forest stand is approximately normal. The following data are dbh measurements (in
cm) from randomly selected trees in this stand:

25.6, 28.9, 19.8, 36.9, 40.9, 33.2, 30.1, 40.7, 35.5, 27.3, 23.7, 29.0

a. Find the 95% confidence interval for the mean dbh.
b. How large a sample should be taken to be 95% confident that the sample mean

will not differ from the population mean by more than 3.0 cm?
c. Repeat the calculation in Exercise 8.7b for the case when 99% confidence is

required and compare your results.

Section 8.3

8.8. A random sample of 80 independent wood specimens was treated with a fire-
retardant chemical and the treatment was effective on 68 of them.

a. Find the 95% and 98% confidence intervals for the unknown population
proportion of effective treatments of the chemical. Compare the two intervals.

b. How large a sample should you take if you want to be 95% certain that the
sample proportion of effective treatments will be within 0.06 of the true
proportion?

8.9. In a Douglas-fir plantation, 78 of 105 randomly selected seedlings survived 1
year after planting.

a. Find the 90% and 95% confidence intervals for the unknown population
proportion of survival. Compare your results.

b. Find the sample size needed if we want to be 95% confident that the sample
proportion will be within 0.04 of the real proportion.

Section 8.4

8.10. A logging company is trying to decide whether to purchase brand A or brand B
tyres for their trucks. The population standard deviations supplied by the
manufacturer are 8500 km for brand A and 9800 km for brand B. The logging
company wishes to compare the two brands and conducts an experiment based on
prior records. They look at the service lives (in km) of 12 tyres from brand A and 18
tyres from brand B and find the sample means to be 68,543 km and 61,230 km,
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respectively. Find the 95% and 99% confidence intervals for the difference of the
unknown population means, (µA – µB), and compare the two intervals. Draw some
practical conclusions from the results.

8.11. A study was conducted on profits derived from the primary and secondary
wood products sectors. The results (in millions of dollars) are summarized below:

Primary sector 10 31.0 103.3
Secondary sector 9 47.7 262.5

a. Find the 95% and 99% confidence intervals for the difference of the two
unknown population means. Assume that σ2

1 = σ2
2 and that the populations are

approximately normally distributed. Compare the two intervals. Hint: data
from the table above need to be manipulated to solve this problem.

b. Draw some practical conclusions from the results in Exercise 8.11a.
c. How large a sample must be taken (assume n1 = n2) from each of the two

populations if we want to be 95% confident that the difference of the two
sample means will not differ by more than US$1,000,000 from the true
difference of the two population means?

8.12. The tensile strengths of two types of commercial fishing lines were compared.
The mean tensile strength of brand A was 25.5 kg with a standard deviation of 3.6 kg
based on 45 samples, while 50 samples from brand B had a mean tensile strength of
28.9 kg with a standard deviation of 4.7 kg. Find the 90% and 95% confidence
intervals for the difference of the two unknown population means. Draw some
conclusions.

8.13. To test the effect of controlled grazing versus continuous grazing, 16 and 15
steers were subjected to each of these treatments, respectively. Weight gains (in kg)
for each animal are given below. Assume that σ2

1 ≠ σ2
2 and that the populations are

approximately normally distributed. Find the 95% and 99% confidence intervals
for the difference of the two unknown population means and draw some
conclusions.
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Controlled grazing Continuous grazing

130 120 61 111 93 44 62 77 58 88
56 85 128 73 56 61 42 57 70 38
65 71 109 122 85 66 82 81 54 81

131

8.14. The height increments (in cm) of 8 spruce trees were measured at the end of the
growing season in 2002 and in 2003, as shown below. Assume that the two populations
are approximately normally distributed. Find the 95% confidence interval for the
difference of the two unknown population means and draw some conclusions.



Section 8.5

8.15. Two lots of logs in the storage area of a sawmill are infested by bark beetles. In
random samples of 45 logs from Lot 1 and 40 logs from Lot 2, 10 and 12 logs were
infested, respectively. Find the 95% and 99% confidence intervals for the difference of
the two unknown population proportions. Draw some conclusions.

8.16. Regeneration surveys were performed in two areas, with 80 and 110 randomly
selected plots, respectively. In the first area, 75% of the plots showed satisfactory
regeneration, while in the second, 80% of the plots showed satisfactory regeneration.

a. Construct 90% and 95% confidence intervals for the difference of the two
unknown population proportions. Draw some conclusions.

b. How large a sample should we take (assume n1 = n2) from each of the two
binomial populations to be 95% confident that the difference of the two sample
percentages does not vary by more than 10% from the true difference?

Section 8.6

8.17. Find the 95% and 99% confidence intervals for the population variance of dbh
measurements in Exercise 8.7. Draw some conclusions.

8.18. Construct the 90% and 95% confidence intervals for the population variance
of the lumber price measurements in Exercise 8.6. Draw some conclusions.

8.19. A study was carried out to investigate the variation of rainbow trout weights in
a certain creek. The weights (in kg) of 10 randomly selected fish are listed below:

0.78, 0.45, 0.35, 0.76, 0.57, 0.42, 0.33, 0.68, 0.66, 0.42

Assume that the population is approximately normally distributed. Find the 95%
confidence interval for the unknown population variance. Draw some conclusions.

Section 8.7

8.20. Construct 95% and 99% confidence intervals for the ratio of the two unknown
population variances for the primary and secondary wood products sectors, as
described in Exercise 8.11. Draw some conclusions. Was the assumption of equal
variances justified?
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Tree No. 2002 2003

1 31.0 26.3
2 29.5 25.1
3 28.7 24.9
4 30.5 25.9
5 27.0 23.3
6 32.3 26.7
7 27.7 24.2
8 29.9 26.5



8.21. Find the 90% and 95% confidence intervals for the ratio of the two unknown
population variances for the weights of steers given controlled versus continuous
grazing treatments, as described in Exercise 8.13. Draw some conclusions. Was the
assumption of unequal variances justified?
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In the previous chapter (Chapter 8), we discussed procedures to estimate unknown
population parameters based on a sample from the population. In this chapter, we will
learn how to decide whether a statement or claim made about a parameter or a certain
characteristic of a population is plausible, based on some sample data from the
population. For example, a manufacturer might claim that the mean life expectancy
of their chainsaws is at least 5 years. This claim is a hypothesis about the mean of the
population of the chainsaws they produce. Sample data can be collected from this
population to test this claim. This is called hypothesis testing, and it is one of the most
commonly used procedures in applied statistics. We will introduce the general concept
of hypothesis testing and apply this theory to various tests concerning means,
proportions, differences between two means, differences between two proportions,
variances and ratios of two variances.

9.1 Statistical Hypothesis and Test Procedures

A statistical hypothesis is a claim or a statement about some characteristic of a
population. For example, a silviculturist may claim that the average height of a young
Douglas-fir stand is 11.5 m. A park manager may say that 80% of the visitors in a
national park in Alberta are Canadian. A wood scientist may claim that the specific
gravity measurements of dry western hemlock wood are normally distributed, or that
there is a simple linear relationship between the specific gravity and the modulus of
rapture in Sitka spruce wood specimens. These are all claims about characteristics of
populations. Some are concerned with a parameter – for example, means or
proportions – while others are concerned with the distribution of the measurements
or the relationship between two (and possibly more) random variables.

Whether a statistical hypothesis is false or true will never be known for certain
unless all elements of the population are examined. In many cases, this is impossible or,
more often than not, simply impractical. Thus, the decision about whether a statistical
hypothesis is true or false must be based on a sample from the population. In decision
making or statistical testing, we always have two contradictory hypotheses. One of
these is the null hypothesis, denoted by H0, which is a statement about a characteristic
of the population assumed to be true. The other one, which is contradictory to the null
hypothesis, is called the alternative hypothesis, and is denoted by H1.

In common parlance of science, if H0 is rejected, we accept H1. On the other

© CAB International 2008. Introductory Probability and Statistics: Applications for 173
Forestry and Natural Sciences (A. Kozak, R.A. Kozak, C.L. Staudhammer and S.B. Watts)

9 Tests of Hypotheses
Making Claims about Population
Parameters



hand, because the truth of the null hypothesis is not known to us unless we examine
the entire population, we can never really accept H0. Nonetheless, as in many other
books, the term ‘accept H0’ will be used here to connote that the statement being
made is, in fact, true. However, it should be noted that acceptance of H0 implies that
we do not have enough evidence to reject it. Thus, in many statistical texts, the phrase,
‘we do not reject H0’ is used in place of ‘accept H0’.

The above situation is analogous to a criminal trial. In most judicial systems, a
defendant is innocent until proven guilty. In other words, a hypothesis for a criminal
trial can be written as:

H0: the defendant is innocent

H1: the defendant is guilty.

Sample information in the form of evidence is provided during the trial. If it is
consistent with the assumption of innocence, H0 cannot be rejected. A lack of
evidence, however, does not necessarily prove that the defendant is innocent and
therefore H0 can never truly be accepted. On the other hand, if the evidence provided
is inconsistent with the assumption of innocence, H0 is rejected and H1 is accepted;
the defendant is convicted.

We will demonstrate the general process used in testing statistical hypotheses with
an example. Suppose that a manufacturer claims that the life expectancy of its brand
of 9-volt batteries is 240 days, with a standard deviation of 30 days. These numbers
are the manufacturer’s specifications (or claims) and are assumed to be the population
mean, µ, and population standard deviation, σ. It is also assumed for the purposes of
this example that the life expectancy of these batteries is approximately normally
distributed. Let us assume that we have enough of these batteries installed in smoke
alarms at our plant that we can test the manufacturer’s claim regarding the life
expectancy. Our H0 and H1 will be:

H0: µ = 240 (the manufacturer’s claim)

H1: µ < 240.

In order to carry out the test properly, H0 must always be equality; that is, a
population parameter must be set equal to a hypothetical or assumed constant. H1 is
always an inequality and can take one of three different forms: µ < 240, or µ > 240,
or µ ≠ 240. Note that only one of these alternative hypotheses can be used in a single
test, but we selected the first one because, as buyers of the batteries, we would prefer
to reject H0 if the chosen sample indicates that the mean life expectancy is
considerably less than 240 days. In other words, practically speaking, we would not
really mind if the average battery life exceeded 240 days, so we do not test this. On
the other hand, if the manufacturer were to carry out this test, the second alternative
hypothesis would be selected (µ > 240) because they would prefer to reject H0 if the
sample indicates that the mean is considerably more than 240 days. If the batteries
lasted for significantly longer than 240 days, this would indicate that the product is
considerably better than the specifications say and that the batteries potentially could
sell for a higher price. The first two hypotheses tests are called one-tailed tests and the
last is called a two-tailed test. Each will be discussed in further detail later on.

As stated above, the alternative hypothesis is always an inequality, while the null
hypothesis is always an equality. This allows us to construct the sampling distribution
with a fixed centre of the statistic being tested (Fig. 9.1).
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Assume that a sample of 16 batteries was selected and tested to observe their life
expectancy. After calculating the sample mean from the 16 observations, the question
is: ‘How low a value do we need to observe to rightfully reject our H0?’ An
examination of the sampling distribution of all possible sample means based on 16
observations from a population with a mean µ = 240 and σ = 30 (Fig. 9.1) does not
answer our question because, in theory, the sample mean (in a sampling distribution)
is distributed such that it can take on any value between �∞ and �∞. Yet, we need to
make a decision. To do so, an artificial or arbitrary value between �∞ and 240 (the
centre of the distribution) is selected, below which the null hypothesis is rejected. This
artificial value is called the critical value. The region between �∞ and the critical value
is called the critical region, or rejection region, and the region between the critical
value and �∞ is called the acceptance region, or in other texts, the non-critical region
(Fig. 9.2). It should be clear from Fig. 9.2 that when H0 is rejected, H1 is accepted, and
a certain amount of error is committed (since the mean can actually take on any value
in this distribution). This error is equal to the area under the curve in the rejection
region (Fig. 9.2) and is called type I error.

Type I error is the probability of rejecting H0 when it is true.

The size of type I error is arbitrary in so much as it is selected by the person carrying
out the statistical hypothesis test (or decision). It is oftentimes referred to as the level of
significance, or significance level, and statisticians generally agree on using 0.1, 0.05 or
0.01 (more on this decision later). However, if desired, any other level can be used.

While making a decision about the rejection or acceptance of H0, it is possible to
commit another type of error, known as type II error.

Type II error is the probability of accepting H0 when it is false.
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Fig. 9.1. Sampling distribution of the means of battery lives based on 16 observations.

Fig. 9.2. Acceptance and rejection regions for 
 = 0.05, one-tailed test.
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To explain type II error, we must make an assumption about knowing the real
population mean (in reality, this would never be the case). For instance, assume that the
real mean is not 240 (µ0) days as the battery manufacturer claims, but is actually only
220 (µ1) days, with the same standard deviation of 30 days (false advertising!). With this
information in hand, we can construct another sampling distribution centred at 220.
From Fig. 9.3, it can be seen that a part of this new, ‘true’ sampling distribution overlaps
with the acceptance region of H0 to the right of the critical value in the original sampling
distribution, centred at 240. The probability between the critical value and �∞ (using
the true sampling distribution) is about 0.1539, which is calculated as follows:

The standard error of the mean of the sampling distribution (Fig. 9.1) is:

Using a significance level of α = 0.05, the z = –1.645 value needs to be converted to
the units of the mean, x, where 240 is the claimed population mean and 7.5 is the
standard error of the mean:

x ≈ 227.66 is the critical value (Fig. 9.2).

Now, we can calculate �, the probability of getting a higher value than x, assuming we
know the real value of µ = 220:

from Table A.3 (see Appendix A).
If 240 days is, in fact, the true mean and the sample of 16 batteries yields a sample

mean of 225.2 days, we would reject H0 and accept H1 because the value falls in the
critical region. Thus, we would be committing type I error. On the other hand, if 220
days is, in fact, the true mean and the sample results in a mean value of 234.9 days,
we would ‘accept’ H0 (or we would say that we do not have enough evidence to reject
it). Thus, we would be committing type II error. In either case, there is a probability
that our decision may lead to the wrong conclusion (see Fig. 9.4).
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Type I error (or level of significance) is usually denoted by α, while type II error is
denoted by � (see Fig. 9.3), and the value of 1 �� is called the power of the test. While
the value of α is decided on by a researcher or statistician, the value of � is rarely
known to us because its value depends on knowledge that we generally do not
possess: the value of an alternative hypothesis (220 days in our example). Even
though the value of � is not available in most cases, we should at least be aware of the
factors that affect the size of � error:

1. α: if we reduce the size of α, the value of � increases. This statement can be verified
with Fig. 9.3 as a shift of the critical value to the left would increase the value of �.
This trade-off of errors is the reason why reduction of type I error to a very small level
is not advisable.
2. n: assuming a constant distance between µ1 and µ0, an increase of the sample size,
n, decreases the standard error of the mean (σ x–), or the spread of both sampling
distributions (the ones around µ0 and µ1). This will reduce the overlap between the
two sampling distributions. An increase of sample size reduces the area on the right
hand side of the critical value of the sampling distribution around µ1, and therefore
reduces �.
3. Distance between µ1 and µ0: from Fig. 9.3, we see that, as this distance increases,
the value of � decreases.

While the last factor cannot be controlled by the decision maker, the decisions
regarding the first two play a very important role in statistical hypothesis testing.

Example 9.1.

a. For the above example, calculate type II error using α = 0.01. 

If α = 0.01, we use z0.01 = –2.33. Then, the critical value can be calculated as:

This gives x = 222.525. To calculate �, we must find the probability of getting a sample mean
> x:

This tells us that the � error is more than double (from 0.1537 to 0.3669) when α is changed
from 0.05 to 0.01.
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b. Repeat the above calculation of type II error for α = 0.05 and n = 100. Note that the
standard error of the mean will be different.

If n = 100 instead of 16 and α remains at 0.05, the critical value is

From here, x = 235.065. Note that as we increase the sample size from 16 to 100, the
standard error of the mean reduces from 7.5 to 3.0.

Calculation of �:

Thus, with an increased sample size, the � error of 0.1539 is reduced to approximately zero.
In other words, the overlap of the two sampling distributions becomes negligible.

The results in Example 9.1 show that a change of sample size and a change of α affect
the size of �. In some statistics books, the values of � are calculated for a range of
values of µ1, n and α, and their plotted form is called the operating characteristic, or
(OC) curve, a useful tool for understanding how these factors interact. OC curves are
not widely used in natural resources and forestry applications; therefore, we will not
discuss their construction in this book.

As stated earlier, the alternative hypothesis can take on one of the three forms:

H1: µ < 240, or µ > 240, or µ ≠ 240.

In the first case, the entire critical region (α) lies in the left tail of the sampling
distribution, while for the second case, the entire critical region (α) lies in the right
tail. For the third case, the critical region is divided into two equal parts (α/2) and they
lie in each tail of the sampling distribution (Fig. 9.5).

In practice, testing is not carried out in the units of the parameter (see Fig. 9.2), as
it is faster and more convenient to convert the estimate (in this case, the sample mean)
into z-, t-, χ2- or F-values and then make the decision regarding H0 using Z, t, χ2 or F
distributions (Fig. 9.6). In our example, the sample mean of 225.2 would be converted

to z-values, such that the equivalent z-value for 225.2 is:

This value would then be compared to the standard z-value corresponding to the α level.
For α = 0.05, this value is z0.05 = –1.645. Therefore, we would reject H0 since –1.97 is in
the rejection region. This calculated z-value (–1.97) above is called a test statistic.

The following is a step-by-step guide for formulating and testing statistical
hypotheses. We recommend that students follow these steps, especially as they are
learning how to conduct hypothesis tests:
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1. Formulate H0. This must always be an equality statement.
2. Formulate H1. Use only one of the three possible inequalities.
3. Set level of significance. One of 0.1, 0.05 or 0.01 is recommended.
4. Select the equation to be used to calculate the test statistic (e.g. we used Z in our
example; others will be introduced in the following sections).
5. Take sample(s) and calculate estimate(s), if not already provided.
6. Find the critical value(s). This will be a z-, t-, χ2- or F-value(s).
7. Compute the test statistic.
8. Make a decision regarding H0. Usually, this is more easily understood with a picture.
9. Draw some conclusions.

In the following sections, we will present the most important hypotheses tests used in
statistics. We will present these tests by way of some practical examples and follow the
step-by-step guide presented above.

Note that several of the equations presented will contain the standard error of the
statistic being tested. While these standard errors are presented without their finite
population correction factors (to make computation easier), if a sample used in a
given test is taken from a finite population without replacement, a correction of the
standard error of the statistic is necessary.

9.2 Tests Concerning Means

In this section, we will discuss two tests concerning population means. In both tests,
the unknown population mean is assumed to be equal to a constant, c, against an
alternative hypothesis that takes on one of the three different forms stated in the
previous section.

H0: µ = c,

H1: µ ≠ c; or µ < c; or µ > c.

If the population variance is known, the test statistic is calculated as:

(9.1)

Since the population variance is known, the critical values can be obtained from the z-
table (see Table A.3, Appendix A). Note that the last line of the t-table (corresponding

z
x c
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x c

X

= − = −

σ σ

Tests of Hypotheses 179

Fig. 9.6. Critical regions in z units, one-tailed test.



to infinite degrees of freedom in Table A.5, Appendix A) is equivalent to the z-table and
is often used to save time when looking up the critical z-values in hypothesis testing.

If the population variance is unknown, it must be estimated from the sample and
the test statistic is then calculated as:

(9.2)

The critical values are obtained from the t-table (see Table A.5, Appendix A) with 
(n – 1) degrees of freedom.

The use of Eqn 9.1 assumes that the sample is selected from a normal population
or that the sample size is greater than 30, while the use of Eqn 9.2 assumes that the
sample is selected from an approximately normal population.

Example 9.2. Suppose that, in a large plantation, the diameter at breast height (dbh)
measurements are normally distributed with a standard deviation of 1.6 cm (see Example
8.1, Chapter 8). Can it be assumed that the unknown population mean is equal to 14.0 cm if
the sample mean calculated from 16 measurements (taken without replacement) is 12.6 cm?
Use α = 0.05.

From the description of this problem, we do not know whether the alternative hypothesis
would be accepted if the sample mean was considerably less than 14.0 cm or considerably
more than 14.0 cm. In cases like these, we use a two-tailed test.

1. H0: µ = 14.0.
2. H1: µ ≠ 14.0.
3. α = 0.05.
4. Use Eqn 9.1, since σ2 is known.

6. z0.025 = ± 1.96.

8. Since –3.5 < –1.96, the test statistic is in the rejection region and we reject H0 and accept H1.
9. The sample mean of 12.6 cm is considerably different (less, since the test statistic is
negative) than the assumed population mean of 14.0 cm. Therefore, the population mean
cannot be assumed equal to 14.0.

Generally, two-tailed tests with α level of significance are equivalent to (1 – α)%
confidence intervals described in Chapter 8. Comparing the results here to those in
Example 8.2 (see Chapter 8), the values of the LCL and UCL (11.816 and 13.384) of the
95% confidence interval match the critical z-values of ±1.96 (from the above example).
However, in a confidence interval, critical values are expressed in real terms or in the
units of the mean. Since the assumed population mean of 14.0 cm is not included within
the limits of 11.816 and 13.384, we can assume that the population mean is not equal
to 14.0 cm. In other words, H0 is rejected, verifying the result above.

Example 9.3. Suppose that in Example 9.2 above, the population standard deviation was
not known, but was estimated to be 2.09 from the 16 observations (see also Example 8.2,
Chapter 8). Can it be assumed that the unknown population mean is 14.0 cm if the sample
mean based on 16 observations is 12.6 cm? Use α = 0.05.
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1. H0: µ = 14.0.
2. H1: µ ≠ 14.0.
3. α = 0.05.
4. Use Eqn 9.2, since σ2 is not known.

6. t0.025(15) ± 2.13. 

8. Since –2.68 < –2.13, the test statistic is in the rejection region (Fig. 9.7) and we reject H0
and accept H1.
9. The sample mean of 12.6 cm is considerably different (less) than the assumed population
mean of 14.0 cm, meaning that the population mean cannot be assumed to be equal to
14.0 cm based on our sample of 16 observations.

Example 9.4. We are told that a particleboard plant maintains a specific gravity of at least
0.6 for a certain brand of board. It is also known that the measurements of specific gravity of
this type of particleboard are normally distributed. If a sample of 24 measurements has a
mean of 0.578 and a standard deviation of 0.052, can we assume that the population specific
gravity is at least 0.6? Use a α = 0.01 level of significance.

This is a quality control problem and, since a higher specific gravity usually implies higher
strength properties, it is important to maintain a certain specific gravity. This knowledge
indicates that a one-tailed test is appropriate. To check the quality of production, H0 should be
rejected at the lower tail of the distribution only.

1. H0: µ = 0.6.
2. H1: µ < 0.6.
3. α = 0.01.
4. Use Eqn 9.2, since σ2 is not known.

6. t0.01(23) = –2.50.

8. Since –2.08 > –2.50, the test statistic is in the acceptance region and we ‘accept’ H0.
9. Based on our sample of 24 boards, the sample mean of 0.578 is not significantly less than
the assumed population mean of 0.6. We can therefore assume that the population mean is,
in fact, 0.6.

7. t 23
0 579 0 6

0 0106
2 08( ) = − ≈ −. .

.
. .

5. n x s s
X

= = = ==24 0 578 0 052
0 052

24
0 0106; . ; . ;

.
. .

7. t ( )
. .
.

. .15
12 6 14 0

0 5225
2 68= − ≈ −

5. n x
X

= = = =16 12 6
2 09

16
0 5225; .

.
. . cm;  σ

Tests of Hypotheses 181

Fig. 9.7. Critical regions in t units, two-tailed test.



9.3 Tests Concerning Proportions

Tests of statistical hypotheses concerning proportions are very important in several
fields of forestry and related sciences. In a manufacturing plant, a manager may be
interested in the proportion of defective parts. A forester may be interested in the
proportion of seedlings surviving a year after plantation. In a national park, a
manager may be interested in the proportion of visitors from out of country during
the summer months. And so on. As with testing of means, an assumed proportion, c,
is declared in the null hypothesis as an equality and one of the three alternatives is
stated in the alternative hypothesis:

H0: p = c,

H1: p ≠ c; or p < c; or p > c.

For the test statistic presented here (proportions), it is required that c is not very close
to 0 or 1 and n is greater than 30 (in other words, the binomial distribution
approaches the normal distribution).

(9.3)

(9.4)

The critical values are obtained from the z-table (see Table A.3, Appendix A) or, easier
yet, from the last line of the t-table (see Table A.5, Appendix A). To compute the test
statistic, one of two equations can be used, each varying in the way the standard error
term is computed. If we have a good idea about what the assumed unknown
proportion is (in other words, the value of p̂ is close to c), Eqn 9.3 is recommended.
Otherwise, Eqn 9.4 provides a more reliable test.

Example 9.5. It is assumed that no more than 40% of panels produced by a mill are grade
B. Can this assumption be verified at the 0.05 level of significance if 27 out of 60 randomly
selected panels examined were found to be grade B?

The question implies (with the statement ‘no more than’) that we should reject H0 if our
proportion is substantially greater than 40%. A one-tailed test should be used with the
rejection region being in the upper tail of the distribution.

1. H0: p = 0.4.
2. H1: p > 0.4.
3. α = 0.05.
4. Use either Eqn 9.3 or 9.4. We will use both to illustrate the difference. 

6. z0.05 = 1.645.
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7. Using the population standard error of the proportion:

Alternatively, using the sample standard error of the proportion

As the sample estimate of 0.45 is not very different from the assumed proportion of 0.4, the
difference between the two test statistics is small and Eqn 9.3 using the population standard
error term is recommended (we have shown both for demonstration purposes only).
8. Since 0.791 (or 0.778) < 1.645, the test statistic is in the acceptance region and we
‘accept’ H0.
9. The sample proportion, 0.45, is not significantly greater than the assumed population
proportion of 0.4. Thus, we can assume that the population proportion is 0.4.

Example 9.6. A politician claims that she will receive at least 45% of the votes in her riding
in an upcoming election. Is it likely that her claim is correct at the 0.01 level of significance if
40 out of 110 randomly selected voters indicate that they will vote for her?

Again, this question clearly indicates that the politician’s claim will be rejected at the lower
tail of the distribution and a one-tailed test will be used.

1. H0: p = 0.45.
2. H1: p < 0.45.
3. α = 0.01.
4. Use either Eqn 9.3 or 9.4.

6. z0.01 = –2.33.

7. Using

Using

In this example, it can be seen that even with an almost 9% difference between the assumed
proportion of 0.45 (45%) and the sample estimate of 0.364 (36.4%), the difference between
the two test statistics is small. However, if the difference were large (say, 0.5), then we might
reach a different conclusion.
8. Since –1.81 (or –1.87) > –2.33, the test statistic is within the acceptance region and we
‘accept’ H0.
9. The sample proportion of 0.364 is not significantly less than the declared population
proportion of 0.45 (45%). Therefore, we can assume that her claim is correct (a rarity for
politicians!).

9.4 Tests Concerning Variances

Tests for variances are important in areas where knowledge of the uniformity of the
population is important. For example, if the thickness of a certain kind of dimensional
lumber is highly variable in a sawmill, it could indicate that the saws are not
functioning according to specification. If the variation in the height of seedlings
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produced by a nursery exceeds a certain amount, the manager may have cause to be
concerned.

In the case of testing variances, the null hypothesis states that the unknown
population variance is equal to an assumed constant, c, against one of the three
possible alternative hypotheses.

H0: σ2 = c,

H1: σ2 ≠ c, or σ2 < c, or σ2 > c.

In order to use the following equation to calculate the test statistic, it is assumed that the
population is approximately normally distributed. The critical values can then be
obtained from the χ2-table (see Table A.6, Appendix A), with (n – 1) degrees of freedom.

(9.5)

Example 9.7. The thicknesses of 20 randomly selected pieces of particleboard were
measured in a mill. The standard deviation of these measurements was found to be 0.26 cm.
Is there any problem with the quality of the production if we know that the population standard
deviation should not exceed 0.2 cm? Use α = 0.05.

This question indicates a one-tailed test with the rejection region at the upper tail of the χ2

distribution. Since we do not have a test for standard deviation, we will conduct our testing in
terms of variances:

1. H0: σ2 = 0.22 = 0.04.
2. H1: σ2 > 0.04.
3. α = 0.05.
4. Use Eqn 9.5.

8. Since 32.11 > 30.1, the test statistic is in rejection region (Fig. 9.8) and we reject H0 and
accept H1.
9. The sample variance of 0.0676 is significantly greater than the assumed variance of 0.04.
Thus, the product can be assumed to be more variable than the set standard and the mill
manager should be concerned.
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Example 9.8. It is assumed that the variance of the tree heights in a forest stand is 4.25 m2.
Using a 0.01 level of significance, does a variance of 5.37 m2 obtained from measuring 17
randomly selected trees from the stand support this assumption?

From the statements above, it is not known that the rejection of H0 is preferred at the lower
or upper tail of the distribution. In cases like this, we use a two-tailed test.

1. H0: σ2 = 4.25.
2. H1: σ2 ≠ 4.25.
3. α = 0.01. 
4. Use Eqn 9.5.
5. n = 17; s2 = 5.37.

8. Since 5.14 < 20.22 < 34.30, the test statistic is within the acceptance region and we
‘accept’ H0.
9. The sample variance of 5.37 is not significantly different from 4.25. Therefore, the
assumption that the variance equals 4.25 is reasonable based on this sample.

9.5 Tests Concerning the Difference between Two Means

Independent populations

In many situations, we are interested in comparing two population means, µ1 and µ2.
For example, a forester would like to find out which of two fertilizers is the more
effective in improving the height growth of young seedlings; a wood scientist would
like to compare some strength properties in spruce and hemlock; an ecologist may
want to compare the effect of two insecticides on creek water quality, to list just a few.

In testing the difference between two unknown population means, it is assumed
that the difference is equal to a constant, c, against one of the usual three alternative
hypotheses:

H0: µ1 – µ2 = c,

H1: µ1 – µ2 ≠ c, or µ1 – µ2 < c, or µ1 – µ2 > c.

Frequently, in order to test whether the two population means are the same, the
assumed constant is zero. Two different test statistics can be used to test the above
hypotheses, depending on the information available about the two population
variances. When the two population variances are known, the test statistic used is:

(9.6)

The critical values are obtained from the z-table (see Table A.3, Appendix A) or from
the last line of the t-table (see Table A.5, Appendix A). To use Eqn 9.6, it is assumed
that either the two populations are normally distributed and/or the sample sizes used
to calculate the sample means, n1 and n2, are both greater than 30.
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Example 9.9. The actual (measured) nicotine content (in mg) of cigarettes is compared
based on the following information.

Using a 0.05 level of significance, can we assume that the two unknown population
means are equal? Since there is no indication whether one population mean is assumed to
be greater than the other in the description of the problem, a two-tailed test is used.

1. H0: µ1 – µ2 = 0.
2. H1: µ1 – µ2 ≠ 0.
3. α = 0.05.
4. Use Eqn 9.6 as σ2

1 and σ2
2 are known.

6. z0.025 = ± 1.96.

7.

8. Since –4.20 < –1.96, the test statistic is in the rejection region and we reject H0 and accept
H1.
9. The difference between the two sample means, –5.7, is significantly different (less
because it is negative) than the assumed difference of zero. Usually, the practical conclusion
from tests like this is that the population means are assumed to be different. In other words,
26.1 mg is significantly different (less) than 31.8 mg or the nicotine content in Brand A is
significantly less than that of Brand B.

If the population variances are unknown, the following test statistic is used:

(9.7)

The critical values are obtained from the t-table (see Table A.5, Appendix A) with ν
degrees of freedom. When using Eqn 9.7, it is assumed that both populations are
approximately normally distributed. However, this assumption can be violated
slightly when both n1 and n2 are greater than 30.

As in finding confidence intervals for the difference between two unknown
population means, we distinguish between three procedures when the population
variances are unknown. For each case, the standard error of the difference between
two means and the degrees of freedom are calculated differently.
Case 1. Both n1 and n2 ≥ 30 (large samples).
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Brand A Brand B

Mean 26.1 31.8
σ 5.2 4.7
n 24 31



Case 2. n1 or n2 or both < 30 (small samples) and it is assumed that σ2
1 and σ2

2

Case 3. n1 or n2 or both < 30 (small samples) and it is assumed that σ2
1 ≠ σ2

2

Example 9.10. In Example 8.7 (see Chapter 8), we presented the following data of
samples taken from two lots of logs. These statistics were calculated from measurements of
the top diameter of the logs. 

Using α = 0.05, can we assume that the unknown population mean of Lot 2 exceeds the
unknown population mean of Lot 1 by at least 2.0 cm?

In solving this problem, note that the constant stated is 2.0 and not zero. In problems
involving differences in means (especially one-tailed problems), be very cautious of the order
in which the means are presented. Here, we are interested in knowing if the mean of Lot 2
exceeds the mean of Lot 1 by 2 cm. This implies that we can set up the alternative
hypotheses in two ways: (i) µ2 – µ1 > 2.0; or (ii) µ1 – µ2 < – 2.0. Either will yield the correct
answer, even though the rejection regions will lie on opposite ends of the distribution. What is
more important is that the order of the means remains consistent throughout the solution.
Here, for demonstration purposes, let us use the second alternative hypothesis: µ1 – µ2 <
– 2.0. This indicates a one-tailed test and that the rejection region will lie in the lower tail of
the sampling distribution.

1. H0: µ1 – µ2 = –2.0.
2. H1: µ1 – µ2 < – 2.0.
3. α = 0.05.
4. Use Eqn 9.7, Case 1, since n1 and n2 > 30.
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n x– s

Lot 1 42 15.9 cm 2.8 cm
Lot 2 36 18.6 cm 3.4 cm



8. Since –0.98 > –1.645, the test statistic is in the acceptance region; we ‘accept’ H0.
9. The difference between the two sample means, –2.7, is not significantly different from
–2.0, which means that the unknown population mean of Lot 2 does not exceed the unknown
population mean of Lot 1 by at least 2.0 cm.

Example 9.11. From Example 8.8 (see Chapter 8), information on the volumes of the two
lots of logs was summarized as follows:

Is it safe to assume that the two unknown population means are equal, using a 0.05 level of
significance?

In this example, the assumed constant is zero and, from the description, we can conclude
that there is no directional preference regarding the rejection of H0. Therefore, we will use a
two-tailed test.

1. H0: µ1 – µ2 = 0.
2. H1: µ1 – µ2 ≠ 0.
3. α = 0.05.
4. Use Eqn 9.7, Case 2, since it can be assumed that σ1

2 = σ2
2 (see Example 8.13, Chapter

8) and n1 and n2 < 30.

8. Since –2.10 < –0.798 < +2.10, the test statistic is in the acceptance region and we ‘accept’
H0.
9. The difference between the two sample means, –0.21, is not significantly different from
the assumed zero, meaning that the two population means can be assumed the same.
Scientific literature will often state this type of conclusion as the sample mean of 1.72 is not
significantly different from 1.93.
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Lot 1 Lot 2

n 12 8
x– 1.72 m3 1.93 m3

s 0.56 m3 0.61 m3
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Example 9.12. From Example 8.9 (see Chapter 8), a summary of seedling biomass
production measurements is given below:

Using a probability level of 0.01, can we assume that the unknown population mean of
biomass production under normal lighting exceeds that of artificial lighting?

Again, the constant here is zero. A one-tailed test will be used because, based on
anecdotal evidence, the researcher assumes that the biomass production would be higher
under normal lighting.

1. H0: µ1 – µ2 = 0.
2. H1: µ1 – µ2 > 0.
3. α = 0.01.
4. Use Eqn 9.7, Case 3, since it can be assumed that σ1

2 ≠ σ2
2 (see Example 8.14, Chapter

8) and n1 and n2 < 30.

6. t0.01(15) = 2.60; t0.01(9) = 2.82.

8. Since 5.46 > 2.60 (or 2.82), the test statistic is in the rejection region; we reject H0 and
accept H1.
9. The difference between the two sample means, 2.08, is significantly greater than zero,
indicating that the population mean of biomass under normal lighting is greater than that
under artificial lighting. Frequently, a loose statement like, the sample mean of 4.65 is
significantly greater than the sample mean of 2.57, will be found in the scientific literature.

Dependent populations

In Chapters 7 and 8, we discussed a special case of the sampling distributions of the
differences between two means when the samples from the two populations are not
independent. For tests of the difference between two unknown dependent (paired)
population means, H0 and H1 are the same as those of independent means. In testing
hypotheses using dependent samples, there are two different cases for calculating the
test statistic, and thus we use one of two different equations to calculate the test
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statistic: Eqn 9.8 is used when the population variance is known; and Eqn 9.9 is used
when the population variance is not known.

(9.8)

or

(9.9)

The critical values are obtained from the z-table (see Table A.3, Appendix A) or the
last line of the t-table (see Table A.5, Appendix A) for Eqn 9.8, and from the t-table
(see Table A.5, Appendix A) with (n – 1) degrees of freedom for Eqn 9.9.

Example 9.13. In Example 8.10 (see Chapter 8), two scales were compared for accuracy.
The logical question can now be raised, ‘Are the unknown population means of the two scales
equal?’ Use α = 0.01.

This should be a two-tailed test, because we have no reason to assume that one of the two
scales will be more accurate than the other.

1. H0: µ1 – µ2 = 0.
2. H1: µ1 – µ2 ≠ 0.
3. α = 0.01.
4. Use Eqn 9.9, since � is not known.

8. Since –3.36 < –3.13 < +3.36, the test statistic is in the acceptance region and we ‘accept’
H0.
9. The difference between the two sample means (or in this case, the mean of the paired
differences), –0.035, is not significantly different from zero, indicating that the accuracy of the
two scales can be assumed to be the same.

Since this was a two-tailed test, the 99% confidence limits (LCL and UCL) calculated in
Chapter 8 are equivalent to the critical values seen here, except the confidence interval is
expressed in the terms of the original units of the data (grams).

9.6 Tests Concerning the Difference between Two Proportions

Tests for differences between two proportions can also be very useful in forestry and
natural resources applications. For instance, a manager of a nursery might want to
test the difference between the germination rates in two seed lots. A sawmill manager
may want to test proportions of No. 1 grade lumber recovered from harvested logs
at two different sites. A manager of a national park may want to compare if the
proportion of local visitors is different between the summer and winter months.

When testing the difference between two proportions, an assumed constant
difference, c, is stated in the null hypothesis, against the usual three alternatives.
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H0: p1 – p2 = c,

H1: p1 – p2 ≠ c, or p1 – p2 < c, or p1 – p2 > c.

Any positive or negative value between –1 and +1 can be used for the value of c.
However, the most frequently used value of c is zero, which assumes that the two
unknown population proportions are equal. If the values of both p1 and p2 are not
close to zero or one and the sample sizes, n1 and n2 (from which the sample
proportions are calculated), are both greater than 30, the following equation can be
used to calculate the test statistic:

(9.10)

where

Note that there are two equations given for the calculation of the standard error term.
If p̂1 and p̂2 are numerically close, we use the equation with the pooled proportions,
p̂c and q̂c. When there is a considerable difference between p̂1 and p̂2, the second
equation is recommended.

Critical values are obtained from the z-table (see Table A.3, Appendix A) or from
the last line of the t-table (see Table A.5, Appendix A).

Example 9.14. Out of 50 trees examined in a managed forest stand, 6 were infested by bark
beetles. In a nearby natural stand, 12 out of 60 were infested. With a 0.05 level of
significance, can we assume that the unknown population proportion of infested trees is
smaller in the managed stand than in the natural stand?

This test is clearly a one-tailed test, since it is implied by the question that managed stands
are more resistant to bark beetle infestation than natural stands. Note that, like Example 9.10,
the hypotheses can be set up or ordered in two different ways.

1. H0 : p1 – p2 = 0.
2. H1: p1 – p2 < 0.
3. α = 0.05.
4. Use Eqn 9.10.
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Both equations for the standard error 

are presented here and they give almost identical results. Thus, either can be used.
6. z0.05 = –1.645.

8. Since –1.13 (or –1.16) > –1.645, the test statistic is in the acceptance region and we
‘accept’ H0.
9. The difference between the two sample proportions, –0.08, is not significantly different
from zero, which means that the two unknown population proportions are the same.

Example 9.15. A survey of home centre shoppers found that out of 100 women, 37%
preferred certified lumber; out of 100 men, 22% preferred certified lumber. At a 0.01 level of
significance, test the claim that the unknown population proportion of women’s preference for
certified lumber exceeds the unknown population proportion of men’s preference for certified
lumber by at least 10%.

This test is a one-tailed test because women’s greater preference for certified lumber is
assumed in the statement. If we set up the hypotheses such that p2 is subtracted from p1, the
rejection region lies in the upper tail of the distribution. Also it should be noted that c = 0.10,
instead of zero.

1. H0: p1 – p2 = 0.1.
2. H1: p1 – p2 > 0.1.
3. α = 0.01.
4. Use Eqn 9.10.

6. z0.01 = 2.33.

8. Since 0.775 < 2.33, the test statistic is in the acceptance region and we ‘accept’ H0.
9. The difference between the two sample proportions, 0.15, is not significantly greater than
the claimed difference of 0.1 between the two population proportions, meaning that women’s
preference for certified lumber does not exceed men’s preference by more than 10%.

9.7 Tests Concerning the Ratio of Two Variances

Tests concerning the ratio of two variances have practical importance in studying the
uniformity of two populations. For example, a sawmill manager may be interested in
buying timber from two wood lots. All things being equal, the sawmill would prefer
to have logs with less variation in diameter because production processes are easier to
control. That being the case, they may test the variances of dbh from the two wood
lots to see if there is a statistical difference in the way that the log sizes vary. However,
the most important value of these tests will be seen in advanced statistical tests such
as regression analysis, analysis of variance and covariance analysis. The first two of
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these will be discussed in Chapters 11 and 12. Tests concerning the ratio of two
variances are also important in comparing the difference between two unknown
population means when an assumption about the equality of the two population
variances is required (see Independent Populations, Section 9.5.1).

It would make intuitive sense that in testing the difference between variances, we
would use a difference (equal to a constant, usually zero) as in previous hypothesis
tests. However, due to the skewed nature of variance distributions, there is no simple
distribution that describes the differences between variances. That being the case, we
test the ratio of two variances. In testing the ratio of two variances, it is assumed in
the null hypothesis that the ratio of two unknown population variances, σ1

2/σ 2
2, is

equal to a constant, c, against one of the three usual alternatives:

H0: σ1
2/σ2

2 = c,

H1: σ1
2/σ2

2 ≠ c, or σ1
2/σ2

2 < c, or σ1
2/σ2

2 > c.

Although any positive constant can be used as the value of c, in most cases it is set to
one in order to test the equality of two unknown population variances, σ1

2 = σ 2
2.

Assuming that the two populations from which the samples are taken are
approximately normally distributed, the following test statistic can be used to test the
above hypothesis:

(9.11)

and if c = 1, Eqn 9.11 becomes

(9.12)

Critical values are obtained from the F-table (see Table A.7, Appendix A) with n1 – 1
and n2 – 1, respectively describing the degrees of freedom in the numerator and
denominator terms. Equation 9.12 is oftentimes referred to as the variance ratio test.

Example 9.16. In Example 8.13 (see Chapter 8), log volumes were compared from two
populations, yielding s2

1 = 0.314 with a sample size of 12 and s2
2 = 0.372 with a sample size

of 8. Can we assume with 0.05 level of significance that the two unknown population
variances are equal?

From the information given, c is 1.0 and a two-tailed test is appropriate because no
information is given about the comparative variability of the two populations.
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8. Since 0.266 < 0.844 < 4.72, the test statistic is in the acceptance region (Fig. 9.9) and we
‘accept’ H0.
9. It can be safely assumed that the two unknown population variances are equal.

Since the above test is a two-tailed test, the 95% confidence limits (LCL and UCL)
calculated in Example 8.13 (see Chapter 8) are equivalent to the critical values used in this
test, but expressed in terms of the actual ratio of two variances.

When the equality of two variances is tested using a two-tailed test, there is a short-
cut procedure that is strongly recommended. We simply assign the larger of the two
variances to be s2

1. This means that when the s2
1/s

2
2 ratio is set up, the larger variance

is divided by the smaller one, which will always produce a ratio greater than 1.0. As
a result, we are forcing the test to the upper side of the F distribution and a table look-
up is required for the critical value on the right side of the distribution only. However,
when using this short cut, it is important to remember that the critical value in the
upper tail of the distribution is obtained for α/2 probability (i.e. the significance value
must still be halved, even though we are looking up one value only).

Applying this in Example 9.16, we have to exchange the positions of σ2
1 and σ2

2
in the hypotheses in order to divide the larger sample variance by the smaller one.

3. α = 0.05.
4. Use Eqn 9.12 since c = 1.0.

6. F0.025(7,11) = 3.76. Note that the degrees of freedom are reversed compared to the
previous calculation and that we used α/2 probability. However, we looked up the
critical value at the upper end of the F distribution only.
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Fig. 9.9. Critical regions in F units, two-tailed test.



With the order of the two samples reversed, this ratio 

exceeds one.
8. Since 1.185 < 3.76, the test statistic is in the acceptance region and we ‘accept’ H0.
9. It can be safely assumed that the two unknown population variances are equal.

Example 9.17. In Examples 8.9 and 8.14 (see Chapter 8), we obtained the variance of the
biomass of seedlings under two lighting scenarios. Based on 12 observations in natural lighting,
the variance was 1.44. Based on 10 observations for artificial lighting, the variance was 0.25.

a. Can we assume with a 0.05 level of significance that the two unknown population
variances are equal?

b. Can we assume with a 0.1 level of significance that the unknown population variance
under natural lighting is at least three times as high as the unknown population
variance (i.e. a ratio of variances exceeding three) under artificial lighting?

A two-tailed test is required for a, with c = 1.0. Since the question asks if the unknown
population variance under natural lighting is ‘at least three times as high’ as the unknown
population variance under artificial lighting, a one-tailed test is required for b, with the critical
region in the upper tail of the distribution and c = 3.0.

a.

3. α = 0.05.
4. Use Eqn 9.12 since c = 1.0.

Note that the second look-up is not entirely 

necessary because the larger variance will be divided by the smaller one.

8. Since 5.76 > 3.92, the test statistic is in the rejection region; we reject H0 and accept H1.
9. The ratio of the two sample variances, 5.76, is significantly different from the assumed
ratio of 1.0, meaning that the population variance of the biomass under natural lighting is
significantly different than the population variance under artificial lighting.

Since the test is a two-tailed test, the 95% confidence limits (LCL and UCL) calculated in
Example 8.14 (see Chapter 8) are equivalent to the critical values used in the test expressed
in terms of ratios of two variances.
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3. α = 0.1.
4. Use Eqn 9.11 since c ≠ 1.0.

8. Since 1.92 < 2.40, the test statistic is in the acceptance region and we ‘accept’ H0.
9. It can be assumed that the ratio of two unknown population variances is not significantly
greater than 3.0.

9.8 p-Values

When statistical packages are used to analyse data, a p-value is often provided as part
of the output. In most statistical packages, these p-values indicate the smallest level of
significance for rejecting H0. For a left-tailed test, the p-value indicates the probability
of obtaining a value in the sampling distribution of the test statistic less than the
calculated test statistic. For a right-tailed test, the p-value indicates the probability of
obtaining a value in the sampling distribution of the test statistic greater than the
calculated test statistic. For a two-tailed test, the p-value indicates the probability of
obtaining a value in the sampling distribution of the test statistic less than (to the left)
or greater than (to the right) the calculated test statistic. Intuitively, the following rule
is used to interpret p-values:

if p-value ≤ a predefined α, reject H0.

A word of caution! It is a mistake to interpret the p-value as the level of significance,
mainly because a low level of significance could result in a very high level type II error
(�). To use statistical tests properly, the level of significance, α, must be decided prior
to calculating the sample statistics and the test statistics (including their p-values).
Some scientific journals require scientists to publish their p-values, instead of the level
of significance. Unfortunately, though, this allows readers to select their own levels of
significance, which can lead to conflicting and erroneous conclusions, especially when
there is ambiguity on whether a one- or two-tailed test is appropriate.

Exercises

Section 9.1

9.1. It is assumed that the mean specific gravity of Douglas-fir is 0.45 with a standard
deviation of 0.098. A random sample of 36 specimens was examined to test the
hypothesis that µ = 0.45 against the alternative that µ > 0.45. Assume type I error is
set at 0.04:

a. Find the critical value and show the critical region.
b. Find the type II error when the population mean is

i.i µ1 = 0.49.
ii. µ1 = 0.53.

c. Repeat Exercises 9.1a and 9.1b using 60 observations.
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9.2. A manufacturer claims that at least 20% of his consumers prefer his company’s
product. A random sample of 100 people is taken to check this claim.

a. If type I error is set at 0.05, what is the critical value below which the
manufacturer’s claim can be rejected?

b. Find the type II error if the ‘real’ (or ‘known’) preference is 10% and the sample
size is 100.

c. Find the type II error if the ‘real’ (or ‘known’) preference is 10% and the sample
size is 50. Compare your results to b.

d. Find the type II error if the ‘real’ (or ‘known’) preference is 5% and the sample
size is 100. Compare your results to b.

9.3. State the null and alternative hypotheses for testing the following claims and
indicate graphically where the critical region(s) is (are) located:

a. At least 80% of the readers will solve this exercise.
b. The average snowfall in Prince George, BC for the month of December is

25.2 cm.
c. No more than 10% of seedlings will die during the first year after plantation.
d. The proportion of reject parts coming off the assembly line is less than 0.07.
e. The average height of trees in a forest stand is 18.0 m.

Section 9.2

9.4. The hourly wages in the secondary wood products sector are normally
distributed with a mean of US$19.20 and a standard deviation of US$2.80. If a
company in this industry employs 20 summer students at an average of US$16.50 per
hour, can this company be accused of paying inferior wages to students? Use α = 0.05.

9.5. A coffee machine is set to dispense 150 ml of coffee with a standard deviation of
16 ml. The machine is regulated so that the amount dispensed is approximately
normally distributed. If a mean of 144 ml was obtained by taking a sample of 10 cups,
can we conclude that the machine is set up properly? Use α = 0.05.

9.6. Repeat Exercise 9.5 assuming that the population standard deviation is not
known, but estimated from the sample of 10 as 14 ml.

9.7. Use the data from Exercise 8.6 (see Chapter 8) to test the manufacturer’s claim,
with a 0.01 level of significance, that the price per thousand board feet of
spruce–pine–fir lumber is at least US$600.

9.8. From a distance of 5 m, 10 students were asked to judge the dbh of a tree to the
nearest 1 cm. The tree was measured to be exactly 25.0 cm. They gave the following
estimates: 21, 18, 23, 23, 26, 25, 23, 25, 21, 25.

a. Do these observations indicate that the students have difficulty in accurately
estimating the dbh of a tree? Use a 5% level of significance.

b. Calculate the 95% confidence interval for the population mean and compare
your results to your answer in part a.
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9.9. Consider the data given in Exercise 8.7. Can we assume that the population
mean is 32.0 cm, with a 0.05 level of significance? Compare your results to those
obtained in Exercise 8.7 (see Chapter 8).

Section 9.3

9.10. A manufacturer claims that at least 95% of the logging equipment they supply
conforms to specifications. A study of a sample of 70 pieces of equipment revealed
that 5 were faulty. Test the manufacturer’s claim at a significance level of 0.01.

9.11. A manufacturer of kitchen countertops claims that no more than 20% of their
product shows any noticeable defect. Out of 40 countertops examined, 10 show some
defects. Test this statement using α = 0.05.

9.12. It is assumed that the fire-retardant chemical tested in Exercise 8.8 (see Chapter
8) is effective 80% of the time. Given the data in Exercise 8.8 (see Chapter 8), is this
assumption acceptable? Use α = 0.05. Compare your results to the 95% confidence
interval calculated in Exercise 8.8a.

Section 9.4

9.13. In Exercise 9.7, can we assume that the population variance is equal to 1400?
Use α = 0.01.

9.14. In Exercise 9.1, can we assume that the population standard deviation is
0.098? Is this assumption acceptable with a 0.05 level of significance if the standard
deviation of a random sample of 36 is 0.085?

9.15. Scientists assume that the population standard deviation for weights of the
rainbow trout, described in Exercise 8.19 (see Chapter 8), does not exceed 0.10 kg.
Test this assumption using a 0.05 level of significance. Compare this to the original
confidence interval calculated in Exercise 8.19 (see Chapter 8).

9.16. Finger-jointed stock coming into your plant is claimed to have a mean width of
4 in and a variance of at most 0.6 in2. Would you accept this claim if the variance of
a random sample of 10 boards was 1.2 in2? Use α = 0.05.

Section 9.5

9.17. In the logging truck tyre experiment described in Exercise 8.10 (see Chapter 8),
can we assume that the two unknown population means are equal? Use 0.01 type I
error in the test and compare your results to the 99% confidence interval calculated
in Exercise 8.10 (see Chapter 8).

9.18. Two brands of chainsaws are available on the market. The manufacturers have
provided the following specifications about the lifespan of these chainsaws: the
standard deviation of Brand A is 1.5 years, while the standard deviation of Brand B
is 2.0 years. Samples of 15 (Brand A) and 10 (Brand B) are tested and their mean lives
are 6.1 years and 7.2 years, respectively. Can we assume that Brand B outperforms
Brand A by at least 0.5 year? Use α = 0.05.



9.19. Can it be assumed that the tensile strengths of two commercial fishing lines, as
described in Exercise 8.12 (see Chapter 8), have the same population mean? Use α =
0.05. Compare this test to the 95% confidence intervals calculated in Exercise 8.12
(see Chapter 8).

9.20. Two brands of laminated wood beams were tested for breaking load, with the
following results:
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Brand n Mean Σ(xi � x)2

A 45 1565 48,000
B 34 1610 37,000

Can we conclude that Brand B beams outperform Brand A beams using a 1% level of
significance?

9.21. Use the data given in Exercise 8.11 (see Chapter 8) to test the equality of the
two unknown population means. Use α = 0.01 and compare your results to the 99%
confidence interval calculated in Exercise 8.11a.

9.22. At the start of the growing season, type I fertilizer was applied to 7 plots and
type II was applied to 6 plots. The total biomass measurements (in g) per plot of 1-
year-old ponderosa pine seedlings were recorded at the end of the growing season:

Type I 570 592 630 512 634 493 558
Type II 502 593 503 583 482 445

Test the effect of the two types of fertilizers (hint: is µ1 = µ2?) with a 0.1 level of
significance. Assume that σ2

1 = σ2
2.

9.23. Use the data in Exercise 8.13 (see Chapter 8) to test the equality of the two
unknown population means, with α = 0.01. Compare your results to the 99%
confidence interval calculated in Exercise 8.13 (see Chapter 8).

9.24. Two diets were used in an experiment to study the gains in weight (in kg) of 12
steer.

Diet 1 45.9 38.7 44.1 49.0 41.4
Diet 2 36.2 74.6 43.7 60.3 41.4 39.2 51.3

Is Diet 2 superior to Diet 1? Use α = 0.05. Assume that σ2
1 = σ2

2.

9.25. Can you assume that the unknown population means are equal for the data
described in Exercise 8.14 (see Chapter 8) using a 0.05 level of significance? Compare
your results to the confidence interval calculated in Exercise 8.14 (see Chapter 8).

9.26. Volumes (m3/ha) in a mature Douglas-fir stand on 10 plots were estimated
independently by two separate crews. Assuming that the population is normally
distributed, would these results lead you to conclude that the estimates of the two
crews are the same? Use α = 0.05.

Plot 1 2 3 4 5 6 7 8 9 10

Crew 1 480 878 910 980 1021 620 850 931 792 1002
Crew 2 436 925 878 1040 955 650 861 892 753 996



Section 9.6

9.27. In the example described in Exercise 8.16 (see Chapter 8), it is assumed that soil
preparation on Area II is better than on Area I. Can we reach this conclusion by
comparing the regeneration on Area II to that of Area I? Use α = 0.05. Can these
results be compared to either one of the confidence intervals calculated in Exercise
8.16 (see Chapter 8)?

9.28. A manufacturer of microprocessors buys its chips from two suppliers. If 22 out
of 120 chips from Supplier I are defective and 20 out of 160 from Supplier II are
defective, can we conclude that there is no difference between the real proportions of
defective chips from the two suppliers? Use α = 0.01.

Section 9.7

9.29. In the study described in Exercise 9.24, it is claimed that the variation of weight
gains in Diet 2 is not more than five times the variation in Diet 1. Test this hypothesis
with a 0.01 level of significance.

9.30. Test the equality of the 2 unknown population variances described in Exercise
8.13 (see Chapter 8) using 
 = 0.05. Compare your results and conclusions to the
95% confidence intervals calculated in Exercise 8.21 (see Chapter 8). 

9.31. In Exercises 9.22 and 9.24, we assumed that the population variances were
equal. Test whether these claims are true using 
 = 0.1 for the first claim and 
 = 0.05
for the second.
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In Chapter 9, we discussed tests concerning single parameters such as µ, p, σ2, and
differences and ratios between two parameters. In this chapter, we introduce tests
concerning distributions of one or more populations. The goodness-of-fit test is used
to determine whether a population follows a specified theoretical distribution, and the
test for independence (or a contingency table) is used to compare two or more
distributions.

10.1 Goodness-of-fit Test

In some situations, we would like to know if a population follows a particular
theoretical frequency distribution. For example, we may want to know if the diameter
at breast height (dbh) measurements from a particular stand are normally distributed,
so that we can use the Z distribution to construct confidence limits around the average
observed diameter. Or we may want to know if observed germination rates for
Douglas-fir seeds follow a binomial distribution. Numerous other examples in natural
resources exist for the other distributions we have studied, such as the binomial,
Poisson, hypergeometric, geometric, negative binomial, uniform, normal and
exponential. To test if observed sample data follow a particular theoretical
distribution, we perform a goodness-of-fit test. First, we construct a frequency
distribution, which may be categorical, ungrouped or grouped. Frequency classes
constructed this way are usually referred to as cells, and their class frequencies are
called the observed frequencies (Oi). For each frequency class or cell, the expected
frequencies (Ei) are calculated by using the equations for the specified theoretical
distributions or the available tables of the specified distributions.

In the goodness-of-fit test, it is assumed in the null hypothesis that all the observed
frequencies are equal to the expected frequencies, while the alternative hypothesis
states that at least one is different. The hypotheses can be stated mathematically, or in
words:

H0: Oi = Ei, for all is (frequencies); or, the population distribution follows the
specified distribution, and

H1: Oi ≠ Ei, for at least one i (frequency); or, the population distribution does
not follow the specified distribution.

The calculation of the test statistic uses the number of frequency classes, c, and the
expected and observed frequencies:
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(10.1)

It can be shown that the test statistic, χ 2
(v) (which is an estimate of the random

variable, χ2), approximately follows a chi-square distribution with ν degrees of
freedom, where ν is equal to the number of cells, c, minus the number of independent
quantities obtained from sample data to calculate the expected cell frequencies. This
will be discussed in more detail later.

From the H1 statement, it may look as though the goodness-of-fit test is a two-
tailed test. However, closer examination of Eqn 10.1 indicates that the value of χ 2

(v) is
zero when the conditions stated in H0 are perfectly met: that is, Oi = Ei for all is. Since
the extreme left tail of the chi-square distribution starts at zero (Fig. 10.1), we cannot
reject H0 at the lower tail of the distribution. Thus, the acceptance region here is
always from zero to a specified critical χ2-value, and the rejection region is in the
upper tail of the distribution. We demonstrate the goodness-of-fit test with a very
simple example and also offer another explanation for why is it a one-tailed test.

Example 10.1. A coin is flipped 90 times and the results are 50 tails and 40 heads. Is this a
balanced coin or not? Use α = 0.05.

In solving this problem, the observed frequencies are 50 tails and 40 heads. In the case of
a balanced coin, we would expect (as our theoretical distribution) 45 heads and 45 tails:

χ
v

i i

ii

c O E

E( ) =
=

−( )
∑2

2

1
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Tails Heads

Oi 50 40
Ei 45 45

1. H0: Oi = Ei for all is; or, the distribution follows a uniform distribution.
2. H1: Oi ≠ Ei for at least one i; or, the distribution does not follow a uniform distribution.
3. α = 0.05.
4. Use Eqn 10.1.
5. c = 2; the expected and observed values are given above in two frequency classes; 
ν = 2 – 1, because there are two cells of data (tails and heads) and we used one independent
quantity, the total number of trials (N = 90), to calculate the expected values.

6.

7.

8. Since 1.11 < 3.84, the test statistic is in the acceptance region (Fig. 10.1) and we ‘accept’
H0.
9. It can be assumed that the coin is balanced: that is, the number of heads and tails are
uniformly distributed and the proportion of tails (and heads) is not significantly different from 0.5.

We could also do a z-test with the proportion of tails (or heads) to test the same hypothesis:

1. H0: p = 0.5.
2. H1: p ≠ 0.5.
3. α = 0.05.
4. Use Eqn 9.3 (see Chapter 9).
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8. Since –1.96 < 1.05418 < 1.96, the test statistic is in the acceptance region and we ‘accept’
H0.
9. Same conclusion as the chi-square test above.

It is interesting to note that the critical value of χ2 = 3.84 is equal to 1.962, the square
of the z critical value. Similarly, the test statistic for the goodness-of-fit test is 1.11,
which is approximately equal to 1.054182, the square of the test statistic for the
proportion. Also note from above that the z-test is a two-tailed test, while the
goodness-of-fit test is a one-tailed test. It can be shown mathematically that:

This indicates that one can square either the negative or the positive z-values, and
their probabilities sum to become the upper tail χ2-values. This also shows why the
goodness-of-fit test is always a one-tailed test.

Example 10.2. The frequencies of industrial accidents per month in a large sawmill over the
last 4 years are summarized below (see Table 10.1). Is it reasonable to assume that the
frequency of accidents in this sawmill follows a Poisson distribution with a 0.05 level of
significance?

1. H0: Oi = Ei for all is; or the distribution follows a Poisson distribution.
2. H1: Oi ≠ Ei for at least one i; or the distribution does not follow a Poisson distribution.
3. α = 0.05.
4. Use Eqn 10.1.
5. We use the probability function of the Poisson distribution (see Eqn 5.8, Chapter 5) to
calculate the probabilities for the various outcomes:
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Fig. 10.1. Critical and acceptance regions in the χ2-test.
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Table 10.1. Frequency distribution of
industrial accidents per month in a sawmill
over the last 4 years.

Number of accidents Frequency (Oi )

0 8
1 15
2 13
3 8
4+ 4

Total 48

Since µ is not known, we must estimate it from the frequency distribution (see Eqn 2.5,
Chapter 2):

Substituting x– for µ in the above probability function, the probabilities of x numbers of
accidents occurring per month can be calculated:

and so on.
Based on the probabilities for the various frequency classes, the expected values are 

Ei = 48 × pi, from which the following table can be generated:

There are two important notes to consider in generating the above table. First, in order to
include all possible outcomes, the probability for the 4+ frequency class is calculated as 
1 – P (X ≤ 3) = 1 – (P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)). Second, the χ 2

(v) values
(calculated using Eqn 10.1) do not give a good approximation to the chi-square distribution
when the expected values in any class are < 5. It is therefore common practice to combine
any classes where the expected values are < 5 with their neighbouring classes. This is why
the last two classes in our example are combined into a single class and the number of
classes, c, is four in the calculation of the degrees of freedom for the �2-test statistic.
6. Since the sample mean (1.69) and the total frequency (48) were used to calculate the
expected frequencies, we lose two degrees of freedom, for a total of 4 – 2 = 2 degrees of
freedom for the χ2 critical value and test statistic.
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8. Because 0.094 < 5.99, the test statistic is in the acceptance region and we ‘accept’ H0.
9. It can be assumed that the population of monthly accident numbers in the sawmill studied
follows a Poisson distribution.

Example 10.3. The frequency distribution of the 50 dbh measurements taken from the
example forest stand used in Chapter 2 is shown again in Table 10.2, below. Is it reasonable
to assume that the population of all dbh measurements in the stand follows a normal
distribution? Use α = 0.01.

1. H0: Oi = Ei for all is; or the population follows a normal distribution.
2. H1: Oi ≠ Ei for at least one i; or the population does not follow a normal distribution.
3. α = 0.01.
4. Use Eqn 10.1.
5. We use the Z transformation and the z-table (see Table A.3, Appendix A) to find the
probabilities between each class boundaries. We then multiply these probabilities by 50 (the
total number of dbh measurements, or the sum of the frequencies) to get the expected
values. The expected values will follow a normal distribution.

In generating the expected normal distribution values, the first frequency class probability is
usually calculated from − ∞ to the upper class boundary of the first class, while the last frequency
class probability is calculated between the lower class boundary of the last class and + ∞.

Since we do not know the population mean, µ, and the population standard deviation, σ;
their estimates, x– and s, can be used for the Z transformation. These statistics, x– and s, can
be calculated from the frequency distribution in Table 10.2 (we previously calculated these
values as x– = 15.74 cm and s = 3.10 cm in Examples 2.4 and 2.8, Chapter 2). The
probabilities are calculated as follows:
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Table 10.2. Frequency distribution of 50 dbh measurements.

Class boundaries Class limits Frequency Oi Class mark

7.55–9.85 7.6–9.8 2 8.7
9.85–12.15 9.9–12.1 3 11.0

12.15–14.45 12.2–14.4 12 13.3
14.45–16.75 14.5–16.7 14 15.6
16.75–19.05 16.8–19.0 13 17.9
19.05–21.35 19.1–21.3 4 20.2
21.35–23.65 21.4–23.6 2 22.5
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From here, the expected values are calculated as Ei = piN, where N = 50.

Class boundaries pi Ei Oi

7.55 – 9.85 0.0287 1.4 2
9.85 – 12.15 0.0943 4.7

6.1
3

5

12.15 – 14.45 0.2142 10.7 12
14.45 – 16.75 0.2911 14.6 14
16.75 – 19.05 0.2284 11.4 13
19.05 – 21.35 0.1072 5.4 4
21.35 – 23.65 0.0351 1.8

7.2
2

6

Total 0.9990 (≈ 1) 50.0 50

Again, the classes with expected frequency values that are < 5 are combined with their
neighbouring classes. Consequently, the number of classes used in the degrees of freedom
calculation is five. We lose three degrees of freedom because we used three independent
quantities to calculate the expected values from the data: the sample mean, sample standard
deviation and N, the sum of the frequencies. The degrees of freedom for the χ2-value are
then:

ν = 5 – 3 = 2.

= 0.198 + 0.158 + 0.025 + 0.225 + 0.200 = 0.806
8. Since 0.806 < 9.21, the test statistic is in the acceptance region and we ‘accept’ H0.
9. It can be assumed that the population of dbh measurements for this stand follows a
normal distribution.

10.2 Test for Independence

When frequency observations are grouped by two or more classification criteria, it is
often important to determine whether these various criteria are independent of one
another. For example, it may be important to know for the purpose of marketing a
product whether wood species preference is independent of consumer gender.
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Similarly, a forester might be interested in studying whether different progenies of a
particular tree species react differently to a certain insect infestation. Like the
goodness-of-fit test, a χ 2-value can be calculated to test the independence of the two
criteria. Although the test is available for more than two classifications, we restrict
our discussion in this book to testing two classifications.

Let us use an example to introduce the process of the test for independence. Table
10.3 summarizes the classification of 221 pieces of 2 × 8 dimensional lumber by grade
and work shift. Shift 1 is from 8:00 am to 4:00 pm, shift 2 is from 4:00 pm to 12
midnight, and shift 3 is from 12 midnight to 8:00 am. Since newer employees tend to
be assigned to shifts 2 and 3, it is hypothesized that the quality of lumber being
produced will be lower during these shifts, which would show in the distribution of
lumber by grade. This set of observations is called a 3 × 4 contingency table, because
it consists of 3 rows (r) and 4 columns (c), referring to shifts and grades, respectively,
in this case. In general, the size of a contingency table for problems with two criteria
is defined by r × c.

Observations like those in Table 10.3 are considered independent when the
relative frequencies of the row classification criteria are similar across the column
classification criteria. In our example, grade is considered independent of shift when
the various grades for the three shifts are similarly proportioned: that is, the
distributions of grades are similar across all shifts. If the distributions vary from shift
to shift, then they are shift-dependent. Conversely, the data are considered to be
independent if the relative frequencies of the various shifts within each of the four
grades are similarly related.

For general notation, we will use Oij to denote the observed frequencies, where 
i = 1, 2, …, r (row number), j = 1, 2, …, c (column number). Also, we denote the row
totals by R1, R2, …, Rc, the column totals by C1, C2, …, Cr, and the grand total (sum
of all frequencies) by N. In order to calculate the expected frequencies, Eij, where i =
1, 2, …, r, and j = 1, 2, …, c, the rule of independence from probability theory is used
(see Eqn 3.16, Chapter 3):

P(A ∩ B) = P(A) P(B).
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Table 10.3. Distribution of lumber grades by shift.

Lumber grade

Shift A B C Reject Total

1 10 25 28 5 68
(a) 2 8 32 30 7 77

3 6 15 25 10 76
Total 24 72 103 22 221

Column

Row 1 2 3 4 Total

1 O11 O12 O13 O14 R1
(b) 2 O21 O22 O23 O24 R2

3 O31 O32 O33 O34 R3
Total C1 C2 C3 C4 N



This rule states that the probability of the intersection of two independent events is
the product of the probabilities of the two events. Applying this to our example, the
probability that a piece is produced in shift 1 is:

P(shift 1) = 68/221.

The probability that a piece is grade B is:

P(grade B) = 72/221.

The intersection of these two events, if they are independent is:

P(shift 1 ∩ grade B) = P(shift 1) P(grade B) = (68/221) (72/221) = p12.

p12 is the probability that we observe an outcome (observation) in the cell of row
1 and column 2. From here, the general equation to calculate the probability for any
outcome, under the assumption that the rows (shift) and columns (grade) are
independent, is:

pij = (Ri /N)(Cj /N).

The expected frequency for row i and column j is equal to the product of pij and N.
This is mathematically equivalent to multiplying the sum of row i and the sum of
column j and then dividing by the sum of all frequencies:

Eij = N pij = N (Ri /N) (Cj /N) = (Ri) (Cj)/N. (10.2)

These expected values are calculated so that they are row and column independent,
meaning that both the relative distributions of each row and each column are the
same.

In tests for independence, the null hypothesis states that for each cell, the expected
and observed frequencies are the same (i.e. the rows and columns are independent).
The alternative hypothesis is that at least one of the observed frequencies is not equal
to its corresponding expected frequency:

H0: Oij = Eij, for all possible is and js; or, the observed frequencies are
independent of shift and grade,

and

H1: Oij ≠ Eij, for at least one set of i and j; or, the observed frequencies are
dependent on shift and grade.

The test statistic is then computed as:

(10.3)

The critical values are obtained from the χ2-table (see Table A.6, Appendix A) with 
(r – 1) (c – 1) degrees of freedom. Recall the general rule of degrees of freedom, which
stated that the degrees of freedom for the χ2 distribution were equal to the total
number of cells minus the number of ‘independent quantities’ obtained from the
sample data to calculate the expected frequencies. It can be seen that:

(r – 1) (c – 1) = rc – r – c + 1 = rc – (r + c – 1),

where rc = total number of cells and (r + c – 1) = number of independent quantities
used to calculate the expected frequencies.

From Eqn 10.2, a casual observer might think that (r + c + 1) quantities are used
to calculate the expected frequencies: r row sums, c column sums, and 1 for N, the sum
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of all frequencies (see Eqn 10.2). However, these are not all independent. Since we
know the r number of row sums, only (c – 1) column sums are necessary to perform the
calculations because the c column sums must add up to the same sum (N) as the row
sums. For the same reason, N is known if we know all of the row sums and/or the
column sums. In other words, to calculate the expected frequencies, we only need to
know the values of (r – 1) of the r rows or (c – 1) of the c columns, which gives us
degrees of freedom of rc – (r + c – 1), algebraically equivalent to (r – 1) (c – 1).

We now continue with our example and present the complete test of
independence for grade distributions by shift:

1. H0: Oij = Eij for all is and js; the distribution of grades is independent of shift.
2. H1: Oi ≠ Eij for at least one pair of i and j; the distribution of grades is dependent
on shift.
3. α = 0.05.
4. Use Eqn 10.3.
5. The expected values are:

E11 = (24)(68)/221 = 7.4 E21 = (24)(77)/221 = 8.4 E31 = (24)(76)/221 = 8.3
E12 = (72)(68)/221 = 22.2 E22 = (72)(77)/221 = 25.1 E32 = (72)(76)/221 = 24.8
E13 = (103)(68)/221 = 31.7 E23 = (103)(77)/221 = 35.9 E33 = (103)(76)/221 = 35.4
E14 = (22)(68)/221 = 6.8 E24 = (22)(77)/221 = 7.7 E34 = (22)(76)/221 = 7.6

Thus, the expected values by lumber grade and shift are:

8. Since 12.996 > 12.6, the test statistic is in the rejection region and we reject H0 and
accept H1.
9. The distribution of grades is dependent on shift, meaning that the distributions of
grades vary from shift to shift.

In the test for independence, the two classification criteria compared for independence
do not have to be qualitative, as in our example above. They can also be quantitative,
which makes it possible to compare two or more frequency distributions (grouped or
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ungrouped) obtained from two or more populations. In this case, one classification
criteria would be the source of the population and the other would be the frequency
classes. Note that when several frequency distributions are compared using the test for
independence, the frequency class limits (boundaries) must be the same for each
frequency distribution. For example, we could compare frequency distributions of dbh
observations from three forest stands, or frequency distributions of accidents from two
sawmills, like the one described in Example 10.2, using the chi-square test described in
this section. If the test shows independence when comparing distributions, it can be
assumed that the various populations being compared follow similar distributions.

A special case of the contingency table occurs when there are either two rows or
two columns. In this case, the test for independence is equivalent to testing more than
two proportions. This special case can be treated as an extension of the tests for the
difference between two proportions (see Section 9.7, Chapter 9). In testing several
proportions, the null hypothesis – that all proportions are equal – is tested against the
alternative that at least one is different:

H0: p1 = p2 = … = pk

H1: at least one is different.

The test statistic for several proportions is seen in Eqn 10.3. This test again results in
a one-tailed test for the same reasons discussed above.

Example 10.4. Three chemical treatments were applied to random samples of Douglas-fir
seeds. An additional random sample was left as a control (i.e. not treated). After the
treatment, the germination tests showed the results seen below in Table 10.4. Using a 0.01
level of significance, do these data indicate that the chemical treatments and control have
different effects on germination?

1. H0: Oij = Eij for all is and js; or pc = p1 = p2 = p3.
2. H1: Oij ≠ Eij for at least one pair of i and j; or, at least one proportion is different.
3. α = 0.01.
4. Use Eqn 10.3.
5. E11= (94)(306)/343 = 83.9 E21 = (94)(37)/343 = 10.1

E12 = (80)(306)/343 = 71.4 E22 = (80)(37)/343 = 8.6
E13 = (97)(306)/343 = 86.5 E23 = (97)(37)/343 = 10.5
E14 = (72)(306)/343 = 64.2 E24 = (72)(37)/343 = 7.8

Thus, the expected frequencies by treatment are:

Control 1 2 3

Germinated 83.9 71.4 86.5 64.2
Not germinated 10.1 8.6 10.5 7.8
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Table 10.4. Distribution of Douglas-fir seed germination by chemical treatment.

Treatment

Observed frequencies Control 1 2 3 Total

Germinated 84 72 88 62 306
Not germinated 10 8 9 10 37
Total 94 80 97 72 343



8. Since 0.9842 < 11.3, the test statistic is in the acceptance region and we ‘accept’ H0.
9. It can be assumed that the four unknown population germination proportions (0.89, 0.90,
0.9 and 0.86) are the same. In other words, the four unknown population proportions are not
significantly different.

Another special case occurs when only two rows and two columns are used in a
test for independence. These are called 2 × 2 contingency tables. In this case, the test
statistic (Eqn 10.3) used for testing independence is not exact. The sampling
distribution for the 2 × 2 case is only approximated by a chi-square distribution, and
this approximation is often poor. To correct for this, the English statistician, Frank
Yates, introduced a correction for continuity for use in testing 2 × 2 contingency
tables:

(10.4)

The correction is strongly recommended when some or all of the frequencies are ≤ 10.
When all of the cell frequencies are large (i.e. > 10), the values of the χ 2-test statistic
are almost identical whether the correction is used or not: in these cases, the
correction is not recommended.

As a final note, the test for the 2 × 2 contingency tables is equivalent to the test of
comparing the differences between two proportions (see Section 9.7, Chapter 9).
However, the results of these tests are only mathematically approximate, as the latter
test relies on the normal approximation to the binomial distribution.

Example 10.5. A manufacturer of furniture components qualitatively evaluated the surface
roughness of pieces produced by two operators (Table 10.5). Can we assume that the proportion
of acceptable pieces are the same (independent) for the two operators, using α = 0.05?

1. H0: Oij = Eij for all is and js; or p1 = p2 (where pi is the proportion of acceptable pieces from
operator i).
2. H1: Oij ≠ Eij for at least one pair of i and j; or p1 ≠ p2.
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Table 10.5. Acceptable and unacceptable surface roughness
frequencies for two operators.

Roughness

Operator Unacceptable Acceptable Total

1 8 84 92
2 23 52 75
Total 31 136 167
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3. α = 0.05.
4. Use Eqn 10.4, since one of the frequencies is < 10.
5. E11 = (31)(92)/167 = 17.1 E21 = (31)(75)/167 = 13.9

E12 = (136)(92)/167 = 74.9 E22 = (136)(75)/167 = 61.1
Thus, the expected frequencies by operator are:

6.

8. Since 11.85 > 3.84, the test statistic is in the critical region and we reject H0 and accept H1.
9. The unknown population proportions of unacceptable pieces for each operator are not
equal.

We can also solve this problem by using a z-test for the difference between the two
proportions of unacceptable pieces:
1. H0: p1 – p2 = 0.
2. H1: p1 – p2 ≠ 0.
3. α = 0.05.
4. Use Eqn 9.10.
5. n1 = 92; n2 = 75;

Note that we did not use the combined proportion (pc) here because the proportions are
considerably different.

8. Since –3.62 < –1.96, the test statistic is in the critical region; we reject H0 and accept H1.
9. Same as for the χ 2-test above.

Again, the z-test performed here is a two-tailed test and the χ 2-test is a one-tailed test. Also,
(–3.62)2 ≈ 13.10 is approximately equal to the χ 2 statistic, 13.27, that we would get by using
Eqn 10.3 instead of Eqn 10.4 (with Yates’ correction), for the same reasons discussed under
the goodness-of-fit test.

Before closing this chapter, we give a word of caution. If any of the expected class
frequencies are < 5, for any size of contingency table, the sampling distribution of the
test statistic discussed in this section is very poorly approximated by the chi-square
distribution. A special procedure, the Fisher–Irwin exact test, is available for cases
when some of the expected frequencies are < 5. Details of this test can be found in
more advanced statistical texts.
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Exercises

Section 10.1

10.1. A certain software manufacturer advertises that its random number generator
produces numbers that follow a uniform distribution. Based on the following sample
of 500 digits generated using this software, can we support their claim? Use α = 0.01.

Digit 0 1 2 3 4 5 6 7 8 9
Frequency 43 52 55 46 48 57 49 60 41 49

10.2. In a regeneration survey, the number of established seedlings on 150 survey
plots was recorded. The following table summarizes this data:

a. Identify the distribution.
b. Test whether your identification in 10.2a is correct. Use α = 0.05.

10.3. One-hundred-and-five independent germination tests were carried out on a
batch of Douglas-fir seeds. Ten seeds were used in each test and the resulting
frequency distribution is shown below:

a. Identify the distribution.
b. Test whether your identification in 10.3a is correct. Use α = 0.01.

No. of seedlings Frequency

0 21
1 41
2 40
3 25
4 11
5 7
6+ 5

Number of seeds germinated Frequency

0 0
1 0
2 0
3 0
4 2
5 0
6 12
7 18
8 33
9 30

10 10
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10.4. Consider the following frequency distribution of tree crown lengths (in metres)
collected in a young stand.

Class limits Frequency

< 4.4 4
4.5–6.4 14
6.5–8.4 22
8.5–10.4 27
10.5–12.4 16
12.5–14.4 7

Forest type

Species 1 2 3 4

Douglas-fir 35 28 37 42
Hemlock 20 22 34 26
Other 12 8 10 6

Test the hypothesis that the distribution is normal using a 0.01 level of significance.

Section 10.2

10.5. Four forest types were sampled to examine their tree species distributions. The
results are summarized as follows:

Test the hypothesis that species and forest type are independent. Use α = 0.05.

10.6. A park manager wanted to investigate whether a visitor’s preference to stay at
1 of 3 available campsites was related to their income. The manager conducted a
survey and the results are summarized below.

Campsite

Income (US$) 1 2 3

< 15,000 20 9 12
15,000–50,000 38 39 20
50,000 < 17 13 19

Is level of income independent of campsite preference? Use α = 0.01.
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Is the distribution of accidents independent of plant? Use a = 0.05.

10.8. A study was conducted to find out whether germination rates from 4 different
seed sources were the same or different.

Accidents per month

Plant 0 1 2 3 4+

A 27 40 18 12 7
B 14 18 8 7 6

a. Are the proportions of germinated seeds the same from the 4 sources? Use α =
0.01.

b. Repeat the test above for sources A and B only, using two different tests.

10.9. A company harvested 3 areas and the forester tabulated the distribution of
grades by area for all 10 m logs brought to market.

Seed source

Germinated A B C D

Yes 85 76 92 87
No 10 8 9 10

Peeler 1 Peeler 2 Saw-log Pulp

Area A 90 180 210 120
Area B 20 40 42 21
Area C 54 90 111 50

Killed Survived

White spruce 97 223
Lodgepole pine 167 253

Are the distributions of grade area dependent? Use α = 0.01.

10.10. In early May 1999, a late frost killed a significant number of seedlings from a
certain nursery. To study the effect of frost on the 2 species grown in the nursery, the
following data were collected:

Is there a relationship between survival rate and species? Use a 0.01 level of
significance and two different procedures to test the hypothesis.

10.7. The distribution of numbers of accidents per month in 2 large secondary wood
manufacturing plants are as follows:
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Regression and correlation analyses are perhaps two of the most important statistical
tools in forestry, as well as in most other physical and social science fields. Regression and
correlation analyses provide an understanding of the mathematical relationship between
two or more variables and are particularly important in the area of forest mensuration
and measurements. The knowledge of the relationship between variables enables us to
estimate or predict variables that are difficult or expensive to measure by using other
variables that are easier or more cost-effective to measure. For example, when timber
cruising, the volume of a tree is both very difficult and costly to measure. A good estimate
would require cutting down the tree and submerging it in a large tank of water to
measure the amount of water that is displaced. Obviously, this is not only untenable, but
is also destructive (if we want to keep the tree where it is!). However, the diameter at
breast height (dbh), or the total tree height, or the basal area at breast height, are all much
easier and relatively cheaper variables to measure. We can use these variables to predict
tree volume based on the relationships (equations) that we observe between the variables.
In this chapter, we will cover statistical procedures to derive mathematical relationships
between sampled tree volume and sampled dbh, tree height and/or basal area. The tools
that we will use to derive these relationships are regression and correlation analyses.

Regression is often used in forestry to predict variables that are difficult to
measure. Some examples include estimations of tree height from dbh, amount of
decay from tree size or age, tree height from ages (also called site index equations),
dbh from stump diameter in stump cruising and merchantable tree volume from tree
size (usually dbh).

In many cases, we may not need to predict difficult or expensive variables from
more affordable variables; instead, the objective is simply to study whether or not
there is a significant relationship between two or more variables. Here, we would use
correlation. Examples include relationships between: stand density and stand age; the
strength properties of particleboard and the amount of resin used in its manufacture;
the level of mountain pine beetle infestation and temperature; and the price of
Canadian lumber and interest rates in the USA.

There are not many differences between the statistical procedures used when the
main objective is to find the relationship between two or more variables for prediction
purposes versus simply investigating the relationship between two or more variables.
The former procedure is called regression analysis, while the latter is called correlation
analysis.

When the relationship between two variables is a straight line, we use what is
called a simple linear regression. When the relationship between two variables is
characterized by a curve, it is called a curvilinear regression. When these relationships
are based on more than two variables, they are called either multiple linear regressions
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or multiple curvilinear regressions, depending on their shapes. In this chapter, simple
linear regression will be discussed in detail and some introductory comments will be
made on both multiple linear and curvilinear regression. For further information on
these more advanced forms of regression analysis, the student is directed to any
number of texts devoted entirely to this subject.

11.1 Simple Linear Regression

Simple linear regression involves the straight-line relationship between two variables:
the dependent variable (or the y variable) and the independent variable (or the x
variable). In many cases, it is easy to distinguish between these two variables. For
example, the height of a tree depends on its age. In this case, age is the independent
variable and height is the dependent variable. However, in a relationship such as the
one between height and dbh, it is very difficult – if not impossible – to decide which
variable depends on the other. In these cases, the variable which is more difficult or
more expensive to measure is typically called the dependent variable. In other words,
height would be the dependent variable because dbh is the more easily measured
variable. In timber inventories, we are also generally trying to predict height, not dbh.
The independent variable is therefore frequently referred to as the predictor variable
and the dependent variable is referred to as the response variable. In general, the
dependent variable is the one that we wish to predict and it usually cannot be
controlled or manipulated. In contrast, the independent variable can easily be
measured and can usually be controlled and/or manipulated.

Determination of the regression equation

The recommended first step in both regression and correlation analyses is to create a
scatter plot or scatter diagram. Here, pairs of data are plotted with the independent
variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis
(see Fig. 11.1). These scatter plots serve two very important roles. First, they
graphically show the nature of the relationship between the independent and the
dependent variables. For example, Fig. 11.1a shows a straight-line relationship, Fig.
11.1b shows a curvilinear relationship and Fig. 11.1c shows no relationship at all
between the dependent and independent variables. Scatter plots are also useful for
indicating outliers in the data (see Fig. 11.2). Outliers are extreme observations,
oftentimes a result of some source of measurement or experimental error. Outliers,
like the one shown in Fig. 11.2, can seriously influence a regression analysis. If the
source of error can be identified, we recommend that it be corrected. If the source of
error cannot be located, and the researcher is convinced the observation is erroneous,
it should be deleted. The reader is referred to more advanced textbooks for more
information on outliers (e.g. Draper and Smith, 1998).

To introduce the procedures used in simple linear regression, we will refer to a
practical example throughout this chapter. Assume that we have ten pairs of
observations of dbh and crown radius taken from a sample of 10 young white pine
trees. The dbh measurements (in cm) will be the independent variable (x), while the
crown radius measurements (in m) will be the dependent variable (y). Note that dbh
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is very easy to measure (with a diameter tape, known as a D-tape), while a
measurement for crown radius is more difficult to obtain. The data are shown below
and the scatter diagram of our paired measurements presented in Fig. 11.3 reveals a
reasonably straight-line (linear) relationship.

x 5.0 12.7 7.6 17.8 5.1 15.2 10.2 22.9 20.3 10.1
y 0.91 1.83 1.22 2.18 1.22 2.30 1.70 2.74 2.65 1.52

If the scatter diagram indicates an outlier-free straight-line relationship, the next task
is to find the ‘best’ equation to describe the relationship of data points. In
mathematics, the equation for a straight-line relationship between x and y is typically
described by:

y = mx + b,

where m is the slope for the equation and b is the y-intercept. In regression analysis,
the same general equation is used, although the terminology is different:

y = b0 + b1x (sometimes this is expressed as y = a + bx),
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Fig. 11.1. Scatter diagrams indicating (a) a linear relationship, (b) a curvilinear relationship and (c) no
relationship.

Fig. 11.2. The effect of an outlier.



where b0 is the y-intercept and b1 is the slope for the equation. This is called a
deterministic relationship between x and y, because any value of y is completely
determined by a value of the independent variable, x. To describe the actual
relationship between variables in a sample, we use yet another form (which is
mathematically the same as the above). More specifically, two slightly different
equations are introduced, the first describing the straight regression line and the
second describing the location of each individual observation:

(11.1)

(11.2)

where

ŷi = a point on the regression line for a given xi (a prediction of yi for a given xi);
xi = an observation of the independent variable;
ei = yi – ŷi, the residual error for the ith observation (the vertical difference
between the ith plotted point and the point corresponding to xi on the line); 
i = 1, 2, 3, …, n (an index or count of the observations in a sample);
n = number of observations (number of pairs of xs and ys);
b0 = y-intercept of the regression line, and
b1 = the slope of the regression line.

Equation 11.1 describes the straight-line relationship between the points (Fig. 11.4),
while Eqn 11.2 incorporates a residual term to describe the location of every single
point around the straight regression line. Equation 11.1 is often called the regression
equation. Equation 11.2 is called the regression model and more generally referred to
as an additive probabilistic model (in this book, we use the terms ‘equation’ and
‘model’ interchangeably). The notations b0 and b1 are used to describe the
relationship between values of x and y of a sample taken from a population, and are
called regression coefficients.
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y x
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Fig. 11.3. Scatter diagram of the dbh and crown radius data.



The following equations are used to describe the relationship between the x and
y values for the entire population:

(11.3)

(11.4)

where

yi and xi = as above, and
i = 1, 2, 3, …, N (an index or count of all of the observations in a population);
N = number of all possible observations (pairs of x and y values) in the population;

�0 = y-intercept for the population, and
�1 = slope of the straight-line relationship for the population.

�0 and �1 are called parameters of the regression equations or models because
relationships within a population are being described.

The method of least squares, which determines the line in which the sum of
squares for error is minimized, is used to find the numerical value of the regression
coefficients, b0 and b1, for a sample. In other words, our goal is to find the line of ‘best
fit’ for the data at hand. To illustrate this point, Fig. 11.5a shows the line of best fit:
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Fig. 11.4. The regression line for the dbh and crown radius data.

Fig. 11.5. Two hypothetical regression lines showing (a) the line of best fit and (b) a line that does not
fit the data well.



this is equivalent to the line in which the sum of squares for error is minimized.
Conversely, Fig. 11.5b shows a line that does not fit the data well; here, the sum of
square errors is not minimized.

Frequently, the process of finding the numerical values of the regression
coefficients is referred to as fitting the regression. The complete derivation of the
method of least squares requires differential calculus, which is beyond the scope of
this text and will only be outlined as follows.

If we let ŷi denote the predicted straight-line values of the dependent variable, the
residual sum of squares is:

Using the method of least squares, we want to minimize SSRes to obtain the line of best
fit. Therefore, we take the partial derivatives of the above function with respect to b0
and b1 and set these equal to zero, which produces two equations:

where the index, i, for each Σ goes from 1 to n.
For the two equations above, the solution for the two unknowns, b0 and b1,

which minimizes SSRes, is:

(11.5)

(11.6)

where

y– = mean of the dependent variable;
x– = mean of the independent variable;
SSx = corrected sum of squares of x; and
SPxy = corrected sum of products x and y.

See Chapter 2 for the equations of y–, x–, and SSx. Note that SSx divided by (n – 1)
would result in the variance of x, and that SPxy divided by (n – 1) would result in the
covariance (see Chapter 4) of x and y.

We recommend the following steps to find the values of b0 and b1. Find:

1. n = number of observations;
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2. x– = mean of x;
3. y– = mean of y;
4. SSx = corrected sum of squares of x;
5. SSy = corrected sum of squares of y; and
6. SPxy = corrected sum of products of x and y.

Going back to the dbh and crown radius example, these are:

n = 10
x– = 126.9/10 = 12.69
y– = 18.27/10 = 1.827
SSx = 1960.49 � 126.92/10 ≈ 350.13
SSy = 36.9267 � 18.272/10 ≈ 3.5474
SPxy = 266.282 � (126.9)(18.27)/10 ≈ 34.4357
b1 = 34.4357/350.13 ≈ 0.0984 ≈ 0.098
b0 = 1.827 – (0.0984)(12.69) ≈ 0.5783 ≈ 0.58

Note that SPxy can be negative, which indicates a negative relationship between x and
y. In other words, as x increases, y decreases.

If the numerical values of b0 and b1 are calculated using the least squares method,
the regression line will have the following properties:

1. It passes through the point of (x–, y–) (see Fig. 11.5).
2. The sum of the residuals around the regression line is equal to zero
which indicates a well-balanced line between the points.
3. The sum of squares of the residuals is at its minimum.
This last point does not need any mathematical proof, as this is how the least squares
line was derived. The first and second can be verified mathematically:

1. Substituting x– for xi in the regression model of Eqn 11.1, we have 

Substituting y– � b1 x– for b0 (see Eqn 11.6), we get

Therefore, (x–, y–) is a point on the regression line.

2. The sum of residuals is Substituting the value of ŷi from Eqn 11.1 in the

summation, we have

Then, substituting the value of b0 from Eqn 11.6, we have

since the above

expression reduces to zero.

Figure 11.6 shows the algebraic and trigonometric meaning of the y-intercept and the
slope. In general, the slope indicates the amount of change in the dependent variable,
y, for every unit change of the independent variable, x. The inverse tangent of the
slope gives the angle that the regression line makes with the x-axis. The intercept
indicates the value of the dependent variable, y, when x = 0. Numerically, for the dbh
and crown radius example, the slope of 0.098 means that the crown radius increases
(on average) by 0.098 m (9.8 cm) increase for every 1 cm increase in dbh.
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The intercept of 0.58 indicates that the crown radius is 0.58 m when the dbh is
zero. However, a word of caution is in order here. If the observations for the
independent variable are much > 0, the interpretation of the intercept can be
misleading. Unless there are good reasons to believe that the model fitted (in this case,
the straight line) is valid beyond the range of observed data, predictions of the
dependent variable outside the range of the sampled independent variable should only
be made with extreme caution. In our example, the smallest dbh is 5.0 cm and we do
not know whether the relationship between x = 0 and x = 5 is a straight line or a
curve, so the interpretation of a crown radius of 0.58 m may be misleading. In fact, it
is fairly safe to assume that if a tree has a dbh of 0 cm, it also lacks a crown radius (in
other words, it does not exist). If, however, there are observations close to x = 0, the
interpretation of the intercept is fairly reliable.

Regression analysis

Since the method of least squares is a mathematical procedure, no assumptions about
the observations are necessary to find the regression coefficients, b0 and b1. However,
when statistical inferences are required about the regression parameters, predictions
made from the model, or the quality (goodness) of the relationship, the following
assumptions must be met for the case of simple linear regression:

1. A simple linear regression model, yi = �0 + �1xi + εi, is appropriate for the
population (i.e. the relationship within the population between x and y is linear).
2. The xi values in the data pairs of {(xi, yi); i = 1, 2, 3, …, n} are fixed (or measured
without error), and are not values of a random variable.
3. The yi values in the data pairs of (xi, yi) for any given xi are values of a random
variable, Y, and are normally distributed.
4. The yi values for any given xi have a uniform variance; that is, the unknown
population variances from one given xi to another are the same.
5. A yi value for a given xi value is independent from any other yi values in the
sample.
6. The samples of yi values for any given xi value are randomly selected from the
population of the random variable of Y.

Assumption 1 is a hypothetical statement about the relationship between the x and y
values for the entire population. Assumption 2 indicates that values of the
independent variable need not be randomly selected, but can be selected arbitrarily.
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For our example, this means that we should select trees with certain dbh values
(perhaps encompassing a wide range of values) and then measure their crown radius.
Also, as stated, the dbh should be measured without error, something that is virtually
impossible. The only thing we can do is to measure the values of dbh with as much
accuracy as possible. In most textbooks, Assumptions 3–5 are combined into one and
stated as the values of εi are ‘iid N(0,σ2)’, meaning that the residuals are independent,
identically distributed normal (N) variates, with a zero mean and a constant variance
of σ2. Lastly, Assumption 6 indicates that for a selected dbh, there are many trees with
various radius measurements and we take a random sample of these trees.

If the above assumptions are met, various inferences can be made about the
quality of the relationship, about �0 and �1 and about the unknown population mean
of y at a given x value.

After calculating b0 and b1, the logical questions are: ‘How good is the
relationship between x and y?’, or ‘How is y affected by x?’ Several diagnostic tests
are available to answer these questions and, in all of them, we test the assumption that
there is no relationship between the independent and the dependent variables. H0 is
set up to claim that the unknown population slope is equal to zero (a flat line would
indicate no relationship because, as x changes, nothing happens to y). The alternative
hypothesis claims that the population slope is non-zero:

H0: �1 = 0,

H1: �1 ≠ 0.

These hypotheses can be tested either by using an F-test (analysis of variance), r-test
(test for the correlation coefficient), or t-test. It should be noted that these three tests
are mathematically equivalent and lead to the same decisions and conclusions. For
this reason, they are discussed together, but in turn.

However, before discussing these tests, we introduce the important concept of
partitioning the total variation in a regression. For a data set consisting of
independent and dependent variables, the variation that we are concerned with occurs
in the dependent variable, because this is what we are trying to predict. The total
variation (in terms of sum of squares) of the dependent variable, y, is called SSTotal, or
SST, or SSy. This total sum of squares can be partitioned into two components: the
variation caused by the regression, or accounted for by the regression (SSReg), and the
residual variation, or the variation around the regression line (SSRes).

Figure 11.7 graphically illustrates the way that the total sum of squares is
partitioned into the two components: (a) shows the variation (SST) of the yi values
(raw data) around their mean, y– (which would be our best estimate of the population
mean for y, given no information regarding its relationship with x); (b) is the variation
(SSReg) of the predicted values around the mean, y–; and (c) is the variation (SSRes) of yi
values around the regression line.

Mathematically stated, the way in which the total sum of squares (SST) is
partitioned is as follows:
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with the degrees of freedom of the three respective sum of squares terms being:

(n – 1) = 1 + (n – 2). (11.9)

As discussed in Chapter 2, SST has (n – 1) degrees of freedom, because only one statistic
is used from the data to calculate this sum of squares. The degrees of freedom of SSRes
is (n – 2), which can be explained in two different ways. Since we use n statistics (Eqn
11.8) to calculate the residual sum of squares, it looks as though it should have zero (n
� n) degrees of freedom. However, since it is known from basic algebra that two
points define a straight line, and all of the values occur on a straight line, only two out
of the n values are independent. That is, if we know any two of the values, all the others
can be calculated. Thus, the degrees of freedom of SSRes is (n – 2). Another explanation
of this is that the values are calculated using two statistics: the regression coefficients,
b0 and b1. Since these are calculated from the data, SSRes has (n – 2) degrees of freedom.
Similarly, from Eqn 11.8, it looks as though the sum of squares caused by the
regression (SSReg) should have (n – 1) degrees of freedom, but since only two of the n
values are independent, the degrees of freedom are (2 – 1) = 1.

The first diagnostic test, the F-test or analysis of variance test, is based on this
partitioning of variation, with the following logic. When the SSReg accounts for a very
small portion of the total sum of squares (SST), we have a poor relationship between
x and y; in fact, when it is zero, it means that �1 = 0 exactly and there is no
relationship between the independent and dependent variables at all. On the other
hand, when SSRes is zero, this means that we have a mathematically perfect
relationship between x and y; that is, each data point is on the regression line. The
difference between the sum of squares regression and the sum of squares residual is
tested in such a way that we assume that the variance due to regression (SSReg/1) is
equal to the residual variance (SSRes/(n – 2)). The alternative hypothesis states that the
variance due to regression is greater than the residual variance, meaning that we have
a good relationship between x and y:

H0: σ2
Reg/σ

2
Res = 1.0

H1: σ2
Reg /σ2

Res > 1.0.

The above null and the alternative hypotheses can be restated in terms of �1, as shown
earlier. The two statements are equivalent, since:

E(MSRes) = σ 2
Res

and
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Fig. 11.7. The concept of partitioning the sum of squares of the dependent variable (a) SST, (b) SSReg
and (c) SSRes.



E(MSReg) = σ 2
Reg = σ 2

Res + �2
1 (xi − x–)2,

therefore if �1 = 0,

σ2
Reg = σ 2

Res.

For the above null hypothesis, the correct test statistic is:

(11.10)

for which the critical values are obtained from the F-table (see Table A.7, Appendix
A), with 1 and (n – 2) degrees of freedom. In Eqn 11.10, MSReg and MSRes are point
estimators of σ2

Reg and σ2
Res, respectively. Fisher (see Chapter 7, Section 7.7) coined the

term mean square (MS) in place of variance, which is short for mean sum of squares.
Thus, variance and mean square are analogous – a sum of squares term divided by its
corresponding degrees of freedom. However, the mean square terminology is
generally used in regressions and analyses of variance (see Chapter 12).

In most cases, the above test can be summarized in an analysis of variance table
(discussed in more detail in Chapter 12), as in Table 11.1. When the sums of squares
are calculated using pocket calculators, ‘working’ or ‘machine’ equations should be
used for ease of calculation. These working equations are algebraically the same as
those presented above:

The numerical values for our example are:

SST = 3.5474 (from above)

SSReg = (0.0984)(34.4357) ≈ 3.3885

SSRes ≈ 3.5474 – 3.3885 ≈ 0.1589.

The test to see whether the relationship between dbh and crown radius (based on our
sample) is ‘well defined’ or ‘significant’ is set up as:

α = 0.01 F-critical = F0.01(1,8) = 11.26.
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Table 11.1. Analysis of variance table.

Degrees of Sum of 
Source of variation freedom squares Mean squares F

Regression 1 SSReg MSReg MSReg/MSRes
Residual n – 2 SSRes MSRes
Total n – 1 SST



Since 170.27 > 11.26, we reject H0: the regression is well defined (significant). Table
11.2 summarizes the analysis of variance for the dbh and crown radius data.

Two rather important descriptive statistics can be calculated from the sums of
squares presented above. These are the standard error of estimate:

(11.11)

and the coefficient of determination (also known as r2):

(11.12)

The standard error of estimate describes the variation of the observations around the
regression line. The coefficient of determination shows the proportion of the sum of
squares of the dependent variable ‘accounted for’ or ‘explained by’ the independent
variable, or by the regression. For our example, the calculations are as follows:

If the assumptions of regression analysis are met, especially Assumptions 3 and 4, the
meaning of the standard error of estimate of 0.14 m is that about 68% of the
observations (from which the regression equation was derived) can be found within
±0.14 m around the regression line, and that about 95% of the observations can be
found within 2 × 0.14 = ±0.28 m around the regression line (Fig. 11.8). This is the
empirical rule (see Chapter 2) applied to each one of the x values.

Since the standard error of estimate is a descriptive statistic, describing the spread
of ‘observations’ around the regression line, it behaves like a ‘standard deviation’ and,
technically, should not be called ‘standard error’: this term is generally reserved for
describing the variation of a ‘statistic’. Some books do not use the term ‘standard
error of estimate’ at all, using either ‘square root residual variance’ or ‘RMSE’ (root
mean square error) instead.

The meaning of 0.955 for the coefficient of determination is that about 96%
(95.5% to be exact) of the sum of squares of the crown radius is accounted for or
explained by the change in dbh. While this indicates a very good relationship between
dbh and crown radius, it is difficult to provide general guidance on what constitutes a
good r2 value, since there are so many different relationships that we try to predict in
forestry. The more important result is whether or not the r2 value is significant. Due
to the manner in which the coefficient of determination is interpreted, it is frequently
expressed in percentage rather than as a proportion. That said, it can be shown that
the range of r2 values must lie between:

0.0 ≤ r2 ≤ 1.0 (or 0% ≤ 100r2 ≤ 100%),
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Table 11.2. Analysis of variance for the dbh and crown radius data.

Source of variation DF SS MS F

Regression 1 3.3885 3.3885 170.27
Residual 8 0.1589 0.0199
Total 9 3.5474



where zero means no relationship at all (a scattering of points with no discernable
trend), while 1.0 means a perfect relationship between the two variables tested (each
of the data points lies exactly on the regression line).

The correlation coefficient is the square root of the coefficient of determination
and can be calculated as:

(11.13)

The correlation coefficient measures the direction and strength of the linear
association between two random variables. Frequently, it is called the Pearson
product moment correlation coefficient, named after Karl Pearson (1857–1936), the
statistician who introduced correlation analysis. Its value is in the range:

–1.0 ≤ r ≤ 1.0.

A negative value indicates a negative or downward sloping relationship between the
dependent and independent variables (Fig. 11.6); that is, as the independent variable
increases, the dependent variable decreases (for example, the number of frosty days in
April versus the survival rate of seedlings). In other words, a negative correlation
coefficient is associated with a regression line that has a negative slope (b1).
Conversely, a positive value indicates an upward slope, with the dependent variable
increasing as the independent variable increases (our dbh and crown radius example,
for instance).

The absolute value of the correlation coefficient is another useful diagnostic tool
that can be used to test whether the regression is significant (or well defined). In this
case, the absolute value is compared to a critical value obtained from Table A.8 (see
Appendix A), with (n – 2) degrees of freedom for one independent variable. If the
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Fig. 11.8. The concept of the standard error of estimate for the dbh and crown radius data.



absolute value of the calculated r (test statistic) exceeds the critical value, H0: �1 = 0
is rejected. For our example, the critical value from Table A.8 (see Appendix A) is:

r0.05(8) = 0.632.

Since the calculated r is 0.977, H0 is rejected, again showing that we have a significant
relationship. This test is equivalent to the F-test for testing whether the relationship
between two variables is significant (see Eqn 11.10); each can be derived from the
other. Like the F-test, this test is considered a one-tailed test in that we reject the null
hypothesis only if the unknown population variance due to regression is greater than
the unknown population residual variance.

For the final diagnostic test, the correlation coefficient can also be transformed
into a t-statistic and a t-test can be performed with the following hypotheses regarding
the unknown population correlation coefficient, ρ

H0: ρ = 0,

H1: ρ ≠ 0, or ρ < 0, or ρ > 0.

The test statistic for testing this hypothesis is calculated as:

(11.14)

The results are not shown here, but the t-value in this two-tailed test would be equal
to the square root of the F-value obtained in the analysis of variance testing the
significance of the regression, and the conclusions are identical.

The critical value is obtained from the t-table (see Table A.5, Appendix A) with 
(n – 2) degrees of freedom. For this test, it is assumed that both the dependent and
independent variables are randomly selected from a bivariate (see Section 4.2,
Chapter 4) normal distribution.

Sampling distributions and tests concerning the regression coefficients and
predictions

If all possible samples of size n are taken from a population which has the simple
linear relationship of Eqn 11.4 between the dependent and independent variables, it
can be shown that the Central Limit Theorem (see Section 7.2, Chapter 7) can be
applied to the statistics, b0, b1 and ŷxk

(see Fig. 11.9).
These three statistics possess the following properties:

1. Since the values of all three statistics change from sample to sample, they are
random variables.
2. They are unbiased:
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3. Their standard errors are:

(11.15)

(11.16)

(11.17)

where Sb0
= standard error of the intercept; Sb1

= standard error of the slope; Sŷxk
=

standard error of the predicted y value at xk.
4. If the sample size, n, is greater than 30, then their sampling distributions are
approximately normal (Fig. 11.10).

Because of the above properties, probabilities regarding these random variables
(b0, b1 and ŷxk

) can be calculated using the Z or t transformations. More importantly,
we can derive equations for confidence intervals and equations to calculate test
statistics for statistical hypothesis testing concerning these statistics. Since the
population residual variance in regression analysis is almost never readily available,
the equations given below are for cases when the residual variance is estimated from
a sample. The equations used to calculate confidence intervals are:

Confidence interval for the intercept:
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Fig. 11.9. Regression lines obtained from repeated samples of size n from a population.



Confidence interval for the slope:

(11.19)

Confidence interval for the population mean of y at a particular xk:

(11.20)

It is also possible to estimate the variance and the confidence interval for a single y
value (an observation) at a particular xk. The equations are:

(11.21)

(11.22)

Example 11.1. Using the dbh and crown radius data, find the 95% confidence interval for the
intercept, the 99% confidence interval for the slope and the 95% confidence interval for the
mean predicted crown radius at 10.5 cm dbh.

The 95% confidence interval for the intercept:

The probability is 0.95 that the unknown population intercept is between 0.335 and 0.825.
The 99% confidence interval for the slope:
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The probability is 0.99 that the unknown population slope is between 0.073 and 0.123. Since
zero is not included in the interval, it can be concluded that the unknown population slope is
significantly different from zero and the regression is well defined (significant), verifying the
results of our diagnostic tests above.

The 95% confidence interval for the unknown population mean of crown radius at 10.5 cm
dbh:

The probability is 0.95 that the unknown population mean of the crown radius for 10.5 cm dbh
trees is between 1.499 and 1.721 m.

An interesting property of the equation to construct a confidence interval for a
predicted y at a given x value (Eqn 11.20) is that the interval for the predicted y value
is at a minimum at x–. This results in a bow-shaped confidence interval, or so-called
‘confidence belt’, which is graphically conveyed in Fig. 11.11.

Sometimes, we are interested in testing whether the unknown population
intercept is equal to an assumed constant, c. We do so by testing a null hypothesis
against one of the three usual alternative hypotheses:

H0: �0 = c,
H1: �0 ≠ c, or �0 < c, or �0 > c,

for which the test statistic is:

(11.23)

and the critical value is obtained from the t-table (see Table A.5, Appendix A) with 
(n – 2) degrees of freedom.
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Example 11.2. Is it reasonable to believe that the unknown population intercept of the dbh
versus crown radius regression model is zero (i.e. the line runs through the origin)? Use α = 0.05.

Since there is no prior knowledge available about the directional preference for the
rejection of H0, a two-tailed test will be used.

1. H0: �0 = 0.
2. H1: �0 ≠ 0.
3. α = 0.05.
4. Use Eqn 11.23.
5. b0 ≈ 0.58; Sb0

≈ 0.106.
6. t0.025(8) = ±2.31.

8. Since 5.47 < 2.31, we reject H0.
9. Our data indicate that the population intercept of the dbh versus crown radius regression
model is significantly greater than zero and that the regression line does not run through the
origin.

We can also test the assumption that the unknown population slope of a regression
line is equal to a constant, c, against one of three usual alternative hypotheses:

H0: �1 = c,

H1: �1 ≠ c, or �1 < c, or �1 > c,

for which the test statistic is:

(11.24)

and the critical value is obtained from the t-table (see Table A.5, Appendix A) with 
(n – 2) degrees of freedom (see Example 11.3). If c in the above test is assumed to be
zero and a two-tailed test is used, the above test is equivalent to the F-test (Eqn 11.10)
discussed above. In fact, it can be shown that:

Example 11.3. Use the dbh–crown radius data to answer the following:

a. Is it reasonable to believe that the unknown population slope is zero (i.e. it is a flat,
horizontal line, meaning that there is no relationship between dbh and crown radius)?
Use a 0.01 level of significance.

b. Is it reasonable to assume that the unknown population slope is at least 0.1? In other
words, for every cm increase in dbh, does the crown radius increase by at least 0.1 m
(10 cm)? Use a 0.05 level of significance.

In Example 11.3a, we are essentially testing whether the regression is well defined once
again. Therefore, we will reject a negative or a positive slope and use a two-tailed test. In
Example 11.3b, a one-tailed test will be used because it asks about assuming that there is at
least a 0.1 m increase in crown radius for every cm increase of dbh. The rejection region will
be at the lower tail of the sampling distribution.

a.
1. H0: �1 = 0.
2. H1: �1 ≠ 0.

F tv vα α( , ) / ( ).1 2
2=

t
b c

sn
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2
1
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.
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3. α = 0.01.
4. Use Eqn 11.24.
5. b1 ≈ 0.098; Sb1

≈ 0.0075.
6. t0.005(8) = ±3.36.

(note that 13.072 ≈ 170.82, which is within rounding error 

to the F-value in Table 11.2).
8. Since 13.07 > 3.36, we reject H0 and accept H1.
9. The unknown population slope is significantly different from zero and the regression is
well defined (the regression is significant).

b.
1. H0: �1 = 0.1.
2. H1: �1 < 0.1.
3. α = 0.05.
4. Use Eqn 11.24.
5. See Example 11.3a.
6. t0.05(8) = –1.86.

8. Since –0.27 > –1.86, the test statistic is in the acceptance region and we ‘accept’ H0.
9. The unknown population slope is either equal to 0.1 or greater than 0.1, so we can safely
assume that it is at least 0.1.

Because a two-tailed test at α = 0.01 was used in Example 11.3a, it is equivalent to the
99% confidence interval calculated in Example 11.1. The two critical values of ±3.36
can be converted to LCL and UCL values.

0.098 ± (3.36) (0.0075)

P(0.073 < �1 < 0.123)=0.99.

Since the interval does not include zero, this matches the results in Example 11.1.
To test whether or not an unknown population mean of the dependent variable is

equal to some constant for a given value of the independent variable (xk), the
following hypotheses can be constructed:

The appropriate test statistic is:

(11.25)

for which the critical values are obtained from the t-table (see Table A.5, Appendix A)
with (n – 2) degrees of freedom.
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Example 11.4. Is it reasonable to believe, with a 0.05 level of significance, that the unknown
population mean of the crown radius for trees measuring 10.5 cm in dbh is 1.75 m?

Here, a two-tailed test will be used because there is no information indicating that the
crown radius should be more or less than 1.75 m.

3. α = 0.05.
4. Use Eqn 11.25.
5. See Example 11.1.
6. t0.025(8) = ± 2.31.

8. Since –2.92 < –2.31, the test statistic is in the rejection region and we reject H0.
9. The unknown population mean of the crown radius is significantly different from 1.75 m for
trees with a 10.5 cm dbh.

Again, the critical values of ± 2.31 could be restated in crown radius units (m) and they would
be the same as the LCL and UCL in Example 1.

Lack of fit

A well-defined or significant relationship in regression only indicates a significant
linear dependency. It does not necessarily mean that the fitted model is adequate for
practical applications like prediction (see Fig. 11.12). Even when the r2 value is very
high, a model’s adequacy should be tested with a lack of fit test or by plotting the
residuals before it can be used for predictive purposes. To test for lack of fit, the
residual sum of squares of the linear regression, SSRes, can be partitioned into two
components: the variation due to lack of fit, SSLf, and the variation due to pure error,
SSPe. These components are then compared using an F-test. If the variation due to lack

7. t 8
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Fig. 11.12. Lack of fit.



of fit is significantly greater than the variation due to pure error, the model tested is
inadequate due to a lack of fit. Note that this test can be carried out only if we have
repeated ylj observations for several xj values (see Example 11.5). In general, we have:

xj, where j = 1, 2, 3, …, k and ylj, where l = 1, 2, 3, …, nj; and

From here we can state that:

SSRes = SSLf + SSPe,

which is equivalent to:

where y–.j = mean value of yij at xj; ŷj = predicted value of y at xj; yij = observed value of 
y at xj.

Since = n, the total number of observations for the regression, SSRes, can be 

written as:

The degrees of freedom of the three respective sums of squares are:

or n – 2 = (k – 2) + (n – k).

The partitioned sums of squares divided by their corresponding degrees of freedom
give estimates of the variance of pure error and lack of fit, respectively. To test the
equality of the unknown population ‘pure error’ variance and ‘lack of fit’ variance,
hypotheses are stated in the following manner:

H0: σ 2
Lf /σ 2

Pe = 1.0,

H1: σ 2
Lf /σ 2

Pe > 1.0.

The test statistic is calculated as follows:

(11.26)

The critical values are obtained from the F-table (Table A.7) with (k – 2) and
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Example 11.5. The following data show nail sizes and the corresponding ultimate loads
(strengths) of nailed joints:

Find the linear regression model. Test for the significance of the regression and lack of fit 
(α = 0.05).

First, we determine the regression model:

Next, we see if the relationship between nail size and ultimate load is significant:

1. H0: �1 = 0.
2. H1: �1 ≠ 0.
3. α = 0.05.
4. Use Eqn 11.10.

6. F0.05(1,12) = 4.75.
7. F(1,12) = 16.612/0.280 = 59.33.
8. Since 59.33 > 4.75, the test statistic is in the critical region; we reject H0 and accept H1.
9. The relationship is well defined and the slope is significant.

Then, we perform a lack of fit test:

3. α = 0.05.
4. Use Eqn 11.26.
5. The means and predicted values for the various nail sizes are calculated as:
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Nail size 30 40 50 60

11.6 12.5 11.8 14.2
Loads 10.2 11.6 12.7 13.7

10.5 11.1 12.8 14.0 
11.4 12.6

Nail size 30 40 50 60

Mean 10.77 11.65 12.48 13.97
Predicted value 10.64 11.67 12.71 13.74



from here:

6. F0.05(2, 10) = 4.96.

8. Since 0.72 < 4.96, the test statistic is in the acceptance region and we ‘accept’ H0.
9. The model is acceptable; there is no significant lack of fit.

When there are no repeated measurements of the dependent variable at various values
of the independent variable, the adequacy of the model can be evaluated by plotting
the residuals, defined as the differences between points and the regression line (ŷj � yi).
Residuals can be plotted over the independent variable and/or over the predicted
dependent variable. Figure 11.13 shows three possible residual plots or scatter graphs:
Fig. 11.13a indicates an adequate model (no lack of fit), while Fig. 11.13b shows a
typical lack of fit case. Figure 11.13c shows a non-constant variance problem (the
variance is increasing with the independent variable), where Assumption 4 of the
regression analysis is not met.
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Fig. 11.13. Scatter graphs of the residuals: (a) no lack of fit, (b) lack of fit and (c) violation of the
assumption of uniform variance.

11.2 Correlation Analysis

Mathematically, correlation analysis is the same as regression analysis. There are two
major differences between regression and correlation analyses. The first is that the
main objective in regression analysis is to find an equation to predict values of
dependent variables for certain fixed values of independent variables, while the main
objective in correlation analysis is to evaluate the linear association between two or
more (multiple correlation) variables. Secondly, in regression analysis, values of the
independent variables are known and can be selected and controlled by the
experimenter. In correlation analysis, however, both variables are assumed to be
random variables with a bivariate normal distribution (see Section 4.2, Chapter 4).



That said, there are also many similarities between the two analyses. Equation 11.13
can be used to calculate the correlation coefficient and Eqn 11.14 can be used to test
its significance. The significance of a correlation coefficient can also be tested against
the values in Table A.8 (see Appendix A), as discussed earlier.

A word of caution! It is easy to draw incorrect conclusions about the relationship
between two random variables. For example, the number of students registered at the
University of British Columbia yearly between 1956 and 1975 is significantly
positively correlated with the number of crimes in Vancouver, BC. It is certainly hoped
that there is no real cause-and-effect relationship between these two random
variables; rather, that they were both affected by the rapid growth of the population
of Vancouver during this time.

11.3 Multiple Regression

It is possible, oftentimes desirable, to predict the values of a dependent variable from the
measurements of several independent variables. For example, the volume of standing
trees can be predicted from their height, dbh, age and site index. The breaking load of 2
× 4s can be predicted from their specific gravity, number of annual rings per cm and the
width of late wood within annual rings. As in simple linear regressions, the dependent
variable (there is still only one) in multiple regressions is a random variable, while the
independent variables can be selected or fixed by the experimenter. The various forms of
multiple regression models for samples and populations are as follows:

Model describing the sample regression surface:

(11.27)

Model describing the points around the sample regression surface:

(11.28)

Model describing the population regression surface:

(11.29)

Model describing the points around the population regression surface:

(11.30)

The least squares estimates of b0, b1, b2, …, bm in Eqn 11.28 are obtained by using
differential calculus and solving the following systems of linear equations. These
equations are also known as the normal equations and are based on uncorrected sums
of squares and products. For two independent variables, the normal equations are as
follows:

Expressing b0 from the first equation and substituting it into the other two, we get
normal equations based on corrected sums of squares and products:
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The corrected sum of squares for x1 is (to simplify notation, in all the follow-
ing equations):

These equations can be solved either by substitutions or by matrix algebra (the latter
being outside the scope of this text).

In order to test the quality of a multiple regression model, we hypothesize that:

H0: �1 = �2 = … = �m = 0

(in other words, the independent variables have no linear relationship with the
dependent variable), against the alternative of:

H1: at least one is not equal to zero.

These hypotheses are tested in terms of variances in the same way as simple linear
regressions by partitioning the sum of squares of the dependent variable into sum of
squares regression and sum of squares residual:

SST = SSReg + SSRes,

with the following degrees of freedom:

(n – 1) = m + (n – m – 1).

The test statistic is:

(11.31)

The critical value is obtained from the F-table (see Table A.7, Appendix A) with m and
(n – m – 1) degrees of freedom. The surface of a multiple linear regression equation
with m independent variables is defined by (m + 1) points, since a predicted value of
the dependent variable is determined by (m + 1) statistics, namely: b0, b1, …, bm.
Therefore, SSRes has {n – (m + 1)} = (n – m – 1) degrees of freedom. For the same
reasons, the SSReg has {(m + 1) – 1} = m degrees of freedom. Figure 11.14 shows the
surface of a multiple linear regression model with two independent variables, which is
not a line but a plane.
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In multiple regression, the coefficient of determination defined earlier is called the
multiple coefficient of determination. This statistic and the so-called ‘standard error
of estimate’ for multiple linear regression equations are calculated as:

(11.32)

(11.33)

Like simple linear regression, the coefficient of determination in a multiple regression
is the proportion of the sum of squares of the dependent variable explained by or
attributable to all of the independent variables (or to the regression model). It does
not show, however, which independent variable is more important than the others.
Likewise, the standard error of estimate is again a measure of spread of the
observations (from which the regression model is derived) around the regression
surface. However, here the spread of observations is around a surface or a plane, not
a line, as in simple linear regression. That said, if all of the assumptions are met, the
empirical rule applies.

Example 11.6. The following data show modulus of rupture (kp), specific gravity (gm/cm3)
and moisture content (%) of wood specimens randomly taken from 15 trees. Find the multiple
linear regression model for modulus of rupture (the dependent variable) with specific gravity
and moisture content as the independent variables.
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Fig. 11.14. Graph of the multiple regression surface with two independent variables.
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Modulus of rupture, Y Specific gravity, X1 Moisture content, X2

80,492 0.588 62
87,293 0.608 68
89,868 0.579 59
86,830 0.566 55
85,169 0.556 57
29,191 0.412 42
26,226 0.386 44
28,116 0.373 40
30,102 0.402 42
29,221 0.397 43
43,236 0.472 48
39,271 0.451 47
48,238 0.444 50
45,281 0.452 52
50,618 0.500 55

For the above data, the normal equations based on corrected sums of squares and products
are:

0.09227b1 + 8.9961b2 = 27874.4
8.9961b1 + 964.93b2 = 2651940.0.

Solving this system of equations, we have:

b1 = 374833.0; b2 = –746.25.

The intercept is found with the equation: 

b0 = 52810.1 – b1(0.4791) – b2(50.93) = –88750.9.

The test for the quality of the regression model is:

1. H0: β1 = β2 = 0.
2. H1: at least one is different.
3. α = 0.01.
4. Use Eqn 11.31.

SSRes = SST – SSReg = 0.886409 × 1010 – 0.846922 × 1010= 32,905,800.
6. F(2,12) = 6.93.

8. Since 128.69 > 6.93, the test statistic is in the rejection region; we reject H0 and accept H1.
9. There is a well-defined, significant regression for modulus of rupture with specific gravity
and moisture content.

Specific gravity and moisture content explain about 95.5% of the variation (in terms of sum
of squares) of modulus of rupture.

This number shows how the observations vary around the regression surface. About 68% of
the observed modulus of rapture values are within 5736.4 kilopascals of the regression
surface (a plane).
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11.4 Non-linear Models

When the relationship between an independent and a dependent variable is not a
straight line (e.g. the dbh and height example in Fig. 11.15), we can oftentimes
describe the relationship as being curvilinear. Statistically speaking, some curvilinear
relationships are said to be linear in the parameters. Polynomial regression models,
for example, can be transformed into a form that is linear (see description following).
Some exponential and hyperbolic regressions can also be transformed in a similar
manner. For example, curvilinear models of second and third degree polynomials
appear as follows:

(11.34)

(11.35)

To obtain a model that is linear in parameters, xi, xi
2 and xi

3 are simply treated as x1,
x2 and x3 in a multiple linear regression model, and the procedures discussed in
Section 11.3 can be used.

One of the most frequently used exponential regression models occurs in the
following form:

(11.36)

After taking the logarithm of both sides of the equation, it becomes:

from here

(11.37)

where b0 = ln(a); b1 = b; b2 = ln(c).

In this case, ln(yi) is treated as the dependent variable and ln(xi) as x1 and xi as x2. We can
then proceed with a multiple linear regression analysis with two independent variables.

ln ˆ lny b b x b xi i i( ) = + ( ) +0 1 2
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Fig. 11.15. Scatter diagram for the dbh and height data (see Example 11.7).



Consider a hyperbola shape:

(11.38)

In order to linearize the model, (1/xi) is considered as x1, xi is considered as x2, and we
can again proceed with a multiple linear regression analysis with two independent
variables (see Example 11.7). Both Eqns 11.37 and 11.38 can be reduced to a simple
linear regression case if �2 (estimated by b2) can be assumed to be zero (the test for this
is beyond the scope of this text). In this case, Eqn 11.36 simplifies to:

(11.39)
and Eqn 11.38 becomes:

(11.40)

Example 11.7. Total tree height (m) and dbh (cm) were measured on 12 randomly selected
trees.

dbh: 12.9 14.0 13.4 14.8 15.1 15.7 12.5 16.6 17.5 18.4 18.4 19.5
height: 11.1 11.1 12.7 12.8 13.9 13.3 9.8 14.1 14.2 14.3 14.0 14.2

Find the second-degree polynomial for the above data set (see Fig. 11.15).
The normal equations based on corrected sums of squares and products for the second-

degree polynomial are:

60.48b1 + 1925.32b2 = 33.05
1925.32b1 + 61497.0b2 = 1024.79.

Solving the systems of equations, we have:

b1 = 4.64; b2 = – 0.1286

and substituting these values, we have:

b0= 12.96 – b1(15.73) – b2(252.58) = –27.56.

Model:

The test for the significance of the regression model is:

1. H0: β1 = β2 = 0.
2. H1: at least one is different.
3. α = 0.05.
4. Use Eqn 11.31.

8. Since 26.54 > 4.26, the test statistic is in the rejection region; we reject H0 and accept H1.
9. There is a well-defined or significant curvilinear relationship between tree height and dbh.
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Therefore, dbh explains 84.3% of the variation (in terms of sum of squares) in tree height.

Therefore, about 68% of the observations of height are within 0.637 m of the regression curve.

An example of a very commonly used multiple curvilinear model in forestry is the
volume equation for standing trees developed by Schumacher and Hall (1933). The
dependent variable is total tree volume (V) and the independent variables are dbh (D)
and total tree height (H):

V = aDbHc. (11.41)

After logarithmic transformation, this equation becomes:

ln(V) = b0 + b1ln(D) + b2ln(H). (11.42)

Equation 11.42 can be fitted as a multiple linear regression model with two
independent variables (ln(D) and ln(H)) and ln(V) as the dependent variable.

Note that this has been a very brief and cursory introduction of advanced
regression methods such as multiple regression and non-linear models. The interested
reader is referred to one of many advanced textbooks on these subjects.

Exercises

Section 11.1

11.1. The following observations are from a morphometric study of cottonwood
trees. The widths of 12 leaves from a single tree were measured (in mm) while fresh
and after drying.

One of the study objectives is to use fresh leaf width to predict dry leaf width.

a. Plot the observations and determine the linear relationship between dry leaf
width and fresh leaf width.

b. Is the relationship significant (α = 0.01)?
c. Calculate the coefficient of determination and discuss its meaning.
d. Calculate the standard error of estimate and discuss its meaning.
e. Is the intercept significantly different from zero (α = 0.05)?

Sy x⋅ = =3 66
9

0 637. .

246 Introductory Probability and Statistics

Fresh leaf width – X Dry leaf width – Y

90 88
115 109
55 52

110 105
76 71

100 95
84 78
95 90
84 77
95 91

100 96
90 86
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f. Is the slope significantly different from 1.0 (α = 0.05)? Define the meaning of the
slope.

g. Find the 95% confidence interval for the unknown population mean of dry leaf
widths at 100 mm fresh leaf width.

11.2. The amounts of fertilizer dissolved in 100 g of water at various water temperatures
were recorded as follows. At each temperature, the test was repeated three times.

a. Plot the observations and determine the linear relationship between temperature
and amount of dissolved fertilizer.

b. Is the relationship significant (α = 0.05)?
c. Calculate the coefficient of determination and discuss its meaning.
d. Calculate the standard error of estimate and discuss its meaning.
e. Is the intercept significantly different from 10.0 (α = 0.01)?
f. Is the slope significantly different from 2.0 (α = 0.05)? Define the meaning of the

slope.
g. Find the 95% confidence interval for the unknown population mean of the

amount of dissolved fertilizer at a temperature of 15°C.
h. Test the lack of fit with a 0.05 level of significance.

11.3. According to a secondary wood products machinery supplier, the cost of
maintaining a CNC moulder appears to increase with age.

Water temperature (°C) – X

Fertilizer (grams) – Y

Test 1 Test 2 Test 3

0 8 6 9
5 10 12 13

10 20 23 19
15 28 31 33
20 44 40 47
25 46 48 50

Age (years) – X 6-month cost (US$) – Y

4.5 619
4.5 1040
4.5 1030
4.0 495
4.0 723
4.0 681
5.0 890
5.0 1522
5.5 987
5.0 1194
0.5 163
0.5 182
6.0 764
6.0 1373
1.0 978
1.0 466



a. Plot the observations and determine the linear relationship between distance
from the source and boulder size.

b. Is the relationship significant (α = 0.01)?
c. Calculate the coefficient of determination and discuss its meaning.
d. Calculate the standard error of estimate and discuss its meaning.
e. Is the intercept significantly different from 100 cm (α = 0.05)? Discuss the

meaning of the intercept in this exercise.
f. Is the slope significantly different from –8.0 (α = 0.05)? Discuss the meaning of

the slope.
g. Find the 95% confidence interval for the unknown population mean of boulder

size at 4.0 km downstream of the source.
h. Can the test for lack of fit be carried out for this data set?
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a. Plot the observations and determine the linear relationship between age and
maintenance cost.

b. Is the relationship significant (α = 0.01)?
c. Calculate the coefficient of determination and discuss its meaning.
d. Calculate the standard error of estimate and discuss its meaning.
e. Is the intercept significantly greater than zero (α = 0.05)? Discuss the meaning of

the intercept in this exercise.
f. Is the slope significantly different from 240 (α = 0.05)? Discuss the meaning of

the slope.
g. Find the 99% confidence intervals for the unknown population means of cost at:

i.i 2.5 years, and
ii. 5.5 years.
Compare the two intervals.

h. Test the lack of fit with a 0.05 level of significance.

11.4. To find whether or not a relationship exists between the size of the boulders in
a stream and their distance from the source, samples of boulders were measured every
0.5 km downstream, beginning at 1.0 km from the source.

Distance (km) – X Boulder size (cm) – Y

1.0 104.9
1.5 86.4
2.0 82.6
2.5 89.4
3.0 73.2
3.5 65.2
4.0 76.5
4.5 65.3
5.0 57.4
5.5 51.6
6.0 47.8
6.5 43.4
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a. Find the correlation coefficient between the two variables.
b. Is the correlation between specific gravity and modulus of rupture significant?

Use α = 0.05.

11.6. A study was carried out to find the correlation between dbh (cm) and crown
radius (m) for ponderosa pine.

dbh 30 39 40 72 66 66 45 50 55 57
radius 3.5 3.6 4.8 7.1 6.4 7.9 5.6 4.8 5.7 7.0

a. Find the correlation coefficient between the two variables.
b. Is the correlation between dbh and crown radius significant? Use α = 0.05.

Section 11.3

11.7. Crown diameter (m) and tree height (m) can easily be measured from aerial
photographs, whereas total tree volume (m3) cannot. A multiple regression equation
between crown diameter (x1), tree height (x2) and total tree volume (y) is proposed so
that total tree volume can be better estimated. The following data are available.

X1 2.92 3.35 3.41 3.23 2.44 2.47 2.68 3.66 3.02 2.99
X2 28.7 48.0 36.9 37.8 25.1 28.4 26.1 37.8 28.7 30.6
Y 1.03 2.87 1.96 2.21 0.98 1.86 1.02 2.15 1.06 1.81

a. Estimate the multiple regression model ŷ = b0 + b1 x1 + b2x2.
b. Is the multiple regression significant (use α = 0.05)?
c. Find the multiple coefficient of determination and explain its meaning.
d. Calculate the standard error of estimate and explain its meaning.

Section 11.2

11.5. Values for specific gravity and modulus of rupture (in 1000 lb/inch) were
obtained for 12 randomly selected air-dried spruce specimens:

Specific gravity – X Modulus of rupture – Y

0.680 15.72
0.348 6.14
0.413 8.21
0.698 17.07
0.252 5.18
0.456 10.43
0.550 14.46
0.576 12.39
0.262 4.67
0.612 13.73
0.375 8.93
0.387 9.36
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Section 11.4

11.8. Stand age (X) and number of trees per hectare (Y) are observed in 15 low-site
Douglas-fir stands.

X 20 25 30 45 45 60 60 70 70 80 90 95 95 100 120
Y 210 205 172 139 127 102 96 90 70 60 49 51 48 47 46

Find the second-degree polynomial and the hyperbolic relationship between age and
number of trees. Are these equations significant (use 
 = 0.05)? Which equation
explains more of the sum of squares of the dependent variable?



Several procedures for comparing two unknown population means were presented in
Chapter 9. In many practical problems, however, we may be interested in comparing
more than two population means. For instance, to study the effects of three different
fertilizers on the height growth of Douglas-fir seedlings, a forest practitioner would
need to test a hypothesis involving three population means. Similarly, to investigate
the effects of these three fertilizers on the water quality in nearby creeks, a hydrologist
would also need to compare three population means. In this chapter, we introduce a
technique called analysis of variance, which enables us to compare the equality of two
or more population means.

Analysis of variance, often referred to by the acronym ANOVA, is one of the most
powerful and frequently used techniques in statistics. It is used to analyse data
obtained through both experimental designs and sampling designs, some of which
will be introduced in Chapter 13.

We offer two definitions of analysis of variance:

1. A statistical tool that compares two or more unknown population means.
2. A method for partitioning the total variation of the data into meaningful
components, and comparing these different sources of variation.

In regression analysis (see Chapter 11), we saw two examples of partitioning variation.
First, we partitioned the total sum of squares of the dependent variable (SST) into sum
of squares due to regression (SSReg) and sum of squares residual (SSRes). Second, we
partitioned the sum of squares residual into sum of squares pure error (SSPe) and sum of
squares due to lack of fit (SSLf). In the above study into the effects of the three fertilizers
on the height growth of Douglas-fir seedlings, the total variation can be partitioned into
sum of squares due to or caused by the fertilizers (the treatment) and sum of squares due
to seedling-to-seedling variation within each fertilizer treatment (the experimental
error). We could further complicate this experiment and apply the three fertilizers to
three different species – say, Douglas-fir, western hemlock and western red cedar – and
then partition the total variation of the data into: sum of squares due to fertilizers, sum
of squares due to species, sum of squares due to the interaction (discussed later in this
chapter) between fertilizer and species, and sum of squares due to individual seedling’s
variation within each fertilizer and species (experimental error).

In the first example, there is only one meaningful component; that is, we are
interested in the treatment variation only. The variation due to experimental error is
found only so that we may quantify the variation associated with the use of different
fertilizers. Consequently, it is called a one-way analysis of variance or a one-way
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12 Analysis of Variance 
Testing Differences between
Several Means



classification. In the second example, there are two meaningful components of
variation that need to be separated from experimental error: variation due to
fertilizers and variation due to species. This, therefore, is called a two-way analysis of
variance, or two-way classification. This can also be extended to more complex
problems of three-way, or m-way classifications. However, we will discuss only the
one- and two-way classifications in this book.

12.1 One-way Analysis of Variance

For a one-way analysis of variance, it is assumed that random samples of size n are
selected from k independent populations that are normally distributed with
population means µ1, µ2, …, µk and common variance, σ 2. The hypothesis tested in a
one-way analysis of variance is:

H0: µ1 = µ2 = … = µk

and

H1: at least two of the means are not equal (note that this does not tell us which
of the two means are unequal).

Table 12.1 shows the general notation used to describe sample data collected for a one-
way analysis of variance. Here, yij is the jth observation selected from the ith population,
and Ti. is the sum of the observations from the ith population. We use a special symbol
to denote means and totals, using a ‘dot’ as a placeholder for the subscript i or j: y–i· is the
sample mean of the ith population, y–.. is the overall or grand mean (calculated from the
nk total number of observations), T.. is the grand total or sum of all the observations
and Ti. is the total of all the observations in the ith population.

Each observation in the k populations can be described by the following linear
model:

yij = µi + εij.

The ijth error, εij, is the deviation between the jth observations in the ith population
from the ith population mean: µi. By using the ith mean instead of the overall mean,
we remove the effect of groups and isolate the variation that is inherent in the
experiment. In the above linear model, the mean of the ith population, µi, can be
related to the overall population mean using its group effect, τi:

252 Introductory Probability and Statistics

Table 12.1. General notation used in one-way classification analysis of variance.

Population

1 2 …… k

y11 y21 …… yk1
y12 y22 …… yk 2
... ... ...

y1n y2n …… yk n
Total T1. T2. …… Tk . T..
Mean y�1. y�2. …… y�k . y�..



µi· = µ + τi.

Hence, we have:

yij = µ + τi + εij.

Since µ is the overall mean of the k population means (or treatment effect), it is easy
to show that:

Consequently, the above-stated H0 and H1 can also be found in a modified form, such
that:

H0: τ1 = τ2 = … = τk = 0

and

H1: at least one τi is not equal to zero.

Note that the two sets of null and alternative hypotheses presented here are
equivalent.

For the discussion to follow, we introduce a simplified practical example.

Example 12.1. Three treatments, consisting of two types of fertilizer (organic and inorganic)
and a control (i.e. no fertilizer), were tested to investigate their effects on the height growth (in
cm) of 1-year-old Douglas-fir seedlings. The original data, totals and means are summarized
in Table 12.2. Our task is to compare the equality of three unknown population means (height
growth) using one-way analysis of variance with a level of significance of 0.05.

The total variation of the 12 observations, in terms of sums of squares (SST or SSTotal or
SSy), is due to two sources. First, there is some variation between the observations because
they come from three distinct fertilizer treatments, or groups. This is called group-to-group
variation (SSG). We can isolate this group-to-group variation by replacing every observation
in Table 12.2 with its group mean (see Table 12.3) – which is to say that the sample data
would contain only group-to-group variation. This would be an ideal, or at least simplified,
experiment with only one source of variation due to fertilizer treatments. However, since the
observations also vary from seedling to seedling, we must address another source of
variation in this data set: experimental error, or the tree-to-tree variation that occurs within
groups. This natural variation in the height growth among seedlings that received exactly the
same treatment (in our case, fertilizer type) – which could be due to genetic variation between
seedlings or microclimatic effects, or some combination of these and other factors – is 
called within-group variation (SSW). As shown in Table 12.4, we can isolate this variation 
in the data by replacing the observations with their deviation from their respective group
means.

It follows from the discussion above that we can partition the total variation in the data
(SST) into two parts: variation between groups (SSG) and variation within groups (SSW). We
can therefore write the following identity:

SST = SSG + SSW (12.1)

and restate this identity algebraically as:
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j
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Table 12.2. Height growth (in cm) of 1-year-old Douglas-fir seedlings.

Fertilizer

Control Organic Inorganic

3.0 4.0 4.1
3.3 4.3 4.0
3.5 4.0 4.2
3.0 4.1 3.7

Total 12.8 16.4 16.0 45.2
Mean 3.2 4.1 4.0 3.8

Table 12.3. Hypothetical observations showing group-to-
group effect only.

Fertilizer

Control Organic Inorganic

3.2 4.1 4.0
3.2 4.1 4.0
3.2 4.1 4.0
3.2 4.1 4.0

Total 12.8 16.4 16.0 45.2
Mean 3.2 4.1 4.0 3.8

Table 12.4. Hypothetical observations showing within-
group effect only.

Fertilizer

Control Organic Inorganic

–0.2 –0.1 0.1
0.1 0.2 0.0
0.3 –0.1 0.2

–0.2 0.0 –0.3
Total 0.0 0.0 0.0 0.0
Mean 0.0 0.0 0.0 0.0

To prove this identity, we start with the definition of the total corrected sum of squares on the left-
hand side of the equation. We both add and subtract y–i inside the parentheses and rearrange
the terms. Next, we square the terms and rearrange once more to get:
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Since the first sum on the right-hand side does not need to incorporate the subscript, j, we
can rewrite this as:

The second term then sums to zero, because:

(12.2)

Equation 12.2 shows that the degrees of freedom for the total sum of squares is the total
number of observations minus one (nk – 1), because one statistic is used in the calculation of
the sum of squares. Since the group-to-group sum of squares is calculated from k
independent observations (k sample means) and one statistic is used in the equation, its
degrees of freedom is (k – 1).

There are two ways to derive the within-group sum of squares degrees of freedom. One
way is to consider that nk independent observations and k statistics (k sample means) are
used to calculate the sum of squares. The degrees of freedom is therefore (nk – k), which
equals k(n – 1). The within-group sum of squares can also be interpreted as the sum of the k
sums of squares of the observations calculated for each of the k groups – meaning that the
degrees of freedom equals k times (n – 1).

To summarize, the degrees of freedom for the three sums of squares (SST, SSG and SSW)
are:

(12.3)

Many books refer to the group-to-group sum of squares as treatment sum of squares and
the within-group sum of squares as experimental error sum of squares (or simply, error
sum of squares) because analysis of variance is mainly used to analyse data generated by
designed experiments, where the groups are typically treatments and the within-group
variation is unexplained experimental error.

If Eqn 12.1 shows that the group-to-group sum of squares is higher than the within-group
sum of squares, this means that the sample means are considerably different from one
another, and it is very likely that the unknown group population means are also considerably
different. The question is: how much higher should the group-to-group sum of squares be,
compared to the within-group sum of squares, in order to reject the above stated H0 (in terms
of the equality of µs or τ s)? To answer this question, we need to create a test statistic. We
start by asserting that if H0 is true, the constant population variance stated in the
assumptions, σ2, can be estimated by:

(12.4)

The variance of the sample means is which can be rearranged as

Regardless of the truth or falsity of H0, a second independent estimate of σ2 can be obtained
by calculating the mean squares within group:
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(12.5)

The notation, MS, refers to the mean squares (essentially, these are variance terms with sums
of squares being divided by degrees of freedom). MSG is the group-to-group mean square
(variance) and MSW is the within-groups mean square (variance). These are estimators

of the variances, 
From here, H0 and H1 can be restated in terms of variances, rather than means or group

effects, as:

H0: �2
G/�2

W = 1.0,

H1: �2
G/�2

W > 1.0.
Since this hypothesis is stated as a ratio of variances, it must be tested with an F-test statistic:

(12.6)

The critical value is obtained from the F-table (see Table A.7, Appendix A) with (k – 1) and k(n
– 1) degrees of freedom. For the group and within-group sums of squares, the computational
equations are:

(12.7)

(12.8)

and

(12.9)

Equations 12.7–12.9 are algebraically equivalent to the sum of squares computations
summarized in Eqn 12.2. While these may be less intuitive, they are much easier to use and
are therefore recommended for all practical purposes.

As with regression analysis, the results of the above F-test are generally presented in the
form of an analysis of variance table, as seen in Tables 12.5 (notation) and 12.6 (results).
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Table 12.5. One-way analysis of variance table.

Degrees of Sum of 
Source of variation freedom squares Mean squares Computed F

Group-to-group k – 1 SSG

Within-group k(n – 1) SSW

Total kn – 1 SST

MS
SS
k(nW

W= −1)

MS
MS

G

W
MS

SS
kG

G= −1
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We can now complete Example 12.1:

1. H0: µ1 = µ2 = µ3.
2. H1: at least one is different.
3. α = 0.05.
4. Use Eqn 12.6.
5. SST = 3.02 + 3.32 + … 4.22 + 3.72 – 45.22/12 ≈ 2.330

SSW = 2.330 – 1.947 ≈ 0.383.
6. F0.05(2, 9) = 4.26.

8. Since 22.91 > 4.25, the test statistic is in the critical region: we reject H0 and accept H1.
9. The data indicate that at least one of the three unknown population means is significantly
different from another one (i.e. at least two of the means are significantly different).

While analysis of variance tells us whether unknown population means are
statistically similar or different, it does not indicate which of the means is different
from the others. A post hoc test, known as a multiple comparison test or a mean
separation test, is required for this (we will introduce two multiple comparison tests
to compare several population means in the next section). However, if the null
hypothesis is accepted in the analysis of variance, all of the means are assumed to be
equal and no further tests are required.

When performing an analysis of variance, one common problem is that we may
not have equal numbers of observations in all of the groups under investigation.
Observations may be lost during experimentation, or an experiment may simply not
have been planned around equal numbers within groups. In either case, we have an
unbalanced analysis of variance. Although this imbalance does not affect the validity
of the analysis discussed above, we must make slight modifications to the equations in
order to compute the sums of squares and degrees of freedom.

Consider a general case where n1, n2, …, nk samples are selected from k groups.

To simplify some of the equations, let . The modified working equations for

SST, SSG, SSW and the generalized analysis of variance table (Table 12.7) are as
follows:
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Table 12.6. Analysis of variance table for the Douglas-fir fertilizer test.

Source of variation DF SS MS Computed F Critical F

Group-to-group 2 1.947 0.9735 22.91 4.26
Within-group 9 0.383 0.0425
Total 11 2.330

DF, degrees of freedom; SS, sum of squares; MS, mean squares.



(12.11)

(12.12)

The corresponding degrees of freedom for SST, SSG and SSW are then:

(N – 1) = (k – 1) + (N – k).

Example 12.2. A fibreboard manufacturer is interested in studying the modulus of rupture of
four types of fibreboard (A, B, C and D). Although the experimenters planned to measure 4
boards per type, the number of boards actually available for the study was limited to 3 in type
A and 2 in type C (see Table 12.8). Can it be assumed, with a 0.05 level of significance, that
the four unknown population means are equal?
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Table 12.7. One-way analysis of variance table for an unequal number of observations.

Source of variation DF SS MS Computed F

Group-to-group k – 1 SSG

Within-group N – k SSW

Total N – 1 SST

MS
SS
N kW

W= −

MS
MS

G

W
MS

SS
kG

G= −1

Table 12.8. Modulus of rupture of 4 fibreboard types (measured in megapascals).

Fibreboard types

A B C D

61.9 42.4 39.2 46.2
67.4 52.5 42.4 55.9
63.3 54.9 55.6

60.1 58.2
Total 192.6 209.9 81.6 215.9 700.0
Mean 64.200 52.475 40.800 53.975 53.846
ni 3 4 2 4 13

1. H0: µ1 = µ2 = µ3 = µ4.
2. H1: at least one is different.
3. α = 0.05.
4. Use Eqn 12.6
5. SST = 61.92 + 67.42 + … 55.62 + 58.22 – 700.02/13 ≈ 941.23

SSW = 941.23 – 669.60 = 271.63.

The sums of squares and mean sums of squares are summarized in the analysis of variance
table (Table 12.9).

SSG = + + + − =192 6
3

219 4
4

81 6
2

215 9
4

700 0 13 669 6
2 2 2 2 2. . . . . / .



6. F0.05(3, 9) = 3.86.

8. Since 7.40 > 3.86, the test statistic is in the critical region: we reject H0 and accept H1.
9. The data indicate that at least one of the four unknown population means is significantly
different from another one.
Again, since the unknown population means are found to be different, a post hoc multiple
comparison technique is needed to decide which of the means are different (this is introduced
in the next section).

At this point, it is important to list the assumptions of analysis of variance. Like
regression analysis, certain assumptions must be met in order to test the equality of k
population means:

1. Each population is normally distributed.
2. Each population has the same variance, σ2.
3. The observations in a given population are independent from the observations in
the other populations.
4. The observations are randomly selected from each population.

If these assumptions are met, the within-group variance (MSW) is an unbiased estimate
of σ2. Consequently, the standard error of estimate for any of the k means is:

(12.13)

When there are equal numbers of observations per group, this simplifies to:

(12.14)

Hence, the confidence interval for any of the k population means is:

(12.15)

The degrees of freedom of the t-value in the confidence interval follows that of the
within-groups mean squares: for equal numbers of observations, the degrees of
freedom are k(n – 1) = N – k. When the analysis of variance is balanced, the width of
the confidence interval is the same around all of the means. When the analysis of
variance is not balanced, the confidence intervals are all constructed with the same t-
value, but the widths of these intervals vary based on ni.
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Table 12.9. Analysis of variance for the modulus of rupture by fibreboard type
data.

Source of variation DF SS MS Computed F Critical F

Board type 3 669.60 223.20 7.40 3.86
Within-board type 9 271.63 30.18
Total 12 941.23
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Example 12.3. Calculate the 95% confidence interval for the unknown population mean of
height growth for the seedlings treated with inorganic fertilizer in Example 12.1.

There is a 0.95 probability that the unknown population mean height growth of seedlings
treated with inorganic fertilizer is between 3.77 and 4.23 cm.

Example 12.4. Calculate the 99% confidence interval for the unknown population mean
modulus of rupture for fibreboard type B in Example 12.2.

There is a 0.99 probability that the unknown population mean modulus of rupture for
fibreboard type B is between 435.41 and 614.09 MPa.

If desired, we could also calculate confidence intervals based on the data from a single
group, independent of the other groups (using equations from Chapter 8, Section 8.3).
For instance, using Examples 12.3 and 12.4, we could calculate:

In both cases, the width of the confidence intervals increases when calculated
independently of the other groups. The reason for this is simply that the variance
estimated from the analysis of variance is based on many more independent observations
(i.e. the pooled variance for all groups) than the variance calculated from an isolated
group. The pooled data therefore have higher degrees of freedom. Since t-values decrease
with increasing degrees of freedom, higher degrees of freedom produce a narrower
confidence interval. This is a very important advantage of analysis of variance.

The standard error of the difference between any two of the k means can be
calculated as:
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where y–p. and y–r. are two out of the k means; np = number of observations from the
pth treatment; and nr = number of observations from the rth treatment.

If the sample sizes are equal, Eqn 12.16 reduces to:

(12.17)

From this, confidence intervals can be obtained for the difference between any two
unknown population means:

(12.18)

where the degrees of freedom of the t-value for an equal number of observations is 
k(n – 1) = N – k.

12.2 Multiple Comparisons

In analysis of variance, rejection of the null hypothesis does provide some limited
information concerning the k population means (i.e. at least one population mean is
different from the others), but it does not indicate which of the means differ. Several
multiple comparison procedures have been proposed for simultaneous comparison of
all the k population means when the null hypothesis is rejected: Bonferroni’s
Procedure, Duncan’s New Multiple Range Test, Scheffé’s Method and Tukey’s
Method, to name a few. Other procedures exist for conducting predetermined
comparisons on a subset of all possible population means: Fisher’s Least Significant
Difference and Orthogonal Contrasts are two examples.

If there are m possible comparisons, we have m opportunities for committing a
type I error: this is why we perform a multiple comparison test instead of testing each
of the means against each other. For instance, if we are testing three population means
(see Example 12.1), then there are three possible comparisons: 1 versus 2, 1 versus 3
and 2 versus 3. The number of comparisons increases, at an increasing rate, with the
number of means: there are six comparisons with four means and ten comparisons
with five. Using the rules for combinations, if k groups are to be compared, there are:

pairwise comparisons of means.
The fact that we do not have to perform m t-tests individually is another clear

advantage of the analysis of variance procedure because individual tests will result in
lower degrees of freedom for each comparison and a probability of committing type I
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error that is higher than the stated significance level. On this latter point, the
probability of committing type I error with three means and α = 0.05, would be:

P(type I error) = 1 – P(no type I error) = 1 – 0.953 ≈ 1 – 0.86 ≈ 0.14.

In general, if there are m comparisons, type I error is computed as:

P(type I error) = 1 – (1 – α)m.

By using post hoc multiple comparisons, the critical values are adjusted to compensate
for the ‘inflation’ of type I error demonstrated above. However, multiple comparison
tests should be used with some caution. As with other statistical tests, if there is more
than one procedure available, we can expect that none of them are perfect. This is also
the case for multiple comparison tests: if two or three procedures are used to compare
the k means, it is possible to obtain different results. Some tests are therefore referred
to as more ‘sensitive’, or more ‘liberal’, than others because they are more likely to
indicate significant differences between means.

There are many available methods for multiple comparisons. We will discuss
Bonferroni’s Procedure and Scheffé’s Method, both of which can be readily adjusted
to counter the inflation of type I error that comes with multiple comparison of means.

Bonferroni’s Procedure

In Bonferroni’s Procedure the level of significance is set to α/m in a one-tailed test and
α/2m in a two-tailed test, where α is the desired rate of significance and m is the
number of comparisons to be performed. The following steps are recommended to
carry out the comparisons:

1. Rank the means in ascending or descending order.
2. Calculate the critical difference (CD).
3. Calculate the pairwise absolute differences between ranked means.
4. Draw a line under any subset of adjacent means that are not significantly different
from each other or use a symbol (see Example 12.6).
Since the pairwise comparisons are almost always two-tailed tests, Bonferroni’s
critical difference is:

(12.19)

If we have a balanced design (equal sample sizes in each group), this simplifies to:

(12.20)

If the pairwise difference of , then µp· and µr· are different.

If we have m = 6 comparisons and α = 0.05, we will need to find t(N–k) at 0.05/12
= 0.0042. Because most of the available t-tables (see Table A.5, Appendix A) do not
contain the critical t-values for this and other small probability levels, they must be
obtained either from computer packages or from specially created tables. Table A.9
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(see Appendix A), for example, contains the critical t-values as a function of the within-
group degrees of freedom (first column) and the number of desired comparisons, m
(first row), such that a type I error of 0.05 is maintained.

Example 12.5. Use Bonferroni’s Procedure to compare the unknown population means
described in Example 12.1, with a 0.05 level of significance.

1. Group: Control Inorganic Organic
Mean: 3.2 4.0 4.1

m = 3 and tα/2m, 9 = t0.05/6, 9 = t0.0083, 9 = 2.93 (see Table A.9, Appendix A).

3. Since |3.2 – 4.0| = 0.8 > 0.15, the control mean (3.2) is significantly different from the
inorganic mean (4.0). Note that we do not need to compare the control (3.2) against the
organic fertilizer (4.1), since the mean of the inorganic fertilizer (4.0) is lower than the mean
of the organic fertilizer and we know that the distance between the control and the organic
means must be greater than the distance between the inorganic and the control means. In
other words, since there is a significant difference between the inorganic and the control,
there must also be a significant difference between the organic and the control. To test the
inorganic versus the organic fertilizers, we compute |4.0 – 4.1| = 0.1 < 0.15. Thus, the
inorganic fertilizer (4.0) is not significantly different from the organic fertilizer (4.1). It is
customary to make a diagram of the means in ascending order, where means that are not
significantly different are underlined (although it is possible for one mean to be underlined
more than once, as we shall see in the next example).

Control Inorganic Organic
3.2 4.0 4.1

Note that if equal numbers of observations are used in the analysis of variance, the same
critical difference applies for all comparisons. This is one of the advantages of using equal
numbers of observations.

Scheffé’s Method

In Scheffé’s Method, a test statistic (which is a modified F-value) is calculated for every
possible comparison of the pth and rth group means:

(12.21)

For equal numbers of observations, Eqn 12.21 simplifies to:

(12.22)

FS is compared with a critical value of:

FSC,α (k�1,N�k) = (k�1)Fα (k�1,N�k) (12.23)
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No special table is required: comes from the F-table (see Table A.7, Appen-

dix A). If is said to be significantly different from y–r..

The process of comparing a series of means is similar to Bonferroni’s Procedure,
with some modifications to the second step. In Scheffé’s Method, we first calculate the
modified critical F-value, FSC. Next, instead of calculating the critical difference, we
calculate a test statistic, FS, for each comparison. These are then compared against our
critical F-value, FSC.

Example 12.6. Use Scheffé’s Method to compare the four unknown population means
described in Example 12.2.

1. Group: C B D A
Mean: 408.00 524.75 539.75 642.00
ni 2 4 4 3

2. FSC,0.05(3, 9) = (3.86) (4 – 1) = 11.58

The FS-test statistics were calculated for all possible comparisons because there are unequal
numbers of observations in each treatment. The only significant difference observed occurs
between fibreboard types C and A.

The significant differences can also be presented in a diagram and/or with symbols
(subscripts). In the first diagram, any two means underlined with a continuous line are not
significantly different from each other. In the second diagram, any two means bearing the same
letter subscript are not significantly different. When results indicating significant differences
between means are presented in this manner, they are generally accompanied with a statement
such as, ‘any two means underlined by the same line (or labelled with the same subscript) are
not significantly different’, to ensure clarity.

Note here that two means (B and D) are underlined twice, indicating that they (B and D) are
not significantly different from C (taken alone) or A (taken alone), while means C and A are
significantly different from one another. This result is simply a function of the distributional
nature of the means: think of a series of sampling distributions or normal curves where C, B
and D overlap; B, D and A overlap; but C and A do not overlap.
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3. C B D A
408.00 524.75 539.75 642.00

or

C B D A
408.00a 524.75ab 539.75ab 5642.00b

For both multiple comparison procedures presented here, the number of required
comparisons can be considerably reduced in most cases when the number of observations
in each group is equal. Simply start with the mean at the extreme left of the ordered means
and compare one-by-one, in order, to all of the other means occurring to its right. Once the
first significant difference is found, the remaining (right-hand) means are also significantly
different and so do not have to be compared. This process is then repeated, starting with the
second-to-left of the ordered means, and so on. This is another advantage of using equal
numbers of samples per group in analysis of variance.

12.3 Test for Equality of Variances

One of the most important assumptions of both analysis of variance and post hoc
pairwise comparisons of means is that the variances of the k populations are equal. It
is advisable to test this assumption before any analysis of variance is carried out. If the
assumption of equality of variances is not met, a transformation of the data prior to
analysis may alleviate this problem (this is covered in more advanced statistical texts).
Bartlett’s test, which produces a test statistic that approximately follows a χ2

distribution with (k – 1) degrees of freedom, is recommended for comparing the
equality of k unknown population variances. The null and alternative hypotheses are
formulated as follows:

H0: �2
1 = �2

2 = … = �2
k, and

H1: at least one variance is different.

The following steps are suggested to calculate Bartlett’s test statistic:

2. Compute the pooled variance for the k groups as:

(12.24)

3. Compute the test statistic:

(12.25)
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4. Compare the test statistic to the critical value obtained from the χ2-table
(see Table A.6, Appendix A) with (k – 1) degrees of freedom.

You may recognize that the pooled variance, Sp
2, is equal to the within-group mean

squares, MSW. In other words: if k = 2, Eqn 12.24 is the same equation used to
calculate the pooled variance for two groups of data, when it is assumed that

(see Case 2 under Section 7.5, Chapter 7).

Example 12.7. Compare the four unknown population variances for the fibreboard data
described in Example 12.2, using a 0.05 significance level.

2. H1: at least one is different.
3. α = 0.05.
4. Use Eqn 12.25.

8. Since 2.27 < 7.81, the test statistic is in the acceptance region and we ‘accept’ H0.
9. The data indicates that the assumption of constant variance has been met, meaning that
an analysis of variance can be performed.

12.4 Two-way Analysis of Variance

In a one-way classification analysis of variance, we study a single factor. For instance,
in Example 12.1 we were interested in the three types of fertilizer (control, inorganic
and organic) and in Example 12.2 we were interested in the four types of fibreboard
(A, B, C and D). In general, we refer to the three fertilizer types and the four
fibreboard types as levels within the factor of fertilizer or fibreboard type, respectively.
Therefore, Example 12.1 describes a study of one factor with three levels and
Example 12.2 describes a study of one factor with four levels.

When the effects of two factors are investigated at the same time, we have a two-way
classification analysis of variance. For example, if the three fertilizers from Example 12.1
were applied to three species (e.g. Douglas-fir, western red cedar and western hemlock),
it would become a two-factor experiment with three levels in each factor. Similarly, if all
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four fibreboard types from Example 12.2 were produced in three different manufacturing
plants, it would become a two-factor experiment with four levels in the first factor
(fibreboard type) and three levels in the second (manufacturing plant).

Let us consider k levels in factor A, t levels in factor B and n replications (an equal
number of observations) within each factor combination, or ‘cell’ (see Table 12.10).
Consequently, the total number of observations in the data set is ktn, and each
observation is identified with three subscripts: yijl, where i = 1, 2, …, k; j = 1, 2, …, t;
and l = 1, 2, …, n. As in the one-way analysis of variance, we first present the linear
model (equation). For the two-way analysis of variance, we have:

yijl = µ + τi + �j + ωij + εijl.

As in the one-way case, µ is the overall population mean, τi is the ith-level effect of factor
A and εijl is the within-group effect (or experimental error) for the lth observation from
the ith level of factor A and jth level of factor B. For the two-way case, we add �j, the
jth-level effect of factor B, and an interaction effect, ωij, which describes the unique
effects (if any) of the ith level of factor A and jth level of factor B acting together on an
experimental unit (this notion of interactions is explained more fully later).

For the two-way analysis of variance, the total sum of squares (SST) is partitioned
into four sources:

(12.26)

(12.27)
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Table 12.10. General notation used for observations in two-way classification analysis of
variance.

Factor A

Factor B 1 2 ......... k Total Mean

1 y111 y112 ...... y11n y211 y212 ...... y21n ......... yk11 yk12 ...... y11n T.1. y�.1.
T11.  y�11. T21. y�21. T11. y�k1.

2 y121 y122 ...... y12n y221 y222 ...... y22n ......... yk21 yk22 ...... yk2n T.2. y�.2.
T12. y�12. T22. y�22. ......... Tk 2.  yk.

... ... ... ... ... ...

t y1t 1 y1t 2 ...... y1t n y2t 1 y2t 2 ...... y2tn ......... ykt1 ykt2 ...... yktn T.t. y�.t.

Total T1 .. T2.. ......... Tk .. T... y� ...

Mean y�1.. y�2.. y�k ..

The top line in each cell shows the notation for observations and the bottom row shows the
notation for both the totals and the means computed within each cell.



Their respective degrees of freedom are:

(ktn – 1) = (k – 1) + (t – 1) + (k – 1)(t – 1) + kt(n – 1) (12.28)

where

SST = sum of squares total;
SSA = sum of squares due to factor A;
SSB = sum of squares due to factor B;
SSAB = sum of squares due to the interaction between factors A and B; and
SSE (or SSW) = sum of squares error (or sum of squares within-group).

All sums of squares and degrees of freedom – except for the interaction, SSAB – can be
interpreted in the same manner as a one-way analysis of variance. Interpreting the sum of
squares due to the interaction between A and B is a more complicated matter and will be
discussed later with an example. For now, SSAB measures the variation of the means of
one factor (A) within the various levels of the other factor (B). For instance, if the means
of factor A within the various levels of B are similar, SSAB is low. If the means of factor A
are very different within the various levels of B, then SSAB is high. The degrees of freedom
for the interaction can also be interpreted in relation to the two factors. Notice that:

(k – 1)(t – 1) = kt – k – t + 1 = kt – (k + t – 1).

These degrees of freedom here are very similar to those seen in contingency tables (see
Section 10.2, Chapter 10). Note that the theoretical equation of the sum of squares of
the interaction (Eqn 12.27) indicates that the degrees of freedom should be kt – (k + t
+ 1), since kt observations and (k + t + 1) means are used in the calculation. However,
this is not correct because the (k + t + 1) means are not all independent: if we know
the k means for factor A, only (t – 1) of the t means are independent for factor B.
Furthermore, the k means of factor A average to the grand mean, as do the t means of
factor B. This reduces the degrees of freedom by (k + (t – 1)).

The analysis of variance table for the two-way classification is summarized in
Table 12.11. The recommended computational equations for the sums of squares are:

(12.29)
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Table 12.11. Two-way analysis of variance table.

Source of variation DF SS MS Computed F

Factor A k – 1 SSA MSA/MSE

Factor B t – 1 SSB MSB/MSE

A � B (k – 1)(t – 1) SSAB MSAB/MSE

Error kt(n – 1) SSE

Total ktn – 1 SST

MS
SS

kt nE
E= −( 1)

MS
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k 1 tAB
AB= − −( )( 1)
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tB

B= −1
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kA

A= −1



(12.31)

(12.32)

SSE = SST – SSA – SSB – SSAB (12.33)

Example 12.8. To investigate how different tree species respond to fertilizers, the fertilizer trial
from Example 12.1 was expanded to include two more tree species: western hemlock and
western red cedar. Table 12.12 expands on Table 12.3, showing height growth data for 1-year-
old seedlings using the three fertilizer levels (organic, inorganic and control) and three species
(Douglas-fir, western hemlock and western red cedar). For each factor (treatment)
combination, four observations were made. Analyse the data using a 0.01 level of significance.
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Table 12.12. The effect of fertilizer treatment and tree species on the height
growth (in cm) of 1-year-old seedlings. 

Douglas-fir Western hemlock Western red cedar

C F1 F2 C F1 F2 C F1 F2

3.0 4.0 4.1 2.9 3.1 4.0 2.8 3.2 4.0
3.3 4.3 4.0 3.1 3.0 4.2 3.0 3.0 3.9
3.5 4.0 4.2 3.4 3.2 4.4 3.1 3.1 4.1
3.0 4.1 3.7 3.0 3.1 4.2 3.1 2.9 3.2

Sum: 12.8 16.4 16.0 45.2 12.4 12.4 16.8 41.6 12.0 12.2 15.8 40.0
Ave: 3.2 4.1 4.0 3.77 3.1 3.1 4.2 3.47 3.0 3.05 3.95 3.33

C, control; F1, inorganic fertilizer; F2, organic fertilizer.

Since we have three effects (factor A, factor B and their interaction), we now have three
hypotheses to test:

1. H0:
a. Treatment µ1.. = µ2.. = µ3..
b. Species µ.1. = µ.2. = µ.3.
c. Interaction µ11. – µ12. = µ21. – µ22. = µ31. – µ32.

µ12. – µ13. = µ22. – µ23. = µ32. – µ33.
µ11. – µ13. = µ21. – µ23. = µ31. – µ33.

(Note that the hypothesis for the interaction of the two factors is set up in such a way that the
differences of two means at any two levels of a single factor are compared at all levels of the
other factor. This hypothesis is often simply stated in words as: ‘there is no interaction’.)

H1:
a.  At least two of the means are not equal.
b.  At least two of the means are not equal.
c.  At least two of the differences are not equal.
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2. α = 0.01.
3. See Table 12.11 for equations.

5. F(2,27)0.05 = 5.49, F(4,27)0.05 = 4.11.

6. See Table 12.13 (computed F).
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Table 12.13. Two-way analysis of variance for height growth data.

Source of variation DF SS MS Computed F Critical F

Treatment 2 5.6156 2.8078 97.19 5.49
Species 2 1.1822 0.5911 20.46 5.49
T � S 4 1.8444 0.4611 15.96 4.11
Error 27 0.7800 0.0289
Total 35 9.4222

7. Since 15.96 > 4.11, the test statistic for the interaction is in the critical region: we reject H0
(3) and accept H1 (3).
8. The interpretation of the results of a two-way analysis of variance is generally more
difficult than those of a one-way analysis (see the following discussion).

To interpret the results of a two-way analysis of variance, one must first look at the
F-value of the interaction. Example 12.8 (above) resulted in a significant F-value for
the interaction. Had it not been significant, we would have assumed there was no
interaction between the two factors. In this case, a non-significant interaction F-value
would mean that the fertilizer treatments affected the height increments of all three
tree species in the same way. Figure 12.1 uses hypothetical means to illustrate the
absence of an interaction. When the means for a particular level of the first factor (i.e.
organic fertilizer) are plotted over the levels of the second factor (i.e. tree species), a
non-significant interaction will result in nearly parallel lines. Conversely, plotting two
factors with a significant interaction will produce lines that have different slopes.

If the F-test for the interaction is not significant, the F-values for each of the two
factors (treatment and tree species, in this example) can be interpreted independently,
as in a one-way analysis of variance. In addition, if the F-value is significant for either
one or both factors, any of the multiple comparison procedures we have described
can be used to compare the means of each factor. The equations for calculating the
standard error of the means and finding the confidence intervals for the unknown
population means are as follows:



For factor A (fertilizer treatment in our example):

(12.34)

(12.35)

For factor B (tree species, in our example):

(12.36)

(12.37)

If the interaction is significant, such as in our example, interpretation of the F-values
for the individual factors (fertilizer treatment and tree species) can lead to erroneous
conclusions. In cases like this, it is strongly recommended that the interpretation
begins with plotting the interaction means (y–ij). The plot of the actual mean values for
this example (Fig. 12.2a) indicates that fertilizer effects vary by tree species: both
fertilizers were effective for Douglas-fir, while only the inorganic fertilizer was
effective for western hemlock and western red cedar. Figure 12.2a can also be
constructed such that species are on the horizontal axis and the different lines
represent the three fertilizers (Fig. 12.2b).

If multiple comparisons are required, they can be conducted separately for each
of the three species and/or separately for each of the three fertilizers. In multiple
comparisons for two-way analyses of variance, we take advantage of a higher within-
group degrees of freedom of kt(n – 1) versus analysing the three species separately,
where the within-group degrees of freedom are only k(n – 1). The higher degrees of
freedom make the multiple comparisons more sensitive to detecting significant
differences between means.
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Fig. 12.1. Hypothetical plot of tree species by fertilizer treatment means, with lack of (no) statistically
significant interaction between tree species and fertilizer treatments.



If confidence intervals are required for interaction means, equations for the
standard error of the mean and confidence intervals are as follows:

(12.38)

(12.39)

Figure 12.3 illustrates the possible risks of interpreting the significance of individual
factors independently when the interaction is significant. Here, we have plotted only
two (versus three) levels for each factor: control and organic fertilizer, and Douglas-fir
and western hemlock. The resulting figure suggests that the organic fertilizer did not
affect the height growth of western hemlock seedlings and that it did affect the height
growth of Douglas-fir. The line between the two species shows the average effect of
the organic fertilizer, which indicates a considerable change in height growth between
the control and the organic fertilizer. This increased height growth could very well
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Fig. 12.3. Simplified representation of statistically significant interaction between fertilizer treatment
and tree species (showing only two levels of each factor).

Fig. 12.2. Statistically significant interaction of (a) species by treatment and (b) treatment by species.



result in a significant F-value for the effect of fertilizer treatment (regardless of tree
species). Our general conclusion would then be that the organic fertilizer was effective
in increasing the height growth for both tree species: a statement that is obviously
incorrect for western hemlock.

Many people may ask the question: why not carry out three separate one-way
analyses of variances for the above data? We could have done this. However, we chose
not to because a two-way analysis of variance offers several advantages:

● It has higher within-group degrees of freedom, which will result in narrower
confidence intervals and more sensitive multiple comparison tests.

● If the data for the three tree species in Example 12.8 had been analysed separately,
we could not have performed any statistical tests for tree species or for the
treatment–species interaction (the same would hold true for fertilizer treatments,
if we were to perform three separate analyses for each level of fertilizer).

● The standard error of the mean for the main factors in a two-way analysis of
variance is smaller than those calculated from independent one-way analyses of
variance (compare Eqns 12.34 and 12.35 to Eqn 12.14).

In Example 12.8, we had four replicates. That is, we were able to observe the effect of
each combination of treatment levels on four different trees. In practice, an
experiment of this sort may result in only one observation for each combination of the
two factors. In our example, this would produce a single observation for each
fertilizer level within each tree species (the first line of the data set – see Table 12.12).
An analysis of such data is referred to as a two-way classification analysis of variance
without interaction, or a randomized complete block design. All of the equations and
procedures discussed above can be applied to this simplified version of the two-way
analysis of variance, assuming that n = 1. Consequently, the equations to calculate the
various sums of squares and the general analysis of variance table are simplified to:

(12.40)k

Here, the grand total, T.., and observations have only two subscripts and the
observations are denoted: yij, i = 1, 2, …, k and j = 1, 2, …, t. The working equations
and analysis of variance table (Table 12.14) are as follows:
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Table 12.14. Two-way analysis of variance table, without interaction.

Source of variation DF SS MS Computed F

Factor A k – 1 SSA MSA/MSE

Factor B t – 1 SSB MSB /MSE

Error (k – 1) (t – 1) SSE

Total kt – 1

MS
SS

k tE
E= − −( 1)( 1)

MS
SS
tB

B= −1

MS
SS
kA

A= −1



(12.42)

In any two-way analysis of variance of this type, interactions cannot be easily tested
(for more information on available tests, see references at the end of this book).
However, interactions will be present and are commonly referred to as the ‘error
term’. The term, ‘without interaction’, used to describe this procedure, is therefore
somewhat misleading. Two-way classification analyses of variance without
interaction are usually used to analyse what are known as randomized complete block
designs. In these cases, one of the factors is the experimental treatment effect and the
other is the so-called block effect. This commonly used experimental design, as well
as others, will be described in further detail in Chapter 13.

Exercises

Section 12.1

12.1. The specific gravity of wood was measured on four random samples taken from
each of 3 tree species.
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Western hemlock 0.42 0.37 0.40 0.38
Douglas-fir 0.56 0.51 0.44 0.46
Western red cedar 0.32 0.27 0.29 0.35

a. Are the means of the 3 species significantly different (α = 0.05)? Assume σ 2
1 =

σ 2
2 = σ 2

3.
b. Calculate and explain the meaning of the standard error of the mean for the

specific gravity of Douglas-fir.
c. Calculate and explain the meaning of the standard error of the difference

between the specific gravities of Douglas-fir and western red cedar.

12.2. Water samples were taken at 4 locations in a river to determine whether the
quality of dissolved oxygen, a measure of water pollution, varied from location to
location. Five water specimens were randomly selected at each location. Locations 1
(close to shore) and 2 (midstream), upstream from a pulp and paper plant; location 3,
adjacent to the industrial water discharge for the plant; and location 4 (midstream),
slightly downstream. The data are shown below (the lower the dissolved oxygen
readings, the greater the pollution levels).

Location 1 5.9 6.1 6.3 6.1 6.0
Location 2 6.3 6.6 6.4 6.4 6.5
Location 3 4.8 4.3 5.0 4.7 5.1
Location 4 6.0 6.2 6.1 5.8 6.1

a. Is the level of water pollution significantly different from location to location (α
= 0.01)? Assume σ2

1 = σ2
2 = σ2

3 = σ2
4.

b. Find the 95% confidence interval for the unknown population mean of the
oxygen readings at location 3.



c. Find the 95% confidence interval for the difference of two unknown population
means of the oxygen readings at locations 1 and 3.

12.3. An experiment was conducted to determine the effect of 3 methods of soil
preparation treatments on the first year of height growth (in cm) of slash pine
seedlings. Three seedlings were available for measurement from soil preparation A; 5
from B; and 4 from C.

Soil preparation                   Height growth (in cm)

A 11.5 13.2 12.4
B 15.3 14.5 17.6 20.4 16.4
C 10.0 12.3 14.2 13.2

a. Compare the means of the height growth of the seedlings for the 3 soil prepara-
tions with a 0.05 level of significance. Assume σ2

1 = σ2
2 = σ2

3.
b. Calculate the 99% confidence interval for the unknown population mean of

height growth using soil preparation B.
c. Calculate the 95% confidence interval for the difference between the two

unknown population means of height growths using soil preparations A and B.

12.4. An experiment was carried out to study the effect of various fertilizers on tree
diameter increment growth. The measurements taken at the end of the growing season
(in mm) are given below:

Analysis of Variance 275

Fertilizer 1 11 16 15
Fertilizer 2 13 14
Fertilizer 3 18 17 23 20
Control 8 10 6

a. Compare the 4 treatment means with 0.01 level of significance. Assume σ 2
1 =

σ 2
2 = σ 2

3 = σ 2
4.

b. Calculate and compare the standard errors of the mean for increment growth
in the Fertilizer 3 treatment group and the control.

Section 12.2

12.5. Compare the four means obtained in Exercise 12.2 using Bonferroni’s
Procedure. Use α = 0.05.

12.6. Compare the four means obtained in Exercise 12.4 using Scheffé’s Method
with a 0.01 level of significance.

Section 12.3

12.7. Test for the equality of variances (use α = 0.05) for the observations given in
Exercise 12.13. Was the assumption of σ 2

1 = σ 2
2 = σ 2

3 justified?

12.8. Test for the equality of variances for the observations given in Exercise 12.4
with 0.01 level of significance. Was the assumption of σ2

1 = σ2
2 = σ2

3 = σ2
4 correct?



Section 12.4

12.9. Four levels of nitrogen fertilizers, N0, N3, N6 and N9, were applied to 1-year-
old seedlings of 2 tree species. At the end of the growing season, each fertilizer
treatment was measured for the diameter increment growth at root collar (in mm) of
2 randomly selected seedlings from each tree species.

276 Introductory Probability and Statistics

N0 N3 N6 N9

Douglas-fir 4.4 5.6 6.8 6.5
3.8 5.0 6.5 6.2

Western hemlock 3.8 4.9 5.8 5.9
4.1 4.7 5.3 5.6

a. Analyse this experiment using α = 0.05.
b. Calculate the 95% confidence interval for the unknown population mean of

diameter increment at root collar when treated with N6.
c. Calculate the 95% confidence interval for the unknown population mean of

diameter increment at root collar of western hemlock.
d. Compare the results of b and c.

12.10. A manufacturer of furniture components is studying the surface roughness (in
micrometres) of pieces produced at 3 different machine centres during the morning
and afternoon shifts. For each machine centre and shift, one randomly selected
component was measured.

Shift

Machine centre Morning Afternoon

1 12 14
2 18 16
3 14 12
4 19 20

a. Analyse these data using α = 0.05.
b. Compare the means of the 4 machine centres using Bonferroni’s Procedure (α =

0.05).



There are countless forms, sources and types of data in forestry and its related
disciplines. In addition, there are a number of ways in which these data can be
collected. Commonly in forestry, data arise from the implementation of what are
known as sampling designs or experimental designs (sometimes referred to as
observational and experimental studies, respectively). Both comprise a number of
specific methodologies that allow for the collection of different types of data in
systematic, manageable, orderly and logical ways – a necessity in a field like forestry
in which there exists so much (and so many ways of obtaining) data.

In sampling designs (observational studies), the researcher or practitioner does
not attempt to control or influence the variables of interest, but merely observes and
measures them. The main purpose of sampling is to collect information from a subset
of the population leading to prediction, or inferences, about the entire population. We
have already discussed simple random sampling in Chapter 7 and we will introduce
stratified random sampling, two-stage sampling and systematic sampling in this
chapter. We will also briefly discuss survey design, a means of collecting information
from and about people.

Experimental designs (experimental studies) involve controlling some of the
factors affecting the variables of interest. The objectives of these studies are to
investigate how these controlled factors affect the variables of interest. We will briefly
discuss completely randomized, randomized complete block and latin square designs
in this chapter. We will also discuss factorial experiments, which use these designs in
the allocation of treatments.

The sampling designs and experimental designs discussed here are a few of the
more commonly used methods in forestry applications. The interested reader is
directed to advanced texts on the subjects, of which there are many, for more
comprehensive overviews.

13.1 Sampling Methods

Most statistical inferences (estimation or hypothesis testing) about population
parameters are made using incomplete knowledge (see Chapters 7 and 9). In
sampling, we are usually concerned with estimating one or more population
parameters, bearing in mind that the estimation should be as precise as possible given
the constraints of time, practicality and, especially, costs. In statistics, a higher
precision means a narrower confidence interval for an unknown population
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parameter. Various sampling designs have been developed that aim to improve
precision, while keeping the cost of sampling at a reasonable level.

Simple random sampling

All of the sampling methods described in this book thus far have been related to
simple random sampling. Simple random sampling is considered effective only if the
population to be sampled is homogeneous, meaning that the measurements taken
have a uniform variation throughout. This implies that the cost of obtaining any
observation should be the same for each sampling unit.

Stratified random sampling

Often, some prior knowledge about a population can be used to increase the precision
of the estimate of a parameter of interest. In stratified random sampling, the sampling
units (individual measurements) in the population can be grouped together to form a
stratum on the basis of similarity of some characteristic or characteristics. Once the
groups are formed, each group or stratum is treated as an individual population and
samples are collected from them in the same way as for simple random sampling.
Individual group estimates (means and variances) are combined to obtain the
estimates for the population. Equations to calculate the combined estimates,
confidence intervals and sample sizes are not provided here. For further details,
interested readers can refer to specialized books on sampling methods.

Stratification is effective only if the variation of the variable of interest within
each stratum is less than the variation of the whole population without stratification.
If stratification is done wisely, it can provide many advantages. Most notably, the
estimation of the population mean will be more precise than simple random sampling
(based on equal sample sizes). This is because part of the variation of the entire data
set has been accounted for or explained by the fact that we have stratified the
population into logical segments. In other words, the variation in the data will be
smaller. In addition, stratified random sampling provides separate estimates for each
stratum or subpopulation. In timber cruising, for example, strata are commonly set
up corresponding to major forest types and the volume per hectare estimates are
available not only for the total area of interest, but each forest type as well.
Stratification is usually effective in timber cruising, because the plot-to-plot variation
of the measurements (dbh, height or volume) within most of the forest types is less
than that of the whole forested area. Lastly, stratified random sampling can be a more
cost effective means of collecting data. For instance, in studying strength properties of
certain types of dimensional lumber, observations can be stratified by lumber grade.
Since strength properties differ from grade to grade, this results in increased precision
of estimates and requires fewer observations than a simple random sampling scheme.

Two-stage sampling

In some situations, locating or getting to a sampling unit can be more expensive than
collecting or measuring an observation once there. For example, if a large (say
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100,000 ha) forested area is to be sampled for total volume, we may need to put in
200 sampling units consisting of 10 m � 10 m plots. Locating and visiting all of these
200 randomly scattered plots would be very time-consuming, difficult and expensive
– on average, they would be 2.2 km apart! In cases like this, two-stage sampling can
be more effective. The area is first subdivided into primary units (e.g. 200 square
blocks of 500 ha each), from which we randomly select 20 of these 200 primary units.
We then randomly select 10 plots (secondary units) within each of these 20 blocks to
use for measurement. Allocating the required 200 plots in this way is much more cost
effective than a completely random sample: our average distance between plots within
primary units would be reduced to about 700 m. Again, the interested reader is
referred to specialized books on sampling methods for more details on this topic.

Systematic sampling

Systematic sampling methods are different from simple random sampling in that the
sampling units are numbered from 1 to N and n units are selected using a regular
interval. For example, when samples are taken from a production line, every 10th item
(from a starting point) that passes by may be pulled off the conveyor belt for a quality
control check. Alternatively, samples can be taken at constant time intervals until the
desired sample size, n, is obtained. In timber cruising and forest inventory activities,
systematic samples are often set up on a grid, with samples taken at equally spaced
intervals along equally spaced rows. In order to introduce some randomization into a
systematic sample, the starting point may be randomly selected in space (or in time).

In comparison to simple random sampling, there are two distinct advantages to
systematic sampling:

1. Locating sample units is much easier and it is therefore cheaper to collect samples
and train employees.
2. Systematic sampling covers the population more uniformly (in time or space) than
simple random sampling. Generally, this means that systematic samples are more
representative of populations under study.

The equations used to estimate the population mean, population variance and
sampling error from samples selected by systematic sampling are the same as those
used for simple random sampling. While the estimation of population mean is
generally unbiased, some statisticians argue that the estimation of population
variance – and consequently the estimation of sampling error – can be biased if the
population is not randomly ordered. Our practical experience in forestry has shown
few instances where systematic sampling gave misleading results. That said, a bias
might be introduced when the sampling units within a population show a definite
pattern in their values. For example, consider the case of a forester systematically
sampling a plot of 10 � 10 row-planted trees. If this plot is adjacent to a road, and
every 10th tree is selected, there is a chance that only trees growing next to the road
will be selected. This will obviously lead to misleading results because trees growing
next to roads are exposed to more light and, thus, have more favourable growing
conditions. When patterns like this are present, bias can be avoided by sampling along
trend lines, such as establishing a grid pattern along the direction of topographic
change in a mountainous area.
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Survey design

While not strictly a ‘sampling method’, survey design is becoming an increasingly
important component of conservation, sustainable forest management and wood
products manufacturing as we seek to understand the opinions, attitudes and
behaviour of the public at large, forestry stakeholders, consumer segments and so on.

In social sciences, there are many ways of interacting with and obtaining
information from people. Qualitative methods refer to exploratory means of
collecting information from people and are generally used to gain insight into a
research problem or for theory development. Quantitative methods employ rigorous
sampling methods (like the ones described above) and make it possible to draw
inferences about the population in question using many of the statistical tools
described in this book. In either case, information is generally collected either by
means of personal interviews or with mail, telephone and/or Internet surveys.

Survey design is complicated, for a number of reasons. Unlike the measurement of
tree diameters, for instance, the way that people think cannot be measured directly
and scales must be used as proxies for obtaining this information. Most of us have
seen the commonly used Likert scale, a five-point scale that measures the degree to
which one agrees or disagrees with certain statements. The idea behind using such a
scale is that human thought processes are not simple, but rather are best captured on
a continuum of categorical responses. Many such scales exist for different purposes.
They are readily available and are considered to be valid measures of attitudes. In
addition, many are in the form of interval scales, which is to say that the statistical
tools described in this book can be used in their interpretation. Other commonly used
scales, such as rank scales, are ordinal in nature and their analyses and interpretation
are somewhat less straightforward.

Another problem in survey design is that we must understand and account for the
additional error associated with the fact that we are sampling people and measuring
their attitudes. For example, one of the most frequently encountered types of bias in
implementing surveys is the so-called ‘non-response error’. Imagine a situation where
we are mailing out 1000 surveys. Perhaps only 300 people who receive the survey will
respond. If these 300 people are different in any way (related to the research
objectives) from the 700 who did not respond, then non-response bias is present and
it is difficult, if not impossible, to make inferences onto the population.

In the final analysis, a good survey should look like it was fairly simple to devise.
However, designing and implementing a valid and reliable survey instrument is long and
painstaking work. There are many rules and tricks to good survey design, most of them
revolving around the twin goals of making the survey clear and easy to understand and
maximizing response rates. If presented with the opportunity to conduct a survey, we
strongly recommend consulting a social scientist who is an expert in survey design
and/or one of the many excellent texts on survey design and implementation.

13.2 Experimental Designs

In experimental designs, one or more factors (which are assumed to affect the variable
of interest) are controlled or kept at fixed levels in order to estimate their effect. These
controlled factors are generally referred to as treatments. There are many types of
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treatments in forestry applications, such as different types of fertilizers, different doses
of a given fertilizer, different tree species, different varieties of a single tree species,
different irrigation levels, different soil preparations, different seed sources, different
kinds of resins, different temperatures, different pressures and so on.

The variable of interest in experimental designs is called the response variable or
the dependent variable. An experimental unit is anything (a tree, a forest, a piece of
wood, a group of people, etc.) that receives the same treatment. If the same treatment
is applied to more than one experimental unit within an experiment, we call these
replications. Experimental error is the pooled variation among experimental units
receiving the same treatment, which is to say that experimental error cannot be
estimated without replications.

The main objectives of an experimental design are to evaluate whether the variation
due to treatments (between various treatment) is significantly greater than the naturally
occurring experimental error variation (within each treatment). These sources of
variation were introduced in Chapter 12 as group-to-group and within-group variation.

It is always in our best interest to minimize experimental error. There are two
practical means of doing so:

1. Increase the number of replications; and/or
2. Select the most appropriate experimental design.

In this chapter, we will briefly discuss the three basic experimental designs: completely
randomized designs, randomized complete block designs and latin square designs.
Following this, we will discuss factorial experiments (which are not designs, but make
extensive use of them). Several other experimental designs exist and the interested
reader is directed to one of many texts on this subject.

Completely randomized design

The completely randomized design is the simplest of the experimental designs: treatments
are randomly assigned to each experimental unit (in time or space). This design is most
useful when the material available for experimentation is uniform in nature. As such,
completely randomized designs are frequently used in laboratory experiments,
greenhouse studies, or in feeding experiments on animals of the same age/cohort.

In experimental design terminology, the term layout refers to the placement of the
treatments on the experimental units. A layout provides a map of the allocation of the
treatments over space, type of material, or time. A possible layout of a completely
randomized design with four treatments (A, B, C and D), each replicated three times,
is shown in Fig. 13.1, where each cell represents a separate experimental unit.

For example, the four treatments could be four soil preparations in an
experimental plantation, where we have planted 50 seedlings per experimental unit.
The response variable could be the number of seedlings surviving a year after planting
(out of the 50 planted). In this case, the layout indicates the map of the location of the
treatments in the field.

Alternatively, A, B, C and D could be four different types of resins used to
produce laminated veneer lumber (LVL) and the experimental units could refer to
different days and times. The observations could be shear strength measurements and
the layout would indicate the day and time that the LVL was to be sampled.
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A completely randomized design is analysed by a one-way classification analysis
of variance (see Table 13.1). For equations, procedures and interpretations of the one-
way analysis of variance, refer to Chapter 12. Note that in Table 13.1, SSTR and SSE
are the same, in terms of calculation and interpretation, as SSG and SSW, from one-
way analysis of variance (see Chapter 12).
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Fig. 13.1. Layout of a completely randomized design with four treatments and three replications.

Table 13.1. Analysis of variance for a completely randomized design.

Source of variation DF SS MS Computed F

Treatment k – 1 SSTR

Experimental error k(n – 1) SSE

Total kn – 1 SST

MS
SS

k nE
E=
−( )1

MS
MS

TR

E
MS

SS
kTR

TR=
− 1

A B A
A C B
D B D
C D C

Randomized complete block design

The main disadvantage of the completely randomized design described above is that it
is really only suited to homogeneous materials, which are rarely found in field
experimentation or industrial settings. If the experimental units, area, time or material
are not homogeneous, it is possible (in most cases) to subdivide the experimental units
into smaller, more uniform groups. These groups are called blocks. This process is very
similar to stratification in stratified random sampling, with a block equivalent to a
stratum. When each treatment is applied to one experimental unit within each block,
and treatments are randomly allotted to the experimental units independently within
each block, we have what is known as a randomized complete block design. In this
design, we have as many replications as we have blocks. Using the same example as in
the completely randomized design, the four treatments (A, B, C and D) would be
randomly placed in each one of three blocks, as shown in Fig. 13.2.

Relating this layout to the four soil preparation treatments, the blocks could be
placed such that they correspond to three different levels of erosion, or three different
drainage rates.

In the case of the LVL example, the experimenter may have reason to assume that
the quality of production changes from day to day, in which case the blocks could
represent the days.

Data collected from a randomized complete block design are analysed by a two-
way classification analysis of variance without interaction (see Table 13.2). For
equations and procedures, see Chapter 12.



Note that SSTR, SSB and SSE are the same, in terms of calculation and interpretation,
as SSA, SSB and SSE, respectively, from two-way analysis of variance (see Chapter 12).

Comparing Tables 13.1 and 13.2, we can see that the experimental error (i.e.
within-group) variation and its degrees of freedom in the completely randomized
design is partitioned into variation due to blocks and a new experimental error
variation term in the randomized block design. This implies that the technique of
blocking ‘removes’ a certain amount of variation from the experimental error. The
effectiveness of randomized complete block designs is measured by testing this
‘removed variation’. Although there is usually no practical reason for testing the
significance of the blocks, the size of the block mean square relative to the error mean
square does indicate the precision gained by blocking. Some practitioners assert that
if the block mean square is at least two to three times the size of the experimental error
mean square, there is enough evidence to say that blocking is effective.

One disadvantage of the randomized complete block design – in comparison to
the completely randomized design – is that for experiments of the same size (i.e. same
number of treatments and replications), the experimental error degrees of freedom is
smaller. This would seem to indicate that estimating the treatment means or
differences has less precision in a randomized block design than in a completely
randomized design, which is true, unless the blocking removes a sizeable variation
from the experimental error. For this reason, blocking in experimental designs is only
recommended when the experimental units are non-homogeneous.

Latin square design

Latin square designs are used in experiments when blocking alone cannot reduce the
natural variation between experimental units. The major difference between a
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Table 13.2. Analysis of variance for a randomized complete block design.

Source of variation DF SS MS Computed F

Treatment k – 1 SSTR

Block n – 1 SSB

Experimental error (k – 1)(n – 1) SSE

Total kn – 1 SST

MS
SS

k nE
E=

−( ) −( )1 1

MS
MS

B

E
MS

SS
nB

B=
− 1

MS
MS

TR

E
MS

SS
kTR

TR=
− 1

Fig. 13.2. Layout of a randomized complete block design with four treatments and three blocks.

Block 1 Block 2 Block 3

C B C

A D B

D C A

B A D



randomized complete block design and a Latin square design is that the former
removes the natural variation of the experimental units in only one direction, while
Latin square designs remove the variation of the experimental units in two directions.
For example, a field experiment may have soil fertility gradients running both parallel
and perpendicular to the slope. Blocking would eliminate only one of those
differences, but a Latin square design would eliminate both. Latin square designs are
usually laid out in rows and columns in space (or time) and the treatments are
randomly allocated to the experimental units, with the restriction that each treatment
must appear once in every row and every column. This restriction requires that the
number of replications, rows and columns must all be equal to the number of
treatments used. Figure 13.3 represents a layout of a Latin square design with four
treatments, A, B, C and D. Since the total sum of squares is partitioned into treatment,
row, column and experimental error sums of squares, the Latin square design is
analysed with a three-way classification analysis of variance (see Table 13.3).
Interested readers are referred to higher-level experimental design textbooks for the
equations used to calculate the sums of squares used in the analysis below.

Our example of the four soil preparation treatments could be laid out in a Latin
square design in the field, but to do so would require four replications. The LVL
example could be laid out in a Latin square design if the production was repeated for
4 days (columns), with panels selected in, say, 2 h time intervals (rows) during each day.

For the analysis of the Latin square design (see Table 13.3), we assume that rows
are equivalent to blocks. Compared to the randomized complete block design (see
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Column 1 Column 2 Column 3 Column 4

Row 1 B C A D

Row 2 A D B C

Row 3 D A C B

Row 4 C B D A

Table 13.3. Analysis of variance for a Latin square design.

Source of variation DF SS MS Computed F

Treatment k – 1 SSTR

Row k – 1a SSB

Column k – 1a SSC

Experimental error (k – 1)(k – 2) SSE

Total k2 – 1 SST

a Since k = n.

MS
SS

k nE
E=

−( ) −( )1 2

MS
MS

C

E
MS

SS
kC

C=
− 1

MS
MS

R

E
MS

SS
kR

R=
− 1

MS
MS

TR

E
MS

SS
kTR

TR=
− 1

Fig. 13.3. Layout of a Latin square design with four treatments and four replications.



Table 13.2), the experimental error sum of squares in Latin square design is further
partitioned into a column sum of squares and a new experimental error sum of
squares. Similar partitioning also occurs for the degrees of freedom. A rule of thumb:
there is enough evidence that the Latin square design is effective if both the row and
column mean squares are at least two to three times the size of the experimental error
mean squares. Due to the restriction requiring an equal number of replications, rows,
columns and treatments, the Latin square design is seldom used for more than ten
treatments.

Factorial experiments

Factorial experiments are sometimes referred to as ‘factorial designs’. Strictly
speaking, this is not correct, since design refers to the physical layout of an
experiment. For example, randomized complete block design refers to an experiment
in which each of the treatments is randomly allocated in each block. The term,
factorial, on the other hand, refers to a special arrangement of treatments. Factorial
arrangements of treatments can actually be used in any one of the basic designs
described above: completely randomized, randomized complete block and Latin
square designs. Factorial experiments are aimed at investigating the effects of all
possible combinations of two or more factors and their interactions on the response
variable, without restricting the randomization of possible combinations. For
example, if the combined effect of four levels of nitrogen content in fertilizer (0, 50,
100 and 150 kg per unit area) and three levels of water in irrigation (0, 3 and 6 cm per
week) are studied, it is a factorial experiment if the treatment combinations are
randomly allocated to the experimental units (see Table 13.4).

If the above treatments are laid out in one of the basic designs, it is called a 4 � 3
factorial experiment. The product of the levels of the factors studied defines the size
of the factorial experiment and the total number of treatments to be studied. A
possible layout of this experiment in a randomized complete block design using three
blocks is seen in Fig. 13.4.
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Table 13.4. Treatment combinations of 4 levels of nitrogen and 3
levels of irrigation.

Nitrogen fertilizer

Irrigation n0 n1 n2 n3
i0 i0n0 i0n1 i0n2 i0n3
i1 i1n0 i1n1 i1n2 i1n3
i2 i2n0 i2n1 i2n2 i2n3

Block 1 i2n0 i0n3 i2n1 i0n2 i2n2 i1n1 i1n2 i0n0 i2n3 i1n3 i1n0 i0n1

Block 2 i1n0 i1n1 i0n0 i0n1 i1n2 i0n3 i2n0 i1n3 i2n2 i0n2 i2n1 i2n3

Block 3 i1n3 i2n3 i0n3 i0n1 i1n2 i1n0 i2n2 i2n0 i0n2 i0n0 i1n1 i2n1

Fig. 13.4. Layout of a randomized complete block design with 12 treatments (factorial arrangement)
and 3 blocks.



Table 13.5 shows the analysis of variance for a factorial experiment. Note that the
analysis of this experiment could be carried out in the same manner as would be used
for any randomized complete block design (see Table 13.2). However, if the
treatments are factorial in nature, the treatment sum of squares and degrees of
freedom can be partitioned into the effects of the factors and their interaction. For our
example, the treatment sum of squares can be partitioned into the effects of nitrogen,
irrigation and their interaction. Partitioning in this way makes the interpretation of
the treatment effects easier and more meaningful. For equations to calculate the sums
of squares and complete discussion of factorial experiments, the reader is referred to
advanced experimental design textbooks.
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Table 13.5. Analysis of variance for a factorial experiment in a randomized complete block
design.

Source of variation DF SS MS Computed F

Block n – 1 SSB

Treatment kt – 1 SSTR

Nitrogen (N) k – 1 SSN

Irrigation (I) t – 1 SSI

N � I (k – 1)(t – 1) SSNxI

Experimental error (kt – 1)(n – 1) SSE

Total ktn – 1 SST

Where: kt, number of treatments; n, number of replications; k, number of levels in N;
t, number of levels in I.

MS
SS

kt nE
E=

−( ) −( )1 1

MS
MS

NxI

E
MS

SS
k tNxI

NI=
−( ) −( )1 1

MS
MS

I

E
MS

SS
tI

I=
− 1

MS
MS

N

E
MS

SS
kN

N=
− 1

MS
MS

TR

E
MS

SS
ktTR

TR=
− 1

MS
MS

B

E
MS

SS
nB

B=
− 1



Before introducing non-parametric tests, we should look back at the tests covered in
the preceding chapters and consider why those methods are called parametric tests.
Parameters are values which uniquely define a probability distribution. For example,
the heights of Douglas-fir seedlings may follow a normal distribution. There are an
infinite number of normal distributions, but we can uniquely specify the distribution
associated with these seedling heights by specifying the distribution parameters (e.g. a
mean of 25 cm and a standard deviation of 5 cm). We can then use the methods
described in Chapters 9 and 10 to perform hypothesis tests on these heights. These
would be called parametric tests, because they involve testing estimates of the
parameter values (i.e. the mean or the standard deviation), or comparing the
distribution of heights to a distribution with assumed parameter values. Non-
parametric tests, on the other hand, do not require knowledge or estimates of these
parameter values. They can be performed without uniquely identifying the
distribution, or its parameters.

Probably the most common assumptions we have made thus far are that random
samples are taken from normal populations and/or that the population standard
deviations are either known, or known to be equal. This may not seem to be a serious
constraint, but in practice there are many situations where these assumptions cannot
be met. In such situations, non-parametric tests or distribution-free tests are
appropriate.

In addition to not depending upon a particular distribution (e.g. the normal
distribution), non-parametric tests have several other advantages over traditional
parametric tests:

● Most non-parametric tests are quick and relatively easy to conduct.
● The data used in non-parametric tests need not be quantitative (i.e. interval or

ratio data). These tests can be used to analyse ranks and categorical data.
● Non-parametric tests require fewer restrictive assumptions than parametric tests.

However, non-parametric tests are not without their disadvantages:

● Many non-parametric tests are less efficient than parametric tests – particularly
when sampling is from normal populations – mainly because they do not utilize
all the information provided by the data. Consequently, non-parametric tests are
not as sensitive as parametric tests. They require a larger sample and/or they
result in higher probabilities for type II errors.

● Since these procedures do not rely upon or test parameters, the usual methods of
describing test results are no longer appropriate. For example, we cannot use the
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mean value to describe a group of data because we are not calculating a mean.
This makes it difficult to formulate quantitative statements about differences
between populations.

Non-parametric procedures are very useful when the assumption of normality cannot
be justified, or the data that we wish to analyse are qualitative, rather than
quantitative. However, if both parametric and non-parametric tests are applicable for
a certain set of observations, it is advisable to use the more efficient parametric
procedure.

You may be surprised to learn that we have already studied one non-parametric
test: the chi-square test for independence of categorical data (see Section 10.2,
Chapter 10). We will use this chapter to introduce several other commonly used non-
parametric tests: the sign test, the Wilcoxon signed rank test, the Wilcoxon rank sum
test, the Kruskal–Wallis test, the runs test, and Spearman’s rank correlation test.

14.1 Sign Test

In Section 9.2 of Chapter 9, we considered an example in which 16 trees were
randomly sampled from a large plantation and measured for diameter at breast height
(dbh). In order to test the hypothesis that the mean dbh of trees in this plantation was
14 cm, we had to assume that the population of dbh measurements was normally
distributed. This is because the null hypothesis for testing, µ = c, is only valid when the
sampled population is approximately normal, or the sample size is large (n > 30). In
reality, however, we may not know the shape of the distribution of a population and,
with small samples, it is rather difficult to test for normality.

In cases where we have a small sample from an unfamiliar population and we are
interested in making statements about the ‘centre’ of a distribution, the sign test may
be most appropriate. The sign test is a one-sample test for the median, µ∼, of a
continuous population (see Section 2.3, Chapter 2 for more information on the
median). In symmetric populations, this test can also be applied for the mean; values
in these populations are symmetrically distributed around the median and, therefore,
the population mean and population median are approximately equal.

For the sign test, our null hypothesis is very similar to that discussed in Section 9.1
(see Chapter 9). To test that the median is equal to some hypothetical constant, c, we
have:

To test H0, a random sample is taken from the population. We assign a plus sign to
those values that are greater than c and a minus sign to those less than c. If an
observation is equal to c, it is discarded and the sample size, n, is reduced by one. H0
is rejected if the number of plus signs is much higher than the number of minus signs,
or the number of minus signs is much higher than the number of plus signs. The test
statistic for the sign test is the random variable, X, which represents the number of
plus signs. X follows a binomial probability distribution (see Eqn 5.2, Chapter 5):

H0

1

: ˜ ,

: ˜ ; or ˜ ; or ˜ .

µ

µ µ µ

=

≠ < >

c

H c c c
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When H0 is true (µ∼ = c), the parameter, p, in this binomial distribution is equal to 0.5.
The critical values used in the test when n < 10 are found using either the binomial
equation or Table A.1 (see Appendix A). When n ≥ 10, the normal approximation to
the binomial can be used (since np ≥ 5, see Section 6.4 in Chapter 6). The test statistic
for this large sample case is:

(14.1)

The one-sample sign test can also be used for analysis of paired data (see Section 9.5b,
Chapter 9). In this case, the null and alternative hypotheses are:

H0: µ1 – µ2 = 0,

and

H1: µ1 – µ2 ≠ 0; or µ1 – µ2 < 0; or µ1 – µ2 > 0.

In this test, we replace each difference, di, of the paired observations with a plus or
minus sign, depending on the sign of di, and then continue as per the one-sample sign
test. As above, observations with zero difference are omitted, with a consequent
reduction in sample size.

The following examples demonstrate the use of the sign test.

Example 14.1. The number of seeds in 9 Douglas-fir cones were recorded as: 21, 18, 23,
25, 25, 26, 24, 19 and 27. Is it reasonable to assume that the median number of seeds per
cone in the population is 23? Use a 0.05 level of significance.

1. H0: µ∼ = 23.
2. H1: µ∼ ≠ 23.
3. α = 0.05.
4. Use Table A.1 (see Appendix A).
5. 21 18 23 25 25 26 24 19 27

– – + + + + – +
Number of minus signs = 3
Number of plus signs  = 5.
6. Since n < 10, we look up the following probabilities in the binomial table with n = 8 (the
original sample size was reduced by 1, because one of the values was equal to 23) and p = 0.5:

P(x ≤ 3) = 0.363
P (x ≥ 5) = 0.363

(Note that only one of the two test statistics is required, because the binomial distribution is
symmetric when p = 0.5.).
7. Since we have a two-tailed test, we use a critical probability of α/2 = 0.025.
8. Since both probabilities are greater than 0.025, we ‘accept’ H0.
9. It is reasonable to assume that the median of this population is 23.

Example 14.2. The following data are wait times (in minutes) for 20 logging trucks at a
particular weigh-scale: 12, 20, 21, 30, 27, 15, 19, 4, 20, 7, 13, 22, 10, 20, 18, 16, 23, 15, 24
and 11. Test the weigh-scale manager’s claim that the median wait is not longer than 15 min.
Use a 0.05 level of significance.

z
x n

n
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− ( )
( )( )

0 5

0 5 0 5

.
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We can use the 20 observations to construct a histogram and get a rough idea of the
shape of the distribution of the wait time values (see Fig. 14.1). Since this distribution
appears to be approximately symmetric, we will assume that the means can be tested.

1. H0: µ = 15.
2. H1: µ > 15.
3. α = 0.05.
4. Use Eqn 14.1, since n ≥ 10.
5. 12 20 21 20 27 15 19 4 20 7 13 22 10

– + + + + + – + – – + –
20 18 16 23 15 24 11
+ + + + + –
n = 18 (note: 2 observations are discarded)
x = number of plus signs = 12.

6. z0.05 = 1.645.

8. Since 1.41 < 1.645, we ‘accept’ H0.
9. The data indicate that the median or mean wait time is not significantly longer than 15
min.

Example 14.3. Two crews of summer students independently estimated the volumes (in
m3/ha) of 12 plots located in a ponderosa pine stand. Using a significance level of 0.1, do the
data support a conclusion that the estimates from the two crews are equal?

Plot 1 2 3 4 5 6 7 8 9 10 11 12
Crew 1 320 421 450 280 160 250 231 321 436 521 182 254
Crew 2 305 423 452 276 155 261 235 321 465 503 180 260

We will assume that the data are from a continuous symmetric population.

1. H0: µ1 − µ2 = 0.
2. H1: µ1 − µ2 ≠ 0.
3. α = 0.1.
4. Since n > 10, use Eqn 14.1.

7. z =
− ( )
( ) ( )

≈
12 18 0 5

18 0 5 0 5
1 41

.

. .
. .

Fig. 14.1. Distribution of logging truck wait times.
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5. Calculate the differences:
Plot 1 2 3 4 5 6 7 8 9 10 11 12

15 –2 –2 4 5 –11 –4 0 –29 18 2 –6
n = 11 (there are 12 observations, but one zero);
x = 5 (number of positive signs).
6. z0.05 = ±1.645.

8. Since –1.645 < –0.30 < 1.645, we ‘accept’ H0.
9. The data indicates that the two crews estimated equivalent volumes.

14.2 Wilcoxon Signed Rank Test

The sign test, discussed in Section 14.1, uses only plus and minus signs to identify
differences between the observations and their median. In the 1940s, Frank Wilcoxon
created a similar but more sophisticated test that uses both the direction and the
magnitude of the differences between the observations and their median. 

The null and alternative hypotheses for the so-called Wilcoxon signed rank test
are the same as those in Section 14.1. As with the sign test, the Wilcoxon signed rank
test can be used to test the null hypothesis of µ∼ = c in a one-sample test and the null
hypothesis of µ∼1 − µ∼2 = 0 in a paired difference two-sample test. Also, if the samples
(either one-sample or paired) are taken from a continuous symmetric population, the
signed rank test is applicable for testing unknown population means, as well as
medians. In the one-sample case, the absolute values of the differences between the
observations and the unknown hypothetical population median (or mean) are
ranked. In the paired sample cases, the absolute values of the paired differences (di)
are ranked. In both cases, zero differences are discarded in the process of ranking. If
there are ties, we assign the average of the ranks that would have been assigned if the
differences were distinguishable. This concept of ‘ties’ is perhaps best illustrated with
an example. In the following problem, the lowest ranked differences are –2, –2 and 2.
Since we are looking at absolute values only, this is considered a three-way tie. If the
differences between these values were distinguishable, they would be ranked 1, 2 and
3. However, since they are tied, each receives an average rank of (1 + 2 + 3)/3 = 2.

If the null hypothesis is true, the total of the ranks corresponding to the positive
differences (w+) should be approximately equal to the total of the ranks of the
negative differences (w–). When repeated samples are taken from a population, the w+
and w– are considered individual values of W+ and W–, the random variables
denoting positive and negative ranks, respectively. 

If the number of non-zero differences, n, is ≥ 15 (large samples), the sampling
distribution of W+ (or W–) approaches the normal distribution with mean and
variance of:

(14.2)

and

(14.3)σ
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Hence, the test statistic for Wilcoxon signed rank test is computed as:

(14.4)

For n < 15, the minimum of the computed values of w+ and w– is compared to a
critical value in Table A.10 (see Appendix A). The following examples demonstrate
the use of the signed rank test for the one-sample case and paired observation cases,
for small and large samples, respectively.

Example 14.4. Using the data given in Example 14.3 (see Section 14.1), apply the Wilcoxon
signed rank test (α = 0.1) to evaluate whether the two crews estimated equal volumes.

Again, we assume that the observations were taken from a continuous symmetric
distribution, so that the means can be tested.
1. H0: µ1 − µ2 = 0.
2. H1: µ1 − µ2 ≠ 0.
3. α = 0.1.
4. Use Table A.10 (see Appendix A), since n < 15.
5. We assign ranks to the differences:
di 15 –2 –2 4 5 –11 –4 –29 18 2 –6
Rank 9 2 2 4.5 6 8 4.5 11 10 2 7
n = 11 (note that the sample size has reduced by 1, because there is one zero difference)
w+ = 31.5
w– = 34.5
Note that (w+ + w–) must be equal to and, therefore, one of the two of

w+ and w– can be calculated by subtraction: w– = 66 – 31.5 = 34.5.
6. For a two-sided test with α = 0.1, the critical value from Table A.10 (see Appendix A) for 
n = 11 is W ≤ 14.
7. The value of w to be used in Eqn 14.4 is the min(w+, w–) = min(31.5, 34.5) = 31.5.
8. Since 31.5 > 14, we ‘accept’ H0.
9. The estimates by the two crews are not significantly different.

Example 14.5. Repeat Example 14.2 (see Section 14.1) by applying the Wilcoxon signed
rank test.

1. H0: µ∼ = 15.
2. H1: µ∼ > 15.
3. α = 0.05.
4. Use Eqn 14.4.
5. Compute the differences between the observations and the hypothesized median of 15:

Differences –3 5 6 15 12 0 4 –11 5 –8
Ranks 3.5 8.5 11 18 17 5.5 16 8.5 13.5
Differences –2 7 –5 5 3 1 8 0 9 –4
Ranks 2 12 8.5 8.5 3.5 1 13.5 15 5.5

n = 18, since there are two zeros.
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6. z0.05 = 1.645.

8. Since 1.59 < 1.645, we ‘accept’ H0.
9. The median waiting time is not significantly longer than 15 min.

Notice that this test comes much closer to rejecting H0 than the sign test from Example 14.2.
This is because it is a more sensitive test that uses more of the information contained in the
data.

14.3 Wilcoxon Rank Sum Test

In this section, we discuss a non-parametric alternative for comparing two unknown
population means when independent samples are selected from two continuous
populations. The Wilcoxon rank sum test (also known as the Mann–Whitney U-test)
is the alternative to the two-sample t-test discussed in Section 9.5 (see Chapter 9). The
advantage of this test is that two unknown population means can be compared for
equality without having to assume that the two populations sampled have normal
distributions.

For the Wilcoxon rank sum test, the null and the alternative hypotheses are the
same as those stated in Section 9.5 (see Chapter 9):

H0: µ1 – µ2 = 0 

and

H1: µ1 – µ2 ≠ 0; or µ1 – µ2 < 0; or µ1 – µ2 > 0.

In the process of testing the above hypotheses, the two samples of size n1 and n2 are
combined and arranged in increasing order. Ranks are then assigned to each
observation. As with the methods discussed in Section 14.2, tied observations are
assigned the average of the ranks that would have been assigned if the differences
were found to be distinguishable.

In computing the test statistic for this test, we assign subscript ‘1’ for the smaller
sample and ‘2’ for the larger sample. Thus, n1 is the size of the smaller sample and n2
is the size of the larger sample; w1 is the sum of the ranks in the smaller sample and
w2 is the sum of the ranks in the larger sample. In cases of equal sample sizes, the
designations of smaller and larger sample are assigned arbitrarily. As was the case for
(w+ + w–) in the one-sample test, the total of w1 + w2 depends only on the number of
observations in the two independent samples. It is unaffected by either the nature or
magnitude of the individual observations. This total is calculated as:

(14.5)

Once w1 is calculated, w2 can be obtained as:

w
n n n n

w2
1 2 1 2

1

1

2
=

+( ) + +( )
−

w w
n n n n

1 2
1 2 1 2 1

2
+ =

+( ) + +( )
.

7. z = − ≈122 85 5
22 96

1 59
.

.
. .



294 Introductory Probability and Statistics

or

Where repeated samples of size n1 and n2 are taken from two populations, the sums
of the ranks, w1 and w2, will change from sample to sample. Therefore, w1 and w2 are
observations of the random variables W1 and W2. To simplify the construction of
tables of critical values, the rank sums (w1 and w2) are transformed into u1 and u2 –
hence the name U-test:

(14.6)

or

(14.7)

Critical values of the random variables U1 and U2 for small sample tests are listed in
Table A.11 (see Appendix A). When both n2 and n1 contain at least ten observations,
it is considered a large sample case and the sampling distribution of u1 and u2
approaches the normal distribution with a mean and variance of:

(14.8)

(14.9)

The large sample case test statistic is therefore calculated as:

(14.10)

The critical values for the large sample case are obtained from the z-table. We
demonstrate both the small and large sample cases in the following examples.

Example 14.6. The following data are the total biomass per plot (in g) of 1-year-old
ponderosa pine seedlings, following the application of two kinds of fertilizers:

Fertilizer I 570 592 630 512 634 493 558
Fertilizer II 502 593 503 582 482 445

Which fertilizer was more effective? Use α = 0.05.
This is considered a small sample case, since n1 = 6 and n2 = 7.

1. H0: µ1 − µ2 = 0.
2. H1: µ1 − µ2 ≠ 0.
3. α = 0.05.
4. Use Table A.11 (see Appendix A).
5. Fertilizer I 570 592 630 512 634 493 558

Ranks 8 10 12 6 13 3 7
Fertilizer II 502 593 503 582 482 445
Ranks 4 11 5 9 2 1
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w2 = 32, then
w1 = 91 – 32 = 59.

6. Critical value (6, 7) = 6, from Table A.11 (see Appendix A).

8. Since u1 = 11 > 6, we ‘accept’ H0.
9. Our evidence suggests that there is no difference between the effectiveness of the two
fertilizers.

Example 14.7. Two groups of employees from a large forestry firm were given a
questionnaire to determine their job satisfaction. The total score ranged from 0 to 10.
Members of Group I graduated from a college or university and members of Group II did not.

Group I 6, 8, 4, 9, 7, 10, 7, 9, 5, 10, 9
Group II 4, 8, 9, 5, 7, 5, 7, 6, 4, 2, 9, 7, 6, 8, 9, 10, 4, 3, 5, 5, 7

Can we conclude, at α = 0.05, that those with a college or university education were more
satisfied with their job than those without higher education?
Since n1 = 11 and n2 = 21, this is considered a large sample case.

1. H0: µ1 − µ2 = 0.
2. H1: µ1 − µ2 > 0.
3. α = 0.05.
4. Equation 14.10.
5. Group I 6 8 4 9 7 10 7 9 5 10 9

Ranks 13 22 4.5 26.5 17.5 31 17.5 26.5 9 31 26.5
Group II 4 8 9 5 7 5 7 6 4 2 9
Ranks 4.5 22 26.5 9 17.5 9 17.5 13 4.5 1 26.5

7 6 8 9 10 4 3 5 5 7
Ranks 17.5 13 22 26.5 31 4.5 2 9 9 17.5

6. z0.05 = 1.645.

8. Since 1.73 > 1.645, we reject H0 and accept H1.
9. The data indicate that employees with college or university education are significantly
more satisfied with their job than those without higher education.
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14.4 Kruskal–Wallis Test

When the assumptions of normality and equal population variance cannot be met in
a one-way analysis of variance (see Section 12.1, Chapter 12), the Kruskal–Wallis test
(also known as the H-test) can be used to compare three or more (k) unknown
population means. The null and alternative hypotheses for this test are:

H0: µ1 = µ2 = … = µk

and

H1: at least two of the means are not equal.

As in the Wilcoxon rank sum test, the data for all the k groups are combined and
ordered from low to high and ranks are assigned to each observation. Let n1, n2, …,
nk represent the number of observations in each of the k groups, and R1, R2, …, Rk
represent the sum of the ranks in each of the k groups. The test statistic, h, can then
be calculated as:

(14.11)

where n = n1 + n2 + … + nk.
If repeated samples are taken from the k populations, h is an observation of the

random variable, H. If each of the k groups has at least five observations, H
approximately follows a χ2-square distribution with k – 1 degrees of freedom.
Consequently, the null hypothesis stated above is rejected if h > χ 2

α(v), with ν = k – 1
degrees of freedom.

Example 14.8. A manufacturer of furniture components is studying the number of items
produced during three shifts. Six days were randomly selected and observations were made
during the morning and afternoon shifts. The night shift, however, could only be observed
during 5 days.

Shift Production

Morning 105 128 109 120 115 122
Afternoon 101 97 96 102 108 90
Night 87 91 94 97 100 

Can we assume the same level of production for the three shifts? Use α = 0.05.

1. H0: µ1 = µ2 = µ3.
2. H1: at least one of the means is different.
3. α = 0.05.
4. Use Eqn 14.11.
5. Morning 105 128 109 120 115 122

Rank 11 17 13 15 14 16
Afternoon 101 97 96 102 108 90
Rank 9 6.5 5 10 12 2
Night 87 91 94 97 100
Rank 1 3 4 6.5 8

n = 17
R1 = 86
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R2 = 44.5
R3 = 22.5
n1 = 6
n2 = 6
n3 = 5.

8. Since 11.25 > 5.99, we reject H0 and accept H1.
9. At least one of the three unknown population means is different (note that we do not know
which one is different).

14.5 Runs Test

Most, if not all, of the statistical tests (including the non-parametric tests) discussed in
this book are based on the assumption that samples are chosen randomly. But there
are many instances where it is difficult to judge whether this assumption is justified.
Based upon the order in which the observations are obtained, the runs test is a non-
parametric procedure for testing the null hypothesis that observations are drawn in a
random order.

To demonstrate this test, consider data collected on 13 trees in a bark beetle
infested forest using line transect sampling. Let the symbol ‘I’ denote an infested tree
and ‘H’ denote a healthy tree:

I I I H H H H I I H H H I.

Here, consecutive groups of identical letters constitute what are known as ‘runs’. In
this set of observations, for example, we have v = 5 runs. Whether our data are
qualitative or quantitative, the runs test requires that observations can be classified
into two mutually exclusive groups (i.e. infested or healthy, Douglas-fir or not
Douglas-fir, male or female, heads or tails, defective or non-defective, above or below
the median and so on). In this test, we let n1 denote the number of symbols associated
with one of the two categories, n2 denote the number of symbols associated with the
other and n1 + n2 = n. In our example, therefore, n1 = 6, n2 = 7 and n = 13. The null
hypothesis of randomness will be rejected if the number of runs compared to the
number of observations is either smaller or larger than expected. In our example, the
least number of runs would be 2:

I I I I I I H H H H H H H,

while the most number of runs would be 13:

H I H I H I H I H I H I H.

In the runs test, the null and alternative hypotheses are set ups as follows:

H0: the sequence is random

H1: the sequence is not random.
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The number of runs is a random variable, V, and we observe one realization of this
random variable, v, for each test. If n1 and n2 are less than or equal to 10, Table A.12
(see Appendix A) gives critical values for V and their corresponding probabilities as a
function of n1 and n2. The rejection criteria is based on the following probability
statements:

P(v ≤ a) ≤ α/2,

and

P(v ≥ b) ≤ α/2.

This means that if the number of runs is outside of the interval from a to b, the null
hypothesis is rejected. For our case, if α = 0.05, Table A.12 (see Appendix A) shows:

P(v ≤ 3) = 0.008 ≤ α/2

and

P(v ≥ 11) = (1 – 0.992) = 0.008 ≤ α/2.

We then have a = 3 and b = 11, which gives us:

P(a < v < b) ≥ 1 – α = 1.0 – {0.008 + (1.0 – 0.992)} = 1 – 0.016.

This results in an actual type I error of 0.016, instead of 0.05. Since the number of
runs is 5 (which is within the interval of 3 and 11), H0 cannot be rejected and the
sequence can be assumed to be random.

The runs test can also be used to test the departure from randomness in a
sequence of quantitative observations. In this case, we replace each measurement (in
the order it was collected) by a minus sign, if it falls below the median, or by a plus
sign, if it falls above the median. Observations that are equal to the median are
discarded. This generates a sequence of plus signs and minus signs that can then be
tested in the same way as the sequence of infested and healthy trees above.

Example 14.9. Assume that the data given in Example 14.2 (see Section 14.1) are listed in
the order they were taken. Can we claim, with α = 0.05 level of significance, that the length of
wait time is random?

1. H0: the sequence is random.
2. H1: the sequence is not random.
3. α = 0.05.
4. Not applicable.
5. 12 20 21 30 27 15 19 4 20 7

– + + + + – + – + –
13 22 10 20 18 16 23 15 24 11
– + – + – – + – + –
Median = 18.5
n1 = 10
n2 = 10.

6. Using Table A.12 (see Appendix A), the critical values are a = 6 and b = 15.
7. Number of runs = v = 15.
8. Since b = v, we reject H0 and accept H1.
9. The sequence of waiting times is not random.
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For large samples (n1 and n2 ≥ 10), the sampling distribution of V approaches the
normal distribution with a mean and a variance of:

(14.12)

and

(14.13)

Therefore, if both n1 and n2 are ≥ 10, the following test statistic can be used to test the
null hypothesis:

(14.14)

In this case, critical values are found in the z-table.
Since n1 = n2 = 10 in Example 14.9, the runs test can be carried out with a z-test

as well.

1. H0: the sequence is random.
2. H1: the sequence is not random.
3. α = 0.05.
4. Equation 14.14.
5. µV = 11

6. z0.025 = ±1.96.

8. Since –1.96 < 1.83 < 1.96, we cannot reject H0 (a different result from above).
9. The sequence of waiting time is not significantly different from random.

Note that the two versions of this test give different conclusions. When the test was
carried out using the small sample critical values, H0 was rejected; however, with the
large-sample z-test, it was not. These apparently contradictory results can occur when
we have ‘borderline’ cases. In cases such as these – where the samples are just barely
large enough – the test based on the critical values from Table A.12 (see Appendix A)
is more reliable and should therefore be used.

Example 14.10. The sequence of digits for the value of π is considered random. The first 90
digits of the 8,000,000,000 known decimals in π are as follows:

3.14159 16353 89793 23846 26433 83279
50288 41971 69399 37510 58209 74944
59230 78164 06286 20899 86280 34825

Test the first 90 digits for randomness, using E to represent the even digits and O to represent
the odd digits. Use α = 0.05.

1. H0: the sequence is random.
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2. H1: the sequence is not random.
3. α = 0.05.
4. Equation 14.14.
5. OEOOO OEOOO EOOOO EOEEE EEEOO EOEOO

OEEEEE EOOOO EOOOO OOOOE OEEEO OEOEE
OOEOE OEOEE EEEEE EEEOO EEEEE OEEEO

n1 = 44 (odd) n2 = 46 (even) v = 39

µV = 45.98

6. z0.025 = ±1.96.

8. Since –1.96 < 1.48 < 1.96, we ‘accept’ H0.
9. Based on the first 90 digits, the sequence of odd and even numbers in π appears to be
random.

14.6 Spearman’s Rank Correlation Test

In Chapter 11, we discussed the significance test for the sample correlation coefficient,
known as the Pearson product moment correlation coefficient. We also identified that
testing the significance of the correlation coefficients requires an assumption that both
variables, X and Y, are randomly selected from a bivariate normal distribution. When
this assumption cannot be met, a non-parametric equivalent known as Spearman’s rank
correlation coefficient (rs) can be used to conduct Spearman’s rank correlation test.

To calculate Spearman’s rank correlation coefficient, we first independently
arrange the values of the two random variables, X and Y, and assign ranks. These
ranks are then substituted for the actual numeric values of the two variables. If there
is a tie, we assign the mean of the ranks that they jointly occupy to each of the tied
observations. If no ties exist, then the ranks can be substituted into Eqn 11.13 (see
Chapter 11) to obtain the rank correlation coefficient. The same value can also be
obtained more efficiently by calculating the differences between the each pair of
ranks, di, and using the following equation:

(14.15)

When there are ties, Eqns 11.13 (see Chapter 11) and 14.15 will result in slightly
different values. Equation 14.15 is considered to be more reliable and has the further
advantage of being simpler to compute.

We present two procedures to test the significance of Spearman’s rank correlation
coefficient, for which the null and alternative hypotheses are stated as:

H0: ρ = 0,

H1: ρ ≠ 0, or ρ < 0, or ρ > 0.

When X and Y are independent, the rs values approach a normal distribution with a
mean of zero and a standard deviation of:
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(14.16)

Hence, the significance of the rank correlation coefficient can be tested with:

(14.17)

Critical values for α = 0.05, 0.025, 0.01 and 0.005 are tabulated as a function of n in
Table A.13 (see Appendix A) or, alternatively, can be obtained from the z-table. If the
absolute value of the calculated rs is greater than the tabulated value for a given n, the
null hypothesis is rejected.

Example 14.11. An interior designer and a randomly selected customer rated 7 different kitchen
cabinets for aesthetics. They used a scale from 1 (lowest) to 100 (highest).

Designer 48 76 30 88 61 93 55
Customer 35 44 28 50 75 85 77

At α = 0.05, is there a significant correlation between the customer’s and the designer’s
ratings?

1. H0: ρs = 0.
2. H1: ρs ≠ 0.
3. α = 0.05.
4. Equation 14.17.
5. Designer 48 76 30 88 61 93 55

Rank 2 5 1 6 4 7 3
Customer 35 44 28 50 75 85 77
Rank 2 3 1 4 5 7 6
Difference 0 2 0 2 –1 0 –3
d 2

i 0 4 0 4 1 0 9
6. z0.005 = ±1.96.

8. Since –1.96 < 1.66 < 1.96, we ‘accept’ H0.
9. There is no correlation between the two sets of ratings.

Alternatively, we could have used Table A.13 (see Appendix A) to obtain the critical value for
this test. The tabulated value for n = 7 with α = 0.025 is 0.786. Since 0.676 < 0.786, we arrive
at the same conclusion: we cannot ‘reject’ H0.

Exercises

Section 14.1

14.1. A meteorologist claims that the median May temperature in Vancouver, British
Columbia is 14oC. To investigate this, the following data (in degrees Celsius) were
collected from the Vancouver airport weather station at noon during 8 randomly
selected days in May 2001: 

12, 16, 13, 14, 18, 15, 12, 17 

Without making any assumptions about the distribution of this data, is the
meteorologist’s claim supported at α = 0.05?
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14.2. The following are observations of daily sulphur oxide emission (in tonnes) from
a certain pulp mill:

17 15 20 29 19 18 22 17 21 13
14 24 22 13 14 25 21 18 9 11

According to government regulations, the median emissions should not exceed 
15 t/day. Using the sign test, evaluate whether this mill operates within the required
regulations (α = 0.01)? 

14.3. In a cabinet plant, 9 machines were selected to test whether routine daily
maintenance was more effective than weekly maintenance for decreasing the number
of defective parts produced. The data show the number of defective parts observed in
a 24-h period.

Machine number

Maintenance 1 2 3 4 5 6 7 8 9

Once per week 6 12 5 12 10 6 9 10 7
Once per day 5 9 5 6 8 5 4 11 5

Use the sign test (α = 0.05) to evaluate whether daily maintenance improves the
quality of production.

14.4. Leader growth (in cm) of 21 randomly selected 5-year-old Douglas-fir seedlings
was measured for 2 consecutive years:

Seedling number

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 28 36 25 36 45 16 29 42 44 36 18 26 39 15 29 22 24 42 33 26 35
2 26 38 26 24 43 16 26 40 39 39 16 25 39 16 21 26 29 40 35 27 39

Assuming that these observations are symmetrically distributed about their means,
test whether the unknown population means of leader growth from each of the 2
years are equal using the sign test (α = 0.01).

Section 14.2

14.5. Repeat the test for the data described in Exercise 14.1 using the Wilcoxon
signed rank test. Compare and discuss the results obtained by the two tests.

14.6. Is the unknown population mean of leader growth in Year 1 for the seedlings
listed in Exercise 14.4 significantly different from 30 cm? Use the Wilcoxon signed
rank test with α = 0.05.

14.7. Using the data given in Exercise 14.4, compare the two unknown population
means using the Wilcoxon signed rank test. Compare and discuss the two sets of
results.

17 15 20 29 19 18 22 17 21 13
14 24 22 13 14 25 21 18 9 11
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Section 14.3

14.8. The numbers of trees per prism plot measured in two forest types (I and II) were
recorded as follows:

Using the Wilcoxon rank sum test, can we assume that Diet 2 is superior to Diet 1 in
terms of weight gain (α = 0.05)? Compare your results with those obtained in
Exercise 9.24 (see Chapter 9).

14.10. A large forest products company requires potential employees to complete a
screening test prior to interviewing. The following observations are times (in minutes)
required for a random sample of 15 women and 13 men to complete this test:

Using the Wilcoxon rank sum test, can we assume that the unknown population
mean of the number of measured trees in Type I is significantly greater than that of
Type II (α = 0.05)?

14.9. Two diets were used in an experiment to study the weight gain (in kg) of 12
steer (see Exercise 9.24, Chapter 9):

Forest Type I 12 9 13 14 10
Forest Type II 7 8 10

Diet 1 45.9 38.7 44.1 49.0 41.4
Diet 2 36.2 74.6 43.7 60.3 41.4 39.2 51.3

Douglas-fir 0.55 0.51 0.44 0.46 0.56 0.48
Western hemlock 0.42 0.37 0.40 0.38 0.42 0.43
Western red cedar 0.32 0.28 0.29 0.35 0.29 0.30

Section 14.4

14.11. The specific gravity of wood was measured from six random samples of 3
different tree species:

Women 8.5 12.5 17.3 9.0 15.2 14.8 15.4 9.1 10.5 11.9 12.7 9.6 10.4 13.1 14.4
Men 10.6 10.7 7.8 10.3 12.6 10.8 9.6 8.9 14.2 11.0 16.6 10.4 14.9

Using the Wilcoxon rank sum test, test the hypothesis that the two unknown population
means of time to complete the test are equal, with a 0.05 level of significance.

Use the Kruskal–Wallis test with a significance level of 0.05 to evaluate the hypothesis
that the population means of the 3 species are the same.

14.12. The following observations are random samples from three normally distributed
populations. It is known that the variances of the three populations are equal.

A: 8.7 11.0 9.7 6.7 9.9 7.8 10.9 9.5 7.5 9.6
B: 12.7 9.0 10.5 10.4 10.4 11.4 12.2 7.8 10.5 10.8 12.9
C: 17.3 14.0 13.8 17.2 16.9 16.0 13.6 10.5 14.9 14.1

Test the hypothesis that the population means are equal (α = 0.05) by using:

a. One-way analysis of variance (ANOVA).
b. The Kruskal–Wallis test.
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Compare the results of parts a and b. Which test would you expect to be more
sensitive? Explain.

Section 14.5

14.13. Consider the first 90 digits of π listed in Example 14.10 that we tested for
randomness using even and odd digits. Re-test these digits using the median (α =
0.05).

14.14. Assume that the data listed in Exercise 14.1 were taken in order of occurrence.
Test these data for randomness using a 0.10 level of significance:

a. Using the median.
b. Letting ‘E’ represent an even and ‘O’ represent an odd number.
c. Compare and contrast the two results.

14.15. On 20 successive trips, a logging truck carried the following numbers of logs:

24 19 32 28 21 23 26 17 20 28
30 24 13 35 26 21 19 29 27 18

Test these data for randomness (α = 0.05) by using the median.

Section 14.6

14.16. The following data are the number of hours that 11 students studied for a
statistics test and their resulting test scores (as %):

Hours 8 6 15 5 21 15 8 12 10 9 14
Score 80 62 93 92 95 90 79 88 91 77 89

Calculate Spearman’s rank correlation coefficient and test whether there is a positive
correlation between the two random variables (α = 0.05). Why would you not
recommend testing this data with Pearson’s correlation coefficient?

14.17. Find Spearman’s rank correlation coefficient for the leader growth data given
in Exercise 14.4 and test whether the correlation between the 2 years is significant 
(α = 0.01).



With the advent of assembly lines in the early 1900s, the industrial process was
characterized by many workers contributing to the completion of a product. Because
of this, process control became necessary to ensure that the product performed to
expectations and factories began to train their employees to inspect completed and in-
process products. When poor performance was detected, its cause had to be identified.
In 1924, Walter A. Shewhart, working for Bell Laboratories, documented a new
statistical approach for tracking process quality levels over time. Each part of the
manufacturing process was checked in order to identify the need for corrections
before the product was assembled. Known today as statistical quality control, or
statistical process control, this procedure involves measuring certain production-
related metrics, such as the thickness of lumber exiting a planer, and monitoring these
metrics on control charts. Small samples are taken and charted, displaying a running
record for such quantities as the median, mean, range and standard deviation. Their
purpose is to detect whether or not a process is ‘in control’. In other words: are
products being manufactured correctly? Modern quality control methods are
commonplace in the forest products industry today, being used in the production of a
wide range of goods, from dimension lumber to pulp and paper to value-added
products.

In order to construct a simple control chart for a product, several (k) samples of
a certain size (n) are taken and the attribute being controlled is measured. For each of
the k samples, measures of central tendency (median or mean) and variation (range or
standard deviation) are calculated for the n measurements. To introduce and
demonstrate the construction of various control charts, we will use k = 10 samples
(see Table 15.1) of n = 5 2 × 4s taken from a sawmill. The attribute we are interested
in controlling is board thickness (in inches). Assume that we are estimating a
parameter, θ, a measure of the mean board thickness. Using all of the k samples, we
can obtain parameter estimates of the mean, θ̂, and the standard deviation, σ̂. The
lower control limit and the upper control limit can then be calculated as:

We can also compute a lower warning limit and an upper warning limit such that:

UWL n

LWL n

= +

= −

ˆ ˆ

ˆ ˆ

θ σ

θ σ

2

2

 upper warning limit

 lower warning limit

UCL n

LCL n

= +

= −

ˆ ˆ

ˆ ˆ

θ σ

θ σ

3

3

 upper control limit

 lower control limit

© CAB International 2008. Introductory Probability and Statistics: Applications for 305
Forestry and Natural Sciences (A. Kozak, R.A. Kozak, C.L. Staudhammer and S.B. Watts)

15 Quality Control 
Statistics for Production and
Processing



If the observations of the attribute of interest are normally distributed, the probability of
obtaining a statistic from a sample of size n outside the 3-sigma limits is about 0.0027,
while the probability of obtaining a statistic outside the 2-sigma limits is about 0.0456
(think of the normal or empirical rule from Section 2.4, Chapter 2). Using the control
limits and the warning limits, control charts can be constructed, as in Figs 15.1 and 15.2.

Once the limits for the control charts are constructed, consecutive samples of size
n are taken from production at different times and the appropriate statistics (medians,
means, ranges or standard deviations) are calculated from each sample and plotted on
the chart. Control charts show us when action should be taken to adjust the process
because it is out of control (see Fig. 15.1), or when to leave the process alone (see Fig.
15.2) because it is in control. When one or several of the statistics fall outside of the
upper or lower control limits, the manufacturing process is said to be ‘out of control’
and should be stopped in order to locate and correct the source, or sources, of the
problem. When one or several means fall outside of the upper or lower warning limits,
closer attention is paid to the manufacturing process to identify the problem, but
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Table 15.1. Two-by-four thicknessesa (in inches) of 10 samples from 5 randomly selected
boards.

Sample 1 2 3 4 5 6 7 8 9 10

1.647 1.671 1.672 1.672 1.666 1.683 1.647 1.640 1.663 1.667
1.690 1.658 1.649 1.661 1.661 1.677 1.649 1.648 1.662 1.661
1.678 1.673 1.661 1.653 1.671 1.669 1.644 1.678 1.655 1.683
1.667 1.659 1.671 1.655 1.667 1.651 1.680 1.667 1.646 1.677
1.666 1.662 1.667 1.655 1.669 1.678 1.666 1.665 1.656 1.683

Mean 1.670 1.665 1.664 1.659 1.667 1.672 1.657 1.660 1.656 1.674
Standard 0.016 0.007 0.009 0.008 0.004 0.013 0.015 0.015 0.007 0.010
deviation

Range 0.043 0.015 0.023 0.019 0.010 0.032 0.036 0.038 0.017 0.022

a Two-by-four refers to a board’s nominal dimensions. In practice, lumber dimensions are
smaller than their nominal dimensions and are measured by calipers or lasers.

Fig. 15.1. Control chart for an ‘out of control’ process.



production is generally not halted (this is often costly). Note that the process
displayed in Fig. 15.2 is said to be ‘in control’ because none of the points fall outside
of the lower or upper control limits. That said, since two points do fall outside of the
warning limits, closer attention should be paid to the production process.

Additional ‘Runs Rules’ can also often be applied to determine whether a process
is out of control, such as:

1. A ‘run’ of seven or more points in a row occurring below or above the centre line
(see Fig. 15.3);
2. Six consecutive points showing an increasing or decreasing trend (see Fig. 15.4); or
3. Two of three points in a row occurring in the region between the warning and
control limits (see Fig. 15.5).

Control charts can be constructed either for variable data (data that can be measured:
i.e. lengths, diameters, weights or strengths) or attribute data (data which require an
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Fig. 15.2. Control chart for an ‘in control’ process.

Fig. 15.3. Control chart for an ‘out of control’ process, using Runs Rule No 1.



operational definition of acceptable and defective products). Of the several variable
charts used in practice, we will discuss the most common variable charts: the X

–
chart,

R chart and S chart. We will also discuss an appropriate and commonly used chart for
attribute data: the p chart. All of these charts play a very important role in the quality
control of forest products processes.

15.1 Variable Charts

To illustrate the use of variable charts, we will use one of the most commonly
encountered quality control applications in forest products: the dimensional control
of lumber. In Table 15.1, we show lumber thickness data collected from 10 samples of
5 randomly selected 2 × 4 boards. The means, standard deviations and ranges for each
of the 10 samples are also given, from which most variable charts can be constructed.

The X
–

chart is constructed after k samples have been taken from a process. Using
the data from Table 15.1, the grand mean of all the samples is calculated first and is used
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Fig. 15.4. Control chart for an ‘out of control’ process, using Runs Rule No 2.

Fig. 15.5. Control chart for an ‘out of control’ process, using Runs Rule No 3.



as the centre line of the chart. Then the standard error of the mean is estimated from
either the mean of the standard deviations or the mean of the ranges. These are used to
calculate the upper and lower control limits and the upper and lower warning limits.

1. Calculate the grand mean (or mean of the means):

where x–j is the mean of the jth sample.
2. Calculate the mean of the standard deviations:

where sj is the standard deviation from the jth sample, and c4(n) is a correction factor
commonly called a control chart constant which depends on n (see Table 15.2). Its use
guarantees an unbiased estimate of σ.
3. If the standard deviations are not available, σ can be estimated from the ranges:

where Rj is the range of the jth sample, and d2(n) is a control chart constant which
depends on n (see Table 15.2). Its use also guarantees an unbiased estimate of σ.

From here, the X
–

chart control and warning limits can be constructed as:
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Table 15.2. Control chart constants c4(n), d2(n) and d 3(n) for estimating �.

n c4(n) d2(n) d3(n)

2 0.7979 1.1283 0.8525
3 0.8862 1.6926 0.8884
4 0.9213 2.0587 0.8798
5 0.9400 2.3259 0.8641
6 0.9515 2.5343 0.8480
7 0.9594 2.7044 0.8332
8 0.9650 2.8471 0.8198
9 0.9693 2.9699 0.8078

10 0.9727 3.0774 0.7971



Similar values could also be obtained by using the estimated variance from the range, σ̂̂.
Once the control chart is constructed, production can easily be monitored by

plotting the means of ten consecutive samples of size n = 5 on the chart (see Fig. 15.6).
Since each mean occurs within the control limits for our example, the process is said
to be ‘in control’ and no adjustments to the process are required.

Frequently, control of process variability is as important to control as the process
mean; after all, it is a high degree of variability that leads to an inconsistent product.
Either the S chart or the R chart is used for this purpose. Both are constructed much
like the X

–
chart, using k samples taken from the process. Although the S chart is

known to be more efficient than the R chart, the R chart is more popular because
sample ranges are easier to compute than sample standard deviations. When sample
sizes are small, the R chart performs as well as the S chart. However, as sample size
increases, the efficiency of the R chart decreases to the point where it is not
recommended when n > 5.

In the process of calculating control limits for the S chart, it is assumed that the
sampling distribution of the standard deviations is symmetric. Using the data from
Table 15.1, the control limits are calculated as:

The value of σ is not usually known and, thus, the standard error of the standard
deviations, σ s–, is estimated as:

UCL = 0.010 + 3(0.00276) = 0.0183

LCL = 0.010 – 3(0.00276) = 0.0017

ˆ
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Fig. 15.6. X– chart for the 2 × 4 example.



UWL = 0.010 + 2(0.00276) = 0.0155

LWL = 0.010 – 2(0.00276) = 0.0045.

In the case of a negative control limit for an S chart or R chart, zero is used in place
of the negative limit. Once the control limits are constructed, variation in production
can be monitored by plotting the standard deviations of consecutive samples of size n
(see Fig. 15.7). Since each standard deviation in our example is within the control
limits, this process is said to be ‘in control’.

Using the data from Table 15.1, the control limits for the R chart (see Fig. 15.8)
are calculated and analysed like the S chart.

The centre line is R
– = 0.026 and the standard error of R

–
is:

where d3 is a control chart constant which depends on n (see Table 15.2). Its use
guarantees an unbiased estimate of σ̂R–.

)σ R = Rd d3 2
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S

Fig. 15.7. S chart for the 2 × 4 example.

Fig. 15.8. R chart for the 2 × 4 example.



In our example, σ̂R– = (0.026)(0.8641)/2.3259 ≈ 0.0097 and the limits are as follows:

Figure 15.8 shows the resulting R chart. Once again, this process is in control, which
is in agreement with the S chart (see Fig. 15.7).

15.2 Attribute Charts

We use attribute charts when the items in a manufacturing process can be classified into
two groups: acceptable and defective. Thus, it can be assumed that the observations
follow a binomial distribution. For example, stained kitchen cabinets might contain
streaks or bubbles, or dimensional lumber products might contain visible defects such
as knots or holes. To ensure that the proportion of defective items produced is within
certain limits, a p chart is commonly used. The p chart is constructed in the same
manner as an X

–
chart. Based on k samples of size n taken from the production process,

the centre line and the lower and upper control limits are calculated as:

In Table 15.3, the number of defective pieces out of 60 kitchen cabinets is given for six
samples.

In this example, the p chart is constructed as follows:

UCL = 0.061 + 0.093 ≈ 0.154

LCL = 0.061 – 0.093 ≈ –0.031, use 0.0
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UWL = 0.061 + 0.062 ≈ 0.123

LWL = 0.061 – 0.062 ≈ –0.001, use 0.00.

Once the control chart is constructed (Fig. 15.9), the process can be analysed by taking
several samples of 60 kitchen cabinets and plotting the proportion of defective pieces.
Since each proportion is within the control limits, this process is said to be ‘in control’.
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Table 15.3. The proportion of defectives of six samples from 60 2 � 4 boards.

Number of 
Sample Sample size (n) defectives p̂

1 60 4 0.067
2 60 2 0.033
3 60 5 0.083
4 60 3 0.050
5 60 6 0.100
6 60 2 0.033

Fig. 15.9. p chart for the 2 × 4 example.

Sample

1 6.0 6.2 6.1 5.8 6.1
2 6.3 6.6 6.4 6.2 6.0
3 6.1 6.3 6.4 6.2 5.9
4 5.9 5.8 6.2 6.1 6.0
5 6.2 5.9 5.7 6.2 6.1
6 5.7 5.9 5.9 6.0 6.1

Exercises

Section 15.1

15.1. Water quality can be assessed by measuring the amount of dissolved oxygen
contained within it. Six samples of size 5 were taken from a river when the water
quality was known to be acceptable. The data are shown below.



Construct X
–
, S and R charts for this data. Calculate the control limits, as well as the

warning limits for each chart.

15.3. Four samples of 6 boards were taken from the production line of a certain
fibreboard manufacturing process and tested for strength. The moduli of rupture
values are listed below:
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Sample

1 492 621 521 562 584 596
2 596 585 593 601 574 596
3 502 563 598 536 604 610
4 582 589 521 603 597 571

Construct X
–
, S and R charts. Calculate the control limits, as well as the warning limits

for each chart.

Section 15.2

15.4. Six samples of 25 wooden chairs were inspected to assess the quality of their
joints. Chairs that could not withstand a certain load were called ‘defectives’:

Sample Size Number of defectives

1 25 3
2 25 1
3 25 3
4 25 0
5 25 2
6 25 4

Construct a p chart for the data. Calculate the control limits, as well as the warning
limits.

Construct X
–
, S and R charts. Calculate the control limits, as well as the warning limits

for each chart.

15.2. Five samples of 4 rechargeable batteries were charged for 40 min and the
length of time that they held the charge was measured. The observations (in hours)
are given below.

Sample

1 14.2 14.0 13.9 13.8
2 13.6 13.9 14.3 13.8
3 14.2 14.3 14.1 14.0
4 14.0 14.8 14.9 13.2
5 14.2 14.0 14.1 14.3



Sample Size Number of rejects

1 50 4
2 50 7
3 50 3
4 50 4
5 50 3

Construct a p chart for the data. Calculate the control limits, as well as the warning
limits.
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15.5. Five samples of 50 seedlings lifted from a nursery were inspected to assess their
quality. Seedlings that were damaged or smaller than a certain size were called
‘rejects’:
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For those interested in further reading on the topic of statistics, we recommend the
following texts. Many were instrumental in the development of this book, and we
gratefully acknowledge the contribution of these authors.

Elementary Statistics

Bliss, C.I. 1964. Statistics in Biology. McGraw-Hill, New York.
Bluman, A.G. 2007. Elementary Statistics: A Step by Step Approach. 6th Edition.

McGraw-Hill, New York.
Freese, F. 1974. Elementary Statistical Methods for Foresters. Agricultural Handbook

317. US Department of Agriculture, Forest Service.
Freund, J.E. and M.P. Benjamin. 1999. Statistics. A First Course. 7th Edition.

Prentice-Hall, Upper Saddle River, New Jersey.
Huntsberger, D.V. and Billingsley, P. 1973. Elements of Statistical Inference. 3rd

Edition. Allyn and Bacon, Inc, Boston, Massachusetts.
Menenhall, W. 1987. Introduction to Probability and Statistics. 7th Edition. Duxbury

Press, Boston, Massachusetts.
Ott, L. and W. Mendenhall. 1990. Understanding Statistics. 5th Edition. PWS-Kent

Publishing Co., Boston, Massachusetts.
Prodan, M. 1961. Forest Biometrics. (Translated by: Gardiner, S.H. 1968.) Program

Press, Oxford, UK.
Snedecor, G.W. 1956. Statistical Methods. Iowa State University, Press, Ames, Iowa.
Steel, R.G.D. and J.H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-
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Walpole, R.E. 1982. Introduction to Statistics. 3rd Edition. Macmillan Publishing Co.
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Statistical Software
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Chapter 1

1.1. 1. A calculated value (mean, for example) from some observations.

2. Statistics recorded during a tennis match (number of double faults,
number of aces, number of unforced errors, etc.).

3. Heights and weights of the students in a class.

1.3. By calculating the mean from 25 randomly selected trees, estimate the
average height of all trees in a plantation.

1.5. a. The thickness of all boards produced during the shift.
b. As 4 samples are taken during every one of the 8 h, the result is a sample

of 32 observations of the board thicknesses.
c. She can use both, as she can describe all of the measurements and/or she

can estimate the unknown population mean of all possible board
thicknesses.

1.7. a. Discrete.
b. Not quantitative.
c. Discrete.
d. Continuous.
e. Not quantitative.
f. Continuous.
g. Not quantitative.
h. Continuous.
i. Discrete.
j. Not quantitative.
k. Discrete (because these are given to the nearest degree).
l. Discrete (because annual wage is given in whole dollars).
m. Discrete (because they are whole numbers).
n. Not quantitative (unless the date is given as 1 March 2006, for example,

in which case it is discrete).

1.9. Experimental design measuring the effect of chemicals on board strength –
two chemicals (A and B) are being tested and ‘no chemical’ is the controlled
factor.

1.11. If we measured only 5 randomly selected boards out of the 10 treated ones
from each of the three treatments.
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Solutions to Odd-Numbered
Questions



Chapter 2

2.1.
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Number of accidents Frequency Relative frequency

0 4 0.20

1 6 0.30

2 3 0.15

3 3 0.15

4 3 0.15

5 1 0.05

Total 20 1.00

Number of trees Frequency Relative frequency

2 4 0.133

3 4 0.133

4 5 0.167

5 9 0.300

6 5 0.167

7 2 0.067

8 1 0.033

Total 30 1.000

2.3.



S
olutions

323

2.5. C = 3.3 log(60) + 1 ≈ 6.87 ≈7 classes Range = 6.1 – 2.5 = 3.6.

Relative
Relative Inverse inverse 

Class Class Class Relative Cumulative cumulative cumulative cumulative 
boundaries limits Frequency mark frequency frequency frequency frequency frequency

≤ 3.05 ≤ 3.0 9 2.8 0.150 9 0.150 60 1.000
3.05–3.55 3.1–3.5 15 3.3 0.250 24 0.400 51 0.850
3.55–4.05 3.6–4.0 13 3.8 0.217 37 0.617 36 0.600
4.05–4.55 4.1–4.5 11 4.3 0.183 48 0.800 23 0.383
4.55–5.05 4.6–5.0 5 4.8 0.083 53 0.883 12 0.200
5.05–5.55 5.1–5.5 5 5.3 0.083 58 0.967 7 0.117

≥ 5.55 ≥ 5.6 2 5.8 0.033 60 1.000 2 0.033

Note: The class width was determined to be 0.53. Because of its proximity, we chose to use a class width of 0.5 rather than rounding up to the
nearest odd number (0.7). This will generally result in the need for open classes to house the largest and smallest observations (6.1 and 2.5). 
If we used a class width of 0.7, an alternative for the first class would be 2.35–3.05.



2.7.

2.9.
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2.11. Histogram:



Frequency polygon:

2.13.

2.15. x– = 0.4893; x∼ = 0.484; mode = does not exist.

2.17. x– = 1.9; x∼ = 1.5; mode = 1.

2.19. a. x∼ = 14.95; mode = 14.1.
b. x–w = 15.80.

2.21. x– (from raw data) = 3.857; x– (from grouped data) = 3.892.
The means are different because the mean from the raw data uses all of the
data points, while the mean from the grouped data uses the midpoints of each
class as a representation of the points within the classes.

2.23. s2 = 2.4105; s = 1.5526.

2.25. s2 = 11.3636; s = 3.3710.

2.27. 2.15. CV = 25.34;

2.16. CV = –361.68.
The CVs indicate the relative measure of the spread. One is positive and the
other is negative because they carry the sign of the mean.
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2.29. a. z(4.5) = 0.756; z(3.7) = –0.185.
Standard scores indicate how many standard deviations an observation is
above or below the mean.
b. 4.45.
c. P(4.5) = 77.5%; P(3.7) = 50.8%.

Chapter 3

3.1. a. S = {1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T}
number of outcomes = 12.

b. A = {2H, 2T, 4H, 4T, 6H, 6T}.
c. B = {1H, 2H, 3H, 4H, 5H, 6H}.
d.

e. A ∩ B = {2H, 4H, 6H}.
f. A ∪ B = {1H, 2H, 2T, 3H, 4H, 4T, 5H, 6H, 6T}.
g. A� = {1H, 1T, 3H, 3T, 5H, 5T}.
h. B� = {1T, 2T, 3T, 4T, 5T, 6T}.
i. Less than 2 on the die and T on the coin, C = {1T}.
j. Less than 2 on the die, D = {1H, 1T}.

3.3. a. {cedar}.
b. {Douglas-fir, hemlock, cedar, spruce}.
c. {spruce}.
d. {cedar}.
e. {spruce}.

3.5. a.

n = 20
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b. n = 5 × 4 = 20.

3.7. a.

n = 12

b. n = 6 × 2 = 12.

3.9. 216.

3.11. 4,000,000.

3.13. a. 100.
b. 52.
c. 32.

3.15. 35.

3.17. 277,200.

3.19. a. 2,598,960.
b. 1584.
c. 3744.

3.21. P(A) = 0.5 P(B) = 0.5

P(A�) = 0.5 P(B�) = 0.5.

3.23. a. 0.0526.
b. 0.4737.
c. 0.4737.
d. 0.4737.
e. 20:18 (or 10:9).

3.25. a. 3:2.
b. 2:3.

3.27. a. 0.6429.
b. 0.6429.

3.29. 0.015.

3.31. a. 0.20.
b. 0.80.
c. 0.4375.

c. n P= =
−( ) =5 2
5

5 2
20

!

!
.

Solutions 327



3.33. a.

3.37. a. 0.000125.
b. 0.85375.
c. 0.007125.

3.39. a. 0.14.
b. 0.20.
c. 0.060.
d. 0.38.
e. 0.4286.
f. 0.0893.
g. 0.4821.

Chapter 4

4.1. 1. Roll a die and record the number of dots.
2. Flip a coin and record the number of tails.
3. Deal 5 cards and record the number of clubs.
4. Measure one of the strength properties of a piece of lumber.
5. Volume of trees.

4.3. 1. Height of trees.
2. Specific gravity of Douglas-fir specimens.
3. Weight of students.

3.35 a.

Since  and  are independent.

b.

Since  F and N are 

independent.

P P P I P P I

P P P I P P I P I

P F P N P F N

P F P N P F N

( ) = ( ) = ∩( ) =

( ) ( ) = × ≠ ∩( )
( ) = ( ) = ∩( ) =

( ) ( ) = × ≠ ∩( )

80
220

40
220

10
220

80
220

40
220

70
220

180
220

52
220

70
220

180
220

.

,

.

,

Since  and  are independent.

b.

Since  and  are independent.

c.

Since

P A P B A B

A C HH P A C

P A P C A C

A B C HH P A B C

P A P B P C

( ) ( ) = × =

∩ = { } ∩( ) =

( ) ( ) = × =

∩ ∩ = { } ∩ ∩( ) =

( ) ( ) ( ) = × × = ≠

1
2

1
2

1
4

1
4

1
2

1
2

1
4

1
4

1
2

1
2

1
2

1
8

1
4

,

,

,,  the three events are not 

independent.

A B HH P A B∩ = { } ∩( ) = 1
4
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4.5 a.
x 2 3 4 5 6 7 8 9 10 11 12

P(X = x) ��� ��� ��� ��� ��� �	� ��� ��� ��� ��� �
�

b.
x −5 −4 −3 −2 −1 0 1 2 3 4 5

P(X = x) ��� ��� ��� ��� ��� �	� ��� ��� ��� ��� �
�

Solutions 329

4.7 a.
x 0 1 2 3 4

P(X = x) 0.6588 0.2995 0.0399 0.0017 0.00002

a. 0.9983.
b. 0.6588.

4.9 a.
x 1 2 3 4 5 6 7 8 9 10

P(X = x) 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010

a. 0.5.
b. 0.9375.

4.11 a.
x 0 1 2

P(X = x) 0.10 0.60 0.30

a. 0.3.
b. 1.0.

P X x
C C

C
x x=( ) = −2 3 3

5 3



4.13. a.
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X = Douglas-fir

0 1 2 3 h(y)

0 × ��� �
� ��� ����

1 ��� ���� ���� ��� ����

2 ��� �
� ��� × ����

g(x) ��� ���� ���� ��� ����

Y
=

pi
ne

b. 0.5429.
c. 0.0714.
d. 0.
e.

x 0 1 2 3

g(x) ��� ���� ���� ���

f.
y 0 1 2

g(y) ���� ���� ����

4.15. µx = 1.5
µy = 1.0.

4.17. US$880 (gain).

4.19. US$10,200.

4.21. a. US$2.00.
b. US$2.30.

4.23. 4.16. σ2 ≈ 8.75; σ ≈ 2.96.
4.17. σ2 = 135,705,600; σ ≈ 11,649.3.
4.18. σ2 ≈ 167,729,600; σ ≈ 12,951.0.

4.25. 4.20. σ2 ≈ 424; σ ≈ 20.59.
4.21. σ2 ≈ 27.78; σ ≈ 5.27.

Chapter 5

5.1.

a. 0.15.
b. 0.25.

f X X; , ,20
1
20

1 2 20( ) = = K

P X x Y y
C C C

C
x y x y

= =( ) = ( )− −
;

3 2 3 4

8 4



5.3. a. 0.5033.
b. 0.2936.
c. 0.9896.

5.5. µ = 1.6; σ2 = 1.28; σ = 1.13.
For k = 1.5, at least 56% of the observations are contained within the
interval, –0.095 – 3.295.
For k = 2, at least 75% of the observations are contained within the interval,
–0.66 – 3.86.

5.7. ≈ 0.0732.

5.9. 0.1133.

5.11. a. 0.6.
b. µ = 2.0; σ = 0.632.
c. For k = 1.5, at least 56% of the observations are contained within the

interval, 1.052 – 2.948.
For k = 2, at least 75% of the observations are contained within the interval,
0.736 – 3.264.

5.13. 0.1779.

5.15. a. 0.0656.
b. 0.02916.
c. 0.00486.

5.17. a. 0.0155.
b. 0.0456.
c. 0.0557.

5.19. a. 0.1743.
b. 0.6204.
c. 0.2053.
d. σ = 1.766.

Chapter 6

6.1. a. 0.3333.
b. 0.6667.
c. 0.3333.

6.3. 6.1. µ = 550; σ2 = 7500.00; σ = 86.60.
6.2. µ = 18.5; σ2 = 4.083; σ = 2.021.

6.5. a. i.  0.5507.
ii.  0.3012.
iii. 0.1418.

b. σ = 2.5.
It is preferable to use Chebyshev’s Theorem because this distribution is not
normal.
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For k = 1.5, at least 56% of the observations are contained within the
interval, –1.25 – 6.25.
For k = 2, at least 75% of the observations are contained within the interval,
–2.50 – 7.50.

6.7. P(X > 10) = 0.2494 ≈ 0.25.
Since 2/8 = 0.25, we can assume that two of the circuits will be working after
10 years.

6.9. a. i.  4.75%.
ii.  20.33%.
iii. 20.33%.
iv. 74.92%.

b. ≈ 24 students.

6.11. a. i.   0.1711.
ii.  0.9713.
iii. 0.0602.

b. i.  0.1736.
ii.  0.9706.
iii. 0.0612.

6.13. 8.832 years (≈ 8 years and 10 months).

6.15. a. i.   0.9783.
ii.  0.9664.
iii. ≈ 0.6128 (using interpolation).
iv. 0.7108.

b. 0.6826, which is in agreement with the Empirical Rule.

6.17. a. 0.0885.
b. 0.0040.
c. 0.9075.

Chapter 7

7.1. a. For example, starting in column 1, row 15; go row-wise (across) taking
3-digit random numbers:

071 048 081 105 070 085 127 075 046 026
011 010 115 043 127.

b. For example, starting in column 1, row 1; go column-wise (down) taking
3-digit random numbers. *Since 007 appears twice, it is ignored the
second time.

104 094 103 071 023 010 070 024 007 053
005 007* 097 145 089 019.

7.3. For example, starting in column 3, row 6, take 4-digit numbers row-wise
(across). The first digit indicates the day (0 is the 10th day) and the second 3-
digit number will be the half a minute. *Numbers greater than 960 are
ignored.
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1–100 8–427 5–127 7–565 3–498
1–860 2–706 5–990* 6–551 5–053
2–191 6–818 2–544 3–944 2–880
9–956 2–729 0–556 4–206 9–994*
9–887 2–310 1–671 1–941 8–738
4–401 3–488

7.5. 1,1 1,3 1,5 1,7 1,9
3,1 3,3 3,5 3,7 3,9
5,1 5,3 5,5 5,7 5,9
7,1 7,3 7,5 7,7 7,9
9,1 9,3 9,5 9,7 9,9

µ = 5.0 µx– = 5.0 The means are the same.

σ2 = 8.0 σ = 2.83

σ2
x– = 4.0 σ2

x– = 2.0.

The standard deviation of all possible sample means is smaller.

Solutions 333

for n = 3 µx would be the same, 5.0, and σx = ≈8
3

1 63. .



7.7. a. fpc does not apply.
b. fpc applies.
c. fpc does not apply.
d. fpc does not apply.
e. fpc does not apply.

7.9. 5 or 6 (since n = 5.20).

7.11. ≈ 0.025.

7.13. a. 0.1867.
b. 0.0384.
c. 0.7749.

0.05646, which represents the spread of all possible proportions based
on n = 40 from this population.

7.15. a. 0.0197.
b. 0.0708.
c. 0.8106.

3403.4, which represents the spread of all possible differences between the
two sample means, x–1 and x–2, based on samples of n1 and n2 taken, respec-
tively, from the two populations studied.

7.17. a. ≈ 0.05.
b. ≈ 0.025.

8.49, which represents the spread of all possible differences between the
two sample means, x–1 and x–2, based on samples of n1 and n2 taken,
respectively, from the two populations studied.

7.19. a. ≈ 0.10.
b. ≈ 0.025.

28.60, which represents the spread of all possible d
–

values calculated
from these two populations based on 10 pairs of observations.

7.21. a. 0.7019.
b. 0.1446.

0.0943, which represents the spread of all possible p̂1 − p̂2 values taken
from these two populations based on sample sizes of n1 = 40 and n2 = 50.

7.23. a. ≈ 0.14.
b. ≈ 0.09.
c. ≈ 0.81.

7.25. a. ≈ 0.10.
b. ≈ 0.20.
c. i.  P(0.353 < < 4.16) = 0.95.

ii. P(0.269 < < 5.19) = 0.98.

d. i.  0.05.
ii. ≈ 0.009.

s

s
1
2

2
2

s

s
1
2

2
2
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Chapter 8

8.1. Since the mean of all possible means is which is equal to

µ, it is unbiased. E(x–) = µ.

8.3. Since the mean of all possible s�2 is 4.0 instead of 8.0, it is biased. It can be

shown mathematically that the bias is E(s	2) ≠ σ2.

8.5. a. P(957.36 < µ < 992.64) = 0.95.
P(951.78 < µ < 998.22) = 0.99.
The 99% confidence interval is wider.

b. 95% e = 17.64.
99% e = 23.22.
The 99% margin of error is larger.

c. ≈ 35.
d. P(962.52 < µ < 987.47) = 0.95.

As n increases, the width of the confidence interval decreases.

8.7. a. P(26.77 < µ < 35.17) = 0.95.
b. 21 (by iteration).
c. 32.

More samples (32 versus 21) are required for a higher level of confidence.

8.9. a. P(0.670 < p < 0.810) = 0.90.
P(0.656 < p < 0.824) = 0.95.
For the higher level of confidence, the interval is wider.

b. ≈ 462.

8.11. a. P(–3.17 < µ1 – µ2 < –1.23) = 0.95.
P(–3.53 < µ1 – µ2 < –0.87) = 0.99.
For a higher level of confidence, the interval is wider.

b. Since zero is not included in the two intervals and they are negative, it can
be assumed that µ2 > µ1.

c. Both n1 and n2 ≈ 9.

8.13. Using ν = 24: P(12.76 < µ1 – µ2 < 46.04) = 0.95
P (6.78 < µ1 – µ2 < 52.02) = 0.99.

Using ν = 14: P(12.11 < µ1 – µ2 < 46.69) = 0.95
P(5.32 < µ1 – µ2 < 53.48) = 0.99.

Since zero is not included in any of the intervals above, it can be concluded
that controlled grazing produces higher weight gain than continuous grazing.
Note also that the confidence intervals are somewhat wider for 14 degrees of
freedom than for 24 degrees of freedom.

8.15. P(–0.267 < p1 – p2 < 0.107) = 0.95.
P(–0.326 < p1 – p2 < 0.166) = 0.99.
Since zero is included in the two intervals, it can be assumed that the two
unknown population proportions are the same.

σ 2

n
.

µx

ix
= ==

∑
i 1

25

25
5 0. ,
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8.17. P(22.01 < σ2 < 126.18) = 0.95.
P(17.99 < σ2 < 185.39) = 0.99.
For a higher level of confidence, the interval is wider.

8.19. P(0.0135 < σ2 < 0.0953) = 0.95.
The probability is 0.95 that the unknown population variance is within the
interval stated above.

The interval is wider for a higher level of confidence.
Since one is not included in the two intervals, the assumption of unequal
variances in Exercise 8.13 was justified.

Chapter 9

9.1. a. x–c = 0.479.
The critical region is above this point at x–c > 0.479.

b. For µ1 = 0.49: type II error = 0.2514.
For µ1 = 0.53: type II error ≈ 0.0009.

c. x–c = 0.472.
The critical region is above this point at x–c > 0.472.
For µ1 = 0.49: type II error = 0.0778.
For µ1 = 0.53: type II error ≈ 0.0000.

9.3. a. H0: p = 0.8.
H1: p < 0.8.
The critical region is on the left side of a distribution centred at 0.8.

b. H0: µ = 25.2.
H1: µ ≠ 25.2.
The critical regions are on both ends of a distribution centred at 25.2.

c. H0: p = 0.1.
H1: p > 0.1.
The critical region is on the right side of a distribution centred at 0.1.

d. H0: p = 0.07.
H1: p > 0.07.
The critical region is on the right side of a distribution centred at 0.07.

e. H0: µ = 18.0.
H1: µ ≠ 18.0.
The critical regions are on both ends of a distribution centred at 18.

9.5. H0: µ = 150 H1: µ ≠ 150 α = 0.05.
z0.05 = ±1.96 z = –1.19.
Since –1.96 < –1.19 < 1.96, ‘accept’ H0.
The unknown population mean is not significantly different from the set 150 ml.

8.21. P

P

1 29 7 70 0 90

1 08 9 19 0 95
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9.7. H0: µ = 600 H1: µ < 600 α = 0.01.
t(14)0.01 = –2.62 t(14) = –3.35.
Since –3.35 < –2.62, reject H0.
The unknown population mean of lumber prices is significantly less than
US$600.

9.9. H0: µ = 32.0 H1: µ ≠ 32.0 α = 0.05.
t(11)0.025 = ±2.20 t(11) = –0.54.
Since –2.20 < –0.54 < 2.20, ‘accept’ H0.
The unknown population mean is not significantly different from 32.0 cm.
The 95% confidence interval calculated in Exercise 8.7 is equivalent to the
results obtained here. The confidence limits are the critical values expressed
in centimetres.

9.11. H0: p = 0.20 H1: p > 0.20 α = 0.05.
z0.05 = 1.645 z = 0.73.
Since 0.73 < 1.645, ‘accept’ H0.
The manufacturer’s claim can be accepted. The unknown population propor-
tion is not significantly different from 0.20.

9.13. H0: σ2 = 1400 H1: σ2 ≠ 1400 α = 0.01.
χ2

(14)0.005 = 4.07 χ2
(14) = 16.56.

χ2
(14)0.995 = 31.3.

Since 4.07 < 16.56 < 31.3, ‘accept’ H0.
The variance of lumber prices is not significantly different from 1400.

9.15. H0: σ2 = 0.01 H1: σ2 > 0.01 α = 0.05.
χ2

(9)0.95 = 16.9 χ2
(9) = 25.74.

Since 25.74 > 16.9, reject H0.
The unknown standard deviation of the weights for the rainbow trout
population is significantly greater than 0.1 kg. These results are consistent
with the results in Exercise 8.19.

9.17. H0: µ1 – µ2 = 0 H1: µ1 – µ2 ≠ 0 α = 0.01.
z0.005 = ±2.58 z = 2.17.
Since –2.58 < 2.17 < 2.58, ‘accept’ H0.
It is reasonable to assume that the two unknown population means are equal.
The 99% confidence interval calculated in Exercise 8.10 is equivalent to this
test. The confidence limits (–1381.3 and 16,007.3) are the critical values
expressed in kilometres.

9.19. H0: µ1 – µ2 = 0 H1: µ1 – µ2 ≠ 0 α = 0.05 case 1.
t(∞)0.025 = z0.025 = ±1.96 z = –3.98.
Since –3.98 < –1.96, reject H0.
The two unknown population means of the tensile strengths of the two
commercial fishing lines are not equal. Since zero is not included in the 95%
confidence interval (Exercise 8.12), this indicates the same thing. The 95%
confidence interval is equivalent to the above two-tailed test.
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9.21. H0: µ1 – µ2 = 0 H1: µ1 – µ2 ≠ 0 α = 0.01 case 2.
t(17)0.005 = ±2.90 t(17) = –4.80.
Since –4.80 < –2.90, reject H0.
The two unknown population means are significantly different. Since it is a
two-tailed test, it is equivalent to the 99% confidence interval used in
Exercise 8.11a.

9.23. H0: µ1 – µ2 = 0 H1: µ1 – µ2 ≠ 0 α = 0.01 case 3.
t(14)0.005 = ±2.98 t(v) = 3.64.
t(24)0.005 = ±2.80.
Since 3.64 > 2.98 (or 2.80), reject H0.
The two unknown population means are significantly different. Since this is a
two-tailed test, it is equivalent to the 99% confidence interval calculated in
Exercise 8.13 (confidence limits are the same as the critical values).

9.25. H0: µ1 – µ2 = 0 H1: µ1 – µ2 ≠ 0 α = 0.05.
t(7)0.025 = ±2.36 t(7) = 15.89.
Since 15.89 > 2.36, reject H0.
The unknown population means of the 2-year increments are significantly
different. Since the above test is a two-tailed test, it is equivalent to the 95%
confidence interval calculated in Exercise 8.14.

9.27. H0: p1 – p2 = 0 H1: p1 – p2 < 0 α = 0.05.
z0.05 = –1.645 z = –0.821.
Since –0.821 > –1.645, ‘accept’ H0.
The effect of soil preparation on the rate of regeneration for Area II is not
superior to that of Area I. Since the above is a one-tailed test, it is not
comparable to the confidence interval calculated in Exercise 8.14.

F(6,4)0.01 = 15.21 F(6,4) = 2.38.
Since 2.38 < 15.21, ‘accept’ H0.
The unknown variation of weight gain in Diet 2 is at most 5 times the
variation of Diet 1.

9.31. 9.22.

F(6,5)0.05 = 4.95 F(6,5) = 0.866.
F(6,5)0.95 = 0.22.
Since 0.22 < 0.866 < 4.95, ‘accept’ H0.
The two unknown population variances are not significantly different.

9.24.

H Ho : . : . . .
σ
σ

σ
σ
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F(4,6)0.025 = 6.23 F(4,6) = 0.0839.
F(4,6)0.975 = 0.109.
Since 0.0839 < 0.109, reject H0.
The two unknown population variances are significantly different.

Chapter 10

10.1. H0: Oi = Ei for all is or the distribution is uniform.
H1: Oi ≠ Ei for at least one i or the distribution is not uniform.
α = 0.01.
χ2

(9)0.01 = 21.7 χ2
(9) = 6.60.

Since 6.60 < 21.7, ‘accept’ H0.
It can be assumed that the distribution of random numbers is uniform.

10.3. a. A binomial distribution is suggested by the nature of the observations.
b. H0: Oi = Ei for all is or the distribution is binomial.
H1: Oi ≠ Ei for at least one i or the distribution is not binomial.
α = 0.01.
χ2

(3)0.01 = 11.3 χ2
(3) = 0.94.

Since 0.92 < 11.3, ‘accept’ H0.
The assumption of a binomial distribution is reasonable.

10.5. H0: Oij = Eij for all is and js or the frequency (distribution) of species is
independent of type.
H1: Oij ≠ Eij for at least one pair of i and j or the frequency of species is type
dependent.
α = 0.05.
χ2

(6)0.05 = 12.6 χ2
(6) = 5.27.

Since 5.27 < 12.6, ‘accept’ H0.
The distribution of the frequency of species is independent of type.

10.7. H0: Oij = Eij for all is and js or the distribution of accidents is plant
independent.
H1: Oij ≠ Eij for at least one pair of i and j or the distribution of accidents is
plant dependent.
α = 0.05.
χ2

(4)0.05 = 9.49 χ2
(4) = 1.27.

Since 1.27 < 9.49, ‘accept’ H0.
The two distributions of the frequencies of accidents are the same.

10.9. H0: Oij = Eij for all is and js or the distribution of grades are the same for the
three areas.
H1: Oij ≠ Eij for at least one pair of i and j or the distribution of grades are not
the same for the three areas.
α = 0.01.
χ2

(6)0.01 = 16.8 χ2
(6) = 2.96.

Since 2.96 < 16.8, ‘accept’ H0.
The distributions are area independent; that is, the distributions are the same
from area to area.
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Chapter 11

11.1. a.

340 Introductory Probability and Statistics

ŷi = –2.482 + 0.976xi.

α = 0.01.
F(1,10)0.01 = 10.04 F(1,10) = 1421.13.
Since 1421.13 > 10.04, reject H0.
The regression is significant.

c. r2 = 0.993.
99.3% of the variation of the dry leaf width is explained by the
independent variable, fresh leaf width.

d. Sy·x = 1.36.
1.36 is the measure of the spread of the dry leaf width around the
regression line.

e. H0: �0 = 0 H1: �0 ≠ 0.
α = 0.05.
t(10)0.025 = ±2.23 t(10) = –1.04.
Since –2.23 < –1.04 < 2.23, ‘accept’ H0.
The intercept is not significantly different from zero.

f. H0: �1 = 1.0 H1: �1 ≠ 1.0.
α = 0.05.
t(10)0.025 = ±2.23 t(10) = –0.92.
Since –2.23 < –0.92 < 2.23, ‘accept’ H0.
The slope is not significantly different from 1.0. The slope indicates the
change in (y) dry leaf width for every unit change of (x), the fresh leaf
weight.

g. P(94.11 < µy100
< 96.13) = 0.95.

b.  or  or H Hg g
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11.3. a.

Solutions 341

ŷi = 300.00 + 136.27xi.

α = 0.01.
F(1,14)0.01 = 8.86 F(1,14) = 12.20.
Since 12.20 > 8.86, reject H0.
The regression is significant.

c. r2 = 0.466.
46.6% of the variation of the cost in maintenance can be explained by
the age of CNC moulders.

d. Sy·x = 291.77.
291.77 is the measure of the spread of 6-month maintenance costs
around the regression line.

e. H0: �0 = 0 H1: �0 > 0.
α = 0.05.
t(14)0.05 = 1.76 t(14) = 1.81.
Since 1.81 > 1.76, reject H0.
The intercept is not significantly greater than zero. The intercept in this
example is the cost of maintaining the CNC moulders when they are zero
years old (brand new).

f. H0: �1 = 240 H1: �1 ≠ 240.
α = 0.05.
t(14)0.025 = ±2.14 t(14) = –2.66.
Since –2.66 < –2.14, reject H0.
The slope is significantly different (lower) than 240. For one unit change
of age, the maintenance costs change by US$136.27.

b.  or  or H Hg g
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g. i.  P(375.28 < µy2.5
906.08) = 0.99.

ii. P(765.50 < µy5.5
< 1342.48) = 0.99.

The width of the intervals vary for different values of x because of the
‘confidence belt’ effect (note that the interval would be at a minimum at
x–).

α = 0.05.
F(5,9)0.01 = 3.48 F(5,9) = 1.44.
Since 1.44 < 3.48, ‘accept’ H0.
There is no lack of fit.

11.5. a. r ≈ 0.976.
b. H0: ρ = 0 H1: ρ ≠ 0.

α = 0.05.
t(10)0.025 = ±2.23 t(10) = 14.17.
Since 14.17 > 2.23, reject H0.
The correlation is significant.

11.7. a. y–i = –0.4914 – 0.3454x1 + 0.0984x2.
b. H0: �1 = �2 = 0 H1: at least one is different.

α = 0.05.
F(2,7)0.05 = 4.74 F(2,7) = 20.98.
Since 20.98 > 4.74, reject H0.
The multiple regression is significant.

c. R2 = 0.857.
85.7% of the variation of tree volumes can be explained by crown
diameter and tree height.

d. Sy.x1,x2
= 0.2777.

0.2777 is the measure of spread of volumes around the regression surface.

Chapter 12

12.1. a. H0: µ1· = µ2· = µ3· H1: at least one is different.
α = 0.05.
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Source DF SS MS F F(2,9)0.05

Group-to-group 2 0.068600 0.034300 22.33 4.26
Within group 9 0.013825 0.001536
Total 11 0.082425

Since 22.33 > 4.26, reject H0.
At least one of the three means is different.

b. Sy–i. ≈ 0.01960.
0.01960 is the measure of the spread of all possible means, based on four
observations from any of the three populations described above.



c. Sy–p. − y–r. ≈ 0.02771.
0.02771 is the measure of the spread of differences of any two means
based on four observations taken from the above populations.

12.3. a. H0: µA· = µB· = µC· H1: at least one is different.
α = 0.05.
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Source DF SS MS F F(2,9)0.05

Group-to-group 2 57.50 28.750 7.99 4.26
Within group 9 32.39 3.599
Total 11 89.89

Since 7.99 > 4.26, reject H0.
At least one of the three means is different.

b. P(14.08 < µB· < 19.60) = 0.99.
c. P(–7.60 < µA· – µB· < –1.34) = 0.95.

Since zero is not included in the interval, it can be assumed that the two
unknown population means are different.

12.5. CD ≈ 0.375.
4.78(a) 6.04(b) 6.08(bc) 6.44(c)

Any two means underlined by the same line, or labelled with the same
subscript, are not significantly different.

12.7. H0: σ2
1 = σ2

2 = σ2
3 H1: at least one is different.

α = 0.05.
χ2

(2)0.05 = 5.99 χ2
(2) = 1.91.

Since 1.91 < 5.99, ‘accept’ H0.
The assumption of equal variances in Exercise 12.1 was justified.

12.9. a. H0:
1. Treatment: µ1· = µ2· = µ3· = µ4·
2. Species: µ1· = µ2·
3. Interaction: µ11· – µ12· = µ21· – µ22· = µ31· – µ32· = µ41· – µ42·

µ12· – µ13· = µ22· – µ23· = µ32· – µ33· = µ42· – µ43·
µ11· – µ13· = µ21· – µ23· = µ31· – µ33· = µ41· – µ43·

H1:
1. At least two of the means are not equal.
2. At least two of the means are not equal.
3. At least two of the differences are not equal.
α = 0.05.

Source DF SS MS F Critical F

Nitrogen (N) 3 11.56 3.853 45.33 4.07
Species (S) 1 1.38 1.380 16.23 5.32
N � S 3 0.47 0.157 1.84 4.07
Error 8 0.68 0.085
Total 15 14.09
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Since 1.84 < 4.07, there is no significant interaction;
16.23 > 5.32, the species means are different;
45.33 > 4.07, the nitrogen means are different.

b. P(5.76 < µ3·· < 6.44) = 0.95.
c. P (4.77 < µ·2· < 5.25) = 0.95.
d. The confidence interval for the nitrogen means is wider than the interval

for species means, because the means for nitrogen are based on fewer
observations.

Chapter 14

14.1. H0: µ∼ = 0 H1: µ∼ ≠ 0 α = 0.05.
Number of ‘–’ signs = 3 number of ‘+’ signs = 4.
P(X ≤ 3) = 0.500 or P(X ≥ 4) = 0.500.
Since both probabilities exceed 0.025, ‘accept’ H0.
It is reasonable to assume that the median temperature for May in Vancouver
is 14oC.

14.3. H0: µ1 – µ2 = 0 H1: µ1 – µ2 > 0 α = 0.05.
Number of ‘–’ signs = 1.
P (X ≤ 1) = 0.035.
Since this probability is less than 0.05, reject H0.
The daily maintenance significantly reduced the number of defective parts
produced.

14.5. H0: µ∼ = 0 H1: µ∼ ≠ 0 α = 0.05.
w+ = 18.5 w– = 9.5.
w ≤ 2.
Since 9.5 > 2, ‘accept’ H0.
It is reasonable to assume that the median temperature for May in Vancouver
is 14oC.

14.7. H0: µ1 – µ2 = 0 H1: µ1 – µ2 ≠ 0 α = 0.01.
w+ = 108.5 w– = 81.5.
z0.005 = ±2.58 z = 0.54.
Since –2.58 < 0.54 < 2.58, ‘accept’ H0.
The conclusion is the same as it was in Exercise 14.4. The unknown
population means of the leader growth can be assumed to be the same during
the 2 years.

14.9. H0: µ1 – µ2 = 0 H1: µ1 – µ2 > 0 α = 0.05.
Critical value (5,7) = 6.
u1 = 15.5 u2 = 19.5.
Since 15.5 > 6, ‘accept’ H0.
Diet 2 is not superior to Diet 1. This agrees with the results in Exercise 9.24.

14.11. H0: µ1 = µ2 = µ3 H1: at least one is different.
α = 0.05.
χ2

(2)0.05 = 5.99 h = 15.16.
Since 15.16 > 5.99, reject H0.
At least one of the three unknown population means is different.
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14.13. H0: the sequence is random H1: the sequence is not random.
α = 0.05.
Number of ‘–’ signs = 44 number of ‘+’ signs = 46 v = 52.
z0.025 = ±1.96 z = 1.28.
Since –1.96 < 1.28 < 1.96, ‘accept’ H0.
The 90 digits of π listed in Example 14.10 are random relative to their median
of 4.5.

14.15. H0: the sequence is random H1: the sequence is not random.
α = 0.05.
Number of ‘–’ signs = 9 number of ‘+’ signs = 9 v = 11.
Critical values: a = 5, b = 13.
Since 5 < 11 < 13, ‘accept’ H0.
The sequence is random.

14.17. H0: ρs = 0 H1: ρs ≠ 0 α = 0.01.
z0.005 = ±2.58 z = 3.69.
Since 3.69 > 2.58, reject H0.
There is a significant correlation between leader growths for the 2 years.

Chapter 15

15.1. X
–

chart:

S chart:
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R chart:

15.3. X
–

chart:

S chart:
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R chart:

15.5. p chart:

Solutions 347
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Table A.1 Binomial probabilities.
p

n x 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

2 0 0.903 0.810 0.640 0.490 0.360 0.250 0.160 0.090 0.040 0.010 0.003
1 0.095 0.180 0.320 0.420 0.480 0.500 0.480 0.420 0.320 0.180 0.095
2 0.003 0.010 0.040 0.090 0.160 0.250 0.360 0.490 0.640 0.810 0.903

3 0 0.857 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001
1 0.135 0.243 0.384 0.441 0.432 0.375 0.288 0.189 0.096 0.027 0.007
2 0.007 0.027 0.096 0.189 0.288 0.375 0.432 0.441 0.384 0.243 0.135
3 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 0.857

4 0 0.815 0.656 0.410 0.240 0.130 0.063 0.026 0.008 0.002
1 0.171 0.292 0.410 0.412 0.346 0.250 0.154 0.076 0.026 0.004
2 0.014 0.049 0.154 0.265 0.346 0.375 0.346 0.265 0.154 0.049 0.014
3 0.004 0.026 0.076 0.154 0.250 0.346 0.412 0.410 0.292 0.171
4 0.002 0.008 0.026 0.063 0.130 0.240 0.410 0.656 0.815

5 0 0.774 0.590 0.328 0.168 0.078 0.031 0.010 0.002
1 0.204 0.328 0.410 0.360 0.259 0.156 0.077 0.028 0.006
2 0.021 0.073 0.205 0.309 0.346 0.313 0.230 0.132 0.051 0.008 0.001
3 0.001 0.008 0.051 0.132 0.230 0.313 0.346 0.309 0.205 0.073 0.021
4 0.006 0.028 0.077 0.156 0.259 0.360 0.410 0.328 0.204
5 0.002 0.010 0.031 0.078 0.168 0.328 0.590 0.774

6 0 0.735 0.531 0.262 0.118 0.047 0.016 0.004 0.001
1 0.232 0.354 0.393 0.303 0.187 0.094 0.037 0.010 0.002
2 0.031 0.098 0.246 0.324 0.311 0.234 0.138 0.060 0.015 0.001
3 0.002 0.015 0.082 0.185 0.276 0.313 0.276 0.185 0.082 0.015 0.002
4 0.001 0.015 0.060 0.138 0.234 0.311 0.324 0.246 0.098 0.031
5 0.002 0.010 0.037 0.094 0.187 0.303 0.393 0.354 0.232
6 0.001 0.004 0.016 0.047 0.118 0.262 0.531 0.735

7 0 0.698 0.478 0.210 0.082 0.028 0.008 0.002
1 0.257 0.372 0.367 0.247 0.131 0.055 0.017 0.004
2 0.041 0.124 0.275 0.318 0.261 0.164 0.077 0.025 0.004
3 0.004 0.023 0.115 0.227 0.290 0.273 0.194 0.097 0.029 0.003
4 0.003 0.029 0.097 0.194 0.273 0.290 0.227 0.115 0.023 0.004
5 0.004 0.025 0.077 0.164 0.261 0.318 0.275 0.124 0.041
6 0.004 0.017 0.055 0.131 0.247 0.367 0.372 0.257
7 0.002 0.008 0.028 0.082 0.210 0.478 0.698

Source: Freund, J.E. (1988) Modern Elementary Statistics, 7th edn. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. Reproduced with permission.
Note: All values omitted in this table are 0.0005 or less.



Table A.1 Binomial probabilities – continued

p

n x 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

8 0 0.663 0.430 0.168 0.058 0.017 0.004 0.001
1 0.279 0.383 0.336 0.198 0.090 0.031 0.008 0.001
2 0.051 0.149 0.294 0.296 0.209 0.109 0.041 0.010 0.001
3 0.005 0.033 0.147 0.254 0.279 0.219 0.124 0.047 0.009
4 0.005 0.046 0.136 0.232 0.273 0.232 0.136 0.046 0.005
5 0.009 0.047 0.124 0.219 0.279 0.254 0.147 0.033 0.005
6 0.001 0.010 0.041 0.109 0.209 0.296 0.294 0.149 0.051
7 0.001 0.008 0.031 0.090 0.198 0.336 0.383 0.279
8 0.001 0.004 0.017 0.058 0.168 0.430 0.663

9 0 0.630 0.387 0.134 0.040 0.010 0.002
1 0.299 0.387 0.302 0.156 0.060 0.018 0.004
2 0.063 0.172 0.302 0.267 0.161 0.070 0.021 0.004
3 0.008 0.045 0.176 0.267 0.251 0.164 0.074 0.021 0.003
4 0.001 0.007 0.066 0.172 0.251 0.246 0.167 0.074 0.017 0.001
5 0.001 0.017 0.074 0.167 0.246 0.251 0.172 0.066 0.007 0.001
6 0.003 0.021 0.074 0.164 0.251 0.267 0.176 0.045 0.008
7 0.004 0.021 0.070 0.161 0.267 0.302 0.172 0.063
8 0.004 0.018 0.060 0.156 0.302 0.387 0.299
9 0.002 0.010 0.040 0.134 0.387 0.630

10 0 0.599 0.349 0.107 0.028 0.006 0.001
1 0.315 0.387 0.268 0.121 0.040 0.010 0.002
2 0.075 0.194 0.302 0.233 0.121 0.044 0.011 0.001
3 0.010 0.057 0.201 0.267 0.215 0.117 0.042 0.009 0.001
4 0.001 0.011 0.088 0.200 0.251 0.205 0.111 0.037 0.006
5 0.001 0.026 0.103 0.201 0.246 0.201 0.103 0.026 0.001
6 0.006 0.037 0.111 0.205 0.251 0.200 0.088 0.011 0.001
7 0.001 0.009 0.042 0.117 0.215 0.267 0.201 0.057 0.010
8 0.001 0.011 0.044 0.121 0.233 0.302 0.194 0.075
9 0.002 0.010 0.040 0.121 0.268 0.387 0.315
10 0.001 0.006 0.0282 0.1074 0.3487 0.5987
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11 0 0.569 0.314 0.086 0.020 0.004
1 0.329 0.384 0.236 0.093 0.027 0.005 0.001
2 0.087 0.213 0.295 0.200 0.089 0.027 0.005 0.001
3 0.014 0.071 0.221 0.257 0.177 0.081 0.023 0.004
4 0.001 0.016 0.111 0.220 0.236 0.161 0.070 0.017 0.002
5 0.002 0.039 0.132 0.221 0.226 0.147 0.057 0.010
6 0.010 0.057 0.147 0.226 0.221 0.132 0.039 0.002
7 0.002 0.017 0.070 0.161 0.236 0.220 0.111 0.016 0.001
8 0.004 0.023 0.081 0.177 0.257 0.221 0.071 0.014
9 0.001 0.005 0.027 0.089 0.200 0.295 0.213 0.087
10 0.001 0.005 0.027 0.093 0.236 0.384 0.329
11 0.004 0.020 0.086 0.314 0.569

12 0 0.540 0.282 0.069 0.014 0.002
1 0.341 0.377 0.206 0.071 0.017 0.003
2 0.099 0.230 0.283 0.168 0.064 0.016 0.002
3 0.017 0.085 0.236 0.240 0.142 0.054 0.012 0.001
4 0.002 0.021 0.133 0.231 0.213 0.121 0.042 0.008 0.001
5 0.004 0.053 0.158 0.227 0.193 0.101 0.029 0.003
6 0.016 0.079 0.177 0.226 0.177 0.079 0.016
7 0.003 0.029 0.101 0.193 0.227 0.158 0.053 0.004
8 0.001 0.008 0.042 0.121 0.213 0.231 0.133 0.021 0.002
9 0.001 0.012 0.054 0.142 0.240 0.236 0.085 0.017
10 0.002 0.016 0.064 0.168 0.283 0.230 0.099
11 0.003 0.017 0.071 0.206 0.377 0.341
12 0.002 0.0138 0.0687 0.2824 0.5404

13 0 0.513 0.254 0.055 0.010 0.001
1 0.351 0.367 0.179 0.054 0.011 0.002
2 0.111 0.245 0.268 0.139 0.045 0.010 0.001
3 0.021 0.100 0.246 0.218 0.111 0.035 0.006 0.001
4 0.003 0.028 0.154 0.234 0.184 0.087 0.024 0.003
5 0.006 0.069 0.180 0.221 0.157 0.066 0.014 0.001
6 0.001 0.023 0.103 0.197 0.209 0.131 0.044 0.006
7 0.006 0.044 0.131 0.209 0.197 0.103 0.023 0.001
8 0.001 0.014 0.066 0.157 0.221 0.180 0.069 0.006
9 0.003 0.024 0.087 0.184 0.234 0.154 0.028 0.003
10 0.001 0.006 0.035 0.111 0.218 0.246 0.100 0.021
11 0.001 0.010 0.045 0.139 0.268 0.245 0.111
12 0.002 0.011 0.054 0.1787 0.3672 0.3512
13 0.001 0.0097 0.055 0.2542 0.5133
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Table A.1 Binomial probabilities – continued

p

n x 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

14 0 0.488 0.229 0.044 0.007 0.001
1 0.359 0.356 0.154 0.041 0.007 0.001
2 0.123 0.257 0.250 0.113 0.032 0.006 0.001
3 0.026 0.114 0.250 0.194 0.085 0.022 0.003
4 0.004 0.035 0.172 0.229 0.155 0.061 0.014 0.001
5 0.008 0.086 0.196 0.207 0.122 0.041 0.007
6 0.001 0.032 0.126 0.207 0.183 0.092 0.023 0.002
7 0.009 0.062 0.157 0.209 0.157 0.062 0.009
8 0.002 0.023 0.092 0.183 0.207 0.126 0.032 0.001
9 0.007 0.041 0.122 0.207 0.196 0.086 0.008
10 0.001 0.014 0.061 0.155 0.229 0.172 0.035 0.004
11 0.003 0.022 0.085 0.194 0.250 0.114 0.026
12 0.001 0.006 0.032 0.113 0.250 0.257 0.123
13 0.001 0.007 0.041 0.154 0.356 0.359
14 0.001 0.007 0.044 0.229 0.488

15 0 0.463 0.206 0.035 0.005
1 0.366 0.343 0.132 0.031 0.005
2 0.135 0.267 0.231 0.092 0.022 0.003
3 0.031 0.129 0.250 0.170 0.063 0.014 0.002
4 0.005 0.043 0.188 0.219 0.127 0.042 0.007 0.001
5 0.001 0.010 0.103 0.206 0.186 0.092 0.024 0.003
6 0.002 0.043 0.147 0.207 0.153 0.061 0.012 0.001
7 0.014 0.081 0.177 0.196 0.118 0.035 0.003
8 0.003 0.035 0.118 0.196 0.177 0.081 0.014
9 0.001 0.012 0.061 0.153 0.207 0.147 0.043 0.002
10 0.003 0.024 0.092 0.186 0.206 0.103 0.010 0.001
11 0.001 0.007 0.042 0.127 0.219 0.188 0.043 0.005
12 0.002 0.014 0.063 0.170 0.250 0.129 0.031
13 0.003 0.022 0.092 0.231 0.267 0.135
14 0.005 0.031 0.132 0.343 0.366
15 0.005 0.035 0.206 0.463
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16 0 0.440 0.185 0.028 0.003
1 0.371 0.329 0.113 0.023 0.003
2 0.146 0.275 0.211 0.073 0.015 0.002
3 0.036 0.142 0.246 0.146 0.047 0.009 0.001
4 0.006 0.051 0.200 0.204 0.101 0.028 0.004
5 0.001 0.014 0.120 0.210 0.162 0.067 0.014 0.001
6 0.003 0.055 0.165 0.198 0.122 0.039 0.006
7 0.020 0.101 0.189 0.175 0.084 0.019 0.001
8 0.006 0.049 0.142 0.196 0.142 0.049 0.006
9 0.001 0.019 0.084 0.175 0.189 0.101 0.020
10 0.006 0.039 0.122 0.198 0.165 0.055 0.003
11 0.001 0.014 0.067 0.162 0.210 0.120 0.014 0.001
12 0.004 0.028 0.101 0.204 0.200 0.051 0.006
13 0.001 0.009 0.047 0.146 0.246 0.142 0.036
14 0.002 0.015 0.073 0.211 0.275 0.146
15 0.003 0.023 0.113 0.329 0.371
16 0.003 0.028 0.185 0.440

17 0 0.418 0.167 0.023 0.002
1 0.374 0.315 0.096 0.017 0.002
2 0.158 0.280 0.191 0.058 0.010 0.001
3 0.041 0.156 0.239 0.125 0.034 0.005
4 0.008 0.060 0.209 0.187 0.080 0.018 0.002
5 0.001 0.017 0.136 0.208 0.138 0.047 0.008 0.001
6 0.004 0.068 0.178 0.184 0.094 0.024 0.003
7 0.001 0.027 0.120 0.193 0.148 0.057 0.009
8 0.008 0.064 0.161 0.185 0.107 0.028 0.002
9 0.002 0.028 0.107 0.185 0.161 0.064 0.008
10 0.009 0.057 0.148 0.193 0.120 0.027 0.001
11 0.003 0.024 0.094 0.184 0.178 0.068 0.004
12 0.001 0.008 0.047 0.138 0.208 0.136 0.017 0.001
13 0.002 0.018 0.080 0.187 0.209 0.060 0.008
14 0.005 0.034 0.125 0.239 0.156 0.041
15 0.001 0.010 0.058 0.191 0.280 0.158
16 0.002 0.017 0.096 0.315 0.374
17 0.002 0.023 0.167 0.418
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Table A.1 Binomial probabilities – continued

p

n x 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

18 0 0.397 0.150 0.018 0.002
1 0.376 0.300 0.081 0.013 0.001
2 0.168 0.284 0.172 0.046 0.007 0.001
3 0.047 0.168 0.230 0.105 0.025 0.003
4 0.009 0.070 0.215 0.168 0.061 0.012 0.001
5 0.001 0.022 0.151 0.202 0.115 0.033 0.004
6 0.005 0.082 0.187 0.166 0.071 0.015 0.001
7 0.001 0.035 0.138 0.189 0.121 0.037 0.005
8 0.012 0.081 0.173 0.167 0.077 0.015 0.001
9 0.003 0.039 0.128 0.185 0.128 0.039 0.003
10 0.001 0.015 0.077 0.167 0.173 0.081 0.012
11 0.005 0.037 0.121 0.189 0.138 0.035 0.001
12 0.001 0.015 0.071 0.166 0.187 0.082 0.005
13 0.004 0.033 0.115 0.202 0.151 0.022 0.001
14 0.001 0.012 0.061 0.168 0.215 0.070 0.009
15 0.003 0.025 0.105 0.230 0.168 0.047
16 0.001 0.007 0.046 0.172 0.284 0.168
17 0.001 0.013 0.081 0.300 0.376
18 0.002 0.018 0.150 0.397
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19 0 0.377 0.135 0.014 0.001
1 0.377 0.285 0.068 0.009 0.001
2 0.179 0.285 0.154 0.036 0.005
3 0.053 0.180 0.218 0.087 0.017 0.002
4 0.011 0.080 0.218 0.149 0.047 0.007 0.001
5 0.002 0.027 0.164 0.192 0.093 0.022 0.002
6 0.007 0.095 0.192 0.145 0.052 0.008 0.001
7 0.001 0.044 0.153 0.180 0.096 0.024 0.002
8 0.017 0.098 0.180 0.144 0.053 0.008
9 0.005 0.051 0.146 0.176 0.098 0.022 0.001
10 0.001 0.022 0.098 0.176 0.146 0.051 0.005
11 0.008 0.053 0.144 0.180 0.098 0.017
12 0.002 0.024 0.096 0.180 0.153 0.044 0.001
13 0.001 0.008 0.052 0.145 0.192 0.095 0.007
14 0.002 0.022 0.093 0.192 0.164 0.027 0.002
15 0.001 0.007 0.047 0.149 0.218 0.080 0.011
16 0.002 0.017 0.087 0.218 0.180 0.053
17 0.005 0.036 0.154 0.285 0.179
18 0.001 0.009 0.068 0.285 0.377
19 0.001 0.014 0.135 0.377

20 0 0.358 0.122 0.012 0.001
1 0.377 0.270 0.058 0.007
2 0.189 0.285 0.137 0.028 0.003
3 0.060 0.190 0.205 0.072 0.012 0.001
4 0.013 0.090 0.218 0.130 0.035 0.005
5 0.002 0.032 0.175 0.179 0.075 0.015 0.001
6 0.009 0.109 0.192 0.124 0.037 0.005
7 0.002 0.055 0.164 0.166 0.074 0.015 0.001
8 0.022 0.114 0.180 0.120 0.035 0.004
9 0.007 0.065 0.160 0.160 0.071 0.012
10 0.002 0.031 0.117 0.176 0.117 0.031 0.002
11 0.012 0.071 0.160 0.160 0.065 0.007
12 0.004 0.035 0.120 0.180 0.114 0.022
13 0.001 0.015 0.074 0.166 0.164 0.055 0.002
14 0.005 0.037 0.124 0.192 0.109 0.009
15 0.001 0.015 0.075 0.179 0.175 0.032 0.002
16 0.005 0.035 0.130 0.218 0.090 0.013
17 0.001 0.012 0.072 0.205 0.190 0.060
18 0.003 0.028 0.137 0.285 0.189
19 0.007 0.058 0.270 0.377
20 0.001 0.012 0.122 0.358
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Table A.2. Poisson probabilities.




x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
1 0.0905 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659 0.3679
2 0.0045 0.0164 0.0333 0.0536 0.0758 0.0988 0.1217 0.1438 0.1647 0.1839
3 0.0002 0.0011 0.0033 0.0072 0.0126 0.0198 0.0284 0.0383 0.0494 0.0613
4 0.0000 0.0001 0.0003 0.0007 0.0016 0.0030 0.0050 0.0077 0.0111 0.0153
5 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 0.0031
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001




x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.1496 0.1353
1 0.3662 0.3614 0.3543 0.3452 0.3347 0.3230 0.3106 0.2975 0.2842 0.2707
2 0.2014 0.2169 0.2303 0.2417 0.2510 0.2584 0.2640 0.2678 0.2700 0.2707
3 0.0738 0.0867 0.0998 0.1128 0.1255 0.1378 0.1496 0.1607 0.1710 0.1804
4 0.0203 0.0260 0.0324 0.0395 0.0471 0.0551 0.0636 0.0723 0.0812 0.0902
5 0.0045 0.0062 0.0084 0.0111 0.0141 0.0176 0.0216 0.0260 0.0309 0.0361
6 0.0008 0.0012 0.0018 0.0026 0.0035 0.0047 0.0061 0.0078 0.0098 0.0120
7 0.0001 0.0002 0.0003 0.0005 0.0008 0.0011 0.0015 0.0020 0.0027 0.0034
8 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0005 0.0006 0.0009
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002




x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.1225 0.1108 0.1003 0.0907 0.0821 0.0743 0.0672 0.0608 0.0550 0.0498
1 0.2572 0.2438 0.2306 0.2177 0.2052 0.1931 0.1815 0.1703 0.1596 0.1494
2 0.2700 0.2681 0.2652 0.2613 0.2565 0.2510 0.2450 0.2384 0.2314 0.2240
3 0.1890 0.1966 0.2033 0.2090 0.2138 0.2176 0.2205 0.2225 0.2237 0.2240
4 0.0992 0.1082 0.1169 0.1254 0.1336 0.1414 0.1488 0.1557 0.1622 0.1680
5 0.0417 0.0476 0.0538 0.0602 0.0668 0.0735 0.0804 0.0872 0.0940 0.1008
6 0.0146 0.0174 0.0206 0.0241 0.0278 0.0319 0.0362 0.0407 0.0455 0.0504
7 0.0044 0.0055 0.0068 0.0083 0.0099 0.0118 0.0139 0.0163 0.0188 0.0216
8 0.0011 0.0015 0.0019 0.0025 0.0031 0.0038 0.0047 0.0057 0.0068 0.0081
9 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0014 0.0018 0.0022 0.0027
10 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001




x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0.0450 0.0408 0.0369 0.0334 0.0302 0.0273 0.0247 0.0224 0.0202 0.0183
1 0.1397 0.1304 0.1217 0.1135 0.1057 0.0984 0.0915 0.0850 0.0789 0.0733
2 0.2165 0.2087 0.2008 0.1929 0.1850 0.1771 0.1692 0.1615 0.1539 0.1465
3 0.2237 0.2226 0.2209 0.2186 0.2158 0.2125 0.2087 0.2046 0.2001 0.1954
4 0.1733 0.1781 0.1823 0.1858 0.1888 0.1912 0.1931 0.1944 0.1951 0.1954

Source: From Beyer, W.H. (1986) Handbook of Tables for Probability and Statistics, 2nd edn.
CRC Press, Boca Raton, Florida. Reproduced with permission.
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x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

5 0.1075 0.1140 0.1203 0.1264 0.1322 0.1377 0.1429 0.1477 0.1522 0.1563
6 0.0555 0.0608 0.0662 0.0716 0.0771 0.0826 0.0881 0.0936 0.0989 0.1042
7 0.0246 0.0278 0.0312 0.0348 0.0385 0.0425 0.0466 0.0508 0.0551 0.0595
8 0.0095 0.0111 0.0129 0.0148 0.0169 0.0191 0.0215 0.0241 0.0269 0.0298
9 0.0033 0.0040 0.0047 0.0056 0.0066 0.0076 0.0089 0.0102 0.0116 0.0132
10 0.0010 0.0013 0.0016 0.0019 0.0023 0.0028 0.0033 0.0039 0.0045 0.0053
11 0.0003 0.0004 0.0005 0.0006 0.0007 0.0009 0.0011 0.0013 0.0016 0.0019
12 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006
13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001




x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 0.0166 0.0150 0.0136 0.0123 0.0111 0.0101 0.0091 0.0082 0.0074 0.0067
1 0.0679 0.0630 0.0583 0.0540 0.0500 0.0462 0.0427 0.0395 0.0365 0.0337
2 0.1393 0.1323 0.1254 0.1188 0.1125 0.1063 0.1005 0.0948 0.0894 0.0842
3 0.1904 0.1852 0.1798 0.1743 0.1687 0.1631 0.1574 0.1517 0.1460 0.1404
4 0.1951 0.1944 0.1933 0.1917 0.1898 0.1875 0.1849 0.1820 0.1789 0.1755
5 0.1600 0.1633 0.1662 0.1687 0.1708 0.1725 0.1738 0.1747 0.1753 0.1755
6 0.1093 0.1143 0.1191 0.1237 0.1281 0.1323 0.1362 0.1398 0.1432 0.1462
7 0.0640 0.0686 0.0732 0.0778 0.0824 0.0869 0.0914 0.0959 0.1002 0.1044
8 0.0328 0.0360 0.0393 0.0428 0.0463 0.0500 0.0537 0.0575 0.0614 0.0653
9 0.0150 0.0168 0.0188 0.0209 0.0232 0.0255 0.0281 0.0307 0.0334 0.0363
10 0.0061 0.0071 0.0081 0.0092 0.0104 0.0118 0.0132 0.0147 0.0164 0.0181
11 0.0023 0.0027 0.0032 0.0037 0.0043 0.0049 0.0056 0.0064 0.0073 0.0082
12 0.0008 0.0009 0.0011 0.0013 0.0016 0.0019 0.0022 0.0026 0.0030 0.0034
13 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013
14 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005
15 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002




x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 0.0061 0.0055 0.0050 0.0045 0.0041 0.0037 0.0033 0.0030 0.0027 0.0025
1 0.0311 0.0287 0.0265 0.0244 0.0225 0.0207 0.0191 0.0176 0.0162 0.0149
2 0.0793 0.0746 0.0701 0.0659 0.0618 0.0580 0.0544 0.0509 0.0477 0.0446
3 0.1348 0.1293 0.1239 0.1185 0.1133 0.1082 0.1033 0.0985 0.0938 0.0892
4 0.1719 0.1681 0.1641 0.1600 0.1558 0.1515 0.1472 0.1428 0.1383 0.1339
5 0.1753 0.1748 0.1740 0.1728 0.1714 0.1697 0.1678 0.1656 0.1632 0.1606
6 0.1490 0.1515 0.1537 0.1555 0.1571 0.1584 0.1594 0.1601 0.1605 0.1606
7 0.1086 0.1125 0.1163 0.1200 0.1234 0.1267 0.1298 0.1326 0.1353 0.1377
8 0.0692 0.0731 0.0771 0.0810 0.0849 0.0887 0.0925 0.0962 0.0998 0.1033
9 0.0392 0.0423 0.0454 0.0486 0.0519 0.0552 0.0586 0.0620 0.0654 0.0688
10 0.0200 0.0220 0.0241 0.0262 0.0285 0.0309 0.0334 0.0359 0.0386 0.0413
11 0.0093 0.0104 0.0116 0.0129 0.0143 0.0157 0.0173 0.0190 0.0207 0.0225
12 0.0039 0.0045 0.0051 0.0058 0.0065 0.0073 0.0082 0.0092 0.0102 0.0113
13 0.0015 0.0018 0.0021 0.0024 0.0028 0.0032 0.0036 0.0041 0.0046 0.0052
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Table A.2. Poisson probabilities – continued




x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

14 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013 0.0015 0.0017 0.0019 0.0022
15 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009
16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001




x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 0.0022 0.0020 0.0018 0.0017 0.0015 0.0014 0.0012 0.0011 0.0010 0.0009
1 0.0137 0.0126 0.0116 0.0106 0.0098 0.0090 0.0082 0.0076 0.0070 0.0064
2 0.0417 0.0390 0.0364 0.0340 0.0318 0.0296 0.0276 0.0258 0.0240 0.0223
3 0.0848 0.0806 0.0765 0.0726 0.0688 0.0652 0.0617 0.0584 0.0552 0.0521
4 0.1294 0.1249 0.1205 0.1162 0.1118 0.1076 0.1034 0.0992 0.0952 0.0912
5 0.1579 0.1549 0.1519 0.1487 0.1454 0.1420 0.1385 0.1349 0.1314 0.1277
6 0.1605 0.1601 0.1595 0.1586 0.1575 0.1562 0.1546 0.1529 0.1511 0.1490
7 0.1399 0.1418 0.1435 0.1450 0.1462 0.1472 0.1480 0.1486 0.1489 0.1490
8 0.1066 0.1099 0.1130 0.1160 0.1188 0.1215 0.1240 0.1263 0.1284 0.1304
9 0.0723 0.0757 0.0791 0.0825 0.0858 0.0891 0.0923 0.0954 0.0985 0.1014
10 0.0441 0.0469 0.0498 0.0528 0.0558 0.0588 0.0618 0.0649 0.0679 0.0710
11 0.0244 0.0265 0.0285 0.0307 0.0330 0.0353 0.0377 0.0401 0.0426 0.0452
12 0.0124 0.0137 0.0150 0.0164 0.0179 0.0194 0.0210 0.0227 0.0245 0.0263
13 0.0058 0.0065 0.0073 0.0081 0.0089 0.0099 0.0108 0.0119 0.0130 0.0142
14 0.0025 0.0029 0.0033 0.0037 0.0041 0.0046 0.0052 0.0058 0.0064 0.0071
15 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0023 0.0026 0.0029 0.0033
16 0.0004 0.0005 0.0005 0.0006 0.0007 0.0008 0.0010 0.0011 0.0013 0.0014
17 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006
18 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001




x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 0.0008 0.0007 0.0007 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003
1 0.0059 0.0054 0.0049 0.0045 0.0041 0.0038 0.0035 0.0032 0.0029 0.0027
2 0.0208 0.0194 0.0180 0.0167 0.0156 0.0145 0.0134 0.0125 0.0116 0.0107
3 0.0492 0.0464 0.0438 0.0413 0.0389 0.0366 0.0345 0.0324 0.0305 0.0286
4 0.0874 0.0836 0.0799 0.0764 0.0729 0.0696 0.0663 0.0632 0.0602 0.0573
5 0.1241 0.1204 0.1167 0.1130 0.1094 0.1057 0.1021 0.0986 0.0951 0.0916
6 0.1468 0.1445 0.1420 0.1394 0.1367 0.1339 0.1311 0.1282 0.1252 0.1221
7 0.1489 0.1486 0.1481 0.1474 0.1465 0.1454 0.1442 0.1428 0.1413 0.1396
8 0.1321 0.1337 0.1351 0.1363 0.1373 0.1381 0.1388 0.1392 0.1395 0.1396
9 0.1042 0.1070 0.1096 0.1121 0.1144 0.1167 0.1187 0.1207 0.1224 0.1241
10 0.0740 0.0770 0.0800 0.0829 0.0858 0.0887 0.0914 0.0941 0.0967 0.0993
11 0.0478 0.0504 0.0531 0.0558 0.0585 0.0613 0.0640 0.0667 0.0695 0.0722
12 0.0283 0.0303 0.0323 0.0344 0.0366 0.0388 0.0411 0.0434 0.0457 0.0481
13 0.0154 0.0168 0.0181 0.0196 0.0211 0.0227 0.0243 0.0260 0.0278 0.0296
14 0.0078 0.0086 0.0095 0.0104 0.0113 0.0123 0.0134 0.0145 0.0157 0.0169
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x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

15 0.0037 0.0041 0.0046 0.0051 0.0057 0.0062 0.0069 0.0075 0.0083 0.0090
16 0.0016 0.0019 0.0021 0.0024 0.0026 0.0030 0.0033 0.0037 0.0041 0.0045
17 0.0007 0.0008 0.0009 0.0010 0.0012 0.0013 0.0015 0.0017 0.0019 0.0021
18 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008 0.0009
19 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0004
20 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001




x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
1 0.0025 0.0023 0.0021 0.0019 0.0017 0.0016 0.0014 0.0013 0.0012 0.0011
2 0.0100 0.0092 0.0086 0.0079 0.0074 0.0068 0.0063 0.0058 0.0054 0.0050
3 0.0269 0.0252 0.0237 0.0222 0.0208 0.0195 0.0183 0.0171 0.0160 0.0150
4 0.0544 0.0517 0.0491 0.0466 0.0443 0.0420 0.0398 0.0377 0.0357 0.0337
5 0.0882 0.0849 0.0816 0.0784 0.0752 0.0722 0.0692 0.0663 0.0635 0.0607
6 0.1191 0.1160 0.1128 0.1097 0.1066 0.1034 0.1003 0.0972 0.0941 0.0911
7 0.1378 0.1358 0.1338 0.1317 0.1294 0.1271 0.1247 0.1222 0.1197 0.1171
8 0.1395 0.1392 0.1388 0.1382 0.1375 0.1366 0.1356 0.1344 0.1332 0.1318
9 0.1256 0.1269 0.1280 0.1290 0.1299 0.1306 0.1311 0.1315 0.1317 0.1318
10 0.1017 0.1040 0.1063 0.1084 0.1104 0.1123 0.1140 0.1157 0.1172 0.1186
11 0.0749 0.0776 0.0802 0.0828 0.0853 0.0878 0.0902 0.0925 0.0948 0.0970
12 0.0505 0.0530 0.0555 0.0579 0.0604 0.0629 0.0654 0.0679 0.0703 0.0728
13 0.0315 0.0334 0.0354 0.0374 0.0395 0.0416 0.0438 0.0459 0.0481 0.0504
14 0.0182 0.0196 0.0210 0.0225 0.0240 0.0256 0.0272 0.0289 0.0306 0.0324
15 0.0098 0.0107 0.0116 0.0126 0.0136 0.0147 0.0158 0.0169 0.0182 0.0194
16 0.0050 0.0055 0.0060 0.0066 0.0072 0.0079 0.0086 0.0093 0.0101 0.0109
17 0.0024 0.0026 0.0029 0.0033 0.0036 0.0040 0.0044 0.0048 0.0053 0.0058
18 0.0011 0.0012 0.0014 0.0015 0.0017 0.0019 0.0021 0.0024 0.0026 0.0029
19 0.0005 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014
20 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0.0005 0.0006
21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003
22 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001




x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
1 0.0010 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0005 0.0005
2 0.0046 0.0043 0.0040 0.0037 0.0034 0.0031 0.0029 0.0027 0.0025 0.0023
3 0.0140 0.0131 0.0123 0.0115 0.0107 0.0100 0.0093 0.0087 0.0081 0.0076
4 0.0319 0.0302 0.0285 0.0269 0.0254 0.0240 0.0226 0.0213 0.0201 0.0189
5 0.0581 0.0555 0.0530 0.0506 0.0483 0.0460 0.0439 0.0418 0.0398 0.0378
6 0.0881 0.0851 0.0822 0.0793 0.0764 0.0736 0.0709 0.0682 0.0656 0.0631
7 0.1145 0.1118 0.1091 0.1064 0.1037 0.1010 0.0982 0.0955 0.0928 0.0901
8 0.1302 0.1286 0.1269 0.1251 0.1232 0.1212 0.1191 0.1170 0.1148 0.1126
9 0.1317 0.1315 0.1311 0.1306 0.1300 0.1293 0.1284 0.1274 0.1263 0.1251
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Table A.2. Poisson probabilities – continued




x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

10 0.1198 0.1210 0.1219 0.1228 0.1235 0.1241 0.1245 0.1249 0.1250 0.1251
11 0.0991 0.1012 0.1031 0.1049 0.1067 0.1083 0.1098 0.1112 0.1125 0.1137
12 0.0752 0.0776 0.0799 0.0822 0.0844 0.0866 0.0888 0.0908 0.0928 0.0948
13 0.0526 0.0549 0.0572 0.0594 0.0617 0.0640 0.0662 0.0685 0.0707 0.0729
14 0.0342 0.0361 0.0380 0.0399 0.0419 0.0439 0.0459 0.0479 0.0500 0.0521
15 0.0208 0.0221 0.0235 0.0250 0.0265 0.0281 0.0297 0.0313 0.0330 0.0347
16 0.0118 0.0127 0.0137 0.0147 0.0157 0.0168 0.0180 0.0192 0.0204 0.0217
17 0.0063 0.0069 0.0075 0.0081 0.0088 0.0095 0.0103 0.0111 0.0119 0.0128
18 0.0032 0.0035 0.0039 0.0042 0.0046 0.0051 0.0055 0.0060 0.0065 0.0071
19 0.0015 0.0017 0.0019 0.0021 0.0023 0.0026 0.0028 0.0031 0.0034 0.0037
20 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014 0.0015 0.0017 0.0019
21 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008 0.0009
22 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004
23 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
–3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
–3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
–3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
–3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
–3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
–2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
–2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
–2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
–2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
–2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
–2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
–2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
–2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
–2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
–2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
–1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
–1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
–1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
–1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
–1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
–1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
–1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
–1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
–1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
–1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
–0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
–0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
–0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
–0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
–0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
–0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
–0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
–0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
–0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Table A.3. Areas under the normal curve.
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Table A.4. Random numbers.

10480 15011 01536 02011 81647 91646 69179 14194 62590 36207 20969 99570 91291 90700

22368 46573 25595 85393 30995 89198 27982 53402 93965 34095 52666 19174 39615 99505

24130 48390 22527 97265 76393 64809 15179 24830 49340 32081 30680 19655 63348 58629

42167 93093 06243 61680 07856 16376 39440 53537 71341 57004 00849 74917 97758 16379

37570 39975 81837 16656 06121 91782 60468 81305 49684 60072 14110 06927 01263 54613

77921 06907 11008 42751 27756 53498 18602 70659 90655 15053 21916 81825 44394 42880

99562 72905 56420 69994 98872 31016 71194 18738 44013 48840 63213 21069 10634 12952

96301 91977 05463 07972 18876 20922 94595 56869 69014 60045 18425 84903 42508 32307

89579 14342 63661 10281 17453 18103 57740 84378 25331 12568 58678 44947 05585 56941

85475 36857 53342 53988 53060 59533 38867 62300 08158 17983 16439 11458 18593 64952

28918 69578 88231 33276 70997 79936 56865 05859 90106 31595 01547 85590 91610 78188

63553 40961 48235 03427 49626 69445 18663 72695 52180 20847 12234 90511 33703 90322

09429 93969 52636 92737 88974 33488 36320 17617 30015 08272 84115 27156 30613 74952

10365 61129 87529 85689 48237 52267 67689 93394 01511 26358 85104 20285 29975 89868

07119 97336 71048 08178 77233 13916 47564 81056 97735 85977 29372 74461 28551 90707

51085 12765 51821 51259 77452 16308 60756 92144 49442 53900 70960 63990 75601 40719

02368 21382 52404 60268 89368 19885 55322 44819 01188 65255 64835 44919 05944 55157

01011 54092 33362 94904 31273 04146 18594 29852 71685 85030 51132 01915 92747 64951

52162 53916 46369 58586 23216 14513 83149 98736 23495 64350 94738 17752 35156 35749

07056 97628 33787 09998 42698 06691 76988 13602 51851 46104 88916 19509 25625 58104

48663 91245 85828 14346 09172 30163 90229 04734 59193 22178 30421 61666 99904 32812

54164 58492 22421 74103 47070 25306 76468 26384 58151 06646 21524 15227 96909 44592

32639 32363 05597 24200 13363 38005 94342 28728 35806 06912 17012 64161 18296 22851

29334 27001 87637 87308 58731 00256 45834 15398 46557 41135 10307 07684 36188 18510

02488 33062 28834 07351 19731 92420 60952 61280 50001 67658 32586 86679 50720 94953

81525 72295 04839 96423 24878 82651 66566 14778 76797 14780 13300 87074 79666 95725

29676 20591 68086 26432 46901 20849 89768 81536 86645 12659 92259 57102 80428 25280

00742 57392 39064 66432 84673 40027 32832 61362 98947 96067 64760 64584 96096 98253

05366 04213 25669 26422 44407 44048 37937 63904 45766 66134 75470 66520 34693 90449

91921 26418 64117 94305 26766 25940 39972 22209 71500 64568 91402 42416 07844 69618

00582 04711 87917 77341 42206 35126 74087 99547 81817 42607 43808 76655 62028 76630

00725 69884 62797 56170 86324 88072 76222 36086 84637 93161 76038 65855 77919 88006

69011 65795 95876 55293 18988 27354 26575 08625 40801 59920 29841 80150 12777 48501

25976 57948 29888 88604 67917 48708 18912 82271 65424 69774 33611 54262 85963 03547

09763 83473 73577 12908 30883 18317 28290 35797 05998 41688 34952 37888 38917 88050

91567 42595 27958 30134 04024 86385 29880 99730 55536 84855 29088 09250 79656 73211

17955 56349 90999 49127 20044 59931 06115 20542 18059 02008 73708 83517 36103 42791

46503 18584 18845 49618 02304 51038 20655 58727 28168 15475 56942 53389 20562 87338

92157 89634 94824 78171 84610 82834 09922 25417 44137 48413 25555 21246 35509 20468

14577 62765 35605 81263 39667 47358 56873 56307 61607 49518 89656 20103 77490 18062

98427 07523 33362 64270 01638 92477 66969 98420 04880 45585 46565 04102 46880 45709

34914 63976 88720 82765 34476 17032 87589 40836 32427 70002 70663 88863 77775 69348

70060 28277 39475 46473 23219 53416 94970 25832 69975 94884 19661 72828 00102 66794

53976 54914 06990 67245 68350 82948 11398 42878 80287 88267 47363 46634 06541 97809

76072 29515 40980 07391 58745 25774 22987 80059 39911 96189 41151 14222 60697 59583

90725 52210 83974 29992 65831 38857 50490 83765 55657 14361 31720 57375 56228 41546

64364 67412 33339 31926 14883 24413 59744 92351 97473 89286 35931 04110 23726 51900

08962 00358 31662 25388 61642 34072 81249 35648 56891 69352 48373 45578 78547 81788

95012 68379 93526 70765 10592 04542 76463 54328 02349 17247 28865 14777 62730 92277

15664 10493 20492 38301 91132 21999 59516 81652 27195 48223 46751 22923 32261 85653

Source: From Beyer, W.H. (1986) Handbook of Tables for Probability and Statistics, 2nd edn. CRC
Press, Boca Raton, Florida. Reproduced with permission.



Table A.5. Critical values for the t distribution: percentile values (tp) for student's t
distribution with v degrees of freedom (shaded area = p).

Appendix A 365

v t.995 t.99 t.975 t.95 t.90 t.80 t.75 t.70 t.60 t.55

1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 0.727 0.325 0.158
2 9.93 6.97 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142
3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137
4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134
5 4.03 3.37 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132
6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131
7 3.50 3.00 2.37 1.90 1.42 0.896 0.711 0.549 0.263 0.130
8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130
9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129

10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129
11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129
12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128
13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128
14 2.98 2.62 2.15 1.76 1.35 0.868 0.692 0.537 0.258 0.128
15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128
16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128
17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128
18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127
19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127
20 2.85 2.53 2.09 1.73 1.33 0.860 0.687 0.533 0.257 0.127
21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127
22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127
23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127
24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127
25 2.79 2.49 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127
28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127
29 2.76 2.46 2.05 1.70 1.31 0.854 0.683 0.530 0.256 0.127
30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126
60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126

120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126
∞ 2.58 2.33 1.96 1.65 1.28 0.842 0.674 0.524 0.253 0.126

Source: Fisher, R.A. and Yates, F. (1957) Statistical Tables for Biological, Agricultural, and
Medical Research, 5th edn, Table III. Oliver and Boyd Ltd, Edinburgh. Reproduced with
permission of the authors and publisher.



v �2
.995 �2

.99 �2
.975 �2

.95 �2
.90 �2

.75 �2
.50 �2

.25 �2
.10 �2

.05 �2
.025 �2

.01 �2
.005

1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.016 0.004 0.001 0.000 0.000

2 10.60 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 0.051 0.020 0.010

3 12.84 11.34 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 0.216 0.115 0.072

4 14.86 13.28 11.14 9.49 7.78 5.39 3.36 1.92 1.06 0.711 0.484 0.297 0.207

5 16.75 15.09 12.83 11.07 9.24 6.63 4.35 2.67 1.61 1.15 0.831 0.554 0.412

6 18.55 16.81 14.45 12.59 10.64 7.84 5.35 3.45 2.20 1.64 1.24 0.872 0.676

7 20.28 18.48 16.01 14.07 12.02 9.04 6.35 4.25 2.83 2.17 1.69 1.24 0.989

8 21.95 20.09 17.53 15.51 13.36 10.22 7.34 5.07 3.49 2.73 2.18 1.65 1.34

9 23.59 21.67 19.02 16.92 14.68 11.39 8.34 5.90 4.17 3.33 2.70 2.09 1.73

10 25.19 23.21 20.48 18.31 15.99 12.55 9.34 6.74 4.87 3.94 3.25 2.56 2.16

11 26.76 24.72 21.92 19.68 17.28 13.70 10.34 7.58 5.58 4.57 3.82 3.05 2.60

12 28.30 26.22 23.34 21.03 18.55 14.85 11.34 8.44 6.30 5.23 4.40 3.57 3.07

13 29.82 27.69 24.74 22.36 19.81 15.98 12.34 9.30 7.04 5.89 5.01 4.11 3.57

14 31.32 29.14 26.12 23.68 21.06 17.12 13.34 10.17 7.79 6.57 5.63 4.66 4.07

15 32.80 30.58 27.49 25.00 22.31 18.25 14.34 11.04 8.55 7.26 6.26 5.23 4.60

16 34.27 32.00 28.85 26.30 23.54 19.37 15.34 11.91 9.31 7.96 6.91 5.81 5.14

17 35.72 33.41 30.19 27.59 24.77 20.49 16.34 12.79 10.09 8.67 7.56 6.41 5.70

18 37.16 34.81 31.53 28.87 25.99 21.60 17.34 13.68 10.86 9.39 8.23 7.01 6.26

19 38.58 36.19 32.85 30.14 27.20 22.72 18.34 14.56 11.65 10.12 8.91 7.63 6.84

20 40.00 37.57 34.17 31.41 28.41 23.83 19.34 15.45 12.44 10.85 9.59 8.26 7.43

21 41.40 38.93 35.48 32.67 29.62 24.93 20.34 16.34 13.24 11.59 10.28 8.90 8.03

22 42.80 40.29 36.78 33.92 30.81 26.04 21.34 17.24 14.04 12.34 10.98 9.54 8.64

23 44.18 41.64 38.08 35.17 32.01 27.14 22.34 18.14 14.85 13.09 11.69 10.20 9.26

24 45.56 42.98 39.36 36.42 33.20 28.24 23.34 19.04 15.66 13.85 12.40 10.86 9.89

25 46.93 44.31 40.65 37.65 34.38 29.34 24.34 19.94 16.47 14.61 13.12 11.52 10.52

26 48.29 45.64 41.92 38.89 35.56 30.43 25.34 20.84 17.29 15.38 13.84 12.20 11.16

27 49.64 46.96 43.19 40.11 36.74 31.53 26.34 21.75 18.11 16.15 14.57 12.88 11.81

28 50.99 48.28 44.46 41.34 37.92 32.62 27.34 22.66 18.94 16.93 15.31 13.56 12.46

29 52.34 49.59 45.72 42.56 39.09 33.71 28.34 23.57 19.77 17.71 16.05 14.26 13.12

30 53.67 50.89 46.98 43.77 40.26 34.80 29.34 24.48 20.60 18.49 16.79 14.95 13.79

40 66.77 63.69 59.34 55.76 51.81 45.62 39.34 33.66 29.05 26.51 24.43 22.16 20.71

50 79.49 76.15 71.42 67.50 63.17 56.33 49.33 42.94 37.69 34.76 32.36 29.71 27.99

60 91.95 88.38 83.30 79.08 74.40 66.98 59.33 52.29 46.46 43.19 40.48 37.48 35.53

70 104.21 100.43 95.02 90.53 85.53 77.58 69.33 61.70 55.33 51.74 48.76 45.44 43.28

80 116.32 112.33 106.63 101.88 96.58 88.13 79.33 71.14 64.28 60.39 57.15 53.54 51.17

90 128.30 124.12 118.14 113.15 107.57 98.65 89.33 80.62 73.29 69.13 65.65 61.75 59.20

100 140.17 135.81 129.56 124.34 118.50 109.14 99.33 90.13 82.36 77.93 74.22 70.06 67.33

Source: Thompson, C.M. (1941) Table of percentage points of the χ2 distribution.
Biometrika 32. Reproduced with permission of the author and publisher.
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Table A.6. Critical values for the �2 distribution: percentile
values (�2

p) for chi-square distribution with v degrees of
freedom (shaded area = p).

�2
p



A
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Table A.7. Critical values for the F distribution.

df
for

df for Numerator

Denom. α 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 ∞
0.25 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.41 9.49 9.58 9.63 9.67 9.71 9.76 9.85
0.1 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.7 61.2 61.7 62.0 62.3 62.5 62.8 63.3
0.05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 254.3

1 0.025 648 799 864 900 922 937 948 957 963 969 977 985 993 997 1001 1006 1010 1018
0.01 4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6235 6261 6287 6313 6366
0.005 1621* 2000* 2161* 2250* 2306* 2344* 2371* 2393* 2409* 2422* 2443* 2463* 2484* 2494* 2504* 2515* 2525* 2546*
0.001 4053† 5000† 5404† 5625† 5764† 5859† 5929† 5981† 6023† 6056† 6107† 6158† 6209† 6235† 6261† 6287† 6313† 6366†
0.25 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.41 3.43 3.43 3.44 3.45 3.46 3.48
0.1 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.49
0.05 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5

2 0.025 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 39.5
0.01 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5
0.005 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199
0.001 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
0.25 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.46 2.46 2.46 2.47 2.47 2.47 2.47
0.1 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.13
0.05 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.53

3 0.025 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.3 14.3 14.2 14.1 14.1 14.0 14.0 13.9
0.01 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.1
0.005 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9 43.7 43.4 43.1 42.8 42.6 42.5 42.3 42.1 41.8
0.001 167 149 141 137 135 133 132 131 130 129 128 127 126 126 125 125 124 123
0.25 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08
0.1 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.76
0.05 7.7 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.63

4 0.025 12.2 10.6 10.0 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.26
0.01 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.5
0.005 31.3 26.3 24.3 23.2 22.5 22.0 21.6 21.4 21.1 21.0 20.7 20.4 20.2 20.0 19.9 19.8 19.6 19.3
0.001 74.1 61.2 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.1 47.4 46.8 46.1 45.8 45.4 45.1 44.7 44.1
0.25 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.88 1.88 1.87 1.87
0.1 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.10
0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.37

5 0.025 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.02
0.01 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.02
0.005 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14.0 13.8 13.6 13.4 13.1 12.9 12.8 12.7 12.5 12.4 12.1
0.001 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 26.4 25.9 25.4 25.1 24.9 24.6 24.3 23.8

* Multiply these values by 10, † multiply these values by 100.
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Table A.7. Critical values for the F distribution – continued

df
for

df for Numerator

Denom. α 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 ∞

0.25 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.76 1.76 1.75 1.75 1.75 1.74 1.74
0.1 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.72
0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.67

6 0.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.85
0.01 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.88
0.005 18.6 14.5 12.9 12.0 11.5 11.1 10.8 10.6 10.4 10.3 10.0 9.81 9.59 9.47 9.36 9.24 9.12 8.88
0.001 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 18.0 17.6 17.1 16.9 16.7 16.4 16.2 15.7
0.25 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.69 1.69 1.68 1.68 1.67 1.67 1.66 1.66 1.65 1.65
0.1 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.47
0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.23

7 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.41 4.36 4.31 4.25 4.14
0.01 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.65
0.005 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 8.38 8.18 7.97 7.75 7.64 7.53 7.42 7.31 7.08
0.001 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.7 13.3 12.9 12.7 12.5 12.3 12.1 11.7
0.25 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.62 1.62 1.61 1.60 1.60 1.59 1.59 1.58
0.1 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.29
0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.93

8 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.67
0.01 11.3 8.6 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.86
0.005 14.7 11.0 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.01 6.81 6.61 6.50 6.40 6.29 6.18 5.95
0.001 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.0 11.8 11.5 11.2 10.8 10.5 10.3 10.1 9.92 9.73 9.33
0.25 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.53
0.1 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.16
0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.71

9 0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.33
0.01 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.31
0.005 13.6 10.1 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.23 6.03 5.83 5.73 5.62 5.52 5.41 5.19
0.001 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.57 9.24 8.90 8.72 8.55 8.37 8.19 7.81
0.25 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.53 1.52 1.52 1.51 1.51 1.50 1.48
0.1 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.06
0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.54

10 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.08
0.01 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 3.91
0.005 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.66 5.47 5.27 5.17 5.07 4.97 4.86 4.64
0.001 21.0 14.9 12.6 11.3 10.5 9.93 9.52 9.20 8.96 8.75 8.45 8.13 7.80 7.64 7.47 7.30 7.12 6.76
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for

df for Numerator

Denom. α 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 ∞

0.25 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47 1.45
0.1 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 1.97
0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.40

11 0.025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.88
0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.60
0.005 12.2 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.24 5.05 4.86 4.76 4.65 4.55 4.45 4.23
0.001 19.7 13.8 11.6 10.3 9.58 9.05 8.66 8.35 8.12 7.92 7.63 7.32 7.01 6.85 6.68 6.52 6.35 6.00
0.25 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.45 1.44 1.42
0.1 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.90
0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.30

12 0.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.72
0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.36
0.005 11.8 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.91 4.72 4.53 4.43 4.33 4.23 4.12 3.90
0.001 18.6 13.0 10.8 9.63 8.89 8.38 8.00 7.71 7.48 7.29 7.00 6.71 6.40 6.25 6.09 5.93 5.76 5.42
0.25 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.40
0.1 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.85
0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.21

13 0.025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.60
0.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.17
0.005 11.4 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.64 4.46 4.27 4.17 4.07 3.97 3.87 3.65
0.001 17.8 12.3 10.2 9.07 8.35 7.86 7.49 7.21 6.98 6.80 6.52 6.23 5.93 5.78 5.63 5.47 5.30 4.97
0.25 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.41 1.40 1.38
0.1 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.80
0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.13

14 0.025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.49
0.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.00
0.005 11.1 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.43 4.25 4.06 3.96 3.86 3.76 3.66 3.44
0.001 17.1 11.8 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 6.13 5.85 5.56 5.41 5.25 5.10 4.94 4.60
0.25 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.36
0.1 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.76
0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.07

15 0.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.40
0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.87
0.005 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.25 4.07 3.88 3.79 3.69 3.58 3.48 3.26
0.001 16.6 11.3 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.81 5.54 5.25 5.10 4.95 4.80 4.64 4.31
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Table A.7. Critical values for the F distribution – continued

df
for

df for Numerator

Denom. α 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 ∞

0.25 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.34
0.1 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.72
0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.01

16 0.025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.32
0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.75
0.005 10.6 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.10 3.92 3.73 3.64 3.54 3.44 3.33 3.11
0.001 16.1 11.0 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.55 5.27 4.99 4.85 4.70 4.54 4.39 4.06
0.25 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.33
0.1 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.69
0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 1.96

17 0.025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.25
0.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.65
0.005 10.4 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 3.97 3.79 3.61 3.51 3.41 3.31 3.21 2.98
0.001 15.7 10.7 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58 5.32 5.05 4.78 4.63 4.48 4.33 4.18 3.85
0.25 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.32
0.1 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.66
0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.92

18 0.025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.19
0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.57
0.005 10.2 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.86 3.68 3.50 3.40 3.30 3.20 3.10 2.87
0.001 15.4 10.4 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 5.13 4.87 4.59 4.45 4.30 4.15 4.00 3.67
0.25 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.30
0.1 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.63
0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.88

19 0.025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.13
0.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.49
0.005 10.1 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.76 3.59 3.40 3.31 3.21 3.11 3.00 2.78
0.001 15.1 10.2 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22 4.97 4.70 4.43 4.29 4.14 3.99 3.84 3.51
0.25 1.40 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.29
0.1 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.61
0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.84

20 0.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.09
0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.42
0.005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.68 3.50 3.32 3.22 3.12 3.02 2.92 2.69
0.001 14.8 10.0 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.82 4.56 4.29 4.15 4.00 3.86 3.70 3.38
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Denom. α 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 ∞

0.25 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.28
0.1 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.57
0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.78

22 0.025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.00
0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.31
0.005 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.54 3.36 3.18 3.08 2.98 2.88 2.77 2.55
0.001 14.4 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83 4.58 4.33 4.06 3.92 3.78 3.63 3.48 3.15
0.25 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.36 1.35 1.33 1.32 1.31 1.30 1.29 1.26
0.1 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.53
0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.73

24 0.025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 1.94
0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.21
0.005 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.42 3.25 3.06 2.97 2.87 2.77 2.66 2.43
0.001 14.0 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.39 4.14 3.87 3.74 3.59 3.45 3.29 2.97
0.25 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.23
0.1 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.46
0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.62

30 0.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.79
0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.01
0.005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.18 3.01 2.82 2.73 2.63 2.52 2.42 2.18
0.001 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 4.00 3.75 3.49 3.36 3.22 3.07 2.92 2.59
0.25 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.27 1.25 1.24 1.22 1.21 1.19 1.15
0.1 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.29
0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.39

60 0.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.48
0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.60
0.005 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.74 2.57 2.39 2.29 2.19 2.08 1.96 1.69
0.001 12.0 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54 3.32 3.08 2.83 2.69 2.55 2.41 2.25 1.89
0.25 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.16 1.10
0.1 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.19
0.05 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.25

120 0.025 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.31
0.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.38
0.005 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 2.54 2.37 2.19 2.09 1.98 1.87 1.75 1.43
0.001 11.4 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24 3.02 2.78 2.53 2.40 2.26 2.11 1.95 1.54
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Table A.7. Critical values for the F distribution – continued

df
for

df for Numerator

Denom. α 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 ∞

0.25 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.22 1.19 1.18 1.16 1.14 1.12 1.00
0.1 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.00
0.05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.00

∞ 0.025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.00
0.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.00
0.005 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.36 2.19 2.00 1.90 1.79 1.67 1.53 1.00
0.001 10.8 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.74 2.51 2.27 2.13 1.99 1.84 1.66 1.00
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Table A.8 Critical values for the r distribution, probability level = 0.05.

Number of independent variables

df 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100

1 0.997 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.950 0.975 0.983 0.987 0.990 0.991 0.993 0.994 0.994 0.995 0.995 0.996 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999 0.999
3 0.878 0.930 0.950 0.961 0.968 0.973 0.977 0.979 0.982 0.983 0.985 0.986 0.988 0.989 0.991 0.993 0.994 0.996 0.997 0.998 0.998
4 0.811 0.881 0.912 0.930 0.942 0.950 0.956 0.961 0.965 0.968 0.971 0.973 0.977 0.979 0.983 0.986 0.989 0.991 0.993 0.995 0.996
5 0.754 0.836 0.874 0.898 0.914 0.925 0.934 0.941 0.946 0.951 0.955 0.958 0.964 0.968 0.974 0.978 0.982 0.986 0.989 0.993 0.994
6 0.707 0.795 0.839 0.867 0.886 0.900 0.911 0.920 0.927 0.933 0.938 0.943 0.950 0.955 0.963 0.969 0.975 0.981 0.984 0.989 0.992
7 0.666 0.758 0.807 0.838 0.860 0.876 0.889 0.900 0.909 0.916 0.922 0.927 0.936 0.943 0.953 0.960 0.967 0.975 0.980 0.986 0.989
8 0.632 0.726 0.777 0.811 0.835 0.854 0.868 0.880 0.890 0.898 0.906 0.912 0.922 0.930 0.942 0.950 0.959 0.969 0.975 0.983 0.987
9 0.602 0.697 0.750 0.786 0.812 0.832 0.848 0.861 0.872 0.882 0.890 0.897 0.908 0.917 0.931 0.941 0.951 0.962 0.969 0.979 0.984

10 0.576 0.671 0.726 0.763 0.790 0.812 0.829 0.843 0.855 0.865 0.874 0.882 0.895 0.905 0.920 0.932 0.943 0.956 0.964 0.975 0.981
11 0.553 0.648 0.703 0.741 0.770 0.792 0.811 0.826 0.839 0.850 0.859 0.867 0.882 0.893 0.910 0.922 0.936 0.950 0.959 0.972 0.978
12 0.532 0.627 0.683 0.722 0.751 0.774 0.793 0.809 0.823 0.835 0.845 0.854 0.869 0.881 0.900 0.913 0.928 0.943 0.953 0.968 0.975
13 0.514 0.608 0.664 0.703 0.733 0.757 0.777 0.794 0.808 0.820 0.831 0.840 0.856 0.869 0.889 0.904 0.920 0.937 0.948 0.964 0.972
14 0.497 0.590 0.646 0.686 0.717 0.741 0.762 0.779 0.794 0.806 0.818 0.828 0.844 0.858 0.879 0.895 0.912 0.931 0.943 0.960 0.969
15 0.482 0.574 0.630 0.670 0.701 0.726 0.747 0.765 0.780 0.793 0.805 0.815 0.833 0.847 0.870 0.886 0.904 0.924 0.938 0.956 0.966
16 0.468 0.559 0.615 0.655 0.687 0.712 0.733 0.751 0.767 0.780 0.793 0.803 0.822 0.837 0.860 0.878 0.897 0.918 0.932 0.953 0.963
17 0.456 0.545 0.601 0.641 0.673 0.698 0.720 0.738 0.754 0.768 0.781 0.792 0.811 0.826 0.851 0.869 0.890 0.912 0.927 0.949 0.960
18 0.444 0.532 0.587 0.628 0.660 0.686 0.707 0.726 0.742 0.757 0.769 0.781 0.800 0.816 0.842 0.861 0.882 0.906 0.922 0.945 0.957
19 0.433 0.520 0.575 0.615 0.647 0.673 0.696 0.714 0.731 0.746 0.759 0.770 0.790 0.807 0.833 0.853 0.875 0.900 0.917 0.941 0.954
20 0.423 0.509 0.563 0.604 0.636 0.662 0.684 0.703 0.720 0.735 0.748 0.760 0.780 0.797 0.825 0.845 0.868 0.894 0.912 0.937 0.951
21 0.413 0.498 0.552 0.593 0.624 0.651 0.673 0.693 0.710 0.725 0.738 0.750 0.771 0.788 0.816 0.837 0.861 0.888 0.906 0.933 0.948
22 0.404 0.488 0.542 0.582 0.614 0.640 0.663 0.682 0.699 0.715 0.728 0.741 0.762 0.780 0.808 0.830 0.854 0.883 0.901 0.930 0.945
23 0.396 0.479 0.532 0.572 0.604 0.630 0.653 0.673 0.690 0.705 0.719 0.731 0.753 0.771 0.800 0.823 0.848 0.877 0.897 0.926 0.942
24 0.388 0.470 0.523 0.562 0.594 0.621 0.643 0.663 0.681 0.696 0.710 0.722 0.744 0.763 0.793 0.815 0.841 0.871 0.892 0.922 0.939
25 0.381 0.462 0.514 0.553 0.585 0.612 0.634 0.654 0.672 0.687 0.701 0.714 0.736 0.755 0.785 0.808 0.835 0.866 0.887 0.919 0.936
26 0.374 0.454 0.506 0.545 0.576 0.603 0.626 0.645 0.663 0.679 0.693 0.706 0.728 0.747 0.778 0.802 0.829 0.860 0.882 0.915 0.933
27 0.367 0.446 0.498 0.536 0.568 0.594 0.617 0.637 0.655 0.670 0.685 0.698 0.720 0.739 0.771 0.795 0.823 0.855 0.877 0.911 0.930
28 0.361 0.439 0.490 0.529 0.560 0.586 0.609 0.629 0.647 0.662 0.677 0.690 0.713 0.732 0.764 0.788 0.817 0.850 0.873 0.908 0.928
29 0.355 0.432 0.483 0.521 0.552 0.579 0.601 0.621 0.639 0.655 0.669 0.682 0.705 0.725 0.757 0.782 0.811 0.845 0.868 0.904 0.925
30 0.349 0.425 0.476 0.514 0.545 0.571 0.594 0.614 0.631 0.647 0.662 0.675 0.698 0.718 0.750 0.776 0.805 0.840 0.864 0.901 0.922
31 0.344 0.419 0.469 0.507 0.538 0.564 0.587 0.607 0.624 0.640 0.655 0.668 0.691 0.711 0.744 0.769 0.799 0.835 0.859 0.897 0.919
32 0.339 0.413 0.462 0.500 0.531 0.557 0.580 0.600 0.617 0.633 0.648 0.661 0.684 0.705 0.738 0.763 0.794 0.830 0.855 0.894 0.916
34 0.329 0.402 0.450 0.488 0.518 0.544 0.566 0.586 0.604 0.620 0.635 0.648 0.672 0.692 0.725 0.752 0.783 0.820 0.846 0.887 0.910
36 0.320 0.392 0.439 0.476 0.506 0.532 0.554 0.574 0.591 0.608 0.622 0.636 0.659 0.680 0.714 0.741 0.773 0.811 0.838 0.880 0.905
38 0.312 0.382 0.429 0.465 0.495 0.520 0.542 0.562 0.580 0.596 0.610 0.624 0.648 0.668 0.703 0.730 0.763 0.802 0.829 0.873 0.899
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Table A.8 Critical values for the r distribution, probability level = 0.05 – continued

Number of independent variables

df 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100

40 0.304 0.373 0.419 0.455 0.484 0.509 0.531 0.551 0.569 0.585 0.599 0.613 0.637 0.657 0.692 0.720 0.753 0.793 0.821 0.867 0.894
42 0.297 0.365 0.410 0.445 0.474 0.499 0.521 0.541 0.558 0.574 0.589 0.602 0.626 0.647 0.682 0.710 0.744 0.784 0.814 0.861 0.888
44 0.291 0.357 0.401 0.436 0.465 0.490 0.511 0.531 0.548 0.564 0.579 0.592 0.616 0.637 0.672 0.701 0.735 0.776 0.806 0.854 0.883
46 0.285 0.349 0.393 0.428 0.456 0.481 0.502 0.521 0.539 0.555 0.569 0.583 0.607 0.628 0.663 0.692 0.726 0.768 0.799 0.848 0.878
48 0.279 0.343 0.386 0.420 0.448 0.472 0.493 0.513 0.530 0.546 0.560 0.573 0.598 0.619 0.654 0.683 0.717 0.760 0.791 0.842 0.873
50 0.273 0.336 0.379 0.412 0.440 0.464 0.485 0.504 0.521 0.537 0.551 0.565 0.589 0.610 0.645 0.674 0.709 0.753 0.784 0.836 0.868
55 0.261 0.321 0.362 0.395 0.422 0.445 0.466 0.485 0.502 0.517 0.531 0.545 0.568 0.590 0.625 0.654 0.690 0.735 0.768 0.822 0.855
60 0.250 0.308 0.348 0.380 0.406 0.429 0.449 0.467 0.484 0.499 0.513 0.526 0.550 0.571 0.607 0.636 0.672 0.718 0.752 0.808 0.844
65 0.240 0.297 0.335 0.366 0.392 0.414 0.434 0.452 0.468 0.483 0.497 0.510 0.533 0.554 0.590 0.619 0.656 0.702 0.737 0.795 0.832
70 0.232 0.286 0.324 0.354 0.379 0.401 0.420 0.438 0.454 0.469 0.482 0.495 0.518 0.539 0.574 0.604 0.640 0.687 0.723 0.783 0.821
80 0.217 0.269 0.304 0.332 0.356 0.377 0.396 0.413 0.428 0.443 0.456 0.469 0.491 0.511 0.546 0.576 0.613 0.660 0.697 0.760 0.800

100 0.195 0.241 0.274 0.299 0.321 0.341 0.358 0.374 0.388 0.402 0.414 0.426 0.448 0.467 0.501 0.530 0.566 0.614 0.652 0.718 0.763
125 0.174 0.216 0.246 0.269 0.289 0.307 0.323 0.338 0.351 0.364 0.376 0.387 0.407 0.425 0.458 0.485 0.521 0.568 0.606 0.675 0.722
150 0.159 0.198 0.225 0.247 0.265 0.282 0.297 0.311 0.323 0.335 0.346 0.356 0.375 0.393 0.424 0.450 0.485 0.531 0.569 0.639 0.688
200 0.138 0.172 0.196 0.215 0.231 0.246 0.259 0.271 0.282 0.293 0.303 0.312 0.330 0.345 0.374 0.398 0.430 0.475 0.511 0.580 0.631
400 0.098 0.122 0.139 0.153 0.165 0.176 0.185 0.194 0.203 0.210 0.218 0.225 0.238 0.250 0.272 0.291 0.317 0.353 0.384 0.445 0.493

1000 0.062 0.077 0.088 0.097 0.105 0.112 0.118 0.124 0.129 0.134 0.139 0.144 0.153 0.161 0.175 0.188 0.206 0.231 0.253 0.298 0.334
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Table A.8 Critical values for the r distribution, probability level = 0.01.

Number of independent variables

df 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.990 0.995 0.997 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
3 0.959 0.977 0.983 0.987 0.990 0.991 0.992 0.993 0.994 0.995 0.995 0.995 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999 0.999
4 0.917 0.949 0.962 0.970 0.975 0.979 0.981 0.984 0.985 0.987 0.988 0.989 0.990 0.991 0.993 0.994 0.995 0.996 0.997 0.998 0.999
5 0.875 0.917 0.937 0.949 0.957 0.963 0.967 0.971 0.974 0.976 0.978 0.980 0.982 0.984 0.987 0.989 0.991 0.993 0.995 0.996 0.997
6 0.834 0.886 0.911 0.927 0.938 0.946 0.952 0.957 0.961 0.964 0.967 0.969 0.973 0.976 0.980 0.983 0.986 0.990 0.992 0.994 0.996
7 0.798 0.855 0.885 0.904 0.918 0.928 0.935 0.942 0.947 0.951 0.955 0.958 0.963 0.967 0.973 0.977 0.981 0.986 0.988 0.992 0.994
8 0.765 0.827 0.860 0.882 0.898 0.909 0.919 0.926 0.932 0.938 0.942 0.946 0.952 0.957 0.965 0.970 0.975 0.981 0.985 0.989 0.992
9 0.735 0.800 0.837 0.861 0.878 0.891 0.902 0.911 0.918 0.924 0.929 0.934 0.941 0.947 0.956 0.963 0.969 0.976 0.981 0.987 0.990

10 0.708 0.776 0.814 0.840 0.859 0.874 0.886 0.895 0.904 0.911 0.916 0.922 0.930 0.937 0.948 0.955 0.963 0.971 0.977 0.984 0.988
11 0.684 0.753 0.793 0.821 0.841 0.857 0.870 0.881 0.889 0.897 0.904 0.910 0.919 0.927 0.939 0.947 0.956 0.966 0.972 0.981 0.985
12 0.661 0.732 0.773 0.802 0.824 0.841 0.855 0.866 0.876 0.884 0.891 0.898 0.909 0.917 0.930 0.940 0.950 0.961 0.968 0.978 0.983
13 0.641 0.712 0.755 0.785 0.807 0.825 0.840 0.852 0.862 0.871 0.879 0.886 0.898 0.907 0.922 0.932 0.943 0.956 0.964 0.975 0.981
14 0.623 0.694 0.737 0.768 0.791 0.810 0.825 0.838 0.849 0.859 0.867 0.875 0.887 0.897 0.913 0.924 0.937 0.950 0.959 0.972 0.978
15 0.606 0.677 0.721 0.752 0.776 0.796 0.812 0.825 0.837 0.847 0.856 0.864 0.877 0.888 0.904 0.917 0.930 0.945 0.955 0.968 0.976
16 0.590 0.662 0.706 0.738 0.762 0.782 0.799 0.813 0.825 0.835 0.844 0.853 0.867 0.878 0.896 0.909 0.924 0.940 0.950 0.965 0.973
17 0.575 0.647 0.691 0.724 0.749 0.769 0.786 0.801 0.813 0.824 0.834 0.842 0.857 0.869 0.888 0.902 0.917 0.934 0.946 0.962 0.971
18 0.561 0.633 0.678 0.710 0.736 0.757 0.774 0.789 0.802 0.813 0.823 0.832 0.847 0.860 0.880 0.894 0.911 0.929 0.941 0.959 0.968
19 0.549 0.620 0.665 0.697 0.723 0.745 0.762 0.778 0.791 0.802 0.813 0.822 0.838 0.851 0.872 0.887 0.904 0.924 0.936 0.955 0.965
20 0.537 0.607 0.652 0.685 0.712 0.733 0.751 0.767 0.780 0.792 0.803 0.812 0.829 0.842 0.864 0.880 0.898 0.918 0.932 0.952 0.963
21 0.526 0.596 0.641 0.674 0.700 0.722 0.740 0.756 0.770 0.782 0.793 0.803 0.820 0.834 0.856 0.873 0.892 0.913 0.927 0.949 0.960
22 0.515 0.585 0.630 0.663 0.690 0.711 0.730 0.746 0.760 0.773 0.784 0.794 0.811 0.825 0.848 0.866 0.886 0.908 0.923 0.945 0.957
23 0.505 0.574 0.619 0.653 0.679 0.701 0.720 0.736 0.751 0.763 0.775 0.785 0.803 0.817 0.841 0.859 0.880 0.903 0.919 0.942 0.955
24 0.496 0.565 0.609 0.643 0.669 0.692 0.711 0.727 0.741 0.754 0.766 0.776 0.794 0.810 0.834 0.852 0.874 0.898 0.914 0.939 0.952
25 0.487 0.555 0.600 0.633 0.660 0.682 0.701 0.718 0.733 0.746 0.757 0.768 0.786 0.802 0.827 0.846 0.868 0.893 0.910 0.935 0.949
26 0.479 0.546 0.590 0.624 0.651 0.673 0.692 0.709 0.724 0.737 0.749 0.760 0.778 0.794 0.820 0.839 0.862 0.888 0.905 0.932 0.947
27 0.471 0.538 0.582 0.615 0.642 0.664 0.684 0.701 0.716 0.729 0.741 0.752 0.771 0.787 0.813 0.833 0.856 0.883 0.901 0.929 0.944
28 0.463 0.529 0.573 0.607 0.633 0.656 0.676 0.693 0.708 0.721 0.733 0.744 0.763 0.780 0.806 0.827 0.850 0.878 0.897 0.925 0.942
29 0.456 0.522 0.565 0.598 0.625 0.648 0.668 0.685 0.700 0.713 0.726 0.737 0.756 0.773 0.800 0.821 0.845 0.873 0.893 0.922 0.939
30 0.449 0.514 0.558 0.591 0.618 0.640 0.660 0.677 0.692 0.706 0.718 0.729 0.749 0.766 0.793 0.815 0.839 0.868 0.888 0.919 0.936
31 0.442 0.507 0.550 0.583 0.610 0.633 0.652 0.670 0.685 0.699 0.711 0.722 0.742 0.759 0.787 0.809 0.834 0.864 0.884 0.916 0.934
32 0.436 0.500 0.543 0.576 0.603 0.625 0.645 0.662 0.678 0.692 0.704 0.716 0.736 0.753 0.781 0.803 0.829 0.859 0.880 0.912 0.931
34 0.424 0.487 0.530 0.562 0.589 0.612 0.631 0.649 0.664 0.678 0.691 0.702 0.723 0.740 0.769 0.792 0.818 0.850 0.872 0.906 0.926
36 0.413 0.475 0.517 0.549 0.576 0.599 0.618 0.636 0.651 0.665 0.678 0.690 0.711 0.728 0.758 0.781 0.808 0.841 0.864 0.900 0.921
38 0.403 0.464 0.505 0.537 0.564 0.586 0.606 0.623 0.639 0.653 0.666 0.678 0.699 0.717 0.747 0.771 0.799 0.832 0.856 0.894 0.916
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Table A.8 Critical values for the r distribution, probability level = 0.01 – continued

Number of independent variables

df 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100

40 0.393 0.454 0.494 0.526 0.552 0.575 0.595 0.612 0.628 0.642 0.655 0.667 0.688 0.706 0.736 0.761 0.789 0.824 0.849 0.888 0.910
42 0.384 0.444 0.484 0.516 0.542 0.564 0.584 0.601 0.617 0.631 0.644 0.656 0.677 0.696 0.726 0.751 0.780 0.816 0.841 0.882 0.905
44 0.376 0.435 0.474 0.506 0.532 0.554 0.573 0.591 0.606 0.620 0.633 0.645 0.667 0.685 0.717 0.742 0.771 0.808 0.834 0.876 0.900
46 0.368 0.426 0.465 0.496 0.522 0.544 0.563 0.581 0.596 0.611 0.624 0.636 0.657 0.676 0.707 0.733 0.763 0.800 0.827 0.870 0.896
48 0.361 0.418 0.457 0.487 0.513 0.535 0.554 0.571 0.587 0.601 0.614 0.626 0.648 0.667 0.698 0.724 0.755 0.792 0.820 0.864 0.891
50 0.354 0.410 0.449 0.479 0.504 0.526 0.545 0.562 0.578 0.592 0.605 0.617 0.639 0.658 0.689 0.715 0.746 0.785 0.813 0.858 0.886
55 0.339 0.393 0.430 0.460 0.484 0.506 0.525 0.542 0.557 0.571 0.584 0.596 0.618 0.637 0.669 0.695 0.727 0.767 0.797 0.845 0.874
60 0.325 0.377 0.414 0.442 0.467 0.488 0.506 0.523 0.538 0.552 0.565 0.577 0.599 0.618 0.650 0.677 0.710 0.751 0.781 0.832 0.863
65 0.313 0.363 0.399 0.427 0.451 0.471 0.490 0.506 0.521 0.535 0.548 0.560 0.581 0.600 0.633 0.660 0.693 0.735 0.766 0.819 0.852
70 0.302 0.351 0.386 0.413 0.436 0.456 0.475 0.491 0.506 0.519 0.532 0.544 0.565 0.584 0.617 0.644 0.678 0.720 0.752 0.807 0.841
80 0.283 0.330 0.363 0.389 0.411 0.431 0.448 0.464 0.478 0.492 0.504 0.516 0.537 0.556 0.588 0.615 0.649 0.693 0.726 0.784 0.821

100 0.254 0.297 0.327 0.351 0.372 0.390 0.406 0.421 0.435 0.447 0.459 0.470 0.491 0.509 0.541 0.568 0.602 0.647 0.682 0.743 0.784
125 0.228 0.267 0.294 0.316 0.335 0.352 0.367 0.381 0.394 0.406 0.417 0.428 0.447 0.464 0.495 0.521 0.555 0.600 0.635 0.700 0.744
150 0.208 0.244 0.269 0.290 0.308 0.324 0.338 0.351 0.363 0.374 0.385 0.395 0.413 0.430 0.459 0.485 0.517 0.562 0.597 0.663 0.709
200 0.181 0.212 0.235 0.253 0.269 0.283 0.295 0.307 0.318 0.328 0.338 0.347 0.363 0.379 0.406 0.430 0.460 0.503 0.538 0.604 0.652
400 0.128 0.151 0.167 0.180 0.192 0.202 0.212 0.221 0.229 0.236 0.244 0.250 0.263 0.275 0.296 0.315 0.340 0.376 0.406 0.466 0.512

1000 0.081 0.096 0.106 0.115 0.122 0.129 0.135 0.141 0.146 0.151 0.156 0.160 0.169 0.177 0.191 0.204 0.221 0.246 0.268 0.312 0.349



Table A.9. Critical values for the Bonferroni t Statistic: ta,k,� for P(|t| ≥ ta,k,�) = α.

 = 0.05

� k = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

5 3.16 3.53 3.81 4.03 4.22 4.38 4.53 4.66 4.77 4.88 4.98 5.08 5.16 5.25 5.60
6 2.97 3.29 3.52 3.71 3.86 4.00 4.12 4.22 4.32 4.40 4.49 4.56 4.63 4.70 4.98
7 2.84 3.13 3.34 3.50 3.64 3.75 3.86 3.95 4.03 4.10 4.17 4.24 4.30 4.36 4.59
8 2.75 3.02 3.21 3.36 3.48 3.58 3.68 3.76 3.83 3.90 3.96 4.02 4.07 4.12 4.33
9 2.69 2.93 3.11 3.25 3.36 3.46 3.55 3.62 3.69 3.75 3.81 3.86 3.91 3.95 4.15

10 2.63 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.64 3.69 3.74 3.79 3.83 4.00
11 2.59 2.82 2.98 3.11 3.21 3.29 3.37 3.44 3.50 3.55 3.60 3.65 3.69 3.73 3.89
12 2.56 2.78 2.93 3.05 3.15 3.24 3.31 3.37 3.43 3.48 3.53 3.57 3.61 3.65 3.81
13 2.53 2.75 2.90 3.01 3.11 3.19 3.26 3.32 3.37 3.42 3.47 3.51 3.55 3.58 3.73
14 2.51 2.72 2.86 2.98 3.07 3.15 3.21 3.27 3.33 3.37 3.42 3.46 3.49 3.53 3.67
15 2.49 2.69 2.84 2.95 3.04 3.11 3.18 3.23 3.29 3.33 3.37 3.41 3.45 3.48 3.62
16 2.47 2.67 2.81 2.92 3.01 3.08 3.15 3.20 3.25 3.30 3.34 3.38 3.41 3.44 3.58
17 2.46 2.65 2.79 2.90 2.98 3.06 3.12 3.17 3.22 3.27 3.31 3.34 3.38 3.41 3.54
18 2.45 2.64 2.77 2.88 2.96 3.03 3.09 3.15 3.20 3.24 3.28 3.32 3.35 3.38 3.51
19 2.43 2.63 2.76 2.86 2.94 3.01 3.07 3.13 3.17 3.22 3.25 3.29 3.32 3.35 3.48
20 2.42 2.61 2.74 2.85 2.93 3.00 3.06 3.11 3.15 3.20 3.23 3.27 3.30 3.33 3.46
25 2.38 2.57 2.69 2.79 2.86 2.93 2.99 3.03 3.08 3.12 3.15 3.19 3.22 3.24 3.36
30 2.36 2.54 2.66 2.75 2.82 2.89 2.94 2.99 3.03 3.07 3.10 3.13 3.16 3.19 3.30
40 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.01 3.04 3.07 3.10 3.12 3.23
60 2.30 2.46 2.58 2.66 2.73 2.79 2.83 2.88 2.91 2.95 2.98 3.01 3.03 3.06 3.16

120 2.27 2.43 2.54 2.62 2.68 2.74 2.78 2.82 2.86 2.89 2.92 2.95 2.97 3.00 3.09
∞ 2.24 2.39 2.50 2.58 2.64 2.69 2.73 2.77 2.81 2.84 2.87 2.89 2.91 2.94 3.02


 = 0.01

� k = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

5 4.77 5.25 5.60 5.89 6.14 6.35 6.54 6.71 6.87 7.01 7.15 7.27 7.39 7.50 7.98
6 4.32 4.70 4.98 5.21 5.40 5.56 5.71 5.84 5.96 6.07 6.17 6.26 6.35 6.43 6.79
7 4.03 4.36 4.59 4.79 4.94 5.08 5.20 5.31 5.41 5.50 5.58 5.66 5.73 5.80 6.08
8 3.83 4.12 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.12 5.19 5.25 5.32 5.37 5.62
9 3.69 3.95 4.15 4.30 4.42 4.53 4.62 4.71 4.78 4.85 4.91 4.97 5.02 5.08 5.29

10 3.58 3.83 4.00 4.14 4.26 4.36 4.44 4.52 4.59 4.65 4.71 4.76 4.81 4.85 5.05
11 3.50 3.73 3.89 4.02 4.13 4.22 4.30 4.37 4.44 4.49 4.55 4.60 4.64 4.68 4.86
12 3.43 3.65 3.81 3.93 4.03 4.12 4.19 4.26 4.32 4.37 4.42 4.47 4.51 4.55 4.72
13 3.37 3.58 3.73 3.85 3.95 4.03 4.10 4.16 4.22 4.27 4.32 4.36 4.40 4.44 4.60
14 3.33 3.53 3.67 3.79 3.88 3.96 4.03 4.09 4.14 4.19 4.23 4.28 4.31 4.35 4.50
15 3.29 3.48 3.62 3.73 3.82 3.90 3.96 4.02 4.07 4.12 4.16 4.20 4.24 4.27 4.42
16 3.25 3.44 3.58 3.69 3.77 3.85 3.91 3.96 4.01 4.06 4.10 4.14 4.18 4.21 4.35
17 3.22 3.41 3.54 3.65 3.73 3.80 3.86 3.92 3.97 4.01 4.05 4.09 4.12 4.15 4.29
18 3.20 3.38 3.51 3.61 3.69 3.76 3.82 3.87 3.92 3.96 4.00 4.04 4.07 4.10 4.23
19 3.17 3.35 3.48 3.58 3.66 3.73 3.79 3.84 3.88 3.93 3.96 4.00 4.03 4.06 4.19
20 3.15 3.33 3.46 3.55 3.63 3.70 3.75 3.80 3.85 3.89 3.93 3.96 3.99 4.02 4.15
25 3.08 3.24 3.36 3.45 3.52 3.58 3.64 3.68 3.73 3.76 3.80 3.83 3.86 3.88 4.00
30 3.03 3.19 3.30 3.39 3.45 3.51 3.56 3.61 3.65 3.68 3.71 3.74 3.77 3.80 3.90
40 2.97 3.12 3.23 3.31 3.37 3.43 3.47 3.51 3.55 3.58 3.61 3.64 3.67 3.69 3.79
60 2.91 3.06 3.16 3.23 3.29 3.34 3.39 3.43 3.46 3.49 3.52 3.54 3.57 3.59 3.68

120 2.86 3.00 3.09 3.16 3.22 3.26 3.31 3.34 3.37 3.40 3.43 3.45 3.47 3.49 3.58
∞ 2.81 2.94 3.02 3.09 3.14 3.19 3.23 3.26 3.29 3.32 3.34 3.36 3.39 3.40 3.48

k, number of comparisons. 
Source: Bailey, B.J.R. (1977) Tables of the Bonferroni t statistics. Journal of the American
Statistical Association 72, 459–478. Reproduced with permission from the Journal of the
American Statistical Association. Copyright 1977 by the American Statistical Association. All
rights reserved.
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Table A.10. Critical values for the Wilcoxon signed rank test.

One-sided α = 0.01 One-sided α = 0.025 One-sided α = 0.05
n Two-sided α = 0.02 Two-sided α = 0.05 Two-sided α = 0.10

5 1
6 1 2
7 0 2 4
8 2 4 6
9 3 6 8
10 5 8 11
11 7 11 14
12 10 14 17
13 13 17 21
14 16 21 26
15 20 25 30
16 24 30 36
17 28 35 41
18 33 40 47
19 38 46 54
20 43 52 60
21 49 59 68
22 56 66 75
23 62 73 83
24 69 81 92
25 77 90 101
26 85 98 110
27 93 107 120
28 102 117 130
29 111 127 141
30 120 137 152

Source: Wilcoxon, F. and Wilcox, R.A. (1964) Some Rapid Approximate Statistical
Procedures. American Cyanamid Company, Pearl River, New York. Reproduced with
permission.
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Table A.11. Critical values for the Wilcoxon rank sum test.

One-tailed test at α = 0.001 or two-tailed test at α = 0.002

n2

n1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3 0 0 0 0
4 0 0 0 1 1 1 2 2 3 3 3
5 0 0 1 1 2 2 3 3 4 5 5 6 7 7
6 0 1 2 2 3 4 4 5 6 7 8 9 10 11 12
7 2 3 3 5 6 7 8 9 10 11 13 14 15 16
8 5 5 6 8 9 11 12 14 15 17 18 20 21
9 7 8 10 12 14 15 17 19 21 23 25 26

10 10 12 14 17 19 21 23 25 27 29 32
11 15 17 20 22 24 27 29 32 34 37
12 20 23 25 28 31 34 37 40 42
13 26 29 32 35 38 42 45 48
14 32 36 39 43 46 50 54
15 40 43 47 51 55 59
16 48 52 56 60 65
17 57 61 66 70
18 66 71 76
19 77 82
20 88

One-tailed test at α = 0.01 or two-tailed test at α = 0.02

n2

n1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2 0 0 0 0 0 0 1 1
3 0 0 1 1 1 2 2 2 3 3 4 4 4 5
4 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22
7 6 8 9 11 12 14 16 17 19 21 23 24 26 28
8 10 11 13 15 17 20 22 24 26 28 30 32 34
9 14 16 18 21 23 26 28 31 33 36 38 40

10 19 22 24 27 30 33 36 38 41 44 47
11 25 28 31 34 37 41 44 47 50 53
12 31 35 38 42 46 49 53 56 60
13 39 43 47 51 55 59 63 67
14 47 51 56 60 65 69 73
15 56 61 66 70 75 80
16 66 71 76 82 87
17 77 82 88 93
18 88 94 100
19 101 107
20 114

Source: Based in part on Tables 1, 3, 5 and 7 of Auble, D. (1953) Extended tables for the
Mann–Whitney statistic. Bulletin of the Institute of Educational Research at Indiana
University 1(2). Reproduced with permission of the director.
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Table A.11. Critical Values for the Wilcoxon Rank Sum Test – continued

One-tailed test at α = 0.025 or two-tailed test at α = 0.05
n2

n1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2 0 0 0 0 1 1 1 1 1 2 2 2 2
3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13
5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 13 15 17 19 22 24 26 29 31 34 36 38 41
9 17 20 23 26 28 31 34 37 39 42 45 48

10 23 26 29 33 36 39 42 45 48 52 55
11 30 33 37 40 44 47 51 55 58 62
12 37 41 45 49 53 57 61 65 69
13 45 50 54 59 63 67 72 76
14 55 59 64 67 74 78 83
15 64 70 75 80 85 90
16 75 81 86 92 98
17 87 93 99 105
18 99 106 112
19 113 119
20 127

One-tailed test at α = 0.05 or two-tailed test at α = 0.10

n2

n1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0
2 0 0 0 1 1 1 1 2 2 3 3 3 3 4 4 4
3 0 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11
4 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
5 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
6 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
7 11 13 15 17 19 21 24 26 28 30 33 35 37 39
8 15 18 20 23 26 28 31 33 36 39 41 44 47
9 21 24 27 30 33 36 39 42 45 48 51 54

10 27 31 34 37 41 44 48 51 55 58 62
11 34 38 42 46 50 54 57 61 65 69
12 42 47 51 55 60 64 68 72 77
13 51 56 61 65 70 75 80 84
14 61 66 71 77 82 87 92
15 72 77 83 88 94 100
16 83 89 95 101 107
17 96 102 109 115
18 109 116 123
19 123 130
20 138

Source: Based in part on Tables 1,3,5 and 7 of Auble, D. (1953) Extended tables for the
Mann–Whitney statistic. Bulletin of the Institute of Educational Research at Indiana
University 1(2). Reproduced with permission of the director.
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Table A.12. Critical Values for the Runs Test; P(V ≤ v* when H0 is true).

v*

(n1,n2) 2 3 4 5 6 7 8 9 10

(2, 3) 0.200 0.500 0.900 1.000
(2, 4) 0.133 0.400 0.800 1.000
(2, 5) 0.095 0.333 0.714 1.000
(2, 6) 0.071 0.286 0.643 1.000
(2, 7) 0.056 0.250 0.583 1.000
(2, 8) 0.044 0.222 0.533 1.000
(2, 9) 0.036 0.200 0.491 1.000
(2, 10) 0.030 0.182 0.455 1.000

(3, 3) 0.100 0.300 0.700 0.900 1.000
(3, 4) 0.057 0.200 0.543 0.800 0.971 1.000
(3, 5) 0.036 0.143 0.429 0.714 0.929 1.000
(3, 6) 0.024 0.107 0.345 0.643 0.881 1.000
(3, 7) 0.017 0.083 0.283 0.583 0.833 1.000
(3, 8) 0.012 0.067 0.236 0.533 0.788 1.000
(3, 9) 0.009 0.055 0.200 0.491 0.745 1.000
(3, 10) 0.007 0.045 0.171 0.455 0.706 1.000

(4, 4) 0.029 0.114 0.371 0.629 0.886 0.971 1.000
(4, 5) 0.016 0.071 0.262 0.500 0.786 0.929 0.992 1.000
(4, 6) 0.010 0.048 0.190 0.405 0.690 0.881 0.976 1.000
(4, 7) 0.006 0.033 0.142 0.333 0.606 0.833 0.954 1.000
(4, 8) 0.004 0.024 0.109 0.279 0.533 0.788 0.929 1.000
(4, 9) 0.003 0.018 0.085 0.236 0.471 0.745 0.902 1.000
(4, 10) 0.002 0.014 0.068 0.203 0.419 0.706 0.874 1.000

(5, 5) 0.008 0.040 0.167 0.357 0.643 0.833 0.960 0.992 1.000
(5, 6) 0.004 0.024 0.110 0.262 0.522 0.738 0.911 0.976 0.998
(5, 7) 0.003 0.015 0.076 0.197 0.424 0.652 0.854 0.955 0.992
(5, 8) 0.002 0.010 0.054 0.152 0.347 0.576 0.793 0.929 0.984
(5, 9) 0.001 0.007 0.039 0.119 0.287 0.510 0.734 0.902 0.972
(5, 10) 0.001 0.005 0.029 0.095 0.239 0.455 0.678 0.874 0.958

(6, 6) 0.002 0.013 0.067 0.175 0.392 0.608 0.825 0.933 0.987
(6, 7) 0.001 0.008 0.043 0.121 0.296 0.500 0.733 0.879 0.966
(6, 8) 0.001 0.005 0.028 0.086 0.226 0.413 0.646 0.821 0.937
(6, 9) 0.000 0.003 0.019 0.063 0.175 0.343 0.566 0.762 0.902
(6, 10) 0.000 0.002 0.013 0.047 0.137 0.288 0.497 0.706 0.864

(7, 7) 0.001 0.004 0.025 0.078 0.209 0.383 0.617 0.791 0.922
(7, 8) 0.000 0.002 0.015 0.051 0.149 0.296 0.514 0.704 0.867
(7, 9) 0.000 0.001 0.010 0.035 0.108 0.231 0.427 0.622 0.806
(7, 10) 0.000 0.001 0.006 0.024 0.080 0.182 0.355 0.549 0.743

(8, 8) 0.000 0.001 0.009 0.032 0.100 0.214 0.405 0.595 0.786
(8, 9) 0.000 0.001 0.005 0.020 0.069 0.157 0.319 0.500 0.702
(8, 10) 0.000 0.000 0.003 0.013 0.048 0.117 0.251 0.419 0.621
(9, 9) 0.000 0.000 0.003 0.012 0.044 0.109 0.238 0.399 0.601
(9, 10) 0.000 0.000 0.002 0.008 0.029 0.077 0.179 0.319 0.510
(10,10) 0.000 0.000 0.001 0.004 0.019 0.051 0.128 0.242 0.414

Source: Eisenhart, C. and Swed, F. (1943) Tables for testing randomness of grouping in a
sequence of alternatives. Annals of Mathematical Statistics 14. Reproduced with permission
of the editor.
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Table A.12. Critical Values for the Runs Test. P(V ≤ v* when H0 is true) – continued

v*

(n1,n2) 11 12 13 14 15 16 17 18 19 20

(2, 3)
(2, 4)
(2, 5)
(2, 6)
(2, 7)
(2, 8)
(2, 9)
(2, 10)

(3, 3)
(3, 4)
(3, 5)
(3, 6)
(3, 7)
(3, 8)
(3, 9)
(3, 10)

(4, 4)
(4, 5)
(4, 6)
(4, 7)
(4, 8)
(4, 9)
(4, 10)

(5, 5)
(5, 6) 1.000
(5, 7) 1.000
(5, 8) 1.000
(5, 9) 1.000
(5, 10) 1.000

(6, 6) 0.998 1.000
(6, 7) 0.992 0.999 1.000
(6, 8) 0.984 0.998 1.000
(6, 9) 0.972 0.994 1.000
(6, 10) 0.958 0.990 1.000

(7, 7) 0.975 0.996 0.999 1.000
(7, 8) 0.949 0.988 0.998 1.000 1.000
(7, 9) 0.916 0.975 0.994 0.999 1.000
(7, 10) 0.879 0.957 0.990 0.998 1.000

(8, 8) 0.900 0.968 0.991 0.999 1.000 1.000
(8, 9) 0.843 0.939 0.980 0.996 0.999 1.000 1.000
(8, 10) 0.782 0.903 0.964 0.990 0.998 1.000 1.000

(9, 9) 0.762 0.891 0.956 0.988 0.997 1.000 1.000 1.000
(9, 10) 0.681 0.834 0.923 0.974 0.992 0.999 1.000 1.000 1.000
(10,10) 0.586 0.758 0.872 0.949 0.981 0.996 0.999 1.000 1.000 1.000
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Table A.13. Critical values for Spearman’s rank correlation coefficient test.

n α = 0.05 α = 0.025 α = 0.01 α = 0.005

5 0.900 — — —
6 0.829 0.886 0.943 —
7 0.714 0.786 0.893 —
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833
10 0.564 0.648 0.745 0.794

11 0.523 0.623 0.736 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Source: Olds, E.G. (1938) Distribution of sums of squares of rank differences for small
samples. Annals of Mathematical Statistics 9. Reproduced with permission of the editor.
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Summation Notation

In mathematics and statistics, the Greek letter � (capital sigma) is used to indicate a
summation. For example:

reads ‘the summation of xi, i going from 1 to 5’, where 1 is the lower limit and 5 is
the upper limit of the summation. Therefore:

In general, means that we replace i by 1, then by 2, … and so on up to n, and

add up the numerical values of x1, x2, …, xn.

If the sum of the squares of n observations is needed, we write:

which says ‘add the squares of the observations from 1 to n inclusive.’ The sum of the
products of two variables, X and Y, from 1 to n is:

Partial sums, sums of squares and sums of products can be represented as:

Note the following when a constant is summed:
from 1 to 5:
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from 1 to n:

and from 3 to 5:

Also, if a variable, x, is multiplied by a constant, a:

so that:

and:

Any letter can be used as a subscript. For example,

Observations arranged in rows and columns are usually described by two subscripts:
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12.5 14.3 11.5 8.2
6.1 12.1 15.3 14.4

10.2 11.3 13.6 14.8

In general:

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34

The sum of these values is:

and their sum of squares is:

In general:

where r = number of rows and c = number of columns.
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acceptance region: the range of values for a sample statistic where the null hypothesis
is not rejected.

addition rule: a probability rule based on the union of events. For two events A and
B, the addition rule is denoted by: P(A∪B) = P(A) + P(B) – P(A∩B).

alternative hypothesis: a statement which is contradictory to the null hypothesis,
denoted by H1.

arithmetic average: see mean.
attribute charts: statistical process control charts used for monitoring attribute data,

including p charts.
attribute data: in statistical process control, production-related data that require an

operational definition of acceptable and defective products.
average: see mean.

bar graphs: graphical tools used to present information summarized in categorical
frequency distributions or ungrouped frequency distributions created for discrete
variables. Since the horizontal axis is not a continuous random variable, the bars
do not touch each other.

Bayes’ Theorem: a logical proposition used to solve conditional probability problems
that generally occur in reverse order of time. Bayes’ Theorem gives the
conditional probability of the random variable A given B in terms of the
marginal probability distribution of A alone and the conditional probability
distribution of variable B given A.

bias: the amount by which a sample estimate systematically under/over-estimates the
true value of a parameter. Bias can occur, for example, when equipment used for
recording measurements are not calibrated properly.

bimodal: a population or sample with two modes.
bivariate distribution: see joint probability distribution.
bivariate frequency distribution: the joint, simultaneous distribution of two variables.
bivariate normal distribution: a joint statistical distribution of two random variables

which may or may not be correlated, and where each has a normal marginal
distribution.

blocks: groups of smaller, more uniform experimental units used in experimental
designs if the experimental units, area, time or material are not homogeneous.

blocking: see blocks.

categorical frequency distributions: frequency distributions used to place qualitative,
ordinal or nominal level variables into specific categories.

categorical variables: see qualitative variables.
Central Limit Theorem: one of the most important theorems in statistics, formalizing

the relationship between a specific parameter of a population and its estimate
(statistic). This theorem posits that when the sample size (n) is sufficiently large
(n ≥ 30), the sampling distribution of sample means approaches a normal



distribution with a mean equaling the population mean and the standard
deviation equaling the standard error of the mean.

Chebyshev’s Theorem: a theorem which can be applied to samples or populations of
any kind, and states that at least the fraction (1 − 1/k2) of the observations must
lie within k standard deviations of the mean, regardless of the shape of the
distribution of the data (where k is any constant greater than one).

chi-square (χ2) distribution: a positively skewed, positive-valued distribution that
describes the sampling distribution of the variances. It has a mean of n – 1 and
approaches the normal distribution at larger sample sizes.

circular permutation: the number of permutations of n distinct subjects positioned in
a circle, denoted by Pc.

class boundaries: the values occurring halfway between the upper class limit of one
interval and the lower class limit of the next interval in a frequency distribution.

class frequency: the number of observations that fall in a particular class in a
frequency distribution.

class intervals: see classes.
class limits: the smallest and largest possible values that can fall into a given class in a

frequency distribution.
class mark: see class midpoint.
class midpoint: the average of the upper and lower class limits, or upper and lower

class boundaries, of a class in a frequency distribution.
class width: the difference between the upper and lower class boundaries of a given

class in a frequency distribution.
classes: the various bounded groupings (generally with similar intervals) defined for a

frequency distribution within which data observations are placed.
classical probability: probability calculated as the ratio of the number of outcomes

favourable to a particular event versus the number of possible outcomes in a
sample space.

coefficient of variation: the standard deviation expressed as a percentage of the mean.
collectively exhaustive: a quality of events where the sum of the probabilities for all

possible events in the sample space equals unity.
combination: the number of possible outcomes when order is not important. Commonly
denoted by or nCr and often stated as ‘n choose r’.

complement: the event containing all the elements of the sample space that are not
contained in the event. The complement of B is denoted by B�.

completely randomized design: the simplest of the experimental designs wherein
treatments are randomly assigned to each experimental unit (in time or space).

compound event: an event that consists of two or more simple events.
conditional distribution: the distribution of a random variable given that other

variables have certain specified values. 
conditional probability: a redefined sample space, where a given event, B, has

occurred, and we are interested in understanding the effect of this information on
the probability of event A occurring. The conditional probability of event A given
that event B has occurred is denoted by P(A|B).

confidence interval: for a given confidence level (or degree of confidence), the interval
between the lower confidence limit (LCL) and upper confidence limit (UCL). See
confidence limits.

r
n( )
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confidence level: the quantity, (1 – α)100%, which describes the degree of statistical
certainty that can be attached to an observed statistic. The most frequently used
values of α are 0.10, 0.05 and 0.01, resulting in 90%, 95% and 99% confidence
intervals, respectively.

confidence limits: upper (UCL) and lower (LCL) bounds of the interval where the
probability of finding the true parameter, θ, is set at a confidence value, 1 – α. The
probability that we will find the true population parameter between LCL and
UCL is 1 � α: P(LCL < θ < UCL) = 1 – α.

consistent: a quality of an estimator such that as the sample size, n, approaches infinity,
the value of the estimator approaches the value of the population parameter. An
unbiased estimator is consistent if, as n → ∞, var (θ̂) → 0 and θ̂ → θ.

continuity correction: a constant applied to a random variable (usually equal to half
of the unit of measurement for continuous variables).

continuous random variable: a random variable defined over a continuous sample
space, where the probability of any exact value is always zero.

continuous sample space: a sample space that contains an infinite and uncountable
number of outcomes.

continuous variable: a quantitative variable that can take on all possible values over a
specific interval.

control chart: a graphical device used in statistical process control to determine
whether a production process is in or out of control based on sampled data.

control chart constants: conversion and correction factors used in the production of
statistical process control charts.

corrected sum of squares: a measure of spread equal to the sum of squared deviations
of each observation from the mean, so named because each observation is
‘corrected for’ the mean before it is squared. 

covariance: the measure of joint variation between two random variables. Covariance
may be zero (when two random variables are independent), positive (when the
value of the variables increases together), or negative (when the value of one
variable increases, the value of the other variable decreases).

critical region: the range of values for a sample statistic where the null hypothesis is
rejected.

critical value: a selected arbitrary value along a statistical distribution, below or above
which the null hypothesis is rejected.

cumulative frequency: the frequency of all observations less than a particular value of
a random variable (for a frequency distribution, the upper class boundary of a
given class). Often referred to as the ‘less than frequency’.

data: pieces of information collected on subjects or items from a population that form
the building blocks of statistics.

deciles: divisions of the frequency distribution into ten equal groups that correspond
to the 10th, 20th, ....., and 90th percentiles.

degree of confidence: see confidence level.
degrees of freedom: the number of unrestricted observations used to calculate a

statistic.
dependent populations: random variables that occur in pairs and where the response

value of one variable is at least partly a function of the response of the other.
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dependent samples: sampled observations that occur in pairs and where the response
value of one sample is at least partly a function of the response of the other.

descriptive statistics: a branch of statistics dealing with the collection, organization
and presentation of information, and the calculation of some measures (statistics)
which describe the information.

discrete random variable: a random variable defined over discrete sample space. 
discrete sample space: a sample space that contains a finite number of elements. A

discrete sample space can be unending, but countable.
discrete variables: quantitative variables which take on whole numbers only and

usually result from counting (tallying) items.
disjoint: see mutually exclusive.
distribution-free tests: see non-parametric tests.

efficient: the quality of the unbiased estimator of a given parameter, θ, having the
smallest variance.

element: a single outcome of an experiment within a given sample space.
empirical probability: the likelihood of an event happening based on experiments for

which all possible outcomes and the number of outcomes favouring the event are
not known exactly, but have generally been observed.

Empirical Rule: a rule which states that approximately 68%, 95% and 99.7% of the
observations from a normal distribution will lie within one, two or three
standard deviations of the mean, respectively.

estimate: see point estimate.
estimation: the process of estimating the values of parameters based on measured or

empirical data.
estimator: a function used to estimate an unknown parameter from observed data.
event: a subset or portion of the elements in a sample space.
expected value: the theoretical mean of a probability distribution, denoted by E(X),

interpreted as the long-term average that is ‘expected’ if an experiment is
conducted repeatedly.

experimental design: a means of collecting data in which one or more of the factors
affecting the variable(s) of interest are controlled, with the purpose of
investigating how these controlled factors affect the variable(s) of interest.

experimental error: the pooled variation among experimental units receiving the same
treatment in an experimental design.

experimental study: see experimental design
exponential distribution: the continuous counterpart to the Poisson distribution. The

exponential distribution describes the elapsed times between occurrences of
consecutive events as a function of the mean elapsed time.

F distribution: a distribution which describes the ratio of two independent χ2-values,
where each is divided by its degrees of freedom. There exist many such curves,
but each is positively skewed and positive-valued.

finite population: a population consisting of a fixed, countable number of elements,
which can be, if necessary, listed.

finite population correction factor: a multiplicative adjustment used in the calculation
of the standard error of the mean when the sample size is large relative to the
population size, specifically when n < 0.05N.
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frequency distribution: a systematic arrangement of data to describe a variable, where
observations (raw data) are ordered or grouped into classes, and the frequency of
observations is tallied and presented in tabular form. Frequency distributions can
be categorical, ungrouped, or grouped.

frequency polygon: a graphical display of a frequency distribution constructed by
plotting frequency (or relative frequency) against class mark (or value of the
random variable in the case of ungrouped data), and then joining each point by a
sequence of line segments. To close the polygon, an ‘imaginary’ class midpoint
with zero frequency is added to both ends of the distribution.

geometric distribution: a discrete probability function which possesses all the properties
of a binomial experiment except that trials are repeated until the first success occurs.
The geometric random variable, X, represents the number of repeated independent
trials required to produce the first success, the probability of which is p.

geometric experiment: see geometric distribution.
geometric mean: a special form of the mean that is used for ratio data like population

growth, rates of change, economic indicators, etc. The geometric mean of n
observations is the nth root of the product of the n observations.

grand mean: a special application of the weighting procedure used to find the overall
combined mean of several groups of data when the mean of each individual
group is known.

grouped frequency distribution: a frequency distribution usually used to summarize
continuous (interval or ratio scale) variables.

H-test: see Kruskal-Wallis test
harmonic mean: a special form of mean used for data where one element remains

constant but another changes. The harmonic mean is calculated as the reciprocal
of the mean of the reciprocals of the individual values. 

histogram: a graphical tool for presenting the grouped frequency distribution of a
continuous variable. Like a bar graph, the middle of each bar is the class
midpoint; however, histograms do not contain spaces between bars so that bars
touch at class boundaries.

hypergeometric distribution: a discrete probability distribution that has two possible
outcomes, but where the probability of subsequent events are dependent upon
previous outcomes. In other words, the probability of success from trial to trial is
not constant and the successive trials (made without replacement from a finite
population) are not independent.

hypothesis: a statement or claim made about a parameter or a certain characteristic of
a population.

hypothesis testing: a procedure in applied statistics for determining whether a statement
or claim made about a parameter or a certain characteristic of a population is
plausible, based on some sample data collected from the population.

independence: two events are statistically independent if the probability of one event
is not affected by the occurrence or nonoccurrence of the other event.

independent populations: two populations are statistically independent if the
distribution of values in one population is not affected by the values in the other
population.
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inferential statistics: a branch of statistics dealing with the generalization of information
obtained in a sample to an entire population. Common procedures include
estimation, hypothesis testing, determining relationships and prediction.

infinite population: a population where (in theory) there is no limit to the number of
possible observations (or measurements). In sampling, the word ‘infinite’ is used
rather loosely and is used to refer to a population with a large number of possible
measurements.

intersection: for two events, A and B, the event that contains all the elements common
to both A and B. The intersection is denoted by A∩B.

interval estimate: see confidence interval.
interval estimation: the process of determining a confidence interval; that is, an

interval within which we expect to find the unknown population parameter.
interval scale: a scale of measurement with the same properties as the ordinal scale,

but where the data are always quantitative and the differences between data
values are meaningful.

inverse cumulative frequency: the frequency of all values greater than a particular
value of a random variable (for a frequency distribution, the lower class
boundary of a given class). Often referred to as the ‘more than frequency’.

inverse relative cumulative frequencies: inverse cumulative frequencies expressed as
percentages (or proportions) of the total frequencies.

joint probability distribution: for two random variables, X and Y, the probability
distribution of X and Y together.

joint probability function: joint probability expressed as a function of the random
variables X and Y. The function is denoted by f(x,y), which represents the
probability that X assumes the value x at the same time Y assumes the value y.

Kruskal-Wallis test: a non-parametric test used to compare three or more unknown
population means.

Latin square design: an experimental design used when the natural variation between
experimental units cannot be reduced by simple blocking alone and the variation
of the experimental units are removed in two directions.

layout: the placement of treatments on experimental units in an experimental design.
level of significance: the size of type I error (α). The value is arbitrary in that it is

selected by the person carrying out the statistical test, but 0.1, 0.05 or 0.01 are
generally used.

lower class limit: the smallest possible value that can fall into a given class in a
grouped frequency distribution.

lower confidence limit (LCL): see confidence limit.
lower control limit: the lower limit on a statistical process control chart, beyond

which production processes are said to be out of control.
lower warning limit: a lower limit on a statistical process control chart which is used

to draw attention to potential production-related problems.

Mann-Whitney U-test: see Wilcoxon rank sum test.
marginal probability: the probability of some event, regardless of the outcome of

other events. For a joint probability distribution f(x,y), the marginal probability
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f(x) results from constructing a probability distribution for X over all possible
values of Y.

mathematical expectation: see expected value.
mathematical expectation of a random variable: see population mean of a random

variable.
mean: a measure of central tendency that is calculated by dividing the sum of the

observations by the number of observations.
mean deviation: a measure of variation, calculated as the average of the absolute

values of the deviations of each of the observations from the sample or
population mean.

mean of a random variable: the weighted average of all possible outcomes of a random
variable, where the weights are the probabilities of the respective outcomes.

mean square: see variance.
median: the middle value when a set of observations is arranged in increasing or

decreasing order of magnitude, dividing the frequency distribution into two
equal groups and corresponding to the 50th percentile. The median is the
preferred measure of central location when extreme values are present.

midrange: a measure of central tendency defined as the average of the minimum and
maximum values.

mode: a measure of central tendency defined as the most frequently occurring value in
a sample or a population. Some data sets may have more than one mode (e.g.
when several values occur with the greatest frequency) and others may have no
mode at all.

multimodal: a population or sample with more than two modes.
multinomial distribution: a discrete probability distribution having all the properties

of a binomial distribution, except that more than two outcomes are possible from
each trial.

multiplication rule: a counting rule used to calculate the total number of outcomes for
a sample space or event. The rule states that if a random experiment has a
sequence of two steps, in which there are n1 possible outcomes for the first step
and n2 for the second, the total number of outcomes is the product of the two
numbers (n1 � n2).

multivariate hypergeometric distribution: a probability distribution having all the
properties of a hypergeometric distribution, except there are more than two
possible outcomes.

mutually exclusive: a quality ascribed to two or more events which have no common
intersecting elements (i.e., when one event occurs the others cannot). For two
mutually exclusive events, A and B, A∩B = ∅.

negative binomial distribution: a discrete probability distribution which is an
extension of the binomial and geometric distribution, describing the situation
where trials are repeated until a fixed number of successes, k, occurs.

nominal scale: a scale of measurement where numbers or categories are used to
classify, name or label an individual or attribute, but the numbers or categories
have no specific order or importance.

non-critical region: see acceptance region.
non-parametric test: a statistical test that makes no assumptions about the distribution

or the parameters of the distribution from which observations are drawn.
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non-sampling error: errors arising during the course of data collection that are not
due to sampling. This includes errors from non-responses, improper coding,
instrument miscalibration, etc.

normal distribution: a continuous, symmetrical, bell-shaped distribution whose shape
and position are determined by the mean and standard deviation. Many of the most
important theories in statistical inference are based on the normal distribution, also
often referred to as the Gaussian distribution or the Laplacian distribution.

null hypothesis: a statement about a characteristic of the population assumed to be
true, denoted by H0.

null space: an event containing no elements in a given sample space.

observational study: a study where investigators observe without altering or
influencing the variable under study.

odds: a term used in subjective probability, often seen in gambling, sporting events,
and horse racing, which refers to the ratio of the probability of an event
occurring versus the probability of the event not occurring.

ogive: a graphical tool representing cumulative or inverse cumulative frequencies,
plotted in a similar manner to a frequency polygon. The cumulative frequencies
are plotted against the upper (cumulative) or lower (inverse cumulative) class
boundaries and joined by line segments. Also known as a cumulative frequency
or inverse cumulative frequency graph.

one-tailed tests: a hypothesis test which can be refuted in only one direction, i.e., the
inequality in the alternative hypothesis is generally ‘less than’ or ‘greater than’
some value.

open class: in a grouped frequency distribution, when the first (or last) class has no
lower (or upper) limit, to accommodate a very few (one or two) extreme
observations in the data set.

operating characteristic (OC) curve: a curve describing how the values of � (the
probability of ‘accepting’ the null hypothesis when it is false) change over a range
of values of µ, n and/or α.

ordinal scale: a scale of measurement similar to the nominal scale, but where the order
or rank of the categories is meaningful.

outcome: the result of an experiment.
outliers: extreme values in a data set.

p chart: an attribute control chart used in statistical process control for monitoring
the sample proportion of defective products.

p-value: the smallest level of significance at which H0 will be rejected. Depending on
the direction of the test, the p-value indicates the probability of obtaining a value
in the sampling distribution of the test statistic less than or greater than the
calculated test statistic.

parameters: the characteristics of a population, usually denoted with Greek letters
(e.g. µ, σ).

parametric tests: statistical testing methods that use values which uniquely define a
probability distribution and involve testing estimates of parameter values.

percentile: a measure indicating the position of an observation within a data set (not
the same as a percentage). In general, the pth percentile is the value such that p
per cent of the items in the data set fall at or below that value.
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permutation: the number of possible outcomes when order is important. Commonly
denoted by nPr.

permutation of similar objects: a special kind of permutation used when some of the
objects, among the n objects, are not distinguishable.

pie chart: a graphical presentation of a variable relative to a totality using a circle
divided into sectors representing each category’s frequency proportional in size to
the total. 

point estimate: a single numeric estimate of a population parameter calculated from
the information in a sample.

point estimation: see point estimate.
Poisson distribution: a discrete probability distribution describing independent events

that occur in a fixed time (or space) with a known average rate.
Poisson experiments: a series of trials or tests where the variable of interest follows a

Poisson distribution.
population: the entire collection of items/subjects possessing certain common

characteristics about which information is being sought.
population mean: the mean of all elements in a population.
posterior probabilities: reversed conditional probabilities used in Bayes’ Theorem.
power of a test: the probability that a test will reject the null hypothesis when it is in

fact false.
prediction: the value of the dependent variable obtained from a regression equation

using a particular value of the independent variable.
prior probability: a conditional probability based on previously observed frequencies

in a sample space or event.
probability: (i) the branch of mathematics incorporating the most important set of

concepts used in statistics; (ii) the measure of likelihood of the occurrence or
nonoccurrence of an event. The probability of an event, A, is denoted by P(A)
and can be classical, empirical, or subjective.

probability density: a function associated with a probability distribution that specifies
how the values of a random variable are distributed over its possible range.

probability distribution: for a given random variable, the list of all possible outcomes
and their associated probabilities.

probability function: a formula (or mathematical expression) expressing probabilities
associated with given values of a random variable.

properties of probability: (i) for any given event A, the probability of A must be
between zero and one; (ii) the sum of the probabilities of all possible events in a
sample space must equal one; and (3) the sum of the probabilities of A and its
complement, A�, must equal one.

qualitative survey methods: behavioural survey methods which are exploratory in
nature and are generally used to gain insight into a research problem or for
theory development.

qualitative variables: variables which can be placed into distinct categories according
to some characteristic.

quality control: see statistical process control.
quantitative survey methods: behavioural survey methods which employ rigorous

sampling methods and make it possible to draw inferences about populations.
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quantitative variables: variables which are numerical in nature and indicate ‘how
many’ or ‘how much’ or ‘how big’ on a numeric scale.

quartiles: percentiles which divide a frequency distribution into four equal groups
corresponding to the 25th, 50th, and 75th percentiles.

R chart: a variable control chart used in statistical process control for measuring and
monitoring sample ranges.

random number: a number that is determined entirely by chance from some specified
distribution, without bias and without correlations between successive numbers.

random variable: a variable whose value is determined by the outcome of a random
experiment, denoted by capital letters, such as X, Y or Z.

randomized complete block design: an experimental design wherein each treatment is
applied to one experimental unit within each block, and treatments are randomly
allotted to the experimental units independently within each block.

range: the simplest measure of variation, calculated as the difference between the
highest and lowest values in a data set. 

ratio scale: a scale of measurement similar to the interval scale, but where zero means
‘none’, and therefore, the ratio of two variables becomes meaningful.

rejection region: see critical region.
relative cumulative frequencies: cumulative frequencies expressed as percentages (or

proportions) of the total frequencies.
replication: applying the same treatment to more than one experimental unit within

an experimental design.
response variable: the variable of interest in an experimental design.
runs rule: a systematic procedure used in statistical process control to determine whether

a process is out of control based on a pattern of consecutive measurements.
runs test: a non-parametric method for testing if observations are drawn in random

order.

S chart: a variable control chart used in statistical process control for measuring and
monitoring sample standard deviations.

sample: a portion or subset of the population.
sample mean: the mean of all elements measured in a sample.
sample point: see element.
sample space: an event containing all possible outcomes of an experiment, denoted by (S).
sample survey: collection of information from a population through interviews or the

application of questionnaires to a sample from the group.
sampling: the collection of data from a subset of the population leading to prediction,

or inferences about the entire population. There is no attempt to control the
variable(s) of interest, rather a given situation is merely observed.

sampling distribution: the probability distribution of a statistic, e.g., a sample mean,
the difference between two means, a sample proportion, the difference between
two proportions, a single variance, or the ratio of two variances.

sampling distribution of the differences between two means: the probability
distribution for the random variable describing the differences between two
independent sample means.

sampling distribution of the mean: the probability distribution for the random
variable describing sample means.
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sampling distribution of the statistic: see sampling distribution.
sampling error: uncertainty which occurs because observations arising from samples

tend to deviate from one sample to another (a natural consequence of taking
samples).

sampling with replacement: selection from a population such that each element can
appear in the sample as often as it is selected (the element is replaced every time it is
sampled). If a sample is selected with replacement, there are Nn possible samples.

sampling without replacement: selection from a population such that each element of
a population can only be selected once (the element is not replaced when it is
sampled). If a sample is selected without replacement, there are NCn possible
samples.

scale of measurement: a classification that refers to the nature of information
contained within a random variable and indicates what types of statistical
analyses are appropriate, e.g., nominal ordinal, interval, or ratio scales.

shape: a quality of a distribution described by its frequency histogram or bar graph.
In the case of a Normal distribution, shape is defined by the variance, σ2 (or
standard deviation, σ).

sign test: a non-parametric test of the median value of a single population that uses
plus and minus signs to identify differences between observations and their
median.

significance level: see level of significance.
simple event: an event which contains only one element of a sample space.
simple random sample: see simple random sampling.
simple random sampling: a sample selection method in which observations are drawn

randomly from a population and each sampling unit (or group of sampling units)
has the same probability of being chosen.

skewed: a quality of a frequency distribution that lacks symmetry with respect to a
central vertical axis through the distribution. Frequency distributions may be
skewed positively (i.e., have a long right tail) or negatively (i.e., have a long left
tail).

Spearman’s rank correlation test: a non-parametric test used to test the significance of
a sample correlation coefficient based on ranks known as Spearman’s rank
correlation coefficient.

standard deviation: a measure of variation in the same units as the original
observations (and the mean) which is the square root of the variance, denoted by
σ or σx from a population and s or sx from a sample.

standard error of the mean: the standard deviation of the sample means for a given
sample size.

standard error of the statistic: the standard deviation of a statistic for a given sample
size. It measures the spread of all possible values of a statistic.

standard normal distribution: a normal distribution with a mean of zero and variance
of one. A random variable, X, is transformed into a standard normal random
variable, Z, in order to use standard normal probability tables.

standard score: the relative position of an observation within a particular data set
expressed in terms of the mean and standard deviation.

statistical estimation: see estimation.
statistical hypothesis: see hypothesis.
statistical inference: see inferential statistics.
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statistical process control: statistical procedures for measuring production-related
metrics and monitoring them on control charts.

statistical quality control: see statistical process control.
statistics: (i) the science of collecting, organizing, analysing and interpreting

information; (ii) numbers that describe characteristics of a sample from a
population. Statistics are usually denoted with Roman letters (e.g., x, p).

stratified random sampling: a sampling method in which the sampling units
(individual measurements) in a population are grouped together to form a
stratum on the basis of similarity of some characteristic or characteristics and
each group or stratum is treated as an individual population.

Student’s t distribution: see t distribution.
Sturges’ Rule: a formula used to determine the number of classes in a grouped

frequency distribution.
subjective probabilities: probabilities based solely on an individual’s experiences, or

‘educated guesses’, and not substantiated by exact scientific evidence.
subset: a group of elements, C, that are also elements of another (larger) event, A.

When C is a subset of A, it is denoted by (C ⊂ A).
sum of squares of the deviations from the mean: see corrected sum of squares.
symmetric: a quality of a distribution where a central vertical axis separates the

distribution into two identical (mirror image) or near-identical parts.
systematic sampling: a sampling method in which the sampling units are numbered

from 1 to N, and n units are selected using a regular interval.

t distribution: the probability distribution of Student’s t statistic. The t distribution is
a symmetrical (about zero), bell-shaped curve. Its standard deviation depends on
the sample size, and will always be somewhat higher than one.

test of hypothesis: see hypothesis testing.
test statistic: a statistic computed from sample data which is compared to a critical

value to determine the outcome of a hypothesis test.
treatments: factors that are controlled or kept at fixed levels in order to estimate their

effect in experimental designs.
tree diagram: a systematic procedure for graphically listing all possible outcomes in a

sample space or an event.
trimmed mean: a special form of the mean, calculated after removing the upper and lower

5% of the ranked data, used in cases when very small or large values are apparent.
two-stage sampling: sample selection which takes place in two distinct phases. First

primary units are selected which are divisible into multiple secondary units, then
samples are selected from these secondary units.

two-tailed tests: a hypothesis test which can be refuted in two directions, i.e, the
inequality in the alternative hypothesis is generally ‘not equal to’ some value.

type I error: the probability of rejecting H0 when it is true, denoted by α . The value of
α is decided on by the person conducting the test and is equal to the area under
the curve in the rejection region.

type II error: the probability of not rejecting (‘accepting’) H0 when it is false, denoted
by �. The value of � is rarely known to us because its value depends on
knowledge that we generally do not possess, namely the true value of the
population parameter, sample size and the size of 
 (level of significance).

398 Introductory Probability and Statistics



unbiased: the quality of a sample estimator when the mean of its sampling distribution
is equal to the population parameter. An unbiased estimate of the true population
parameter occurs when E(θ̂) = θ.

ungrouped frequency distributions: frequency distributions used to summarize
discrete quantitative variables using each unique value of the random variable.

uniform distribution: a discrete or continuous probability distribution whereby the
probability of every outcome is the same.

uniform probability distribution: see uniform distribution.
uniform random variable: a random variable which follows a uniform distribution.
union: for two given events, A and B, the event that contains all of the elements in A

or in B, including elements common to both. The union is denoted by A∪B.
upper class limit: the largest possible value that can fall into a given class in a grouped

frequency distribution.
upper confidence limit (UCL): see confidence limit.
upper control limit: the upper limit on a statistical process control chart, beyond

which production processes are said to be out of control.
upper warning limit: an upper limit on a statistical process control chart which is used

to draw attention to potential production-related problems.

variable charts: statistical process control charts used for monitoring variable data,
including X

–
charts, R charts and S charts.

variable data: in statistical process control, measured quantitative production-related
data.

variance: a measure of variation equal to the corrected sum of squares divided by its
degrees of freedom.

variance ratio test: a statistical test that determines if the ratio of two variances is
significantly different from a constant, usually one.

Venn diagram: a picture of events as they relate to each other within a sample space,
especially useful where compound (multiple) events are concerned. The sample
space is shown as the interior of a rectangle and the events are identified (often as
circles) as specified regions inside the rectangle.

weighted mean: a special formulation of the arithmetic mean used to find the average
of a number of values, attaching more importance to some values than to others
by assigning different weights to the n observations (representing their relative
contribution to the overall average).

Wilcoxon rank sum test: a non-parametric test for comparing two unknown
population means.

Wilcoxon signed rank test: a non-parametric test of the median value of a single
population that uses plus and minus signs to identify differences between
observations and their median.

X
–

chart: a variable control chart used in statistical process control for measuring and
monitoring sample means.

Z distribution: a standard normal distribution.
Z-transformation: see standard normal distribution
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addition rule 46–48, 80
analysis of variance (ANOVA) 251–274

for completely randomized design 282
defined 251–252
equality of variance 265–266
for factorial experiments 286
Kruskal–Wallis test 296–297
for Latin square design 284–285
multiple comparisons 257, 261–265,

271
one-way 252–261

assumptions 259
balanced 252–257
confidence intervals 259–260
multiple comparisons 257
unbalanced 257–259, 258, 259

for randomized complete block design
273–274, 283

for regression 225–228
two-way 266–274, 271

defined 266
interaction absent 273
interaction present 268, 270–273,

272
multiple comparisons 271

two-way versus multiple one-way
analyses 273

attribute charts 312–313
attribute data, defined 307–308

bar and stick graphs 14–15, 15, 63, 63
Bartlett’s test 265–266
Bayes’ Theorem 53–55
bias 112, 147, 279, 280
binomial distributions 80–83, 106

mean and variance of 83
negative binomial distribution 87–88
normal approximation to 104–107
Poisson approximation to 89, 107
for sample proportions 123–125
in sign test 288–289

binomial experiments, defined 81
bivariate distributions 13–14, 14, 65–66,

71–72
blocks, defined 282
Bonferroni’s Procedure 262–263

categorical variables 4, 9–10, 287
Central Limit Theorem 118–119, 148, 230
central location, measures of 19–22
Chebyshev, Pafnuty 26
Chebyshev’s Theorem 26, 27, 70
chi-squared (�2) distribution 136–137, 137,

138, 163–165, 164
chi-squared (�2) test statistic

in Bartlett’s test 265–266
in contingency tests 208–209
in goodness-of-fit tests 201–206, 203
in Kruskal–Wallis test 296
as non-parametric test 288
for variance estimates 184–185, 184

coefficient of determination (r2) 228–229,
242

coefficient of variation (CV) 28–29
combinations 39, 42–44, 81n, 87n
complement 37, 37, 82
complement law 82
completely randomized design 281–282, 282
compound events 36–38, 37, 38, 47, 50
computational equations, defined 25
confidence intervals

for ANOVA mean differences 261
for ANOVA means 259–260
confidence limits 148
for differences between proportions

162–163
for differences between two means

157–162
estimation of 148–149
for interaction means 272
of regression coefficients 231–233, 233
for sample means 149–153, 151



confidence intervals continued
and t and z tests, compared 180
for variance estimates 163–165
for variance ratios 165–167

confidence limits 148
consistency, of estimators 148
contingency tests 206–212
continuity correction 105, 119, 125, 211
continuous probability distributions see

probability distributions, continuous
continuous variables 4, 10–14, 15, 16

see also probability distributions,
continuous

control chart constant 309, 311
control charts 305–313, 306, 307, 308
control limits 305, 306–307, 309, 310–311,

312
correlation 217, 229–230, 239–240,

300–301
see also coefficient of determination (r2);

regression
covariance 71–72
critical regions see tails, in hypothesis tests
curvilinear regression see regression: non-

linear models

D
–

distribution 132–134
de Moivre, Abraham 96
decile, defined 30
degrees of freedom

for ANOVA
confidence intervals 259, 261
one-way 255, 256
regression analysis 226
two-way 268, 268

for contingency tests 208–209
for correlation t test 230
defined 24–25
for F distribution 139, 140
for goodness-of-fit tests 202, 204, 206
for lack of fit tests 237
for regression analysis 226
for t distribution 121, 129
see also sample size

dependent variables 218, 281
descriptive statistics

defined 1
in graphs 14–19
measures of central location 19–22
measures of position 29–30
measures of variation 23–29
in tables 9–14

discrete variables 4, 10, 14–15
see also probability distributions, discrete

distribution-free tests see non-parametric tests

efficiency 147–148, 287, 310
elements, defined 2, 35
Empirical Rule 26–27, 27, 28, 103–104,

120, 228, 242
error sum of squares, defined 255
estimation 147–167

of differences between means 157–162
of differences between proportions

162–163
estimates versus estimators 147
of the mean 149–155
point estimation 147–148
of proportions 155–157
of regression parameters 218–224
of variance 163–165
of variance ratios 165–16
see also confidence intervals

events
collectively exhaustive 53
compound 36, 37, 37, 38, 47, 50
defined 36
disjoint or mutually exclusive 38, 38,

46–48, 53
frequencies and probabilities 39–44,

80, 81n, 82, 87n
independent 49, 50–51, 52
null space 36
sample space 35–39, 37, 61–62
types of 36–39, 37

experimental designs 5, 280–286
in ANOVA 251, 282, 283, 284, 286
completely randomized design 281–282
factorial experiments 285–286
Latin square 283–285
power of tests 177–178
randomized complete block design

282–283
experimental error 281, 282, 283, 284–285,

284
experimental units, defined 281
experiments, types and definitions 5, 35, 81,

83–84, 277
see also experimental designs

exponential distribution 95–96, 95, 244

F distribution
relationship to t 234
sampling distribution for variance ratios

138–140, 138, 139, 140,
165–167, 165, 194
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F (test statistic)
in ANOVA 256, 268–269
in hypothesis tests for variance ratios

192–196
in lack of fit tests 236–239
in regression analysis 226–228,

241–243
Scheffé’s Method 263–265
two-tailed tests 194–195, 194

factorial experiments 285–286, 285
finite population correction factor 118
Fisher, Ronald 138, 227
Fisher–Irwin exact test 212
frequency distributions 9–19

bimodal or multimodal 22
bivariate 13–14, 14
categorical 9–10, 10, 201–212
contingency tests 206–212
goodness-of-fit 201–206
grouped 10–14, 11, 13, 16

class boundaries 10–11, 12–13
class frequency 11
class limits 10, 12–13
class mark (midpoint) 11–12, 13
class width 11, 12
contingency tests 209–210
cumulative, inverse and relative

cumulative 13, 14
goodness-of-fit 201
open classes 11
weighted mean 20–21
weighted variance 28

relative frequencies 15, 16
skewness and symmetry 17–19, 19
ungrouped 10, 10
see also specific frequency distributions

Gauss, Karl 96
Gaussian distribution see normal

distribution
geometric distribution 87
goodness-of-fit tests 201–206

see also lack of fit tests
Gosset, William 121
graphs 14–19

bar and stick 14–15, 15, 63, 63
cumulative and inverse cumulative

frequency (ogives) 16–17, 18
frequency distributions and polygons

16, 17–19, 17, 19
histograms 15, 16, 63
number of classes 18–19
pie charts 16, 17

scatter plots 218–219, 219, 220, 221,
244

see also frequency distributions;
probability distributions,
continuous; probability
distributions, discrete

group effects (�i), for ANOVA 252–253,
255, 267

histograms 15, 16, 63
H-test 296–297
hypergeometric distribution 84–87
hypotheses, null and alternative 173–179

ANOVA
one-way 252, 253, 256
two-way 269

Bartlett’s test 265
contingency tests 208
correlation coefficients 230, 300
goodness-of-fit tests 201
Kruskal–Wallis test 296
lack of fit 237
regression analysis

multiple 241
simple linear 225, 226–227,

233–236
runs test 297
sign test 288
tests of means 179, 185
tests of proportions 182, 191
tests of variance ratios 193, 194
tests of variances 184
Wilcoxon rank sum test 293
Wilcoxon signed rank test 291

hypothesis testing
assumptions and procedures 173–179
one-tailed and two-tailed tests 102,

175, 176, 178, 178, 179,
194–195, 196, 202

testing distributions 201–212
see also specific test statistics

iid N(0,�2), defined 225
inferential statistics see statistical inference
interaction, in two-way ANOVA (�ij) 268,

270–273, 272
intersections 36–37, 38, 38, 47, 50
interval estimation see confidence

intervals

joint distributions see bivariate
distributions
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Kruskal–Wallis test (h) 296–297

lack of fit tests 236–239, 236, 239
Laplace, Pierre 96
Laplacian distribution see normal

distribution
Latin square design 283–285, 284
layout 281–282
least squares method, in regression analysis

221–223
Likert scale 280
linear regression see regression

Mann–Whitney U-test (U) 293–295
margin of error (E) 149, 153–157

see also confidence intervals
marginal probabilities 66
mean (�)

of binomial distribution 83, 105
confidence intervals in ANOVA 259
of continuous uniform distribution

93–94
defined 19–20
of differences between means 126
estimation of 149–155, 259
as expected value 66–69
of exponential distribution 95–96
of hypergeometric distribution 85–86
hypothesis tests 179–181
of normal distribution 96–98
of Poisson distribution 88–89
of random variable 66–69
rules for 72–73
of sampling distribution of the mean

115, 117, 118
of Z distribution 99
see also means, differences between;

sample mean (x–)
mean deviation 23–24
mean, of sample see sample mean (x–)
mean separation test see multiple

comparisons
mean square 25–26, 227, 255–256, 268

see also analysis of variance (ANOVA);
variance (�2)

means, differences between
estimation of

dependent populations 161–162
independent populations 157–161

hypothesis tests
dependent populations 189–190
independent populations 185–189

in one-way ANOVA 260–261
sampling distribution of 125–134, 127

dependent populations 132–134
independent populations 125–132

sign test 288–291
Wilcoxon rank sum test 293–295
Wilcoxon signed rank test 291–293
see also analysis of variance (ANOVA);

Kruskal–Wallis test (h); multiple
comparisons; t (test statistic)

measurement scales 4–5
see also variables

median 22, 30, 98, 288, 291
midrange 22
modes and modality 22, 98
multinomial distribution 83–84
multiple comparisons 257, 261–265, 271
multiple regression 217–218, 240–243, 242,

246
multiplication rule 39, 40–41, 50–52, 80

negative binomial distribution 87–88
non-parametric tests

advantages and disadvantages of
287–288

Kruskal–Wallis test (H-test) 296–297
runs test 297–300
sign test 288–291
Spearman’s rank correlation test

300–301
Wilcoxon rank sum test

(Mann–Whitney U-test)
293–295

Wilcoxon signed rank test 291–293
see also chi-squared (�2) test statistic

non-sampling error 112
normal distribution 96–104, 97, 99, 101,

102
approximation to binomial 104–107
Empirical Rule 26–27
goodness-of-fit test for 205–206
mean and variance of 96–98
probability as area under curve 98, 98
properties of 98
z transformation 98–104
see also tails, in hypothesis tests; 

Z distribution
normal equations, defined 240
null space 36

observation, defined 2
observational studies 5, 277

see also sampling designs
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odds see probability
ogives 16–17, 18
operating characteristic 178
outcomes 35, 39–44, 81–82
outliers 22, 23, 218–219, 219

p charts 312–313
p-values 196

see also tails, in hypothesis tests
paired samples 132–134, 161–162,

189–190, 289
parametric tests, assumptions of 287
Pearson, Karl 229
Pearson product moment correlation

coefficient (r) 229–230, 300
see also coefficient of determination (r2)

percentiles, defined 30
permutations 39, 41–42, 81n, 87n
pie charts 16, 17
point estimation 147–148
Poisson distribution 88–89, 95, 107,

203–205
population parameters 111, 114, 114

see also estimation; specific parameters
populations 2

assumptions about, for parametric
tests 287

finite population correction factor 118
finite versus infinite, sampling from

112–114
statistics and parameters 114, 114

position, measures of 29–30
post hoc tests 257, 261–265, 271
power of tests 177–178, 287
prediction, from regressions 224, 236–239
probability 39–55

addition rule 46–48, 80
Bayes’ Theorem 53–55
classical 44
conditional 48–50, 66
under continuous density functions

95–96, 98, 98
defined 35, 39
empirical 45
multiplication rule 39, 40–41, 50–52,

80
odds 45, 46
prior and posterior, defined 53
properties of 45–46, 53
and risk 2
rules for 46–52
subjective 45

probability densities see probability
distributions, continuous

probability distributions 61–74
see also probability distributions,

continuous; probability
distributions, discrete

probability distributions, continuous
63–65, 64, 93–107

area under, as cumulative probability
99–104

exponential 95–96, 95
uniform 93–95, 94
see also normal distribution

probability distributions, discrete 62–63,
63, 79–89

binomial 80–83, 106
mean and variance of 83, 105
normal approximation to

104–107
bivariate 65–66, 71–72
geometric 87
hypergeometric 84–87
multinomial 83–84
negative binomial 87–88
Poisson 88–89
uniform 79–80, 79, 115, 202–203
variance rules 73–74

proportion (P)
in 2 � N and 2 � 2 ANOVAs

210–211, 212
estimation of 155–157
hypothesis tests 182–183
sample proportion (p̂) 123–125
symbols for 114

proportions, differences between 134–136,
162–163, 190–192

qualitative variables 4, 9–10, 287
quality control 305–313
quantitative variables 4, 10–14
quartile, defined 30

R charts 310–312, 311
random numbers 112–114, 113
random sampling 111–114, 278–279
random variables 2, 61–74, 114

see also descriptive statistics; mean (�);
probability distributions;
variance (�2)

randomized complete block design
273–274, 282–283, 283, 284

range 22, 23, 156
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rank order 9, 9
in non-parametric tests 287
Spearman’s rank correlation (rs)

300–301
Wilcoxon rank sum test

(Mann–Whitney U-test)
293–295

Wilcoxon signed rank test 291–293
regression

and correlation, compared 239–240
defined 217
exponential 244
hyperbolic 244, 245
linearity in parameters 244
multiple 217–218, 240–243, 242, 246
non-linear models 217, 244–246
polynomial 244, 245–246
predictions from 224, 236–239
simple linear

analysis of 224–231
assumptions for 224
coefficients and parameters

218–224
defined 217
dependent and independent

variables 218
equations and models 219–220
lack of fit 236–239
least squares method 221–223
tests and predictions 224, 230–236

replications, defined 281
see also experimental designs; sample

size
residuals

in lack of fit tests 236, 239, 239
in regression analysis 220, 221–223,

221
response variable, defined 281
root mean square error (RMSE) 228
runs rules 307, 308
runs test (V) 297–300

S charts 310–312, 311
sample, defined 2
sample mean (x–) 19–20, 114

advantages and disadvantages of 21–22
confidence intervals for

known variance 149–152, 151
unknown variance 152–153

defined 20
as estimator of � 22
sample proportion as estimator 123

sampling distribution of 114, 115–123,
116, 117

standard error of 114, 118, 120
trimmed 22
weighted 20–21
see also mean (�)

sample proportion (p̂) see proportion (P)
sample size

for confidence intervals on differences
between means 158–159

for margin of error on the mean
153–155

for margin of error on proportions
156–157

in quality control 306
small, in contingency tests 211, 212
in statistical power analysis 177–178
and t versus z distributions 121
in unbalanced ANOVA 257–259
see also degrees of freedom

sample space 35–39, 37, 61–62
sample variance (s2) 25–26, 27–28, 114,

136–138
see also variance (�2)

sampling
random sampling 111–114, 278–279
stratified sampling 278
systematic sampling 279
two-stage sampling 278–279
with and without replacement 51–52,

84, 112, 115–118, 116, 117
sampling designs 5, 277–280

in ANOVA 251
to estimate population parameters

111–114
paired samples 132–134
survey design 280

sampling distributions 114–140
of differences between means 125–134,

127
of differences between proportions

134–136
of the mean 115–123, 116, 117
of regression coefficients 230–236, 231,

232
of rs 300–301
of sample proportions 123–125
of sample variance 136–138
of statistics 114
of V (runs test) 299
of variance ratios 138–140
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sampling error 111, 148
see also standard error

scatter plots 218–219, 219, 220, 221,
244

Scheffé’s Method 263–265
Shewhart, Walter A. 305
sign test 288–291
simple events 36
skewness and symmetry 17–19, 19
Spearman’s rank correlation (rs) 300–301
square root residual variance 228
standard deviation (�)

approximation for 156
assumptions about, for parametric

tests 287
defined 26, 70
properties of 26–28
in quality control 305–306
versus standard error of estimate 228
of statistics, as standard error 114
weighted 27–28

standard error
for ANOVA mean differences

260–261
for ANOVA means 259
of differences between proportions

136
of estimate (linear regression) 228,

229
of the mean 114, 118, 120
of the mean, in quality control

309–310
statistical estimation see estimation
statistical hypothesis testing see hypothesis

testing
statistical inference 2, 35, 111, 119, 240

see also hypothesis testing
statistical process control see quality

control
statistical quality control see quality control
statistical software 30
statistics (branch of science), defined 1
statistics (numbers from data), defined 1
stratified sampling 278
Student’s t distribution see t distribution
Sturges’ Rule 12
subjects see elements, defined
subsets, defined 38
sum of squares, defined 24

see also analysis of variance (ANOVA)
survey design 5, 280
systematic sampling 279

t distribution
in confidence interval calculation

152–153
for differences between means 128,

131
and differences between proportions

136
for paired means 133–134, 134
relationship to F 234
for standardized sample means

121–123, 121, 122, 152
t (test statistic)

in Bonferroni’s Procedure 262–263
for difference between means

186–189
for difference between means, paired

samples 190
for estimates of mean 180–181
non-parametric alternatives

sign test 288–291
Wilcoxon rank sum test 293–295
Wilcoxon signed rank test

291–293
for Pearson’s r 230
for regression coefficients 233–236

tables, for data presentation 9–14
tails, in hypothesis tests

critical regions 175–179, 175, 176,
178, 179

F (test statistic) 194–195, 202
and p-values 196
z-tables as half the curve 102

tests for independence 206–212
treatment sum of squares, defined 255
treatments, defined 280–281
tree diagrams 39–41, 39, 40, 52, 55
two-stage sampling 278–279
Type I error (
) 148–149, 175–178, 176,

177, 196, 261–262
Type II error (�) 175–178, 176, 177

uniform distribution 79–80, 79, 93–95,
94, 115, 202–203

unions 36, 37, 37

variable charts 308–312, 310, 311
variables 2, 4, 22, 23

see also graphs; random variables
variables, continuous see continuous

variables
variables, discrete see discrete variables
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variables, qualitative see qualitative variables
variables, quantitative see quantitative

variables
variance (�2)

of binomial distribution 83, 105
defined 25–26
estimation of 163–165
of exponential distribution 95–96
homogeneity versus heterogeneity 129,

265–266
of hypergeometric distribution 85–86
hypothesis tests 183–185
of normal distribution 96–98
partitioning of 225–228, 251
of Poisson distribution 88–89
of random variable 70–72
rules for 73–74
of sampling distribution of differences

between means 126–127
of sampling distribution of differences

between proportions 136
of sampling distribution of the mean

115, 117, 118
of sampling distribution of proportions

123
of uniform continuous distribution 94
of Z distribution 99
see also analysis of variance (ANOVA);

sample variance (s2)
variance ratios (F) see F distribution; F (test

statistic)
variation, measures of 23–29
Venn diagrams 36–38, 37, 54

warning limits 305, 306–307, 309, 311, 312
weighted mean 20–21
Wilcoxon, Frank 291
Wilcoxon rank sum test (U) 293–295
Wilcoxon signed rank test (W+) 291–293

X
–

charts 308–310, 310

Yates, Frank 211
Yates’ correction for continuity 105, 119,

125, 211

Z distribution
binomial approximation 105
critical regions of 179
for differences between means

126–127, 128, 130
for differences between proportions

134–135, 135
mean and variance of 99
for paired means 132–133, 133
relationship with t distribution

121–122
for sample proportions 124, 124, 125
for standardizing sample means 119,

119, 120
transformation of normal distribution

98–104, 99, 100
z-score (standard score) 29–30
z-tables 99–104
see also normal distribution

z (test statistic)
in contingency tests 212
for difference between means 185–186
for difference between means, paired

samples 190
for difference between proportions 191
for estimates of mean 149, 179–180
in goodness-of-fit tests 202–203, 205
for proportions 182–183
for rs 301
in runs test 299
in sign test 289
in Wilcoxon rank sum test 294
in Wilcoxon signed rank test 292
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