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Preface

What is different about this probability and statistics book from the seemingly
endless supply of other introductory texts available? Simply put, our main objective
was to develop an elementary statistics text for and about the growing number of
people who have (quite wisely) chosen to make careers in the fields of forestry, forest
products, conservation and other natural sciences. Our approach is unique in that we
have used methods, examples and exercises that are particularly relevant to these
increasingly important fields.

Notably, there have been several previous attempts at books aimed at these
disciplines: Experimental Design and Analysis in Forest Research (1959) by ]. Jeffers;
Forest Biometrics (1961) by M. Prodan; and F. Freese’s series, Elementary Statistical
Methods for Foresters (Handbook, 1974), Elementary Forest Sampling (Handbook,
1962) and Linear Regression Methods for Forest Research (Handbook, 1964). Each
of these texts has made an important contribution to the field, but they are outdated,
specialized and limited from a pedagogical point of view. To the best of our
knowledge, our book is unique in that it is designed for and well suited to a one-
semester introductory probability and statistics course in forestry and natural
sciences. This book also serves as a useful reference and it is hoped that students,
practitioners and researchers will use it to understand and appreciate the important
role of statistics in their respective disciplines.

The book starts with the usual topics found in any introductory statistics text — the
use of descriptive statistics and a basic introduction to probability, random variables
and probability distributions. We use this as the foundation for discussing some of the
more commonly used inferential tools in statistics — estimation, hypothesis testing,
analysis of variance, goodness-of-fit, test of independence, regression and correlation
analyses. Unlike many other introductory texts, we have also provided discussions of
statistical topics that are commonplace in a forestry context — design of experiments,
sampling methods, non-parametric tests and statistical quality control. It is our
opinion that a good background in high-school algebra is sufficient for reading and
understanding the material presented here. We have made every attempt to use
examples and exercises from the disciplines of forestry, wood science and
conservation. However, we have also incorporated some everyday examples (like coin
flipping and dice tossing) to make it more readable and understandable, especially
where probability theories are concerned.

This book did not occur in isolation and we owe a debt of gratitude to a number of
people, most notably our families, friends, peers and co-workers. We would also like
to acknowledge everyone who has assisted us in the development of this book. We are
particularly grateful to Patsy Quay, Jamie Myers and Denise Allen for their help in the
preparation of the several versions of the manuscript. We also appreciate the
insightful comments provided by Dr Lisa Zabek and the dozens of Forestry 231
(Introduction to Biometrics and Business Statistics) students at the University of
British Columbia on one of the earlier drafts. Last, but certainly not least, the many

Preface XV ]



concepts, ideas, thoughts and examples in this book were inspired by and originated
from several other texts. These are listed in the Bibliography and the contributions
made by these authors within the domain of probability and statistics are very much
appreciated.
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Statistics and Data
What do Numbers have to do with
Trees?

In this chapter we define the term statistics. We also discuss data, the building blocks
of statistics, and introduce data collection procedures and measurement scales.

1.1 What is Statistics?

When most people think of statistics, they imagine percentages, averages and rates of
change, which are displayed in tables, graphs and charts. Statistics give us information
about debits and credits, incomes and taxes, births and deaths, home prices, daily
temperatures, smokers’ mortality rates and so on. In sports, such as hockey, the term
statistics refers to the records kept on each player’s performance, such as the number of
goals, number of shots on goal and number of penalty minutes.

Similarly, in forestry, statistics are collected to summarize tree heights, diameters,
volumes, seedling survival rates, bark beetle infestation costs and much more. In
sawmills, tables and charts are compiled to indicate the quality of the products
produced, such as the distribution of lumber by grade, the strength of the lumber and
other important quality characteristics.

We offer two definitions for statistics in this book.

® Siatistics is the science of collecting, organizing, analysing and interpreting
information (in this case, statistics is singular).

® Statistics are numbers calculated from information (in this case, statistics can be
singular or plural).

The study of statistics is generally subdivided into two distinct fields: descriptive
statistics and statistical inference.

Consider a large body of information, such as 5000 measurements of tree height
collected from a forest management unit. Ordinarily, it is almost impossible to look at a
large listing of numbers like this and draw any meaningful conclusions. Using descriptive
statistics, we can describe this information with tables, summary numbers, charts and
graphs. In this way, an observer (e.g. the forest manager) can very easily and quickly
characterize, summarize and communicate the attributes of the forest management unit
being measured (tree heights) since it is generally easier to understand the information
when it is presented in the form of tables, charts, graphs or summary numbers, the latter
often being referred to as statistics. The organization or tabulation of such large bodies of
information has become a necessary skill for people employed in the forestry sector, from
conservation biologists to foresters to wood products manufacturers.

Descriptive statistics deals with the collection, organization and presentation
of information and the calculations of some measures (statistics) that describe
the information.

© CAB International 2008. Introductory Probability and Statistics: Applications for 1 ]
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We may also want to use the information on hand to make predictions about the future
or make statements about the larger body of information from which our data were
taken. Statistical inference, or inferential statistics, uses information contained in a
sample to reach conclusions about one or more characteristics of the whole population.

A population is the entire collection of items/subjects possessing certain
common characteristics about which information is being sought. The
characteristics of a population are called parameters and are usually denoted
with Greek letters (e.g. u, o).

A sample is a portion or subset of the population. The characteristics of a sample
are called statistics and are usually denoted with Roman letters (e.g. x, p).

It would be ideal if we could obtain information from every item (subject) in a
population. However, populations are quite often very large (e.g. all possible trees in
a forest type) and, therefore, it is simply not practical, or even possible, to collect the
desired information from each item of the population. In other cases, such as the
testing of modulus of rupture (strength) in 2 X 4s, it is not tenable to observe every
item in the population because the item being observed is destroyed in the gathering
of this information.

In these situations, we must collect the desired information from a sample. This
portion, or subset, of the population is used to draw conclusions (inferences) concerning
the whole population. This type of generalization, based on an incomplete set of
information, involves a certain amount of risk. Therefore, in studying and using
inferential statistics, a considerable amount of time is spent quantifying the associated
risk. Some theories in probability will help us to properly quantify these risks.

Inferential statistics or statistical inference is concerned with generalizing from
the information obtained in a sample to an entire population. This
generalization involves estimation, hypothesis testing, determining relationships
and prediction.

1.2 Data

Pieces of information collected on subjects or items from a population form the building
blocks of statistics and are called data (data is the plural of datum, a piece of
information). Data can be collected, organized, analysed and summarized. Table 1.1
shows an example data set, which contains information collected from 50 trees. The
trees here are the elements (or items or subjects) on which the data were collected. A
variable is a characteristic of an element that we want to study. Seven variables were
recorded in this data set: (i) tree identification number; (ii) date of measurement; (iii)
species; (iv) crown class; (v) number of neighbouring trees (growing within a 5 m radius);
(vi) diameter at breast height (dbh, which is measured at a height of 1.3 m in Canada, or
4.5 ft in the USA); and (vii) height.

Usually, a variable takes on different values from element to element, hence the name.
In general, variables whose values are determined by chance are referred to as random
variables. A set of measurements (such as the seven variables seen in Table 1.1) collected
for one element is called an observation, and thus Table 1.1 contains 50 observations.

[ 2 Introductory Probability and Statistics



Table 1.1. A data set for 50 trees

Number of Diameter at
Tree Date of Crown  neighbouring breast Total
number measurement® Species® class® trees® height (cm) height (m)

1 12 F C 4 15.3 14.78

2 12 F D 3 17.8 17.07

3 9 C D 5 18.2 18.28

4 9 H S 4 9.7 8.79

5 7 H I 6 10.8 10.18

6 10 C I 3 141 14.90

7 10 C C 2 171 15.34

8 12 C D 2 20.6 17.22

9 16 F C 4 18.2 15.15
10 14 F I 5 16.1 14.66
1 8 H D 3 14.2 17.43
12 5 H D 6 14.8 17.45
13 12 F I 2 19.1 14.18
14 5 C I 2 16.7 13.40
15 12 C S 4 18.9 10.40
16 20 H S 3 12.4 11.52
17 15 H C 0 17.3 14.61
18 20 F D 1 22.7 21.46
19 15 C C 4 15.1 17.82
20 14 C I 3 17.7 11.38
21 14 C S 5 13.4 8.50
22 13 C I 4 16.2 12.80
23 14 F D 1 18.5 18.71
24 20 F I 4 15.0 14.48
25 21 F C 2 18.8 14.81
26 5 H I 4 15.8 12.01
27 2 H I 3 16.1 11.70
28 22 C C 3 15.4 16.03
29 22 C I 0 17.8 14.46
30 18 C S 1 18.5 8.47
31 16 C I 3 14.1 11.22
32 16 C C 5 14.8 12.34
33 17 F C 4 15.5 16.79
34 17 F I 6 13.8 16.06
35 18 F S 4 13.0 13.20
36 20 H C 2 18.2 14.30
37 22 H C 0 22.3 16.84
38 20 H I 3 17.8 13.84
39 17 C I 4 13.1 11.31
40 17 C I 6 12.8 13.20
41 16 C C 3 13.3 13.75
42 23 F C 3 15.6 14.60
43 23 H C 4 16.6 12.56
44 22 C I 5 13.0 10.88
45 24 C I 4 10.2 13.93
46 23 F I 3 14.4 12.68
47 24 C S 6 7.7 10.00
48 25 C S 5 9.9 8.69
49 25 H D 1 20.4 16.73
50 24 H D 3 20.9 16.25

a Day of the month (March, 2006). b C, western red cedar; F, Douglas-fir; and H, western
hemlock. ¢ D, dominant; C, codominant; |, intermediate; and S, suppressed. 9 Trees within
a 5 m radius of the subject tree.
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Variables can be classified as either qualitative or quantitative. Qualitative
variables are also known as categorical variables because they can be placed into
distinct categories according to some characteristic. Species and crown class (Table
1.1) are qualitative variables. Other examples of categorical variables include gender,
forest type, level of insect infestation (low, medium and heavy) and field of study
(Forestry, Engineering, Agriculture, Education, Arts, Science).

Quantitative variables are numerical and can indicate ‘how many’ or ‘how much’
or ‘how big’ on a numeric scale. For example, dbh, height and number of neighbouring
trees (Table 1.1) are quantitative variables. Quantitative variables can be further
subdivided into discrete and continuous variables. Discrete variables, which take on
whole numbers only, usually result from counting something such as the number of
neighbouring trees (Table 1.1). Continuous variables are those which can take on ‘all
possible values’ over a specific interval and are generally measured, e.g. height and dbh
(Table 1.1). Often, ‘all possible values’ exist only in theory since measurement
processes are limited to the precision of measurement devices. For example, current
measurement techniques only allow dbh to be measured to the nearest 0.1 cm and tree
height to the nearest 0.01 m. This means that a recorded dbh of 15.2 cm includes all
possible values between 15.15 and 15.25 ¢cm (not including trees with 15.25 cm dbh).

1.3 Measurement Scales

In analysing variables, the scale of measurement refers to the amount of information
contained within the variable and indicates what types of statistical analyses are
appropriate. Four common scales are used for measurements: nominal, ordinal,
interval and ratio.

Nominal scale data can be quantitative or qualitative and are used mainly for
identification and classification of items. Examples of quantitative nominal scale data
include the tree numbers listed in Table 1.1, numbers on hockey jerseys, zip codes in
the USA and telephone numbers (note that the use of numbers here is for
identification purposes only). Examples of qualitative nominal scale data are the
species identified in Table 1.1, gender, marital status and postal codes in Canada (e.g.
V6S 1B9). Even if a variable is quantitative, arithmetic operations (addition,
subtraction, multiplication and division) and/or ranking the items by their values are
not meaningful for nominal scale data.

The ordinal scale is similar to the nominal scale, but in an ordinal scale, the order
or rank of the values is valid. For example, crown class (Table 1.1) is in an ordinal
scale, as it is known that the dominant trees are taller than the codominant trees
within a stand. Again, ordinal scale data can be qualitative or quantitative. Examples
of qualitative ordinal scale data are letter grades, levels of insect infestation (light,
medium and heavy) and ranking of food quality (excellent, good, medium and poor).
Examples of quantitative ordinal scale data are addresses in a block on one side of a
street and numeric quality rankings (e.g. 1 for excellent, 2 for good, ..., 5 for poor).
While the ranking of items in an ordinal scale is valid and meaningful in interpreting
data, arithmetic operations (addition, subtraction, multiplication and division) are
not.

The interval scale has the same properties as the ordinal scale, but interval scale
data are always quantitative and differences between data values are meaningful.
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Examples of interval scale data are temperature (in Celsius or Fahrenheit), Scholastic
Aptitude Test (SAT) scores and measurement date (Table 1.1). When using an interval
scale, zero does not indicate an absence of measurement. For instance, zero degrees is
set as the icing point on a Celsius temperature scale; however, zero degrees does not
indicate an absence of temperature. Similarly, if the temperature on a given day was
20°C in Vancouver and 10°C in Toronto, the difference of 10°C is meaningful.
However, it does not mean that it is twice as warm in Vancouver as in Toronto.

The ratio scale is similar to the interval scale, but with two main differences. In the
ratio scale, zero means ‘none’ and, therefore, the ratio of two variables becomes
meaningful. Height, dbh and number of neighbouring trees (Table 1.1) are measured in
a ratio scale; other examples are weight, distance, height and cost. All arithmetic
operations (addition, subtraction, multiplication and division) are valid with ratio scale
data. For example, we can say that a 20 m tree is twice as tall as a 10 m tree.

1.4 Data Collection

Data can be collected in many ways. Sometimes, data required for a particular
application are available from government or company offices where operational data
sets have been historically maintained. Data on forest inventory levels, production
quantities and imports and exports are often collected by organizations, such as the
United Nations Food and Agriculture Organization (UN/FAO). Employment rates,
wage rates and other labour force information can usually be obtained from various
government agencies.

If the required data are not available from existing sources, we can turn to some
well-known statistical tools for data collection, namely experimental designs or
sampling designs (or a combination of the two). These two techniques are frequently
referred to as experimental and observational studies, respectively, and are discussed
in more detail in Chapter 13 of this volume.

In experimental studies, one or more factors affecting the variable(s) of interest
are controlled. The objectives of the study are to investigate how these controlled
factors affect the variable(s) of interest. For example, to investigate the effect of
seeding date on burnt and unburnt seedbeds, the dates and preparation of the
seedbeds are controlled and the effects on germination are studied.

In observational studies (sampling), no attempt is made to control the variables of
interest; we merely observe a given situation. The main purpose of sampling is to
collect data from a subset of the population and to use this data to make predictions
or inferences about the entire population. For example, if we would like to estimate
the average height of a lodgepole pine plantation, we could randomly select 40 trees
from the stand, measure their heights and estimate (with some degree of error) the
unknown population average of height. These sorts of sampling designs are often
referred to as sample surveys.
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Exercises

Section 1.1

1.1. Define the word ‘statistics’.

1.2. Give three examples of how descriptive statistics can be used in your field of
interest.

1.3. Give an example in forestry, conservation or wood science where inferential
statistics can be applied.

1.4. Two summer students are sent out to measure the dbh and height of 75
randomly selected trees in an experimental plantation, where each of the 10,753 trees
in the plantation has been labelled with a number. Seventy-five random numbers
between 1 and 10,753 were generated to indicate the trees to be measured.

a. Describe the population.

b. Describe the sample.

c.  Will the students be using descriptive statistics, inferential statistics or both
in this study?

1.5. A wood science student is working for a particleboard mill during her co-op
term. She is asked to pull a single board every 15 min as it comes off the production
line and to measure its thickness. These observations will be used to study the quality
of the boards being produced as part of a programme for statistical quality control.

a. Describe the population.
b. Describe the sample.
c. Will she be using descriptive statistics or inferential statistics in this study?

Section 1.2

1.6. Classify each of the following variables as qualitative or quantitative:

Number of trees per hectare.

Colour of Douglas-fir flowers.

Number of leaders on a weevil-infested Sitka spruce seedling.

Outside bark diameter at breast height of a cork oak tree.

Fire hazard classification (low, moderate or severe).

Thickness of plywood.

Grade of lumber (No 1, No 2 or defective).

Length of a piece of dimensional lumber.

Age of a ponderosa pine tree determined from the number of annual rings.
Species.

Daily low and high temperatures measured in degrees Celsius.

Annual wage (in dollars) earned by 20 foresters working for a large
company.

m. Phone number of each of the above 20 foresters.

n. Date when each of the above 20 foresters began working for the company.

mETITERme a0 o

1.7. Classify the quantitative variables in Exercise 1.6 as discrete or continuous.
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Section 1.3

1.8. Classify the variables listed in Exercise 1.6 by their scale of measurement
(nominal, ordinal, interval or ratio).

Section 1.4

1.9. The effect of chemical treatment on the modulus of rupture of 30 pieces of
oriented strandboard was studied. Ten boards were treated with chemical A, 10
boards were treated with chemical B and 10 were left untreated. After the treatment,
the 30 pieces were tested and their moduli of rupture were measured. Identify and
briefly describe the data collection method used in this study.

1.10. Identify and describe the data collection method used in Exercise 1.4.

1.11. Modify the study described in Exercise 1.9 so that both experimental design
and sampling design are used to obtain the required information.
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2 Descriptive Statistics
Making Sense of Data

In order to adequately monitor and manage natural resources, such as forests and
rangelands, many very large data sets are compiled. The objective of this chapter is to
explore the tools used to make data sets more comprehensible. By organizing
variables into tables, charts and graphs, and by calculating numbers that best describe
the characteristics of a variable of interest, managers can quickly get information
about the natural resources for which they are responsible.

2.1 Tables

Data, such as those presented in Table 1.1 (see Chapter 1), are called raw data. Even
considering only one variable (e.g. diameter at breast height, or dbh), it is difficult to
assess this listing of 50 observations of unprocessed data, let alone a larger data set of
5000 or more data points. One of the simplest ways to organize variables is to rank
them in ascending or descending order. Ranking observations, as shown with the
50 dbh observations in Table 2.1, does not reduce the size of the data set and is usually
used to describe data sets with smaller numbers of observations only.

When the number of observations is large, a more powerful tool, known as the
frequency distribution, is used to describe a variable. In frequency distributions,
observations are grouped into classes, and the frequency of observations in each class
are tallied and presented in tabular form. Depending on the nature of the variable
being grouped, we distinguish between three types of frequency distributions:
categorical, ungrouped and grouped frequency distributions.

Categorical frequency distributions are used to place qualitative, ordinal or
nominal level variables into specific categories. Table 2.2 shows the frequency of the
trees from Table 1.1 (see Chapter 1) by crown class. Since crown class is a categorical
variable, four discrete classes are used and the number of trees in each class is tallied.
The relative frequency of each class can be calculated by dividing its frequency (f,) by
the total frequency (7, the number of observations):

Table 2.1. Ranked dbh measurements (in cm) of 50 trees.

7.7 9.7 9.9 10.2 10.8 12.4 12.8 13.0 13.0 13.1
13.3 13.4 13.8 14.1 14.1 14.2 14.4 14.8 14.8 15.0
15.1 15.3 15.4 15.5 15.6 15.8 16.1 16.1 16.2 16.6
16.7 17.1 17.3 17.7 17.8 17.8 17.8 18.2 18.2 18.2
18.5 18.5 18.8 18.9 19.1 20.4 20.6 20.9 22.3 22.7

© CAB International 2008. Introductory Probability and Statistics: Applications for 9 ]
Forestry and Natural Sciences (A. Kozak, R.A. Kozak, C.L. Staudhammer and S.B. Watts)



Table 2.2. Categorical frequency distribution of 50 trees by crown class.

Crown class f. (frequency) R; (relative frequency)
Dominant 9 0.18
Codominant 14 0.28
Intermediate 19 0.38
Suppressed 8 0.16
Total 50 1.00

R.=—
] n
where j denotes the class.
Often, relative frequencies are expressed as percentages:

R = 100i

/ n
Ungrouped frequency distributions are used to summarize discrete quantitative
variables. Table 2.3 shows the frequencies of the number of neighbouring trees from
Table 1.1 (see Chapter 1). Because the variable could only take on integer values of 0,
1, ..., 6, seven discrete classes were used and their frequencies and relative frequencies
are displayed in Table 2.3.

To summarize continuous (ratio scale) variables, grouped frequency distributions
are generally used. For grouped frequency distributions, we divide the total range of
the observations into a number of classes and tally the number of observations that
fall into each class. Table 2.4 is a grouped frequency distribution for the 50 dbh
measurements from Table 1.1 (see Chapter 1), recorded to the nearest 0.1 (one-tenth)
cm. Seven class intervals have been used: 7.6-9.8, 9.9-12.1, ..., 19.1-21.3 and
21.4-23.6. The class limits are the smallest and largest possible values that can fall
into a given class. For the second interval, 9.9-12.1, the lower class limit is 9.9 and
the upper class limit is 12.1.

As the dbh values were recorded to the nearest tenth of a centimetre, the three
trees in the second class interval must all be greater than 9.85 cm and less than

Table 2.3. Ungrouped frequency distribution of 50 trees by
number of neighbouring trees.

Number of R; (relative

neighbouring trees f; (frequency) frequency)
3 0.06

1 4 0.08

2 6 0.12

3 13 0.26

4 13 0.26

5 6 0.12

6 5 0.10

Total 50 1.00
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Table 2.4. Grouped frequency distribution of 50 dbh measurements (in cm).

Class limits Class midpoint Frequency Relative frequency
7.6-9.8 8.7 2 0.04
9.9-121 11.0 3 0.06

12.2-14.4 13.3 12 0.24

14.5-16.7 15.6 14 0.28

16.8-19.0 17.9 13 0.26

19.1-21.3 20.2 4 0.08

21.4-23.6 22.5 2 0.04

12.15 cm. These values, halfway between the upper class limit of one interval and the
lower class limit of the next interval, are known as the class boundaries (Table 2.5).
Class limits always have the same precision as the original observations. Conversely,
class boundaries are always carried to one more decimal place than the original
observations (unless, for example, a measuring device has 0.02 mm precision) and are
halfway between the upper class limit of one interval and the lower class limit of the
next interval (in most cases ending with the digit 5). In this way, no observation can
fall on a class boundary and every observation can be uniquely classified into only one
class.

The number of observations falling within a particular class is called the class
frequency (f). The class width (w) is defined as the difference between the upper and
lower class lgoundarles of a given class. It is convenient to have equal class widths for
all classes, as in Table 2.5, although sometimes variable widths are used. It is also
sometimes necessary to have open classes for the first or last class to accommodate a
very few (one or two) extreme observations in the data set. In our example, the first
class could be labelled as ‘9.8 and below’ (< 9.8) or the last class as ‘21.4 and above’
(>21.4).

The class midpoint or class mark is defined as the average of the upper and lower
class limits or the midpoint between the upper and lower boundaries of a class. When
calculating the class midpoints for open classes, it is assumed that they have the same
class width as the other classes in the distribution. If the first class is open, a ‘false’
lower class boundary is estimated by subtracting the class width from the upper class
boundary of the first class, and the midpoint is calculated by averaging the two class

Table 2.5. Expanded grouped frequency distribution of 50 dbh measurements.

Relative
Relative Inverse inverse
Class Class Relative Cumulative cumulative cumulative cumulative

Class limits  boundaries  mark Frequency frequency frequency  frequency frequency  frequency

7.6-9.8 7.55-9.85 8.7 2 0.04 2 0.04 50 1.00
9.9-12.1 9.85-12.15  11.0 3 0.06 5 0.10 48 0.96
122-144 12.15-1445 133 12 0.24 17 0.34 45 0.90
145-16.7 14.45-16.75 156 14 0.28 31 0.62 33 0.66
16.8-19.0 16.75-19.05 17.9 13 0.26 44 0.88 19 0.38
19.1-21.3  19.05-21.35 20.2 4 0.08 48 0.96 6 0.12
214-236 21.35-23.65 225 2 0.04 50 1.00 2 0.04
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boundaries. Similarly, if the last class is open, the upper class boundary is estimated in
the same manner. The class midpoint plays a very important role in the calculation of
various statistics from grouped frequency distributions, as each observation in a
frequency class is represented by its class midpoint.

The following is a step-by-step procedure for classifying observations into a
grouped frequency distribution. Note that this is not the only way of creating a
grouped frequency distribution, but the reader cannot go wrong following these
guidelines. Our example uses data from the continuous variable dbh listed in Table
1.1 (see Chapter 1).

1. Decide on the number of classes (c). Usually, the number of classes is set between
5 and 20. The choice depends on the number of observations in the data set. Too
many or too few classes limit the usefulness of the frequency distribution to
adequately describe the shape or pattern of the data sets. Although there is no definite
method for selecting the number of classes, a rough estimate can be obtained by
applying Sturges’ Rule:

c=3.3log,, (n) +1
where 7 is the number of observations in the data set. In our example:
c=23.31log,,(50) + 1 =6.6066 =7

(we round the calculated number to the nearest whole number.)

2. Determine the class width. Dividing the range by the number of classes (rounded)
produces an approximate class width:

w = Range/c = (22.7 —= 7.7)I7 = 2.143.

The class width should be rounded to the same precision as the measurements and the
class limits. Whenever possible, the class width should be rounded up to avoid open
frequency classes at the extremes of the data set. Some statisticians round up so that
the last digit of the class width is an odd number. This ensures that the class mark will
always have the same precision as the observations, the class limits and the class
width. In our example, this suggests using 2.3 as the class width.

3. Determine the lower class limit and boundary of the first class. Unless an open
class is used, the lower class limit of the first class should be less than or equal to the
smallest observation. For our example, our lower class boundary should be less than
or equal to 7.7 (the smallest value in our data set) and, therefore, we select 7.6. To
obtain the lower class boundary of the first class, we subtract half of the precision
(0.1/2 = 0.05 in our example) from the lower class limit (7.6 — 0.05 = 7.55).

4. Calculate remaining class limits and boundaries. First, we calculate the upper class
boundary for the first class by adding the class width to the lower class boundary
(7.55 + 2.3 = 9.85). The upper class limit of the first class is obtained by subtracting
half of the precision (0.05) from the upper class boundary of the first class (9.85 —
0.05 = 9.8). The second class limits and boundaries are calculated by adding the class
width to each of the lower and upper class limits and boundaries of the first class. The
remaining class limits and boundaries are calculated from their preceding classes in a
similar manner. Note that the upper class boundary of one class should be identical to
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the lower class boundary of the subsequent class. This does not present a problem in
placing each point in a unique class because the precision of the class boundaries is
one decimal more than the raw data.

5. Calculate the class midpoint for each class. The class mark (midpoint) is calculated
as the average of either the upper and lower class limits or the average of the upper
and lower class boundaries. For example, our first class midpoint (12,) is:

my=(7.6+9.8)/2=(7.55+9.85)/2=8.7.

6. Tally the observations. One practical way to count the number of observations in
each class is to consider each observation in turn and make a ‘tally mark’ in the class
where each observation falls. Table 2.6 shows the tally marks which add up to the
frequency in each dbh class of our example.

Table 2.4 is the most common way of presenting grouped frequency distributions.
If required, it can be extended to have more descriptive capabilities by including
further information such as relative frequency, cumulative frequency, relative
cumulative frequency, inverse cumulative frequency and relative inverse cumulative
frequency (Table 2.5).

While the frequency gives us the number of observations that fall within a
particular class, we may be interested in how many observations fall above or below
a particular class. The cumulative frequency is the frequency of all observations less
than the upper class boundary of a given class. It answers the question, ‘How many
observations fall within a certain class or lower?’, and is often referred to as the ‘less
than frequency’. Conversely, the inverse cumulative frequency represents the
frequency of all values greater than the lower class boundary of a given class. It
answers the question, ‘How many observations fall within a certain class or higher?’,
and is often referred to as the ‘more than frequency’.

Table 2.7 shows how the cumulative and the inverse cumulative frequencies are
calculated. For the cumulative frequency, the frequency of each class is added to the
number of observations that fall below that class, starting with the first class. The
same logic is applied to the inverse cumulative frequency, but starting with the last
class. Both cumulative frequencies can be expressed as percentages (or proportions) of
the total frequencies and, in these cases, are called relative cumulative frequencies and
inverse relative cumulative frequencies, respectively.

We may also be interested in categorizing data from Table 1.1 (see Chapter 1) in
terms of the pattern or shape of two variables. Table 2.8 shows a bivariate frequency

Table 2.6. Preparation of grouped frequency distribution of 50 dbh

measurements.

Class boundaries Tally Frequency
7.55-9.85 I 2
9.85-12.15 " 3

12.15-14.45 THL T 1] 12

14.45-16.75 LT T 14

16.75-19.05 TR T 13

19.05-21.35 I 4

21.35-23.65 I 2
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Table 2.7. Preparation of cumulative and inverse cumulative frequency distributions of 50
dbh measurements.

Cumulative Inverse cumulative

Class limits Class mark Frequency frequency frequency
7.6-9.8 8.7 2 0+2=2 48 +2 =50

9.9-12.1 11.0 3 2+3=5 45 +3=48
12.2-14.4 13.3 12 5+12=17 33+12=45
14.5-16.7 15.6 14 17 +14=31 19+14 =33
16.8-19.0 17.9 13 31+13=44 6+13=19
19.1-21.3 20.2 4 44 + 4 =48 2+4=6
21.4-23.6 225 2 48 +2 =50 0+2=2

distribution, which gives the distribution of trees by species and number of
neighbouring trees. In constructing Table 2.8, we use a categorical frequency
distribution in one direction and an ungrouped frequency distribution in the other.
Any combination of the three frequency distributions (categorical, ungrouped and
grouped) can be combined to form bivariate frequency distributions.

Table 2.8. Bivariate frequency distribution of 50 trees.

Neighbouring trees  Cedar  Douglas-fir  Hemlock Total
1 0 2 3
1 1 2 1 4
2 3 2 1 6
3 5 3 5 13
4 5 5 3 13
5 5 1 0 6
6 2 1 2 5
Total 22 14 14 50

When the data are grouped to form univariate or bivariate frequency
distributions, we gain very valuable descriptive information and we can begin to see
the pattern or the ‘shape’ of the data. On the other hand, this information is gained
at a price; we lose the ‘identity’ of the original observations. For example, Table 2.7
tells us that there are three observations in the class identified as 9.9-12.1, but we do
not know the original or ‘measured’ values of these observations. It is always good to
keep this in mind when we present data in frequency distributions and use the
graphical tools introduced in the next section.

2.2 Graphical Tools

Often, a graphic presentation of data can display the essential features of a frequency
distribution more readily and comprehensively than a table. Pictorial representation
of the information in graphic form often makes the important characteristics of the
data more apparent. In this book, we will present several common graphical tools:
bar graphs, histograms, pie charts, frequency polygons and ogives.

Bar graphs are used to present information summarized in categorical frequency
distributions or ungrouped frequency distributions created for discrete variables. In bar
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graphs, the horizontal axis is not a continuous random variable and, consequently, the
bars do not touch each other. Figure 2.1 presents a bar graph of the categorical variable
crown class (from Table 2.2). Figure 2.2 shows a specific type of bar graph — a stick
graph of the discrete variable number of neighbouring trees (from Table 2.3). With a
stick graph, the ‘bars’ associated with a given number (label) have meaning only at that
number. For example, the stick at two neighbouring trees refers to six occurrences of
exactly two neighbouring trees and has no other meaning between one and three. This
is why these graphs, done properly, are made using “sticks’ instead of ‘bars’.
Histograms are used to present grouped frequency distributions for continuous
variables. Therefore, they should not contain spaces between bars. The middle of each
bar must be the class midpoint, and the bars touch at the class boundaries. Class
boundaries are used because this allows for the graph to be ‘continuous’ since the
upper class boundary of one class is the same as the lower class boundary of the
subsequent class. Figure 2.3 presents the frequency distribution of dbh from Table 2.4.
Each of Figs 2.1, 2.2 or 2.3 can be plotted using relative frequencies (in per cent
or as a proportion) on the vertical axis instead of actual frequencies. For example, Fig.
2.4 shows the frequency distribution of dbh measurements using relative frequencies.

25 T
20 + 19
D = Dominant
C = Codominant
> 15 + 14 )
) I = Intermediate
iz;- S = Suppressed
i 4 9
10 8
5 L
0
D C | S
Crown Class
Fig. 2.1. Bar graph for crown class data.
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Fig. 2.2. Stick graph for number of neighbouring trees.
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Fig. 2.4. Histogram for dbh data (relative frequencies).

In some cases, the presentation of a variable is best conveyed relative to a totality.
Here, pie charts are used in place of bar charts. In the pie chart for crown class data
(Fig. 2.5), the circle is divided into sections representing each category’s frequency
proportional in size to the total. In pie charts, frequencies or proportions for each
class can be given.

Grouped frequency distributions can also be graphically presented with a
frequency polygon. Frequency polygons are constructed by plotting class frequencies
(or relative frequencies) against class marks and then joining each point by a sequence
of line segments. To close the polygon, we add an ‘imaginary’ class midpoint with zero
frequency to both ends of the distribution (e.g. 8.7 — 2.3 and 22.5 + 2.3). Figure 2.6
shows the frequency polygon for the dbh data.

Cumulative or inverse cumulative frequency graphs are called ogives and are
plotted in a similar manner to polygons. When cumulative frequency graphs are
prepared, the cumulative frequencies are plotted against the upper class boundaries
and joined by line segments. To close the ogive at the lower end, the graph is extended
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Fig. 2.5. Pie chart for crown class data.
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Fig. 2.6. Frequency polygon for dbh data.

to the lower bound of the first class boundary and given a frequency of zero because
no points fall below this boundary (Fig. 2.7). This graph indicates the frequency of
observations below a given class boundary. For example, in our data set, there are 31
trees below 16.75 cm dbh.

When inverse cumulative graphs are prepared, the inverse cumulative frequencies
are plotted against the lower class boundaries and joined by line segments. To close
this graph, the upper class boundary of the last class is graphed versus a frequency of
zero. The inverse cumulative frequency graph indicates the frequency of observations
above a given class boundary. For example, Fig. 2.8 shows that there are 33 trees
above 14.45 cm dbh.

Earlier, it was stated that one of the main purposes of frequency distributions and
histograms was to show the ‘shape’ of the distribution of the data. Related to this, we
introduce some terms that are frequently used in statistics. In general, distributions
can be classified as either symmetric or skewed. A distribution is said to be symmetric
if a vertical axis at the ‘centre’ of the distribution separates the distribution into two
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Fig. 2.8. Inverse cumulative frequency graph (ogive) for dbh data.

identical (mirror image) or near-identical parts. A distribution is skewed if it lacks
symmetry with respect to this central vertical axis. Figure 2.9 presents two drastically
different, but symmetric, distributions.

Figure 2.10 shows a positively skewed and a negatively skewed distribution. A
distribution is positively skewed if it has a long right tail (Fig. 2.10a) and negatively
skewed if it has a long left tail (Fig. 2.10b). The shapes of distributions will be
discussed further in later chapters.

When constructing any of the charts discussed here, keep in mind that the number
of classes has a direct effect on the shape of the distribution. If too many frequency
classes are used, the histograms or bar charts do not satisfactorily reflect the shape of
the distribution, as too few observations will fall into each class. On the other hand,
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if too few classes are used, each class will have a high number of observations and,
again, the pattern of the distribution is lost. The practitioner should be careful to use
appropriately constructed classes in making these graphs, bearing in mind that it is
easy to interpret graphs in different ways and potentially obscure their true meanings.

2.3 Measures of Central Location

Variables can be described using a range of statistical measures. Perhaps the best place
to start is with some measure or measures of central location. Measures of central
location are used to define, in some sense, the centre of a set of measurements. The
most commonly used measures of central location are the mean, median, mode and
midrange.

The mean is a statistic that is often referred to as the average or arithmetic
average. To calculate this, we simply divide the sum of the measurements by the
number of measurements. For a brief introduction to symbols and summation
notation, see Appendix B. Since the calculation of the mean could be required for
several variables, it is customary to use different symbols to represent each variable
(such as x, y and z for dbh, height and biomass, respectively). The number of values
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in a sample is usually denoted by 7 and the number of values in a population by N.
Individual values in a sample or population are symbolized by x, x,, ... and x, or x.
The sample mean (for a variable, x) is calculated as:

n

X;
XX et

x =i (2.1)

n n
with the mean of variables y or z being symbolized by ¥ or Z.
The population mean is calculated as:
>
X.
_inl ’:x1+x2+...+xN 2.2
B==g N (2.2)

Example 2.1. The height measurements of the first 5 Douglas-fir trees in Table 1.1 (see
Chapter 1) are 14.78, 17.07, 15.15, 14.66 and 14.18 m. If these observations constitute a
sample, then the sample mean height is:

X =(14.78+17.07 +15.15+14.66 + 14.18) /5 =15.168.

In general, ‘mean’ refers to the arithmetic mean. However, in some disciplines,
statisticians may be concerned with the geometric mean (used for ratio data like
population growth, rates of change, economic indicators, etc.) and the harmonic
mean (used for data where one element remains constant but another changes, like
equal monthly contributions to a pension plan that varies in value). Since the use of
these means is restricted, by and large, to special situations, they will not be discussed
further in this book.

A weighted mean is often used when we wish to average a number of values by
attaching more importance to some numbers than to others. This is done by assigning
different weights (w,, w,, ..., w,) to the n observations, where these weights represent
measures of their relative contribution to the overall average. The weighted mean (X )
is then calculated as:

n
2 w; x;

1=

_ wyxq +w2x2 + ... +wn X,

x, =
n w, +w, +..+w
w 1 2 n
i
i=1

Example 2.2. If the costs of 3 models of chainsaw are US$487, US$596 and US$759, and
a company purchased 5, 9 and 11 of these saws, respectively, the average cost of chainsaws
using a weighted mean can be calculated as:

X =((5)(487)+(9)(596) + (11)(759)] /(5 + 9+ 11) = 645.92.
A special application of this weighting procedure is used when finding the overall

mean of several data sets when they are combined and the mean of each individual set
is known. The equation to calculate the grand mean from k individual means is:
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where k = number of means to combine.

Example 2.3. Based on sample sizes of 14, 22 and 14 trees, the sample means of tree
heights for Douglas-fir, western red cedar and western hemlock are 15.62 m, 12.94 m and
13.87 m, respectively (see Table 1.1, Chapter 1). The mean of the combined data (50
observations) is the weighted mean of the individual means, weighted by their corresponding
observations:

X =[(14)(15.62) +(22)(12.94) +(14)(13.87)] /(14 +22+14) ~ 13.95.

Another application of the weighting procedure is for the calculation of the mean
from a grouped frequency distribution (Table 2.4). In this case, since each individual
observation has lost its identity (the value of the original observations), each
observation is represented by its class midpoint. In the process of calculating the
mean, the class midpoints (m,) are weighted by class frequencies (f/.):

/

fimi _ fimy + fymy + o+ fom, (2.5)

fi h+fht..+fe

x =

1
C

hy
-1

]

where ¢ = number of frequency classes; 7, = class midpoints; f; = class frequencies.

Example 2.4. Using the information given in Table 2.4, we can calculate the mean of the dbh
measurements as:

X =[(2)(8.7)+(3)(11.0) + ... +(2)(22.5)] /50 = 15.738.

Interestingly, the mean in Example 2.4 (15.738 cm) is different from the mean
calculated from the raw data in Table 1.1 (see Chapter 1). Using Eqn 2.1 with all 50
dbh observations, we get a mean of 15.794 cm. This difference stems from the fact
that, in Eqn 2.5, we have replaced the original measurements with class midpoints
(representations or proxies of the original data points). In other words, the true value
of the mean is 15.794 cm but, using the grouped frequency distribution, we get
15.784 cm - a close approximation.

Apart from the fact that the mean is easy to calculate and it is a statistic that is
familiar to most people, it also has some desirable properties that make it an
invaluable tool for the interpretation of data sets (other desirable properties of the
mean will be explored in later chapters). For instance, it is a reliable indicator of the
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centre of the values of a variable and it does not fluctuate much from one sample to
another. On the other hand, its value is sensitive to extreme (very small or very large)
values. In cases where very small or large values are apparent, the so-called trimmed
mean can be used, which is the mean calculated after removing the upper and lower
5% of the ranked data.

The preferred measure of central location in the presence of extreme values is the
median. The median is the middle value when a set of # measurements is arranged in
increasing or decreasing order of magnitude. When 7 is odd, the median is the middle
value of the ranked items. When # is even, the median is the mean of the two middle
values of the ranked items. We usually use X or m as symbols for the median.

Example 2.5. Consider the following two sets of dbh measurements (ranked):
12.4, 135, 135, 15.9, 18.2, 19.1

14.8, 16.3, 17.2, 18.3, 18.3, 194

The median of the first set is 15.8, or the fourth point in the ranked set of 7. The median for the
second set is the average of the fourth and fifth points in the ranked set of 8, or (17.2 + 17.4)/2
=17.3.

and

Although there are arithmetic procedures available to approximate the median from
grouped frequency distributions, these procedures are beyond the scope of this book.
The main advantage of the median over the mean is that it is not affected by extreme
values. For symmetrical distributions, the mean and the median are equal.

Another measure of the central location is the mode, which is the most frequently
occurring value in a sample or a population. A data set will not necessarily possess a
mode, e.g. when all observations occur with the same frequency. Other data sets may
have more than one mode, such as when several values occur with the greatest
frequency. A population or sample with two modes is referred to as bimodal, while
one with more than two modes is referred to as multimodal. The first set of data in
Example 2.5 has one mode (13.5 occurs twice) and the second set has two modes
(17.2 and 18.3 each occur twice). The use of the mode is advantageous in that it does
not require any calculations and it can be used to study qualitative, as well as
quantitative, variables. For example, the mode of the crown class observations in
Tables 1.1 (see Chapter 1) and 2.2 is the intermediate trees, which occur with the
highest frequency (19).

The midrange is another measure of central tendency and is defined as the sum of
the minimum and maximum values divided by two. Like the average, its main
disadvantage is that it is affected by the occurrence of extreme observations.

Because of its desirable properties, the mean (specifically, the arithmetic average)
is the most commonly used measure of central location in statistics. It uses all
observations, is easy to calculate and does not change much from one sample to
another (taken from the same population). More importantly, when means are
calculated from repeated samples from a population, a clear relationship between the
sample mean and population mean emerges. Because of this relationship, the sample
mean is a good estimator of the population mean. This very important characteristic
of the sample mean will be discussed in more detail in later chapters.
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2.4 Measures of Variation

An important characteristic of observations is that they are not exactly alike (hence
the name random variable). The variation or spread of the observations has important
properties in statistics. Although the measures of central location discussed in Section
2.3 are important, they do not provide a complete picture of the nature of the data.
For example, each of the five Douglas-fir dbh measurements below, taken from
natural regeneration and plantation stands, have exactly the same mean: 15.8 cm.

Natural 12.4,14.5,15.2,17.8, 19.1
Plantation 14.8,15.0, 15.9, 16.5, 16.8

While these two data sets have the same central location, they are very different. The
dispersion or spread of the observations from natural regeneration appears to be
higher than from the plantation stand. If you were the manager of a sawmill, which
stand of trees would you prefer to deal with, all things being equal? For a more
complete description of observations, it is often useful to provide some measure of the
spread of the data in addition to a measure of the central location. Several such
measures, namely the range, mean deviation, variance, standard deviation and
coefficient of variation, will be discussed in this section.

Range, the simplest measure of variation, is the difference between the highest
and lowest values in the data sets.

Range = highest value — lowest value, or
R = max(x,) — min(x,).

Example 2.6. Douglas-fir measurements below, taken from natural regeneration and
plantation stands, have exactly the same mean: 15.8 cm.

Natural 12.4,14.5,15.2,17.8, 19.1
Plantation 14.8, 15.0, 15.9, 16.5, 16.8

The range of the natural regeneration dbh data is 19.1 — 12.4 = 6.7 cm, while that of the
plantation is 16.8 — 14.8 = 2.0 cm. These numbers confirm that the spread, at least in terms
of range, is higher for the natural regeneration stand. In fact, it is more than three times
higher.

Although the range is easy to calculate, it usually does not provide a satisfactory
measure of spread. Because its calculation involves only two of the observations, it is
considered a rough estimate only. Furthermore, the range is affected by the number of
observations, as well as by outliers (extreme values). As the number of observations
increases, the range tends to increase because the chance that the data contains
outliers also increases.

Unlike the range, the mean deviation, MD, utilizes all of the observations. It is
calculated as the average of the absolute values of the deviations (Fig. 2.11) of each of
the observations from the mean (sample or population).

i v~ |
MD==
n

(2.6)
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Fig. 2.11. Deviations from sample mean.

Note that this equation uses the absolute value of the deviations because, by
definition, the summation of all deviations (positive and negative) would equal
zero.

Although the mean deviation is a better descriptor of the variation than the range,
its application in practical statistics is limited because theoretical interpretation is
difficult. To overcome this disadvantage, another measure of spread was created, the
sum of squares of the deviations from the mean. These sums of squares can be
computed for sample data (SS), or for an entire population (SS p):

$8=3 (x, -%) =(x, %) +(x, =%) +...+(x, -5 (2.7)

88, = %1(’“:' _“)2 =(x1 _“)2 +(x2 _“)2 +"'+(xN _“)2 (2.8)

The sum of squares of the deviations from the mean is also referred to as the corrected
sum of squares, as each observation is subtracted from, or ‘corrected for’, the mean
before it is squared. Since our natural regeneration and plantation data (above) are
samples, we use Eqn 2.7 to compute the sums of squares (note that the units will be in
squared terms, i.e. cm?)

Natural (12.4 - 15.8)% + (14.5 = 15.8)? + (15.2 - 15.8)? + (17.8 = 15.8)? +
(19.1-15.8)2=28.5

Plantation (14.8 - 15.8)2 + (15.0 - 15.8)2 + (15.9 - 15.8)2 + (16.5 — 15.8)* +
(16.8-15.8)2=2.14

It is clear that the sum of squares reflects the measure of spread, but its size is entirely
dependent on the number of observations in the sample. Thus, samples of differing sizes
cannot be directly compared. To overcome this, the average sum of squares can be
calculated by dividing the sum of squares by the number of observations (N) for
populations, or by the number of observations minus one (z — 1) for samples. The term
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(m — 1) is known as degrees of freedom and is defined as the number of unrestricted
observations used to calculate a statistic. Since the same observations are used to calculate
the sample mean and the sample sum of squares, and since the sample mean is part of the
equation to calculate the sample sum of squares, one of the 7 observations is not
independent. In other words, in the equation for the sample sum of squares, the sample
mean defines one of the observations and this must be accounted for. Many readers may
find this concept difficult to grasp and so a simple example is provided for clarification.

Assume there are three observations from which a sample mean is calculated: 12,
14 and 16. The sum of these observations is Zx; = 42 and therefore the mean is 14
(42/3). Let us assume now that we know the mean, the number of observations and
the sum of the observations, but we do not know exactly what the observations are.
Working backwards to determine the values of the observations, we soon discover
that they could be any set of three numbers that add up to 42. When we think about
it a little more, we come to the further realization that actually we are free to choose
only two out of three observations because the three observations must add up to 42.
In other words, if we know that the sum of the observations must be 42 and we
choose two of the observations, say 12 and 16, we know that the third observation
must be 14 in order for the three observations to sum to 42. Thus, in this case, the
degrees of freedom (the number of observations that are free to vary) are 3 -1 = 2.

In most instances involving the sample mean, the degrees of freedom are n - 1.
That is the case in calculating the sum of squares from a single variable data set where
we can choose only 7 — 1 observations freely. However, the reader should be cautioned
that there are many types of sum of squares used in statistics and each has its own
associated degrees of freedom. We will give the appropriate degrees of freedom with
any new sum of squares as it arises.

The sum of squares divided by its degrees of freedom is called the variance or, less
commonly, the mean square. Using the sum of squares, the sample and population

variances, s> and 0?2, are respectively calculated as follows:
n 2
Ylx, —x
2=_%5 _ i=1( ’ ) (2.9)
n—1 n—1
N 2
s, X (xi B 'u)
ol=_P _izl (2.10)
N N

Note that the population variance is divided by N instead of N — 1, because the
population mean is a parameter, not an estimated statistic. Using Eqn 2.9, we can now
calculate the variances for the two samples (note that the units are in squared terms):

Natural  s2=28.5/(5-1)=7.125 cm?
Plantation s%=3.14/(5-1) = 0.785 cm?

Egns 2.9 and 2.10 are the theoretical equations to calculate variances. If pocket
calculators are used to calculate the variance, the following equations — algebraically
equivalent to 2.9 and 2.10 - provide the results much more efficiently, but are perhaps
more complicated to conceptualize. These are referred to as ‘computational’ or
‘working’ or ‘machine’ equations:
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N
where

n

2
Y x;” =xf +x3+...x2, the uncorrected sum of squares;
i=1

and

n
> x, =x,+x, +..x,, the sum of the observations.
i=1

Using Eqn 2.11, we first compute the uncorrected sums of squares:

Natural  12.42 + 14.52 + 15.22 + 17.8% + 19.1? = 1276.70 cm?
Plantation 14.82 + 15.0% + 15.9? + 16.5% + 16.8? = 1251.34 cm?

Then, the sample variances:

Natural s2=(1276.70 = 792/5)/(§ = 1) = 7.125 cm?
Plantation s%= (1251.34 — 79%/5)/(5 - 1) = 0.785 cm?.

As also indicated by the range, the variance of dbh from natural regeneration
Douglas-firs is considerably higher than that of the plantation. Thus, the spread of
observations is higher for the natural regeneration stand than for the plantation stand.

Although the variance has a number of desirable theoretical characteristics, the
standard deviation, which is the square root of the variance, has more descriptive
power, mainly because the standard deviation is in the same wunits as the original
observations (and the mean). From above, the standard deviations are 2.669 cm and
0.886 cm for natural regeneration and plantation stands, respectively.

The standard deviation holds unique properties for describing the spread of a data
set. From our two examples of natural and plantation forests, it should be clear that the
standard deviation is small if the values cluster closely around their mean, and the
standard deviation is large if the values are widely dispersed around their mean. This
observation was formalized by the Russian mathematician, P.L. Chebyshev, in
Chebyshev’s Theorem. This theorem, which can be applied to samples or populations of
any kind, states that at least the fraction (1 — 1/k?) of the observations must lie within &
standard deviations of the mean, regardless of the shape of the distribution of the data
set (where k is any constant greater than one). For instance, using k = 2, we can say that
at least 75% of the observations lie within two standard deviations of the mean.

If the data has a symmetrical, bell-shaped distribution (this will be called the
normal distribution later on in this volume), the variability of the data can better be
described by the Empirical Rule, which states that approximately 68%, 95% and
99.7% of the observations will lie within one, two or three standard deviations of the
mean, respectively (Fig. 2.12).
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Fig. 2.12. Empirical Rule.

Although the Empirical Rule is more powerful, it is much less robust than
Chebyshev’s Theorem and should be applied only to distributions that exhibit the
normal bell shape. Chebyshev’s Theorem will work for any type of distribution (bell-
shaped or not), and is thus a much more conservative way to interpret data.

Example 2.7. The mean and the standard deviation of the 50 dbh measurements in Table
1.1 are 15.8 cm and 3.2 cm, respectively. At least what fraction of the trees should be within
two and three standard deviations of the mean?

Using Chebyshev’s Theorem, at least 75% [(1-1/22)100] of the trees should be within
9.4 cm and 22.2 cm, and at least 89% [(1—1/32)100] of the trees should be within 6.2 cm and
25.4 cm. However, if we assume that the distribution is symmetrical and bell-shaped, we can
say that 95% of the data will lie within 9.4 cm and 22.2 cm, and 99.7% will lie within 6.2 cm
and 25.4 cm.

When it is appropriate to calculate a weighted mean as a measure of central tendency,
then it is also appropriate to calculate a weighted standard deviation. Equations 2.13 and
2.14 give the theoretical and working equations, respectively, for the weighted sample
variance. The standard deviation is computed by taking the square root as above:

n

_\2
2o i:lw"(x"_x) (2.13)

2
Spost~(§e) /()
2o i-1 =l (2.14)
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A special application of the weighting procedure is used to calculate the variance and
standard deviation from a grouped frequency distribution (Table 2.4). In the process
of calculating the weighted variance, the class midpoints (m ;) are weighted by the class
frequencies (f;). The theoretical and working equations for the variance from a
grouped frequency distribution are given in Eqns 2.15 and 2.16, respectively:

c \2
A ) (2.15)
n—1
C C 2
Zf,m,z—[Zf,m,J /n (2.16)
o/ i=1
n—1
where

(4
$ (= -+ d

Example 2.8. We can now calculate the variance and standard deviation of the dbh
measurements from the grouped frequency distribution given in Table 2.3 as:

Zi;ml? =(2)(8.7%) + (3)(11.0%) + ... + (4)(20.22) + (2)(22.52) = 12,854.09 cm?
E);.m]: 786.9, as in Example 2.4.

s? = (12,854.09 — 786.9%/50)/(50 — 1) = 9.589 cm?

s=23.097 cm.

As in the calculation of the mean, the observations in a grouped frequency
distribution have lost their identity and therefore each observation is represented by
its class midpoint. Thus, this estimate is not as exact as one computed from raw data
(Eqns 2.9 and 2.11). Using the raw data and Eqn 2.9 or 2.11, the variance and the
standard deviation were 10.414 and 3.227, respectively, compared to 9.589 and
3.097 above. We can say that the former values are correct, while the latter values are
rough, but acceptable, approximations.

We now return to the hypothetical example of 5000 dbh measurements
introduced in the beginning of the chapter. Let us assume that we know the mean of
these measurements is 24.0 cm, the standard deviation is 4.0 cm and that the
histogram shows a symmetrical, bell-shaped distribution. We can draw several
conclusions very quickly. First of all, the centre of the distribution is 24.0 cm. Second,
using the Empirical Rule, about 3400 (68%) of the trees are between 20.0 and
28.0 cm and about 4750 (95%) of the trees are between 16.0 and 32.0 cm.

When two data sets have the same units of measurement, the variances and
standard deviations are comparable. For example, the standard deviation of the 50
dbh measurements in Table 1.1 (3.23 cm — see Chapter 1) and our hypothetical
example (4.0 cm) are directly comparable, as they are both given in centimetres. Thus,
it can be concluded that the 50 dbh measurements are less variable than those of our
hypothetical example. On the other hand, if we compare the standard deviations of
the height measurements (2.91 m) and dbh measurements (3.23 cm) of Table 1.1 (see
Chapter 1), we could come to the wrong conclusion because the units are different. In
cases like this, it is appropriate to use the coefficient of variation (CV).
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The coefficient of variation is the standard deviation expressed as a percentage of
the mean:

CV =100 (2.17)
X

Thus, the CV is a standardized measure, meaning that variables measured in different
units are directly comparable.

Example 2.9. The mean and standard deviation of the 22 western red cedar heights are
12.92 m and 2.92 m, respectively. The mean and standard deviation of the 22 western red
cedar dbh measurements are 14.94 cm and 3.20 cm, respectively. The coefficients of
variation are therefore:

Height: CV=100(2.92/12.92) = 22.6%
Dbh: CV=100(3.20/14.94) = 21.4%.

This means that the relative variation (relative to the mean) of the dbh measurements is
somewhat less than the relative variation of height measurements.

The coefficient of variation can be very informative; however, some caution should be
exercised with its use. Like percentages, the coefficient of variation can be misused.
Specifically, as the mean of a set of observations approaches zero, the coefficient of variation
approaches infinity. Therefore, coefficients of variation calculated for samples having a mean
near zero should be avoided.

2.5 Measures of Position

Measures of position, such as standard scores and percentiles, are used to make
statements about the relative position of an observation or observations within a
particular set of data.

The relative position of an observation can be expressed in terms of the mean and
standard deviation by calculating a standard score. Standard scores can be computed
either for samples or for populations using the following;:

. =% (2.18)

g, =1 (2.19)

A z-score indicates how many standard deviations an observation is above or below
the mean value. With z-scores, items can be compared from two samples, regardless
of the units of measurement or the relative variation of the two samples. It should be
noted that the z-value is unitless and, if all the observations in a sample are
transformed into z-scores, they will have a mean of 0.0 and a standard deviation (or
variance) of 1.0. We will discuss z-scores in much more detail in later chapters.

Example 2.10. A student obtained grades of 65% in English and 85% in mathematics. The
mean grade of all of the students in the English class was 60% with a standard deviation of
6% and the mean grade of all of the students in the mathematics class was 80% with a
standard deviation of 8%. The z-scores corresponding to the student’s grades are therefore:
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English: Zs; = (65— 60)/6 = 0.833
Mathematics: z,, = (85 — 80)/8 = 0.625

Because the two z-scores are above zero, we know the student’s performance was above the
class average in both classes. Comparing these two z-scores enables us to say that, in a
relative sense, the student performed better in English (the score is 0.833 standard
deviations above the mean) than in mathematics (the score is only 0.625 standard deviations
above the mean).

Percentiles indicate the position of an observation within a data set, but they are not
the same as percentages. Assume a student scored 76 out of 100 possible points in a
test (a score of 76%). This score could be the lowest, or the highest, or somewhere in
the middle in the class. However, if the score of 76 corresponds to the 824 percentile,
then he or she performed better than 82% of the students in the class. In general, the
pth percentile is the value such that p per cent of the items in the data set fall at or
below that value:

p = 100(number of items in the data set below that value + 0.5)/n (2.20)
Some commonly used percentile values are:

® deciles divide the distribution into ten equal groups and correspond to the 10th,
20th, ..., and 90th percentiles;

® quartiles divide the distribution into four equal groups and correspond to the 25th,
50th and 75th percentiles, and

® the median divides the distribution into two equal groups and corresponds to the
50th percentile.

2.6 Computers and Statistical Software

Computers can be used for data organization, statistical analyses and arithmetic
calculations. In most cases, they provide efficient and numerically accurate results.
Recently, the general availability of computers and user-friendly software packages
has had a tremendous impact on statistics. Most of the data manipulation and
statistical analyses discussed in this book could be carried out with little or no
difficulty using some of the more popular programs such as MINITAB, SPSS, BMDP,
SAS, R or SYSTAT. Many statistical problems can also be solved in popular
spreadsheet programs, like Microsoft Excel. We purposely do not cover computer
packages in this book because we strongly believe that solving the exercises presented
in this text by pocket calculators will help students to understand and learn the theory
and applications of statistical techniques. However, most of the exercises and
examples in this book can be duplicated using the above packages. If you are
interested in doing so, we have included a few excellent references in the References
section at the end of this volume that should help to familiarize you with one or more
of these packages. Upon completion of your first statistics course, we would
encourage you to explore these software packages — along with knowledge of the
theory underlying statistics, they will become powerful tools in your careers.
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Exercises
Section 2.1

2.1. The number of accidents per month in a sawmill for the last 20 months are as
follows:

0 1 0 2 2 1 4 3 0 1
S 1 2 3 4 0 1 1 3 4

Construct a frequency table and calculate the relative frequencies.

2.2. The tree species in a permanent sample plot on the west coast of British
Columbia were recorded as follows (F = Douglas-fir, H = western hemlock, C =
western red cedar and A = red alder).

F H F C F A H F
H C A C F H H H
F H A C F H H F

Construct a frequency table and calculate the relative frequencies of each species.

2.3. In a commercial timber cruise, the number of trees per plot were recorded as
follows:

s 6 5 5 4 5 4 5 3 6 4 5 6 2 7
2 3 5 S5sS 6 7 8 2 3 4 S5 6 4 3 2

Construct a frequency table and calculate the relative frequencies.

2.4. Construct a frequency table using the 50 height measurements given in Table 1.1
(see Chapter 1). Show the class limits, class boundaries, class midpoint, relative
frequencies, cumulative frequencies, relative cumulative frequencies, inverse
cumulative frequencies and relative inverse cumulative frequencies.

2.5. The following are the amounts, in parts per million (ppm), of a nitrogen
compound found in 60 soil samples.

3.6 32 33 36 27 34 45 33 28 54
6.1 34 29 27 41 47 51 47 32 3.6
51 26 3.6 38 38 31 3.7 55 32 3.7
42 45 43 37 36 39 35 44 28 33
39 44 51 46 34 26 45 31 25 3.1
3.7 34 41 27 57 35 47 44 44 50

Construct a frequency table and show the class limits, class boundaries, class midpoint,
relative frequencies, cumulative frequencies, relative cumulative frequencies, inverse
cumulative frequencies and relative inverse cumulative frequencies.

2.6. Consider the following grouped frequency distribution of tree crown lengths (in
metres) of trees collected in a young stand.
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Class limits

Frequency

<44
45-6.4
6.5-8.4
8.5-10.4

10.5-12.4
12.5-14.4

2
7

11
13

8
4

Describe the first class.

TrpR e e o

Section 2.2

2.7. Construct a ‘stick graph’ for Exercise 2.1.
2.8. Construct a bar graph for Exercise 2.2.

2.9. Construct a pie chart for Exercise 2.2.

What is the precision of the measurements?
Calculate the class boundaries.

Calculate the class widths.

Calculate the class midpoints.

Find the number of trees with less than 12.45 m crown length.
What percentage of trees has a crown length of less than 8.45 m?
What percentage of trees has a crown length of more than 6.45 m?
Find the number of trees with a crown length greater than 8.45 m.
Would you have used six frequency classes for these data?

2.10. What graph or chart would you recommend for Exercise 2.3? Construct your

recommended graph.

2.11. Construct a histogram and a frequency polygon for Exercise 2.6.

2.12. Construct a relative histogram and a relative frequency polygon for Exercise

2.5.

2.13. Construct a cumulative frequency graph and an inverse cumulative frequency

graph for Exercise 2.4.

2.14. The following frequency distribution was constructed for log lengths (in feet)

from trees bucked on a landing;:

Class limits

Frequency

12.1-14.0
14.1-16.0
16.1-18.0
18.1-20.0
20.1<

6
23
44
27

4

Construct a frequency histogram and a frequency polygon.
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Section 2.3

2.15. The specific gravity (density) of each of eight coniferous tree species was
measured as follows:

0.682 0.357 0.412 0.582 0.556 0.576 0.368 0.381
Find the mean, median and mode of specific gravity.

2.16. The following are the minimum temperatures (in Celsius) of seven cities in
Canada recorded on 14 January 2006. Calculate the mean, median and mode of these
temperatures.

-12 -5 2 2 0 -3 5

2.17. Find the mean, median and mode for the number of accidents given in Exercise
2.1.

2.18. Find the mean, median and mode for the number of trees per plot given in
Exercise 2.3.

2.19. From the data in Table 1.1 (see Chapter 1), calculate the mean of the dbh
measurements by species (i.e. separately for Douglas-fir, western hemlock and western
red cedar).

a. Find the median and mode of the dbh measurements for western red cedar
trees.
b. Calculate the weighted mean of the dbh measurements for all three species.

2.20. Assume that a cutblock consists of three forest types, A, B and C, and their
areas are 420, 350 and 210 ha, respectively. If the average volume per ha (in m3/ha)
for each of the three types are 450, 480 and 620, respectively, what is the average
volume for the cutblock?

2.21. Find the mean from the ‘raw’ data and from the grouped frequency distribution
you constructed for the 60 soil samples given in Exercise 2.5. Compare the two
means.

Section 2.4

2.22. Find the range, mean deviation, variance and standard deviation for the data
given in Exercises 2.15 and 2.16.

2.23. Find the variance and standard deviation for the data given in Exercise 2.1.

2.24. Find the range, mean deviation, variance and standard deviation for the data
given in Exercise 2.3.

2.25. If it is known that the mean (¥) of 12 observations is 12.5 and the uncorrected
sum of squares (Xx?) is 2000, calculate the variance and standard deviation for the
observations.

2.26. Calculate the variance and standard deviation from the raw data and from the
frequency distribution that you constructed in Exercise 2.5. Compare the results.
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a. Apply Chebyshev’s Theorem with k& = 2. Are the results consistent with the
theorem? Hint: at least 75% of the observations should be within two
standard deviations of the mean.

b. Using the Empirical Rule, find the proportion of the observations within one
and two standard deviations of the mean. Does this theory apply? Why or
why not?

2.27. Calculate the coefficients of variation from the means that you obtained in
Exercises 2.15 and 2.16 and the standard deviations that you obtained in Exercise
2.22. Compare the two coefficients of variation and draw some conclusions.

2.28. What does it mean if the standard deviation of a particular data set is zero?

Section 2.5

2.29. Using the data given in Exercise 2.5, find:

a. The standard score for soil samples with 4.5 and 3.7 ppm, respectively:
interpret the results.

b. The 75th percentile.

c. The percentile rank for soil samples with 4.5 and 3.7 ppm, respectively.
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3 Probability

The Foundation of Statistics

We use statistical information every day to qualify statements and to help us make
decisions. For example, we may hear statements like:

® There is an 80% chance of rain today.
® The odds are one in 13 million that you will win the lottery.

Or we may be confronted with questions like:

® What is the likelibood of receiving an A on the first exam in this course?
® What is the chance that the Vancouver Canucks will win the next Stanley Cup?

Statistical inference, the generalization from a sample to a population, involves
drawing a conclusion about a population on the basis of available, but incomplete,
information. Hence, statistical inference involves a certain amount of uncertainty, and
statisticians should not base decisions on statistical inference unless the risk of
uncertainty can be reduced to a tolerable minimum.

Problems involving ‘uncertainty’, ‘chance’, ‘likelihood’, ‘odds” and other such factors
require an understanding and application of the theory of probability. Probability is the
branch of mathematics that incorporates the most important set of concepts used in the
field of statistics. The purpose of this chapter is to introduce the basic theories of
probability that are required to appreciate and understand many of the concepts of
statistical inference.

3.1 Sample Space and Events

In statistics, we define an experiment as a process that produces some data. In Chapter
1, we described an experiment to study the effects of seeding date and seedbed
preparation on germination. A wood scientist could be interested in studying the effect
of temperature and applied pressure on the strength properties of plywood. Experiments
such as tossing a coin, rolling a die, or drawing a card from an ordinary (52 cards) deck
of cards will also produce some data. In this chapter, we will deal with some simple
experiments in order to make the concept of probability easier to understand.

In most cases, the outcome of an experiment (real or simplified) will depend on
chance, and the outcome cannot be predicted with certainty. All possible outcomes of
an experiment are called the sample space and are represented by the symbol S. A
single outcome of an experiment is called an element or sample point of the sample
space. When sample spaces are finite, their elements can be listed. The general practice
is to list the elements separated by commas and enclosed in brackets. Some examples
of sample spaces are:
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Tossing a coin S={H,T) Two possible outcomes where H =
heads and T = tails.

Tossing two coins S = {HH, HT, TH, TT} Four possible outcomes.

Rolling a fair die S={1,2, 3,4, 5, 6} Six possible outcomes where the values
indicate the number rolled.

In other cases, it is easier to describe sample points rather than list them. When we
draw a card from an ordinary deck of cards, the sample space contains all possible 52
cards, 13 of each of 4 suits: hearts (¥), clubs (&%), diamonds (4 ) and spades (®).
Each suit contains nine ‘numbered’ cards (numbered from 2 to 10), three ‘face’ cards
(jack, queen and king) and one ace. This sample space can be described as:

S = {1 of 52 possible cards}.

Sample spaces can also be described with coded numbers such as 1 for heads and 0 for
tails, or by some other characteristic of the sample points. For example:

Tossing a coin S = {1, 0}
Rolling a die S = {even, odd}.

A sample space can also be described or qualified in general terms. For example, the
sample space of all trees of species that are native to British Columbia can be
described as:

S = {all trees of species y | y is a species native to British Columbia},

where the vertical bar I is read as ‘such that’ or ‘given’.

Within a sample space, we may be concerned with the occurrence of a particular
subset of all possible elements. An event is defined as a subset or portion of the
elements of a sample space. Events are usually represented by capital letters. A might
be the event that we have one head in an experiment of tossing two coins; B might be
that we have the ‘same’ outcomes for the two coin tosses; and C might be that we have
at least one tail.

A={HT, TH} B=(TT,HH) C={HT, TH, TT}
We could describe three events from a deck of cards such as:

A = {the card is black (clubs or spades)}
B = {the card is a ‘face’ card}
C = {the card is an ace of clubs or an ace of spades}.

We can distinguish four types of events:

® 2 sample space contains all possible outcomes;

® asimple event contains only one element;

® a compound event contains more than one element; and
® a null space contains no elements.

The usual symbol for the null space is . Readers should note that, in some
textbooks, compound events are also referred to as unions and intersections of events.
This definition is ambiguous, as it is possible that unions or intersections of two or
more events might not contain more than one element!

In approaching probability problems, it is oftentimes useful and informative to
draw a picture or Venn diagram of events as they relate to each other within the
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sample space. This is especially useful where compound (multiple) events are
concerned. In a Venn diagram, the sample space is shown as the interior of a rectangle.
Events are identified (often as circles) as specified regions inside the rectangle. Figure
3.1 shows the three events A, B and C from the sample space of cards discussed above.
It shows that there is some overlap, or intersection, between A and B, indicating some
common elements in the two events. Also, since C is completely contained within A,
we can see that all the elements in C belong to A as well.

Using events, mathematical operations, known as unions and intersections, can
be carried out and they play an important role in the theory of probability. In this
book, we will deal with unions and intersections of two events; however, the
procedures can easily be extended to three or more events. Before looking at unions
and intersections, the complement of an event should be defined. The complement of
an event, B, is the event containing all the elements of the sample space that are not
contained in B. The complement of B is denoted by B’ (the shaded area in Fig. 3.2)
and is discussed further in Section 3.3.

The union of two events A and B is the event that contains all the elements in A or
B, including elements common to both. It is denoted by A U B. The shaded area in the
Venn diagram in Fig. 3.3 shows the union of two events.

A
@ ‘ B’
Fig. 3.1. Venn diagram of sample space and Fig. 3.2. Complement of event B.

events.

Fig. 3.3. Union of two events, A and B.

Example 3.1. Two trees are chosen at random from a stand of southern pine, where some
trees are infested with southern pine bark beetle. Event A is that the first tree chosen is not
infested. Event B is that the same outcome occurs on two consecutive trees. What is the
union of these two events?

A={NN, NI} B={NN, I} where N = not infested and | = infested
Au B={NN, NI, II}.

Note that NN, the common element, is not listed twice.
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Example 3.2. In an experiment of rolling a die, event A is the even numbers and event Bis
the numbers less than 3. What is the union of these two events?

A={2,4,6} B={1,2) AuB={1,2,4,6}.
The intersection of two events A and B is the event that contains all the elements

common to both A and B. It is denoted by A N B. Figure 3.4 shows the Venn diagram
of the intersection of two events.

Fig. 3.4. Intersection of two events, A and B.

Example 3.3. The intersection (common element) of the two events from Example 3.1 is:
A B={NN}.

Example 3.4. The intersection of the two events from Example 3.2 is:
An B={2}.

If An B =, A and B are said to be mutually exclusive; that is, they have no common
elements. Figure 3.5 shows two mutually exclusive events.

Fig. 3.5. Mutually exclusive events.

Example 3.5. If event C contains all the spades and event D contains all the clubs from a
deck of cards, they are mutually exclusive, as they do not have a single common element.

CnD=@.

Conversely, if all of the elements in event C are also elements of event A (see Fig. 3.1), event
Cis said to be a subset of event A (C c A).
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It is easy to verify the following statements on unions and intersections using
Venn diagrams or simple logical arguments:

1. (A")Y =A S.ANA' =0

2. @0' =8 6. A=A
3.8 =0 7. AN =0
4. AuUA'=S 8. (AnB)=A"uUB’

3.2 Counting Techniques

The concept of sample and event spaces is essential to understanding classical probability
because oftentimes we must list and count the numbers of elements in a sample space and
in various events to calculate the chances of those events occurring. Sometimes,
determining the number of elements in an event and sample space is simple (e.g. a coin
toss), but other times it is more complex (see below). In general, the probability of an
event, E, is calculated as:

P(E)= f
n
where f = number of ways an event can occur; 7 = total number of outcomes in the
sample space; and P(E) = probability of event E occurring.

There are two ways to find the number of outcomes in a sample space and in an
event. One is listing and then counting all of the elements in both the sample space and
the event. In these cases, a tree diagram is a simple tool for listing and counting
outcomes. A second method is to use mathematical techniques to calculate the number
of ways something can happen. In these generally more complex cases, we can apply the
multiplication rule and/or use permutations and combinations. Many times, we must
use more than one mathematical technique to determine the number of elements.

A tree diagram is a systematic procedure for listing all possible outcomes in a
sample space or an event. Example 3.6 illustrates the construction of a tree diagram.

Example 3.6. Assume that we are carrying out a

quality control check in a particleboard mill and we Choice 1 Choice 2 Choice 3
have to select 3 sheets from the production line, 1

piece at a time. The mill produces either defective

(D) or defect-free (N) boards. Figure 3.6 shows the D

construction of a tree diagram for sequentially D<
selecting 3 boards, with every choice of board having N
two paths, either D or N. When all the sheets have D

been selected (3 in our case), we can list and count N
all the possible outcomes represented by each path.

Generally, tree diagrams move from left to right, D<D

following the logical sequence of time. N N
Our sample space has eight possible outcomes D
(the number of terminal branches on the tree): N
S ={DDD, DDN, DND, DNN, NDD, NDN, NND, N
NNN}

Fig. 3.6. Tree diagram for selecting 3
Once the sample space is identified, listing a given  boards.
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event is also simple. For instance, we can now define an event A as selecting only 1 defective
board. Event A has three outcomes:
A= {DNN, NDN, NND}.

It should be fairly intuitive to the reader that the probability of selecting 1 defective board in a
sample of 3 is 3/8. We will discuss this result more formally in the subsequent section.

Tree diagrams can be much more complicated with increasing numbers of outcomes.
In some situations, tree diagrams can have a different number of choices (branches) for
each successive step.

Example 3.7. We construct an experiment where we first flip a coin. If the outcome is a head
(H), we then roll a die. If the outcome is a tail (T), we flip the coin again. This random
experiment results in an asymmetric set of branches (Fig. 3.7). The sample space has eight
outcomes.

S ={H1, H2, H3, H4, H5, H6, TH, TT}.
1

2
3
H 4
5
6
.

: H
T Fig. 3.7. Tree diagram for flipping a coin and rolling a die.

The total number of outcomes for a sample space in a tree diagram can generally also
be calculated by what is known as the multiplication rule. This mathematical counting
rule states that if a random experiment has a sequence of two steps, in which there are
n, possible outcomes for the first step and 7, for the second, the total number of
outcomes is the product of the two numbers (1, X 7,).

Example 3.8. If a restaurant offers 2 soups and 4 main courses on the lunch menu, we can
order (2)(4) = 8 unique lunches.

The above definition for the multiplication rule can easily be extended to more than
two steps. That is, if a random experiment has a sequence of k steps, in which there
are n; possible outcomes for the first step, 7, for the second step, and so on (to 7,
possible outcomes on the kth step), then the total number of outcomes is

(n,)(ny)...(n,).

Example 3.9. In a home centre, wooden decks can be made using four kinds of wood. Each
deck can be stained with 5 types of stain and put together with 3 different types of hardware
fasteners. How many different kinds of decks can a customer buy?

(4)(5)(3) = 60.
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A further extension of the multiplication rule occurs when each step of the experiment
has an equal number of possible outcomes. In these cases, the total number of outcomes
is 7%, where 7 is the number of outcomes in each step and & is the number of steps.

Example 3.10. How many outcomes are possible if we choose 5 trees from a stand infested
by southern pine bark beetle, each time noting whether or not the tree is infested?
25=32;0r
(2)(2)(2)(2)(2) = 32.

Note that for the above two examples, a tree diagram will give exactly the same
results.

Another way to calculate the number of outcomes in sample spaces and events
is by using a permutation, which is the number of arrangements of all or part of a
set of n distinct objects. The number of permutations of 7 objects taken 7 at a time
is:

n!
p=_1r_
n-r (71 _ 7‘)! (31)
Equation 3.1 can be derived from the multiplication rule, as
L= m)n=1)(n-2).... (m—(r-1)) (3.2)

meaning that the first object can be selected (#) ways and, as one object has been
taken, the second object can be selected (n — 1) ways, and so on until the rth object,
which can be selected (7 — (r — 1)) ways (since (r — 1) objects have been taken already).
Equation 3.2 can then be algebraically simplified to Eqn 3.1 using factorial notation.
By way of example, #! is expressed in factorial notation and indicates the product of
consecutive numbers from 1 to n. Most statistical calculators have these functions
built in, which allow for the easy computation of factorials like 5! = (1)(2)(3)(4)(5) =
120. Note that 0! is, by definition, equal to 1, although the proof of this is beyond the
scope of this text.

Example 3.11. We can plant 4 trees in a row at the front of a house. If we have 6 trees, all
different species, how many ways can we plant them in a row?

6!

(6-4)

Example 3.12. If we have 3 unique paintings, how many ways can we hang 2 of them side-
by-side in a room?

3l
3P =

If we label the paintings from Example 3.12, A, B and C, these six permutations can
easily be listed as AB, AC, BA, BC, CA and CB. This should clearly show that, in a
permutation, the order is important. Permutations ‘AB’ and ‘BA’ are considered two
distinct arrangements.

When the permutations of all n objects are considered (in other words, we are not
taking 7 objects at a time), Eqn 3.1 can be simplified as:

Probability 41 ]



P

nwon-

l (3.3)

Since 7 = n, we have P =n!/(n—n)! = n!/0!. Because 0! =1, P, =n!.

Example 3.13. In how many ways can we plant all 6 of the trees from Example 3.11 in a row
at the front of a house?

&Ps = 6! = 720.

A special case of a permutation is the circular permutation. Consider the problem of
seating 5 people at a round table. Their arrangement is not considered different if they
each move seats one place to the right or to the left because they are in a connected
circle and not a disconnected line. The solution to this problem is to fix the position
of one person and find the number of permutations for the remaining 4 persons; that
is, 4! = 24. In general, the number of permutations of # distinct subjects in a circle is
denoted P, and is calculated as:

P =(n-1) (3.4)

4

Another special case of a permutation is the permutation of similar objects. This
occurs when some of the objects, among the 7 objects, are not distinguishable. For
example, if we have 3 Douglas-fir, 2 birch and 4 oak seedlings, we may assume that
we cannot distinguish between the trees within each species (i.e. we cannot tell the 2
birches apart). In general, out of # objects, if 7, objects are of one kind that are
indistinguishable, 7, are of a second kind and so on until #,, the number of
permutations of similar objects, P, is:

p n!

s = (3.5)
(”1!)(”2 !) (nk!)

Example 3.14. The number of ways the above 9 trees can be planted in a row is:

9l

" mE@)

= 1260.

Oftentimes, we are not concerned with the order in which 7 objects are selected from
n distinct objects. If, for instance, in Example 3.11 we were merely selecting paintings
as opposed to arranging them on a wall, we would not need to distinguish between
outcomes ‘AB’ and ‘BA’ because they are made up of the same objects. If order is not
important, we use combinations of the objects to describe the number of possible
outcomes. The number of combinations of 7 distinct objects, taken 7 at a time is:

n!

C (3.6)

n-r =

n

r) and is often stated as ‘z choose 7.

Another common notation for combinations is (

Notice that Eqn 3.6 can be obtained by dividing the number of permutations (Eqn
3.1) by r!, since the same objects appear together 7! times. For instance, in the painting
example (Example 3.12), the two permutations ‘AB’ and ‘BA’ are considered to be
only one combination. Thus, if order is not important, we can derive the number of
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combinations by dividing the number of permutations (six, from Example 3.12) by 7!
(2! in this case) for a total of three combinations.

Example 3.15. Using the 6 species of trees in Example 3.11, how many ways can we
randomly select 4 out of the 6 trees (i.e. order is unimportant)?

6l
Co = e a

Using the combination equation above, we can see that there are 15 ways to select 4
out of 6 trees without regard to order. However, if we instead planted or arranged the
trees, a certain order is implied for each of the 15 combinations and the problem
becomes one of permutations. In fact, each of the 15 combinations of 4 trees can be
lined up (or arranged) in 24 (4!) distinct ways. In other words, the total number of
permutations equals 360 (15 combinations x 24 ways that each combination can be
arranged), which agrees with Example 3.11. This example should again illustrate the
difference between considering the number of combinations and the number of
permutations of objects. However, the reader should also be cautioned that it is
sometimes difficult to distinguish between combination and permutation problems.
Often, in counting problems, statements about order are not explicitly made, but are
implied. We recommend practising these sorts of problems as much as possible.

Example 3.16. How many ways can we select 3 students out of 5 to sit on a university
committee? If we have not assigned any ‘positions’ (chair, secretary, treasurer) to the
individuals, the question can be answered by considering the number of combinations.

|
o | =10.

5Cs = (3)(5-3)

Using the combination equation, we see that there are 10 different committees of 3
that can be set up from 5 students. However, if we look at assigning positions on the
committee, the problem becomes one of permutations. Again, the importance of order
here is not explicitly stated but implied, and we must recognize that a committee
consisting of Black (chair), Jones (secretary) and Smith (treasurer) is different from
one consisting of Jones (chair), Black (secretary) and Smith (treasurer). The number of
ways that 3 students can be picked from 5 if each student is to have a distinct position
then becomes the permutation:

S!
sPy=—"= =60
(5-3)
Considering the result of the combination above, this means that every 3-person
committee selected can actually form 6 different committees when positions are
assigned.

Example 3.17. We have a bag of 9 seedlings, 3 of which are stunted in growth. How many
ways can we select 4 seedlings such that exactly 1 out of the 4 selected is stunted? Using the
combination equation, consider first how many ways that a normally growing seedling can be
selected:

+C, = (61)/[(3!)(6-3)!] = 20 ways.
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Now consider the number of ways that a stunted one can be selected:
sCy = (3)/[(11)(3-1)"] = 3 ways.

Then, using the multiplication rule, multiply the combinations of normal and stunted seedlings
together for a total of (20)(3) = 60 ways.

3.3 Probability

Probability is the measure of likelihood of the occurrence or non-occurrence of an
event. As defined earlier, an event is usually symbolized by a capital letter, say A, and
its probability is symbolized by P(A). Mathematically, a scale ranging from 0 to 1 is
used to evaluate the likelihood of occurrence of an event. If an event is very likely to
occur, it is assigned a probability close to 1. If an event is very unlikely to occur, it is
assigned a probability close to 0. It follows, then, that an event that is ‘certain’ to
occur has a probability of 1, while an event that is ‘impossible’ has a probability of 0.
The probability of the event that the sun will rise tomorrow is 1. The probability of
the event that a tossed coin will not land anywhere (stays in the air) is 0. In practical
applications, probabilities are often converted to percentages, with the possible values
ranging from 0% to 100%, and are frequently referred to as chances. For example, a
weather forecaster may say that, “The chance of showers tomorrow is 80%,” meaning
that the probability of rain tomorrow is 0.8.

There are three kinds of probabilities: classical, empirical and subjective.

Classical probability is calculated from the knowledge of the sample space and an
event from a random experiment. It is so named because it was the first type of
probability studied by mathematicians in the 17th century. As we discussed in Section
3.2, the probability of an event, A, can be calculated from the total number of
outcomes in a sample space, 7, and the number of ways that event A can occur, f.

P(A)= f (3.7)

n
In other words, f is the number of outcomes in event A, whereas # is the number of
total outcomes in the entire sample space. Equation 3.7 assumes the total number of
outcomes, 7, is equally likely; that is, they all have exactly the same probability of
occurring.

Example 3.18. Two dice, one red and the other green, are rolled. What is the probability of
event A, defined as having the number of dots totalling 7, occurring? All of the 36 outcomes
in this sample space are listed, with the event A defined in boldface:

1-1 1-2 1-3 1-4 1-5 1-6
2-1 2-2 2-3 2-4 2-5 2-6
3-1 3-2 3-3 3-4 3-5 3-6
4-1 4-2 4-3 4-4 4-5 4-6
5-1 5-2 5-3 5-4 5-5 5-6
6-1 6-2 6-3 64 6-5 6-6
A={1-6,2-5, 3-4, 4-3, 5-2, 6-1}
Since n=36and f=6, P(A) = 3_66 = % ~ 0.16667.
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Empirical probabilities are based on experiments for which the possible outcomes and
the number of outcomes favouring an event are not known exactly, but generally have
been observed. If an experiment is repeated 7 times and f out of the # trials favours
event B, the probability can be calculated as:

P(B) = L
n (3.8)
Here, f is called the frequency of event B. The symbol = means that the probability is
approximately equal to the theoretical value that would be expected (i.e. the classical
probability). Empirical probabilities change from one experiment to another for the
same event, while classical probabilities remain the same. Take the example of flipping
a coin 500 times. Classical probability tells us that the probability of getting a head
would be 0.5 and, thus, we would expect 250 of the flips to be heads. In reality,
however, this is unlikely to occur. We may get 240 heads in a 500-flip experiment and,
thus, the empirical (observed) probability would be 240/500 = 0.48, a value that is
close, but not exactly equal to 0.5.

The relative frequencies in frequency distributions are empirical probabilities if
the distributions are created from samples. These relative frequencies change if we
take a different sample from the same population. Table 2.2 (see Chapter 2) shows the
frequency distribution of crown classes for 50 trees taken from a stand. Since 14
codominant trees and 9 dominant trees were observed, the empirical probabilities of
trees being codominant and dominant are 0.28 and 0.18, respectively. If we took
another sample of 50 trees from the same stand (independently from the first), these
two probabilities would very likely change.

Subjective probabilities are based on a person’s experiences, or ‘educated guesses’.
For example, an avian biologist may say that, ‘If we log this area, there is a 15%
chance that cavity-nesting birds may never return,’ or a forester may note that, ‘If we
plant this logged-over area next spring, 80% of the seedlings will survive.” These
statements are not substantiated by exact scientific evidence and are based solely on
an individual’s experience.

Subjective probabilities are often seen in gambling, sporting events and horse
racing, where the term ‘odds’ is generally used in lieu of probability. However, before
defining what ‘odds’ means precisely, it is necessary to state some properties of
probabilities.

The properties of probability can be summarized as follows:

1. For a given event A, 0 < P(A) <1 (i.e. the probability of an event must be between
complete uncertainty and complete certainty).

2. The sum of the probabilities of all possible simple events in a sample space must
equal 1.

3. For a given event A,

P(A) + P(A') = 1,

where A’ is called the complement of A and represents an event defined by A not
occurring. Thus,

P(A')=1-P(A) and  P(A)=1-P(A").

4. For a given event A, P(A) is the sum of the probabilities of all simple events
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corresponding to A. That is, if A consists of several simple events, the sum of the
probabilities of all these events will sum to P(A).

Now that we know the mathematical meaning of an event’s complement, we can
define the term ‘odds’. The odds in favour of an event A are:
P(A
odds(A) = Q
P(A)

Again, odds are often used in gaming events involving subjective probabilities, but
this is not always the case. Take, for example, an experiment where